WorldWideScience

Sample records for mammosite brachytherapy advantages

  1. Review of MammoSite brachytherapy: Advantages, disadvantages and clinical outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Bensaleh, Saleh; Bezak, Eva; Borg, Martin (Dept. of Radiation Oncology, Royal Adelaide Hospital, Adelaide (Australia))

    2009-05-15

    Background. The MammoSite radiotherapy system is an alternative treatment option for patients with early-stage breast cancer to overcome the longer schedules associated with external beam radiation therapy. The device is placed inside the breast surgical cavity and inflated with a combination of saline and radiographic contrast to completely fill the cavity. The treatment schedule for the MammoSite monotherapy is 34 Gy delivered in 10 fractions at 1.0 cm from the balloon surface with a minimum of 6 hours between fractions on the same day. Material and methods. This review article presents the advantages, disadvantages, uncertainties and clinical outcomes associated with the MammoSite brachytherapy (MSB). Results. Potential advantages of MSB are: high localised dose with rapid falloff for normal tissue sparing, minimum delay between surgery and RT, catheter moves with breast, improved local control, no exposure to staff, likely side-effects reduction and potential cost/time saving (e.g. for country patients). The optimal cosmetic results depend on the balloon-to-skin distance. Good-to-excellent cosmetic results are achieved for patients with balloon-skin spacing of =7 mm. There have been very few published data regarding the long term tumour control and cosmesis associated with the MSB. The available data on the local control achieved with the MSB were comparable with other accelerated partial breast irradiation techniques. The contrast medium inside the balloon causes dose reduction at the prescription point. Current brachytherapy treatment planning systems (BTPS) do not take into account the increased photon attenuation due to high Z of contrast. Some BTPS predicted up to 10% higher dose near the balloon surface compared with Monte Carlo calculations using various contrast concentrations (5-25%). Conclusion. Initial clinical results have shown that the MammoSite device could be used as a sole radiation treatment for selected patients with early stage breast cancer

  2. Review of MammoSite brachytherapy: Advantages, disadvantages and clinical outcomes

    International Nuclear Information System (INIS)

    Bensaleh, Saleh; Bezak, Eva; Borg, Martin

    2009-01-01

    Background. The MammoSite radiotherapy system is an alternative treatment option for patients with early-stage breast cancer to overcome the longer schedules associated with external beam radiation therapy. The device is placed inside the breast surgical cavity and inflated with a combination of saline and radiographic contrast to completely fill the cavity. The treatment schedule for the MammoSite monotherapy is 34 Gy delivered in 10 fractions at 1.0 cm from the balloon surface with a minimum of 6 hours between fractions on the same day. Material and methods. This review article presents the advantages, disadvantages, uncertainties and clinical outcomes associated with the MammoSite brachytherapy (MSB). Results. Potential advantages of MSB are: high localised dose with rapid falloff for normal tissue sparing, minimum delay between surgery and RT, catheter moves with breast, improved local control, no exposure to staff, likely side-effects reduction and potential cost/time saving (e.g. for country patients). The optimal cosmetic results depend on the balloon-to-skin distance. Good-to-excellent cosmetic results are achieved for patients with balloon-skin spacing of =7 mm. There have been very few published data regarding the long term tumour control and cosmesis associated with the MSB. The available data on the local control achieved with the MSB were comparable with other accelerated partial breast irradiation techniques. The contrast medium inside the balloon causes dose reduction at the prescription point. Current brachytherapy treatment planning systems (BTPS) do not take into account the increased photon attenuation due to high Z of contrast. Some BTPS predicted up to 10% higher dose near the balloon surface compared with Monte Carlo calculations using various contrast concentrations (5-25%). Conclusion. Initial clinical results have shown that the MammoSite device could be used as a sole radiation treatment for selected patients with early stage breast cancer

  3. Investigation of source position uncertainties & balloon deformation in MammoSite brachytherapy on treatment effectiveness

    International Nuclear Information System (INIS)

    Bensaleh, S.

    2010-01-01

    The MammoSite ® breast high dose rate brachytherapy is used in treatment of early-stage breast cancer. The tumour bed volume is irradiated with high dose per fraction in a relatively small number of fractions. Uncertainties in the source positioning and MammoSite balloon deformation will alter the prescribed dose within the treated volume. They may also expose the normal tissues in balloon proximity to excessive dose. The purpose of this work is to explore the impact of these two uncertainties on the MammoSite dose distribution in the breast using dose volume histograms and Monte Carlo simulations. The Lyman–Kutcher and relative seriality models were employed to estimate the normal tissues complications associated with the MammoSite dose distributions. The tumour control probability was calculated using the Poisson model. This study gives low probabilities for developing heart and lung complications. The probability of complications of the skin and normal breast tissues depends on the location of the source inside the balloon and the volume receiving high dose. Incorrect source position and balloon deformation had significant effect on the prescribed dose within the treated volume. A 4 mm balloon deformation resulted in reduction of the tumour control probability by 24%. Monte Carlo calculations using EGSnrc showed that a deviation of the source by 1 mm caused approximately 7% dose reduction in the treated target volume at 1 cm from the balloon surface. In conclusion, accurate positioning of the 192 Ir source at the balloon centre and minimal balloon deformation are critical for proper dose delivery with the MammoSite brachytherapy applicator. On the basis of this study, we suggest that the MammoSite treatment protocols should allow for a balloon deformation of ≤2 mm and a maximum source deviation of ≤1 mm.

  4. Timing of Chemotherapy After MammoSite Radiation Therapy System Breast Brachytherapy: Analysis of the American Society of Breast Surgeons MammoSite Breast Brachytherapy Registry Trial

    International Nuclear Information System (INIS)

    Haffty, Bruce G.; Vicini, Frank A.; Beitsch, Peter; Quiet, Coral; Keleher, Angela; Garcia, Delia; Snider, Howard; Gittleman, Mark; Zannis, Victor; Kuerer, Henry; Whitacre, Eric; Whitworth, Pat; Fine, Richard; Keisch, Martin

    2008-01-01

    Purpose: To evaluate cosmetic outcome and radiation recall in the American Society of Breast Surgeons registry trial, as a function of the interval between accelerated partial breast irradiation (APBI) and initiation of chemotherapy (CTX). Methods and Materials: A total of 1440 patients at 97 institutions participated in this trial. After lumpectomy for early-stage breast cancer, patients received APBI (34 Gy in 10 fractions) with MammoSite RTS brachytherapy. A total of 148 patients received CTX within 90 days of APBI. Cosmetic outcome was evaluated at each follow-up visit and dichotomized as excellent/good or fair/poor. Results: Chemotherapy was initiated at a mean of 3.9 weeks after the final MammoSite procedure and was administered ≤3 weeks after APBI in 54 patients (36%) and >3 weeks after APBI in 94 patients (64%). The early and delayed groups were well balanced with respect to multiple factors that may impact on cosmetic outcome. There was a superior cosmetic outcome in those receiving chemotherapy >3 weeks after APBI (excellent/good in 72.2% at ≤3 weeks vs. excellent/good in 93.8% at >3 weeks; p = 0.01). Radiation recall in those receiving CTX at ≤3 weeks was 9 of 50 (18%), compared with 6 of 81(7.4%) in those receiving chemotherapy at >3 weeks (p = 0.09). Conclusion: The majority of patients receiving CTX after APBI have excellent/good cosmetic outcomes, with a low rate of radiation recall. Chemotherapy initiated >3 weeks after the final MammoSite procedure seems to be associated with a better cosmetic outcome and lower rate of radiation recall. An excellent/good cosmetic outcome in patients receiving CTX after 3 weeks was similar to the cosmetic outcome of the overall patient population who did not receive CTX

  5. Patterns of Failure After MammoSite Brachytherapy Partial Breast Irradiation: A Detailed Analysis

    International Nuclear Information System (INIS)

    Chen, Sea; Dickler, Adam; Kirk, Michael; Shah, Anand; Jokich, Peter; Solmos, Gene; Strauss, Jonathan; Dowlatshahi, Kambiz; Nguyen, Cam; Griem, Katherine

    2007-01-01

    Purpose: To report the results of a detailed analysis of treatment failures after MammoSite breast brachytherapy for partial breast irradiation from our single-institution experience. Methods and Materials: Between October 14, 2002 and October 23, 2006, 78 patients with early-stage breast cancer were treated with breast-conserving surgery and accelerated partial breast irradiation using the MammoSite brachytherapy applicator. We identified five treatment failures in the 70 patients with >6 months' follow-up. Pathologic data, breast imaging, and radiation treatment plans were reviewed. For in-breast failures more than 2 cm away from the original surgical bed, the doses delivered to the areas of recurrence by partial breast irradiation were calculated. Results: At a median follow-up time of 26.1 months, five treatment failures were identified. There were three in-breast failures more than 2 cm away from the original surgical bed, one failure directly adjacent to the original surgical bed, and one failure in the axilla with synchronous distant metastases. The crude failure rate was 7.1% (5 of 70), and the crude local failure rate was 5.7% (4 of 70). Estimated progression-free survival at 48 months was 89.8% (standard error 4.5%). Conclusions: Our case series of 70 patients with >6 months' follow-up and a median follow-up of 26 months is the largest single-institution report to date with detailed failure analysis associated with MammoSite brachytherapy. Our failure data emphasize the importance of patient selection when offering partial breast irradiation

  6. A comparison of skin and chest wall dose delivered with multicatheter, Contura multilumen balloon, and MammoSite breast brachytherapy.

    Science.gov (United States)

    Cuttino, Laurie W; Todor, Dorin; Rosu, Mihaela; Arthur, Douglas W

    2011-01-01

    Skin and chest wall doses have been correlated with toxicity in patients treated with breast brachytherapy . This investigation compared the ability to control skin and chest wall doses between patients treated with multicatheter (MC), Contura multilumen balloon (CMLB), and MammoSite (MS) brachytherapy. 43 patients treated with the MC technique, 45 patients treated with the CMLB, and 83 patients treated with the MS were reviewed. The maximum doses delivered to the skin and chest wall were calculated for all patients. The mean maximum skin doses for the MC, CMLB, and MS were 2.3 Gy (67% of prescription dose), 2.8 Gy (82% of prescription dose), and 3.2 Gy per fraction (94% of prescription dose), respectively. Although the skin distances were similar (p = 0.23) for the two balloon techniques, the mean skin dose with the CMLB was significantly lower than with the MS (p = 0.05). The mean maximum rib doses for the MC, CMLB, and MS were 2.3 Gy (67% of prescription dose), 2.8 Gy (82% of prescription dose), and 3.6 Gy per fraction (105% of prescription dose), respectively. Again, the mean rib dose with the CMLB was significantly lower than with the MS (p = 0.002). The MC and CMLB techniques are associated with significantly lower mean skin and rib doses than is the MS. Treatment with the MS was associated with significantly more patients receiving doses to the skin or rib in excess of 125% of the prescription. Treatment with the CMLB may prove to yield less normal tissue toxicity than treatment with the MS. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. A Comparison of Skin and Chest Wall Dose Delivered With Multicatheter, Contura Multilumen Balloon, and MammoSite Breast Brachytherapy

    International Nuclear Information System (INIS)

    Cuttino, Laurie W.; Todor, Dorin; Rosu, Mihaela; Arthur, Douglas W.

    2011-01-01

    Purpose: Skin and chest wall doses have been correlated with toxicity in patients treated with breast brachytherapy . This investigation compared the ability to control skin and chest wall doses between patients treated with multicatheter (MC), Contura multilumen balloon (CMLB), and MammoSite (MS) brachytherapy. Methods and Materials: 43 patients treated with the MC technique, 45 patients treated with the CMLB, and 83 patients treated with the MS were reviewed. The maximum doses delivered to the skin and chest wall were calculated for all patients. Results: The mean maximum skin doses for the MC, CMLB, and MS were 2.3 Gy (67% of prescription dose), 2.8 Gy (82% of prescription dose), and 3.2 Gy per fraction (94% of prescription dose), respectively. Although the skin distances were similar (p = 0.23) for the two balloon techniques, the mean skin dose with the CMLB was significantly lower than with the MS (p = 0.05). The mean maximum rib doses for the MC, CMLB, and MS were 2.3 Gy (67% of prescription dose), 2.8 Gy (82% of prescription dose), and 3.6 Gy per fraction (105% of prescription dose), respectively. Again, the mean rib dose with the CMLB was significantly lower than with the MS (p = 0.002). Conclusion: The MC and CMLB techniques are associated with significantly lower mean skin and rib doses than is the MS. Treatment with the MS was associated with significantly more patients receiving doses to the skin or rib in excess of 125% of the prescription. Treatment with the CMLB may prove to yield less normal tissue toxicity than treatment with the MS.

  8. Partial breast irradiation as sole therapy for low risk breast carcinoma: Early toxicity, cosmesis and quality of life results of a MammoSite brachytherapy phase II study

    International Nuclear Information System (INIS)

    Belkacemi, Yazid; Chauvet, Marie-Pierre; Giard, Sylvia; Villette, Sylviane; Lacornerie, Thomas; Bonodeau, Francois; Baranzelli, Marie-Christine; Bonneterre, Jacques; Lartigau, Eric

    2009-01-01

    Purpose: The MammoSite is a device that was developed with the goal of making breast-conserving surgery (BCT) more widely available. Our objective was to evaluate the MammoSite device performances after an open cavity placement procedure and quality of life in highly selected patients with early-stage breast cancer. Methods and materials: From March 2003 to March 2005, 43 patients with T1 breast cancer were enrolled in a phase II study. The median age was 72 years. Twenty-five (58%) patients were treated with high-dose rate brachytherapy using the MammoSite applicator to deliver 34 Gy in 10 fractions. The main disqualifying factor was pathologic sentinel node involvement (10/43; 23%). There were no device malfunctions, migration or rupture of the balloon. Results: After a median follow-up of 13 months, there were no local recurrences and one contralateral lobular carcinoma. Seventeen (68%), 13 (52%), 8 (32%), 5 (20%) and 2 (8%) patients had erythema, seroma, inflammation, hematoma and sever infection, respectively. Only 2 patients developed telangiectasia. At 1 year the rate of 'good to excellent' cosmetic results was 84%. Significant changes in QoL were observed for emotional and social well-being between 3 and 12 months. At 24 months, only emotional well-being subscore changes were statistically significant (p = 0.015). Conclusions: Our data in patients older than 60 years support the previously published data. Histologic features were the main disqualifying criteria. With higher skin spacing levels we observed very low incidence of telangiectasia. QoL evaluation indicates that baseline scores were satisfactory. Changes concerned emotional and social well-being

  9. Extended (5-year) Outcomes of Accelerated Partial Breast Irradiation Using MammoSite Balloon Brachytherapy: Patterns of Failure, Patient Selection, and Dosimetric Correlates for Late Toxicity

    International Nuclear Information System (INIS)

    Vargo, John A.; Verma, Vivek; Kim, Hayeon; Kalash, Ronny; Heron, Dwight E.; Johnson, Ronald; Beriwal, Sushil

    2014-01-01

    Purpose: Accelerated partial breast irradiation (APBI) with balloon and catheter-based brachytherapy has gained increasing popularity in recent years and is the subject of ongoing phase III trials. Initial data suggest promising local control and cosmetic results in appropriately selected patients. Long-term data continue to evolve but are limited outside of the context of the American Society of Breast Surgeons Registry Trial. Methods and Materials: A retrospective review of 157 patients completing APBI after breast-conserving surgery and axillary staging via high-dose-rate 192 Ir brachytherapy from June 2002 to December 2007 was made. APBI was delivered with a single-lumen MammoSite balloon-based applicator to a median dose of 34 Gy in 10 fractions over a 5-day period. Tumor coverage and critical organ dosimetry were retrospectively collected on the basis of computed tomography completed for conformance and symmetry. Results: At a median follow-up time of 5.5 years (range, 0-10.0 years), the 5-year and 7-year actuarial incidences of ipsilateral breast control were 98%/98%, of nodal control 99%/98%, and of distant control 99%/99%, respectively. The crude rate of ipsilateral breast recurrence was 2.5% (n=4); of nodal failure, 1.9% (n=3); and of distant failure, 0.6% (n=1). The 5-year and 7-year actuarial overall survival rates were 89%/86%, with breast cancer–specific survival of 100%/99%, respectively. Good to excellent cosmetic outcomes were achieved in 93.4% of patients. Telangiectasia developed in 27% of patients, with 1-year, 3-year, and 5-year actuarial incidence of 7%/24%/33%; skin dose >100% significantly predicted for the development of telangiectasia (50% vs 14%, P<.0001). Conclusions: Long-term single-institution outcomes suggest excellent tumor control, breast cosmesis, and minimal late toxicity. Skin toxicity is a function of skin dose, which may be ameliorated with dosimetric optimization afforded by newer multicatheter brachytherapy applicators and

  10. Extended (5-year) Outcomes of Accelerated Partial Breast Irradiation Using MammoSite Balloon Brachytherapy: Patterns of Failure, Patient Selection, and Dosimetric Correlates for Late Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Vargo, John A.; Verma, Vivek; Kim, Hayeon; Kalash, Ronny; Heron, Dwight E.; Johnson, Ronald; Beriwal, Sushil, E-mail: beriwals@upmc.edu

    2014-02-01

    Purpose: Accelerated partial breast irradiation (APBI) with balloon and catheter-based brachytherapy has gained increasing popularity in recent years and is the subject of ongoing phase III trials. Initial data suggest promising local control and cosmetic results in appropriately selected patients. Long-term data continue to evolve but are limited outside of the context of the American Society of Breast Surgeons Registry Trial. Methods and Materials: A retrospective review of 157 patients completing APBI after breast-conserving surgery and axillary staging via high-dose-rate {sup 192}Ir brachytherapy from June 2002 to December 2007 was made. APBI was delivered with a single-lumen MammoSite balloon-based applicator to a median dose of 34 Gy in 10 fractions over a 5-day period. Tumor coverage and critical organ dosimetry were retrospectively collected on the basis of computed tomography completed for conformance and symmetry. Results: At a median follow-up time of 5.5 years (range, 0-10.0 years), the 5-year and 7-year actuarial incidences of ipsilateral breast control were 98%/98%, of nodal control 99%/98%, and of distant control 99%/99%, respectively. The crude rate of ipsilateral breast recurrence was 2.5% (n=4); of nodal failure, 1.9% (n=3); and of distant failure, 0.6% (n=1). The 5-year and 7-year actuarial overall survival rates were 89%/86%, with breast cancer–specific survival of 100%/99%, respectively. Good to excellent cosmetic outcomes were achieved in 93.4% of patients. Telangiectasia developed in 27% of patients, with 1-year, 3-year, and 5-year actuarial incidence of 7%/24%/33%; skin dose >100% significantly predicted for the development of telangiectasia (50% vs 14%, P<.0001). Conclusions: Long-term single-institution outcomes suggest excellent tumor control, breast cosmesis, and minimal late toxicity. Skin toxicity is a function of skin dose, which may be ameliorated with dosimetric optimization afforded by newer multicatheter brachytherapy

  11. Investigation of Interfraction Variations of MammoSite Balloon Applicator in High-Dose-Rate Brachytherapy of Partial Breast Irradiation

    International Nuclear Information System (INIS)

    Kim, Yongbok; Johnson, Mark M.S.; Trombetta, Mark G.; Parda, David S.; Miften, Moyed

    2008-01-01

    Purpose: To measure the interfraction changes of the MammoSite applicator and evaluate their dosimetric effect on target coverage and sparing of organs at risk. Methods and Materials: A retrospective evaluation of the data from 19 patients who received 10 fractions (34 Gy) of high-dose-rate partial breast irradiation was performed. A computed tomography-based treatment plan was generated for Fraction 1, and a computed tomography scan was acquired just before the delivery of each fraction to ensure a consistent shape of the balloon. The eccentricity, asymmetry, and planning target volume (PTV) for plan evaluation purposes (PTV E VAL), as well as trapped air gaps, were measured for all patients. Furthermore, 169 computed tomography-based treatment plans were retrospectively generated for Fractions 2-10. Interfraction dosimetric variations were evaluated using the %PTV E VAL coverage, target dose homogeneity index, target dose conformal index, and maximum doses to the organs at risks. Results: The average variation of eccentricity and asymmetry from Fraction 1 values of 3.5% and 1.1 mm was -0.4% ± 1.6% and -0.1 ± 0.6 mm. The average trapped air gap volume was dramatically reduced from before treatment (3.7 cm 3 ) to Fraction 1 (0.8 cm 3 ). The PTV E VAL volume change was insignificant. The average variation for the %PTV E VAL, target dose homogeneity, and target dose conformal index from Fraction 1 values of 94.7%, 0.64, and 0.85 was 0.15% ± 2.4%, -0.35 ± 2.4%, and -0.34 ± 4.9%, respectively. The average Fraction 1 maximum skin and ipsilateral lung dose of 3.2 Gy and 2.0 Gy varied by 0.08 ± 0.47 and -0.16 ± 0.29 Gy, respectively. Conclusion: The interfraction variations were patient specific and fraction dependent. Although the average interfraction dose variations for the target and organs at risk were not clinically significant, the maximum variations could be clinically significant

  12. Five-Year Analysis of Treatment Efficacy and Cosmesis by the American Society of Breast Surgeons MammoSite Breast Brachytherapy Registry Trial in Patients Treated With Accelerated Partial Breast Irradiation

    International Nuclear Information System (INIS)

    Vicini, Frank; Beitsch, Peter; Quiet, Coral; Gittleman, Mark; Zannis, Vic; Fine, Ricky; Whitworth, Pat; Kuerer, Henry; Haffty, Bruce; Keisch, Martin; Lyden, Maureen

    2011-01-01

    Purpose: To present 5-year data on treatment efficacy, cosmetic results, and toxicities for patients enrolled on the American Society of Breast Surgeons MammoSite breast brachytherapy registry trial. Methods and Materials: A total of 1440 patients (1449 cases) with early-stage breast cancer receiving breast-conserving therapy were treated with the MammoSite device to deliver accelerated partial-breast irradiation (APBI) (34 Gy in 3.4-Gy fractions). Of 1449 cases, 1255 (87%) had invasive breast cancer (IBC) (median size, 10 mm) and 194 (13%) had ductal carcinoma in situ (DCIS) (median size, 8 mm). Median follow-up was 54 months. Results: Thirty-seven cases (2.6%) developed an ipsilateral breast tumor recurrence (IBTR), for a 5-year actuarial rate of 3.80% (3.86% for IBC and 3.39% for DCIS). Negative estrogen receptor status (p = 0.0011) was the only clinical, pathologic, or treatment-related variable associated with IBTR for patients with IBC and young age (<50 years; p = 0.0096) and positive margin status (p = 0.0126) in those with DCIS. The percentage of breasts with good/excellent cosmetic results at 60 months (n = 371) was 90.6%. Symptomatic breast seromas were reported in 13.0% of cases, and 2.3% developed fat necrosis. A subset analysis of the first 400 consecutive cases enrolled was performed (352 with IBC, 48 DCIS). With a median follow-up of 60.5 months, the 5-year actuarial rate of IBTR was 3.04%. Conclusion: Treatment efficacy, cosmesis, and toxicity 5 years after treatment with APBI using the MammoSite device are good and similar to those reported with other forms of APBI with similar follow-up.

  13. Advantages of high-dose rate (HDR) brachytherapy in treatment of prostate cancer

    Science.gov (United States)

    Molokov, A. A.; Vanina, E. A.; Tseluyko, S. S.

    2017-09-01

    One of the modern methods of preserving organs radiation treatment is brachytherapy. This article analyzes the results of prostate brachytherapy. These studies of the advantages of high dose brachytherapy lead to the conclusion that this method of radiation treatment for prostate cancer has a favorable advantage in comparison with remote sensing methods, and is competitive, preserving organs in comparison to surgical methods of treatment. The use of the method of polyfocal transperineal biopsy during the brachytherapy session provides information on the volumetric spread of prostate cancer and adjust the dosimetry plan taking into account the obtained data.

  14. Accelerated partial breast irradiation utilizing balloon brachytherapy techniques

    International Nuclear Information System (INIS)

    Strauss, Jonathan B.; Dickler, Adam

    2009-01-01

    To overcome the barriers to BCT, methods of PBI in the setting of breast conservation have been explored. The method of PBI with the longest published follow-up is multi-catheter interstitial brachytherapy. Balloon-based brachytherapy with the MammoSite brachytherapy applicator was designed to simplify the brachytherapy procedure for PBI, enhance the reproducibility of the dosimetry, and improve patient comfort. The rates of local recurrence following PBI with the MammoSite applicator have been low, but there are few published reports and follow-up has been relatively short. The cosmetic outcomes and toxicity of MammoSite PBI are comparable to those seen after multicatheter-based PBI. Additional methods of balloon brachytherapy, including Xoft and SenoRx Contura have been developed. Finally, long-term follow-up after PBI is important for the welfare of individual patients and in order to establish the efficacy, late toxicity and cosmetic outcomes of this technique.

  15. Brachytherapy

    Science.gov (United States)

    ... the use of a type of energy, called ionizing radiation, to kill cancer cells and shrink tumors. External ... In all cases of brachytherapy, the source of radiation is encapsulated ... non-radioactive metallic capsule. This prevents the radioactive materials ...

  16. Phase I/II Study Evaluating Early Tolerance in Breast Cancer Patients Undergoing Accelerated Partial Breast Irradiation Treated With the MammoSite Balloon Breast Brachytherapy Catheter Using a 2-Day Dose Schedule

    International Nuclear Information System (INIS)

    Wallace, Michelle; Martinez, Alvaro; Mitchell, Christina; Chen, Peter Y.; Ghilezan, Mihai; Benitez, Pamela; Brown, Eric; Vicini, Frank

    2010-01-01

    Purpose: Initial Phase I/II results using balloon brachytherapy to deliver accelerated partial breast irradiation (APBI) in 2 days in patients with early-stage breast cancer are presented. Materials and Methods: Between March 2004 and August 2007, 45 patients received adjuvant radiation therapy after lumpectomy with balloon brachytherapy in a Phase I/II trial delivering 2800 cGy in four fractions of 700 cGy. Toxicities were evaluated using the National Cancer Institute Common Toxicity Criteria for Adverse Events v3.0 scale and cosmesis was documented at ≥6 months. Results: The median age was 66 years (range, 48-83) and median skin spacing was 12 mm (range, 8-24). The median follow-up was 11.4 months (5.4-48 months) with 21 patients (47%) followed ≥1 year, 11 (24%) ≥2 years, and 7 (16%) ≥3 years. At <6 months (n = 45), Grade II toxicity rates were 9% radiation dermatitis, 13% breast pain, 2% edema, and 2% hyperpigmentation. Grade III breast pain was reported in 13% (n = 6). At ≥6 months (n = 43), Grade II toxicity rates were: 2% radiation dermatitis, 2% induration, and 2% hypopigmentation. Grade III breast pain was reported in 2%. Infection was 13% (n = 6) at <6 months and 5% (n = 2) at ≥6 months. Persistent seroma ≥6 months was 30% (n = 13). Fat necrosis developed in 4 cases (2 symptomatic). Rib fractures were seen in 4% (n = 2). Cosmesis was good/excellent in 96% of cases. Conclusions: Treatment with balloon brachytherapy using a 2-day dose schedule resulted acceptable rates of Grade II/III chronic toxicity rates and similar cosmetic results observed with a standard 5-day accelerated partial breast irradiation schedule.

  17. Theoretical and experimental determination of dosimetric characteristics for ADVANTAGE{sup TM} Pd-103 brachytherapy source

    Energy Technology Data Exchange (ETDEWEB)

    Meigooni, Ali S. [Department of Radiation Medicine, University of Kentucky Medical Center, 800 Rose Street, Lexington, Kentucky 40536 (United States)]. E-mail: alimeig@uky.edu; Dini, Sharifeh A. [Department of Radiation Medicine, University of Kentucky Medical Center, 800 Rose Street, Lexington, Kentucky 40536 (United States); Awan, Shahid B. [Department of Radiation Medicine, University of Kentucky Medical Center, 800 Rose Street, Lexington, Kentucky 40536 (United States); Dou, Kai [Department of Radiation Medicine, University of Kentucky Medical Center, 800 Rose Street, Lexington, Kentucky 40536 (United States); Koona, Rafiq A. [Department of Radiation Medicine, University of Kentucky Medical Center, 800 Rose Street, Lexington, Kentucky 40536 (United States)

    2006-08-15

    ADVANTAGE{sup TM} Pd-103 brachytherapy source has been recently introduced by IsoAid{sup TM} for prostate permanent implants. Dosimetric characteristics (Dose rate constant, radial dose function, 2D-, and 1D-anisotropy functions) of this source model have been determined using both theoretical and experimental methods, following the updated TG-43U1 protocol. Derivation of the dose rate constant was based on recent NIST WAFAC calibration performed in accordance with the 1999 Standards. Measurements were performed in Solid Water{sup TM} using LiF TLD chips and the theoretical calculations were performed in Solid Water{sup TM} and liquid water phantom materials using PTRAN Monte Carlo code. The results of the Monte Carlo simulation have shown a dose rate constant of 0.69 cGy h{sup -1} U{sup -1} in liquid water and 0.67 cGy h{sup -1} U{sup -1} in Solid Water{sup TM} medium. The measured dose rate constant in Solid Water{sup TM} was found to be 0.68{+-}8% cGy h{sup -1} U{sup -1}, which is in a good agreement (within {+-}5%) to the Monte Carlo simulated data. The 2D- and 1D-anisotropy functions of the ADVANTAGE{sup TM} Pd-103 source were calculated for radial distances ranging from 0.5 to 5.0 cm. Radial dose function was determined for radial distances ranging from 0.2 to 8.0 cm using line source approximation. All these calculations are based on L {sub eff} equal to 3.61 cm, calculated following TG-43U1 recommendations. The tabulated data for 2D-anisotropy function, 1D-anisotropy function, dose rate constant and radial dose function have been produced for clinical application of this source model.

  18. A photon spectrometric dose-rate constant determination for the Advantage Pd-103 brachytherapy source

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhe Jay; Bongiorni, Paul; Nath, Ravinder [Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520 (United States)

    2010-02-15

    Purpose: Although several dosimetric characterizations using Monte Carlo simulation and thermoluminescent dosimetry (TLD) have been reported for the new Advantage Pd-103 source (IsoAid, LLC, Port Richey, FL), no AAPM consensus value has been established for the dosimetric parameters of the source. The aim of this work was to perform an additional dose-rate constant ({Lambda}) determination using a recently established photon spectrometry technique (PST) that is independent of the published TLD and Monte Carlo techniques. Methods: Three Model IAPD-103A Advantage Pd-103 sources were used in this study. The relative photon energy spectrum emitted by each source along the transverse axis was measured using a high-resolution germanium spectrometer designed for low-energy photons. For each source, the dose-rate constant was determined from its emitted energy spectrum. The PST-determined dose-rate constant ({sub PST}{Lambda}) was then compared to those determined by TLD ({sub TLD}{Lambda}) and Monte Carlo ({sub MC}{Lambda}) techniques. A likely consensus {Lambda} value was estimated as the arithmetic mean of the average {Lambda} values determined by each of three different techniques. Results: The average {sub PST}{Lambda} value for the three Advantage sources was found to be (0.676{+-}0.026) cGyh{sup -1} U{sup -1}. Intersource variation in {sub PST}{Lambda} was less than 0.01%. The {sub PST}{Lambda} was within 2% of the reported {sub MC}{Lambda} values determined by PTRAN, EGSnrc, and MCNP5 codes. It was 3.4% lower than the reported {sub TLD}{Lambda}. A likely consensus {Lambda} value was estimated to be (0.688{+-}0.026) cGyh{sup -1} U{sup -1}, similar to the AAPM consensus values recommended currently for the Theragenics (Buford, GA) Model 200 (0.686{+-}0.033) cGyh{sup -1} U{sup -1}, the NASI (Chatsworth, CA) Model MED3633 (0.688{+-}0.033) cGyh{sup -1} U{sup -1}, and the Best Medical (Springfield, VA) Model 2335 (0.685{+-}0.033) cGyh{sup -1} U{sup -1} {sup 103}Pd

  19. A photon spectrometric dose-rate constant determination for the Advantage Pd-103 brachytherapy source

    International Nuclear Information System (INIS)

    Chen, Zhe Jay; Bongiorni, Paul; Nath, Ravinder

    2010-01-01

    Purpose: Although several dosimetric characterizations using Monte Carlo simulation and thermoluminescent dosimetry (TLD) have been reported for the new Advantage Pd-103 source (IsoAid, LLC, Port Richey, FL), no AAPM consensus value has been established for the dosimetric parameters of the source. The aim of this work was to perform an additional dose-rate constant (Λ) determination using a recently established photon spectrometry technique (PST) that is independent of the published TLD and Monte Carlo techniques. Methods: Three Model IAPD-103A Advantage Pd-103 sources were used in this study. The relative photon energy spectrum emitted by each source along the transverse axis was measured using a high-resolution germanium spectrometer designed for low-energy photons. For each source, the dose-rate constant was determined from its emitted energy spectrum. The PST-determined dose-rate constant ( PST Λ) was then compared to those determined by TLD ( TLD Λ) and Monte Carlo ( MC Λ) techniques. A likely consensus Λ value was estimated as the arithmetic mean of the average Λ values determined by each of three different techniques. Results: The average PST Λ value for the three Advantage sources was found to be (0.676±0.026) cGyh -1 U -1 . Intersource variation in PST Λ was less than 0.01%. The PST Λ was within 2% of the reported MC Λ values determined by PTRAN, EGSnrc, and MCNP5 codes. It was 3.4% lower than the reported TLD Λ. A likely consensus Λ value was estimated to be (0.688±0.026) cGyh -1 U -1 , similar to the AAPM consensus values recommended currently for the Theragenics (Buford, GA) Model 200 (0.686±0.033) cGyh -1 U -1 , the NASI (Chatsworth, CA) Model MED3633 (0.688±0.033) cGyh -1 U -1 , and the Best Medical (Springfield, VA) Model 2335 (0.685±0.033) cGyh -1 U -1 103 Pd sources. Conclusions: An independent Λ determination has been performed for the Advantage Pd-103 source. The PST Λ obtained in this work provides additional information

  20. Simulation of measurement absorbed dose on prostate brachytherapy with radius of prostate 2 cm using MCNP5 with seed implant model isoaid AdvantageTM IAPd-103A

    International Nuclear Information System (INIS)

    Poundra Setiawan; Suharyana; Riyatun

    2015-01-01

    Simulation of measurement absorbed dose on prostate brachytherapy with radius of prostate 2 cm using MCNP5 with seed implant model IsoAid Advantage TM IAPd-103A has been conducted. 103 Pd used as a radioactive source in the seed implant and it has energy gamma emission 20,8 keV with half live 16,9 days and has activity 4 mCi. The prostate cancer is modeled with spherical and it has radius 3 cm, after planting the seed implant 103 Pdover 24,4 days, prostate cancer has absorbed dose 2,172Gy. Lethal dose maximum use 103 Pd is 125 Gy and it was reached with 59 seeds. (author)

  1. SU-F-19A-03: Dosimetric Advantages in Critical Structure Dose Sparing by Using a Multichannel Cylinder in High Dose Rate Brachytherapy to Treat Vaginal Cuff Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Syh, J; Syh, J; Patel, B; Zhang, J; Wu, H; Rosen, L [Willis-Knighton Cancer Center, Shreveport, LA (United States)

    2014-06-15

    Purpose: The multichannel cylindrical vaginal applicator is a variation of traditional single channel cylindrical vaginal applicator. The multichannel applicator has additional peripheral channels that provide more flexibility in the planning process. The dosimetric advantage is to reduce dose to adjacent organ at risk (OAR) such as bladder and rectum while maintaining target coverage with the dose optimization from additional channels. Methods: Vaginal HDR brachytherapy plans are all CT based. CT images were acquired in 2 mm thickness to keep integrity of cylinder contouring. The CTV of 5mm Rind with prescribed treatment length was reconstructed from 5mm expansion of inserted cylinder. The goal was 95% of CTV covered by 95% of prescribed dose in both single channel planning (SCP)and multichannel planning (MCP) before proceeding any further optimization for dose reduction to critical structures with emphasis on D2cc and V2Gy . Results: This study demonstrated noticeable dose reduction to OAR was apparent in multichannel plans. The D2cc of the rectum and bladder were showing the reduced dose for multichannel versus single channel. The V2Gy of the rectum was 93.72% and 83.79% (p=0.007) for single channel and multichannel respectively (Figure 1 and Table 1). To assure adequate coverage to target while reducing the dose to the OAR without any compromise is the main goal in using multichannel vaginal applicator in HDR brachytherapy. Conclusion: Multichannel plans were optimized using anatomical based inverse optimization algorithm of inverse planning simulation annealing. The optimization solution of the algorithm was to improve the clinical target volume dose coverage while reducing the dose to critical organs such as bladder, rectum and bowels. The comparison between SCP and MCP demonstrated MCP is superior to SCP where the dwell positions were based on geometric array only. It concluded that MCP is preferable and is able to provide certain features superior to SCP.

  2. Dose calculations for a simplified Mammosite system with the Monte Carlo Penelope and MCNPX simulation codes

    International Nuclear Information System (INIS)

    Rojas C, E.L.; Varon T, C.F.; Pedraza N, R.

    2007-01-01

    The treatment of the breast cancer at early stages is of vital importance. For that, most of the investigations are dedicated to the early detection of the suffering and their treatment. As investigation consequence and clinical practice, in 2002 it was developed in U.S.A. an irradiation system of high dose rate known as Mammosite. In this work we carry out dose calculations for a simplified Mammosite system with the Monte Carlo Penelope simulation code and MCNPX, varying the concentration of the contrast material that it is used in the one. (Author)

  3. Is there any advantage of CT based 3-dimensional conformal planning over conventional orthogonal x-ray based planning in HDR brachytherapy in breast cancer

    International Nuclear Information System (INIS)

    Biswal, B.M.; Idris, N.R.; Zakaria, A.B.; Khairul, N.

    2003-01-01

    The conventional brachytherapy dose calculation is based on a particular brachytherapy rule or individual dosimetry based on the reconstruction of the sources from the orthogonal films. In the recent years many centers are using CT based 3D conformal brachytherapy in order to improve the dosimetric outcome of a given plan. Here we would like to present our experience on the use of both techniques to deliver HDR interstitial brachytherapy as boost in early breast cancer. From January 2001 to January 2003, we treated 4 breast cancer patients using conventional orthogonal x-rays and CT scan in 3 cases for the treatment plan. All patients received an external beam radiotherapy dose of 46 Gy in 23 fractions over 4.5 weeks to the whole breast using 6 MV photon beam. Subsequently the primary lesion was supplimented with HDR brachytherapy to a dose of 2.5 Gy BID for 3 consecutive days using a (192)Ir microSelectronHDR. The dose prescription was individualized to encompass the tumor volume with a 10 mm margin. The differences of the dosimetric outcome were compared. All patients completed above schedule of radiotherapy. The primary was implanted with single plane in 3 patients and multiplane implant in 4 patients. Orthogonal x-ray based localization was performed in 4 patients and CT scan based localization in 3 cases. Three patients were implanted single plane and 4 patients with multiplane implants with a median catheter number of 9 (range 6-14). The 3D conformal dose optimization was performed using Nucletron planning system (Plato). The mean 100% and 150% isodose volume was 67.3 cm 3 and 31.25cm 3 respectively. The identification of primary tumor volume, organ at risk, and identification of afterloading catheters were superior in CT based plan than conventional planning. CT scan based 3D conformal brachytherapy planning give better identification of tumor volume and its curvature, decrease the time to identify the sources and evaluate the radiation dose to organs at

  4. Dose calculations for a simplified Mammosite system with the Monte Carlo Penelope and MCNPX simulation codes; Calculos de dosis para un sistema Mammosite simplificado con los codigos de simulacion Monte Carlo PENELOPE y MCNPX

    Energy Technology Data Exchange (ETDEWEB)

    Rojas C, E.L.; Varon T, C.F.; Pedraza N, R. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: elrc@nuclear.inin.mx

    2007-07-01

    The treatment of the breast cancer at early stages is of vital importance. For that, most of the investigations are dedicated to the early detection of the suffering and their treatment. As investigation consequence and clinical practice, in 2002 it was developed in U.S.A. an irradiation system of high dose rate known as Mammosite. In this work we carry out dose calculations for a simplified Mammosite system with the Monte Carlo Penelope simulation code and MCNPX, varying the concentration of the contrast material that it is used in the one. (Author)

  5. Afterloading techniques in brachytherapy

    International Nuclear Information System (INIS)

    Kirsch, M.; Orban, R.; Lorenz, B.

    1981-01-01

    The advantages of applying modern afterloading methods in brachytherapie of malignant diseases are outlined. They include, among other things, a considerable reduction in radiation exposure to staff involved. Furthermore, the radiation protection requirements imposed by the licensing authority on the construction, equipment and operation of remote controlled afterloading installations with gamma sources of up to 4 TBq (108 Ci) have been compiled. (author)

  6. Calculation of absorbed doses in sphere volumes around the Mammosite using the Monte Carlo simulation code MCNPX; Calculo de dosis absorbida en volumenes esfericos alrededor del Mammosite utilizando el codigo de simulacion Monte Carlo MCNPX

    Energy Technology Data Exchange (ETDEWEB)

    Rojas C, E. L. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico)

    2008-07-01

    The objective of this study is to investigate the changes observed in the absorbed doses in mammary gland tissue when irradiated with a equipment of high dose rate known as Mammosite and introducing material resources contrary to the tissue that constitutes the mammary gland. The modeling study is performed with the code MCNPX, 2005 version, the equipment and the mammary gland and calculating the absorbed doses in tissue when introduced small volumes of air or calcium in the system. (Author)

  7. Calculation of absorbed doses in sphere volumes around the Mammosite using the Monte Carlo simulation code MCNPX

    International Nuclear Information System (INIS)

    Rojas C, E. L.

    2008-01-01

    The objective of this study is to investigate the changes observed in the absorbed doses in mammary gland tissue when irradiated with a equipment of high dose rate known as Mammosite and introducing material resources contrary to the tissue that constitutes the mammary gland. The modeling study is performed with the code MCNPX, 2005 version, the equipment and the mammary gland and calculating the absorbed doses in tissue when introduced small volumes of air or calcium in the system. (Author)

  8. Substantial advantage of CT-planned HDR brachytherapy for cervical cancer patients compared to a historical series with regard to local control and toxicity?; Substantieller Vorteil durch CT-geplante HDR-Brachytherapie bei Zervixkarzinompatientinnen im Vergleich zu historischen Serien bezueglich lokaler Kontrolle und Toxizitaet

    Energy Technology Data Exchange (ETDEWEB)

    Marnitz, Simone [Klinik fuer Strahlentherapie der Uniklinik Koeln, Medizinische Fakultaet der Universitaet zu Koeln, CyberKnife Centrum, Koeln (Germany)

    2017-03-15

    The primary radiochemotherapy is the standard treatment for patients with nodal positive and/or locally advanced cervical carcinoma. The therapy consists of percutaneous radiotherapy, simultaneous chemotherapy with cisplatin and an intracervical brachytherapy. The application of highly standardized brachytherapy based on NMR imaging allowed an improved local contol and a considerable reduction of toxicity.

  9. Aspects of the application of complementary brachytherapy for early invasive breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Homma, L.A.H. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Programa de Pos-Graduacao em Ciencias e Tecnicas Nucleares; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Hospital das Clinicas]. E-mail: luciahomma@terra.com.br; Campos, T.P.R. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Programa de Pos-Graduacao em Ciencias e Tecnicas Nucleares]. E-mail: campos@nuclear.ufmg.br; Silva, S.Z.C. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Hospital das Clinicas; Lima, C.F. [ECOGRAF, Belo Horizonte, MG (Brazil). Nucleo de Diagnostico

    2007-07-01

    Initial studies of brachytherapy with the 'Mammosite Radiation Therapy System', a device consisted by a catheter centered inside a inflate balloon, to perform breast brachytherapy was revised. A high activity source was applied into the balloon, exposing to the tumor bed to a high absorbed dose, while the surrounding areas receives one reduced by to a factor 1/r{sup 2}, during a short interval of time. The high acute dose provides a booster to conventional radiation therapy, resulting in a better local control. The acceptable esthetic impact achieved and an easier device setting stimulated the present dosimetric study. The brachytherapy with Ir{sup 192} was simulated through the development of a computerized digital voxels phantom, which represented the breast anatomy. The Monte Carlo Code (MCNP {sup TM}, 1977) was used to evaluate the radiation of the tumor bed and health tissues. Results from simulations shows, as example, an amount of radiation absorbed by the tumor bed of 11.30 Gy up to 5 mm around the balloon surface. Radiation selectivity is also shown, in which tumour bed absorbed more radiation than the surrounding tissues, whose maximum values were: skin (6.73 Gy), muscle (7.69 Gy), and lung (3.02 Gy), for a fifteen-minute exposure of a Ir-152 source. The simulation results are presented. Reliability of this radiotherapy technique as a postoperative booster in early breast cancer is presented and confirmed in this work. (author)

  10. Aspects of the application of complementary brachytherapy for early invasive breast cancer

    International Nuclear Information System (INIS)

    Homma, L.A.H.; Universidade Federal de Minas Gerais; Campos, T.P.R.; Silva, S.Z.C.; Lima, C.F.

    2007-01-01

    Initial studies of brachytherapy with the 'Mammosite Radiation Therapy System', a device consisted by a catheter centered inside a inflate balloon, to perform breast brachytherapy was revised. A high activity source was applied into the balloon, exposing to the tumor bed to a high absorbed dose, while the surrounding areas receives one reduced by to a factor 1/r 2 , during a short interval of time. The high acute dose provides a booster to conventional radiation therapy, resulting in a better local control. The acceptable esthetic impact achieved and an easier device setting stimulated the present dosimetric study. The brachytherapy with Ir 192 was simulated through the development of a computerized digital voxels phantom, which represented the breast anatomy. The Monte Carlo Code (MCNP TM , 1977) was used to evaluate the radiation of the tumor bed and health tissues. Results from simulations shows, as example, an amount of radiation absorbed by the tumor bed of 11.30 Gy up to 5 mm around the balloon surface. Radiation selectivity is also shown, in which tumour bed absorbed more radiation than the surrounding tissues, whose maximum values were: skin (6.73 Gy), muscle (7.69 Gy), and lung (3.02 Gy), for a fifteen-minute exposure of a Ir-152 source. The simulation results are presented. Reliability of this radiotherapy technique as a postoperative booster in early breast cancer is presented and confirmed in this work. (author)

  11. Treatment of the prostate cancer with high dose rate brachytherapy

    International Nuclear Information System (INIS)

    Martinez, Alvaro; Torres Silva, Felipe

    2002-01-01

    The prostate cancer treatment in early stages is controversial. The high dose rate brachytherapy has been used like monotherapy or boost with external beam radiotherapy in advanced disease. This paper describes the technique and the advantages over other modalities

  12. Persistent seroma after intraoperative placement of MammoSite for accelerated partial breast irradiation: Incidence, pathologic anatomy, and contributing factors

    International Nuclear Information System (INIS)

    Evans, Suzanne B.; Kaufman, Seth A.; Price, Lori Lyn; Cardarelli, Gene; Dipetrillo, Thomas A.; Wazer, David E.

    2006-01-01

    Purpose: To investigate the incidence of, and possible factors associated with, seroma formation after intraoperative placement of the MammoSite catheter for accelerated partial breast irradiation. Methods and Materials: This study evaluated 38 patients who had undergone intraoperative MammoSite catheter placement at lumpectomy or reexcision followed by accelerated partial breast irradiation with 34 Gy in 10 fractions. Data were collected regarding dosimetric parameters, including the volume of tissue enclosed by the 100%, 150%, and 200% isodose shells, dose homogeneity index, and maximal dose at the surface of the applicator. Clinical and treatment-related factors were analyzed, including patient age, patient weight, history of diabetes and smoking, use of reexcision, interval between surgery and radiotherapy, total duration of catheter placement, total excised specimen volume, and presence or absence of postprocedural infection. Seroma was verified by clinical examination, mammography, and/or ultrasonography. Persistent seroma was defined as seroma that was clinically detectable >6 months after radiotherapy completion. Results: After a median follow-up of 17 months, the overall rate of any detectable seroma was 76.3%. Persistent seroma (>6 months) occurred in 26 (68.4%) of 38 patients, of whom 46% experienced at least modest discomfort at some point during follow-up. Of these symptomatic patients, 3 required biopsy or complete cavity excision, revealing squamous metaplasia, foreign body giant cell reaction, fibroblasts, and active collagen deposition. Of the analyzed dosimetric, clinical, and treatment-related variables, only body weight correlated positively with the risk of seroma formation (p = 0.04). Postprocedural infection correlated significantly (p = 0.05) with a reduced risk of seroma formation. Seroma was associated with a suboptimal cosmetic outcome, because excellent scores were achieved in 61.5% of women with seroma compared with 83% without seroma

  13. Prostate cancer brachytherapy

    International Nuclear Information System (INIS)

    Abreu, Carlos Eduardo Vita; Silva, Joao L. F.; Srougi, Miguel; Nesrallah, Adriano

    1999-01-01

    The transperineal brachytherapy with 125 I/Pd 103 seed implantation guided by transurethral ultrasound must be presented as therapeutical option of low urinary morbidity in patients with localized prostate cancer. The combined clinical staging - including Gleason and initial PSA - must be encouraged, for definition of a group of low risk and indication of exclusive brachytherapy. Random prospective studies are necessary in order to define the best role of brachytherapy, surgery and external beam radiation therapy

  14. Prostate brachytherapy - discharge

    Science.gov (United States)

    Implant therapy - prostate cancer - discharge; Radioactive seed placement - discharge ... You had a procedure called brachytherapy to treat prostate cancer. Your treatment lasted 30 minutes or more, ...

  15. Advancements in brachytherapy

    DEFF Research Database (Denmark)

    Tanderup, Kari; Ménard, Cynthia; Polgar, Csaba

    2017-01-01

    Brachytherapy is a radiotherapy modality associated with a highly focal dose distribution. Brachytherapy treats the cancer tissue from the inside, and the radiation does not travel through healthy tissue to reach the target as with external beam radiotherapy techniques. The nature of brachytherap...

  16. Calculation of integrated biological response in brachytherapy

    International Nuclear Information System (INIS)

    Dale, Roger G.; Coles, Ian P.; Deehan, Charles; O'Donoghue, Joseph A.

    1997-01-01

    tissues close to the treatment sources will be higher with HDR than for LDR. Conversely, the integrated biological effect on structures more distant from the sources will be less with HDR. This provides quantitative confirmation of an idea proposed elsewhere, and suggests the existence of a potentially useful biological advantage for HDR brachytherapy delivered in relatively small fraction numbers and which is not apparent when considering radiobiological effect only at discrete reference points. Conclusion: The estimation and direct calculation of integrated biological response in brachytherapy are both relatively straightforward. Although the tabular data presented here result from considering only simple geometrical cases, and may thus overestimate the consequences of dose gradients in multiplanar clinical applications, the methods described may open the way to the development of more realistic radiobiological software, and to more systematic approaches for correlating physical dose and biological effect in brachytherapy

  17. Radiation protection in brachytherapy

    International Nuclear Information System (INIS)

    Benitez, Manuel

    1996-02-01

    It covers technical procedures in medical applications for cancer treatment. Radiation protection principles in brachytherapy. Medical uses in therapy for Sr-90, Cs-137, Co-60, Ra-226, Ir-192, Au-198, Bi-214, Pb-214. (The author)

  18. Radioactive sources in brachytherapy:

    OpenAIRE

    Burger, Janez

    2003-01-01

    Background. In modern brachytherapy, a greast step forward was made in the 1960s in France with the introduction of new radioactive isotopes and new techniques. These innovations spread rapidly across Europe, though no single dosimetry standard had been set by then. In the new millennium, the advances in brachytherapy are further stimulated by the introduction of 3-D imaging techniques and the latest after loading irradiation equipment that use point sources. The international organiyation IC...

  19. Institutional advantage

    NARCIS (Netherlands)

    Martin, Xavier

    Is there such a thing as institutional advantage—and what does it mean for the study of corporate competitive advantage? In this article, I develop the concept of institutional competitive advantage, as distinct from plain competitive advantage and from comparative institutional advantage. I first

  20. Dosimetry in intravascular brachytherapy

    International Nuclear Information System (INIS)

    Campos, Laelia Pumilla Botelho

    2000-03-01

    Among the cardiovascular diseases responsible for deaths in the adult population in almost all countries of the world, the most common is acute myocardial infarction, which generally occurs because of the occlusion of one or more coronary arteries. Several diagnostic techniques and therapies are being tested for the treatment of coronary artery disease. Balloon angioplasty has been a popular treatment which is less invasive than traditional surgeries involving revascularization of the myocardium, thus promising a better quality of life for patients. Unfortunately, the rate of restenosis (re-closing of the vessel) after balloon angioplasty is high (approximately 30-50% within the first year after treatment).Recently, the idea of delivering high radiation doses to coronary arteries to avoid or delay restenosis has been suggested. Known as intravascular brachytherapy, the technique has been used with several radiation sources, and researchers have obtained success in decreasing the rate of restenosis in some patient populations. In order to study the radiation dosimetry in the patient and radiological protection for the attending staff for this therapy, radiation dose distributions for monoenergetic electrons and photons (at nine discrete energies) were calculated for blood vessels of diameter 0.15, o,30 and 0.45 cm with balloon and wire sources using the radiation transport code MCNP4B. Specific calculations were carried out for several candidate radionuclides as well. Two s tent sources (metallic prosthesis that put inside of patient's artery through angioplasty) employing 32 P are also simulated. Advantages and disadvantages of the various radionuclides and source geometries are discussed. The dosimetry developed here will aid in the realization of the benefits obtained in patients for this promising new technology. (author)

  1. Brachytherapy of endometrial cancers

    International Nuclear Information System (INIS)

    Peiffert, D.; Hoffstetter, S.; Charra-Brunaud, C.

    2003-01-01

    Endometrial adenocarcinomas rank third as tumoral sites en France. The tumors are confined to the uterus in 80% of the cases. Brachytherapy has a large place in the therapeutic strategy. The gold standard treatment remains extra-fascial hysterectomy with bilateral annexiectomy and bilateral internal iliac lymph node dissection. However, after surgery alone, the rate of locoregional relapses reaches 4-20%, which is reduced to 0-5% after postoperative brachytherapy of the vaginal cuff. This postoperative brachytherapy is delivered as outpatients treatment, by 3 or 4 fractions, at high dose rate. The utero-vaginal preoperative brachytherapy remains well adapted to the tumors which involve the uterine cervix. Patients presenting a localized tumor but not operable for general reasons (< 10%) can be treated with success by exclusive irradiation, which associates a pelvic irradiation followed by an utero-vaginal brachytherapy. A high local control of about 80-90% is obtained, a little lower than surgery, with a higher risk of late complications. Last but not least, local relapses in the vaginal cuff, or in the perimeatic area, can be treated by interstitial salvage brachytherapy, associated if possible with external beam irradiation. The local control is reached in half of the patients, but metastatic dissemination is frequent. We conclude that brachytherapy has a major role in the treatment of endometrial adenocarcinomas, in combination with surgery, or with external beam irradiation for not operable patients or in case of local relapses. It should use new technologies now available including computerized after-loaders and 3D dose calculation. (authors)

  2. Role of brachytherapy in the treatment of localized prostate cancer

    Directory of Open Access Journals (Sweden)

    A. D. Kaprin

    2015-01-01

    Full Text Available The review is devoted to application of brachytherapy for treating the localized prostate cancer (PC. Statistics for incidence and detectability of this pathology and its dynamics for recent years are represented. Brief analysis of other methods which are conveniently used for treatment of PC, such as radical prostatectomy and external-beam radiotherapy, was performed. Advantages and disadvantages of these methods have been discussed. Brief history about the development of brachytherapy from first experience to wide-spread use in clinical practice is reported. The detailed review of series of large trials from Russia and other countries for efficiency and safety of brachytherapy in patients with prostate cancer for recent 15 years is also represented. Two types of brachytherapy in current clinical oncology i.e. low-dose technique with permanent implantation of microsources and high-dose temporary isotope implantation, specifics of its application in different groups of patients have been described. The procedure of brachytherapy and its three main steps i.e. planning, implantation and control assessment after implantation have been characterized in details. The conclusion about benefits of using of brachytherapy in the treatment of prostate cancer as minimally invasive and efficient method was made. 

  3. Pulsed dose rate (PDR) brachytherapy as salvage treatment of locally advanced or recurrent gynecologic cancer

    DEFF Research Database (Denmark)

    Jensen, P T; Roed, H; Engelholm, S A

    1998-01-01

    PURPOSE: Pulsed dose rate (PDR) brachytherapy is a new treatment option permitting dose distribution optimization in interstitial implants. It possesses the advantage of equipment simplification and radiation protection to the staff, compared to the manually afterloading technique. This study pre...

  4. Generic Advantages

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Generic Advantages. Scalability an incremental coverage. Standardization. Business Plan Flexibility. Lifecycle Flexibility. Reliability. Service Interoperability. Changed Industry dynamics.

  5. Absolute advantage

    NARCIS (Netherlands)

    J.G.M. van Marrewijk (Charles)

    2008-01-01

    textabstractA country is said to have an absolute advantage over another country in the production of a good or service if it can produce that good or service using fewer real resources. Equivalently, using the same inputs, the country can produce more output. The concept of absolute advantage can

  6. Brachytherapy for oral cancer

    International Nuclear Information System (INIS)

    Monzen, Yoshio; Ajimu, Akira; Morikawa, Minoru; Hayashi, Nobuyuki; Yoshida, Shintarou; Ashizawa, Kazuto; Hayashi, Kuniaki; Ikenaga, Kouji; Sakamoto, Ichirou.

    1988-01-01

    13 cases with oral cancer were treated using brachytherapy at the Department of Radiology, Nagasaki University Hospital from September 1985 to February 1988. Among 11 cases of tongue cancer, T1 and T2 cases were well controlled by radiation therapy using 226 Ra needles. Cancer of oral floor and buccal mucosa were controlled by the use of 192 Au grains. (author)

  7. [Brachytherapy of brainstem tumors].

    Science.gov (United States)

    Julow, Jenö; Viola, Arpád; Major, Tibor; Valálik, István; Sági, Sarolta; Mangel, László; Kovács, Rita Beáta; Repa, Imre; Bajzik, Gábor; Németh, György

    2004-01-20

    The optimal therapy of brain stem tumours of different histopathology determines the expected length of survival. Authors report 125Iodine interstitial irradiation of brain stem tumours with stereotactic brachytherapy. Two patients having brain stem tumours were suffering from glioma or from metastases of a carcinoma. In Case 1 the tumour volume was 1.98 cm3 at the time of planning interstitial irradiation. The control MRI examination performed at 42 months post-op showed a postirradiation cyst size of 5.73 cm3 indicating 65.5% shrinkage. In Case 2 the shrinkage was more apparent as the tumour volume measured on the control MRI at 8 months post-op was only 0.16 cm3 indicating 97.4% shrinkage of the 6.05 cm3 target volume at the time of brachytherapy with the metastasis practically disappearing. Quick access to histopathological results of the stereotactic intraoperative biopsy made it possible to carry out the 125Iodine stereotactic brachytherapy immediately after the biopsy, resulting in less inconvenience for patients of a second possible intervention. The control MRI scans show significant shrinkage of tumours in both patients. The procedure can be performed as a biopsy. The CT and image fusion guided 125Iodine stereotactic brachytherapy can be well planned dosimetrically and is surgically precise.

  8. Biology of dose rate in brachytherapy

    International Nuclear Information System (INIS)

    Brenner, David J.

    1995-01-01

    Purpose: This course is designed for practitioners and beginners in brachytherapy. The aim is to review biological principles underlying brachytherapy, to understand why current treatment regimes are the way they are, and to discuss what the future may hold in store. Brachytherapy has a long history. It was suggested as long ago as 1903 by Alexander Graham Bell, and the optimal application of this technique has been a subject of debate ever since. 'Brachy' means 'short', and the essential features of conventional brachytherapy are: positioning of the source a short distance from, or in, the tumor, allowing good dose distributions; short overall treatment times, to counter tumor repopulation; low dose rate, enabling a good therapeutic advantage between tumor control and damage to late-responding tissue. The advantages of good dose distributions speak for themselves; in some situations, as we shall see, computer-based dose optimization can be used to improve them still further. The advantages of short overall times stem from the fact that accelerated repopulation of the tumor typically begins a few weeks after the start of a radiation treatment. If all the radiation can be crammed in before that time, the risks of tumor repopulation can be considerably reduced. In fact even external-beam radiotherapy is moving in this direction, with the use of highly accelerated protocols. The advantages of low dose rate stem from the differential response to fractionation of early- and late-responding tissues. Essentially, lowering the dose rate spares late-responding tissue more than it does early-responding tissue such as tumors. We shall also discuss some recent innovations in the context of the general principles that have been outlined. For example, High dose rate brachytherapy, particularly for the uterine cervix: Does it work? If so, when and why? Use of Ir-192 sources, with a half life of 70 days: Should corrections be made for changing biological effectiveness as the dose

  9. Pulsed dose rate brachytherapy – is it the right way?

    Directory of Open Access Journals (Sweden)

    Janusz Skowronek

    2010-10-01

    Full Text Available Pulsed dose rate (PDR-BT treatment is a brachytherapy modality that combines physical advantages of high-doserate (HDR-BT technology (isodose optimization, radiation safety with the radiobiological advantages of low-dose-rate (LDR-BT brachytherapy. Pulsed brachytherapy consists of using stronger radiation source than for LDR-BT and producing series of short exposures of 10 to 30 minutes in every hour to approximately the same total dose in the sameoverall time as with the LDR-BT. Modern afterloading equipment offers certain advantages over interstitial or intracavitaryinsertion of separate needles, tubes, seeds or wires. Isodose volumes in tissues can be created flexibly by a combinationof careful placement of the catheter and the adjustment of the dwell times of the computerized stepping source.Automatic removal of the radiation sources into a shielded safe eliminates radiation exposures to staff and visitors.Radiation exposure is also eliminated to the staff who formerly loaded and unloaded multiplicity of radioactive sources into the catheters, ovoids, tubes etc. This review based on summarized clinical investigations, analyses the feasibility and the background to introduce this brachytherapy technique and chosen clinical applications of PDR-BT.

  10. Glass microspheres for brachytherapy

    International Nuclear Information System (INIS)

    Prado, Miguel O.; Prastalo, Simon; Blaumann, Herman; Longhino, Juan M.; Repetto Llamazares, A.H.V.

    2007-01-01

    We developed the capacity to produce glass microspheres containing in their structure one or more radioactive isotopes useful for brachytherapy. We studied the various facts related with their production: (Rare earth) alumino silicate glass making, glass characterization, microspheres production, nuclear activation through (n,γ) nuclear reactions, mechanical characterization before and after irradiation. Corrosion tests in simulated human plasma and mechanical properties characterization were done before and after irradiation. (author) [es

  11. Comparative Advantage

    DEFF Research Database (Denmark)

    Zhang, Jie; Jensen, Camilla

    2007-01-01

    that are typically explained from the supply-side variables, the comparative advantage of the exporting countries. A simple model is proposed and tested. The results render strong support for the relevance of supply-side factors such as natural endowments, technology, and infrastructure in explaining international...

  12. Place of the brachytherapy in the therapeutic strategy of rhabdomyosarcomas of the nasogenian groove of children

    International Nuclear Information System (INIS)

    Breton-Callu, C.; Haie-Meder, C.; Oberlin, O.; Delapierre, M.; Gerbaulet, A.

    2000-01-01

    The brachytherapy in the treatment of rhabdomyosarcomas of the nasogenian groove has to be discussed when it exists a residual tumor after an initial chemotherapy and leads to good results, in term of local control. An advantage of the brachytherapy in comparison with external irradiation, in the treatment of children tumors, is the small size of the treated volume, that allows to decrease the aftereffects incidence. The brachytherapy comes in the frame of a therapeutic needing a multidisciplinary approach and a cooperation between surgeons, brachy-therapists and onco-pediatricians. (N.C.)

  13. Computed tomography in brachytherapy

    International Nuclear Information System (INIS)

    Mansfield, C.M.; Lee, K.R.; Dwyer, S.; Zellmer, D.; Cook, P.

    1983-01-01

    CT scanning adds to the ability to evaluate brachytherapy techniques. It provides an additional method in the assessment of patients who are candidates for or who are being treated by brachytherapy. The CT scan can give information regarding the position of the sources and their relation to the tumor and normal structures with greater ease than do orthogonal views. This makes it possible to accurately calculate areas of high or low dose. Potential areas of overdose can be recognized, thereby decreasing the chances of postbrachytherapy complications. CT scanning can be used at various levels of complexity in dosimetry evaluation. Adequate brachytherapy dosimetry information is obtainable from CT slices through one or more levels of the implanted volume. In some instances it is possible to obtain additional information by reconstructing the scans in other planes, e.g., coronal or sagittal. Three-dimensional viewing of the implant is desirable, but it should be pointed out that this approach is time-consuming and beyond the capabilities of most institutions at present. It will be necessary to continue work on three-dimensional treatment planning to make it readily available

  14. Quality control of 192Ir high dose rate after loading brachytherapy dose veracity

    International Nuclear Information System (INIS)

    Feng Zhongsu; Xu Xiao; Liu Fen

    2008-01-01

    Recently, 192 Ir high dose rate (HDR) afterloading are widely used in brachytherapy. The advantage of using HDR systems over low dose rate systems are shorter treatment time and higher fraction dose. To guarantee the veracity of the delivery dose, several quality control methods are deseribed in this work. With these we can improve the position precision, time precision and dose precision of the brachytherapy. (authors)

  15. Current status of brachytherapy in cancer treatment – short overview

    Directory of Open Access Journals (Sweden)

    Janusz Skowronek

    2017-12-01

    Full Text Available Cancer incidence and mortality depend on a number of factors, including age, socio-economic status and geographical location, and its prevalence is growing around the world. Most of cancer treatments include external beam radiotherapy or brachytherapy. Brachytherapy, a type of radiotherapy with energy from radionuclides inserted directly into the tumor, is increasingly used in cancer treatment. For cervical and skin cancers, it has become a standard therapy for more than 100 years as well as an important part of the treatment guidelines for other malignancies, including head and neck, skin, breast, and prostate cancers. Compared to external beam radiotherapy, brachytherapy has the potential to deliver an ablative radiation dose over a short period of time directly to the altered tissue area with the advantage of a rapid fall-off in dose, and consequently, sparing of adjacent organs. As a result, the patient is able to complete the treatment earlier, and the risks of occurrence of another cancer are lower than in conventional radiotherapy treatment. Brachytherapy has increased its use as a radical or palliative treatment, and become more advanced with the spread of pulsed-dose-rate and high-dose-rate afterloading machines; the use of new 3D/4D planning systems has additionally improved the quality of the treatment. The aim of the present study was to present short summaries of current studies on brachytherapy for the most frequently diagnosed tumors. Data presented in this manuscript should help especially young physicians or physicists to explore and introduce brachytherapy in cancer treatments.

  16. Intra coronary brachytherapy

    International Nuclear Information System (INIS)

    Ghofourian, H.; Ghahremani, A.; Oliaie, A.; Taghizadeh Asl, M.

    2002-01-01

    Despite the initial promise of vasculopathy intervention restenosis- a consequence of the (normal) would healing process-has emerged as a major problem. Angiographic restenosis has been reported in 40-60% of patients after successful P TCA. The basic mechanism of restenosis, (acute recoil, negative remodeling and neo intimal hyperplasia), are only partially counteracted by endovascular prosthetic devices (s tents). The rate of in-s tent restenosis, which is primarily caused by neo intimal hyperplasia due to the (micro) trauma of the arterial wall by the s tent struts, has been reduced to 18-32%. Ionizing (beta or gamma) radiations has been established as a potent treatment for malignant disorders. In recent years, there has also been increasing interest among clinicians in the management of benign lesions with radiation. Over the past several years, there has been a growing body of evidence that endovascular brachytherapy has a major impact on the biology of the restenosis. It must be underlined that understanding the biology and pathophysiology of restenosis and assessing various treatment options should preferably be a team effort, with the three g races b eing interventional cardiologist, nuclear oncologist, and industrial partners. The vast amount of data in over 20000 patients from a wide range of randomized controlled trials, has shown that brachytherapy is the only effective treatment for in-s tent restenosis. We are learning more and more about how to improve brachytherapy. While the new coated s tents that we heard about today is fascinating and extremely promising, brachytherapy still has a very important place in difficult patients, such as those with total occlusions, osti al lesions, left main lesions, multivessel disease and diabetes. Regarding to above mentioned tips, we (a research team work, in the Nuclear Research Center Of the Atomic Energy Organization Of Iran), focused on synthesis and preparation of radioactive materials for use in I c-B T. We

  17. Oncentra brachytherapy planning system.

    Science.gov (United States)

    Yang, Jack

    2018-03-27

    In modern cancer management, treatment planning has progressed as a contemporary tool with all the advances in computing power in recent years. One of the advanced planning tools uses 3-dimensional (3D) data sets for accurate dose distributions in patient prescription. Among these planning processes, brachytherapy has been a very important part of a successful cancer management program, offering clinical benefits with specific or combined treatments with external beam therapy. In this chapter, we mainly discussed the Elekta Oncentra planning system, which is the main treatment planning tool for high-dose rate (HDR) modality in our facility and in many other facilities in the United States. HDR is a technically advanced form of brachytherapy; a high-intensity radiation source (3.6 mm in length) is delivered with step motor in submillimeter precision under computer guidance directly into the tumor areas while minimizing injury to surrounding normal healthy tissue. Oncentra planning is the key component to generate a deliverable brachytherapy procedure, which is executed on the microSelectron V3 remote afterloader treatment system. Creating a highly conformal plan can be a time-consuming task. The development of Oncentra software (version 4.5.3) offers a variety of useful tools that facilitate many of the clinical challenging tasks for planning, such as contouring and image reconstruction, as well as rapid planning calculations with dose and dose volume histogram analysis. Oncentra Brachy module creates workflow and optimizes the planning accuracy for wide varieties of clinical HDR treatments, such as skin, gynecologic (GYN), breast, prostate, and many other applications. The treatment file can also be transferred to the afterloader control station for speedy delivery. The design concept, calculation algorithms, and optimization modules presented some key characteristics to plan and treat the patients effectively and accurately. The dose distribution and accuracy of

  18. Development of brachytherapy medium doserate

    International Nuclear Information System (INIS)

    Atang Susila; Ari Satmoko; Ahmad Rifai; Kristiyanti

    2010-01-01

    Brachytherapy has proven to be an effective treatment for different types of cancers and it become a common treatment modality in most radiotherapy clinics. PRPN has had experience in development of Low Dose Rate Brachytherapy for cervix cancer treatment. However the treatment process using LDR device needs 5 hours in time that the patient feel uncomfort. Therefore PRPN develops Medium Dose Rate Brachytherapy with radiation activity not more than 5 Currie. The project is divided into two stages. Purchasing of TPS software and TDS design are held in 2010, and the construction will be in 2011. (author)

  19. [Developments in brachytherapy].

    Science.gov (United States)

    Ikeda, H

    1995-09-01

    Brachytherapy is one of the ideal methods of radiotherapy because of the concentration of a high dose on the target. Recent developments, including induction of afterloading method, utilization of small-sized high-activity sources such as Iridium-192, and induction of high technology and computerization, have made for shortening of irradiation time and source handling, which has led to easier management of the patient during treatment. Dose distribution at high dose rate (HDR) is at least as good as that of low dose rate (LDR), and selection of fractionation and treatment time assures even greater biological effects on hypoxic tumor cells than LDR. Experience with HDR brachytherapy in uterine cervix cancer using Cobalt-60 during the past 20 years in this country has gradually been evaluated in U.S. and Europe. The indications for HDR treatment have extended to esophagus, bronchus, bile duct, brain, intraoperative placement of source guide, and perineal region using templates, as well as the conventional use for uterus, tongue and so on.

  20. Brachytherapy in childhood rhabdomyosarcoma treatment

    International Nuclear Information System (INIS)

    Novaes, Paulo Eduardo Ribeiro dos Santos

    1995-01-01

    A retrospective study of 21 children with rhabdomyosarcoma treated by brachytherapy to the primary site of the tumor at the Radiotherapy Department of the A.C.Camargo Hospital between january/1980 to june/1993 was undertaken. The main objectives were to comprove the utility of brachytherapy in childhood rhabdomyosarcoma, to evaluate the local control and survival, in association with chemotherapy, to analyze the late effects of the treatment and to determinate the preferential technique to each clinical situation. All patients received brachytherapy to the tumor site. The radioactive isotopes employed were Gold 198 , Cesium 137 and Iridium 192 . The brachytherapy techniques depended on the tumor site, period of treatment, availability of the radioactive material and stage of the disease. Patients treated exclusively by brachytherapy received 40 Gy to 60 Gy. When brachytherapy was associated with external radiotherapy the dose ranged from 20 Gy to 40 Gy. Local control was achieved in 18 of 20 patients (90%). The global survival and local control survival rates were 61.9% (13/21 patients) and 72,2% (13/18 patients) respectively. (author)

  1. American brachytherapy society (ABS) guidelines for brachytherapy of esophageal cancer

    International Nuclear Information System (INIS)

    Nag, Subir; Gaspar, Laurie; Herskovic, Arnold; Mantravadi, Prasad; Speiser, Burton

    1996-01-01

    Introduction: There is wide variation in the indications, techniques, treatment regimens and dosimetry being used to treat cancer of the esophagus and no guidelines exist for optimal therapy. Methods: The Clinical Research Committee of the ABS met to formulate consensus guidelines for brachytherapy in esophageal cancer. Results: Good candidates for brachytherapy include patients with unifocal disease, with thoracic tumor 10 cm primary regional lymph adenopathy or tumor located in the gastro-esophageal junction or cervical esophagus. Contraindications include tracheo-esophageal fistula or stenosis that cannot be by-passed. The esophageal or nasogastric tube inserted should have a diameter of 6-10 mm whenever possible. If 5FU-based chemotherapy and 50 Gy external beam (EBRT) are used, it is suggested that the low dose rate brachytherapy (LDR) dose be 20 Gy at 0.4-1 Gy/hr, prescribed at 1 cm from the source. If high dose rate (HDR) is used, the dose recommended is 10 Gy in 2 weekly fractions of 5 Gy each, given after EBRT. Chemotherapy is not usually given concurrently with brachytherapy, and when it is, the brachytherapy dose is reduced. The length of esophagus treated by brachytherapy includes the post-EBRT involved area and a 1-2 cm margin proximally and distally. Supportive care, given during EBRT includes an antifungal agent (e.g., diflucan) and carafate. Gradual dilatation of the esophagus is required post-treatment for esophageal strictures. Conclusion: Guidelines were developed for brachytherapy in esophageal cancer. As more clinical data becomes available, these guidelines will be updated by the ABS

  2. Coatings of nanoparticles applied to brachytherapy treatments

    International Nuclear Information System (INIS)

    Gonzalez, Andreza A.D.C.C.; Rostelato, Maria Elisa C.M.; Souza, Carla D.; Rodrigues, Bruna T.; Souza, Daiane C.B.; Zeituni, Carlos A.; Nogueira, Beatriz R.

    2017-01-01

    Brachytherapy is a treatment for cancer in which the radiation is placed close or in contact with the region to be treated saving the surrounding healthy tissues. Nanotechnology is the science that studies the properties of nanometric materials. Nanobrachytherapy in a new field that unites the advantages of brachytherapy with the small size in the nanoparticle, resulting in an even less invasive treatment. In view of the synthesis of the nanoparticles and their use, there is a fundamental role that is made by the coatings, which not only have the function of avoiding the aggregation of particles, but also stabilize and control their functional properties. Among the range of coatings, the most outstanding are polyethylene glycol (PEG) and gum arabica (GA). PEG improves the surface properties of nanoparticles and presents high stability under biomedical conditions. After the synthesis of gold nanoparticles was developed, PEG and gum arabica were successfully incorporated into the surface. In a vial of pyrex, 1 ml of coating agent and 1 ml of nanoparticles was left under gentle shaking for 2 hours. Incorporation was confirmed by DLS and HRTEM. GA requires further study. (author)

  3. Coatings of nanoparticles applied to brachytherapy treatments

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Andreza A.D.C.C.; Rostelato, Maria Elisa C.M.; Souza, Carla D.; Rodrigues, Bruna T.; Souza, Daiane C.B.; Zeituni, Carlos A.; Nogueira, Beatriz R., E-mail: ccg.andreza@gmail.com, E-mail: elisaros@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    Brachytherapy is a treatment for cancer in which the radiation is placed close or in contact with the region to be treated saving the surrounding healthy tissues. Nanotechnology is the science that studies the properties of nanometric materials. Nanobrachytherapy in a new field that unites the advantages of brachytherapy with the small size in the nanoparticle, resulting in an even less invasive treatment. In view of the synthesis of the nanoparticles and their use, there is a fundamental role that is made by the coatings, which not only have the function of avoiding the aggregation of particles, but also stabilize and control their functional properties. Among the range of coatings, the most outstanding are polyethylene glycol (PEG) and gum arabica (GA). PEG improves the surface properties of nanoparticles and presents high stability under biomedical conditions. After the synthesis of gold nanoparticles was developed, PEG and gum arabica were successfully incorporated into the surface. In a vial of pyrex, 1 ml of coating agent and 1 ml of nanoparticles was left under gentle shaking for 2 hours. Incorporation was confirmed by DLS and HRTEM. GA requires further study. (author)

  4. Specification of brachytherapy sources

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-01

    BCRU recommends that the following specification of gamma-ray brachytherapy sources be adopted. Unless otherwise stated, the output of a cylindrical source should be specified in air kerma rate at a point in free space at a distance of 1 m from the source on the radial plane of symmetry, i.e. the plane bisecting the active length and perpendicular to the cylindrical axis of the source. For a wire source the output should be specified for a 1 cm length. For any other construction of source, the point at which the output is specified should be stated. It is also recommended that the units in which the air kerma rate is expressed should be micrograys per hour (..mu..Gy/h).

  5. Radiotherapy and brachytherapy

    International Nuclear Information System (INIS)

    2007-02-01

    This presentation first defines the radiotherapy and brachytherapy techniques, indicates the used ionizing radiations (electromagnetic and particles), describes the mechanisms and processes of action of ionizing radiations: they can be physical by photon-matter interactions (Compton effect and photoelectric effect) or due to electron-matter interactions (excitation, ionization), physical-chemical by direct or indirect action (DNA damage), cellular (mitotic or apoptotic death), tissue (sane and tumorous tissues and differential effect). It discusses the biological efficiency of these treatments which depends on different parameters: intrinsic radio-sensitivity, time (session fractioning and organisation in time), oxygen, radiation quality, cellular cycle, dose rate, temperature. It presents the different types of radiotherapy: external radiotherapy (general sequence, delineation, dosimetry, protection of critical organs, treatment session, quality control, monitoring consultation) and briefly presents some specific techniques (total body irradiation, total cutaneous electron therapy, pre-operation radiotherapy, radio-surgery, hadron-therapy). It proposes an overview of the main indications for this treatment: brain tumours, upper aero digestive tract tumours, bronchial tumours, oesophagus, stomach and pancreas tumours, breast tumours, cervix cancer, rectum tumour, and so on, and indicates the possible associated treatments. The next part addresses brachytherapy. It presents the principles and comments the differences with radiotherapy. It indicates the used radio-elements (Caesium 137, Iridium 192, Iodine 125), describes the implementation techniques (plastic tubes, use of iodine 125, intracavitary and endo-luminal radiation therapy). It proposes an overview of the different treated tumours (skin, breast, prostates, bronchial, oesophagus, ENT) and indicates possible early and late secondary effects for different organs

  6. LDR vs. HDR brachytherapy for localized prostate cancer: the view from radiobiological models.

    Science.gov (United States)

    King, Christopher R

    2002-01-01

    prostate cancer with either LDR or HDR brachytherapy using current dose regimens. However, HDR brachytherapy dose escalation regimens might be able to achieve higher biologically effective doses of irradiation in comparison to LDR, and hence improved outcomes. This advantage over LDR would be amplified should prostate cancer possess a high sensitivity to dose fractionation (i.e., a low alpha/beta ratio) as the current evidence suggests.

  7. A comparison study on various low energy sources in interstitial prostate brachytherapy

    Directory of Open Access Journals (Sweden)

    Mahdi Bakhshabadi

    2016-02-01

    Full Text Available Purpose: Low energy sources are routinely used in prostate brachytherapy. 125 I is one of the most commonly used sources. Low energy 131 Cs source was introduced recently as a brachytherapy source. The aim of this study is to compare dose distributions of 125 I, 103 Pd, and 131 Cs sources in interstitial brachytherapy of prostate. Material and methods: ProstaSeed 125 I brachytherapy source was simulated using MCNPX Monte Carlo code. Additionally, two hypothetical sources of 103 Pd and 131 Cs were simulated with the same geometry as the ProstaSeed 125 I source, while having their specific emitted gamma spectra. These brachytherapy sources were simulated with distribution of forty-eight seeds in a phantom including prostate. The prostate was considered as a sphere with radius of 1.5 cm. Absolute and relative dose rates were obtained in various distances from the source along the transverse and longitudinal axes inside and outside the tumor. Furthermore, isodose curves were plotted around the sources. Results : Analyzing the initial dose profiles for various sources indicated that with the same time duration and air kerma strength, 131 Cs delivers higher dose to tumor. However, relative dose rate inside the tumor is higher and outside the tumor is lower for the 103 Pd source. Conclusions : The higher initial absolute dose in cGy/(h.U of 131 Cs brachytherapy source is an advantage of this source over the others. The higher relative dose inside the tumor and lower relative dose outside the tumor for the 103 Pd source are advantages of this later brachytherapy source. Based on the total dose the 125 I source has advantage over the others due to its longer half-life.

  8. A comparison study on various low energy sources in interstitial prostate brachytherapy.

    Science.gov (United States)

    Bakhshabadi, Mahdi; Ghorbani, Mahdi; Khosroabadi, Mohsen; Knaup, Courtney; Meigooni, Ali S

    2016-02-01

    Low energy sources are routinely used in prostate brachytherapy. (125)I is one of the most commonly used sources. Low energy (131)Cs source was introduced recently as a brachytherapy source. The aim of this study is to compare dose distributions of (125)I, (103)Pd, and (131)Cs sources in interstitial brachytherapy of prostate. ProstaSeed (125)I brachytherapy source was simulated using MCNPX Monte Carlo code. Additionally, two hypothetical sources of (103)Pd and (131)Cs were simulated with the same geometry as the ProstaSeed (125)I source, while having their specific emitted gamma spectra. These brachytherapy sources were simulated with distribution of forty-eight seeds in a phantom including prostate. The prostate was considered as a sphere with radius of 1.5 cm. Absolute and relative dose rates were obtained in various distances from the source along the transverse and longitudinal axes inside and outside the tumor. Furthermore, isodose curves were plotted around the sources. Analyzing the initial dose profiles for various sources indicated that with the same time duration and air kerma strength, (131)Cs delivers higher dose to tumor. However, relative dose rate inside the tumor is higher and outside the tumor is lower for the (103)Pd source. The higher initial absolute dose in cGy/(h.U) of (131)Cs brachytherapy source is an advantage of this source over the others. The higher relative dose inside the tumor and lower relative dose outside the tumor for the (103)Pd source are advantages of this later brachytherapy source. Based on the total dose the (125)I source has advantage over the others due to its longer half-life.

  9. Erectile function after prostate brachytherapy

    International Nuclear Information System (INIS)

    Merrick, Gregory S.; Butler, Wayne M.; Wallner, Kent E.; Galbreath, Robert W.; Anderson, Richard L.; Kurko, Brian S.; Lief, Jonathan H.; Allen, Zachariah A.

    2005-01-01

    Purpose: To evaluate erectile function after permanent prostate brachytherapy using a validated patient-administered questionnaire and to determine the effect of multiple clinical, treatment, and dosimetric parameters on penile erectile function. Methods and materials: A total of 226 patients with preimplant erectile function determined by the International Index of Erectile Function (IIEF) questionnaire underwent permanent prostate brachytherapy in two prospective randomized trials between February 2001 and January 2003 for clinical Stage T1c-T2c (2002 American Joint Committee on Cancer) prostate cancer. Of the 226 patients, 132 were potent before treatment and, of those, 128 (97%) completed and returned the IIEF questionnaire after brachytherapy. The median follow-up was 29.1 months. Potency was defined as an IIEF score of ≥13. The clinical, treatment, and dosimetric parameters evaluated included patient age; preimplant IIEF score; clinical T stage; pretreatment prostate-specific antigen level; Gleason score; elapsed time after implantation; preimplant nocturnal erections; body mass index; presence of hypertension or diabetes mellitus; tobacco consumption; the volume of the prostate gland receiving 100%, 150%, and 200% of the prescribed dose (V 100/150/200 ); the dose delivered to 90% of the prostate gland (D 90 ); androgen deprivation therapy; supplemental external beam radiotherapy (EBRT); isotope; prostate volume; planning volume; and radiation dose to the proximal penis. Results: The 3-year actuarial rate of potency preservation was 50.5%. For patients who maintained adequate posttreatment erectile function, the preimplant IIEF score was 29, and in patients with brachytherapy-related ED, the preimplant IIEF score was 25. The median time to the onset of ED was 5.4 months. After brachytherapy, the median IIEF score was 20 in potent patients and 3 in impotent patients. On univariate analysis, the preimplant IIEF score, patient age, presence of nocturnal

  10. Implementing MRI-based target delineation for cervical cancer treatment within a rapid workflow environment for image-guided brachytherapy: A practical approach for centers without in-room MRI.

    Science.gov (United States)

    Trifiletti, Daniel M; Libby, Bruce; Feuerlein, Sebastian; Kim, Taeho; Garda, Allison; Watkins, W Tyler; Erickson, Sarah; Ornan, Afshan; Showalter, Timothy N

    2015-01-01

    Magnetic resonance imaging (MRI)-based intracavitary brachytherapy offers several advantages over computed tomography (CT)-based brachytherapy, but many centers are unable to offer it at the time of brachytherapy because of logistic and/or financial considerations. We have implemented a method of integrating MRI into a CT-guided, high-dose-rate intracavitary brachytherapy workflow in clinics that do not have immediately available MRI capability. At our institution, patients receiving high-dose-rate intracavitary brachytherapy as a component of the definitive treatment of cervical cancer have a Smit sleeve placed during the first brachytherapy fraction in a dedicated suite with in-room CT-on-rails. After the first fraction of brachytherapy, an MRI is obtained with the Smit sleeve, but no applicator, in place. For each subsequent fraction, CT scans are coregistered to the MRI scan by the Smit sleeve. The gross target volume is defined by MRI and overlaid on the CT images for each brachytherapy treatment for dose optimization. This MRI-integrated workflow adds workflow is a feasible compromise to preserve an efficient workflow while integrating MRI target delineation, and it provides many of the advantages of both MRI- and CT-based brachytherapy. The future collection and analysis of clinical data will serve to compare the proposed approach to non-MRI containing techniques. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  11. Factors Associated With Optimal Long-Term Cosmetic Results in Patients Treated With Accelerated Partial Breast Irradiation Using Balloon-Based Brachytherapy

    International Nuclear Information System (INIS)

    Vicini, Frank A.; Keisch, Martin; Shah, Chirag; Goyal, Sharad; Khan, Atif J.; Beitsch, Peter D.; Lyden, Maureen; Haffty, Bruce G.

    2012-01-01

    Purpose: To evaluate factors associated with optimal cosmetic results at 72 months for early-stage breast cancer patients treated with Mammosite balloon-based accelerated partial breast irradiation (APBI). Methods and Materials: A total of 1,440 patients (1,449 cases) with early-stage breast cancer undergoing breast-conserving therapy were treated with balloon-based brachytherapy to deliver APBI (34 Gy in 3.4-Gy fractions). Cosmetic outcome was evaluated at each follow-up visit and dichotomized as excellent/good (E/G) or fair/poor (F/P). Follow-up was evaluated at 36 and 72 months to establish long-term cosmesis, stability of cosmesis, and factors associated with optimal results. Results: The percentage of evaluable patients with excellent/good (E/G) cosmetic results at 36 months and more than 72 months were 93.3% (n = 708/759) and 90.4% (n = 235/260). Factors associated with optimal cosmetic results at 72 months included: larger skin spacing (p = 0.04) and T1 tumors (p = 0.02). Using multiple regression analysis, the only factors predictive of worse cosmetic outcome at 72 months were smaller skin spacing (odds ratio [OR], 0.89; confidence interval [CI], 0.80–0.99) and tumors greater than 2 cm (OR, 4.96, CI, 1.53–16.07). In all, 227 patients had both a 36-month and a 72-month cosmetic evaluation. The number of patients with E/G cosmetic results decreased only slightly from 93.4% at 3 years to 90.8% (p = 0.13) at 6 years, respectively. Conclusions: APBI delivered with balloon-based brachytherapy produced E/G cosmetic results in 90.4% of cases at 6 years. Larger tumors (T2) and smaller skin spacing were found to be the two most important independent predictors of cosmesis.

  12. Focal low-dose rate brachytherapy for the treatment of prostate cancer

    Directory of Open Access Journals (Sweden)

    Tong WY

    2013-09-01

    Full Text Available William Y Tong, Gilad Cohen, Yoshiya Yamada Memorial Sloan-Kettering Cancer Center, Department of Radiation Oncology, New York, NY, USA Abstract: Whole-gland low-dose rate (LDR brachytherapy has been a well-established modality of treating low-risk prostate cancer. Treatment in a focal manner has the advantages of reduced toxicity to surrounding organs. Focal treatment using LDR brachytherapy has been relatively unexplored, but it may offer advantages over other modalities that have established experiences with a focal approach. This is particularly true as prostate cancer is being detected at an earlier and more localized stage with the advent of better detection methods and newer imaging modalities. Keywords: prostate cancer, focal, low dose rate, brachytherapy

  13. Brachytherapy: The need for a national metrology lab in Spain

    International Nuclear Information System (INIS)

    Aviles Lucas, P.

    2011-01-01

    Radiotherapy, along with chemotherapy and surgery, is an essential therapeutic technique for treating malignant tumours. Part of the challenge of a suitable radiotherapy treatment lies on the optimisation of the irradiated volume, which must be adapted to the tumour volume as far as possible. Depending on position of the radiation source relative to the patient, the procedure in question could be external radiotherapy, or brachytherapy. In a brachytherapy procedure, relatively small encapsulated radioactive sources are placed close to or in the tumour volume to be treated. This therapeutic treatment has two obvious advantages; on one hand the prescribed dose can be adjusted to the tumour volume, preventing unnecessary exposure of the adjacent healthy tissues, and on the other, it decreases the treatment duration compared to a radiotherapy treatment. (Author) 19 refs.

  14. Objective method to report planner-independent skin/rib maximal dose in balloon-based high dose rate (HDR) brachytherapy for breast cancer

    International Nuclear Information System (INIS)

    Kim, Yongbok; Trombetta, Mark G.

    2011-01-01

    Purpose: An objective method was proposed and compared with a manual selection method to determine planner-independent skin and rib maximal dose in balloon-based high dose rate (HDR) brachytherapy planning. Methods: The maximal dose to skin and rib was objectively extracted from a dose volume histogram (DVH) of skin and rib volumes. A virtual skin volume was produced by expanding the skin surface in three dimensions (3D) external to the breast with a certain thickness in the planning computed tomography (CT) images. Therefore, the maximal dose to this volume occurs on the skin surface the same with a conventional manual selection method. The rib was also delineated in the planning CT images and its maximal dose was extracted from its DVH. The absolute (Abdiff=|D max Man -D max DVH |) and relative (Rediff[%]=100x(|D max Man -D max DVH |)/D max DVH ) maximal skin and rib dose differences between the manual selection method (D max Man ) and the objective method (D max DVH ) were measured for 50 balloon-based HDR (25 MammoSite and 25 Contura) patients. Results: The average±standard deviation of maximal dose difference was 1.67%±1.69% of the prescribed dose (PD). No statistical difference was observed between MammoSite and Contura patients for both Abdiff and Rediff[%] values. However, a statistically significant difference (p value max >90%) compared with lower dose range (D max <90%): 2.16%±1.93% vs 1.19%±1.25% with p value of 0.0049. However, the Rediff[%] analysis eliminated the inverse square factor and there was no statistically significant difference (p value=0.8931) between high and low dose ranges. Conclusions: The objective method using volumetric information of skin and rib can determine the planner-independent maximal dose compared with the manual selection method. However, the difference was <2% of PD, on average, if appropriate attention is paid to selecting a manual dose point in 3D planning CT images.

  15. About brachytherapy for the handling of cancer

    International Nuclear Information System (INIS)

    Campos, Tarcisio P.R.; Silva, Nilton O.; Damaso, Renato S.; Costa, Helder R.; Borges, Paulo H.R.; Mendes, Bruno M.

    2000-01-01

    The technique of brachytherapy is argued in this article. The 'hardware' and 'necessary software' for the handling are summarily presented. Being the macro-dosimetry an important stage in the radiation therapy procedure, a simplified method of doses evaluation in conventional brachytherapy is presented. In an illustrative form, isodoses of a three-dimensional distribution of linear sources are drawn on a digitalized X-ray picture, exemplifying the handling of breast brachytherapy by sources of iridium

  16. Radiobiological considerations in gynaecological HDR and LDR brachytherapy

    International Nuclear Information System (INIS)

    Bauer, M.; Schulz-Wendtland, R.

    1989-01-01

    In brachytherapy the advantages of high dose rate over low dose rate afterloading therapy were obvious. Out-patient treatment becomes possible, the position of the sources is reproducible and can be observed during the treatment and the patients have to be immobilised for only a short time, giving less psychological stress and a decreased risk of thrombosis and embolism. When changing from LDR to HDR afterloading therapy we are not yet able to evaluate its biological impact. Radiobiological considerations and our experimental data, however, give us the following clinical consequences by using HDR brachytherapy: There is a need for about 15 fractions or more and each increase in dose rate requires higher fractioning. Due to the steep dose rate decline and the inhomogeneous dose distribution, multiple equivalence factors are necessary when fractioning is not sufficiently high. Correction factors to reduce the dose close to the source are low, with increasing distance from the source they increase. If HDR radiation therapy is used, the percutaneous dose in the pelvic wall region should be reduced. The reduction of the dose in HDR brachytherapy is a compromise to limit the side effects caused by the radiation. The drawback is a small therapeutic range and reduced therapeutic effectivity at the tumour. (orig.) [de

  17. High dose-rate brachytherapy source position quality assurance using radiochromic film

    International Nuclear Information System (INIS)

    Evans, M.D.C.; Devic, S.; Podgorsak, E.B.

    2007-01-01

    Traditionally, radiographic film has been used to verify high-dose-rate brachytherapy source position accuracy by co-registering autoradiographic and diagnostic images of the associated applicator. Filmless PACS-based clinics that do not have access to radiographic film and wet developers may have trouble performing this quality assurance test in a simple and practical manner. We describe an alternative method for quality assurance using radiochromic-type film. In addition to being easy and practical to use, radiochromic film has some advantages in comparison with traditional radiographic film when used for HDR brachytherapy quality assurance

  18. Automatic analysis of intrinsic positional verification films brachytherapy using MATLAB

    International Nuclear Information System (INIS)

    Quiros Higueras, J. D.; Marco Blancas, N. de; Ruiz Rodriguez, J. C.

    2011-01-01

    One of the essential tests in quality control of brachytherapy equipment is verification auto load intrinsic positional radioactive source. A classic method for evaluation is the use of x-ray film and measuring the distance between the marks left by autoradiography of the source with respect to a reference. In our center has developed an automated method of measurement by the radiochromic film scanning and implementation of a macro developed in Matlab, in order to optimize time and reduce uncertainty in the measurement. The purpose of this paper is to describe the method developed, assess their uncertainty and quantify their advantages over the manual method. (Author)

  19. Physical aspects of radioisotope brachytherapy

    International Nuclear Information System (INIS)

    1967-01-01

    The present report represents an attempt to provide, within a necessarily limited compass, an authoritative guide to all important physical aspects of the use of sealed gamma sources in radiotherapy. Within the report, reference is made wherever necessary to the more extensive but scattered literature on this subject. While this report attempts to cover all the physical aspects of radioisotope 'brachytherapy' it does not, of course, deal exhaustively with any one part of the subject. 384 refs, 3 figs, 6 tabs

  20. Rectourethral fistula following LDR brachytherapy.

    Science.gov (United States)

    Borchers, Holger; Pinkawa, Michael; Donner, Andreas; Wolter, Timm P; Pallua, Norbert; Eble, Michael J; Jakse, Gerhard

    2009-01-01

    Modern LDR brachytherapy has drastically reduced rectal toxicity and decreased the occurrence of rectourethral fistulas to <0.5% of patients. Therefore, symptoms of late-onset sequelae are often ignored initially. These fistulas cause severe patient morbidity and require interdisciplinary treatment. We report on the occurrence and management of a rectourethral fistula which occurred 4 years after (125)I seed implantation. Copyright 2009 S. Karger AG, Basel.

  1. Radiation safety and gynaecological brachytherapy

    International Nuclear Information System (INIS)

    Crawford, L.

    1985-01-01

    In 1983, the Radiation Control Section of the South Australian Health Commission conducted an investigation into radiation safety practices in gynaecological brachytherapy. Part of the investigation included a study of the transportation of radioactive sources between hospitals. Several deficiences in radiation safety were found in the way these sources were being transported. New transport regulations came into force in South Australia in July 1984 and since then there have been many changes in the transportation procedure

  2. Intravascular brachytherapy for peripheral vascular disease

    Directory of Open Access Journals (Sweden)

    Hagen, Anja

    2008-09-01

    Full Text Available Scientific background: Percutaneous transluminal angioplasties (PTA through balloon dilatation with or without stenting, i.e. vessel expansion through balloons with or without of implantation of small tubes, called stents, are used in the treatment of peripheral artery occlusive disease (PAOD. The intravascular vessel irradiation, called intravascular brachytherapy, promises a reduction in the rate of repeated stenosis (rate of restenosis after PTA. Research questions: The evaluation addresses questions on medical efficacy, cost-effectiveness as well as ethic, social and legal implications in the use of brachytherapy in PAOD patients. Methods: A systematic literature search was conducted in August 2007 in the most important medical electronic databases for publications beginning from 2002. The medical evaluation included randomized controlled trials (RCT. The information synthesis was performed using meta-analysis. Health economic modeling was performed with clinical assumptions derived from the meta-analysis and economical assumptions derived from the German Diagnosis Related Groups (G-DRG-2007. Results: Medical evaluation: Twelve publications about seven RCT on brachytherapy vs. no brachytherapy were included in the medical evaluation. Two RCT showed a significant reduction in the rate of restenosis at six and/or twelve months for brachytherapy vs. no brachytherapy after successful balloon dilatation, the relative risk in the meta-analysis was 0.62 (95% CI: 0.46 to 0.84. At five years, time to recurrence of restenosis was significantly delayed after brachytherapy. One RCT showed a significant reduction in the rate of restenosis at six months for brachytherapy vs. no brachytherapy after PTA with optional stenting, the relative risk in the meta-analysis was 0.76 (95% CI: 0.61 to 0.95. One RCT observed a significantly higher rate of late thrombotic occlusions after brachytherapy in the subgroup of stented patients. A single RCT for brachytherapy

  3. Risk analysis of brachytherapy events

    International Nuclear Information System (INIS)

    Buricova, P.; Zackova, H.; Hobzova, L.; Novotny, J.; Kindlova, A.

    2005-01-01

    For prevention radiological events it is necessary to identify hazardous situation and to analyse the nature of committed errors. Though the recommendation on the classification and prevention of radiological events: Radiological accidents has been prepared in the framework of Czech Society of Radiation Oncology, Biology and Physics and it was approved by Czech regulatory body (SONS) in 1999, only a few reports have been submitted up to now from brachytherapy practice. At the radiotherapy departments attention has been paid more likely to the problems of dominant teletherapy treatments. But in the two last decades the usage of brachytherapy methods has gradually increased because .nature of this treatment well as the possibilities of operating facility have been completely changed: new radionuclides of high activity are introduced and sophisticate afterloading systems controlled by computers are used. Consequently also the nature of errors, which can occurred in the clinical practice, has been changing. To determine the potentially hazardous parts of procedure the so-called 'process tree', which follows the flow of entire treatment process, has been created for most frequent type of applications. Marking the location of errors on the process tree indicates where failures occurred and accumulation of marks along branches show weak points in the process. Analysed data provide useful information to prevent medical events in brachytherapy .The results strength the requirements given in Recommendations of SONS and revealed the need for its amendment. They call especially for systematic registration of the events. (authors)

  4. Definitive Brachytherapy for Kaposi's Sarcoma

    International Nuclear Information System (INIS)

    Williams, A.; Ezzell, G.; Zalupski, M.; Fontanesi, J.

    1996-01-01

    Purpose: To assess the efficacy and possible complications in patients diagnosed with Kaposi's sarcoma and treated with definitive brachytherapy. Methods and Materials: Between January, 1995 and December, 1995, four patients with Kaposi's sarcoma (KS) were treated with brachytherapy. Three patients, all with positive HIV status were treated using Iridium 192 (Ir-192) sources via a high-dose rate remote afterloader. One patient with endemic KS was treated using the application of catheters loaded with Californium 252. Eight sites were treated and included scalp, feet, nose, penis, hand, neck, and back. Dose rate for Ir-192 was 330cGy/fx to a total dose of 990cGy. The Californium was delivered as 100nGy/b.i.d. to a total dose of 900nGy. Follow-up as ranged from 2-6 months. Results: All four patients remain alive. Seven of eight sites have had complete clinical response and each patient has reported durable pain relief that has not subsided through last follow-up of 1/96. Two of eight sites, both treated with surface mold technique with Californium 252 developed moist desquamation. The remaining six sites did not demonstrate significant toxicity. Conclusion: Brachytherapy can offer Kaposi's sarcoma patients results that are equivalent to external beam radiation therapy, with minimal complications, a shorter treatment time and potential cost effectiveness

  5. Interstitial prostate brachytherapy. LDR-PDR-HDR

    International Nuclear Information System (INIS)

    Kovacs, Gyoergy; Hoskin, Peter

    2013-01-01

    The first comprehensive overview of interstitial brachytherapy for the management of local or locally advanced prostate cancer. Written by an interdisciplinary team who have been responsible for the successful GEC-ESTRO/EAU Teaching Course. Discusses in detail patient selection, the results of different methods, the role of imaging, and medical physics issues. Prostate brachytherapy has been the subject of heated debate among surgeons and the proponents of the various brachytherapy methods. This very first interdisciplinary book on the subject provides a comprehensive overview of innovations in low dose rate (LDR), high dose rate (HDR), and pulsed dose rate (PDR) interstitial brachytherapy for the management of local or locally advanced prostate cancer. In addition to detailed chapters on patient selection and the use of imaging in diagnostics, treatment guidance, and implantation control, background chapters are included on related medical physics issues such as treatment planning and quality assurance. The results obtained with the different treatment options and the difficult task of salvage treatment are fully discussed. All chapters have been written by internationally recognized experts in their fields who for more than a decade have formed the teaching staff responsible for the successful GEC-ESTRO/EAU Prostate Brachytherapy Teaching Course. This book will be invaluable in informing residents and others of the scientific background and potential of modern prostate brachytherapy. It will also prove a useful source of up-to-date information for those who specialize in prostate brachytherapy or intend to start an interstitial brachytherapy service.

  6. Brachytherapy Using Elastin-Like Polypeptides with (131)I Inhibit Tumor Growth in Rabbits with VX2 Liver Tumor.

    Science.gov (United States)

    Liu, Xinpei; Shen, Yiming; Zhang, Xuqian; Lin, Rui; Jia, Qiang; Chang, Yixiang; Liu, Wenge; Liu, Wentian

    2016-10-01

    Brachytherapy is a targeted type of radiotherapy utilized in the treatment of cancers. Elastin-like polypeptides are a unique class of genetically engineered peptide polymers that have several attractive properties for brachytherapy. To explore the feasibility and application of brachytherapy for VX2 liver tumor using elastin-like polypeptides with (131)I so as to provide reliable experimental evidence for a new promising treatment of liver cancer. Elastin-like polypeptide as carrier was labeled with (131)I using the iodogen method. Ten eligible rabbits with VX2 liver tumor were randomly divided into the treatment group (n = 5) and control group (n = 5). The treatment group received brachytherapy using elastin-like polypeptide with (131)I, and in the control group, elastin-like polypeptide was injected into the VX2 liver tumor as a control. Periodic biochemical and imaging surveillances were required to assess treatment efficacy. The stability of elastin-like polypeptide with (131)I in vitro was maintained at over 96.8 % for 96 h. Biochemistry and imaging indicated brachytherapy using elastin-like polypeptide with (131)I for liver tumor can improve liver function and inhibit tumor growth (P Elastin-like polypeptide can be an ideal carrier of (131)I and have high labeling efficiency, radiochemical purity and stability. Brachytherapy using elastin-like polypeptide with (131)I for liver tumor is a useful therapy that possesses high antitumor efficacy advantages.

  7. High dose rate brachytherapy for oral cancer

    International Nuclear Information System (INIS)

    Yamazaki, Hideya; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Koizumi, Masahiko; Ogawa, Kazuhiko; Furukawa, Souhei

    2013-01-01

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer. (author)

  8. High dose rate brachytherapy for oral cancer.

    Science.gov (United States)

    Yamazaki, Hideya; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Furukawa, Souhei; Koizumi, Masahiko; Ogawa, Kazuhiko

    2013-01-01

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer.

  9. Brachytherapy reconstruction using orthogonal scout views from the CT

    International Nuclear Information System (INIS)

    Perez, J.; Lliso, F.; Carmona, V.; Bea, J.; Tormo, A.; Petschen, I.

    1996-01-01

    Introduction: CT assisted brachytherapy planning is demonstrating to have great advantages as external RT planning does. One of the problems we have found in this approach with the conventional gynecological Fletcher applicators is the high amount of artefacts (ovoids with rectal and vessical protections) in the CT slice. We have introduced a reconstruction method based on scout views in order to avoid this problem, allowing us to perform brachytherapy reconstruction completely CT assisted. We use a virtual simulation chain by General Electric Medical Systems. Method and discussion: Two orthogonal scout views (0 and 90 tube positions) are performed. The reconstruction method takes into account the virtual position of the focus and the fact that there is only divergence in the transverse plane. Algorithms developed for sources as well as for reference points localisation (A, B, lymphatic Fletcher trapezoid, pelvic wall, etc.) are presented. This method has the following practical advantages: the porte-cassette is not necessary, the image quality can be improved (it is very helpful in pelvic lateral views that are critical in conventional radiographs), the total time to get the data is smaller than for conventional radiographs (reduction of patient motion effects) and problems that appear in CT-slice based reconstruction in the case of strongly curved intrauterine applicators are avoided. Even though the resolution is smaller than in conventional radiographs it is good enough for brachytherapy. Regarding the CT planning this method presents the interesting feature that the co-ordinate system is the same for the reconstruction process that for the CT-slices set. As the application can be reconstructed from scout views and the doses can be evaluated on CT slices it is easier to correlate the dose values obtained for the traditional points with those provided by the CT information

  10. Interactive multiobjective optimization for anatomy-based three-dimensional HDR brachytherapy

    Science.gov (United States)

    Ruotsalainen, Henri; Miettinen, Kaisa; Palmgren, Jan-Erik; Lahtinen, Tapani

    2010-08-01

    In this paper, we present an anatomy-based three-dimensional dose optimization approach for HDR brachytherapy using interactive multiobjective optimization (IMOO). In brachytherapy, the goals are to irradiate a tumor without causing damage to healthy tissue. These goals are often conflicting, i.e. when one target is optimized the other will suffer, and the solution is a compromise between them. IMOO is capable of handling multiple and strongly conflicting objectives in a convenient way. With the IMOO approach, a treatment planner's knowledge is used to direct the optimization process. Thus, the weaknesses of widely used optimization techniques (e.g. defining weights, computational burden and trial-and-error planning) can be avoided, planning times can be shortened and the number of solutions to be calculated is small. Further, plan quality can be improved by finding advantageous trade-offs between the solutions. In addition, our approach offers an easy way to navigate among the obtained Pareto optimal solutions (i.e. different treatment plans). When considering a simulation model of clinical 3D HDR brachytherapy, the number of variables is significantly smaller compared to IMRT, for example. Thus, when solving the model, the CPU time is relatively short. This makes it possible to exploit IMOO to solve a 3D HDR brachytherapy optimization problem. To demonstrate the advantages of IMOO, two clinical examples of optimizing a gynecologic cervix cancer treatment plan are presented.

  11. Interactive multiobjective optimization for anatomy-based three-dimensional HDR brachytherapy

    International Nuclear Information System (INIS)

    Ruotsalainen, Henri; Miettinen, Kaisa; Palmgren, Jan-Erik; Lahtinen, Tapani

    2010-01-01

    In this paper, we present an anatomy-based three-dimensional dose optimization approach for HDR brachytherapy using interactive multiobjective optimization (IMOO). In brachytherapy, the goals are to irradiate a tumor without causing damage to healthy tissue. These goals are often conflicting, i.e. when one target is optimized the other will suffer, and the solution is a compromise between them. IMOO is capable of handling multiple and strongly conflicting objectives in a convenient way. With the IMOO approach, a treatment planner's knowledge is used to direct the optimization process. Thus, the weaknesses of widely used optimization techniques (e.g. defining weights, computational burden and trial-and-error planning) can be avoided, planning times can be shortened and the number of solutions to be calculated is small. Further, plan quality can be improved by finding advantageous trade-offs between the solutions. In addition, our approach offers an easy way to navigate among the obtained Pareto optimal solutions (i.e. different treatment plans). When considering a simulation model of clinical 3D HDR brachytherapy, the number of variables is significantly smaller compared to IMRT, for example. Thus, when solving the model, the CPU time is relatively short. This makes it possible to exploit IMOO to solve a 3D HDR brachytherapy optimization problem. To demonstrate the advantages of IMOO, two clinical examples of optimizing a gynecologic cervix cancer treatment plan are presented.

  12. American Brachytherapy Society recommendations for reporting morbidity after prostate brachytherapy

    International Nuclear Information System (INIS)

    Nag, Subir; Ellis, Rodney J.; Merrick, Gregory S.; Bahnson, Robert; Wallner, Kent; Stock, Richard

    2002-01-01

    Purpose: To standardize the reporting of brachytherapy-related prostate morbidity to guide ongoing clinical practice and future investigations. Methods: Members of the American Brachytherapy Society (ABS) with expertise in prostate brachytherapy performed a literature review and, guided by their clinical experience, formulated specific recommendations for reporting on morbidity related to prostate brachytherapy. Results: The ABS recommends using validated, patient-administered health-related quality-of-life instruments for the determination of baseline and follow-up data regarding bowel, urinary, and sexual function. Both actuarial and crude incidences should be reported, along with the temporal resolution of specific complications, and correlated with the doses to the normal tissues. The International Prostate Symptom Score is recommended to assess urinary morbidity, and any dysuria, gross hematuria, urinary retention, incontinence, or medication use should be quantified. Likewise, the ''Sexual Health Inventory for Men,'' which includes the specific erectile questions of the International Index of Erectile Function, is the preferred instrument for reporting sexual function, and the loss of sexual desire, incidence of hematospermia, painful orgasm (orgasmalgia), altered orgasm intensity, decreased ejaculatory volume, use of erectile aids, and use of hormones for androgen deprivation should be quantified. The ABS recommends adoption of the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer acute and late radiation morbidity scoring scheme for reporting rectal morbidity and noting the incidence of rectal steroid, laser, or antidiarrheal use. Conclusion: It is important to focus on health-related quality-of-life issues in the treatment of prostate cancer, because the control rates are very similar between appropriate treatment modalities. The ABS recommends using the International Prostate Symptom Score, International Index of

  13. Gadolinium neutron capture brachytherapy (GdNCB), a new treatment method for intravascular brachytherapy

    International Nuclear Information System (INIS)

    Enger, Shirin A.; Rezaei, Arash; Munck af Rosenschoeld, Per; Lundqvist, Hans

    2006-01-01

    Restenosis is a major problem after balloon angioplasty and stent implantation. The aim of this study is to introduce gadolinium neutron capture brachytherapy (GdNCB) as a suitable modality for treatment of stenosis. The utility of GdNCB in intravascular brachytherapy (IVBT) of stent stenosis is investigated by using the GEANT4 and MCNP4B Monte Carlo radiation transport codes. To study capture rate, Kerma, absorbed dose and absorbed dose rate around a Gd-containing stent activated with neutrons, a 30 mm long, 5 mm diameter gadolinium foil is chosen. The input data is a neutron spectrum used for clinical neutron capture therapy in Studsvik, Sweden. Thermal neutron capture in gadolinium yields a spectrum of high-energy gamma photons, which due to the build-up effect gives an almost flat dose delivery pattern to the first 4 mm around the stent. The absorbed dose rate is 1.33 Gy/min, 0.25 mm from the stent surface while the dose to normal tissue is in order of 0.22 Gy/min, i.e., a factor of 6 lower. To spare normal tissue further fractionation of the dose is also possible. The capture rate is relatively high at both ends of the foil. The dose distribution from gamma and charge particle radiation at the edges and inside the stent contributes to a nonuniform dose distribution. This will lead to higher doses to the surrounding tissue and may prevent stent edge and in-stent restenosis. The position of the stent can be verified and corrected by the treatment plan prior to activation. Activation of the stent by an external neutron field can be performed days after catherization when the target cells start to proliferate and can be expected to be more radiation sensitive. Another advantage of the nonradioactive gadolinium stent is the possibility to avoid radiation hazard to personnel

  14. Initial Clinical Experience With the Strut-Adjusted Volume Implant (SAVI) Breast Brachytherapy Device for Accelerated Partial-Breast Irradiation (APBI): First 100 Patients With More Than 1 Year of Follow-Up

    International Nuclear Information System (INIS)

    Yashar, Catheryn M.; Scanderbeg, Daniel; Kuske, Robert; Wallace, Anne; Zannis, Victor; Blair, Sarah; Grade, Emily; Swenson, Virginia H.; Quiet, Coral

    2011-01-01

    Purpose: The Strut-Adjusted Volume Implant (SAVI; Cianna Medical, Aliso Viejo, CA) is a multichannel single-entry brachytherapy device designed to allow dose modulation to minimize normal tissue dose while simultaneously maximizing target coverage. This is the first report on the initial 102 patients with nearly 2 years of median follow-up. Methods and Materials: One hundred two patients were treated at two institutions. Data were collected on eligibility and dosimetry and followed for toxicity and recurrence. Results: The median follow-up is 21 months. Overall dosimetry is outstanding (median percent of target volume receiving 90% of the prescription dose was 95.9%, volume of target receiving 150% of the prescription dose was 27.8 mL, and volume of target receiving 200% of the prescription dose was 14.0 cm 3 ). No devices were pulled prior to treatment completion. For patients with a skin bridge of less than 7 mm, the maximum median skin dose was 280 cGy (median percent of target volume receiving 90% of the prescription dose was 95.2%, volume of target receiving 150% of the prescription dose was 25.8 cm 3 and volume of target receiving 200% of the prescription dose was 12.7 mL). For patients with both chest wall and skin of less than 7 mm, the maximum median lung dose was 205 cGy with simultaneous skin dose of 272 cGy. The rate of telangiectasia was 1.9%. Grade 1 hyperpigmentation developed in 10 patients (9.8%) and Grade 2 fibrosis in 2 patients (1.9%). There were 2 symptomatic seromas and 2 cases of asymptomatic fat necrosis (1.9%). Of the patients, 27% were not eligible for MammoSite balloon brachytherapy (Hologic, Inc., Marlborough, MA) and 5% were not eligible for any balloon brachytherapy. The recurrence rate was 1%. Conclusions: The SAVI appears to safely allow an increase in eligibility for APBI over balloon brachytherapy or three-dimensional conformal radiation, highlighting the outstanding device flexibility to maximize the target dose and minimize the

  15. Physical aspects of endovascular brachytherapy

    International Nuclear Information System (INIS)

    Kirisits, C.

    2001-11-01

    Restenosis is severely limiting the outcome of vascular interventions. In several clinical trials endovascular brachytherapy has shown to reduce the restenosis rate. Local radiotherapy to the injured vessel wall is a promising new type of treatment in order to inhibit a complex wound healing process resulting in cell proliferation and re-obstruction of the treated vessel. Treatment planning has to be based on the dose distribution in the vicinity of the sources used. Source strength was determined in terms of air kerma rate for gamma nuclides (Iridium-192) and absorbed dose to water at reference distance of 2 mm for beta nuclides (Strontium-90/Yttrium-90, Phosphor-32), respectively. Radial dose profiles and the Reference Isodose Length (RIL) were determined using the EGSnrc code and GafChromic film. Good agreement was found between both methods. In order to treat the entire clinical target length, the (RIL) is an essential value during treatment planning. Examples are described for different levels of treatment planing including recommendations for optimal choice and positioning of the radioactive devices inside the artery. IVUS based treatment planning is illustrated with superposition of isodoses on cross-sectional images. A calculation model for radioactive stents is presented in order to determine dose volume histograms in a retrospective analysis. Radiation protection issues for endovascular brachytherapy are discussed in detail. Personal dose for the involved personnel is estimated based on calculations and measurements. Beta ray dosimetry is performed with suitable detectors. In order to estimate the exposure to the patient the dose to organs at risk is calculated and compared to the dose from angiography. There is an additional radiation exposure to patients and personnel caused by endovascular brachytherapy, but the values are much smaller than those caused by diagnostic angiography. (author)

  16. Performance profiling for brachytherapy applications

    Science.gov (United States)

    Choi, Wonqook; Cho, Kihyeon; Yeo, Insung

    2018-05-01

    In many physics applications, a significant amount of software (e.g. R, ROOT and Geant4) is developed on novel computing architectures, and much effort is expended to ensure the software is efficient in terms of central processing unit (CPU) time and memory usage. Profiling tools are used during the evaluation process to evaluate the efficiency; however, few such tools are able to accommodate low-energy physics regions. To address this limitation, we developed a low-energy physics profiling system in Geant4 to profile the CPU time and memory of software applications in brachytherapy applications. This paper describes and evaluates specific models that are applied to brachytherapy applications in Geant4, such as QGSP_BIC_LIV, QGSP_BIC_EMZ, and QGSP_BIC_EMY. The physics range in this tool allows it to be used to generate low energy profiles in brachytherapy applications. This was a limitation in previous studies, which caused us to develop a new profiling tool that supports profiling in the MeV range, in contrast to the TeV range that is supported by existing high-energy profiling tools. In order to easily compare the profiling results between low-energy and high-energy modes, we employed the same software architecture as that in the SimpliCarlo tool developed at the Fermilab National Accelerator Laboratory (FNAL) for the Large Hadron Collider (LHC). The results show that the newly developed profiling system for low-energy physics (less than MeV) complements the current profiling system used for high-energy physics (greater than TeV) applications.

  17. Competitive versus comparative advantage

    OpenAIRE

    Neary, J. Peter

    2002-01-01

    I explore the interactions between comparative, competitive and absolute advantage in a two-country model of oligopoly in general equilibrium. Comparative advantage always determines the direction of trade, but both competitive and absolute advantage affect resource allocation, trade patterns and trade volumes. Competitive advantage in the sense of more home firms drives foreign firms out of marginal sectors but also makes some marginal home sectors uncompetitive. Absolute advantage in the se...

  18. Guidelines for comprehensive quality assurance in brachytherapy

    International Nuclear Information System (INIS)

    Goldson, A.L.; Nibhanupudy, J.R.

    1984-01-01

    Brachytherapy treatment techniques can provide significant improvement in local control and overall survival, but only when quality assurance can be guaranteed. To establish brachytherapy quality assurance, basic requirements for three predetermined subdivisions of clinical institutions will be forwarded. These are: (1) centers having minimum requirements to provide brachytherapy, (2) intermediate centers such as regional or community hospitals, and (3) optimal centers such as university hospital and cancer centers. This presentation will highlight personnel needs, equipment requirements, academic activities, clinical experience with these systems and proposed quality assurance guidelines

  19. Radiological protection of patients in brachytherapy

    International Nuclear Information System (INIS)

    Sacc, Ricardo; Herrero, Flavia

    2008-01-01

    Full text: The prefix 'brachy' means short-range, so brachytherapy is the administration of radiation therapy using small radioactive sources in the form of needles, tubes, wires or seeds, which are placed within the tumor -interstitial form- or very near of it, superficially or in an endo-cavity form. This technique, which was limited by the size of the primary tumor, has the advantage, that the radiation, can be adjusted to the size and shape of the tumor volume and the radioisotope used, - short range -, is selected with the criteria of getting the dose in the organs at risk, as low as possible, making what it is known as conformal radiotherapy. Radioactive sources may be permanent or temporary implants. The application of radioactive material, can be manually or automatically. In the first case, a major breakthrough from the radioprotection point of view, was the use of afterloading devices, methodology highly recommended to reduce the radiation exposure to staff. With the development of technology, remotely controlled afterloading devices were introduced, which in addition to complying with the above requirement, allow the source to move in different positions along catheters housed in one or more channels, making therapeutic brachytherapy treatments in tumor volumes possible, that due to its length, decades ago would have been an unthinkable deal. In all cases, sources, which may vary from the 3 mm in length, 125 Iodine or 198 Gold seeds, to extensive wires of 192 Iridium, are encapsulated for two main purposes: preventing leakage of radioactive material and absorption of unwanted radiation, alpha and beta, produced by the radioactive decay. Consequently, it should be highly unlikely that the radioactive material, could be lost or located in the patient, in a different place of the one that was planned. However, history shows us the opposite. Its is known the kind of deterministic effect that radiation is going to produce in the tumor, where the severity of

  20. Concomitant chemoradiotherapy with high dose rate brachytherapy ...

    African Journals Online (AJOL)

    Concomitant chemoradiotherapy with high dose rate brachytherapy as a definitive treatment modality for locally advanced cervical cancer. T Refaat, A Elsaid, N Lotfy, K Kiel, W Small Jr, P Nickers, E Lartigau ...

  1. Comprehensive brachytherapy physical and clinical aspects

    CERN Document Server

    Baltas, Dimos; Meigooni, Ali S; Hoskin, Peter J

    2013-01-01

    Modern brachytherapy is one of the most important oncological treatment modalities requiring an integrated approach that utilizes new technologies, advanced clinical imaging facilities, and a thorough understanding of the radiobiological effects on different tissues, the principles of physics, dosimetry techniques and protocols, and clinical expertise. A complete overview of the field, Comprehensive Brachytherapy: Physical and Clinical Aspects is a landmark publication, presenting a detailed account of the underlying physics, design, and implementation of the techniques, along with practical guidance for practitioners. Bridging the gap between research and application, this single source brings together the technological basis, radiation dosimetry, quality assurance, and fundamentals of brachytherapy. In addition, it presents discussion of the most recent clinical practice in brachytherapy including prostate, gynecology, breast, and other clinical treatment sites. Along with exploring new clinical protocols, ...

  2. Evolution of brachytherapy for prostate carcinoma

    International Nuclear Information System (INIS)

    Qin Lan

    2005-01-01

    Brachytherapy is one of the most main management to prostate carcinoma. This method has been rapidly accepted in clinical application since it is a convenient, little-traumatic, and outpatient therapy. With the development of techniques of production of radio-seeds, imaging modality and three-dimensional radiotherapy plan system, brachytherapy has been made a virtually progress in improving curative-effect and reducing damage to surrounding normal tissue. (authors)

  3. Long duration mild temperature hyperthermia and brachytherapy.

    Science.gov (United States)

    Armour, E P; Raaphorst, G P

    2004-03-01

    Combining long duration mild temperature hyperthermia (LDMH) and low dose-rate (LDR) brachytherapy to enhance therapeutic killing of cancer cells was proposed many years ago. The cellular and tumour research that supports this hypothesis is presented in this review. Research describing LDMH interaction with pulsed brachytherapy and high dose-rate brachytherapy using clinically relevant parameters are compared with LDMH/LDR brachytherapy. The mechanism by which LDMH sensitizes LDR has been established as the inhibition of sublethal damage repair. The molecular mechanisms have been shown to involve DNA repair enzymes, but the exact nature of these processes is still under investigation. The relative differences between LDMH interactions with human and rodent cells are presented to help in the understanding of possible roles of LDMH in clinical application. The role of LDMH in modifying tumour blood flow and its possible role in LDR sensitization of tumours is also presented. The positive aspects of LDMH-brachytherapy for clinical application are sixfold; (1) the thermal goals (temperature, time and volume) are achievable with currently available technology, (2) the hyperthermia by itself has no detectable toxic effects, (3) thermotolerance appears to play a minor if any role in radiation sensitization, (4) TER of around 2 can be expected, (5) hypoxic fraction may be decreased due to blood flow modification and (6) simultaneous chemotherapy may also be sensitized. Combined LDMH and brachytherapy is a cancer therapy that has established biological rationale and sufficient technical and clinical advancements to be appropriately applied. This modality is ripe for clinical testing.

  4. The American Brachytherapy Society recommendations for low-dose-rate brachytherapy for carcinoma of the cervix

    International Nuclear Information System (INIS)

    Nag, Subir; Chao, Clifford; Erickson, Beth; Fowler, Jeffery; Gupta, Nilendu; Martinez, Alvaro; Thomadsen, Bruce

    2002-01-01

    Purpose: This report presents guidelines for using low-dose-rate (LDR) brachytherapy in the management of patients with cervical cancer. Methods: Members of the American Brachytherapy Society (ABS) with expertise in LDR brachytherapy for cervical cancer performed a literature review, supplemented by their clinical experience, to formulate guidelines for LDR brachytherapy of cervical cancer. Results: The ABS strongly recommends that radiation treatment for cervical carcinoma (with or without chemotherapy) should include brachytherapy as a component. Precise applicator placement is essential for improved local control and reduced morbidity. The outcome of brachytherapy depends, in part, on the skill of the brachytherapist. Doses given by external beam radiotherapy and brachytherapy depend upon the initial volume of disease, the ability to displace the bladder and rectum, the degree of tumor regression during pelvic irradiation, and institutional practice. The ABS recognizes that intracavitary brachytherapy is the standard technique for brachytherapy for cervical carcinoma. Interstitial brachytherapy should be considered for patients with disease that cannot be optimally encompassed by intracavitary brachytherapy. The ABS recommends completion of treatment within 8 weeks, when possible. Prolonging total treatment duration can adversely affect local control and survival. Recommendations are made for definitive and postoperative therapy after hysterectomy. Although recognizing that many efficacious LDR dose schedules exist, the ABS presents suggested dose and fractionation schemes for combining external beam radiotherapy with LDR brachytherapy for each stage of disease. The dose prescription point (point A) is defined for intracavitary insertions. Dose rates of 0.50 to 0.65 Gy/h are suggested for intracavitary brachytherapy. Dose rates of 0.50 to 0.70 Gy/h to the periphery of the implant are suggested for interstitial implant. Use of differential source activity or

  5. Acute vasculitis after endovascular brachytherapy

    International Nuclear Information System (INIS)

    Fajardo L-G, Luis F.; Prionas, Stavros D.; Kaluza, Grzegorz L.; Raizner, Albert E.

    2002-01-01

    Purpose: Angioplasty effectively relieves coronary artery stenosis but is often followed by restenosis. Endovascular radiation (β or γ) at the time of angioplasty prevents restenosis in a large proportion of vessels in swine (short term) and humans (short and long term). Little information is available about the effects of this radiation exposure beyond the wall of the coronary arteries. Methods and Materials: Samples were obtained from 76 minipigs in the course of several experiments designed to evaluate endovascular brachytherapy: 76 of 114 coronary arteries and 6 of 12 iliac arteries were exposed to endovascular radiation from 32 P sources (35 Gy at 0.5 mm from the intima). Two-thirds of the vessels had angioplasty or stenting. The vessels were systematically examined either at 28 days or at 6 months after radiation. Results: We found an unexpected lesion: acute necrotizing vasculitis in arterioles located ≤2.05 mm from the target artery. It was characterized by fibrinoid necrosis of the wall, often associated with lymphocytic exudates or thrombosis. Based on the review of perpendicular sections of tissue samples, the arterioles had received between 6 and 40 Gy. This arteriolar vasculitis occurred at 28 days in samples from 51% of irradiated coronary arteries and 100% of irradiated iliac arteries. By 6 months, the incidence of acute vasculitis decreased to 24% around the coronary arteries. However, at that time, healing vasculitis was evident, often with luminal narrowing, in 46% of samples. Vasculitis was not seen in any of 44 samples from unirradiated vessels (0%) and had no relation to angioplasty, stenting, or their sequelae. This radiation-associated vasculitis in the swine resembles the localized lymphocytic vasculitis that we have reported in tissues of humans exposed to external radiation. On the other hand, it is quite different from the various types of systemic vasculitis that occur in nonirradiated humans. Conclusion: Endoarterial brachytherapy

  6. Iodine-125 orbital brachytherapy with a prosthetic implant in situ

    Energy Technology Data Exchange (ETDEWEB)

    Stannard, Clare [Groote Schuur Hospital and Cape Town Univ. (South Africa). Dept. of Radiation Oncology; Maree, Gert; Munro, Roger [Groote Schuur Hospital and Cape Town Univ. (South Africa). Dept. of Medical Physics; Lecuona, Karin [Groote Schuur Hospital and Cape Town Univ. (South Africa). Dept. of Ophthalmology; Sauerwein, Wolfgang [Universitaetsklinikum Essen (Germany). Strahlenklinik, NCTeam

    2011-05-15

    Purpose: Brachytherapy is one method of irradiating the orbit after enucleation of an eye with a malignant tumor that has a potential to recur. It consists of 6 trains of I-125 seeds placed around the periphery of the orbit, a shorter central train, and a metal disc, loaded with seeds, placed beneath the eyelids. The presence of a prosthetic orbital implant requires omission of the central train and adjustment of the activity of the seeds in the anterior orbit around the prosthesis. Patients and Methods: This is a retrospective review of the technical modifications and outcome of 12 patients treated in this manner: 6 with retinoblastoma, 5 with malignant melanoma, and 1 with an intraocular rhabdomyosarcoma. The median dose was 35.5 Gy in 73 hours for retinoblastoma and 56 Gy in 141 hours for malignant melanoma. Patients with retinoblastoma and rhabdomyosarcoma also received chemotherapy. Results: The tubes can be placed satisfactorily around the prosthesis. The increased activity in the anterior half of the tubes produced comparable dose distributions. There have been no orbital recurrences, no extrusion of the prosthesis, and cosmesis is good. Conclusion: Insertion of a prosthetic implant at the time of enucleation greatly enhances the subsequent cosmetic appearance. This should be encouraged unless there is frank tumor in the orbit. Orbital brachytherapy without the central train continues to give excellent local control. The short treatment time and good cosmesis are added advantages. The patient is spared the expense and inconvenience of removing and replacing the prosthetic implant. (orig.)

  7. The incorporation of specific tissue/nuclide attenuation data into the Anderson method for producing brachytherapy volume-dose histograms

    International Nuclear Information System (INIS)

    Loft, S.M.; Dale, R.G.

    1990-01-01

    Anderson (1986) has proposed an analytical method for deriving volume-dose histograms relating to three-dimensional brachytherapy distributions. Because the mathematical transformation allows the otherwise dominant effects of the inverse-square fall-off about individual sources to be effectively suppressed, resulting histograms provide the potential for visually and numerically assessing overall quality of a brachytherapy treatment. In this paper the Anderson equations have been combined with the radial-dose polynomials of Dale, which are applicable to a number of tissue/nuclide combinations, and the predictions of the combined formalism used to further investigate the physical aspects of brachytherapy dosimetry. The problems associated with the dosimetry of low-energy γ-emitters such as 125 I are once again highlighted, as are potential advantages of using a radionuclide with an intermediate γ-ray energy. (author)

  8. Navigation system for interstitial brachytherapy

    International Nuclear Information System (INIS)

    Strassmann, G.; Kolotas, C.; Heyd, R.

    2000-01-01

    The purpose of the stud was to develop a computed tomography (CT) based electromagnetic navigation system for interstitial brachytherapy. This is especially designed for situations when needles have to be positioned adjacent to or within critical anatomical structures. In such instances interactive 3D visualisation of the needle positions is essential. The material consisted of a Polhemus electromagnetic 3D digitizer, a Pentium 200 MHz laptop and a voice recognition for continuous speech. In addition, we developed an external reference system constructed of Perspex which could be positioned above the tumour region and attached to the patient using a non-invasive fixation method. A specially designed needle holder and patient bed were also developed. Measurements were made on a series of phantoms in order to study the efficacy and accuracy of the navigation system. The mean navigation accuracy of positioning the 20.0 cm length metallic needles within the phantoms was in the range 2.0-4.1 mm with a maximum of 5.4 mm. This is an improvement on the accuracy of a CT-guided technique which was in the range 6.1-11.3 mm with a maximum of 19.4 mm. The mean reconstruction accuracy of the implant geometry was 3.2 mm within a non-ferromagnetic environment. We found that although the needles were metallic this did not have a significant influence. We also found for our experimental setups that the CT table and operation table non-ferromagnetic parts had no significant influence on the navigation accuracy. This navigation system will be a very useful clinical tool for interstitial brachytherapy applications, particularly when critical structures have to be avoided. It also should provide a significant improvement on our existing technique

  9. 10 CFR 35.2406 - Records of brachytherapy source accountability.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of brachytherapy source accountability. 35.2406... Records of brachytherapy source accountability. (a) A licensee shall maintain a record of brachytherapy source accountability required by § 35.406 for 3 years. (b) For temporary implants, the record must...

  10. 10 CFR 35.406 - Brachytherapy sources accountability.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Brachytherapy sources accountability. 35.406 Section 35....406 Brachytherapy sources accountability. (a) A licensee shall maintain accountability at all times... area. (c) A licensee shall maintain a record of the brachytherapy source accountability in accordance...

  11. Sci-Thur PM – Brachytherapy 04: Commissioning and Implementation of a Cobalt-60 High Dose Rate Brachytherapy Source

    Energy Technology Data Exchange (ETDEWEB)

    Dysart, Jonathan [Horizon Health Network (Canada)

    2016-08-15

    An Eckert & Ziegler Bebig Co0.A86 cobalt 60 high dose rate (HDR) brachytherapy source was commissioned for clinical use. Long-lived Co-60 HDR sources offer potential logistical and economic advantages over Ir-192 sources, and should be considered for low to medium workload brachytherapy departments where modest increases in treatment times are not a factor. In optimized plans, the Co-60 source provides a similar dose distribution to Ir-192 despite the difference in radiation energy. By switching to Co-60, source exchange frequency can be reduced by a factor of 20, resulting in overall financial savings of more than 50% compared to Ir-192 sources. In addition, a reduction in Physicist QA workload of roughly 200 hours over the 5 year life of the Co-60 source is also expected. These benefits should be considered against the modest increases in average treatment time compared to those of Ir-192 sources, as well as the centre-specific needs for operating room shielding modification.

  12. Brokers and Competitive Advantage

    OpenAIRE

    Michael D. Ryall; Olav Sorenson

    2007-01-01

    The broker profits by intermediating between two (or more) parties. Using a biform game, we examine whether such a position can confer a competitive advantage, as well as whether any such advantage could persist if actors formed relations strategically. Our analysis reveals that, if one considers exogenous the relations between actors, brokers can enjoy an advantage but only if (1) they do not face substitutes either for the connections they offer or the value they can create, (2) they interm...

  13. Scandinavian Cooperative Advantage

    DEFF Research Database (Denmark)

    Strand, Robert; Freeman, R. Edward

    2015-01-01

    . We conclude by endorsing the expression “Scandinavian cooperative advantage” in an effort to draw attention to the Scandinavian context and encourage the field of strategic management to shift its focus from achieving a competitive advantage toward achieving a cooperative advantage....

  14. Accessing offshoring advantages

    DEFF Research Database (Denmark)

    Mykhaylenko, Alona; Motika, Agnes; Wæhrens, Brian Vejrum

    2015-01-01

    . Assuming that different levels of synergy may exist between particular offshoring strategic decisions (choosing offshore outsourcing or captive offshoring and the type of function) and different offshoring advantages, this work advocates that the actual fact of realization of certain offshoring advantages...

  15. A new afterloading applicator for primary brachytherapy of endometrial cancer

    International Nuclear Information System (INIS)

    Bauer, M.; Schulz-Wendtland, R.

    1993-01-01

    The authors describe and have used a new afterloading applicator in six patients for primary radiation therapy of endometrial cancer. The first introduction of the applicator was done under general anaesthesia. Dilating the cervical canal to Heger 9 made insertion easier. Prior to application it is advisable to probe the lumen of the uterine cavity with a tube or curette to estimate how far the applicator must be spread open. For brachytherapy it is advantageous to remove necrotic tumour portions. This requires experienced hands to avoid perforation of the uterus. The new afterloading applicator is easy to use, and permits direct contact between the six tubes and the tumour. In conjunction with careful planning with the help of MRI, it provides an optimal system for the treatment of endometrial cancer. (Author)

  16. Pulsed dose rate and fractionated high dose rate brachytherapy: choice of brachytherapy schedules to replace low dose rate treatments

    International Nuclear Information System (INIS)

    Visser, Andries G.; Aardweg, Gerard J.M.J. van den; Levendag, Peter C.

    1996-01-01

    Purpose: Pulsed dose rate (PDR) brachytherapy is a new type of afterloading brachytherapy (BT) in which a continuous low dose rate (LDR) treatment is simulated by a series of 'pulses,' i.e., fractions of short duration (less than 0.5 h) with intervals between fractions of 1 to a few hours. At the Dr. Daniel den Hoed Cancer Center, the term 'PDR brachytherapy' is used for treatment schedules with a large number of fractions (at least four per day), while the term 'fractionated high dose rate (HDR) brachytherapy' is used for treatment schedules with just one or two brachytherapy fractions per day. Both treatments can be applied as alternatives for LDR BT. This article deals with the choice between PDR and fractionated HDR schedules and proposes possible fractionation schedules. Methods and Materials: To calculate HDR and PDR fractionation schedules with the intention of being equivalent to LDR BT, the linear-quadratic (LQ) model has been used in an incomplete repair formulation as given by Brenner and Hall, and by Thames. In contrast to earlier applications of this model, both the total physical dose and the overall time were not kept identical for LDR and HDR/PDR schedules. A range of possible PDR treatment schedules is presented, both for booster applications (in combination with external radiotherapy (ERT) and for BT applications as a single treatment. Because the knowledge of both α/β values and the half time for repair of sublethal damage (T (1(2)) ), which are required for these calculations, is quite limited, calculations regarding the equivalence of LDR and PDR treatments have been performed for a wide range of values of α/β and T (1(2)) . The results are presented graphically as PDR/LDR dose ratios and as ratios of the PDR/LDR tumor control probabilities. Results: If the condition that total physical dose and overall time of a PDR treatment must be exactly identical to the values for the corresponding LDR treatment regimen is not applied, there appears

  17. Novel use of ViewRay MRI guidance for high-dose-rate brachytherapy in the treatment of cervical cancer.

    Science.gov (United States)

    Ko, Huaising C; Huang, Jessie Y; Miller, Jessica R; Das, Rupak K; Wallace, Charles R; De Costa, Anna-Maria A; Francis, David M; Straub, Margaret R; Anderson, Bethany M; Bradley, Kristin A

    advantage in visualizing the tumor and cervix compared to CT. This presents a feasible and reliable manner to image and plan gynecologic brachytherapy. Copyright © 2018 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  18. ACPSEM brachytherapy working group recommendations for quality assurance in brachytherapy

    International Nuclear Information System (INIS)

    Dempsey, Claire; Smith, Ryan; Nyathi, Thulani; Ceylan, Abdurrahman; Howard, Lisa; Patel, Virendra; Dam, Ras; Haworth, Annette

    2013-01-01

    The Australasian College of Physical Scientists and Engineers in Medicine (ACPSEM) Radiation Oncology Specialty Group (ROSG) formed a series of working groups in 2011 to develop recommendation papers for guidance of radiation oncology medical physics practice within the Australasian setting. These recommendations are intended to provide guidance for safe work practices and a suitable level of quality control without detailed work instructions. It is the responsibility of the medical physicist to ensure that locally available equipment and procedures are sufficiently sensitive to establish compliance to these recommendations. The recommendations are endorsed by the ROSG, have been subject to independent expert reviews and have also been approved by the ACPSEM Council. For the Australian audience, these recommendations should be read in conjunction with the Tripartite Radiation Oncology Practice Standards. This publication presents the recommendations of the ACPSEM Brachytherapy Working Group (BTWG) and has been developed in alignment with other international associations. However, these recommendations should be read in conjunction with relevant national, state or territory legislation and local requirements, which take precedence over the ACPSEM recommendation papers. It is hoped that the users of this and other ACPSEM recommendation papers will contribute to the development of future versions through the Radiation Oncology Specialty Group of the ACPSEM.

  19. Evaluation of hypothetical (153)Gd source for use in brachytherapy.

    Science.gov (United States)

    Ghorbani, Mahdi; Behmadi, Marziyeh

    2016-01-01

    The purpose of this work is to evaluate the dosimetric parameters of a hypothetical (153)Gd source for use in brachytherapy and comparison of the dosimetric parameters with those of (192)Ir and (125)I sources. Dose rate constant, the radial dose function and the two dimensional (2D) anisotropy function data for the hypothetical (153)Gd source were obtained by simulation of the source using MCNPX code and then were compared with the corresponding data reported by Enger et al. A comprehensive comparison between this hypothetical source and a (192)Ir source with similar geometry and a (125)I source was performed as well. Excellent agreement was shown between the results of the two studies. Dose rate constant values for the hypothetical (153)Gd, (192)Ir, (125)I sources are 1.173 cGyh(-1) U(-1), 1.044 cGyh(-1) U(-1), 0.925 cGyh(-1) U(-1), respectively. Radial dose function for the hypothetical (153)Gd source has an increasing trend, while (192)Ir has more uniform and (125)I has more rapidly falling off radial dose functions. 2D anisotropy functions for these three sources indicate that, except at 0.5 cm distance, (192)Ir and (125)I have more isotropic trends as compared to the (153)Gd source. A more uniform radial dose function, and 2D anisotropy functions with more isotropy, a much higher specific activity are advantages of (192)Ir source over (153)Gd. However, a longer half-life of (153)Gd source compared to the other two sources, and lower energy of the source with respect to (192)Ir are advantages of using (153)Gd in brachytherapy versus (192)Ir source.

  20. Isotope selection for patients undergoing prostate brachytherapy

    International Nuclear Information System (INIS)

    Cha, Christine M.; Potters, Louis; Ashley, Richard; Freeman, Katherine; Wang Xiaohong; Waldbaum, Robert; Leibel, Steven

    1999-01-01

    Purpose: Ultrasound-guided trans perineal interstitial permanent prostate brachytherapy (TIPPB) is generally performed with either 103 Pd or 125 I. The use of 125 I for low Gleason score tumors and 103 Pd for higher Gleason scores has been suggested based on isotope dose rate and cell doubling time observed in in vitro studies. While many centers follow these isotope selection criteria, other centers have elected to use only a single isotope, regardless of Gleason score. No clinical data have been published comparing these isotopes. This study was undertaken to compare outcomes between 125 I and 103 Pd in a matched pair analysis for patients undergoing prostate brachytherapy. Methods and Materials: Six hundred forty-eight consecutively treated patients with clinically confined prostate cancer underwent TIPPB between June 1992 and February 1997. Five hundred thirty-two patients underwent TIPPB alone, whereas 116 received pelvic external beam irradiation and TIPPB. Ninety-three patients received androgen deprivation therapy prior to TIPPB. The prescribed doses for TIPPB were 160 Gy for 125 I (pre-TG43) and 120 Gy for 103 Pd. Patients treated with combination therapy received 41.4 or 45 Gy (1.8 Gy/fraction) external beam irradiation followed by a 3- to 5-week break and then received either a 120-Gy 125 I or a 90-Gy 103 Pd implant. Until November 1994, all patients underwent an 125 I implant after which the isotope selection was based on either Gleason score (Gleason score 2-5: 125 I; Gleason 5-8: 103 Pd) or isotope availability. A matched pair analysis was performed to assess any difference between isotopes. Two hundred twenty-two patients were matched according to Gleason score, prostate-specific antigen (PSA), and stage. PSA relapse-free survival (PSA-RFS) was calculated based on the American Society for Therapeutic Radiology and Oncology (ASTRO) Consensus Group definition of failure. Kaplan-Meier actuarial survival curves were compared to assess differences in

  1. Gaining Relational Competitive Advantages

    DEFF Research Database (Denmark)

    Hu, Yimei; Zhang, Si; Li, Jizhen

    2015-01-01

    Establishing strategic technological partnerships (STPs) with foreign partners is an increasingly studied topic within the innovation management literature. Partnering firms can jointly create sources of relational competitive advantage. Chinese firms often lack research and development (R......&D) capabilities but are increasingly becoming preferred technological partners for transnational corporations. We investigate an STP between a Scandinavian and a Chinese firm and try to explore how to gain relational competitive advantage by focusing on its two essential stages: relational rent generation...... and appropriation. Based on an explorative case study, we develop a conceptual framework that consists of process, organizational alliance factors, and coordination modes that we propose lead to relational competitive advantage....

  2. Local anesthesia for prostate brachytherapy

    International Nuclear Information System (INIS)

    Wallner, Kent; Simpson, Colleen; Roof, James; Arthurs, Sandy; Korssjoen, Tammy; Sutlief, Steven

    1999-01-01

    Purpose: To demonstrate the technique and feasibility of prostate brachytherapy performed with local anesthesia only. Methods and Materials: A 5 by 5 cm patch of perineal skin and subcutaneous tissue is anesthetized by local infiltration of 10 cc of 1% lidocaine with epinephrine, using a 25-gauge 5/8-inch needle. Immediately following injection into the subcutaneous tissues, the deeper tissues, including the pelvic floor and prostate apex, are anesthetized by injecting 15 cc lidocaine solution with approximately 8 passes of a 20-gauge 1.0-inch needle. Following subcutaneous and peri-apical lidocaine injections, the patient is brought to the simulator suite and placed in leg stirrups. The transrectal ultrasound (TRUS) probe is positioned to reproduce the planning images and a 3.5- or 6.0-inch, 22-gauge spinal needle is inserted into the peripheral planned needle tracks, monitored by TRUS. When the tips of the needles reach the prostatic base, about 1 cc of lidocaine solution is injected in the intraprostatic track, as the needle is slowly withdrawn, for a total volume of 15 cc. The implants are done with a Mick Applicator, inserting and loading groups of two to four needles, so that a maximum of only about four needles are in the patient at any one time. During the implant procedure, an additional 1 cc of lidocaine solution is injected into one or more needle tracks if the patient experiences substantial discomfort. The total dose of lidocaine is generally limited to 500 mg (50 ml of 1% solution). Results: To date, we have implanted approximately 50 patients in our simulator suite, using local anesthesia. Patients' heart rate and diastolic blood pressure usually showed moderate changes, consistent with some discomfort. The time from first subcutaneous injection and completion of the source insertion ranged from 35 to 90 minutes. Serum lidocaine levels were below or at the low range of therapeutic. There has been only one instance of acute urinary retention in the

  3. Proficiency-based cervical cancer brachytherapy training.

    Science.gov (United States)

    Zhao, Sherry; Francis, Louise; Todor, Dorin; Fields, Emma C

    2018-04-25

    Although brachytherapy increases the local control rate for cervical cancer, there has been a progressive decline in its use. Furthermore, the training among residency programs for gynecologic brachytherapy varies considerably, with some residents receiving little to no training. This trend is especially concerning given the association between poor applicator placement and decline in local control. Considering the success of proficiency-based training in other procedural specialties, we developed and implemented a proficiency-based cervical brachytherapy training curriculum for our residents. Each resident placed tandem and ovoid applicators with attending guidance and again alone 2 weeks later using a pelvic model that was modified to allow for cervical brachytherapy. Plain films were taken of the pelvic model, and applicator placement quality was evaluated. Other evaluated metrics included retention of key procedural details, the time taken for each procedure and presession and postsession surveys to assess confidence. During the initial session, residents on average met 4.5 of 5 placement criteria, which improved to 5 the second session. On average, residents were able to remember 7.6 of the 8 key procedural steps. Execution time decreased by an average of 10.5%. Resident confidence with the procedure improved dramatically, from 2.6 to 4.6 of 5. Residents who had previously never performed a tandem and ovoid procedure showed greater improvements in these criteria than those who had. All residents strongly agreed that the training was helpful and wanted to participate again the following year. Residents participating in this simulation training had measurable improvements in the time to perform the procedure, applicator placement quality, and confidence. This curriculum is easy to implement and is of great value for training residents, and would be particularly beneficial in programs with low volume of cervical brachytherapy cases. Simulation programs could

  4. Brachytherapy at the Institut Gustave-Roussy: Personalized vaginal mould applicator: technical modification and improvement

    International Nuclear Information System (INIS)

    Albano, M.; Dumas, I.; Haie-Meder, C.

    2008-01-01

    Brachytherapy plays an important role in the treatment of patients with gynaecological cancers. At the Institut Gustave-Roussy, the technique of vaginal mould applicator has been used for decades. This technique allows a personalized tailored irradiation, integrating tumour shape, size and extension and vaginal anatomy. Vaginal expansion reduces the dose to the vaginal mucosa and to the organs at risk. We report a modification of the material used for vaginal mould manufacture. The advantages of the new material are a lighter weight, and transparency allowing a better accuracy in the placement of catheters for radioactive sources. This material is applicable for low dose-rate, pulse dose-rate and high dose-rate brachytherapy. Since 2001, more than 700 vaginal moulds have been manufactured with this new approach without any intolerance. (authors)

  5. 137Cs - Brachytherapy sources : a technology scenario

    International Nuclear Information System (INIS)

    Varma, R.N.

    2001-01-01

    Cancer has emerged as one of the major cause of morbidity and mortality all over the world. India houses world's second largest population and registers 4-5 lakhs new cancer cases every year. Cancer of cervix is most common form of malignancy among Indian women. Radiation therapy, especially intracavity brachytherapy in conjunction with other modalities like surgery, chemotherapy has been found to be highly effective for the management and control of cervical carcinoma at all stages. A technology has been developed indigenously for the fabrication of 137 Cs sources for brachytherapy applications

  6. American brachytherapy society (ABS) consensus guidelines for brachytherapy of esophageal cancer

    International Nuclear Information System (INIS)

    Gaspar, Laurie E.; Nag, Subir; Herskovic, Arnold; Mantravadi, Rao; Speiser, Burton

    1997-01-01

    Introduction: There is wide variation in the indications, treatment regimens, and dosimetry for brachytherapy in the treatment of cancer of the esophagus. No guidelines for optimal therapy currently exist. Methods and Materials: Utilizing published reports and clinical experience, representatives of the Clinical Research Committee of the American Brachytherapy Society (ABS) formulated guidelines for brachytherapy in esophageal cancer. Results: Recommendations were made for brachytherapy in the definitive and palliative treatment of esophageal cancer. (A) Definitive treatment: Good candidates for brachytherapy include patients with unifocal thoracic adeno- or squamous cancers ≤ 10 cm in length, with no evidence of intra-abdominal or metastatic disease. Contraindications include tracheal or bronchial involvement, cervical esophagus location, or stenosis that cannot be bypassed. The esophageal brachytherapy applicator should have an external diameter of 6-10 mm. If 5FU-based chemotherapy and 45-50-Gy external beam are used, recommended brachytherapy is either: (i) HDR 10 Gy in two weekly fractions of 5 Gy each; or (ii) LDR 20 Gy in a single course at 0.4-1 Gy/hr. All doses are specified 1 cm from the midsource or middwell position. Brachytherapy should follow external beam radiation therapy and should not be given concurrently with chemotherapy. (B) Palliative treatment: Patients with adeno- or squamous cancers of the thoracic esophagus with distant metastases or unresectable local disease progression/recurrence after definitive radiation treatment should be considered for brachytherapy with palliative intent. After limited dose (30 Gy) EBRT, the recommended brachytherapy is either: (i) HDR 10-14 Gy in one or two fractions; or (ii) LDR 20-25 Gy in a single course at 0.4-1 Gy/hr. The need for external beam radiation in newly diagnosed patients with a life expectancy of less than 3 months is controversial. In these cases, HDR of 15-20 Gy in two to four fractions or

  7. Perioperative Interstitial High-Dose-Rate Brachytherapy for the Treatment of Recurrent Keloids: Feasibility and Early Results

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Ping, E-mail: ping.jiang@uksh.de [Department of Radiation Oncology, University Clinic Schleswig-Holstein, Campus Kiel, Kiel (Germany); Baumann, René [Department of Radiation Oncology, University Clinic Schleswig-Holstein, Campus Kiel, Kiel (Germany); Dunst, Juergen [Department of Radiation Oncology, University Clinic Schleswig-Holstein, Campus Kiel, Kiel (Germany); Department of Radiation Oncology, University of Copenhagen, Copenhagen (Denmark); Geenen, Matthias [Department of Reconstructive Surgery, Lubinus Clinic Kiel, Kiel (Germany); Siebert, Frank-André [Department of Radiation Oncology, University Clinic Schleswig-Holstein, Campus Kiel, Kiel (Germany); Niehoff, Peter [Department of Radiation Oncology, University Clinic Schleswig-Holstein, Campus Kiel, Kiel (Germany); Department of Radiation Oncology, Community Clinic Köln, Köln (Germany); Department of Radiation Oncology, University Witten/Herdecke, Witten (Germany); Bertolini, Julia; Druecke, Daniel [Department of Reconstructive Surgery, University Clinic Schleswig-Holstein, Campus Kiel, Kiel (Germany)

    2016-03-01

    Purpose: To prospectively evaluate high-dose-rate brachytherapy in the treatment of therapy-resistant keloids and report first results, with emphasis on feasibility and early treatment outcome. Methods and Materials: From 2009 to 2014, 24 patients with 32 recurrent keloids were treated with immediate perioperative high-dose-rate brachytherapy; 3 patients had been previously treated with adjuvant external beam radiation therapy and presented with recurrences in the pretreated areas. Two or more different treatment modalities had been tried in all patients and had failed to achieve remission. After (re-)excision of the keloids, a single brachytherapy tube was placed subcutaneously before closing the wound. The target volume covered the scar in total length. Brachytherapy was given in 3 fractions with a single dose of 6 Gy in 5 mm tissue depth. The first fraction was given within 6 hours after surgery, the other 2 fractions on the first postoperative day. Thus, a total dose of 18 Gy in 3 fractions was administered within 36 hours after the resection. Results: The treatment was feasible in all patients. No procedure-related complications (eg, secondary infections) occurred. Nineteen patients had keloid-related symptoms before treatment like pain and pruritus; disappearance of symptoms was noticed in all patients after treatment. After a median follow-up of 29.4 months (range, 7.9-72.4 months), 2 keloid recurrences and 2 mildly hypertrophied scars were observed. The local control rate was 94%. Pigmentary abnormalities were detected in 3 patients, and an additional 6 patients had a mild delay in the wound-healing process. Conclusions: The early results of this study prove the feasibility and the efficacy of brachytherapy for the prevention of keloids. The results also suggest that brachytherapy may be advantageous in the management of high-risk keloids or as salvage treatment for failure after external beam therapy.

  8. COMPETITIVE PRODUCT ADVANTAGES

    Directory of Open Access Journals (Sweden)

    Adrian MICU

    2006-01-01

    Full Text Available Cost advantages may be either internal or external. Internal economics of scope, scale, or experience, and external economies of focus or logistical integration, enable a company to produce some products at a lower cost than the competition. The coordination of pricing with suppliers, although not actually economizing resources, can improve the efficiency of pricing by avoiding the incrementalization of a supplier's nonincremental fixed costs and profit. Any of these strategies can generate cost advantages that are, at least in the short run, sustainable. Even cost advantages that are not sustainable, however, can generate temporary savings that are often the key to building more sustainable cost or product advantages later.. Even when a product's physical attributes are not readily differentiable, opportunities to develop product advantages remain. The augmented product that customers buy is more than the particular product or service exchanged. It includes all sorts of ancillary services and intangible relationships that make buying thesame product from one company less difficult, less risky, or more pleasant than buying from a competitor. Superior augmentation of the same basic product can add substantial value in the eyes of consumers, leading them to pay willingly what are often considerable price premiums.

  9. Compositional Advantage and Strategy

    DEFF Research Database (Denmark)

    Li, Xin

    advantage is redefined as the attractiveness of the composition of the producer’s offering in terms of scope and perceived value/price ratio. I identify five ways or basic compositional strategies to improve the value/price ratio. A firm may have an overall compositional strategy that is composed of some......In this paper, I first critique the composition-based view of Yadong Luo and John Child for understanding how resource-poor firms survive and thrive. To remedy the deficiencies in their perspective, I then propose a dynamic theory of compositional advantage and strategy. Here, the compositional...... or all of the five basic compositional strategies. I argue there are three indispensable key success factors for a composition-based competition, i.e., aspiration (ambition-position asymmetry), attitude (being ALERT), and action (turning asymmetry into advantage). I also discuss the particular relevance...

  10. Competitive Advantage through Innovation

    DEFF Research Database (Denmark)

    Brem, Alexander; Maier, Maximilian; Wimschneider, Christine

    2016-01-01

    Purpose The purpose of this paper is to describe how Nespresso achieved competitive advantage through innovation by changing the rules of the game in its industry. Design/methodology/approach Nespresso was analyzed based on public available secondary data, in combination with related academic...... concepts on innovation and competitive advantage. Findings The company succeeded by the thorough application of a strategy that, through perfect alignment, allowed the company to reach a unique market position. However, as described in the case, it took a relatively long time and the company came close...... as a source for competitive advantage. Research limitations/implications Especially given the current market situation, the case offers different starting points for discussion about innovation and long-term company success. Practical implications Especially before the current market situation, the case...

  11. Dose calculation in brachytherapy with microcomputers

    International Nuclear Information System (INIS)

    Elbern, A.W.

    1989-01-01

    The computer algorithms, that allow the calculation of brachytherapy doses and its graphic representation for implants, using programs developed for Pc microcomputers are presented. These algorithms allow to localized the sources in space, from their projection in radiographics images and trace isodose counter. (C.G.C.) [pt

  12. Severe rectal complications after prostate brachytherapy

    International Nuclear Information System (INIS)

    Wallner, Kent; Sutlief, Stephen; Bergsagel, Carl; Merrick, Gregory S.

    2015-01-01

    Purpose: Some investigators have reported severe rectal complications after brachytherapy. Due to the low number of such events, their relationship to dosimetric parameters has not been well characterized. Methods and materials: A total of 3126 patients were treated with low dose rate brachytherapy from 1998 through 2010. 2464 had implant alone, and 313 had implant preceded by 44–46 Gy supplemental external beam radiation (EBRT). Post-implant dosimetry was based on a CT scan obtained on the day of implant, generally within 30 min of the procedure. Every patient’s record was reviewed for occurrence of rectal complications. Results: Eight of 2464 patients (0.32%) treated with brachytherapy alone developed a radiation-related rectal fistula. Average prostatic and rectal dose parameters were moderately higher for fistula patients than for patients without a severe rectal complication. For instance, the average R100 was 1.2 ± 0.75 cc for fistula patients, versus 0.37 ± 0.88 cc for non-fistula patients. However, the fistula patients’ values were well within the range of values for patients without a rectal complication. Four patients had some attempt at repair or reconstruction, but long-term functional outcomes were not favorable. Conclusions: Rectal fistulas are a very uncommon potential complication of prostate brachytherapy, which can occur even in the setting of acceptable day 0 rectal doses. Their occurrence is not easily explained by standard dosimetric or clinical factors

  13. Endorectal high dose rate brachytherapy quality assurance

    International Nuclear Information System (INIS)

    Devic, S.; Vuong, T.; Evans, M.; Podgorsak, E.

    2008-01-01

    We describe our quality assurance method for preoperative high dose rate (HDR) brachytherapy of endorectal tumours. Reproduction of the treatment planning dose distribution on a daily basis is crucial for treatment success. Due to the cylindrical symmetry, two types of adjustments are necessary: applicator rotation and dose distribution shift along the applicator axis. (author)

  14. The hazy dawn of brachytherapy

    International Nuclear Information System (INIS)

    Dutreix, J.; Tubiana, M.; Pierquin, B.

    1998-01-01

    The discovery of radium by Pierre and Marie Curie in December 1898 opened a new era in science and within a few years provided medicine with a new means of tumor treatment. Their personal contribution to the start and early development of clinical applications should not be overlooked. The Curies did not limit their support to providing radium sources to medical pioneers but took a deep interest in the horizons of radiumtherapy. Pierre was one of the first to search for and demonstrate a biological effect of radium radiation. He investigated the radioactivity of the waters of hydrotherapeutic resorts. Marie took care of the measurement of the medical sources personally, convinced that the result of the treatment depends on the precise knowledge of the amount of radium applied. Her perseverance resulted in the establishment of the Institut du Radium (1909) in which, besides the physico-chemical laboratory, a biological department was set up. The latter became the Fondation Curie (1920), a leading medical center of treatment and training, with an integrated team of physicists, radiobiologists and clinicians led by Regaud. One hundred years after the discovery of radium, patients benefit today from the extensive clinical experience that has been collected over the years and from sophisticated developments in application techniques, dosimetry and quality assurance; the professional risk has been precisely assessed and the improvements in material and procedure have enabled the medical personnel to work in hazard-free conditions. This outcome results from the continuous progress that the pioneers gave impulse to. This paper intends to recall their efforts and achievements, as well as the difficulties and the problems they encountered during the first 2 decades when the sturdy foundations of brachytherapy were built. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  15. Dosimetric model for intravascular brachytherapy

    International Nuclear Information System (INIS)

    Flower, E.E.; Stroud, D.B.

    2000-01-01

    Full text: Intravascular brachytherapy has been shown to be a prophylaxis for restenosis. Adventitial macrophages, which are extremely radiosensitive, initiate neointima formation. A model of the dose levels of the treatment range is developed, assuming that the adventitia is the target tissue. If the adventitia receives a dose of less than 10 Gy, it is assumed the treatment will be ineffective. If the dose to any part of the wall is above 30 Gy, it is assumed that the treatment could be detrimental. Hence the treatment range is between 10 and 30 Gy, with 20 Gy being the optimum dosage to the adventitia. An algorithm using numerical integration of published dose kernels calculates the dose at any point surrounding a beta ( 32 P) line source of finite length. Dose profiles were obtained to demonstrate edge effects. For long lesions, the source is often stepped along the artery. Dose changes due to separation or overlapping of sources during source stepping procedures were also determined. Isodose curves were superimposed on intravascular ultrasound images to demonstrate dose levels. For an exposure time of 60 seconds with a 200mCi source, the optimum dose of 20 Gy occurs at a distance 1.94mm from the centre of the source. The upper limit of the treatment dose range (30 Gy) occurs at 1.59mm. The lower limit of the treatment dose range (10 Gy) occurs at 2.7mm. Significant perturbations to the treatment dose range can be caused by non-centering of the source, edge effects and separation or overlapping of sources in stepping procedures. Despite these concerns, many successful procedures have been reported and this implies that the model is over simplified and requires modifications. Copyright (2000) Australasian College of Physical Scientists and Engineers in Medicine

  16. Constructing Regional advantage

    DEFF Research Database (Denmark)

    Asheim, Bjørn T.; Boschma, Ron; Cooke, Phil

    2011-01-01

    This paper presents a regional innovation policy model based on the idea of constructing regional advantage. This policy model brings together concepts like related variety, knowledge bases and policy platforms. Related variety attaches importance to knowledge spillovers across complementary...... economic development within and between regions in action lines appropriate to incorporate the basic principles behind related variety and differentiated knowledge bases....

  17. Advantages of magnification radiography

    International Nuclear Information System (INIS)

    Doi, K.

    1976-01-01

    Geometric arrangements and exposure conditions used in different magnification techniques are described and the following advantages of radiographic magnification technique are discussed: sharpness effect; noise effect; air gap effect; and visual effect. The magnification technique can be used in various diagnostic procedures as a means of improving the image quality of radiographs

  18. Prostate brachytherapy in Ghana: our initial experience

    Directory of Open Access Journals (Sweden)

    James Edward Mensah

    2016-10-01

    Full Text Available Purpose: This study presents the experience of a brachytherapy team in Ghana with a focus on technology transfer and outcome. The team was initially proctored by experienced physicians from Europe and South Africa. Material and methods : A total of 90 consecutive patients underwent either brachytherapy alone or brachytherapy in combination with external beam radiotherapy for prostate carcinoma between July 2008 and February 2014 at Korle Bu Teaching Hospital, Accra, Ghana. Patients were classified as low-risk, intermediate, and high-risk according to the National Comprehensive Cancer Network (NCCN criteria. All low-risk and some intermediate risk group patients were treated with seed implantation alone. Some intermediate and all high-risk group patients received brachytherapy combined with external beam radiotherapy. Results: The median patient age was 64.0 years (range 46-78 years. The median follow-up was 58 months (range 18-74 months. Twelve patients experienced biochemical failure including one patient who had evidence of metastatic disease and died of prostate cancer. Freedom from biochemical failure rates for low, intermediate, and high-risk cases were 95.4%, 90.9%, and 70.8%, respectively. Clinical parameters predictive of biochemical outcome included: clinical stage, Gleason score, and risk group. Pre-treatment prostate specific antigen (PSA was not a statistically significant predictor of biochemical failure. Sixty-nine patients (76.6% experienced grade 1 urinary symptoms in the form of frequency, urgency, and poor stream. These symptoms were mostly self-limiting. Four patients needed catheterization for urinary retention (grade 2. One patient developed a recto urethral fistula (grade 3 following banding for hemorrhoids. Conclusions : Our results compare favorably with those reported by other institutions with more extensive experience. We believe therefore that, interstitial permanent brachytherapy can be safely and effectively

  19. Automated intraoperative calibration for prostate cancer brachytherapy

    International Nuclear Information System (INIS)

    Kuiran Chen, Thomas; Heffter, Tamas; Lasso, Andras; Pinter, Csaba; Abolmaesumi, Purang; Burdette, E. Clif; Fichtinger, Gabor

    2011-01-01

    Purpose: Prostate cancer brachytherapy relies on an accurate spatial registration between the implant needles and the TRUS image, called ''calibration''. The authors propose a new device and a fast, automatic method to calibrate the brachytherapy system in the operating room, with instant error feedback. Methods: A device was CAD-designed and precision-engineered, which mechanically couples a calibration phantom with an exact replica of the standard brachytherapy template. From real-time TRUS images acquired from the calibration device and processed by the calibration system, the coordinate transformation between the brachytherapy template and the TRUS images was computed automatically. The system instantly generated a report of the target reconstruction accuracy based on the current calibration outcome. Results: Four types of validation tests were conducted. First, 50 independent, real-time calibration trials yielded an average of 0.57 ± 0.13 mm line reconstruction error (LRE) relative to ground truth. Second, the averaged LRE was 0.37 ± 0.25 mm relative to ground truth in tests with six different commercial TRUS scanners operating at similar imaging settings. Furthermore, testing with five different commercial stepper systems yielded an average of 0.29 ± 0.16 mm LRE relative to ground truth. Finally, the system achieved an average of 0.56 ± 0.27 mm target registration error (TRE) relative to ground truth in needle insertion tests through the template in a water tank. Conclusions: The proposed automatic, intraoperative calibration system for prostate cancer brachytherapy has achieved high accuracy, precision, and robustness.

  20. Deterministic calculations of radiation doses from brachytherapy seeds

    International Nuclear Information System (INIS)

    Reis, Sergio Carneiro dos; Vasconcelos, Vanderley de; Santos, Ana Maria Matildes dos

    2009-01-01

    Brachytherapy is used for treating certain types of cancer by inserting radioactive sources into tumours. CDTN/CNEN is developing brachytherapy seeds to be used mainly in prostate cancer treatment. Dose calculations play a very significant role in the characterization of the developed seeds. The current state-of-the-art of computation dosimetry relies on Monte Carlo methods using, for instance, MCNP codes. However, deterministic calculations have some advantages, as, for example, short computer time to find solutions. This paper presents a software developed to calculate doses in a two-dimensional space surrounding the seed, using a deterministic algorithm. The analysed seeds consist of capsules similar to IMC6711 (OncoSeed), that are commercially available. The exposure rates and absorbed doses are computed using the Sievert integral and the Meisberger third order polynomial, respectively. The software also allows the isodose visualization at the surface plan. The user can choose between four different radionuclides ( 192 Ir, 198 Au, 137 Cs and 60 Co). He also have to enter as input data: the exposure rate constant; the source activity; the active length of the source; the number of segments in which the source will be divided; the total source length; the source diameter; and the actual and effective source thickness. The computed results were benchmarked against results from literature and developed software will be used to support the characterization process of the source that is being developed at CDTN. The software was implemented using Borland Delphi in Windows environment and is an alternative to Monte Carlo based codes. (author)

  1. Image Guided Cervical Brachytherapy: 2014 Survey of the American Brachytherapy Society

    Energy Technology Data Exchange (ETDEWEB)

    Grover, Surbhi, E-mail: Surbhi.grover@uphs.upenn.edu [Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Harkenrider, Matthew M. [Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois (United States); Cho, Linda P. [Department of Radiation Oncology, Brigham & Women' s Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Erickson, Beth [Department Radiation Oncology, Froedtert Hospital and Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Small, Christina [Department of Public Health Sciences, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois (United States); Small, William [Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois (United States); Viswanathan, Akila N. [Department of Radiation Oncology, Brigham & Women' s Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts (United States)

    2016-03-01

    Purpose: To provide an update of the 2007 American brachytherapy survey on image-based brachytherapy, which showed that in the setting of treatment planning for gynecologic brachytherapy, although computed tomography (CT) was often used for treatment planning, most brachytherapists used point A for dose specification. Methods and Materials: A 45-question electronic survey on cervical cancer brachytherapy practice patterns was sent to all American Brachytherapy Society members and additional radiation oncologists and physicists based in the United States between January and September 2014. Responses from the 2007 survey and the present survey were compared using the χ{sup 2} test. Results: There were 370 respondents. Of those, only respondents, not in training, who treat more than 1 cervical cancer patient per year and practice in the United States, were included in the analysis (219). For dose specification to the target (cervix and tumor), 95% always use CT, and 34% always use MRI. However, 46% use point A only for dose specification to the target. There was a lot of variation in parameters used for dose evaluation of target volume and normal tissues. Compared with the 2007 survey, use of MRI has increased from 2% to 34% (P<.0001) for dose specification to the target. Use of volume-based dose delineation to the target has increased from 14% to 52% (P<.0001). Conclusion: Although use of image-based brachytherapy has increased in the United States since the 2007 survey, there is room for further growth, particularly with the use of MRI. This increase may be in part due to educational initiatives. However, there is still significant heterogeneity in brachytherapy practice in the United States, and future efforts should be geared toward standardizing treatment.

  2. Low dose rate Ir-192 interstitial brachytherapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Oki, Yosuke; Dokiya, Takushi; Yorozu, Atsunori; Suzuki, Takayuki; Saito, Shiro; Monma, Tetsuo; Ohki, Takahiro [National Tokyo Medical Center (Japan); Murai, Masaru; Kubo, Atsushi

    2000-04-01

    From December 1997 through January 1999, fifteen prostatic cancer patients were treated with low dose rate Ir-192 interstitial brachytherapy using TRUS and perineal template guidance without external radiotherapy. Up to now, as no apparent side effects were found, the safety of this treatment is suggested. In the future, in order to treat prostatic cancer patients with interstitial brachytherapy using I-125 or Pd-103, more investigation for this low dose rate Ir-192 interstitial brachytherapy is needed. (author)

  3. Application of the Monte Carlo integration method in calculations of dose distributions in HDR-Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Baltas, D; Geramani, K N; Ioannidis, G T; Kolotas, C; Zamboglou, N [Strahlenklinik, Stadtische Kliniken Offenbach, Offenbach (Germany); Giannouli, S [Department of Electrical and Computer Engineering, National Technical University of Athens, Athens (Greece)

    1999-12-31

    Source anisotropy is a very important factor in brachytherapy quality assurance of high dose rate HDR Ir 192 afterloading stepping sources. If anisotropy is not taken into account then doses received by a brachytherapy patient in certain directions can be in error by a clinically significant amount. Experimental measurements of anisotropy are very labour intensive. We have shown that within acceptable limits of accuracy, Monte Carlo integration (MCI) of a modified Sievert integral (3D generalisation) can provide the necessary data within a much shorter time scale than can experiments. Hence MCI can be used for routine quality assurance schedules whenever a new design of HDR or PDR Ir 192 is used for brachytherapy afterloading. Our MCI calculation results are comparable with published experimental data and Monte Carlo simulation data for microSelectron and VariSource Ir 192 sources. We have shown not only that MCI offers advantages over alternative numerical integration methods, but also that treating filtration coefficients as radial distance-dependent functions improves Sievert integral accuracy at low energies. This paper also provides anisotropy data for three new Ir 192 sources, one for microSelectron-HDR and two for the microSelectron-PDR, for which data currently is not available. The information we have obtained in this study can be incorporated into clinical practice.

  4. Compositional Advantage and Strategy

    DEFF Research Database (Denmark)

    Li, Xin

    In this paper, I first critique the composition-based view of Yadong Luo and John Child for understanding how resource-poor firms survive and thrive. To remedy the deficiencies in their perspective, I then propose a dynamic theory of compositional advantage and strategy. Here, the compositional...... advantage is redefined as the attractiveness of the composition of the producer’s offering in terms of scope and perceived value/price ratio. I identify five ways or basic compositional strategies to improve the value/price ratio. A firm may have an overall compositional strategy that is composed of some...... of the present theory to understanding Chinese firms. I conclude with managerial implications and suggestions for future research....

  5. Drivers of Collaborative Advantage

    DEFF Research Database (Denmark)

    Weihe, Gudrid

    processes and behavioural dimensions is practically non-existent. This article tries to remedy the current gap in the literature by reviewing research findings on interfirm collaboration (alliances). On that basis a conceptual framework for analyzing partnership processes is developed. Finally......, the antecedents of collaborative advantage are theoretically examined, and the organizational competences contributing to collaborative success are identified. The conclusion is that operational processes and social dynamics are vital drivers of collaborative advantage. Another significant conclusion...... is that public management research can benefit from drawing upon existing alliance research. Alliance scholars have during the past couple of decades accumulated an impressive amount of knowledge on different aspects of inter-firm cooperation, and therefore the learning potential for public management scholars...

  6. Sci-Thur PM – Brachytherapy 06: 3D Printed Surface Applicators for High Dose Rate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Scott; Yewondwossen, Mammo; Robar, James [Dalhousie University, Nova Scotia Cancer Centre, Capital District Health Authority (Canada)

    2016-08-15

    Purpose: The purpose of this work is to develop a new applicator for administering high dose rate (HDR) brachytherapy using 3D printing technology. Primary advantages of using a 3D printed applicator will be to offer a more streamlined approach for therapists and patients while achieving better conformity, reproducibility, and patient specific applicators. Methods: A phantom study was conducted to measure the effectiveness of a 3D printed surface applicator by analyzing tumours on three locations of the body: the foot, nose, and scalp. The applicator was designed using Eclipse and further modified using Blender to create the catheter tunnels before being printed on a Lulzbot Taz 5 3D printer. A radiation plan was made using Oncentra Brachytherapy for a control treatment option using Freiburg Flaps and one with the novel method of a 3D printed applicator. A comparative analysis was made using D90, D100, V100, V150, and V200 Results: The 3D printed applicator showed comparable dose coverage with significant improvements on highly irregular surfaces when analyzed against a plan made using Freiburg Flaps. Although both plans exhibited complete tumour coverage, the 3D applicator showed improvements in D90 and V150 and the 3D applicator had a dose homogeneity index (DHI) of 0.99 compared to a DHI of 0.97 for the control. Therapist prep time also dropped significantly due to the lack of need for a thermoplastic mesh. Conclusions: 3D printed applicators for treatment of superficial sites proved to offer more patient convenience, less prep time, better conformity and tighter margins.

  7. Sci-Thur PM – Brachytherapy 06: 3D Printed Surface Applicators for High Dose Rate Brachytherapy

    International Nuclear Information System (INIS)

    Clarke, Scott; Yewondwossen, Mammo; Robar, James

    2016-01-01

    Purpose: The purpose of this work is to develop a new applicator for administering high dose rate (HDR) brachytherapy using 3D printing technology. Primary advantages of using a 3D printed applicator will be to offer a more streamlined approach for therapists and patients while achieving better conformity, reproducibility, and patient specific applicators. Methods: A phantom study was conducted to measure the effectiveness of a 3D printed surface applicator by analyzing tumours on three locations of the body: the foot, nose, and scalp. The applicator was designed using Eclipse and further modified using Blender to create the catheter tunnels before being printed on a Lulzbot Taz 5 3D printer. A radiation plan was made using Oncentra Brachytherapy for a control treatment option using Freiburg Flaps and one with the novel method of a 3D printed applicator. A comparative analysis was made using D90, D100, V100, V150, and V200 Results: The 3D printed applicator showed comparable dose coverage with significant improvements on highly irregular surfaces when analyzed against a plan made using Freiburg Flaps. Although both plans exhibited complete tumour coverage, the 3D applicator showed improvements in D90 and V150 and the 3D applicator had a dose homogeneity index (DHI) of 0.99 compared to a DHI of 0.97 for the control. Therapist prep time also dropped significantly due to the lack of need for a thermoplastic mesh. Conclusions: 3D printed applicators for treatment of superficial sites proved to offer more patient convenience, less prep time, better conformity and tighter margins.

  8. Low-dose-rate brachytherapy for patients with transurethral resection before implantation in prostate cancer: long-term results

    International Nuclear Information System (INIS)

    Prada, Pedro J.; Anchuelo, Javier; Blanco, Ana Garcia; Paya, Gema; Cardenal, Juan; Acuña, Enrique; Ferri, Maria; Vazquez, Andres; Pacheco, Maite; Sanchez, Jesica

    2016-01-01

    Objectives: We analyzed the long-term oncologic outcome for patients with prostate cancer and transurethral resection who were treated using low-dose-rate (LDR) prostate brachytherapy. Methods and Materials: From January 2001 to December 2005, 57 consecutive patients were treated with clinically localized prostate cancer. No patients received external beam radiation. All of them underwent LDR prostate brachytherapy. Biochemical failure was defined according to the 'Phoenix consensus'. Patients were stratified as low and intermediate risk based on The Memorial Sloan Kettering group definition. Results: The median follow-up time for these 57 patients was 104 months. The overall survival according to Kaplan-Meier estimates was 88% (±6%) at 5 years and 77% (±6%) at 12 years. The 5 and 10 years for failure in tumour-free survival (TFS) was 96% and respectively (±2%), whereas for biochemical control was 94% and respectively (±3%) at 5 and 10 years, 98% (±1%) of patients being free of local recurrence. A patient reported incontinence after treatment (1.7%). The chronic genitourinary complains grade I were 7% and grade II, 10%. At six months 94% of patients reported no change in bowel function. Conclusions: The excellent long-term results and low morbidity presented, as well as the many advantages of prostate brachytherapy over other treatments, demonstrates that brachytherapy is an effective treatment for patients with transurethral resection and clinical organ-confined prostate cancer. (author)

  9. Low-dose-rate brachytherapy for patients with transurethral resection before implantation in prostate cancer: long-term results

    Energy Technology Data Exchange (ETDEWEB)

    Prada, Pedro J.; Anchuelo, Javier; Blanco, Ana Garcia; Paya, Gema; Cardenal, Juan; Acuña, Enrique; Ferri, Maria [Department of Radiation Oncology, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria (Spain); Vazquez, Andres; Pacheco, Maite; Sanchez, Jesica [Department of Radiation Physics, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria (Spain)

    2016-01-15

    Objectives: We analyzed the long-term oncologic outcome for patients with prostate cancer and transurethral resection who were treated using low-dose-rate (LDR) prostate brachytherapy. Methods and Materials: From January 2001 to December 2005, 57 consecutive patients were treated with clinically localized prostate cancer. No patients received external beam radiation. All of them underwent LDR prostate brachytherapy. Biochemical failure was defined according to the 'Phoenix consensus'. Patients were stratified as low and intermediate risk based on The Memorial Sloan Kettering group definition. Results: The median follow-up time for these 57 patients was 104 months. The overall survival according to Kaplan-Meier estimates was 88% (±6%) at 5 years and 77% (±6%) at 12 years. The 5 and 10 years for failure in tumour-free survival (TFS) was 96% and respectively (±2%), whereas for biochemical control was 94% and respectively (±3%) at 5 and 10 years, 98% (±1%) of patients being free of local recurrence. A patient reported incontinence after treatment (1.7%). The chronic genitourinary complains grade I were 7% and grade II, 10%. At six months 94% of patients reported no change in bowel function. Conclusions: The excellent long-term results and low morbidity presented, as well as the many advantages of prostate brachytherapy over other treatments, demonstrates that brachytherapy is an effective treatment for patients with transurethral resection and clinical organ-confined prostate cancer. (author)

  10. Development of an adjoint sensitivity field-based treatment-planning technique for the use of newly designed directional LDR sources in brachytherapy.

    Science.gov (United States)

    Chaswal, V; Thomadsen, B R; Henderson, D L

    2012-02-21

    The development and application of an automated 3D greedy heuristic (GH) optimization algorithm utilizing the adjoint sensitivity fields for treatment planning to assess the advantage of directional interstitial prostate brachytherapy is presented. Directional and isotropic dose kernels generated using Monte Carlo simulations based on Best Industries model 2301 I-125 source are utilized for treatment planning. The newly developed GH algorithm is employed for optimization of the treatment plans for seven interstitial prostate brachytherapy cases using mixed sources (directional brachytherapy) and using only isotropic sources (conventional brachytherapy). All treatment plans resulted in V100 > 98% and D90 > 45 Gy for the target prostate region. For the urethra region, the D10(Ur), D90(Ur) and V150(Ur) and for the rectum region the V100cc, D2cc, D90(Re) and V90(Re) all are reduced significantly when mixed sources brachytherapy is used employing directional sources. The simulations demonstrated that the use of directional sources in the low dose-rate (LDR) brachytherapy of the prostate clearly benefits in sparing the urethra and the rectum sensitive structures from overdose. The time taken for a conventional treatment plan is less than three seconds, while the time taken for a mixed source treatment plan is less than nine seconds, as tested on an Intel Core2 Duo 2.2 GHz processor with 1GB RAM. The new 3D GH algorithm is successful in generating a feasible LDR brachytherapy treatment planning solution with an extra degree of freedom, i.e. directionality in very little time.

  11. Development of an adjoint sensitivity field-based treatment-planning technique for the use of newly designed directional LDR sources in brachytherapy

    Science.gov (United States)

    Chaswal, V.; Thomadsen, B. R.; Henderson, D. L.

    2012-02-01

    The development and application of an automated 3D greedy heuristic (GH) optimization algorithm utilizing the adjoint sensitivity fields for treatment planning to assess the advantage of directional interstitial prostate brachytherapy is presented. Directional and isotropic dose kernels generated using Monte Carlo simulations based on Best Industries model 2301 I-125 source are utilized for treatment planning. The newly developed GH algorithm is employed for optimization of the treatment plans for seven interstitial prostate brachytherapy cases using mixed sources (directional brachytherapy) and using only isotropic sources (conventional brachytherapy). All treatment plans resulted in V100 > 98% and D90 > 45 Gy for the target prostate region. For the urethra region, the D10Ur, D90Ur and V150Ur and for the rectum region the V100cc, D2cc, D90Re and V90Re all are reduced significantly when mixed sources brachytherapy is used employing directional sources. The simulations demonstrated that the use of directional sources in the low dose-rate (LDR) brachytherapy of the prostate clearly benefits in sparing the urethra and the rectum sensitive structures from overdose. The time taken for a conventional treatment plan is less than three seconds, while the time taken for a mixed source treatment plan is less than nine seconds, as tested on an Intel Core2 Duo 2.2 GHz processor with 1GB RAM. The new 3D GH algorithm is successful in generating a feasible LDR brachytherapy treatment planning solution with an extra degree of freedom, i.e. directionality in very little time.

  12. A comparison of complications between ultrasound-guided prostate brachytherapy and open prostate brachytherapy

    International Nuclear Information System (INIS)

    Benoit, Ronald M.; Naslund, Michael J.; Cohen, Jeffrey K.

    2000-01-01

    Purpose: Prostate brachytherapy has reemerged during the 1990s as a treatment for clinically localized prostate cancer. The renewed popularity of prostate brachytherapy is largely due to the use of transrectal ultrasound of the prostate, which allows for more accurate isotope placement within the prostate when compared to the open approach. The present study investigates whether this improved cancer control is at the expense of increased morbidity by comparing the morbidity after transrectal ultrasound-guided prostate brachytherapy to the morbidity after prostate brachytherapy performed via an open approach. Methods and Materials: All men in the Medicare population who underwent prostate brachytherapy in the year 1991 were identified. These men were further stratified into those men who underwent prostate brachytherapy via an open approach and the men who underwent prostate brachytherapy with ultrasound guidance. All subsequent inpatient, outpatient, and physician (Part B) Medicare claims for these men from the years 1991-1993 were then analyzed to determine outcomes. Results: In the year 1991, 2124 men in the Medicare population underwent prostate brachytherapy. An open approach was used in 715 men (33.7%), and ultrasound guidance was used in 1409 men (66.3%). Mean age for both cohorts was 73.7 years with a range of 50.7-92.8 years for the ultrasound group and 60.6-92.1 years for the open group. A surgical procedure for the relief of bladder outlet obstruction was performed in 122 men (8.6%) in the ultrasound group and in 54 men (7.6%) in the open group. An artificial urinary sphincter was placed in 2 men (0.14%) in the ultrasound group and in 2 men (0.28%) in the open group. A penile prosthesis was implanted in 10 men (0.71%) in the ultrasound group and in 4 men (0.56%) in the open group. A diagnosis code for urinary incontinence was carried by 95 men (6.7%) in the ultrasound group and by 45 men (6.3%) in the open group. A diagnosis code for erectile dysfunction

  13. Rectal fistulas after prostate brachytherapy

    International Nuclear Information System (INIS)

    Tran, Audrey; Wallner, Kent; Merrick, Gregory; Seeberger, Jergen M.S.; Armstrong, Julius R.T.T.; Mueller, Amy; Cavanagh, William M.S.; Lin, Daniel; Butler, Wayne

    2005-01-01

    Purpose: To compare the rectal and prostatic radiation doses for a prospective series of 503 patients, 44 of whom developed persistent rectal bleeding, and 2 of whom developed rectal-prostatic fistulas. Methods and Materials: The 503 patients were randomized and treated by implantation with 125 I vs. 103 Pd alone (n = 290) or to 103 Pd with 20 Gy vs. 44 Gy supplemental external beam radiotherapy (n = 213) and treated at the Puget Sound Veterans Affairs Medical Center (n = 227), Schiffler Cancer Center (n 242) or University of Washington (n = 34). Patients were treated between September 1998 and October 2001 and had a minimum of 24 months of follow-up. The patient groups were treated concurrently. Treatment-related morbidity was monitored by mailed questionnaires, using standard American Urological Association and Radiation Therapy Oncology Group criteria, at 1, 3, 6, 12, 18, and 24 months. Patients who reported Grade 1 or greater Radiation Therapy Oncology Group rectal morbidity were interviewed by telephone to clarify details regarding their rectal bleeding. Those who reported persistent bleeding, lasting for >1 month were included as having Grade 2 toxicity. Three of the patients with rectal bleeding required a colostomy, two of whom developed a fistula. No patient was lost to follow-up. The rectal doses were defined as the rectal volume in cubic centimeters that received >50%, 100%, 200%, or 300% of the prescription dose. The rectum was considered as a solid structure defined by the outer wall, without attempting to differentiate the inner wall or contents. Results: Persistent rectal bleeding occurred in 44 of the 502 patients, 32 of whom (73%) underwent confirmatory endoscopy. In univariate analysis, multiple parameters were associated with late rectal bleeding, including all rectal brachytherapy indexes. In multivariate analysis, however, only the rectal volume that received >100% of the dose was significantly predictive of bleeding. Rectal fistulas occurred

  14. CT-Based Brachytherapy Treatment Planning using Monte Carlo Simulation Aided by an Interface Software

    Directory of Open Access Journals (Sweden)

    Vahid Moslemi

    2011-03-01

    Full Text Available Introduction: In brachytherapy, radioactive sources are placed close to the tumor, therefore, small changes in their positions can cause large changes in the dose distribution. This emphasizes the need for computerized treatment planning. The usual method for treatment planning of cervix brachytherapy uses conventional radiographs in the Manchester system. Nowadays, because of their advantages in locating the source positions and the surrounding tissues, CT and MRI images are replacing conventional radiographs. In this study, we used CT images in Monte Carlo based dose calculation for brachytherapy treatment planning, using an interface software to create the geometry file required in the MCNP code. The aim of using the interface software is to facilitate and speed up the geometry set-up for simulations based on the patient’s anatomy. This paper examines the feasibility of this method in cervix brachytherapy and assesses its accuracy and speed. Material and Methods: For dosimetric measurements regarding the treatment plan, a pelvic phantom was made from polyethylene in which the treatment applicators could be placed. For simulations using CT images, the phantom was scanned at 120 kVp. Using an interface software written in MATLAB, the CT images were converted into MCNP input file and the simulation was then performed. Results: Using the interface software, preparation time for the simulations of the applicator and surrounding structures was approximately 3 minutes; the corresponding time needed in the conventional MCNP geometry entry being approximately 1 hour. The discrepancy in the simulated and measured doses to point A was 1.7% of the prescribed dose.  The corresponding dose differences between the two methods in rectum and bladder were 3.0% and 3.7% of the prescribed dose, respectively. Comparing the results of simulation using the interface software with those of simulation using the standard MCNP geometry entry showed a less than 1

  15. Patterns of care for brachytherapy in Europe. Results in Spain.

    Science.gov (United States)

    López Torrecilla, J; Guedea, F; Heeren, G; Nissin, R; Ellison, T; Cottier, B

    2006-05-01

    In 2003 ESTRO began a project whose primary objective, was to make a map in the European area of infrastructures in technology and personnel for brachytherapy. A survey and a web site were elaborated. The survey was sent to the 76 Spanish Radiation Oncology departments in May 2003. By the end of 2003, 66 (86.8%) services had responded, 40 (71.4%) of which had brachytherapy. The services with brachytherapy treated 73.5% of the total patients, an average of 1,199 patients. The mean number of patients treated with brachytherapy by department was 135.5 and the number of applications was 265 annually. The average number of specialists was 7, 4 of them trained in brachytherapy. The average weekly work load of the radiation oncologists, physicists, and technicians was 22.6 h, 13.8 h and 21.0 h, respectively. The mean time dedicated to each patient by radiation oncologists, physicists and technicians was 9.2 h; 6.19 h; 7.2 h, respectively. The total number of afterloaders was 43 (22 HDR, 18 LDR, 3 PDR). The tumours most frequently treated with brachytherapy were gynaecological (56.24%), breast (14.2%) and prostate (11.7%). High dose rate was used in 47.46% of the patients and low dose rate in 47.24%. Between 1997 and 2002 there was an increase of 50.53% in patients treated with brachytherapy. The survey shows the brachytherapy resources and activity in Spain up to 2003. Increased use of brachytherapy in prostate tumours, prevalence of gynaecology brachytherapy and similar number of treatments with HDR and LDR are demonstrated in the Patterns of Care of Brachytherapy in Europe (PCBE) study in Spain.

  16. Creating corporate advantage.

    Science.gov (United States)

    Collis, D J; Montgomery, C A

    1998-01-01

    What differentiates truly great corporate strategies from the merely adequate? How can executives at the corporate level create tangible advantage for their businesses that makes the whole more than the sum of the parts? This article presents a comprehensive framework for value creation in the multibusiness company. It addresses the most fundamental questions of corporate strategy: What businesses should a company be in? How should it coordinate activities across businesses? What role should the corporate office play? How should the corporation measure and control performance? Through detailed case studies of Tyco International, Sharp, the Newell Company, and Saatchi and Saatchi, the authors demonstrate that the answers to all those questions are driven largely by the nature of a company's special resources--its assets, skills, and capabilities. These range along a continuum from the highly specialized at one end to the very general at the other. A corporation's location on the continuum constrains the set of businesses it should compete in and limits its choices about the design of its organization. Applying the framework, the authors point out the common mistakes that result from misaligned corporate strategies. Companies mistakenly enter businesses based on similarities in products rather than the resources that contribute to competitive advantage in each business. Instead of tailoring organizational structures and systems to the needs of a particular strategy, they create plain-vanilla corporate offices and infrastructures. The company examples demonstrate that one size does not fit all. One can find great corporate strategies all along the continuum.

  17. MRI dosimetry using an echo-quotient technique for high dose rate brachytherapy

    International Nuclear Information System (INIS)

    Ansbacher, W.

    1996-01-01

    MRI gel dosimetry is a relatively new technique that has many advantages over conventional methods, and is particularly suited to High Dose Rate (HDR) Brachytherapy. The dosimeter has high spatial resolution and a water-equivalent response over a wide range of photon energies. Because it is an integrating dosimeter, it allows for efficient mapping of the dynamically-produced distributions from an HDR source. As an example of this technique, the dose response, which is calibrated in terms of the change in spin-spin relaxation time, has been used to investigate the anisotropy of an HDR source. (author). 1 fig

  18. Sexual function after permanent prostate brachytherapy

    International Nuclear Information System (INIS)

    Galbreath, R.W.; Merrick, G.S.; Butler, W.M.; Stipetich, R.L.; Abel, L.J.; Lief, J.H.

    2001-01-01

    Purpose: To determine the incidence of potency preservation following permanent prostate brachytherapy and to evaluate the effect of multiple clinical and treatment parameters on penile erectile function. Materials and Methods: 425 patients underwent permanent prostate brachytherapy from April 1995 to October 1999. 209 patients who were potent prior to brachytherapy and currently not receiving hormonal manipulation were mailed an International Index of Erectile Function (IIEF) questionnaire with a pre-addressed stamped envelope. 180 patients completed and returned the questionnaire. Median patient follow-up was 39 months (range 18-74 months). Pre-implant erectile function was assigned using a three-tiered scoring system (2 = erections always or nearly always sufficient for vaginal penetration; 1 = erections sufficient for vaginal penetration but considered suboptimal; 0 = the inability to obtain erections and/or erections inadequate for vaginal penetration). Post-implant potency was defined as an IIEF score >11. Clinical parameters evaluated for sexual function included patient age, clinical T stage, elapsed time since implantation, hypertension, diabetes mellitus, and tobacco consumption. Evaluated treatment parameters included the utilization of neoadjuvant hormonal manipulation and the choice of isotope. The efficacy of sildenafil citrate in brachytherapy induced erectile dysfunction (ED) was also evaluated. Results: A pre-treatment erectile function score of 2 and 1 were assigned to 126 and 54 patients respectively. With 6 year follow up, 39% of patients maintained potency following prostate brachytherapy with a plateau on the curve. Post-implant preservation of potency (IIEF>11) correlated with pre-implant erectile function (50% versus 14% for pre-implant scores of 2 and 1 respectively, p≤0.0001), patient age (56%, 38%, and 23% for patients <60 years of age, 60-69 years of age, and ≥70 years of age respectively, p=0.012) and a history of diabetes mellitus

  19. The evolution of brachytherapy treatment planning

    International Nuclear Information System (INIS)

    Rivard, Mark J.; Venselaar, Jack L. M.; Beaulieu, Luc

    2009-01-01

    Brachytherapy is a mature treatment modality that has benefited from technological advances. Treatment planning has advanced from simple lookup tables to complex, computer-based dose-calculation algorithms. The current approach is based on the AAPM TG-43 formalism with recent advances in acquiring single-source dose distributions. However, this formalism has clinically relevant limitations for calculating patient dose. Dose-calculation algorithms are being developed based on Monte Carlo methods, collapsed cone, and solving the linear Boltzmann transport equation. In addition to improved dose-calculation tools, planning systems and brachytherapy treatment planning will account for material heterogeneities, scatter conditions, radiobiology, and image guidance. The AAPM, ESTRO, and other professional societies are working to coordinate clinical integration of these advancements. This Vision 20/20 article provides insight into these endeavors.

  20. Radiochromic dye film studies for brachytherapy applications

    International Nuclear Information System (INIS)

    Martinez-Davalos, A.; Rodriguez-Villafuerte, M.; Diaz-Perches, R.; Arzamendi-Perez, S.

    2002-01-01

    Commercial radiochromic dye films have been used in recent years to quantify absorbed dose in several medical applications. In this study we present the characterisation of the GafChromic MD-55-2 dye film, a double sensitive layer film suitable for photon irradiation in brachytherapy applications. Dose measurements were carried out with a low dose rate 137 Cs brachytherapy source, which produces very steep dose gradients in its vicinity, and therefore requires the capability of producing high spatial resolution isodose curves. Quantification of the dose rate in water per unit air kerma strength was obtained using a high-resolution transmission commercial scanner (Agfa DuoScan T1200) with the capability of digitising up to 600 x 1200 pixels per inch using 36 bits per pixel, together with optical density measurements. The Monte Carlo calculations and experimental measurements compared well in the 0-50 Gy dose interval used in this study. (author)

  1. Brachytherapy needle deflection evaluation and correction

    International Nuclear Information System (INIS)

    Wan Gang; Wei Zhouping; Gardi, Lori; Downey, Donal B.; Fenster, Aaron

    2005-01-01

    In prostate brachytherapy, an 18-gauge needle is used to implant radioactive seeds. This thin needle can be deflected from the preplanned trajectory in the prostate, potentially resulting in a suboptimum dose pattern and at times requiring repeated needle insertion to achieve optimal dosimetry. In this paper, we report on the evaluation of brachytherapy needle deflection and bending in test phantoms and two approaches to overcome the problem. First we tested the relationship between needle deflection and insertion depth as well as whether needle bending occurred. Targeting accuracy was tested by inserting a brachytherapy needle to target 16 points in chicken tissue phantoms. By implanting dummy seeds into chicken tissue phantoms under 3D ultrasound guidance, the overall accuracy of seed implantation was determined. We evaluated methods to overcome brachytherapy needle deflection with three different insertion methods: constant orientation, constant rotation, and orientation reversal at half of the insertion depth. Our results showed that needle deflection is linear with needle insertion depth, and that no noticeable bending occurs with needle insertion into the tissue and agar phantoms. A 3D principal component analysis was performed to obtain the population distribution of needle tip and seed position relative to the target positions. Our results showed that with the constant orientation insertion method, the mean needle targeting error was 2.8 mm and the mean seed implantation error was 2.9 mm. Using the constant rotation and orientation reversal at half insertion depth methods, the deflection error was reduced. The mean needle targeting errors were 0.8 and 1.2 mm for the constant rotation and orientation reversal methods, respectively, and the seed implantation errors were 0.9 and 1.5 mm for constant rotation insertion and orientation reversal methods, respectively

  2. Erectile Function Durability Following Permanent Prostate Brachytherapy

    International Nuclear Information System (INIS)

    Taira, Al V.; Merrick, Gregory S.; Galbreath, Robert W.; Butler, Wayne M.; Wallner, Kent E.; Kurko, Brian S.; Anderson, Richard; Lief, Jonathan H.

    2009-01-01

    Purpose: To evaluate long-term changes in erectile function following prostate brachytherapy. Methods and Materials: This study included 226 patients with prostate cancer and preimplant erectile function assessed by the International Index of Erectile Function-6 (IIEF-6) who underwent brachytherapy in two prospective randomized trials between February 2001 and January 2003. Median follow-up was 6.4 years. Pre- and postbrachytherapy potency was defined as IIEF-6 ≥ 13 without pharmacologic or mechanical support. The relationship among clinical, treatment, and dosimetric parameters and erectile function was examined. Results: The 7-year actuarial rate of potency preservation was 55.6% with median postimplant IIEF of 22 in potent patients. Potent patients were statistically younger (p = 0.014), had a higher preimplant IIEF (p < 0.001), were less likely to be diabetic (p = 0.002), and were more likely to report nocturnal erections (p = 0.008). Potency preservation in men with baseline IIEF scores of 29-30, 24-28, 18-23, and 13-17 were 75.5% vs. 73.6%, 51.7% vs. 44.8%, 48.0% vs. 40.0%, and 23.5% vs. 23.5% in 2004 vs. 2008. In multivariate Cox regression analysis, preimplant IIEF, hypertension, diabetes, prostate size, and brachytherapy dose to proximal penis strongly predicted for potency preservation. Impact of proximal penile dose was most pronounced for men with IIEF of 18-23 and aged 60-69. A significant minority of men who developed postimplant impotence ultimately regained erectile function. Conclusion: Potency preservation and median IIEF scores following brachytherapy are durable. Thoughtful dose sparing of proximal penile structures and early penile rehabilitation may further improve these results.

  3. Design and optimization of a brachytherapy robot

    Science.gov (United States)

    Meltsner, Michael A.

    Trans-rectal ultrasound guided (TRUS) low dose rate (LDR) interstitial brachytherapy has become a popular procedure for the treatment of prostate cancer, the most common type of non-skin cancer among men. The current TRUS technique of LDR implantation may result in less than ideal coverage of the tumor with increased risk of negative response such as rectal toxicity and urinary retention. This technique is limited by the skill of the physician performing the implant, the accuracy of needle localization, and the inherent weaknesses of the procedure itself. The treatment may require 100 or more sources and 25 needles, compounding the inaccuracy of the needle localization procedure. A robot designed for prostate brachytherapy may increase the accuracy of needle placement while minimizing the effect of physician technique in the TRUS procedure. Furthermore, a robot may improve associated toxicities by utilizing angled insertions and freeing implantations from constraints applied by the 0.5 cm-spaced template used in the TRUS method. Within our group, Lin et al. have designed a new type of LDR source. The "directional" source is a seed designed to be partially shielded. Thus, a directional, or anisotropic, source does not emit radiation in all directions. The source can be oriented to irradiate cancerous tissues while sparing normal ones. This type of source necessitates a new, highly accurate method for localization in 6 degrees of freedom. A robot is the best way to accomplish this task accurately. The following presentation of work describes the invention and optimization of a new prostate brachytherapy robot that fulfills these goals. Furthermore, some research has been dedicated to the use of the robot to perform needle insertion tasks (brachytherapy, biopsy, RF ablation, etc.) in nearly any other soft tissue in the body. This can be accomplished with the robot combined with automatic, magnetic tracking.

  4. Procedures for calibration of brachytherapy sources

    International Nuclear Information System (INIS)

    Alfonso Laguardia, R.; Alonso Samper, J.L.; Morales Lopez, J.L.; Saez Nunez, D.G.

    1997-01-01

    Brachytherapy source strength verification is a responsibility of the user of these source, in fact of the Medical Physicists in charge of this issue in a Radiotherapy Service. The calibration procedures in the users conditions are shown. Specifics methods for source strength determination are recommended, both for High Dose Rate (HDR) sources with Remote Afterloading equipment and for Low Dose Rate sources. The The results of the calibration of HDR Remote After loaders are indicated

  5. Dosimetry in high dose rate endoluminal brachytherapy

    International Nuclear Information System (INIS)

    Uno, Takashi; Kotaka, Kikuo; Itami, Jun

    1994-01-01

    In endoluminal brachytherapy for the tracheobronchial tree, esophagus, and bile duct, a reference point for dose calculation has been often settled at 1 cm outside from the middle of source travel path. In the current study, a change in the ratio of the reference point dose on the convex to concave side (Dq/Dp) was calculated, provided the source travel path bends as is the case in most endoluminal brachytherapies. Point source was presumed to move stepwise at 1 cm interval from 4 to 13 locations. Retention time at each location was calculated by personal computer so as to deliver equal dose at 1 cm from the linear travel path. With the retention time remaining constant, the change of Dq/Dp was assessed by bending the source travel path. Results indicated that the length of the source travel path and radius of its curve influenced the pattern of change in Dq/Dp. Therefore, it was concluded that the difference in reference dose on the convex and concave side of the curved path is not negligible under certain conditions in endoluminal brachytherapy. In order to maintain the ratio more than 0.9, relatively greater radius was required when the source travel path was decreased. (author)

  6. Radioactive seed immobilization techniques for interstitial brachytherapy

    International Nuclear Information System (INIS)

    Yan, K.; Podder, T.; Buzurovic, I.; Hu, Y.; Dicker, A.; Valicenti, R.; Yu, Y.; Messing, E.; Rubens, D.; Sarkar, N.; Ng, W.

    2008-01-01

    In prostate brachytherapy, seeds can detach from their deposited sites and move locally in the pelvis or migrate to distant sites including the pulmonary and cardiac regions. Undesirable consequences of seed migration include inadequate dose coverage of the prostate and tissue irradiation effects at the site of migration. Thus, it is clinically important to develop seed immobilization techniques. We first analyze the possible causes for seed movement, and propose three potential techniques for seed immobilization: (1) surgical glue, (2) laser coagulation and (3) diathermy coagulation. The feasibility of each method is explored. Experiments were carried out using fresh bovine livers to investigate the efficacy of seed immobilization using surgical glue. Results have shown that the surgical glue can effectively immobilize the seeds. Evaluation of the radiation dose distribution revealed that the non-immobilized seed movement would change the planned isodose distribution considerably; while by using surgical glue method to immobilize the seeds, the changes were negligible. Prostate brachytherapy seed immobilization is necessary and three alternative mechanisms are promising for addressing this issue. Experiments for exploring the efficacy of the other two proposed methods are ongoing. Devices compatible with the brachytherapy procedure will be designed in future. (orig.)

  7. A fibre optic dosimeter customised for brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Suchowerska, N. [Department of Radiation Oncology, Royal Prince Alfred Hospital, Camperdown, NSW 2050 (Australia); School of Physics, University of Sydney, NSW 2006 (Australia)], E-mail: Natalka@email.cs.nsw.gov.au; Lambert, J.; Nakano, T. [Department of Radiation Oncology, Royal Prince Alfred Hospital, Camperdown, NSW 2050 (Australia); School of Physics, University of Sydney, NSW 2006 (Australia); Law, S. [School of Physics, University of Sydney, NSW 2006 (Australia); Optical Fibre Technology Centre, University of Sydney, 206 National Innovation Centre, Australian Technology Park, Eveleigh, NSW 1430 (Australia); Elsey, J. [Bandwidth Foundry Pty Ltd, Australian Technology Park, NSW, 1430 (Australia); McKenzie, D.R. [School of Physics, University of Sydney, NSW 2006 (Australia)

    2007-04-15

    In-vivo dosimetry for brachytherapy cancer treatment requires a small dosimeter with a real time readout capability that can be inserted into the patient to determine the dose to critical organs. Fibre optic scintillation dosimeters, consisting of a plastic scintillator coupled to an optical fibre, are a promising dosimeter for this application. We have implemented specific design features to optimise the performance of the dosimeter for specific in-vivo dosimetry during brachytherapy. Two sizes of the BrachyFOD{sup TM} scintillation dosimeter have been developed, with external diameters of approximately 2 and 1 mm. We have determined their important dosimetric characteristics (depth dose relation, angular dependence, energy dependence). We have shown that the background signal created by Cerenkov and fibre fluorescence does not significantly affect the performance in most clinical geometries. The dosimeter design enables readout at less than 0.5 s intervals. The clinical demands of real time in-vivo brachytherapy dosimetry can uniquely be satisfied by the BrachyFOD{sup TM}.

  8. Permanent Prostate Brachytherapy in Prostate Glands 3

    International Nuclear Information System (INIS)

    Mayadev, Jyoti; Merrick, Gregory S.; Reed, Joshua R.; Butler, Wayne M.; Galbreath, Robert W.; Allen, Zachariah A.; Wallner, Kent E.

    2010-01-01

    Purpose: To investigate the dosimetry, treatment-related morbidity, and biochemical outcomes for brachytherapy in patients with prostate glands 3 . Methods and Materials: From November 1996 to October 2006, 104 patients with prostate glands 3 underwent brachytherapy. Multiple prostate, urethral, and rectal dosimetric parameters were evaluated. Treatment-related urinary and rectal morbidity were assessed from patient questionnaires. Cause-specific survival, biochemical progression-free survival, and overall survival were recorded. Results: The median patient age, follow up, and pre-treatment ultrasound volume was 64 years, 5.0 years and 17.6cm 3 , respectively. Median day 0 dosimetry was significant for the following: V100 98.5%, D90 126.1% and R100 <0.5% of prescription dose. The mean urethral and maximum urethral doses were 119.6% and 133.8% of prescription. The median time to International Prostate Symptom Score resolution was 4 months. There were no RTOG grade III or IV rectal complications. The cause-specific survival, biochemical progression-free survival, and overall survival rates were 100%, 92.5%, and 77.8% at 9 years. For biochemically disease-free patients, the median most recent postbrachytherapy PSA value was 0.02 ng/mL. Conclusion: Our results demonstrate that brachytherapy for small prostate glands is highly effective, with an acceptable morbidity profile, excellent postimplant dosimetry, acceptable treatment-related morbidity, and favorable biochemical outcomes.

  9. Brachytherapy treatment with high dose rate

    International Nuclear Information System (INIS)

    Santana Rodriguez, Sergio Marcelino; Rodriguez Rodriguez, Lissi Lisbet; Ciscal Chiclana, Onelio Alberto

    2009-01-01

    Retrospectively analyze results and prognostic factors of cervical cancer patients treated with radio concomitant cisplatin-based chemotherapy, radiation therapy combined modality. Methods: From January 2003 to December 2007, 198 patients with invasive cervical cancer were treated at the Oncology Department of Hospital Robau Celestino Hernandez (brachytherapy performed at INOR). The most common age group was 31 to 40 years. The histology in squamous cell carcinoma accounted for 84.3% of cases. The treatment consisted of external pelvic irradiation and vaginal brachytherapy, high dose rate. Concomitant chemotherapy consisted of cisplatin 40 mg/m2 weekly with a maximum of 70 mg for 5 weeks. Results: 66.2% of patients completed 5 cycles of chemotherapy. The median overall survival was 39 months, overall survival, disease-free survival and survival free of locoregional recurrence at 5 years of 78%, 76% and 78.6% respectively .. We found that clinical stage, histological type (adenocarcinoma worst outcome) were statistically related to level of response. Conclusions: Treatment with external pelvic radiation, brachytherapy and concurrent weekly cisplatin in patients with stage IIIB cervical cancer is feasible in the Chilean public health system, well tolerated and results comparable to international literature. (Author)

  10. RECONSIDERING COMPETITIVE ADVANTAGES

    Directory of Open Access Journals (Sweden)

    Valentina Zaharia

    2011-12-01

    Full Text Available Development of the competitive advantage involves a considerable effort from any organization. In particular, those organizations involved in a strong competitive market require the development of strategies to allocate long-term strategic marketing resources, efficiently and with easily quantifiable results. Faced with a multitude of phenomena and processes sometimes contradictory on different markets of consumption, contemporarily marketing has the mission to develop as creative as possible the business strategy of the organizations, their capacity of interacting with customers and other categories of audience. Such concepts as strategic positioning, relational marketing, management of the relationship with the consumer, marketing integrated research, a.s.o. are only a few of the tools with the help of which the marketing managers will implement successful operational strategies. All these developments are creating a real new paradigm of Marketing aimed to better explain the new types of complex market relationship in which the 21st Century organization is .

  11. Canadian competitive advantage

    International Nuclear Information System (INIS)

    Wills, J.

    1997-01-01

    The evolution of the Canadian petrochemical industry was outlined, emphasizing the proximity to feedstocks as the principal advantage enjoyed by the industry over its international competitors. Annual sales statistics for 1995 were provided. Key players in the Canadian petrochemical industry (Nova, Dow, DuPont, Methanex, Esso, Union Carbide, Shell and Celanese), their share of the market and key products were noted. Manufacturing facilities are located primarily in Alberta, southern Ontario and Quebec. The feedstock supply infrastructure, historical and alternative ethane pricing in Canada and the US, the North American market for petrochemicals, the competitiveness of the industry, tax competitiveness among Canadian provinces and the US, the Canada - US unit labour cost ratio, ethylene facility construction costs in Canada relative to the US Gulf Coast, and projected 1997 financial requirements were reviewed. 19 figs

  12. Endobronchial and endoesophageal high dose rate brachytherapy for malignant airway and digestive tract obstructions

    International Nuclear Information System (INIS)

    Mehta, Minesh P.

    1996-01-01

    With an annual incidence of more than 160,000 cases and a local failure rate between 30-50%, endobronchial occlusion seen with lung cancer is a common and potentially life-threatening complication. Several methods of managing this exist and recently endobronchial brachytherapy has been used extensively as a consequence of the development of fiberoptic bronchoscopy and high dose rate remote afterloading technology. Procedurally, one or more afterloading catheters are inserted in the involved portions of the tracheobronchial tree through fiberoptic guidance. Treatment techniques range from 1-4 applications fractionated over several weeks or given over 2 days with a single insertion procedure. Almost all procedures are currently performed in the outpatient setting. The major application of this technology is in the palliation of occlusive symptomatology. Clinical improvement ranges from 50-100%, radiographic reaeration ranges from 46-88% and bronchoscopic responses ranges from 59-100%. Symptomatic relief is usually quite durable with more than 70% of the patients' remaining life-time rendered symptom-free and symptom-improved. Recently, this modality has been explored for its curative potential as a boost following external beam radiotherapy. It is clear from these series, that in selected patients, endobronchial boost produces significant reaeration and sparing of lung volume from subsequent external radiation, and a few cases may even become resectable. Demonstration of the survival advantage will, however, require larger clinical trials with adequate controls. Some reports have suggested an unacceptably high rate of fatal hemoptysis following HDR endobronchial brachytherapy. Review of the world literature suggests that fatal hemoptysis rates range from 0-50% with an average of about 8%, comparable to an average of 5% with low dose rate brachytherapy. Other recognized complications include fistulae and radiation bronchitis. Because the majority of patients with

  13. Image based brachytherapy planning with special reference to gynaecological cancers

    International Nuclear Information System (INIS)

    Kirisits, C.

    2008-01-01

    Cervical cancer is the most common cancer among women in India and one of the most frequent malignancies in Europe and in North America. In addition endometrium, vagina and vulva cancer are treated with brachytherapy. Especially for locally advanced cervix cancer the integration of image based brachytherapy planning into clinical routine is becoming a new standard for the future

  14. A robotic device for MRI-guided prostate brachytherapy

    NARCIS (Netherlands)

    Lagerburg, V.

    2008-01-01

    One of the treatment options for prostate cancer is brachytherapy with iodine-125 sources. In prostate brachytherapy a high radiation dose is delivered to the prostate with a steep dose fall off to critical surrounding organs. The implantation of the iodine sources is currently performed under

  15. Novel high dose rate lip brachytherapy technique to improve dose homogeneity and reduce toxicity by customized mold

    International Nuclear Information System (INIS)

    Feldman, Jon; Appelbaum, Limor; Sela, Mordechay; Voskoboinik, Ninel; Kadouri, Sarit; Weinberger, Jeffrey; Orion, Itzhak; Meirovitz, Amichay

    2014-01-01

    The purpose of this study is to describe a novel brachytherapy technique for lip Squamous Cell Carcinoma, utilizing a customized mold with embedded brachytherapy sleeves, which separates the lip from the mandible, and improves dose homogeneity. Seven patients with T2 lip cancer treated with a “sandwich” technique of High Dose Rate (HDR) brachytherapy to the lip, consisting of interstitial catheters and a customized mold with embedded catheters, were reviewed for dosimetry and outcome using 3D planning. Dosimetric comparison was made between the “sandwich” technique to “classic” – interstitial catheters only plan. We compared dose volume histograms for Clinical Tumor Volume (CTV), normal tissue “hot spots” and mandible dose. We are reporting according to the ICRU 58 and calculated the Conformal Index (COIN) to show the advantage of our technique. The seven patients (ages 36–81 years, male) had median follow-up of 47 months. Four patients received Brachytherapy and External Beam Radiation Therapy, 3 patients received brachytherapy alone. All achieved local control, with excellent esthetic and functional results. All patients are disease free. The Customized Mold Sandwich technique (CMS) reduced the high dose region receiving 150% (V150) by an average of 20% (range 1–47%), The low dose region (les then 90% of the prescribed dose) improved by 73% in average by using the CMS technique. The COIN value for the CMS was in average 0.92 as opposed to 0.88 for the interstitial catheter only. All differences (excluding the low dose region) were statistically significant. The CMS technique significantly reduces the high dose volume and increases treatment homogeneity. This may reduce the potential toxicity to the lip and adjacent mandible, and results in excellent tumor control, cosmetic and functionality

  16. Verification of the plan dosimetry for high dose rate brachytherapy using metal-oxide-semiconductor field effect transistor detectors

    International Nuclear Information System (INIS)

    Qi Zhenyu; Deng Xiaowu; Huang Shaomin; Lu Jie; Lerch, Michael; Cutajar, Dean; Rosenfeld, Anatoly

    2007-01-01

    The feasibility of a recently designed metal-oxide-semiconductor field effect transistor (MOSFET) dosimetry system for dose verification of high dose rate (HDR) brachytherapy treatment planning was investigated. MOSFET detectors were calibrated with a 0.6 cm 3 NE-2571 Farmer-type ionization chamber in water. Key characteristics of the MOSFET detectors, such as the energy dependence, that will affect phantom measurements with HDR 192 Ir sources were measured. The MOSFET detector was then applied to verify the dosimetric accuracy of HDR brachytherapy treatments in a custom-made water phantom. Three MOSFET detectors were calibrated independently, with the calibration factors ranging from 0.187 to 0.215 cGy/mV. A distance dependent energy response was observed, significant within 2 cm from the source. The new MOSFET detector has a good reproducibility ( 2 =1). It was observed that the MOSFET detectors had a linear response to dose until the threshold voltage reached approximately 24 V for 192 Ir source measurements. Further comparison of phantom measurements using MOSFET detectors with dose calculations by a commercial treatment planning system for computed tomography-based brachytherapy treatment plans showed that the mean relative deviation was 2.2±0.2% for dose points 1 cm away from the source and 2.0±0.1% for dose points located 2 cm away. The percentage deviations between the measured doses and the planned doses were below 5% for all the measurements. The MOSFET detector, with its advantages of small physical size and ease of use, is a reliable tool for quality assurance of HDR brachytherapy. The phantom verification method described here is universal and can be applied to other HDR brachytherapy treatments

  17. Sci—Fri PM: Topics — 08: The Role and Benefits of Electromagnetic Needle-Tracking Technologies in Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Beaulieu, L.; Racine, E.; Boutaleb, S.; Filion, O. [Département de Radio-Oncologie et Centre de Recherche du CHU de Québec, CHU de Québec, Québec (Québec), and Département de Physique, de Génie Physique et d' Optique et Centre de recherche en sur le Cancer, Université Laval, Québec (Québec) (Canada); Poulin, E.; Hautvast, G. [Biomedical Systems, Philips Group Innovation, High Tech Campus 34 (HTC 34), Eindhoven (Netherlands); Binnekamp, D. [Integrated Clinical Solutions and Marketing, Philips Healthcare, Veenpluis 4-6, Best (Netherlands)

    2014-08-15

    In modern brachytherapy, application of large doses of ionizing radiation in a limited number of fractions is frequent. Furthermore, as with any surgical procedures, brachytherapy is subject to learning curve effects. In this context, there could be advantages of integrating real-time tracking of needles/catheters to existing protocols given the recent prominent advances in tracking technologies. In this work, we review the use of an electromagnetic tracking system (EMTS) based on the second generation Aurora® Planar Field Generator (Northern Digital Inc) and custom design needles (Philips Healthcare) for brachytherapy applications. The position and orientation information is obtained from 5 degrees of freedom sensors. Basic system performance characterization is performed in well-controlled conditions to establish accuracy and reproducibility as well as potential interference from standard brachytherapy equipment. The results show that sensor locations can be tracked to within 0.04mm (la) when located within 26cm of the generator. Orientation accuracy of the needle remained within ±1° in the same region, but rose quickly at larger distances. The errors on position and orientation strongly dependent the sensor position in the characterization volume (500×500×500mm{sup 3}). The presence of an ultrasound probe was shown to have negligible effects on tracking accuracy. The use of EMTS for automatic catheter/applicator reconstruction was also explored. Reconstruction time was less than 10 sec/channel and tips identification was within 0.69±0.29mm of the reference values. Finally, we demonstrate that hollow needle designs with special EM adaptation also allow for real-time seed drop position estimation. In phantom experiments showed that drop positions were on average within 1.6±0.9mm of the reference position measured from μCT. Altogether, EMTS offer promising benefits in a wide range of brachytherapy applications.

  18. Sci—Fri PM: Topics — 08: The Role and Benefits of Electromagnetic Needle-Tracking Technologies in Brachytherapy

    International Nuclear Information System (INIS)

    Beaulieu, L.; Racine, E.; Boutaleb, S.; Filion, O.; Poulin, E.; Hautvast, G.; Binnekamp, D.

    2014-01-01

    In modern brachytherapy, application of large doses of ionizing radiation in a limited number of fractions is frequent. Furthermore, as with any surgical procedures, brachytherapy is subject to learning curve effects. In this context, there could be advantages of integrating real-time tracking of needles/catheters to existing protocols given the recent prominent advances in tracking technologies. In this work, we review the use of an electromagnetic tracking system (EMTS) based on the second generation Aurora® Planar Field Generator (Northern Digital Inc) and custom design needles (Philips Healthcare) for brachytherapy applications. The position and orientation information is obtained from 5 degrees of freedom sensors. Basic system performance characterization is performed in well-controlled conditions to establish accuracy and reproducibility as well as potential interference from standard brachytherapy equipment. The results show that sensor locations can be tracked to within 0.04mm (la) when located within 26cm of the generator. Orientation accuracy of the needle remained within ±1° in the same region, but rose quickly at larger distances. The errors on position and orientation strongly dependent the sensor position in the characterization volume (500×500×500mm 3 ). The presence of an ultrasound probe was shown to have negligible effects on tracking accuracy. The use of EMTS for automatic catheter/applicator reconstruction was also explored. Reconstruction time was less than 10 sec/channel and tips identification was within 0.69±0.29mm of the reference values. Finally, we demonstrate that hollow needle designs with special EM adaptation also allow for real-time seed drop position estimation. In phantom experiments showed that drop positions were on average within 1.6±0.9mm of the reference position measured from μCT. Altogether, EMTS offer promising benefits in a wide range of brachytherapy applications

  19. Brachytherapy in the treatment of cervical cancer: a review

    Directory of Open Access Journals (Sweden)

    Banerjee R

    2014-05-01

    Full Text Available Robyn Banerjee,1 Mitchell Kamrava21Department of Radiation Oncology, Tom Baker Cancer Centre, Calgary, Alberta, Canada; 2Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USAAbstract: Dramatic advances have been made in brachytherapy for cervical cancer. Radiation treatment planning has evolved from two-dimensional to three-dimensional, incorporating magnetic resonance imaging and/or computed tomography into the treatment paradigm. This allows for better delineation and coverage of the tumor, as well as improved avoidance of surrounding organs. Consequently, advanced brachytherapy can achieve very high rates of local control with a reduction in morbidity, compared with historic approaches. This review provides an overview of state-of-the-art gynecologic brachytherapy, with a focus on recent advances and their implications for women with cervical cancer.Keywords: cervical cancer, brachytherapy, image-guided brachytherapy

  20. Radiation Exposure Reduction to Brachytherapy Staff By Using Remote Afterloading

    International Nuclear Information System (INIS)

    Attalla, E.M.

    2005-01-01

    The radiation exposures to the personnel staff from patients with brachytherapy implants in a brachytherapy service were reviewed. Exposures to the brachytherapy personnel, as determined by Thermoluminescence Dosimeter (TLD) monitors, indicates a four-fold reduction in exposures after the implantation of the use of remote afterloading devices. Quarterly TLD monitor data for seven quarters prior to the use of remote afterloading devices demonstrate an average projected annual dose equivalent to the brachytherapy staff of 2543 Μ Sv. After the implantation of the remote afterloading devices, the quarterly TLD monitor data indicate an average dose equivalent per person of 153 Μ Sv. This is 76% reduction in exposure to brachytherapy personnel with the use of these devices

  1. Brachytherapy in the treatment of head and neck cancer

    International Nuclear Information System (INIS)

    Yoo, Seong Yul

    1999-01-01

    Brachytherapy has been proved to be an effective method for the purpose of increasing radiation dose to the tumor and reducing the dose to the surrounding normal tissue. In head and neck cancer, the rationale of brachytherapy is as follows; Firstly, early small lesion is radiocurative and the major cause of failure is local recurrence. Secondly, it can diminish evidently the dose to the normal tissue especially masseteric muscle and salivary gland. Thirdly, the anatomy of head and neck is suitable to various technique of brachytherapy. On background of accumulated experience of LDR iridium brachytherapy of head and neck cancer for the last 15 years, the author reviewed the history of radioisotope therapy, the characteristics of radionuclides, and some important things in the method, clinical technique and treatment planning. The author analyzed the clinical result of 185 cases of head and neck cancer treated in the Korea Cancer Center Hospital. Finally the future prospect of brachytherapy of head and neck cancer is discussed

  2. Directional interstitial brachytherapy from simulation to application

    Science.gov (United States)

    Lin, Liyong

    Organs at risk (OAR) are sometimes adjacent to or embedded in or overlap with the clinical target volume (CTV) to be treated. The purpose of this PhD study is to develop directionally low energy gamma-emitting interstitial brachytherapy sources. These sources can be applied between OAR to selectively reduce hot spots in the OARs and normal tissues. The reduction of dose over undesired regions can expand patient eligibility or reduce toxicities for the treatment by conventional interstitial brachytherapy. This study covers the development of a directional source from design optimization to construction of the first prototype source. The Monte Carlo code MCNP was used to simulate the radiation transport for the designs of directional sources. We have made a special construction kit to assemble radioactive and gold-shield components precisely into D-shaped titanium containers of the first directional source. Directional sources have a similar dose distribution as conventional sources on the treated side but greatly reduced dose on the shielded side, with a sharp dose gradient between them. A three-dimensional dose deposition kernel for the 125I directional source has been calculated. Treatment plans can use both directional and conventional 125I sources at the same source strength for low-dose-rate (LDR) implants to optimize the dose distributions. For prostate tumors, directional 125I LDR brachytherapy can potentially reduce genitourinary and gastrointestinal toxicities and improve potency preservation for low risk patients. The combination of better dose distribution of directional implants and better therapeutic ratio between tumor response and late reactions enables a novel temporary LDR treatment, as opposed to permanent or high-dose-rate (HDR) brachytherapy for the intermediate risk T2b and high risk T2c tumors. Supplemental external-beam treatments can be shortened with a better brachytherapy boost for T3 tumors. In conclusion, we have successfully finished the

  3. Penile brachytherapy: Results for 49 patients

    International Nuclear Information System (INIS)

    Crook, Juanita M.; Jezioranski, John; Grimard, Laval; Esche, Bernd; Pond, G.

    2005-01-01

    Purpose: To report results for 49 men with squamous cell carcinoma (SCC) of the penis treated with primary penile interstitial brachytherapy at one of two institutions: the Ottawa Regional Cancer Center, Ottawa, and the Princess Margaret Hospital, Toronto, Ontario, Canada. Methods and Materials: From September 1989 to September 2003, 49 men (mean age, 58 years; range, 22-93 years) had brachytherapy for penile SCC. Fifty-one percent of tumors were T1, 33% T2, and 8% T3; 4% were in situ and 4% Tx. Grade was well differentiated in 31%, moderate in 45%, and poor in 2%; grade was unspecified for 20%. One tumor was verrucous. All tumors in Toronto had pulsed dose rate (PDR) brachytherapy (n = 23), whereas those in Ottawa had either Iridium wire (n 22) or seeds (n = 4). Four patients had a single plane implant with a plastic tube technique, and all others had a volume implant with predrilled acrylic templates and two or three parallel planes of needles (median, six needles). Mean needle spacing was 13.5 mm (range, 10-18 mm), mean dose rate was 65 cGy/h (range, 33-160 cGy/h), and mean duration was 98.8 h (range, 36-188 h). Dose rates for PDR brachytherapy were 50-61.2 cGy/h, with no correction in total dose, which was 60 Gy in all cases. Results: Median follow-up was 33.4 months (range, 4-140 months). At 5 years, actuarial overall survival was 78.3% and cause-specific survival 90.0%. Four men died of penile cancer, and 6 died of other causes with no evidence of recurrence. The cumulative incidence rate for never having experienced any type of failure at 5 years was 64.4% and for local failure was 85.3%. All 5 patients with local failure were successfully salvaged by surgery; 2 other men required penectomy for necrosis. The soft tissue necrosis rate was 16% and the urethral stenosis rate 12%. Of 8 men with regional failure, 5 were salvaged by lymph node dissection with or without external radiation. All 4 men with distant failure died of disease. Of 49 men, 42 had an intact

  4. A Conceptual Mapping Resource Advantage Theory, Competitive Advantage Theory, and Transient Competitive Advantage

    OpenAIRE

    Jasanta PERANGINANGIN

    2015-01-01

    Competitive advantage is the main purposed of the business entity focusing on market base view. Resource advantage theorists put their concern to empowering resources development with resources based view, in the other side needs to redefining competitive advantage. All the competitive advantage are transient, concluded the end of competitive advantage. Redefining competitive advantage by selling migration and shrewdness outward. This research to emphasize innovation capability rarely appears...

  5. Gynecological brachytherapy - from low-dose-rate to high-tech. Gynaekologische Brachytherapie - von Low-dose-rate zu High-tech

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, T. (Abt. Strahlenthgerapie, Klinik und Poliklinik fuer Radiologie, Medizinische Akademie ' Carl Gustav Carus' , Dresden (Germany)); Christen, N. (Abt. Strahlenthgerapie, Klinik und Poliklinik fuer Radiologie, Medizinische Akademie ' Carl Gustav Carus' , Dresden (Germany)); Alheit, H.D. (Abt. Strahlenthgerapie, Klinik und Poliklinik fuer Radiologie, Medizinische Akademie ' Carl Gustav Carus' , Dresden (Germany))

    1993-03-01

    The transition from low-dose-rate (LDR) brachytherapy to high-dose-rate (HDR) afterloading treatment is in progress in most centres of radiation therapy. First reports of studies comparing HDR and LDR treatment in cervix cancer demonstrate nearly equal local control. In our own investigations on 319 patients with primary irradiated carcinoma of the cervix (125 HDR/194 LDR) we found the following control rates: Stage FIGO I 95.4%/82.9% (HDR versus LDR), stage FIGO II 71.4%/73.7%, stage FIGO III 57.9%/38.5%. The results are not significant. The side effects - scored after EORT/RTOG criteria - showed no significant differences between both therapies for serious radiogenic late effects on intestine, bladder and vagina. The study and findings from the literature confirm the advantage of the HDR-procedure for patient and radiooncologist and for radiation protection showing at least the same results as in the LDR-area. As for radiobiolgical point of view it is important to consider that the use of fractionation in the HDR-treatment is essential for the sparing of normal tissues and therefore a greater number of small fractionation doses in the brachytherapy should be desirable too. On the other hand the rules, which are true for fractionated percutaneous irradiation therapy (overall treatment time as short as possible to avoid reppopulation of tumor cells) should be taken into consideration in combined brachy-teletherapy regime in gynecologic tumors. The first step in this direction may be accelerated regime with a daily application of both treatment procedures. The central blocking of the brachytherapy region from the whole percutaneous treatment target volume should be critically reflected, especially in the case of advanced tumors. (orig.)

  6. Erectile function after permanent prostate brachytherapy

    International Nuclear Information System (INIS)

    Merrick, Gregory S.; Butler, Wayne M.; Galbreath, Robert W.; Stipetich, Robin L.; Abel, Laurie J.; Lief, Jonathan H.

    2002-01-01

    Purpose: To determine the incidence of potency preservation after permanent prostate brachytherapy using a validated patient-administered questionnaire and to evaluate the effect of multiple clinical and treatment parameters on penile erectile function. Methods and Materials: Four hundred twenty-five patients underwent permanent prostate brachytherapy from April 1995 to October 1999. Two hundred nine patients who were potent before brachytherapy and who at the time of the survey were not receiving hormonal therapy were mailed the specific erectile questions of the International Index of Erectile Function (IIEF) questionnaire with a self-addressed stamped envelope. The questionnaire consisted of 5 questions, with a maximal score of 25. Of the 209 patients, 181 (87%) completed and returned the questionnaire. The mean and median follow-up was 40.4±14.9 and 40.6 months, respectively (range 19-75). Preimplant erectile function was assigned using a three-tiered scoring system (2 = erections always or nearly always sufficient for vaginal penetration; 1 = erections sufficient for vaginal penetration but considered suboptimal; 0 = the inability to obtain erections and/or erections inadequate for vaginal penetration). Postimplant potency was defined as an IIEF score ≥11. The clinical parameters evaluated for erectile function included patient age, preimplant potency, clinical T-stage, pretreatment prostate-specific antigen level, Gleason score, elapsed time after implantation, hypertension, diabetes mellitus, and tobacco consumption. Treatment parameters included radiation dose to the prostate gland, use of hormonal manipulation, use of supplemental external beam radiotherapy (EBRT), choice of isotope, prostate volume, and planning volume. The efficacy of sildenafil citrate in brachytherapy-induced erectile dysfunction (ED) was also evaluated. Results: Pretreatment erectile function scores of 2 and 1 were assigned to 125 and 56 patients, respectively. With a 6-year follow

  7. Advantages of later motherhood.

    Science.gov (United States)

    Myrskylä, M; Barclay, K; Goisis, A

    2017-01-01

    In high-income countries childbearing has been increasingly postponed since the 1970s and it is crucial to understand the consequences of this demographic shift. The literature has tended to characterize later motherhood as a significant health threat for children and parents. We contribute to this debate by reviewing recent evidence suggesting that an older maternal age can also have positive effects. Literature linking the age at parenthood with the sociodemographic characteristics of the parents, with macrolevel interactions, and with subjective well-being. Comprehensive review of the existing literature. Recent studies show that there can also be advantages associated with later motherhood. First, whilst in past older mothers had low levels of education and large families, currently older mothers tend to have higher education and smaller families than their younger peers. Consequently, children born to older mothers in the past tended to have worse outcomes than children born to younger mothers, whilst the opposite is true in recent cohorts. Second, postponement of childbearing means that the child is born at a later date and in a later birth cohort, and may benefit from secular changes in the macroenvironment. Evidence shows that when the positive trends in the macroenvironment are strong they overweigh the negative effects of reproductive ageing. Third, existing studies show that happiness increases around and after childbirth among older mothers, whereas for younger mothers the effect does not exist or is short-lived. There are important sociodemographic pathways associated with postponement of childbearing which might compensate or even more than compensate for the biological disadvantages associated with reproductive ageing.

  8. 3D dosimetry study of 188Re liquid balloon for intravascular brachytherapy using BANG polymer gel dosemeters

    International Nuclear Information System (INIS)

    Wuu, S.; Schiff, P.B.; Maryanski, M.; Liu, T.; Borzillary, S.; Weinberger, J.

    2002-01-01

    It has been suggested that the combination of intravascular brachytherapy and coronary stent implantation may result in further reduction of restenosis after percutaneous balloon angioplasty. The use of an angioplasty balloon filled with a P 188 Re liquid beta source for intravascular brachytherapy provides the advantage of accurate source positioning and uniform dose distribution to the coronary vessel wall. The effect of source edge and stent on the dose distribution of the target tissue may be clinically important. In BANG gels, the absorbed radiation produces free-radical chain polymerisation of acrylic monomers that are initially dissolved in the gel. The number of polymer particles is proportional to the absorbed dose. In this study, 3D dose distributions are presented for 188 Re balloons, with and without stents, using a prototype He-Ne laser CT scanner and the proprietary BANG polymer gel dosemeters. (author)

  9. The american brachytherapy society recommendations for permanent prostate brachytherapy postimplant dosimetric analysis

    International Nuclear Information System (INIS)

    Nag, Subir; Bice, William; Wyngaert, Keith de; Prestidge, Bradley; Stock, Richard; Yu Yan

    2000-01-01

    Purpose: The purpose of this report is to establish guidelines for postimplant dosimetric analysis of permanent prostate brachytherapy. Methods: Members of the American Brachytherapy Society (ABS) with expertise in prostate dosimetry evaluation performed a literature review and supplemented with their clinical experience formulated guidelines for performing and analyzing postimplant dosimetry of permanent prostate brachytherapy. Results: The ABS recommends that postimplant dosimetry should be performed on all patients undergoing permanent prostate brachytherapy for optimal patient care. At present, computed tomography (CT)-based dosimetry is recommended, based on availability cost and the ability to image the prostate as well as the seeds. Additional plane radiographs should be obtained to verify the seed count. Until the ideal postoperative interval for CT scanning has been determined, each center should perform dosimetric evaluation of prostate implants at a consistent postoperative interval. This interval should be reported. Isodose displays should be obtained at 50%, 80%, 90%, 100%, 150%, and 200% of the prescription dose and displayed on multiple cross-sectional images of the prostate. A dose-volume histogram (DVH) of the prostate should be performed and the D 90 (dose to 90% of the prostate gland) reported by all centers. Additionally, the D 80, D 100, the fractional V 80, V 90, V 100, V 150, and V 200, (i.e., the percentage of prostate volume receiving 80%, 90%, 100%, 150%, and 200% of the prescribed dose, respectively), the rectal, and urethral doses should be reported and ultimately correlated with clinical outcome in the research environment. On-line real-time dosimetry, the effects of dose heterogeneity, and the effects of tissue heterogeneity need further investigation. Conclusion: It is essential that postimplant dosimetry should be performed on all patients undergoing permanent prostate brachytherapy. Guidelines were established for the performance

  10. [New calculation algorithms in brachytherapy for iridium 192 treatments].

    Science.gov (United States)

    Robert, C; Dumas, I; Martinetti, F; Chargari, C; Haie-Meder, C; Lefkopoulos, D

    2018-05-18

    Since 1995, the brachytherapy dosimetry protocols follow the methodology recommended by the Task Group 43. This methodology, which has the advantage of being fast, is based on several approximations that are not always valid in clinical conditions. Model-based dose calculation algorithms have recently emerged in treatment planning stations and are considered as a major evolution by allowing for consideration of the patient's finite dimensions, tissue heterogeneities and the presence of high atomic number materials in applicators. In 2012, a report from the American Association of Physicists in Medicine Radiation Therapy Task Group 186 reviews these models and makes recommendations for their clinical implementation. This review focuses on the use of model-based dose calculation algorithms in the context of iridium 192 treatments. After a description of these algorithms and their clinical implementation, a summary of the main questions raised by these new methods is performed. Considerations regarding the choice of the medium used for the dose specification and the recommended methodology for assigning materials characteristics are especially described. In the last part, recent concrete examples from the literature illustrate the capabilities of these new algorithms on clinical cases. Copyright © 2018 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  11. Multihelix rotating shield brachytherapy for cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dadkhah, Hossein [Department of Biomedical Engineering, University of Iowa, 1402 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242 (United States); Kim, Yusung; Flynn, Ryan T., E-mail: ryan-flynn@uiowa.edu [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Wu, Xiaodong [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 and Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242 (United States)

    2015-11-15

    Purpose: To present a novel brachytherapy technique, called multihelix rotating shield brachytherapy (H-RSBT), for the precise angular and linear positioning of a partial shield in a curved applicator. H-RSBT mechanically enables the dose delivery using only linear translational motion of the radiation source/shield combination. The previously proposed approach of serial rotating shield brachytherapy (S-RSBT), in which the partial shield is rotated to several angular positions at each source dwell position [W. Yang et al., “Rotating-shield brachytherapy for cervical cancer,” Phys. Med. Biol. 58, 3931–3941 (2013)], is mechanically challenging to implement in a curved applicator, and H-RSBT is proposed as a feasible solution. Methods: A Henschke-type applicator, designed for an electronic brachytherapy source (Xoft Axxent™) and a 0.5 mm thick tungsten partial shield with 180° or 45° azimuthal emission angles and 116° asymmetric zenith angle, is proposed. The interior wall of the applicator contains six evenly spaced helical keyways that rigidly define the emission direction of the partial radiation shield as a function of depth in the applicator. The shield contains three uniformly distributed protruding keys on its exterior wall and is attached to the source such that it rotates freely, thus longitudinal translational motion of the source is transferred to rotational motion of the shield. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients with a diverse range of high-risk target volume (HR-CTV) shapes and applicator positions. For each patient, the total number of emission angles was held nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. Treatment delivery time and tumor coverage (D{sub 90} of HR-CTV) were the two metrics used as the basis for evaluation and

  12. Caudal epidural anesthesia during intracavitary brachytherapy for cervical cancer

    International Nuclear Information System (INIS)

    Isoyama-Shirakawa, Yuko; Abe, Madoka; Nakamura, Katsumasa

    2015-01-01

    It has been suggested that pain control during intracavitary brachytherapy for cervical cancer is insufficient in most hospitals in Japan. Our hospital began using caudal epidural anesthesia during high-dose-rate (HDR) intracavitary brachytherapy in 2011. The purpose of the present study was to retrospectively investigate the effects of caudal epidural anesthesia during HDR intracavitary brachytherapy for cervical cancer patients. Caudal epidural anesthesia for 34 cervical cancer patients was performed during HDR intracavitary brachytherapy between October 2011 and August 2013. We used the patients' self-reported Numeric Rating Scale (NRS) score at the first session of HDR intracavitary brachytherapy as a subjective evaluation of pain. We compared NRS scores of the patients with anesthesia with those of 30 patients who underwent HDR intracavitary brachytherapy without sacral epidural anesthesia at our hospital between May 2010 and August 2011. Caudal epidural anesthesia succeeded in 33 patients (97%), and the NRS score was recorded in 30 patients. The mean NRS score of the anesthesia group was 5.17 ± 2.97, significantly lower than that of the control group's 6.80 ± 2.59 (P = 0.035). The caudal epidural block resulted in no side-effects. Caudal epidural anesthesia is an effective and safe anesthesia option during HDR intracavitary brachytherapy for cervical cancer. (author)

  13. Iridium-192 sources production for brachytherapy use

    International Nuclear Information System (INIS)

    Rostelato, Maria Elisa Chuery Martins

    1997-01-01

    The incidence of cancer increases every year in Brazil and turns out to be one of the most important causes of mortality. Some of the patients are treated with brachytherapy, a form of lesion treatment which is based on the insertion of sources into tumors, in this particular case, activated iridium wires. During this process, the ionizing radiation efficiently destroys the malignant cells. These iridium wires have a nucleus made out of an iridium-platinum alloy 20-30/70-80 of 0,1 mm in diameter either coated by platinum or encased in a platinum tube. The technique consists in irradiating the wire in the reactor neutron flux in order to produce iridium-192. The linear activity goes from 1 mCi/cm to 4 mCi/cm and the basic characteristic, which is required, is the homogeneity of the activation along the wire. It should not present a dispersion exceeding 5% on a wire measuring 50 cm in length, 0.5 mm or 0.3 mm in diameter. Several experiments were carried out in order to define the activation parameters. Wires from different origins were analyzed. It was concluded that United States of America and France wires were found to be perfectly adequate for brachytherapy purposes and have therefore been sent to specialized hospitals and successfully applied to cancer patients. Considering that the major purpose of this work is to make this product more accessible in Brazil, at a cost reflecting the Brazilian reality, the IPEN is promoting the preparation of iridium-192 sources to be used in brachytherapy, on a national level. (author)

  14. Perioperative interstitial brachytherapy for recurrent keloid scars

    International Nuclear Information System (INIS)

    Rio, E.; Bardet, E.; Peuvrel, P.; Martinet, L.; Perrot, P.; Baraer, F.; Loirat, Y.; Sartre, J.Y.; Malard, O.; Ferron, C.; Dreno, B.

    2010-01-01

    Purpose: Evaluation of the results of perioperative interstitial brachytherapy with low dose-rate (L.D.R.) Ir-192 in the treatment of keloid scars. Patients and methods: We performed a retrospective analysis of 73 histologically confirmed keloids (from 58 patients) resistant to medico surgical treated by surgical excision plus early perioperative brachytherapy. All lesions were initially symptomatic. Local control was evaluated by clinical evaluation. Functional and cosmetic results were assessed in terms of patient responses to a self-administered questionnaire. Results: Median age was 28 years (range 13-71 years). Scars were located as follows: 37% on the face, 32% on the trunk or abdomen, 16% on the neck, and 15% on the arms or legs. The mean delay before loading was four hours (range, 1-6 h). The median dose was 20 Gy (range, 15-40 Gy). Sixty-four scars (from 53 patients) were evaluated. Local control was 86% (follow-up, 44.5 months; range, 14-150 months). All relapses occurred early within 2 years posttreatment. At 20 months, survival without recurrence was significantly lower when treated lengths were more than 6 cm long. The rate was 100% for treated scars below 4.5 cm in length, 95% (95% CI: 55-96) for those 4.5-6 cm long, and 75% (95% CI: 56-88) beyond 6 cm (p = 0.038). Of the 35 scars (28 patients) whose results were reassessed, six remained symptomatic and the esthetic results were considered to be good in 51% (18/35) and average in 37% (13/35) (median follow-up, 70 months; range, 16-181 months). Conclusion: Early perioperative L.D.R. brachytherapy delivering 20 Gy at 5 mm reduced the rate of recurrent keloids resistant to other treatments and gave good functional results. (authors)

  15. Dosimetry of iridium-192 sources used in brachytherapy

    International Nuclear Information System (INIS)

    Henn, Keli Cristina

    1999-09-01

    The use of high dose rate brachytherapy (HDR) has been increasing in recent years, due to several advantages relative to conventional low dose rate brachytherapy, such as: shorter treatment times, the ability to fractionate treatment (and thus perform many treatments on an outpatient basis) and reduced worker exposures. Most HDR equipment uses small, high activity 192 Ir sources, which are introduced into the patient using a remote system. The dose distribution around these sources is strongly dependent on the size and shape of the active volume and on the encapsulation of the source. The objective of this work is to compare two methods of calibrating sources of 192 Ir, mamely, measurements in air with an ionization thimble chamber or with a well-type ionization chamber. In addition, we measured the anisotropy of the sources and made comparisons with values supplied by the manufacturer, since this factor is taken into account in the planning system algorithm when dose distributions are calculated. The dose was also evaluated at points of clinical interest (i.e. in the rectum and bladder) and compared to values obtained with the Nucletron PLATO-BPS planning system. The use of lead for rectal protection was evaluated in a cylindrical applicator, aiming the further development of a gynecological applicator. The results of the calibration of seven sources showed that the uncertainty in the calibration in a 'jig' system is smaller than 1%, compared to the value supplied by the source manufacturer. The differences between the results obtained with the well-type ionization camera and the 'jig' system were around 2%. The anisotropy showed good agreement with the values supplied by the manufacturer. The results show that the anisotropy factors, in air and water, are approximately constant and equal to 1.0, for angles between 70 deg and 150 deg. For angles smaller than 70 deg the anisotropy factor in water is larger than in air. Results are also presented for 180 deg, which

  16. Experiences with alanine dosimetry in afterloading brachytherapy

    International Nuclear Information System (INIS)

    Eberhardt, H.-J.; Gohs, U.

    1996-01-01

    At the present, the most commonly used dosimetry for radiotherapy applications are ionisation chambers and thermoluminescent dosimeters (TLD). However, there are some undesirable characteristics of these dosimetry systems, such as large detection volume (ionisation chamber) as well as fading of the radiation induced signal with time and destructive readout (TLG). The present study is an investigation into the use of the alanine/ESR dosimetry in fractionated afterloading brachytherapy during the whole radiotherapy course. There are some qualities which make alanine dosimetry attractive. These are the linear energy response, low fading under standard conditions, and the nondestructive readout. Thus the alanine dosimetry makes possible cumulative dose measurements during the radiotherapy course and an archival storage. By ionizing radiation (gamma, e, n, p, charged particles) free radicals (unpaired electrons) are produced in the amino acid alanine. The continuous wave electron spin resonance (ESR) spectroscopy is used to determine the number of free radicals, which is proportional to the absorbed dose and the alanine content of the dosimeter. The ESR measurements were made at room temperature using a Bruker EPR analyzer EMS-104. The dosimeters used in the test are alanine pellets (23.72 mg weight, 4.9 mm diameter, 1 mm height) as well as flexible alanine film dosimeters (thickness about 500 μm). The dosimeters consist of a blend of L-alpha-alanine and a binder. The alanine content of the pellets and the film dosimeters is about 88 % and 50 % by weight, respectively. The dosimeters for the calculation of the dose-effect-relationship were irradiated at the Physical-Technical Bundesanstalt in Braunschweig by a standard 60Co source. The maximum deviation from the calculated linear function is about 0.12 Gy in the dose range up to 80 Gy. The goal of medical applications was the superficial dose measurement in afterloading brachytherapy during the radiotherapy course in

  17. High dose rate endobronchial brachytherapy - treatment technique

    International Nuclear Information System (INIS)

    Carvalho, Heloisa de Andrade; Aisen, Salim; Haddad, Cecilia Maria Kalil; Nadalin, Wladimir; Pedreira Junior, Wilson Leite; Chavantes, Maria Cristina

    1998-01-01

    High dose rate endobronchial brachytherapy is efficient in symptom relief due to obstructive endobronchial malignancies. However, it's role in survival improvement for patients with lung cancer is not yet established. The use of this treatment in increasing, specially in the developing countries. The purpose of this paper is to present the treatment technique used in the Radiotherapy Department of the Hospital da Clinicas, University of Sao Paulo, based on an experience of 60 cases treated with 180 procedures. Some practical suggestions and rules adopted in the Department are described. The severe complications rate is 6.7%, demonstrating an adequate patient selection associated with the technique utilized. (author)

  18. An afterloading brachytherapy device utilizing thermoplastic material

    International Nuclear Information System (INIS)

    Kim, T.H.; Gerbi, J.B.; Deibel, F.C.; Khan, F.M.; Priest, J.R.

    1989-01-01

    An afterloading brachytherapy device for treatment of residual cancer in an enucleated orbit with two cesium-137 sources was designed using a thermoplastic material, Aquaplast. The device consists of a face-mask support held in place with elastic bands around the head and an acrylic afterloading applicator. The device is very easy to make, holds the sources firmly in place, allows full mobility of the patient, and gives excellent dose distribution to the target area. It was easily tolerated by a 7-year-old child during the 50 h of treatment. (author). 3 refs.; 4 figs

  19. A study of Brachytherapy for Intraocular Tumor

    International Nuclear Information System (INIS)

    Ji, Kwang Soo; Yoo, Dae Hyun; Lee, Sung Goo; Kim, Jae Hu; Ji, Young Hun

    1996-01-01

    The eye enucleation or external-beam radiation therapy that has been commonly used for the treatment of intraocular tumor have demerits of visual loss and in deficiency of effective tumor dose. Recently, brachytherapy using the plaques containing radioisotope-now treatment method that decrease the demerits of the above mentioned treatment methods and increase the treatment effect-is introduced and performed in the countries, Our purpose of this research is to design suitable shape of plaque for the ophthalmic brachytherapy, and to measure absorbed doses of Ir-192 ophthalmic plaque and thereby calculate the exact radiation dose of tumor and it's adjacent normal tissue. In order to brachytherapy for intraocular tumor, 1. to determine the eye model and selected suitable radioisotope 2. to design the suitable shape of plaque 3. to measure transmission factor and dose distribution for custom made plaques 4. to compare with the these data and results of computer dose calculation models. The result were as followed. 1. Eye model was determined as a 25 mm diameter sphere, Ir-192 was considered the most appropriate as radioisotope for brachytherapy, because of the size, half, energy and availability. 2. Considering the biological response with human tissue and protection of exposed dose, we made the plaques with gold, of which size were 15 mm, 17 mm and 20 mm in diameter, and 1.5 mm in thickness. 3. Transmission factor of plaques are all 0.71 with TLD and film dosimetry at the surface of plaques and 0.45, 0.49 at 1.5 mm distance of surface, respectively. 4. As compared the measured data for the plaque with Ir-192 seeds to results of computer dose calculation model by Gary Luxton et al. and CAP-PLAN (Radiation Treatment Planning System), absorbed doses are within ±10% and distance deviations are within 0.4 mm Maximum error is -11.3% and 0.8 mm, respectively. As a result of it, we can treat the intraocular tumor more effectively by using custom made gold plaque and Ir-192

  20. High dose rate brachytherapy for superficial cancer of the esophagus

    International Nuclear Information System (INIS)

    Maingon, Philippe; D'Hombres, Anne; Truc, Gilles; Barillot, Isabelle; Michiels, Christophe; Bedenne, Laurent; Horiot, Jean Claude

    2000-01-01

    Purpose: We analyzed our experience with external radiotherapy, combined modality treatment, or HDR brachytherapy alone to limited esophageal cancers. Methods and Materials: From 1991 to 1996, 25 patients with limited superficial esophagus carcinomas were treated by high dose rate brachytherapy. The mean age was 63 years (43-86 years). Five patients showed superficial local recurrence after external radiotherapy. Eleven patients without invasion of the basal membrane were staged as Tis. Fourteen patients with tumors involving the submucosa without spreading to the muscle were staged as T1. Treatment consisted of HDR brachytherapy alone in 13 patients, external radiotherapy and brachytherapy in 8 cases, and concomitant chemo- and radiotherapy in 4 cases. External beam radiation was administered to a total dose of 50 Gy using 2 Gy daily fractions in 5 weeks. In cases of HDR brachytherapy alone (13 patients), 6 applications were performed once a week. Results: The mean follow-up is 31 months (range 24-96 months). Twelve patients received 2 applications and 13 patients received 6 applications. Twelve patients experienced a failure (48%), 11/12 located in the esophagus, all of them in the treated volume. One patient presented an isolated distant metastasis. In the patients treated for superficial recurrence, 4/5 were locally controlled (80%) by brachytherapy alone. After brachytherapy alone, 8/13 patients were controlled (61%). The mean disease-free survival is 14 months (1-36 months). Overall survival is 76% at 1 year, 37% at 2 years, and 14% at 3 years. Overall survival for Tis patients is 24% vs. 20% for T1 (p 0.83). Overall survival for patients treated by HDR brachytherapy alone is 43%. One patient presented with a fistula with local failure after external radiotherapy and brachytherapy. Four stenosis were registered, two were diagnosed on barium swallowing without symptoms, and two required dilatations. Conclusion: High dose rate brachytherapy permits the treating

  1. Physics and quality assurance for high dose rate brachytherapy

    International Nuclear Information System (INIS)

    Anderson, Lowell L.

    1995-01-01

    Purpose: To review the physical aspects of high dose rate (HDR) brachytherapy, including commissioning and quality assurance, source calibration and dose distribution measurements, and treatment planning methods. Following the introduction of afterloading in brachytherapy, development efforts to make it 'remote' culminated in 1964 with the near-simultaneous appearance of remote afterloaders in five major medical centers. Four of these machines were 'high dose rate', three employing 60Co and one (the GammaMed) using a single, cable-mounted 192Ir source. Stepping-motor source control was added to the GammaMed in 1974, making it the precursor of modern remote afterloaders, which are now suitable for interstitial as well as intracavitary brachytherapy by virtue of small source-diameter and indexer-accessed multiple channels. Because the 192Ir sources currently used in HDR remote afterloaders are supplied at a nominal air-kerma strength of 11.4 cGy cm2 s-1 (10 Ci), are not collimated in clinical use, and emit a significant fraction (15%) of photons at energies greater than 600 keV, shielding and facility design must be undertaken as carefully and thoroughly as for external beam installations. Licensing requirements of regulatory agencies must be met with respect both to maximum permissible dose limits and to the existence and functionality of safety devices (door interlocks, radiation monitors, etc.). Commissioning and quality assurance procedures that must be documented for HDR remote afterloading relate to (1) machine, applicator, guide-tube, and facility functionality checks, (2) source calibration, (3) emergency response readiness, (4) planning software evaluation, and (5) independent checks of clinical dose calculations. Source calibration checks must be performed locally, either by in-air measurement of air kerma strength or with a well ionization chamber calibrated (by an accredited standards laboratory) against an in-air measurement of air kerma strength for the

  2. Home advantage in professional tennis

    NARCIS (Netherlands)

    Koning, Ruud H.

    2011-01-01

    Home advantage is a pervasive phenomenon in sport. It has been established in team sports such as basketball, baseball, American football, and European soccer. Attention to home advantage in individual sports has so far been limited. The aim of this study was to examine home advantage in

  3. How to optimize therapeutic ratio in brachytherapy of head and neck squamous cell carcinoma?

    International Nuclear Information System (INIS)

    Mazeron, J.J.; Simon, J.M.; Hardiman, C.; Gerbaulet, A.

    1998-01-01

    Considerable experience has been accumulated with low dose rate (LDR) brachytherapy in the treatment of squamous cell carcinoma of the oral cavity and oropharynx, 4 cm or less in diameter. Recent analysis of large clinical series provided data indicating that modalities of LDR brachytherapy should be optimized in treating these tumours for increasing therapeutic ratio. LDR brachytherapy is now challenged by high dose rate (HDR) brachytherapy and pulsed dose rate (PDR) brachytherapy. Preliminary results obtained with the last two modalities are discussed in comparison with those achieved with LDR brachytherapy. (orig.)

  4. Evaluation of resins for use in brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Luiz Claudio F.M. Garcia; Ferraz, Wilmar Barbosa; Chrcanovic, Bruno Ramos; Santos, Ana Maria M., E-mail: ferrazw@cdtn.b, E-mail: amms@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Brachytherapy is an advanced cancer treatment where radioactive seeds or sources are placed near or directly into the tumor thus reducing the radiation exposure in the surrounding healthy tissues. Prostate cancer can be treated with interstitial brachytherapy in initial stage of the disease in which tiny radioactive seeds with cylindrical geometry are used. Several kinds of seeds have been developed in order to obtain a better dose distribution around them and with a lower cost manufacturing. These seeds consist of an encapsulation, a radionuclide carrier, and X-ray marker. Among the materials that have potential for innovation in the construction of seeds, biocompatible resins appear as an important option. In this paper, we present some characterization results with Fourier transform infrared spectroscopic (FTIR) and ultraviolet-visible spectroscopy (UV-vis) performed on two types of resins in which curing temperatures for each one were varied as also the results of coatings with these resins under titanium substrates. Interactions of these resins in contact with the simulated body fluid were evaluated by atomic force microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. (author)

  5. A study of brachytherapy for intraocular tumor

    International Nuclear Information System (INIS)

    Ji, Yung Hoon; Lee, Dong Han; Ko, Kyung Hwan; Lee, Tae Won; Lee, Sung Koo; Choi, Moon Sik

    1994-12-01

    Our purpose of this study is to perform brachytherapy for intraocular tumor. The result were as followed. 1. Eye model was determined as a 25 mm diameter sphere. Ir-192 was considered the most appropriate as radioisotope for brachytherapy, because of the size, half, energy and availability. 2. Considering the biological response with human tissue and protection of exposed dose, we made the plaques with gold, of which size were 15 mm, 17 mm and 20 mm in diameter, and 1.5 mm in thickness. 3. Transmission factor of plaques are all 0.71 with TLD and film dosimetry at the surface of plaques and 0.45, 0.49 at 1.5 mm distance of surface, respectively. 4. As compared the measured data for the plaque with Ir-192 seeds to results of computer dose calculation model by Gary Luxton et al. and CAP-PLAN (Radiation Treatment Planning System), absorbed doses are within ±10% and distance deviations are within 0.4 mm. Maximum error is -11.3% and 0.8 mm, respectively. 7 figs, 2 tabs, 28 refs. (Author)

  6. The Activity Check of Brachytherapy Isotope

    International Nuclear Information System (INIS)

    Kim, Gun Oh; Lee, Byung Koo; Kwon, Young Ho

    2004-01-01

    An isotope Ir-192, which is used in brachytherapy depends on import in whole quantities. There are a few ways for its activity. measurement using Welltype chamber or the way to rely on authentic decay table of manufacturer. In-air dosimetry using Farmer Chamber, etc. In this paper, let me introduce the way using Farmer chamber which is easier and simple. With the Farmer chamber and source calibration jig, take a measurement the activity of an isotope Ir-192 and compare the value with the value from decay table of manufacturer and check the activity of source. The result of measurement, compared the value from decay table, by ±2.1. (which belongs to recommendable value for AAPM ±5% as difference of error range). It is possible to use on clinical medicine. With the increase in use of brachytherapy, the increase of import is essential. And an accurate activity check of source is compulsory. For the activity check of source, it was possible to use Farmer chamber and source calibration jig without additional purchase of Well type chamber.

  7. Radiotherapy and Brachytherapy : Proceedings of the NATO Advanced Study Institute on Physics of Modern Radiotherapy & Brachytherapy

    CERN Document Server

    Lemoigne, Yves

    2009-01-01

    This volume collects a series of lectures presented at the tenth ESI School held at Archamps (FR) in November 2007 and dedicated to radiotherapy and brachytherapy. The lectures focus on the multiple facets of radiotherapy in general, including external radiotherapy (often called teletherapy) as well as internal radiotherapy (called brachytherapy). Radiotherapy strategy and dose management as well as the decisive role of digital imaging in the associated clinical practice are developed in several articles. Grouped under the discipline of Conformal Radiotherapy (CRT), numerous modern techniques, from Multi-Leaf Collimators (MLC) to Intensity Modulated RadioTherapy (IMRT), are explained in detail. The importance of treatment planning based upon patient data from digital imaging (Computed Tomography) is also underlined. Finally, despite the quasi- totality of patients being presently treated with gamma and X-rays, novel powerful tools are emerging using proton and light ions (like carbon ions) beams, bound to bec...

  8. Brachytherapy. High dose rate brachytherapy - Radiation protection: medical sheet ED 4287

    International Nuclear Information System (INIS)

    Celier, D.; Aubert, B.; Vidal, J.P.; Biau, A.; Lahaye, T.; Gauron, C.; Barret, C.; Boisserie, G.; Branchet, E.; Gambini, D.; Gondran, C.; Le Guen, B.; Guerin, C.; Nguyen, S.; Pierrat, N.; Sarrazin, T.; Donnarieix, D.

    2010-02-01

    After having indicated the required authorization to implement brachytherapy techniques, this document presents the various aspects and measures related to radiation protection when performing high-dose-rate brachytherapy treatments. It presents the concerned personnel, describes the operational process, indicates the associated hazards and the risk related to ionizing radiation, and describes how the risk is to be assessed and how exposure levels are to be determined (elements of risk assessment, delimitation of controlled and monitored areas, personnel classification, and choice of the dose monitoring method). It describes the various components of a risk management strategy (risk reduction, technical measures regarding the installation and the personnel, training and information, prevention and medical monitoring). It briefly presents how risk management is to be assessed, and mentions other related risks (biological risk, handling and posture, handling of heavy loads, mental workload, chemical risk)

  9. Brachytherapy. Pulsed dose rate brachytherapy - Radiation protection: medical sheet ED 4250

    International Nuclear Information System (INIS)

    Celier, D.; Aubert, B.; Vidal, J.P.; Biau, A.; Lahaye, T.; Gauron, C.; Barret, C.; Boisserie, G.; Branchet, E.; Gambini, D.; Gondran, C.; Le Guen, B.; Guerin, C.; Nguyen, S.; Pierrat, N.; Sarrazin, T.; Donnarieix, D.

    2009-06-01

    After having indicated the required authorization to implement brachytherapy techniques, this document presents the various aspects and measures related to radiation protection when performing pulsed-dose-rate brachytherapy treatments. It presents the concerned personnel, describes the operational process, indicates the associated hazards and the risk related to ionizing radiation, and describes how the risk is to be assessed and how exposure levels are to be determined (elements of risk assessment, delimitation of controlled and monitored areas, personnel classification, and choice of the dose monitoring method). It describes the various components of a risk management strategy (risk reduction, technical measures regarding the installation and the personnel, training and information, prevention and medical monitoring). It briefly presents how risk management is to be assessed, and mentions other related risks (biological risk, handling and posture, handling of heavy loads, mental workload, chemical risk)

  10. Manual on brachytherapy. Incorporating: Applications guide, procedures guide, basics guide

    International Nuclear Information System (INIS)

    1992-01-01

    In addition to a basic guide to the principles of the production of ionizing radiation and to methods of radiation protection and dosimetry, this booklet includes information about radiation protection procedures for brachytherapy

  11. BRIT manual after loading brachytherapy kit for intracavitary: initial experience

    International Nuclear Information System (INIS)

    Aggarwal, Lalit M.; Mandal, Abhijit; Asthana, Anupam K.; Shahi, Uday P.; Pradhan, Satyajit

    2007-01-01

    Brachytherapy continues to serve as an important and rapidly evolving tool in the management of cancer. Technological developments in the last two decades have dramatic impact on the safe practice of brachytherapy. A wide range of brachytherapy sources and equipment are available for new therapeutic possibilities. However, decision making with regard to new brachytherapy facilities are need based and depend on the patient load, socioeconomic status of the patients, and funds available with the institution. Remote afterloading equipments are fast replacing the Manual After Loading (MAL) systems. However, keeping in view the large number of patients, who can not afford expensive treatment, the utility of manual after loading system which is inexpensive, cannot be ignored

  12. Intra-luminal brachytherapy of bile duct tumors

    International Nuclear Information System (INIS)

    Udaya Kumar Maiya, M.; Bhat, Naresh; Praveen, L.S.

    2000-01-01

    The objective of this study has been to assess the feasibility of intraluminal brachytherapy of the biliary ductal system. The technique of the procedure with its attendant problems and how to overcome the same will be discussed in detail

  13. Dose escalation using conformal high-dose-rate brachytherapy improves outcome in unfavorable prostate cancer.

    Science.gov (United States)

    Martinez, Alvaro A; Gustafson, Gary; Gonzalez, José; Armour, Elwood; Mitchell, Chris; Edmundson, Gregory; Spencer, William; Stromberg, Jannifer; Huang, Raywin; Vicini, Frank

    2002-06-01

    To overcome radioresistance for patients with unfavorable prostate cancer, a prospective trial of pelvic external beam irradiation (EBRT) interdigitated with dose-escalating conformal high-dose-rate (HDR) prostate brachytherapy was performed. Between November 1991 and August 2000, 207 patients were treated with 46 Gy pelvic EBRT and increasing HDR brachytherapy boost doses (5.50-11.5 Gy/fraction) during 5 weeks. The eligibility criteria were pretreatment prostate-specific antigen level >or=10.0 ng/mL, Gleason score >or=7, or clinical Stage T2b or higher. Patients were divided into 2 dose levels, low-dose biologically effective dose 93 Gy (149 patients). No patient received hormones. We used the American Society for Therapeutic Radiology and Oncology definition for biochemical failure. The median age was 69 years. The mean follow-up for the group was 4.4 years, and for the low and high-dose levels, it was 7.0 and 3.4 years, respectively. The actuarial 5-year biochemical control rate was 74%, and the overall, cause-specific, and disease-free survival rate was 92%, 98%, and 68%, respectively. The 5-year biochemical control rate for the low-dose group was 52%; the rate for the high-dose group was 87% (p failure. The Radiation Therapy Oncology Group Grade 3 gastrointestinal/genitourinary complications ranged from 0.5% to 9%. The actuarial 5-year impotency rate was 51%. Pelvic EBRT interdigitated with transrectal ultrasound-guided real-time conformal HDR prostate brachytherapy boost is both a precise dose delivery system and a very effective treatment for unfavorable prostate cancer. We demonstrated an incremental beneficial effect on biochemical control and cause-specific survival with higher doses. These results, coupled with the low risk of complications, the advantage of not being radioactive after implantation, and the real-time interactive planning, define a new standard for treatment.

  14. American Brachytherapy Society consensus report for accelerated partial breast irradiation using interstitial multicatheter brachytherapy.

    Science.gov (United States)

    Hepel, Jaroslaw T; Arthur, Douglas; Shaitelman, Simona; Polgár, Csaba; Todor, Dorin; Zoberi, Imran; Kamrava, Mitchell; Major, Tibor; Yashar, Catheryn; Wazer, David E

    To develop a consensus report for the quality practice of accelerated partial breast irradiation (APBI) using interstitial multicatheter brachytherapy (IMB). The American Brachytherapy Society Board appointed an expert panel with clinical and research experience with breast brachytherapy to provide guidance for the current practice of IMB. This report is based on a comprehensive literature review with emphasis on randomized data and expertise of the panel. Randomized trials have demonstrated equivalent efficacy of APBI using IMB compared with whole breast irradiation for select patients with early-stage breast cancer. Several techniques for placement of interstitial catheters are described, and importance of three-dimensional planning with appropriate optimization is reviewed. Optimal target definition is outlined. Commonly used dosing schemas include 50 Gy delivered in pulses of 0.6-0.8 Gy/h using pulsed-dose-rate technique and 34 Gy in 10 fractions, 32 Gy in eight fractions, or 30 Gy in seven fractions using high-dose-rate technique. Potential toxicities and strategies for toxicity avoidance are described in detail. Dosimetric constraints include limiting whole breast volume that receives ≥50% of prescription dose to 0.75 (>0.85 preferred), V 150  < 45 cc, and V 200  < 14 cc. Using an optimal implant technique coupled with optimal planning and appropriate dose constraints, a low rate of toxicity and a good-to-excellent cosmetic outcome of ≥90% is expected. IMB is an effective technique to deliver APBI for appropriately selected women with early-stage breast cancer. This consensus report has been created to assist clinicians in the appropriate practice of APBI using IMB. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  15. Resolving the brachytherapy challenges with government funded hospital.

    Science.gov (United States)

    Nikam, D S; Jagtap, A S; Vinothraj, R

    2016-01-01

    The objective of this study is to rationalize the feasibility and cost-effectiveness of high dose rate (HDR) cobalt 60 (Co-60) source versus 192-Iridium (192-Ir) source brachytherapy in government funded hospitals and treatment interruption gap because of exchange of sources. A retrospective study of gynecological cancer patients, treated by radiotherapy with curative intent between April 2005 and September 2012 was conducted. We analyzed the total number of patients treated for external beam radiotherapy (EBRT) and brachytherapy (Intracavitary brachytherapy or cylindrical vaginal source). The dates for 192-Ir sources installation and the last date and first date of brachytherapy procedure before and after source installation respectively were also analyzed and calculated the gap in days for brachytherapy interruptions. The study was analyzed the records of 2005 to September 2012 year where eight 192-Ir sources were installed. The mean gap between treatment interruptions was 123.12 days (range 1-647 days). The Institutional incidence of gynecological cancer where radiotherapy was treatment modality (except ovary) is 34.9 percent. Around 52.25 percent of patients who received EBRT at this institute were referred to outside hospital for brachytherapy because of unavailability of Iridium source. The cost for 5 year duration for single cobalt source is approximately 20-22 lakhs while for 15 Iridium sources is approximately 52-53 lakhs. The combined HDR Co-60 brachytherapy and EBRT provide a useful modality in the treatment of gynecological cancer where radiotherapy is indicated, the treatment interruption because of source exchange is longer and can be minimized by using cobalt source as it is cost-effective and has 5 year working life. Thus, Co-60 source for brachytherapy is a feasible option for government funded hospitals in developing countries.

  16. Review of advanced catheter technologies in radiation oncology brachytherapy procedures

    OpenAIRE

    Zhou J; Zamdborg L; Sebastian E

    2015-01-01

    Jun Zhou,1,2 Leonid Zamdborg,1 Evelyn Sebastian1 1Department of Radiation Oncology, Beaumont Health System, 2Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA Abstract: The development of new catheter and applicator technologies in recent years has significantly improved treatment accuracy, efficiency, and outcomes in brachytherapy. In this paper, we review these advances, focusing on the performance of catheter imaging and reconstruction techniques in brachytherapy ...

  17. High versus low-dose rate brachytherapy for cervical cancer.

    Science.gov (United States)

    Patankar, Sonali S; Tergas, Ana I; Deutsch, Israel; Burke, William M; Hou, June Y; Ananth, Cande V; Huang, Yongmei; Neugut, Alfred I; Hershman, Dawn L; Wright, Jason D

    2015-03-01

    Brachytherapy plays an important role in the treatment of cervical cancer. While small trials have shown comparable survival outcomes between high (HDR) and low-dose rate (LDR) brachytherapy, little data is available in the US. We examined the utilization of HDR brachytherapy and analyzed the impact of type of brachytherapy on survival for cervical cancer. Women with stages IB2-IVA cervical cancer treated with primary (external beam and brachytherapy) radiotherapy between 2003-2011 and recorded in the National Cancer Database (NCDB) were analyzed. Generalized linear mixed models and Cox proportional hazards regression were used to examine predictors of HDR brachytherapy use and the association between HDR use and survival. A total of 10,564 women including 2681 (25.4%) who received LDR and 7883 (74.6%) that received HDR were identified. Use of HDR increased from 50.2% in 2003 to 83.9% in 2011 (Puse of HDR. While patients in the Northeast were more likely to receive HDR therapy, there were no other clinical or socioeconomic characteristics associated with receipt of HDR. In a multivariable Cox model, survival was similar between the HDR and LDR groups (HR=0.93; 95% CI 0.83-1.03). Similar findings were noted in analyses stratified by stage and histology. Kaplan-Meier analyses demonstrated no difference in survival based on type of brachytherapy for stage IIB (P=0.68), IIIB (P=0.17), or IVA (P=0.16) tumors. The use of HDR therapy has increased rapidly. Overall survival is similar for LDR and HDR brachytherapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Image-robot coupling for the prostate brachytherapy

    International Nuclear Information System (INIS)

    Coelen, V.; Lartigau, E.; Merzouki, R.

    2009-01-01

    The results allows to contemplate a robot use in the prostate brachytherapy but equally in other applications such prostate biopsy. The tests to come are going to be directed towards on the use of a prostate phantom in order to calibrate the ultrasonography. thereafter, we contemplate the conception of an intelligent gripping system placed on the robot arm and allowing a good control in closed loop of the brachytherapy needle placement and allowing the setting up of an online monitoring. (N.C.)

  19. SU-E-J-233: Effect of Brachytherapy Seed Artifacts in T2 and Proton Density Maps in MR Images

    Energy Technology Data Exchange (ETDEWEB)

    Mashouf, S [Sunnybrook Odette Cancer Centre, Toronto, Ontario (Canada); University of Toronto, Dept of Radiation Oncology, Toronto, Ontario (Canada); Fatemi-Ardekani, A [Sunnybrook Odette Cancer Centre, Toronto, Ontario (Canada); Sunnybrook Research Institute, Toronto, Ontario (Canada); Song, W [Sunnybrook Odette Cancer Centre, Toronto, Ontario (Canada); University of Toronto, Dept of Radiation Oncology, Toronto, Ontario (Canada); Sunnybrook Research Institute, Toronto, Ontario (Canada)

    2015-06-15

    Purpose: This study aims at investigating the influence of brachytherapy seeds on T2 and proton density (PD) maps generated from MR images. Proton density maps can be used to extract water content. Since dose absorbed in tissue surrounding low energy brachytherapy seeds are highly influenced by tissue composition, knowing the water content is a first step towards implementing a heterogeneity correction algorithm using MR images. Methods: An LDR brachytherapy (IsoAid Advantage Pd-103) seed was placed in the middle of an agar-based gel phantom and imaged using a 3T Philips MR scanner with a 168-channel head coil. A multiple echo sequence with TE=20, 40, 60, 80, 100 (ms) with large repetition time (TR=6259ms) was used to extract T2 and PD maps. Results: Seed artifacts were considerably reduced on T2 maps compared to PD maps. The variation of PD around the mean was obtained as −97% to 125% (±1%) while for T2 it was recorded as −71% to 24% (±1%). Conclusion: PD maps which are required for heterogeneity corrections are susceptible to artifacts from seeds. Seed artifacts on T2 maps, however, are significantly reduced due to not being sensitive to B0 field variation.

  20. MO-B-BRC-01: Introduction [Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Prisciandaro, J. [University of Michigan (United States)

    2016-06-15

    Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR is U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.

  1. Electronic brachytherapy management of atypical fibroxanthoma: report of 8 lesions

    Directory of Open Access Journals (Sweden)

    Stephen Doggett

    2017-01-01

    Full Text Available Purpose : To evaluate the suitability of treating atypical fibroxanthoma (AFX, an uncommon skin malignancy, with electronic brachytherapy. Material and methods : From Feb 2013 to Sep 2014, we were referred a total of 8 cases of AFX in 7 patients, all involving the scalp. All of them were treated with electronic brachytherapy 50 Kev radiations (Xoft Axxent®, Fremont, California. All lesions received 40 Gy in two fractions per week with 5mm margins. Results : At a median follow-up of 23.7 months, the local recurrence rate is 12.5%. The single lesion that failed was not debulked surgically prior to electronic brachytherapy. Conclusions : To our knowledge, this is the first report in the literature on the use of radiation therapy as curative primary treatment for AFX. No contraindication to the use of radiations is found in the literature, with surgery being the sole treatment for AFX noted. Our recurrence rate is 0% for debulked lesions. Risk of recurrence is mitigated with surgical debulking prior to brachytherapy. Electronic brachytherapy appears to be a safe and effective treatment for debulked AFX. Multiple excisions, skin grafting, and wound care can be avoided in elderly patients by the use of electronic brachytherapy.

  2. Competitive advantage and corporate communications

    Directory of Open Access Journals (Sweden)

    Mitić Sanja

    2013-01-01

    Full Text Available Strategic importance of corporate communications and its role in the development of competitive advantage has attracted interest of numerous researchers in the fields of organization, management, marketing and public relations. Recent studies particularly emphasise the growing importance of soft factors, such as reputation in the development of competitive advantage. Concept of reputation is strongly connected with stakeholder theory, which stresses the importance of corporate communications for competitive advantage of firms. The paper focuses on competitive advantage and the link among strategy, reputation and corporate communications.

  3. Overview of brachytherapy resources in Europe: A survey of patterns of care study for brachytherapy in Europe

    International Nuclear Information System (INIS)

    Guedea, Ferran; Ellison, Tracey; Venselaar, Jack; Borras, Josep Maria; Hoskin, Peter; Poetter, Richard; Heeren, Germaine; Nisin, Roselinne; Francois, Guy; Mazeron, Jean Jacques; Limbergen, Erik Van; Ventura, Montserrat; Taillet, Michel; Cottier, Brian

    2007-01-01

    Background and purpose: The Patterns of Care for Brachytherapy in Europe (PCBE) study is aimed at establishing a detailed information system on brachytherapy throughout Europe. Materials and methods: The questionnaire was web-based and the analysis used data from each radiotherapy department with brachytherapy. There were three groups: Group I with 19 countries (15 initial European Community (EC) countries plus Iceland, Monaco, Norway and Switzerland -EC+4-), Group II with 10 countries (New European Community countries -NEC-) and Group III with 14 countries (Other European Countries -OEC-). Results: In the European area there are 36 of 43 countries (85%) which achieved data collection from at least 50% of centres, and were included in the analysis. The tumour site that had the largest number of treated patients was gynaecological tumours. Several variations have been found in the mean number of patients treated per consultant radiation oncologist and physicist; and in the proportion of brachytherapy patients with gynaecology, prostate and breast tumours, by country and by European area. The provided data showed that the average number of brachytherapy patients per centre increased by 10% between 1997 and 2002. Conclusions: A European wide evaluation of brachytherapy practice using a web-based questionnaire is feasible and that there is considerable variation in both patterns of practice and available resources

  4. Dose escalation using conformal high-dose-rate brachytherapy improves outcome in unfavorable prostate cancer

    International Nuclear Information System (INIS)

    Martinez, Alvaro A.; Gustafson, Gary; Gonzalez, Jose; Armour, Elwood; Mitchell, Chris; Edmundson, Gregory; Spencer, William; Stromberg, Jannifer; Huang, Raywin; Vicini, Frank

    2002-01-01

    Purpose: To overcome radioresistance for patients with unfavorable prostate cancer, a prospective trial of pelvic external beam irradiation (EBRT) interdigitated with dose-escalating conformal high-dose-rate (HDR) prostate brachytherapy was performed. Methods and Materials: Between November 1991 and August 2000, 207 patients were treated with 46 Gy pelvic EBRT and increasing HDR brachytherapy boost doses (5.50-11.5 Gy/fraction) during 5 weeks. The eligibility criteria were pretreatment prostate-specific antigen level ≥10.0 ng/mL, Gleason score ≥7, or clinical Stage T2b or higher. Patients were divided into 2 dose levels, low-dose biologically effective dose 93 Gy (149 patients). No patient received hormones. We used the American Society for Therapeutic Radiology and Oncology definition for biochemical failure. Results: The median age was 69 years. The mean follow-up for the group was 4.4 years, and for the low and high-dose levels, it was 7.0 and 3.4 years, respectively. The actuarial 5-year biochemical control rate was 74%, and the overall, cause-specific, and disease-free survival rate was 92%, 98%, and 68%, respectively. The 5-year biochemical control rate for the low-dose group was 52%; the rate for the high-dose group was 87% (p<0.001). Improvement occurred in the cause-specific survival in favor of the brachytherapy high-dose level (p=0.014). On multivariate analysis, a low-dose level, higher Gleason score, and higher nadir value were associated with increased biochemical failure. The Radiation Therapy Oncology Group Grade 3 gastrointestinal/genitourinary complications ranged from 0.5% to 9%. The actuarial 5-year impotency rate was 51%. Conclusion: Pelvic EBRT interdigitated with transrectal ultrasound-guided real-time conformal HDR prostate brachytherapy boost is both a precise dose delivery system and a very effective treatment for unfavorable prostate cancer. We demonstrated an incremental beneficial effect on biochemical control and cause

  5. Adjuvant high dose rate vaginal cuff brachytherapy for early stage endometrial cancer

    International Nuclear Information System (INIS)

    Tannehill, S.P.; Petereit, D.G.; Schink, J.C.; Grosen, E.A.; Hartenbach, E.M.; Thomadsen, B.R.; Buchler, D.A.

    1997-01-01

    outpatient insertions is effective in preventing vaginal cuff recurrences in women with early stage endometrial cancer with essentially no late tissue effects. The advantages of HDR VCB compared to LDR VCB include patient convenience, markedly shorter treatment times (1 hr per insertion) and a reduction in the cost and potential morbidity of hospitalization. This brachytherapy approach is a cost-effective alternative to either low dose rate brachytherapy or no further therapy

  6. Fast prostate segmentation for brachytherapy based on joint fusion of images and labels

    Science.gov (United States)

    Nouranian, Saman; Ramezani, Mahdi; Mahdavi, S. Sara; Spadinger, Ingrid; Morris, William J.; Salcudean, Septimiu E.; Abolmaesumi, Purang

    2014-03-01

    Brachytherapy as one of the treatment methods for prostate cancer takes place by implantation of radioactive seeds inside the gland. The standard of care for this treatment procedure is to acquire transrectal ultrasound images of the prostate which are segmented in order to plan the appropriate seed placement. The segmentation process is usually performed either manually or semi-automatically and is associated with subjective errors because the prostate visibility is limited in ultrasound images. The current segmentation process also limits the possibility of intra-operative delineation of the prostate to perform real-time dosimetry. In this paper, we propose a computationally inexpensive and fully automatic segmentation approach that takes advantage of previously segmented images to form a joint space of images and their segmentations. We utilize joint Independent Component Analysis method to generate a model which is further employed to produce a probability map of the target segmentation. We evaluate this approach on the transrectal ultrasound volume images of 60 patients using a leave-one-out cross-validation approach. The results are compared with the manually segmented prostate contours that were used by clinicians to plan brachytherapy procedures. We show that the proposed approach is fast with comparable accuracy and precision to those found in previous studies on TRUS segmentation.

  7. Indications and technical aspects of brachytherapy in breast conserving treatment of breast cancer

    International Nuclear Information System (INIS)

    Erik Van, Limbergen

    2003-01-01

    Improved local control rates have been demonstrated in retrospective studies as well as in randomized trials on brachytherapy with increasing doses to the tumour bed. The higher local control obtained by interstitial breast implants, as compared to external photon or electron beam boosts, have been mainly attributed to the higher doses actually delivered to the tumour bed by these implants for the same nominal dose as compared to external beam radiotherapy (RT). On the other hand, poor cosmesis has also been correlated with radiation dose to the breast skin (radiation telangiectases), and breast tissue (retraction due to fibrosis), the latter depending not only on RT dose but also on the treated boost volume. For this reason, a possible benefit of interstitial implants will only be realized when the gain in local control goes together with minimal cosmetic damage. Therefore, the ballistic advantages of interstitial implants have to be maximally exploited: i.e. the treated volume should be maximally adapted to the target volume, and additional irradiation of the breast skin by the boost technique should be avoided. This paper deals in detail with the technical aspects of breast brachytherapy that seem to be relevant for high quality outcome. (author)

  8. Dose heterogeneity correction for low-energy brachytherapy sources using dual-energy CT images

    Science.gov (United States)

    Mashouf, S.; Lechtman, E.; Lai, P.; Keller, B. M.; Karotki, A.; Beachey, D. J.; Pignol, J. P.

    2014-09-01

    Permanent seed implant brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose around brachytherapy sources is based on the AAPM TG-43 formalism, which generates the dose in a homogeneous water medium. Recently, AAPM TG-186 emphasized the importance of accounting for tissue heterogeneities. We have previously reported on a methodology where the absorbed dose in tissue can be obtained by multiplying the dose, calculated by the TG-43 formalism, by an inhomogeneity correction factor (ICF). In this work we make use of dual energy CT (DECT) images to extract ICF parameters. The advantage of DECT over conventional CT is that it eliminates the need for tissue segmentation as well as assignment of population based atomic compositions. DECT images of a heterogeneous phantom were acquired and the dose was calculated using both TG-43 and TG-43 × \\text{ICF} formalisms. The results were compared to experimental measurements using Gafchromic films in the mid-plane of the phantom. For a seed implant configuration of 8 seeds spaced 1.5 cm apart in a cubic structure, the gamma passing score for 2%/2 mm criteria improved from 40.8% to 90.5% when ICF was applied to TG-43 dose distributions.

  9. Non-uniform dwell times in line source high dose rate brachytherapy: physical and radiobiological considerations

    International Nuclear Information System (INIS)

    Jones, B.; Tan, L.T.; Freestone, G.; Bleasdale, C.; Myint, S.; Littler, J.

    1994-01-01

    The ability to vary source dwell times in high dose rate (HDR) brachytherapy allows for the use of non-uniform dwell times along a line source. This may have advantages in the radical treatment of tumours depending on individual tumour geometry. This study investigates the potential improvements in local tumour control relative to adjacent normal tissue isoeffects when intratumour source dwell times are increased along the central portion of a line source (technique A) in radiotherapy schedules which include a relatively small component of HDR brachytherapy. Such a technique is predicted to increase the local control for tumours of diameters ranging between 2 cm and 4 cm by up to 11% compared with a technique in which there are uniform dwell times along the line source (technique B). There is no difference in the local control rates for the two techniques when used to treat smaller tumours. Normal tissue doses are also modified by the technique used. Technique A produces higher normal tissue doses at points perpendicular to the centre of the line source and lower dose at points nearer the ends of the line source if the prescription point is not in the central plane of the line source. Alternatively, if the dose is prescribed at a point in the central plane of the line source, the dose at all the normal tissue points are lower when technique A is used. (author)

  10. Paddle-based rotating-shield brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunlong; Xu, Weiyu [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 (United States); Flynn, Ryan T.; Kim, Yusung; Bhatia, Sudershan K.; Buatti, John M. [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Dadkhah, Hossein [Department of Biomedical Engineering, University of Iowa, 1402 Seamans Center, Iowa City, Iowa 52242 (United States); Wu, Xiaodong, E-mail: xiaodong-wu@uiowa.edu [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 and Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States)

    2015-10-15

    Purpose: The authors present a novel paddle-based rotating-shield brachytherapy (P-RSBT) method, whose radiation-attenuating shields are formed with a multileaf collimator (MLC), consisting of retractable paddles, to achieve intensity modulation in high-dose-rate brachytherapy. Methods: Five cervical cancer patients using an intrauterine tandem applicator were considered to assess the potential benefit of the P-RSBT method. The P-RSBT source used was a 50 kV electronic brachytherapy source (Xoft Axxent™). The paddles can be retracted independently to form multiple emission windows around the source for radiation delivery. The MLC was assumed to be rotatable. P-RSBT treatment plans were generated using the asymmetric dose–volume optimization with smoothness control method [Liu et al., Med. Phys. 41(11), 111709 (11pp.) (2014)] with a delivery time constraint, different paddle sizes, and different rotation strides. The number of treatment fractions (fx) was assumed to be five. As brachytherapy is delivered as a boost for cervical cancer, the dose distribution for each case includes the dose from external beam radiotherapy as well, which is 45 Gy in 25 fx. The high-risk clinical target volume (HR-CTV) doses were escalated until the minimum dose to the hottest 2 cm{sup 3} (D{sub 2cm{sup 3}}) of either the rectum, sigmoid colon, or bladder reached their tolerance doses of 75, 75, and 90 Gy{sub 3}, respectively, expressed as equivalent doses in 2 Gy fractions (EQD2 with α/β = 3 Gy). Results: P-RSBT outperformed the two other RSBT delivery techniques, single-shield RSBT (S-RSBT) and dynamic-shield RSBT (D-RSBT), with a properly selected paddle size. If the paddle size was angled at 60°, the average D{sub 90} increases for the delivery plans by P-RSBT on the five cases, compared to S-RSBT, were 2.2, 8.3, 12.6, 11.9, and 9.1 Gy{sub 10}, respectively, with delivery times of 10, 15, 20, 25, and 30 min/fx. The increases in HR-CTV D{sub 90}, compared to D-RSBT, were 16

  11. Interstitial brachytherapy in carcinoma of the penis

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, A.J.; Ghosh, S.; Bhalavat, R.L. [Tata Memorial Hospital, Mumbai (India). Dept. of Radiation Oncology; Kulkarni, J.N. [Tata Memorial Hospital, Mumbai (India). Dept. of Surgery; Sequeira, B.V.E. [Tata Memorial Hospital, Mumbai (India). Dept. of Medical Physics

    1999-01-01

    Aim: Keeping in line with the increasing emphasis on organ preservation, we at the Tata Memorial Hospital have evaluated the role of Ir-192 interstitial implant as regards local control, functional and cosmetic outcome in early as well as locally recurrent carcinoma of the distal penis. Patients and Methods: From October 1988 to December 1996, 23 patients with histopathologically proven cancer of the penis were treated with radical radiation therapy using Ir-192 temporary interstitial implant. Our patients were in the age group of 20 to 60 years. The primary lesions were T1 and 7, T2 in 7 and recurrent in 9 patients. Only 7 patients had palpable groin nodes at presentation, all of which were pathologically negative. The median dose of implant was 50 Gy (range 40 to 60 Gy), using the LDR afterloading system and the Paris system of implant rules for dosimetry. Follow-up ranged from 4 to 117 months (median 24 months). Results: At last follow-up 18 of the 23 patients remained locally controlled with implant alone. Three patients failed only locally, 2 locoregionally and 1 only at the groin. Of the 5 patients who failed locally, 4 were successfully salvaged with partial penectomy and remained controlled when last seen. Local control with implant alone at 8 years was 70% by life table analysis. The patients had excellent functional and cosmetic outcome. We did not record any case of skin or softtissue necrosis. Only 2 patients developed meatal stenosis, both of which were treated endoscopically. Conclusion: Our results lead us to interpret that interstitial brachytherapy with Ir-192 offers excellent local control rates with preservation of organ and function. Penectomy can be reserved as a means for effective salvage. (orig.) [Deutsch] Ziel: Das Prinzip des Organerhalts gewinnt in der Onkologie zunehmend an Bedeutung. Ziel dieser Untersuchung war es, die Rolle der interstitiellen Brachytherapie mit Ir-192 zur Behandlung des fruehen und rezidivierten Peniskarzinoms zu

  12. An overview of interstitial brachytherapy and hyperthermia

    International Nuclear Information System (INIS)

    Brandt, B.B.; Harney, J.

    1989-01-01

    Interstitial thermoradiotherapy, an experimental cancer treatment that combines interstitial radiation implants (brachytherapy) and interstitial hyperthermia, is in the early stages of investigation. In accordance with the procedure used in a current national trial protocol, a 60-minute hyperthermia treatment is administered after catheters are placed into the tumor area while the patient is under general anesthesia. This is immediately followed by loading of radioactive Iridium-192 seeds into the catheters for a defined period of time. Once the prescribed radiation dose is delivered, the radioactive sources are removed and a second, 60-minute hyperthermia treatment is administered. Clinical trials with hyperthermia in combination with radiation have increased in recent years. Nurses caring for these patients need to become more knowledgeable about this investigational therapy. This paper provides an overview of the biologic rationale for this therapy, as well as a description of the delivery method and clinical application. Specific related nursing interventions are defined in a nursing protocol.23 references

  13. Epoxy resins used to seal brachytherapy seed

    International Nuclear Information System (INIS)

    Ferreira, Natalia Carolina Camargos; Ferraz, Wilmar Barbosa; Reis, Sergio Carneiro dos; Santos, Ana Maria Matildes dos

    2013-01-01

    Prostate cancer treatment with brachytherapy is recommended for patients with cancer at an early stage. In this treatment, small radioactive seeds are implanted directly in the prostate gland. These seeds are composed at least of one radionuclide carrier and an X-ray marker enclosed within a metallic tube usually sealed by laser process. This process is expensive and, furthermore, it can provoke a partial volatilization of the radionuclide and change the isotropy in dose distribution around the seed. In this paper, we present a new sealing process using epoxy resin. Three kinds of resins were utilized and characterized by scanning electron microscopy (SEM), energy dispersive X ray (EDS) and by differential scanning calorimetry (DSC) after immersion in simulated body fluid (SBF) and in sodium iodine solution (NaI). The sealing process showed excellent potential to replace the sealing laser usually employed. (author)

  14. Human error in remote Afterloading Brachytherapy

    International Nuclear Information System (INIS)

    Quinn, M.L.; Callan, J.; Schoenfeld, I.; Serig, D.

    1994-01-01

    Remote Afterloading Brachytherapy (RAB) is a medical process used in the treatment of cancer. RAB uses a computer-controlled device to remotely insert and remove radioactive sources close to a target (or tumor) in the body. Some RAB problems affecting the radiation dose to the patient have been reported and attributed to human error. To determine the root cause of human error in the RAB system, a human factors team visited 23 RAB treatment sites in the US. The team observed RAB treatment planning and delivery, interviewed RAB personnel, and performed walk-throughs, during which staff demonstrated the procedures and practices used in performing RAB tasks. Factors leading to human error in the RAB system were identified. The impact of those factors on the performance of RAB was then evaluated and prioritized in terms of safety significance. Finally, the project identified and evaluated alternative approaches for resolving the safety significant problems related to human error

  15. Calibration of Photon Sources for Brachytherapy

    Science.gov (United States)

    Rijnders, Alex

    Source calibration has to be considered an essential part of the quality assurance program in a brachytherapy department. Not only it will ensure that the source strength value used for dose calculation agrees within some predetermined limits to the value stated on the source certificate, but also it will ensure traceability to international standards. At present calibration is most often still given in terms of reference air kerma rate, although calibration in terms of absorbed dose to water would be closer to the users interest. It can be expected that in a near future several standard laboratories will be able to offer this latter service, and dosimetry protocols will have to be adapted in this way. In-air measurement using ionization chambers (e.g. a Baldwin—Farmer ionization chamber for 192Ir high dose rate HDR or pulsed dose rate PDR sources) is still considered the method of choice for high energy source calibration, but because of their ease of use and reliability well type chambers are becoming more popular and are nowadays often recommended as the standard equipment. For low energy sources well type chambers are in practice the only equipment available for calibration. Care should be taken that the chamber is calibrated at the standard laboratory for the same source type and model as used in the clinic, and using the same measurement conditions and setup. Several standard laboratories have difficulties to provide these calibration facilities, especially for the low energy seed sources (125I and 103Pd). Should a user not be able to obtain properly calibrated equipment to verify the brachytherapy sources used in his department, then at least for sources that are replaced on a regular basis, a consistency check program should be set up to ensure a minimal level of quality control before these sources are used for patient treatment.

  16. Dosimetry in intravascular brachytherapy; Calculos dosimetricos em braquiterapia intravascular

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Laelia Pumilla Botelho

    2000-03-01

    Among the cardiovascular diseases responsible for deaths in the adult population in almost all countries of the world, the most common is acute myocardial infarction, which generally occurs because of the occlusion of one or more coronary arteries. Several diagnostic techniques and therapies are being tested for the treatment of coronary artery disease. Balloon angioplasty has been a popular treatment which is less invasive than traditional surgeries involving revascularization of the myocardium, thus promising a better quality of life for patients. Unfortunately, the rate of restenosis (re-closing of the vessel) after balloon angioplasty is high (approximately 30-50% within the first year after treatment).Recently, the idea of delivering high radiation doses to coronary arteries to avoid or delay restenosis has been suggested. Known as intravascular brachytherapy, the technique has been used with several radiation sources, and researchers have obtained success in decreasing the rate of restenosis in some patient populations. In order to study the radiation dosimetry in the patient and radiological protection for the attending staff for this therapy, radiation dose distributions for monoenergetic electrons and photons (at nine discrete energies) were calculated for blood vessels of diameter 0.15, o,30 and 0.45 cm with balloon and wire sources using the radiation transport code MCNP4B. Specific calculations were carried out for several candidate radionuclides as well. Two s tent sources (metallic prosthesis that put inside of patient's artery through angioplasty) employing {sup 32} P are also simulated. Advantages and disadvantages of the various radionuclides and source geometries are discussed. The dosimetry developed here will aid in the realization of the benefits obtained in patients for this promising new technology. (author)

  17. Dosimetry in intravascular brachytherapy; Calculos dosimetricos em braquiterapia intravascular

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Laelia Pumilla Botelho

    2000-03-01

    Among the cardiovascular diseases responsible for deaths in the adult population in almost all countries of the world, the most common is acute myocardial infarction, which generally occurs because of the occlusion of one or more coronary arteries. Several diagnostic techniques and therapies are being tested for the treatment of coronary artery disease. Balloon angioplasty has been a popular treatment which is less invasive than traditional surgeries involving revascularization of the myocardium, thus promising a better quality of life for patients. Unfortunately, the rate of restenosis (re-closing of the vessel) after balloon angioplasty is high (approximately 30-50% within the first year after treatment).Recently, the idea of delivering high radiation doses to coronary arteries to avoid or delay restenosis has been suggested. Known as intravascular brachytherapy, the technique has been used with several radiation sources, and researchers have obtained success in decreasing the rate of restenosis in some patient populations. In order to study the radiation dosimetry in the patient and radiological protection for the attending staff for this therapy, radiation dose distributions for monoenergetic electrons and photons (at nine discrete energies) were calculated for blood vessels of diameter 0.15, o,30 and 0.45 cm with balloon and wire sources using the radiation transport code MCNP4B. Specific calculations were carried out for several candidate radionuclides as well. Two s tent sources (metallic prosthesis that put inside of patient's artery through angioplasty) employing {sup 32} P are also simulated. Advantages and disadvantages of the various radionuclides and source geometries are discussed. The dosimetry developed here will aid in the realization of the benefits obtained in patients for this promising new technology. (author)

  18. Methods for prostate stabilization during transperineal LDR brachytherapy

    International Nuclear Information System (INIS)

    Podder, Tarun; Yu Yan; Sherman, Jason; Rubens, Deborah; Strang, John; Messing, Edward; Ng, Wan-Sing

    2008-01-01

    In traditional prostate brachytherapy procedures for a low-dose-rate (LDR) radiation seed implant, stabilizing needles are first inserted to provide some rigidity and support to the prostate. Ideally this will provide better seed placement and an overall improved treatment. However, there is much speculation regarding the effectiveness of using regular brachytherapy needles as stabilizers. In this study, we explored the efficacy of two types of needle geometries (regular brachytherapy needle and hooked needle) and several clinically feasible configurations of the stabilization needles. To understand and assess the prostate movement during seed implantation, we collected in vivo data from patients during actual brachytherapy procedures. In vitro experimentation with tissue-equivalent phantoms allowed us to further understand the mechanics behind prostate stabilization. We observed superior stabilization with the hooked needles compared to the regular brachytherapy needles (more than 40% in bilateral parallel needle configuration). Prostate movement was also reduced significantly when regular brachytherapy needles were in an angulated configuration as compared to the parallel configuration (more than 60%). When the hooked needles were angulated for stabilization, further reduction in prostate displacement was observed. In general, for convenience of dosimetric planning and to avoid needle collision, all needles are desired to be in a parallel configuration. In this configuration, hooked needles provide improved stabilization of the prostate. On the other hand, both regular and hooked needles appear to be equally effective in reducing prostate movement when they are in angulated configurations, which will be useful in seed implantation using a robotic system. We have developed nonlinear spring-damper model for the prostate movement which can be used for adapting dosimetric planning during brachytherapy as well as for developing more realistic haptic devices and

  19. National audit of a system for rectal contact brachytherapy

    Directory of Open Access Journals (Sweden)

    Laia Humbert-Vidan

    2017-01-01

    Full Text Available Background and purpose: Contact brachytherapy is used for the treatment of early rectal cancer. An overview of the current status of quality assurance of the rectal contact brachytherapy systems in the UK, based on a national audit, was undertaken in order to assist users in optimising their own practices. Material and methods: Four UK centres using the Papillon 50 contact brachytherapy system were audited. Measurements included beam quality, output and radiation field size and uniformity. Test frequencies and tolerances were reviewed and compared to both existing recommendations and published reviews on other kV and electronic brachytherapy systems. External validation of dosimetric measurements was provided by the National Physical Laboratory. Results: The maximum host/audit discrepancy in beam quality determination was 6.5%; this resulted in absorbed dose variations of 0.2%. The host/audit agreement in absorbed dose determination was within 2.2%. The median of the radiation field uniformity measurements was 2.7% and the host/audit agreement in field size was within 1 mm. Test tolerances and frequencies were within the national recommendations for kV units. Conclusions: The dosimetric characterisation of the Papillon 50 was validated by the audit measurements for all participating centres, thus providing reassurance that the implementation had been performed within the standards stated in previously published audit work and recommendations for kV and electronic brachytherapy units. However, optimised and standardised quality assurance testing could be achieved by reducing some methodological differences observed. Keywords: Contact brachytherapy, Electronic brachytherapy, Audit

  20. Methods for prostate stabilization during transperineal LDR brachytherapy.

    Science.gov (United States)

    Podder, Tarun; Sherman, Jason; Rubens, Deborah; Messing, Edward; Strang, John; Ng, Wan-Sing; Yu, Yan

    2008-03-21

    In traditional prostate brachytherapy procedures for a low-dose-rate (LDR) radiation seed implant, stabilizing needles are first inserted to provide some rigidity and support to the prostate. Ideally this will provide better seed placement and an overall improved treatment. However, there is much speculation regarding the effectiveness of using regular brachytherapy needles as stabilizers. In this study, we explored the efficacy of two types of needle geometries (regular brachytherapy needle and hooked needle) and several clinically feasible configurations of the stabilization needles. To understand and assess the prostate movement during seed implantation, we collected in vivo data from patients during actual brachytherapy procedures. In vitro experimentation with tissue-equivalent phantoms allowed us to further understand the mechanics behind prostate stabilization. We observed superior stabilization with the hooked needles compared to the regular brachytherapy needles (more than 40% in bilateral parallel needle configuration). Prostate movement was also reduced significantly when regular brachytherapy needles were in an angulated configuration as compared to the parallel configuration (more than 60%). When the hooked needles were angulated for stabilization, further reduction in prostate displacement was observed. In general, for convenience of dosimetric planning and to avoid needle collision, all needles are desired to be in a parallel configuration. In this configuration, hooked needles provide improved stabilization of the prostate. On the other hand, both regular and hooked needles appear to be equally effective in reducing prostate movement when they are in angulated configurations, which will be useful in seed implantation using a robotic system. We have developed nonlinear spring-damper model for the prostate movement which can be used for adapting dosimetric planning during brachytherapy as well as for developing more realistic haptic devices and

  1. Advantaged Bidders in Franchise Auctions

    OpenAIRE

    van den Berg, V.A.C.

    2012-01-01

    Consider a government that auctions a franchise for, e.g., an airport, telecommunication network, or utility. Consider an 'incumbent bidder' that owns a complement or substitute. With an auction on the transfer (i.e. payment) to the government, the incumbent is advantaged.If the government regulates the market with an auction on the price asked to consumers, it depends who is advantaged. With complements, the incumbent is advantaged: it can set a lower price on the new franchise, as this inc...

  2. Reduced dose to urethra and rectum with the use of variable needle spacing in prostate brachytherapy: a potential role for robotic technology

    Science.gov (United States)

    Vyas, Shilpa; Le, Yi; Zhang, Zhe; Armour, Woody

    2015-01-01

    Purpose Several robotic delivery systems for prostate brachytherapy are under development or in pre-clinical testing. One of the features of robotic brachytherapy is the ability to vary spacing of needles at non-fixed intervals. This feature may play an important role in prostate brachytherapy, which is traditionally template-based with fixed needle spacing of 0.5 cm. We sought to quantify potential reductions in the dose to urethra and rectum by utilizing variable needle spacing, as compared to fixed needle spacing. Material and methods Transrectal ultrasound images from 10 patients were used by 3 experienced planners to create 120 treatment plans. Each planner created 4 plan variations per patient with respect to needle positions: 125I fixed spacing, 125I variable spacing, 103Pd fixed spacing, and 103Pd variable spacing. The primary planning objective was to achieve a prostate V100 of 100% while minimizing dose to urethra and rectum. Results All plans met the objective of achieving prostate V100 of 100%. Combined results for all plans show statistically significant improvements in all assessed dosimetric variables for urethra (Umax, Umean, D30, D5) and rectum (Rmax, Rmean, RV100) when using variable spacing. The dose reductions for mean and maximum urethra dose using variable spacing had p values of 0.011 and 0.024 with 103Pd, and 0.007 and 0.029 with 125I plans. Similarly dose reductions for mean and maximum rectal dose using variable spacing had p values of 0.007 and 0.052 with 103Pd, and 0.012 and 0.037 with 125I plans. Conclusions The variable needle spacing achievable by the use of robotics in prostate brachytherapy allows for reductions in both urethral and rectal planned doses while maintaining prostate dose coverage. Such dosimetric advantages have the potential in translating to significant clinical benefits with the use of robotic brachytherapy. PMID:26622227

  3. Reduced dose to urethra and rectum with the use of variable needle spacing in prostate brachytherapy: a potential role for robotic technology.

    Science.gov (United States)

    Vyas, Shilpa; Le, Yi; Zhang, Zhe; Armour, Woody; Song, Daniel Y

    2015-08-01

    Several robotic delivery systems for prostate brachytherapy are under development or in pre-clinical testing. One of the features of robotic brachytherapy is the ability to vary spacing of needles at non-fixed intervals. This feature may play an important role in prostate brachytherapy, which is traditionally template-based with fixed needle spacing of 0.5 cm. We sought to quantify potential reductions in the dose to urethra and rectum by utilizing variable needle spacing, as compared to fixed needle spacing. Transrectal ultrasound images from 10 patients were used by 3 experienced planners to create 120 treatment plans. Each planner created 4 plan variations per patient with respect to needle positions: (125)I fixed spacing, (125)I variable spacing, (103)Pd fixed spacing, and (103)Pd variable spacing. The primary planning objective was to achieve a prostate V100 of 100% while minimizing dose to urethra and rectum. All plans met the objective of achieving prostate V100 of 100%. Combined results for all plans show statistically significant improvements in all assessed dosimetric variables for urethra (Umax, Umean, D30, D5) and rectum (Rmax, Rmean, RV100) when using variable spacing. The dose reductions for mean and maximum urethra dose using variable spacing had p values of 0.011 and 0.024 with (103)Pd, and 0.007 and 0.029 with (125)I plans. Similarly dose reductions for mean and maximum rectal dose using variable spacing had p values of 0.007 and 0.052 with (103)Pd, and 0.012 and 0.037 with (125)I plans. The variable needle spacing achievable by the use of robotics in prostate brachytherapy allows for reductions in both urethral and rectal planned doses while maintaining prostate dose coverage. Such dosimetric advantages have the potential in translating to significant clinical benefits with the use of robotic brachytherapy.

  4. The American brachytherapy society survey of brachytherapy practice for carcinoma of the cervix in the United States.

    Science.gov (United States)

    Nag, S; Orton, C; Young, D; Erickson, B

    1999-04-01

    The purpose of this study was to survey the brachytherapy practice for cervical cancer in the United States. The Clinical Research Committee of the American Brachytherapy Society (ABS) performed a retrospective survey of individual physicians of the ABS and American Society of Therapeutic Radiologists and Oncologists regarding the details of the brachytherapy techniques they personally used in the treatment of cervical cancer patients for the year 1995. The replies (some of which may have been an estimate only) were tabulated. The scope of this survey did not allow us to verify the data by chart audits. A total of about 3500 questionnaires were mailed out; 521 responses were received. Of these responders, 206 (40%) did not perform any brachytherapy for carcinoma of the cervix in 1995. Of the other 315 responders reporting a total of 4892 patients treated in 1995, 88% used low dose rate (LDR) while 24% used high dose rate (HDR). There was a wide variation in the doses used. For LDR treatments, the median total external beam radiation therapy (EBRT) dose was 45 and 50 Gy and the LDR dose was 42 and 45 Gy for early and advanced cancers, respectively. For HDR treatments, the median EBRT dose was 48 and 50 Gy and the median HDR dose was 29 and 30 Gy for early and advanced cancers, respectively. The median dose per fraction was 6 Gy for a median of five fractions. Interstitial brachytherapy was used as a component of the treatment in 6% of the patients by 21% of responders. Very few responders treated with pulsed or medium dose rates. This retrospective survey showed the current brachytherapy practice pattern in the treatment of cervical cancer in the United States and can serve as a basis for future prospective national brachytherapy data registry. There was wide variation in the practice pattern, emphasizing the urgent need for consensus on these issues. Copyright 1999 Academic Press.

  5. Innovation strategies and competitive advantage

    OpenAIRE

    Gërguri, Shqipe; Rexhepi, Gadaf; Ramadani, Veland

    2013-01-01

    Companies today operate in a very dynamic, uncertain and competitive environment. They compete in "nicety" that are so small but so important. Companies are trying to achieve competitive advantage in order to help them obtain a better and a stable position in the marketplace. The best way for companies to achieve a competitive advantage is through innovation. This paper addresses the meaning of innovation what does innovation present, types of innovation specifically discussing the right way ...

  6. Perceived versus Actual Competitive Advantage

    OpenAIRE

    Langemeier, Michael R.; Yeager, Elizabeth

    2014-01-01

    This paper examined the relationship between farm characteristics and perceived sources of competitive advantage, and cost-based and revenue-based efficiency indices. Gross farm income and the percentage of labor devoted to crop production were significant and positively correlated with cost and revenue efficiency while the perception of the cowherd being the most important part of the operation was negatively correlated with efficiency. In general, perceived sources of competitive advantage ...

  7. Practical advantages of evolutionary computation

    Science.gov (United States)

    Fogel, David B.

    1997-10-01

    Evolutionary computation is becoming a common technique for solving difficult, real-world problems in industry, medicine, and defense. This paper reviews some of the practical advantages to using evolutionary algorithms as compared with classic methods of optimization or artificial intelligence. Specific advantages include the flexibility of the procedures, as well as their ability to self-adapt the search for optimum solutions on the fly. As desktop computers increase in speed, the application of evolutionary algorithms will become routine.

  8. Competitive advantage and corporate communications

    OpenAIRE

    Mitić Sanja; Ognjanov Galjina

    2013-01-01

    Strategic importance of corporate communications and its role in the development of competitive advantage has attracted interest of numerous researchers in the fields of organization, management, marketing and public relations. Recent studies particularly emphasise the growing importance of soft factors, such as reputation in the development of competitive advantage. Concept of reputation is strongly connected with stakeholder theory, which stresses the importance of corporate communications ...

  9. STRATEGIES FOR ACHIEVING COMPETITIVE ADVANTAGE

    OpenAIRE

    Jusuf ZEKIRI; Alexandru NEDELEA

    2011-01-01

    This paper is organized in three parts. A brief overview of the importance of strategies within companies, as well as literature review is presented along with traditional approaches on strategies for achieving competitive advantage, and new approaches for gaining a competitive advantage. The main objective of the paper is to outline and discuss the relevant issues and challenges from a theoretical viewpoint related with the possible strategy formulation of companies in order to achieve a com...

  10. Corporate Finance and Comparative Advantage

    OpenAIRE

    Peter Egger; Christian Keuschnigg

    2009-01-01

    Since innovative firms are often financially constrained, access to external funds is important for the expansion of innovative industries. This paper reports four important results. First, comparative advantage is shaped by factor endowments as well as fundamental determinants of corporate finance. In particular, a larger equity ratio of firms and tough governance standards relax finance constraints and create a comparative advantage in innovative industries. Second, factor price equalizatio...

  11. Utilization and Outcomes of Breast Brachytherapy in Younger Women

    International Nuclear Information System (INIS)

    Smith, Grace L.; Huo, Jinhai; Giordano, Sharon H.; Hunt, Kelly K.; Buchholz, Thomas A.; Smith, Benjamin D.

    2015-01-01

    Purpose: To directly compare (1) radiation treatment utilization patterns; (2) risks of subsequent mastectomy; and (3) costs of radiation treatment in patients treated with brachytherapy versus whole-breast irradiation (WBI), in a national, contemporary cohort of women with incident breast cancer, aged 64 years and younger. Methods and Materials: Using MarketScan health care claims data, we identified 45,884 invasive breast cancer patients (aged 18-64 years), treated from 2003 to 2010 with lumpectomy, followed by brachytherapy (n=3134) or whole-breast irradiation (n=42,750). We stratified patients into risk groups according to age (Age<50 vs Age≥50) and endocrine therapy status (Endocrine− vs Endocrine+). “Endocrine+” patients filled an endocrine therapy prescription within 1 year after lumpectomy. Pathologic hormone receptor status was not available in this dataset. In brachytherapy versus WBI patients, utilization trends and 5-year subsequent mastectomy risks were compared. Stratified, adjusted subsequent mastectomy risks were calculated using proportional hazards regression. Results: Brachytherapy utilization increased from 2003 to 2010: in patients Age<50, from 0.6% to 4.9%; patients Age≥50 from 2.2% to 11.3%; Endocrine− patients, 1.3% to 9.4%; Endocrine+ patients, 1.9% to 9.7%. Age influenced treatment selection more than endocrine status: 17% of brachytherapy patients were Age<50 versus 32% of WBI patients (P<.001); whereas 41% of brachytherapy patients were Endocrine–versus 44% of WBI patients (P=.003). Highest absolute 5-year subsequent mastectomy risks occurred in Endocrine−/Age<50 patients (24.4% after brachytherapy vs 9.0% after WBI (hazard ratio [HR] 2.18, 95% confidence interval [CI] 1.37-3.47); intermediate risks in Endocrine−/Age≥50 patients (8.6% vs 4.9%; HR 1.76, 95% CI 1.26-2.46); and lowest risks in Endocrine+ patients of any age: Endocrine+/Age<50 (5.5% vs 4.5%; HR 1.18, 95% CI 0.61-2.31); Endocrine+/Age≥50 (4.2% vs 2

  12. Utilization and Outcomes of Breast Brachytherapy in Younger Women

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Grace L. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Huo, Jinhai [Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Giordano, Sharon H. [Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Hunt, Kelly K. [Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Buchholz, Thomas A. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Smith, Benjamin D., E-mail: bsmith3@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2015-09-01

    Purpose: To directly compare (1) radiation treatment utilization patterns; (2) risks of subsequent mastectomy; and (3) costs of radiation treatment in patients treated with brachytherapy versus whole-breast irradiation (WBI), in a national, contemporary cohort of women with incident breast cancer, aged 64 years and younger. Methods and Materials: Using MarketScan health care claims data, we identified 45,884 invasive breast cancer patients (aged 18-64 years), treated from 2003 to 2010 with lumpectomy, followed by brachytherapy (n=3134) or whole-breast irradiation (n=42,750). We stratified patients into risk groups according to age (Age<50 vs Age≥50) and endocrine therapy status (Endocrine− vs Endocrine+). “Endocrine+” patients filled an endocrine therapy prescription within 1 year after lumpectomy. Pathologic hormone receptor status was not available in this dataset. In brachytherapy versus WBI patients, utilization trends and 5-year subsequent mastectomy risks were compared. Stratified, adjusted subsequent mastectomy risks were calculated using proportional hazards regression. Results: Brachytherapy utilization increased from 2003 to 2010: in patients Age<50, from 0.6% to 4.9%; patients Age≥50 from 2.2% to 11.3%; Endocrine− patients, 1.3% to 9.4%; Endocrine+ patients, 1.9% to 9.7%. Age influenced treatment selection more than endocrine status: 17% of brachytherapy patients were Age<50 versus 32% of WBI patients (P<.001); whereas 41% of brachytherapy patients were Endocrine–versus 44% of WBI patients (P=.003). Highest absolute 5-year subsequent mastectomy risks occurred in Endocrine−/Age<50 patients (24.4% after brachytherapy vs 9.0% after WBI (hazard ratio [HR] 2.18, 95% confidence interval [CI] 1.37-3.47); intermediate risks in Endocrine−/Age≥50 patients (8.6% vs 4.9%; HR 1.76, 95% CI 1.26-2.46); and lowest risks in Endocrine+ patients of any age: Endocrine+/Age<50 (5.5% vs 4.5%; HR 1.18, 95% CI 0.61-2.31); Endocrine+/Age≥50 (4.2% vs 2

  13. Construction balance analysis of dose rate medium brachytherapy TDS

    International Nuclear Information System (INIS)

    Sandi Parapak

    2011-01-01

    One of the most important part of brachytherapy instrument design activities is analyze by determining the centroid point of construction in order to maintain the balance of brachytherapy instrument, either during operation as well as when transported. Operation of brachytherapy is not only done in one place so it is necessary to balance the analysis of the forces at the time did not move, moved on the horizontal floor and sloping floor. Calculation approach who is done to calculate the weight of mechanical components on each module, and then calculate the centroid of each module, for the balance of forces analysis performed with the assumption at the time of brachytherapy in the position of not moving on a horizontal floor, moved from a place to another on the horizontal floor and on the floor with sloping angle 30°. Base on the results of this analysis are expected to balance the four wheels can move without slipping at the time of decline or incline. Also, results of analysis can be used in designing a mobile construction brachytherapy taking into consideration the aesthetic ideal, easy to operate, ensure the safety of equipment, operator and patient. (author)

  14. High dose rate brachytherapy for the palliation of malignant dysphagia

    International Nuclear Information System (INIS)

    Homs, Marjolein Y.V.; Eijkenboom, Wilhelmina M.H.; Coen, Veronique L.M.A.; Haringsma, Jelle; Blankenstein, Mark van; Kuipers, Ernst J.; Siersema, Peter D.

    2003-01-01

    Background and purpose: High dose rate (HDR) brachytherapy is a commonly used palliative treatment for esophageal carcinoma. We evaluated the outcome of HDR brachytherapy in patients with malignant dysphagia. Material and methods: A retrospective analysis over a 10-year period was performed of 149 patients treated with HDR brachytherapy, administered in one or two sessions, at a median dose of 15 Gy. Patients were evaluated for functional outcome, complications, recurrent dysphagia, and survival. Results: At 6 weeks after HDR brachytherapy, dysphagia scores had improved from a median of 3 to 2 (n=104; P<0.001), however, dysphagia had not improved in 51 (49%) patients. Procedure-related complications occurred in seven (5%) patients. Late complications, including fistula formation or bleeding, occurred in 11 (7%) patients. Twelve (8%) patients experienced minor retrosternal pain. Median survival of the patients was 160 days with a 1-year survival rate of 15%. Procedure-related mortality was 2%. At follow-up, 55 (37%) patients experienced recurrent dysphagia. In 34 (23%) patients a metal stent was placed to relieve persistent or recurrent dysphagia. Conclusion: HDR brachytherapy is a moderately effective treatment for the palliation of malignant dysphagia. The incidence of early major complications is low, however, persistent and recurrent dysphagia occur frequently, and require often additional treatment

  15. Brachytherapy - not pulsed and low rate brachytherapy. Medical radiation protection - ED 4248

    International Nuclear Information System (INIS)

    2008-06-01

    After an indication of authorizations required to perform brachytherapy, this sheet indicates the concerned personnel, indicates the different treatment steps, briefly describes the risk related to ionizing radiations, indicates the various aspects of risk assessment and of determination of exposure levels (definition of controlled and monitored areas, personnel classification, possible methods for dose monitoring), presents the strategy for risk management (rules regarding risk reduction, technical measures regarding the installation, individual technical measures, training and information, prevention and medical monitoring) and how this risk management can be assessed

  16. Dose verification in HDR brachytherapy and IMRT with Fricke gel-layer dosimeters

    International Nuclear Information System (INIS)

    Gambarini, G.; Negri, A.; Bartesaghi, G.; Pirola, L.; Carrara, M.; Gambini, I.; Tomatis, S.; Fallai, C.; Zonca, G.; Stokucova, J.

    2009-10-01

    At the Department of Physics of the Universita degli Studi di Milano in collaboration with the Medical Physics Unit and the Radiotherapy Unit of the Fondazione IRCCS Istituto Nazionale dei Tumori di Milano the research of a dosimetric technique based on Fricke gel layers and optical analysis in under study. In fact, Fricke gel layer dosimeters (FGLD) have various advantages such as the tissue-equivalence for photons in the clinical energy interval, the possibility to obtain the spatial information about continuous dose distribution and not only a point dose distribution as it is for example in the case of ionization chambers, TLD or diodes and the possibility to obtain the information about 3D dose distributions. In this work, specific applications of FGLD to absolute dosimetry in radiotherapy have been studied, i.e. in-phantom measurements of complex intensity modulated radiation therapy fields (IMRT) and complex brachytherapy fields. (Author)

  17. Miniature X-ray Tube for Electric Brachytherapy using Carbon Nanotube Field Emitter

    International Nuclear Information System (INIS)

    Heo, Sung Hwan; Kim, Hyun Jin; Ha, Jun Mok; Cho, Sung Oh

    2011-01-01

    An electric brachytherapy using a miniature x-ray tube has a major advantage to reduce the x-ray exposure of human body during the cancer radiation therapy by optimal positioning of x-ray radiation source and treatment objectives. In the view of a smaller electronic x-ray source, the CNT field emitter based xray tube can be more minimized than thermionic filament emitter based one because of a simple power supplier connection of cold field emission in diode type as well as a higher electron emission brightness of CNT. This abstract is for introducing the design of a prototype CNT field emitter based miniature x-ray tube. We have vacuum sealed CNT miniature x-ray tube with 7∼10 mm diameter, and characteristics of electron emission and x-ray transportation using MCNP5 code are surveyed

  18. Pulse frequency in pulsed brachytherapy based on tissue repair kinetics

    International Nuclear Information System (INIS)

    Sminia, Peter; Schneider, Christoph J.; Koedooder, Kees; Tienhoven, Geertjan van; Blank, Leo E.C.M.; Gonzalez Gonzalez, Dionisio

    1998-01-01

    Purpose: Investigation of normal tissue sparing in pulsed brachytherapy (PB) relative to continuous low-dose rate irradiation (CLDR) by adjusting pulse frequency based on tissue repair characteristics. Method: Using the linear quadratic model, the relative effectiveness (RE) of a 20 Gy boost was calculated for tissue with an α/β ratio ranging from 2 to 10 Gy and a half-time of sublethal damage repair between 0.1 and 3 h. The boost dose was considered to be delivered either in a number of pulses varying from 2 to 25, or continuously at a dose rate of 0.50, 0.80, or 1.20 Gy/h. Results: The RE of 20 Gy was found to be identical for PB in 25 pulses of 0.80 Gy each h and CLDR delivered at 0.80 Gy/h for any α/β value and for a repair half-time > 0.75 h. When normal tissue repair half-times are assumed to be longer than tumor repair half-times, normal tissue sparing can be obtained, within the restriction of a fixed overall treatment time, with higher dose per pulse and longer period time (time elapsed between start of pulse n and start of pulse n + 1). An optimum relative normal tissue sparing larger than 10% was found with 4 pulses of 5 Gy every 8 h. Hence, a therapeutic gain might be obtained when changing from CLDR to PB by adjusting the physical dose in such a way that the biological dose on the tumor is maintained. The normal tissue-sparing phenomenon can be explained by an increase in RE with longer period time for tissue with high α/β ratio and fast or intermediate repair half-time, and the RE for tissue with low α/β ratio and long repair half-time remains almost constant. Conclusion: Within the benchmark of the LQ model, advantage in normal tissue-sparing is expected when matching the pulse frequency to the repair kinetics of the normal tissue exposed. A period time longer than 1 h may lead to a reduction of late normal tissue complications. This theoretical advantage emphasizes the need for better knowledge of human tissue-repair kinetics

  19. A survey of current clinical practice in permanent and temporary prostate brachytherapy: 2010 update.

    Science.gov (United States)

    Buyyounouski, Mark K; Davis, Brian J; Prestidge, Bradley R; Shanahan, Thomas G; Stock, Richard G; Grimm, Peter D; Demanes, D Jeffrey; Zaider, Marco; Horwitz, Eric M

    2012-01-01

    To help establish patterns of care and standards of care of interstitial permanent low-dose-rate (LDR) and temporary high-dose-rate brachytherapy for prostate cancer and to compare the results with a similar 1998 American Brachytherapy Society (ABS) survey. A comprehensive questionnaire intended to survey specific details of current clinical brachytherapy practice was provided to the participants of the seventh ABS Prostate Brachytherapy School. Responses were tabulated and descriptive statistics are reported. Sixty-five brachytherapy practitioners responded to the survey. Eighty-nine percent (89%) of respondents performed LDR and 49% perform high-dose-rate brachytherapy. The median number of years of experience for LDR brachytherapists increased from 5 to 10 years over the course of the 12 years since the preceding survey. Compared with the first ABS, a smaller proportion of respondents received formal brachytherapy residency training (43% vs. 56%) or formal "hands-on" brachytherapy training (15% vs. 63%). There has been a marked decline in the utilization of the Mick applicator (Mick Radio-Nuclear Instruments, Inc., Mount Vernon, NY, USA) (60% vs. 28%) and an increase in the use of stranded seeds (40% vs. 11%). Compliance with postimplant dosimetry was higher in the 2010 survey. This survey does suggest an evolution in the practice of LDR brachytherapy since 1998 and aids in identifying aspects that require further progress or investigation. ABS guidelines and other practice recommendations appear to impact the practice of brachytherapy. Copyright © 2012 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  20. Standardization of prostate brachytherapy treatment plans

    International Nuclear Information System (INIS)

    Ove, Roger; Wallner, Kent; Badiozamani, Kas; Korjsseon, Tammy; Sutlief, Steven

    2001-01-01

    Purpose: Whereas custom-designed plans are the norm for prostate brachytherapy, the relationship between linear prostate dimensions and volume calls into question the routine need for customized treatment planning. With the goal of streamlining the treatment-planning process, we have compared the treatment margins (TMs) achieved with one standard plan applied to patients with a wide range of prostate volumes. Methods and Materials: Preimplant transrectal ultrasound (TRUS) images of 50 unselected University of Washington patients with T1-T2 cancer and a prostate volume between 20 cc and 50 cc were studied. Patients were arbitrarily grouped into categories of 20-30 cc, 30-40 cc, and 40-50 cc. A standard 19-needle plan was devised for patients in the 30- to 40-cc range, using an arbitrary minimum margin of 5 mm around the gross tumor volume (GTV), making use of inverse planning technology to achieve 100% coverage of the target volume with accentuation of dose at the periphery and sparing of the central region. The idealized plan was applied to each patient's TRUS study. The distances (TMs) between the prostatic edge (GTV) and treated volume (TV) were determined perpendicular to the prostatic margin. Results: Averaged over the entire patient group, the ratio of thickness to width was 1.4, whereas the ratio of length to width was 1.3. These values were fairly constant over the range of volumes, emphasizing that the prostate retains its general shape as volume increases. The idealized standard plan was overlaid on the ultrasound images of the 17 patients in the 30- to 40-cc group and the V100, the percentage of target volume receiving 100% or more of the prescription dose, was 98% or greater for 15 of the 17 patients. The lateral and posterior TMs fell within a narrow range, most being within 2 mm of the idealized 5-mm TM. To estimate whether a 10-cc volume-interval stratification was reasonable, the standard plan generated from the 30- to 40-cc prostate model was

  1. Experimental and theoretical determination of dosimetric characteristics of IsoAid ADVANTAGETM125I brachytherapy source

    International Nuclear Information System (INIS)

    Meigooni, Ali S.; Hayes, Joshua L.; Zhang Hualin; Sowards, Keith

    2002-01-01

    125 I brachytherapy sources are being used for interstitial implants in tumor sites such as the prostate. Recently, the ADVANTAGE TM 125 I, Model IAI-125, source became commercially available for interstitial brachytherapy treatment. Dosimetric characteristics (dose rate constant, radial dose function, and anisotropy function) of this source were experimentally and theoretically determined, following the AAPM Task Group 43 recommendations. Derivation of the dose rate constant was based on recent NIST WAFAC calibration performed in accordance with their 1999 standard. Measurements were performed in Solid Water TM phantom using LiF thermoluminescent dosimeters. The theoretical calculations were performed in both Solid Water TM and water using the PTRAN Monte Carlo code. The results indicated that a dose rate constant of the new source in water was 0.98±0.03 cGy h -1 U -1 . The radial dose function of the new source was measured in Solid Water TM and calculated both in water and Solid Water TM at distances up to 10.0 cm. The anisotropy function, F(r,θ), of the new source was measured and calculated in Solid Water TM at distances of 2 cm, 3 cm, 5 cm, and 7 cm and also was calculated in water at distances ranging from 1 cm to 7 cm from the source. From the anisotropy function, the anisotropy factors and anisotropy constant were derived. The anisotropy constant of the ADVANTAGE TM 125 I source in water was found to be 0.97±0.03. The dosimetric characteristics of this new source compared favorably with those from the Amersham Health Model 6711 source. Complete dosimetric parameters of the new source are presented in this paper

  2. Dosimetric analysis at ICRU reference points in HDR-brachytherapy of cervical carcinoma.

    Science.gov (United States)

    Eich, H T; Haverkamp, U; Micke, O; Prott, F J; Müller, R P

    2000-01-01

    In vivo dosimetry in bladder and rectum as well as determining doses on suggested reference points following the ICRU report 38 contribute to quality assurance in HDR-brachytherapy of cervical carcinoma, especially to minimize side effects. In order to gain information regarding the radiation exposure at ICRU reference points in rectum, bladder, ureter and regional lymph nodes those were calculated (digitalisation) by means of orthogonal radiographs of 11 applications in patients with cervical carcinoma, who received primary radiotherapy. In addition, the doses at the ICRU rectum reference point was compared to the results of in vivo measurements in the rectum. The in vivo measurements were by factor 1.5 below the doses determined for the ICRU rectum reference point (4.05 +/- 0.68 Gy versus 6.11 +/- 1.63 Gy). Reasons for this were: calibration errors, non-orthogonal radiographs, movement of applicator and probe in the time span between X-ray and application, missing connection of probe and anterior rectal wall. The standard deviation of calculations at ICRU reference points was on average +/- 30%. Possible reasons for the relatively large standard deviation were difficulties in defining the points, identifying them on radiographs and the different locations of the applicators. Although 3 D CT, US or MR based treatment planning using dose volume histogram analysis is more and more established, this simple procedure of marking and digitising the ICRU reference points lengthened treatment planning only by 5 to 10 minutes. The advantages of in vivo dosimetry are easy practicability and the possibility to determine rectum doses during radiation. The advantages of computer-aided planning at ICRU reference points are that calculations are available before radiation and that they can still be taken into account for treatment planning. Both methods should be applied in HDR-brachytherapy of cervical carcinoma.

  3. Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent X-Ray Source: an electronic brachytherapy source.

    Science.gov (United States)

    Rivard, Mark J; Davis, Stephen D; DeWerd, Larry A; Rusch, Thomas W; Axelrod, Steve

    2006-11-01

    A new x-ray source, the model S700 Axxent X-Ray Source (Source), has been developed by Xoft Inc. for electronic brachytherapy. Unlike brachytherapy sources containing radionuclides, this Source may be turned on and off at will and may be operated at variable currents and voltages to change the dose rate and penetration properties. The in-water dosimetry parameters for this electronic brachytherapy source have been determined from measurements and calculations at 40, 45, and 50 kV settings. Monte Carlo simulations of radiation transport utilized the MCNP5 code and the EPDL97-based mcplib04 cross-section library. Inter-tube consistency was assessed for 20 different Sources, measured with a PTW 34013 ionization chamber. As the Source is intended to be used for a maximum of ten treatment fractions, tube stability was also assessed. Photon spectra were measured using a high-purity germanium (HPGe) detector, and calculated using MCNP. Parameters used in the two-dimensional (2D) brachytherapy dosimetry formalism were determined. While the Source was characterized as a point due to the small anode size, S700 Source exhibited depth dose behavior similar to low-energy photon-emitting low dose rate sources 125I and l03Pd, yet with capability for variable and much higher dose rates and subsequently adjustable penetration capabilities. This paper presents the calculated and measured in-water brachytherapy dosimetry parameters for the model S700 Source at the aforementioned three operating voltages.

  4. Interstitial rotating shield brachytherapy for prostate cancer

    International Nuclear Information System (INIS)

    Adams, Quentin E.; Xu, Jinghzu; Breitbach, Elizabeth K.; Li, Xing; Rockey, William R.; Kim, Yusung; Wu, Xiaodong; Flynn, Ryan T.; Enger, Shirin A.

    2014-01-01

    Purpose: To present a novel needle, catheter, and radiation source system for interstitial rotating shield brachytherapy (I-RSBT) of the prostate. I-RSBT is a promising technique for reducing urethra, rectum, and bladder dose relative to conventional interstitial high-dose-rate brachytherapy (HDR-BT). Methods: A wire-mounted 62 GBq 153 Gd source is proposed with an encapsulated diameter of 0.59 mm, active diameter of 0.44 mm, and active length of 10 mm. A concept model I-RSBT needle/catheter pair was constructed using concentric 50 and 75 μm thick nickel-titanium alloy (nitinol) tubes. The needle is 16-gauge (1.651 mm) in outer diameter and the catheter contains a 535 μm thick platinum shield. I-RSBT and conventional HDR-BT treatment plans for a prostate cancer patient were generated based on Monte Carlo dose calculations. In order to minimize urethral dose, urethral dose gradient volumes within 0–5 mm of the urethra surface were allowed to receive doses less than the prescribed dose of 100%. Results: The platinum shield reduced the dose rate on the shielded side of the source at 1 cm off-axis to 6.4% of the dose rate on the unshielded side. For the case considered, for the same minimum dose to the hottest 98% of the clinical target volume (D 98% ), I-RSBT reduced urethral D 0.1cc below that of conventional HDR-BT by 29%, 33%, 38%, and 44% for urethral dose gradient volumes within 0, 1, 3, and 5 mm of the urethra surface, respectively. Percentages are expressed relative to the prescription dose of 100%. For the case considered, for the same urethral dose gradient volumes, rectum D 1cc was reduced by 7%, 6%, 6%, and 6%, respectively, and bladder D 1cc was reduced by 4%, 5%, 5%, and 6%, respectively. Treatment time to deliver 20 Gy with I-RSBT was 154 min with ten 62 GBq 153 Gd sources. Conclusions: For the case considered, the proposed 153 Gd-based I-RSBT system has the potential to lower the urethral dose relative to HDR-BT by 29%–44% if the clinician allows

  5. Auger Electron Therapy And Brachytherapy Tumor Treatment

    International Nuclear Information System (INIS)

    Laster, B.H.; Shani, G.

    2002-01-01

    Auger Electron Therapy (AET) is a binary approach for improving cancer radiotherapy. It involves the selective targeting of an atom to tumor cells using physiological pathway. The atom is then irradiated by a specific radiation that produces secondary radiation called Auger electrons. One of the problems associated with the clinical application of AET, is that the energy of the photons required for stimulating photoelectric absorption in most of the available high Z target atoms, is too low to achieve penetration through normal surrounding tissues to the depth of the tumor, when an external source is used. The solution is therefore the use of a brachytherapy technique. There are two other problems associated with the use of radiation as a cancer treatment. The first is the limitation on radiation dose to the normal tissue within the treatment volume. The second problem is the limitation imposed by the miniscule size of the critical target of the cell, namely the DNA (0.25% of the cell mass). The solution to the first problem can be achieved by using the brachytherapy technique. The second problem can be resolved by placing the radiation source in close position to the DNA. AET, as we apply it, provides the two solutions to the two problems. When a photon is absorbed by an electron in the K or L shell of an high Z atom, the electron is ejected from the atom, creating a vacancy in the shell. This vacancy is immediately filled with an electron from an upper shell. The energy difference between the two shells is sometimes emitted as an x-ray, however, frequently the energy is transferred to an outer shell electron that is emitted as an Auger electron. These electrons are emitted at energies of up to ∼30 keV and therefore have a very short range in the cell. They will deposit all their energy within 20-30 nm from the point of emission. i.e. all the energy is deposited in the DNA. In our work indium is used as the high Z atom

  6. The needs for brachytherapy source calibrations in the United States

    International Nuclear Information System (INIS)

    Coursey, B.M.; Goodman, L.J.; Hoppes, D.D.; Loevinger, R.; McLaughlin, W.L.; Soares, C.G.; Weaver, J.T.

    1992-01-01

    Brachytherapy sources of beta and gamma radiation ('brachy' is from the Greek, meaning 'near') have a long history of use in interstitial, intracavitary, intraluminal, and ocular radiation therapy. In the past the US national standards for these sources were often specified in activity or milligram radium equivalent. With the introduction of new radionuclide sources to replace radium, source strength calibrations are now expressed as air kerma rate at a meter. In this paper, we review the NIST standards for brachytherapy sources, list some of the common radionuclides and source encapsulations in use in the US radiology community, and describe the latest NIST work, in collaboration with several US medical institutions, on a method of two- and three-dimensional dose mapping of brachytherapy sources using radiochromic films. (orig.)

  7. Effects of brachytherapy on gene expressions of elastin and elastase

    International Nuclear Information System (INIS)

    Li Junming; Zhou Jingqun; Hu Bin; Li Shuguo

    2004-01-01

    Objective: To study the effects of brachytherapy on the gene expressions of elastin and elastase in cultured rat vascular smooth muscle cells (VSMCs). Methods: Rat VSMCs cultured in DMEM containing 10% FBS were irradiated by 60 Co γ-rays at 0, 7, 14, 28 Gy respectively. Then mRNA levels of elastin and elastase were determined by reverse transcription competitive PCR(RT-PCR). Results: Brachytherapy inhibited the expressions of elastase. Elastase mRNA decreased 25.3% and 50.1% in VSMC irradiated with 14, 28 Gy, respectively (P<0.05). The elastin mRNA level increased 80.7% and 102.3% in VSMC irradiated with 14, 25 Gy, respectively (P<0.05). Conclusion: Brachytherapy inhabits the expressions of elastase and increased elastin in VSMC cells

  8. Indication of brachytherapy of prostate with permanent implants

    International Nuclear Information System (INIS)

    Chauveinc, L.; Solignac, S.; Rosenwald, J.C.; Firmin, F.; Cosset, J.M.; Flam, T.; Thiounn, N.

    2002-01-01

    In the last decade, brachytherapy emerged as a particularly appealing new way of treating localized prostate cancer. Recently published 10-12 years biochemical control results appear to be superimposable to the best percentages achieved by surgery or conformal radiotherapy, with a small percentage of complications. This applied to severely patients. Only patients with T1/T2, PSA 60 g, hip mobility limitations, a urinary obstructive syndrome and previous trans-urethral resection lead to difficulties in technical implantation and therefore must be taken into account when discussing brachytherapy. In conclusion, for adequately selected patients, brachytherapy offers a particularly applied alternative to surgery and external radiotherapy, with satisfactory long term biochemical control rates and limited complications. (author)

  9. Algorithms for the process management of sealed source brachytherapy

    International Nuclear Information System (INIS)

    Engler, M.J.; Ulin, K.; Sternick, E.S.

    1996-01-01

    Incidents and misadministrations suggest that brachytherapy may benefit form clarification of the quality management program and other mandates of the US Nuclear Regulatory Commission. To that end, flowcharts of step by step subprocesses were developed and formatted with dedicated software. The overall process was similarly organized in a complex flowchart termed a general process map. Procedural and structural indicators associated with each flowchart and map were critiqued and pre-existing documentation was revised. open-quotes Step-regulation tablesclose quotes were created to refer steps and subprocesses to Nuclear Regulatory Commission rules and recommendations in their sequences of applicability. Brachytherapy algorithms were specified as programmable, recursive processes, including therapeutic dose determination and monitoring doses to the public. These algorithms are embodied in flowcharts and step-regulation tables. A general algorithm is suggested as a template form which other facilities may derive tools to facilitate process management of sealed source brachytherapy. 11 refs., 9 figs., 2 tabs

  10. Brachytherapy for elderly patients with stage II tongue cancer

    International Nuclear Information System (INIS)

    Kimura, Tomoki; Hirokawa, Yutaka; Fujita, Minoru; Murakami, Yuji; Kenjo, Masahiro; Kaneyasu, Yuko; Ito, Katsuhide

    2003-01-01

    In treatment choices of stage II (T2N0M0) tongue cancer, brachytherapy is less invasive and superior in function preservation, therefore its role is more important in elderly patients. The aim of this study was to evaluate treatment results and morbidity of brachytherapy for elderly patients with stage II tongue cancer. Between 1980 and 2001, 198 patients with stage II tongue cancer were treated with brachytherapy at Hiroshima University Hospital. Patient ages ranged from 21 to 89 years old (median: 62 years old). Patients were divided into three groups as follows: 119 patients younger than 65 years old (Non-Elderly group), 53 patients between 65 and 75 years old (Junior Elderly group), and 26 patients 75 years or older (Senior Elderly group). Radiotherapy was performed in 101 patients with brachytherapy alone, and in 97 patients with brachytherapy and external radiotherapy. Chemotherapy was also performed in 77 patients. Follow-up period ranged from 4 to 243 months (median: 55 months). The 5-year local control rate was 85% in the Non-Elderly group, 85% in the Junior Elderly group and 81% in the Senior Elderly group. There was no significant difference among these groups. The 5-year cause-specific survival rate was 85%, 81% and 70% respectively. The Senior Elderly group showed poorer cause-specific survival rate than the other two groups (p=0.03). There was also a tendency of higher incidence of neck metastasis and low salvage rate by neck dissection in the Senior Elderly group. Although the Senior Elderly group showed poorer cause-specific survival rate, the local control rate was similar to those of the other two groups. Brachytherapy is an effective treatment option for elderly patients with stage II tongue cancer. (author)

  11. Brachytherapy: The need for a national metrology lab in Spain; Branquiterapia: la necesidad de un laboratorio nacional de metrologia en Espana

    Energy Technology Data Exchange (ETDEWEB)

    Aviles Lucas, P.

    2011-07-01

    Radiotherapy, along with chemotherapy and surgery, is an essential therapeutic technique for treating malignant tumours. Part of the challenge of a suitable radiotherapy treatment lies on the optimisation of the irradiated volume, which must be adapted to the tumour volume as far as possible. Depending on position of the radiation source relative to the patient, the procedure in question could be external radiotherapy, or brachytherapy. In a brachytherapy procedure, relatively small encapsulated radioactive sources are placed close to or in the tumour volume to be treated. This therapeutic treatment has two obvious advantages; on one hand the prescribed dose can be adjusted to the tumour volume, preventing unnecessary exposure of the adjacent healthy tissues, and on the other, it decreases the treatment duration compared to a radiotherapy treatment. (Author) 19 refs.

  12. Treatment of localized prostate cancer using a combination of high dose rate lridium-192 brachytherapy and external beam irradiation: Initial Australian experience

    International Nuclear Information System (INIS)

    Stevens, M.J.; Stricker, P.D.; Brenner, P.C.; Kooner, R.; O'Neil, G.F.A.; Duval, P.J.; Jagavkar, R.S.; Cross, P.; Saalfeld, J.; Martland, J.

    2003-01-01

    Combination high dose rate brachytherapy (HDRB) and external beam radiation therapy is technically and clinically feasible as definitive treatment for localized prostate cancer. We report the first large Australian experience using this technique of radiation dose escalation in 82 patients with intermediate- and high-risk disease. With a median follow up of 3 years (156 weeks), complications were low and overall prostate-specific antigen progression-free survival was 91% using the American Society for Therapeutic Radiology and Oncology consensus definition. The delivery of hypofractionated radiation through the HDRB component shortens overall treatment time and is both biologically and logistically advantageous. As a radiation boost strategy, HDRB is easy to learn and could be introduced into most facilities with brachytherapy capability. Copyright (2003) Blackwell Science Pty Ltd

  13. Brachytherapy in vulvar cancer: analysis of 18 patients

    International Nuclear Information System (INIS)

    Frezza, G.; Baldissera, A.; Bernardi, L.; Bunkheila, F.; Galuppi, A.; Salvi, F.

    1996-01-01

    INTRODUCTION: Vulvar cancer is a rather common neoplasm in elderly patients. Surgery, followed eventually by postoperative radiotherapy, is the treatment of choice. The results of exclusive radiotherapy (external beam irradiation and/or brachytherapy) are not well defined and in the recent literature only small series are reported. Radiotherapy however is the only therapeutic option in patients who are not fit for radical surgery. It is thus necessary to review its indications and its modalities. PATIENTS METHODS AND RESULTS: From 1990 to 1994 18 pts with a diagnosis of squamous cell carcinoma of the vulva have been submitted to brachytherapy. Age ranged from 60 to 92 years (mean age 76, 1 ys). 14 pts were treated at diagnosis (11 pts) or for recurrent disease after surgery (3 pts). In 8 of them brachytherapy (total dose 35-45 Gy, dose rate: 0,4-0,78 Gy/h) was preceded by external beam irradiation (Co60 or electron beam, 40-50 Gy to primary and inguinal nodes); 6 pts were treated with brachytherapy alone (58-60 Gy; dose rate 0,44-0,63 Gy/h). 4 pts underwent to brachytherapy alone for local recurrence after surgery and postoperative radiotherapy (total dose 45-60 Gy; dose rate 0,37-0,49 Gy/h). Brachytherapy was always performed with 192 Ir. Plastic tubes (2 to 5 lines) were used for single plane implantation of small exophytic lesions limited to the labia (8 cases); a perineal template (10 cases) was employed in lesions extended to the vaginal mucosa or involving the clitoris or the area of the perineum. (10(14)) pts treated at diagnosis are alive and free from local recurrence after 11-48 mos. 3 of them, treated with brachytherapy alone, have presented a nodal recurrence in the groin after 14, 15 and 27 mos. respectively. All of them are alive and free from disease after surgery and external radiotherapy. None of the pts treated for recurrent disease after surgery + external beam radiotherapy has achieved a local control. CONCLUSION: Brachytherapy alone or

  14. Volume correction factor in time dose relationships in brachytherapy

    International Nuclear Information System (INIS)

    Supe, S.J.; Sasane, J.B.

    1987-01-01

    Paterson's clinical data about the maximum tolerance doses for various volumes of interstitial implants with Ra-226 delivered in seven days was made use of in deriving volume correction factors for TDF and CRE concepts respectively for brachytherapy. The derived volume correction factors for TDF and for CRE differ fromthe one assumed for CRE by Kirk et al. and implied for TDF by Goitein. A normalising volume of 70 cc has been suggested for both CRE and TDF concepts for brachytherapy. A table showing the volume corrected TDF is presented for various volumes and dose rates for continuous irradiation. The use of this table is illustrated with examples. (orig.) [de

  15. Complications of esophageal stenting after radiotherapy and brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yorozu, Atsunori; Dokiya, Takushi; Ogita, Mikio; Kutuki, Shoji; Oki, Yosuke [National Second Hospital of Tokyo (Japan)

    1997-11-01

    The purpose of our study was to evaluate safety and complications of stenting after radiotherapy and brachytherapy. Fifteen of 21 patients showed improvement of dysphagia by stenting. But 6 of 21 patients had perforation or massive bleeding relating to stents. The risk for perforation or hemorrhage appears to be even higher in patients who have previously undergone radical radiotherapy and brachytherapy within one month before stenting. Stenting at 6 months or more after radical radiotherapy seems to be an effective and safe method of long-lasting palliation for severe dysphagia with recurrent esophageal cancer. (author)

  16. Australian high-dose-rate brachytherapy protocols for gynaecological malignancy

    International Nuclear Information System (INIS)

    MacLeod, C.; Dally, M.; Stevens, M.; Thornton, D.; Carruthers, S.; Jeal, P.

    2001-01-01

    There is no consensus over the optimal dose fractionation schedules for high-dose-rate (HDR) brachytherapy used for gynaecological malignancy. In Australian public hospital departments of radiation oncology, HDR brachytherapy for gynaecological cancer is being more commonly used. A survey of public departments that are using this technology, or that plan to introduce this technology, was performed. Their current protocols are presented. In general, protocols are similar biologically; however, the practical aspects such as the number of fractions given do vary and may reflect resource restrictions or, alternatively, differences in interpretations of the literature and of the best protocols by clinicians. Copyright (2001) Blackwell Science Pty Ltd

  17. Radiographic Control of 137-Cs Brachytherapy Sources

    International Nuclear Information System (INIS)

    Bistrovic, M.; Viculin, T.; Jurkovic, S.

    2003-01-01

    1 37C s brachytherapy sources are practical for the intracavitary application due to their relatively long lifetime (T 1/2 = 30 y). On the other hand, due to the relatively low energy (0.66 MeV) of the emitted photons, they are suitable for an efficient radiation protection. The dose distribution around the sources is usually calculated by a specific program. However this program requires the knowledge of the position of sources within the applicator as well as the distribution of activity along them. The only way to learn these data is to make an X-ray picture of applicators and sources superimposed to the autoradiography of every source. It is difficult to achieve satisfactory radiographs with high dose rate sources with standard X-ray film material because autoradiography covers the structure of the radiographic shadow. The problem can be overcome either by applying a high intensity X-ray or gamma beam (originating from a radiotherapeutic machine), or by using photographic material of very low sensitivity, for example photographic paper. Combining both possibilities one can obtain satisfactory images. (author)

  18. Endovascular brachytherapy to prevent restenosis after angioplasty

    International Nuclear Information System (INIS)

    Wohlgemuth, W.A.; Bohndorf, K.

    2003-01-01

    Endovascular radiotherapy is the first effective prophylaxis of restenosis after percutaneous transluminal angioplasty (PTA) and stenting. The FDA recently approved two devices for the delivery of intracoronary radiation following coronary artery stenting. Published multicenter, double-blind, randomized trials of intracoronary radiation therapy report good results for preventing in-stent restenosis, while the data for the peripheral circulation are still inconclusive. Beta-emitters are easier applicable and probably also safer, whereas gamma-emitters have been more extensively evaluated clinically so far. Primary indication for endovascular brachytherapy are patients at high risk for restenosis, such as previous restenoses, in-stent hyperplasia, long stented segment, long PTA lesion, narrow residual vascular lumen and diabetes. Data from coronary circulation suggest a safety margin of at least 4 to 10 mm at both ends of the angioplastic segment to avoid edge restenosis. To prevent late thrombosis of the treated coronary segment, antiplatelet therapy with clopidogrel and aspirin are recommended for at least 6 months after PTA and for 12 months after a newly implanted stent. An established medication regimen after radiotherapy of peripheral arteries is still lacking. (orig.) [de

  19. A quality management program in intravascular brachytherapy

    International Nuclear Information System (INIS)

    Chakri, Abderrahim; Thomadsen, Bruce

    2002-01-01

    While simple, intravascular brachytherapy (IVB) presents a considerable potential for harm to the patient. The medical physicist maintains the responsibility to minimize the likelihood of operational problems or dosimetric errors. The principals for safe operation remain the same as with any radiotherapy treatment: to deliver the correct dose, to the correct location, safety. To develop an effective and comprehensive quality management (QM) program for IVB, a physicist should utilize proven risk assessment techniques rather than simply thinking of things to check, and follow guidances such as ISO9001:2000. The proposed QM program includes the following: Procedures designed to assure the safety of the patient: Identification of the patient; tests of the integrity and patency for the delivery catheter, operation of the source train, and patency of the catheter in the treatment position; a check for recovery preparations; and verification of source recovery. Procedures to assure positional accuracy of the treatment: Verification of the positioning the catheter in the artery and of the sources in the catheter. Procedures to assure dosimetry accuracy: Acceptance testing of the device, including verification of the source strength and uniformity, and of the treatment duration tables; verification of the treatment prescription and duration for each patient; and control measures that minimize the likelihood of errors removing the source at the correct time

  20. Radiation safety parameters following prostate brachytherapy

    International Nuclear Information System (INIS)

    Smathers, Sesalie; Wallner, Kent; Korssjoen, Tammy; Bergsagel, Carl; Hudson, Rick H.; Sutlief, Steven; Blasko, John

    1999-01-01

    Purpose: To determine the degree and variability of radiation exposure to the general public from patients after I-125 or Pd-103 prostate brachytherapy. Methods and Materials: Radiation exposure measurements were made from 38 consecutive, unselected patients with stage T1 or T2 prostatic carcinoma who had trans perineal I-125 or Pd-103 implants at the University of Washington in 1998. Results: The exposure rate at the anterior skin surface following a I-125 implant ranged from 2.2 to 8.9 mrem/hour (average: 5.0). The exposure rate at the anterior skin surface from a Pd-103 implant ranged from 0.5 to 4.9 mrem/hour (average: 1.7). Based on the current Nuclear Regulatory Commission (NRC) regulations the time required to reach the annual limit at the anterior skin surface would be 20 hours for I-125 and 59 hours for Pd-103. For exposure at the lateral skin surface, the times would exceed 500 hours for either isotope. Conclusions: This data suggest that patients need not be concerned about being a radiation risk to the general public following their procedure

  1. Radiation Protection Training in Intracoronary Brachytherapy

    International Nuclear Information System (INIS)

    Prieto, C.; Vano, E.; Fernandez, J. M.; Sabate, M.; Galvan, C.; Meiggs, L.; Corral, J. M.

    2003-01-01

    To report the educational objectives and contents on Radiation Protection (RP) for the practice of Intracoronary Brachytherapy (ICB) procedures. The wide international experience on training programs for ICB as well as our own experience organizing several courses aimed at Cardiologists, Radio therapists and Medical Physicists has been used to elaborate specific RP objectives and contents. The objectives, differentiated for Cardiologists, Radio therapists, Medical Physicists, Nurses and Technicians, pretend to guarantee the safety and RP of both patient and staff in the procedures of ICB. The objectives are necessarily different because their RP formation and their role in the procedure are different. The general topics included in RP training programmes for ICB could be: general topics on RP (Interaction of radiation and matter, RP principles, radiobiology, etc), principles of operation of ICB and interventional X-ray equipment, quantification of radiation dose and risks, optimisation of protection of staff and patients, accidents and emergencies, regulations, responsibilities, quality assurance program, handling of ICB sources, installation and commissioning. Training programs based on the objectives presented in this paper would encourage positive safety culture in ICB and can also be used as a starting point by the Regulatory Authority for the authorization of new Installations and credentialing of professionals involved in this technique as well as for the continuous education of the staff involved. (Author) 10 refs

  2. Dose assessment for brachytherapy with Henschke applicator

    International Nuclear Information System (INIS)

    Yu, Pei-Chieh; Chao, Tsi-Chian; Tung, Chuan-Jong; Wu, Ching-Jung; Lee, Chung-Chi

    2011-01-01

    Dose perturbation caused by the Henschke applicator is a major concern for the brachytherapy planning system (BPS) in recent years. To investigate dose impact owing to neglect of the metal shielding effect, Monte Carlo (MC) simulation, BPS calculation, and film measurement have been performed for dose assessment in a water phantom. Additionally, a cylindrical air cavity representing the rectum was added into the MC simulation to study its effect on dose distribution. Monte Carlo N-Particle Transport Code (MCNP) was used in this study to simulate the dose distribution using a mesh tally. This Monte Carlo simulation has been validated using the TG-43 data in a previous report. For the measurement, the Henschke applicator was placed in a specially-designed phantom, and Gafchromic films were inserted in the center plane for 2D dose assessment. Isodose distributions with and without the Henschke applicator by the MC simulation show significant deviation from those by the BPS. For MC simulation, the isodose curves shrank more significantly when the metal applicator was applied. For the impact of the added air cavity, the results indicate that it is hard to distinguish between with and without the cavity. Thus, the rectum cavity has little impact on the dose distribution around the Henschke applicator.

  3. Dose optimisation in single plane interstitial brachytherapy

    DEFF Research Database (Denmark)

    Tanderup, Kari; Hellebust, Taran Paulsen; Honoré, Henriette Benedicte

    2006-01-01

    patients,       treated for recurrent rectal and cervical cancer, flexible catheters were       sutured intra-operatively to the tumour bed in areas with compromised       surgical margin. Both non-optimised, geometrically and graphically       optimised CT -based dose plans were made. The overdose index...... on the       regularity of the implant, such that the benefit of optimisation was       larger for irregular implants. OI and HI correlated strongly with target       volume limiting the usability of these parameters for comparison of dose       plans between patients. CONCLUSIONS: Dwell time optimisation significantly......BACKGROUND AND PURPOSE: Brachytherapy dose distributions can be optimised       by modulation of source dwell times. In this study dose optimisation in       single planar interstitial implants was evaluated in order to quantify the       potential benefit in patients. MATERIAL AND METHODS: In 14...

  4. Halo's production in vitro on brachytherapy experiments

    International Nuclear Information System (INIS)

    Cuperschmid, Ethel M.; Sarmento, Eduardo V.; Campos, Tarcisio P.R.

    2011-01-01

    Since earlier of 1960, one of the most significant contributions of radiation biology has been the theory of cell killing as a function of increasing doses of a cytotoxic agent, as well as the demonstration of repair of sublethal or potentially lethal damage after irradiation. The impact of cellular and molecular radiobiology, by exploitation of cellular mechanisms related to apoptosis, may be the cell killing with irradiation by including changes other than unrepaired DNA damage. Based on the understanding of the tumor microenvironment and how growth factors and proteins produced by irradiated cells may alter cellular processes, improved combined-modality strategies may emerge. This effect was show since 1960's, but here we propose to demonstrate this phenomenon in Brachytherapy. The present goal is to verify the macroscopic response through the production and analysis of clonogenic control based on halos generation by radioactive seeds of Ho-165 and Sm-153, aiming to study the effect of this type of irradiation. Confluent cell culture flasks with HeLa cell line were subjected to radiation in a period up to five half-lives of radionuclide, respectively. Devices were introduced which set the polymer-ceramic Ho-165 and Sm-153 seeds in the vials. After a period of exposure, the flasks were stained with violet Gensiana. The results showed the formation of halos control of confluent cancer cells. This paper will describe these experiments in the current stage of the research and report the implications of this new way of therapy for cancer treatment. (author)

  5. Energy Advantages for Green Schools

    Science.gov (United States)

    Griffin, J. Tim

    2012-01-01

    Because of many advantages associated with central utility systems, school campuses, from large universities to elementary schools, have used district energy for decades. District energy facilities enable thermal and electric utilities to be generated with greater efficiency and higher system reliability, while requiring fewer maintenance and…

  6. Competitive Intelligence and Social Advantage.

    Science.gov (United States)

    Davenport, Elisabeth; Cronin, Blaise

    1994-01-01

    Presents an overview of issues concerning civilian competitive intelligence (CI). Topics discussed include competitive advantage in academic and research environments; public domain information and libraries; covert and overt competitive intelligence; data diversity; use of the Internet; cooperative intelligence; and implications for library and…

  7. Underuse of brachytherapy for the treatment of dysphagia owing to esophageal cancer. An Italian survey.

    Science.gov (United States)

    Fuccio, Lorenzo; Guido, Alessandra; Hassan, Cesare; Frazzoni, Leonardo; Arcelli, Alessandra; Farioli, Andrea; Giaccherini, Lucia; Galuppi, Andrea; Mandolesi, Daniele; Cellini, Francesco; Mantello, Giovanna; Macchia, Gabriella; de Bortoli, Nicola; Repici, Alessandro; Valentini, Vincenzo; Bazzoli, Franco; Morganti, Alessio Giuseppe

    2016-10-01

    International guidelines strongly recommend brachytherapy as valid alternative or in addition to stenting in patients with dysphagia owing to esophageal cancer. However, for not well understood reasons, brachytherapy is definitively underused for the palliative treatment of malignant dysphagia. Aim of the current survey was to investigate the use of brachytherapy for the treatment of malignant dysphagia in Italy. A structured questionnaire was submitted to the 1510 members of the Italian Association of Radiation Oncologists (AIRO). These members refer to 177 centres of radiotherapy across Italy and in 68 (38.4%) of them brachytherapy is routinely performed. Of the 1510 invited members, 178 completed the survey (11.7%). The answers provided by the 178 participants allowed to get information on 40 out of 68 brachytherapy centres (58.8%). Seven out of 40 (17.5%) centres perform brachytherapy of the oesophagus, in 3 out of 40 (7.5%) centres brachytherapy represents the first line of treatment. The main reason why brachytherapy is not routinely performed is the lack of experience. Despite the strong recommendations of the international guidelines and the wide diffusion of brachytherapy centres across Italy, only very few of them routinely considered brachytherapy for the treatment of dysphagia due to esophageal cancer. Copyright © 2016 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  8. Guidelines for the calibration of low energy photon sources at beta-ray brachytherapy sources

    International Nuclear Information System (INIS)

    2000-01-01

    With the development of improved methods of implanting brachytherapy sources in a precise manner for treating prostate cancer and other disease processes, there has been a tremendous growth in the use of low energy photon sources, such as 125 I and 103 Pd brachytherapy seeds. Low energy photon sources have the advantage of easier shielding and also lowering the dose to normal tissue. However, the dose distributions around these sources are affected by the details in construction of the source and its encapsulation more than other sources used for brachytherapy treatments, such as 192 Ir. With increasing number of new low energy photon sources on the market, care should be taken with regard to its traceability to primary standards. It cannot be assumed that a calibration factor for an ionization chamber that is valid for one type of low energy photon source, automatically is valid for another source even if both would use the same isotope. Moreover, the method used to calculate the dose must also take into account the structure of the source and the encapsulation. The dose calculation algorithm that is valid for one type of low energy source may not be valid for another source even if in both cases the same radionuclide is used. Simple ''point source'' approximations, i.e. where the source is modeled as a point, should be avoided, as such methods do not account for any details in the source construction. In this document, the dose calculation formalism adopted for low energy photon sources is that recommended by the American Association of Physicists in Medicine (AAPM) as outlined by Task Group-43 (TG-43). This method accounts for the source and capsule geometry. The AAPM recommends brachytherapy photon sources to be specified in terms of 'Air Kerma Strength' that is also used in the formalism mentioned above. On the other hand, the International Commission on Radiation Units and Measurements (ICRU) recommends that the specification be done in terms of Reference Air

  9. Current status of brachytherapy in Korea: a national survey of radiation oncologists.

    Science.gov (United States)

    Kim, Haeyoung; Kim, Joo Young; Kim, Juree; Park, Won; Kim, Young Seok; Kim, Hak Jae; Kim, Yong Bae

    2016-07-01

    The aim of the present study was to acquire information on brachytherapy resources in Korea through a national survey of radiation oncologists. Between October 2014 and January 2015, a questionnaire on the current status of brachytherapy was distributed to all 86 radiation oncology departments in Korea. The questionnaire was divided into sections querying general information on human resources, brachytherapy equipment, and suggestions for future directions of brachytherapy policy in Korea. The response rate of the survey was 88.3%. The average number of radiation oncologists per center was 2.3. At the time of survey, 28 centers (36.8%) provided brachytherapy to patients. Among the 28 brachytherapy centers, 15 (53.5%) were located in in the capital Seoul and its surrounding metropolitan areas. All brachytherapy centers had a high-dose rate system using (192)Ir (26 centers) or (60)Co (two centers). Among the 26 centers using (192)Ir sources, 11 treated fewer than 40 patients per year. In the two centers using (60)Co sources, the number of patients per year was 16 and 120, respectively. The most frequently cited difficulties in performing brachytherapy were cost related. A total of 21 centers had a plan to sustain the current brachytherapy system, and four centers noted plans to upgrade their brachytherapy system. Two centers stated that they were considering discontinuation of brachytherapy due to cost burdens of radioisotope source replacement. The present study illustrated the current status of brachytherapy in Korea. Financial difficulties were the major barriers to the practice of brachytherapy.

  10. MO-FG-BRA-01: Development of An Image-Guided Dosimetric Planning System for Injectable Brachytherapy Using ELP Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lafata, K [Duke University, Durham, North Carolina (United States); Duke University Medical Center, Durham, NC (United States); Schaal, J; Liu, W [Duke University, Durham, North Carolina (United States); Cai, J [Duke University Medical Center, Durham, NC (United States)

    2015-06-15

    Purpose: To develop, validate, and evaluate a methodology for determining dosimetry for intratumoral injections of elastin-like-polypeptide (ELP) brachytherapy nanoparticles. These organic-polymer-based nanoparticles are injectable, biodegradable, and genetically tunable. We present a genetically encoded polymer-solution, composed of novel radiolabeled-ELP nanoparticles that are custom-designed to self-assemble into a local source upon intratumoral injection. Our preliminary results of a small animal study demonstrate 100% tumor response, effective radionuclide retention-rates, strong in vivo stability, and no polymer-induced toxicities. While our approach is therefore highly promising for improved brachytherapy, the current workflow lacks a dosimetry framework. Methods: We are developing a robust software framework that provides image-guided dosimetric-planning capabilities for ELP brachytherapy. The user graphically places ELP injection sites within a µCT-planning-image, and independently defines each injection volume, concentration, and radioisotope to be used. The resulting internal dosimetry is then pre-determined by first modeling post-injection ELP advection-diffusion, and then calculating the resulting dose distribution based on a point- dose-kernel-convolution algorithm. We have experimentally measured ELP steady-state concentrations via µSPECT acquisition, and validated our dose calculation algorithm against Monte Carlo simulations of several radioactivity distributions. Finally, we have investigated potential advantages and limitations of various ELP injection parameters. Results: The µSPECT results demonstrated inhomogeneous steady-state distributions of ELP in tissue, and Monte Carlo radioactivity distributions were designed accordingly. Our algorithm yielded a root-mean-square-error of less than 2% for each distribution tested (average root-mean-square-error was 0.73%). Dose-Volume-Histogram analysis of five different plans showed how strategic

  11. Advertising Dynamics and Competitive Advantage

    OpenAIRE

    Ulrich Doraszelski; Sarit Markovich

    2004-01-01

    Can advertising lead to a sustainable competitive advantage? To answer this question, we propose a dynamic model of advertising competition where firms repeatedly advertise, compete in the product market, and make entry as well as exit decisions. Within this dynamic framework, we study two different models of advertising: In the first model, advertising influences the goodwill consumers extend towards a firm ("goodwill advertising"), whereas in the second model it influences the share of cons...

  12. Interest alignment and competitive advantage

    OpenAIRE

    Gottschalg, Oliver; Zollo, Mauricio

    2006-01-01

    This paper articulates a theory of the conditions under which the alignment between individual and collective interests generates sustainable competitive advantage. The theory is based on the influence of tacitness, context-specificity and casual ambiguity in the determinants of different types of motivation (extrinsic, normative intrinsic and hedonic intrinsic), under varying conditions of environmental dynamism. The analysis indicates the need to consider mitivational processes as a complem...

  13. Electromagnetic tracking for treatment verification in interstitial brachytherapy

    DEFF Research Database (Denmark)

    Bert, Christoph; Kellermeier, Markus; Tanderup, Kari

    2016-01-01

    Electromagnetic tracking (EMT) is used in several medical fields to determine the position and orientation of dedicated sensors, e.g., attached to surgical tools. Recently, EMT has been introduced to brachytherapy for implant reconstruction and error detection. The manuscript briefly summarizes...

  14. Brachytherapy in Europe: philosophies, current practice and future directions

    International Nuclear Information System (INIS)

    Haworth, A.

    2000-01-01

    Full text: Five months sabbatical leave provided an opportunity to visit six radiotherapy centres in France, Holland and England. While brachytherapy philosophies and practices within each country were similar, there were considerable differences in attitudes between countries. The Institute Gustave Roussy, home of the Paris System and host for the French sector confirmed that the Paris System is still very much the preferred dosimetry method in this part of the world. Though their preference for low dose rate brachytherapy is still evident, high dose rate brachytherapy has found some applications but the rules of the Paris System are never far away and the words 'what about the hyperdose sleeve' are firmly implanted into this visitor's brain. The use of real time dosimetry for I-125 prostate brachytherapy at the Institute Curie (Paris) provided an interesting contrast to the standard pre and post implant dosimetry techniques commonly employed elsewhere. The two Dutch centres on the itinerary, in stark contrast to the traditional techniques seen in France, have applied the power of computers to investigate optimisation of the classic dosimetry systems and called on the analysis techniques (DVH, NTCP, TCP etc) now familiar to us all in external beam therapy. The Cookridge Hospital in England fitted somewhere between the French and Dutch centres. This centre showed how both modern and traditional techniques could be applied in an efficient way for a large variety of treatment sites. Copyright (2000) Australasian College of Physical Scientists and Engineers in Medicine

  15. In vivo dosimetry: trends and prospects for brachytherapy

    DEFF Research Database (Denmark)

    Kertzscher, Gustavo; Rosenfeld, A.; Beddar, S.

    2014-01-01

    The error types during brachytherapy (BT) treatments and their occurrence rates are not well known. The limited knowledge is partly attributed to the lack of independent verification systems of the treatment progression in the clinical workflow routine. Within the field of in vivo dosimetry (IVD)...

  16. Source of hope [El Salvador’s only brachytherapy centre

    International Nuclear Information System (INIS)

    Falcon Castro, Nancy

    2010-01-01

    Set up in 2008 with the IAEA’s support, the Cancer Institute 'Dr. Narciso Diaz Bazan' is El Salvador’s only brachytherapy treatment facility for women affected by uterine cancer. To date, over 1000 women affected by cervical cancer have received treatment in the centre

  17. Urethral toxicity after LDR brachytherapy: experience in Japan.

    Science.gov (United States)

    Tanaka, Nobumichi; Asakawa, Isao; Hasegawa, Masatoshi; Fujimoto, Kiyohide

    2015-01-01

    Urinary toxicity is common after low-dose-rate (LDR) brachytherapy, and the resolution of urinary toxicity is a concern. In particular, urinary frequency is the most common adverse event among the urinary toxicities. We have previously reported that approximately 70% of patients experience urinary frequency during the first 6 months after seed implantation. Most urinary adverse events were classified as Grade 1, and Grade 2 or higher adverse events were rare. The incidence of urinary retention was approximately 2-4%. A high International Prostate Symptom Score before seed implantation was an independent predictor of acute urinary toxicity of Grade 2 or higher. Several previous reports from the United States also supported this trend. In Japan, LDR brachytherapy was legally approved in 2003. A nationwide prospective cohort study entitled Japanese Prostate Cancer Outcome Study of Permanent Iodine-125 Seed Implantation was initiated in July 2005. It is an important issue to limit urinary toxicities in patients who undergo LDR brachytherapy. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  18. Endobronchial brachytherapy: the Saint-Louis Hospital experience

    International Nuclear Information System (INIS)

    Hennequin, C.; Durdux, C.; Housset, M.; Maylin, C.; Tredaniel, J.; Zalcman, G.; Hirsch, A.; Dray, M.; Manoux, D.; Perret, M.

    1997-01-01

    During the evolution of lung cancer, bronchial obstruction is often noticed and is sometimes responsible for serious symptoms. Several methods of des-obstruction can be proposed, including brachytherapy. Materials and methods: One hundred forty-nine patients, presenting with endobronchial brachytherapy were included into the study. Seventy-three were treated with curative intent, 47 with palliative intent and 29 with a combination of external irradiation and brachytherapy. We usually delivered a series of two 7-Gy fractions (1 cm from the catheter), the treatment being repeated one, two or three times. Results: When all symptoms were taken into account, respiratory function improvement was present in 79% of the patients. Among the 132 tumors that could be evaluated via a new endoscopy 2 months after treatment, 64 (48.5%) were in complete histological remission. The median survival was 14.4 months for the patients treated with curative intent. Eleven massive hemoptyses and 13 radiation bronchitides were observed. Conclusion: These results confirm the feasibility and good results related to endobronchial brachytherapy, though controlled studies are needed to better define its place in the therapeutic strategy of bronchial carcinomas. (authors)

  19. Brachytherapy in cervix cancers: techniques and concepts evolution

    International Nuclear Information System (INIS)

    Haie-Meder, C.; Crevoisier, R. de; Petrow, P.; Fromm, S.; Delapierre, M.; Albano, M.; Petit, C.; Briot, E.

    2003-01-01

    Brachytherapy plays an important role in the treatment of patients with cervical carcinoma. Technical modalities have evolved during the last years and have benefited from imaging modalities development, specially MRI. Imaging modalities contribute to a better knowledge of tumoral extension and critical organs. Ultrasound during brachytherapy has led to the almost complete eradication of uterine perforation. In the future, a more systematic use of systems allowing optimization may induce a better dose distribution in the tumor as well as in the critical organs. Recent data provided information in favor of a better analysis in the relative role of dose-rate, total dose and treated volume and their influence on the local control and complication incidence. Concomitant radio-chemotherapy represents a standard in the treatment of patients with tumoral size exceeding 4 cm. Some questions still remain: is concomitant chemotherapy of benefit during brachytherapy? Is there any place for complementary surgery, specially in patients with complete response after external irradiation with concomitant chemotherapy and brachytherapy? In order to answer the former question, a phase III randomized trial is going to start, with the Federation Nationale des Centres de Lutte Contre le Cancer as a promoter. (authors)

  20. Radiation exposure of nursing personnel to brachytherapy patients

    International Nuclear Information System (INIS)

    Cobb, P.D.; Kase, K.R.; Bjaerngard, B.E.

    1978-01-01

    The radiation exposure of nursing personnel to brachytherapy patients has been analyzed from data collected during the years 1973-1976, at four different hospitals. The average annual dose per exposed nurse ranged between 25 and 150 mrem. The radiation exposure per nurse was found to be proportional to the total potential exposure and was uncorrelated with the size of the nursing staff. (author)

  1. Dose determination in breast tumor in brachytherapy using Iridium-192

    International Nuclear Information System (INIS)

    Okuno, S.F.

    1984-01-01

    Thermoluminescent dosimetry studies in vivo and in vitro aiming to determing radiation dose in the breast tumor, in brachytherapy using Iridium-192 was done. The correlation between radiation doses in tumor and external surface of the breast was investigated for correcting the time interval of radiation source implantation. (author) [pt

  2. Radiation exposure after permanent prostate brachytherapy

    International Nuclear Information System (INIS)

    Cattani, Federica; Vavassori, Andrea; Polo, Alfredo; Rondi, Elena; Cambria, Raffaella; Orecchia, Roberto; Tosi, Giampiero

    2006-01-01

    Background and purpose: Limited information is available on the true radiation exposure and associated risks for the relatives of the patients submitted to prostate brachytherapy with permanent implant of radioactive sources and for any other people coming into contact with them. In order to provide appropriate information, we analyzed the radiation exposure data from 216 prostate cancer patients who underwent 125 I or 103 Pd implants at the European Institute of Oncology of Milan, Italy. Patients and methods: Between October 1999 and October 2004, 216 patients with low risk prostate carcinoma were treated with 125 I (200 patients) or 103 Pd (16 patients) permanent seed implantation. One day after the procedure, radiation exposure measurements around the patients were performed using an ionization chamber survey meter (Victoreen RPO-50) calibrated in dose rate at an accredited calibration center (calibration Centre SIT 104). Results: The mean dose rate at the posterior skin surface (gluteal region) following 125 I implants was 41.3 μSv/h (range: 6.2-99.4 μSv/h) and following 103 Pd implants was 18.9 μSv/h (range 5.0-37.3 μSv/h). The dose rate at 50 cm from the skin decreased to the mean value of 6.4 μSv/h for the 125 I implants and to the mean value of 1.7 μSv/h for the 103 Pd implants. Total times required to reach the annual dose limit (1 mSv/year) recommended for the general population by the European Directive 96/29/Euratom and by the Italian law (Decreto Legislativo 241/2000) at a distance of 50 cm from the posterior skin surface of the implanted patient would be 7.7 and 21.6 days for 125 I and for 103 Pd. Good correlation between the measured dose rates and both the total implanted activity and the distance between the most posteriorly implanted seed and the skin surface of the patients was found. Conclusions: Our data show that the dose rates at 50 cm away from the prostate brachytherapy patients are very low and that the doses possibly absorbed by the

  3. Medical physics aspects of ophthalmic brachytherapy

    International Nuclear Information System (INIS)

    Sharma, S.D.; Shanta, A.; Palani Selvam, T.; Tripathi, U.B.; Bhatt, B.C.

    2004-11-01

    Intraocular melanoma is the most common primary malignancy of the eye. Radiation therapy using ophthalmic plaque has proved successful in the management of various ocular lesions. Although a few centres were using 90 Sr/ 90 Y plaques for shallow turtlours some years ago, eye plaque therapy was not a common practice in India. A revived interest in the use of eye plaque therapy and very high cost of imported sources has led to the development and production of 125 I seed sources by the Radiopharmaceuticals Division, BARC. This report presents a brief description on the clinical, dosimetry and radiation safety aspects of 90 Sr/ 90 Y and 106 Ru/ 106 Rh beta ray and 125 I gamma ray eye plaque applicators. This report has been divided in five Sections. Section I presents general introduction of ophthalmic brachytherapy including the structure of a human eye, types of ophthalmic plaques and characteristics of radioisotopes commonly used in such applications. A brief review of sources, applicators and dosimetry of 90 Sr/ 90 Y and 106 Ru/ 106 Rh beta and 125 I gamma ophthalmic plaques are given in Section II and Section III, respectively. Section IV contains the single seed dosimetry data of BARC OcuProsta 125 I seed as well as dosimetry data of typical eye plaques loaded with BARC OcuProsta 125 I seed. Quality assurance and radiation safety aspects of these eye applicators are described in Section V. A proforma of the application required to be filled in by the user institution for obtaining regulatory consent to start eye plaque therapy has also been appended to this report. (author)

  4. A therapeutic gain model for brachytherapy

    International Nuclear Information System (INIS)

    Wigg, D.R.

    2003-01-01

    When treating with continuous irradiation the potential therapeutic gain or loss depends on several treatment, normal tissue and tumour variables. There are similarities between equations defining tissue effects with fractionated treatment and brachytherapy. The former is sensitive to dose per fraction (and incomplete repair for short intervals between treatments) and the later is sensitive to dose rate and continuous repair factors. Because of these similarities, for typical tumours and normal tissues, dose per fraction and dose rates generally work in similar directions. As the dose per fraction or dose rate increases the therapeutic gain falls. With continuous irradiation the dose rates effects are determined by Beta cell kill and hence the absolute value of Beta . Minimal sensitivity occurs at very low and very high dose rates. The magnitude of cell kill also depends on the Continuous Repair Factor (g) which is a function of the treatment time and the Repair Half Time (in hours) of the tissues (Repair Half Time T 1/2Ln(2)/h, when h the Repair Constant). An interactive optimising model has been written to predict the therapeutic gain or loss as the parameter values are varied. This model includes the tumour and normal tissue parameters alpha and beta Gy (or individual values), their Repair Half Times, dose rates and overall treatment time. The model is based on the Linear-Quadratic equation and the Total Effect (TE) method of Thames and Hendry although the Extrapolated Response Dose (ERD) method of Barendsen produces the same results. The model is written so that the gain or loss may be seen when treatment is always to normal tissue tolerance doses. The magnitude of the therapeutic loss as the dose rate increases and its sensitivity to changes in normal tissue and tumour parameter values is clearly demonstrated

  5. Brachytherapy dose measurements in heterogeneous tissues

    International Nuclear Information System (INIS)

    Paiva F, G.; Luvizotto, J.; Salles C, T.; Guimaraes A, P. C.; Dalledone S, P. de T.; Yoriyaz, H.; Rubo, R.

    2014-08-01

    Recently, Beau lieu et al. published an article providing guidance for Model-Based Dose Calculation Algorithms (MBDCAs), where tissue heterogeneity considerations are addressed. It is well-known that T G-43 formalism which considers only water medium is limited and significant dose differences have been found comparing both methodologies. The aim of the present work is to experimentally quantify dose values in heterogeneous medium using different dose measurement methods and techniques and compare them with those obtained with Monte Carlo simulations. Experiments have been performed using a Nucletron micro Selectron-Hdr Ir-192 brachytherapy source and a heterogeneous phantom composed by PMMA and different tissue equivalent cylinders like bone, lungs and muscle. Several dose measurements were obtained using tissue equivalent materials with height 1.8 cm and 4.3 cm positioned between the radiation source and the detectors. Radiochromic films, TLDs and MOSFET S have been used for the dose measurements. Film dosimetry has been performed using two methodologies: a) linearization for dose-response curve based on calibration curves to create a functional form that linearize s the dose response and b) 177 multichannel analysis dosimetry where the multiple color channels are analyzed allowing to address not only disturbances in the measurements caused by thickness variation in the film layer, but also, separate other external influences in the film response. All experiments have been simulated using the MCNP5 Monte Carlo radiation transport code. Comparison of experimental results are in good agreement with calculated dose values with differences less than 6% for almost all cases. (Author)

  6. Brachytherapy dose measurements in heterogeneous tissues

    Energy Technology Data Exchange (ETDEWEB)

    Paiva F, G.; Luvizotto, J.; Salles C, T.; Guimaraes A, P. C.; Dalledone S, P. de T.; Yoriyaz, H. [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil); Rubo, R., E-mail: gabrielpaivafonseca@gmail.com [Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, 05403-900 Sao Paulo (Brazil)

    2014-08-15

    Recently, Beau lieu et al. published an article providing guidance for Model-Based Dose Calculation Algorithms (MBDCAs), where tissue heterogeneity considerations are addressed. It is well-known that T G-43 formalism which considers only water medium is limited and significant dose differences have been found comparing both methodologies. The aim of the present work is to experimentally quantify dose values in heterogeneous medium using different dose measurement methods and techniques and compare them with those obtained with Monte Carlo simulations. Experiments have been performed using a Nucletron micro Selectron-Hdr Ir-192 brachytherapy source and a heterogeneous phantom composed by PMMA and different tissue equivalent cylinders like bone, lungs and muscle. Several dose measurements were obtained using tissue equivalent materials with height 1.8 cm and 4.3 cm positioned between the radiation source and the detectors. Radiochromic films, TLDs and MOSFET S have been used for the dose measurements. Film dosimetry has been performed using two methodologies: a) linearization for dose-response curve based on calibration curves to create a functional form that linearize s the dose response and b) 177 multichannel analysis dosimetry where the multiple color channels are analyzed allowing to address not only disturbances in the measurements caused by thickness variation in the film layer, but also, separate other external influences in the film response. All experiments have been simulated using the MCNP5 Monte Carlo radiation transport code. Comparison of experimental results are in good agreement with calculated dose values with differences less than 6% for almost all cases. (Author)

  7. Patient effective dose from endovascular brachytherapy with 192Ir Sources

    International Nuclear Information System (INIS)

    Perna, L.; Bianchi, C.; Novario, R.; Nicolini, G.; Tanzi, F.; Conte, L.

    2002-01-01

    The growing use of endovascular brachytherapy has been accompanied by the publication of a large number of studies in several fields, but few studies on patient dose have been found in the literature. Moreover, these studies were carried out on the basis of Monte Carlo simulation. The aim of the present study was to estimate the effective dose to the patient undergoing endovascular brachytherapy treatment with 192 Ir sources, by means of experimental measurements. Two standard treatments were taken into account: an endovascular brachytherapy of the coronary artery corresponding to the activity x time product of 184 GBq.min and an endovascular brachytherapy of the renal artery (898 GBq.min). Experimental assessment was accomplished by thermoluminescence dosemeters positioned in more than 300 measurement points in a properly adapted Rando phantom. A method has been developed to estimate the mean organ doses for all tissues and organs concerned in order to calculate the effective dose associated with intravascular brachytherapy. The normalised organ doses resulting from coronary treatment were 2.4x10 -2 mSv.GBq -1 .min -1 for lung, 0.9x10 -2 mSv.GBq -1 .min -1 for oesophagus and 0.48x10 -2 mSv.GBq -1 .min -1 for bone marrow. During brachytherapy of the renal artery, the corresponding normalised doses were 4.2x10 -2 mSv.GBq -1 .min -1 for colon, 7.8x10 -2 mSv.GBq -1 .min -1 for stomach and 1.7x10 -2 mSv.GBq -1 .min -1 for liver. Coronary treatment involved an effective dose of 0.046 mSv.GBq -1 .min -1 , whereas the treatment of the renal artery resulted in an effective dose of 0.15 mSv.GBq -1 .min -1 ; there were many similarities with data from former studies. Based on these results it can be concluded that the dose level of patients exposed during brachytherapy treatment is low. (author)

  8. Comparative dosimetry in intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT for brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Samia de Freitas, E-mail: samiabrandao@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Campos, Tarcisio Passos Ribeiro de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2013-06-15

    Objective: comparative analysis of dosimetry in intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT for treatment of brain tumors. Materials and methods: simulations of intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT were performed with the MCNP5 code, modeling the treatment of a brain tumor on a voxel computational phantom representing a human head. Absorbed dose rates were converted into biologically weighted dose rates. Results: intracavitary balloon catheter brachytherapy with I-125 produced biologically weighted mean dose rates of 3.2E-11, 1.3E-10, 1.9E-11 and 6.9E-13 RBE.Gy.h{sup -1}.p{sup -1}.s, respectively, on the healthy tissue, on the balloon periphery and on the /{sub 1} and /{sub 2} tumor infiltration zones. On the other hand, Cf-252 brachytherapy combined with BNCT produced a biologically weighted mean dose rate of 5.2E-09, 2.3E-07, 8.7E-09 and 2.4E-09 RBE.Gy.h{sup -1}.p{sup -1}.s, respectively on the healthy tissue, on the target tumor and on the /{sub 1} and /{sub 2} infiltration zones. Conclusion: Cf-252 brachytherapy combined with BNCT delivered a selective irradiation to the target tumor and to infiltration zones, while intracavitary balloon catheter brachytherapy with I-125 delivered negligible doses on the tumor infiltration zones. (author)

  9. Comparative dosimetry in intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT for brain tumors

    Directory of Open Access Journals (Sweden)

    Samia de Freitas Brandao

    2013-07-01

    Full Text Available Objective Comparative analysis of dosimetry in intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT for treatment of brain tumors. Materials and Methods Simulations of intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT were performed with the MCNP5 code, modeling the treatment of a brain tumor on a voxel computational phantom representing a human head. Absorbed dose rates were converted into biologically weighted dose rates. Results Intracavitary balloon catheter brachytherapy with I-125 produced biologically weighted mean dose rates of 3.2E-11, 1.3E-10, 1.9E-11 and 6.9E-13 RBE.Gy.h-1.p-1.s, respectively, on the healthy tissue, on the balloon periphery and on the I 1 and I 2 tumor infiltration zones. On the other hand, Cf-252 brachytherapy combined with BNCT produced a biologically weighted mean dose rate of 5.2E-09, 2.3E-07, 8.7E-09 and 2.4E-09 RBE.Gy.h-1.p-1.s, respectively on the healthy tissue, on the target tumor and on the I 1 and I 2 infiltration zones. Conclusion Cf-252 brachytherapy combined with BNCT delivered a selective irradiation to the target tumor and to infiltration zones, while intracavitary balloon catheter brachytherapy with I-125 delivered negligible doses on the tumor infiltration zones.

  10. Air core detectors for Cerenkov-free scintillation dosimetry of brachytherapy β-sources.

    Science.gov (United States)

    Eichmann, Marion; Thomann, Benedikt

    2017-09-01

    Plastic scintillation detectors are used for dosimetry in small radiation fields with high dose gradients, e.g., provided by β-emitting sources like 106 Ru/ 106 Rh eye plaques. A drawback is a background signal caused by Cerenkov radiation generated by electrons passing the optical fibers (light guides) of this dosimetry system. Common approaches to correct for the Cerenkov signal are influenced by uncertainties resulting from detector positioning and calibration procedures. A different approach to avoid any correction procedure is to suppress the Cerenkov signal by replacing the solid core optical fiber with an air core light guide, previously shown for external beam therapy. In this study, the air core concept is modified and applied to the requirements of dosimetry in brachytherapy, proving its usability for measuring water energy doses in small radiation fields. Three air core detectors with different air core lengths are constructed and their performance in dosimetry for brachytherapy β-sources is compared with a standard two-fiber system, which uses a second fiber for Cerenkov correction. The detector systems are calibrated with a 90 Sr/ 90 Y secondary standard and tested for their angular dependence as well as their performance in depth dose measurements of 106 Ru/ 106 Rh sources. The signal loss relative to the standard detector increases with increasing air core length to a maximum value of 58.3%. At the same time, however, the percentage amount of Cerenkov light in the total signal is reduced from at least 12.1% to a value below 1.1%. There is a linear correlation between induced dose and measured signal current. The air core detectors determine the dose rates for 106 Ru/ 106 Rh sources without any form of correction for the Cerenkov signal. The air core detectors show advantages over the standard two-fiber system especially when measuring in radiation fields with high dose gradients. They can be used as simple one-fiber systems and allow for an almost

  11. Inverse planning and class solutions for brachytherapy treatment planning

    International Nuclear Information System (INIS)

    Trnkova, P.

    2010-01-01

    Brachytherapy or interventional radiooncology is a method of radiation therapy. It is a method, where a small encapsulated radioactive source is placed near to / in the tumour and therefore delivers high doses directly to the target volume. Organs at risk (OARs) are spared due to the inverse square dose fall-off. In the past years there was a slight stagnation in the development of techniques for brachytherapy treatment. While external beam radiotherapy became more and more sophisticated, in brachytherapy traditional methods have been still used. Recently, 3D imaging was considered also as the modality for brachytherapy and more precise brachytherapy could expand. Nowadays, an image guided brachytherapy is state-of-art in many centres. Integration of imaging methods lead to the dose distribution individually tailored for each patient. Treatment plan optimization is mostly performed manually as an adaptation of a standard loading pattern. Recently, inverse planning approaches have been introduced into brachytherapy. The aim of this doctoral thesis was to analyze inverse planning and to develop concepts how to integrate inverse planning into cervical cancer brachytherapy. First part of the thesis analyzes the Hybrid Inverse treatment Planning and Optimization (HIPO) algorithm and proposes a workflow how to safely work with this algorithm. The problem of inverse planning generally is that only the dose and volume parameters are taken into account and spatial dose distribution is neglected. This fact can lead to unwanted high dose regions in a normal tissue. A unique implementation of HIPO into the treatment planning system using additional features enabled to create treatment plans similar to the plans resulting from manual optimization and to shape the high dose regions inside the CTV. In the second part the HIPO algorithm is compared to the Inverse Planning Simulated Annealing (IPSA) algorithm. IPSA is implemented into the commercial treatment planning system. It

  12. Role of TPS in 125I brachytherapy for orbital tumors

    International Nuclear Information System (INIS)

    Ren Ling; Dai Haojie; Li Quan

    2012-01-01

    Objective: To investigate the role of TPS in 125 I brachytherapy for orbital tumors. Methods: Sixty-six patients with orbital tumor treated with 125 I seeds from 2005 to 2009 were retrospectively analyzed. Forty-three patients were treated using TPS guided brachytherapy and the prescribed dose was 140 Gy. Other 23 patients were treated without TPS but simply implanted with 125 I seeds at 1 cm intervals in parallel with each other intraoperatively. CT and TPS quality verification were performed postoperatively in all patients. Also, CT and (or) MRI examination were performed at 3, 6, 12 and 24 months after brachytherapy for follow-up. χ 2 test and Kaplan-Meier survival analysis with log-rank significance test were used with SPSS 17.0. Results: A total of 1070 125 I seeds were implanted in 66 cases, on average, (16.2 ± 7.3) seeds for each patient. The satisfaction rates of postoperative quality verification in patients with and without TPS pre-plans were 79.07% (34/43) and 43.48% (10/23) respectively (χ 2 =8.542, P=0.003). Ten patients were lost in follow-up. Local recurrence rates in patients with favorable postoperative quality verification were 0 (0/37) in 3 months, 6.25% (2/32) in 6 months, 13.64% (3/22) in 12 months and 3/9 in 24 months respectively, which were significantly different from those (5.26% (1/19), 16.67% (3/18), 30.77% (4/13), 6/6) in the patients with inferior postoperative quality verification (χ 2 =9.017, P=0.0003). Conclusions: TPS plays an important role in 125 I brachytherapy for orbital tumors. Also, postoperative quality verification by TPS may help predict the local recurrence after brachytherapy. (authors)

  13. Results of the intestitial brachytherapy and of the combination external radiation-brachytherapy in 150 patients with carcinoma of the oral tongue and floor of the mouth

    International Nuclear Information System (INIS)

    Sannazzari, G.L.; Negri, G.L.; Ozzello, F.

    1986-01-01

    The authors report their experience on the treatment of carcinoma of the oral tongue and floor of the mouth with interstitial brachytherapy, alone or in conbination with external irradiation. One hundred and fifty patients were treated; among these, 116 with brachytherapy alone, 34 with combined treatment. The five years local control in those patients treated with brachytherapy alone was 72.5% in T1, 61.2% in T2 and 35% in T3; in those patients treated with external irradiation and brachytherapy the global five years control was 42.5%. The global five years survival was 64% in the patients treated with brachytherapy alone 48% in the patients treated with combined therapy

  14. Results of the intestitial brachytherapy and of the combination external radiation-brachytherapy in 150 patients with carcinoma of the oral tongue and floor of the mouth

    Energy Technology Data Exchange (ETDEWEB)

    Sannazzari, G L; Negri, G L; Ozzello, F

    1986-01-01

    The authors report their experience on the treatment of carcinoma of the oral tongue and floor of the mouth with interstitial brachytherapy, alone or in conbination with external irradiation. One hundred and fifty patients were treated; among these, 116 with brachytherapy alone, 34 with combined treatment. The five years local control in those patients treated with brachytherapy alone was 72.5% in T1, 61.2% in T2 and 35% in T3; in those patients treated with external irradiation and brachytherapy the global five years control was 42.5%. The global five years survival was 64% in the patients treated with brachytherapy alone 48% in the patients treated with combined therapy. 42 refs.

  15. Brachytherapy in head and neck cancers; Curietherapie des cancers de la sphere ORL

    Energy Technology Data Exchange (ETDEWEB)

    Mazeron, J.J.; Noel, G.; Simon, J.M.; Racadot, S.; Jauffret, E. [Groupe Hospitalier la Pitie-Salpetriere, Centre des Tumeurs, 75 - Paris (France)

    2003-02-01

    Experience accumulated over several decades with radiation of Head and Neck tumours by irradiation has demonstrated the need for a high tumour dose to achieve local control. With external beam irradiation alone, it is difficult to spare adjacent normal tissues, resulting in undesirable late effects on the salivary glands; mandible, and muscles of mastication. Interstitial implantation is ideally suited to deliver a high dose limited to the volume of the primary tumor, thus minimizing sequels. A large experience has been accumulated with low dose rate (LDR) brachytherapy in treatment of carcinoma of oral cavity, oropharynx, and nasopharynx. Recent analysis of large clinical series provided data indicating that modalities of low dose rate brachytherapy should be optimized in treating these tumors for increasing therapeutic ratio. Low dose rate brachytherapy is now challenged by high dose rate (HDR) brachytherapy and pulsed dose rate (PDR) brachytherapy. Preliminary results obtained with these two last modalities are discussed regarding to those of low dose rate brachytherapy. (authors)

  16. Comparison of the hypothetical (57)Co brachytherapy source with the (192)Ir source.

    Science.gov (United States)

    Toossi, Mohammad Taghi Bahreyni; Ghorbani, Mahdi; Rostami, Atefeh; Khosroabadi, Mohsen; Khademi, Sara; Knaup, Courtney

    2016-01-01

    The (57)Co radioisotope has recently been proposed as a hypothetical brachytherapy source due to its high specific activity, appropriate half-life (272 days) and medium energy photons (114.17 keV on average). In this study, Task Group No. 43 dosimetric parameters were calculated and reported for a hypothetical (57)Co source. A hypothetical (57)Co source was simulated in MCNPX, consisting of an active cylinder with 3.5 mm length and 0.6 mm radius encapsulated in a stainless steel capsule. Three photon energies were utilized (136 keV [10.68%], 122 keV [85.60%], 14 keV [9.16%]) for the (57)Co source. Air kerma strength, dose rate constant, radial dose function, anisotropy function, and isodose curves for the source were calculated and compared to the corresponding data for a (192)Ir source. The results are presented as tables and figures. Air kerma strength per 1 mCi activity for the (57)Co source was 0.46 cGyh(-1) cm 2 mCi(-1). The dose rate constant for the (57)Co source was determined to be 1.215 cGyh(-1)U(-1). The radial dose function for the (57)Co source has an increasing trend due to multiple scattering of low energy photons. The anisotropy function for the (57)Co source at various distances from the source is more isotropic than the (192)Ir source. The (57)Co source has advantages over (192)Ir due to its lower energy photons, longer half-life, higher dose rate constant and more isotropic anisotropic function. However, the (192)Ir source has a higher initial air kerma strength and more uniform radial dose function. These properties make (57)Co a suitable source for use in brachytherapy applications.

  17. Online pretreatment verification of high-dose rate brachytherapy using an imaging panel

    Science.gov (United States)

    Fonseca, Gabriel P.; Podesta, Mark; Bellezzo, Murillo; Van den Bosch, Michiel R.; Lutgens, Ludy; Vanneste, Ben G. L.; Voncken, Robert; Van Limbergen, Evert J.; Reniers, Brigitte; Verhaegen, Frank

    2017-07-01

    Brachytherapy is employed to treat a wide variety of cancers. However, an accurate treatment verification method is currently not available. This study describes a pre-treatment verification system that uses an imaging panel (IP) to verify important aspects of the treatment plan. A detailed modelling of the IP was only possible with an extensive calibration performed using a robotic arm. Irradiations were performed with a high dose rate (HDR) 192Ir source within a water phantom. An empirical fit was applied to measure the distance between the source and the detector so 3D Cartesian coordinates of the dwell positions can be obtained using a single panel. The IP acquires 7.14 fps to verify the dwell times, dwell positions and air kerma strength (Sk). A gynecological applicator was used to create a treatment plan that was registered with a CT image of the water phantom used during the experiments for verification purposes. Errors (shifts, exchanged connections and wrong dwell times) were simulated to verify the proposed verification system. Cartesian source positions (panel measurement plane) have a standard deviation of about 0.02 cm. The measured distance between the source and the panel (z-coordinate) have a standard deviation up to 0.16 cm and maximum absolute error of  ≈0.6 cm if the signal is close to sensitive limit of the panel. The average response of the panel is very linear with Sk. Therefore, Sk measurements can be performed with relatively small errors. The measured dwell times show a maximum error of 0.2 s which is consistent with the acquisition rate of the panel. All simulated errors were clearly identified by the proposed system. The use of IPs is not common in brachytherapy, however, it provides considerable advantages. It was demonstrated that the IP can accurately measure Sk, dwell times and dwell positions.

  18. Implementation of microsource high dose rate (mHDR) brachytherapy in developing countries

    International Nuclear Information System (INIS)

    2001-11-01

    Brachytherapy using remote afterloading of a single high dose rate 192 Ir microsource was developed in the 1970s. After its introduction to clinics, this system has spread rapidly among developed Member States and has become a highly desirable modality in cancer treatment. This technique is now gradually being introduced to the developing Member States. The 192 Ir sources are produced with a high specific activity. This results in a high dose rate (HDR) to the tumour and shorter treatment times. The high specific activity simultaneously results in a much smaller source (so-called micro source, around I mm in diameter) which may be easily inserted into tissue through a thin delivery tube, the so-called interstitial treatment, as well as easily inserted into body cavities, the so-called intracavitary or endoluminal treatment. Another advantage is the ability to change dwell time (the time a source remains in one position) of the stepping source which allows dose distribution to match the target volume more closely. The purpose of this TECDOC is to advise radiation oncologists, medical physicists and hospital administrators in hospitals which are planning to introduce 192 Ir microsource HDR (mHDR) remote afterloading systems. The document supplements IAEA-TECDOC-1040, Design and Implementation of a Radiotherapy Programme: Clinical, Medical Physics, Radiation Protection and Safety Aspects, and will facilitate implementation of this new brachytherapy technology, especially in developing countries. The operation of the system, 'how to use the system', is not within the scope of this document. This TECDOC is based on the recommendations of an Advisory Group meeting held in Vienna in April 1999

  19. Tumour alpha/beta ratios and dose-rate selection in brachytherapy

    International Nuclear Information System (INIS)

    Duchesne, G.M.

    2003-01-01

    Traditionally brachytherapy employed low dose rate (LDR) techniques. Recent adoption of high dose rate (HDR) applications, addressing radiation protection concerns, has sparked debate over possible reductions in therapeutic ratio. The radiobiological characteristics of two contrasting examples, prostate cancer and cervical cancer, are examined. Both in-vitro and clinical observations of prostate cancer suggest a low α/β ratio. Labelling indices are below 2.5%, translating into long potential doubling times (Tpot ) of 16 to 61 days or more. Clinical PSA doubling times are in the order of years. Analysis of clinical endpoints in prostate cancer treated with either LDR or HDR techniques indicates that its α/β ratio may lie between 1 - 4 Gy, similar to slowly proliferating late reacting tissues. As such, therapeutic gain may arise from the use of hypofractionated HDR treatments, exploiting the sensitivity to large fraction sizes, effectively escalating dose. The slow proliferative rate also gives credence to the use of LDR, although several tumour doublings may occur during the effective treatment time, and analysis of the clinical data using a low α/β ratio suggests that LDR doses are only equivalent to 70 Gy with conventional fractionation. Cervical carcinoma is a rapidly proliferating tumour with Tpot values of 3-6 days. LDR implants were delivered over relatively short treatment times, negating repopulation effects, and the 'hyperfractionation' effect of LDR was suited to the high α/β ratio. HDR, although also preventing significant repopulation, has the potential to decrease the therapeutic ratio if low α/β , late-reacting tissues are not protected. Clinical data however show improved outcomes and reduced morbidity with HDR through reduced doses to normal tissues. Choosing the optimal dose rate in brachytherapy depends on tumour behaviour and achievable accuracy. HDR offers some advantages even for high α/β ratio tumours, and may be the technique of

  20. SU-E-T-10: A Clinical Implementation and the Dosimetric Evidence in High Dose Rate Vaginal Multichannel Applicator Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Syh, J; Syh, J; Patel, B; Zhang, J; Wu, H; Rosen, L [Willis-Knighton Medical Center, Shreveport, LA (United States)

    2015-06-15

    Purpose: The multichannel cylindrical applicator has a distinctive modification of the traditional single channel cylindrical applicator. The novel multichannel applicator has additional peripheral channels that provide more flexibility both in treatment planning process and outcomes. To protect by reducing doses to adjacent organ at risk (OAR) while maintaining target coverage with inverse plan optimization are the goals for such novel Brachytherapy device. Through a series of comparison and analysis of reults in more than forty patients who received HDR Brachytherapy using multichannel vaginal applicator, this procedure has been implemented in our institution. Methods: Multichannel planning was CT image based. The CTV of 5mm vaginal cuff rind with prescribed length was well reconstructed as well as bladder and rectum. At least D95 of CTV coverage is 95% of prescribed dose. Multichannel inverse plan optimization algorithm not only shapes target dose cloud but set dose avoids to OAR’s exclusively. The doses of D2cc, D5cc and D5; volume of V2Gy in OAR’s were selected to compare with single channel results when sole central channel is only possibility. Results: Study demonstrates plan superiorly in OAR’s doe reduction in multi-channel plan. The D2cc of the rectum and bladder were showing a little lower for multichannel vs. single channel. The V2Gy of the rectum was 93.72% vs. 83.79% (p=0.007) for single channel vs. multichannel respectively. Absolute reduced mean dose of D5 by multichannel was 17 cGy (s.d.=6.4) and 44 cGy (s.d.=15.2) in bladder and rectum respectively. Conclusion: The optimization solution in multichannel was to maintain D95 CTV coverage while reducing the dose to OAR’s. Dosimetric advantage in sparing critical organs by using a multichannel applicator in HDR Brachytherapy treatment of the vaginal cuff is so promising and has been implemented clinically.

  1. BUSINESS COMPETITORS AND COMPETITIVE ADVANTAGE

    Directory of Open Access Journals (Sweden)

    SUCIU TITUS

    2013-08-01

    Full Text Available The paper presents the concept of competition, both from the perspective of the economic sector –where it is characteristic for pure monopole, oligopoly, monopole competition and pure competition, as well asfrom the market’s point of view – where it determines the strategies, objectives, advantages and weaknesses of acompany. The main point of the paper is the criticism of the pure and perfect competition theory. Concluding,the author insists on innovation, especially on the model of open innovation.

  2. Ecology. The advantages of togetherness.

    Science.gov (United States)

    Cox, E; Bonner, J

    2001-04-20

    What would be the advantage of unicellular organisms becoming multicellular? For organisms that feed on organic food (heterotrophs), the most efficient way to produce energy is to metabolize the food by aerobic respiration, but the fastest way is to metabolize it by fermentation. In their Perspective, Cox and Bonner discuss a mathematical model (Pfeiffer et al.), which shows that when these two kinds of organisms (respirators and fermenters) compete for a limited food source, the respirators manage best when they are grouped in clusters rather than remaining as separate cells. In this way, multicellularity could have originated.

  3. Advantages of computed tomographic guidance

    International Nuclear Information System (INIS)

    Casola, G.; Vansonnenberg, E.

    1987-01-01

    Both ultrasound and CT are successfully used to guide interventional procedures throughout the body. There are advantages and disadvantages to each modality and choosing one over the other will vary from case to case. Major factors influencing choice are discussed in this paper. As a general rule CT guidance is usually required for lesions in the thorax, the adrenals, the pancreas, lymph nodes, and for percutaneous abscess drainage. The authors feel that a complimentary use of ultrasound and CT is essential to optimize success and cost-effectiveness; therefore, the interventional radiologist should be familiar with both imaging modalities

  4. Utilization of prostate brachytherapy for low risk prostate cancer: Is the decline overstated?

    OpenAIRE

    Joseph Safdieh; Andrew Wong; Joseph P. Weiner; David Schwartz; David Schreiber

    2016-01-01

    Purpose : Several prior studies have suggested that brachytherapy utilization has markedly decreased, coinciding with the recent increased utilization of intensity modulated radiation therapy, as well as an increase in urologist-owned centers. We sought to investigate the brachytherapy utilization in a large, hospital-based registry. Material and methods: Men with prostate cancer diagnosed between 2004-2012 and treated with either external beam radiation and/or prostate brachytherapy ...

  5. Toward a 'all high rate' brachytherapy: organisation, biology and perspectives after treatment of 192 patients

    International Nuclear Information System (INIS)

    Hannoun-Levi, J.M.; Ferre, M.; Gautier, M.; Marcie, S.

    2007-01-01

    As a result of radiation protection regulations aimed at reducing the exposure to ionizing radiation from care-givers, low dose rate brachytherapy is usually replaced by a pulsed rate brachytherapy. The center Antoine Lacassagne has directed the outset to the use of a high-dose rate brachytherapy. The implications in terms of organization, biology and the prospects for such a change are the principal questions studied. (N.C.)

  6. Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent X-Ray Source: An electronic brachytherapy source

    International Nuclear Information System (INIS)

    Rivard, Mark J.; Davis, Stephen D.; DeWerd, Larry A.; Rusch, Thomas W.; Axelrod, Steve

    2006-01-01

    A new x-ray source, the model S700 Axxent trade mark sign X-Ray Source (Source), has been developed by Xoft Inc. for electronic brachytherapy. Unlike brachytherapy sources containing radionuclides, this Source may be turned on and off at will and may be operated at variable currents and voltages to change the dose rate and penetration properties. The in-water dosimetry parameters for this electronic brachytherapy source have been determined from measurements and calculations at 40, 45, and 50 kV settings. Monte Carlo simulations of radiation transport utilized the MCNP5 code and the EPDL97-based mcplib04 cross-section library. Inter-tube consistency was assessed for 20 different Sources, measured with a PTW 34013 ionization chamber. As the Source is intended to be used for a maximum of ten treatment fractions, tube stability was also assessed. Photon spectra were measured using a high-purity germanium (HPGe) detector, and calculated using MCNP. Parameters used in the two-dimensional (2D) brachytherapy dosimetry formalism were determined. While the Source was characterized as a point due to the small anode size, P (5) were 0.20, 0.24, and 0.29 for the 40, 45, and 50 kV voltage settings, respectively. For 1 125 I and 103 Pd, yet with capability for variable and much higher dose rates and subsequently adjustable penetration capabilities. This paper presents the calculated and measured in-water brachytherapy dosimetry parameters for the model S700 Source at the aforementioned three operating voltages

  7. Contextual Advantage for State Discrimination

    Science.gov (United States)

    Schmid, David; Spekkens, Robert W.

    2018-02-01

    Finding quantitative aspects of quantum phenomena which cannot be explained by any classical model has foundational importance for understanding the boundary between classical and quantum theory. It also has practical significance for identifying information processing tasks for which those phenomena provide a quantum advantage. Using the framework of generalized noncontextuality as our notion of classicality, we find one such nonclassical feature within the phenomenology of quantum minimum-error state discrimination. Namely, we identify quantitative limits on the success probability for minimum-error state discrimination in any experiment described by a noncontextual ontological model. These constraints constitute noncontextuality inequalities that are violated by quantum theory, and this violation implies a quantum advantage for state discrimination relative to noncontextual models. Furthermore, our noncontextuality inequalities are robust to noise and are operationally formulated, so that any experimental violation of the inequalities is a witness of contextuality, independently of the validity of quantum theory. Along the way, we introduce new methods for analyzing noncontextuality scenarios and demonstrate a tight connection between our minimum-error state discrimination scenario and a Bell scenario.

  8. Contextual Advantage for State Discrimination

    Directory of Open Access Journals (Sweden)

    David Schmid

    2018-02-01

    Full Text Available Finding quantitative aspects of quantum phenomena which cannot be explained by any classical model has foundational importance for understanding the boundary between classical and quantum theory. It also has practical significance for identifying information processing tasks for which those phenomena provide a quantum advantage. Using the framework of generalized noncontextuality as our notion of classicality, we find one such nonclassical feature within the phenomenology of quantum minimum-error state discrimination. Namely, we identify quantitative limits on the success probability for minimum-error state discrimination in any experiment described by a noncontextual ontological model. These constraints constitute noncontextuality inequalities that are violated by quantum theory, and this violation implies a quantum advantage for state discrimination relative to noncontextual models. Furthermore, our noncontextuality inequalities are robust to noise and are operationally formulated, so that any experimental violation of the inequalities is a witness of contextuality, independently of the validity of quantum theory. Along the way, we introduce new methods for analyzing noncontextuality scenarios and demonstrate a tight connection between our minimum-error state discrimination scenario and a Bell scenario.

  9. Image guided, adaptive, accelerated, high dose brachytherapy as model for advanced small volume radiotherapy

    International Nuclear Information System (INIS)

    Haie-Meder, Christine; Siebert, Frank-Andre; Poetter, Richard

    2011-01-01

    Brachytherapy has consistently provided a very conformal radiation therapy modality. Over the last two decades this has been associated with significant improvements in imaging for brachytherapy applications (prostate, gynecology), resulting in many positive advances in treatment planning, application techniques and clinical outcome. This is emphasized by the increased use of brachytherapy in Europe with gynecology as continuous basis and prostate and breast as more recently growing fields. Image guidance enables exact knowledge of the applicator together with improved visualization of tumor and target volumes as well as of organs at risk providing the basis for very individualized 3D and 4D treatment planning. In this commentary the most important recent developments in prostate, gynecological and breast brachytherapy are reviewed, with a focus on European recent and current research aiming at the definition of areas for important future research. Moreover the positive impact of GEC-ESTRO recommendations and the highlights of brachytherapy physics are discussed what altogether presents a full overview of modern image guided brachytherapy. An overview is finally provided on past and current international brachytherapy publications focusing on 'Radiotherapy and Oncology'. These data show tremendous increase in almost all research areas over the last three decades strongly influenced recently by translational research in regard to imaging and technology. In order to provide high level clinical evidence for future brachytherapy practice the strong need for comprehensive prospective clinical research addressing brachytherapy issues is high-lighted.

  10. Anatomy-based inverse optimization in high-dose-rate brachytherapy combined with hypofractionated external beam radiotherapy for localized prostate cancer: Comparison of incidence of acute genitourinary toxicity between anatomy-based inverse optimization and geometric optimization

    International Nuclear Information System (INIS)

    Akimoto, Tetsuo; Katoh, Hiroyuki; Kitamoto, Yoshizumi; Shirai, Katsuyuki; Shioya, Mariko; Nakano, Takashi

    2006-01-01

    Purpose: To evaluate the advantages of anatomy-based inverse optimization (IO) in planning high-dose-rate (HDR) brachytherapy. Methods and Materials: A total of 114 patients who received HDR brachytherapy (9 Gy in two fractions) combined with hypofractionated external beam radiotherapy (EBRT) were analyzed. The dose distributions of HDR brachytherapy were optimized using geometric optimization (GO) in 70 patients and by anatomy-based IO in the remaining 44 patients. The correlation between the dose-volume histogram parameters, including the urethral dose and the incidence of acute genitourinary (GU) toxicity, was evaluated. Results: The averaged values of the percentage of volume receiving 80-150% of the prescribed minimal peripheral dose (V 8 -V 15 ) of the urethra generated by anatomy-based IO were significantly lower than the corresponding values generated by GO. Similarly, the averaged values of the minimal dose received by 5-50% of the target volume (D 5 -D 5 ) obtained using anatomy-based IO were significantly lower than those obtained using GO. Regarding acute toxicity, Grade 2 or worse acute GU toxicity developed in 23% of all patients, but was significantly lower in patients for whom anatomy-based IO (16%) was used than in those for whom GO was used (37%), consistent with the reduced urethral dose (p <0.01). Conclusion: The results of this study suggest that anatomy-based IO is superior to GO for dose optimization in HDR brachytherapy for prostate cancer

  11. dose in cervical cancer intracavitary brachytherapy

    Directory of Open Access Journals (Sweden)

    Zahra Siavashpour

    2016-04-01

    Full Text Available Purpose: To analyze the optimum organ filling point for organs at risk (OARs dose in cervical cancer high-dose-rate (HDR brachytherapy. Material and methods : In a retrospective study, 32 locally advanced cervical cancer patients (97 insertions who were treated with 3D conformal external beam radiation therapy (EBRT and concurrent chemotherapy during 2010-2013 were included. Rotterdam HDR tandem-ovoid applicators were used and computed tomography (CT scanning was performed after each insertion. The OARs delineation and GEC-ESTRO-based clinical target volumes (CTVs contouring was followed by 3D forward planning. Then, dose volume histogram (DVH parameters of organs were recorded and patients were classified based on their OARs volumes, as well as their inserted tandem length. Results : The absorbed dose to point A ranged between 6.5-7.5 Gy. D 0.1cm ³ and D 2cm ³ of the bladder significantly increased with the bladder volume enlargement (p value < 0.05. By increasing the bladder volume up to about 140 cm3, the rectum dose was also increased. For the cases with bladder volumes higher than 140 cm3, the rectum dose decreased. For bladder volumes lower than 75 cm3, the sigmoid dose decreased; however, for bladder volumes higher than 75 cm3, the sigmoid dose increased. The D 2cm ³ of the bladder and rectum were higher for longer tandems than for shorter ones, respectively. The divergence of the obtained results for different tandem lengths became wider by the extension of the bladder volume. The rectum and sigmoid volume had a direct impact on increasing their D 0.1cm ³ and D 2cm ³, as well as decreasing their D 10 , D 30 , and D 50 . Conclusions : There is a relationship between the volumes of OARs and their received doses. Selecting a bladder with a volume of about 70 cm3 or less proved to be better with regards to the dose to the bladder, rectum, and sigmoid.

  12. Brachytherapy radiation doses to the neurovascular bundles

    International Nuclear Information System (INIS)

    Di Biase, Steven J.; Wallner, Kent; Tralins, Kevin; Sutlief, Steven

    2000-01-01

    Purpose: To investigate the role of radiation dose to the neurovascular bundles (NVB) in brachytherapy-related impotence. Methods and Materials: Fourteen Pd-103 or I-125 implant patients were studied. For patients treated with implant alone, the prostate and margin (clinical target volume [CTV]) received a prescription dose of 144 Gy for I-125 or 115 Gy for Pd-103. Two patients received Pd-103 (90 Gy) with 46 Gy supplemental external beam radiation (EBRT). Axial CT images were acquired 2 to 4 hours postoperatively for postimplant dosimetry. Because the NVBs cannot be visualized on CT, NVB calculation points were determined according to previously published anatomic descriptions. Bilateral NVB points were considered to lie posterior-laterally, approximately 2 mm from the prostatic capsule. NVB doses were recorded bilaterally, at 0.5-cm intervals from the prostatic base. Results: For Pd-103, the average NVB doses ranged from 150 Gy to 260 Gy, or 130% to 226% of the prescription dose. For I-125, the average NVB dose ranged from 200 Gy to 325 Gy, or 140% to 225% of the prescription dose. These was no consistent relationship between the NVB dose and the distance from the prostatic base. To examine the possible effect of minor deviations of our calculation points from the true NVB location, we performed NVB calculations at points 2 mm medial or lateral from the NVB calculation point in 8 patients. Doses at these alternate calculation points were comparable, although there was greater variability with small changes in the calculation point if sources were located outside the capsule, near the NVB calculation point. Three patients who developed early postimplant impotence had maximal NVB doses that far exceeded the average values. Conclusions: In the next few years, we hope to clarify the role of high NVB radiation doses on potency, by correlating NVB dose calculations with a large number of patients enrolled in an ongoing I-125 versus Pd-103 trial for early-stage patients

  13. Conformational episcleral brachytherapy in ocular tumors

    International Nuclear Information System (INIS)

    Goset, Karen; Barriga, Hernan; Guevara, Juan; Zelada, Gabriel; Badinez, Leonardo; Gonzalez, German

    2000-01-01

    Brachytherapy with an episcleral plate is an alternative treatment for choroid melanomas and retinoblastomas that allows the sight to be saved. The most common techniques use a metal applicator with beta or Co-60 transmitters, which have a standard geometry, require surgical installation of the active devices and do not allow optimized dosimetry. In 1997, the Clinica Alemana in Santiago, Chile, developed a new device based on the one described by J.P. Gerard (1988), with plastic material, personalized and with delayed charge. Three cases have been treated. Two retinoblastomas: 1) Primary treatment in unilateral Rb, R.E. group II in a 9 month old boy, 2) External post radiotherapy rescue in oculus ultimus by bilateral Rb in a 10 year old girl, and 3) Choroid melanoma T3N0M0 in a 77 year old woman. A personalized applicator was prepared in each case depending on the size and location of the tumor. The distribution of the vector catheters was designed following the Paris system standards. The applicator was inserted in the operating room, under general anesthesia by a team of trained ophthalmologists. An X-ray and helichoidal simulation scan were taken with fictitious sources. Previsional dosimetry was undertaken, with evaluation of the dosage to the tumor apex, crystalline lens, sclera and optic nerve. Prolonged activation with low level dosage Ir-192 wires was performed in a protected room. When the programmed dosage was completed, the sources and then the inactive applicator were removed. Dosage: A 40 Gy dose was applied in the retinoblastoma to the tumor apex and 60 Gy to the melanoma, over a 2 to 3 day period. Tolerance was excellent, there were no incidents or acute complications. The retinoblastomas fully regressed in 1 to 2 weeks, with no local relapse or after affects after 2, 4 and 6 months of follow-up. The 3 patients have retained their sight. The development of this technique is feasible and with enough resources, relatively easy to implement. It has

  14. Dosimetric comparison between intensity modulated brachytherapy versus external beam intensity modulated radiotherapy for cervix cancer: a treatment planning study

    International Nuclear Information System (INIS)

    Subramani, V.; Sharma, D.N.; Jothy Basu, K.S.; Rath, G.K.; Gopishankar, N.

    2008-01-01

    To evaluate the dosimetric superiority of intensity modulated brachytherapy (IMBT) based on inverse planning optimization technique with classical brachytherapy optimization and also with external beam intensity modulated radiotherapy planning technique in patients of cervical carcinoma

  15. Three-dimensional (3D) real-time conformal brachytherapy - a novel solution for prostate cancer treatment Part I. Rationale and method

    International Nuclear Information System (INIS)

    Fijalkowski, M.; Bialas, B.; Maciejewski, B.; Bystrzycka, J.; Slosarek, K.

    2005-01-01

    Recently, the system for conformal real-time high-dose-rate brachytherapy has been developed and dedicated in general for the treatment of prostate cancer. The aim of this paper is to present the 3D-conformal real-time brachytherapy technique introduced to clinical practice at the Institute of Oncology in Gliwice. Equipment and technique of 3D-conformal real time brachytherapy (3D-CBRT) is presented in detail and compared with conventional high-dose-rate brachytherapy. Step-by-step procedures of treatment planning are described, including own modifications. The 3D-CBRT offers the following advantages: (1) on-line continuous visualization of the prostate and acquisition of the series of NS images during the entire procedure of planning and treatment; (2) high precision of definition and contouring the target volume and the healthy organs at risk (urethra, rectum, bladder) based on 3D transrectal continuous ultrasound images; (3) interactive on-line dose optimization with real-time corrections of the dose-volume histograms (DVHs) till optimal dose distribution is achieved; (4) possibility to overcome internal prostate motion and set-up inaccuracies by stable positioning of the prostate with needles fixed to the template; (5) significant shortening of overall treatment time; (6) cost reduction - the treatment can be provided as an outpatient procedure. The 3D- real time CBRT can be advertised as an ideal conformal boost dose technique integrated or interdigitated with pelvic conformal external beam radiotherapy or as a monotherapy for prostate cancer. (author)

  16. Reappraisal of the role of endobronchial brachytherapy in the management of lung cancer: 10 years' experience at the centre Antoine-Lacassagne

    International Nuclear Information System (INIS)

    Magne, N.; Benezery, K.; Marcie, S.; Lagrange, J.L.; Porsin, B.; Poudenx, M.; Otto, J.; Marcy, P.Y.; Benezery, K.; Lagrange, J.L.

    2003-01-01

    Intra-operative interstitial brachytherapy has been applied in the curative and palliative treatment of lung cancer. Implantation of radio-active sources offers an advantage over external irradiation because of the limited penetrability from source to prescription point, resulting in rapid dose fall-off and sparing of surrounding normal tissues. The aim of this study was to re-evaluate retrospectively the Antoine-Lacassagne cancer center experience in endobronchial brachytherapy by low dose rate (LDR) or high dose rate (HDR) and to design perspectives for the next decades. Evaluation was based on analysis of toxicities, response rates and survival. Materials and methods: From october 1989 to june 1999, 31 consecutive patients with bronchogenic carcinoma were treated. Thirteen and 18 patients received LDR and HDR, respectively. The mean age was 65 years (range 44 to 79 years). Inclusion criteria were, for palliative treatment, incurable endobronchial cancer, and for curative treatment, residual tumor in the margins after resection, or endobronchial tumor could not be treated surgically. Exclusion criteria were sites of lesion unsuitable for placement of the brachytherapy catheter. Evaluation of complications and clinical response were based on endoscopic evaluation one month after the last session and at less one year after the end of treatment. Eighty-seven courses have been performed: 65 by LDR and 22 by HDR. Thirty-six courses have been performed in the palliative group, 51 courses in the curative group. Seven patients among 31 presented acute complications and 18/31 late complications. Complete global response rate was 14/30 evaluable patients (47%). Mean overall Global survival was 23 months with a median follow-up of 3.5 years. These results confirm the efficacy of endobronchial brachytherapy as well as palliative or curative treatment, but the improvement of results will essentially depend on our capacity to better define our indications and underlie the

  17. Dosimetric and radiobiological comparison of volumetric modulated arc therapy, high-dose rate brachytherapy, and low-dose rate permanent seeds implant for localized prostate cancer

    International Nuclear Information System (INIS)

    Yang, Ruijie; Zhao, Nan; Liao, Anyan; Wang, Hao; Qu, Ang

    2016-01-01

    To investigate the dosimetric and radiobiological differences among volumetric modulated arc therapy (VMAT), high-dose rate (HDR) brachytherapy, and low-dose rate (LDR) permanent seeds implant for localized prostate cancer. A total of 10 patients with localized prostate cancer were selected for this study. VMAT, HDR brachytherapy, and LDR permanent seeds implant plans were created for each patient. For VMAT, planning target volume (PTV) was defined as the clinical target volume plus a margin of 5 mm. Rectum, bladder, urethra, and femoral heads were considered as organs at risk. A 78 Gy in 39 fractions were prescribed for PTV. For HDR and LDR plans, the dose prescription was D 90 of 34 Gy in 8.5 Gy per fraction, and 145 Gy to clinical target volume, respectively. The dose and dose volume parameters were evaluated for target, organs at risk, and normal tissue. Physical dose was converted to dose based on 2-Gy fractions (equivalent dose in 2 Gy per fraction, EQD 2 ) for comparison of 3 techniques. HDR and LDR significantly reduced the dose to rectum and bladder compared with VMAT. The D mean (EQD 2 ) of rectum decreased 22.36 Gy in HDR and 17.01 Gy in LDR from 30.24 Gy in VMAT, respectively. The D mean (EQD 2 ) of bladder decreased 6.91 Gy in HDR and 2.53 Gy in LDR from 13.46 Gy in VMAT. For the femoral heads and normal tissue, the mean doses were also significantly reduced in both HDR and LDR compared with VMAT. For the urethra, the mean dose (EQD 2 ) was 80.26, 70.23, and 104.91 Gy in VMAT, HDR, and LDR brachytherapy, respectively. For localized prostate cancer, both HDR and LDR brachytherapy were clearly superior in the sparing of rectum, bladder, femoral heads, and normal tissue compared with VMAT. HDR provided the advantage in sparing of urethra compared with VMAT and LDR.

  18. Medium-dose-rate brachytherapy of cancer of the cervix: preliminary results of a prospectively designed schedule based on the linear-quadratic model

    International Nuclear Information System (INIS)

    Leborgne, Felix; Fowler, Jack F.; Leborgne, Jose H.; Zubizarreta, Eduardo; Curochquin, Rene

    1999-01-01

    Purpose: To compare results and complications of our previous low-dose-rate (LDR) brachytherapy schedule for early-stage cancer of the cervix, with a prospectively designed medium-dose-rate (MDR) schedule, based on the linear-quadratic model (LQ). Methods and Materials: A combination of brachytherapy, external beam pelvic and parametrial irradiation was used in 102 consecutive Stage Ib-IIb LDR treated patients (1986-1990) and 42 equally staged MDR treated patients (1994-1996). The planned MDR schedule consisted of three insertions on three treatment days with six 8-Gy brachytherapy fractions to Point A, two on each treatment day with an interfraction interval of 6 hours, plus 18 Gy external whole pelvic dose, and followed by additional parametrial irradiation. The calculated biologically effective dose (BED) for tumor was 90 Gy 10 and for rectum below 125 Gy 3 . Results: In practice the MDR brachytherapy schedule achieved a tumor BED of 86 Gy 10 and a rectal BED of 101 Gy 3 . The latter was better than originally planned due to a reduction from 85% to 77% in the percentage of the mean dose to the rectum in relation to Point A. The mean overall treatment time was 10 days shorter for MDR in comparison with LDR. The 3-year actuarial central control for LDR and MDR was 97% and 98% (p = NS), respectively. The Grades 2 and 3 late complications (scale 0 to 3) were 1% and 2.4%, respectively for LDR (3-year) and MDR (2-year). Conclusions: LQ is a reliable tool for designing new schedules with altered fractionation and dose rates. The MDR schedule has proven to be an equivalent treatment schedule compared with LDR, with an additional advantage of having a shorter overall treatment time. The mean rectal BED Gy 3 was lower than expected

  19. Calculated organ doses using Monte Carlo simulations in a reference male phantom undergoing HDR brachytherapy applied to localized prostate carcinoma

    International Nuclear Information System (INIS)

    Candela-Juan, Cristian; Perez-Calatayud, Jose; Ballester, Facundo; Rivard, Mark J.

    2013-01-01

    variations between both phantoms which were at most 35% in the considered organ equivalent doses. Finally, effective doses per clinical absorbed dose from IMRT and proton therapy were comparable to those from both brachytherapy sources, with brachytherapy being advantageous over external beam radiation therapy for the furthest organs. Conclusions: A database of organ equivalent doses when applying HDR brachytherapy to the prostate with either 60 Co or 192 Ir is provided. According to physical considerations, 192 Ir is dosimetrically advantageous over 60 Co sources at large distances, but not in the closest organs. Damage to distant healthy organs per clinical absorbed dose is lower with brachytherapy than with IMRT or protons, although the overall effective dose per Gy given to the prostate seems very similar. Given that there are several possible fractionation schemes, which result in different total amounts of therapeutic absorbed dose, advantage of a radiation treatment (according to equivalent dose to healthy organs) is treatment and facility dependent.

  20. Parenting Advantage in the MNC

    DEFF Research Database (Denmark)

    Nell, Phillip C.; Ambos, Björn

    2013-01-01

    subsidiaries located in Europe. Our results indicate that the external embeddedness of the MNC is an antecedent to headquarters' value creation. We find that headquarters' investments into their own relationships with the subsidiaries' contexts are positively related to the value added by headquarters....... Furthermore, this relationship is stronger when the subsidiary itself is strongly embedded. We discuss implications for the MNC literature, embeddedness research, and the literature on parenting and headquarters' roles......What determines the value an MNC's headquarters adds to its own affiliates? In this paper, we shed light on this question by linking the embeddedness view of the multinational corporation to the literature on parenting advantage. We test our hypotheses on an original dataset of 124 manufacturing...

  1. Nuclear energy. Risk or advantage

    International Nuclear Information System (INIS)

    Boettiger, Helmut

    2011-01-01

    Nuclear energy is controversial. But what's all about really in the controversy? It's about more than safty or electricity prices. Nuclear energy is not only a technical or political question, but also a moral, a human. The discussion enter various rational and irrational arguments, beside straightforward arguments various misleading and mendacious exist. The present publication is comprehensively dedicated to the thema of nuclear energy - its pro and contra - and considers its risks and advantages. Thereby the sources of energy, the processes in the nuclear reactor, and the risk potentials (Harrisburg, Chernobyl, Fukushima) are illustratively and reproducibly presented. Extensively the text explains the forms of the radiation, its doses, and the tolerance of it. Also to the theme waste and final disposal an explaining chapter is dedicated and the question for the exit from nuclear energy elucidated. Finally the author appoints with the question ''How considers mankind nuclear energy world-wide'' the international comparison.

  2. Marketing channels and competitive advantage

    Directory of Open Access Journals (Sweden)

    Jovičić Dragoljub

    2005-01-01

    Full Text Available Issue that can already be seen and will be very clear in the future is that the central problem in the market of tube caps will not be the product or the price or promotion, but marketing channels. Therefore, the competitive advantage will most probably be built on marketing channels and not the production - as it has been so far, so, the questions of choice functioning and modification of marketing channels, as well as selection of the most appropriate members of channels will become more and more important. Accordingly, it may freely be said that the choice, i.e. the movement of marketing channels represents one of the strategic decisions which has to be made by a company management and which will subsequently very significantly influence the functioning and efficacy of not only the system of distribution, but also the entire business transactions.

  3. Advantages of Oscillatory Hydraulic Tomography

    Science.gov (United States)

    Kitanidis, P. K.; Bakhos, T.; Cardiff, M. A.; Barrash, W.

    2012-12-01

    Characterizing the subsurface is significant for most hydrogeologic studies, such as those involving site remediation and groundwater resource explo¬ration. A variety of hydraulic and geophysical methods have been developed to estimate hydraulic conductivity and specific storage. Hydraulic methods based on the analysis of conventional pumping tests allow the estimation of conductivity and storage without need for approximate petrophysical relations, which is an advantage over most geophysical methods that first estimate other properties and then infer values of hydraulic parameters. However, hydraulic methods have the disadvantage that the head-change signal decays with distance from the pumping well and thus becomes difficult to separate from noise except in close proximity to the source. Oscillatory hydraulic tomography (OHT) is an emerging technology to im¬age the subsurface. This method utilizes the idea of imposing sinusoidally varying pressure or discharge signals at several points, collecting head observations at several other points, and then processing these data in a tomographic fashion to estimate conductivity and storage coefficients. After an overview of the methodology, including a description of the most important potential advantages and challenges associated with this approach, two key promising features of the approach will be discussed. First, the signal at an observation point is orthogonal to and thus can be separated from nuisance inputs like head fluctuation from production wells, evapotranspiration, irrigation, and changes in the level of adjacent streams. Second, although the signal amplitude may be weak, one can extract the phase and amplitude of the os¬cillatory signal by collecting measurements over a longer time, thus compensating for the effect of large distance through longer sampling period.

  4. Assessment of the feasibility of using transrectal ultrasound for postimplant dosimetry in low-dose-rate prostate brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Rhian Siân, E-mail: rhian.s.davies@wales.nhs.uk; Perrett, Teresa; Powell, Jane; Barber, Jim; Tanguay, Jacob; Button, Michael; Cochlin, Dennis; Smith, Christian; Lester, Jason Francis

    2016-01-01

    A study was performed to establish whether transrectal ultrasound (TRUS)-based postimplant dosimetry (PID) is both practically feasible and comparable to computed tomography (CT)-based PID, recommended in current published guidelines. In total, 22 patients treated consecutively at a single cancer center with low-dose-rate (LDR) brachytherapy for early-stage prostate cancer had a transrectal ultrasound performed immediately after implant (d0-TRUS) and computed tomography scan 30 days after implant (d30-CT). Postimplant dosimetry planning was performed on both image sets and the results were compared. The interobserver reproducibility of the transrectal ultrasound postimplant dosimetry planning technique was also assessed. It was noticed that there was no significant difference in mean prostate D{sub 90} (136.5 Gy and 144.4 Gy, p = 0.2197), V{sub 100} (86.4% and 89.1%, p = 0.1480) and V{sub 150} (52.0% and 47.8%, p = 0.1657) for d30-CT and d0-TRUS, respectively. Rectal doses were significantly higher for d0-TRUS than d30-CT. Urethral doses were available with d0-TRUS only. We have shown that d0-TRUS PID is a useful tool for assessing the quality of an implant after low-dose-rate prostate brachytherapy and is comparable to d30-CT PID. There are clear advantages to its use in terms of resource and time efficiency both for the clinical team and the patient.

  5. Trends in the Utilization of Brachytherapy in Cervical Cancer in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kathy, E-mail: Kathy.Han@rmp.uhn.on.ca [Radiation Medicine Program, Princess Margaret Hospital, University Health Network, Toronto, Ontario (Canada); Milosevic, Michael; Fyles, Anthony [Radiation Medicine Program, Princess Margaret Hospital, University Health Network, Toronto, Ontario (Canada); Pintilie, Melania [Department of Biostatistics, Princess Margaret Hospital, Toronto, Ontario (Canada); Viswanathan, Akila N. [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Boston, Massachusetts (United States)

    2013-09-01

    Purpose: To determine the trends in brachytherapy use in cervical cancer in the United States and to identify factors and survival benefits associated with brachytherapy treatment. Methods and Materials: Using the Surveillance, Epidemiology, and End Results (SEER) database, we identified 7359 patients with stages IB2-IVA cervical cancer treated with external beam radiation therapy (EBRT) between 1988 and 2009. Propensity score matching was used to adjust for differences between patients who received brachytherapy and those who did not from 2000 onward (after the National Cancer Institute alert recommending concurrent chemotherapy). Results: Sixty-three percent of the 7359 women received brachytherapy in combination with EBRT, and 37% received EBRT alone. The brachytherapy utilization rate has decreased from 83% in 1988 to 58% in 2009 (P<.001), with a sharp decline of 23% in 2003 to 43%. Factors associated with higher odds of brachytherapy use include younger age, married (vs single) patients, earlier years of diagnosis, earlier stage and certain SEER regions. In the propensity score-matched cohort, brachytherapy treatment was associated with higher 4-year cause-specific survival (CSS; 64.3% vs 51.5%, P<.001) and overall survival (OS; 58.2% vs 46.2%, P<.001). Brachytherapy treatment was independently associated with better CSS (hazard ratio [HR], 0.64; 95% confidence interval [CI], 0.57-0.71), and OS (HR 0.66; 95% CI, 0.60 to 0.74). Conclusions: This population-based analysis reveals a concerning decline in brachytherapy utilization and significant geographic disparities in the delivery of brachytherapy in the United States. Brachytherapy use is independently associated with significantly higher CSS and OS and should be implemented in all feasible cases.

  6. Perioperative high dose rate (HDR brachytherapy in unresectable locally advanced pancreatic tumors

    Directory of Open Access Journals (Sweden)

    Brygida Białas

    2011-07-01

    Full Text Available Purpose: The aim of the study was to present an original technique of catheter implantation for perioperative HDR-Ir192 brachytherapy in patients after palliative operations of unresectable locally advanced pancreatic tumors and to estimate the influence of perioperative HDR-Ir192 brachytherapy on pain relief in terminal pancreatic cancer patients. Material and methods: Eight patients with pancreatic tumors located in the head of pancreas underwent palliative operations with the use of HDR-Ir192 brachytherapy. All patients qualified for surgery reported pain of high intensity and had received narcotic painkillers prior to operation. During the last phase of the surgery, the Nucletron® catheters were implanted in patients to prepare them for later perioperative brachytherapy. Since the 6th day after surgery HDR brachytherapy was performed. Before each brachytherapy fraction the location of implants were checked using fluoroscopy. A fractional dose was 5 Gy and a total dose was 20 Gy in the area of radiation. A comparative study of two groups of patients (with and without brachytherapy with stage III pancreatic cancer according to the TNM scale was taken in consideration. Results and Conclusions: The authors claim that the modification of catheter implantation using specially designed cannula, facilitates the process of inserting the catheter into the tumor, shortens the time needed for the procedure, and reduces the risk of complications. Mean survival time was 5.7 months. In the group of performed brachytherapy, the mean survival time was 6.7 months, while in the group of no brachytherapy performed – 4.4 months. In the group of brachytherapy, only one patient increased the dose of painkillers in the last month of his life. Remaining patients took constant doses of medicines. Perioperative HDR-Ir192 brachytherapy could be considered as a practical application of adjuvant therapy for pain relief in patients with an advanced pancreatic cancer.

  7. Automatic analysis of intrinsic positional verification films brachytherapy using MATLAB; Analisis automatico de peliculas de verificacion posicional intrinsica en braqueterapia mediante MATLAB

    Energy Technology Data Exchange (ETDEWEB)

    Quiros Higueras, J. D.; Marco Blancas, N. de; Ruiz Rodriguez, J. C.

    2011-07-01

    One of the essential tests in quality control of brachytherapy equipment is verification auto load intrinsic positional radioactive source. A classic method for evaluation is the use of x-ray film and measuring the distance between the marks left by autoradiography of the source with respect to a reference. In our center has developed an automated method of measurement by the radiochromic film scanning and implementation of a macro developed in Matlab, in order to optimize time and reduce uncertainty in the measurement. The purpose of this paper is to describe the method developed, assess their uncertainty and quantify their advantages over the manual method. (Author)

  8. Routine quality control of high dose rate brachytherapy equipment

    International Nuclear Information System (INIS)

    Guzman Calcina, Carmen S.; Almeida, Adelaide de; Rocha, Jose R. Oliveira

    2001-01-01

    A Quality Assurance program should be installed also for High Dose Rate brachytherapy, in the order to achieve a correct dose administration to the patient and for the safety to those involved directly with the treatment. The work presented here has the following purposes: Analyze the types of equipment tests presented by the official protocols (TG40, TG56 e ARCAL XXX), evaluate the brachytherapy routine tests of protocols from various national and international radiotherapy services and compare the latter with those presented in the official protocols. As a result, we conclude the following: TG56 presents a higher number of tests when compared to the other official protocols and most of the tests presented by the analyzed services are present in TG56. A suggestion for a basic protocol is presented, emphasizing the periodicity and tolerance level of each of the tests. (author)

  9. Ultrasonography-guided cobalt-60 brachytherapy for malignant glioma

    International Nuclear Information System (INIS)

    Sakai, Noboru; Takenaka, Katsunobu; Ueda, Tatsuya

    1989-01-01

    Brachytherapy with cobalt-60 source is reported. In this method it is characterized that the source is inserted interstitially with remote control system by after-loading method via outer catheter (using tandem tube), which was established in the center of residual tumor, using ultrasonography guide with trepanation, or intraoperatively put within the dead space after tumor resection. Six cases of deep-seated and recurrent malignant glioma, were treated with this method. A total dose of 20 to 45 Gy (10 to 15 Gy/day for 2 to 3 days) was delivered to the target. Additionally conventional external irradiation was followed. The effect of cobalt-60 brachytherapy on such tumors were favorable especially for well-circumscribed glioma less than 3 cm on CT scan. (author)

  10. Dose calculation and isodose curves determination in brachytherapy

    International Nuclear Information System (INIS)

    Maranhao, Frederico B.; Lima, Fernando R.A.; Khoury, Helen J.

    2000-01-01

    Brachytherapy is a form of cancer treatment in which small radioactive sources are placed inside of, or close to small tumors, in order to cause tissue necrosis and, consequently, to interrupt the tumor growth process. A very important aspect to the planning of this therapy is the calculation of dose distributions in the tumor and nearby tissues, to avoid the unnecessary irradiation of healthy tissue. The objective of this work is to develop a computer program that will permit treatment planning for brachytherapy at low dose rates, minimizing the possible errors introduced when such calculations are done manually. Results obtained showed good agreement with those from programs such as BRA, which is widely used in medical practice. (author)

  11. Cervical cancer. Application of MR imaging in brachytherapy

    International Nuclear Information System (INIS)

    Ebe, Kazuyu; Matsunaga, Naofumi

    1996-01-01

    For the purpose of application of MRI in arrangement of brachytherapy of cervical cancer, a method was proposed to see the radiation doses in surrounding tissues by superimposing the dose distribution pattern of the radiation source on the MR image. The applicator for the source was filled with water to get its T2-weighted image and was inserted in the patients. The MRI apparatus was Siemens Magnetom Vision (1.5T) with phased array coil. T2-weighted sagittal and coronary images were taken by turbospin echo and HASTE methods. The section thickness was 5 mm. The dose distribution pattern was superimposed on the frontal and lateral images by Siemens Mevaplan to see the doses in surrounding tissues. In 4 patients, it was possible to estimate the radiation dose in the posterior wall of bladder, anterior wall of rectum and urinary duct. The method is promising for arranging brachytherapy of cervical cancer. (K.H.)

  12. Brachytherapy for coronary restenosis: state of art in 2003

    International Nuclear Information System (INIS)

    Latorzeff, I.; Delannes, M.; Latorzeff, I.; Carrie, D.; Alibelli, M.J.; Bonnet, J.; Duthil, P.

    2003-01-01

    Based on therapeutic approach for benign diseases, vascular brachytherapy decreases smooth vascular muscle cells proliferation and multiplication which lead to the formation of the neo-intima. The radioactive positive action affects arterial recoil due to post angioplasty vessel injury. Randomized studies has shown good angiographic results up to 6 months of follow-up, with 50% in-stent restenosis rate decrease and on the analysed segment as well. Decrease on Mace and TLR show statistically significance. Results don't correlate with emitter and beta emitters had been introduced in France recently. Vascular brachytherapy is actually indicated for in-stent restenosis, there is no evidence to perform this treatment for de novo lesion. Geographic miss, source centering, late thrombosis and pullback procedure may interfere with treatment quality. IVUS allows best target volume determination to a higher quality level. Internationals guidelines such as Eva-Gec-Estro recommendations could increase treatment safety and enable development of an optimal technique. (authors)

  13. Brachytherapy for prostate cancer: Comparative characteristics of procedures

    Directory of Open Access Journals (Sweden)

    S. V. Kanaev

    2015-01-01

    Full Text Available The introduction of interstitial radiation sources is the «youngest» of the radical method of treatment of patients with prostate cancer (PC. The high level of efficiency comparable to prostatectomy at a significantly lower rate of complications causes rapid growth of clinical use of brachytherapy (BT. Depending on the radiation source and the mode of administration into the prostate gland are two types BT – high-dose rate (temporary (HDR-BT and low-dose rate (permanent (LDR-BT brachytherapy. At the heart of these two methods are based on a single principle of direct effect of the quantum gamma radiation on the area of interest. However, the differences between the characteristics of isotopes used and technical aspects of the techniques cause the difference in performance and complication rates for expression HDR-BT and LDR-BT.

  14. Evolutionary advantages of adaptive rewarding

    International Nuclear Information System (INIS)

    Szolnoki, Attila; Perc, Matjaž

    2012-01-01

    Our well-being depends on both our personal success and the success of our society. The realization of this fact makes cooperation an essential trait. Experiments have shown that rewards can elevate our readiness to cooperate, but since giving a reward inevitably entails paying a cost for it, the emergence and stability of such behavior remains elusive. Here we show that allowing for the act of rewarding to self-organize in dependence on the success of cooperation creates several evolutionary advantages that instill new ways through which collaborative efforts are promoted. Ranging from indirect territorial battle to the spontaneous emergence and destruction of coexistence, phase diagrams and the underlying spatial patterns reveal fascinatingly rich social dynamics that explain why this costly behavior has evolved and persevered. Comparisons with adaptive punishment, however, uncover an Achilles heel of adaptive rewarding, coming from over-aggression, which in turn hinders optimal utilization of network reciprocity. This may explain why, despite its success, rewarding is not as firmly embedded into our societal organization as punishment. (paper)

  15. Photon energy-fluence correction factor in low energy brachytherapy

    International Nuclear Information System (INIS)

    Antunes, Paula C.G.; Yoriyaz, Hélio; Vijande, Javier; Giménez-Alventosa, Vicent; Ballester, Facundo

    2017-01-01

    The AAPM TG-43 brachytherapy dosimetry formalism has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. The purpose of this work is to study the influence of photon energy-fluence in different media and to evaluate a proposal for energy-fluence correction factors for the conversion between dose-to-tissue (D tis ) and dose-to-water (D w ). State-of-the art Monte Carlo (MC) calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone) in two different codes, MCNP and PENELOPE, which in all cases include a realistic modeling of the 125 I low-energy brachytherapy seed in order to benchmark the formalism proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences using the large-cavity theory. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seed is proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases. (author)

  16. Brachytherapy in Lip Carcinoma: Long-Term Results

    Energy Technology Data Exchange (ETDEWEB)

    Guibert, Mireille, E-mail: mireilleguib@voila.fr [Department of Head and Neck Surgery, Larrey Hospital, Toulouse (France); David, Isabelle [Department of Radiation Oncology, Claudius Regaud Institut, Toulouse (France); Vergez, Sebastien [Department of Head and Neck Surgery, Larrey Hospital, Toulouse (France); Rives, Michel [Department of Radiation Oncology, Claudius Regaud Institut, Toulouse (France); Filleron, Thomas [Department of Epidemiology, Claudius Regaud Institut, Toulouse (France); Bonnet, Jacques; Delannes, Martine [Department of Radiation Oncology, Claudius Regaud Institut, Toulouse (France)

    2011-12-01

    Purpose: The aim of this study was to evaluate the effectiveness of low-dose-rate brachytherapy for local control and relapse-free survival in squamous cell and basal cell carcinomas of the lips. We compared two groups: one with tumors on the skin and the other with tumors on the lip. Patients and methods: All patients had been treated at Claudius Regaud Cancer Centre from 1990 to 2008 for squamous cell or basal cell carcinoma. Low-dose-rate brachytherapy was performed with iridium 192 wires according to the Paris system rules. On average, the dose delivered was 65 Gy. Results: 172 consecutive patients were included in our study; 69 had skin carcinoma (squamous cell or basal cell), and 92 had squamous cell mucosal carcinoma. The average follow-up time was 5.4 years. In the skin cancer group, there were five local recurrences and one lymph node recurrence. In the mucosal cancer group, there were ten local recurrences and five lymph node recurrences. The 8-year relapse-free survival for the entire population was 80%. The 8-year relapse-free survival was 85% for skin carcinoma 75% for mucosal carcinoma, with no significant difference between groups. The functional results were satisfactory for 99% of patients, and the cosmetic results were satisfactory for 92%. Maximal toxicity observed was Grade 2. Conclusions: Low-dose-rate brachytherapy can be used to treat lip carcinomas at Stages T1 and T2 as the only treatment with excellent results for local control and relapse-free survival. The benefits of brachytherapy are also cosmetic and functional, with 91% of patients having no side effects.

  17. Photon energy-fluence correction factor in low energy brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Paula C.G.; Yoriyaz, Hélio [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Vijande, Javier; Giménez-Alventosa, Vicent; Ballester, Facundo, E-mail: pacrisguian@gmail.com [Department of Atomic, Molecular, and Nuclear Physics and Instituto de Física Corpuscular (UV-CSIC), University of Valencia (Spain)

    2017-07-01

    The AAPM TG-43 brachytherapy dosimetry formalism has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. The purpose of this work is to study the influence of photon energy-fluence in different media and to evaluate a proposal for energy-fluence correction factors for the conversion between dose-to-tissue (D{sub tis}) and dose-to-water (D{sub w}). State-of-the art Monte Carlo (MC) calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone) in two different codes, MCNP and PENELOPE, which in all cases include a realistic modeling of the {sup 125}I low-energy brachytherapy seed in order to benchmark the formalism proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences using the large-cavity theory. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seed is proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases. (author)

  18. Ocular brachytherapy with a holmium-166 irradiator device

    Energy Technology Data Exchange (ETDEWEB)

    Mourao, Arnaldo P. [Centro Federal de Educacao Tecnoloica de Minas Gerais (CEFET-MG), Belo Horizonte, MG (Brazil). Nucleo de Engenharia Hospitalar], e-mail: aprata@des.cefetmg.br; Campos, Tarcisio P.R. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Programa de Pos-graduacao em Ciencias e Tecnicas Nucleares], e-mail: campos@nuclear.ufmg.br

    2009-07-01

    The ocular brachytherapy is a method that allows controlling ocular tumors. However, the irradiation of the ocular area in high doses can bring damages mainly to the surrounding healthy tissue, such as lens, retina and bone tissue of the orbital area in growth phase. Brachytherapy in comparison to teletherapy allows a large reduction of the absorbed doses in the adjacent tissues avoiding deleterious effects. Various types of radionuclides can be applied to ocular brachytherapy. Those radionuclides shall be encapsulated and placed juxtaposed to the sclera, back to the tumor. Herein, a new device was developed to encapsulate the radioactive material. It can easily place back of the eyeball. A computational model of the ocular area was developed in order to simulate the spatial dose distribution promoted by the holmium-166 nuclide distributed inside the irradiator device. The simulations addressed a device placed on the surface of the sclera, rotated 90 deg taken at the normal axis forward to the lens. The simulation was carried on the code Monte Carlo MCNP5. The computational simulation generates the spatial dose distribution in the treated volume. All continuous beta and the discrete gamma and X-ray spectra emitted by the holmium-166 were incorporated on simulations. The results allow comparing the space dose distribution to other types of sources used for the same end. The sclera absorbed dose, the maximum apical tumor dose, as well as on the tumor base were investigated. Indeed, the tumor thickness defines the conditions of irradiation. The holmium-166 dose distribution provides a tool to propose a better and optimized protocol for ocular brachytherapy. (author)

  19. Study of two different radioactive sources for prostate brachytherapy treatment

    International Nuclear Information System (INIS)

    Pereira Neves, Lucio; Perini, Ana Paula; Souza Santos, William de; Caldas, Linda V.E.; Belinato, Walmir

    2015-01-01

    In this study we evaluated two radioactive sources for brachytherapy treatments. Our main goal was to quantify the absorbed doses on organs and tissues of an adult male patient, submitted to a brachytherapy treatment with two radioactive sources. We evaluated a 192 Ir and a 125 I radioactive sources. The 192 Ir radioactive source is a cylinder with 0.09 cm in diameter and 0.415 cm long. The 125 I radioactive source is also a cylinder, with 0.08 cm in diameter and 0.45 cm long. To evaluate the absorbed dose distribution on the prostate, and other organs and tissues of an adult man, a male virtual anthropomorphic phantom MASH, coupled in the radiation transport code MCNPX 2.7.0, was employed.We simulated 75, 90 and 102 radioactive sources of 125 I and one of 192 Ir, inside the prostate, as normally used in these treatments, and each treatment was simulated separately. As this phantom was developed in a supine position, the displacement of the internal organs of the chest, compression of the lungs and reduction of the sagittal diameter were all taken into account. For the 192 Ir, the higher doses values were obtained for the prostate and surrounding organs, as the colon, gonads and bladder. Considering the 125 I sources, with photons with lower energies, the doses to organs that are far from the prostate were lower. All values for the dose rates are in agreement with those recommended for brachytherapy treatments. Besides that, the new seeds evaluated in this work present usefulness as a new tool in prostate brachytherapy treatments, and the methodology employed in this work may be applied for other radiation sources, or treatments. (authors)

  20. Study of two different radioactive sources for prostate brachytherapy treatment

    Energy Technology Data Exchange (ETDEWEB)

    Pereira Neves, Lucio; Perini, Ana Paula [Instituto de Fisica, Universidade Federal de Uberlandia, Caixa Postal 593, 38400-902, Uberlandia, MG (Brazil); Souza Santos, William de; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares, Comissao Nacional de Energia Nuclear, IPENCNEN/SP, Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, 05508-000 Sao Paulo, SP (Brazil); Belinato, Walmir [Departamento de Ensino, Instituto Federal de Educacao, Ciencia e Tecnologia da Bahia, Campus Vitoria da Conquista, Zabele, Av. Amazonas 3150, 45030-220 Vitoria da Conquista, BA (Brazil)

    2015-07-01

    In this study we evaluated two radioactive sources for brachytherapy treatments. Our main goal was to quantify the absorbed doses on organs and tissues of an adult male patient, submitted to a brachytherapy treatment with two radioactive sources. We evaluated a {sup 192}Ir and a {sup 125}I radioactive sources. The {sup 192}Ir radioactive source is a cylinder with 0.09 cm in diameter and 0.415 cm long. The {sup 125}I radioactive source is also a cylinder, with 0.08 cm in diameter and 0.45 cm long. To evaluate the absorbed dose distribution on the prostate, and other organs and tissues of an adult man, a male virtual anthropomorphic phantom MASH, coupled in the radiation transport code MCNPX 2.7.0, was employed.We simulated 75, 90 and 102 radioactive sources of {sup 125}I and one of {sup 192}Ir, inside the prostate, as normally used in these treatments, and each treatment was simulated separately. As this phantom was developed in a supine position, the displacement of the internal organs of the chest, compression of the lungs and reduction of the sagittal diameter were all taken into account. For the {sup 192}Ir, the higher doses values were obtained for the prostate and surrounding organs, as the colon, gonads and bladder. Considering the {sup 125}I sources, with photons with lower energies, the doses to organs that are far from the prostate were lower. All values for the dose rates are in agreement with those recommended for brachytherapy treatments. Besides that, the new seeds evaluated in this work present usefulness as a new tool in prostate brachytherapy treatments, and the methodology employed in this work may be applied for other radiation sources, or treatments. (authors)

  1. Serum Testosterone Kinetics After Brachytherapy for Clinically Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Taira, Al V.; Merrick, Gregory S.; Galbreath, Robert W.; Butler, Wayne M.; Lief, Jonathan H.; Allen, Zachariah A.; Wallner, Kent E.

    2012-01-01

    Purpose: To evaluate temporal changes in testosterone after prostate brachytherapy and investigate the potential impact of these changes on response to treatment. Methods and Materials: Between January 2008 and March 2009, 221 consecutive patients underwent Pd-103 brachytherapy without androgen deprivation for clinically localized prostate cancer. Prebrachytherapy prostate-specific antigen (PSA) and serum testosterone were obtained for each patient. Repeat levels were obtained 3 months after brachytherapy and at least every 6 months thereafter. Multiple clinical, treatment, and dosimetric parameters were evaluated to determine an association with temporal testosterone changes. In addition, analysis was conducted to determine if there was an association between testosterone changes and treatment outcomes or the occurrence of a PSA spike. Results: There was no significant difference in serum testosterone over time after implant (p = 0.57). 29% of men experienced an increase ≥25%, 23% of men experienced a decrease ≥25%, and the remaining 48% of men had no notable change in testosterone over time. There was no difference in testosterone trends between men who received external beam radiotherapy and those who did not (p = 0.12). On multivariate analysis, preimplant testosterone was the only variable that consistently predicted for changes in testosterone over time. Men with higher than average testosterone tended to experience drop in testosterone (p < 0.001), whereas men with average or below average baseline testosterone had no significant change. There was no association between men who experienced PSA spike and testosterone temporal trends (p = 0.50) nor between initial PSA response and testosterone trends (p = 0.21). Conclusion: Prostate brachytherapy does not appear to impact serum testosterone over time. Changes in serum testosterone do not appear to be associated with PSA spike phenomena nor with initial PSA response to treatment; therefore, PSA response

  2. Fully automated MRI-guided robotics for prostate brachytherapy

    International Nuclear Information System (INIS)

    Stoianovici, D.; Vigaru, B.; Petrisor, D.; Muntener, M.; Patriciu, A.; Song, D.

    2008-01-01

    The uncertainties encountered in the deployment of brachytherapy seeds are related to the commonly used ultrasound imager and the basic instrumentation used for the implant. An alternative solution is under development in which a fully automated robot is used to place the seeds according to the dosimetry plan under direct MRI-guidance. Incorporation of MRI-guidance creates potential for physiological and molecular image-guided therapies. Moreover, MRI-guided brachytherapy is also enabling for re-estimating dosimetry during the procedure, because with the MRI the seeds already implanted can be localised. An MRI compatible robot (MrBot) was developed. The robot is designed for transperineal percutaneous prostate interventions, and customised for fully automated MRI-guided brachytherapy. With different end-effectors, the robot applies to other image-guided interventions of the prostate. The robot is constructed of non-magnetic and dielectric materials and is electricity free using pneumatic actuation and optic sensing. A new motor (PneuStep) was purposely developed to set this robot in motion. The robot fits alongside the patient in closed-bore MRI scanners. It is able to stay fully operational during MR imaging without deteriorating the quality of the scan. In vitro, cadaver, and animal tests showed millimetre needle targeting accuracy, and very precise seed placement. The robot tested without any interference up to 7T. The robot is the first fully automated robot to function in MRI scanners. Its first application is MRI-guided seed brachytherapy. It is capable of automated, highly accurate needle placement. Extensive testing is in progress prior to clinical trials. Preliminary results show that the robot may become a useful image-guided intervention instrument. (author)

  3. Serum Testosterone Kinetics After Brachytherapy for Clinically Localized Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Taira, Al V. [Western Radiation Oncology, Mountain View, CA (United States); Merrick, Gregory S., E-mail: gmerrick@urologicresearchinstitute.org [Schiffler Cancer Center, Wheeling Jesuit University, Wheeling, WV (United States); Galbreath, Robert W.; Butler, Wayne M.; Lief, Jonathan H.; Allen, Zachariah A. [Schiffler Cancer Center, Wheeling Jesuit University, Wheeling, WV (United States); Wallner, Kent E. [Puget Sound Healthcare Corporation Group Health Cooperative, University of Washington, Seattle, WA (United States)

    2012-01-01

    Purpose: To evaluate temporal changes in testosterone after prostate brachytherapy and investigate the potential impact of these changes on response to treatment. Methods and Materials: Between January 2008 and March 2009, 221 consecutive patients underwent Pd-103 brachytherapy without androgen deprivation for clinically localized prostate cancer. Prebrachytherapy prostate-specific antigen (PSA) and serum testosterone were obtained for each patient. Repeat levels were obtained 3 months after brachytherapy and at least every 6 months thereafter. Multiple clinical, treatment, and dosimetric parameters were evaluated to determine an association with temporal testosterone changes. In addition, analysis was conducted to determine if there was an association between testosterone changes and treatment outcomes or the occurrence of a PSA spike. Results: There was no significant difference in serum testosterone over time after implant (p = 0.57). 29% of men experienced an increase {>=}25%, 23% of men experienced a decrease {>=}25%, and the remaining 48% of men had no notable change in testosterone over time. There was no difference in testosterone trends between men who received external beam radiotherapy and those who did not (p = 0.12). On multivariate analysis, preimplant testosterone was the only variable that consistently predicted for changes in testosterone over time. Men with higher than average testosterone tended to experience drop in testosterone (p < 0.001), whereas men with average or below average baseline testosterone had no significant change. There was no association between men who experienced PSA spike and testosterone temporal trends (p = 0.50) nor between initial PSA response and testosterone trends (p = 0.21). Conclusion: Prostate brachytherapy does not appear to impact serum testosterone over time. Changes in serum testosterone do not appear to be associated with PSA spike phenomena nor with initial PSA response to treatment; therefore, PSA response

  4. Manual on brachytherapy. Incorporating: Applications guide, procedures guide, basics guide

    International Nuclear Information System (INIS)

    1996-01-01

    This publication is part of practical radiation safety manual series for different fields of application aimed primarily at persons handling radiation sources on a daily routine basis, which could at same time be used by the competent authorities, supporting their efforts in the radiation protection training of workers or medical assistance personnel or helping on-site management to set up local radiation protection rules. It is dedicated to brachytherapy: its application and procedures guides

  5. HDR brachytherapy for superficial non-melanoma skin cancers

    International Nuclear Information System (INIS)

    Gauden, Ruth; Pracy, Martin; Avery, Anne-Marie; Hodgetts, Ian; Gauden, Stan

    2013-01-01

    Our initial experience using recommended high dose per fraction skin brachytherapy (BT) treatment schedules, resulted in poor cosmesis. This study aimed to assess in a prospective group of patients the use of Leipzig surface applicators for High Dose Rate (HDR) brachytherapy, for the treatment of small non-melanoma skin cancers (NMSC) using a protracted treatment schedule. Treatment was delivered by HDR brachytherapy with Leipzig applicators. 36Gy, prescribed to between 3 to 4mm, was given in daily 3Gy fractions. Acute skin toxicity was evaluated weekly during irradiation using the Radiation Therapy Oncology Group criteria. Local response, late skin effects and cosmetic results were monitored at periodic intervals after treatment completion. From March 2002, 200 patients with 236 lesions were treated. Median follow-up was 66 months (range 25–121 months). A total of 162 lesions were macroscopic, while in 74 cases, BT was given after resection because of positive microscopic margins. There were 121 lesions that were basal cell carcinomas, and 115 were squamous cell carcinomas. Lesions were located on the head and neck (198), the extremities (26) and trunk (12). Local control was 232/236 (98%). Four patients required further surgery to treat recurrence. Grade 1 acute skin toxicity was detected in 168 treated lesions (71%) and grade 2 in 81 (34%). Cosmesis was good or excellent in 208 cases (88%). Late skin hypopigmentation changes were observed in 13 cases (5.5%). Delivering 36Gy over 2 weeks to superficial NMSC using HDR brachytherapy is well tolerated and provides a high local control rate without significant toxicity.

  6. Primary calibration of coiled 103Pd brachytherapy sources

    International Nuclear Information System (INIS)

    Paxton, Adam B.; Culberson, Wesley S.; DeWerd, Larry A.; Micka, John A.

    2008-01-01

    Coiled 103 Pd brachytherapy sources have been developed by RadioMed Corporation for use as low-dose-rate (LDR) interstitial implants. The coiled sources are provided in integer lengths from 1 to 6 cm and address many common issues seen with traditional LDR brachytherapy sources. The current standard for determining the air-kerma strength (S K ) of low-energy LDR brachytherapy sources is the National Institute of Standards and Technology's Wide-Angle Free-Air Chamber (NIST WAFAC). Due to geometric limitations, however, the NIST WAFAC is unable to determine the S K of sources longer than 1 cm. This project utilized the University of Wisconsin's Variable-Aperture Free-Air Chamber (UW VAFAC) to determine the S K of the longer coiled sources. The UW VAFAC has shown agreement in S K values of 1 cm length coils to within 1% of those determined with the NIST WAFAC, but the UW VAFAC does not share the same geometric limitations as the NIST WAFAC. A new source holder was constructed to hold the coiled sources in place during measurements with the UW VAFAC. Correction factors for the increased length of the sources have been determined and applied to the measurements. Using the new source holder and corrections, the S K of 3 and 6 cm coiled sources has been determined. Corrected UW VAFAC data and ionization current measurements from well chambers have been used to determine calibration coefficients for use in the measurement of 3 and 6 cm coiled sources in well chambers. Thus, the UW VAFAC has provided the first transferable, primary measurement of low-energy LDR brachytherapy sources with lengths greater than 1 cm

  7. Ocular brachytherapy with a holmium-166 irradiator device

    International Nuclear Information System (INIS)

    Mourao, Arnaldo P.; Campos, Tarcisio P.R.

    2009-01-01

    The ocular brachytherapy is a method that allows controlling ocular tumors. However, the irradiation of the ocular area in high doses can bring damages mainly to the surrounding healthy tissue, such as lens, retina and bone tissue of the orbital area in growth phase. Brachytherapy in comparison to teletherapy allows a large reduction of the absorbed doses in the adjacent tissues avoiding deleterious effects. Various types of radionuclides can be applied to ocular brachytherapy. Those radionuclides shall be encapsulated and placed juxtaposed to the sclera, back to the tumor. Herein, a new device was developed to encapsulate the radioactive material. It can easily place back of the eyeball. A computational model of the ocular area was developed in order to simulate the spatial dose distribution promoted by the holmium-166 nuclide distributed inside the irradiator device. The simulations addressed a device placed on the surface of the sclera, rotated 90 deg taken at the normal axis forward to the lens. The simulation was carried on the code Monte Carlo MCNP5. The computational simulation generates the spatial dose distribution in the treated volume. All continuous beta and the discrete gamma and X-ray spectra emitted by the holmium-166 were incorporated on simulations. The results allow comparing the space dose distribution to other types of sources used for the same end. The sclera absorbed dose, the maximum apical tumor dose, as well as on the tumor base were investigated. Indeed, the tumor thickness defines the conditions of irradiation. The holmium-166 dose distribution provides a tool to propose a better and optimized protocol for ocular brachytherapy. (author)

  8. Proposals for common definitions of reference points in gynecological brachytherapy

    International Nuclear Information System (INIS)

    Chassagne, D.; Horiot, J.C.

    1977-01-01

    In May 1975 the report of European Curietherapy Group recommended in gynecological Dosimetry by computer. Use of reference points = lymphatic trapezoid figure with 6 points, Pelvic wall, all points are refering to bony structures. Use of critical organ reference points = maximum rectum dose, bladder dose mean rectal dose. Use of 6,000 rads reference isodose described by height, width, and thickness dimensions. These proposals are the basis of a common language in gynecological brachytherapy [fr

  9. Intracavitary mould brachytherapy in malignant tumors of the maxilla

    International Nuclear Information System (INIS)

    Rosenblatt, Edward; Blumenfeld, Israel; Cederbaum, Martin; Kuten, Abraham

    1996-01-01

    Purpose: To integrate brachytherapy in the combined modality management of malignant tumors of the maxilla, as a means of increasing the radiotherapy dose to the tumor bed while avoiding high doses to the orbital contents. Materials and methods: Following a partial or total maxillectomy, a duplication of the interim surgical obturator was created using a wash of vinyl polysiloxane. This mould was used as a carrier for afterloading nylon catheters through which 192-Iridium seed-ribbons were inserted. Following brachytherapy, selected patients also received external beam irradiation. Results and discussion: After a median follow-up of 36 months, 9 out of 11 patients are alive and disease-free; 1 developed a local recurrence and another relapsed at another site in the oral cavity. Transient grade 1 - 2 mucositis at the implant site was observed in all patients. The review of computer isodose distributions showed that the average dose received by the homolateral eyeball was 10% (range 9,2 - 10.0) of the prescribed surface dose to the surgical cavity. Conclusions: Brachytherapy can be integrated in the management of patients with malignant tumors of the maxilla in the form of a custom-made intracavitary mould carrying 192-Iridium sources. We found this technique particularly useful in cases with close or positive surgical margins

  10. Visual acuity after Ruthenium106 brachytherapy of choroidal melanomas

    International Nuclear Information System (INIS)

    Damato, Bertil; Patel, Imran M.; Campbell, Ian R.; Mayles, Helen M.; Errington, R. Douglas

    2005-01-01

    Purpose: To report on conservation of visual acuity after Ruthenium 106 (Ru-106) brachytherapy of choroidal melanoma. Methods and materials: This study was a noncomparative interventional case series of 458 patients with choroidal melanoma treated at a single center between January 1993 and December 2001. The intervention consisted of Ru-106 brachytherapy delivering minimum scleral and apex doses of 300 Gy and 80 Gy, respectively, using a 15-mm or 20-mm plaque. For discrete, posterior tumors, the plaque was positioned eccentrically with its posterior edge aligned with the posterior tumor margin. To ensure correct plaque positioning, any overlying extraocular muscles were dis-inserted, and the locations of both tumor and plaque edges were confirmed by transillumination and indentation. The main outcome measures were conservation of vision of 20/40 or better, 20/200 or better, and Counting Fingers or better, according to baseline variables. Results: The actuarial rate of conservation of 20/40 or better was 55% at 9 years, loss of such vision correlating with posterior tumor extension (p 106 brachytherapy of posterior choroidal melanoma achieves good conservation of vision if the tumor does not extend close to the optic nerve or fovea

  11. Invited review, recent developments in brachytherapy source dosimetry

    International Nuclear Information System (INIS)

    Meigooni, A.S.

    2004-01-01

    Application of radioactive isotopes is the treatment of choice around the globe for many cancer sites. In this technique, the accuracy of the radiation delivery is highly dependent on the accuracy of radiation dosimetry around individual brachytherapy sources. Moreover, in order to have compatible clinical results, an identical method of source dosimetry must be employed across the world. This problem has been recently addressed by task group 43 from the American Association of Medical Physics with a protocol for dosimetric characterization of brachytherapy sources. This new protocol has been further updated using published data from international sources, by a new Task Group from the American Association of Medical Physics. This has resulted in an updated protocol known as TG43U1 that has been published in March 2004 issue of Medical Physics. The goal of this presentation is to review the original Task Group 43 protocol and associated algorithms for brachytherapy source dosimetry. In addition, the shortcomings of the original protocol that has been resolved in the updated recommendation will be highlighted. I am sure that this is not the end of the line and more work is needed to complete this task. I invite the scientists to join this task and complete the project, with the hope of much better clinical results for cancer patients

  12. Radiation safety program in a high dose rate brachytherapy facility

    International Nuclear Information System (INIS)

    Rodriguez, L.V.; Hermoso, T.M.; Solis, R.C.

    2001-01-01

    The use of remote afterloading equipment has been developed to improve radiation safety in the delivery of treatment in brachytherapy. Several accidents, however, have been reported involving high dose-rate brachytherapy system. These events, together with the desire to address the concerns of radiation workers, and the anticipated adoption of the International Basic Safety Standards for Protection Against Ionizing Radiation (IAEA, 1996), led to the development of the radiation safety program at the Department of Radiotherapy, Jose R. Reyes Memorial Medical Center and at the Division of Radiation Oncology, St. Luke's Medical Center. The radiation safety program covers five major aspects: quality control/quality assurance, radiation monitoring, preventive maintenance, administrative measures and quality audit. Measures for evaluation of effectiveness of the program include decreased unnecessary exposures of patients and staff, improved accuracy in treatment delivery and increased department efficiency due to the development of staff vigilance and decreased anxiety. The success in the implementation required the participation and cooperation of all the personnel involved in the procedures and strong management support. This paper will discuss the radiation safety program for a high dose rate brachytherapy facility developed at these two institutes which may serve as a guideline for other hospitals intending to install a similar facility. (author)

  13. Survey of brachytherapy practice in France in 1995. Definitive results

    International Nuclear Information System (INIS)

    Peiffert, D.; Simon, J.M.; Baillet, F.

    1998-01-01

    A survey questionnaire was sent to the 189 French departments of radiation Oncology and 166 responded (88%). Ninety-nine departments declared treating patients by brachytherapy and 358 shielded rooms were available. In Low Dose Rate (LDR) 81 departments used Cesium sources (159 after-loaders, 1,060 sources); Iridium wires were used by 84 departments (673 meters used). Only six departments used other elements. Twenty-six departments were equipped with high dose rate after loaders (HDR) all of them also using LDR techniques for most of the patients. A total of 9,160 patients were treated: 7,868 with LDR and 1,292 with HDR. The common sites treated by LDR were utero-vagina (4,300), breast (1,415), head and neck (1,409), skin (610), anorectal (220) and urologic (70). HDR was used for vaginal cuff (628), bronchi (371), oesophagus (232). PDR just started (33 patients) for a feasibility trial. The rate of patients treated by brachytherapy is around 6-8% of the irradiated patients, but the indications vary is each department. The diffusion of the techniques, and new indications should increase the number of patients being treated by brachytherapy. (authors)

  14. Brachytherapy for treatment of cervix cancer in Madagascar

    International Nuclear Information System (INIS)

    Pignon, T.; Ratovonarivo, H.; Rafaramino, F.; Ruggieri, S.

    1993-01-01

    From March 1986 to June 1988, 60 patients with carcinoma of the uterine cervix were treated by radiotherapy alone or combined radiotherapy and surgery at the only radiotherapy-oncology department of Madagascar in Antananarivo. There were 20 stage IB, 28 stage II, 5 stage III and 7 cases where initial stage before surgery was unknown. After a limited pre-therapeutic investigation, treatment for stage IB consisted of utero-vaginal brachytherapy followed by a colpo-hysterectomy and external iliac lymphadenectomy. Others received combined external radiotherapy and brachytherapy according to the Fletcher guidelines, although 30 patients also received surgery. An obsolete and inefficient cobalt unit with lack of computerized dosimetry made the management of therapeutic schemas difficult. Nineteen patients (31.6%) were not available for follow-up immediately after the end of the treatment and one patient died from intestinal occlusion during brachytherapy. The overall rate of severe complications was 4.8%. There were 12 recurrences which occurred in stage II or in patients with unknown initial staging. At the time of analysis, 25 patients were alive: 15 stage I and 10 stage II. In this country, cervical carcinomas are the most frequent tumors: only the rehabilitation of radiotherapy facilities will allow results to be improved

  15. Patterns of care for brachytherapy in Europe: Updated results

    International Nuclear Information System (INIS)

    Guedea, Ferran; Venselaar, Jack; Hoskin, Peter; Hellebust, Taran Paulsen; Peiffert, Didier; Londres, Bradley; Ventura, Montse; Mazeron, Jean-Jacques; Van Limbergen, Erik; Poetter, Richard; Kovacs, Gyorgy

    2010-01-01

    Objective: This descriptive survey evaluated brachytherapy (BT) practices and resources in the European area. This was a follow-up study to the original patterns of care for brachytherapy in Europe (PCBE). Materials and methods: A total of 1121 radiotherapy (RT) centres from 41 countries were asked to complete an online questionnaire on BT practices and resources. Countries with fewer than 50% of centres responding were excluded. Participating countries were divided into three groups based on gross domestic product (GDP); group I contained the countries with the highest GDP. Results: The response rate was 56% (633/1121 centres) with 30/41 countries (73%) meeting the inclusion criteria. Sixty percent of reporting centres provided brachytherapy. Responding centres treated an average of 138 (±10, 1 SD) patients with BT; in group I, the mean was 110/centre, an increase of 18% from 2002. CT-dosimetry increased to 61% of centres vs. 33% in 2002. HDR (high-dose rate) BT was the most commonly reported technique (65% of centres). Most BT interventions were for gynaecological tumors (59% of all cases), followed by prostate (17%), breast (9%), lung/bronchus (3%), and esophagus tumors(2%). Conclusion: Gynaecological BT remains the most common application, although both prostate and breast BT have increased. CT-based dosimetry has become increasingly common since 2002. The use of HDR and PDR (pulsed-dose rate) techniques has increased markedly, while both LDR and MDR (medium-dose rate) have declined.

  16. Implication for QOL after I-125 brachytherapy for prostate cancer

    International Nuclear Information System (INIS)

    Teishima, Jun; Yasumoto, Hiroaki; Inoue, Syogo; Masumoto, Hiroshi; Hasegawa, Yasuhisa; Matsubara, Akio

    2009-01-01

    The aim of this study is to evaluate the quality of life (QOL) of patients following prostate brachytherapy. Between July 2004 and May 2008, 139 patients underwent I-125 permanent brachytherapy. Among those patients, 69 who were followed up for more than one year using the Expanded Prostate Index Composite (EPIC), Japanese version v1 TM , were enrolled in this study. Urinary summary scores became worse temporarily at 1 month after the end of treatment, but then recovered gradually to the level before treatment. Sexual summary scores before treatment were 42.2±16.3. They became worse temporarily at 1 month after treatment but then recovered gradually in patients whose sexual summary scores were more than 40. Urinary morbidity scores after prostate brachytherapy were not so severe and recovered within a short period. Further long-term observation is thought to be required in the future. Sexual function scores of patients before treatment in the present study were lower compared with those recorded in previous studies. (author)

  17. Audits in high dose rate brachytherapy in Brazil

    International Nuclear Information System (INIS)

    Marechal, M.H.; Rosa, L.A.; Velasco, A.; Paiva, E. de; Goncalves, M.; Castelo, L.C.

    2002-01-01

    The lack of well established dosimetry protocols for HDR sources is a point of great concern regarding the uniformity of procedures within a particular country. The main objective of this paper is to report the results of an implementation of the audit program in dosimetry of high dose rate brachytherapy sources used by the radiation therapy centers in Brazil. In Brazil, among 169 radiotherapy centers, 35 have HDR brachytherapy systems. This program started in August 2001 and until now eight radiotherapy services were audited. The audit program consists of the visit in loco to each center and the evaluation of the intensity of the source with a well type chamber specially design for HDR 192 Ir sources. The measurements was carried out with a HDR1000PLUS Brachytherapy Well Type Chamber and a MAX 4000 Electrometer, both manufactured by Standard Imaging Inc. The chamber was calibrated in air kerma strength by the Accredited Dosimetry Calibration Laboratory, Department of Medical Physics, University of Wisconsin in the USA. The same chamber was calibrated in Brazil using a 192 lr high dose rate source whose intensity was determined by 60 Co gamma rays and 250 kV x rays interpolation methodology. The Nk of 60 Co and 250 kV x rays were provided by the Brazilian National Standard Laboratory for Ionizing Radiation (LMNRI)

  18. How Successful Is Medicare Advantage?

    Science.gov (United States)

    Newhouse, Joseph P; McGuire, Thomas G

    2014-01-01

    Context Medicare Part C, or Medicare Advantage (MA), now almost 30 years old, has generally been viewed as a policy disappointment. Enrollment has vacillated but has never come close to the penetration of managed care plans in the commercial insurance market or in Medicaid, and because of payment policy decisions and selection, the MA program is viewed as having added to cost rather than saving funds for the Medicare program. Recent changes in Medicare policy, including improved risk adjustment, however, may have changed this picture. Methods This article summarizes findings from our group's work evaluating MA's recent performance and investigating payment options for improving its performance even more. We studied the behavior of both beneficiaries and plans, as well as the effects of Medicare policy. Findings Beneficiaries make “mistakes” in their choice of MA plan options that can be explained by behavioral economics. Few beneficiaries make an active choice after they enroll in Medicare. The high prevalence of “zero-premium” plans signals inefficiency in plan design and in the market's functioning. That is, Medicare premium policies interfere with economically efficient choices. The adverse selection problem, in which healthier, lower-cost beneficiaries tend to join MA, appears much diminished. The available measures, while limited, suggest that, on average, MA plans offer care of equal or higher quality and for less cost than traditional Medicare (TM). In counties, greater MA penetration appears to improve TM's performance. Conclusions Medicare policies regarding lock-in provisions and risk adjustment that were adopted in the mid-2000s have mitigated the adverse selection problem previously plaguing MA. On average, MA plans appear to offer higher value than TM, and positive spillovers from MA into TM imply that reimbursement should not necessarily be neutral. Policy changes in Medicare that reform the way that beneficiaries are charged for MA plan

  19. Evaluation of water-mimicking solid phantom materials for use in HDR and LDR brachytherapy dosimetry

    Science.gov (United States)

    Schoenfeld, Andreas A.; Thieben, Maike; Harder, Dietrich; Poppe, Björn; Chofor, Ndimofor

    2017-12-01

    In modern HDR or LDR brachytherapy with photon emitters, fast checks of the dose profiles generated in water or a water-equivalent phantom have to be available in the interest of patient safety. However, the commercially available brachytherapy photon sources cover a wide range of photon emission spectra, and the range of the in-phantom photon spectrum is further widened by Compton scattering, so that the achievement of water-mimicking properties of such phantoms involves high requirements on their atomic composition. In order to classify the degree of water equivalence of the numerous commercially available solid water-mimicking phantom materials and the energy ranges of their applicability, the radial profiles of the absorbed dose to water, D w, have been calculated using Monte Carlo simulations in these materials and in water phantoms of the same dimensions. This study includes the HDR therapy sources Nucletron Flexisource Co-60 HDR (60Co), Eckert und Ziegler BEBIG GmbH CSM-11 (137Cs), Implant Sciences Corporation HDR Yb-169 Source 4140 (169Yb) as well as the LDR therapy sources IsoRay Inc. Proxcelan CS-1 (131Cs), IsoAid Advantage I-125 IAI-125A (125I), and IsoAid Advantage Pd-103 IAPd-103A (103Pd). Thereby our previous comparison between phantom materials and water surrounding a Varian GammaMed Plus HDR therapy 192Ir source (Schoenfeld et al 2015) has been complemented. Simulations were performed in cylindrical phantoms consisting of either water or the materials RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, Plastic Water LR, Original Plastic Water (2015), Plastic Water (1995), Blue Water, polyethylene, polystyrene and PMMA. While for 192Ir, 137Cs and 60Co most phantom materials can be regarded as water equivalent, for 169Yb the materials Plastic Water LR, Plastic Water DT and RW1 appear as water equivalent. For the low-energy sources 106Pd, 131Cs and 125I, only Plastic Water LR can be classified as water equivalent.

  20. Does immediate postoperative brachytherapy allow to broaden the indications of conservative treatment in breast cancer?

    International Nuclear Information System (INIS)

    Floiras, J.L.

    1998-01-01

    A 1997 study of long-term outcomes in 109 patients with unilateral stage I or II breast cancer treated by brachytherapy between 1983 and 1985 found significantly lower recurrence rates than in a conservatively-treated group of patients managed at the same institution. The benefits of brachytherapy, of a booster dose after after surgery, and of adjuvant medical therapy are emphasized. (author)

  1. A compilation of current regulations, standards and guidelines in remote afterloading brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, J.P.; Simion, G.P.; Kozlowski, S.D. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1994-10-01

    Over a dozen government and professional organizations in the United States and Europe have issued regulations and guidance concerning quality management in the practice of remote afterloading brachytherapy. Information from the publications of these organizations was collected and collated for this report. This report provides the brachytherapy licensee access to a broad field of quality management information in a single, topically organized document.

  2. A compilation of current regulations, standards and guidelines in remote afterloading brachytherapy

    International Nuclear Information System (INIS)

    Tortorelli, J.P.; Simion, G.P.; Kozlowski, S.D.

    1994-10-01

    Over a dozen government and professional organizations in the United States and Europe have issued regulations and guidance concerning quality management in the practice of remote afterloading brachytherapy. Information from the publications of these organizations was collected and collated for this report. This report provides the brachytherapy licensee access to a broad field of quality management information in a single, topically organized document

  3. Evaluation of Current Consensus Statement Recommendations for Accelerated Partial Breast Irradiation: A Pooled Analysis of William Beaumont Hospital and American Society of Breast Surgeon MammoSite Registry Trial Data

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, J. Ben [Department of Radiation Oncology, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan (United States); Beitsch, Peter D. [Dallas Surgical Group, Dallas, Texas (United States); Shah, Chirag [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Arthur, Doug [Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia (United States); Haffty, Bruce G. [Department of Radiation Oncology, Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Camden, New Jersey (United States); Wazer, David E. [Department of Radiation Oncology, Tufts Medical Center, Boston, Massachusetts and Rhode Island Hospital/Brown University, Providence, Rhode Island (United States); Keisch, Martin [Department of Radiation Oncology, Cancer Healthcare Associates, Miami, Florida (United States); Shaitelman, Simona F. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Lyden, Maureen [Biostat International, Inc, Tampa, Florida (United States); Chen, Peter Y. [Department of Radiation Oncology, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan (United States); Vicini, Frank A., E-mail: fvicini@pol.net [Department of Radiation Oncology, Michigan Healthcare Professionals/21st Century Oncology, Farmington Hills, Michigan (United States)

    2013-04-01

    Purpose: To determine whether the American Society for Radiation Oncology (ASTRO) Consensus Statement (CS) recommendations for accelerated partial breast irradiation (APBI) are associated with significantly different outcomes in a pooled analysis from William Beaumont Hospital (WBH) and the American Society of Breast Surgeons (ASBrS) MammoSite® Registry Trial. Methods and Materials: APBI was used to treat 2127 cases of early-stage breast cancer (WBH, n=678; ASBrS, n=1449). Three forms of APBI were used at WBH (interstitial, n=221; balloon-based, n=255; or 3-dimensional conformal radiation therapy, n=206), whereas all Registry Trial patients received balloon-based brachytherapy. Patients were divided according to the ASTRO CS into suitable (n=661, 36.5%), cautionary (n=850, 46.9%), and unsuitable (n=302, 16.7%) categories. Tumor characteristics and clinical outcomes were analyzed according to CS group. Results: The median age was 65 years (range, 32-94 years), and the median tumor size was 10.0 mm (range, 0-45 mm). The median follow-up time was 60.6 months. The WBH cohort had more node-positive disease (6.9% vs 2.6%, P<.01) and cautionary patients (49.5% vs 41.8%, P=.06). The 5-year actuarial ipsilateral breast tumor recurrence (IBTR), regional nodal failure (RNF), and distant metastasis (DM) for the whole cohort were 2.8%, 0.6%, 1.6%. The rate of IBTR was not statistically higher between suitable (2.5%), cautionary (3.3%), or unsuitable (4.6%) patients (P=.20). The nonsignificant increase in IBTR for the cautionary and unsuitable categories was due to increased elsewhere failures and new primaries (P=.04), not tumor bed recurrence (P=.93). Conclusions: Excellent outcomes after breast-conserving surgery and APBI were seen in our pooled analysis. The current ASTRO CS guidelines did not adequately differentiate patients at an increased risk of IBTR or tumor bed failure in this large patient cohort.

  4. Evaluation of Current Consensus Statement Recommendations for Accelerated Partial Breast Irradiation: A Pooled Analysis of William Beaumont Hospital and American Society of Breast Surgeon MammoSite Registry Trial Data

    International Nuclear Information System (INIS)

    Wilkinson, J. Ben; Beitsch, Peter D.; Shah, Chirag; Arthur, Doug; Haffty, Bruce G.; Wazer, David E.; Keisch, Martin; Shaitelman, Simona F.; Lyden, Maureen; Chen, Peter Y.; Vicini, Frank A.

    2013-01-01

    Purpose: To determine whether the American Society for Radiation Oncology (ASTRO) Consensus Statement (CS) recommendations for accelerated partial breast irradiation (APBI) are associated with significantly different outcomes in a pooled analysis from William Beaumont Hospital (WBH) and the American Society of Breast Surgeons (ASBrS) MammoSite® Registry Trial. Methods and Materials: APBI was used to treat 2127 cases of early-stage breast cancer (WBH, n=678; ASBrS, n=1449). Three forms of APBI were used at WBH (interstitial, n=221; balloon-based, n=255; or 3-dimensional conformal radiation therapy, n=206), whereas all Registry Trial patients received balloon-based brachytherapy. Patients were divided according to the ASTRO CS into suitable (n=661, 36.5%), cautionary (n=850, 46.9%), and unsuitable (n=302, 16.7%) categories. Tumor characteristics and clinical outcomes were analyzed according to CS group. Results: The median age was 65 years (range, 32-94 years), and the median tumor size was 10.0 mm (range, 0-45 mm). The median follow-up time was 60.6 months. The WBH cohort had more node-positive disease (6.9% vs 2.6%, P<.01) and cautionary patients (49.5% vs 41.8%, P=.06). The 5-year actuarial ipsilateral breast tumor recurrence (IBTR), regional nodal failure (RNF), and distant metastasis (DM) for the whole cohort were 2.8%, 0.6%, 1.6%. The rate of IBTR was not statistically higher between suitable (2.5%), cautionary (3.3%), or unsuitable (4.6%) patients (P=.20). The nonsignificant increase in IBTR for the cautionary and unsuitable categories was due to increased elsewhere failures and new primaries (P=.04), not tumor bed recurrence (P=.93). Conclusions: Excellent outcomes after breast-conserving surgery and APBI were seen in our pooled analysis. The current ASTRO CS guidelines did not adequately differentiate patients at an increased risk of IBTR or tumor bed failure in this large patient cohort

  5. American Brachytherapy Society Task Group Report: Combination of brachytherapy and external beam radiation for high-risk prostate cancer.

    Science.gov (United States)

    Spratt, Daniel E; Soni, Payal D; McLaughlin, Patrick W; Merrick, Gregory S; Stock, Richard G; Blasko, John C; Zelefsky, Michael J

    To review outcomes for high-risk prostate cancer treated with combined modality radiation therapy (CMRT) utilizing external beam radiation therapy (EBRT) with a brachytherapy boost. The available literature for high-risk prostate cancer treated with combined modality radiation therapy was reviewed and summarized. At this time, the literature suggests that the majority of high-risk cancers are curable with multimodal treatment. Several large retrospective studies and three prospective randomized trials comparing CMRT to dose-escalated EBRT have demonstrated superior biochemical control with CMRT. Longer followup of the randomized trials will be required to determine if this will translate to a benefit in metastasis-free survival, disease-specific survival, and overall survival. Although greater toxicity has been associated with CMRT compared to EBRT, recent studies suggest that technological advances that allow better definition and sparing of critical adjacent structures as well as increasing experience with brachytherapy have improved implant quality and the toxicity profile of brachytherapy. The role of androgen deprivation therapy is well established in the external beam literature for high-risk disease, but there is controversy regarding the applicability of these data in the setting of dose escalation. At this time, there is not sufficient evidence for the omission of androgen deprivation therapy with dose escalation in this population. Comparisons with surgery remain limited by differences in patient selection, but the evidence would suggest better disease control with CMRT compared to surgery alone. Due to a series of technological advances, modern combination series have demonstrated unparalleled rates of disease control in the high-risk population. Given the evidence from recent randomized trials, combination therapy may become the standard of care for high-risk cancers. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All

  6. Contemporary Toxicity Profile of Breast Brachytherapy Versus External Beam Radiation After Lumpectomy for Breast Cancer

    International Nuclear Information System (INIS)

    Huo, Jinhai; Giordano, Sharon H.; Smith, Benjamin D.; Shaitelman, Simona F.; Smith, Grace L.

    2016-01-01

    Purpose: We compared toxicities after brachytherapy versus external beam radiation therapy (EBRT) in contemporary breast cancer patients. Methods and Materials: Using MarketScan healthcare claims, we identified 64,112 women treated from 2003 to 2012 with lumpectomy followed by radiation (brachytherapy vs EBRT). Brachytherapy was further classified by multichannel versus single-channel applicator approach. We identified the risks and predictors of 1-year infectious and noninfectious postoperative adverse events using logistic regression and temporal trends using Cochran-Armitage tests. We estimated the 5-year Kaplan-Meier cumulative incidence of radiation-associated adverse events. Results: A total of 4522 (7.1%) patients received brachytherapy (50.2% multichannel vs 48.7% single-channel applicator). The overall risk of infectious adverse events was higher after brachytherapy than after EBRT (odds ratio [OR] = 1.21; 95% confidence interval [CI] 1.09-1.34, P<.001). However, over time, the frequency of infectious adverse events after brachytherapy decreased, from 17.3% in 2003 to 11.6% in 2012, and was stable after EBRT at 9.7%. Beyond 2007, there were no longer excess infections with brachytherapy (P=.97). The overall risk of noninfectious adverse events was higher after brachytherapy than after EBRT (OR=2.27; 95% CI 2.09-2.47, P<.0001). Over time, the frequency of noninfectious adverse events detected increased: after multichannel brachytherapy, from 9.1% in 2004 to 18.9% in 2012 (Ptrend = .64); single-channel brachytherapy, from 12.8% to 29.8% (Ptrend<.001); and EBRT, from 6.1% to 10.3% (Ptrend<.0001). The risk was significantly higher with single-channel than with multichannel brachytherapy (hazard ratio = 1.32; 95% CI 1.03-1.69, P=.03). Of noninfectious adverse events, 70.9% were seroma. Seroma significantly increased breast pain risk (P<.0001). Patients with underlying diabetes, cardiovascular disease, and treatment with chemotherapy had increased

  7. Contemporary Toxicity Profile of Breast Brachytherapy Versus External Beam Radiation After Lumpectomy for Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Huo, Jinhai [Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Giordano, Sharon H. [Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Smith, Benjamin D. [Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Shaitelman, Simona F. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Smith, Grace L., E-mail: glsmith@mdanderson.org [Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2016-03-15

    Purpose: We compared toxicities after brachytherapy versus external beam radiation therapy (EBRT) in contemporary breast cancer patients. Methods and Materials: Using MarketScan healthcare claims, we identified 64,112 women treated from 2003 to 2012 with lumpectomy followed by radiation (brachytherapy vs EBRT). Brachytherapy was further classified by multichannel versus single-channel applicator approach. We identified the risks and predictors of 1-year infectious and noninfectious postoperative adverse events using logistic regression and temporal trends using Cochran-Armitage tests. We estimated the 5-year Kaplan-Meier cumulative incidence of radiation-associated adverse events. Results: A total of 4522 (7.1%) patients received brachytherapy (50.2% multichannel vs 48.7% single-channel applicator). The overall risk of infectious adverse events was higher after brachytherapy than after EBRT (odds ratio [OR] = 1.21; 95% confidence interval [CI] 1.09-1.34, P<.001). However, over time, the frequency of infectious adverse events after brachytherapy decreased, from 17.3% in 2003 to 11.6% in 2012, and was stable after EBRT at 9.7%. Beyond 2007, there were no longer excess infections with brachytherapy (P=.97). The overall risk of noninfectious adverse events was higher after brachytherapy than after EBRT (OR=2.27; 95% CI 2.09-2.47, P<.0001). Over time, the frequency of noninfectious adverse events detected increased: after multichannel brachytherapy, from 9.1% in 2004 to 18.9% in 2012 (Ptrend = .64); single-channel brachytherapy, from 12.8% to 29.8% (Ptrend<.001); and EBRT, from 6.1% to 10.3% (Ptrend<.0001). The risk was significantly higher with single-channel than with multichannel brachytherapy (hazard ratio = 1.32; 95% CI 1.03-1.69, P=.03). Of noninfectious adverse events, 70.9% were seroma. Seroma significantly increased breast pain risk (P<.0001). Patients with underlying diabetes, cardiovascular disease, and treatment with chemotherapy had increased

  8. ALGEBRA: ALgorithm for the heterogeneous dosimetry based on GEANT4 for BRAchytherapy.

    Science.gov (United States)

    Afsharpour, H; Landry, G; D'Amours, M; Enger, S; Reniers, B; Poon, E; Carrier, J-F; Verhaegen, F; Beaulieu, L

    2012-06-07

    Task group 43 (TG43)-based dosimetry algorithms are efficient for brachytherapy dose calculation in water. However, human tissues have chemical compositions and densities different than water. Moreover, the mutual shielding effect of seeds on each other (interseed attenuation) is neglected in the TG43-based dosimetry platforms. The scientific community has expressed the need for an accurate dosimetry platform in brachytherapy. The purpose of this paper is to present ALGEBRA, a Monte Carlo platform for dosimetry in brachytherapy which is sufficiently fast and accurate for clinical and research purposes. ALGEBRA is based on the GEANT4 Monte Carlo code and is capable of handling the DICOM RT standard to recreate a virtual model of the treated site. Here, the performance of ALGEBRA is presented for the special case of LDR brachytherapy in permanent prostate and breast seed implants. However, the algorithm is also capable of handling other treatments such as HDR brachytherapy.

  9. Dosimetry Modeling for Focal Low-Dose-Rate Prostate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Al-Qaisieh, Bashar [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Mason, Josh, E-mail: joshua.mason@nhs.net [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Bownes, Peter; Henry, Ann [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Dickinson, Louise [Division of Surgery and Interventional Science, University College London, London (United Kingdom); Department of Radiology, Northwick Park Hospital, London North West NHS Trust, London (United Kingdom); Ahmed, Hashim U. [Division of Surgery and Interventional Science, University College London, London (United Kingdom); University College London Hospital, London (United Kingdom); Emberton, Mark [University College London Hospital, London (United Kingdom); Langley, Stephen [St Luke' s Cancer Centre, Guildford (United Kingdom)

    2015-07-15

    Purpose: Focal brachytherapy targeted to an individual lesion(s) within the prostate may reduce side effects experienced with whole-gland brachytherapy. The outcomes of a consensus meeting on focal prostate brachytherapy were used to investigate optimal dosimetry of focal low-dose-rate (LDR) prostate brachytherapy targeted using multiparametric magnetic resonance imaging (mp-MRI) and transperineal template prostate mapping (TPM) biopsy, including the effects of random and systematic seed displacements and interseed attenuation (ISA). Methods and Materials: Nine patients were selected according to clinical characteristics and concordance of TPM and mp-MRI. Retrospectively, 3 treatment plans were analyzed for each case: whole-gland (WG), hemi-gland (hemi), and ultra-focal (UF) plans, with 145-Gy prescription dose and identical dose constraints for each plan. Plan robustness to seed displacement and ISA were assessed using Monte Carlo simulations. Results: WG plans used a mean 28 needles and 81 seeds, hemi plans used 17 needles and 56 seeds, and UF plans used 12 needles and 25 seeds. Mean D90 (minimum dose received by 90% of the target) and V100 (percentage of the target that receives 100% dose) values were 181.3 Gy and 99.8% for the prostate in WG plans, 195.7 Gy and 97.8% for the hemi-prostate in hemi plans, and 218.3 Gy and 99.8% for the focal target in UF plans. Mean urethra D10 was 205.9 Gy, 191.4 Gy, and 92.4 Gy in WG, hemi, and UF plans, respectively. Mean rectum D2 cm{sup 3} was 107.5 Gy, 77.0 Gy, and 42.7 Gy in WG, hemi, and UF plans, respectively. Focal plans were more sensitive to seed displacement errors: random shifts with a standard deviation of 4 mm reduced mean target D90 by 14.0%, 20.5%, and 32.0% for WG, hemi, and UF plans, respectively. ISA has a similar impact on dose-volume histogram parameters for all plan types. Conclusions: Treatment planning for focal LDR brachytherapy is feasible. Dose constraints are easily met with a notable

  10. Relocation of a nucletron microselectron-HDR brachytherapy system

    Energy Technology Data Exchange (ETDEWEB)

    Bartrum, T; Tran, T; Freeman, N; Morales, J [St Vincents Hospital, Darlinghurst, NSW (Australia)

    2004-12-15

    Full text: For a period of four weeks, our clinical Nucletron microSelectron high dose rate (HDR) brachytherapy system was pulled out of clinical use and relocated to a new building. During this period decommission tests, de-wiring of the treatment unit and its associated safety system (such as radiation detector, emergency off circuits and door interlocks), transportation of all equipment, re-wiring of this equipment in the new location and recommission tests were carried out. The decommission and recommission test program was designed upon consultation with the manufacturer's (Nucletron) acceptance test procedures and work carried out by others. The ACPSEM tolerances for remote afterloaders was used as a guideline. In addition to mandatory dosimetry, positional, workstation database and safety tests, two Australian Standard compliance tests were carried out. The compliance tests involved one for remote afterloaders and another for treatment room design. This testing program was designed and implemented with the aim of ensuring ongoing safe delivery of brachytherapy doses to the patient. The testing program consisted of two parts. The first involved a series of decommissioning tests that consisted of dosimetry tests such as source and check cable positional accuracy and source calibration tests. In addition to these tests an inventory of standard plans, patient records and system configuration information was catalogued. The second part involved a series of recommission tests and involved carrying out dosimetry tests on the brachytherapy system (positional accuracy and calibration tests), simulating common treatment scenarios (prostate, cervical, vaginal and bile duct) and checking standard plans; patient records and system configuration had remained unchanged. During this period, other tests were carried out. These included Nucletron acceptance and preventative maintenance tests, Australian Standards compliance testing and integrity of network transfer of

  11. Relocation of a nucletron microselectron-HDR brachytherapy system

    International Nuclear Information System (INIS)

    Bartrum, T.; Tran, T.; Freeman, N.; Morales, J.

    2004-01-01

    Full text: For a period of four weeks, our clinical Nucletron microSelectron high dose rate (HDR) brachytherapy system was pulled out of clinical use and relocated to a new building. During this period decommission tests, de-wiring of the treatment unit and its associated safety system (such as radiation detector, emergency off circuits and door interlocks), transportation of all equipment, re-wiring of this equipment in the new location and recommission tests were carried out. The decommission and recommission test program was designed upon consultation with the manufacturer's (Nucletron) acceptance test procedures and work carried out by others. The ACPSEM tolerances for remote afterloaders was used as a guideline. In addition to mandatory dosimetry, positional, workstation database and safety tests, two Australian Standard compliance tests were carried out. The compliance tests involved one for remote afterloaders and another for treatment room design. This testing program was designed and implemented with the aim of ensuring ongoing safe delivery of brachytherapy doses to the patient. The testing program consisted of two parts. The first involved a series of decommissioning tests that consisted of dosimetry tests such as source and check cable positional accuracy and source calibration tests. In addition to these tests an inventory of standard plans, patient records and system configuration information was catalogued. The second part involved a series of recommission tests and involved carrying out dosimetry tests on the brachytherapy system (positional accuracy and calibration tests), simulating common treatment scenarios (prostate, cervical, vaginal and bile duct) and checking standard plans; patient records and system configuration had remained unchanged. During this period, other tests were carried out. These included Nucletron acceptance and preventative maintenance tests, Australian Standards compliance testing and integrity of network transfer of

  12. Determining profile of dose distribution for PD-103 brachytherapy source

    International Nuclear Information System (INIS)

    Berkay, Camgoz; Mehmet, N. Kumru; Gultekin, Yegin

    2006-01-01

    Full text: Brachytherapy is a particular radiotherapy for cancer treatments. By destructing cancerous cells using radiation, the treatment proceeded. When alive tissues are subject it is hazardous to study experimental. For brachytherapy sources generally are studied as theoretical using computer simulation. General concept of the treatment is to locate the radioactive source into cancerous area of related tissue. In computer studies Monte Carlo mathematical method that is in principle based on random number generations, is used. Palladium radioisotope is LDR (Low radiation Dose Rate) source. Main radioactive material was coated with titanium cylinder with 3mm length, 0.25 mm radius. There are two parts of Pd-103 in the titanium cylinder. It is impossible to investigate differential effects come from two part as experimental. Because the source dimensions are small compared with measurement distances. So there is only simulation method. In dosimetric studies it is aimed to determine absorbed dose distribution in tissue as radial and angular. In nuclear physics it is obligation to use computer based methods for researchers. Radiation studies have hazards for scientist and people interacted with radiation. When hazard exceed over recommended limits or physical conditions are not suitable (long work time, non economical experiments, inadequate sensitivity of materials etc.) it is unavoidable to simulate works and experiments before practices of scientific methods in life. In medical area, usage of radiation is required computational work for cancer treatments. Some computational studies are routine in clinics and other studies have scientific development purposes. In brachytherapy studies there are significant differences between experimental measurements and theoretical (computer based) output data. Errors of data taken from experimental studies are larger than simulation values errors. In design of a new brachytherapy source it is important to consider detailed

  13. Food irradiation: advantages and limitations

    International Nuclear Information System (INIS)

    Hernandes, N.K.; Vital, H. de C.; Sabaa-Srur, A.U.O.

    2003-01-01

    Food irradiation is a physical method of processing food (e.g. freezing, canning). It has been thoroughly researched over the last four decades and is recognized as a safe and wholesome method. It has the potential both of disinfesting dried food to reduce storage losses and disinfesting fruits and vegetables to meet quarantine requirements for export trade. Low doses of irradiation inhibit spoilage losses due to sprouting of root and tuber crops. Food- borne diseases due to contamination by pathogenic microorganisms and parasites of meat, poultry, fish, fishery products and spices are on the increase. Irradiation of these solid foods can decontaminate them of pathogenic organisms and thus provide safe food to the consumer. Irradiation can successfully replace the fumigation treatment of cocoa beans and coffee beans and disinfest dried fish, dates, dried fruits, etc. One of the most important advantages of food irradiation processing is that it is a coldprocess which does not significantly alter physico-chemical characters of the treated product. It can be applied to food after its final packaging. Similar to other physical processes of food processing, (e.g. canning, freezing), irradiation is a capital intensive process. Thus, adequate product volume must be made available in order to maximize the use of the facility and minimize the unit cost of treatment. Lack of harmonization of regulations among the countries which have approved irradiated foods hampers the introduction of this technique for international trade. Action at the international level has to be taken in order to remedy this situation. One of the important limitations of food irradiation processing is its slow acceptance by consumers, due inter alia to a perceived association with radioactivity. The food industry tends to be reluctant to use the technology in view of uncertainties regarding consumer acceptance of treated foods. Several market testing and consumer acceptance studies have been carried

  14. Third-party brachytherapy source calibrations and physicist responsibilities: Report of the AAPM Low Energy Brachytherapy Source Calibration Working Group

    International Nuclear Information System (INIS)

    Butler, Wayne M.; Bice, William S. Jr.; DeWerd, Larry A.; Hevezi, James M.; Huq, M. Saiful; Ibbott, Geoffrey S.; Palta, Jatinder R.; Rivard, Mark J.; Seuntjens, Jan P.; Thomadsen, Bruce R.

    2008-01-01

    The AAPM Low Energy Brachytherapy Source Calibration Working Group was formed to investigate and recommend quality control and quality assurance procedures for brachytherapy sources prior to clinical use. Compiling and clarifying recommendations established by previous AAPM Task Groups 40, 56, and 64 were among the working group's charges, which also included the role of third-party handlers to perform loading and assay of sources. This document presents the findings of the working group on the responsibilities of the institutional medical physicist and a clarification of the existing AAPM recommendations in the assay of brachytherapy sources. Responsibility for the performance and attestation of source assays rests with the institutional medical physicist, who must use calibration equipment appropriate for each source type used at the institution. Such equipment and calibration procedures shall ensure secondary traceability to a national standard. For each multi-source implant, 10% of the sources or ten sources, whichever is greater, are to be assayed. Procedures for presterilized source packaging are outlined. The mean source strength of the assayed sources must agree with the manufacturer's stated strength to within 3%, or action must be taken to resolve the difference. Third party assays do not absolve the institutional physicist from the responsibility to perform the institutional measurement and attest to the strength of the implanted sources. The AAPM leaves it to the discretion of the institutional medical physicist whether the manufacturer's or institutional physicist's measured value should be used in performing dosimetry calculations

  15. WE-F-BRD-01: HDR Brachytherapy II: Integrating Imaging with HDR

    Energy Technology Data Exchange (ETDEWEB)

    Craciunescu, O [Duke University Medical Center, Durham, NC (United States); Todor, D [Virginia Commonwealth University, Richmond, VA (United States); Leeuw, A de

    2014-06-15

    In recent years, with the advent of high/pulsed dose rate afterloading technology, advanced treatment planning systems, CT/MRI compatible applicators, and advanced imaging platforms, image-guided adaptive brachytherapy treatments (IGABT) have started to play an ever increasing role in modern radiation therapy. The most accurate way to approach IGABT treatment is to provide the infrastructure that combines in a single setting an appropriate imaging device, a treatment planning system, and a treatment unit. The Brachytherapy Suite is not a new concept, yet the modern suites are incorporating state-of-the-art imaging (MRI, CBCT equipped simulators, CT, and /or US) that require correct integration with each other and with the treatment planning and delivery systems. Arguably, an MRI-equipped Brachytherapy Suite is the ideal setup for real-time adaptive brachytherapy treatments. The main impediment to MRI-IGABT adoption is access to MRI scanners. Very few radiation oncology departments currently house MRI scanners, and even fewer in a dedicated Brachytherapy Suite. CBCT equipped simulators are increasingly offered by manufacturers as part of a Brachytherapy Suite installation. If optimized, images acquired can be used for treatment planning, or can be registered with other imaging modalities. This infrastructure is relevant for all forms of brachytherapy, especially those utilizing multi-fractionated courses of treatment such as prostate and cervix. Moreover, for prostate brachytherapy, US imaging systems can be part of the suite to allow for real-time HDR/LDR treatments. Learning Objectives: Understand the adaptive workflow of MR-based IGBT for cervical cancer. Familiarize with commissioning aspects of a CBCT equipped simulator with emphasis on brachytherapy applications Learn about the current status and future developments in US-based prostate brachytherapy.

  16. WE-F-BRD-01: HDR Brachytherapy II: Integrating Imaging with HDR

    International Nuclear Information System (INIS)

    Craciunescu, O; Todor, D; Leeuw, A de

    2014-01-01

    In recent years, with the advent of high/pulsed dose rate afterloading technology, advanced treatment planning systems, CT/MRI compatible applicators, and advanced imaging platforms, image-guided adaptive brachytherapy treatments (IGABT) have started to play an ever increasing role in modern radiation therapy. The most accurate way to approach IGABT treatment is to provide the infrastructure that combines in a single setting an appropriate imaging device, a treatment planning system, and a treatment unit. The Brachytherapy Suite is not a new concept, yet the modern suites are incorporating state-of-the-art imaging (MRI, CBCT equipped simulators, CT, and /or US) that require correct integration with each other and with the treatment planning and delivery systems. Arguably, an MRI-equipped Brachytherapy Suite is the ideal setup for real-time adaptive brachytherapy treatments. The main impediment to MRI-IGABT adoption is access to MRI scanners. Very few radiation oncology departments currently house MRI scanners, and even fewer in a dedicated Brachytherapy Suite. CBCT equipped simulators are increasingly offered by manufacturers as part of a Brachytherapy Suite installation. If optimized, images acquired can be used for treatment planning, or can be registered with other imaging modalities. This infrastructure is relevant for all forms of brachytherapy, especially those utilizing multi-fractionated courses of treatment such as prostate and cervix. Moreover, for prostate brachytherapy, US imaging systems can be part of the suite to allow for real-time HDR/LDR treatments. Learning Objectives: Understand the adaptive workflow of MR-based IGBT for cervical cancer. Familiarize with commissioning aspects of a CBCT equipped simulator with emphasis on brachytherapy applications Learn about the current status and future developments in US-based prostate brachytherapy

  17. Interstitial high-dose-rate brachytherapy in the treatment of base of tongue carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Takacsi-Nagy, Z.; Polgar, C.; Somogyi, A.; Major, T.; Fodor, J.; Nemeth, G. [Dept. of Radiotherapy, National Inst. of Oncology, Budapest (Hungary); Oberna, F. [Dept. of Maxillofacial Surgery, St. Rokus Hospital, Budapest (Hungary); Remenar, E.; Kasler, M. [Dept. of Head and Neck, Maxillofacial and Reconstructive Plastic Surgery, National Inst. of Oncology, Budapest (Hungary)

    2004-12-01

    Background and purpose: to date none of the studies examined the feasibility and efficacy of interstitial high-dose-rate (HDR) brachytherapy in the treatment of carcinoma of the tongue base. Therefore the aim of this study was to contribute to this issue. Patients and methods: between 1992 and 2000 37 patients (mean age 55 years) with T1-4 and NO-3 carcinoma of the base of tongue were presented. Neck dissection was carried out in twelve cases (32%). 30 patients with advanced stage received brachytherapy boost after 50-66.5 Gy (mean, 60 Gy) locoregional external beam irradiation (EBI) and 7 patients with early stage (T1-2, NO) were managed locally with wide tumor excision and sole brachytherapy. 4 of them underwent neck dissection and the others were subjected to 50 Gy regional EBI. The mean dose of boost and sole brachytherapy was 18 Gy and 28 Gy, respectively. Results: the median follow-up time for surviving patients was 51 months. The 7 sole brachytherapy patients are living with no evidence of disease. For patients treated with EBI and brachytherapy boost, the 5-year actuarial rate of local, locoregional recurrence-free and overall survival was 60%, 52% and 46%, respectively. For all patients in univariate analysis larger tumor size (T4 vs. T1-3) was significant negative predictor of local (RR: 7.23) and locoregional control (RR: 3.87), but nodal involvement was not. Delayed soft tissue ulceration and osteoradionecrosis occurred in 4 (13%) EBI and brachytherapy treated patients. None of the sole brachytherapy patients experienced severe late radiation toxicity. Conclusion: EBI combined with interstitial HDR brachytherapy boost result in acceptable local tumor control with low incidence of late side effects in patients with advanced disease. Fractionated sole HDR brachytherapy following tumor excision is a feasible treatment option for patients with early stage cancer and gives excellent local results. (orig.)

  18. Clinical experience with the MammoSite[reg] radiation therapy system for brachytherapy of breast cancer: Results from an international phase II trial

    International Nuclear Information System (INIS)

    Niehoff, Peter; Polgar, Csaba; Ostertag, Horst; Major, Tibor; Sulyok, Zoltan; Kimmig, Bernhard; Kovacs, Gyoergy

    2006-01-01

    Background and purpose: In a prospective multi-center phase II trial, we investigated the MammoSite[reg] Radiation Therapy System, a new device for delivering intracavitary brachytherapy following breast conserving surgery. The MammoSite[reg] is a dual lumen, closed ended catheter with a small, spherical inflatable balloon and a port for connecting a remote afterloader to the central lumen. We analyzed the surgical procedure and placement of the MammoSite[reg], treatment planning and radiation delivery complications and cosmesis, as well the comfort for the patients. Patients and methods: Between 2002 and 2004 a total of 32 patients (pts) were implanted using the MammoSite[reg]. The reference isodose was defined 1 cm from the balloon surface. We analyzed the post-implant anatomic position of the applicator and the geometric form of the balloon via ultrasound, CT and X-ray, related side effects, cosmetic outcome and patient quality of life. Results: Twenty-three out of 32 patients (72%) were eligible for MammoSite[reg] intracavitary brachytherapy. Twenty-eight percentage had to be excluded because of different reasons. Eleven patients were treated with primary brachytherapy with a total dose of 34 Gy (2x3.4 Gy) and 12 had a boost with a mean dose of 13.3 Gy (range: 7.5-15 Gy; 2x2.5 Gy) combined with EBRT and doses ranged between 46 and 50 Gy. In three cases a balloon rupture occurred. We observed two abscesses within 3 months of implantation and serious seroma development in 10 patients (39%). Skin related side effects were erythema in 21 patients (91%), hyperpigmentation in 13 patients (56%) and teleangiectasia in six patients (26%) after mean follow-up 20 months. Conclusions: The MammoSite[reg] Radiation Therapy System is a feasible treatment modality for intracavitary brachytherapy of breast cancer after breast conserving surgery. The advantage of the system is only one applicator is necessary for the delivery of a fractionated radiotherapy. In addition, patient

  19. SU-E-J-215: Towards MR-Only Image Guided Identification of Calcifications and Brachytherapy Seeds: Application to Prostate and Breast LDR Implant Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Elzibak, A; Fatemi-Ardekani, A; Soliman, A; Mashouf, S; Safigholi, H; Ravi, A; Morton, G; Song, WY [Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Han, D [Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); University of California, San Diego, La Jolla, CA (United States)

    2015-06-15

    Purpose: To identify and analyze the appearance of calcifications and brachytherapy seeds on magnitude and phase MRI images and to investigate whether they can be distinguished from each other on corrected phase images for application to prostate and breast low dose rate (LDR) implant dosimetry. Methods: An agar-based gel phantom containing two LDR brachytherapy seeds (Advantage Pd-103, IsoAid, 0.8mm diameter, 4.5mm length) and two spherical calcifications (large: 7mm diameter and small: 4mm diameter) was constructed and imaged on a 3T Philips MR scanner using a 16-channel head coil and a susceptibility weighted imaging (SWI) sequence (2mm slices, 320mm FOV, TR/ TE= 26.5/5.3ms, 15 degree flip angle). The phase images were unwrapped and corrected using a 32×32, 2D Hanning high pass filter to remove background phase noise. Appearance of the seeds and calcifications was assessed visually and quantitatively using Osirix (http://www.osirix-viewer.com/). Results: As expected, calcifications and brachytherapy seeds appeared dark (hypointense) relative to the surrounding gel on the magnitude MRI images. The diameter of each seed without the surrounding artifact was measured to be 0.1 cm on the magnitude image, while diameters of 0.79 and 0.37 cm were measured for the larger and smaller calcifications, respectively. On the corrected phase images, the brachytherapy seeds and the calcifications appeared bright (hyperintense). The diameter of the seeds was larger on the phase images (0.17 cm) likely due to the dipole effect. Conclusion: MRI has the best soft tissue contrast for accurate organ delineation leading to most accurate implant dosimetry. This work demonstrated that phase images can potentially be useful in identifying brachytherapy seeds and calcifications in the prostate and breast due to their bright appearance, which helps in their visualization and quantification for accurate dosimetry using MR-only. Future work includes optimizing phase filters to best identify

  20. Structuring the competitive advantage of printing company

    OpenAIRE

    Kukharuk A. D.

    2013-01-01

    The nature of the concept of "competitive advantage of the company" if analyzed. The concept of "structuring a competitive advantage" is suggested. The model of structuring of printing company’s competitive advantage based on fundamentals of stakeholder theory is developed.

  1. 76 FR 56262 - Community Advantage Pilot Program

    Science.gov (United States)

    2011-09-12

    ... SMALL BUSINESS ADMINISTRATION [Docket No. SBA 2011-0003] Community Advantage Pilot Program AGENCY: U.S. Small Business Administration (SBA). ACTION: Notice of change to Community Advantage Pilot... Community Advantage Pilot Program. In that notice, SBA modified or waived as appropriate certain regulations...

  2. First practical and clinical experiences using the IBU (integrated brachytherapy unit): it works

    International Nuclear Information System (INIS)

    Loevey, GL.; Haker, H.; Koch, K

    1996-01-01

    A large number of modern HDR-AL treatments requires a three dimensional applicator reconstruction and dose optimization. Conventional Xray-film digitalization is time consuming, operation tables and the Xray units limit the possible radiography directions and therefore the optimal catheter reconstruction. The IBU concept and equipments offer new possibilities in applicator reconstruction and 3D isodoses display. Materials and methods: Since January 1994 1095 HDR applications have been performed on Nucletron's 1993 installed IBU. All treatments have been individually planned, in 151 (13, 78%) cases 3D applicator reconstruction were necessary. Total treatment time elapsed, reconstruction time, time interval from the start of the planning phase to the start of the irradiation were measured. Results: Total treatment time was reduced in comparison to treatments with conventional catheter reconstruction because: 1.) no time needed for Xray film processing, 2.) faster identification of catheters due to digital image processing, 3.) faster evaluation of isodoses due to 3D isodoses display. Examples of filmless reconstruction and planning in different gynaecologic and H and N localizations will be demonstrated. Conclusion: the first practical experiences show a good match to the theoretical advantages of the integrated brachytherapy unit: the system reduces total treatment time and thus patient distress

  3. Thermoluminescence dosimetry applied to quality assurance in radiotherapy, brachytherapy and radiodiagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Marinello, G [Centre Hospitalo-Universitaire, Creteil (France). Dept. Inter-Hospitalier de Cancerologie

    1996-08-01

    Thermoluminescence (TL) dosimetry is very interesting for in vivo measurements because TL detectors have the advantages of being very sensitive under a very small volume and do not meet to be connected to an electrometer with an unwieldy cable. The principle of the method being briefly recalled, criteria of choice of a TL material according to the applications to be performed are given. It is shown that to be used for in vivo measurements, TL material should have the same response at room and patient temperatures and be equivalent to soft tissue, lungs or bones for the energy ranges encountered in practice. Theoretical data are provided in order to facilitate the user`s choice. The different heating processes (linear or isothermal heating kinetics, hot gas, etc.) and light detection systems of TL readers are also presented. TL manual and automatic readers commercially available in 1994, and the emission temperature and wavelength the dosimetric peaks of usual TL materials are presented in two tables, respectively. Then the principal properties of TL dosimeters to be used for in vivo measurements and their practical consequences are summarized: signal stability after irradiation, intrinsic precision, sensitivity, response with dose, dose-rate, mass and energy. At last some examples of applications as different as total body and skin irradiations, brachytherapy, diagnostic radiology and quality assurance purposes are given. (author). 35 refs, 6 figs, 4 tabs.

  4. Brachytherapy boost for breast cancer: what do we know? where do we go?

    International Nuclear Information System (INIS)

    Hannoun-Levi, J.M.; Marsiglia, H.

    2004-01-01

    Since many years, Brachytherapy (BT) appears to play an important role in the treatment of many solid tumors. For breast cancer, BT is usually used as boost after postoperative external beam radiation therapy. In certain circumstances. BT can be used as sole radiation technique focalized on the tumor bed or more rarely, as second conservative treatment in case of local recurrence for woman refusing salvage mastectomy. Boost BT is most often applied via an interstitial technique while the dose rate can vary from low to high close rate through pulse dose rate. All of those boost techniques were published and some of them compared the results obtained with BT and external beam electron therapy. The analysis of the published phase II and III trials was not able to show significant differences between the two boost techniques in term of local control as well as late skin side effects. However, we noted that the patients who received BT boost presented a higher risk of local recurrence compare to those treated with electron therapy, due to age, margin status or presence of extensive intraductal component. Only a phase III trial randomizing BT boost vs electron therapy boost could show a possible improvement of local control rate in the BT arm; however, this trial should enroll patients with a real high risk of local recurrence in order to take benefit from the dosimetric advantages of BT. (author)

  5. The dosimetry of prostate brachytherapy-induced urethral strictures

    International Nuclear Information System (INIS)

    Merrick, Gregory S.; Butler, Wayne M.; Tollenaar, Bryan G.; Galbreath, Robert W.; Lief, Jonathan H.

    2002-01-01

    Purpose: There is a paucity of data regarding the incidence of urethral strictures after prostate brachytherapy. In this study, we evaluate multiple clinical, treatment, and dosimetric parameters to identify factors associated with the development of brachytherapy-induced urethral strictures. Methods and Materials: 425 patients underwent transperineal ultrasound-guided prostate brachytherapy using either 103 Pd or 125 I for clinical T1b/T3a NxM0 (1997, American Joint Committee on Cancer) adenocarcinoma of the prostate gland from April 1995 to October 1999. No patient was lost to follow-up. 221 patients were implanted with 103 Pd and 204 patients with 125 I. The median patient age was 68 years (range 48-81 years). The median follow-up was 35.2 months (range 15-72 months). Follow-up was calculated from the day of implantation. Thirteen patients developed brachytherapy-induced strictures, and all strictures involved the membranous urethra. A control group of 35 patients was rigorously matched to the stricture patients in terms of treatment approach; i.e., choice of isotope, plus or minus radiation therapy, and plus or minus hormonal manipulation. Nine of the 13 stricture patients had detailed Day 0 urethral dosimetry available for review. The apex of the prostate gland and the membranous urethra were defined by CT evaluation. Urethral dosimetry was reported for the prostatic urethra, the apical slice of the prostate gland, and the membranous urethra which was defined as extending 20 mm in length. Results: The 5-year actuarial risk of a urethral stricture was 5.3%, with a median time to development of 26.6 months (range 7.8-44.1 months). Of multiple clinical and treatment parameters evaluated, only the duration of hormonal manipulation (>4 months, p=0.011) was predictive for the development of a urethral stricture. The radiation dose to the membranous urethra was significantly greater in patients with strictures than those without: 97.6%±20.8% vs. 81.0%±19.8% of

  6. High-dose-rate brachytherapy in uterine cervical carcinoma

    International Nuclear Information System (INIS)

    Patel, Firuza D.; Rai, Bhavana; Mallick, Indranil; Sharma, Suresh C.

    2005-01-01

    Purpose: High-dose-rate (HDR) brachytherapy is in wide use for curative treatment of cervical cancer. The American Brachytherapy Society has recommended that the individual fraction size be <7.5 Gy and the range of fractions should be four to eight; however, many fractionation schedules, varying from institution to institution, are in use. We use 9 Gy/fraction of HDR in two to five fractions in patients with carcinoma of the uterine cervix. We found that our results and toxicity were comparable to those reported in the literature and hereby present our experience with this fractionation schedule. Methods and Materials: A total of 121 patients with Stage I-III carcinoma of the uterine cervix were treated with HDR brachytherapy between 1996 and 2000. The total number of patients analyzed was 113. The median patient age was 53 years, and the histopathologic type was squamous cell carcinoma in 93% of patients. The patients were subdivided into Groups 1 and 2. In Group 1, 18 patients with Stage Ib-IIb disease, tumor size <4 cm, and preserved cervical anatomy underwent simultaneous external beam radiotherapy to the pelvis to a dose of 40 Gy in 20 fractions within 4 weeks with central shielding and HDR brachytherapy of 9 Gy/fraction, given weekly, and interdigitated with external beam radiotherapy. The 95 patients in Group 2, who had Stage IIb-IIIb disease underwent external beam radiotherapy to the pelvis to a dose of 46 Gy in 23 fractions within 4.5 weeks followed by two sessions of HDR intracavitary brachytherapy of 9 Gy each given 1 week apart. The follow-up range was 3-7 years (median, 36.4 months). Late toxicity was graded according to the Radiation Therapy Oncology Group criteria. Results: The 5-year actuarial local control and disease-free survival rate was 74.5% and 62.0%, respectively. The actuarial local control rate at 5 years was 100% for Stage I, 80% for Stage II, and 67.2% for Stage III patients. The 5-year actuarial disease-free survival rate was 88.8% for

  7. Interstitial brachytherapy for eyelid carcinoma. Outcome analysis in 60 patients

    Energy Technology Data Exchange (ETDEWEB)

    Krengli, M.; Deantonio, L. [University Hospital ' ' Maggiore della Carita' ' , Division of Radiotherapy, Novara (Italy); University of ' ' Piemonte Orientale' ' , Department of Translational Medicine, Novara (Italy); Masini, L.; Filomeno, A.; Gambaro, G. [University Hospital ' ' Maggiore della Carita' ' , Division of Radiotherapy, Novara (Italy); Comoli, A.M. [University Hospital Maggiore della Carita, Ophthalmology, Novara (Italy); Negri, E. [University Hospital Maggiore della Carita, Medical Physics, Novara (Italy)

    2014-03-15

    Eyelid cancer is a therapeutic challenge due to the cosmetic and functional implications of this anatomical region and the objectives of therapy are tumor control, functional and cosmetic outcome. The present study was performed to analyze local control, toxicity, functional and cosmetic results in patients with eyelid carcinoma treated by interstitial brachytherapy. In this study 60 patients with eyelid carcinoma were treated by interstitial brachytherapy using iridium ({sup 192}Ir) wires with a linear activity of 1.2-1.7 mCi/cm. The prescription dose was 51-70 Gy (mean 65 Gy, median 66 Gy). Of the 60 patients 51 (85.0 %) had received no prior treatment, 4 (6.7 %) had received previous surgery with positive or close margins and 5 (8.3 %) had suffered local recurrence after surgery. Of the tumors 52 (86.7 %) were basal cell carcinoma, 7 (11.7 %) squamous cell carcinoma and 1 (1.7 %) Merkel cell carcinoma. Clinical stage of the 51 previously untreated tumors was 38 T1N0, 12 T2N0 and 1 T3N0. Mean follow-up was 92 months (range 6-253 months). Local control was maintained in 96.7 % of patients. Late effects higher than grade 2 were observed in 3.0 % of cases. Functional and cosmetic outcomes were optimal in 68.4 % of patients. Interstitial brachytherapy for carcinoma of the eyelid can achieve local control, cosmetic and functional results comparable to those of surgery. (orig.) [German] Das Karzinom des Augenlids stellt aufgrund der funktionellen und kosmetischen Beeintraechtigungen dieser anatomischen Region eine therapeutische Herausforderung dar. Ziele der Therapie sind sowohl die Tumorkontrolle als auch ein gutes funktionelles und kosmetisches Ergebnis. Lokale Kontrolle, Toxizitaet sowie funktionelle und kosmetische Ergebnisse bei Patienten mit Karzinom des Augenlids, die mit interstitieller Brachytherapie behandelt wurden, sollten analysiert werden. Sechzig Patienten mit Karzinom des Augenlids wurden mit interstitieller Brachytherapie mit Iridium-192-Draehten

  8. Novel treatment options for nonmelanoma skin cancer: focus on electronic brachytherapy

    Directory of Open Access Journals (Sweden)

    Kasper ME

    2015-11-01

    Full Text Available Michael E Kasper,1,2 Ahmed A Chaudhary3 1Department of Radiation Oncology, Lynn Cancer Institute at Boca Raton Regional Hospital, Boca Raton, 2Charles E. Schmidt College of Medicine, Florida Atlantic University, FL, 3North Main Radiation Oncology, Warren Alpert School of Medicine, Brown University, RI, USA Abstract: Nonmelanoma skin cancer (NMSC is an increasing health care issue in the United States, significantly affecting quality of life and impacting health care costs. Radiotherapy has a long history in the treatment of NMSC. Shortly after the discovery of X-rays and 226Radium, physicians cured patients with NMSC using these new treatments. Both X-ray therapy and brachytherapy have evolved over the years, ultimately delivering higher cure rates and lower toxicity. Electronic brachytherapy for NMSC is based on the technical and clinical data obtained from radionuclide skin surface brachytherapy and the small skin surface applicators developed over the past 25 years. The purpose of this review is to introduce electronic brachytherapy in the context of the history, data, and utilization of traditional radiotherapy and brachytherapy. Keywords: electronic brachytherapy, superficial radiotherapy, skin surface brachytherapy, electron beam therapy, nonmelanoma skin cancer, basal cell carcinoma, squamous cell carcinoma

  9. 'Homogeneity in brachytherapy' - Dummy run experience in Belgium

    International Nuclear Information System (INIS)

    Methords

    1996-01-01

    Purpose: The homogeneity of brachytherapy treatments in Belgium was appreciated through a dummy run with two fictive patients. Materiel and Methods: All members of the Belgian Brachytherapy Board received last year a questionnaire about treatment technique, technical approach, dosimetry and treatment planning, for 2 selected clinical histories. Case 1: T1 G1 NO MO - SCC of the lateral border of the mobile tongue (dimensions: 12x10x5mm). Case 2: T1 G1 NO MO - SCC of the lateral side of the nose (10x12x3mm). Results: 10 members out of 14 from the Belgian Brachytherapy Board returned their questionnaire. Little variation has been observed regarding treatment technique, technical approach (H and N: hairpins or loops, skin: plastic tubes), dose (60-65 Gy), activity of Ir-192 (1-2 mCi/cm), definition of Gross Tumor Volume and dosimetry (Paris System). On the contrary, a large difference was observed in the definition of the Clinical Target Volume and the Treated Volume. Despite of this large difference, the ratio treated volume on clinical target volume was always satisfactory (1,2 for skin cancer - 2 for H and N cancer), indicating that the treatment was well adapted to the Clinical Target Volume in all but 1 instance. Variations of a factor 2 in the dose rate of irradiation were tolerated (40-80 cGy/h). Conclusion: Rigid guidelines are mostly followed by the responders concerning dose, dose prescription and implantation techniques. Large variations are encountered concerning safety margins (Clinical Target definition) and dose rate

  10. Prostate Brachytherapy in Men ≥75 Years of Age

    International Nuclear Information System (INIS)

    Merrick, Gregory S.; Wallner, Kent E.; Galbreath, Robert W.; Butler, Wayne M.; Brammer, Sarah G.; Allen, Zachariah A.; Adamovich, Edward

    2008-01-01

    Purpose: To evaluate cause-specific survival (CSS), biochemical progression-free survival (bPFS), and overall survival (OS) in prostate cancer patients aged ≥75 years undergoing brachytherapy with or without supplemental therapies. Methods and Materials: Between April 1995 and August 2004, 145 consecutive patients aged ≥75 years underwent permanent prostate brachytherapy. Median follow-up was 5.8 years. Biochemical progression-free survival was defined by a prostate-specific antigen level ≤0.40 ng/mL after nadir. Patients with metastatic prostate cancer or hormone-refractory disease without obvious metastases who died of any cause were classified as dead of prostate cancer. All other deaths were attributed to the immediate cause of death. Multiple clinical, treatment, and dosimetric parameters were evaluated for impact on survival. Results: Nine-year CSS, bPFS, and OS rates for the entire cohort were 99.3%, 97.1%, and 64.5%, respectively. None of the evaluated parameters predicted for CSS, whereas bPFS was most closely predicted by percentage positive biopsies. Overall survival and non-cancer deaths were best predicted by tobacco status. Thirty-seven patients have died, with 83.8% of the deaths due to cardiovascular disease (22 patients) or second malignancies (9 patients). To date, only 1 patient (0.7%) has died of metastatic prostate cancer. Conclusions: After brachytherapy, high rates of CSS and bPFS are noted in elderly prostate cancer patients. Overall, approximately 65% of patients are alive at 9 years, with survival most closely related to tobacco status. We believe our results support an aggressive locoregional approach in appropriately selected elderly patients

  11. Dose rate constant and energy spectrum of interstitial brachytherapy sources

    International Nuclear Information System (INIS)

    Chen Zhe; Nath, Ravinder

    2001-01-01

    In the past two years, several new manufacturers have begun to market low-energy interstitial brachytherapy seeds containing 125 I and 103 Pd. Parallel to this development, the National Institute of Standards and Technology (NIST) has implemented a modification to the air-kerma strength (S K ) standard for 125 I seeds and has also established an S K standard for 103 Pd seeds. These events have generated a considerable number of investigations on the determination of the dose rate constants (Λ) of interstitial brachytherapy seeds. The aim of this work is to study the general properties underlying the determination of Λ and to develop a simple method for a quick and accurate estimation of Λ. As the dose rate constant of clinical seeds is defined at a fixed reference point, we postulated that Λ may be calculated by treating the seed as an effective point source when the seed's source strength is specified in S K and its source characteristics are specified by the photon energy spectrum measured in air at the reference point. Using a semi-analytic approach, an analytic expression for Λ was derived for point sources with known photon energy spectra. This approach enabled a systematic study of Λ as a function of energy. Using the measured energy spectra, the calculated Λ for 125 I model 6711 and 6702 seeds and for 192 Ir seed agreed with the AAPM recommended values within ±1%. For the 103 Pd model 200 seed, the agreement was 5% with a recently measured value (within the ±7% experimental uncertainty) and was within 1% with the Monte Carlo simulations. The analytic expression for Λ proposed here can be evaluated using a programmable calculator or a simple spreadsheet and it provides an efficient method for checking the measured dose rate constant for any interstitial brachytherapy seed once the energy spectrum of the seed is known

  12. Three-dimensional tomosynthetic image restoration for brachytherapy source localization

    International Nuclear Information System (INIS)

    Persons, Timothy M.

    2001-01-01

    Tomosynthetic image reconstruction allows for the production of a virtually infinite number of slices from a finite number of projection views of a subject. If the reconstructed image volume is viewed in toto, and the three-dimensional (3D) impulse response is accurately known, then it is possible to solve the inverse problem (deconvolution) using canonical image restoration methods (such as Wiener filtering or solution by conjugate gradient least squares iteration) by extension to three dimensions in either the spatial or the frequency domains. This dissertation presents modified direct and iterative restoration methods for solving the inverse tomosynthetic imaging problem in 3D. The significant blur artifact that is common to tomosynthetic reconstructions is deconvolved by solving for the entire 3D image at once. The 3D impulse response is computed analytically using a fiducial reference schema as realized in a robust, self-calibrating solution to generalized tomosynthesis. 3D modulation transfer function analysis is used to characterize the tomosynthetic resolution of the 3D reconstructions. The relevant clinical application of these methods is 3D imaging for brachytherapy source localization. Conventional localization schemes for brachytherapy implants using orthogonal or stereoscopic projection radiographs suffer from scaling distortions and poor visibility of implanted seeds, resulting in compromised source tracking (reported errors: 2-4 mm) and dosimetric inaccuracy. 3D image reconstruction (using a well-chosen projection sampling scheme) and restoration of a prostate brachytherapy phantom is used for testing. The approaches presented in this work localize source centroids with submillimeter error in two Cartesian dimensions and just over one millimeter error in the third

  13. Novel prostate brachytherapy technique: Improved dosimetric and clinical outcome

    International Nuclear Information System (INIS)

    Nobes, Jenny P.; Khaksar, Sara J.; Hawkins, Maria A.; Cunningham, Melanie J.; Langley, Stephen E.M.; Laing, Robert W.

    2008-01-01

    Purpose: Erectile dysfunction following prostate brachytherapy is reported to be related to dose received by the penile bulb. To minimise this, whilst preserving prostate dosimetry, we have developed a technique for I-125 seed brachytherapy using both stranded seeds and loose seeds delivered with a Mick applicator, and implanted via the sagittal plane on trans-rectal ultrasound. Materials and methods: Post-implant dosimetry and potency rates were compared in 120 potent patients. In Group 1, 60 patients were treated using a conventional technique of seeds implanted in a modified-uniform distribution. From January 2005, a novel technique was developed using stranded seeds peripherally and centrally distributed loose seeds implanted via a Mick applicator (Group 2). The latter technique allows greater flexibility when implanting the seeds at the apex. Each patient was prescribed a minimum peripheral dose of 145 Gy. No patients received external beam radiotherapy or hormone treatment. There was no significant difference in age or pre-implant potency score (mean IIEF-5 score 22.4 vs. 22.6, p = 0.074) between the two groups. Results: The new technique delivers lower penile bulb doses (D 25 as %mPD - Group 1: 61.2 ± 35.7, Group 2: 29.7 ± 16.0, p 50 as %mPD - Group 1: 45.8 ± 26.9, Group 2: 21.4 ± 11.7, p 90 - Group 1: 147 Gy ± 21.1, Group 2: 155 Gy ± 16.7, p = 0.03). At 2 years, the potency rate was also improved: Group 1: 61.7%; Group 2: 83.3% (p = 0.008). Conclusions: In this study, the novel brachytherapy technique using both peripheral stranded seeds and central loose seeds delivered via a Mick applicator results in a lower penile bulb dose whilst improving prostate dosimetry, and may achieve higher potency rates

  14. Dosimetric equivalence of nonstandard HDR brachytherapy catheter patterns

    International Nuclear Information System (INIS)

    Cunha, J. A. M.; Hsu, I-C.; Pouliot, J.

    2009-01-01

    Purpose: To determine whether alternative high dose rate prostate brachytherapy catheter patterns can result in similar or improved dose distributions while providing better access and reducing trauma. Materials and Methods: Standard prostate cancer high dose rate brachytherapy uses a regular grid of parallel needle positions to guide the catheter insertion. This geometry does not easily allow the physician to avoid piercing the critical structures near the penile bulb nor does it provide position flexibility in the case of pubic arch interference. This study used CT datasets with 3 mm slice spacing from ten previously treated patients and digitized new catheters following three hypothetical catheter patterns: conical, bi-conical, and fireworks. The conical patterns were used to accommodate a robotic delivery using a single entry point. The bi-conical and fireworks patterns were specifically designed to avoid the critical structures near the penile bulb. For each catheter distribution, a plan was optimized with the inverse planning algorithm, IPSA, and compared with the plan used for treatment. Irrelevant of catheter geometry, a plan must fulfill the RTOG-0321 dose criteria for target dose coverage (V 100 Prostate >90%) and organ-at-risk dose sparing (V 75 Bladder 75 Rectum 125 Urethra <<1 cc). Results: The three nonstandard catheter patterns used 16 nonparallel, straight divergent catheters, with entry points in the perineum. Thirty plans from ten patients with prostate sizes ranging from 26 to 89 cc were optimized. All nonstandard patterns fulfilled the RTOG criteria when the clinical plan did. In some cases, the dose distribution was improved by better sparing the organs-at-risk. Conclusion: Alternative catheter patterns can provide the physician with additional ways to treat patients previously considered unsuited for brachytherapy treatment (pubic arch interference) and facilitate robotic guidance of catheter insertion. In addition, alternative catheter

  15. MO-E-BRD-02: Accelerated Partial Breast Irradiation in Brachytherapy: Is Shorter Better?

    International Nuclear Information System (INIS)

    Todor, D.

    2015-01-01

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant. A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and current

  16. Endovascular brachytherapy prevents restenosis after femoropopliteal angioplasty: results of the Vienna-3 randomised multicenter study

    International Nuclear Information System (INIS)

    Pokrajac, Boris; Poetter, Richard; Wolfram, Roswitha M.; Budinsky, Alexandra C.; Kirisits, Christian; Lileg, Brigitte; Mendel, Helmuth; Sabeti, Schila; Schmid, Rainer; Minar, Erich

    2005-01-01

    Background and purpose: The aim of the trial was to investigate the effect of Iridium-192 gamma endovascular brachytherapy on reduction of restenosis after femoropopliteal angioplasty. Patients and methods: Between Oct, 1998 and Jul, 2001 a total of 134 patients have been randomized after successful angioplasty to brachytherapy or sham irradiation in a prospective, randomized, multicenter, double blind controlled trial. Patients with de novo lesion of at least 5 cm or recurrent lesion of any length after prior angioplasty have been enrolled. Brachytherapy was performed with 7 F centering catheter. Mean lesion length was 9.1 cm (1.5-25 cm) and mean intervention length 13.6 cm (4-27.5 cm) in brachytherapy cohort. Results: In placebo cohort mean lesion length was 10.3 cm (2-25 cm) and mean intervention length 14.1 cm (2-29 cm). A dose of 18 Gy was prescribed 2 mm from the surface of centering balloons. Analyzed (based on angiography) on intention to treat basis the binary restenosis rate at 12 months was 41.7% (28/67) in brachytherapy cohort and 67.1% (45/67) in placebo cohort (χ 2 test, P 30% residual stenosis after angioplasty) have been 23.4% in the brachytherapy and 53.3% in the placebo group (P<0.05), respectively. The cumulative patency rates after 24 months on intention to treat analysis were 54% in the brachytherapy and 27% in the placebo group (P<0.005). Corresponding data for as treated analysis were 77% in the brachytherapy and 39% in the placebo group (P<0.001). Late thrombosis was not seen. Conclusions: Significant reduction of restenosis rate was obtained with endovascular gamma brachytherapy after femoropopliteal angioplasty

  17. MO-E-BRD-02: Accelerated Partial Breast Irradiation in Brachytherapy: Is Shorter Better?

    Energy Technology Data Exchange (ETDEWEB)

    Todor, D. [Virginia Commonwealth University (United States)

    2015-06-15

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant. A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and current

  18. MO-E-BRD-03: Intra-Operative Breast Brachytherapy: Is One Stop Shopping Best?

    International Nuclear Information System (INIS)

    Libby, B.

    2015-01-01

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant. A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and current

  19. Present status and future of high-precision image guided adaptive brachytherapy for cervix carcinoma

    International Nuclear Information System (INIS)

    Poetter, Richard; Kirisits, Christian; Fidarova, Elena F.; Dimopoulos, Johan nes C. A.; Berger, Daniel; Tanderup, Kari; Lindegaard, Jacob C.

    2008-01-01

    Introduction. Image guided adaptive brachytherapy (IGABT) for cervical cancer, using mainly MRI, is an evolving method, increasingly replacing the 2D approach based on conventional radiography. During the complex 4D chain of this procedure image-assistance is provided for disease assessment, provisional treatment planning ('pre-planning'), applicator placement and reconstruction, as well as for contouring, definitive treatment planning and quality control of dose delivery. With IGABT changes of topography adjacent to the applicator, caused by tumour regression, oedema, organ changes and dilation are identified. Thus, the CTV for IGABT is primarily based on the tumour volume at the time of BT and takes into account both time and spatial domains. IGABT requires systematic concepts for target, OAR, biological modelling, DVH analysis, and dose-volume-adaptation. Methods and Results. This report focuses on the advantages and uncertainties, dose-effect relations and clinical results of the IGABT procedure addressing the current status and future perspectives. Uncertainties during the 4D chain of IGABT are mainly related to target contouring, applicator reconstruction, as well as to inter-fraction, intra-fraction and inter-application variability, as caused by tumour response and organ changes. Different from EBRT where set-up uncertainties are compensated by adding a margin to the CTV, no margins to the lateral and anterior-posterior directions can be used for IGABT. Discussion. By 3D treatment planning for IGABT significant improvement of the DVH parameters is achieved compared to 2D library plans. In small tumours the benefit is primarily obtained by a decrease of dose to nearby OAR while in large tumours the use of supplementary interstitial techniques and optimization may double the target volume that can be treated at a therapeutic dose level. The clinical impact of IGABT could recently be demonstrated by the establishment of some correlations between target- and

  20. Treatment of soft-tissue sarcomas of children through brachytherapy

    International Nuclear Information System (INIS)

    Ladeia, F.T.; Novaes, P.E.R.S.; Pereira, A.J.; Peres, O.; Camargo, B.; Bianchi, A.

    1988-01-01

    Twelve children were treated from January 1979 to June 1986 and the age range was three months to 14 years. Ten patients had implanted sources in the tumour tissue and two had a surface radioactive applicator. Eleven children had local control of disease, four with long term survival (longer than 50 months), good cosmetic and functional results and seven with shorter follow-up (minimal 17 months). Only one local relapse occurred in the irradiated area, five months after treatment. Brachytherapy may be an useful modality of treatment in pediatric oncology making possible the reduction of external therapy dose, minimizing the late effects of treatment, with better survival. (author)

  1. Three-dimensional dosimetry in brachytherapy: A MAGAT study

    Energy Technology Data Exchange (ETDEWEB)

    Lin, M.-H. [Department of Family Medicine and Physical Check-up Center, Tainan Hospital Department of Health, Executive Yuan, Taiwan (China); Department of Nursing, National Tainan Institute of Nursing, Taiwan (China); Huang, T.-C. [Department of Biomedical Imaging and Radiological Science, China Medical University, Taiwan (China); Kao, M.-J. [Department of Family Medicine and Physical Check-up Center, Tainan Hospital Department of Health, Executive Yuan, Taiwan (China); Department of Nursing, National Tainan Institute of Nursing, Taiwan (China); Wu, Jay [Department of Radiological Technology, Central Taiwan University of Science and Technology, Taiwan (China); Chen, C.-L. [Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, No. 110, Sec. 1, Chien-Kuo N. Road, South District, Taichung 402, Taiwan (China); Wu, T.-H. [Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, No. 110, Sec. 1, Chien-Kuo N. Road, South District, Taichung 402, Taiwan (China)], E-mail: tung@csmu.edu.tw

    2009-07-15

    This study is to evaluate the influence of using different matrix size of smoothing filter for image post-processing and various slice thickness during MR imaging on dose estimation in Ir-192 HDR brachytherapy via normoxic polymer gel dosimeter. Our results show its sensitive nature in gel dosimeter while changing these parameters, among which the combination of 2 mm slice thickness of MR images and [5x5] smoothing filter are considered the optimal parameters to provide accurate dose estimations and isodose curves.

  2. Three-dimensional dosimetry in brachytherapy: A MAGAT study

    International Nuclear Information System (INIS)

    Lin, M.-H.; Huang, T.-C.; Kao, M.-J.; Wu, Jay; Chen, C.-L.; Wu, T.-H.

    2009-01-01

    This study is to evaluate the influence of using different matrix size of smoothing filter for image post-processing and various slice thickness during MR imaging on dose estimation in Ir-192 HDR brachytherapy via normoxic polymer gel dosimeter. Our results show its sensitive nature in gel dosimeter while changing these parameters, among which the combination of 2 mm slice thickness of MR images and [5x5] smoothing filter are considered the optimal parameters to provide accurate dose estimations and isodose curves.

  3. Monte Carlo simulation of MOSFET dosimeter for brachytherapy sources

    International Nuclear Information System (INIS)

    Suchitra, G.; Bharanidharan, G.; Manigandan, D.; Aruna, P.; Ganesan, S.; Subbaiah, K.V.

    2008-01-01

    In vivo patient dose verification is considered to be an important part of quality assurance in radiotherapy, as there may be uncertainty between the prescribed dose and the dose actually delivered to the patients. A dose estimator method was used to calculate the dose in the extremely thin sensitive volume. This work shows the response of MOSFET detector for various brachytherapy sources at various experimental condition and the results were compared with the earlier published values. The details of computations and the results are discussed

  4. Experience with LDR and MDR brachytherapy for cervical cancer

    International Nuclear Information System (INIS)

    Okawa, Tomohiko; Okawa, Midori-Kita; Kaneyasu, Yuko; Karasawa, Kumiko; Fukuhara, Noboru

    1996-01-01

    As the brachytherapy dose-rate increases, it is necessary to reduce the total dose or to increase the fraction number with reducing the fraction dose in order not to increase the incidence of the late effect. With the introduction to the Tokyo Women's Medical College, Hospital of a remote afterloading system of Selectron - MDR, delivering dose-rate to point A became approximately twice of that with our classical cesium LDR manual afterloading technique. Material and Methods: Between 1987 to 1993 a total of, previously untreated 74 patients with cervical cancer received MDR brachytherapy using a Selection - MDR. This analysis is therefore of those patients series who underwent radical radioradiotherapy with MDR, 1987-1993, in comparison with the 347 cases who were treated with classical manual LDR afterloading machine, 1969-1986. The treatment was a brachytherapy during external radiotherapy and dos-rate at point A was 160-180 cGy/hour with MDR and 80-90 cGy/hour with LDR. The mean fraction dose was 800-1000 cGy by MDR and 1000-1200 cGy by LDR and fraction number was increased 1-2times in the MDR group with no change of a total dose at point A. Results: The mean age was 63.3 years in the MDR group and 60.2 in the LDR group. In the MDR group, 4 patients were at stage I, 16 stage II, 32 stage III, and 22 stage IV. In the LDR group, 32 were at stage I, 83 stage II, 183 stage III, and 49 stage IV. The medical rate was not significantly different between two groups. The tumor response by manual examination one month after radiotherapy showed no significant difference. The 5-year survival rate for the MDR and LDR groups were 100% : 78% at stage I, 61% : 71% at stage II and 52% : 53% at stage III, with no significant differences. Late complications by severity with grade II-III according to Kottureire's classification were not significantly different in the rectum or bladder. These results suggested that MDR brachytherapy was useful for the patients' QOL as it reduced the

  5. Spectroscopic characterization of low dose rate brachytherapy sources

    Science.gov (United States)

    Beach, Stephen M.

    The low dose rate (LDR) brachytherapy seeds employed in permanent radioactive-source implant treatments usually use one of two radionuclides, 125I or 103Pd. The theoretically expected source spectroscopic output from these sources can be obtained via Monte Carlo calculation based upon seed dimensions and materials as well as the bare-source photon emissions for that specific radionuclide. However the discrepancies resulting from inconsistent manufacturing of sources in comparison to each other within model groups and simplified Monte Carlo calculational geometries ultimately result in undesirably large uncertainties in the Monte Carlo calculated values. This dissertation describes experimentally attained spectroscopic outputs of the clinically used brachytherapy sources in air and in liquid water. Such knowledge can then be applied to characterize these sources by a more fundamental and metro logically-pure classification, that of energy-based dosimetry. The spectroscopic results contained within this dissertation can be utilized in the verification and benchmarking of Monte Carlo calculational models of these brachytherapy sources. This body of work was undertaken to establish a usable spectroscopy system and analysis methods for the meaningful study of LDR brachytherapy seeds. The development of a correction algorithm and the analysis of the resultant spectroscopic measurements are presented. The characterization of the spectrometer and the subsequent deconvolution of the measured spectrum to obtain the true spectrum free of any perturbations caused by the spectrometer itself is an important contribution of this work. The approach of spectroscopic deconvolution that was applied in this work is derived in detail and it is applied to the physical measurements. In addition, the spectroscopically based analogs to the LDR dosimetry parameters that are currently employed are detailed, as well as the development of the theory and measurement methods to arrive at these

  6. HIGH-DOSE RATE BRACHYTHERAPY IN CARCINOMA CERVIX STAGE IIIB

    Directory of Open Access Journals (Sweden)

    Sathya Maruthavanan

    2016-07-01

    Full Text Available INTRODUCTION Radiotherapy is the standard treatment in locally advanced (IIB-IVA and early inoperable cases. The current standard of practice with curable intent is concurrent chemoradiation in which intracavitary brachytherapy is an integral component of radiotherapy. This study aims at assessing the efficacy of HDR ICBT (High-dose rate intracavitary brachytherapy in terms local response, normal tissue reactions, and feasibility. METHODS AND MATERIALS A total of 20 patients of stage IIIB cancer of the uterine cervix were enrolled in the study and were planned to receive concurrent chemotherapy weekly along with EBRT (external beam radiotherapy to a dose of 50 Gy/25 Fr. Suitability for ICBT was assessed at 40 Gy/20 Fr. 6/20 patients were suitable at 40 Gy and received HDR ICBT with a dose of 5.5 Gy to point A in 4 sessions (5.5 Gy/4 Fr. The remaining 14/20 patients completed 50 Gy and received HDR ICBT with a dose of 6 Gy to point A in 3 sessions (6 Gy/3 Fr. RESULTS A total of 66 intracavitary applications were done and only one application required dose modification due to high bladder dose, the pelvic control rate was 85% (17/20. 10% (2/20 had stable disease and 5% (1/20 had progressive disease at one year of follow up. When toxicity was considered only 15% developed grade I and grade II rectal complications. Patient compliance and acceptability was 100%. Patients were very comfortable with the short treatment time as compared with patients on LDR ICBT (low-dose rate intracavitary brachytherapy treatment interviewed during the same period. CONCLUSION This study proves that HDR brachytherapy is efficacious and feasible in carcinoma of cervix stage IIIB. It also proves that good dose distribution can be achieved with HDR intracavitary facility by the use of dose optimization. The short treatment time in HDR ICBT makes it possible to maintain this optimised dose distribution throughout the treatment providing a gain in the therapeutic ratio and

  7. Experience of the first application of HDR brachytherapy in nasopharynx

    International Nuclear Information System (INIS)

    Vega Hernandez, Manuel I.; Alfonso Laguardia, Rodolfo; Silvestre Patallo, Ileana; Roca Muchuli, Carlos; Garcia Heredia, Gilda

    2006-01-01

    A research was made by applying boost on the area of the nasopharynx relapse with high dose rate (HDR) in a diagnosis of nasopharynx carcinoma previously treated with telecobalt therapy, at a dose of 70 Gy. There was persistence of the injury. Three sessions were planned, with consecutive fractions of 6.5 Gy in 15 days, with optimization, using a personal mould of autopolymerizable acrylic. The successful possibility to apply the high rate modern brachytherapy was reaffirmed, as a treatment complementary to teletherapy in case of persistence or relapse. A Micro Selectron HDR equipment was used

  8. Matlab Tools: An Alternative to Planning Systems in Brachytherapy Treatments

    International Nuclear Information System (INIS)

    Herrera, Higmar; Rodriguez, Mercedes; Rodriguez, Miguel

    2006-01-01

    This work proposes the use of the Matlab environment to obtain the treatment dose based on the reported data by Krishnaswamy and Liu et al. The comparison with reported measurements is showed for the Amersham source model. For the 3M source model, measurements with TLDs and a Monte Carlo simulation are compared to the data obtained by Matlab. The difference for the Amersham model is well under the 15% recommended by the IAEA and for the 3M model, although the difference is greater, the results are consistent. The good agreement to the reported data allows the Matlab calculations to be used in daily brachytherapy treatments

  9. Argon plasma coagulation for rectal bleeding after prostate brachytherapy

    International Nuclear Information System (INIS)

    Smith, Stephen; Wallner, Kent; Dominitz, Jason A.; Han, Ben; True, Lawrence; Sutlief, Steven; Billingsley, Kevin

    2001-01-01

    Purpose: To better define the efficacy and safety of argon plasma coagulation (APC), specifically for brachytherapy-related proctitis, we reviewed the clinical course of 7 patients treated for persistent rectal bleeding. Approximately 2-10% of prostate cancer patients treated with 125 I or 103 Pd brachytherapy will develop radiation proctitis. The optimum treatment for patients with persistent bleeding is unclear from the paucity of available data. Prior reports lack specific dosimetric information, and patients with widely divergent forms of radiation were grouped together in the analyses. Methods and Materials: Seven patients were treated with APC at the Veterans Affairs Puget Sound Health Care System and the University of Washington from 1997 to 1999 for persistent rectal bleeding due to prostate brachytherapy-related proctitis. Four patients received supplemental external beam radiation, delivered by a four-field technique. A single gastroenterologist at the Veterans Affairs Puget Sound Health Care System treated 6 of the 7 patients. If the degree of proctitis was limited, all sites of active bleeding were coagulated in symptomatic patients. An argon plasma coagulator electrosurgical system was used to administer treatments every 4-8 weeks as needed. The argon gas flow was set at 1.6 L/min, with an electrical power setting of 40-45 W. Results: The rectal V100 (the total rectal volume, including the lumen, receiving the prescription dose or greater) for the 7 patients ranged from 0.13 to 4.61 cc. Rectal bleeding was first noticed 3-18 months after implantation. APC (range 1-3 sessions) was performed 9-22 months after implantation. Five patients had complete resolution of their bleeding, usually within days of completing APC. Two patients had only partial relief from bleeding, but declined additional APC therapy. No patient developed clinically evident progressive rectal wall abnormalities after APC, (post-APC follow-up range 4-13 months). Conclusions: Most

  10. Verification of the calculation program for brachytherapy planning system of high dose rate (PLATO)

    International Nuclear Information System (INIS)

    Almansa, J.; Alaman, C.; Perez-Alija, J.; Herrero, C.; Real, R. del; Ososrio, J. L.

    2011-01-01

    In our treatments are performed brachytherapy high dose rate since 2007. The procedures performed include gynecological intracavitary treatment and interstitial. The treatments are performed with a source of Ir-192 activity between 5 and 10 Ci such that small variations in treatment times can cause damage to the patient. In addition the Royal Decree 1566/1998 on Quality Criteria in radiotherapy establishes the need to verify the monitor units or treatment time in radiotherapy and brachytherapy. All this justifies the existence of a redundant system for brachytherapy dose calculation that can reveal any abnormality is present.

  11. Importance of brachytherapy technique in the management of primary carcinoma of the vagina

    International Nuclear Information System (INIS)

    Stock, R.G.; Mychalczak, B.; Armstrong, J.G.; Hoskins, W.; Harrison, L.B.

    1991-01-01

    Primary vaginal carcinoma is a rare malignancy. There is little information regarding the optimal treatment. Management has primarily been with external-beam radiation therapy and brachytherapy. This paper examines the importance of brachytherapy and the significance of its techniques in the treatment of this disease. Brachytherapy plays an important part in the management of primary vaginal carcinoma. External-beam radiation therapy alone is not an adequate treatment for this disease. For stages II and III disease, there is a trend toward improved disease-free survival with the use of a temporary interstitial implant compared to an intracavitary application

  12. Brachytherapy for cervix cancer: low-dose rate or high-dose rate brachytherapy – a meta-analysis of clinical trials

    Directory of Open Access Journals (Sweden)

    Stefano Eduardo J

    2009-04-01

    Full Text Available Abstract Background The literature supporting high-dose rate brachytherapy (HDR in the treatment of cervical carcinoma derives primarily from retrospective series. However, controversy still persists regarding the efficacy and safety of HDR brachytherapy compared to low-dose rate (LDR brachytherapy, in particular, due to inadequate tumor coverage for stage III patients. Whether LDR or HDR brachytherapy produces better results for these patients in terms of survival rate, local control rate and the treatment complications remain controversial. Methods A meta-analysis of RCT was performed comparing LDR to HDR brachytherapy for cervix cancer treated for radiotherapy alone. The MEDLINE, EMBASE, CANCERLIT and Cochrane Library databases, as well as abstracts published in the annual proceedings were systematically searched. We assessed methodological quality for each outcome by grading the quality of evidence using the Grading of Recommendations Assessment, Development and Evaluation (GRADE methodology. We used "recommend" for strong recommendations, and "suggest" for weak recommendations. Results Pooled results from five randomized trials (2,065 patients of HDR brachytherapy in cervix cancer showed no significant increase of mortality (p = 0.52, local recurrence (p = 0.68, or late complications (rectal; p = 0.7, bladder; p = 0.95 or small intestine; p = 0.06 rates as compared to LDR brachytherapy. In the subgroup analysis no difference was observed for overall mortality and local recurrence in patients with clinical stages I, II and III. The quality of evidence was low for mortality and local recurrence in patients with clinical stage I, and moderate for other clinical stages. Conclusion Our meta-analysis shows that there are no differences between HDR and LDR for overall survival, local recurrence and late complications for clinical stages I, II and III. By means of the GRADE system, we recommend the use of HDR for all clinical stages of cervix

  13. Brachytherapy for cervix cancer: low-dose rate or high-dose rate brachytherapy – a meta-analysis of clinical trials

    Science.gov (United States)

    Viani, Gustavo A; Manta, Gustavo B; Stefano, Eduardo J; de Fendi, Ligia I

    2009-01-01

    Background The literature supporting high-dose rate brachytherapy (HDR) in the treatment of cervical carcinoma derives primarily from retrospective series. However, controversy still persists regarding the efficacy and safety of HDR brachytherapy compared to low-dose rate (LDR) brachytherapy, in particular, due to inadequate tumor coverage for stage III patients. Whether LDR or HDR brachytherapy produces better results for these patients in terms of survival rate, local control rate and the treatment complications remain controversial. Methods A meta-analysis of RCT was performed comparing LDR to HDR brachytherapy for cervix cancer treated for radiotherapy alone. The MEDLINE, EMBASE, CANCERLIT and Cochrane Library databases, as well as abstracts published in the annual proceedings were systematically searched. We assessed methodological quality for each outcome by grading the quality of evidence using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology. We used "recommend" for strong recommendations, and "suggest" for weak recommendations. Results Pooled results from five randomized trials (2,065 patients) of HDR brachytherapy in cervix cancer showed no significant increase of mortality (p = 0.52), local recurrence (p = 0.68), or late complications (rectal; p = 0.7, bladder; p = 0.95 or small intestine; p = 0.06) rates as compared to LDR brachytherapy. In the subgroup analysis no difference was observed for overall mortality and local recurrence in patients with clinical stages I, II and III. The quality of evidence was low for mortality and local recurrence in patients with clinical stage I, and moderate for other clinical stages. Conclusion Our meta-analysis shows that there are no differences between HDR and LDR for overall survival, local recurrence and late complications for clinical stages I, II and III. By means of the GRADE system, we recommend the use of HDR for all clinical stages of cervix cancer. PMID:19344527

  14. Physics and quality assurance for brachytherapy - Part I: High dose rates

    International Nuclear Information System (INIS)

    Anderson, Lowell L.

    1997-01-01

    Purpose: To review the physical aspects of high dose rate (HDR) brachytherapy, including commissioning and quality assurance, source calibration and dose distribution measurements, and treatment planning methods. Following the introduction of afterloading in brachytherapy, development efforts to make it 'remote' culminated in 1964 with the near-simultaneous appearance of remote afterloaders in five major medical centers. Four of these machines were 'high dose rate', three employing 60Co and one (the GammaMed) using a single, cable-mounted 192Ir source. Stepping-motor source control was added to the GammaMed in 1974, making it the precursor of modern remote afterloaders, which are now suitable for interstitial, well as intracavitary brachytherapy by virtue of small source-diameter and indexer-accessed multiple channels. Because the 192Ir sources currently used in HDR remote afterloaders are supplied at a nominal air-kerma strength of 11.4 cGy cm2 s-1 (10 Ci), are not collimated in clinical use, and emit a significant fraction (15%) of photons at energies greater than 600 keV, shielding and facility design must be undertaken as carefully and thoroughly as for external beam installations. Licensing requirements of regulatory agencies must be met with respect both to maximum permissible dose limits and to the existence and functionality of safety devices (door interlocks, radiation monitors, etc.). Commissioning and quality assurance procedures that must be documented for HDR remote afterloading relate to (1) machine, applicator, guide-tube, and facility functionality checks, (2) source calibration, (3) emergency response readiness, (4) planning software evaluation, and (5) independent checks of clinical dose calculations. Source calibration checks must be performed locally, either by in-air measurement of air kerma strength or with a well ionization chamber calibrated (by an accredited standards laboratory) against an in-air measurement of air kerma strength for the

  15. Monte Carlo Dosimetry of the 60Co BEBIG High Dose Rate for Brachytherapy.

    Directory of Open Access Journals (Sweden)

    Luciana Tourinho Campos

    Full Text Available The use of high-dose-rate brachytherapy is currently a widespread practice worldwide. The most common isotope source is 192Ir, but 60Co is also becoming available for HDR. One of main advantages of 60Co compared to 192Ir is the economic and practical benefit because of its longer half-live, which is 5.27 years. Recently, Eckert & Ziegler BEBIG, Germany, introduced a new afterloading brachytherapy machine (MultiSource®; it has the option to use either the 60Co or 192Ir HDR source. The source for the Monte Carlo calculations is the new 60Co source (model Co0.A86, which is referred to as the new BEBIG 60Co HDR source and is a modified version of the 60Co source (model GK60M21, which is also from BEBIG.The purpose of this work is to obtain the dosimetry parameters in accordance with the AAPM TG-43U1 formalism with Monte Carlo calculations regarding the BEBIG 60Co high-dose-rate brachytherapy to investigate the required treatment-planning parameters. The geometric design and material details of the source was provided by the manufacturer and was used to define the Monte Carlo geometry. To validate the source geometry, a few dosimetry parameters had to be calculated according to the AAPM TG-43U1 formalism. The dosimetry studies included the calculation of the air kerma strength Sk, collision kerma in water along the transverse axis with an unbounded phantom, dose rate constant and radial dose function. The Monte Carlo code system that was used was EGSnrc with a new cavity code, which is a part of EGS++ that allows calculating the radial dose function around the source. The spectrum to simulate 60Co was composed of two photon energies, 1.17 and 1.33 MeV. Only the gamma part of the spectrum was used; the contribution of the electrons to the dose is negligible because of the full absorption by the stainless-steel wall around the metallic 60Co. The XCOM photon cross-section library was used in subsequent simulations, and the photoelectric effect, pair

  16. Tolerance of human skin applying pulsed brachytherapy with large afterloading moulds

    International Nuclear Information System (INIS)

    Fritz, Peter; Hensley, Frank W.; Berns, Christiane; Schraube, Peter; Wannenmacher, Michael

    1995-01-01

    . Early skin reactions: marked erythema (8(11)) fields; >50% epitheliolysis: (3(11)) fields. Intermediate skin reactions: pigmentation/atrophy: (9(11)) fields; marked teleangiectasia: (2(11)) fields. Moist desquamation only occured after the final PDR-session, always encompassed more then half the irradiated area and healed within two weeks. Marked teleangiektasia was already seen 6 month after PDR treatment. Conclusions: Pulsed brachytherapy is an extraordinarily effective measure for cutaneous metastases from breast cancer. It seems to be tolerated with acceptable toxicity even on pre-irradiated skin. Skin reactions are comparable to the sequelae of orthovolt irradiation. Marked teleangiectasia on 5 patients was observed at much earlier times than known from fractionated external beam therapy. In pre-irradiated areas PDR doses should be restricted to 40 - 45 Gy. PDR doses of 50 Gy seem to be the limit for tolerance even in not previously irradiated fields. The fact that two sessions of 20-25 Gy PDR was tolerated without severe skin damage supports the prediction that PDR is closer to CLDR- than to HDR-brachytherapy. The PDR-mould technique is economically advantageous in comparison to external beam therapy which would require several weeks

  17. Theoretical and experimental determination of dosimetric characteristics for ADVANTAGETM Pd-103 brachytherapy source

    International Nuclear Information System (INIS)

    Meigooni, Ali S.; Dini, Sharifeh A.; Awan, Shahid B.; Dou, Kai; Koona, Rafiq A.

    2006-01-01

    ADVANTAGE TM Pd-103 brachytherapy source has been recently introduced by IsoAid TM for prostate permanent implants. Dosimetric characteristics (Dose rate constant, radial dose function, 2D-, and 1D-anisotropy functions) of this source model have been determined using both theoretical and experimental methods, following the updated TG-43U1 protocol. Derivation of the dose rate constant was based on recent NIST WAFAC calibration performed in accordance with the 1999 Standards. Measurements were performed in Solid Water TM using LiF TLD chips and the theoretical calculations were performed in Solid Water TM and liquid water phantom materials using PTRAN Monte Carlo code. The results of the Monte Carlo simulation have shown a dose rate constant of 0.69 cGy h -1 U -1 in liquid water and 0.67 cGy h -1 U -1 in Solid Water TM medium. The measured dose rate constant in Solid Water TM was found to be 0.68±8% cGy h -1 U -1 , which is in a good agreement (within ±5%) to the Monte Carlo simulated data. The 2D- and 1D-anisotropy functions of the ADVANTAGE TM Pd-103 source were calculated for radial distances ranging from 0.5 to 5.0 cm. Radial dose function was determined for radial distances ranging from 0.2 to 8.0 cm using line source approximation. All these calculations are based on L eff equal to 3.61 cm, calculated following TG-43U1 recommendations. The tabulated data for 2D-anisotropy function, 1D-anisotropy function, dose rate constant and radial dose function have been produced for clinical application of this source model

  18. The role of brachytherapy in the definitive management of prostate cancer; Place de la curietherapie dans le traitement du cancer prostatique localise

    Energy Technology Data Exchange (ETDEWEB)

    Crook, J. [British Columbia Cancer Agency, Center for the Southern Interior, 399, Royal Avenue, Kelowna, British Columbia, V1Y 5L33 (Canada)

    2011-06-15

    Over the past two decades, brachytherapy has played an ever expanding role in the definitive radiotherapy of prostate cancer. Brachytherapy surpasses external beam radiotherapy in its ability to deliver intense intra-prostatic dose escalation. Although initially low dose rate permanent seed brachytherapy was favored for favorable risk prostate cancers, and high dose rate temporary brachytherapy for intermediate and advanced disease, both types of brachytherapy now have a place across all the risk groups of localized prostate cancer. This article will review indications and patient selection, planning and technical aspects, toxicity and efficacy for both low and high dose rate prostate brachytherapy. (author)

  19. Digital linear accelerator: The advantages for radiotherapy

    International Nuclear Information System (INIS)

    Andric, S.; Maksimovic, M.; Dekic, M.; Clark, T.

    1998-01-01

    Technical performances of Digital Linear Accelerator were presented to point out its advantages for clinical radiotherapy treatment. The accelerator installation is earned out at Military Medical Academy, Radiotherapy Department, by Medes and Elekta companies. The unit offers many technical advantages with possibility of introduction new conformal treatment techniques as stereotactic radiosurgery, total body and total skin irradiation. In the paper are underlined advantages in relation to running conventional accelerator units at Yugoslav radiotherapy departments, both from technical and medical point of view. (author)

  20. SU-F-BRA-06: Dose Distributions for the CivaSheet Pd-103 Directional Brachytherapy Device

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, MJ [Tufts University School of Medicine, Boston, MA (United States)

    2015-06-15

    Purpose: A flexible polymer membrane (CivaSheet) has been developed by CivaTech Oncology, Inc. (Research Triangle Park, NC) for permanent brachytherapy. Distributed throughout the array are small plastic disks containing Pd-103 and gold foil shielding on one side to provide a directional dose distribution and facilitate imaging. This study evaluated dosimetry for the CivaSheet. Methods: Manufacturer-provided dimensional and compositional information for the device were compared to physical samples for validation of design information, then entered into the MCNP6 radiation transport code for dosimetry simulations. Three device sizes (6×6, 6×12, or 6×18 disk-arrays) were simulated as the membrane can be custom-sized preceding surgical placement. Dose to water was estimated with 0.01 cm resolution from the surface to 10 cm on both sides of the device. Because this is a novel device with calibration methods under development, results were normalized using DVHs to provide 90% prescription coverage to a plane positioned 0.5 cm from the front surfaces. This same normalization was used for creating isodose distributions. Results: Planar dose distributions of flat CivaSheets were relatively homogeneous with acceptable dose uniformity variations. Differences in the results between the differently sized CivaSheets were not significant. At 0.5 mm, 87% of the target volume was within the therapeutic dose range. Dose hotspots on the CivaSheet forward surfaces were directly above the disks. However, dose hotspots on the rear-facing surfaces were positioned between the disks. Doses in contact with the front surface were similar to those observed for currently available brachytherapy sources. Maximum doses that occurred on the rear surface were approximately 55 times lower than the dose on the front surface. Conclusion: Monte Carlo calculations validated the directional capabilities and advantageous dosimetry of the new Pd-103 brachytherapy device. It appears feasible to re

  1. MRI-guided brachytherapy for cancer of the oesophagus

    International Nuclear Information System (INIS)

    Aydin, H.; Bachmann, G.; Lieven, H. von; Sens, M.

    1993-01-01

    A method of brachytherapy treatment planning using MRI is presented. In 13 patients with inoperable squamous cell cancer of the thoracic oesophagus an intraluminal afterloading boost with MRI assistance was performed. A new type of flexible catheter was filled with 1/100 diluted Gd-DTPA and introduced into the oesophagus before performing MRI in the sagittal, coronal and transverse planes. One sagittal or coronal picture which showed the catheter tip and the residual cancer was magnified to ''life size''. The position of the catheter was corrected if necessary and the treatment volume decided. The contrast medium was then aspirated out of the catheter and a thinner afterloading catheter pushed into the outer catheter. The patient was moved immediately to the afterloading room and received the first dose of boost irradiation. This method allows much more precise brachytherapy planning since it shows the cancer and the catheter together. It is superior to localising the cancer with a barium swallow or endoscopy because MRI visualises the whole extent of the residual cancer, which can then be covered with the necessary dose. (orig.)

  2. Should helical tomotherapy replace brachytherapy for cervical cancer? Case report.

    Science.gov (United States)

    Hsieh, Chen-Hsi; Wei, Ming-Chow; Hsu, Yao-Peng; Chong, Ngot-Swan; Chen, Yu-Jen; Hsiao, Sheng-Mou; Hsieh, Yen-Ping; Wang, Li-Ying; Shueng, Pei-Wei

    2010-11-23

    Stereotactic body radiation therapy (SBRT) administered via a helical tomotherapy (HT) system is an effective modality for treating lung cancer and metastatic liver tumors. Whether SBRT delivered via HT is a feasible alternative to brachytherapy in treatment of locally advanced cervical cancer in patients with unusual anatomic configurations of the uterus has never been studied. A 46-year-old woman presented with an 8-month history of abnormal vaginal bleeding. Biopsy revealed squamous cell carcinoma of the cervix. Magnetic resonance imaging (MRI) showed a cervical tumor with direct invasion of the right parametrium, bilateral hydronephrosis, and multiple uterine myomas. International Federation of Gynecology and Obstetrics (FIGO) stage IIIB cervical cancer was diagnosed. Concurrent chemoradiation therapy (CCRT) followed by SBRT delivered via HT was administered instead of brachytherapy because of the presence of multiple uterine myomas with bleeding tendency. Total abdominal hysterectomy was performed after 6 weeks of treatment because of the presence of multiple uterine myomas. Neither pelvic MRI nor results of histopathologic examination at X-month follow-up showed evidence of tumor recurrence. Only grade 1 nausea and vomiting during treatment were noted. Lower gastrointestinal bleeding was noted at 14-month follow-up. No fistula formation and no evidence of haematological, gastrointestinal or genitourinary toxicities were noted on the most recent follow-up. CCRT followed by SBRT appears to be an effective and safe modality for treatment of cervical cancer. Larger-scale studies are warranted.

  3. Should helical tomotherapy replace brachytherapy for cervical cancer? Case report

    Directory of Open Access Journals (Sweden)

    Chen Yu-Jen

    2010-11-01

    Full Text Available Abstract Background Stereotactic body radiation therapy (SBRT administered via a helical tomotherapy (HT system is an effective modality for treating lung cancer and metastatic liver tumors. Whether SBRT delivered via HT is a feasible alternative to brachytherapy in treatment of locally advanced cervical cancer in patients with unusual anatomic configurations of the uterus has never been studied. Case Presentation A 46-year-old woman presented with an 8-month history of abnormal vaginal bleeding. Biopsy revealed squamous cell carcinoma of the cervix. Magnetic resonance imaging (MRI showed a cervical tumor with direct invasion of the right parametrium, bilateral hydronephrosis, and multiple uterine myomas. International Federation of Gynecology and Obstetrics (FIGO stage IIIB cervical cancer was diagnosed. Concurrent chemoradiation therapy (CCRT followed by SBRT delivered via HT was administered instead of brachytherapy because of the presence of multiple uterine myomas with bleeding tendency. Total abdominal hysterectomy was performed after 6 weeks of treatment because of the presence of multiple uterine myomas. Neither pelvic MRI nor results of histopathologic examination at X-month follow-up showed evidence of tumor recurrence. Only grade 1 nausea and vomiting during treatment were noted. Lower gastrointestinal bleeding was noted at 14-month follow-up. No fistula formation and no evidence of haematological, gastrointestinal or genitourinary toxicities were noted on the most recent follow-up. Conclusions CCRT followed by SBRT appears to be an effective and safe modality for treatment of cervical cancer. Larger-scale studies are warranted.

  4. Monte Carlo Simulations Validation Study: Vascular Brachytherapy Beta Sources

    International Nuclear Information System (INIS)

    Orion, I.; Koren, K.

    2004-01-01

    During the last decade many versions of angioplasty irradiation treatments have been proposed. The purpose of this unique brachytherapy is to administer a sufficient radiation dose into the vein walls in order to prevent restonosis, a clinical sequel to balloon angioplasty. The most suitable sources for this vascular brachytherapy are the β - emitters such as Re-188, P-32, and Sr-90/Y-90, with a maximum energy range of up to 2.1 MeV [1,2,3]. The radioactive catheters configurations offered for these treatments can be a simple wire [4], a fluid filled balloon or a coated stent. Each source is differently positioned inside the blood vessel, and the emitted electrons ranges therefore vary. Many types of sources and configurations were studied either experimentally or with the use of the Monte Carlo calculation technique, while most of the Monte Carlo simulations were carried out using EGS4 [5] or MCNP [6]. In this study we compared the beta-source absorbed-dose versus radial-distance of two treatment configurations using MCNP and EGS4 simulations. This comparison was aimed to discover the differences between the MCNP and the EGS4 simulation code systems in intermediate energies electron transport

  5. Brachytherapy dosimetry parameters calculated for a 131Cs source

    International Nuclear Information System (INIS)

    Rivard, Mark J.

    2007-01-01

    A comprehensive analysis of the IsoRay Medical model CS-1 Rev2 131 Cs brachytherapy source was performed. Dose distributions were simulated using Monte Carlo methods (MCNP5) in liquid water, Solid TM , and Virtual Water TM spherical phantoms. From these results, the in-water brachytherapy dosimetry parameters have been determined, and were compared with those of Murphy et al. [Med. Phys. 31, 1529-1538 (2004)] using measurements and simulations. Our results suggest that calculations obtained using erroneous cross-section libraries should be discarded as recommended by the 2004 AAPM TG-43U1 report. Our MC Λ value of 1.046±0.019 cGy h -1 U -1 is within 1.3% of that measured by Chen et al. [Med. Phys. 32, 3279-3285 (2005)] using TLDs and the calculated results of Wittman and Fisher [Med. Phys. 34, 49-54 (2007)] using MCNP5. Using the discretized energy approach of Rivard [Appl. Radiat. Isot. 55, 775-782 (2001)] to ascertain the impact of individual 131 Cs photons on radial dose function and anisotropy functions, there was virtual equivalence of results for 29.461≤E γ ≤34.419 keV and for a mono-energetic 30.384 keV photon source. Comparisons of radial dose function and 2D anisotropy function data are also included, and an analysis of material composition and cross-section libraries was performed

  6. Fricke gel-layer dosimetry in HDR brachytherapy

    International Nuclear Information System (INIS)

    Gambarini, G.; Negri, A.; Carrara, M.; Marchesini, R.

    2008-01-01

    Full text: In the last decade, technological improvements in radiotherapy have been significant and consequently the use and importance of radiotherapy in cancer treatment have increased greatly. In brachytherapy, new possibilities have been opened by the impressive progresses in 3D imaging, by the development of sophisticated techniques for modern afterloaders and by the constantly increasing speed and capacity of computers. However, these methodological improvements require corresponding improvements in the dosimetry methods, in order to ensure that the values calculated with computer treatment planning systems, adopted in the clinical praxis, agree with the delivered dose distributions. Fricke gel-layer dosimeters (FGLD) are under study by our group as a reliable alternative to films, semiconductors arrays or thermoluminescent dosimeters (TLDs). In the last years, we have significantly improved this technique by defining the FGLD best chemical composition, by optimizing the image acquisition assessment and by developing a dedicated software for image analysis. In this study, experimental measurements of planar dose distributions of a clinical 192 Ir source (Microselectron HDR, Nucletron) obtained by irradiating a series of piled-up FGL dosimeters in a tissue-equivalent phantom are presented. The obtained results were in accordance to TLD measurements and to treatment planning system (Plato, Nucletron) calculations. FGLD have proven to be a reliable tool to achieve HDR brachytherapy dose distribution measurements

  7. Factors affecting radiation injury after interstitial brachytherapy for brain tumors

    International Nuclear Information System (INIS)

    Leibel, S.A.; Gutin, P.H.; Davis, R.L.

    1991-01-01

    The effects of brachytherapy on normal brain tissue are not easily delineated in the clinical setting because of the presence of concurrent radiation-induced changes in the coexistent brain tumor. Sequential morphologic studies performed after the implantation of radioactive sources into the brains of experimental animals have provided a better understanding of the character and magnitude of the structural changes produced by interstitial irradiation on normal brain tissue. Furthermore, the clinical experience accumulated thus far provides not only relevant information, but also some guidelines for future treatment policies. In this paper, the authors summarize the experimental findings and review the pathologic and clinical features of brain injury caused by interstitial brachytherapy. A number of studies in the older literature examined the effects of radioisotopes such as radium-226 (38--43), radon-22 (44--46), gold-198 (29,47--50), tantalum-182 (29,51,52) yttrium-9- (50,53,54), and cobalt-60 (29,50,55). This review is restricted to low- and high-activity encapsulated iodine-125 ( 125 I) and iridium-192 ( 192 Ir), the isotopes that are most commonly used in current clinical practice

  8. Should helical tomotherapy replace brachytherapy for cervical cancer? Case report

    International Nuclear Information System (INIS)

    Hsieh, Chen-Hsi; Wei, Ming-Chow; Hsu, Yao-Peng; Chong, Ngot-Swan; Chen, Yu-Jen; Hsiao, Sheng-Mou; Hsieh, Yen-Ping; Wang, Li-Ying; Shueng, Pei-Wei

    2010-01-01

    Stereotactic body radiation therapy (SBRT) administered via a helical tomotherapy (HT) system is an effective modality for treating lung cancer and metastatic liver tumors. Whether SBRT delivered via HT is a feasible alternative to brachytherapy in treatment of locally advanced cervical cancer in patients with unusual anatomic configurations of the uterus has never been studied. A 46-year-old woman presented with an 8-month history of abnormal vaginal bleeding. Biopsy revealed squamous cell carcinoma of the cervix. Magnetic resonance imaging (MRI) showed a cervical tumor with direct invasion of the right parametrium, bilateral hydronephrosis, and multiple uterine myomas. International Federation of Gynecology and Obstetrics (FIGO) stage IIIB cervical cancer was diagnosed. Concurrent chemoradiation therapy (CCRT) followed by SBRT delivered via HT was administered instead of brachytherapy because of the presence of multiple uterine myomas with bleeding tendency. Total abdominal hysterectomy was performed after 6 weeks of treatment because of the presence of multiple uterine myomas. Neither pelvic MRI nor results of histopathologic examination at X-month follow-up showed evidence of tumor recurrence. Only grade 1 nausea and vomiting during treatment were noted. Lower gastrointestinal bleeding was noted at 14-month follow-up. No fistula formation and no evidence of haematological, gastrointestinal or genitourinary toxicities were noted on the most recent follow-up. CCRT followed by SBRT appears to be an effective and safe modality for treatment of cervical cancer. Larger-scale studies are warranted

  9. Inverse treatment planning based on MRI for HDR prostate brachytherapy

    International Nuclear Information System (INIS)

    Citrin, Deborah; Ning, Holly; Guion, Peter; Li Guang; Susil, Robert C.; Miller, Robert W.; Lessard, Etienne; Pouliot, Jean; Xie Huchen; Capala, Jacek; Coleman, C. Norman; Camphausen, Kevin; Menard, Cynthia

    2005-01-01

    Purpose: To develop and optimize a technique for inverse treatment planning based solely on magnetic resonance imaging (MRI) during high-dose-rate brachytherapy for prostate cancer. Methods and materials: Phantom studies were performed to verify the spatial integrity of treatment planning based on MRI. Data were evaluated from 10 patients with clinically localized prostate cancer who had undergone two high-dose-rate prostate brachytherapy boosts under MRI guidance before and after pelvic radiotherapy. Treatment planning MRI scans were systematically evaluated to derive a class solution for inverse planning constraints that would reproducibly result in acceptable target and normal tissue dosimetry. Results: We verified the spatial integrity of MRI for treatment planning. MRI anatomic evaluation revealed no significant displacement of the prostate in the left lateral decubitus position, a mean distance of 14.47 mm from the prostatic apex to the penile bulb, and clear demarcation of the neurovascular bundles on postcontrast imaging. Derivation of a class solution for inverse planning constraints resulted in a mean target volume receiving 100% of the prescribed dose of 95.69%, while maintaining a rectal volume receiving 75% of the prescribed dose of <5% (mean 1.36%) and urethral volume receiving 125% of the prescribed dose of <2% (mean 0.54%). Conclusion: Systematic evaluation of image spatial integrity, delineation uncertainty, and inverse planning constraints in our procedure reduced uncertainty in planning and treatment

  10. Methodology of quality control for brachytherapy {sup 125}I seeds

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Eduardo S.; Zeituni, Carlos A.; Manzoli, Jose E.; Rostelato, Maria Elisa C.M. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: esmoura@ipen.br

    2007-07-01

    This paper presents the methodology of quality control of {sup 125}I seeds used for brachytherapy. The {sup 125}I seeds are millimeter titanium capsules widely used in permanent implants of prostate cancer, allowing a high dose within the tumour and a low dose on the surrounding tissues, with very low harm to the other tissues. Besides, with this procedure, the patients have a low impotence rate and a small incidence of urinary incontinence. To meet the medical standards, an efficient quality control is necessary, showing values with the minimum uncertainness possible, concerning the seeds dimensions and their respective activities. The medical needles are used to insert the seeds inside the prostate. The needles used in brachytherapy have an internal diameter of 1.0 mm, so it is necessary {sup 125}I seeds with an external maximum diameter of 0.85 mm. For the seeds and the spacer positioning on the planning sheet, the seeds must have a length between 4.5 and 5.0 mm. The activities must not vary more than 5% in each batch of {sup 125}I seeds. For this methodology, we used two ionization chamber detectors and one caliper. In this paper, the methodology using one control batch with 75 seeds manufactured by GE Health care Ltd is presented. (author)

  11. Observations on rotating needle insertions using a brachytherapy robot

    International Nuclear Information System (INIS)

    Meltsner, M A; Ferrier, N J; Thomadsen, B R

    2007-01-01

    A robot designed for prostate brachytherapy implantations has the potential to greatly improve treatment success. Much of the research in robotic surgery focuses on measuring accuracy. However, there exist many factors that must be optimized before an analysis of needle placement accuracy can be determined. Some of these parameters include choice of the needle type, insertion velocity, usefulness of the rotating needle and rotation speed. These parameters may affect the force at which the needle interacts with the tissue. A reduction in force has been shown to decrease the compression of the prostate and potentially increase the accuracy of seed position. Rotating the needle as it is inserted may reduce frictional forces while increasing accuracy. However, needle rotations are considered to increase tissue damage due to the drilling nature of the insertion. We explore many of the factors involved in optimizing a brachytherapy robot, and the potential effects each parameter may have on the procedure. We also investigate the interaction of rotating needles in gel and suggest the rotate-cannula-only method of conical needle insertion to minimize any tissue damage while still maintaining the benefits of reduced force and increased accuracy

  12. High dose rate brachytherapy in treatment of high grade astrocytomas

    International Nuclear Information System (INIS)

    Garcia-Alejo, R.; Delgado, J.M.; Cerro, E. del; Torres, J.J.; Martinez, R.

    1996-01-01

    From May 1994 to June 1995, 18 patients with high grade astrocytomas were entered prospectively on a selective protocol combining surgery, external beam radiotherapy, stereotactic interstitial implantation with HDR Iridium 192 and chemotherapy. Only those patients with tumor size 100cc or less average dimension, high grade astrocytoma, Karnofsky 70 or greater, unilateral, circumscribed, unifocal, tumor stable or responding to external radiation and supratentorial were included in the study. Ages ranged from 16 to 69 years. There were 13 males and 5 females. Surgery consisted of biopsy only in 3 patients, subtotal resection in 11, and gross total resection in 4 patients. Focal external beam radiation portals included the contrast enhancing mass on CT scan plus a 3 cm margin. The protocol called for minimum tumor dose of 60 Gy to be given in 2 Gy daily fractions. An interstitial brachytherapy boost was to be performed two weeks after the conclusion of external beam radiation. The dose was 30 Gy in 4 fractions. The authors analyze on basis on their personal experience, the possibilities and the limits offered by this therapeutic procedure in neuro-oncology. Using stereotactic techniques, interstitial brachytherapy of brain tumors was technically possible with negligible acute morbidity and mortality, and appeared to be effective and may provide for an increase in tumor control in selected cases

  13. Prostate HDR brachytherapy catheter displacement between planning and treatment delivery

    International Nuclear Information System (INIS)

    Whitaker, May; Hruby, George; Lovett, Aimee; Patanjali, Nitya

    2011-01-01

    Background and purpose: HDR brachytherapy is used as a conformal boost for treating prostate cancer. Given the large doses delivered, it is critical that the volume treated matches that planned. Our outpatient protocol comprises two 9 Gy fractions, two weeks apart. We prospectively assessed catheter displacement between CT planning and treatment delivery. Materials and methods: Three fiducial markers and the catheters were implanted under transrectal ultrasound guidance. Metal marker wires were inserted into 4 reference catheters before CT; marker positions relative to each other and to the marker wires were measured from the CT scout. Measurements were repeated immediately prior to treatment delivery using pelvic X-ray with marker wires in the same reference catheters. Measurements from CT scout and film were compared. For displacements of 5 mm or more, indexer positions were adjusted prior to treatment delivery. Results: Results are based on 48 implants, in 25 patients. Median time from planning CT to treatment delivery was 254 min (range 81–367 min). Median catheter displacement was 7.5 mm (range −2.9–23.9 mm), 67% of implants had displacement of 5 mm or greater. Displacements were predominantly caudal. Conclusions: Catheter displacement can occur in the 1–3 h between the planning CT scan and treatment. It is recommended that departments performing HDR prostate brachytherapy verify catheter positions immediately prior to treatment delivery.

  14. Intravascular ultrasound based dose assessment in endovascular brachytherapy

    International Nuclear Information System (INIS)

    Catalano, Gianpiero; Tamburini, Vittorio; Colombo, Antonio; Nishida, Takahiro; Parisi, Giovanni; Mazzetta, Chiara; Orecchia, Roberto

    2003-01-01

    Background: the role of endovascular brachytherapy in restenosis prevention is well documented. Dose is usually prescribed at a fixed distance from the source axis by angiographic quantification of vessel diameter. Recently, intravascular ultrasound (IVUS) was introduced in dose prescription, allowing a better evaluation of the vessel anatomy. This study retrospectively explores the difference between prescription following angiographic vessel sizing and delivered dose calculated with IVUS. Methods and results: Seventeen lesions were studied with IVUS, identifying on irradiated segment, three sections on which measuring minimal and maximal distance from the centre of IVUS catheter to the adventitia; using dedicated software, corresponding doses were calculated. The dose ranged widely, with maximal and minimal values of 71.6 and 4.9 Gy; furthermore, heterogeneity in dose among different sections was observed. In the central section, the maximal dose was 206% of the one prescribed with the QCA model at 2 mm from the source axis, while the minimal dose was 96%. In proximal and distal sections, respective values were 182, 45, 243, and 122%. Conclusions: Our analysis confirmed the dose inhomogeneity delivered with an angiographic fixed-dose prescription strategy. A dose variation was found along the irradiated segment due to the differences in vessel thickness. IVUS emerged as an important tool in endovascular brachytherapy, especially for irregular-shaped vessels

  15. Results of brachytherapy boost in high risk breast cancer patients

    International Nuclear Information System (INIS)

    Battermann, J.J.

    1996-01-01

    Introduction: in breast conserving therapy the role of brachytherapy as a boost after whole breast irradiation is not clear. The series from the Netherlands Cancer Institute show a very high local control rate, but the question could be raised whether all these patients need a brachy boost. Therefore, it was decided at our institute, to deliver a brachy boost only to high risk patients, viz. patients with incomplete resection margins and/or extensive in situ cancer (ECI). Materials and methods: in the period 1988 through 1993 a total of 148 patients with 151 breast tumours received a boost on the tumour bed using brachytherapy. Age varied from 25 till 74 years, with a mean age of 52.3 years. Incomplete resection margins were found in 60 patients, ECI in 31 and both in 49 patients. In the majority of patients, the ECI component was not completely removed. T-stage was unknown in 9 patients. T1 in 83, T2 in 49 and T3 in 10. Nodal status was N0 in 119 and N1 in 33 patients. Infiltrating duct carcinoma was the most common histology. No infiltrating growth was found in 6 patients, but one patient presented a positive node. The interval period between day of operation and day of brachytherapy implantation was between 3 and 4 months in 62%. The mean interval between completion of beam irradiation and day of implantation was 18 days, while 12 patients received their brachytherapy previous to the beam irradiation. External irradiation was with two tangential fields and a total dose of 50 Gy in 25 fractions over 6 weeks (9 fractions in two weeks). The number of needles in two planes. Most patients were implanted under local anaesthesia. Dose rate in 97 patients was 51 - 60 cGy/h. Results: follow-up for patients alive varied from 2 years till 7 years with a mean follow-up period of 4 years. One hundred and twenty five patients are alive, including 6 patients with manifest metastases. Local recurrence was encountered in 8 patients (interval 14 - 60 months, mean 30 months), with

  16. Treatment of localized prostate cancer with brachytherapy: six years experience

    International Nuclear Information System (INIS)

    Martinez, Pablo; Dourado, Leandro; Giudice, Carlos; Villamil, Wenceslao; Palacios, Victor; Sardi, Mabel; Damia, Oscar

    2006-01-01

    The usage of ultrasound scan to perform prostate biopsy punctures, the new radiation therapies and the more accurate selection of patients has allowed brachytherapy to play an important role in the treatment of the localized pathology. The objective of this paper is to review the results obtained when treating the localized prostate cancer by using brachytherapy with mud 125. Materials and methods: Between December 1999 and July 2006, 100 prostate cancer patients were treated at the Hospital Italiano de Buenos Aires, using brachytherapy with mud 125. One of the patients was treated with a combined therapy (brachytherapy + external radiotherapy). For that reason, the patient was not taken into consideration for this paper. The average age was 65.95 (52-79). The tumoral stages were T1c in 81% of the patients and T2a in 19% of them. The PSA was always below 15 ng/ml, with an average of 8.92 ng/ml; inferior to 10 ng/ml in 72 patients and between 10 and 15 ng/m ml in 28 of them. The average prostate volume was 34.68 c.c. (18.70 c.c.-58.00 c.c.). The combined Gleason score was below 6 (except for three patients with Gleason 7 who had a PSA below 10, stage T1c). The dose used was 16,000 cGy as recommended by the TG43. The energy charge of each seed was between 0.28 and 0.40 mci. Thirty days later, a prostate axial computer tomography was carried out every 3 mm. with a scanning set every 5 mm. to perform a dosimetric control of the implant. Results: The average age was 65.95 (52-79). The control computer tomography showed an adequate dosimetric coverage for the entire prostate volume, with a maximum urethral dose not above 400 Gy and a maximum rectal dose below 100 Gy. The PSA of all patients decreased to a normal level 6 months after the treatment started. The average follow-up of the 71 patients able to be tested from an oncological perspective lasted 31.15 months, with a minimum of 18 and a maximum of 72 months. Currently, seven patients of those tested (9.86%) manifest

  17. Results in patients treated with high-dose-rate interstitial brachytherapy for oral tongue cancer

    International Nuclear Information System (INIS)

    Yamamoto, Michinori; Shirane, Makoto; Ueda, Tsutomu; Miyahara, Nobuyuki

    2006-01-01

    Eight patients were treated with high-dose-rate interstitial brachytherapy for oral tongue cancer between September 2000 and August 2004. The patient distribution was 1 T1, 5 T2, 1 T3, and 1 T4a. Patients received 50-60 Gy in 10 fractions over seven days with high-dose-rate brachytherapy. Six of the eight patients were treated with a combination of external beam radiotherapy (20-30 Gy) and interstitial brachytherapy. The two-year primary local control rate was 83% for initial case. High-dose-rate brachytherapy was performed safely even for an aged person, and was a useful treatment modality for oral tongue cancer. (author)

  18. Postal auditing methodology used to find out the performance of high rate brachytherapy equipment

    International Nuclear Information System (INIS)

    Morales, J.A.; Campa, R.

    1998-01-01

    This work describes results from a methodology implemented at the Secondary Laboratory for Dosimetric Calibration at CPHR used to check the brachytherapy performance at high doses rate using Cesium 137 or cobalt 60 sources

  19. Analysis of yield advantage in mixed cropping

    NARCIS (Netherlands)

    Ranganathan, R.

    1993-01-01

    It has long been recognized that mixed cropping can give yield advantages over sole cropping, but methods that can identify such yield benefits are still being developed. This thesis presents a method that combines physiological and economic principles in the evaluation of yield advantage.

  20. Competitive advantage, what does it really mean?

    NARCIS (Netherlands)

    dr. Haijing de Haan; Hongjue Yan

    2013-01-01

    Competitive advantage is probably the most popular business concept today (Mooney, 2007). This article aims to investigate critically the discourse on competitive advantage, as expressed by business literature, by locating its meanings in the public higher education sector. This research reveals

  1. Strategic Positioning for Sustainable Competitive Advantage: An ...

    African Journals Online (AJOL)

    Organizational learning is increasingly being considered as one of the fundamental sources of competitive advantage within the context of strategic management. However, most literature has not clearly linked organizational learning with sustainable competitive advantage. This paper, therefore, explores and discusses the ...

  2. Analisis Dampak Servant Leadership Terhadap Competitive Advantage

    OpenAIRE

    Oktavia, Pek Nike

    2014-01-01

    Penelitian ini bertujuan untuk mengetahui apakah terdapat dampak antara Servant Leadership terhadap Competitve Advantage, Employee Empowerment dan Organizational Learning. Variabel Servant Leadership diukur dari lima indikator, yaitu altruistic calling, emotional healing, wisdom, persuasive mapping, dan organizational stewardship. Variabel Competitive Advantage diukur dari lima indikator, yaitu price/cost, quality, delivery dependability, time to market, dan product innovation. Variabel Emplo...

  3. Mechanistic Basis of Cocrystal Dissolution Advantage.

    Science.gov (United States)

    Cao, Fengjuan; Amidon, Gordon L; Rodríguez-Hornedo, Naír; Amidon, Gregory E

    2018-01-01

    Current interest in cocrystal development resides in the advantages that the cocrystal may have in solubility and dissolution compared with the parent drug. This work provides a mechanistic analysis and comparison of the dissolution behavior of carbamazepine (CBZ) and its 2 cocrystals, carbamazepine-saccharin (CBZ-SAC) and carbamazepine-salicylic acid (CBZ-SLC) under the influence of pH and micellar solubilization. A simple mathematical equation is derived based on the mass transport analyses to describe the dissolution advantage of cocrystals. The dissolution advantage is the ratio of the cocrystal flux to drug flux and is defined as the solubility advantage (cocrystal to drug solubility ratio) times the diffusivity advantage (cocrystal to drug diffusivity ratio). In this work, the effective diffusivity of CBZ in the presence of surfactant was determined to be different and less than those of the cocrystals. The higher effective diffusivity of drug from the dissolved cocrystals, the diffusivity advantage, can impart a dissolution advantage to cocrystals with lower solubility than the parent drug while still maintaining thermodynamic stability. Dissolution conditions where cocrystals can display both thermodynamic stability and a dissolution advantage can be obtained from the mass transport models, and this information is useful for both cocrystal selection and formulation development. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. Effect of brachytherapy technique and patient characteristics on cervical cancer implant dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Anker, Christopher J., E-mail: chris.anker@hci.utah.edu [Department of Radiation Oncology, Huntsman Cancer Hospital, University of Utah, Salt Lake City, UT (United States); O' Donnell, Kristen [Department of Radiation Oncology, The University of Arizona, Tucson, AZ (United States); Boucher, Kenneth M. [Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT (United States); Gaffney, David K. [Department of Radiation Oncology, Huntsman Cancer Hospital, University of Utah, Salt Lake City, UT (United States)

    2013-01-01

    Our purpose was to evaluate the relationship between brachytherapy technique and patient characteristics on dose to organs-at-risk (OARs) in patients undergoing high dose rate (HDR) brachytherapy for cervical cancer. From 1998 to 2008, 31 patients with cervical cancer with full dosimetric data were identified who received definitive external-beam radiation and HDR brachytherapy with tandem and ovoid applicators. Doses were recorded at point A, the International Commission on Radiation Units and Measurements (ICRU)-38 rectal point, the ICRU-38 bladder point, the vaginal surface, and the pelvic sidewall. Generalized estimating equations were used to determine the significance of changes in OAR to point A dose ratios with differences in brachytherapy technique or patient characteristics. Patients underwent a median of 5 brachytherapy procedures (range, 3 to 5), with a total of 179 procedures for 31 patients. For all brachytherapy treatments, the average ratios between the doses for the rectal, bladder, vaginal surface, and pelvic sidewall reference points to those at point A were 0.49, 0.59, 1.15, and 0.17, respectively. In general, decreased OAR dose was associated with a lower stage, younger age, increased ovoid size, increased tandem length, and earlier implant number. Increased tandem curvature significantly increased bladder dose and decreased rectal dose. Intravenous anesthesia usage was not correlated with improved dosimetry. This study allowed identification of patient and procedure characteristics influencing OAR dosing. Although the advent of 3-dimensional (3D) image-guided brachytherapy will bring new advances in treatment optimization, the actual technique involved at the time of the brachytherapy implant procedure will remain important.