WorldWideScience

Sample records for mammary cell lines

  1. Casein gene expression in mouse mammary epithelial cell lines: Dependence upon extracellular matrix and cell type

    International Nuclear Information System (INIS)

    Medina, D.; Oborn, C.J.; Li, M.L.; Bissell, M.J.

    1987-01-01

    The COMMA-D mammary cell line exhibits mammary-specific functional differentiation under appropriate conditions in cell culture. The cytologically heterogeneous COMMA-D parental line and the clonal lines DB-1, TA-5, and FA-1 derived from the COMMA-D parent were examined for similar properties of functional differentiation. In monolayer cell culture, the cell lines DB-1, TA-5, FA-1, and MA-4 were examined for expression of mammary-specific and epithelial-specific proteins by an indirect immunofluorescence assay. The clonal cell lines were relatively homogeneous in their respective staining properties and seemed to represent three subpopulations found in the heterogeneous parental COMMA-D lines. None of the four clonal lines appeared to represent myoepithelial cells. The cell lines were examined for expression of β-casein mRNA in the presence or absence of prolactin. The inducibility of β-casein in the COMMA-D cell line was further enhanced by a reconstituted basement membrane preparation enriched in laminin, collagen IV, and proteoglycans. These results support the hypothesis that the functional response of inducible mammary cell populations is a result of interaction among hormones, multiple extracellular matrix components, and specific cell types

  2. In vitro culture and characterization of a mammary epithelial cell line from Chinese Holstein dairy cow.

    Directory of Open Access Journals (Sweden)

    Han Hu

    Full Text Available BACKGROUND: The objective of this study was to establish a culture system and elucidate the unique characteristics of a bovine mammary epithelial cell line in vitro. METHODOLOGY: Mammary tissue from a three year old lactating dairy cow (ca. 100 d relative to parturition was used as a source of the epithelial cell line, which was cultured in collagen-coated tissue culture dishes. Fibroblasts and epithelial cells successively grew and extended from the culturing mammary tissue at the third day. Pure epithelial cells were obtained by passages culture. PRINCIPAL FINDINGS: The strong positive immunostaining to cytokeratin 18 suggested that the resulting cell line exhibited the specific character of epithelial cells. Epithelial cells cultured in the presence of 10% FBS, supraphysiologic concentrations of insulin, and hydrocortisone maintained a normal diploid chromosome modal number of 2n=60. Furthermore, they were capable of synthesizing beta-casein (CSN2, acetyl-CoA carboxylase-alpha (ACACA and butyrophilin (BTN1A1. An important finding was that frozen preservation in a mixture of 90% FBS and 10% DMSO did not influence the growth characteristics, chromosome number, or protein secretion of the isolated epithelial cell line. CONCLUSIONS: The obtained mammary epithelial cell line had normal morphology, growth characteristics, cytogenetic and secretory characteristics, thus, it might represent an useful tool for studying the function of Chinese Holstein dairy cows mammary epithelial cell (CMECs.

  3. The effects of piroxicam and deracoxib on canine mammary tumour cell line.

    Science.gov (United States)

    Ustün Alkan, Fulya; Ustüner, Oya; Bakırel, Tülay; Cınar, Suzan; Erten, Gaye; Deniz, Günnur

    2012-01-01

    Cyclooxygenase (COX) inhibitors, already widely used for the treatment of pain and inflammation, are considered as promising compounds for the prevention and treatment of neoplasia. The aim of our study was to determine the direct antiproliferative effects of nonsteroidal anti-inflammatory drugs (NSAIDs), piroxicam and deracoxib, at a variety of concentrations as both single and combined treatments on canine mammary carcinoma cell line CMT-U27 and to understand the mechanisms of cell death. MTT assay was performed to determine cell viability, and flow cytometric analyses were performed to evaluate apoptosis and cell cycle alterations. Significant decrease in cell viability was observed at high concentrations of piroxicam and deracoxib in both single and combined treatments after 72 h incubation. Combined treatment produced a significantly greater inhibition than that caused by either agent alone. Also apoptotic cell number was increased by both drugs at the cytotoxic concentrations. However, concomitant treatment of cells with piroxicam and deracoxib resulted in significant induction of apoptosis at lower concentrations and accumulation of cells in the G₀/G₁ phase. Significant cytotoxic effects exhibited by the combination of piroxicam and deracoxib against canine mammary carcinoma cells in vitro suggest an attractive approach for the treatment of canine mammary carcinoma.

  4. The Effects of Piroxicam and Deracoxib on Canine Mammary Tumour Cell Line

    Directory of Open Access Journals (Sweden)

    Fulya Üstün Alkan

    2012-01-01

    Full Text Available Cyclooxygenase (COX inhibitors, already widely used for the treatment of pain and inflammation, are considered as promising compounds for the prevention and treatment of neoplasia. The aim of our study was to determine the direct antiproliferative effects of nonsteroidal anti-inflammatory drugs (NSAIDs, piroxicam and deracoxib, at a variety of concentrations as both single and combined treatments on canine mammary carcinoma cell line CMT-U27 and to understand the mechanisms of cell death. MTT assay was performed to determine cell viability, and flow cytometric analyses were performed to evaluate apoptosis and cell cycle alterations. Significant decrease in cell viability was observed at high concentrations of piroxicam and deracoxib in both single and combined treatments after 72 h incubation. Combined treatment produced a significantly greater inhibition than that caused by either agent alone. Also apoptotic cell number was increased by both drugs at the cytotoxic concentrations. However, concomitant treatment of cells with piroxicam and deracoxib resulted in significant induction of apoptosis at lower concentrations and accumulation of cells in the G0/G1 phase. Significant cytotoxic effects exhibited by the combination of piroxicam and deracoxib against canine mammary carcinoma cells in vitro suggest an attractive approach for the treatment of canine mammary carcinoma.

  5. Cell line established starting with a mouse mammary tumor. Effect of the addition of hormones

    Energy Technology Data Exchange (ETDEWEB)

    Mouriquand, J

    1973-12-31

    From 7th international conference on mammary tumors; SaintPierre-de- Chartreuse, France (12 Jun 1972). The PS-MT cell line was defined (18th passage); isolated from a pool of mammary tumors of the PS strain of mice, it remained dormant for 6 months and then grew out very slowly. Subcultures were possible only after 19 months. The morphology is epithelial. After storage in liquid nitrogen in a medium containing 5% DMSO, the viability was approximately 80%. It was not possible to disclose the presence of mycoplasmas. With the standard insulincontaining medium, a few C-type particles were observed by electron-microscopic examination. The addition of hydrocortisone or prolactin, or both hormones together, increases slightly the production of C-type particles. If the secretory stimulating activity of hydrocortisone is maintained for one week before the addition of prolactin for another week, a large amount of A and B particles are found, mixed with C-type particles. They are present in large number in the pellets obtained from the tissue culture media. Five mammary tumors within 6 months were obtained in BALB/c females. Thus, the production of A- and B-type particles is hormone-dependent and requires the same sequence of hormones as the production of casein by mammary glands in organ cultures. (auth)

  6. Ligand-independent canonical Wnt activity in canine mammary tumor cell lines associated with aberrant LEF1 expression.

    Directory of Open Access Journals (Sweden)

    Ana Gracanin

    Full Text Available Pet dogs very frequently develop spontaneous mammary tumors and have been suggested as a good model organism for breast cancer research. In order to obtain an insight into underlying signaling mechanisms during canine mammary tumorigenesis, in this study we assessed the incidence and the mechanism of canonical Wnt activation in a panel of 12 canine mammary tumor cell lines. We show that a subset of canine mammary cell lines exhibit a moderate canonical Wnt activity that is dependent on Wnt ligands, similar to what has been described in human breast cancer cell lines. In addition, three of the tested canine mammary cell lines have a high canonical Wnt activity that is not responsive to inhibitors of Wnt ligand secretion. Tumor cell lines with highly active canonical Wnt signaling often carry mutations in key members of the Wnt signaling cascade. These cell lines, however, carry no mutations in the coding regions of intracellular Wnt pathway components (APC, β-catenin, GSK3β, CK1α and Axin1 and have a functional β-catenin destruction complex. Interestingly, however, the cell lines with high canonical Wnt activity specifically overexpress LEF1 mRNA and the knock-down of LEF1 significantly inhibits TCF-reporter activity. In addition, LEF1 is overexpressed in a subset of canine mammary carcinomas, implicating LEF1 in ligand-independent activation of canonical Wnt signaling in canine mammary tumors. We conclude that canonical Wnt activation may be a frequent event in canine mammary tumors both through Wnt ligand-dependent and novel ligand-independent mechanisms.

  7. Establishment and characterization of a new cell line of canine inflammatory mammary cancer: IPC-366.

    Directory of Open Access Journals (Sweden)

    Sara Caceres

    Full Text Available Canine inflammatory mammary cancer (IMC shares epidemiologic, histopathological and clinical characteristics with the disease in humans and has been proposed as a natural model for human inflammatory breast cancer (IBC. The aim of this study was to characterize a new cell line from IMC (IPC-366 for the comparative study of both IMC and IBC. Tumors cells from a female dog with clinical IMC were collected. The cells were grown under adherent conditions. The growth, cytological, ultrastructural and immunohistochemical (IHC characteristics of IPC-366 were evaluated. Ten female Balb/SCID mice were inoculated with IPC-366 cells to assess their tumorigenicity and metastatic potential. Chromosome aberration test and Karyotype revealed the presence of structural aberration, numerical and neutral rearrangements, demonstrating a chromosomal instability. Microscopic examination of tumor revealed an epithelial morphology with marked anysocytosis. Cytological and histological examination of smears and ultrathin sections by electron microscopy revealed that IPC-366 is formed by highly malignant large round or polygonal cells characterized by marked atypia and prominent nucleoli and frequent multinucleated cells. Some cells had cytoplasmic empty spaces covered by cytoplasmic membrane resembling capillary endothelial cells, a phenomenon that has been related to s vasculogenic mimicry. IHC characterization of IPC-366 was basal-like: epithelial cells (AE1/AE3+, CK14+, vimentin+, actin-, p63-, ER-, PR-, HER-2, E-cadherin, overexpressed COX-2 and high Ki-67 proliferation index (87.15 %. At 2 weeks after inoculating the IPC-366 cells, a tumor mass was found in 100 % of mice. At 4 weeks metastases in lung and lymph nodes were found. Xenograph tumors maintained the original IHC characteristics of the female dog tumor. In summary, the cell line IPC-366 is a fast growing malignant triple negative cell line model of inflammatory mammary carcinoma that can be used for the

  8. Characterization of a continuous feline mammary epithelial cell line susceptible to feline epitheliotropic viruses.

    Science.gov (United States)

    Pesavento, Patricia; Liu, Hongwei; Ossiboff, Robert J; Stucker, Karla M; Heymer, Anna; Millon, Lee; Wood, Jason; van der List, Deborah; Parker, John S L

    2009-04-01

    Mucosal epithelial cells are the primary targets for many common viral pathogens of cats. Viral infection of epithelia can damage or disrupt the epithelial barrier that protects underlying tissues. In vitro cell culture systems are an effective means to study how viruses infect and disrupt epithelial barriers, however no true continuous or immortalized feline epithelial cell culture lines are available. A continuous cell culture of feline mammary epithelial cells (FMEC UCD-04-2) that forms tight junctions with high transepithelial electrical resistance (>2000Omegacm(-1)) 3-4 days after reaching confluence was characterized. In addition, it was shown that FMECs are susceptible to infection with feline calicivirus (FCV), feline herpesvirus (FHV-1), feline coronavirus (FeCoV), and feline panleukopenia virus (FPV). These cells will be useful for studies of feline viral disease and for in vitro studies of feline epithelia.

  9. Longitudinal Claudin Gene Expression Analyses in Canine Mammary Tissues and Thereof Derived Primary Cultures and Cell Lines

    Directory of Open Access Journals (Sweden)

    Susanne C. Hammer

    2016-09-01

    Full Text Available Human and canine mammary tumours show partial claudin expression deregulations. Further, claudins have been used for directed therapeutic approaches. However, the development of claudin targeting approaches requires stable claudin expressing cell lines. This study reports the establishment and characterisation of canine mammary tissue derived cell lines, analysing longitudinally the claudin-1, -3, -4 and -7 expressions in original tissue samples, primary cultures and developed cell lines. Primary cultures were derived from 17 canine mammary tissues: healthy, lobular hyperplasia, simple adenoma, complex adenoma, simple tubular carcinoma, complex carcinoma, carcinoma arising in a benign mixed tumour and benign mixed tissue. Cultivation was performed, if possible, until passage 30. Claudin mRNA and protein expressions were analysed by PCR, QuantiGene Plex Assay, immunocytochemistry and immunofluorescence. Further, cytokeratin expression was analysed immunocytochemically. Cultivation resulted in 11 established cell lines, eight showing epithelial character. In five of the early passages the claudin expressions decreased compared to the original tissues. In general, claudin expressions were diminished during cultivation. Three cell lines kept longitudinally claudin, as well as epithelial marker expressions, representing valuable tools for the development of claudin targeted anti-tumour therapies.

  10. Rosiglitazone inhibits metastasis development of a murine mammary tumor cell line LMM3

    International Nuclear Information System (INIS)

    Magenta, Gabriela; Borenstein, Ximena; Rolando, Romina; Jasnis, María Adela

    2008-01-01

    Activation of peroxisome proliferator-activated receptors γ (PPARγ) induces diverse effects on cancer cells. The thiazolidinediones (TZDs), such as troglitazone and ciglitazone, are PPARγ agonists exhibiting antitumor activities; however, the underlying mechanism remains inconclusive. Rosiglitazone (RGZ), a synthetic ligand of PPARγ used in the treatment of Type 2 diabetes, inhibits growth of some tumor cells and is involved in other processes related to cancer progression. Opposing results have also been reported with different ligands on tumor cells. The purpose of this study was to determine if RGZ and 15d-PGJ 2 induce antitumor effects in vivo and in vitro on the murine mammary tumor cell line LMM3. The effect on LMM3 cell viability and nitric oxide (NO) production of different doses of RGZ, 15-dPGJ 2 , BADGE and GW9662 were determined using the MTS colorimetric assay and the Griess reaction respectively. In vivo effect of orally administration of RGZ on tumor progression was evaluated either on s.c. primary tumors as well as on experimental metastasis. Cell adhesion, migration (wound assay) and invasion in Transwells were performed. Metalloproteinase activity (MMP) was determined by zymography in conditioned media from RGZ treated tumor cells. PPARγ expression was detected by inmunohistochemistry in formalin fixed tumors and by western blot in tumor cell lysates. RGZ orally administered to tumor-bearing mice decreased the number of experimental lung metastases without affecting primary s.c. tumor growth. Tumor cell adhesion and migration, as well as metalloproteinase MMP-9 activity, decreased in the presence of 1 μM RGZ (non-cytotoxic dose). RGZ induced PPARγ protein expression in LMM3 tumors. Although metabolic activity -measured by MTS assay- diminished with 1–100 μM RGZ, 1 μM-treated cells recovered their proliferating capacity while 100 μM treated cells died. The PPARγ antagonist Biphenol A diglicydyl ether (BADGE) did not affect RGZ activity

  11. Mammary gland stem cells

    DEFF Research Database (Denmark)

    Fridriksdottir, Agla J R; Petersen, Ole W; Rønnov-Jessen, Lone

    2011-01-01

    Distinct subsets of cells, including cells with stem cell-like properties, have been proposed to exist in normal human breast epithelium and breast carcinomas. The cellular origins of epithelial cells contributing to gland development, tissue homeostasis and cancer are, however, still poorly...... and differences between mouse and human gland development with particular emphasis on the identity and localization of stem cells, and the influence of the surrounding microenvironment. It is concluded that while recent advances in the field have contributed immense insight into how the normal mammary gland...... develops and is maintained, significant discrepancies exist between the mouse and human gland which should be taken into consideration in current and future models of mammary stem cell biology....

  12. Isolation and characterization of a new cell line from spontaneous mouse mammary tumour, MBL-6, for in vivo cancer studies

    Directory of Open Access Journals (Sweden)

    Ladan Langroudi

    2017-12-01

    Full Text Available In search for treatments against breast cancer, cell lines are one of the basic resources, particularly as in vitro models. Additionally, animal models of cancer are used as the successive step in therapeutics research. In this regard, human breast cancer cell lines provide fundamental models in vitro. However, in vivo studies require immunodeficient mice, which lack the influence of other in vivo factors such as the native microenvironment and the immune system. There are few standard models to study the pathogenic mechanism at molecular level and cell signaling pathway of breast cancer. In this study, a new mouse breast cancer cell line, MBL-6, was successfully established and characterized from tissues of a spontaneous mammary tumor. The cell line had epithelial morphology, formed adherent monolayer, maintained continuously in vitro and was able to form new tumors when injected subcutaneously in syngeneic mice. The growth pattern and metastasis evaluations revealed a considerable in situ duration before invading distant organs. Real time polymerase chain reaction (PCR analysis showed the expression of ER-, PR- and Her-2 receptors. The chromosome analysis showed numerous chromosomal abnormalities. Aggressive tumorigenecity in tumorigenesis test and the IC50 to cyclophosphamide (CTX, celecoxib (CLX and cisplatin (CPN was also evaluated. The numerous tests performed on the new MBL-6 cell line suggest that it is in good quality and may be used in animal models of breast cancer studies.

  13. Antiproliferative and apoptotic effect of Pleurotus ostreatus on human mammary carcinoma cell line (michigan cancer foundation-7

    Directory of Open Access Journals (Sweden)

    Krishnamoorthy Deepalakshmi

    2016-01-01

    Conclusion: The study demonstrates a potent anticancer property of P. ostreatus against human mammary carcinoma cells which might be of value in nutraceutical industry. Further investigations are essential to establish it as a treatment against breast cancer.

  14. Regulation of hTERT Expression and Function in Newly Immortalized p53(+) Human Mammary Epithelial Cell Lines

    Science.gov (United States)

    2007-06-01

    human mammary epithelial cell types by human papilloma virus 16 e6 or e7. Proc Nat Acad Sci USA 1995; 92:3687-91. 54. Shay JW, Pereira-Smith OM, Wright...Liu X-L, Chu Q, Gao Q, Band V. Immortalization of distinct human mammary epithelial cell types by human papilloma virus 16 e6 or e7. Proc Nat Acad

  15. CA 15–3 cell lines and tissue expression in canine mammary cancer and the correlation between serum levels and tumour histological grade

    Directory of Open Access Journals (Sweden)

    Manuali Elisabetta

    2012-06-01

    Full Text Available Abstract Background Mammary tumours are the most common malignancy diagnosed in female dogs and a significant cause of mortality and morbidity in this species. Carbohydrate antigen (CA 15–3 is a mucinous glycoprotein aberrantly over-expressed in human mammary neoplasms and one of the most widely used serum tumour markers in women with breast cancer. The aim of this study was to investigate the antigenic analogies of human and canine CA 15–3 and to assess its expression in canine mammary cancer tissues and cell lines. Immunohistochemical expression of CA 15–3 was evaluated in 7 canine mammary cancer cell lines and 50 malignant mammary tumours. As a positive control, the human breast carcinoma cell line MCF7 and tissue were used. To assess CA 15–3 staining, a semi-quantitative method was applied. To confirm the specificity and cross-reactivity of an anti-human CA 15–3 antibody to canine tissues, an immunoblot analysis was performed. We also investigated serum CA 15–3 activity to establish whether its expression could be assigned to several tumour characteristics to evaluate its potential use as a serum tumour marker in the canine mammary oncology field. Results Immunocytochemical analysis revealed CA 15–3 expression in all examined canine mammary cancer cell lines, whereas its expression was confirmed by immunoblot only in the most invasive cells (CMT-W1, CMT-W1M, CMT-W2 and CMT-W2M. In the tissue, an immunohistochemical staining pattern was observed in 34 (68% of the malignant tumours. A high statistical correlation (p = 0.0019 between serum CA 15–3 levels and the degree of tumour proliferation and differentiation was shown, which indicates that the values of this serum marker increase as the tumour stage progresses. Conclusions The results of this study reveal that CA 15–3 is expressed in both canine mammary tumour cell lines and tissues and that serum levels significantly correlate with the histological grade of the

  16. Cytotoxic effect of achatinin(H) (lectin) from Achatina fulica against a human mammary carcinoma cell line (MCF7).

    Science.gov (United States)

    Dharmu, Indra; Ramamurty, N; Kannan, Ramalingam; Babu, Mary

    2007-01-01

    The hemolymph-derived achatinin(H) (lectin) from Achatina fulica showed a marked cytotoxic effect on MCF7, a human mammary carcinoma cell line. IC(50) values as measured by the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide assay for achatinin(H) ranged from 6 to 10 microg/ml in the MCF7 cells. MCF7 cells showed significant morphological changes leading to cell death. The above cell death was observed after 48 h of treatment with 8 microg/ml when compared to untreated cells. Alterations in the tumor marker enzymes, as well as in antioxidant enzymes, were observed after achatinin(H) treatment. The specificity and purity of the achatinin(H) was confirmed by the Western blot assay. Achatinin(H) binding to MCF7 cells was detected by anti-achatinin(H), and visualization of the achatinin(H) binding sites on confluent MCF7 cells was confirmed by flourescein isothiocyanate conjugated secondary antibody. MCF7-treated cells fluoresced, indicating the presence of achatinin(H) binding sites. Fluorescence-activated cell sorting analysis of the cell cycle showed a significant increase in S-phase in MCF7 cells after 48 h of achatinin(H) treatment. The cells were arrested in G(2)/M phase of the cell cycle after 48 h with significant changes in cell viability. Cellular damage was confirmed by agarose gel electrophoresis with the characteristic appearance of a DNA streak in treated MCF7 cells indicating the ongoing apoptosis.

  17. Mammary stem cells: angels or demons in mammary gland?

    Science.gov (United States)

    Chen, Xueman; Liu, Qiang; Song, Erwei

    2017-01-01

    A highly dynamic development process exits within the epithelia of mammary gland, featuring morphogenetic variation during puberty, pregnancy, lactation, and regression. The identification of mammary stem cells (MaSCs) via lineage-tracing studies has substantiated a hierarchical organization of the mammary epithelia. A single MaSC is capable of reconstituting the entirely functional mammary gland upon orthotopic transplantation. Although different mammary cell subpopulations can be candidate cells-of-origin for distinct breast tumor subtypes, it still lacks experimental proofs whether MaSCs, the most primitive cells, are the 'seeds' of malignant transformation during most, if not all, tumorigenesis in the breast. Here, we review current knowledge of mammary epithelial hierarchy, highlighting the roles of mammary stem/progenitor cells and breast cancer stem cells (BCSCs) along with their key molecular regulators in organ development and cancer evolution. Clarifying these issues will pave the way for developing novel interventions toward stem/progenitor cells in either prevention or treatment of breast cancer (BrCa).

  18. Bioluminescent human breast cancer cell lines that permit rapid and sensitive in vivo detection of mammary tumors and multiple metastases in immune deficient mice

    International Nuclear Information System (INIS)

    Jenkins, Darlene E; Hornig, Yvette S; Oei, Yoko; Dusich, Joan; Purchio, Tony

    2005-01-01

    Our goal was to generate xenograft mouse models of human breast cancer based on luciferase-expressing MDA-MB-231 tumor cells that would provide rapid mammary tumor growth; produce metastasis to clinically relevant tissues such as lymph nodes, lung, and bone; and permit sensitive in vivo detection of both primary and secondary tumor sites by bioluminescent imaging. Two clonal cell sublines of human MDA-MB-231 cells that stably expressed firefly luciferase were isolated following transfection of the parental cells with luciferase cDNA. Each subline was passaged once or twice in vivo to enhance primary tumor growth and to increase metastasis. The resulting luciferase-expressing D3H1 and D3H2LN cells were analyzed for long-term bioluminescent stability, primary tumor growth, and distal metastasis to lymph nodes, lungs, bone and soft tissues by bioluminescent imaging. Cells were injected into the mammary fat pad of nude and nude-beige mice or were delivered systemically via intracardiac injection. Metastasis was also evaluated by ex vivo imaging and histologic analysis postmortem. The D3H1 and D3H2LN cell lines exhibited long-term stable luciferase expression for up to 4–6 months of accumulative tumor growth time in vivo. Bioluminescent imaging quantified primary mammary fat pad tumor development and detected early spontaneous lymph node metastasis in vivo. Increased frequency of spontaneous lymph node metastasis was observed with D3H2LN tumors as compared with D3H1 tumors. With postmortem ex vivo imaging, we detected additional lung micrometastasis in mice with D3H2LN mammary tumors. Subsequent histologic evaluation of tissue sections from lymph nodes and lung lobes confirmed spontaneous tumor metastasis at these sites. Following intracardiac injection of the MDA-MB-231-luc tumor cells, early metastasis to skeletal tissues, lymph nodes, brain and various visceral organs was detected. Weekly in vivo imaging data permitted longitudinal analysis of metastasis at

  19. Constitutive expression of the AHR signaling pathway in a bovine mammary epithelial cell line and modulation by dioxin-like PCB and other AHR ligands.

    Science.gov (United States)

    Girolami, Flavia; Spalenza, Veronica; Manzini, Livio; Carletti, Monica; Nebbia, Carlo

    2015-01-05

    Environmental pollutants, such as dioxin-like (DL) PCBs, benzo(a) pyrene (B[a]P), and flavonoids are aryl hydrocarbon receptor (AHR) ligands and may be excreted in dairy milk. The expression of AHR-target genes, particularly those involved in xenobiotic biotransformation, and their modulation by two DL-PCBs, B[a]P, and β-naphthoflavone was investigated in a bovine mammary epithelial cell line (BME-UV). As assessed by quantitative PCR, BME-UV cells expressed a functional AHR signaling pathway. All the AHR ligands induced a concentration-related increase in the transcription of cytochrome P450 1A1 and 1B1, known to be implicated in the bioactivation of several xenobiotics. Conversely, genes encoding for antioxidant and detoxifying enzymes, like quinone oxidoreductase or glutathione S-transferase A2, were not affected or even depressed. This study demonstrates the occurrence and the modulation by different AHR-ligands of genes involved in xenobiotic metabolism in BME-UV cells, with the potential generation of (re) active metabolites that may damage mammary tissue and/or affect animal or human health via the contaminated milk. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Human murine mammary tumour virus-like agents are genetically distinct from endogenous retroviruses and are not detectable in breast cancer cell lines or biopsies

    International Nuclear Information System (INIS)

    Mant, Christine; Gillett, Cheryl; D'Arrigo, Corrado; Cason, John

    2004-01-01

    It has been reported that a human murine mammary tumour virus (MMTV)-like virus (HMLV), which may be an endogenous human retrovirus (HERV), occurs in the human breast cancer cell lines T47D and MCF-7 and, in 38% of human breast cancer biopsies. As the aetiology of most breast cancers remains unknown, it is important to verify these observations in differing breast cancer populations worldwide. Thus, we sought to determine the genetic relationships between HMLVs, MMTVs, and HERVs, and to investigate the association between HMLVs and breast cancer biopsies from South London, UK. Phylogenetic analyses of the env/pol region indicated that HMLVs are indistinct from MMTVs, and that MMTVS/HMLVs exhibit only low sequence homologies with HERVs. A search of the human genome confirmed that HMLVs are not endogenous. Using MMTV polymerase chain reaction (PCR) primers described previously, we amplified DNA from all cell lines except MCF-7 and from 7 of 44 (16%) breast cancer biopsies. A restriction fragment length polymorphism assay was designed to distinguish between HMLVs and MMTVs, and upon analyses, PCR amplicons appeared to be HMLVs. To confirm these findings, amplicons from the T47D cell line and from four randomly selected breast cancer patients were sequenced. Of 106 DNA sequences obtained, 103 were homologous with a short arm of human chromosome (Chr) 3 (3p13), two with Chr 4, and one with Chr 8. None of the sequences exhibited significant nucleotide homology with MMTVs, HMLVs, or with HERVs (all <50%). Thus, we conclude that (i) HMLVs are integral members of the MMTV family; (ii) MMTVs/HMLVs are genetically distinct from HERVs; (iii) MMTV/HMLV DNA is not present in human breast cancer cell lines or clinical biopsies in our locality

  1. Of Microenvironments and Mammary Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    LaBarge, Mark A; Petersen, Ole W; Bissell, Mina J

    2007-06-01

    In most adult tissues there reside pools of stem and progenitor cells inside specialized microenvironments referred to as niches. The niche protects the stem cells from inappropriate expansion and directs their critical functions. Thus guided, stem cells are able to maintain tissue homeostasis throughout the ebb and flow of metabolic and physical demands encountered over a lifetime. Indeed, a pool of stem cells maintains mammary gland structure throughout development, and responds to the physiological demands associated with pregnancy. This review discusses how stem cells were identified in both human and mouse mammary glands; each requiring different techniques that were determined by differing biological needs and ethical constraints. These studies together create a robust portrait of mammary gland biology and identify the location of the stem cell niche, elucidate a developmental hierarchy, and suggest how the niche might be manipulated for therapeutic benefit.

  2. Mammary Stem Cells: Premise, Properties, and Perspectives.

    Science.gov (United States)

    Lloyd-Lewis, Bethan; Harris, Olivia B; Watson, Christine J; Davis, Felicity M

    2017-08-01

    Adult mammary stem cells (MaSCs) drive postnatal organogenesis and remodeling in the mammary gland, and their longevity and potential have important implications for breast cancer. However, despite intense investigation the identity, location, and differentiation potential of MaSCs remain subject to deliberation. The application of genetic lineage-tracing models, combined with quantitative 3D imaging and biophysical methods, has provided new insights into the mammary epithelial hierarchy that challenge classical definitions of MaSC potency and behaviors. We review here recent advances - discussing fundamental unresolved properties of MaSC potency, dynamics, and plasticity - and point to evolving technologies that promise to shed new light on this intractable debate. Elucidation of the physiological mammary differentiation hierarchy is paramount to understanding the complex heterogeneous breast cancer landscape. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells

    OpenAIRE

    Simian, Marina; Hirai, Yohei; Navre, Marc; Werb, Zena; Lochter, Andre; Bissell, Mina J.

    2001-01-01

    The mammary gland develops its adult form by a process referred to as branching morphogenesis. Many factors have been reported to affect this process. We have used cultured primary mammary epithelial organoids and mammary epithelial cell lines in three-dimensional collagen gels to elucidate which growth factors, matrix metalloproteinases (MMPs) and mammary morphogens interact in branching morphogenesis. Branching stimulated by stromal fibroblasts, epidermal growth factor, fibroblast growth fa...

  4. Bovine mammary stem cells: Cell biology meets production agriculture

    Science.gov (United States)

    Mammary stem cells (MaSC) provide for net growth, renewal and turnover of mammary epithelial cells, and are therefore potential targets for strategies to increase production efficiency. Appropriate regulation of MaSC can potentially benefit milk yield, persistency, dry period management and tissue ...

  5. Progenitor Cell Fate Decisions in Mammary Tumorigenesis

    Science.gov (United States)

    2013-03-01

    effects of co-transplantation of these populations. Understanding the relationships between normal and transformed mammary epithelial cells has... effect of E2 against double-strand break damage was dependent on ER expression. NBS1 mediated the E2 protective effects against ionizing radiation...transfected with 2 Jeg of pGL3 lucif - erase reporter vector containing S’ flanking constructs of the NBSl promoter, ellon 1 and intron 1 (-360/+1076

  6. Migrastatin analogues inhibit canine mammary cancer cell migration and invasion.

    Directory of Open Access Journals (Sweden)

    Kinga Majchrzak

    Full Text Available BACKGROUND: Cancer spread to other organs is the main cause of death of oncological patients. Migration of cancer cells from a primary tumour is the crucial step in the complex process of metastasis, therefore blocking this process is currently the main treatment strategy. Metastasis inhibitors derived from natural products, such as, migrastatin, are very promising anticancer agents. Thus, the aim of our study was to investigate the effect of six migrastatin analogues (MGSTA-1 to 6 on migration and invasion of canine mammary adenocarcinoma cell lines isolated from primary tumours and their metastases to the lungs. Canine mammary tumours constitute a valuable tool for studying multiple aspect of human cancer. RESULTS: OUR RESULTS SHOWED THAT TWO OF SIX FULLY SYNTHETIC ANALOGUES OF MIGRASTATIN: MGSTA-5 and MGSTA-6 were potent inhibitors of canine mammary cancer cells migration and invasion. These data were obtained using the wound healing test, as well as trans-well migration and invasion assays. Furthermore, the treatment of cancer cells with the most effective compound (MGSTA-6 disturbed binding between filamentous F-actin and fascin1. Confocal microscopy analyses revealed that treatment with MGSTA-6 increased the presence of unbound fascin1 and reduced co-localization of F-actin and fascin1 in canine cancer cells. Most likely, actin filaments were not cross-linked by fascin1 and did not generate the typical filopodial architecture of actin filaments in response to the activity of MGSTA-6. Thus, administration of MGSTA-6 results in decreased formation of filopodia protrusions and stress fibres in canine mammary cancer cells, causing inhibition of cancer migration and invasion. CONCLUSION: Two synthetic migrastatin analogues (MGSTA-5 and MGSTA-6 were shown to be promising compounds for inhibition of cancer metastasis. They may have beneficial therapeutic effects in cancer therapy in dogs, especially in combination with other anticancer drugs

  7. Mammary fibroadenoma with pleomorphic stromal cells.

    Science.gov (United States)

    Abid, Najla; Kallel, Rim; Ellouze, Sameh; Mellouli, Manel; Gouiaa, Naourez; Mnif, Héla; Boudawara, Tahia

    2015-01-01

    The presence of enlarged and pleomorphic nuclei is usually regarded as a feature of malignancy, but it may on occasion be seen in benign lesions such as mammary fibroadenomas. We present such a case of fibroadenoma occurring in a 37-year-old woman presenting with a self-palpable right breast mass. Histological examination of the tumor revealed the presence of multi and mononucleated giant cells with pleomorphic nuclei. The recognition of the benign nature of these cells is necessary for differential diagnosis from malignant lesions of the breast. fibroadenoma - pleomorphic stromal cells - atypia - breast.

  8. Reconstitution of mammary epithelial morphogenesis by murine embryonic stem cells undergoing hematopoietic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Shuxian Jiang

    2010-03-01

    Full Text Available Mammary stem cells are maintained within specific microenvironments and recruited throughout lifetime to reconstitute de novo the mammary gland. Mammary stem cells have been isolated through the identification of specific cell surface markers and in vivo transplantation into cleared mammary fat pads. Accumulating evidence showed that during the reformation of mammary stem cell niches by dispersed epithelial cells in the context of the intact epithelium-free mammary stroma, non-mammary epithelial cells may be sequestered and reprogrammed to perform mammary epithelial cell functions and to adopt mammary epithelial characteristics during reconstruction of mammary epithelium in regenerating mammary tissue in vivo.To examine whether other types of progenitor cells are able to contribute to mammary branching morphogenesis, we examined the potential of murine embryonic stem (mES cells, undergoing hematopoietic differentiation, to support mammary reconstitution in vivo. We observed that cells from day 14 embryoid bodies (EBs under hematopoietic differentiation condition, but not supernatants derived from these cells, when transplanted into denuded mammary fat pads, were able to contribute to both the luminal and myoepithelial lineages in branching ductal structures resembling the ductal-alveolar architecture of the mammary tree. No teratomas were observed when these cells were transplanted in vivo.Our data provide evidence for the dominance of the tissue-specific mammary stem cell niche and its role in directing mES cells, undergoing hematopoietic differentiation, to reprogram into mammary epithelial cells and to promote mammary epithelial morphogenesis. These studies should also provide insights into regeneration of damaged mammary gland and the role of the mammary microenvironment in reprogramming cell fate.

  9. STAT signaling in mammary gland differentiation, cell survival and tumorigenesis

    OpenAIRE

    Haricharan, S; Li, Y

    2013-01-01

    The mammary gland is a unique organ that undergoes extensive and profound changes during puberty, menstruation, pregnancy, lactation and involution. The changes that take place during puberty involve large-scale proliferation and invasion of the fat-pad. During pregnancy and lactation, the mammary cells are exposed to signaling pathways that inhibit apoptosis, induce proliferation and invoke terminal differentiation. Finally, during involution the mammary gland is exposed to milk stasis, prog...

  10. High basal Wnt signaling is further induced by PI3K/mTor inhibition but sensitive to cSRC inhibition in mammary carcinoma cell lines with HER2/3 overexpression

    International Nuclear Information System (INIS)

    Timmermans-Sprang, Elpetra P. M.; Gracanin, Ana; Mol, Jan A.

    2015-01-01

    Elevated basal, ligand-independent, Wnt signaling in some canine breast cancer cells is not caused by classical mutations in APC, β-Catenin or GSK3β but, at least partially, by enhanced LEF1 expression. We examined the expression and function of EGFR/HER-regulated pathways on the ligand-independent Wnt signaling. Twelve canine mammary tumor cell lines with previously reported differential basal Wnt activity were used. The expression levels of genes related to EGF-signaling were analyzed by cluster analysis. Cell lines with a combined overexpression of EGF-related genes and enhanced basal Wnt activity were treated with PI3K/mTor or cSRC inhibitors or transfected with a construct expressing wild-type PTEN. Subsequently, effects were measured on Wnt activity, cell proliferation, gene expression and protein level. High basal Wnt/LEF1 activity was associated with overexpression of HER2/3, ID1, ID2, RAC1 and HSP90 together with low to absent cMET and PTEN mRNA expression, suggesting a connection between Wnt- and HER-signaling pathways. Inhibition of the HER-regulated PI3K/mTor pathway using the dual PI3K/mTor inhibitor BEZ235 or the mTor inhibitor Everolimus® resulted in reduced cell proliferation. In the cell line with high basal Wnt activity, however, an unexpected further increased Wnt activity was found that could be greatly reduced after inhibition of the HER-regulated cSRC activity. Inhibition of the PI3K/mTor pathway was associated with enhanced expression of β-Catenin, Axin2, MUC1, cMET, EGFR and HER2 and a somewhat increased β-Catenin protein content, whereas cSRC inhibition was associated with slightly enhanced HER3 and SLUG mRNA expression. A high protein expression of HER3 was found only in a cell line with high basal Wnt activity. High basal Wnt activity in some mammary cancer cell lines is associated with overexpression of HER-receptor related genes and HER3 protein, and the absence of PTEN. Inhibition of the PI3K/mTor pathway further stimulated

  11. Long term storage in liquid nitrogen leads to only minor phenotypic and gene expression changes in the mammary carcinoma model cell line BT474.

    Science.gov (United States)

    Fazekas, Judit; Grunt, Thomas W; Jensen-Jarolim, Erika; Singer, Josef

    2017-05-23

    Cancer cell lines are indispensible surrogate models in cancer research, as they can be used off-the-shelf, expanded to the desired extent, easily modified and exchanged between research groups for affirmation, reproduction or follow-up experiments.As malignant cells are prone to genomic instability, phenotypical changes may occur after certain passages in culture. Thus, cell lines have to be regularly authenticated to ensure data quality. In between experiments these cell lines are often stored in liquid nitrogen for extended time periods.Although freezing of cells is a necessary evil, little research is performed on how long-term storage affects cancer cell lines. Therefore, this study investigated the effects of a 28-year long liquid nitrogen storage period on BT474 cells with regard to phenotypical changes, differences in cell-surface receptor expression as well as cytokine and gene expressional variations. Two batches of BT474 cells, one frozen in 1986, the other directly purchased from ATCC were investigated by light microscopy, cell growth analysis, flow cytometry and cytokine as well as whole-transcriptome expression profiling. The cell lines were morphologically indifferent and showed similar growth rates and similar cell-surface receptor expression. Transcriptome analysis revealed significant differences in only 26 of 40,716 investigated RefSeq transcripts with 4 of them being up-regulated and 22 down-regulated. This study demonstrates that even after very long periods of storage in liquid nitrogen, cancer cell lines display only minimal changes in their gene expression profiles. However, also such minor changes should be carefully assessed before continuation of experiments, especially if phenotypic alterations can be additionally observed.

  12. Analysis of proviral integration in human mammary epithelial cell lines immortalized by retroviral infection with a temperature-sensitive SV40 T-antigen construct.

    Science.gov (United States)

    Stamps, A C; Davies, S C; Burman, J; O'Hare, M J

    1994-06-15

    A panel of eight conditionally immortal lines derived by infection of human breast epithelial cells with an amphotropic retrovirus transducing a ts mutant of SV40 large T-antigen was analyzed with respect to individual retroviral integration patterns. Each line contained multiple integration sites which were clonal and stable over extended passage. Similar integration patterns were observed between individual lines arising separately from the same stock of pre-immortal cells, suggesting a common progenitor. Retroviral integration analysis of pre-immortal cells at different stages of pre-crisis growth showed changes indicative of a progressive transition from polyclonality to clonality as the cells approached crisis. Each of the immortal lines contained a sub-set of the integration sites of their pre-immortal progenitors, with individual combinations and copy numbers of sites. Since all the cell lines appeared to originate from single foci in separate flasks, it is likely that each set arose from a common clone of pre-immortal cells as the result of separate genetic events. There was no evidence from this analysis to suggest that specific integration sites played any part either in the selection of pre-crisis clones or in the subsequent establishment of immortal lines.

  13. STAT signaling in mammary gland differentiation, cell survival and tumorigenesis.

    Science.gov (United States)

    Haricharan, S; Li, Y

    2014-01-25

    The mammary gland is a unique organ that undergoes extensive and profound changes during puberty, menstruation, pregnancy, lactation and involution. The changes that take place during puberty involve large-scale proliferation and invasion of the fat-pad. During pregnancy and lactation, the mammary cells are exposed to signaling pathways that inhibit apoptosis, induce proliferation and invoke terminal differentiation. Finally, during involution the mammary gland is exposed to milk stasis, programmed cell death and stromal reorganization to clear the differentiated milk-producing cells. Not surprisingly, the signaling pathways responsible for bringing about these changes in breast cells are often subverted during the process of tumorigenesis. The STAT family of proteins is involved in every stage of mammary gland development, and is also frequently implicated in breast tumorigenesis. While the roles of STAT3 and STAT5 during mammary gland development and tumorigenesis are well studied, others members, e.g. STAT1 and STAT6, have only recently been observed to play a role in mammary gland biology. Continued investigation into the STAT protein network in the mammary gland will likely yield new biomarkers and risk factors for breast cancer, and may also lead to novel prophylactic or therapeutic strategies against breast cancer. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Simian, M.; Harail, Y.; Navre, M.; Werb, Z.; Lochter, A.; Bissell, M.J.

    2002-03-06

    The mammary gland develops its adult form by a process referred to as branching morphogenesis. Many factors have been reported to affect this process. We have used cultured primary mammary epithelial organoids and mammary epithelial cell lines in three-dimensional collagen gels to elucidate which growth factors, matrix metalloproteinases (MMPs) and mammary morphogens interact in branching morphogenesis. Branching stimulated by stromal fibroblasts, epidermal growth factor, fibroblast growth factor 7, fibroblast growth factor 2 and hepatocyte growth factor was strongly reduced by inhibitors of MMPs, indicating the requirement of MMPs for three-dimensional growth involved in morphogenesis. Recombinant stromelysin 1/MMP-3 alone was sufficient to drive branching in the absence of growth factors in the organoids. Plasmin also stimulated branching; however, plasmin-dependent branching was abolished by both inhibitors of plasmin and MMPs, suggesting that plasmin activates MMPs. To differentiate between signals for proliferation and morphogenesis, we used a cloned mammary epithelial cell line that lacks epimorphin, an essential mammary morphogen. Both epimorphin and MMPs were required for morphogenesis, but neither was required for epithelial cell proliferation. These results provide direct evidence for a critical role of MMPs in branching in mammary epithelium and suggest that, in addition to epimorphin, MMP activity is a minimum requirement for branching morphogenesis in the mammary gland.

  15. The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells

    International Nuclear Information System (INIS)

    Simian, Marina; Hirai, Yohei; Navre, Marc; Werb, Zena; Lochter, Andre; Bissell, Mina J.

    2002-01-01

    The mammary gland develops its adult form by a process referred to as branching morphogenesis. Many factors have been reported to affect this process. We have used cultured primary mammary epithelial organoids and mammary epithelial cell lines in three-dimensional collagen gels to elucidate which growth factors, matrix metalloproteinases (MMPs) and mammary morphogens interact in branching morphogenesis. Branching stimulated by stromal fibroblasts, epidermal growth factor, fibroblast growth factor 7, fibroblast growth factor 2 and hepatocyte growth factor was strongly reduced by inhibitors of MMPs, indicating the requirement of MMPs for three-dimensional growth involved in morphogenesis. Recombinant stromelysin 1/MMP-3 alone was sufficient to drive branching in the absence of growth factors in the organoids. Plasmin also stimulated branching; however, plasmin-dependent branching was abolished by both inhibitors of plasmin and MMPs, suggesting that plasmin activates MMPs. To differentiate between signals for proliferation and morphogenesis, we used a cloned mammary epithelial cell line that lacks epimorphin, an essential mammary morphogen. Both epimorphin and MMPs were required for morphogenesis, but neither was required for epithelial cell proliferation. These results provide direct evidence for a critical role of MMPs in branching in mammary epithelium and suggest that, in addition to epimorphin, MMP activity is a minimum requirement for branching morphogenesis in the mammary gland

  16. Podoplanin regulates mammary stem cell function and tumorigenesis by potentiating Wnt/β-catenin signaling.

    Science.gov (United States)

    Bresson, Laura; Faraldo, Marisa M; Di-Cicco, Amandine; Quintanilla, Miguel; Glukhova, Marina A; Deugnier, Marie-Ange

    2018-02-21

    Stem cells (SCs) drive mammary development, giving rise postnatally to an epithelial bilayer composed of luminal and basal myoepithelial cells. Dysregulation of SCs is thought to be at the origin of certain breast cancers; however, the molecular identity of SCs and the factors regulating their function remain poorly defined. We identified the transmembrane protein podoplanin (Pdpn) as a specific marker of the basal compartment, including multipotent SCs, and found Pdpn localized at the basal-luminal interface. Embryonic deletion of Pdpn targeted to basal cells diminished basal and luminal SC activity and affected the expression of several Wnt/β-catenin signaling components in basal cells. Moreover, Pdpn loss attenuated mammary tumor formation in a mouse model of β-catenin-induced breast cancer, limiting tumor-initiating cell expansion and promoting molecular features associated with mesenchymal-to-epithelial cell transition. In line with the loss-of-function data, we demonstrated that mechanistically Pdpn enhances Wnt/β-catenin signaling in mammary basal cells. Overall, this study uncovers a role for Pdpn in mammary SC function and, importantly, identifies Pdpn as a new regulator of Wnt/β-catenin signaling, a key pathway in mammary development and tumorigenesis. © 2018. Published by The Company of Biologists Ltd.

  17. The In Vivo DNA Binding Properties of Wild-Type and Mutant p53 Proteins in Mammary Cell Lines During the Course of Cell Cycle.

    Science.gov (United States)

    1996-08-01

    that my statement of work (SOW) for the current project omitted many of the tasks that had to be carried out in order to get the lab up and running...that we knew that we could stabilize wild-type p53 in ML-1 cells along with the possibility of being able to get an excellent elutriation profile with...nuclear protein extract was immunoprecipitated with PAb421 cross-linked to ProteinA -Sepharose beads and analysed by SDS-PAGE Western blot analysis with

  18. Proliferation of human mammary cancer cells exposed to 27-hydroxycholesterol

    OpenAIRE

    CRUZ, PAMELA; TORRES, CRISTIAN; RAMÍREZ, MARÍA EUGENIA; EPUÑÁN, MARÍA JOSÉ; VALLADARES, LUIS EMILIO; SIERRALTA, WALTER DANIEL

    2010-01-01

    The aim of the present study was to identify the possible mechanisms by which certain estradiol receptor (ER)-positive mammary tumor cells remain resistant to treatment with anti-estrogens or inhibitors of local estradiol (E2) production. To this end, we compared the proliferative effects on mammary cancer cells of the novel selective ER modulator 27-hydroxycholesterol (27OHC) to those of E2, and evaluated their inhibition by ICI 182,780 (ICI). Analysis of the effects on the cell cycle of 27O...

  19. Single-cell RNA-Seq reveals cell heterogeneity and hierarchy within mouse mammary epithelia.

    Science.gov (United States)

    Sun, Heng; Miao, Zhengqiang; Zhang, Xin; Chan, Un In; Su, Sek Man; Guo, Sen; Wong, Chris Koon Ho; Xu, Xiaoling; Deng, Chu-Xia

    2018-04-17

    The mammary gland is very intricately and well organized into distinct tissues, including epithelia, endothelia, adipocytes, and stromal and immune cells. Many mammary gland diseases, such as breast cancer arise from abnormalities in the mammary epithelium, which is mainly composed of two distinct lineages, the basal and luminal cells. Because of the limitation of traditional transcriptome analysis of bulk mammary cells, the hierarchy and heterogeneity of mammary cells within these two lineages remain unclear. To this end, using single-cell RNA-Seq coupled with FACS analysis and principal component analysis, we determined gene expression profiles of mammary epithelial cells of virgin and pregnant mice. These analyses revealed a much higher heterogeneity among the mammary cells than has been previously reported and enabled cell classification into distinct subgroups according to signature gene markers present in each group. We also identified and verified a rare CDH5+ cell subpopulation within a basal cell lineage as quiescent mammary stem cells (MaSCs). Moreover, using pseudo-temporal analysis, we reconstructed the developmental trajectory of mammary epithelia and uncovered distinct changes in gene expression and in biological functions of mammary cells along the developmental process. In conclusion, our work greatly refines the resolution of the cellular hierarchy in developing mammary tissues. The discovery of CDH5+ cells as MaSCs in these tissues may have implications for our understanding of the initiation, development, and pathogenesis of mammary tumors. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Intravital imaging of cancer stem cell plasticity in mammary tumors

    NARCIS (Netherlands)

    Zomer, A.; Ellenbroek, S.I.; Ritsma, L.; Beerling, E.; Vrisekoop, N.; van Rheenen, J.

    2013-01-01

    It is widely debated whether all tumor cells in mammary tumors have the same potential to propagate and maintain tumor growth or whether there is a hierarchical organization. Evidence for the latter theory is mainly based on the ability or failure of transplanted tumor cells to produce detectable

  1. File list: Pol.Brs.20.AllAg.Mammary_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.20.AllAg.Mammary_cells mm9 RNA polymerase Breast Mammary cells SRX852566,SR...X852567,SRX187510,SRX187515 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Brs.20.AllAg.Mammary_cells.bed ...

  2. File list: ALL.Brs.50.AllAg.Mammary_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.50.AllAg.Mammary_cells mm9 All antigens Breast Mammary cells SRX187508,SRX1...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Brs.50.AllAg.Mammary_cells.bed ...

  3. File list: ALL.Brs.10.AllAg.Mammary_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.10.AllAg.Mammary_cells mm9 All antigens Breast Mammary cells SRX187511,SRX1...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Brs.10.AllAg.Mammary_cells.bed ...

  4. File list: Pol.Brs.05.AllAg.Mammary_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.05.AllAg.Mammary_cells mm9 RNA polymerase Breast Mammary cells SRX187510,SR...X187515,SRX852567,SRX852566 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Brs.05.AllAg.Mammary_cells.bed ...

  5. File list: Oth.Brs.05.AllAg.Mammary_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.05.AllAg.Mammary_cells mm9 TFs and others Breast Mammary cells SRX187508,SR...X403482,SRX852565,SRX187509,SRX403483,SRX187514,SRX852563,SRX852562,SRX187513,SRX852564 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Brs.05.AllAg.Mammary_cells.bed ...

  6. File list: InP.Brs.20.AllAg.Mammary_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Brs.20.AllAg.Mammary_cells mm9 Input control Breast Mammary cells SRX403481,SRX...187517,SRX187512,SRX403484 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Brs.20.AllAg.Mammary_cells.bed ...

  7. File list: ALL.Brs.20.AllAg.Mammary_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.20.AllAg.Mammary_cells mm9 All antigens Breast Mammary cells SRX187511,SRX1...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Brs.20.AllAg.Mammary_cells.bed ...

  8. File list: InP.Brs.50.AllAg.Mammary_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Brs.50.AllAg.Mammary_cells mm9 Input control Breast Mammary cells SRX403481,SRX...187512,SRX187517,SRX403484 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Brs.50.AllAg.Mammary_cells.bed ...

  9. File list: InP.Brs.05.AllAg.Mammary_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Brs.05.AllAg.Mammary_cells mm9 Input control Breast Mammary cells SRX403481,SRX...187517,SRX187512,SRX403484 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Brs.05.AllAg.Mammary_cells.bed ...

  10. File list: His.Brs.05.AllAg.Mammary_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.05.AllAg.Mammary_cells mm9 Histone Breast Mammary cells SRX187511,SRX187516...,SRX403480,SRX403479 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.05.AllAg.Mammary_cells.bed ...

  11. File list: His.Brs.50.AllAg.Mammary_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.50.AllAg.Mammary_cells mm9 Histone Breast Mammary cells SRX187511,SRX187516...,SRX403479,SRX403480 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.50.AllAg.Mammary_cells.bed ...

  12. File list: InP.Brs.10.AllAg.Mammary_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Brs.10.AllAg.Mammary_cells mm9 Input control Breast Mammary cells SRX403481,SRX...187517,SRX187512,SRX403484 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Brs.10.AllAg.Mammary_cells.bed ...

  13. File list: Oth.Brs.10.AllAg.Mammary_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.10.AllAg.Mammary_cells mm9 TFs and others Breast Mammary cells SRX187508,SR...X187509,SRX187514,SRX403482,SRX403483,SRX852562,SRX852565,SRX187513,SRX852563,SRX852564 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Brs.10.AllAg.Mammary_cells.bed ...

  14. Epimorphin Functions as a Key Morphoregulator for Mammary Epithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, H.; Lochter, A.; Galosy, S.; Koshida, S.; Niwa, S.; Bissell, M.J.

    1997-10-13

    Hepatocyte growth factor (HGF) and EGF have been reported to promote branching morphogenesis of mammary epithelial cells. We now show that it is epimorphin that is primarily responsible for this phenomenon. In vivo, epimorphin was detected in the stromal compartment but not in lumenal epithelial cells of the mammary gland; in culture, however, a subpopulation of mammary epithelial cells produced significant amounts of epimorphin. When epimorphin-expressing epithelial cell clones were cultured in collagen gels they displayed branching morphogenesis in the presence of HGF, EGF, keratinocyte growth factor, or fibroblast growth factor, a process that was inhibited by anti-epimorphin but not anti-HGF antibodies. The branch length, however, was roughly proportional to the ability of the factors to induce growth. Accordingly, epimorphin-negative epithelial cells simply grew in a cluster in response to the growth factors and failed to branch. When recombinant epimorphin was added to these collagen gels, epimorphin-negative cells underwent branching morphogenesis. The mode of action of epimorphin on morphogenesis of the gland, however, was dependent on how it was presented to the mammary cells. If epimorphin was overexpressed in epimorphin-negative epithelial cells under regulation of an inducible promoter or was allowed to coat the surface of each epithelial cell in a nonpolar fashion, the cells formed globular, alveoli-like structures with a large central lumen instead of branching ducts. This process was enhanced also by addition of HGF, EGF, or other growth factors and was inhibited by epimorphin antibodies. These results suggest that epimorphin is the primary morphogen in the mammary gland but that growth factors are necessary to achieve the appropriate cell numbers for the resulting morphogenesis to be visualized.

  15. A novel cell culture model for studying differentiation and apoptosis in the mouse mammary gland

    International Nuclear Information System (INIS)

    Gordon, Katrina E; Binas, Bert; Chapman, Rachel S; Kurian, Kathreena M; Clarkson, Richard W E; John Clark, A; Birgitte Lane, E; Watson, Christine J

    2000-01-01

    This paper describes the derivation and characterization of a novel, conditionally immortal mammary epithelial cell line named KIM-2. These cells were derived from mid-pregnant mammary glands of a mouse harbouring one to two copies of a transgene comprised of the ovine β-lactoglobulin milk protein gene promoter, driving expression of a temperature-sensitive variant of simian virus-40 (SV40) large T antigen (T-Ag). KIM-2 cells have a characteristic luminal epithelial cell morphology and a stable, nontransformed phenotype at the semipermissive temperature of 37°C. In contrast, at the permissive temperature of 33°C the cells have an elongated spindle-like morphology and become transformed after prolonged culture. Differentiation of KIM-2 cells at 37°C, in response to lactogenic hormones, results in the formation of polarized dome-like structures with tight junctions. This is accompanied by expression of the milk protein genes that encode β-casein and whey acidic protein (WAP), and activation of the prolactin signalling molecule, signal transducer and activator of transcription (STAT)5. Fully differentiated KIM-2 cultures at 37°C become dependent on lactogenic hormones for survival and undergo extensive apoptosis upon hormone withdrawal, as indicated by nuclear morphology and flow cytometric analysis. KIM-2 cells can be genetically modified by stable transfection and clonal lines isolated that retain the characteristics of untransfected cells. KIM-2 cells are a valuable addition, therefore, to currently available lines of mammary epithelial cells. Their capacity for extensive differentiation in the absence of exogenously added basement membrane, and ability to undergo apoptosis in response to physiological signals will provide an invaluable model system for the study of signal transduction pathways and transcriptional regulatory mechanisms that control differentiation and involution in the mammary gland

  16. PTX3 is up-regulated in epithelial mammary cells during S. aureus intramammary infection in goat

    Directory of Open Access Journals (Sweden)

    Joel Fernando Soares Filipe

    2015-07-01

    PTX3 was up-regulated in epithelial mammary cells and in milk cells after S. aureus infection, demonstrating that it represents a first line of immune defense in goat udder. No modulation was observed in macrophages, in the secretum and in the ductal epithelial cells. Further experiments are needed to elucidate the role of PTX3 in the pathogenesis of S. aureus infection.

  17. Columnar cell lesions of the canine mammary gland: pathological features and immunophenotypic analysis

    Directory of Open Access Journals (Sweden)

    Cassali Geovanni D

    2010-02-01

    Full Text Available Abstract Background It has been suggested that columnar cell lesions indicate an alteration of the human mammary gland involved in the development of breast cancer. They have not previously been described in canine mammary gland. The aim of this paper is describe the morphologic spectrum of columnar cell lesions in canine mammary gland specimens and their association with other breast lesions. Methods A total of 126 lesions were subjected to a comprehensive morphological review based upon the human breast classification system for columnar cell lesions. The presence of preinvasive (epithelial hyperplasia and in situ carcinoma and invasive lesions was determined and immunophenotypic analysis (estrogen receptor (ER, progesterone receptor (PgR, high molecular weight cytokeratin (34βE-12, E-cadherin, Ki-67, HER-2 and P53 was perfomed. Results Columnar cell lesions were identified in 67 (53.1% of the 126 canine mammary glands with intraepithelial alterations. They were observed in the terminal duct lobular units and characterized at dilated acini may be lined by several layers of columnar epithelial cells with elongated nuclei. Of the columnar cell lesions identified, 41 (61.2% were without and 26 (38.8% with atypia. Association with ductal hyperplasia was observed in 45/67 (67.1%. Sixty (89.5% of the columnar cell lesions coexisted with neoplastic lesions (20 in situ carcinomas, 19 invasive carcinomas and 21 benign tumors. The columnar cells were ER, PgR and E-cadherin positive but negative for cytokeratin 34βE-12, HER-2 and P53. The proliferation rate as measured by Ki-67 appeared higher in the lesions analyzed than in normal TDLUs. Conclusions Columnar cell lesions in canine mammary gland are pathologically and immunophenotypically similar to those in human breast. This may suggest that dogs are a suitable model for the comparative study of noninvasive breast lesions.

  18. Columnar cell lesions of the canine mammary gland: pathological features and immunophenotypic analysis

    International Nuclear Information System (INIS)

    Ferreira, Enio; Gobbi, Helenice; Saraiva, Bruna S; Cassali, Geovanni D

    2010-01-01

    It has been suggested that columnar cell lesions indicate an alteration of the human mammary gland involved in the development of breast cancer. They have not previously been described in canine mammary gland. The aim of this paper is describe the morphologic spectrum of columnar cell lesions in canine mammary gland specimens and their association with other breast lesions. A total of 126 lesions were subjected to a comprehensive morphological review based upon the human breast classification system for columnar cell lesions. The presence of preinvasive (epithelial hyperplasia and in situ carcinoma) and invasive lesions was determined and immunophenotypic analysis (estrogen receptor (ER), progesterone receptor (PgR), high molecular weight cytokeratin (34βE-12), E-cadherin, Ki-67, HER-2 and P53) was perfomed. Columnar cell lesions were identified in 67 (53.1%) of the 126 canine mammary glands with intraepithelial alterations. They were observed in the terminal duct lobular units and characterized at dilated acini may be lined by several layers of columnar epithelial cells with elongated nuclei. Of the columnar cell lesions identified, 41 (61.2%) were without and 26 (38.8%) with atypia. Association with ductal hyperplasia was observed in 45/67 (67.1%). Sixty (89.5%) of the columnar cell lesions coexisted with neoplastic lesions (20 in situ carcinomas, 19 invasive carcinomas and 21 benign tumors). The columnar cells were ER, PgR and E-cadherin positive but negative for cytokeratin 34βE-12, HER-2 and P53. The proliferation rate as measured by Ki-67 appeared higher in the lesions analyzed than in normal TDLUs. Columnar cell lesions in canine mammary gland are pathologically and immunophenotypically similar to those in human breast. This may suggest that dogs are a suitable model for the comparative study of noninvasive breast lesions

  19. Analysis of mammary specific gene locus regulation in differentiated cells derived by somatic cell fusion

    International Nuclear Information System (INIS)

    Robinson, Claire; Kolb, Andreas F.

    2009-01-01

    The transcriptional regulation of a gene is best analysed in the context of its normal chromatin surroundings. However, most somatic cells, in contrast to embryonic stem cells, are refractory to accurate modification by homologous recombination. We show here that it is possible to introduce precise genomic modifications in ES cells and to analyse the phenotypic consequences in differentiated cells by using a combination of gene targeting, site-specific recombination and somatic cell fusion. To provide a proof of principle, we have analysed the regulation of the casein gene locus in mammary gland cells derived from modified murine ES cells by somatic cell fusion. A β-galactosidase reporter gene was inserted in place of the β-casein gene and the modified ES cells, which do not express the reporter gene, were fused with the mouse mammary gland cell line HC11. The resulting cell clones expressed the β-galactosidase gene to a similar extent and with similar hormone responsiveness as the endogenous gene. However, a reporter gene under the control of a minimal β-casein promoter (encompassing the two consensus STAT5 binding sites which mediate the hormone response of the casein genes) was unable to replicate expression levels or hormone responsiveness of the endogenous gene when inserted into the same site of the casein locus. As expected, these results implicate sequences other than the STAT5 sites in the regulation of the β-casein gene

  20. Canine Mammary Cancer Stem Cells are Radio- and Chemo-Resistant and Exhibit an Epithelial-Mesenchymal Transition Phenotype

    International Nuclear Information System (INIS)

    Pang, Lisa Y.; Cervantes-Arias, Alejandro; Else, Rod W.; Argyle, David J.

    2011-01-01

    Canine mammary carcinoma is the most common cancer among female dogs and is often fatal due to the development of distant metastases. In humans, solid tumors are made up of heterogeneous cell populations, which perform different roles in the tumor economy. A small subset of tumor cells can hold or acquire stem cell characteristics, enabling them to drive tumor growth, recurrence and metastasis. In veterinary medicine, the molecular drivers of canine mammary carcinoma are as yet undefined. Here we report that putative cancer stem cells (CSCs) can be isolated form a canine mammary carcinoma cell line, REM134. We show that these cells have an increased ability to form tumorspheres, a characteristic of stem cells, and that they express embryonic stem cell markers associated with pluripotency. Moreover, canine CSCs are relatively resistant to the cytotoxic effects of common chemotherapeutic drugs and ionizing radiation, indicating that failure of clinical therapy to eradicate canine mammary cancer may be due to the survival of CSCs. The epithelial to mesenchymal transition (EMT) has been associated with cancer invasion, metastasis, and the acquisition of stem cell characteristics. Our results show that canine CSCs predominantly express mesenchymal markers and are more invasive than parental cells, indicating that these cells have a mesenchymal phenotype. Furthermore, we show that canine mammary cancer cells can be induced to undergo EMT by TGFβ and that these cells have an increased ability to form tumorspheres. Our findings indicate that EMT induction can enrich for cells with CSC properties, and provide further insight into canine CSC biology

  1. Canine Mammary Cancer Stem Cells are Radio- and Chemo-Resistant and Exhibit an Epithelial-Mesenchymal Transition Phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Lisa Y., E-mail: lisa.pang@ed.ac.uk; Cervantes-Arias, Alejandro; Else, Rod W.; Argyle, David J. [Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG (United Kingdom)

    2011-03-30

    Canine mammary carcinoma is the most common cancer among female dogs and is often fatal due to the development of distant metastases. In humans, solid tumors are made up of heterogeneous cell populations, which perform different roles in the tumor economy. A small subset of tumor cells can hold or acquire stem cell characteristics, enabling them to drive tumor growth, recurrence and metastasis. In veterinary medicine, the molecular drivers of canine mammary carcinoma are as yet undefined. Here we report that putative cancer stem cells (CSCs) can be isolated form a canine mammary carcinoma cell line, REM134. We show that these cells have an increased ability to form tumorspheres, a characteristic of stem cells, and that they express embryonic stem cell markers associated with pluripotency. Moreover, canine CSCs are relatively resistant to the cytotoxic effects of common chemotherapeutic drugs and ionizing radiation, indicating that failure of clinical therapy to eradicate canine mammary cancer may be due to the survival of CSCs. The epithelial to mesenchymal transition (EMT) has been associated with cancer invasion, metastasis, and the acquisition of stem cell characteristics. Our results show that canine CSCs predominantly express mesenchymal markers and are more invasive than parental cells, indicating that these cells have a mesenchymal phenotype. Furthermore, we show that canine mammary cancer cells can be induced to undergo EMT by TGFβ and that these cells have an increased ability to form tumorspheres. Our findings indicate that EMT induction can enrich for cells with CSC properties, and provide further insight into canine CSC biology.

  2. JS-K, a nitric oxide-releasing prodrug, induces breast cancer cell death while sparing normal mammary epithelial cells.

    Science.gov (United States)

    McMurtry, Vanity; Saavedra, Joseph E; Nieves-Alicea, René; Simeone, Ann-Marie; Keefer, Larry K; Tari, Ana M

    2011-04-01

    Targeted therapy with reduced side effects is a major goal in cancer research. We investigated the effects of JS-K, a nitric oxide (NO) prodrug designed to release high levels of NO when suitably activated, on human breast cancer cell lines, on non-transformed human MCF-10A mammary cells, and on normal human mammary epithelial cells (HMECs). Cell viability assay, flow cytometry, electron microscopy, and Western blot analysis were used to study the effects of JS-K on breast cancer and on mammary epithelial cells. After a 3-day incubation, the IC50s of JS-K against the breast cancer cells ranged from 0.8 to 3 µM. However, JS-K decreased the viability of the MCF-10A cells by only 20% at 10-µM concentration, and HMECs were unaffected by 10 µM JS-K. Flow cytometry indicated that JS-K increased the percentages of breast cancer cells under-going apoptosis. Interestingly, flow cytometry indicated that JS-K increased acidic vesicle organelle formation in breast cancer cells, suggesting that JS-K induced autophagy in breast cancer cells. Electron microscopy confirmed that JS-K-treated breast cancer cells underwent autophagic cell death. Western blot analysis showed that JS-K induced the expression of microtubule light chain 3-II, another autophagy marker, in breast cancer cells. However, JS-K did not induce apoptosis or autophagy in normal human mammary epithelial cells. These data indicate that JS-K selectively induces programmed cell death in breast cancer cells while sparing normal mammary epithelial cells under the same conditions. The selective anti-tumor activity of JS-K warrants its further investigation in breast tumors.

  3. Notch3 marks clonogenic mammary luminal progenitor cells in vivo.

    Science.gov (United States)

    Lafkas, Daniel; Rodilla, Veronica; Huyghe, Mathilde; Mourao, Larissa; Kiaris, Hippokratis; Fre, Silvia

    2013-10-14

    The identity of mammary stem and progenitor cells remains poorly understood, mainly as a result of the lack of robust markers. The Notch signaling pathway has been implicated in mammary gland development as well as in tumorigenesis in this tissue. Elevated expression of the Notch3 receptor has been correlated to the highly aggressive "triple negative" human breast cancer. However, the specific cells expressing this Notch paralogue in the mammary gland remain unknown. Using a conditionally inducible Notch3-CreERT2(SAT) transgenic mouse, we genetically marked Notch3-expressing cells throughout mammary gland development and followed their lineage in vivo. We demonstrate that Notch3 is expressed in a highly clonogenic and transiently quiescent luminal progenitor population that gives rise to a ductal lineage. These cells are capable of surviving multiple successive pregnancies, suggesting a capacity to self-renew. Our results also uncover a role for the Notch3 receptor in restricting the proliferation and consequent clonal expansion of these cells.

  4. Proliferation of human mammary cancer cells exposed to 27-hydroxycholesterol.

    Science.gov (United States)

    Cruz, Pamela; Torres, Cristian; Ramírez, María Eugenia; Epuñán, María José; Valladares, Luis Emilio; Sierralta, Walter Daniel

    2010-05-01

    The aim of the present study was to identify the possible mechanisms by which certain estradiol receptor (ER)-positive mammary tumor cells remain resistant to treatment with anti-estrogens or inhibitors of local estradiol (E(2)) production. To this end, we compared the proliferative effects on mammary cancer cells of the novel selective ER modulator 27-hydroxycholesterol (27OHC) to those of E(2), and evaluated their inhibition by ICI 182,780 (ICI). Analysis of the effects on the cell cycle of 27OHC and E(2) in the absence or presence of ICI was conducted. In ER-positive mammary tumor cells, we detected the blocking of 27OHC proliferation-stimulatory activity by simvastatin, as well as the inhibition of E(2)-stimulated proliferation by an α-fetoprotein-derived cyclic nonapeptide. The effects reported herein may be extrapolated to infiltrating mammary cancer, where the activity of local macrophages may stimulate tumor growth. We suggest that increased breast cancer growth in obese patients may be related to increased 27OHC circulatory levels.

  5. Amplification of tumor inducing putative cancer stem cells (CSCs) by vitamin A/retinol from mammary tumors

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rohit B. [Department of Microbiology and Molecular Genetics, University of Pittsburgh, PA 15261 (United States); Wang, Qingde [Department of Surgery, University of Pittsburgh, PA 15261 (United States); Khillan, Jaspal S., E-mail: khillan@pitt.edu [Department of Microbiology and Molecular Genetics, University of Pittsburgh, PA 15261 (United States)

    2013-07-12

    Highlights: •Vitamin A supports self renewal of putative CSCs from mammary tumors. •These cells exhibit impaired retinol metabolism into retinoic acid. •CSCs from mammary tumors differentiate into mammary specific cell lineages. •The cells express mammary stem cell specific CD29 and CD49f markers. •Putative CSCs form highly metastatic tumors in NOD SCID mouse. -- Abstract: Solid tumors contain a rare population of cancer stem cells (CSCs) that are responsible for relapse and metastasis. The existence of CSC however, remains highly controversial issue. Here we present the evidence for putative CSCs from mammary tumors amplified by vitamin A/retinol signaling. The cells exhibit mammary stem cell specific CD29{sup hi}/CD49f{sup hi}/CD24{sup hi} markers, resistance to radiation and chemo therapeutic agents and form highly metastatic tumors in NOD/SCID mice. The cells exhibit indefinite self renewal as cell lines. Furthermore, the cells exhibit impaired retinol metabolism and do not express enzymes that metabolize retinol into retinoic acid. Vitamin A/retinol also amplified putative CSCs from breast cancer cell lines that form highly aggressive tumors in NOD SCID mice. The studies suggest that high purity putative CSCs can be isolated from solid tumors to establish patient specific cell lines for personalized therapeutics for pre-clinical translational applications. Characterization of CSCs will allow understanding of basic cellular and molecular pathways that are deregulated, mechanisms of tumor metastasis and evasion of therapies that has direct clinical relevance.

  6. Cell kinetic parameters of a solid mammary adenocarcinoma

    International Nuclear Information System (INIS)

    Porschen, R.; Feinendegen, L.E.

    1978-01-01

    Several cell kinetic parameters of the mammary adenocarcinoma EO 771 were evaluated by means of tumor volume measurements and of 125 I-UdR. The in-situ measured activity loss rate is disturbed by a slow elimination of labelled necrotic cells and by reutilization of 125 I-UdR. The restrictions of the I-UdR method are mentioned and the measured activity loss rates are compared with calculated volume loss rates. (orig./MG) [de

  7. Self-organization is a dynamic and lineage-intrinsic property of mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Chanson, L. [Ecole Polytechnique Federale de Lausanne (Switzerland). Inst. of Bioengineering; Brownfield, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Univ. of California, Berkeley, CA (United States). Dept. of Bioengineering; Garbe, J. C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Kuhn, I. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Stampfer, M. R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Bissell, M. J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; LaBarge, M. A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.

    2011-02-07

    Loss of organization is a principle feature of cancers; therefore it is important to understand how normal adult multilineage tissues, such as bilayered secretory epithelia, establish and maintain their architectures. The self-organization process that drives heterogeneous mixtures of cells to form organized tissues is well studied in embryology and with mammalian cell lines that were abnormal or engineered. Here we used a micropatterning approach that confined cells to a cylindrical geometry combined with an algorithm to quantify changes of cellular distribution over time to measure the ability of different cell types to self-organize relative to each other. Using normal human mammary epithelial cells enriched into pools of the two principal lineages, luminal and myoepithelial cells, we demonstrated that bilayered organization in mammary epithelium was driven mainly by lineage-specific differential E-cadherin expression, but that P-cadherin contributed specifically to organization of the myoepithelial layer. Disruption of the actomyosin network or of adherens junction proteins resulted in either prevention of bilayer formation or loss of preformed bilayers, consistent with continual sampling of the local microenvironment by cadherins. Together these data show that self-organization is an innate and reversible property of communities of normal adult human mammary epithelial cells.

  8. MCF-7 human mammary adenocarcinoma cells exhibit augmented responses to human insulin on a collagen IV surface

    DEFF Research Database (Denmark)

    Listov-Saabye, Nicolai; Jensen, Marianne Blirup; Kiehr, Benedicte

    2009-01-01

    Human mammary cell lines are extensively used for preclinical safety assessment of insulin analogs. However, it is essentially unknown how mitogenic responses can be optimized in mammary cell-based systems. We developed an insulin mitogenicity assay in MCF-7 human mammary adenocarcinoma cells......, under low serum (0.1% FCS) and phenol red-free conditions, with 3H thymidine incorporation as endpoint. Based on EC50 values determined from 10-fold dilution series, beta-estradiol was the most potent mitogen, followed by human IGF-1, human AspB10 insulin and native human insulin. AspB10 insulin...... was significantly more mitogenic than native insulin, validating the ability of the assay to identify hypermitogenic human insulin analogs. With MCF-7 cells on a collagen IV surface, the ranking of mitogens was maintained, but fold mitogenic responses and dynamic range and steepness of dose-response curves were...

  9. Transcriptomic response of goat mammary epithelial cells to Mycoplasma agalactiae challenge – a preliminary study

    DEFF Research Database (Denmark)

    Ogorevc, Jernej; Mihevc, Sonja Prpar; Hedegaard, Jakob

    2015-01-01

    Mycoplasma agalactiae (Ma) is one of the main aetiological agents of intramammary infections in small ruminants, causing contagious agalactia. To better understand the underlying disease patterns a primary goat mammary epithelial cell (pgMEC) culture was established from the mammary tissue......, steroid metabolism, fatty acid metabolism, apoptosis signalling, transcription regulation, and cell cycle regulation. Based on the results we suggest that mammary epithelial cells in vivo contribute to the immune system by the induced expression of cytokines and other chemotactic agents, activation...

  10. Age and radiation sensitivity of rat mammary clonogenic cells

    International Nuclear Information System (INIS)

    Shimada, Yoshiya; Yasukawa-Barnes, J.; Kim, R.Y.; Gould, M.N.; Clifton, K.H.

    1994-01-01

    The relative risk of breast cancer is very high among women who were exposed to ionizing radiation during or before puberty. In the current studies, the surviving fractions of clonogenic mammary cells of groups of virgin rats were estimated after single exposures to 137 Cs γ rays at intervals from 1 to 12 weeks after birth. The radiosensitivity of clonogens from prepubertal rats was high and changed with the onset of puberty at between 4 and 6 weeks of age. By this time, the increase in the size of the clonogenic cell subpopulation was slowing and differentiation of terminal mammary end buds and alveolar structures was occurring. Analysis of the relationship of clonogen survival and radiation dose according to the α/β model showed that the exponential αD term predominated at the second and fourth weeks of age. By the eighth week of age, the βD 2 term had come to predominate and the survival curve had a pronounced initial convex shoulder. Further experiments are required to determine whether there is an association between the high sensitivity of the prepubertal and pubertal mammary clonogens to radiation killing and a high susceptibility to radiogenic initiation of cancer. 24 refs., 4 figs., 1 tab

  11. Hydrostatic pressure incubation affects barrier properties of mammary epithelial cell monolayers, in vitro.

    Science.gov (United States)

    Mießler, Katharina S; Markov, Alexander G; Amasheh, Salah

    2018-01-01

    During lactation, accumulation of milk in mammary glands (MG) causes hydrostatic pressure (HP) and concentration of bioactive compounds. Previously, a changed expression of tight junction (TJ) proteins was observed in mice MGs by accumulation of milk, in vivo. The TJ primarily determines the integrity of the MG epithelium. The present study questioned whether HP alone can affect the TJ in a mammary epithelial cell model, in vitro. Therefore, monolayers of HC11, a mammary epithelial cell line, were mounted into modified Ussing chambers and incubated with 10 kPa bilateral HP for 4 h. Short circuit current and transepithelial resistance were recorded and compared to controls, and TJ proteins were analyzed by Western blotting and immunofluorescent staining. In our first approach HC11 cells could withstand the pressure incubation and a downregulation of occludin was observed. In a second approach, using prolactin- and dexamethasone-induced cells, a decrease of short circuit current was observed, beginning after 2 h of incubation. With the addition of 1 mM barium chloride to the bathing solution the decrease could be blocked temporarily. On molecular level an upregulation of ZO-1 could be observed in hormone-induced cells, which was downregulated after the incubation with barium chloride. In conclusion, bilateral HP incubation affects mammary epithelial monolayers, in vitro. Both, the reduction of short circuit current and the change in TJ proteins may be interpreted as physiological requirements for lactation. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells

    International Nuclear Information System (INIS)

    Dontu, Gabriela; Jackson, Kyle W; McNicholas, Erin; Kawamura, Mari J; Abdallah, Wissam M; Wicha, Max S

    2004-01-01

    Notch signaling has been implicated in the regulation of cell-fate decisions such as self-renewal of adult stem cells and differentiation of progenitor cells along a particular lineage. Moreover, depending on the cellular and developmental context, the Notch pathway acts as a regulator of cell survival and cell proliferation. Abnormal expression of Notch receptors has been found in different types of epithelial metaplastic lesions and neoplastic lesions, suggesting that Notch may act as a proto-oncogene. The vertebrate Notch1 and Notch4 homologs are involved in normal development of the mammary gland, and mutated forms of these genes are associated with development of mouse mammary tumors. In order to determine the role of Notch signaling in mammary cell-fate determination, we have utilized a newly described in vitro system in which mammary stem/progenitor cells can be cultured in suspension as nonadherent 'mammospheres'. Notch signaling was activated using exogenous ligands, or was inhibited using previously characterized Notch signaling antagonists. Utilizing this system, we demonstrate that Notch signaling can act on mammary stem cells to promote self-renewal and on early progenitor cells to promote their proliferation, as demonstrated by a 10-fold increase in secondary mammosphere formation upon addition of a Notch-activating DSL peptide. In addition to acting on stem cells, Notch signaling is also able to act on multipotent progenitor cells, facilitating myoepithelial lineage-specific commitment and proliferation. Stimulation of this pathway also promotes branching morphogenesis in three-dimensional Matrigel cultures. These effects are completely inhibited by a Notch4 blocking antibody or a gamma secretase inhibitor that blocks Notch processing. In contrast to the effects of Notch signaling on mammary stem/progenitor cells, modulation of this pathway has no discernable effect on fully committed, differentiated, mammary epithelial cells. These studies

  13. Cultivation of mouse mammary tumor cells derived from DD/Tbr, 3

    International Nuclear Information System (INIS)

    Iwai, Mineko; Iwai, Yoshiaki; Takamori, Yasuhiko; Okumoto, Masaaki; Nishikawa, Ryosuke

    1981-01-01

    The factors affecting production of MuMTV by DD-762 cells, an established cell line from a spontaneous mammary tumor in a DD/Tbr mouse, were examined. When the cells were seeded and cultures medium were refreshed at every 3 - 4 day intervals without passage of cells, virus production began after exponential pase of cell growth and attained to peaks at every 10 - 12 days intervals up to approximately 60 days after seeding. MuMTV production was dependent on cell seeding density. Seeding at higher cell density, virus release occurred earlier. Maximum amount of MuMTV was observed with the medium containing 10 μg INS, 5 μg DXM and 10% FCS. The RDDP activities in the culture fluid were rapidly inactivated by incubation at 37 0 C. (author)

  14. Mammary stem cells: Novel markers and novel approaches to increase lactation efficiency

    Science.gov (United States)

    Mammary stem cells (MaSC) provide for net growth, renewal and turnover of mammary epithelial cells, and are therefore potential targets for strategies to increase production efficiency. Appropriate regulation of MaSC can potentially benefit milk yield, persistency, dry period management and tissue r...

  15. Transcriptomic response of goat mammary epithelial cells to Mycoplasma agalactiae challenge – a preliminary study

    DEFF Research Database (Denmark)

    Ogorevc, Jernej; Mihevc, Sonja Prpar; Hedegaard, Jakob

    2015-01-01

    Mycoplasma agalactiae (Ma) is one of the main aetiological agents of intramammary infections in small ruminants, causing contagious agalactia. To better understand the underlying disease patterns a primary goat mammary epithelial cell (pgMEC) culture was established from the mammary tissue and ch....... Additionally, the results represent comprehensive goat mammary transcriptome information and demonstrate the applicability of the comparative genomics approach for annotation of goat data, using transcriptome information of a closely related species (Bos taurus) as a reference....

  16. Luminal epithelial cells within the mammary gland can produce basal cells upon oncogenic stress.

    Science.gov (United States)

    Hein, S M; Haricharan, S; Johnston, A N; Toneff, M J; Reddy, J P; Dong, J; Bu, W; Li, Y

    2016-03-17

    In the normal mammary gland, the basal epithelium is known to be bipotent and can generate either basal or luminal cells, whereas the luminal epithelium has not been demonstrated to contribute to the basal compartment in an intact and normally developed mammary gland. It is not clear whether cellular heterogeneity within a breast tumor results from transformation of bipotent basal cells or from transformation and subsequent basal conversion of the more differentiated luminal cells. Here we used a retroviral vector to express an oncogene specifically in a small number of the mammary luminal epithelial cells and tested their potential to produce basal cells during tumorigenesis. This in-vivo lineage-tracing work demonstrates that luminal cells are capable of producing basal cells on activation of either polyoma middle T antigen or ErbB2 signaling. These findings reveal the plasticity of the luminal compartment during tumorigenesis and provide an explanation for cellular heterogeneity within a cancer.

  17. Spontaneously immortalised bovine mammary epithelial cells exhibit a distinct gene expression pattern from the breast cancer cells

    Directory of Open Access Journals (Sweden)

    Li Qianqian

    2010-10-01

    Full Text Available Abstract Background Spontaneous immortalisation of cultured mammary epithelial cells (MECs is an extremely rare event, and the molecular mechanism behind spontaneous immortalisation of MECs is unclear. Here, we report the establishment of a spontaneously immortalised bovine mammary epithelial cell line (BME65Cs and the changes in gene expression associated with BME65Cs cells. Results BME65Cs cells maintain the general characteristics of normal mammary epithelial cells in morphology, karyotype and immunohistochemistry, and are accompanied by the activation of endogenous bTERT (bovine Telomerase Reverse Transcriptase and stabilisation of the telomere. Currently, BME65Cs cells have been passed for more than 220 generations, and these cells exhibit non-malignant transformation. The expression of multiple genes was investigated in BME65Cs cells, senescent BMECs (bovine MECs cells, early passage BMECs cells and MCF-7 cells (a human breast cancer cell line. In comparison with early passage BMECs cells, the expression of senescence-relevant apoptosis-related gene were significantly changed in BME65Cs cells. P16INK4a was downregulated, p53 was low expressed and Bax/Bcl-2 ratio was reversed. Moreover, a slight upregulation of the oncogene c-Myc, along with an undetectable level of breast tumor-related gene Bag-1 and TRPS-1, was observed in BME65Cs cells while these genes are all highly expressed in MCF-7. In addition, DNMT1 is upregulated in BME65Cs. These results suggest that the inhibition of both senescence and mitochondrial apoptosis signalling pathways contribute to the immortality of BME65Cs cells. The expression of p53 and p16INK4a in BME65Cs was altered in the pattern of down-regulation but not "loss", suggesting that this spontaneous immortalization is possibly initiated by other mechanism rather than gene mutation of p53 or p16INK4a. Conclusions Spontaneously immortalised BME65Cs cells maintain many characteristics of normal BMEC cells and

  18. Molecular mechanisms involved in casein gene expression and secretion in mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    Lee, E.Y.H.P.; Lee, W.H.; Parry, G.; Bissell, M.J.

    1985-01-01

    Mouse mammary epithelial cells (MMEC) secrete a group of milk-specific proteins including various caseins and whey proteins. Dissociated mammary epithelial cells maintain expression of most of their differentiated functions only if cells are plated on a suitable substratum. Casein production and section, cell morphology, and production of α-lactalbumin have been used as markers to assess the degree of differentiation of mammary cells in culture. The general consensus is that cells express their differentiated properties at high levels and for longer periods of time on such substrata. In this paper, the authors demonstrate that modulation of the expression of caseins by floating collagen gels is manifested at several regulatory points

  19. Id-1 is not expressed in the luminal epithelial cells of mammary glands

    International Nuclear Information System (INIS)

    Uehara, Norihisa; Chou, Yu-Chien; Galvez, Jose J; Candia, Paola de; Cardiff, Robert D; Benezra, Robert; Shyamala, Gopalan

    2003-01-01

    The family of inhibitor of differentiation/DNA binding (Id) proteins is known to regulate development in several tissues. One member of this gene family, Id-1, has been implicated in mammary development and carcinogenesis. Mammary glands contain various cell types, among which the luminal epithelial cells are primarily targeted for proliferation, differentiation and carcinogenesis. Therefore, to assess the precise significance of Id-1 in mammary biology and carcinogenesis, we examined its cellular localization in vivo using immunohistochemistry. Extracts of whole mammary glands from wild type and Id-1 null mutant mice, and tissue sections from paraffin-embedded mouse mammary glands from various developmental stages and normal human breast were subjected to immunoblot and immunohistochemical analyses, respectively. In both these procedures, an anti-Id-1 rabbit polyclonal antibody was used for detection of Id-1. In immunoblot analyses, using whole mammary gland extracts, Id-1 was detected. In immunohistochemical analyses, however, Id-1 was not detected in the luminal epithelial cells of mammary glands during any stage of development, but it was detected in vascular endothelial cells. Id-1 is not expressed in the luminal epithelial cells of mammary glands

  20. The effect of neighboring cells on the stiffness of cancerous and non-cancerous human mammary epithelial cells

    Science.gov (United States)

    Guo, Xinyi; Bonin, Keith; Scarpinato, Karin; Guthold, Martin

    2014-10-01

    Using an Atomic Force Microscope (AFM) with a 5.3 μm diameter spherical probe, we determined mechanical properties of individual human mammary epithelial cells. The cells were derived from a pair of cell lines that mimic cell progression through four phases of neoplastic transformation: normal (non-transformed), immortal, tumorigenic, and metastatic. Measurements on cells in all four phases were taken over both the cytoplasmic and nuclear regions. Moreover, the measurements were made for cells in different microenvironments as related to cell-cell contacts: isolated cells; cells residing on the periphery of a contiguous cell monolayer; and cells on the inside of a contiguous cell monolayer. By fitting the AFM force versus indentation curves to a Hertz model, we determined the pseudo-elastic Young’s modulus, E. Combining all data for the cellular subregions (over nucleus and cytoplasm) and the different cell microenvironments, we obtained stiffness values for normal, immortal, tumorigenic, and metastatic cells of 870 Pa, 870 Pa, 490 Pa, and 580 Pa, respectively. That is, cells become softer as they advance to the tumorigenic phase and then stiffen somewhat in the final step to metastatic cells. We also found a distinct contrast in the influence of a cell’s microenvironment on cell stiffness. Normal mammary epithelial cells inside a monolayer are stiffer than peripheral cells, which are stiffer than isolated cells. However, the microenvironment had a slight, opposite effect on tumorigenic and little effect on immortal and metastatic cell stiffness. Thus, the stiffness of cancer cells is less sensitive to the microenvironment than normal cells. Our results show that the mechanical properties of a cell can depend on cancer progression and microenvironment (cell-cell interactions).

  1. The major bovine mastitis pathogens have different cell tropisms in cultures of bovine mammary gland cells

    NARCIS (Netherlands)

    Lammers, A.; Vorstenbosch, van C.J.; Erkens, J.H.F.; Smith, H.E.

    2001-01-01

    We previously showed that Staphylococcus aureus cells adhered mainly to an elongated cell type, present in cultures of bovine mammary gland cells. Moreover. we showed that this adhesion was mediated by binding to fibronectin. The same in vitro model was used here, to study adhesion of other

  2. Mammary alveolar epithelial cells convert to brown adipocytes in post-lactating mice

    DEFF Research Database (Denmark)

    Giordano, Antonio; Perugini, Jessica; Kristensen, David Møbjerg

    2017-01-01

    During pregnancy and lactation, subcutaneous white adipocytes in the mouse mammary gland transdifferentiate reversibly to milk-secreting epithelial cells. In this study, we demonstrate by transmission electron microscopy that in the post-lactating mammary gland interscapular multilocular adipocyt...... organ plasticity...

  3. The effect of neighboring cells on the stiffness of cancerous and non-cancerous human mammary epithelial cells

    International Nuclear Information System (INIS)

    Guo, Xinyi; Bonin, Keith; Guthold, Martin; Scarpinato, Karin

    2014-01-01

    Using an Atomic Force Microscope (AFM) with a 5.3 μm diameter spherical probe, we determined mechanical properties of individual human mammary epithelial cells. The cells were derived from a pair of cell lines that mimic cell progression through four phases of neoplastic transformation: normal (non-transformed), immortal, tumorigenic, and metastatic. Measurements on cells in all four phases were taken over both the cytoplasmic and nuclear regions. Moreover, the measurements were made for cells in different microenvironments as related to cell–cell contacts: isolated cells; cells residing on the periphery of a contiguous cell monolayer; and cells on the inside of a contiguous cell monolayer. By fitting the AFM force versus indentation curves to a Hertz model, we determined the pseudo-elastic Young’s modulus, E. Combining all data for the cellular subregions (over nucleus and cytoplasm) and the different cell microenvironments, we obtained stiffness values for normal, immortal, tumorigenic, and metastatic cells of 870 Pa, 870 Pa, 490 Pa, and 580 Pa, respectively. That is, cells become softer as they advance to the tumorigenic phase and then stiffen somewhat in the final step to metastatic cells. We also found a distinct contrast in the influence of a cell’s microenvironment on cell stiffness. Normal mammary epithelial cells inside a monolayer are stiffer than peripheral cells, which are stiffer than isolated cells. However, the microenvironment had a slight, opposite effect on tumorigenic and little effect on immortal and metastatic cell stiffness. Thus, the stiffness of cancer cells is less sensitive to the microenvironment than normal cells. Our results show that the mechanical properties of a cell can depend on cancer progression and microenvironment (cell–cell interactions). (paper)

  4. Effects of alpha-particles on survival and chromosomal aberrations in human mammary epithelial cells

    Science.gov (United States)

    Durante, M.; Grossi, G. F.; Gialanella, G.; Pugliese, M.; Nappo, M.; Yang, T. C.

    1995-01-01

    We have studied the radiation responses of a human mammary epithelial cell line, H184B5 F5-1 M/10. This cell line was derived from primary mammary cells after treatment with chemicals and heavy ions. The F5-1 M/10 cells are immortal, density-inhibited in growth, and non-tumorigenic in athymic nude mice and represent an in vitro model of the human epithelium for radiation studies. Because epithelial cells are the target of alpha-particles emitted from radon daughters, we concentrated our studies on the efficiency of alpha-particles. Confluent cultures of M/10 cells were exposed to accelerated alpha-particles [beam energy incident at the cell monolayer = 3.85 MeV, incident linear energy transfer (LET) in cell = 109 keV/microns] and, for comparison, to 80 kVp x-rays. The following endpoints were studied: (1) survival, (2) chromosome aberrations at the first postirradiation mitosis, and (3) chromosome alterations at later passages following irradiation. The survival curve was exponential for alpha-particles (D0 = 0.73 +/- 0.04 Gy), while a shoulder was observed for x-rays (alpha/beta = 2.9 Gy; D0 = 2.5 Gy, extrapolation number 1.6). The relative biological effectiveness (RBE) of high-LET alpha-particles for human epithelial cell killing was 3.3 at 37% survival. Dose-response curves for the induction of chromosome aberrations were linear for alpha-particles and linearquadratic for x-rays. The RBE for the induction of chromosome aberrations varied with the type of aberration scored and was high (about 5) for chromosome breaks and low (about 2) for chromosome exchanges.(ABSTRACT TRUNCATED AT 250 WORDS).

  5. Malignant myoepithelial cells are associated with the differentiated papillary structure and metastatic ability of a syngeneic murine mammary adenocarcinoma model

    International Nuclear Information System (INIS)

    Bumaschny, Viviana; Urtreger, Alejandro; Diament, Miriam; Krasnapolski, Martín; Fiszman, Gabriel; Klein, Slobodanka; Joffé, Elisa Bal de Kier

    2004-01-01

    The normal duct and lobular system of the mammary gland is lined with luminal and myoepithelial cell types. Although evidence suggests that myoepithelial cells might suppress tumor growth, invasion and angiogenesis, their role remains a major enigma in breast cancer biology and few models are currently available for exploring their influence. Several years ago a spontaneous transplantable mammary adenocarcinoma (M38) arose in our BALB/c colony; it contains a malignant myoepithelial cell component and is able to metastasize to draining lymph nodes and lung. To characterize this tumor further, primary M38 cultures were established. The low-passage LM38-LP subline contained two main cell components up to the 30th subculture, whereas the higher passage LM38-HP subline was mainly composed of small spindle-shaped cells. In addition, a large spindle cell clone (LM38-D2) was established by dilutional cloning of the low-passage MM38-LP cells. These cell lines were studied by immunocytochemistry, electron microscopy and ploidy, and syngeneic mice were inoculated subcutaneously and intravenously with the different cell lines, either singly or combined to establish their tumorigenic and metastatic capacity. The two subpopulations of LM38-LP cultures were characterized as luminal and myoepithelium-like cells, whereas LM38-HP was mainly composed of small, spindle-shaped epithelial cells and LM38-D2 contained only large myoepithelial cells. All of them were tumorigenic when inoculated into syngeneic mice, but only LM38-LP cultures containing both conserved luminal and myoepithelial malignant cells developed aggressive papillary adenocarcinomas that spread to lung and regional lymph nodes. The differentiated histopathology and metastatic ability of the spontaneous transplantable M38 murine mammary tumor is associated with the presence and/or interaction of both luminal and myoepithelial tumor cell types

  6. Cell proliferation and apoptosis in rat mammary glands following combinational exposure to bisphenol A and genistein

    International Nuclear Information System (INIS)

    Wang, Jun; Jenkins, Sarah; Lamartiniere, Coral A

    2014-01-01

    Humans are exposed to an array of both harmful and beneficial hormonally active compounds in the environment and through diet. Two such chemicals are Bisphenol A (BPA), a plasticizer, and genistein, a component of soy. Prepubertal exposure to BPA increased mammary carcinogenesis, while genistein suppressed cancer in a chemically-induced model of rodent mammary cancer. The purpose of this research was to determine the effects of combinational exposure to genistein and BPA on cell proliferation, apoptosis, and associated proteins as markers of cancer in mammary glands of rats exposed prepubertally to these environmental chemicals. Prepubertal rats (postpartum days (PND) 2–20) were exposed through lactation via nursing dams treated orally with sesame oil (SO), BPA, genistein, or a combination of BPA and genistein (BPA + Gen). Cell proliferation, apoptosis and protein expressions were investigated for mechanistic studies in mammary glands of rats exposed to these environmental chemicals. Prepubertal exposure to genistein increased cell proliferation in mammary glands of PND21 rats, while BPA increased cell proliferation in adult (PND50) rats. Prepubertal combinational exposure to BPA + Gen increased cell proliferation and reduced apoptosis in PND21 rats, but reduced cell proliferation and increased apoptosis in PND50 rats. The altered mechanisms behind these cellular responses appear to be centered on differential protein expression of caspases, PARP, Bad, p21, Akts, PTEN, ER-β and SRCs 1–3, in the rat mammary gland. Prepubertal BPA exposure resulted in increased cell proliferation in mammary glands of PND50 rats, a process associated with increased risk of cancer development in a chemically-induced mammary cancer. On the other hand, genistein stimulated cell proliferation at PND21, a process that correlates with mammary gland maturation and chemoprevention. In contrast to single chemical exposure, combinational exposure to BPA + Gen performed most similarly to

  7. Specific locus mutagenesis of human mammary epithelial cells by ultraviolet radiation

    International Nuclear Information System (INIS)

    Eldridge, S.R.; Gould, M.N.

    1991-01-01

    Tissue and locus specificity of mutation induction was studied in human mammary epithelial cells (HMEC). Primary HMEC from normal tissue, and immortalized HMEC (184B5) derived from normal HMEC, were cultured under identical conditions and exposed to 10J/m 2 ultraviolet (UV) radiation (254 nm peak wavelength), which produced approximately 50% mean survival in all cell strains and lines tested. UV radiation was found to induce mutations at the Na + -K + ATPase locus as determined by ouabain-resistance in both normal and immortalized HMEC. Mutation frequencies measured in these cells following UV exposure were similar to those reported for human diploid fibroblasts. Mutation induction was investigated at the hypoxanthine-guanine phosphoribosyltransferase (HPRT) locus in normal and immortalized HMEC. Induced mutations at the HPRT locus as determined by 6-thioguanine resistance in normal primary HMEC were not observed following UV radiation. Mutation induction was observed at this locus UV-exposed immortalized HMEC. (author)

  8. DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis.

    Science.gov (United States)

    Pathania, Rajneesh; Ramachandran, Sabarish; Elangovan, Selvakumar; Padia, Ravi; Yang, Pengyi; Cinghu, Senthilkumar; Veeranan-Karmegam, Rajalakshmi; Arjunan, Pachiappan; Gnana-Prakasam, Jaya P; Sadanand, Fulzele; Pei, Lirong; Chang, Chang-Sheng; Choi, Jeong-Hyeon; Shi, Huidong; Manicassamy, Santhakumar; Prasad, Puttur D; Sharma, Suash; Ganapathy, Vadivel; Jothi, Raja; Thangaraju, Muthusamy

    2015-04-24

    Mammary stem/progenitor cells (MaSCs) maintain self-renewal of the mammary epithelium during puberty and pregnancy. DNA methylation provides a potential epigenetic mechanism for maintaining cellular memory during self-renewal. Although DNA methyltransferases (DNMTs) are dispensable for embryonic stem cell maintenance, their role in maintaining MaSCs and cancer stem cells (CSCs) in constantly replenishing mammary epithelium is unclear. Here we show that DNMT1 is indispensable for MaSC maintenance. Furthermore, we find that DNMT1 expression is elevated in mammary tumours, and mammary gland-specific DNMT1 deletion protects mice from mammary tumorigenesis by limiting the CSC pool. Through genome-scale methylation studies, we identify ISL1 as a direct DNMT1 target, hypermethylated and downregulated in mammary tumours and CSCs. DNMT inhibition or ISL1 expression in breast cancer cells limits CSC population. Altogether, our studies uncover an essential role for DNMT1 in MaSC and CSC maintenance and identify DNMT1-ISL1 axis as a potential therapeutic target for breast cancer treatment.

  9. Ganciclovir uptake in human mammary carcinoma cells expressing herpes simplex virus thymidine kinase

    International Nuclear Information System (INIS)

    Haberkorn, Uwe; Khazaie, Khashayarsha; Morr, Iris; Altmann, Annette; Mueller, Markus; Kaick, Gerhard van

    1998-01-01

    Assessment of suicide enzyme activity would have considerable impact on the planning and the individualization of suicide gene therapy of malignant tumors. This may be done by determining the pharmacokinetics of specific substrates. We generated ganciclovir (GCV)-sensitive human mammary carcinoma cell lines after transfection with a retroviral vector bearing the herpes simplex virus thymidine kinase (HSV-tk) gene. Thereafter, uptake measurements and HPLC analyses were performed up to 48 h in an HSV-tk-expressing cell line and in a wild-type cell line using tritiated GCV. HSV-tk-expressing cells showed higher GCV uptake and phosphorylation than control cells, whereas in wild-type MCF7 cells no phosphorylated GCV was detected. In bystander experiments the total GCV uptake was related to the amount of HSV-tk-expressing cells. Furthermore, the uptake of GCV correlated closely with the growth inhibition (r=0.92). Therefore, the accumulation of specific substrates may serve as an indicator of the HSV-tk activity and of therapy outcome. Inhibition and competition experiments demonstrated slow transport of GCV by the nucleoside carriers. The slow uptake and low affinity to HSV-tk indicate that GCV is not an ideal substrate for the nucleoside transport systems or for HSV-tk. This may be the limiting factor for therapy success, necessitating the search for better substrates of HSV-tk

  10. Mammary Stem Cells and Breast Cancer Stem Cells: Molecular Connections and Clinical Implications.

    Science.gov (United States)

    Celià-Terrassa, Toni

    2018-05-04

    Cancer arises from subpopulations of transformed cells with high tumor initiation and repopulation ability, known as cancer stem cells (CSCs), which share many similarities with their normal counterparts. In the mammary gland, several studies have shown common molecular regulators between adult mammary stem cells (MaSCs) and breast cancer stem cells (bCSCs). Cell plasticity and self-renewal are essential abilities for MaSCs to maintain tissue homeostasis and regenerate the gland after pregnancy. Intriguingly, these properties are similarly executed in breast cancer stem cells to drive tumor initiation, tumor heterogeneity and recurrence after chemotherapy. In addition, both stem cell phenotypes are strongly influenced by external signals from the microenvironment, immune cells and supportive specific niches. This review focuses on the intrinsic and extrinsic connections of MaSC and bCSCs with clinical implications for breast cancer progression and their possible therapeutic applications.

  11. Sterol regulatory element-binding proteins are regulators of the sodium/iodide symporter in mammary epithelial cells.

    Science.gov (United States)

    Wen, G; Pachner, L I; Gessner, D K; Eder, K; Ringseis, R

    2016-11-01

    The sodium/iodide symporter (NIS), which is essential for iodide concentration in the thyroid, is reported to be transcriptionally regulated by sterol regulatory element-binding proteins (SREBP) in rat FRTL-5 thyrocytes. The SREBP are strongly activated after parturition and throughout lactation in the mammary gland of cattle and are important for mammary epithelial cell synthesis of milk lipids. In this study, we tested the hypothesis that the NIS gene is regulated also by SREBP in mammary epithelial cells, in which NIS is functionally expressed during lactation. Regulation of NIS expression and iodide uptake was investigated by means of inhibition, silencing, and overexpression of SREBP and by reporter gene and DNA-binding assays. As a mammary epithelial cell model, the human MCF-7 cell line, a breast adenocarcinoma cell line, which shows inducible expression of NIS by all-trans retinoic acid (ATRA), and unlike bovine mammary epithelial cells, is widely used to investigate the regulation of mammary gland NIS and NIS-specific iodide uptake, was used. Inhibition of SREBP maturation by treatment with 25-hydroxycholesterol (5 µM) for 48h reduced ATRA (1 µM)-induced mRNA concentration of NIS and iodide uptake in MCF-7 cells by approximately 20%. Knockdown of SREBP-1c and SREBP-2 by RNA interference decreased the mRNA and protein concentration of NIS by 30 to 50% 48h after initiating knockdown, whereas overexpression of nuclear SREBP (nSREBP)-1c and nSREBP-2 increased the expression of NIS in MCF-7 cells by 45 to 60%, respectively, 48h after initiating overexpression. Reporter gene experiments with varying length of NIS promoter reporter constructs revealed that the NIS 5'-flanking region is activated by nSREBP-1c and nSREBP-2 approximately 1.5- and 4.5-fold, respectively, and activation involves a SREBP-binding motif (SRE) at -38 relative to the transcription start site of the NIS gene. Gel shift assays using oligonucleotides spanning either the wild-type or the

  12. Prevention and Treatment of Spontaneous Mammary Carcinoma with Dendritic Tumor Fusion Cell Vaccine

    National Research Council Canada - National Science Library

    Gong, Jianlin

    2002-01-01

    In the present study, the prevention of cancer development by vaccination with fusion cells was evaluated In a genetically engineered murine model which develops spontaneous mammary carcinomas. The mice (MMT...

  13. CSF-1R as an inhibitor of apoptosis and promoter of proliferation, migration and invasion of canine mammary cancer cells

    Science.gov (United States)

    2013-01-01

    Background Tumor-associated macrophages (TAMs) have high impact on the cancer development because they can facilitate matrix invasion, angiogenesis, and tumor cell motility. It gives cancer cells the capacity to invade normal tissues and metastasize. The signaling of colony-stimulating factor-1 receptor (CSF-1R) which is an important regulator of proliferation and differentiation of monocytes and macrophages regulates most of the tissue macrophages. However, CSF-1R is expressed also in breast epithelial tissue during some physiological stages i.g.: pregnancy and lactation. Its expression has been also detected in various cancers. Our previous study has showed the expression of CSF-1R in all examined canine mammary tumors. Moreover, it strongly correlated with grade of malignancy and ability to metastasis. This study was therefore designed to characterize the role of CSF-1R in canine mammary cancer cells proliferation, apoptosis, migration, and invasion. As far as we know, the study presented hereby is a pioneering experiment in this field of veterinary medicine. Results We showed that csf-1r silencing significantly increased apoptosis (Annexin V test), decreased proliferation (measured as Ki67 expression) and decreased migration (“wound healing” assay) of canine mammary cancer cells. Treatment of these cells with CSF-1 caused opposite effect. Moreover, csf-1r knock-down changed growth characteristics of highly invasive cell lines on Matrigel matrix, and significantly decreased the ability of these cells to invade matrix. CSF-1 treatment increased invasion of cancer cells. Conclusion The evidence of the expression and functional role of the CSF-1R in canine mammary cancer cells indicate that CSF-1R targeting may be a good therapeutic approach. PMID:23561040

  14. Effects of polyamine inhibitors on zinc uptake by COMMA-1D mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J.C.; Haedrich, L.H. (North Carolina State Univ., Raleigh (United States))

    1991-03-15

    Zn uptake or transport is stimulated by glucocorticoids in many types of epithelial cells, including the COMMA-1D mouse mammary cell line. The current objective was to determine whether polyamines also mediate glucocorticoid stimulation of Zn-uptake. Initially, cells grown in lactogenic hormone supplemented-media had approximately 65% greater {sup 65}Zn-uptake over 24 h than cells in nonsupplemented growth media (GM). {sup 65}Zn-uptake from HM with 10{sup {minus}5}M methylglyoxal-bis(guanylhydrazone) (MGBG) (s-adenosyl-methionine decarboxylase inhibitor to block polyamine synthesis) added was less than from GM. Exogenous spermidine added to the MGBG-HM media increased {sup 65}Zn-uptake. However, up to 10mM difluoromethylornithine (DFMO), a more specific inhibitor of sperimidine synthesis, had no significant effect on 24-h {sup 65}Zn-uptake by cells in HM. In GM, DFMO caused a slight dose-dependent decrease in {sup 65}Zn-uptake over the range 10{sup {minus}6} to 5 {times} 10{sup 3}M. Also, with 8 h of incubation, DFMO tended to decrease {sup 65}Zn-uptake in HM-stimulated cells. These data cannot yet distinguish between the possibilities that DFMO is inactivated during the 24-h incubation or that the dramatic effects of MGBG on {sup 65}Zn-uptake in these mammary-derived cells is not related to its inhibition of polyamine synthesis. Because COMMA-1D cells alter Zn uptake in response to lactogenic hormones and MGBG, the model system is suitable for further studies of the mechanisms of zinc transport in epithelia.

  15. Ethanol potentiates the genotoxicity of the food-derived mammary carcinogen PhIP in human estrogen receptor-positive mammary cells: mechanistic support for lifestyle factors (cooked red meat and ethanol) associated with mammary cancer.

    Science.gov (United States)

    Malik, Durr-E-Shahwar; David, Rhiannon M; Gooderham, Nigel J

    2018-04-01

    Consumption of cooked/processed meat and ethanol are lifestyle risk factors in the aetiology of breast cancer. Cooking meat generates heterocyclic amines such as 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Epidemiology, mechanistic and animal studies indicate that PhIP is a mammary carcinogen that could be causally linked to breast cancer incidence; PhIP is DNA damaging, mutagenic and oestrogenic. PhIP toxicity involves cytochrome P450 (CYP1 family)-mediated metabolic activation to DNA-damaging species, and transcriptional responses through Aryl hydrocarbon receptor (AhR) and estrogen-receptor-α (ER-α). Ethanol consumption is a modifiable lifestyle factor strongly associated with breast cancer risk. Ethanol toxicity involves alcohol dehydrogenase metabolism to reactive acetaldehyde, and is also a substrate for CYP2E1, which when uncoupled generates reactive oxygen species (ROS) and DNA damage. Here, using human mammary cells that differ in estrogen-receptor status, we explore genotoxicity of PhIP and ethanol and mechanisms behind this toxicity. Treatment with PhIP (10 -7 -10 -4 M) significantly induced genotoxicity (micronuclei formation) preferentially in ER-α positive human mammary cell lines (MCF-7, ER-α+) compared to MDA-MB-231 (ER-α-) cells. PhIP-induced CYP1A2 in both cell lines but CYP1B1 was selectively induced in ER-α(+) cells. ER-α inhibition in MCF-7 cells attenuated PhIP-mediated micronuclei formation and CYP1B1 induction. PhIP-induced CYP2E1 and ROS via ER-α-STAT-3 pathway, but only in ER-α (+) MCF-7 cells. Importantly, simultaneous treatments of physiological concentrations ethanol (10 -3 -10 -1 M) with PhIP (10 -7 -10 -4 M) increased oxidative stress and genotoxicity in MCF-7 cells, compared to the individual chemicals. Collectively, these data offer a mechanistic basis for the increased risk of breast cancer associated with dietary cooked meat and ethanol lifestyle choices.

  16. Using Mouse Mammary Tumor Cells to Teach Core Biology Concepts: A Simple Lab Module.

    Science.gov (United States)

    McIlrath, Victoria; Trye, Alice; Aguanno, Ann

    2015-06-18

    Undergraduate biology students are required to learn, understand and apply a variety of cellular and molecular biology concepts and techniques in preparation for biomedical, graduate and professional programs or careers in science. To address this, a simple laboratory module was devised to teach the concepts of cell division, cellular communication and cancer through the application of animal cell culture techniques. Here the mouse mammary tumor (MMT) cell line is used to model for breast cancer. Students learn to grow and characterize these animal cells in culture and test the effects of traditional and non-traditional chemotherapy agents on cell proliferation. Specifically, students determine the optimal cell concentration for plating and growing cells, learn how to prepare and dilute drug solutions, identify the best dosage and treatment time course of the antiproliferative agents, and ascertain the rate of cell death in response to various treatments. The module employs both a standard cell counting technique using a hemocytometer and a novel cell counting method using microscopy software. The experimental procedure lends to open-ended inquiry as students can modify critical steps of the protocol, including testing homeopathic agents and over-the-counter drugs. In short, this lab module requires students to use the scientific process to apply their knowledge of the cell cycle, cellular signaling pathways, cancer and modes of treatment, all while developing an array of laboratory skills including cell culture and analysis of experimental data not routinely taught in the undergraduate classroom.

  17. Characterization of primary human mammary epithelial cells isolated and propagated by conditional reprogrammed cell culture.

    Science.gov (United States)

    Jin, Liting; Qu, Ying; Gomez, Liliana J; Chung, Stacey; Han, Bingchen; Gao, Bowen; Yue, Yong; Gong, Yiping; Liu, Xuefeng; Amersi, Farin; Dang, Catherine; Giuliano, Armando E; Cui, Xiaojiang

    2018-02-20

    Conditional reprogramming methods allow for the inexhaustible in vitro proliferation of primary epithelial cells from human tissue specimens. This methodology has the potential to enhance the utility of primary cell culture as a model for mammary gland research. However, few studies have systematically characterized this method in generating in vitro normal human mammary epithelial cell models. We show that cells derived from fresh normal breast tissues can be propagated and exhibit heterogeneous morphologic features. The cultures are composed of CK18, desmoglein 3, and CK19-positive luminal cells and vimentin, p63, and CK14-positive myoepithelial cells, suggesting the maintenance of in vivo heterogeneity. In addition, the cultures contain subpopulations with different CD49f and EpCAM expression profiles. When grown in 3D conditions, cells self-organize into distinct structures that express either luminal or basal cell markers. Among these structures, CK8-positive cells enclosing a lumen are capable of differentiation into milk-producing cells in the presence of lactogenic stimulus. Furthermore, our short-term cultures retain the expression of ERα, as well as its ability to respond to estrogen stimulation. We have investigated conditionally reprogrammed normal epithelial cells in terms of cell type heterogeneity, cellular marker expression, and structural arrangement in two-dimensional (2D) and three-dimensional (3D) systems. The conditional reprogramming methodology allows generation of a heterogeneous culture from normal human mammary tissue in vitro . We believe that this cell culture model will provide a valuable tool to study mammary cell function and malignant transformation.

  18. Human mammary progenitor cell fate decisions are productsof interactions with combinatorial microenvironments

    DEFF Research Database (Denmark)

    LaBarge, Mark A.; Nelson, Celeste M.; Villadsen, René

    2009-01-01

    factors, ECM, and other cells, as well as physical properties of the ECM. To understand regulation of fate decisions, therefore, would require a means of understanding carefully choreographed combinatorial interactions. Here we used microenvironment protein microarrays to functionally identify...... combinations of cell-extrinsic mammary gland proteins and ECM molecules that imposed specific cell fates on bipotent human mammary progenitor cells.Micropatterned cell culture surfaces were fabricated to distinguish between the instructive effects of cell-cell versus cell-ECM interactions, as well...

  19. Culture models of human mammary epithelial cell transformation

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, Martha R.; Yaswen, Paul

    2000-11-10

    Human pre-malignant breast diseases, particularly ductal carcinoma in situ (DCIS)3 already display several of the aberrant phenotypes found in primary breast cancers, including chromosomal abnormalities, telomerase activity, inactivation of the p53 gene and overexpression of some oncogenes. Efforts to model early breast carcinogenesis in human cell cultures have largely involved studies in vitro transformation of normal finite lifespan human mammary epithelial cells (HMEC) to immortality and malignancy. We present a model of HMEC immortal transformation consistent with the know in vivo data. This model includes a recently described, presumably epigenetic process, termed conversion, which occurs in cells that have overcome stringent replicative senescence and are thus able to maintain proliferation with critically short telomeres. The conversion process involves reactivation of telomerase activity, and acquisition of good uniform growth in the absence and presence of TFGB. We propose th at overcoming the proliferative constraints set by senescence, and undergoing conversion, represent key rate-limiting steps in human breast carcinogenesis, and occur during early stage breast cancer progression.

  20. Effects of radiation of cells in vivo: a rat mammary gland model

    International Nuclear Information System (INIS)

    Gould, M.N.

    1977-01-01

    A methodology has been developed for the quantitative transplantation of monodispersed mammary cells. When adequate numbers of cells are transplanted, normal functional mammary tissue containing both secretory and myoepithelial cells in their normal tissue locations is formed. The analysis of the shape of cell dose-transplantation curves indicates a single cell origin of this tissue. Quantitative transplantation data from density gradient separated mammary cell subpopulations indicate that this cell is not of a unique type. With the use of an assay based on development of such structures from inoculated cells, in vivo radiation dose-cell survival curves have been generated under two hormonal conditions which result in differing rates of cell proliferation in the mammary gland. Survival curves generated under hormonal states that result in slow and rapid mammary cell proliferation are superimposable. In these assays tissue was removed immediately after irradiation for transplantation. If, however, the cells (slowly proliferating) are allowed to remain in situ for 24 hrs before removal for transplantation, the value of D 0 remains the same while n and D/sub q/ increase. Evidence is presented that indicates that these changes are due to a unique component of the repair of radiation damage which is dependent on the retention of the cells in their in situ tissue environment following the radiation period. This repair process is termed in situ repair

  1. Slug controls stem/progenitor cell growth dynamics during mammary gland morphogenesis.

    Directory of Open Access Journals (Sweden)

    Mayssa Nassour

    Full Text Available Morphogenesis results from the coordination of distinct cell signaling pathways controlling migration, differentiation, apoptosis, and proliferation, along stem/progenitor cell dynamics. To decipher this puzzle, we focused on epithelial-mesenchymal transition (EMT "master genes". EMT has emerged as a unifying concept, involving cell-cell adhesion, migration and apoptotic pathways. EMT also appears to mingle with stemness. However, very little is known on the physiological role and relevance of EMT master-genes. We addressed this question during mammary morphogenesis. Recently, a link between Slug/Snai2 and stemness has been described in mammary epithelial cells, but EMT master genes actual localization, role and targets during mammary gland morphogenesis are not known and we focused on this basic question.Using a Slug-lacZ transgenic model and immunolocalization, we located Slug in a distinct subpopulation covering about 10-20% basal cap and duct cells, mostly cycling cells, coexpressed with basal markers P-cadherin, CK5 and CD49f. During puberty, Slug-deficient mammary epithelium exhibited a delayed development after transplantation, contained less cycling cells, and overexpressed CK8/18, ER, GATA3 and BMI1 genes, linked to luminal lineage. Other EMT master genes were overexpressed, suggesting compensation mechanisms. Gain/loss-of-function in vitro experiments confirmed Slug control of mammary epithelial cell luminal differentiation and proliferation. In addition, they showed that Slug enhances specifically clonal mammosphere emergence and growth, cell motility, and represses apoptosis. Strikingly, Slug-deprived mammary epithelial cells lost their potential to generate secondary clonal mammospheres.We conclude that Slug pathway controls the growth dynamics of a subpopulation of cycling progenitor basal cells during mammary morphogenesis. Overall, our data better define a key mechanism coordinating cell lineage dynamics and morphogenesis, and

  2. Immunodetection of myeloid and plasmacytoid dendritic cells in mammary carcinomas of female dogs

    Directory of Open Access Journals (Sweden)

    Mayara C. Rosolem

    2015-11-01

    Full Text Available ABSTRACT: Dendritic cells have attracted great interest from researchers as they may be used as targets of tumor immune evasion mechanisms. The main objective of this study was to evaluate the relationship between the dendritic cells (DCs subpopulation in simple type mammary carcinomas in female dogs. Two groups of samples were used: the control group consisted of 18 samples of mammary tissue without changes and the tumor group with 26 simple type mammary carcinomas. In these groups, we evaluated the immunodetection of immature and mature myeloid DCs, plasmacytoid DCs and MHC-II. In mammary tumor, mature myeloid DCs predominated in the peritumoral region, while immature myeloid DCs and plasmacytoid DCs were evident in the intratumoral region. Immunostaining of MHC-II was visualized in mammary acini (control group, in tumor cells and inflammatory infiltration associated with tumors. The comparison between the control and tumor groups showed a statistically significant difference between immature myeloid DCs, mature myeloid DCs and plasmacytoid DCs. The immunodetection of MHC-II was not significant when comparing the groups. The predominance of immature DCs in the tumor group is possibly related to an inefficient immune response, promoting the development and survival of tumor cells. The presence of plasmacytoid DCs in the same group suggests a worse prognosis for female dogs with mammary tumors. Therefore, the ability of differentiation of canine dendritic cells could be influenced by neoplastic cells and by the tumor microenvironment.

  3. Serotonin suppresses β-casein expression via PTP1B activation in human mammary epithelial cells.

    Science.gov (United States)

    Chiba, Takeshi; Maeda, Tomoji; Sanbe, Atsushi; Kudo, Kenzo

    2016-04-22

    Serotonin (5-hydroxytriptamine, 5-HT) has an important role in milk volume homeostasis within the mammary gland during lactation. We have previously shown that the expression of β-casein, a differentiation marker in mammary epithelial cells, is suppressed via 5-HT-mediated inhibition of signal transduction and activator of transcription 5 (STAT5) phosphorylation in the human mammary epithelial MCF-12A cell line. In addition, the reduction of β-casein in turn was associated with 5-HT7 receptor expression in the cells. The objective of this study was to determine the mechanisms underlying the 5-HT-mediated suppression of β-casein and STAT5 phosphorylation. The β-casein level and phosphorylated STAT5 (pSTAT5)/STAT5 ratio in the cells co-treated with 5-HT and a protein kinase A (PKA) inhibitor (KT5720) were significantly higher than those of cells treated with 5-HT alone. Exposure to 100 μM db-cAMP for 6 h significantly decreased the protein levels of β-casein and pSTAT5 and the pSTAT5/STAT5 ratio, and significantly increased PTP1B protein levels. In the cells co-treated with 5-HT and an extracellular signal-regulated kinase1/2 (ERK) inhibitor (FR180294) or Akt inhibitor (124005), the β-casein level and pSTAT5/STAT5 ratio were equal to those of cells treated with 5-HT alone. Treatment with 5-HT significantly induced PTP1B protein levels, whereas its increase was inhibited by KT5720. In addition, the PTP1B inhibitor sc-222227 increased the expression levels of β-casein and the pSTAT5/STAT5 ratio. Our observations indicate that PTP1B directly regulates STAT5 phosphorylation and that its activation via the cAMP/PKA pathway downstream of the 5-HT7 receptor is involved in the suppression of β-casein expression in MCF-12A cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Genes involved in immortalization of human mammary cells

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, Martha R.; Yaswen, Paul

    2001-09-27

    Breast cancer progression is characterized by inappropriate cell growth. Normal cells cease growth after a limited number of cell divisions--a process called cellular senescence-while tumor cells may acquire the ability to proliferate indefinitely (immortality). Inappropriate expression of specific oncogenes in a key cellular signaling pathway (Ras, Raf) can promote tumorigenicity in immortal cells, while causing finite lifespan cells to undergo a rapid senescence-like arrest. We have studied when in the course of transformation of cultured human mammary epithelial cells (HMEC), the response to overexpressed oncogenic Raf changes from being tumor-suppressive to tumor enhancing, and what are the molecular underpinnings of this response. Our data indicate: (1) HMEC acquire the ability to maintain growth in the presence of oncogenic Raf not simply as a consequence of overcoming senescence, but as a result of a newly discovered step in the process of immortal transformation uncovered by our lab, termed conversion. Immortal cells that have not undergone conversion (e.g., cells immortalized by exogenous introduction of the immortalizing enzyme, telomerase) remain growth inhibited. (2) Finite lifespan HMEC growth arrest in response to oncogenic Raf using mediators of growth inhibition that are very different from those used in response to oncogenic Raf by rodent cells and certain other human cell types, including the connective tissue cells from the same breast tissue. While many diverse cell types appear to have in common a tumor-suppressive response to this oncogenic signal, they also have developed multiple mechanisms to elicit this response. Understanding how cancer cells acquire the crucial capacity to be immortal and to abrogate normal tumor-suppressive mechanisms may serve both to increase our understanding of breast cancer progression, and to provide new targets for therapeutic intervention. Our results indicate that normal HMEC have novel means of enforcing a Raf

  5. Characterization of MCF mammary epithelial cells overexpressing the Arylhydrocarbon receptor (AhR)

    International Nuclear Information System (INIS)

    Wong, Patrick S; Li, Wen; Vogel, Christoph F; Matsumura, Fumio

    2009-01-01

    Recent reports indicate the existence of breast cancer cells expressing very high levels of the Arylhydrocarbon receptor (AhR), a ubiquitous intracellular receptor best known for mediating toxic action of dioxin and related pollutants. Positive correlation between the degree of AhR overexpression and states of increasing transformation of mammary epithelial cells appears to occur in the absence of any exogenous AhR ligands. These observations have raised many questions such as why and how AhR is overexpressed in breast cancer and its physiological roles in the progression to advanced carcinogenic transformation. To address those questions, we hypothesized that AhR overexpression occurs in cells experiencing deficiencies in normally required estrogen receptor (ER) signaling, and the basic role of AhR in such cases is to guide the affected cells to develop orchestrated cellular changes aimed at substituting the normal functions of ER. At the same time, the AhR serves as the mediator of the cell survival program in the absence of ER signaling. We subjected two lines of Michigan Cancer Foundation (MCF) mammary epithelial cells to 3 different types ER interacting agents for a number of passages and followed the changes in the expression of AhR mRNA. The resulting sublines were analyzed for phenotypical changes and unique molecular characteristics. MCF10AT1 cells continuously exposed to 17-beta-estradiol (E2) developed sub-lines that show AhR overexpression with the characteristic phenotype of increased proliferation, and distinct resistance to apoptosis. When these chemically selected cell lines were treated with a specific AhR antagonist, 3-methoxy-4-nitroflavone (MNF), both of the above abnormal cellular characteristics disappeared, indicating the pivotal role of AhR in expressing those cellular phenotypes. The most prominent molecular characteristics of these AhR overexpressing MCF cells were found to be overexpression of ErbB2 and COX-2. Furthermore, we could

  6. High-Dimensional Phenotyping Identifies Age-Emergent Cells in Human Mammary Epithelia

    Directory of Open Access Journals (Sweden)

    Fanny A. Pelissier Vatter

    2018-04-01

    Full Text Available Summary: Aging is associated with tissue-level changes in cellular composition that are correlated with increased susceptibility to disease. Aging human mammary tissue shows skewed progenitor cell potency, resulting in diminished tumor-suppressive cell types and the accumulation of defective epithelial progenitors. Quantitative characterization of these age-emergent human cell subpopulations is lacking, impeding our understanding of the relationship between age and cancer susceptibility. We conducted single-cell resolution proteomic phenotyping of healthy breast epithelia from 57 women, aged 16–91 years, using mass cytometry. Remarkable heterogeneity was quantified within the two mammary epithelial lineages. Population partitioning identified a subset of aberrant basal-like luminal cells that accumulate with age and originate from age-altered progenitors. Quantification of age-emergent phenotypes enabled robust classification of breast tissues by age in healthy women. This high-resolution mapping highlighted specific epithelial subpopulations that change with age in a manner consistent with increased susceptibility to breast cancer. : Vatter et al. find that single-cell mass cytometry of human mammary epithelial cells from 57 women, from 16 to 91 years old, depicts an in-depth phenotyping of aging mammary epithelia. Subpopulations of altered luminal and progenitor cells that accumulate with age may be at increased risk for oncogenic transformation. Keywords: human mammary epithelia, aging, mass cytometry, single-cell analysis, heterogeneity, breast cancer

  7. Inhibition of Staphylococcus aureus Invasion into Bovine Mammary Epithelial Cells by Contact with Live Lactobacillus casei

    OpenAIRE

    Bouchard, Damien S.; Rault, Lucie; Berkova, Nadia; Le Loir, Yves; Even, Sergine

    2013-01-01

    Staphylococcus aureus is a major pathogen that is responsible for mastitis in dairy herds. S. aureus mastitis is difficult to treat and prone to recurrence despite antibiotic treatment. The ability of S. aureus to invade bovine mammary epithelial cells (bMEC) is evoked to explain this chronicity. One sustainable alternative to treat or prevent mastitis is the use of lactic acid bacteria (LAB) as mammary probiotics. In this study, we tested the ability of Lactobacillus casei strains to prevent...

  8. HER/ErbB Receptor Interactions and Signaling Patterns in Human Mammary Epithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yi; Opresko, Lee K.; Shankaran, Harish; Chrisler, William B.; Wiley, H. S.; Resat, Haluk

    2009-10-31

    Knowledge about signaling pathways is typically compiled based on data gathered using different cell lines. This approach implicitly assumes that cell line dependence is not important, which can be misleading because different cell lines do not always respond to a particular stimulus in the same way. The lack of coherent data collected from closely related cellular systems can be detrimental to the efforts to understand the regulation of biological processes. In this study, we report the development of a library of human mammary epithelial (HME) cell lines which express endogenous levels of the cell surface receptor EGFR/HER1, and different levels of HER2 and HER3. Using our clone library, we have quantified the interactions among the HER1-3 receptors and systematically investigated the existing hypotheses about their interaction patterns. Contrary to earlier suggestions, we find that lateral interactions with HER2 do not lead to strong transactivation between EGFR and HER3. Our study identified HER2 as the dominant dimerization partner for both EGFR and HER3, and revealed that EGFR and HER3 activations are only weakly linked in HME cells. We have also quantified the time-dependent activation patterns of the downstream effectors Erk and Akt. We found that HER3 signaling makes the strongest contribution to Akt activation and that, stimulation of either EGFR or HER3 pathways activate Erk at significant levels. Our study shows that cell libraries formed from closely related clones can be a powerful resource for pursuing the quantitative investigations that are necessary for developing a systems level understanding of cell signaling.

  9. Effects of glucose on lactose synthesis in mammary epithelial cells from dairy cow.

    Science.gov (United States)

    Lin, Ye; Sun, Xiaoxu; Hou, Xiaoming; Qu, Bo; Gao, Xuejun; Li, Qingzhang

    2016-05-26

    Lactose, as the primary osmotic component in milk, is the major determinant of milk volume. Glucose is the primary precursor of lactose. However, the effect of glucose on lactose synthesis in dairy cow mammary glands and the mechanism governing this process are poorly understood. Here we showed that glucose has the ability to induce lactose synthesis in dairy cow mammary epithelial cells, as well as increase cell viability and proliferation. A concentration of 12 mM glucose was the optimum concentration to induce cell growth and lactose synthesis in cultured dairy cow mammary epithelial cells. In vitro, 12 mM glucose enhanced lactose content, along with the expression of genes involved in glucose transportation and the lactose biosynthesis pathway, including GLUT1, SLC35A2, SLC35B1, HK2, β4GalT-I, and AKT1. In addition, we found that AKT1 knockdown inhibited cell growth and lactose synthesis as well as expression of GLUT1, SLC35A2, SLC35B1, HK2, and β4GalT-I. Glucose induces cell growth and lactose synthesis in dairy cow mammary epithelial cells. Protein kinase B alpha acts as a regulator of metabolism in dairy cow mammary gland to mediate the effects of glucose on lactose synthesis.

  10. Human Breast Cancer Cells Are Redirected to Mammary Epithelial Cells upon Interaction with the Regenerating Mammary Gland Microenvironment In-Vivo

    Science.gov (United States)

    Bussard, Karen M.; Smith, Gilbert H.

    2012-01-01

    Breast cancer is the second leading cause of cancer deaths in the United States. At present, the etiology of breast cancer is unknown; however the possibility of a distinct cell of origin, i.e. a cancer stem cell, is a heavily investigated area of research. Influencing signals from the tissue niche are known to affect stem cells. Literature has shown that cancer cells lose their tumorigenic potential and display ‘normal’ behavior when placed into ‘normal’ ontogenic environments. Therefore, it may be the case that the tissue microenvironment is able to generate signals to redirect cancer cell fate. Previously, we showed that pluripotent human embryonal carcinoma cells could be redirected by the regenerating mammary gland microenvironment to contribute epithelial progeny for ‘normal’ gland development in-vivo. Here, we show that that human metastatic, non-metastatic, and metastasis-suppressed breast cancer cells proliferate and contribute to normal mammary gland development in-vivo without tumor formation. Immunochemistry for human-specific mitochondria, keratin 8 and 14, as well as human-specific milk proteins (alpha-lactalbumin, impregnated transplant hosts) confirmed the presence of human cell progeny. Features consistent with normal mammary gland development as seen in intact hosts (duct, lumen formation, development of secretory acini) were recapitulated in both primary and secondary outgrowths from chimeric implants. These results suggest the dominance of the tissue microenvironment over cancer cell fate. This work demonstrates that cultured human breast cancer cells (metastatic and non-metastatic) respond developmentally to signals generated by the mouse mammary gland microenvironment during gland regeneration in-vivo. PMID:23155468

  11. Human breast cancer cells are redirected to mammary epithelial cells upon interaction with the regenerating mammary gland microenvironment in-vivo.

    Directory of Open Access Journals (Sweden)

    Karen M Bussard

    Full Text Available Breast cancer is the second leading cause of cancer deaths in the United States. At present, the etiology of breast cancer is unknown; however the possibility of a distinct cell of origin, i.e. a cancer stem cell, is a heavily investigated area of research. Influencing signals from the tissue niche are known to affect stem cells. Literature has shown that cancer cells lose their tumorigenic potential and display 'normal' behavior when placed into 'normal' ontogenic environments. Therefore, it may be the case that the tissue microenvironment is able to generate signals to redirect cancer cell fate. Previously, we showed that pluripotent human embryonal carcinoma cells could be redirected by the regenerating mammary gland microenvironment to contribute epithelial progeny for 'normal' gland development in-vivo. Here, we show that that human metastatic, non-metastatic, and metastasis-suppressed breast cancer cells proliferate and contribute to normal mammary gland development in-vivo without tumor formation. Immunochemistry for human-specific mitochondria, keratin 8 and 14, as well as human-specific milk proteins (alpha-lactalbumin, impregnated transplant hosts confirmed the presence of human cell progeny. Features consistent with normal mammary gland development as seen in intact hosts (duct, lumen formation, development of secretory acini were recapitulated in both primary and secondary outgrowths from chimeric implants. These results suggest the dominance of the tissue microenvironment over cancer cell fate. This work demonstrates that cultured human breast cancer cells (metastatic and non-metastatic respond developmentally to signals generated by the mouse mammary gland microenvironment during gland regeneration in-vivo.

  12. In vitro expansion of the mammary stem/progenitor cell population by xanthosine treatment

    Directory of Open Access Journals (Sweden)

    Choudhary Ratan K

    2012-06-01

    Full Text Available Abstract Background Mammary stem cells are critical for growth and maintenance of the mammary gland and therefore are of considerable interest for improving productivity and efficiency of dairy animals. Xanthosine treatment has been demonstrated to promote expansion of putative mammary stem cells in vivo, and hepatic and hair follicle stem cells in vitro. In the latter, xanthosine promoted the symmetrical division of hepatic and hair follicle stem cells. The objective of this study was to determine if treating primary cultures of bovine mammary epithelial cells (MEC with xanthosine increases the stem/progenitor cell population by promoting symmetrical division of mammary stem cells. Results In vitro treatment with xanthosine increased the population of MEC during the exponential phase of cell growth, reducing the doubling time from 86 h in control cultures to 60 h in xanthosine-treated cultures. The bromodeoxyuridine (BrdU labeling index and the proportion of MEC in S-phase both were increased by xanthosine treatment, indicating that increased cell accretion was due to increased cell proliferation. Analysis of daughter-pairs indicated that xanthosine promoted a shift from asymmetric to symmetric cell division. Moreover, the 30 % increase in symmetric cell division was concomitant with an increase in the proportion of MEC that were positive for a putative stem cell marker (FNDC3B and a trend toward increased telomerase activity. These results suggest that xanthosine treatment in vitro can increase cell proliferation, promote symmetric cell division and enhance stem/progenitor cell activity. Conclusions Xanthosine treatment increased the proliferation rate of bovine MEC in vitro. This was likely to be mediated by an increase in the proportion of stem/progenitor cells in the MEC population due to promotion of symmetrical stem cell division by xanthosine.

  13. Protein secretion in human mammary epithelial cells following HER1 receptor activation: influence of HER2 and HER3 expression

    International Nuclear Information System (INIS)

    Zhang, Yi; Gonzalez, Rachel M; Zangar, Richard C

    2011-01-01

    Protein secretion by mammary cells results in autocrine and paracrine signaling that defines cell growth, migration and the extracellular environment. Even so, we have a limited understanding of the cellular processes that regulate protein secretion. In this study, we utilize human epithelial mammary cell (HMEC) lines that were engineered to express different levels of HER1, HER2 and HER3. Using an ELISA microarray platform, we evaluate the effects of epidermal growth factor family receptor (HER) expression on protein secretion in the HMEC lines upon initiation of HER1 receptor activation. The secreted proteins include three HER1 ligands, interleukins 1α and 18, RANTES, vascular-endothelial and platelet-derived growth factors, matrix metalloproteases 1, 2 and 9, and the extracellular portion of the HER1 and HER2 proteins. In addition, we investigate whether MAPK/Erk and PI3K/Akt signaling regulate protein secretion in these cell lines and if so, whether the involvement of HER2 or HER3 receptor alters their response to MAPK/Erk and PI3K/Akt signal pathway inhibition in terms of protein secretion. Differential expression of HER2 and HER3 receptors alters the secretion of a variety of growth factors, cytokines, and proteases. Some alterations in protein secretion are still observed when MAPK/Erk or PI3K/Akt signaling is inhibited. This study suggests that HER overexpression orchestrates broad changes in the tumor microenvironment by altering the secretion of a diverse variety of biologically active proteins

  14. Study of the G2/M cell cycle checkpoint in irradiated mammary epithelial cells overexpressing Cul-4A gene

    International Nuclear Information System (INIS)

    Gupta, Anu; Yang, L.-X.; Chen, L.-C.

    2002-01-01

    Purpose: Members of the cullin gene family are known to be involved in cell cycle control. One of the cullin genes, Cul-4A, is amplified and overexpressed in breast cancer cells. This study investigates the effect of Cul-4A overexpression upon G2/M cell cycle checkpoint after DNA damage induced by either ionizing or nonionizing radiation. Methods and Materials: The normal mammary epithelial cell line MCF10A was stably transfected with full-length Cul-4A cDNA. Independent clones of MCF10A cells that overexpress Cul-4A proteins were selected and treated with either 8 Gy of ionizing radiation or 7 J/M 2 of UV radiation. The profile of cell cycle progression and the accumulation of several cell cycle proteins were analyzed. Results: We found that overexpression of Cul-4A in MCF10A cells abrogated the G2/M cell cycle checkpoint in response to DNA damage induced by ionizing irradiation, but not to DNA damage induced by nonionizing radiation. Analysis of cell cycle proteins showed that after ionizing irradiation, p53 accumulated in the mock-transfected MCF10A cells, but not in the Cul-4A transfectants. Conclusion: Our results suggest a role for Cul-4A in tumorigenesis and/or tumor progression, possibly through disruption of cell cycle control

  15. CDB-4124, a progesterone receptor modulator, inhibits mammary carcinogenesis by suppressing cell proliferation and inducing apoptosis.

    Science.gov (United States)

    Wiehle, Ronald; Lantvit, Daniel; Yamada, Tohru; Christov, Konstantin

    2011-03-01

    CDB-4124 (Proellex or telapristone acetate) is a modulator of progesterone receptor (PR) signaling, which is currently employed in preclinical studies for prevention and treatment of breast cancer and has been used in clinical studies for treatment of uterine fibroids and endometriosis. Here we provide evidence for its action on steroid hormone-signaling, cell cycle-regulated genes and in vivo on mammary carcinogenesis. When CDB-4124 is given to rats at 200 mg/kg for 24 months, it prevents the development of spontaneous mammary hyperplastic and premalignant lesions. Also, CDB-4124 given as subcutaneous pellets at two different doses suppressed, dose dependently, N-methyl-N-nitrosourea (MNU)-induced mammary carcinogenesis. The high dose (30 mg, over 84 days) increased tumor latency from 66 ± 24 days to 87 ± 20 days (P CDB-4124 inhibited cell proliferation and induced apoptosis in MNU-induced mammary tumors, which correlated with a decreased proportion of PR(+) tumor cells and with decreased serum progesterone. CDB-4124 did not affect serum estradiol. In a mechanistic study employing T47D cells we found that CDB-4124 suppressed G(1)/G(0)-S transition by inhibiting CDK2 and CDK4 expressions, which correlated with inhibition of estrogen receptor (ER) expression. Taken together, these data indicate that CDB-4124 can suppress the development of precancerous lesions and carcinogen-induced ER(+) mammary tumors in rats, and may have implications for prevention and treatment of human breast cancer.

  16. Suppression of ICE and Apoptosis in Mammary Epithelial Cells by Extracellular Matrix

    Energy Technology Data Exchange (ETDEWEB)

    Boudreau, Nancy; Sympson, C. J.; Werb, Zena; Bissell, Mina J.

    1994-12-01

    Apoptosis (programmed cell death) plays a major role in development and tissue regeneration. Basement membrane extracellular matrix (ECM), but not fibronectin or collagen, was shown to suppress apoptosis of mammary epithelial cells in tissue culture and in vivo. Apoptosis was induced by antibodies to beta 1 integrins or by overexpression of stromelysin-1, which degrades ECM. Expression of interleukin-1 beta converting enzyme (ICE) correlated with the loss of ECM, and inhibitors of ICE activity prevented apoptosis. These results suggest that ECM regulates apoptosis in mammary epithelial cells through an integrin-dependent negative regulation of ICE expression.

  17. The Wnt Signaling Landscape of Mammary Stem Cells and Breast Tumors.

    Science.gov (United States)

    Alexander, Caroline M

    2018-01-01

    Attention has been focused on Wnt signaling in the mouse mammary gland for several decades, firstly by the discovery of several Wnt loci among the oncogenes revealed by MMTV-based insertional mutagenesis screening of mouse mammary gland, and then by the remarkable visualization of Wnt-dependent specification of mammary placodes in embryonic skin. This review aims to summarize the impact of recent data for our understanding of the roles of Wnt signaling in these roles. The amount and identity of both familiar and novel Wnt signaling components is examined for mouse mammary epithelial cells. The hierarchical arrangement of mammary epithelial cell progenitors and stem cells inferred from the study of isolated cells is reinterpreted in an era that has demonstrated almost limitless cellular plasticity. Functional definitions of stem and progenitor activities are reevaluated with the discovery of novel stem cell activities and regulators, and we draw parallels with the arrangement of replication-competent cells in other tissues. Although Wnt signaling is highly oncogenic for mouse mammary epithelia, the data supporting Wnt signaling as a tumor driver for human breast cancer are still flimsy, and there is little support for the recruitment of normal Wnt-dependent breast stem cells as tumor precursor cells for either mouse or human. We discuss possible explanations for this paradox and questions still unanswered, including the potential impact of recent discoveries of Wnt-secreting microenvironments, oncogenic changes in the Rspo/Lgr/Ubiquitin ligase amplifier complex, as they could apply to breast tissues, and the feedback suppression of Wnt signaling that characterizes its developmental activity and may hide Wnt signatures in tumors. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Fibroblast growth factor receptor signaling is essential for normal mammary gland development and stem cell function.

    Science.gov (United States)

    Pond, Adam C; Bin, Xue; Batts, Torey; Roarty, Kevin; Hilsenbeck, Susan; Rosen, Jeffrey M

    2013-01-01

    Fibroblast growth factor (FGF) signaling plays an important role in embryonic stem cells and adult tissue homeostasis, but the function of FGFs in mammary gland stem cells is less well defined. Both FGFR1 and FGFR2 are expressed in basal and luminal mammary epithelial cells (MECs), suggesting that together they might play a role in mammary gland development and stem cell dynamics. Previous studies have demonstrated that the deletion of FGFR2 resulted only in transient developmental defects in branching morphogenesis. Using a conditional deletion strategy, we investigated the consequences of FGFR1 deletion alone and then the simultaneous deletion of both FGFR1 and FGFR2 in the mammary epithelium. FGFR1 deletion using a keratin 14 promoter-driven Cre-recombinase resulted in an early, yet transient delay in development. However, no reduction in functional outgrowth potential was observed following limiting dilution transplantation analysis. In contrast, a significant reduction in outgrowth potential was observed upon the deletion of both FGFR1 and FGFR2 in MECs using adenovirus-Cre. Additionally, using a fluorescent reporter mouse model to monitor Cre-mediated recombination, we observed a competitive disadvantage following transplantation of both FGFR1/R2-null MECs, most prominently in the basal epithelial cells. This correlated with the complete loss of the mammary stem cell repopulating population in the FGFR1/R2-attenuated epithelium. FGFR1/R2-null MECs were partially rescued in chimeric outgrowths containing wild-type MECs, suggesting the potential importance of paracrine mechanisms involved in the maintenance of the basal epithelial stem cells. These studies document the requirement for functional FGFR signaling in mammary stem cells during development. Copyright © 2012 AlphaMed Press.

  19. Human Mammary Luminal Epithelial Cells Contain Progenitors to Myoepithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pechoux, Christine; Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Bissell, Mina J; Petersen, Ole

    1999-02-01

    The origin of the epithelial and myoepithelial cells in the human breast has not been delineated. In this study we have addressed whether luminal epithelial cells and myoepithelial cells are vertically connected, i.e., whether one is the precursor for the other. We used a primary culture assay allowing preservation of basic phenotypic traits of luminal epithelial and myoepithelial cells in culture. The two cell types were then separated immunomagnetically using antibodies directed against lineage-specific cell surface antigens into at best 100% purity. The cellular identity was ascertained by cytochemistry, immunoblotting, and 2-D gel electrophoresis. Luminal epithelial cells were identified by strong expression of cytokeratins 18 and 19 while myoepithelial cells were recognized by expression of vimentin and {alpha}-smooth muscle actin. We used a previously devised culture medium (CDM4) that allows vigorous expansion of proliferative myoepithelial cells and also devised a medium (CDM6) that allowed sufficient expansion of differentiated luminal epithelial cells based on addition of hepatocyte growth factor/scatter factor. The two different culture media supported each lineage for at least five passages without signs of interconversion. We used parallel cultures where we switched culture media, thus testing the ability of each lineage to convert to the other. Whereas the myoepithelial lineage showed no signs of interconversion, a subset of luminal epithelial cells, gradually, but distinctly, converted to myoepithelial cells. We propose that in the mature human breast, it is the luminal epithelial cell compartment that gives rise to myoepithelial cells rather than the other way around.

  20. Peripheral serotonin regulates maternal calcium trafficking in mammary epithelial cells during lactation in mice.

    Directory of Open Access Journals (Sweden)

    Jimena Laporta

    Full Text Available Lactation is characterized by massive transcellular flux of calcium, from the basolateral side of the mammary alveolar epithelium (blood into the ductal lumen (milk. Regulation of calcium transport during lactation is critical for maternal and neonatal health. The monoamine serotonin (5-HT is synthesized by the mammary gland and functions as a homeostatic regulation of lactation. Genetic ablation of tryptophan hydroxylase 1 (Tph1, which encodes the rate-limiting enzyme in non-neuronal serotonin synthesis, causes a deficiency in circulating serotonin. As a consequence maternal calcium concentrations decrease, mammary epithelial cell morphology is altered, and cell proliferation is decreased during lactation. Here we demonstrate that serotonin deficiency decreases the expression and disrupts the normal localization of calcium transporters located in the apical (PMCA2 and basolateral (CaSR, ORAI-1 membranes of the lactating mammary gland. In addition, serotonin deficiency decreases the mRNA expression of calcium transporters located in intracellular compartments (SERCA2, SPCA1 and 2. Mammary expression of serotonin receptor isoform 2b and its downstream pathways (PLCβ3, PKC and MAP-ERK1/2 are also decreased by serotonin deficiency, which might explain the numerous phenotypic alterations described above. In most cases, addition of exogenous 5-hydroxy-L-tryptophan to the Tph1 deficient mice rescued the phenotype. Our data supports the hypothesis that serotonin is necessary for proper mammary gland structure and function, to regulate blood and mammary epithelial cell transport of calcium during lactation. These findings can be applicable to the treatment of lactation-induced hypocalcemia in dairy cows and can have profound implications in humans, given the wide-spread use of selective serotonin reuptake inhibitors as antidepressants during pregnancy and lactation.

  1. Sequestration of human cytomegalovirus by human renal and mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Twite, Nicolas [Institute for Medical Immunology, Université Libre de Bruxelles, Rue A. Bolland 8, B-6041 Charleroi (Belgium); Andrei, Graciela [Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven (Belgium); Kummert, Caroline [ImmuneHealth, Rue A. Bolland 8, B-6041 Charleroi (Belgium); Donner, Catherine [Department of Obstetrics and Gynecology, Erasme Hospital, Route de Lennik 808, 1070 Brussels (Belgium); Perez-Morga, David [Laboratory of Molecular Parasitology, Institut de Biologie et Médecine Moléculaires, Université Libre de Bruxelles, Gosselies (Belgium); De Vos, Rita [Pathology Department, U.Z. Leuven, Minderbroedersstraat 12, Leuven (Belgium); Snoeck, Robert, E-mail: Robert.Snoeck@Rega.kuleuven.be [Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven (Belgium); Marchant, Arnaud, E-mail: arnaud.marchant@ulb.ac.be [Institute for Medical Immunology, Université Libre de Bruxelles, Rue A. Bolland 8, B-6041 Charleroi (Belgium); ImmuneHealth, Rue A. Bolland 8, B-6041 Charleroi (Belgium)

    2014-07-15

    Urine and breast milk represent the main routes of human cytomegalovirus (HCMV) transmission but the contribution of renal and mammary epithelial cells to viral excretion remains unclear. We observed that kidney and mammary epithelial cells were permissive to HCMV infection and expressed immediate early, early and late antigens within 72 h of infection. During the first 24 h after infection, high titers of infectious virus were measured associated to the cells and in culture supernatants, independently of de novo synthesis of virus progeny. This phenomenon was not observed in HCMV-infected fibroblasts and suggested the sequestration and the release of HCMV by epithelial cells. This hypothesis was supported by confocal and electron microscopy analyses. The sequestration and progressive release of HCMV by kidney and mammary epithelial cells may play an important role in the excretion of the virus in urine and breast milk and may thereby contribute to HCMV transmission. - Highlights: • Primary renal and mammary epithelial cells are permissive to HCMV infection. • HCMV is sequestered by epithelial cells and this phenomenon does not require viral replication. • HCMV sequestration by epithelial cells is reduced by antibodies and IFN-γ.

  2. Prototheca zopfii Induced Ultrastructural Features Associated with Apoptosis in Bovine Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Muhammad Shahid

    2017-07-01

    Full Text Available Prototheca zopfii infections are becoming global concerns in humans and animals. Bovine protothecal mastitis is characterized by deteriorating milk quality and quantity, thus imparting huge economic losses to dairy industry. Previous published studies mostly focused on the prevalence and characterization of P. zopfii from mastitis. However, the ultrastructural pathomorphological changes associated with apoptosis in bovine mammary epithelial cells (bMECs are not studied yet. Therefore, in this study we aimed to evaluate the in vitro comparative apoptotic potential of P. zopfii genotype-I and -II on bMECs using flow cytometry, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. The results showed fast growth rate and higher adhesion capability of genotype-II in bMECs as compared with genotype-I. The viability of bMECs infected with P. zopfii genotype-II was significantly decreased after 12 h (p < 0.05 and 24 h (p < 0.01 in comparison with control cells. Contrary, genotype-I couldn't show any significant effects on cell viability. Moreover, after infection of bMECs with genotype-II, the apoptosis increased significantly at 12 h (p < 0.05 and 24 h (p < 0.01 as compared with control group. Genotype-I couldn't display any significant effects on cell apoptosis. The host specificity of P. zopfii was also tested in mouse osteoblast cells, and the results suggest that genotype-I and -II could not cause any significant apoptosis in these cell lines. SEM interpreted the pathomorphological alterations in bMECs after infection. Adhesion of P. zopfii with cells and further disruption of cytomembrane validated the apoptosis caused by genotype-II under SEM. While genotype-1 couldn't cause any significant apoptosis in bMECs. Furthermore, genotype-II induced apoptotic manifested specific ultrastructure features, like cytoplasmic cavitation, swollen mitochondria, pyknosis, cytomembrane disruption, and appearance of apoptotic bodies under

  3. Misregulation of Stromelysin-1 in Mouse Mammary Tumor Cells Accompanies Acquisition of Stromelysin-1 dependent Invasive Properties

    Energy Technology Data Exchange (ETDEWEB)

    Lochter, A.; Srebrow, A.; Sympson, C.J.; Terracio, N.; Werb, Z.; Bissell, M.J.

    1997-02-21

    Stromelysin-1 is a member of the metalloproteinase family of extracellular matrix-degrading enzymes that regulates tissue remodeling. We previously established a transgenic mouse model in which rat stromelysin-1 targeted to the mammary gland augmented expression of endogenous stromelysin-1, disrupted functional differentiation, and induced mammary tumors. A cell line generated from an adenocarcinoma in one of these animals and a previously described mammary tumor cell line generated in culture readily invaded both a reconstituted basement membrane and type I collagen gels, whereas a nonmalignant, functionally normal epithelial cell line did not. Invasion of Matrigel by tumor cells was largely abolished by metalloproteinase inhibitors, but not by inhibitors of other proteinase families. Inhibition experiments with antisense oligodeoxynucleotides revealed that Matrigel invasion of both cell lines was critically dependent on stromelysin-1 expression. Invasion of collagen, on the other hand, was reduced by only 40-50%. Stromelysin-1 was expressed in both malignant and nonmalignant cells grown on plastic substrata. Its expression was completely inhibited in nonmalignant cells, but up-regulated in tumor cells, in response to Matrigel. Thus misregulation of stromelysin-1 expression appears to be an important aspect of mammary tumor cell progression to an invasive phenotype. The matrix metalloproteinases (MMPs) are a family of extracellular matrix (ECM)-degrading enzymes that have been implicated in a variety of normal developmental and pathological processes, including tumorigenesis. The MMP family comprises at least 15 members with different, albeit overlapping, substrate specificities. During activation of latent MMPs, their propeptides are cleaved and they are converted to a lower molecular weight form by other enzymes, including serine proteinases, and by autocatalytic cleavage. Among the MMPs, stromelysin-1 (SL1) possesses the broadest substrate specificity. Despite

  4. Comparative action spectra for pyrimidine dimer formation in Cloudman S91 mouse melanoma and EMT6 mouse mammary carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Hill, H Z [New Jersey, Medical School, Newark (USA); Setlow, R B [Brookhaven National Lab., Upton, NY (USA)

    1982-05-01

    Pyrimidine dimer formation in melanotic mouse melanoma cells, Cloudman S91H-, and in mouse mammary carcinoma cells, EMT6, was compared as a function of wavelength by irradiating equal numbers of cells from the two cell lines simultaneously. More dimers were formed in EMT6 than in S91H- by light of wavelengths less than 289nm, while light of higher wavelengths caused equivalent dimer formation, as measured by the Micrococcus luteus UV-endonuclease assay. The cells of S91H- are lightly melanotic, yet shielding at lower wavelengths is considerable. It is speculated that melanin pigmentation arose by selection during an evolutionary period when UV-C light reaching the earth's surface was significantly greater than it is today.

  5. Effects of xanthosine on gene expression of mammary epithelial cells using RNA sequencing of goat milk fat globules

    Science.gov (United States)

    Although intramammary xanthosine (XS) treatment was reported to increase the mammary stem cell population and milk yield in bovine and caprine, underlying molecular mechanisms remain unclear. The goal of this study was to evaluate effects of XS treatment on the mammary transcriptome in early lactati...

  6. Soy Components Genistein and Lunasin Regulate E-Cadherin and Wnt Signaling in Mammary Epithelial Cells

    Science.gov (United States)

    Enhanced Wnt/beta-catenin signaling and loss of E-cadherin expression are considered hallmarks of tumorigenesis. We previously showed by microarray gene profiling that dietary intake of soy-based AIN-93G diets altered components of Wnt/beta-catenin signaling in rat mammary epithelial cells. To furth...

  7. The non-protein coding breast cancer susceptibility locus Mcs5a acts in a non-mammary cell-autonomous fashion through the immune system and modulates T-cell homeostasis and functions.

    Science.gov (United States)

    Smits, Bart M G; Sharma, Deepak; Samuelson, David J; Woditschka, Stephan; Mau, Bob; Haag, Jill D; Gould, Michael N

    2011-08-16

    Mechanisms underlying low-penetrance, common, non-protein coding variants in breast cancer risk loci are largely undefined. We showed previously that the non-protein coding mammary carcinoma susceptibility locus Mcs5a/MCS5A modulates breast cancer risk in rats and women. The Mcs5a allele from the Wistar-Kyoto (WKy) rat strain consists of two genetically interacting elements that have to be present on the same chromosome to confer mammary carcinoma resistance. We also found that the two interacting elements of the resistant allele are required for the downregulation of transcript levels of the Fbxo10 gene specifically in T-cells. Here we describe mechanisms through which Mcs5a may reduce mammary carcinoma susceptibility. We performed mammary carcinoma multiplicity studies with three mammary carcinoma-inducing treatments, namely 7,12-dimethylbenz(a)anthracene (DMBA) and N-nitroso-N-methylurea (NMU) carcinogenesis, and mammary ductal infusion of retrovirus expressing the activated HER2/neu oncogene. We used mammary gland and bone marrow transplantation assays to assess the target tissue of Mcs5a activity. We used immunophenotyping assays on well-defined congenic rat lines carrying susceptible and resistant Mcs5a alleles to identify changes in T-cell homeostasis and function associated with resistance. We show that Mcs5a acts beyond the initial step of mammary epithelial cell transformation, during early cancer progression. We show that Mcs5a controls susceptibility in a non-mammary cell-autonomous manner through the immune system. The resistant Mcs5a allele was found to be associated with an overabundance of gd T-cell receptor (TCR)+ T-cells as well as a CD62L (L-selectin)-high population of all T-cell classes. In contrast to in mammary carcinoma, gdTCR+ T-cells are the predominant T-cell type in the mammary gland and were found to be overabundant in the mammary epithelium of Mcs5a resistant congenic rats. Most of them simultaneously expressed the CD4, CD8, and CD161

  8. Canine mammary minute oncocytomas with neuroendocrine differentiation associated with multifocal acinar cell oncocytic metaplasia.

    Science.gov (United States)

    Nagahara, Rei; Kimura, Masayuki; Itahashi, Megu; Sugahara, Go; Kawashima, Masashi; Murayama, Hirotada; Yoshida, Toshinori; Shibutani, Makoto

    2016-11-01

    Two solitary and minute tumors of 1 and 1.5 mm diameter were identified by microscopy in the left fourth mammary gland of a 13-year-old female Labrador Retriever dog, in addition to multiple mammary gland tumors. The former tumors were well circumscribed and were composed of small-to-large polyhedral neoplastic oncocytes with finely granular eosinophilic cytoplasm, and were arranged in solid nests separated by fine fibrovascular septa. Scattered lumina of variable sizes containing eosinophilic secretory material were evident. Cellular atypia was minimal, and no mitotic figures were visible. One tumor had several oncocytic cellular foci revealing cellular transition, with perivascular pseudorosettes consisting of columnar epithelial cells surrounding the fine vasculature. Scattered foci of mammary acinar cell hyperplasia showing oncocytic metaplasia were also observed. Immunohistochemically, the cytoplasm of neoplastic cells of the 2 microtumors showed diffuse immunoreactivity to anti-cytokeratin antibody AE1/AE3, and finely granular immunoreactivity for 60-kDa heat shock protein, mitochondrial membrane ATP synthase complex V beta subunit, and chromogranin A. One tumor also had oncocytic cellular foci forming perivascular pseudorosettes showing cellular membrane immunoreactivity for neural cell adhesion molecule. The tumors were negative for smooth muscle actin, neuron-specific enolase, vimentin, desmin, S100, and synaptophysin. Ultrastructural observation confirmed the abundant mitochondria in the cytoplasm of both neoplastic and hyperplastic cells, the former cells also having neuroendocrine granule-like electron-dense bodies. From these results, our case was diagnosed with mammary oncocytomas accompanied by neuroendocrine differentiation. Scattered foci of mammary oncocytosis might be related to the multicentric occurrence of these oncocytomas. © 2016 The Author(s).

  9. Can widely used cell type markers predict the suitability of immortalized or primary mammary epithelial cell models?

    Directory of Open Access Journals (Sweden)

    Edgar Corneille Ontsouka

    Full Text Available BACKGROUND: Mammary cell cultures are convenient tools for in vitro studies of mammary gland biology. However, the heterogeneity of mammary cell types, e.g., glandular milk secretory epithelial or myoepithelial cells, often complicates the interpretation of cell-based data. The present study was undertaken to determine the relevance of bovine primary mammary epithelial cells isolated from American Holstein (bMEC US or Swiss Holstein-Friesian (bMEC CH cows, and of primary bovine mammary alveolar epithelial cells stably transfected with simian virus-40 (SV-40 large T-antigen (MAC-T for in vitro analyses. This was evaluated by testing their expression pattern of cytokeratin (CK 7, 18, 19, vimentin, and α-smooth muscle actin (α-SMA. RESULTS: The expression of the listed markers was assessed using real-time quantitative PCR, flow cytometry and immunofluorescence microscopy. Characteristic markers of the mesenchymal (vimentin, myoepithelial (α-SMA and glandular secretory cells (CKs showed differential expression among the studied cell cultures, partly depending on the analytical method used. The relative mRNA expression of vimentin, CK7 and CK19, respectively, was lower (P < 0.05 in immortalized than in primary mammary cell cultures. The stain index (based on flow cytometry of CK7 and CK19 protein was lower (P < 0.05 in MAC-T than in bMECs, while the expression of α-SMA and CK18 showed an inverse pattern. Immunofluorescence microscopy analysis mostly confirmed the mRNA data, while partly disagreed with flow cytometry data (e.g., vimentin level in MAC-T. The differential expression of CK7 and CK19 allowed discriminating between immortal and primary mammary cultures. CONCLUSIONS: The expression of the selected widely used cell type markers in primary and immortalized MEC cells did not allow a clear preference between these two cell models for in vitro analyses studying aspects of milk composition. All tested cell models exhibited to a variable

  10. Response of cultured normal human mammary epithelial cells to X rays

    International Nuclear Information System (INIS)

    Yang, T.C.; Stampfer, M.R.; Smith, H.S.

    1983-01-01

    The effect of X rays on the reproductive death of cultured normal human mammary epithelial cells was examined. Techniques were developed for isolating and culturing normal human mammary epithelial cells which provide sufficient cells at second passage for radiation studies, and an efficient clonogenic assay suitable for measuring radiation survival curves. It was found that the survival curves for epithelial cells from normal breast tissue were exponential and had D 0 values of about 109-148 rad for 225 kVp X rays. No consistent change in cell radiosensitivity with the age of donor was observed, and no sublethal damage repair in these cells could be detected with the split-dose technique

  11. The 18-kDa translocator protein (TSPO disrupts mammary epithelial morphogenesis and promotes breast cancer cell migration.

    Directory of Open Access Journals (Sweden)

    Xiaoting Wu

    Full Text Available Mitochondria play important roles in cancer progression and have emerged as viable targets for cancer therapy. Increasing levels of the outer mitochondrial membrane protein, 18-kDa translocator protein (TSPO, are associated with advancing breast cancer stage. In particular, higher TSPO levels are found in estrogen receptor (ER-negative breast tumors, compared with ER-positive tumors. In this study, we sought to define the roles of TSPO in the acquisition of breast cancer malignancy. Using a three-dimensional Matrigel culture system, we determined the impact of elevated TSPO levels on mammary epithelial morphogenesis. Our studies demonstrate that stable overexpression of TSPO in mammary epithelial MCF10A acini drives proliferation and provides partial resistance to luminal apoptosis, resulting in enlarged acinar structures with partially filled lumen that resemble early stage breast lesions leading to breast cancer. In breast cancer cell lines, TSPO silencing or TSPO overexpression significantly altered the migratory activity. In addition, we found that combination treatment with the TSPO ligands (PK 11195 or Ro5-4864 and lonidamine, a clinical phase II drug targeting mitochondria, decreased viability of ER-negative breast cancer cell lines. Taken together, these data demonstrate that increases in TSPO levels at different stages of breast cancer progression results in the acquisition of distinct properties associated with malignancy. Furthermore, targeting TSPO, particularly in combination with other mitochondria-targeting agents, may prove useful for the treatment of ER-negative breast cancer.

  12. Down-regulation of a calmodulin-related gene during transformation of human mammary epithelial cells

    International Nuclear Information System (INIS)

    Yaswen, P.; Smoll, A.; Stampfer, M.R.; Peehl, D.M.; Trask, D.K.; Sager, R.

    1990-01-01

    A human cDNA library obtained from cultured normal mammary epithelial cells (HMECs) was searched by subtractive hybridization for genes whose decrease in expression might be relevant to epithelial transformation. One clone identified by this procedure corresponded to a 1.4 kilobase mRNA, designated NB-1, whose expression was decreased >50-fold in HMECs tumorigenically transformed in vitro after exposure to benzo[α]pyrene and Kirsten sarcoma virus. Sequence analysis of NB-1 cDNA revealed an open reading frame with a high degree of homology to calmodulin. NB-1 expression could be demonstrated by polymerase chain reaction amplification in normal breast, prostate, cervix, and epidermal tissues. The presence of NB-1 transcripts was variable in primary breast carcinoma tissues and undetectable in tumor-derived cell lines of breast, prostate, or other origins. NB-1 mRNA expression could be down-regulated in cultured HMECs by exposure to reconstituted extracellular matrix material, while exposure to transforming growth factor type β increased its relative abundance. The protein encoded by NB-1 may have Ca 2 plus binding properties and perform functions similar to those of authentic calmodulin. Its possible roles in differentiation and/or suppression of tumorigenicity in epithelial tissues remain to be examined

  13. In vivo fluorescence imaging reveals the promotion of mammary tumorigenesis by mesenchymal stromal cells.

    Directory of Open Access Journals (Sweden)

    Chien-Chih Ke

    Full Text Available Mesenchymal stromal cells (MSCs are multipotent adult stem cells which are recruited to the tumor microenvironment (TME and influence tumor progression through multiple mechanisms. In this study, we examined the effects of MSCs on the tunmorigenic capacity of 4T1 murine mammary cancer cells. It was found that MSC-conditioned medium increased the proliferation, migration, and efficiency of mammosphere formation of 4T1 cells in vitro. When co-injected with MSCs into the mouse mammary fat pad, 4T1 cells showed enhanced tumor growth and generated increased spontaneous lung metastasis. Using in vivo fluorescence color-coded imaging, the interaction between GFP-expressing MSCs and RFP-expressing 4T1 cells was monitored. As few as five 4T1 cells could give rise to tumor formation when co-injected with MSCs into the mouse mammary fat pad, but no tumor was formed when five or ten 4T1 cells were implanted alone. The elevation of tumorigenic potential was further supported by gene expression analysis, which showed that when 4T1 cells were in contact with MSCs, several oncogenes, cancer markers, and tumor promoters were upregulated. Moreover, in vivo longitudinal fluorescence imaging of tumorigenesis revealed that MSCs created a vascularized environment which enhances the ability of 4T1 cells to colonize and proliferate. In conclusion, this study demonstrates that the promotion of mammary cancer progression by MSCs was achieved through the generation of a cancer-enhancing microenvironment to increase tumorigenic potential. These findings also suggest the potential risk of enhancing tumor progression in clinical cell therapy using MSCs. Attention has to be paid to patients with high risk of breast cancer when considering cell therapy with MSCs.

  14. Human mammary progenitor cell fate decisions are products of interactions with combinatorial microenvironments

    Energy Technology Data Exchange (ETDEWEB)

    LaBarge, Mark A; Nelson, Celeste M; Villadsen, Rene; Fridriksdottir, Agla; Ruth, Jason R; Stampfer, Martha R; Petersen, Ole W; Bissell, Mina J

    2008-09-19

    In adult tissues, multi-potent progenitor cells are some of the most primitive members of the developmental hierarchies that maintain homeostasis. That progenitors and their more mature progeny share identical genomes, suggests that fate decisions are directed by interactions with extrinsic soluble factors, ECM, and other cells, as well as physical properties of the ECM. To understand regulation of fate decisions, therefore, would require a means of understanding carefully choreographed combinatorial interactions. Here we used microenvironment protein microarrays to functionally identify combinations of cell-extrinsic mammary gland proteins and ECM molecules that imposed specific cell fates on bipotent human mammary progenitor cells. Micropatterned cell culture surfaces were fabricated to distinguish between the instructive effects of cell-cell versus cell-ECM interactions, as well as constellations of signaling molecules; and these were used in conjunction with physiologically relevant 3 dimensional human breast cultures. Both immortalized and primary human breast progenitors were analyzed. We report on the functional ability of those proteins of the mammary gland that maintain quiescence, maintain the progenitor state, and guide progenitor differentiation towards myoepithelial and luminal lineages.

  15. Perturbation-expression analysis identifies RUNX1 as a regulator of human mammary stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Ethan S Sokol

    2015-04-01

    Full Text Available The search for genes that regulate stem cell self-renewal and differentiation has been hindered by a paucity of markers that uniquely label stem cells and early progenitors. To circumvent this difficulty we have developed a method that identifies cell-state regulators without requiring any markers of differentiation, termed Perturbation-Expression Analysis of Cell States (PEACS. We have applied this marker-free approach to screen for transcription factors that regulate mammary stem cell differentiation in a 3D model of tissue morphogenesis and identified RUNX1 as a stem cell regulator. Inhibition of RUNX1 expanded bipotent stem cells and blocked their differentiation into ductal and lobular tissue rudiments. Reactivation of RUNX1 allowed exit from the bipotent state and subsequent differentiation and mammary morphogenesis. Collectively, our findings show that RUNX1 is required for mammary stem cells to exit a bipotent state, and provide a new method for discovering cell-state regulators when markers are not available.

  16. Cell and Molecular Biology of Ataxia Telangiectasia Heterozygous Human Mammary Epithelial Cells Irradiated in Culture

    Science.gov (United States)

    Richmond, Robert C.

    2001-01-01

    Autologous isolates of cell types from obligate heterozygotes with the autosomal disorder ataxia-telangiectasia (A-T)were used to begin a tissue culture model for assessing pathways of radiation-induced cancer formation in this target tissue. This was done by establishing cultures of stromal fibroblasts and long-term growth human mammary epithelial cells (HMEC) in standard 2-dimensional tissue culture in order to establish expression of markers detailing early steps of carcinogenesis. The presumptive breast cancer susceptibility of A-T heterozygotes as a sequel to damage caused by ionizing radiation provided reason to study expression of markers in irradiated HMEC. Findings from our study with HMEC have included determination of differences in specific protein expression amongst growth phase (e.g., log vs stationary) and growth progression (e.g., pass 7 vs pass 9), as well as differences in morphologic markers within populations of irradiated HMEC (e.g., development of multinucleated cells).

  17. High basal Wnt signaling is further induced by PI3K/mTor inhibition but sensitive to cSRC inhibition in mammary carcinoma cell lines with HER2/3 overexpression

    NARCIS (Netherlands)

    Timmermans-Sprang, Elpetra P M; Gracanin, Ana; Mol, Jan A

    2015-01-01

    BACKGROUND: Elevated basal, ligand-independent, Wnt signaling in some canine breast cancer cells is not caused by classical mutations in APC, β-Catenin or GSK3β but, at least partially, by enhanced LEF1 expression. We examined the expression and function of EGFR/HER-regulated pathways on the

  18. Trichostatin A inhibits beta-casein expression in mammary epithelial cells

    International Nuclear Information System (INIS)

    Pujuguet, Philippe; Radisky, Derek; Levy, Dinah; Lacza, Charlemagne; Bissell, Mina J.

    2002-01-01

    Many aspects of cellular behavior are affected by information derived from association of the extracellular matrix (ECM) and with cell membrane receptors. When cultured in the presence of laminin-containing ECM and prolactin (Prl), normal mammary epithelial cells express the milk protein beta-casein. Previously, we defined the minimal ECM- and Prl-responsive enhancer element BCE-1 from the upstream region of the beta-casein gene. We also found that BCE-1 was only active when stably integrated into chromatin, and that trichostatin A (TSA), a reagent that leads to alterations in chromatin structure, was able to activate the integrated enhancer element. We now show that endogenous b-casein gene, which is controlled by a genetic assembly that is highly similar to that of BCE-1 and which is also activated by incubation in ECM and Prl, is instead inhibited by TSA. We provide evidence that the differing response of b-casein and BCE-1 to TSA is neither due to an unusual effect of TSA on mammary epithelial cells, nor to secondary consequences from the expression of a separate gene, nor to a particular property of the BCE-1 construct. As a component of this investigation, we also showed that ECM could mediate rapid histone deacetylation in mammary epithelial cells. These results are discussed in combination with previous work showing that TSA mediates the differentiation of many types of cancer cells but inhibits differentiation of some nonmalignant cell types

  19. Radiosensitivity of mesothelioma cell lines

    International Nuclear Information System (INIS)

    Haekkinen, A.M.; Laasonen, A.; Linnainmaa, K.; Mattson, K.; Pyrhoenen, S.

    1996-01-01

    The present study was carried out in order to examine the radiosensitivity of malignant pleural mesothelioma cell lines. Cell kinetics, radiation-induced delay of the cell cycle and DNA ploidy of the cell lines were also determined. For comparison an HeLa and a human foetal fibroblast cell line were simultaneously explored. Six previously cytogenetically and histologically characterized mesothelioma tumor cell lines were applied. A rapid tiazolyl blue microtiter (MTT) assay was used to analyze radiosensitivity and cell kinetics and DNA ploidy of the cultured cells were determined by flow cytometry. The survival fraction after a dose of 2 Gy (SF2), parameters α and β of the linear quadratic model (LQ-model) and mean inactivation dose (D MID ) were also estimated. The DNA index of four cell lines equaled 1.0 and two cell lines equaled 1.5 and 1.6. Different mesothelioma cell lines showed a great variation in radiosensitivity. Mean survival fraction after a radiation dose of 2 Gy (SF2) was 0.60 and ranged from 0.36 to 0.81 and mean α value was 0.26 (range 0.48-0.083). The SF2 of the most sensitive diploid mesothelioma cell line was 0.36: Less than that of the foetal fibroblast cell line (0.49). The survival fractions (0.81 and 0.74) of the two most resistant cell lines, which also were aneuploid, were equal to that of the HeLa cell line (0.78). The α/β ratios of the most sensitive cell lines were almost an order of magnitude greater than those of the two most resistant cell lines. Radiation-induced delay of the most resistant aneuploid cell line was similar to that of HeLa cells but in the most sensitive (diploid cells) there was practically no entry into the G1 phase following the 2 Gy radiation dose during 36 h. (orig.)

  20. SDF-1 in Mammary Fibroblasts of Bovine with Mastitis Induces EMT and Inflammatory Response of Epithelial Cells.

    Science.gov (United States)

    He, Guiliang; Ma, Mengru; Yang, Wei; Wang, Hao; Zhang, Yong; Gao, Ming-Qing

    2017-01-01

    Fibroblasts constitute the majority of the stromal cells within bovine mammary gland, yet the functional contributions of these cells to mastitis and fibrosis and the mechanism are poorly understood. In this study, we demonstrate that inflammation-associated fibroblasts (INFs) extracted from bovine mammary glands with clinical mastitis had different expression pattern regarding to several extracellular matrix (ECM) proteins, chemokines and cytokines compared to normal fibroblasts (NFs) from dairy cows during lactation. The INFs induced epithelial-mesenchymal transition (EMT) and inflammatory responses of mammary epithelial cells in a vitro co-culture model. These functional contributions of INFs to normal epithelial cells were mediated through their ability to secrete stromal cell-derived factor 1 (SDF-1). SDF-1 was highly secreted/expressed by INFs, lipopolysaccharide (LPS) -treated NFs, lipoteichoic acid (LTA) -treated NFs, as well as mastitic tissue compared to their counterparts. Exogenous SDF-1 promoted EMT on epithelial cells through activating NF-κB pathway, induced inflammation response and inhibited proliferation of epithelial cells. In addition, SDF-1 was able to induce mastitis and slight fibrosis of mouse mammary gland, which was attenuated by a specific inhibitor of the receptor of SDF-1. Our findings indicate that stromal fibroblasts within mammary glands with mastitis contribute to EMT and inflammatory responses of epithelial cells through the secretion of SDF-1, which could result in the inflammation spread and fibrosis within mammary gland.

  1. Interrelationship of glyocen metabolism and lactose synthesis in mammary epithelial cells of mice

    Energy Technology Data Exchange (ETDEWEB)

    Emerman, J T; Bartley, J C; Bissell, M J

    1980-01-01

    Glycogen metabolism in mammary epithelial cells was investigated (i) by studying the conversion of glucose into glycogen and other cellular products in these cells from virgin, pregnant and lactating mice and (ii) by assaying the enzymes directly involved with glycogen metabolism. We find that: (1) mammary epithelial cells synthesized glycogen at rates up to over 60% that of the whole gland; (2) the rate of this synthesis was modulated greatly during the reproductive cycle, reaching a peak in late pregnancy and decreasing rapidly at parturition, when abundant synthesis of lactose was initiated. We propose that glycogen bynthesis restricts lactose synthesis during late pregnancy by competing successfully for the shared UDP-glucose pool. The physiological advantage of glycogen accumulation during late pregnancy is discussed.

  2. Age-dependent change in biological characteristics of stem cells in radiation-induced mammary carcinogenesis

    International Nuclear Information System (INIS)

    Shimada, Yoshiya; Nishimura, Mayumi; Kakinuma, Shizuko; Imaoka, Tatsuhiko; Yasukawa-Barnes, Jane; Gould, Michael N.; Clifton, Kelly H.

    2003-01-01

    If you ask what types of cells are the targets for carcinogenesis, a popular answer would be that cancer arises from stem cells. Stem cells are cells that are capable of both self-renewal and generation of differentiated progenies. If the hypothesis of 'cancer as stem cell disease' is correct, the risk of carcinogenesis should be a function of the number of stem cells and their responsiveness of carcinogen-induced damage. In the present study, we addressed the feasibility of this hypothesis using the rat mammary carcinogenesis model. One of the important conclusions emerging from studies on atomic bomb survivors concerns age-related changes in the susceptibility to breast cancer. The relative risk of breast cancer is very high among women exposed to ionizing radiation before or during puberty, and it decreases thereafter. Little information is available, however, on age-related changes in the radiobiological nature of mammary stem cells. We examined age-associated changes in the number of mammary stem-like cells (clonogens) and their susceptibility to radiation in terms of cell death and carcinogenic initiation frequency. The results were as follows. (1) During the prepubertal period, the total number of mammary clonogens per rat increased exponentially with a population doubling time of ∼4 days. After puberty, the doubling time lengthened to ∼30 days. The total number of clonogens in abdominal and inguinal mammary glands was ∼200 in 2-week-old rats, while it was ∼5600 in 8-week-old rats. (2) The survival curves of clonogenic cells after irradiation indicated that radiation sensitivity of the cells before and during puberty was much higher than after puberty. (3) The initiation frequency of the clonogens from prepubertal rats after 5 Gy irradiation was four times higher than that of the clonogens from post-pubertal rats. These results suggest that changes in the number of stem cells and their radiobiological characteristics underlie the age

  3. Age-dependent change in biological characteristics of stem cells in radiation-induced mammary carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Yoshiya; Nishimura, Mayumi; Kakinuma, Shizuko; Imaoka, Tatsuhiko [National Institute of Radiological Sciences, Anagawa, Chiba (Japan); Yasukawa-Barnes, Jane; Gould, Michael N.; Clifton, Kelly H. [Univ. of Wisconsin, Department of Human Oncology, Madison, WI (United States)

    2003-07-01

    If you ask what types of cells are the targets for carcinogenesis, a popular answer would be that cancer arises from stem cells. Stem cells are cells that are capable of both self-renewal and generation of differentiated progenies. If the hypothesis of 'cancer as stem cell disease' is correct, the risk of carcinogenesis should be a function of the number of stem cells and their responsiveness of carcinogen-induced damage. In the present study, we addressed the feasibility of this hypothesis using the rat mammary carcinogenesis model. One of the important conclusions emerging from studies on atomic bomb survivors concerns age-related changes in the susceptibility to breast cancer. The relative risk of breast cancer is very high among women exposed to ionizing radiation before or during puberty, and it decreases thereafter. Little information is available, however, on age-related changes in the radiobiological nature of mammary stem cells. We examined age-associated changes in the number of mammary stem-like cells (clonogens) and their susceptibility to radiation in terms of cell death and carcinogenic initiation frequency. The results were as follows. (1) During the prepubertal period, the total number of mammary clonogens per rat increased exponentially with a population doubling time of {approx}4 days. After puberty, the doubling time lengthened to {approx}30 days. The total number of clonogens in abdominal and inguinal mammary glands was {approx}200 in 2-week-old rats, while it was {approx}5600 in 8-week-old rats. (2) The survival curves of clonogenic cells after irradiation indicated that radiation sensitivity of the cells before and during puberty was much higher than after puberty. (3) The initiation frequency of the clonogens from prepubertal rats after 5 Gy irradiation was four times higher than that of the clonogens from post-pubertal rats. These results suggest that changes in the number of stem cells and their radiobiological characteristics

  4. CLO : The cell line ontology

    NARCIS (Netherlands)

    Sarntivijai, Sirarat; Lin, Yu; Xiang, Zuoshuang; Meehan, Terrence F.; Diehl, Alexander D.; Vempati, Uma D.; Schuerer, Stephan C.; Pang, Chao; Malone, James; Parkinson, Helen; Liu, Yue; Takatsuki, Terue; Saijo, Kaoru; Masuya, Hiroshi; Nakamura, Yukio; Brush, Matthew H.; Haendel, Melissa A.; Zheng, Jie; Stoeckert, Christian J.; Peters, Bjoern; Mungall, Christopher J.; Carey, Thomas E.; States, David J.; Athey, Brian D.; He, Yongqun

    2014-01-01

    Background: Cell lines have been widely used in biomedical research. The community-based Cell Line Ontology (CLO) is a member of the OBO Foundry library that covers the domain of cell lines. Since its publication two years ago, significant updates have been made, including new groups joining the CLO

  5. Isolation of stem-like cells from spontaneous feline mammary carcinomas: Phenotypic characterization and tumorigenic potential

    Energy Technology Data Exchange (ETDEWEB)

    Barbieri, Federica; Wurth, Roberto [Section of Pharmacology, Dept. of Internal Medicine Di.M.I., and Center of Excellence for Biomedical Research - University of Genova, Viale Benedetto XV, 2, 16132 Genova (Italy); Ratto, Alessandra; Campanella, Chiara; Vito, Guendalina [Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D' Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Piazza Borgo Pila, 16129, Genova (Italy); Thellung, Stefano [Section of Pharmacology, Dept. of Internal Medicine Di.M.I., and Center of Excellence for Biomedical Research - University of Genova, Viale Benedetto XV, 2, 16132 Genova (Italy); Daga, Antonio [Laboratory of Translational Oncology, IRCCS Azienda Ospedaliera Universitaria San Martino - IST- Istituto Nazionale Ricerca sul Cancro, L.go R. Benzi, 10, 16132 Genova Italy (Italy); Cilli, Michele [Animal Facility, IRCCS Azienda Ospedaliera Universitaria San Martino - IST- Istituto Nazionale Ricerca sul Cancro, L.go R. Benzi, 10, 16132 Genova Italy (Italy); Ferrari, Angelo [Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D' Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Piazza Borgo Pila, 16129, Genova (Italy); Florio, Tullio, E-mail: tullio.florio@unige.it [Section of Pharmacology, Dept. of Internal Medicine Di.M.I., and Center of Excellence for Biomedical Research - University of Genova, Viale Benedetto XV, 2, 16132 Genova (Italy)

    2012-04-15

    Current carcinogenesis theory states that only a small subset of tumor cells, the cancer stem cells or tumor initiating cells (TICs), are responsible for tumor formation and progression. Human breast cancer-initiating cells have been identified as CD44-expressing cells, which retain tumorigenic activity and display stem cell-like properties. Spontaneous feline mammary carcinoma (FMC) is an aggressive cancer, which shows biological similarities to the human tumor counterpart. We report the isolation and phenotypic characterization of FMC-derived stem/progenitor cells, showing in vitro self-renewal, long-lasting proliferation and in vivo tumorigenicity. Twenty-one FMC samples were collected, histologically classified and characterized for the expression of Ki67, EGFR, ER-{alpha} and CD44, by immunohistochemistry. By culture in stem cell permissive conditions, we isolated, from 13 FMCs, a CD44-positive subpopulation able to survive and proliferate in vitro as mammospheres of different sizes and morphologies. When injected in NOD/SCID mice, FMC stem-like cells initiate tumors, generating cell heterogeneity and recapitulating the original histotype. In serum-containing medium, spheroid cells showed differentiation properties as shown by morphological changes, the loss of CD44 expression and tumorigenic potential. These data show that stem-defined culture of FMC enriches for TICs and validate the use of these cells as a suitable model for comparative oncology studies of mammary biology and testing therapeutic strategies aimed at eradicating TICs. -- Highlights: Black-Right-Pointing-Pointer Feline mammary carcinoma contain a sub-population of stem-like cells expressing CD44 Black-Right-Pointing-Pointer These grow as spheres in serum-free medium and self-renew Black-Right-Pointing-Pointer Isolated stem-like cancer cells initiate tumor in immunodeficient mice Black-Right-Pointing-Pointer Xenografted tumors are phenotypically similar to the original tumor Black

  6. Silencing of Kv4.1 potassium channels inhibits cell proliferation of tumorigenic human mammary epithelial cells

    International Nuclear Information System (INIS)

    Jang, Soo Hwa; Choi, Changsun; Hong, Seong-Geun; Yarishkin, Oleg V.; Bae, Young Min; Kim, Jae Gon; O'Grady, Scott M.; Yoon, Kyong-Ah; Kang, Kyung-Sun; Ryu, Pan Dong; Lee, So Yeong

    2009-01-01

    Potassium channel activity has been shown to facilitate cell proliferation in cancer cells. In the present study, the role of Kv4.1 channels in immortal and tumorigenic human mammary epithelial cells was investigated. Kv4.1 protein expression was positively correlated with tumorigenicity. Moreover, transfection with siRNAs targeting Kv4.1 mRNA suppressed proliferation of tumorigenic mammary epithelial cells. Experiments using mRNA isolated from human breast cancer tissues revealed that the level of Kv4.1 mRNA expression varied depending on the stage of the tumor. Kv4.1 protein expression increased during stages T2 and T3 compared to normal tissue. These results demonstrated that Kv4.1 plays a role in proliferation of tumorigenic human mammary epithelial cells. In addition, elevated Kv4.1 expression may be useful as a diagnostic marker for staging mammary tumors and selective blockers of Kv4.1 may serve to suppress tumor cell proliferation.

  7. Xanthosine administration does not affect the proportion of epithelial stem cells in bovine mammary tissue, but has a latent negative effect on cell proliferation

    International Nuclear Information System (INIS)

    Rauner, Gat; Barash, Itamar

    2014-01-01

    The challenge in manipulating the proportion of somatic stem cells lies in having to override tissue homeostasis. Xanthosine infusion via the teat canal has been reported to augment the number of label-retaining cells in the mammary gland of 3-month-old bovine calves. To further delineate xanthosine's effect on defined stem cells in the mammary gland of heifers—which are candidates for increased prospective milk production following such manipulation—bovine mammary parenchymal tissue was transplanted and integrated into the cleared mammary fat pad of immunodeficient mice. Xanthosine administration for 14 days did not affect the number of label-retaining cells after 10- and 11-week chases. No change in stem cell proportion, analyzed according to CD49f and CD24 expression, was noted. Clone formation and propagation rate of cultured cells, as well as expression of stem cell markers, were also unaffected. In contrast, a latent 50% decrease in bovine mammary cell proliferation rate was observed 11 weeks after xanthosine administration. Tumor development in mice was also limited by xanthosine administration. These effects may have resulted from an initial decrease in expression of the rate-limiting enzyme in guanine synthesis, IMPDH. The data indicate that caution should be exerted when considering xanthosine for stem cell manipulation. - Highlights: • Novel “bovinized“ mouse model for exogenous effects on bovine mammary gland. • Xanthosine did not affect stem cell number/function in bovine mammary gland. • Xanthosine caused an immediate decrease in IMPDH expression in bovine mammary gland. • Xanthosine had latent negative effect on cell proliferation in bovine mammary gland. • Xanthosine administration limited mammary tumor growth

  8. Xanthosine administration does not affect the proportion of epithelial stem cells in bovine mammary tissue, but has a latent negative effect on cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Rauner, Gat, E-mail: gat.rauner@mail.huji.ac.il [Institute of Animal Science, ARO, The Volcani Center, P.O. Box 6, Bet-Dagan, 50250 (Israel); The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem (Israel); Barash, Itamar, E-mail: itamar.barash@mail.huji.ac.il [Institute of Animal Science, ARO, The Volcani Center, P.O. Box 6, Bet-Dagan, 50250 (Israel)

    2014-10-15

    The challenge in manipulating the proportion of somatic stem cells lies in having to override tissue homeostasis. Xanthosine infusion via the teat canal has been reported to augment the number of label-retaining cells in the mammary gland of 3-month-old bovine calves. To further delineate xanthosine's effect on defined stem cells in the mammary gland of heifers—which are candidates for increased prospective milk production following such manipulation—bovine mammary parenchymal tissue was transplanted and integrated into the cleared mammary fat pad of immunodeficient mice. Xanthosine administration for 14 days did not affect the number of label-retaining cells after 10- and 11-week chases. No change in stem cell proportion, analyzed according to CD49f and CD24 expression, was noted. Clone formation and propagation rate of cultured cells, as well as expression of stem cell markers, were also unaffected. In contrast, a latent 50% decrease in bovine mammary cell proliferation rate was observed 11 weeks after xanthosine administration. Tumor development in mice was also limited by xanthosine administration. These effects may have resulted from an initial decrease in expression of the rate-limiting enzyme in guanine synthesis, IMPDH. The data indicate that caution should be exerted when considering xanthosine for stem cell manipulation. - Highlights: • Novel “bovinized“ mouse model for exogenous effects on bovine mammary gland. • Xanthosine did not affect stem cell number/function in bovine mammary gland. • Xanthosine caused an immediate decrease in IMPDH expression in bovine mammary gland. • Xanthosine had latent negative effect on cell proliferation in bovine mammary gland. • Xanthosine administration limited mammary tumor growth.

  9. Isolation of stem-like cells from spontaneous feline mammary carcinomas: Phenotypic characterization and tumorigenic potential

    International Nuclear Information System (INIS)

    Barbieri, Federica; Wurth, Roberto; Ratto, Alessandra; Campanella, Chiara; Vito, Guendalina; Thellung, Stefano; Daga, Antonio; Cilli, Michele; Ferrari, Angelo; Florio, Tullio

    2012-01-01

    Current carcinogenesis theory states that only a small subset of tumor cells, the cancer stem cells or tumor initiating cells (TICs), are responsible for tumor formation and progression. Human breast cancer-initiating cells have been identified as CD44-expressing cells, which retain tumorigenic activity and display stem cell–like properties. Spontaneous feline mammary carcinoma (FMC) is an aggressive cancer, which shows biological similarities to the human tumor counterpart. We report the isolation and phenotypic characterization of FMC-derived stem/progenitor cells, showing in vitro self-renewal, long-lasting proliferation and in vivo tumorigenicity. Twenty-one FMC samples were collected, histologically classified and characterized for the expression of Ki67, EGFR, ER-α and CD44, by immunohistochemistry. By culture in stem cell permissive conditions, we isolated, from 13 FMCs, a CD44-positive subpopulation able to survive and proliferate in vitro as mammospheres of different sizes and morphologies. When injected in NOD/SCID mice, FMC stem-like cells initiate tumors, generating cell heterogeneity and recapitulating the original histotype. In serum-containing medium, spheroid cells showed differentiation properties as shown by morphological changes, the loss of CD44 expression and tumorigenic potential. These data show that stem-defined culture of FMC enriches for TICs and validate the use of these cells as a suitable model for comparative oncology studies of mammary biology and testing therapeutic strategies aimed at eradicating TICs. -- Highlights: ► Feline mammary carcinoma contain a sub-population of stem-like cells expressing CD44 ► These grow as spheres in serum-free medium and self-renew ► Isolated stem-like cancer cells initiate tumor in immunodeficient mice ► Xenografted tumors are phenotypically similar to the original tumor ► Upon differentiation, cells grow as monolayers, loosing the tumorigenic potential

  10. Interaction of E-cadherin and PTEN regulates morphogenesis and growth arrest in human mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, Marcia V.; Fata, Jimmie E.; Martin, Katherine J.; Yaswen, Paul; Bissell, Mina J.

    2009-06-03

    PTEN is a dual function phosphatase with tumor suppressor function compromised in a wide spectrum of cancers. Because tissue polarity and architecture are crucial modulators of normal and malignant behavior, we postulated that PTEN may play a role in maintenance of tissue integrity. We used two non-malignant human mammary epithelial cell lines (HMECs) that form polarized, growth-arrested structures (acini) when cultured in 3-dimensional laminin-rich extracellular matrix gels (3D lrECM). As acini begin to form, PTEN accumulates in both the cytoplasm, and at cell-cell contacts where it colocalizes with E-cadherin/{beta}-catenin complex. Reduction of PTEN levels by shRNA in lrECM prevents formation of organized breast acini and disrupts growth arrest. Importantly, disruption of acinar polarity and cell-cell contact by E-cadherin function-blocking antibodies reduces endogenous PTEN protein levels and inhibits its accumulation at cell-cell contacts. Conversely, in SKBR3 breast cancer cells lacking endogenous E-cadherin expression, exogenous introduction of E-cadherin gene causes induction of PTEN expression and its accumulation at sites of cell interactions. These studies provide evidence that E-cadherin regulates both the PTEN protein levels and its recruitment to cell-cell junctions in 3D lrECM indicating a dynamic reciprocity between architectural integrity and the levels and localization of PTEN. This interaction thus appears to be a critical integrator of proliferative and morphogenetic signaling in breast epithelial cells.

  11. CCAAT/enhancer binding protein beta (C/EBPβ) isoform balance as a regulator of epithelial-mesenchymal transition in mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    Miura, Yuka; Hagiwara, Natsumi; Radisky, Derek C.; Hirai, Yohei

    2014-01-01

    Activation of the epithelial-mesenchymal transition (EMT) program promotes cell invasion and metastasis, and is reversed through mesenchymal-epithelial transition (MET) after formation of distant metastases. Here, we show that an imbalance of gene products encoded by the transcriptional factor C/EBPβ, LAP (liver-enriched activating protein) and LIP (liver-enriched inhibitory protein), can regulate both EMT- and MET-like phenotypic changes in mouse mammary epithelial cells. By using tetracycline repressive LIP expression constructs, we found that SCp2 cells, a clonal epithelial line of COMMA1-D cells, expressed EMT markers, lost the ability to undergo alveolar-like morphogenesis in 3D Matrigel, and acquired properties of benign adenoma cells. Conversely, we found that inducible expression of LAP in SCg6 cells, a clonal fibroblastic line of COMMA1-D cells, began to express epithelial keratins with suppression of proliferation. The overexpression of the C/EBPβ gene products in these COMMA1-D derivatives was suppressed by long-term cultivation on tissue culture plastic, but gene expression was maintained in cells grown on Matrigel or exposed to proteasome inhibitors. Thus, imbalances of C/EBPβ gene products in mouse mammary epithelial cells, which are affected by contact with basement membrane, are defined as a potential regulator of metastatic potential. - Highlights: • We created a temporal imbalance of C/EBPβ gene products in the mammary model cells. • The temporal up-regulation of LIP protein induced EMT-like cell behaviors. • The temporal up-regulation of LAP protein induced MET-like cell behaviors. • Excess amount of C/EBPβ gene products were eliminated by proteasomal-degradation. • Basement membrane components attenuated proteasome-triggered protein elimination

  12. Stromal Adipocyte Enhancer-binding Protein (AEBP1) Promotes Mammary Epithelial Cell Hyperplasia via Proinflammatory and Hedgehog Signaling*

    Science.gov (United States)

    Holloway, Ryan W.; Bogachev, Oleg; Bharadwaj, Alamelu G.; McCluskey, Greg D.; Majdalawieh, Amin F.; Zhang, Lei; Ro, Hyo-Sung

    2012-01-01

    Disruption of mammary stromal-epithelial communication leads to aberrant mammary gland development and induces mammary tumorigenesis. Macrophages have been implicated in carcinogenesis primarily by creating an inflammatory microenvironment, which promotes growth of the adjacent epithelial cells. Adipocyte enhancer-binding protein 1 (AEBP1), a novel proinflammatory mediator, promotes macrophage inflammatory responsiveness by inducing NF-κB activity, which has been implicated in tumor cell growth and survival by aberrant sonic hedgehog (Shh) expression. Here, we show that stromal macrophage AEBP1 overexpression results in precocious alveologenesis in the virgin AEBP1 transgenic (AEBP1TG) mice, and the onset of ductal hyperplasia was accelerated in AEBP1TG mice fed a high fat diet, which induces endogenous AEBP1 expression. Transplantation of AEBP1TG bone marrow cells into non-transgenic (AEBP1NT) mice resulted in alveolar hyperplasia with up-regulation of NF-κB activity and TNFα expression as displayed in the AEBP1TG mammary macrophages and epithelium. Shh expression was induced in AEBP1TG macrophages and RAW264.7 macrophages overexpressing AEBP1. The Shh target genes Gli1 and Bmi1 expression was induced in the AEBP1TG mammary epithelium and HC11 mammary epithelial cells co-cultured with AEBP1TG peritoneal macrophages. The conditioned AEBP1TG macrophage culture media promoted NF-κB activity and survival signal, Akt activation, in HC11 cells, whereas such effects were abolished by TNFα neutralizing antibody treatment. Furthermore, HC11 cells displayed enhanced proliferation in response to AEBP1TG macrophages and their conditioned media. Our findings highlight the role of AEBP1 in the signaling pathways regulating the cross-talk between mammary epithelium and stroma that could predispose the mammary tissue to tumorigenesis. PMID:22995915

  13. Stromal adipocyte enhancer-binding protein (AEBP1) promotes mammary epithelial cell hyperplasia via proinflammatory and hedgehog signaling.

    Science.gov (United States)

    Holloway, Ryan W; Bogachev, Oleg; Bharadwaj, Alamelu G; McCluskey, Greg D; Majdalawieh, Amin F; Zhang, Lei; Ro, Hyo-Sung

    2012-11-09

    Disruption of mammary stromal-epithelial communication leads to aberrant mammary gland development and induces mammary tumorigenesis. Macrophages have been implicated in carcinogenesis primarily by creating an inflammatory microenvironment, which promotes growth of the adjacent epithelial cells. Adipocyte enhancer-binding protein 1 (AEBP1), a novel proinflammatory mediator, promotes macrophage inflammatory responsiveness by inducing NF-κB activity, which has been implicated in tumor cell growth and survival by aberrant sonic hedgehog (Shh) expression. Here, we show that stromal macrophage AEBP1 overexpression results in precocious alveologenesis in the virgin AEBP1 transgenic (AEBP1(TG)) mice, and the onset of ductal hyperplasia was accelerated in AEBP1(TG) mice fed a high fat diet, which induces endogenous AEBP1 expression. Transplantation of AEBP1(TG) bone marrow cells into non-transgenic (AEBP1(NT)) mice resulted in alveolar hyperplasia with up-regulation of NF-κB activity and TNFα expression as displayed in the AEBP1(TG) mammary macrophages and epithelium. Shh expression was induced in AEBP1(TG) macrophages and RAW264.7 macrophages overexpressing AEBP1. The Shh target genes Gli1 and Bmi1 expression was induced in the AEBP1(TG) mammary epithelium and HC11 mammary epithelial cells co-cultured with AEBP1(TG) peritoneal macrophages. The conditioned AEBP1(TG) macrophage culture media promoted NF-κB activity and survival signal, Akt activation, in HC11 cells, whereas such effects were abolished by TNFα neutralizing antibody treatment. Furthermore, HC11 cells displayed enhanced proliferation in response to AEBP1(TG) macrophages and their conditioned media. Our findings highlight the role of AEBP1 in the signaling pathways regulating the cross-talk between mammary epithelium and stroma that could predispose the mammary tissue to tumorigenesis.

  14. Roles of Breast Cancer Susceptibility Genes BRCA’s in Mammary Epithelial Cell Differentiation

    Science.gov (United States)

    2006-03-01

    FANCA . Hum. Mol. Genet. 11, 2591-2597 (2002). 13. Tessari, M.A. et al. Transcriptional activation of the cyclin A gene by the architectural...caretakercancer susceptibility gene FANCA (24), as well several IFN- or caspase- associated proteins, were down-regulated. Concomitantly, in these cells...a mammary differentiation factor STAT5B and a caretaker cancer susceptibility gene FANCA were down-regulated. Nev- ertheless, it has yet to be

  15. APC/β-catenin-rich complexes at membrane protrusions regulate mammary tumor cell migration and mesenchymal morphology

    International Nuclear Information System (INIS)

    Odenwald, Matthew A; Prosperi, Jenifer R; Goss, Kathleen H

    2013-01-01

    The APC tumor suppressor is mutated or downregulated in many tumor types, and is prominently localized to punctate clusters at protrusion tips in migratory cells, such as in astrocytes where it has been implicated in directed cell motility. Although APC loss is considered an initiating event in colorectal cancer, for example, it is less clear what role APC plays in tumor cell motility and whether loss of APC might be an important promoter of tumor progression in addition to initiation. The localization of APC and β-catenin was analyzed in multiple cell lines, including non-transformed epithelial lines treated with a proteasome inhibitor or TGFβ to induce an epithelial-to-mesenchymal transition (EMT), as well as several breast cancer lines, by immunofluorescence. APC expression was knocked down in 4T07 mammary tumor cells using lentiviral-mediated delivery of APC-specific short-hairpin (sh) RNAs, and assessed using quantitative (q) reverse-transcriptase (RT)-PCR and western blotting. Tumor cell motility was analyzed by performing wound-filling assays, and morphology via immunofluorescence (IF) and phase-contrast microscopy. Additionally, proliferation was measured using BrdU incorporation, and TCF reporter assays were performed to determine β-catenin/TCF-mediated transcriptional activity. APC/β-catenin-rich complexes were observed at protrusion ends of migratory epithelial cells treated with a proteasome inhibitor or when EMT has been induced and in tumor cells with a mesenchymal, spindle-like morphology. 4T07 tumor cells with reduced APC levels were significantly less motile and had a more rounded morphology; yet, they did not differ significantly in proliferation or β-catenin/TCF transcriptional activity. Furthermore, we found that APC/β-catenin-rich complexes at protrusion ends were dependent upon an intact microtubule cytoskeleton. These findings indicate that membrane protrusions with APC/β-catenin-containing puncta control the migratory potential and

  16. APC/β-catenin-rich complexes at membrane protrusions regulate mammary tumor cell migration and mesenchymal morphology

    Science.gov (United States)

    2013-01-01

    Background The APC tumor suppressor is mutated or downregulated in many tumor types, and is prominently localized to punctate clusters at protrusion tips in migratory cells, such as in astrocytes where it has been implicated in directed cell motility. Although APC loss is considered an initiating event in colorectal cancer, for example, it is less clear what role APC plays in tumor cell motility and whether loss of APC might be an important promoter of tumor progression in addition to initiation. Methods The localization of APC and β-catenin was analyzed in multiple cell lines, including non-transformed epithelial lines treated with a proteasome inhibitor or TGFβ to induce an epithelial-to-mesenchymal transition (EMT), as well as several breast cancer lines, by immunofluorescence. APC expression was knocked down in 4T07 mammary tumor cells using lentiviral-mediated delivery of APC-specific short-hairpin (sh) RNAs, and assessed using quantitative (q) reverse-transcriptase (RT)-PCR and western blotting. Tumor cell motility was analyzed by performing wound-filling assays, and morphology via immunofluorescence (IF) and phase-contrast microscopy. Additionally, proliferation was measured using BrdU incorporation, and TCF reporter assays were performed to determine β-catenin/TCF-mediated transcriptional activity. Results APC/β-catenin-rich complexes were observed at protrusion ends of migratory epithelial cells treated with a proteasome inhibitor or when EMT has been induced and in tumor cells with a mesenchymal, spindle-like morphology. 4T07 tumor cells with reduced APC levels were significantly less motile and had a more rounded morphology; yet, they did not differ significantly in proliferation or β-catenin/TCF transcriptional activity. Furthermore, we found that APC/β-catenin-rich complexes at protrusion ends were dependent upon an intact microtubule cytoskeleton. Conclusions These findings indicate that membrane protrusions with APC/β-catenin-containing puncta

  17. The Wnt receptor, Lrp5, is expressed by mouse mammary stem cells and is required to maintain the basal lineage.

    Directory of Open Access Journals (Sweden)

    Nisha M Badders

    2009-08-01

    Full Text Available Ectopic Wnt signaling induces increased stem/progenitor cell activity in the mouse mammary gland, followed by tumor development. The Wnt signaling receptors, Lrp5/6, are uniquely required for canonical Wnt activity. Previous data has shown that the absence of Lrp5 confers resistance to Wnt1-induced tumor development.Here, we show that all basal mammary cells express Lrp5, and co-express Lrp6 in a similar fashion. Though Wnt dependent transcription of key target genes is relatively unchanged in mammary epithelial cell cultures, the absence of Lrp5 specifically depletes adult regenerative stem cell activity (to less than 1%. Stem cell activity can be enriched by >200 fold (over 80% of activity, based on high Lrp5 expression alone. Though Lrp5 null glands have apparent normal function, the basal lineage is relatively reduced (from 42% basal/total epithelial cells to 22% and Lrp5-/- mammary epithelial cells show enhanced expression of senescence-associated markers in vitro, as measured by expression of p16(Ink4a and TA-p63.This is the first single biomarker that has been demonstrated to be functionally involved in stem cell maintenance. Together, these results demonstrate that Wnt signaling through Lrp5 is an important component of normal mammary stem cell function.

  18. Inhibitory effect of fluvoxamine on β-casein expression via a serotonin-independent mechanism in human mammary epithelial cells.

    Science.gov (United States)

    Chiba, Takeshi; Maeda, Tomoji; Kimura, Soichiro; Morimoto, Yasunori; Sanbe, Atsushi; Ueda, Hideo; Kudo, Kenzo

    2015-11-05

    Selective serotonin reuptake inhibitors (SSRIs) are widely used as a first-line therapy in postpartum depression. The objective of this study was to determine the mechanism underlying the inhibitory effects of the SSRI, fluvoxamine, on β-casein expression, an indicator of lactation, in MCF-12A human mammary epithelial cells. Expression levels of serotonin (5-hydroxytryptamine; 5-HT) transporter, an SSRI target protein, and tryptophan hydroxylase 1, a rate-limiting enzyme in 5-HT biosynthesis, were increased in MCF-12A cells by prolactin treatment. Treatment with 1 μM fluvoxamine for 72 h significantly decreased protein levels of β-casein and phosphorylated signal transducer and activator transcription 5 (pSTAT5). Extracellular 5-HT levels were significantly increased after exposure to 1 μM fluvoxamine, in comparison with those of untreated and vehicle-treated cells; however, extracellular 5-HT had little effect on the decrease in β-casein expression. Expression of glucose-related protein 78/binding immunoglobulin protein, a regulator of endoplasmic reticulum (ER) stress, was significantly increased after treatment with 1 μM fluvoxamine for 48 h. Exposure to tunicamycin, an inducer of ER stress, also decreased expression of β-casein and pSTAT5 in a manner similar to fluvoxamine. Our results indicate that fluvoxamine suppresses β-casein expression in MCF-12A cells via inhibition of STAT5 phosphorylation caused by induction of ER stress. Further studies are required to confirm the effect of fluvoxamine on the function of mammary epithelial cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Clonal analysis of Notch1-expressing cells reveals the existence of unipotent stem cells that retain long-term plasticity in the embryonic mammary gland.

    Science.gov (United States)

    Lilja, Anna M; Rodilla, Veronica; Huyghe, Mathilde; Hannezo, Edouard; Landragin, Camille; Renaud, Olivier; Leroy, Olivier; Rulands, Steffen; Simons, Benjamin D; Fre, Silvia

    2018-06-01

    Recent lineage tracing studies have revealed that mammary gland homeostasis relies on unipotent stem cells. However, whether and when lineage restriction occurs during embryonic mammary development, and which signals orchestrate cell fate specification, remain unknown. Using a combination of in vivo clonal analysis with whole mount immunofluorescence and mathematical modelling of clonal dynamics, we found that embryonic multipotent mammary cells become lineage-restricted surprisingly early in development, with evidence for unipotency as early as E12.5 and no statistically discernable bipotency after E15.5. To gain insights into the mechanisms governing the switch from multipotency to unipotency, we used gain-of-function Notch1 mice and demonstrated that Notch activation cell autonomously dictates luminal cell fate specification to both embryonic and basally committed mammary cells. These functional studies have important implications for understanding the signals underlying cell plasticity and serve to clarify how reactivation of embryonic programs in adult cells can lead to cancer.

  20. Mutated N-ras does not induce p19 arf in CO25 cell line | Saleh ...

    African Journals Online (AJOL)

    The mouse cell line (CO25) used in this study was transfected with a glucocorticoid inducible mutated human N-ras oncogene under transcriptional control of the steroid-sensitive promoter of the mouse mammary tumors virus long terminal repeat MMTV-LTR. This study was aimed to investigate the expression of p19arf and ...

  1. Calmodulin-mediated activation of Akt regulates survival of c-Myc-overexpressing mouse mammary carcinoma cells.

    Science.gov (United States)

    Deb, Tushar B; Coticchia, Christine M; Dickson, Robert B

    2004-09-10

    c-Myc-overexpressing mammary epithelial cells are proapoptotic; their survival is strongly promoted by epidermal growth factor (EGF). We now demonstrate that EGF-induced Akt activation and survival in transgenic mouse mammary tumor virus-c-Myc mouse mammary carcinoma cells are both calcium/calmodulin-dependent. Akt activation is abolished by the phospholipase C-gamma inhibitor U-73122, by the intracellular calcium chelator BAPTA-AM, and by the specific calmodulin antagonist W-7. These results implicate calcium/calmodulin in the activation of Akt in these cells. In addition, Akt activation by serum and insulin is also inhibited by W-7. EGF-induced and calcium/calmodulin-mediated Akt activation occurs in both tumorigenic and non-tumorigenic mouse and human mammary epithelial cells, independent of their overexpression of c-Myc. These results imply that calcium/calmodulin may be a common regulator of Akt activation, irrespective of upstream receptor activator, mammalian species, and transformation status in mammary epithelial cells. However, only c-Myc-overexpressing mouse mammary carcinoma cells (but not normal mouse mammary epithelial cells) undergo apoptosis in the presence of the calmodulin antagonist W-7, indicating the vital selective role of calmodulin for survival of these cells. Calcium/calmodulin-regulated Akt activation is mediated directly by neither calmodulin kinases nor phosphatidylinositol 3-kinase (PI-3 kinase). Pharmacological inhibitors of calmodulin kinase kinase and calmodulin kinases II and III do not inhibit EGF-induced Akt activation, and calmodulin antagonist W-7 does not inhibit phosphotyrosine-associated PI-3 kinase activation. Akt is, however, co-immunoprecipitated with calmodulin in an EGF-dependent manner, which is inhibited by calmodulin antagonist W-7. We conclude that calmodulin may serve a vital regulatory function to direct the localization of Akt to the plasma membrane for its activation by PI-3 kinase.

  2. In vivo tracking of genetically engineered, anti-HER2/neu directed natural killer cells to HER2/neu positive mammary tumors with magnetic resonance imaging

    International Nuclear Information System (INIS)

    Daldrup-Link, Heike E.; Meier, Reinhardt; Metz, Stephan; Settles, Marcus; Rummeny, Ernst J.; Rudelius, Martina; Piontek, Guido; Schlegel, Juergen; Piert, Morand; Uherek, Christoph; Wels, Winfried

    2005-01-01

    The purpose of this study is to optimize labeling of the human natural killer (NK) cell line NK-92 with iron-oxide-based contrast agents and to monitor the in vivo distribution of genetically engineered NK-92 cells, which are directed against HER2/neu receptors, to HER2/neu positive mammary tumors with magnetic resonance (MR) imaging. Parental NK-92 cells and genetically modified HER2/neu specific NK-92-scFv(FRP5)-zeta cells, expressing a chimeric antigen receptor specific to the tumor-associated ErbB2 (HER2/neu) antigen, were labeled with ferumoxides and ferucarbotran using simple incubation, lipofection and electroporation techniques. Labeling efficiency was evaluated by MR imaging, Prussian blue stains and spectrometry. Subsequently, ferucarbotran-labeled NK-92-scFv(FRP5)-zeta (n=3) or parental NK-92 cells were intravenously injected into the tail vein of six mice with HER2/neu-positive NIH 3T3 mammary tumors, implanted in the mammary fat pad. The accumulation of the cells in the tumors was monitored by MR imaging before and 12 and 24 h after cell injection (p.i.). MR data were correlated with histopathology. Both the parental NK-92 and the genetically modified NK-92-scFv(FRP5)-zeta cells could be labeled with ferucarbotran and ferumoxides by lipofection and electroporation, but not by simple incubation. The intracellular cytoplasmatic iron-oxide uptake was significantly higher after labeling with ferucarbotran than ferumoxides (P 6 NK-92-scFv(FRP5)-zeta cells into tumor-bearing mice, MR showed a progressive signal decline in HER2/neu-positive mammary tumors at 12 and 24 h (p.i.). Conversely, injection of 5 x 10 6 parental NK-92 control cells, not directed against HER2/neu receptors, did not cause significant signal intensity changes of the tumors. Histopathology confirmed an accumulation of the former, but not the latter cells in tumor tissue. The human natural killer cell line NK-92 can be efficiently labeled with clinically applicable iron-oxide contrast

  3. In vivo tracking of genetically engineered, anti-HER2/neu directed natural killer cells to HER2/neu positive mammary tumors with magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Daldrup-Link, Heike E. [UCSF Medical Center, Department of Radiology, San Francisco, CA (United States); Meier, Reinhardt; Metz, Stephan; Settles, Marcus; Rummeny, Ernst J. [Technical University Munich, Department of Radiology, Munich (Germany); Rudelius, Martina; Piontek, Guido; Schlegel, Juergen [Technical University Munich, Institute of Pathology, Division of Neuropathology, Munich (Germany); Piert, Morand [Technical University Munich, Department of Nuclear Medicine, Munich (Germany); Uherek, Christoph; Wels, Winfried [University of Frankfurt, Georg Speyer House, Frankfurt (Germany)

    2005-01-01

    The purpose of this study is to optimize labeling of the human natural killer (NK) cell line NK-92 with iron-oxide-based contrast agents and to monitor the in vivo distribution of genetically engineered NK-92 cells, which are directed against HER2/neu receptors, to HER2/neu positive mammary tumors with magnetic resonance (MR) imaging. Parental NK-92 cells and genetically modified HER2/neu specific NK-92-scFv(FRP5)-zeta cells, expressing a chimeric antigen receptor specific to the tumor-associated ErbB2 (HER2/neu) antigen, were labeled with ferumoxides and ferucarbotran using simple incubation, lipofection and electroporation techniques. Labeling efficiency was evaluated by MR imaging, Prussian blue stains and spectrometry. Subsequently, ferucarbotran-labeled NK-92-scFv(FRP5)-zeta (n=3) or parental NK-92 cells were intravenously injected into the tail vein of six mice with HER2/neu-positive NIH 3T3 mammary tumors, implanted in the mammary fat pad. The accumulation of the cells in the tumors was monitored by MR imaging before and 12 and 24 h after cell injection (p.i.). MR data were correlated with histopathology. Both the parental NK-92 and the genetically modified NK-92-scFv(FRP5)-zeta cells could be labeled with ferucarbotran and ferumoxides by lipofection and electroporation, but not by simple incubation. The intracellular cytoplasmatic iron-oxide uptake was significantly higher after labeling with ferucarbotran than ferumoxides (P<0.05). After intravenous injection of 5 x 10{sup 6} NK-92-scFv(FRP5)-zeta cells into tumor-bearing mice, MR showed a progressive signal decline in HER2/neu-positive mammary tumors at 12 and 24 h (p.i.). Conversely, injection of 5 x 10{sup 6} parental NK-92 control cells, not directed against HER2/neu receptors, did not cause significant signal intensity changes of the tumors. Histopathology confirmed an accumulation of the former, but not the latter cells in tumor tissue. The human natural killer cell line NK-92 can be efficiently

  4. Oxidative DNA damage and mammary cell proliferation by alcohol-derived salsolinol.

    Science.gov (United States)

    Murata, Mariko; Midorikawa, Kaoru; Kawanishi, Shosuke

    2013-10-21

    Drinking alcohol is a risk factor for breast cancer. Salsolinol (SAL) is endogenously formed by a condensation reaction of dopamine with acetaldehyde, a major ethanol metabolite, and SAL is detected in blood and urine after alcohol intake. We investigated the possibility that SAL can participate in tumor initiation and promotion by causing DNA damage and cell proliferation, leading to alcohol-associated mammary carcinogenesis. SAL caused oxidative DNA damage including 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), in the presence of transition metal ions, such as Cu(II) and Fe(III)EDTA. Inhibitory effects of scavengers on SAL-induced DNA damage and the electron spin resonance study indicated the involvement of H₂O₂, which is generated via the SAL radical. Experiments on scavengers and site specificity of DNA damage suggested ·OH generation via a Fenton reaction and copper-peroxide complexes in the presence of Fe(III)EDTA and Cu(II), respectively. SAL significantly increased 8-oxodG formation in normal mammary epithelial MCF-10A cells. In addition, SAL induced cell proliferation in estrogen receptor (ER)-negative MCF-10A cells, and the proliferation was inhibited by an antioxidant N-acetylcysteine and an epidermal growth factor receptor (EGFR) inhibitor AG1478, suggesting that reactive oxygen species may participate in the proliferation of MCF-10A cells via EGFR activation. Furthermore, SAL induced proliferation in estrogen-sensitive breast cancer MCF-7 cells, and a surface plasmon resonance sensor revealed that SAL significantly increased the binding activity of ERα to the estrogen response element but not ERβ. In conclusion, SAL-induced DNA damage and cell proliferation may play a role in tumor initiation and promotion of multistage mammary carcinogenesis in relation to drinking alcohol.

  5. Radiosensitivity of mesothelioma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Haekkinen, A.M. [Dept. of Oncology, Univ. Central Hospital, Helsinki (Finland); Laasonen, A. [Dept. of Pathology, Central Hospital of Etelae-Pohjanmaa, Seinaejoki (Finland); Linnainmaa, K. [Dept. of Industrial Hygiene and Toxicology, Inst. of Occupational Health, Helsinki (Finland); Mattson, K. [Dept. Pulmonary Medicine, Univ. Central Hospital, Helsinki (Finland); Pyrhoenen, S. [Dept. of Oncology, Univ. Central Hospital, Helsinki (Finland)

    1996-10-01

    The present study was carried out in order to examine the radiosensitivity of malignant pleural mesothelioma cell lines. Cell kinetics, radiation-induced delay of the cell cycle and DNA ploidy of the cell lines were also determined. For comparison an HeLa and a human foetal fibroblast cell line were simultaneously explored. Six previously cytogenetically and histologically characterized mesothelioma tumor cell lines were applied. A rapid tiazolyl blue microtiter (MTT) assay was used to analyze radiosensitivity and cell kinetics and DNA ploidy of the cultured cells were determined by flow cytometry. The survival fraction after a dose of 2 Gy (SF2), parameters {alpha} and {beta} of the linear quadratic model (LQ-model) and mean inactivation dose (D{sub MID}) were also estimated. The DNA index of four cell lines equaled 1.0 and two cell lines equaled 1.5 and 1.6. Different mesothelioma cell lines showed a great variation in radiosensitivity. Mean survival fraction after a radiation dose of 2 Gy (SF2) was 0.60 and ranged from 0.36 to 0.81 and mean {alpha} value was 0.26 (range 0.48-0.083). The SF2 of the most sensitive diploid mesothelioma cell line was 0.36: Less than that of the foetal fibroblast cell line (0.49). The survival fractions (0.81 and 0.74) of the two most resistant cell lines, which also were aneuploid, were equal to that of the HeLa cell line (0.78). The {alpha}/{beta} ratios of the most sensitive cell lines were almost an order of magnitude greater than those of the two most resistant cell lines. Radiation-induced delay of the most resistant aneuploid cell line was similar to that of HeLa cells but in the most sensitive (diploid cells) there was practically no entry into the G1 phase following the 2 Gy radiation dose during 36 h. (orig.).

  6. Mammary collective cell migration involves transient loss of epithelial features and individual cell migration within the epithelium

    Science.gov (United States)

    Ewald, Andrew J.; Huebner, Robert J.; Palsdottir, Hildur; Lee, Jessie K.; Perez, Melissa J.; Jorgens, Danielle M.; Tauscher, Andrew N.; Cheung, Kevin J.; Werb, Zena; Auer, Manfred

    2012-01-01

    Normal mammary morphogenesis involves transitions between simple and multilayered epithelial organizations. We used electron microscopy and molecular markers to determine whether intercellular junctions and apico-basal polarity were maintained in the multilayered epithelium. We found that multilayered elongating ducts had polarized apical and basal tissue surfaces both in three-dimensional culture and in vivo. However, individual cells were only polarized on surfaces in contact with the lumen or extracellular matrix. The basolateral marker scribble and the apical marker atypical protein kinase C zeta localized to all interior cell membranes, whereas PAR3 displayed a cytoplasmic localization, suggesting that the apico-basal polarity was incomplete. Despite membrane localization of E-cadherin and β-catenin, we did not observe a defined zonula adherens connecting interior cells. Instead, interior cells were connected through desmosomes and exhibited complex interdigitating membrane protrusions. Single-cell labeling revealed that individual cells were both protrusive and migratory within the epithelial multilayer. Inhibition of Rho kinase (ROCK) further reduced intercellular adhesion on apical and lateral surfaces but did not disrupt basal tissue organization. Following morphogenesis, segregated membrane domains were re-established and junctional complexes re-formed. We observed similar epithelial organization during mammary morphogenesis in organotypic culture and in vivo. We conclude that mammary epithelial morphogenesis involves a reversible, spatially limited, reduction in polarity and intercellular junctions and active individualistic cell migration. Our data suggest that reductions in polarity and adhesion during breast cancer progression might reflect partial recapitulation of a normal developmental program. PMID:22344263

  7. Regulation of Mammary Progenitor Cells by p53 and Parity

    Science.gov (United States)

    2011-01-01

    quantitative PCR system (Stratagene). To knockdown Notch1 in TM40A cells, siRNA (s70698 and s70700) were purchased from Ambion. s70698 siRNA sense sequence: 5...hours after transfect ion and real-tim e quantitative P CR was used to confirm the knockdown efficiency. Results Label and chase progenitor cells...cells contained 0.8% o f DsRed positiv e (DsR +) progenitor cells (Fig. 1B). The mammosphere-forming capacity of DsR+ cells is 3.8-fold greater

  8. Effects of age and parity on mammary gland lesions and progenitor cells in the FVB/N-RC mice.

    Directory of Open Access Journals (Sweden)

    Ahmed Raafat

    Full Text Available The FVB/N mouse strain is extensively used in the development of animal models for breast cancer research. Recently it has been reported that the aging FVB/N mice develop spontaneous mammary lesions and tumors accompanied with abnormalities in the pituitary glands. These observations have a great impact on the mouse models of human breast cancer. We have developed a population of inbred FVB/N mice (designated FVB/N-RC that have been genetically isolated for 20 years. To study the effects of age and parity on abnormalities of the mammary glands of FVB/N-RC mice, twenty-five nulliparous and multiparous (3-4 pregnancies females were euthanized at 16-22 months of age. Examination of the mammary glands did not reveal macroscopic evidence of mammary gland tumors in either aged-nulliparous or multiparous FVB/N-RC mice (0/25. However, histological analysis of the mammary glands showed rare focal nodules of squamous changes in 2 of the aged multiparous mice. Mammary gland hyperplasia was detected in 8% and 71% of the aged-nulliparous and aged-multiparous mice, respectively. Epithelial contents and serum levels of triiodothyronine were significantly higher in the experimental groups than the 14-wk-old control mice. Immuno-histochemical staining of the pituitary gland pars distalis showed no difference in prolactin staining between the control and the aged mice. Tissue transplant and dilution studies showed no effect of age and/or parity on the ability of putative progenitor cells present among the injected mammary cells to repopulate a cleared fat pad and develop a full mammary gland outgrowth. This FVB/N-RC mouse substrain is suitable to develop mouse models for breast cancer.

  9. TGF-β1 Induces EMT in Bovine Mammary Epithelial Cells Through the TGFβ1/Smad Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Qing Chen

    2017-08-01

    Full Text Available Background/Aims: Transforming growth factor-β1 (TGF-β1 plays a crucial role in chronic inflammation in various tissues, and is related to inflammation-caused organ fibrogenesis associated with the epithelial-mesenchymal transition (EMT and the deposition of the extracellular matrix (ECM. However, the effect of TGF-β1 on bovine mammary epithelial cells (BMECs with mastitis, and its mechanism, remain unknown. Methods: We analyzed the level of TGF-β1 in inflamed mammary tissues and cells using western blotting. BMECs were treated with TGF-β1, and EMT-related gene and protein expression changes were evaluated using quantitative real-time polymerase chain reaction (qPCR, western blotting, and immunofluorescence. We also inhibited the TGF/Smad signaling pathway using a receptor inhibitor, and analyzed EMT-related protein expression by western blotting. In addition, we injected TGF-β1 into mice mammary glands to investigate whether it can cause mammary fibrosis in vivo. Results: The TGF-β1 level was up-regulated in mammary tissues with mastitis and in inducible inflammatory BMECs. TGF-β1 treatment activated the TGF/ Smad signaling pathway in BMECs during their transition to the EMT phenotype, as indicated by morphological changes from a cobblestone-like shape to a spindle-like one. TGF-β1 treatment also up-regulated the expression of α-smooth muscle actin, vimentin, and collagen I, albumin, and down-regulated the expression of E-cadherin both in mRNA level and protein level. Furthermore, TGF-β1 enhanced the gene expressions of MMP2, MMP7, and fibronectin in BMECs. TGF-β1 injection induced mice mammary infection and fibrosis. Conclusion: These findings suggested that aberrant up-regulation of TGF-β1 in bovine mastitic mammary glands might play an important role in bovine mammary fibrosis caused by unresolved inflammation.

  10. Live-Cell Imaging Visualizes Frequent Mitotic Skipping During Senescence-Like Growth Arrest in Mammary Carcinoma Cells Exposed to Ionizing Radiation

    International Nuclear Information System (INIS)

    Suzuki, Masatoshi; Yamauchi, Motohiro; Oka, Yasuyoshi; Suzuki, Keiji; Yamashita, Shunichi

    2012-01-01

    Purpose: Senescence-like growth arrest in human solid carcinomas is now recognized as the major outcome of radiotherapy. This study was designed to analyze cell cycle during the process of senescence-like growth arrest in mammary carcinoma cells exposed to X-rays. Methods and Materials: Fluorescent ubiquitination-based cell cycle indicators were introduced into the human mammary carcinoma cell line MCF-7. Cell cycle was sequentially monitored by live-cell imaging for up to 5 days after exposure to 10 Gy of X-rays. Results: Live-cell imaging revealed that cell cycle transition from G2 to G1 phase without mitosis, so-called mitotic skipping, was observed in 17.1% and 69.8% of G1- and G2-irradiated cells, respectively. Entry to G1 phase was confirmed by the nuclear accumulation of mKO 2 -hCdt1 as well as cyclin E, which was inversely correlated to the accumulation of G2-specific markers such as mAG-hGeminin and CENP-F. More than 90% of cells skipping mitosis were persistently arrested in G1 phase and showed positive staining for the senescent biochemical marker, which is senescence-associated ß-galactosidase, indicating induction of senescence-like growth arrest accompanied by mitotic skipping. While G2 irradiation with higher doses of X-rays induced mitotic skipping in approximately 80% of cells, transduction of short hairpin RNA (shRNA) for p53 significantly suppressed mitotic skipping, suggesting that ionizing radiation-induced mitotic skipping is associated with p53 function. Conclusions: The present study found the pathway of senescence-like growth arrest in G1 phase without mitotic entry following G2-irradiation.

  11. Live-Cell Imaging Visualizes Frequent Mitotic Skipping During Senescence-Like Growth Arrest in Mammary Carcinoma Cells Exposed to Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Masatoshi, E-mail: msuzuki@nagasaki-u.ac.jp [Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki (Japan); Yamauchi, Motohiro; Oka, Yasuyoshi; Suzuki, Keiji; Yamashita, Shunichi [Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki (Japan)

    2012-06-01

    Purpose: Senescence-like growth arrest in human solid carcinomas is now recognized as the major outcome of radiotherapy. This study was designed to analyze cell cycle during the process of senescence-like growth arrest in mammary carcinoma cells exposed to X-rays. Methods and Materials: Fluorescent ubiquitination-based cell cycle indicators were introduced into the human mammary carcinoma cell line MCF-7. Cell cycle was sequentially monitored by live-cell imaging for up to 5 days after exposure to 10 Gy of X-rays. Results: Live-cell imaging revealed that cell cycle transition from G2 to G1 phase without mitosis, so-called mitotic skipping, was observed in 17.1% and 69.8% of G1- and G2-irradiated cells, respectively. Entry to G1 phase was confirmed by the nuclear accumulation of mKO{sub 2}-hCdt1 as well as cyclin E, which was inversely correlated to the accumulation of G2-specific markers such as mAG-hGeminin and CENP-F. More than 90% of cells skipping mitosis were persistently arrested in G1 phase and showed positive staining for the senescent biochemical marker, which is senescence-associated ss-galactosidase, indicating induction of senescence-like growth arrest accompanied by mitotic skipping. While G2 irradiation with higher doses of X-rays induced mitotic skipping in approximately 80% of cells, transduction of short hairpin RNA (shRNA) for p53 significantly suppressed mitotic skipping, suggesting that ionizing radiation-induced mitotic skipping is associated with p53 function. Conclusions: The present study found the pathway of senescence-like growth arrest in G1 phase without mitotic entry following G2-irradiation.

  12. Proliferation of Estrogen Receptor alpha Positive Mammary Epithelial Cells is Restrained by TGFbeta1 in Adult Mice

    Energy Technology Data Exchange (ETDEWEB)

    Ewan, Kenneth B.R.; Oketch-Rabah, Hellen A.; Ravani, Shraddha A.; Shyamala, G.; Moses, Harold L.; Barcellos-Hoff, Mary Helen

    2005-03-03

    Transforming growth factor {beta}1 (TGF{beta}1) is a potent inhibitor of mammary epithelial proliferation. In human breast, estrogen receptor {alpha} (ER{alpha}) cells rarely co-localize with markers of proliferation, but their increased frequency correlates with breast cancer risk. To determine whether TGF{beta}1 is necessary for the quiescence of ER{alpha}-positive population, we examined mouse mammary epithelial gland at estrus. Approximately 35% of cells showed TGF{beta}1 activation, which co-localized with nuclear receptor-phosphorylated Smad 2/3, indicating that TGF{beta} signaling is autocrine. Furthermore, nuclear Smad co-localized with nuclear ER{alpha}. To test whether TGF{beta} was functional, we examined genetically engineered mice with different levels of TGF{beta}1. ER{alpha} co-localization with markers of proliferation (i.e. Ki-67 or BrdU) at estrus was significantly increased in the mammary glands of Tgf{beta}1 C57/bl/129SV heterozygote mice. This relationship was maintained following pregnancy, but was absent at puberty. Conversely, mammary epithelial expression of constitutively active TGF{beta}1 via the MMTV promoter suppressed proliferation of ER{alpha} positive cells. Thus, TGF{beta}1 activation functionally restrains ER{alpha} positive cells from proliferating in adult mammary gland. Accordingly, we propose that TGF{beta}1 dysregulation may promote proliferation of ER{alpha} positive cells associated with breast cancer risk in humans.

  13. Gene Regulation by Retinoid Receptors in Human Mammary Epithelial Cells

    Science.gov (United States)

    2002-10-01

    with altered expression of cs3-integrin. oligodeoxynucleotides (ODNs) were used to suppress p53 Treatment of early passage p53- HMEC-E6 cells with...HMEC-E6 cells and p5 3- HMEC-LXSN controls. The mean diameter and apoptosis after 8 -10 passages in culture. Treatment of of spheres formed by p53’ HMEC...ct3-, and P31-integrins and very weakly for ca6 - and P34- cells present in both branched and aggregate structures ex- integrins (Fig. 12; unpublished

  14. Bee Venom Decreases LPS-Induced Inflammatory Responses in Bovine Mammary Epithelial Cells.

    Science.gov (United States)

    Jeong, Chang Hee; Cheng, Wei Nee; Bae, Hyojin; Lee, Kyung Woo; Han, Sang Mi; Petriello, Michael C; Lee, Hong Gu; Seo, Han Geuk; Han, Sung Gu

    2017-10-28

    The world dairy industry has long been challenged by bovine mastitis, an inflammatory disease, which causes economic loss due to decreased milk production and quality. Attempts have been made to prevent or treat this disease with multiple approaches, primarily through increased abuse of antibiotics, but effective natural solutions remain elusive. Bee venom (BV) contains a variety of peptides ( e.g. , melittin) and shows multiple bioactivities, including prevention of inflammation. Thus, in the current study, it was hypothesized that BV can reduce inflammation in bovine mammary epithelial cells (MAC-T). To examine the hypothesis, cells were treated with LPS (1 μg/ml) to induce an inflammatory response and the anti-inflammatory effects of BV (2.5 and 5 μg/ml) were investigated. The cellular mechanisms of BV against LPS-induced inflammation were also investigated. Results showed that BV can attenuate expression of an inflammatory protein, COX2, and pro-inflammatory cytokines such as IL-6 and TNF-α. Activation of NF-κB, an inflammatory transcription factor, was significantly downregulated by BV in cells treated with LPS, through dephosphorylation of ERK1/2. Moreover, pretreatment of cells with BV attenuated LPS-induced production of intracellular reactive oxygen species ( e.g. , superoxide anion). These results support our hypothesis that BV can decrease LPS-induced inflammatory responses in bovine mammary epithelial cells through inhibition of oxidative stress, NF-κB, ERK1/2, and COX-2 signaling.

  15. Lactoferrin affects the adherence and invasion of Streptococcus dysgalactiae ssp. dysgalactiae in mammary epithelial cells.

    Science.gov (United States)

    O'Halloran, Fiona; Beecher, Christine; Chaurin, Valerie; Sweeney, Torres; Giblin, Linda

    2016-06-01

    Streptococcus dysgalactiae ssp. dysgalactiae is an important causative agent of bovine mastitis worldwide. Lactoferrin is an innate immune protein that is associated with many functions including immunomodulatory, antiproliferative, and antimicrobial properties. This study aimed to investigate the interactions between lactoferrin and a clinical bovine mastitis isolate, Strep. dysgalactiae ssp. dysgalactiae DPC5345. Initially a deliberate in vivo bovine intramammary challenge was performed with Strep. dysgalactiae DPC5345. Results demonstrated a significant difference in lactoferrin mRNA levels in milk cells between the control and infused quarters 7h postinfusion. Milk lactoferrin levels in the Strep. dysgalactiae DPC5345 infused quarters were significantly increased compared with control quarters at 48h postinfusion. In vitro studies demonstrated that lactoferrin had a bacteriostatic effect on the growth of Strep. dysgalactiae DPC5345 and significantly decreased the ability of the bacteria to internalize into HC-11 mammary epithelial cells. Confocal microscopy images of HC-11 cells exposed to Strep. dysgalactiae and lactoferrin further supported this effect by demonstrating reduced invasion of bacteria to HC-11 cells. The combined data suggest that a bovine immune response to Strep. dysgalactiae infection includes a significant increase in lactoferrin expression in vivo, and based on in vitro data, lactoferrin limits mammary cell invasion of this pathogen by binding to the bacteria and preventing its adherence. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Altered expression of glycosaminoglycans in metastatic 13762NF rat mammary adenocarcinoma cells

    International Nuclear Information System (INIS)

    Steck, P.A.; Cheong, P.H.; Nakajima, M.; Yung, W.K.A.; Moser, R.P.; Nicolson, G.L.

    1987-01-01

    A difference in the expression and metabolism of [ 35 S]sulfated glycosaminoglycans between rat mammary tumor cells derived from a primary tumor and those from its metastatic lesions has been observed. Cells from the primary tumor possessed about equal quantities of chondroitin sulfate and heparan sulfate on their cell surfaces but released fourfold more chondroitin sulfate than heparan sulfate into their medium. In contrast, cells from distal metastatic lesions expressed approximately 5 times more heparan sulfate than chondroitin sulfate in both medium and cell surface fractions. This was observed to be the result of differential synthesis of the glycosaminoglycans and not of major structural alterations of the individual glycosaminoglycans. The degree of sulfation and size of heparan sulfate were similar for all cells examined. However, chondroitin sulfate, observed to be only chondroitin 4-sulfate, from the metastases-derived cells had a smaller average molecular weight on gel filtration chromatography and showed a decreased quantity of sulfated disaccharides upon degradation with chondroitin ABC lyase compared to the primary tumor derived cells. Major qualitative or quantitative alterations were not observed for hyaluronic acid among the various 13762NF cells. The metabolism of newly synthesized sulfated glycosaminoglycans was also different between cells from primary tumor and metastases. A pulse-chase kinetics study demonstrated that both heparan sulfate and chondroitin sulfate were degraded by the metastases-derived cells, whereas the primary tumor derived cells degraded only heparan sulfate and degraded it at a slower rate. These results suggested that altered glycosaminoglycan expression and metabolism may be associated with the metastatic process in 13762NF rat mammary tumor cells

  17. Emergence of nuclear heparanase induces differentiation of human mammary cancer cells

    International Nuclear Information System (INIS)

    Nobuhisa, Tetsuji; Naomoto, Yoshio; Takaoka, Munenori; Tabuchi, Yoko; Ookawa, Keizou; Kitamoto, Dai; Gunduz, Esra; Gunduz, Mehmet; Nagatsuka, Hitoshi; Haisa, Minoru; Matsuoka, Junji; Nakajima, Motowo; Tanaka, Noriaki

    2005-01-01

    The study of epithelial differentiation touches upon many modern aspects of biology. The epithelium is in constant dialogue with the underlying mesenchyme to control stem cell activity, proliferation in transit-amplifying compartments, lineage commitment, terminal differentiation and, ultimately, cell death. There are spatially distinct compartments dedicated to each of these events. Recently we reported that heparanase is expressed in nucleus as well as in the cytoplasm and that nuclear heparanase seems to be related to cell differentiation. In this study, we investigated the role of nuclear heparanase in differentiation by transducing human mammary epithelial cancer cells with heparanase which was delivered specifically into nucleus. We observed that expression of nuclear heparanase allowed the cells to differentiate with the appearance of lipid droplets. This finding supports the idea that heparanase plays a novel role in epithelial cell differentiation apart from its known enzymatic function

  18. Use of mammary epithelial antigens as markers in mammary neoplasia

    International Nuclear Information System (INIS)

    Ceriani, R.L.; Peterson, J.A.; Blank, E.W.

    1979-01-01

    Cell-type specific antigens of the mammary epithelial cells can be used as markers of breast neoplasia. Methods are proposed for the detection of metastatic mammary tissue in vivo by injection of [ 125 I]-labeled antibodies against the mammary epithelial antigens. In addition, the reduced expression of mammary epithelial cell antigens in neoplastic breast cells, quantitated here on a cell per cell basis by flow cytofluorimetry, is a marker of neoplasia and an indication of a deletion accompanying the neoplastic transformation of these cells. (Auth.)

  19. c-Myc affects mRNA translation, cell proliferation and progenitor cell function in the mammary gland

    Directory of Open Access Journals (Sweden)

    Trumpp Andreas

    2009-09-01

    Full Text Available Abstract Background The oncoprotein c-Myc has been intensely studied in breast cancer and mouse mammary tumor models, but relatively little is known about the normal physiological role of c-Myc in the mammary gland. Here we investigated functions of c-Myc during mouse mammary gland development using a conditional knockout approach. Results Generation of c-mycfl/fl mice carrying the mammary gland-specific WAPiCre transgene resulted in c-Myc loss in alveolar epithelial cells starting in mid-pregnancy. Three major phenotypes were observed in glands of mutant mice. First, c-Myc-deficient alveolar cells had a slower proliferative response at the start of pregnancy, causing a delay but not a block of alveolar development. Second, while milk composition was comparable between wild type and mutant animals, milk production was reduced in mutant glands, leading to slower pup weight-gain. Electron microscopy and polysome fractionation revealed a general decrease in translational efficiency. Furthermore, analysis of mRNA distribution along the polysome gradient demonstrated that this effect was specific for mRNAs whose protein products are involved in milk synthesis. Moreover, quantitative reverse transcription-polymerase chain reaction analysis revealed decreased levels of ribosomal RNAs and ribosomal protein-encoding mRNAs in mutant glands. Third, using the mammary transplantation technique to functionally identify alveolar progenitor cells, we observed that the mutant epithelium has a reduced ability to repopulate the gland when transplanted into NOD/SCID recipients. Conclusion We have demonstrated that c-Myc plays multiple roles in the mouse mammary gland during pregnancy and lactation. c-Myc loss delayed, but did not block proliferation and differentiation in pregnancy. During lactation, lower levels of ribosomal RNAs and proteins were present and translation was generally decreased in mutant glands. Finally, the transplantation studies suggest a role

  20. Wnt-5a and Wnt-4 Regulates Cell Growth in C57MG Mammary Epithelial Cells

    National Research Council Canada - National Science Library

    Olson, Daniel

    1998-01-01

    .... That is, it is important ultimately to understand whether the inappropriate down regulation of certain wnt-genes that are spatially-temporally expressed in developing mammary glands, such as wnt-5a...

  1. Effect of Estrogen on Mutagenesis in Human Mammary Epithelial Cells

    Science.gov (United States)

    2005-06-01

    of hMSH3 and PCNA. " PMS2 Since overexpression of hMSH3 MSH2 was shown to reduce single-base MMR activity (11, 12), we originally -=GAPDH hypothesized...shown in Fig. days. The cells were harvested and extracted for Western blotting. Anti- MLH 1, PMS2 and MSH2 antibodies were purchased from Oncogene.10

  2. Role of p53 in Mammary Epithelial Cell Senescence

    Science.gov (United States)

    2009-05-01

    putative progenitor/stem cell is also indicated. Terminal ductal-lobular unit Duct Collecting Ducts Nipple Fatty tissue Stromal fibroblasts Progenitor...Framingham Heart Study (Murabito et al. 2007). The study involved 1,335 participants, including 58 women with breast cancer and 59 men with prostate

  3. Multiple Mechanisms are Responsible for Transactivation of the Epidermal Growth Factor Receptor in Mammary Epithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Rodland, Karin D.; Bollinger, Nikki; Ippolito, Danielle L.; Opresko, Lee; Coffey, Robert J.; Zangar, Richard C.; Wiley, H. S.

    2008-11-14

    REVIEW ENTIRE DOCUMENT AT: https://pnlweb.pnl.gov/projects/bsd/ERICA%20Manuscripts%20for%20Review/KD%20Rodland%20D7E80/HMEC_transactivation_ms01_15+Figs.pdf ABSTRACT: Using a single nontransformed strain of human mammary epithelial cells, we found that the ability of multiple growth factors and cytokines to induce ERK phosphorylation was dependent on EGFR activity. These included lysophosphatidic acid (LPA), uridine triphosphate, growth hormone, vascular endothelial growth factor, insulin-like growth factor-1 (IGF-1), and tumor necrosis factoralpha. In contrast, hepatocyte growth factor could stimulate ERK phosphorylation independent of EGFR activity...

  4. IGF-binding proteins mediate TGF-beta 1-induced apoptosis in bovine mammary epithelial BME-UV1 cells.

    Science.gov (United States)

    Gajewska, Małgorzata; Motyl, Tomasz

    2004-10-01

    TGF-beta 1 is an antiproliferative and apoptogenic factor for mammary epithelial cells (MEC) acting in an auto/paracrine manner and thus considered an important local regulator of mammary tissue involution. However, the apoptogenic signaling pathway induced by this cytokine in bovine MEC remains obscure. The present study was focused on identification of molecules involved in apoptogenic signaling of transforming growth factor-beta 1 (TGF-beta 1) in the model of bovine mammary epithelial cell line (BME-UV1). Laser scanning cytometry (LSC), Western blot and electrophoretic mobility shift assay (EMSA) were used for analysis of expression and activity of TGF-beta 1-related signaling molecules. The earliest response occurring within 1-2 h after TGF-beta 1 administration was an induction and activation of R-Smads (Smad2 and Smad3) and Co-Smad (Smad4). An evident formation of Smad-DNA complexes began from 2nd hour after MEC exposure to TGF-beta 1. Similarly to Smads, proteins of AP1 complex: phosphorylated c-Jun and JunD appeared to be early reactive molecules; however, an increase in their expression was detected only in cytosolic fraction. In the next step, an increase of IGF binding protein-3 (IGFBP-3) and IGFBP-4 expression was observed from 6th hour followed by a decrease in the activity of protein kinase B (PKB/Akt), which occurred after 24 h of MEC exposure to TGF-beta 1. The decrease in PKB/Akt activity coincided in time with the decline of phosphorylated Bad expression (inactive form). Present study supported additional evidence that stimulation of insulin-like growth factor I (IGF-I) was associated with complete abrogation of TGF-beta 1-induced activation of Bad and Bax and in the consequence protection against apoptosis. In conclusion, apoptotic effect of TGF-beta 1 in bovine MEC is mediated by IGFBPs and occurs through IGF-I sequestration, resulting in inhibition of PKB/Akt-dependent survival pathway.

  5. Inhibition of Staphylococcus aureus invasion into bovine mammary epithelial cells by contact with live Lactobacillus casei.

    Science.gov (United States)

    Bouchard, Damien S; Rault, Lucie; Berkova, Nadia; Le Loir, Yves; Even, Sergine

    2013-02-01

    Staphylococcus aureus is a major pathogen that is responsible for mastitis in dairy herds. S. aureus mastitis is difficult to treat and prone to recurrence despite antibiotic treatment. The ability of S. aureus to invade bovine mammary epithelial cells (bMEC) is evoked to explain this chronicity. One sustainable alternative to treat or prevent mastitis is the use of lactic acid bacteria (LAB) as mammary probiotics. In this study, we tested the ability of Lactobacillus casei strains to prevent invasion of bMEC by two S. aureus bovine strains, RF122 and Newbould305, which reproducibly induce acute and moderate mastitis, respectively. L. casei strains affected adhesion and/or internalization of S. aureus in a strain-dependent manner. Interestingly, L. casei CIRM-BIA 667 reduced S. aureus Newbould305 and RF122 internalization by 60 to 80%, and this inhibition was confirmed for two other L. casei strains, including one isolated from bovine teat canal. The protective effect occurred without affecting bMEC morphology and viability. Once internalized, the fate of S. aureus was not affected by L. casei. It should be noted that L. casei was internalized at a low rate but survived in bMEC cells with a better efficiency than that of S. aureus RF122. Inhibition of S. aureus adhesion was maintained with heat-killed L. casei, whereas contact between live L. casei and S. aureus or bMEC was required to prevent S. aureus internalization. This first study of the antagonism of LAB toward S. aureus in a mammary context opens avenues for the development of novel control strategies against this major pathogen.

  6. Inhibition of Staphylococcus aureus Invasion into Bovine Mammary Epithelial Cells by Contact with Live Lactobacillus casei

    Science.gov (United States)

    Bouchard, Damien S.; Rault, Lucie; Berkova, Nadia; Le Loir, Yves

    2013-01-01

    Staphylococcus aureus is a major pathogen that is responsible for mastitis in dairy herds. S. aureus mastitis is difficult to treat and prone to recurrence despite antibiotic treatment. The ability of S. aureus to invade bovine mammary epithelial cells (bMEC) is evoked to explain this chronicity. One sustainable alternative to treat or prevent mastitis is the use of lactic acid bacteria (LAB) as mammary probiotics. In this study, we tested the ability of Lactobacillus casei strains to prevent invasion of bMEC by two S. aureus bovine strains, RF122 and Newbould305, which reproducibly induce acute and moderate mastitis, respectively. L. casei strains affected adhesion and/or internalization of S. aureus in a strain-dependent manner. Interestingly, L. casei CIRM-BIA 667 reduced S. aureus Newbould305 and RF122 internalization by 60 to 80%, and this inhibition was confirmed for two other L. casei strains, including one isolated from bovine teat canal. The protective effect occurred without affecting bMEC morphology and viability. Once internalized, the fate of S. aureus was not affected by L. casei. It should be noted that L. casei was internalized at a low rate but survived in bMEC cells with a better efficiency than that of S. aureus RF122. Inhibition of S. aureus adhesion was maintained with heat-killed L. casei, whereas contact between live L. casei and S. aureus or bMEC was required to prevent S. aureus internalization. This first study of the antagonism of LAB toward S. aureus in a mammary context opens avenues for the development of novel control strategies against this major pathogen. PMID:23183972

  7. A cyclized peptide derived from alpha fetoprotein inhibits the proliferation of ER-positive canine mammary cancer cells.

    Science.gov (United States)

    Torres, Cristian Gabriel; Pino, Ana María; Sierralta, Walter Daniel

    2009-06-01

    The effects of estradiol (E2) and of an AFP-derived cyclized peptide (cP) on the proliferation of primary cultures of cancer cells isolated from spontaneous canine mammary tumors were studied. The cellular response to E2 and cP was related to the expression of estradiol receptor (isoforms alpha and beta). In ER-positive cells, 2 nM estradiol increased cell proliferation and the phosphorylation of ERK1/2; 2 microg/ml cP inhibited all these effects. Estradiol also increased HER2 immunoreactivity in ER-positive cells, an effect that was reverted to its basal values by cP. Estradiol stimulated in these cells the release of MMP2 and MMP9 and the shedding of HB-EGF, effects that the cP did not affect. ER-negative cells were refractory to estradiol or cP. All canine mammary tumor cells in culture responded to treatments analogously to human mammary cancer cells. Our results support the proposal of cP as a new, potentially effective therapeutic agent for the management of mammary cancer.

  8. Bovine natural killer cells are present in Escherichia coli infected mammary gland tissue and show antimicrobial activity in vitro

    NARCIS (Netherlands)

    Sipka, Anja; Pomeroy, Brianna; Klaessig, Suzanne; Schukken, Ynte

    2016-01-01

    Natural killer (NK) cells are early responders in bacterial infections but their role in bovine mastitis has not been characterized. For the first time, we show the presence of NK cells (NKp46+/CD3) in bovine mammary gland tissue after an intramammary challenge with

  9. Bovine natural killer cells are present in Escherichia coli infected mammary gland tissue and show antimicrobial activity in vitro

    NARCIS (Netherlands)

    Sipka, Anja; Pomeroy, Brianna; Klaessig, Suzanne; Schukken, Ynte

    2016-01-01

    Natural killer (NK) cells are early responders in bacterial infections but their role in bovine mastitis has not been characterized. For the first time, we show the presence of NK cells (NKp46+/CD3−) in bovine mammary gland tissue after an intramammary challenge with Escherichia (E.) coli. A small

  10. Epigenetic regulation of normal human mammary cell type-specific miRNAs

    Energy Technology Data Exchange (ETDEWEB)

    Vrba, Lukas [Univ. of Arizona, Tucson, AZ (United States). Arizona Cancer Center; Inst. of Plant Molecular Biology, Ceske Budejovice (Czech Republic). Biology Centre ASCR; Garbe, James C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Center; Stampfer, Martha R. [Univ. of Arizona, Tucson, AZ (United States). Arizona Cancer Center; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Center; Futscher, Bernard W. [Univ. of Arizona, Tucson, AZ (United States). Arizona Cancer Center and Dept. of Pharmacology & Toxicology

    2011-08-26

    Epigenetic mechanisms are important regulators of cell type–specific genes, including miRNAs. In order to identify cell type-specific miRNAs regulated by epigenetic mechanisms, we undertook a global analysis of miRNA expression and epigenetic states in three isogenic pairs of human mammary epithelial cells (HMEC) and human mammary fibroblasts (HMF), which represent two differentiated cell types typically present within a given organ, each with a distinct phenotype and a distinct epigenotype. While miRNA expression and epigenetic states showed strong interindividual concordance within a given cell type, almost 10% of the expressed miRNA showed a cell type–specific pattern of expression that was linked to the epigenetic state of their promoter. The tissue-specific miRNA genes were epigenetically repressed in nonexpressing cells by DNA methylation (38%) and H3K27me3 (58%), with only a small set of miRNAs (21%) showing a dual epigenetic repression where both DNA methylation and H3K27me3 were present at their promoters, such as MIR10A and MIR10B. Individual miRNA clusters of closely related miRNA gene families can each display cell type–specific repression by the same or complementary epigenetic mechanisms, such as the MIR200 family, and MIR205, where fibroblasts repress MIR200C/141 by DNA methylation, MIR200A/200B/429 by H3K27me3, and MIR205 by both DNA methylation and H3K27me3. Since deregulation of many of the epigenetically regulated miRNAs that we identified have been linked to disease processes such as cancer, it is predicted that compromise of the epigenetic control mechanisms is important for this process. Overall, these results highlight the importance of epigenetic regulation in the control of normal cell type–specific miRNA expression.

  11. Effect of Aflatoxin B1 on Growth of Bovine Mammary Epithelial Cells in 3D and Monolayer Culture System.

    Science.gov (United States)

    Forouharmehr, Ali; Harkinezhad, Taher; Qasemi-Panahi, Babak

    2013-01-01

    Many studies have been showed transfer of aflatoxins, toxins produced by Aspergillus flvaus and Aspergillus parasiticus fungi, into milk. These toxins are transferred into the milk through digestive system by eating contaminated food. Due to the toxicity of these materials, it seems that it has side effects on the growth of mammary cells. Therefore, the present work aimed to investigate possible toxic effects of aflatoxin B1 (AFB1) on bovine mammary epithelial cells in monolayer and three-dimensional cultures. Specimens of the mammary tissue of bovine were sized out in size 2×2 cm in slaughterhouse. After disinfection and washing in sterile PBS, primary cell culture was performed by enzymatic digestion of tissue with collagenase. When proper numbers of cells were achieved in monolayer culture, cells were seeded in a 24-well culture plate for three-dimensional (3D) culture in Matrigel matrix. After 21 days of 3D culture and reaching the required number of cells, the concentrations of 15, 25 and 35 µL of AFB1 were added to the culture in quadruplicate and incubated for 8 hours. Cellular cytotoxicity was examined using standard colorimetric assay and finally, any change in the morphology of the cells was studied by microscopic technique. Microscopic investigations showed necrosis of the AFB1-exposed cells compared to the control cells. Also, bovine mammary epithelial cells were significantly affected by AFB1 in dose and time dependent manner in cell viability assays. According to the results, it seems that AFB1 can induce cytotoxicity and necrosis in bovine mammary epithelial cells.

  12. Effect of Aflatoxin B1 on Growth of Bovine Mammary Epithelial Cells in 3D and Monolayer Culture System

    Directory of Open Access Journals (Sweden)

    Babak Qasemi-Panahi

    2013-02-01

    Full Text Available Purpose: Many studies have been showed transfer of aflatoxins, toxins produced by Aspergillus flvaus and Aspergillus parasiticus fungi, into milk. These toxins are transferred into the milk through digestive system by eating contaminated food. Due to the toxicity of these materials, it seems that it has side effects on the growth of mammary cells. Therefore, the present work aimed to investigate possible toxic effects of aflatoxin B1 (AFB1 on bovine mammary epithelial cells in monolayer and three-dimensional cultures. Methods: Specimens of the mammary tissue of bovine were sized out in size 2×2 cm in slaughterhouse. After disinfection and washing in sterile PBS, primary cell culture was performed by enzymatic digestion of tissue with collagenase. When proper numbers of cells were achieved in monolayer culture, cells were seeded in a 24-well culture plate for three-dimensional (3D culture in Matrigel matrix. After 21 days of 3D culture and reaching the required number of cells, the concentrations of 15, 25 and 35 μL of AFB1 were added to the culture in quadruplicate and incubated for 8 hours. Cellular cytotoxicity was examined using standard colorimetric assay and finally, any change in the morphology of the cells was studied by microscopic technique. Results: Microscopic investigations showed necrosis of the AFB1-exposed cells compared to the control cells. Also, bovine mammary epithelial cells were significantly affected by AFB1 in dose and time dependent manner in cell viability assays. Conclusion: According to the results, it seems that AFB1 can induce cytotoxicity and necrosis in bovine mammary epithelial cells.

  13. TP53 supports basal-like differentiation of mammary epithelial cells by preventing translocation of deltaNp63 into nucleoli

    Science.gov (United States)

    Munne, Pauliina M.; Gu, Yuexi; Tumiati, Manuela; Gao, Ping; Koopal, Sonja; Uusivirta, Sanna; Sawicki, Janet; Wei, Gong-Hong; Kuznetsov, Sergey G.

    2014-04-01

    Multiple observations suggest a cell type-specific role for TP53 in mammary epithelia. We developed an in vitro assay, in which primary mouse mammary epithelial cells (mMECs) progressed from lumenal to basal-like phenotypes based on expression of Krt18 or ΔNp63, respectively. Such transition was markedly delayed in Trp53-/- mMECs suggesting that Trp53 is required for specification of the basal, but not lumenal cells. Evidence from human basal-like cell lines suggests that TP53 may support the activity of ΔNp63 by preventing its translocation from nucleoplasm into nucleoli. In human lumenal cells, activation of TP53 by inhibiting MDM2 or BRCA1 restored the nucleoplasmic expression of ΔNp63. Trp53-/- mMECs eventually lost epithelial features resulting in upregulation of MDM2 and translocation of ΔNp63 into nucleoli. We propose that TP63 may contribute to TP53-mediated oncogenic transformation of epithelial cells and shed light on tissue- and cell type-specific biases observed for TP53-related cancers.

  14. A Novel Mammary Fat Pad Transplantation Technique to Visualize the Vessel Generation of Vascular Endothelial Stem Cells.

    Science.gov (United States)

    Yu, Qing Cissy; Song, Wenqian; Lai, Dengwen; Zeng, Yi Arial

    2017-08-03

    Endothelial cells (ECs) are the fundamental building blocks of the vascular architecture and mediate vascular growth and remodeling to ensure proper vessel development and homeostasis. However, studies on endothelial lineage hierarchy remain elusive due to the lack of tools to gain access as well as to directly evaluate their behavior in vivo. To address this shortcoming, a new tissue model to study angiogenesis using the mammary fat pad has been developed. The mammary gland develops mostly in the postnatal stages, including puberty and pregnancy, during which robust epithelium proliferation is accompanied by extensive vascular remodeling. Mammary fat pads provide space, matrix, and rich angiogenic stimuli from the growing mammary epithelium. Furthermore, mammary fat pads are located outside the peritoneal cavity, making them an easily accessible grafting site for assessing the angiogenic potential of exogenous cells. This work also describes an efficient tracing approach using fluorescent reporter mice to specifically label the targeted population of vascular endothelial stem cells (VESCs) in vivo. This lineage tracing method, coupled with subsequent tissue whole-mount microscopy, enable the direct visualization of targeted cells and their descendants, through which the proliferation capability can be quantified and the differentiation commitment can be fate-mapped. Using these methods, a population of bipotent protein C receptor (Procr) expressing VESCs has recently been identified in multiple vascular systems. Procr + VESCs, giving rise to both new ECs and pericytes, actively contribute to angiogenesis during development, homeostasis, and injury repair. Overall, this manuscript describes a new mammary fat pad transplantation and in vivo lineage tracing techniques that can be used to evaluate the stem cell properties of VESCs.

  15. Pomegranate exerts chemoprevention of experimentally induced mammary tumorigenesis by suppression of cell proliferation and induction of apoptosis.

    Science.gov (United States)

    Bishayee, Anupam; Mandal, Animesh; Bhattacharyya, Piyali; Bhatia, Deepak

    2016-01-01

    Breast cancer is the second leading cause of cancer-related death in women in the United States and discovery and development of safe chemopreventive drugs is urgently needed. The fruit pomegranate (Punica granatum) is gaining importance because of its various health benefits. This study was initiated to investigate chemopreventive potential of a pomegranate emulsion (PE) against 7,12-dimethylbenz(a)anthracene (DMBA) rat mammary carcinogenesis. The animals were orally administered with PE (0.2-5.0 g/kg), starting 2 wk before and 16 wk following DMBA treatment. PE exhibited a striking reduction of DMBA-induced mammary tumor incidence, total tumor burden, and reversed histopathological changes. PE dose-dependently suppressed cell proliferation and induced apoptosis in mammary tumors. Immunohistochemical studies showed that PE increased intratumor Bax, decreased Bcl2 and manifested a proapoptotic shift in Bax/Bcl2 ratio. In addition, our gene expression study showed PE-mediated upregulation of Bad, caspase-3, caspase-7, caspase-9, poly (ADP ribose) polymerase and cytochrome c in mammary tumors. Thus, PE exerts chemoprevention of mammary carcinogenesis by suppressing cell proliferation and inducing apoptosis mediated through upregulation of Bax and downregulation of Bcl2 in concert with caspase cascades. Pomegranate bioactive phytoconstituents could be developed as a chemopreventive drug to reduce the risk of breast cancer.

  16. Expression and function of the protein tyrosine phosphatase receptor J (PTPRJ in normal mammary epithelial cells and breast tumors.

    Directory of Open Access Journals (Sweden)

    Chanel E Smart

    Full Text Available The protein tyrosine phosphatase receptor J, PTPRJ, is a tumor suppressor gene that has been implicated in a range of cancers, including breast cancer, yet little is known about its role in normal breast physiology or in mammary gland tumorigenesis. In this paper we show that PTPRJ mRNA is expressed in normal breast tissue and reduced in corresponding tumors. Meta-analysis revealed that the gene encoding PTPRJ is frequently lost in breast tumors and that low expression of the transcript associated with poorer overall survival at 20 years. Immunohistochemistry of PTPRJ protein in normal human breast tissue revealed a distinctive apical localisation in the luminal cells of alveoli and ducts. Qualitative analysis of a cohort of invasive ductal carcinomas revealed retention of normal apical PTPRJ localization where tubule formation was maintained but that tumors mostly exhibited diffuse cytoplasmic staining, indicating that dysregulation of localisation associated with loss of tissue architecture in tumorigenesis. The murine ortholog, Ptprj, exhibited a similar localisation in normal mammary gland, and was differentially regulated throughout lactational development, and in an in vitro model of mammary epithelial differentiation. Furthermore, ectopic expression of human PTPRJ in HC11 murine mammary epithelial cells inhibited dome formation. These data indicate that PTPRJ may regulate differentiation of normal mammary epithelia and that dysregulation of protein localisation may be associated with tumorigenesis.

  17. CXCR4 expression in feline mammary carcinoma cells: evidence of a proliferative role for the SDF-1/CXCR4 axis

    Directory of Open Access Journals (Sweden)

    Ferrari Angelo

    2012-03-01

    Full Text Available Abstract Background Mammary tumours frequently develop in female domestic cats being highly malignant in a large percentage of cases. Chemokines regulate many physiological and pathological processes including organogenesis, chemotaxis of inflammatory cells, as well as tumour progression and metastasization. In particular, the chemokine/receptor pair SDF-1/CXCR4 has been involved in the regulation of metastatic potential of neoplastic cells, including breast cancer. The aim of this study was the immunohistochemical defininition of the expression profile of CXCR4 in primary and metastatic feline mammary carcinomas and the evaluation of the role of SDF-1 in feline mammary tumour cell proliferation. Results A total of 45 mammary surgical samples, including 33 primary tumours (31 carcinomas and 2 adenomas, 6 metastases, and 4 normal mammary tissues were anlyzed. Tumor samples were collected from a total number of 26 animals, as in some cases concurrent occurrence of neoplasm in more than one mammary gland was observed. Tissues were processed for standard histological examination, and all lesions were classified according to the World Health Organization criteria. CXCR4 expression in neoplastic cells was evaluated by immunohistochemistry. The level of CXCR4 immunoreactivity was semi-quantitatively estimated as CXCR4 score evaluating both the number of positive cells and the intensity of staining. Six primary, fibroblast-free primary cultures were obtained from fresh feline mammary carcinomas and characterized by immunofluorescence for CXCR4 and malignant mammary cell marker expression. SDF-1-dependent in vitro proliferative effects were also assayed. CXCR4 expression was observed in 29 out of 31 malignant tissues with a higher CXCR4 score observed in 4 out of 6 metastatic lesions than in the respective primary tumours. In 2 benign lesions analyzed, only the single basaloid adenoma showed a mild positive immunostaining against CXCR4. Normal tissue did

  18. Proteome analysis of functionally differentiated bovine (Bos indicus) mammary epithelial cells isolated from milk

    KAUST Repository

    Janjanam, Jagadeesh

    2013-10-01

    Mammary gland is made up of a branching network of ducts that end in alveoli. Terminally differentiated mammary epithelial cells (MECs) constitute the innermost layer of aveoli. They are milk-secreting cuboidal cells that secrete milk proteins during lactation. Little is known about the expression profile of proteins in the metabolically active MECs during lactation or their functional role in the lactation process. In the present investigation, we have reported the proteome map of MECs in lactating cows using 2DE MALDI-TOF/TOF MS and 1D-Gel-LC-MS/MS. MECs were isolated from milk using immunomagnetic beads and confirmed by RT-PCR and Western blotting. The 1D-Gel-LC-MS/MS and 2DE-MS/MS based approaches led to identification of 431 and 134 proteins, respectively, with a total of 497 unique proteins. Proteins identified in this study were clustered into functional groups using bioinformatics tools. Pathway analysis of the identified proteins revealed 28 pathways (p < 0.05) providing evidence for involvement of various proteins in lactation function. This study further provides experimental evidence for the presence of many proteins that have been predicted in annotated bovine genome. The data generated further provide a set of bovine MEC-specific proteins that will help the researchers to understand the molecular events taking place during lactation. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Exercise-induced muscle-derived cytokines inhibit mammary cancer cell growth.

    Science.gov (United States)

    Hojman, Pernille; Dethlefsen, Christine; Brandt, Claus; Hansen, Jakob; Pedersen, Line; Pedersen, Bente Klarlund

    2011-09-01

    Regular physical activity protects against the development of breast and colon cancer, since it reduces the risk of developing these by 25-30%. During exercise, humoral factors are released from the working muscles for endocrinal signaling to other organs. We hypothesized that these myokines mediate some of the inhibitory effects of exercise on mammary cancer cell proliferation. Serum and muscles were collected from mice after an exercise bout. Incubation with exercise-conditioned serum inhibited MCF-7 cell proliferation by 52% and increased caspase activity by 54%. A similar increase in caspase activity was found after incubation of MCF-7 cells with conditioned media from electrically stimulated myotubes. PCR array analysis (CAPM-0838E; SABiosciences) revealed that seven genes were upregulated in the muscles after exercise, and of these oncostatin M (OSM) proved to inhibit MCF-7 proliferation by 42%, increase caspase activity by 46%, and induce apoptosis. Blocking OSM signaling with anti-OSM antibodies reduced the induction of caspase activity by 51%. To verify that OSM was a myokine, we showed that it was significantly upregulated in serum and in three muscles, tibialis cranialis, gastronemius, and soleus, after an exercise bout. In contrast, OSM expression remained unchanged in subcutaneous and visceral adipose tissue, liver, and spleen (mononuclear cells). We conclude that postexercise serum inhibits mammary cancer cell proliferation and induces apoptosis of these cells. We suggest that one or more myokines secreted from working muscles may be mediating this effect and that OSM is a possible candidate. These findings emphasize that role of physical activity in cancer treatment, showing a direct link between exercise-induced humoral factors and decreased tumor cell growth.

  20. The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells.

    Science.gov (United States)

    Bele, Aditya; Mirza, Sameer; Zhang, Ying; Ahmad Mir, Riyaz; Lin, Simon; Kim, Jun Hyun; Gurumurthy, Channabasavaiah Basavaraju; West, William; Qiu, Fang; Band, Hamid; Band, Vimla

    2015-01-01

    The mammalian ortholog of Drosophila ecdysoneless (Ecd) gene product regulates Rb-E2F interaction and is required for cell cycle progression. Ecd is overexpressed in breast cancer and its overexpression predicts shorter survival in patients with ErbB2-positive tumors. Here, we demonstrate Ecd knock down (KD) in human mammary epithelial cells (hMECs) induces growth arrest, similar to the impact of Ecd Knock out (KO) in mouse embryonic fibroblasts. Furthermore, whole-genome mRNA expression analysis of control vs. Ecd KD in hMECs demonstrated that several of the top 40 genes that were down-regulated were E2F target genes. To address the role of Ecd in mammary oncogenesis, we overexpressed Ecd and/or mutant H-Ras in hTERT-immortalized hMECs. Cell cycle analyses revealed hMECs overexpressing Ecd+Ras showed incomplete arrest in G1 phase upon growth factor deprivation, and more rapid cell cycle progression in growth factor-containing medium. Analyses of cell migration, invasion, acinar structures in 3-D Matrigel and anchorage-independent growth demonstrated that Ecd+Ras-overexpressing cells exhibit substantially more dramatic transformed phenotype as compared to cells expressing vector, Ras or Ecd. Under conditions of nutrient deprivation, Ecd+Ras-overexpressing hMECs exhibited better survival, with substantial upregulation of the autophagy marker LC3 both at the mRNA and protein levels. Significantly, while hMECs expressing Ecd or mutant Ras alone did not form tumors in NOD/SCID mice, Ecd+Ras-overexpressing hMECs formed tumors, clearly demonstrating oncogenic cooperation between Ecd and mutant Ras. Collectively, we demonstrate an important co-oncogenic role of Ecd in the progression of mammary oncogenesis through promoting cell survival.

  1. Transfer of an expression YAC into goat fetal fibroblasts by cell fusion for mammary gland bioreactor

    International Nuclear Information System (INIS)

    Zhang Xufeng; Wu Guoxiang; Chen, Jian-Quan; Zhang Aimin; Liu Siguo; Jiao Binghua; Cheng Guoxiang

    2005-01-01

    Yeast artificial chromosomes (YACs) as transgenes in transgenic animals are likely to ensure optimal expression levels. Microinjection of YACs is the exclusive technique used to produce YACs transgenic livestock so far. However, low efficiency and high cost are its critical restrictive factors. In this study, we presented a novel procedure to produce YACs transgenic livestock as mammary gland bioreactor. A targeting vector, containing the gene of interest-a human serum albumin minigene (intron 1, 2), yeast selectable marker (G418R), and mammalian cell resistance marker (neo r ), replaced the α-lactalbumin gene in a 210 kb human α-lactalbumin YAC by homogeneous recombination in yeasts. The chimeric YAC was introduced into goat fetal fibroblasts using polyethylene glycol-mediated spheroplast fusion. PCR and Southern analysis showed that intact YAC was integrated in the genome of resistant cells. Perhaps, it may offer a cell-based route by nuclear transfer to produce YACs transgenic livestock

  2. MicroRNA-200, associated with metastatic breast cancer, promotes traits of mammary luminal progenitor cells.

    Science.gov (United States)

    Sánchez-Cid, Lourdes; Pons, Mònica; Lozano, Juan José; Rubio, Nuria; Guerra-Rebollo, Marta; Soriano, Aroa; Paris-Coderch, Laia; Segura, Miquel F; Fueyo, Raquel; Arguimbau, Judit; Zodda, Erika; Bermudo, Raquel; Alonso, Immaculada; Caparrós, Xavier; Cascante, Marta; Rafii, Arash; Kang, Yibin; Martínez-Balbás, Marian; Weiss, Stephen J; Blanco, Jerónimo; Muñoz, Montserrat; Fernández, Pedro L; Thomson, Timothy M

    2017-10-13

    MicroRNAs are critical regulators of gene networks in normal and abnormal biological processes. Focusing on invasive ductal breast cancer (IDC), we have found dysregulated expression in tumor samples of several microRNAs, including the miR-200 family, along progression from primary tumors to distant metastases, further reflected in higher blood levels of miR-200b and miR-7 in IDC patients with regional or distant metastases relative to patients with primary node-negative tumors. Forced expression of miR-200s in MCF10CA1h mammary cells induced an enhanced epithelial program, aldehyde dehydrogenase (ALDH) activity, mammosphere growth and ability to form branched tubuloalveolar structures while promoting orthotopic tumor growth and lung colonization in vivo . MiR-200s also induced the constitutive activation of the PI3K-Akt signaling through downregulation of PTEN, and the enhanced mammosphere growth and ALDH activity induced in MCF10CA1h cells by miR-200s required the activation of this signaling pathway. Interestingly, the morphology of tumors formed in vivo by cells expressing miR-200s was reminiscent of metaplastic breast cancer (MBC). Indeed, the epithelial components of MBC samples expressed significantly higher levels of miR-200s than their mesenchymal components and displayed a marker profile compatible with luminal progenitor cells. We propose that microRNAs of the miR-200 family promote traits of highly proliferative breast luminal progenitor cells, thereby exacerbating the growth and metastatic properties of transformed mammary epithelial cells.

  3. Regulation of Mammary Stem Cell Quiescence via Post-Translational Modification of DeltaNp63alpha

    Science.gov (United States)

    2012-12-01

    This document is the Annual Summary Report on the training grant awarded to Andrew DeCastro entitled Regulation of Mammary Stem Cell Quiescence via...screen) mediated phosphorylation of deltaNPdelta3 on stem cell behavior and mitotic activity. Task 1 aims to determine the effects of wild-type, phospho...ablative and phospho-mimetic alleles of deltaNP63delta phosphorylation on stem cell behavior in vitro. Thus far, we demonstrate that stem cell enriched

  4. A soluble form of Siglec-9 provides an antitumor benefit against mammary tumor cells expressing MUC1 in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Tomioka, Yukiko, E-mail: ytomi@muses.tottori-u.ac.jp [Division of Disease Model Innovation, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815 (Japan); Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553 (Japan); Morimatsu, Masami, E-mail: mmorimat@vetmed.hokudai.ac.jp [Division of Disease Model Innovation, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815 (Japan); Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan); Nishijima, Ken-ichi, E-mail: nishijma@nubio.nagoya-u.ac.jp [Department of Biotechnology, Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Usui, Tatsufumi, E-mail: usutatsu@muses.tottori-u.ac.jp [Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553 (Japan); Yamamoto, Sayo, E-mail: ysayo@anim.med.kyushu-u.ac.jp [Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Suyama, Haruka, E-mail: sharuka@anim.med.kyushu-u.ac.jp [Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Ozaki, Kinuyo, E-mail: k-ozaki@anim.med.kyushu-u.ac.jp [Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Ito, Toshihiro, E-mail: toshiito@muses.tottori-u.ac.jp [Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553 (Japan); and others

    2014-07-18

    Highlights: • Tumor-associated antigen MUC1 binds to Siglec-9. • Soluble Siglec-9 reduced proliferation of MUC1-positive tumor in transgenic mice. • Soluble Siglec-9 and MUC1 on tumor cells were colocalized in transgenic mice. • MUC1 expression on tumor cells were reduced in soluble Siglec-9 transgenic mice. - Abstract: Tumor-associated MUC1 binds to Siglec-9, which is expected to mediate tumor cell growth and negative immunomodulation. We hypothesized that a soluble form of Siglec-9 (sSiglec-9) competitively inhibits a binding of MUC1 to its receptor molecules like human Siglec-9, leading to provide antitumor benefit against MUC1-expressing tumor, and generated transgenic mouse lines expressing sSiglec-9 (sSiglec-9 Tg). When mammary tumor cells expressing MUC1 were intraperitoneally transplanted into sSiglec-9 Tg, tumor proliferation was slower with the lower histological malignancy as compared with non-transgenic mice. The sSiglec-9 was detected in the ascites caused by the tumor in the sSiglec-9 Tg, and sSiglec-9 and MUC1 were often colocalized on surfaces of the tumor cells. PCNA immunohistochemistry also revealed the reduced proliferation of the tumor cells in sSiglec-9 Tg. In sSiglec-9 Tg with remarkable suppression of tumor proliferation, MUC1 expressions were tend to be reduced. In the ascites of sSiglec-9 Tg bearing the tumor, T cells were uniformly infiltrated, whereas aggregations of degenerative T cells were often observed in the non-transgenic mice. These results suggest that sSiglec-9 has an antitumor benefit against MUC1-expressing tumor in the transgenic mice, which may avoid the negative immunomodulation and/or suppress tumor-associated MUC1 downstream signal transduction, and subsequent tumor proliferation.

  5. A soluble form of Siglec-9 provides an antitumor benefit against mammary tumor cells expressing MUC1 in transgenic mice

    International Nuclear Information System (INIS)

    Tomioka, Yukiko; Morimatsu, Masami; Nishijima, Ken-ichi; Usui, Tatsufumi; Yamamoto, Sayo; Suyama, Haruka; Ozaki, Kinuyo; Ito, Toshihiro

    2014-01-01

    Highlights: • Tumor-associated antigen MUC1 binds to Siglec-9. • Soluble Siglec-9 reduced proliferation of MUC1-positive tumor in transgenic mice. • Soluble Siglec-9 and MUC1 on tumor cells were colocalized in transgenic mice. • MUC1 expression on tumor cells were reduced in soluble Siglec-9 transgenic mice. - Abstract: Tumor-associated MUC1 binds to Siglec-9, which is expected to mediate tumor cell growth and negative immunomodulation. We hypothesized that a soluble form of Siglec-9 (sSiglec-9) competitively inhibits a binding of MUC1 to its receptor molecules like human Siglec-9, leading to provide antitumor benefit against MUC1-expressing tumor, and generated transgenic mouse lines expressing sSiglec-9 (sSiglec-9 Tg). When mammary tumor cells expressing MUC1 were intraperitoneally transplanted into sSiglec-9 Tg, tumor proliferation was slower with the lower histological malignancy as compared with non-transgenic mice. The sSiglec-9 was detected in the ascites caused by the tumor in the sSiglec-9 Tg, and sSiglec-9 and MUC1 were often colocalized on surfaces of the tumor cells. PCNA immunohistochemistry also revealed the reduced proliferation of the tumor cells in sSiglec-9 Tg. In sSiglec-9 Tg with remarkable suppression of tumor proliferation, MUC1 expressions were tend to be reduced. In the ascites of sSiglec-9 Tg bearing the tumor, T cells were uniformly infiltrated, whereas aggregations of degenerative T cells were often observed in the non-transgenic mice. These results suggest that sSiglec-9 has an antitumor benefit against MUC1-expressing tumor in the transgenic mice, which may avoid the negative immunomodulation and/or suppress tumor-associated MUC1 downstream signal transduction, and subsequent tumor proliferation

  6. The effect of antibody on the adherence of Staphylococcus aureus to bovine mammary epithelial cells

    International Nuclear Information System (INIS)

    Olmsted, S.B.

    1989-01-01

    The ability of S. aureus to adhere to epithelial cells in the ductuals and alveoli of the gland is believed to add greatly to its virulence and may be necessary for colonization. Two in vitro methods were developed for the purpose of quantifying adherence. Both methods utilize bovine mammary epithelial primary cells as targets for labeled bacteria. In one assay, the bacterial are labeled with [methyl- 3 H] thymidine, and incubated on the primary epithelial monolayers. Adherence of the bacterial sample is expressed as the percent radioactivity in the adherent fraction of the total radioactivity in both fractions. The second assay involves labeling the bacteria with biotin. An enzyme-linked immunosorbent assay (ELISA) is then performed with strepavidin conjugated to horseradish peroxidase. Both methods have proven to be reliable, and allow for the testing of many criteria in one assay

  7. EFFECTS OF ATRAZINE AND AN ATRAZINE METABOLITE MIXTURE ON DIFFERENTIATED MAMMARY EPITHELIAL CELL MILK PROTEIN PRODUCTION IN CULTURE

    Science.gov (United States)

    Effects of Atrazine and an Atrazine Metabolite Mixture on Differentiated Mammary Epithelial Cell Milk Protein Production in CultureE.P. Hines, R. Barbee, M. Blanton, M.S. Pooler, and S.E. Fenton. US EPA, ORD/NHEERL, RTD, RTP, NC, 27711, USA.Previous studies have ...

  8. δ-Tocotrienol Oxazine Derivative Antagonizes Mammary Tumor Cell Compensatory Response to CoCl2-Induced Hypoxia

    Directory of Open Access Journals (Sweden)

    Suryatheja Ananthula

    2014-01-01

    Full Text Available In response to low oxygen supply, cancer cells elevate production of HIF-1α, a hypoxia-inducible transcription factor that subsequently acts to stimulate blood vessel formation and promote survival. Studies were conducted to determine the role of δ-tocotrienol and a semisynthetic δ-tocotrienol oxazine derivative, compound 44, on +SA mammary tumor cell hypoxic response. Treatment with 150 µM CoCl2 induced a hypoxic response in +SA mammary tumor cells as evidenced by a large increase in HIF-1α levels, and combined treatment with compound 44 attenuated this response. CoCl2-induced hypoxia was also associated with a large increase in Akt/mTOR signaling, activation of downstream targets p70S6K and eIF-4E1, and a significant increase in VEGF production, and combined treatment with compound 44 blocked this response. Additional in vivo studies showed that intralesional treatment with compound 44 in BALB/c mice bearing +SA mammary tumors significantly decreased the levels of HIF-1α, and this effect was associated with a corresponding decrease in Akt/mTOR signaling and activation of downstream targets p70S6kinase and eIF-4E1. These findings demonstrate that treatment with the δ-tocotrienol oxazine derivative, compound 44, significantly attenuates +SA mammary tumor cell compensatory responses to hypoxia and suggests that this compound may provide benefit in the treatment of rapidly growing solid breast tumors.

  9. Cellular angiofibroma: analysis of 25 cases emphasizing its relationship to spindle cell lipoma and mammary-type myofibroblastoma

    NARCIS (Netherlands)

    Flucke, U.E.; Krieken, J.H. van; Mentzel, T.

    2011-01-01

    Cellular angiofibroma represents a rare benign mesenchymal tumor, occurring mainly in the superficial soft tissue of the genital region. The involvement of 13q14 in some cases confirmed the morphological suggested link with spindle cell lipoma and mammary-type myofibroblastoma. We analyzed the

  10. PROLACTIN-INDUCED TYROSINE PHOSPHORYLATION, ACTIVATION AND RECEPTOR ASSOCIATION OF FOCAL ADHESION KINASE (FAK) IN MAMMARY EPITHELIAL CELLS

    Science.gov (United States)

    Prolactin-Induced Tyrosine Phosphorylation, Activation and ReceptorAssociation of Focal Adhesion Kinase (FAK) in Mammary Epithelial Cells. Suzanne E. Fenton1 and Lewis G. Sheffield2. 1U.S. Environmental ProtectionAgency, MD-72, Research Triangle Park, NC 27711, and

  11. Mammary stem cell and macrophage markers are enriched in normal tissue adjacent to inflammatory breast cancer.

    Science.gov (United States)

    Reddy, Jay P; Atkinson, Rachel L; Larson, Richard; Burks, Jared K; Smith, Daniel; Debeb, Bisrat G; Ruffell, Brian; Creighton, Chad J; Bambhroliya, Arvind; Reuben, James M; Van Laere, Steven J; Krishnamurthy, Savitri; Symmans, William F; Brewster, Abenaa M; Woodward, Wendy A

    2018-06-01

    We hypothesized that breast tissue not involved by tumor in inflammatory breast cancer (IBC) patients contains intrinsic differences, including increased mammary stem cells and macrophage infiltration, which may promote the IBC phenotype. Normal breast parenchyma ≥ 5 cm away from primary tumors was obtained from mastectomy specimens. This included an initial cohort of 8 IBC patients and 60 non-IBC patients followed by a validation cohort of 19 IBC patients and 25 non-IBC patients. Samples were immunostained for either CD44 + CD49f + CD133/2 + mammary stem cell markers or the CD68 macrophage marker and correlated with IBC status. Quantitation of positive cells was determined using inForm software from PerkinElmer. We also examined the association between IBC status and previously published tumorigenic stem cell and IBC tumor signatures in the validation cohort samples. 8 of 8 IBC samples expressed isolated CD44 + CD49f + CD133/2 + stem cell marked cells in the initial cohort as opposed to 0/60 non-IBC samples (p = 0.001). Similarly, the median number of CD44 + CD49f + CD133/2 + cells was significantly higher in the IBC validation cohort as opposed to the non-IBC validation cohort (25.7 vs. 14.2, p = 0.007). 7 of 8 IBC samples expressed CD68 + histologically confirmed macrophages in initial cohort as opposed to 12/48 non-IBC samples (p = 0.001). In the validation cohort, the median number of CD68 + cells in IBC was 3.7 versus 1.0 in the non-IBC cohort (p = 0.06). IBC normal tissue was positively associated with a tumorigenic stem cell signature (p = 0.02) and with a 79-gene IBC signature (p stem cell signature and IBC-specific tumor signature. Collectively, these data suggest that IBC normal tissue differs from non-IBC tissue. Whether these changes occur before the tumor develops or is induced by tumor warrants further investigation.

  12. Rat mammary-cell survival following irradiation with 14.3-MeV neutrons

    International Nuclear Information System (INIS)

    Mahler, P.A.; Gould, M.N.; DeLuca, P.M. Jr.; Pearson, D.W.; Clifton, K.H.

    1982-01-01

    The survival of rat mammary gland cells irradiated in situ with either single or split doses of 14.3-MeV neutrons was determined by an in vivo transplantation assay. The single-dose data are best fit to the multitarget single-hit model by the parameters D 0 = 97 cGy and n = 0.6 while the split-dose data are best fit by the parameters D 0 = 100 cGy and n = 1.2. Analysis of the combined data sets suggests that the two survival curves are not identical. Comparison of these data with previously published results following irradiation with 250-kVp x-rays is reported

  13. Rat mammary cell survival following irradiation with 14.3-MeV neutrons

    International Nuclear Information System (INIS)

    Mahler, P.A.; Gould, M.N.; DeLuca, P.M. Jr.; Pearson, D.W.; Clifton, K.H.

    1982-01-01

    The survival of rat mammary gland cells irradiated in situ with either single or split doses of 14.3-MeV neutrons was determined by an in vivo transplantation assay. The single-dose data are best fit to the multitarget single-hit model by the parameters D/sub o/ = 97 cGy and n = 0.6 while the split-dose data are best fit by the parameters D/sub o/ = 100 cGy and n = 1.2.Analysis of the combined data sets suggests that the two survival curves are not identical. Comparison of these data with previously published results following irradiation with 250-kVp X rays is reported

  14. Effects of vitamin D and its metabolites on cell viability and Staphylococcus aureus invasion in bovine mammary epithelial cells

    DEFF Research Database (Denmark)

    Yue, Yuan; Hymøller, Lone; Jensen, Søren Krogh

    2017-01-01

    Vitamin D has been found have various biological effects that may be potent in preventing bovine mastitis. Two forms of vitamin D, vitamin D2 (D2) and vitamin D3 (D3), can be hydroxylated to functional metabolites in cattle. The objectives of the present study were to investigate the effects of D2...... and D3 compounds on bovine mammary epithelial cell proliferation and Staphylococcus aureus (S. aureus) invasion.. Results showed that 1,25-dihydroxyvitamin D2 have an anti-proliferation activity comparable to 1,25-dihydroxyvitamin D3, while D2 and 25-hydroxyvitamin D2 (25(OH)D2) was slightly more potent...

  15. Unsaturated fatty acids promote proliferation via ERK1/2 and Akt pathway in bovine mammary epithelial cells

    International Nuclear Information System (INIS)

    Yonezawa, Tomo; Haga, Satoshi; Kobayashi, Yosuke; Katoh, Kazuo; Obara, Yoshiaki

    2008-01-01

    GPR40 has recently been identified as a G protein-coupled cell-surface receptor for long-chain fatty acids (LCFAs). The mRNA of the bovine ortholog of GPR40 (bGPR40) was detected by RT-PCR in cloned bovine mammary epithelial cells (bMEC) and in the bovine mammary gland at various stages of lactation. Oleate and linoleate caused an increase in intracellular Ca 2+ concentrations in these cells, and significantly reduced forskolin-induced cAMP concentrations. Phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and Akt kinase, which regulates cell proliferation and survival, was rapidly increased by oleate. Incubation with oleate and linoleate for 24 h significantly promoted cell proliferation. Moreover, in serum-free medium, oleate significantly stimulated cell proliferation during a 7-day culture. These results suggest that bGPR40 mediates LCFA signaling in mammary epithelial cells and thereby plays an important role in cell proliferation and survival

  16. Glucose metabolite patterns as markers of functional differentiation in freshly isolated and cultured mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    Emerman, J.T.; Bartley, J.C.; Bissel, M.J.

    1981-01-01

    In the mammary gland of non-ruminant animals, glucose is utilized in a characteristic and unique way during lacation. By measuring the incorporation of glucose carbon from [U- 14 C]glucose into intermediary metabolitees and metabolic products in mammary epithelia cells from virgin, pregnant, and lacating mice, we domonstrate that glucose metabolite patterns can be used to recognize stages of differentiated function. For these cells, the rates of synthesis of glycogen and lactose, the ratio of lactate to alanine, and the ratio of citrate to malate are important parameters in identifying the degree of expression of differentiation. We further show that these patterns can be used as markers to determine the differentiated state of cultured mammary epithelial cells. Cells maintained on plastic substrates lose their distinctive glucose metabolite patterns while those on floating collagen gels do not. Cells isolated from pregnant mice and cultured on collagen gels have a pattern similar to that of their freshly isolated counter-parts. When isolated from lacating mice, the metabolite patterns of cells cultured on collagen gels are different from that of the cells of origin, and resembles that of freshly isolated cells from pregnant mice. Our findings suggest that the floating collagen gels under the culture conditions used in these experiments provide an environment for the functional expression of the pregnant state, while additional factors are needed for the expression of the lactating state

  17. Adipocyte differentiation-related protein promotes lipid accumulation in goat mammary epithelial cells.

    Science.gov (United States)

    Shi, H B; Yu, K; Luo, J; Li, J; Tian, H B; Zhu, J J; Sun, Y T; Yao, D W; Xu, H F; Shi, H P; Loor, J J

    2015-10-01

    Milk fat originates from the secretion of cytosolic lipid droplets (CLD) synthesized within mammary epithelial cells. Adipocyte differentiation-related protein (ADRP; gene symbol PLIN2) is a CLD-binding protein that is crucial for synthesis of mature CLD. Our hypothesis was that ADRP regulates CLD production and metabolism in goat mammary epithelial cells (GMEC) and thus plays a role in determining milk fat content. To understand the role of ADRP in ruminant milk fat metabolism, ADRP (PLIN2) was overexpressed or knocked down in GMEC using an adenovirus system. Immunocytochemical staining revealed that ADRP localized to the surface of CLD. Supplementation with oleic acid (OA) enhanced its colocalization with CLD surface and enhanced lipid accumulation. Overexpression of ADRP increased lipid accumulation and the concentration of triacylglycerol in GMEC. In contrast, morphological examination revealed that knockdown of ADRP decreased lipid accumulation even when OA was supplemented. This response was confirmed by the reduction in mass of cellular TG when ADRP was knocked down. The fact that knockdown of ADRP did not completely eliminate lipid accumulation at a morphological level in GMEC without OA suggests that some other compensatory factors may also aid in the process of CLD formation. The ADRP reversed the decrease of CLD accumulation induced by adipose triglyceride lipase. This is highly suggestive of ADRP promoting triacylglycerol stability within CLD by preventing access to adipose triglyceride lipase. Collectively, these data provide direct in vitro evidence that ADRP plays a key role in CLD formation and stability in GMEC. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. DNA supercoiling in proliferating and quiescent 67 murine mammary tumor cells

    International Nuclear Information System (INIS)

    Cochran-Sandhu, L.; Warters, R.L.; Dethlefsen, L.A.

    1985-01-01

    The nucleoid sedimentation assay, which is a measure of DNA ''compactness'' or supercoiling, was used to evaluate the supercoiling state of proliferating (P) and quiescent (Q) murine mammary tumor cells. Two day old cultures are referred to as P cells, whereas 7 day old cultures maintained without media replenishment are referred to as Q cells (>95% arrested in G/sub 1/). Q nucleoids sedimented significantly less far into neutral sucrose gradients than P nucleoids, suggesting a less compact DNA structure. This was further confirmed by the utilization of two other probes of DNA supercoiling: ionizing radiation and sedimentation through gradients containing the intercalator ethidium bromide (EtBr). Whereas nucleoids from P cells showed a decrease in sedimentation following ionizing radiation and an initial decrease, followed by an increase, in sedimentation through gradients containing increasing concentrations of EtBr, the sedimentation of nucleoids from Q cells did not change following either treatment. These data indicate that the DNA of nucleoids isolated from Q cells is in a ''relaxed'' state. The potential significance of these results is discussed

  19. Interactions between Exosomes from Breast Cancer Cells and Primary Mammary Epithelial Cells Leads to Generation of Reactive Oxygen Species Which Induce DNA Damage Response, Stabilization of p53 and Autophagy in Epithelial Cells

    Science.gov (United States)

    Dutta, Sujoy; Warshall, Case; Bandyopadhyay, Chirosree; Dutta, Dipanjan; Chandran, Bala

    2014-01-01

    Exosomes are nanovesicles originating from multivesicular bodies and are released by all cell types. They contain proteins, lipids, microRNAs, mRNAs and DNA fragments, which act as mediators of intercellular communications by inducing phenotypic changes in recipient cells. Tumor-derived exosomes have been shown to play critical roles in different stages of tumor development and metastasis of almost all types of cancer. One of the ways by which exosomes affect tumorigenesis is to manipulate the tumor microenvironments to create tumor permissive “niches”. Whether breast cancer cell secreted exosomes manipulate epithelial cells of the mammary duct to facilitate tumor development is not known. To address whether and how breast cancer cell secreted exosomes manipulate ductal epithelial cells we studied the interactions between exosomes isolated from conditioned media of 3 different breast cancer cell lines (MDA-MB-231, T47DA18 and MCF7), representing three different types of breast carcinomas, and normal human primary mammary epithelial cells (HMECs). Our studies show that exosomes released by breast cancer cell lines are taken up by HMECs, resulting in the induction of reactive oxygen species (ROS) and autophagy. Inhibition of ROS by N-acetyl-L-cysteine (NAC) led to abrogation of autophagy. HMEC-exosome interactions also induced the phosphorylation of ATM, H2AX and Chk1 indicating the induction of DNA damage repair (DDR) responses. Under these conditions, phosphorylation of p53 at serine 15 was also observed. Both DDR responses and phosphorylation of p53 induced by HMEC-exosome interactions were also inhibited by NAC. Furthermore, exosome induced autophagic HMECs were found to release breast cancer cell growth promoting factors. Taken together, our results suggest novel mechanisms by which breast cancer cell secreted exosomes manipulate HMECs to create a tumor permissive microenvironment. PMID:24831807

  20. A multifunctional 3D co-culture system for studies of mammary tissue morphogenesis and stem cell biology.

    Directory of Open Access Journals (Sweden)

    Jonathan J Campbell

    Full Text Available Studies on the stem cell niche and the efficacy of cancer therapeutics require complex multicellular structures and interactions between different cell types and extracellular matrix (ECM in three dimensional (3D space. We have engineered a 3D in vitro model of mammary gland that encompasses a defined, porous collagen/hyaluronic acid (HA scaffold forming a physiologically relevant foundation for epithelial and adipocyte co-culture. Polarized ductal and acinar structures form within this scaffold recapitulating normal tissue morphology in the absence of reconstituted basement membrane (rBM hydrogel. Furthermore, organoid developmental outcome can be controlled by the ratio of collagen to HA, with a higher HA concentration favouring acinar morphological development. Importantly, this culture system recapitulates the stem cell niche as primary mammary stem cells form complex organoids, emphasising the utility of this approach for developmental and tumorigenic studies using genetically altered animals or human biopsy material, and for screening cancer therapeutics for personalised medicine.

  1. Three-dimensional culture conditions lead to decreased radiation induced cytotoxicity in human mammary epithelial cells

    International Nuclear Information System (INIS)

    Sowa, Marianne B.; Chrisler, William B.; Zens, Kyra D.; Ashjian, Emily J.; Opresko, Lee K.

    2010-01-01

    For both targeted and non-targeted exposures, the cellular responses to ionizing radiation have predominantly been measured in two-dimensional monolayer cultures. Although convenient for biochemical analysis, the true interactions in vivo depend upon complex interactions between cells themselves and the surrounding extracellular matrix. This study directly compares the influence of culture conditions on radiation induced cytotoxicity following exposure to low-LET ionizing radiation. Using a three-dimensional (3D) human mammary epithelial tissue model, we have found a protective effect of 3D cell culture on cell survival after irradiation. The initial state of the cells (i.e., 2D versus 3D culture) at the time of irradiation does not alter survival, nor does the presence of extracellular matrix during and after exposure to dose, but long term culture in 3D which offers significant reduction in cytotoxicity at a given dose (e.g. ∼4-fold increased survival at 5 Gy). The cell cycle delay induced following exposure to 2 and 5 Gy was almost identical between 2D and 3D culture conditions and cannot account for the observed differences in radiation responses. However the amount of apoptosis following radiation exposure is significantly decreased in 3D culture relative to the 2D monolayer after the same dose. A likely mechanism of the cytoprotective effect afforded by 3D culture conditions is the down regulation of radiation induced apoptosis in 3D structures.

  2. Human papilloma virus DNAs immortalize normal human mammary epithelial cells and reduce their growth factor requirements

    International Nuclear Information System (INIS)

    Band, V.; Zajchowski, D.; Kulesa, V.; Sager, R.

    1990-01-01

    Human papilloma virus (HPV) types 16 and 18 are most commonly associated with cervical carcinoma in patients and induce immortalization of human keratinocytes in culture. HPV has not been associated with breast cancer. This report describes the immortalization of normal human mammary epithelial cells (76N) by plasmid pHPV18 or pHPV16, each containing the linearized viral genome. Transfectants were grown continuously for more than 60 passages, whereas 76N cells senesce after 18-20 passages. The transfectants also differ from 76N cells in cloning in a completely defined medium called D2 and growing a minimally supplemented defined medium (D3) containing epidermal growth factor. All transfectant tested contain integrated HPV DNA, express HPV RNA, and produce HPV E7 protein. HPV transfectants do not form tumors in a nude mouse assay. It is concluded that products of the HPV genome induce immortalization of human breast epithelial cells and reduce their growth factor requirements. This result raises the possibility that HPV might be involved in breast cancer. Furthermore, other tissue-specific primary epithelial cells that are presently difficult to grown and investigate may also be immortalized by HPV

  3. Difference in membrane repair capacity between cancer cell lines and a normal cell line

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; McNeil, Anna K.; Novak, Ivana

    2016-01-01

    repair was investigated by disrupting the plasma membrane using laser followed by monitoring fluorescent dye entry over time in seven cancer cell lines, an immortalized cell line, and a normal primary cell line. The kinetics of repair in living cells can be directly recorded using this technique...... cancer cell lines (p immortalized cell line (p

  4. Anaplastic large cell lymphoma of the breast arising around mammary implant capsule: an Italian report.

    Science.gov (United States)

    Farace, Francesco; Bulla, Antonio; Marongiu, Francesco; Campus, Gian Vittorio; Tanda, Francesco; Lissia, Amelia; Cossu, Antonio; Fozza, Claudio; Rubino, Corrado

    2013-06-01

    Anaplastic large cell lymphoma (ALCL) of the breast is a very rare nonepithelial neoplasm. In the literature, this tumor has sometimes been described in proximity of breast implants (60 implant-related ALCL reported). In 2010, a patient who had undergone a right mastectomy and tissue expander/implant reconstruction for a "ductal" carcinoma 10 years before was referred to our unit for evaluation. On examination, an enlarged reconstructed right breast was found. The reconstructed breast did not show tenderness or signs of infection, ulceration, or breakdown. Mammograms and ultrasound scan did not suggest the presence of recurrent cancer, infection, deflation of the implant, or severe capsule contracture. The patient underwent mammary implant replacement. About 3 weeks after surgery, the patient came back to our unit for a new mild enlargement of the operated breast and the implant was removed. Three months later, the patient returned with a skin lesion in the right parasternal region. A radical excisional biopsy was performed under local anesthesia and the diagnosis of ALK-1-negative ALCL was finally made. The clinical and histological diagnosis of this disease is difficult as it can often be mistaken for a simple seroma (breast enlargement), an infection, or an unspecific reaction to silicone (redness and/or tension of the skin, itching, and fever). We strongly suggest considering ALCL in any patient with a spontaneous breast seroma lasting more than 6 months after mammary prosthesis implantation. The suspicion of ALCL must be suggested to the pathologist immediately. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  5. Progesterone-specific stimulation of triglyceride biosynthesis in a breast cancer cell line (T-47D)

    International Nuclear Information System (INIS)

    Judge, S.M.; Chatterton, R.T. Jr.

    1983-01-01

    The purpose of this study was to examine the lactogenic response of human mammary cancer cell lines to hormones in vitro. Progesterone was found to stimulate the incorporation of 14C from [14C]acetate into triglycerides (TG) and to promote accumulation of TG with a fatty acid composition similar to that of human milk fat in T-47D cells. Lipid droplets were observed in larger numbers without concomitant accumulation of casein granules in cells incubated with progesterone, but secretion of lipid into the medium did not occur. An effect of progesterone on TG accumulation was detectable after 12 hr and was maximal at 72 hr. Increasing doses of progesterone (10(-9) to 10(-5) M) caused a progressive increase in TG accumulation. The presence of cortisol and/or prolactin did not alter TG formation nor the dose response of the cells to progesterone. The growth rate of T-47D cells was not altered by the presence of progesterone in the medium. Neither of the human mammary cancer cell lines, MCF-7 and HBL-100, nor the human fibroblast cell lines, 28 and 857, responded to progesterone. The data indicate that, while the normally lactogenic hormones do not stimulate milk product biosynthesis in the cell lines tested, progesterone specifically stimulated synthesis and accumulation of TG in the T-47D cells

  6. Lineage-Restricted Mammary Stem Cells Sustain the Development, Homeostasis, and Regeneration of the Estrogen Receptor Positive Lineage.

    Science.gov (United States)

    Van Keymeulen, Alexandra; Fioramonti, Marco; Centonze, Alessia; Bouvencourt, Gaëlle; Achouri, Younes; Blanpain, Cédric

    2017-08-15

    The mammary gland (MG) is composed of different cell lineages, including the basal and the luminal cells (LCs) that are maintained by distinct stem cell (SC) populations. LCs can be subdivided into estrogen receptor (ER) + and ER - cells. LCs act as the cancer cell of origin in different types of mammary tumors. It remains unclear whether the heterogeneity found in luminal-derived mammary tumors arises from a pre-existing heterogeneity within LCs. To investigate LC heterogeneity, we used lineage tracing to assess whether the ER + lineage is maintained by multipotent SCs or by lineage-restricted SCs. To this end, we generated doxycycline-inducible ER-rtTA mice that allowed us to perform genetic lineage tracing of ER + LCs and study their fate and long-term maintenance. Our results show that ER + cells are maintained by lineage-restricted SCs that exclusively contribute to the expansion of the ER + lineage during puberty and their maintenance during adult life. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Cross-immunity among mammary carcinomas in C3H/HE mice immunized with gamma-irradiated tumor cells

    International Nuclear Information System (INIS)

    Waga, Takashi

    1980-01-01

    By immunization with gamma-irradiated (13,000 rad) tumor cells, cross-immunity between ascites mammary carcinomas and among solid mammary carcinomas in C3H/He mice was studied. The results were as follows: (1) Two ascites mammary carcinomas designated MM 46 (high vitality) and MM 48 (intermediate vitality) were used in this experiment. The immunization with the tumor of high vitality (MM 46) induced strong cross-immunity against the challenge of the tumor of intermediate vitality (MM 48). The immunization with the tumor of intermediate vitality (MM 48) induced weak cross-immunity against the challenge of the tumor of high vitality (MM 46). (2) Three solid mammary carcinomas designated MT 10 (intermediate vitality), MT 7 (high vitality) and MT X (the highest vitality) were used in this experiment. The immunization with the tumor of high vitality (MT 7) induced strong cross-immunity against the challenge of the tumor of intermediate vitality (MT 10), and induced moderate cross-immunity against the challenge of the tumor of the highest vitality (MT X). The immunization with the tumor of intermediate vitality (MT 10) induced moderate cross-immunity against the challenge of the tumor of high vitality (MT 7), but could not induce any cross-immunity against the challenge of the tumor of the highest vitality (MT X). (author)

  8. Protein kinase C is differentially regulated by thrombin, insulin, and epidermal growth factor in human mammary tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, M.L.; Tellez-Inon, M.T. (Instituto de Ingenieria Genetica y Biologia Molecular, Buenos Aires (Argentina)); Medrano, E.E.; Cafferatta, E.G.A. (Instituto de Investigaciones Bioquimicas Fundacion Campomar, Buenos Aires (Argentina))

    1988-03-01

    The exposure of serum-deprived mammary tumor cells MCF-7 and T-47D to insulin, thrombin, and epidermal growth factor (EGF) resulted in dramatic modifications in the activity and in the translocation capacity of protein kinase C from cytosol to membrane fractions. Insulin induces a 600% activation of the enzyme after 5 h of exposure to the hormone in MCF-7 cells; thrombin either activates (200% in MCF-7) or down-regulates (in T-47D), and EGF exerts only a moderate effect. Thus, the growth factors studied modulate differentially the protein kinase C activity in human mammary tumor cells. The physiological significance of the results obtained are discussed in terms of the growth response elicited by insulin, thrombin, and EGF.

  9. Epigenetic Reprogramming of Lineage-Committed Human Mammary Epithelial Cells Requires DNMT3A and Loss of DOT1L

    Directory of Open Access Journals (Sweden)

    Jerrica L. Breindel

    2017-09-01

    Full Text Available Organogenesis and tissue development occur through sequential stepwise processes leading to increased lineage restriction and loss of pluripotency. An exception to this appears in the adult human breast, where rare variant epithelial cells exhibit pluripotency and multilineage differentiation potential when removed from the signals of their native microenvironment. This phenomenon provides a unique opportunity to study mechanisms that lead to cellular reprogramming and lineage plasticity in real time. Here, we show that primary human mammary epithelial cells (HMECs lose expression of differentiated mammary epithelial markers in a manner dependent on paracrine factors and epigenetic regulation. Furthermore, we demonstrate that HMEC reprogramming is dependent on gene silencing by the DNA methyltransferase DNMT3A and loss of histone transcriptional marks following downregulation of the methyltransferase DOT1L. These results demonstrate that lineage commitment in adult tissues is context dependent and highlight the plasticity of somatic cells when removed from their native tissue microenvironment.

  10. Change in cell shape is required for matrix metalloproteinase-induced epithelial-mesenchymal transition of mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Celeste M.; Khauv, Davitte; Bissell, Mina J.; Radisky, Derek C.

    2008-06-26

    Cell morphology dictates response to a wide variety of stimuli, controlling cell metabolism, differentiation, proliferation, and death. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells acquire migratory characteristics, and in the process convert from a 'cuboidal' epithelial structure into an elongated mesenchymal shape. We had shown previously that matrix metalloproteinase-3 (MMP3) can stimulate EMT of cultured mouse mammary epithelial cells through a process that involves increased expression of Rac1b, a protein that stimulates alterations in cytoskeletal structure. We show here that cells treated with MMP-3 or induced to express Rac1b spread to cover a larger surface, and that this induction of cell spreading is a requirement of MMP-3/Rac1b-induced EMT. We find that limiting cell spreading, either by increasing cell density or by culturing cells on precisely defined micropatterned substrata, blocks expression of characteristic markers of EMT in cells treated with MMP-3. These effects are not caused by general disruptions in cell signaling pathways, as TGF-{beta}-induced EMT is not affected by similar limitations on cell spreading. Our data reveal a previously unanticipated cell shape-dependent mechanism that controls this key phenotypic alteration and provide insight into the distinct mechanisms activated by different EMT-inducing agents.

  11. Ganoderma lucidum total triterpenes induce apoptosis in MCF-7 cells and attenuate DMBA induced mammary and skin carcinomas in experimental animals.

    Science.gov (United States)

    Smina, T P; Nitha, B; Devasagayam, T P A; Janardhanan, K K

    2017-01-01

    Ganoderma lucidum total triterpenes were evaluated for its apoptosis-inducing and anti-cancer activities. Cytotoxicity and pro-apoptotic effect of total triterpenes were evaluated in human breast adenocarcinoma (MCF-7) cell line using MTT assay and DNA fragmentation analysis. Total triterpenes induced apoptosis in MCF-7 cells by down-regulating the levels of cyclin D1, Bcl-2, Bcl-xL and also by up-regulating the levels of Bax and caspase-9. Anti-carcinogenicity of total triterpenes was analysed using dimethyl benz [a] anthracene (DMBA) induced skin papilloma and mammary adenocarcinoma in Swiss albino mice and Wistar rats respectively. Topical application of 5mg, 10mg and 20mg total triterpenes reduced the incidence of skin papilloma by 62.5, 37.5 and 12.5% respectively. Incidence of the mammary tumour was also reduced significantly by 33.33, 66.67 and 16.67% in 10, 50 and 100mg/kg b.wt. total triterpenes treated animals respectively. Total triterpenes were also found to reduce the average number of tumours per animal and extended the tumour latency period in both the models. The results indicate the potential cytotoxicity and anti-cancerous activity of total triterpenes, there by opens up a path to the development of a safe and successive chemo preventive agent of natural origin. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Aging is associated with an expansion of CD49fhi mammary stem cells that show a decline in function and increased transformation potential.

    Science.gov (United States)

    Dong, Qiaoxiang; Gao, Hui; Shi, Yuanshuo; Zhang, Fuchuang; Gu, Xiang; Wu, Anqi; Wang, Danhan; Chen, Yuanhong; Bandyopadhyay, Abhik; Yeh, I-Tien; Daniel, Benjamin J; Chen, Yidong; Zou, Yi; Rebel, Vivienne L; Walter, Christi A; Lu, Jianxin; Huang, Changjiang; Sun, Lu-Zhe

    2016-11-15

    Breast cancer incidence increases during aging, yet the mechanism of age-associated mammary tumorigenesis is unclear. Mammary stem cells are believed to play an important role in breast tumorigenesis, but how their function changes with age is unknown. We compared mammary epithelial cells isolated from young and old mammary glands of different cohorts of C57BL6/J and BALB/c mice, and our findings revealed that old mammary glands were characterized by increased basal cell pool comprised of mostly CD49f hi cells, altered luminal-to-basal cell ratio, and irregular ductal morphology. More interestingly, basal stem cells in old mice were increased in frequency, but showed a functional decline of differentiation and increased neoplastic transformation potential. Gene signature enrichment analysis revealed a significant enrichment of a luminal cell gene expression signature in the basal stem cell-enriched population from old mice, suggesting some luminal cells were expressing basal markers. Immunofluorescence staining confirmed the presence of luminal cells with high CD49f expression in hyperplastic lesions implicating these cells as undergoing luminal to basal phenotypic changes during aging. Whole transcriptome analysis showed elevated immune and inflammatory responses in old basal stem cells and stromal cells, which may be the underlying cause for increased CD49f hi basal-like cells in aged glands.

  13. Tumour cell heterogeneity maintained by cooperating subclones in Wnt-driven mammary cancers.

    Science.gov (United States)

    Cleary, Allison S; Leonard, Travis L; Gestl, Shelley A; Gunther, Edward J

    2014-04-03

    Cancer genome sequencing studies indicate that a single breast cancer typically harbours multiple genetically distinct subclones. As carcinogenesis involves a breakdown in the cell-cell cooperation that normally maintains epithelial tissue architecture, individual subclones within a malignant microenvironment are commonly depicted as self-interested competitors. Alternatively, breast cancer subclones might interact cooperatively to gain a selective growth advantage in some cases. Although interclonal cooperation has been shown to drive tumorigenesis in fruitfly models, definitive evidence for functional cooperation between epithelial tumour cell subclones in mammals is lacking. Here we use mouse models of breast cancer to show that interclonal cooperation can be essential for tumour maintenance. Aberrant expression of the secreted signalling molecule Wnt1 generates mixed-lineage mammary tumours composed of basal and luminal tumour cell subtypes, which purportedly derive from a bipotent malignant progenitor cell residing atop a tumour cell hierarchy. Using somatic Hras mutations as clonal markers, we show that some Wnt tumours indeed conform to a hierarchical configuration, but that others unexpectedly harbour genetically distinct basal Hras mutant and luminal Hras wild-type subclones. Both subclones are required for efficient tumour propagation, which strictly depends on luminally produced Wnt1. When biclonal tumours were challenged with Wnt withdrawal to simulate targeted therapy, analysis of tumour regression and relapse revealed that basal subclones recruit heterologous Wnt-producing cells to restore tumour growth. Alternatively, in the absence of a substitute Wnt source, the original subclones often evolve to rescue Wnt pathway activation and drive relapse, either by restoring cooperation or by switching to a defector strategy. Uncovering similar modes of interclonal cooperation in human cancers may inform efforts aimed at eradicating tumour cell communities.

  14. The gene expression profiles of canine mammary cancer cells grown with carcinoma-associated fibroblasts (CAFs as a co-culture in vitro

    Directory of Open Access Journals (Sweden)

    Król Magdalena

    2012-03-01

    Full Text Available Abstract Background It is supposed that fibroblasts present in tumour microenvironment increase cancer invasiveness and its ability to metastasize but the mechanisms have not been clearly defined yet. Thus, the current study was designed to assess changes in gene expression in five various cancer cell lines grown as a co-culture with the carcinoma-associated fibroblasts (CAFs in vitro. Results A carcinoma-associated fibroblast cell line was isolated from a canine mammary cancer. Then, a co-culture of cancer cells with the CAFs was established and maintained for 72 hrs. Having sorted the cells, a global gene expression in cancer cells using DNA microarrays was examined. The analysis revealed an up-regulation of 100 genes and a down-regulation of 106 genes in the cancer cells grown as a co-culture with the CAFs in comparison to control conditions. The PANTHER binomial statistics tool was applied to determine statistically over-manifested pathways (p Conclusion The results of the current study showed that the co-culturing of cancer cells and the CAFs caused significant changes to the cancer gene expression. The presence of the CAFs in a microenvironment of cancer cells promotes adhesion, angiogenesis and EMT.

  15. A Novel Method of Imaging Lysosomes in Living Human Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Kristine Glunde

    2003-01-01

    Full Text Available Cancer cells invade by secreting degradative enzymes which, under normal conditions, are sequestered in lysosomal vesicles. The ability to noninvasively label lysosomes and track lysosomal trafficking would be extremely useful to understand the mechanisms by which degradative enzymes are secreted in the presence of pathophysiological environments, such as hypoxia and acidic extracellular pH, which are frequently encountered in solid tumors. In this study, a novel method of introducing a fluorescent label into lysosomes of human mammary epithelial cells (HMECs was evaluated. Highly glycosylated lysosomal membrane proteins were labeled with a newly synthesized compound, 5-dimethylamino-naphthalene-1-sulfonic acid 5-amino-3,4,6-trihydroxy-tetrahydro-pyran-2-ylmethyl ester (6-O-dansyl-GlcNH2. The ability to optically image lysosomes using this new probe was validated by determining the colocalization of the fluorescence from the dansyl group with immunofluorescent staining of two well-established lysosomal marker proteins, LAMP-1 and LAMP-2. The location of the dansyl group in lysosomes was also verified by using an anti-dansyl antibody in Western blots of lysosomes isolated using isopycnic density gradient centrifugation. This novel method of labeling lysosomes biosynthetically was used to image lysosomes in living HMECs perfused in a microscopy-compatible cell perfusion system.

  16. Human mammary epithelial cells exhibit a bimodal correlated random walk pattern.

    Science.gov (United States)

    Potdar, Alka A; Jeon, Junhwan; Weaver, Alissa M; Quaranta, Vito; Cummings, Peter T

    2010-03-10

    Organisms, at scales ranging from unicellular to mammals, have been known to exhibit foraging behavior described by random walks whose segments confirm to Lévy or exponential distributions. For the first time, we present evidence that single cells (mammary epithelial cells) that exist in multi-cellular organisms (humans) follow a bimodal correlated random walk (BCRW). Cellular tracks of MCF-10A pBabe, neuN and neuT random migration on 2-D plastic substrates, analyzed using bimodal analysis, were found to reveal the BCRW pattern. We find two types of exponentially distributed correlated flights (corresponding to what we refer to as the directional and re-orientation phases) each having its own correlation between move step-lengths within flights. The exponential distribution of flight lengths was confirmed using different analysis methods (logarithmic binning with normalization, survival frequency plots and maximum likelihood estimation). Because of the presence of non-uniform turn angle distribution of move step-lengths within a flight and two different types of flights, we propose that the epithelial random walk is a BCRW comprising of two alternating modes with varying degree of correlations, rather than a simple persistent random walk. A BCRW model rather than a simple persistent random walk correctly matches the super-diffusivity in the cell migration paths as indicated by simulations based on the BCRW model.

  17. Human mammary epithelial cells exhibit a bimodal correlated random walk pattern.

    Directory of Open Access Journals (Sweden)

    Alka A Potdar

    2010-03-01

    Full Text Available Organisms, at scales ranging from unicellular to mammals, have been known to exhibit foraging behavior described by random walks whose segments confirm to Lévy or exponential distributions. For the first time, we present evidence that single cells (mammary epithelial cells that exist in multi-cellular organisms (humans follow a bimodal correlated random walk (BCRW.Cellular tracks of MCF-10A pBabe, neuN and neuT random migration on 2-D plastic substrates, analyzed using bimodal analysis, were found to reveal the BCRW pattern. We find two types of exponentially distributed correlated flights (corresponding to what we refer to as the directional and re-orientation phases each having its own correlation between move step-lengths within flights. The exponential distribution of flight lengths was confirmed using different analysis methods (logarithmic binning with normalization, survival frequency plots and maximum likelihood estimation.Because of the presence of non-uniform turn angle distribution of move step-lengths within a flight and two different types of flights, we propose that the epithelial random walk is a BCRW comprising of two alternating modes with varying degree of correlations, rather than a simple persistent random walk. A BCRW model rather than a simple persistent random walk correctly matches the super-diffusivity in the cell migration paths as indicated by simulations based on the BCRW model.

  18. Keratinocyte Growth Factor Causes Cystic Dilation of the Mammary Glands of Mice: Interactions of Keratinocyte Growth Factor, Estrogen, and Progesterone In Vivo

    OpenAIRE

    Yi, Eunhee S.; Bedoya, Adriana A.; Lee, Hyesun; Kim, Seokhyun; Housley, Regina M.; Aukerman, Sharon L.; Tarpley, John E.; Starnes, Charles; Yin, Songmei; Pierce, Glenn F.; Ulich, Thomas R.

    1994-01-01

    Keratinocyte growth factor (KGF) is a paracrine mediator of epithelial cell proliferation that has been reported to induce marked proliferation of mammary epithelium in rats. In this study, systemic administration of KGF into naive and oophorectomized mice causes mammary gland proliferation, as evidenced histologically by the appearance of cysts lined by a single layer of epithelium and by hyperplastic epithelium. Whole mount preparations of the mammary glands reveal that the histologically n...

  19. β-Hydroxybutyrate Facilitates Fatty Acids Synthesis Mediated by Sterol Regulatory Element-Binding Protein1 in Bovine Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Min Zhang

    2015-11-01

    Full Text Available Background/Aims: In dairy cows, β-hydroxybutyrate (BHBA is utilized as precursors of de novo synthesized fatty acids in mammary gland. Ketotic cows are characterized by excessive negative energy balance (NEB, which can further increase the blood BHBA concentration. Sterol regulatory element-binding protein1 (SREBP1 and cell death-inducing DNA fragmentation factor-alpha-like effector α (Cidea play crucial roles in lipid synthesis. Therefore, we hypothesized that BHBA could stimulate SREBP1/Cidea pathway to increase milk fat synthesis in bovine mammary epithelial cells. Methods: Bovine mammary epithelial cells were treated with different concentrations of BHBA and transfected with adenovirus to silence SREBP1 expression. The effects of BHBA on the lipid synthesis in bovine mammary epithelial cells were investigated. Results: The results showed that BHBA could significantly increase the expression of SREBP1, fatty acid synthase (FAS, acetyl-CoA carboxylase α (ACC-α, Cidea and diacylglycerol transferase-1 (DGAT-1, as well as the triglycerides (TG content in bovine mammary epithelial cells. BHBA treatment also increased the transfer of mature SREBP1 to nucleus compared with control group. However, SREBP1 silencing could significantly down-regulate the overexpression of FAS, ACC-α, Cidea and DGAT-1, as well as TG content induced by BHBA. Conclusion: The present data indicate that BHBA can significantly increase TG secretion mediated by SREBP1 in bovine mammary epithelial cells.

  20. Effect of selenodiglutathione on the metabolism of canine mammary tumor cells

    International Nuclear Information System (INIS)

    Fico-Santoro, M.; Lebowitz, A.; Milner, J.A.

    1986-01-01

    Selenodiglutathione (SDG) has been shown to be an effective inhibitor of tumor growth. The present studies were designed to evaluate altered metabolism in canine mammary tumor cells (CMT-13) exposed to various concentrations of SDG. Addition of SDG at 0.025 μg Se/ml did not inhibit growth of CMT-13 cells after 24 h of incubation. At this concentration of SDG, approximately 25% of 75 Se- 35 S-SDG was retained in these tumor cells after 24 h of incubation. The nuclear fraction contained 96% of the 75 Se and 35 S radioactivity. The ratio of 75 Se to 35 S was 1 to 4.5 in the whole cell and in the nuclear fraction. SDG increased glutathione peroxidase activity by 40% compared to CMT-13 cells not exposed to SDG. Glutathione reductase activity was decreased by 63% by the addition of SDG. In addition, supplemental SDG resulted in a 55% decrease in GSH content but did not alter GSSG concentrations. After 4d of incubation, SDG at 0.1 and 0.5 μg Se/ml caused a 43 and 58% inhibition of growth of CMT-13 cells. Addition of GSH (100μM) partially prevented, 68% and 54%, the growth inhibition caused by SDG at concentrations of 0.1 and 0.5 μg Se per ml respectively during the 4d incubation period. Preincubation of CMT-13 cells with GSH for 48 h before addition of SDG (0.5 μg Se/ml) completely prevented the growth inhibition caused by this seleno-compound

  1. In Vitro Bioluminescence Assay to Characterize Circadian Rhythm in Mammary Epithelial Cells.

    Science.gov (United States)

    Fang, Mingzhu; Kang, Hwan-Goo; Park, Youngil; Estrella, Brian; Zarbl, Helmut

    2017-09-28

    The circadian rhythm is a fundamental physiological process present in all organisms that regulates biological processes ranging from gene expression to sleep behavior. In vertebrates, circadian rhythm is controlled by a molecular oscillator that functions in both the suprachiasmatic nucleus (SCN; central pacemaker) and individual cells comprising most peripheral tissues. More importantly, disruption of circadian rhythm by exposure to light-at-night, environmental stressors and/or toxicants is associated with increased risk of chronic diseases and aging. The ability to identify agents that can disrupt central and/or peripheral biological clocks, and agents that can prevent or mitigate the effects of circadian disruption, has significant implications for prevention of chronic diseases. Although rodent models can be used to identify exposures and agents that induce or prevent/mitigate circadian disruption, these experiments require large numbers of animals. In vivo studies also require significant resources and infrastructure, and require researchers to work all night. Thus, there is an urgent need for a cell-type appropriate in vitro system to screen for environmental circadian disruptors and enhancers in cell types from different organs and disease states. We constructed a vector that drives transcription of the destabilized luciferase in eukaryotic cells under the control of the human PERIOD 2 gene promoter. This circadian reporter construct was stably transfected into human mammary epithelial cells, and circadian responsive reporter cells were selected to develop the in vitro bioluminescence assay. Here, we present a detailed protocol to establish and validate the assay. We further provide details for proof of concept experiments demonstrating the ability of our in vitro assay to recapitulate the in vivo effects of various chemicals on the cellular biological clock. The results indicate that the assay can be adapted to a variety of cell types to screen for both

  2. The Human Cytomegalovirus Strain DB Activates Oncogenic Pathways in Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2018-04-01

    Full Text Available Background: Human cytomegalovirus (HCMV establishes a persistent life-long infection and increasing evidence indicates HCMV infection can modulate signaling pathways associated with oncogenesis. Breast milk is an important route of HCMV transmission in humans and we hypothesized that mammary epithelial cells could be one of the main cellular targets of HCMV infection. Methods: The infectivity of primary human mammary epithelial cells (HMECs was assessed following infection with the HCMV-DB strain, a clinical isolate with a marked macrophage-tropism. The impact of HCMV-DB infection on expression of p53 and retinoblastoma proteins, telomerase activity and oncogenic pathways (c-Myc, Akt, Ras, STAT3 was studied. Finally the transformation of HCMV-DB infected HMECs was evaluated using soft agar assay. CTH cells (CMV Transformed HMECs were detected in prolonged cultures of infected HMECs. Tumor formation was observed in NOD/SCID Gamma (NSG mice injected with CTH cells. Detection of long non coding RNA4.9 (lncRNA4.9 gene was assessed in CTH cells, tumors isolated from xenografted NSG mice and biopsies of patients with breast cancer using qualitative and quantitative PCR. Results: We found that HCMV, especially a clinical strain named HCMV-DB, infects HMECs in vitro. The clinical strain HCMV-DB replicates productively in HMECs as evidenced by detection of early and late viral transcripts and proteins. Following infection of HMECs with HCMV-DB, we observed the inactivation of retinoblastoma and p53 proteins, the activation of telomerase activity, the activation of the proto-oncogenes c-Myc and Ras, the activation of Akt and STAT3, and the upregulation of cyclin D1 and Ki67 antigen. Colony formation was observed in soft agar seeded with HCMV-DB-infected HMECs. Prolonged culture of infected HMECs resulted in the development of clusters of spheroid cells that we called CTH cells (CMV Transformed HMECs. CTH cells when injected in NOD/SCID Gamma (NSG mice

  3. SCA-1 Labels a Subset of Estrogen-Responsive Bipotential Repopulating Cells within the CD24+ CD49fhi Mammary Stem Cell-Enriched Compartment

    Directory of Open Access Journals (Sweden)

    Genevieve V. Dall

    2017-02-01

    Full Text Available Estrogen stimulates breast development during puberty and mammary tumors in adulthood through estrogen receptor-α (ERα. These effects are proposed to occur via ERα+ luminal cells and not the mammary stem cells (MaSCs that are ERαneg. Since ERα+ luminal cells express stem cell antigen-1 (SCA-1, we sought to determine if SCA-1 could define an ERα+ subset of EpCAM+/CD24+/CD49fhi MaSCs. We show that the MaSC population has a distinct SCA-1+ population that is abundant in pre-pubertal mammary glands. The SCA-1+ MaSCs have less stem cell markers and less in vivo repopulating activity than their SCA-1neg counterparts. However, they express ERα and specifically enter the cell cycle at puberty. Using estrogen-deficient aromatase knockouts (ArKO, we showed that the SCA-1+ MaSC could be directly modulated by estrogen supplementation. Thus, SCA-1 enriches for an ERα+, estrogen-sensitive subpopulation within the CD24+/CD49fhi MaSC population that may be responsible for the hormonal sensitivity of the developing mammary gland.

  4. Effect of the Ketone Body Beta-Hydroxybutyrate on the Innate Defense Capability of Primary Bovine Mammary Epithelial Cells

    OpenAIRE

    Hillreiner, Maria;Flinspach, Claudia;Pfaffl, Michael W.;Kliem, Heike

    2017-01-01

    Negative energy balance and ketosis are thought to cause impaired immune function and to increase the risk of clinical mastitis in dairy cows. The present in vitro study aimed to investigate the effect of elevated levels of the predominant ketone body β-hydroxybutyrate on the innate defense capability of primary bovine mammary epithelial cells (pbMEC) challenged with the mastitis pathogen Escherichia coli (E. coli). Therefore, pbMEC of healthy dairy cows in mid- lactation were isolated from m...

  5. EMMPRIN (basigin/CD147) expression is not correlated with MMP activity during adult mouse mammary gland development.

    Science.gov (United States)

    Szymanowska, Malgorzata; Hendry, Kay A K; Robinson, Claire; Kolb, Andreas F

    2009-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN/basigin/CD147) is a cell surface protein, which has been associated with the induction of matrix metalloproteinase (MMP) genes during cancer metastasis. EMMPRIN plays a role in a variety of physiological processes as is evident by the diverse deficiencies detectable in EMMPRIN knockout mice. We have analysed the role of EMMPRIN in the induction of MMP genes during mammary gland differentiation and involution. Co-transfection studies showed that EMMPRIN has diverse effects on MMP promoter activity in different mammary and non-mammary cell lines. Expression of EMMPRIN mRNA is enhanced markedly by insulin in a mammary gland cell line but appears to have no direct effect on MMP gene expression in these cells. Microarray analysis and quantitative PCR show that EMMPRIN is expressed throughout mammary gland differentiation in the mouse. Its expression decreases during early pregnancy and briefly after induction of mammary gland involution by litter removal. Immunohistochemical analysis shows that EMMPRIN expression is limited to the stromal compartment during pregnancy, whereas it is strongly expressed in the epithelium during lactation. In summary the data argue against a causal role for EMMPRIN for the induction of MMP gene expression during adult mammary gland development. These data therefore support a physiological role for EMMPRIN other than MMP induction in mammary gland biology. 2008 Wiley-Liss, Inc.

  6. Silibinin and Paclitaxel Cotreatment Significantly Suppress the Activity and Lung Metastasis of Triple Negative 4T1 Mammary Tumor Cell in Mice

    Directory of Open Access Journals (Sweden)

    Bing-Ying Ho

    2012-10-01

    Full Text Available The in vitro and in vivo bioactivities of silibinin (SB, paclitaxel (PTX and SB and PTX in combination (SB+PTX against murine metastatic mammary 4T1 cancer cell line were investigated. Isobologram and combination index (CI analyses showed that SB and PTX can function synergistically in the inhibition of 4T1 cell proliferation with a CI value<1. Both SB and PTX alone or SB+PTX treatment inhibited 4T1 cell migration and motility possibly through downregulation of the serpin protease nexin-1 (PN-1 and N-cadherin expression, inhibition of matrix metalloprotease (MMP-9 activity, and upregulation of E-cadherin. Flow cytometry and Western blot analyses demonstrated that both drugs deregulated cell-cycle mediators and induced apoptosis in 4T1 cells. A real-time in vivo bioluminescence imaging system to monitor the breast cancer cell metastasis in syngeneic BALB/c mice was established using a stable 4T1pGL−COX−2/Luc cell clone carrying a COX-2 promoter driven-luciferase reporter gene. In vivo study using the allograft 4T1pGL−COX−2/Luc metastatic mouse model indicated that SB co-treated with PTX can significantly suppress lung metastasis of 4T1 cells likely through inhibiting cell proliferation and angiogenesis. Together, this study demonstrates that SB could act synergistically with PTX in 4T1 cells, providing a therapeutic option for highly metastatic triple negative breast cancer.

  7. Control of the Mammary Cell Cycle Clock by Estrogen and Progesterone

    National Research Council Canada - National Science Library

    Weinberg, Robert

    2001-01-01

    Both the growth and the development of the mammary gland are controlled by the female hormones estrogen, prolactin and progesterone, and by interactions between the epithelial and stromal compartments of the breast...

  8. Control of the Mammary Cell Cycle Clock by Estrogen and Progesterone

    National Research Council Canada - National Science Library

    Weinberg, Robert

    1999-01-01

    Both the growth and the development of the mammary gland are controlled by the female hormones estrogen and progesterone, and by interactions between the epithelial and stromal compartments of the breast...

  9. Changes in microfilament and focal adhesion distribution with loss of androgen responsiveness in cultured mammary tumor cells

    DEFF Research Database (Denmark)

    Couchman, J R; Yates, J; King, R J

    1981-01-01

    of the cells to grow in suspension culture. All these parameters were documented for androgen-responsive and -unresponsive cells grown in culture, as well as the transition of androgen-responsive to -unresponsive cells when deprived of androgen. The androgen-unresponsive cells had extensive and prominent...... microfilament bundles together with focal adhesions on the lower cell surface and also showed strict anchorage dependence for growth. In contrast, microfilament bundles and focal adhesions were absent from androgen-responsive cells, which furthermore had the ability to grow in suspension culture. Differences......, characteristics of both cell types were visible in the cell populations. However, at the stage where all androgen-responsive characteristics were lost, the cells were no longer androgen sensitive. The loss of androgen responsiveness in Shionogi 115 mouse mammary tumor cells is correlated with changes at the cell...

  10. Effects of Chinese Propolis in Protecting Bovine Mammary Epithelial Cells against Mastitis Pathogens-Induced Cell Damage.

    Science.gov (United States)

    Wang, Kai; Jin, Xiao-Lu; Shen, Xiao-Ge; Sun, Li-Ping; Wu, Li-Ming; Wei, Jiang-Qin; Marcucci, Maria Cristina; Hu, Fu-Liang; Liu, Jian-Xin

    2016-01-01

    Chinese propolis (CP), an important hive product, can alleviate inflammatory responses. However, little is known regarding the potential of propolis treatment for mastitis control. To investigate the anti-inflammatory effects of CP on bovine mammary epithelial cells (MAC-T), we used a range of pathogens to induce cellular inflammatory damage. Cell viability was determined and expressions of inflammatory/antioxidant genes were measured. Using a cell-based reporter assay system, we evaluated CP and its primary constituents on the NF-κB and Nrf2-ARE transcription activation. MAC-T cells treated with bacterial endotoxin (lipopolysaccharide, LPS), heat-inactivated Escherichia coli, and Staphylococcus aureus exhibited significant decreases in cell viability while TNF-α and lipoteichoic acid (LTA) did not. Pretreatment with CP prevented losses in cell viability associated with the addition of killed bacteria or bacterial endotoxins. There were also corresponding decreases in expressions of proinflammatory IL-6 and TNF-α mRNA. Compared with the mastitis challenged cells, enhanced expressions of antioxidant genes HO-1, Txnrd-1, and GCLM were observed in CP-treated cells. CP and its polyphenolic active components (primarily caffeic acid phenethyl ester and quercetin) had strong inhibitive effects against NF-κB activation and increased the transcriptional activity of Nrf2-ARE. These findings suggest that propolis may be valuable in the control of bovine mastitis.

  11. Effects of Chinese Propolis in Protecting Bovine Mammary Epithelial Cells against Mastitis Pathogens-Induced Cell Damage

    Directory of Open Access Journals (Sweden)

    Kai Wang

    2016-01-01

    Full Text Available Chinese propolis (CP, an important hive product, can alleviate inflammatory responses. However, little is known regarding the potential of propolis treatment for mastitis control. To investigate the anti-inflammatory effects of CP on bovine mammary epithelial cells (MAC-T, we used a range of pathogens to induce cellular inflammatory damage. Cell viability was determined and expressions of inflammatory/antioxidant genes were measured. Using a cell-based reporter assay system, we evaluated CP and its primary constituents on the NF-κB and Nrf2-ARE transcription activation. MAC-T cells treated with bacterial endotoxin (lipopolysaccharide, LPS, heat-inactivated Escherichia coli, and Staphylococcus aureus exhibited significant decreases in cell viability while TNF-α and lipoteichoic acid (LTA did not. Pretreatment with CP prevented losses in cell viability associated with the addition of killed bacteria or bacterial endotoxins. There were also corresponding decreases in expressions of proinflammatory IL-6 and TNF-α mRNA. Compared with the mastitis challenged cells, enhanced expressions of antioxidant genes HO-1, Txnrd-1, and GCLM were observed in CP-treated cells. CP and its polyphenolic active components (primarily caffeic acid phenethyl ester and quercetin had strong inhibitive effects against NF-κB activation and increased the transcriptional activity of Nrf2-ARE. These findings suggest that propolis may be valuable in the control of bovine mastitis.

  12. Cytoplasmic PELP1 and ERRgamma protect human mammary epithelial cells from Tam-induced cell death.

    Science.gov (United States)

    Girard, Brian J; Regan Anderson, Tarah M; Welch, Siya Lem; Nicely, Julie; Seewaldt, Victoria L; Ostrander, Julie H

    2015-01-01

    Tamoxifen (Tam) is the only FDA-approved chemoprevention agent for pre-menopausal women at high risk for developing breast cancer. While Tam reduces a woman's risk of developing estrogen receptor positive (ER+) breast cancer, the molecular mechanisms associated with risk reduction are poorly understood. Prior studies have shown that cytoplasmic proline, glutamic acid and leucine rich protein 1 (PELP1) promotes Tam resistance in breast cancer cell lines. Herein, we tested for PELP1 localization in breast epithelial cells from women at high risk for developing breast cancer and found that PELP1 was localized to the cytoplasm in 36% of samples. In vitro, immortalized HMECs expressing a nuclear localization signal (NLS) mutant of PELP1 (PELP1-cyto) were resistant to Tam-induced death. Furthermore, PELP1-cyto signaling through estrogen-related receptor gamma (ERRγ) promoted cell survival in the presence of Tam. Overexpression of ERRγ in immortalized HMECs protected cells from Tam-induced death, while knockdown of ERRγ sensitized PELP1-cyto expressing HMECs to Tam. Moreover, Tam-induced HMEC cell death was independent of apoptosis and involved accumulation of the autophagy marker LC3-II. Expression of PELP1-cyto and ERRγ reduced Tam-induced LC3-II accumulation, and knockdown of ERRγ increased LC3-II levels in response to Tam. Additionally, PELP1-cyto expression led to the upregulation of MMP-3 and MAOB, known PELP1 and ERRγ target genes, respectively. Our data indicate that cytoplasmic PELP1 induces signaling pathways that converge on ERRγ to promote cell survival in the presence of Tam. These data suggest that PELP1 localization and/or ERRγ activation could be developed as tissue biomarkers for Tam responsiveness.

  13. Expression microarray identifies the unliganded glucocorticoid receptor as a regulator of gene expression in mammary epithelial cells

    International Nuclear Information System (INIS)

    Ritter, Heather D; Mueller, Christopher R

    2014-01-01

    While glucocorticoids and the liganded glucocorticoid receptor (GR) have a well-established role in the maintenance of differentiation and suppression of apoptosis in breast tissue, the involvement of unliganded GR in cellular processes is less clear. Our previous studies implicated unliganded GR as a positive regulator of the BRCA1 tumour suppressor gene in the absence of glucocorticoid hormone, which suggested it could play a similar role in the regulation of other genes. An shRNA vector directed against GR was used to create mouse mammary cell lines with depleted endogenous levels of this receptor in order to further characterize the role of GR in breast cells. An expression microarray screen for targets of unliganded GR was performed using our GR-depleted cell lines maintained in the absence of glucocorticoids. Candidate genes positively regulated by unliganded GR were identified, classified by Gene Ontology and Ingenuity Pathway Analysis, and validated using quantitative real-time reverse transcriptase PCR. Chromatin immunoprecipitation and dual luciferase expression assays were conducted to further investigate the mechanism through which unliganded GR regulates these genes. Expression microarray analysis revealed 260 targets negatively regulated and 343 targets positively regulated by unliganded GR. A number of the positively regulated targets were involved in pro-apoptotic networks, possibly opposing the activity of liganded GR targets. Validation and further analysis of five candidates from the microarray indicated that two of these, Hsd11b1 and Ch25h, were regulated by unliganded GR in a manner similar to Brca1 during glucocorticoid treatment. Furthermore, GR was shown to interact directly with and upregulate the Ch25h promoter in the absence, but not the presence, of hydrocortisone (HC), confirming our previously described model of gene regulation by unliganded GR. This work presents the first identification of targets of unliganded GR. We propose that

  14. Lipidomic approach to identify patterns in phospholipid profiles and define class differences in mammary epithelial and breast cancer cells.

    Science.gov (United States)

    Dória, M Luísa; Cotrim, Zita; Macedo, Bárbara; Simões, Cláudia; Domingues, Pedro; Helguero, Luisa; Domingues, M Rosário

    2012-06-01

    Breast cancer is the leading cause of cancer-related deaths in women. Altered cellular functions of cancer cells lead to uncontrolled cellular growth and morphological changes. Cellular biomembranes are intimately involved in the regulation of cell signaling; however, they remain largely understudied. Phospholipids (PLs) are the main constituents of biological membranes and play important functional, structural and metabolic roles. The aim of this study was to establish if patterns in the PL profiles of mammary epithelial cells and breast cancer cells differ in relation to degree of differentiation and metastatic potential. For this purpose, PLs were analyzed using a lipidomic approach. In brief, PLs were extracted using Bligh and Dyer method, followed by a separation of PL classes by thin layer chromatography, and subsequent analysis by mass spectrometry (MS). Differences and similarities were found in the relative levels of PL content between mammary epithelial and breast cancer cells and between breast cancer cells with different levels of aggressiveness. When compared to the total PL content, phosphatidylcholine levels were reduced and lysophosphatydilcholines increased in the more aggressive cancer cells; while phosphatidylserine levels remained unchanged. MS analysis showed alterations in the classes of phosphatidylcholine, lysophosphatidylcholine, sphingomyelin, and phosphatidylinositides. In particular, the phosphatidylinositides, which are signaling molecules that affect proliferation, survival, and migration, showed dramatic alterations in their profile, where an increase of phosphatdylinositides saturated fatty acids chains and a decrease in C20 fatty acids in cancer cells compared with mammary epithelial cells was observed. At present, information about PL changes in cancer progression is lacking. Therefore, these data will be useful as a starting point to define possible PLs with prospective as biomarkers and disclose metabolic pathways with potential

  15. Cytogenetic characterization and H-ras associated transformation of immortalized human mammary epithelial cells

    Directory of Open Access Journals (Sweden)

    Larivee Siobhan

    2006-05-01

    Full Text Available Abstract Introduction Immortalization is a key step in malignant transformation, but immortalization alone is insufficient for transformation. Human mammary epithelial cell (HMEC transformation is a complex process that requires additional genetic changes beyond immortalization and can be accomplished in vitro by accumulation of genetic changes and expression of H-ras. Methods HMEC were immortalized by serial passaging and transduction with the catalytic subunit of the human telomerase gene (hTERT. The immortalized cells were passaged in vitro and studied by a combination of G- banding and Spectral Karyotyping (SKY. H-ras transduced, hTERT immortalized cells were cloned in soft agar and injected into nude mice. Extensive analysis was performed on the tumors that developed in nude mice, including immunohistochemistry and western blotting. Results Immortal HMEC alone were not tumorigenic in γ-irradiated nude mice and could not grow in soft agar. Late passage hTERT immortalized HMEC from a donor transduced with a retroviral vector containing the mutant, autoactive, human H-ras61L gene acquired anchorage independent growth properties and the capacity for tumorigenic growth in vivo. The tumors that developed in the nude mice were poorly differentiated epithelial carcinomas that continued to overexpress ras. These cells were resistant to doxorubicin mediated G1/S phase arrest but were sensitive to treatment with a farnesyltransferase inhibitor. Conclusion Some of the cytogenetic changes are similar to what is observed in premalignant and malignant breast lesions. Despite these changes, late passage immortal HMEC are not tumorigenic and could only be transformed with overexpression of a mutant H-ras oncogene.

  16. Fibroblast growth factor receptor 1 activation in mammary tumor cells promotes macrophage recruitment in a CX3CL1-dependent manner.

    Directory of Open Access Journals (Sweden)

    Johanna R Reed

    Full Text Available Tumor formation is an extensive process requiring complex interactions that involve both tumor cell-intrinsic pathways and soluble mediators within the microenvironment. Tumor cells exploit the intrinsic functions of many soluble molecules, including chemokines and their receptors, to regulate pro-tumorigenic phenotypes that are required for growth and progression of the primary tumor. Previous studies have shown that activation of inducible FGFR1 (iFGFR1 in mammary epithelial cells resulted in increased proliferation, migration, and invasion in vitro and tumor formation in vivo. These studies also demonstrated that iFGFR1 activation stimulated recruitment of macrophages to the epithelium where macrophages contributed to iFGFR1-mediated epithelial cell proliferation and angiogenesis. The studies presented here further utilize this model to identify the mechanisms that regulate FGFR1-induced macrophage recruitment. Results from this study elucidate a novel role for the inflammatory chemokine CX3CL1 in FGFR1-induced macrophage migration. Specifically, we illustrate that activation of both the inducible FGFR1 construct in mouse mammary epithelial cells and endogenous FGFR in the triple negative breast cancer cell line, HS578T, leads to expression of the chemokine CX3CL1. Furthermore, we demonstrate that FGFR-induced CX3CL1 is sufficient to recruit CX3CR1-expressing macrophages in vitro. Finally, blocking CX3CR1 in vivo leads to decreased iFGFR1-induced macrophage recruitment, which correlates with decreased angiogenesis. While CX3CL1 is a known target of FGF signaling in the wound healing environment, these studies demonstrate that FGFR activation also leads to induction of CX3CL1 in a tumor setting. Furthermore, these results define a novel role for CX3CL1 in promoting macrophage recruitment during mammary tumor formation, suggesting that the CX3CL1/CX3CR1 axis may represent a potential therapeutic approach for targeting breast cancers associated

  17. Biological and genetic properties of the p53 null preneoplastic mammary epithelium

    Science.gov (United States)

    Medina, Daniel; Kittrell, Frances S.; Shepard, Anne; Stephens, L. Clifton; Jiang, Cheng; Lu, Junxuan; Allred, D. Craig; McCarthy, Maureen; Ullrich, Robert L.

    2002-01-01

    The absence of the tumor suppressor gene p53 confers an increased tumorigenic risk for mammary epithelial cells. In this report, we describe the biological and genetic properties of the p53 null preneoplastic mouse mammary epithelium in a p53 wild-type environment. Mammary epithelium from p53 null mice was transplanted serially into the cleared mammary fat pads of p53 wild-type BALB/c female to develop stable outgrowth lines. The outgrowth lines were transplanted for 10 generations. The outgrowths were ductal in morphology and progressed through ductal hyperplasia and ductal carcinoma in situ before invasive cancer. The preneoplastic outgrowth lines were immortal and exhibited activated telomerase activity. They are estrogen and progesterone receptor-positive, and aneuploid, and had various levels of tumorigenic potential. The biological and genetic properties of these lines are distinct from those found in most hyperplastic alveolar outgrowth lines, the form of mammary preneoplasia occurring in most traditional models of murine mammary tumorigenesis. These results indicate that the preneoplastic cell populations found in this genetically engineered model are similar in biological properties to a subset of precurser lesions found in human breast cancer and provide a unique model to identify secondary events critical for tumorigenicity and invasiveness.

  18. Function of SREBP1 in the Milk Fat Synthesis of Dairy Cow Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Nan Li

    2014-09-01

    Full Text Available Sterol regulatory element-binding proteins (SREBPs belong to a family of nuclear transcription factors. The question of which is the most important positive regulator in milk fat synthesis in dairy cow mammary epithelial cells (DCMECs between SREBPs or other nuclear transcription factors, such as peroxisome proliferator-activated receptor γ (PPARγ, remains a controversial one. Recent studies have found that mTORC1 (the mammalian target of rapamycin C1 regulates SREBP1 to promote fat synthesis. Thus far, however, the interaction between the SREBP1 and mTOR (the mammalian target of rapamycin pathways in the regulation of milk fat synthesis remains poorly understood. This study aimed to identify the function of SREBP1 in milk fat synthesis and to characterize the relationship between SREBP1 and mTOR in DCMECs. The effects of SREBP1 overexpression and gene silencing on milk fat synthesis and the effects of stearic acid and serum on SREBP1 expression in the upregulation of milk fat synthesis were investigated in DCMECs using immunostaining, Western blotting, real-time quantitative PCR, lipid droplet staining, and detection kits for triglyceride content. SREBP1 was found to be a positive regulator of milk fat synthesis and was shown to be regulated by stearic acid and serum. These findings indicate that SREBP1 is the key positive regulator in milk fat synthesis.

  19. Activated type I TGFbeta receptor (Alk5) kinase confers enhancedsurvival to mammary epithelial cells and accelerates mammary tumorprogression

    Energy Technology Data Exchange (ETDEWEB)

    Muraoka-Cook, Rebecca S.; Shin, Incheol; Yi, Jae Youn; Easterly,Evangeline; Barcellos-Hoff, Mary Helen; Yingling, Jonathan M.; Zent, Roy; Arteaga, Carlos L.

    2005-01-02

    The transforming growth factor-betas (TGF{beta}s) are members of a large superfamily of pleiotropic cytokines that also includes the activins and the bone morphogenetic proteins (BMPs). Members of the TGF{beta} family regulate complex physiological processes such cell proliferation, differentiation, adhesion, cell-cell and cell-matrix interactions, motility, and cell death, among others (Massague, 1998). Dysregulation of TGF{beta} signaling contributes to several pathological processes including cancer, fibrosis, and auto-immune disorders (Massague et al., 2000). The TGF{beta}s elicit their biological effects by binding to type II and type I transmembrane receptor serine-threonine kinases (T{beta}RII and T{beta}RI) which, in turn, phosphorylated Smad 2 and Smad 3. Phosphorylated Smad 2/3 associate with Smad 4 and, as a heteromeric complex, translocate to the nucleus where they regulate gene transcription. The inhibitory Smad7 down regulates TGF{beta} signaling by binding to activated T{beta}RI and interfering with its ability to phosphorylate Smad 2/3 (Derynck and Zhang, 2003; Shi and Massague, 2003). Signaling is also regulated by Smad proteolysis. TGF{beta} receptor-mediated activation results in multi-ubiquitination of Smad 2 in the nucleus and subsequent degradation of Smad 2 by the proteasome (Lo and Massague, 1999). Activation of TGF{beta} receptors also induces mobilization of a Smad 7-Smurf complex from the nucleus to the cytoplasm; this complex recognizes the activated receptors and mediates their ubiquitination and internalization via caveolin-rich vesicles, leading to termination of TGF{beta} signaling (Di Guglielmo et al., 2003). Other signal transducers/pathways have been implicated in TGF{beta} actions. These include the extracellular signal-regulated kinase (Erk), c-Jun N-terminal kinase (Jnk), p38 mitogen-activated protein kinase (MAPK), protein phosphatase PP2A, phosphatidylinositol-3 kinase (PI3K), and the family of Rho GTPases [reviewed in

  20. Experimental tumor growth of canine osteosarcoma cell line on chick embryo chorioallantoic membrane (in vivo studies).

    Science.gov (United States)

    Walewska, Magdalena; Dolka, Izabella; Małek, Anna; Wojtalewicz, Anna; Wojtkowska, Agata; Żbikowski, Artur; Lechowski, Roman; Zabielska-Koczywąs, Katarzyna

    2017-05-12

    The chick embryo chorioallantoic membrane (CAM) model is extensively used in human medicine in preclinical oncological studies. The CAM model has several advantages: low cost, simple experimental approach, time saving and following "3R principles". Research has shown that the human osteosarcoma cell lines U2OS, MMNG-HOS, and SAOS can form tumors on the CAM. In veterinary medicine, this has been described only for feline fibrosarcomas, feline mammary carcinomas and canine osteosarcomas. However, in case of canine osteosarcomas, it has been shown that only non-adherent osteosarcoma stem cells isolated from KTOSA5 and CSKOS cell lines have the ability to form microtumors on the CAM after an incubation period of 5 days, in contrast to adherent KTOSA5 and CSKOS cells. In the presented study, we have proven that the commercial adherent canine osteosarcoma cell line (D-17) can form vascularized tumors on the CAM after the incubation period of 10 days.

  1. Epigenetic up-regulation of ribosome biogenesis and more aggressive phenotype triggered by the lack of the histone demethylase JHDM1B in mammary epithelial cells.

    Science.gov (United States)

    Galbiati, Alice; Penzo, Marianna; Bacalini, Maria Giulia; Onofrillo, Carmine; Guerrieri, Ania Naila; Garagnani, Paolo; Franceschi, Claudio; Treré, Davide; Montanaro, Lorenzo

    2017-06-06

    The alterations of ribosome biogenesis and protein synthesis play a direct role in the development of tumors. The accessibility and transcription of ribosomal genes is controlled at several levels, with their epigenetic regulation being one of the most important. Here we explored the JmjC domain-containing histone demethylase 1B (JHDM1B) function in the epigenetic control of rDNA transcription. Since JHDM1B is a negative regulator of gene transcription, we focused on the effects induced by JHDM1B knock-down (KD). We studied the consequences of stable inducible JHDM1B silencing in cell lines derived from transformed and untransformed mammary epithelial cells. In these cellular models, prolonged JHDM1B downregulation triggered a surge of 45S pre-rRNA transcription and processing, associated with a re-modulation of the H3K36me2 levels at rDNA loci and with changes in DNA methylation of specific CpG sites in rDNA genes. We also found that after JHDM1B KD, cells showed a higher ribosome content: which were engaged in mRNA translation. JHDM1B KD and the consequent stimulation of ribosomes biogenesis conferred more aggressive features to the tested cellular models, which acquired a greater clonogenic, staminal and invasive potential. Taken together, these data indicate that the reduction of JHDM1B leads to a more aggressive cellular phenotype in mammary gland cells, by virtue of its negative regulatory activity on ribosome biogenesis.

  2. Host-pathogen interactions in bovine mammary epithelial cells and HeLa cells by Staphylococcus aureus isolated from subclinical bovine mastitis.

    Science.gov (United States)

    Castilho, Ivana G; Dantas, Stéfani Thais Alves; Langoni, Hélio; Araújo, João P; Fernandes, Ary; Alvarenga, Fernanda C L; Maia, Leandro; Cagnini, Didier Q; Rall, Vera L M

    2017-08-01

    Staphylococcus aureus is a common pathogen that causes subclinical bovine mastitis due to several virulence factors. In this study, we analyzed S. aureus isolates collected from the milk of cows with subclinical mastitis that had 8 possible combinations of bap, icaA, and icaD genes, to determine their capacity to produce biofilm on biotic (bovine primary mammary epithelial cells and HeLa cells) and abiotic (polystyrene microplates) surfaces, and their ability to adhere to and invade these cells. We also characterized isolates for microbial surface components recognizing adhesive matrix molecules (MSCRAMM) and agr genes, and for their susceptibility to cefquinome sulfate in the presence of biofilm. All isolates adhered to and invaded both cell types, but invasion indexes were higher in bovine primary mammary epithelial cells. Using tryptic soy broth + 1% glucose on abiotic surfaces, 5 out of 8 isolates were biofilm producers, but only the bap + icaA + icaD + isolate was positive in Dulbecco's Modified Eagle's medium. The production of biofilm on biotic surfaces occurred only with this isolate and only on HeLa cells, because the invasion index for bovine primary mammary epithelial cells was too high, making it impossible to use these cells in this assay. Of the 5 biofilm producers in tryptic soy broth + 1% glucose, 4 presented with the bap/fnbA/clfA/clfB/eno/fib/ebpS combination, and all were protected from cefquinome sulfate. We found no predominance of any agr group. The high invasive potential of S. aureus made it impossible to observe biofilm in bovine primary mammary epithelial cells, and we concluded that cells with lower invasion rates, such as HeLa cells, were more appropriate for this assay. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. TRAM-Derived Decoy Peptides inhibits the inflammatory response in mouse mammary epithelial cells and a mastitis model in mice.

    Science.gov (United States)

    Hu, Xiaoyu; Tian, Yuan; Wang, Tiancheng; Zhang, Wenlong; Wang, Wei; Gao, Xuejiao; Qu, Shihui; Cao, Yongguo; Zhang, Naisheng

    2015-10-05

    It has been proved that TRAM-Derived Decoy peptides have anti-inflammatory properties. In this study, we synthesized a TRAM-Derived decoy peptide (TM6), belongs to TRAM TIR domain, of which sequence is "N"-RQIKIWFQNRRMKWK, KENFLRDTWCNFQFY-"C" and evaluated the effects of TM6 on lipopolysaccharide-induced mastitis in mice. In vivo, LPS-induced mice mastitis model was established by injection of LPS through the duct of mammary gland. TM6 was injected 1h before or after LPS treatment. In vitro, primary mouse mammary epithelial cells were used to investigate the effects of TM6 on LPS-induced inflammatory responses. The results showed that TM6 inhibited LPS-induced mammary gland histopathologic changes, MPO activity, and TNF-α, IL-1β and IL-6 production in mice. In vitro, TM6 significantly inhibited LPS-induced TNF-α and IL-6 production, as well as NF-κB and MAPKs activation. In conclusion, this study demonstrated that TM6 had protective effects on LPS-mastitis and may be a promising therapeutic reagent for mastitis treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. MiR130b-Regulation of PPARγ Coactivator- 1α Suppresses Fat Metabolism in Goat Mammary Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Zhi Chen

    Full Text Available Fat metabolism is a complicated process regulated by a series of factors. microRNAs (miRNAs are a class of negative regulator of proteins and play crucial roles in many biological processes; including fat metabolism. Although there have been some researches indicating that miRNAs could influence the milk fat metabolism through targeting some factors, little is known about the effect of miRNAs on goat milk fat metabolism. Here we utilized an improved miRNA detection assay, S-Poly-(T, to profile the expression of miRNAs in the goat mammary gland in different periods, and found that miR-130b was abundantly and differentially expressed in goat mammary gland. Additionally, overexpressing miR-130b impaired adipogenesis while inhibiting miR-130b enhanced adipogenesis in goat mammary epithelial cells. Utilizing 3'-UTR assay and Western Blot analusis, the protein peroxisome proliferator-activated receptor coactivator-1α (PGC1α, a major regulator of fat metabolism, was demonstrated to be a potential target of miR-130b. Interestingly, miR-130b potently repressed PGC1α expression by targeting both the PGC1α mRNA coding and 3' untranslated regions. These findings have some insight of miR-130b in mediating adipocyte differentiation by repressing PGC1α expression and this contributes to further understanding about the functional significance of miRNAs in milk fat synthesis.

  5. Bifunctional role of ephrin A1-Eph system in stimulating cell proliferation and protecting cells from cell death through the attenuation of ER stress and inflammatory responses in bovine mammary epithelial cells.

    Science.gov (United States)

    Kang, Minkyung; Jeong, Wooyoung; Bae, Hyocheol; Lim, Whasun; Bazer, Fuller W; Song, Gwonhwa

    2018-03-01

    Structural and functional development of the mammary gland is constant in the mammary gland life cycle. Eph receptors and their ligands, ephrins, control events through cell-to-cell interactions during embryonic development, and adult tissue homeostasis; however, little information on participation of ephrin A1, a representative ligand of the Eph receptor, in the development and function of normal mammary glands is known. In this study, we demonstrated functional effects of the ephrin A1-Eph system and mechanisms of its action on bovine mammary epithelial (MAC-T) cells. The in vitro cultured MAC-T cells expressed the ephrin A1 ligand and EphA1, A2, A4, A7, and A8 among the eight members of the Eph A family. Our results revealed that ephrin A1 induced MAC-T cell cycle progression and stimulated cell proliferation with abundant expression of nucleic PCNA and cyclin D1 proteins. Additionally, ephrin A1 induced activation of intracellular signaling molecules involved in PI3 K/AKT and MAPK signaling, and the proliferation-stimulating effect of ephrin A1 was mediated by activation of these pathways. Furthermore, ephrin A1 influenced expression and activation of various ER stress-related proteins and protected MAC-T cells from stress-induced cell death. Finally, ephrin A1 alleviated LPS-induced cell death through down-regulation of inflammatory cytokines. In conclusion, the results of this study suggest that the Eph A-ephrin A1 system is a positive factor in the increase and maintenance of epithelial cells in mammary glands of cows; the signaling system contributes to development, remodeling, and functionality of normal mammary glands and could overcome mastitis in cows and other mammals. © 2017 Wiley Periodicals, Inc.

  6. Tuft (caveolated) cells in two human colon carcinoma cell lines.

    OpenAIRE

    Barkla, D. H.; Whitehead, R. H.; Foster, H.; Tutton, P. J.

    1988-01-01

    The presence of an unusual cell type in two human colon carcinoma cell lines is reported. The cells show the same morphology as "tuft" (caveolated) cells present in normal gastrointestinal epithelium. Tuft cells were seen in cell line LIM 1863 growing in vitro and in human colon carcinoma cell line LIM 2210 growing as subcutaneous solid tumour xenografts in nude mice. Characteristic morphologic features of tuft cells included a wide base, narrow apex and a tuft of long microvilli projecting f...

  7. ERK and PI3K regulate different aspects of the epithelial to mesenchymal transition of mammary tumor cells induced by truncated MUC1

    International Nuclear Information System (INIS)

    Horn, Galit; Gaziel, Avital; Wreschner, Daniel H.; Smorodinsky, Nechama I.; Ehrlich, Marcelo

    2009-01-01

    Epithelial to mesenchymal transition (EMT) integrates changes to cell morphology and signaling pathways resulting from modifications to the cell's transcriptional response. Different combinations of stimuli ignite this process in the contexts of development or tumor progression. The human MUC1 gene encodes multiple alternatively spliced forms of a polymorphic oncoprotein that is aberrantly expressed in epithelial malignancies. MUC1 is endowed with various signaling modules and has the potential to mediate proliferative and morphological changes characteristic of the progression of epithelial tumors. The tyrosine-rich cytoplasmic domain and the heavily glycosylated extracellular domain both play a role in MUC1-mediated signal transduction. However, the attribution of function to specific domains of MUC1 is difficult due to the concomitant presence of multiple forms of the protein, which stem from alternative splicing and proteolytic cleavage. Here we show that DA3 mouse mammary tumor cells stably transfected with a truncated genomic fragment of human MUC1 undergo EMT. In their EMT, these cells demonstrate altered [i] morphology, [ii] signaling pathways and [iii] expression of epithelial and mesenchymal markers. Similarly to well characterized human breast cancer cell lines, cells transfected with truncated MUC1 show an ERK-dependent increased spreading on fibronectin, and a PI3K-dependent enhancement of their proliferative rate.

  8. Prototheca zopfii isolated from bovine mastitis induced oxidative stress and apoptosis in bovine mammary epithelial cells.

    Science.gov (United States)

    Shahid, Muhammad; Gao, Jian; Zhou, Yanan; Liu, Gang; Ali, Tariq; Deng, Youtian; Sabir, Naveed; Su, Jingliang; Han, Bo

    2017-05-09

    Bovine protothecal mastitis results in considerable economic losses worldwide. However, Prototheca zopfii induced morphological alterations and oxidative stress in bovine mammary epithelial cells (bMECs) is not comprehensively studied yet. Therefore, the aim of this current study was to investigate the P. zopfii induced pathomorphological changes, oxidative stress and apoptosis in bMECs. Oxidative stress was assessed by evaluating catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), malondialdehyde (MDA) contents and lactate dehydrogenase (LDH) activity, while ROS generation and apoptosis was measured by confocal laser scanning microscopy. The results revealed that infection of P. zopfii genotype II (GTII) significantly changed bMECs morphology, increased apoptotic rate and MDA contents at 12 h (p < 0.05) and 24 h (p < 0.01) in comparison with control group, in time-dependent manner. LDH activity and ROS generation was also increased (p < 0.01) at 12 h and 24 h. However, SOD and CAT contents in bMECs infected with GTII were decreased (p < 0.05) at 12 h, while GPx (p < 0.01), SOD (p < 0.05) and CAT (p < 0.01) levels were reduced at 24 h. In case of GTI, only CAT and GPx activities were significantly decreased when the duration prolonged to 24 h but lesser than GTII. This suggested that GTII has more devastating pathogenic effects in bMECs, and the findings of this study concluded that GTII induced apoptosis and oxidative stress in bMECs via the imbalance of oxidant and antioxidant defenses as well as the production of intracellular ROS.

  9. Biologic role of activated leukocyte cell adhesion molecule overexpression in breast cancer cell lines and clinical tumor tissue.

    Science.gov (United States)

    Hein, Sibyll; Müller, Volkmar; Köhler, Nadine; Wikman, Harriet; Krenkel, Sylke; Streichert, Thomas; Schweizer, Michaela; Riethdorf, Sabine; Assmann, Volker; Ihnen, Maike; Beck, Katrin; Issa, Rana; Jänicke, Fritz; Pantel, Klaus; Milde-Langosch, Karin

    2011-09-01

    The activated leukocyte cell adhesion molecule (ALCAM) is overexpressed in many mammary tumors, but controversial results about its role and prognostic impact in breast cancer have been reported. Therefore, we evaluated the biologic effects of ALCAM expression in two breast cancer cell lines and a larger cohort of mammary carcinomas. By stable transfections, MCF7 cells with ALCAM overexpression and MDA-MB231 cells with reduced ALCAM levels were generated and analyzed in functional assays and cDNA microarrays. In addition, an immunohistochemical study on 347 patients with breast cancer with long-term follow-up and analysis of disseminated tumor cells (DTCs) was performed. In both cell lines, high ALCAM expression was associated with reduced cell motility. In addition, ALCAM silencing in MDA-MB231 cells resulted in lower invasive potential, whereas high ALCAM expression was associated with increased apoptosis in both cell lines. Among genes which were differentially expressed in clones with altered ALCAM expression, there was an overlap of 15 genes between both cell lines, among them cathepsin D, keratin 7, gelsolin, and ets2 whose deregulation was validated by western blot analysis. In MDA-MB231 cells, we observed a correlation with VEGF expression which was validated by enzyme-linked immuno sorbent assay (ELISA). Our IHC results on primary breast carcinomas showed that ALCAM expression was associated with an estrogen receptor-positive phenotype. In addition, strong ALCAM immunostaining correlated with nodal involvement and the presence of tumor cells in bone marrow. By Kaplan-Meier analysis, strong ALCAM expression in ductal carcinomas correlated with shorter recurrence-free intervals (P=0.048) and overall survival (OAS, P=0.003). Our results indicate that the biologic role of ALCAM in breast cancer is complex, but overexpression might be relevant for outcome in ductal carcinomas.

  10. Breast Cancer and Early Onset Childhood Obesity: Cell Specific Gene Expression in Mammary Epithelia and Adipocytes

    Science.gov (United States)

    2007-07-01

    G, Lee AV, McCarty M, Van Horn K, Chu O, Chou YC, Yang J, Guzman RC, Nandi S, Talamantes F. Growth and characterization of N-methyl-N- nitrosourea ...G, Lee AV, McCarty M, et al. Growth and characteriza- tion of N-methyl-N- nitrosourea -induced mammary tumors in intact and ovariectomized rats

  11. Mapping of ESE-1 subdomains required to initiate mammary epithelial cell transformation via a cytoplasmic mechanism

    Directory of Open Access Journals (Sweden)

    Tentler John J

    2011-08-01

    regulating its subcellular localization and function, and that an intact SAR domain mediates MEC transformation exclusively in the cytoplasm, via a novel nontranscriptional mechanism, whereby the SAR motif is accessible for ligand and/or protein interactions. These findings are significant, since they provide novel molecular insights into the functions of ETS transcription factors in mammary cell transformation.

  12. Exfoliation rate of mammary epithelial cells in milk on bovine mastitis caused by Staphylococcus aureus is associated with bacterial load.

    Science.gov (United States)

    Nagasawa, Yuya; Kiku, Yoshio; Sugawara, Kazue; Tanabe, Fuyuko; Hayashi, Tomohito

    2018-01-01

    The exfoliation rate of mammary epithelial cells (MECs) in milk is affected by physiological, breeding and environmental factors. Little is known about the relationship between the MEC exfoliation into milk and mammary-infected Staphylococcus aureus (S. aureus) load on bovine mastitis caused by S. aureus. The aim of this study was to investigate the relationship between S. aureus load and the proportion of MEC exfoliation in milk using five substantial bovine mastitis models. In 64 randomly extracted milk samples from udders at 3-21 days after S. aureus infusion, there were various samples with different numbers of S. aureus counts and somatic cell counts. No significant correlations were found between the S. aureus counts and somatic cell count (r = 0.338). In contrast, a significant correlation was noted between S. aureus counts and the proportion of cytokeratin-positive cells in the milk from the infused udders (r = 0.734, P mastitis udders caused by S. aureus may contribute to reduced milk yield. © 2017 Japanese Society of Animal Science.

  13. Distribution of obestatin and ghrelin in human tissues: immunoreactive cells in the gastrointestinal tract, pancreas, and mammary glands

    DEFF Research Database (Denmark)

    Grönberg, Malin; Tsolakis, Apostolos V; Magnusson, Linda

    2008-01-01

    Obestatin and ghrelin are two peptides derived from the same prohormone. It is well established that ghrelin is produced by endocrine cells in the gastric mucosa. However, the distribution of human obestatin immunoreactive cells is not thoroughly characterized. A polyclonal antibody...... that specifically recognizes human obestatin was produced. Using this antibody and a commercial antibody vs ghrelin, the distribution of obestatin and ghrelin immunoreactive cells was determined in a panel of human tissues using immunohistochemistry. The two peptides were detected in the mucosa...... of the gastrointestinal tract, from cardia to ileum, and in the pancreatic islets. Interestingly, epithelial cells in the ducts of mammary glands showed distinct immunoreactivity for both ghrelin and obestatin. By double immunofluorescence microscopy, it was shown that all detected cells were immunoreactive for both...

  14. Selective expression of a splice variant of decay-accelerating factor in c-erbB-2-positive mammary carcinoma cells showing increased transendothelial invasiveness

    International Nuclear Information System (INIS)

    Brandt, Burkhard; Mikesch, Jan-Hendrik; Simon, Ronald; Roetger, Antje; Kemming, Dirk; Schier, Katrin; Sauter, Guido; Buerger, Horst

    2005-01-01

    By differential-display-PCR a subclone of the SK-BR-3 cell line with high in vitro transendothelial invasiveness was identified to express increased levels of a new alternative splice variant of decay-accelerating factor (DAF). DAF seems to play an important role in some malignant tumours since on the one hand the expression of complement inhibitors on the surface of tumour cells prevents the accumulation of complement factors and in consequence cell lysis. On the other hand, DAF has been identified as a ligand for the CD97 surface receptor which induces cell migration. Immunofluorescence procedures, Western blot analyses, and cDNA clone sequencing were employed to confirm the expression of DAF restricted to invasive tumour cells. Using a radioactive RNA-in situ hybridisation on freshly frozen tissue microarrays and RT-PCR on native tumour tissue, the expression of alternative spliced DAF mRNA was demonstrated in invasive breast cancer. Due to the fact that it could thereby not be detected in normal mammary tissues, it has to be confirmed in larger studies that the DAF splice variant might be a specific tumour marker for invasive breast cancer

  15. Heparan sulfate-chondroitin sulfate hybrid proteoglycan of the cell surface and basement membrane of mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    David, G.; Van den Berghe, H.

    1985-01-01

    Chondroitin sulfate represents approximately 15% of the 35 SO 4 -labeled glycosaminoglycans carried by the proteoglycans of the cell surface and of the basolateral secretions of normal mouse mammary epithelial cells in culture. Evidence is provided that these chondroitin sulfate-carrying proteoglycans are hybrid proteoglycans, carrying both chondroitin sulfate and heparan sulfate chains. Complete N-desulfation but limited O-desulfation, by treatment with dimethyl sulfoxide, of the proteoglycans decreased the anionic charge of the chondroitin sulfate-carrying proteoglycans to a greater extent than it decreased the charge of their constituent chondroitin sulfate chains. Partial depolymerization of the heparan sulfate residues of the proteoglycans with nitrous acid or with heparin lyase also reduced the effective molecular radius of the chondroitin sulfate-carrying proteoglycans. The effect of heparin lyase on the chondroitin sulfate-carrying proteoglycans was prevented by treating the proteoglycan fractions with dimethyl sulfoxide, while the effect of nitrous acid on the dimethyl sulfoxide-treated proteoglycans was prevented by acetylation. This occurrence of heparan sulfate-chondroitin sulfate hybrid proteoglycans suggests that the substitution of core proteins by heparan sulfate or chondroitin sulfate chains may not solely be determined by the specific routing of these proteins through distinct chondroitin sulfate and heparan sulfate synthesizing mechanisms. Moreover, regional and temporal changes in pericellular glycosaminoglycan compositions might be due to variable postsynthetic modification of a single gene product

  16. S100A7 (Psoriasin), highly expressed in Ductal Carcinoma In Situ (DCIS), is regulated by IFN-gamma in mammary epithelial cells

    International Nuclear Information System (INIS)

    Petersson, Stina; Bylander, Anna; Yhr, Maria; Enerbäck, Charlotta

    2007-01-01

    The aim of the present work was to explore signal transduction pathways used in the regulation of S100A7 (psoriasin). Members of the S100 gene family participate in many important cellular functions. Psoriasin, S100A8 (calgranulin A) and S100A9 (calgranulin B) are expressed in ductal carcinoma in situ (DCIS), as well as in the hyperproliferative skin disease, psoriasis. In the latter condition, a disturbance in the STAT pathway has recently been reported. This pathway is implicated in the regulation of IFN-gamma, widely recognized as a key cytokine in psoriasis. IFN-gamma also exerts anti-tumor action in a number of tumor cell types, including breast cancer. We therefore examined the effect of IFN-gamma and STAT-signaling on the psoriasin expression. We established a TAC2 mouse mammary epithelial cell line with tetracycline-inducible psoriasin expression (Tet-Off). Viability in cell culture was estimated using MTS assay. Protein and gene expression were evaluated by Western blotting and quantitative real-time PCR. Statistical analyses were assessed using a one-tailed, paired t-test. We report the downregulation of psoriasin by IFN-gamma in the MDA-MB-468 breast cancer cell line, as well as the downregulation of psoriasin induced by anoikis in cell lines derived from different epithelial tissues. In contrast, IFN-gamma had no suppressive effect on calgranulin A or calgranulin B. IFN-gamma is an important activator of the STAT1 pathway and we confirmed an active signaling pathway in the cell lines that responded to IFN-gamma treatment. In contrast, in the SUM190 breast carcinoma cell line, IFN-gamma did not suppress the expression of endogenous psoriasin. Moreover, a reduced phosphorylation of the STAT1 protein was observed. We showed that IFN-gamma treatment and the inhibition of the transcription factor NFkappaB had a synergistic effect on psoriasin levels. Finally, in TAC2 cells with tetracycline-induced psoriasin expression, we observed the increased viability of

  17. Stepwise DNA Methylation Changes Are Linked to Escape from Defined Proliferation Barriers and Mammary Epithelial Cell Immortalization

    Energy Technology Data Exchange (ETDEWEB)

    Novak, Petr; Jensen, Taylor J.; Garbe, James C.; Stampfer, Martha R.; Futscher, Bernard W.

    2009-04-20

    The timing and progression of DNA methylation changes during carcinogenesis are not completely understood. To develop a timeline of aberrant DNA methylation events during malignant transformation, we analyzed genome-wide DNA methylation patterns in an isogenic human mammary epithelial cell (HMEC) culture model of transformation. To acquire immortality and malignancy, the cultured finite lifespan HMEC must overcome two distinct proliferation barriers. The first barrier, stasis, is mediated by the retinoblastoma protein and can be overcome by loss of p16(INK4A) expression. HMEC that escape stasis and continue to proliferate become genomically unstable before encountering a second more stringent proliferation barrier, telomere dysfunction due to telomere attrition. Rare cells that acquire telomerase expression may escape this barrier, become immortal, and develop further malignant properties. Our analysis of HMEC transitioning from finite lifespan to malignantly transformed showed that aberrant DNA methylation changes occur in a stepwise fashion early in the transformation process. The first aberrant DNA methylation step coincides with overcoming stasis, and results in few to hundreds of changes, depending on how stasis was overcome. A second step coincides with immortalization and results in hundreds of additional DNA methylation changes regardless of the immortalization pathway. A majority of these DNA methylation changes are also found in malignant breast cancer cells. These results show that large-scale epigenetic remodeling occurs in the earliest steps of mammary carcinogenesis, temporally links DNA methylation changes and overcoming cellular proliferation barriers, and provides a bank of potential epigenetic biomarkers that mayprove useful in breast cancer risk assessment.

  18. Immortalization of normal human mammary epithelial cells in two steps by direct targeting of senescence barriers does not require gross genomic alterations

    Czech Academy of Sciences Publication Activity Database

    Garbe, J.C.; Vrba, Lukáš; Sputova, K.; Fuchs, L.; Novák, Petr; Brothman, A.R.; Jackson, M.; Chin, K.; LaBarge, M.A.; Watts, G.; Futscher, B. W.; Stampfer, M.R.

    2014-01-01

    Roč. 13, č. 21 (2014), s. 3423-3435 ISSN 1538-4101 Institutional support: RVO:60077344 Keywords : genomic instability * human mammary epithelial cells * telomerase Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 4.565, year: 2014

  19. Variant innate immune responses of mammary epithelial cells to challenge by Staphylococcus aureus, Escherichia coli and the regulating effect of taurine on these bioprocesses.

    Science.gov (United States)

    Zheng, Liuhai; Xu, Yuanyuan; Lu, Jinye; Liu, Ming; Bin Dai; Miao, Jinfeng; Yin, Yulong

    2016-07-01

    Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) are important pathogens causing subclinical and clinical bovine mastitis, respectively. Taurine, an organic acid found in animal tissues, has been used for the treatment of various superficial infections and chronic inflammations. We challenged a bovine mammary epithelial cell (MEC) line (MAC-T) or a mouse mammary epithelial cell line (EpH4-Ev) with either E. coli or S. aureus and compared the responses of MECs to these 2 pathogens. We also examined the regulatory effects of taurine on these responses. Receptor analyses showed that both TLR2 and TLR4 are upregulated upon exposure to either E. coli or S. aureus. Taurine pre-treatment dampened upregulation to some extent. E. coli and S. aureus stimulated comparable levels of ROS, which could be inhibited by taurine pre-treatment. E. coli infection elicited a dramatic change in iNOS expression. Taurine significantly decreased iNOS expression in the S. aureus challenged group. Protein microarray demonstrated that 32/40 and 8/40 inflammatory molecules/mediators were increased after E. coli or S. aureus challenge, respectively. The fold changes of most molecules were higher in the E. coli infection group than that in the S. aureus infection group. Taurine negatively regulated the inflammatory profile in both bacterial infections. Pro-inflammatory cytokines (such as TNF-α) connected with TLR activation were down-regulated by taurine pre-treatment. The influence of TAK-242 and OxPAPC on cytokine/molecule expression profiles to E. coli challenge are different than to S. aureus. Some important factors (MyD88, TNF-α, IL-1β, iNOS and IL-6) mediated by TLR activation were suppressed either in protein microarray or special assay (PCR/kits) or both. TAK-242 restrained ROS production and NAGase activity similar to the effect of taurine in E. coli challenge groups. The detection of 3 indices (T-AOC, SOD and MDA) reflecting oxidative stress in vivo, showed that

  20. TGF-beta induces connexin43 gene expression in normal murine mammary gland epithelial cells via activation of p38 and PI3K/AKT signaling pathways.

    Science.gov (United States)

    Tacheau, Charlotte; Fontaine, Juliette; Loy, Jennifer; Mauviel, Alain; Verrecchia, Franck

    2008-12-01

    One of the shared physiological roles between TGF-beta and connexin family members is to inhibit epithelial cell cycle progression and consequently, to provide protection against malignant transformation. Herein, we demonstrated that TGF-beta1 induces the expression of connexin43 (Cx43) in normal murine mammary gland (NMuMG) cell lines at the protein and mRNA levels, and transcriptionally. Using overexpression of a truncated dominant-negative form of Cx43, we determined that the modulation of gap junctional communication by TGF-beta1 plays a key role in the control of NMuMG cells proliferation by TGF-beta1. In addition, using overexpression of truncated dominant-negative forms of either Smad2 or Smad3, and MDA-MB-468 human breast carcinoma cells deficient for Smad4, we determined that the Smad cascade is not implicated in TGF-beta1 effect on Cx43 expression. Using specific pharmacologic inhibitors for JNK, ERK, p38, and PI3K/AKT signaling pathways, we demonstrated the cooperative role of p38 and PI3K/AKT signaling in TGF-beta1-induced Cx43 expression and gap junctional communication. Furthermore, transfection of a c-jun antisense expression vector significantly prevented TGF-beta1-induced Cx43 gene expression demonstrating the involvement of c-Jun/AP-1 pathway together with p38 and PI3K/AKT pathways in mediating TGF-beta1-induced Cx43 gene expression.

  1. Fibroadenoma and phyllodes tumors of anogenital mammary-like glands: a series of 13 neoplasms in 12 cases, including mammary-type juvenile fibroadenoma, fibroadenoma with lactation changes, and neurofibromatosis-associated pseudoangiomatous stromal hyperplasia with multinucleated giant cells.

    Science.gov (United States)

    Kazakov, Dmitry V; Spagnolo, Dominic V; Stewart, Colin J; Thompson, Jane; Agaimy, Abbas; Magro, Gaetano; Bisceglia, Michele; Vazmitel, Marina; Kacerovska, Denisa; Kutzner, Heinz; Mukensnabl, Petr; Michal, Michal

    2010-01-01

    The authors present a series of 13 fibroepithelial neoplasms involving anogenital mammary-like glands, all occurring in 12 female patients, whose age at diagnosis ranged from 30 to 51 years (mean, 38 y; median, 42 y). All women presented with a solitary asymptomatic nodule in the vulva (n=8), perineum (n=2), or near the anus (n=2) ranging in size from 1.5 to 4.5 cm. Microscopically, 8 lesions were classified as fibroadenoma, and 5, including 1 recurrent tumor, as phyllodes tumor, of which 1 was benign and 4 low-grade malignant. In addition to conventional findings, we describe several hitherto unreported features including juvenile fibroadenoma-like proliferation, fibroadenoma with lactation change, and pseudoangiomatous stromal hyperplasia with multinucleated stromal giant cells in a patient with neurofibromatosis, type 1 all constituting potential diagnostic pitfalls, which are best averted by using the same approach to diagnosis as for their analogous mammary counterparts.

  2. Using 3D Culture of Primary Mammary Epithelial Cells to Define Molecular Entities Required for Acinus Formation: Analyzing MAP Kinase Phosphatases.

    Science.gov (United States)

    Gajewska, Malgorzata; McNally, Sara

    2017-01-01

    Three-dimensional (3D) cell cultures on reconstituted basement membrane (rBM) enable the study of complex interactions between extracellular matrix (ECM) components and epithelial cells, which are crucial for the establishment of cell polarity and functional development of epithelia. 3D cultures of mammary epithelial cells (MECs) on Matrigel (a laminin-rich ECM derived from the Engelbreth-Holm-Swarm (EHS) murine tumor) promote interactions of MECs with the matrix via integrins, leading to formation of spherical monolayers of polarized cells surrounding a hollow lumen (acini). Acini closely resemble mammary alveoli found in the mammary gland. Thus, it is possible to study ECM-cell interactions and signalling pathways that regulate formation and maintenance of tissue-specific shape and functional differentiation of MECs in 3D under in vitro conditions. Here we present experimental protocols used to investigate the role of mitogen-activated protein kinase phosphatases (MKPs) during development of the alveoli-like structures by primary mouse mammary epithelial cells (PMMEC) cultured on Matrigel. We present detailed protocols for PMMEC isolation, and establishment of 3D cultures using an "on top" method, use of specific kinase and phosphatases inhibitors (PD98059 and pervanadate, respectively) administered at different stages of acinus development, and give examples of analyses carried out post-culture (Western blot, immunofluorescence staining, and confocal imaging).

  3. Anti-inflammatory effects of conjugated linoleic acid isomers and essential fatty acids in bovine mammary epithelial cells.

    Science.gov (United States)

    Dipasquale, D; Basiricò, L; Morera, P; Primi, R; Tröscher, A; Bernabucci, U

    2018-01-09

    Fatty acids are important modulators of inflammatory responses, in particular, n-3 and n-6 essential fatty acids and CLA have received particular attention for their ability to modulate inflammation. The objectives of this study were to compare the effects of CLA and essential fatty acids on the expression of pro and anti- inflammatory cytokines and their protective efficacy against inflammatory status in mammary gland by an in vitro model based on bovine mammary epithelial cells (BME-UV1). Bovine mammary epithelial cells were treated with complete medium containing either 50 µM of cis-9, trans-11 CLA (c9,t11 CLA) or trans-10, cis-12 CLA (t10,c12 CLA) or (α)-linolenic acid (aLnA) or (γ)-linolenic acid (gLnA) or linoleic acid (LA). After 48 h by fatty acids administration the cells were treated for 3 h with 20 µM of lipopolysaccharide (LPS) to induce inflammatory stimulus. Reactive oxygen species (ROS) production after treatments was assessed to verify and to compare the potential protection of different fatty acids against LPS-induced oxidative stress. The messenger RNA abundance of bovine pro and anti-inflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and interleukine-10 (IL-10)) and peroxisome proliferator receptor-α/γ (PPARγ/α) were determined in BME-UV1 by real-time PCR. The results showed that cells treated with fatty acids and LPS increased ROS production compared with control cells. Among treatments, cells treated with c9,t11 CLA and t10,c12 CLA isomers revealed significant lower levels of ROS production compared with other fatty acids. All fatty acids reduced the gene expression of pro- and anti-inflammatory cytokines. Among fatty acids, t10,c12 CLA, LA and gLnA showed an homogeneous reduction of the three pro-inflammatory cytokines and this may correspond to more balanced and efficient physiological activity and may trigger a better protective effect. The PPARγ gene expression was

  4. BETULINIC ACID WAS MORE CYTOTOXIC TOWARDS THE HUMAN BREAST CANCER CELL LINE MDA-MB-231 THAN THE HUMAN PROMYELOCYTIC LEUKAEMIA CELL LINE HL-60

    Directory of Open Access Journals (Sweden)

    LATIFAH SAIFUL YAZAN

    2009-01-01

    Full Text Available Betulinic acid (BA is a pentacyclic triterpene found in several botanical sources that has been shown to cause apoptosis in a number of cell lines. This study was undertaken to determine the in vitro cytotoxic properties of BA towards the human mammary carcinoma cell line MDA-MB-231 and the human promyelocytic leukaemia cell line HL-60 and the mode of the induced cell death. The cytotoxicity and mode of cell death of BA were determined using the MTT assay and DNAfragmentation analysis, respectively. In our study, the compound was found to be cytotoxic to MDA-MB-231 and HL-60 cells with IC50 values of 58 μg/mL and 134 μg/mL, respectively. Cells treated with high concentrations of BA exhibited features characteristic of apoptosis such as blebbing, shrinking and a number of small cytoplasm body masses when viewed under an inverted light microscope after 24 h. The incidence of apoptosis in MDA-MB-231 was further confirmed bythe DNA fragmentation analysis, with the formation of DNA fragments of oligonucleosomal size (180-200 base pairs, giving a ladder-like pattern on agarose gel electrophoresis. BA was more cytotoxic towards MDA-MB-231 than HL-60 cells, and induced apoptosis in MDA-MB-231 cells.

  5. Bovine Mastitis Resistance: Novel Quantitative Trait Loci and the Role of Bovine Mammary Epithelial Cells

    OpenAIRE

    Kurz, Jacqueline P.

    2018-01-01

    Bovine mastitis, or inflammation of the mammary gland, has substantial economic and animal welfare implications. A genetic basis for mastitis resistance traits is recognized and can be used to guide selective breeding programs. The discovery of regions of the genome associated with mastitis resistance, and knowledge of the underlying molecular mechanisms responsible, can facilitate development of efficient mastitis control and therapeutic strategies. The objectives of this dissertation resear...

  6. Early Increases in Superantigen-Specific Foxp3+ Regulatory T Cells during Mouse Mammary Tumor Virus Infection▿ †

    Science.gov (United States)

    Cabrera, Gabriel; Burzyn, Dalia; Mundiñano, Juliana; Courreges, M. Cecilia; Camicia, Gabriela; Lorenzo, Daniela; Costa, Héctor; Ross, Susan R.; Nepomnaschy, Irene; Piazzon, Isabel

    2008-01-01

    Mouse mammary tumor virus (MMTV) is a milk-borne betaretrovirus that has developed strategies to exploit and subvert the host immune system. Here, we show in a natural model of MMTV infection that the virus causes early and progressive increases in superantigen (SAg)-specific Foxp3+ regulatory T cells (Treg) in Peyer's patches (PP). These increases were shown to be dependent on the presence of dendritic cells. CD4+ CD25+ T cells from the PP of infected mice preferentially suppress the proliferative response of T cells to SAg-expressing antigen-presenting cells ex vivo. We investigated the influence of the depletion of CD25+ cells at different stages of the infection. When CD25+ cells were depleted before MMTV infection, an increase in the number of PP SAg-cognate Foxp3− T cells was found at day 6 of infection. Since the SAg response is associated with viral amplification, the possibility exists that Treg cells attenuate the increase in viral load at the beginning of the infection. In contrast, depletion of CD25+ cells once the initial SAg response has developed caused a lower viral load, suggesting that at later stages Treg cells may favor viral persistence. Thus, our results indicated that Treg cells play an important and complex role during MMTV infection. PMID:18495774

  7. Mouse mammary tumor viruses expressed by RIII/Sa mice with a high incidence of mammary tumors interact with the Vβ-2- and Vβ-8-specific T cells during viral infection

    International Nuclear Information System (INIS)

    Uz-Zaman, Taher; Ignatowicz, Leszek; Sarkar, Nurul H.

    2003-01-01

    The mouse mammary tumor viruses (MMTVs) that induce mammary adenocarcinomas in mice are transmitted from mother to offspring through milk. MMTV infection results in the deletion of specific T cells as a consequence of interaction between the MMTV-encoded superantigen (Sag) and specific Vβ chains of the T cell receptor. The specificity and kinetics of T cell deletion for a number of highly oncogenic MMTVs, such as C3H- and GR-MMTVs, have been studied in great detail. Some work has also been done with the MMTVs expressed in two substrains of RIII mice, BR6 and RIIIS/J, but the nature of the interaction between T cells and the virus(es) that the parental RIII-strain of mice express has not been investigated. Since RIII mice (designated henceforth as RIII/Sa) have a very high incidence (90-98%) of mammary tumors, and they have been extensively used in studies of the biology of mammary tumor development, we have presently determined the pattern of Vβ-T cell deletion caused by RIII/Sa-MMTV-Sag(s) during viral infection. T cells were isolated from lymph nodes and thymus of young RIII/Sa mice, as well as from BALB/c (BALB/cfRIII/Sa), C57BL (C57BLfRIII/Sa), and RIIIS/J (RIIIS/JfRIII/Sa) mice after they were infected with RIII/Sa-MMTV(s) by foster nursing. The composition of the T cells was analyzed by FACS using a panel of monoclonal antibodies specific to a variety of Vβs. Our results show that milk-borne RIII/Sa-MMTV(s) infection leads to the deletion of CD4 + Vβ-2, and to a lesser extent Vβ-8 bearing peripheral and central T cells in RIII/Sa, RIIIS/J, BALB/c, and C57BL mice. Our results are in contrast to the findings that C3H-, GR-, and BR6-MMTVs delete Vβ-14- and/or Vβ-15-specific T cells

  8. Innate immune responses induced by lipopolysaccharide and lipoteichoic acid in primary goat mammary epithelial cells.

    Science.gov (United States)

    Bulgari, Omar; Dong, Xianwen; Roca, Alfred L; Caroli, Anna M; Loor, Juan J

    2017-01-01

    Innate immune responses induced by in vitro stimulation of primary mammary epithelial cells (MEC) using Gram-negative lipopolysaccharide (LPS) and Gram-positive lipoteichoic acid (LTA) bacterial cell wall components are well- characterized in bovine species. The objective of the current study was to characterize the downstream regulation of the inflammatory response induced by Toll-like receptors in primary goat MEC (pgMEC). We performed quantitative real-time RT-PCR (qPCR) to measure mRNA levels of 9 genes involved in transcriptional regulation or antibacterial activity: Toll-like receptor 2 ( TLR2 ), Toll-like receptor 4 ( TLR4 ), prostaglandin-endoperoxide synthase 2 ( PTGS2 ), interferon induced protein with tetratricopeptide repeats 3 ( IFIT3 ), interferon regulatory factor 3 ( IRF3 ), myeloid differentiation primary response 88 ( MYD88 ), nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 ( NFKB1 ), Toll interacting protein ( TOLLIP ), and lactoferrin ( LTF ). Furthermore, we analyzed 7 cytokines involved in Toll-like receptor signaling pathways: C-C motif chemokine ligand 2 ( CCL2 ), C-C motif chemokine ligand 5 ( CCL5 ), C-X-C motif chemokine ligand 6 ( CXCL6 ), interleukin 8 ( CXCL8 ), interleukin 1 beta ( IL1B ), interleukin 6 ( IL6 ), and tumor necrosis factor alpha ( TNF ). Stimulation of pgMEC with LPS for 3 h led to an increase in expression of CCL2 , CXCL6 , IL6 , CXCL8 , PTGS2 , IFIT3 , MYD88 , NFKB1 , and TLR4 ( P  < 0.05). Except for IL6 , and PTGS2 , the same genes had greater expression than controls at 6 h post-LPS ( P  < 0.05). Expression of CCL5 , PTGS2 , IFIT3 , NFKB1 , TLR4 , and TOLLIP was greater than controls after 3 h of incubation with LTA ( P  < 0.05). Compared to controls, stimulation with LTA for 6 h led to greater expression of PTGS2 , IFIT3 , NFKB1 , and TOLLIP ( P  < 0.05) whereas the expression of CXCL6 , CXCL8 , and TLR4 was lower ( P  < 0.05). At 3 h incubation with both toxins

  9. Programmed Cell-to-Cell Variability in Ras Activity Triggers Emergent Behaviors during Mammary Epithelial Morphogenesis

    Directory of Open Access Journals (Sweden)

    Jennifer S. Liu

    2012-11-01

    Full Text Available Variability in signaling pathway activation between neighboring epithelial cells can arise from local differences in the microenvironment, noisy gene expression, or acquired genetic changes. To investigate the consequences of this cell-to-cell variability in signaling pathway activation on coordinated multicellular processes such as morphogenesis, we use DNA-programmed assembly to construct three-dimensional MCF10A microtissues that are mosaic for low-level expression of activated H-Ras. We find two emergent behaviors in mosaic microtissues: cells with activated H-Ras are basally extruded or lead motile multicellular protrusions that direct the collective motility of their wild-type neighbors. Remarkably, these behaviors are not observed in homogeneous microtissues in which all cells express the activated Ras protein, indicating that heterogeneity in Ras activity, rather than the total amount of Ras activity, is critical for these processes. Our results directly demonstrate that cell-to-cell variability in pathway activation within local populations of epithelial cells can drive emergent behaviors during epithelial morphogenesis.

  10. Establishment of cell lines with rat spermatogonial stem cell characteristics

    NARCIS (Netherlands)

    van Pelt, Ans M. M.; Roepers-Gajadien, Hermien L.; Gademan, Iris S.; Creemers, Laura B.; de Rooij, Dirk G.; van Dissel-Emiliani, Federica M. F.

    2002-01-01

    Spermatogonial cell lines were established by transfecting a mixed population of purified rat A(s) (stem cells), A(pr) and A(al) spermatogonia with SV40 large T antigen. Two cell lines were characterized and found to express Hsp90alpha and oct-4, specific markers for germ cells and A spermatogonia,

  11. ATM is required for SOD2 expression and homeostasis within the mammary gland.

    Science.gov (United States)

    Dyer, Lisa M; Kepple, Jessica D; Ai, Lingbao; Kim, Wan-Ju; Stanton, Virginia L; Reinhard, Mary K; Backman, Lindsey R F; Streitfeld, W Scott; Babu, Nivetha Ramesh; Treiber, Nicolai; Scharffetter-Kochanek, Karin; McKinnon, Peter J; Brown, Kevin D

    2017-12-01

    ATM activates the NF-κB transcriptional complex in response to genotoxic and oxidative stress. The purpose of this study was to examine if the NF-κB target gene and critical antioxidant SOD2 (MnSOD) in cultured mammary epithelium is also ATM-dependent, and what phenotypes arise from deletion of ATM and SOD2 within the mammary gland. SOD2 expression was studied in human mammary epithelial cells and MCF10A using RNAi to knockdown ATM or the NF-κB subunit RelA. To study ATM and SOD2 function in mammary glands, mouse lines containing Atm or Sod2 genes containing LoxP sites were mated with mice harboring Cre recombinase under the control of the whey acidic protein promoter. Quantitative PCR was used to measure gene expression, and mammary gland structure was studied using histology. SOD2 expression is ATM- and RelA-dependent, ATM knockdown renders cells sensitive to pro-oxidant exposure, and SOD mimetics partially rescue this sensitivity. Mice with germline deletion of Atm fail to develop mature mammary glands, but using a conditional knockout approach, we determined that Atm deletion significantly diminished the expression of Sod2. We also observed that these mice (termed Atm Δ/Δ ) displayed a progressive lactation defect as judged by reduced pup growth rate, aberrant lobulo-alveolar structure, diminished milk protein gene expression, and increased apoptosis within lactating glands. This phenotype appears to be linked to dysregulated Sod2 expression as mammary gland-specific deletion of Sod2 phenocopies defects observed in Atm Δ/Δ dams. We conclude that ATM is required to promote expression of SOD2 within the mammary epithelium, and that both ATM and SOD2 play a crucial role in mammary gland homeostasis.

  12. Mammary fibroadenoma in a lamb

    Science.gov (United States)

    Guvenc, Tolga; Yarim, Murat; Kabak, Yonca B.; Sozgen, Yuksel

    2007-01-01

    A fibroadenoma was diagnosed in the left udder of a 3-month-old female Chios lamb. No recurrence was observed after surgery. Grossly, the tumor had a whitish-gray lobular appearance, and the lobules were interlaced with thin septa. Microscopically, the tumor was composed of proliferating fibroepithelial tissue, including differentiated ducts lined by whorls and interlacing bundles of abundant loose fibrovascular stroma. Immunohistochemistry revealed the ductal epithelium to be positive for pancytokeratin (AE1/AE3) and loose fibrovascular stroma was positive for vimentin and basal cells covering the ductal epithelium of alpha-smooth-muscle actin. Immunostaining for the estrogen and progesterone receptors was negative. A diagnosis of mammary fibroadenoma was made based on the histological and immunohistochemical findings. PMID:17993758

  13. Downregulation of BTLA on NKT Cells Promotes Tumor Immune Control in a Mouse Model of Mammary Carcinoma.

    Science.gov (United States)

    Sekar, Divya; Govene, Luisa; Del Río, María-Luisa; Sirait-Fischer, Evelyn; Fink, Annika F; Brüne, Bernhard; Rodriguez-Barbosa, José I; Weigert, Andreas

    2018-03-07

    Natural Killer T cells (NKT cells) are emerging as critical regulators of pro- and anti-tumor immunity, both at baseline and in therapeutic settings. While type I NKT cells can promote anti-tumor immunity, their activity in the tumor microenvironment may be limited by negative regulators such as inhibitory immune checkpoints. We observed dominant expression of B- and T-lymphocyte attenuator (BTLA) on type I NKT cells in polyoma middle T oncogene-driven (PyMT) murine autochthonous mammary tumors. Other immune checkpoint receptors, such as programmed cell death 1 (PD-1) were equally distributed among T cell populations. Interference with BTLA using neutralizing antibodies limited tumor growth and pulmonary metastasis in the PyMT model in a therapeutic setting, correlating with an increase in type I NKT cells and expression of cytotoxic marker genes. While therapeutic application of an anti-PD-1 antibody increased the number of CD8+ cytotoxic T cells and elevated IL-12 expression, tumor control was not established. Expression of ZBTB16, the lineage-determining transcription factor of type I NKT cells, was correlated with a favorable patient prognosis in the METABRIC dataset, and BTLA levels were instrumental to further distinguish prognosis in patents with high ZBTB16 expression. Taken together, these data support a role of BTLA on type I NKT cells in limiting anti-tumor immunity.

  14. Downregulation of BTLA on NKT Cells Promotes Tumor Immune Control in a Mouse Model of Mammary Carcinoma

    Directory of Open Access Journals (Sweden)

    Divya Sekar

    2018-03-01

    Full Text Available Natural Killer T cells (NKT cells are emerging as critical regulators of pro- and anti-tumor immunity, both at baseline and in therapeutic settings. While type I NKT cells can promote anti-tumor immunity, their activity in the tumor microenvironment may be limited by negative regulators such as inhibitory immune checkpoints. We observed dominant expression of B- and T-lymphocyte attenuator (BTLA on type I NKT cells in polyoma middle T oncogene-driven (PyMT murine autochthonous mammary tumors. Other immune checkpoint receptors, such as programmed cell death 1 (PD-1 were equally distributed among T cell populations. Interference with BTLA using neutralizing antibodies limited tumor growth and pulmonary metastasis in the PyMT model in a therapeutic setting, correlating with an increase in type I NKT cells and expression of cytotoxic marker genes. While therapeutic application of an anti-PD-1 antibody increased the number of CD8+ cytotoxic T cells and elevated IL-12 expression, tumor control was not established. Expression of ZBTB16, the lineage-determining transcription factor of type I NKT cells, was correlated with a favorable patient prognosis in the METABRIC dataset, and BTLA levels were instrumental to further distinguish prognosis in patents with high ZBTB16 expression. Taken together, these data support a role of BTLA on type I NKT cells in limiting anti-tumor immunity.

  15. Alpha1 and Alpha2 Integrins Mediate Invasive Activity of Mouse Mammary Carcinoma Cells through Regulation of Stromelysin-1 Expression

    Energy Technology Data Exchange (ETDEWEB)

    Lochter, Andre; Navre, Marc; Werb, Zena; Bissell, Mina J

    1998-06-29

    Tumor cell invasion relies on cell migration and extracellular matrix proteolysis. We investigated the contribution of different integrins to the invasive activity of mouse mammary carcinoma cells. Antibodies against integrin subunits {alpha}6 and {beta}1, but not against {alpha}1 and {alpha}2, inhibited cell locomotion on a reconstituted basement membrane in two-dimensional cell migration assays, whereas antibodies against {beta}1, but not against a6 or {alpha}2, interfered with cell adhesion to basement membrane constituents. Blocking antibodies against {alpha}1 integrins impaired only cell adhesion to type IV collagen. Antibodies against {alpha}1, {alpha}2, {alpha}6, and {beta}1, but not {alpha}5, integrin subunits reduced invasion of a reconstituted basement membrane. Integrins {alpha}1 and {alpha}2, which contributed only marginally to motility and adhesion, regulated proteinase production. Antibodies against {alpha}1 and {alpha}2, but not {alpha}6 and {beta}1, integrin subunits inhibited both transcription and protein expression of the matrix metalloproteinase stromelysin-1. Inhibition of tumor cell invasion by antibodies against {alpha}1 and {alpha}2 was reversed by addition of recombinant stromelysin-1. In contrast, stromelysin-1 could not rescue invasion inhibited by anti-{alpha}6 antibodies. Our data indicate that {alpha}1 and {alpha}2 integrins confer invasive behavior by regulating stromelysin-1 expression, whereas {alpha}6 integrins regulate cell motility. These results provide new insights into the specific functions of integrins during tumor cell invasion.

  16. Effect of the Ketone Body Beta-Hydroxybutyrate on the Innate Defense Capability of Primary Bovine Mammary Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Maria Hillreiner

    Full Text Available Negative energy balance and ketosis are thought to cause impaired immune function and to increase the risk of clinical mastitis in dairy cows. The present in vitro study aimed to investigate the effect of elevated levels of the predominant ketone body β-hydroxybutyrate on the innate defense capability of primary bovine mammary epithelial cells (pbMEC challenged with the mastitis pathogen Escherichia coli (E. coli. Therefore, pbMEC of healthy dairy cows in mid- lactation were isolated from milk and challenged in culture with 3 mM BHBA and E. coli. pbMEC stimulated with E. coli for 6 h or 30 h showed an up-regulation of several innate immune genes, whereas co-stimulation of pbMEC with 3 mM BHBA and E. coli resulted in the down-regulation of CCL2, SAA3, LF and C3 gene expression compared to the challenge with solely the bacterial stimulus. These results indicated that increased BHBA concentrations may be partially responsible for the higher mastitis susceptibility of dairy cows in early lactation. Elevated levels of BHBA in blood and milk during negative energy balance and ketosis are likely to impair innate immune function in the bovine mammary gland by attenuating the expression of a broad range of innate immune genes.

  17. Effect of the Ketone Body Beta-Hydroxybutyrate on the Innate Defense Capability of Primary Bovine Mammary Epithelial Cells.

    Science.gov (United States)

    Hillreiner, Maria; Flinspach, Claudia; Pfaffl, Michael W; Kliem, Heike

    2016-01-01

    Negative energy balance and ketosis are thought to cause impaired immune function and to increase the risk of clinical mastitis in dairy cows. The present in vitro study aimed to investigate the effect of elevated levels of the predominant ketone body β-hydroxybutyrate on the innate defense capability of primary bovine mammary epithelial cells (pbMEC) challenged with the mastitis pathogen Escherichia coli (E. coli). Therefore, pbMEC of healthy dairy cows in mid- lactation were isolated from milk and challenged in culture with 3 mM BHBA and E. coli. pbMEC stimulated with E. coli for 6 h or 30 h showed an up-regulation of several innate immune genes, whereas co-stimulation of pbMEC with 3 mM BHBA and E. coli resulted in the down-regulation of CCL2, SAA3, LF and C3 gene expression compared to the challenge with solely the bacterial stimulus. These results indicated that increased BHBA concentrations may be partially responsible for the higher mastitis susceptibility of dairy cows in early lactation. Elevated levels of BHBA in blood and milk during negative energy balance and ketosis are likely to impair innate immune function in the bovine mammary gland by attenuating the expression of a broad range of innate immune genes.

  18. [Synergistic effect of cell kinetics-directed chemo-endocrine therapy on experimental mammary tumors].

    Science.gov (United States)

    Ueki, H

    1987-11-01

    We tried to demonstrate that the cell kinetics-directed chemoendocrine therapy is more effective on hormone dependent breast cancer than empirical combination of the endocrine therapy and chemotherapy. Cell kinetics of each tumor was measured by flow cytometric analysis. Estrogen dependent human breast cancer cell line MCF-7 was used in vitro. In vivo, androgen dependent SC-115 carcinoma was transplanted to DDS mice. In vitro, tamoxifen was administered as the endocrine therapy. In vivo, we carried out testectomy on DDS mice. Effect of the endocrine therapy on the cell kinetics of the tumor was thought to be G1-S depression. High density 5FU was administered as the chemotherapeutic agents, whose content was 1 microgram/ml in vitro and 40 mg/kg in vivo. 5FU brought temporary decrease of cells in S phase. Only anteceding 5FU administration had synergistic effect in combination of 5FU and the endocrine therapy. 5FU was convinced to act more effectively on cells in S phase, so it was shown that cell kinetics-directed schedule was superior to the empirical treatment schedule in chemoendocrine therapy.

  19. Mammary cell turnover and expression of lipogenic genes in response to silage induced CLA and diet energy density in lactating cows

    DEFF Research Database (Denmark)

    Nørgaard, J V; Baumgard, L H; Nielsen, T Skau

    2008-01-01

    The objective of this experiment was to investigate possible effects of silage induced differences in milk conjugated linoleic acids (CLA) and diet energy density on cell turnover and production capacity in the mammary gland. Cows were given high levels of canola fat and fed either grass or maize...

  20. MiR-27a suppresses triglyceride accumulation and affects gene mRNA expression associated with fat metabolism in dairy goat mammary gland epithelial cells.

    Science.gov (United States)

    Lin, Xian-Zi; Luo, Jun; Zhang, Li-Ping; Wang, Wei; Shi, Heng-Bo; Zhu, Jiang-Jiang

    2013-05-25

    MicroRNAs (miRNAs), a well-defined group of small RNAs containing about 22 nucleotides, participate in various biological metabolic processes. miR-27a is a miRNA that is known to regulate fat synthesis and differentiation in preadipocyte cells. However, little is known regarding the role that miR-27a plays in regulating goat milk fat synthesis. In this study, we determined the miR-27a expression profile in goat mammary gland and found that miR-27a expression was correlated with the lactation cycle. Additionally, prolactin promoted miR-27a expression in goat mammary gland epithelial cells. Further functional analysis showed that over-expression of miR-27a down-regulated triglyceride accumulation and decreased the ratio of unsaturated/saturated fatty acid in mammary gland epithelial cells. miR-27a also significantly affected mRNA expression related to milk fat metabolism. Specifically, over-expression of miR-27a reduced gene mRNA expression associated with triglyceride synthesis by suppressing PPARγ protein levels. This study provides the first experimental evidence that miR-27a regulates triglyceride synthesis in goat mammary gland epithelial cells and improves our understanding about the importance of miRNAs in milk fat synthesis. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  1. Differential responses of cells from human skin keratinocyte and bovine mammary epithelium to attack by pore-forming Staphylococcus aureus alpha-toxin.

    Science.gov (United States)

    Suriyaphol, Gunnaporn; Sarikaputi, Meena; Suriyaphol, Prapat

    2009-11-01

    Human skin keratinocytes HaCat attacked by Staphylococcus aureus alpha-toxin showed a transient drop of cellular ATP levels whereas in toxin-perforated bovine mammary epithelial cells (BMEC), the ATP levels dropped more slowly. Morphologically, during the ATP level depletion, HaCat cell developed a spacious intracellular vacuole together with the transient influx of trypan blue. WST-1 signal, which tested the function of mitochondrial enzyme in viable cells, also decreased concomitantly. On the other hand, BMEC excluded trypan blue and vacuolation was not observed throughout the experiment. We conclude that mammary epithelial cells resist the toxin better than keratinocytes. This is the first report showing that alpha-toxin enhances transient membrane permeability to large molecules, temporary vacuole formation and the transient defect of mitochondrial enzyme in viable cells without cell lysis.

  2. Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    Li, M.L.; Aggeler, J.; Farson, D.A.; Hatier, C.; Hassell, J.; Bissell, M.J.

    1987-01-01

    When primary mouse mammary epithelial cells are cultured on plastic, they rapidly lose their ability to synthesize and secrete most milk proteins even in the presence of lactogenic hormones, whereas cells cultured on release type I collagen gels show greatly enhanced mRNA levels and secretion rates of β-casein and of some other milk proteins. The authors show here that culture on a reconstituted basement membrane from Engelbreth-Holm-Swarm tumor (EHS) allows > 90% of cells to produce high levels of β-casein. By comparison, 30-40% of cells on released type 1 gels and only 2-10% of cells on plastic express β-casein after 6 days in culture. Because only 40% of cells from late pregnant gland produced β-casein before culture, the EHS matrix can both induce and maintain an increased level of casein gene expression. Individual basal lamina components were also evaluated. Type IV collagen and fibronectin had little effect on morphology and β-casein mRNA levels. In contrast, both laminin and heparan sulfate proteoglycan increased β-casein mRNA levels. Profound morphological differences were evident between cells cultured on plastic and on EHS matrix, the latter cells forming ducts, ductules, and lumina and resembling secretory alveoli. These results emphasize the vital role of the extracellular matrix in receiving and integrating structural and functional signals that can direct specific gene expression in differentiated tissues

  3. Transforming growth factor (type beta) promotes the addition of chondroitin sulfate chains to the cell surface proteoglycan (syndecan) of mouse mammary epithelia

    OpenAIRE

    1989-01-01

    Cultured monolayers of NMuMG mouse mammary epithelial cells have augmented amounts of cell surface chondroitin sulfate glycosaminoglycan (GAG) when cultured in transforming growth factor-beta (TGF-beta), presumably because of increased synthesis on their cell surface proteoglycan (named syndecan), previously shown to contain chondroitin sulfate and heparan sulfate GAG. This increase occurs throughout the monolayer as shown using soluble thrombospondin as a binding probe. However, comparison o...

  4. Defining the ATM-mediated barrier to tumorigenesis in somatic mammary cells following ErbB2 activation.

    Science.gov (United States)

    Reddy, Jay P; Peddibhotla, Sirisha; Bu, Wen; Zhao, Jing; Haricharan, Svasti; Du, Yi-Chieh Nancy; Podsypanina, Katrina; Rosen, Jeffrey M; Donehower, Larry A; Li, Yi

    2010-02-23

    p53, apoptosis, and senescence are frequently activated in preneoplastic lesions and are barriers to progression to malignancy. These barriers have been suggested to result from an ATM-mediated DNA damage response (DDR), which may follow oncogene-induced hyperproliferation and ensuing DNA replication stress. To elucidate the currently untested role of DDR in breast cancer initiation, we examined the effect of oncogene expression in several murine models of breast cancer. We did not observe a detectable DDR in early hyperplastic lesions arising in transgenic mice expressing several different oncogenes. However, DDR signaling was strongly induced in preneoplastic lesions arising from individual mammary cells transduced in vivo by retroviruses expressing either PyMT or ErbB2. Thus, activation of an oncogene after normal tissue development causes a DDR. Furthermore, in this somatic ErbB2 tumor model, ATM, and thus DDR, is required for p53 stabilization, apoptosis, and senescence. In palpable tumors in this model, p53 stabilization and apoptosis are lost, but unexpectedly senescence remains in many tumor cells. Thus, this murine model fully recapitulates early DDR signaling; the eventual suppression of its endpoints in tumorigenesis provides compelling evidence that ErbB2-induced aberrant mammary cell proliferation leads to an ATM-mediated DDR that activates apoptosis and senescence, and at least the former must be overcome to progress to malignancy. This in vivo study also uncovers an unexpected effect of ErbB2 activation previously known for its prosurvival roles, and suggests that protection of the ATM-mediated DDR-p53 signaling pathway may be important in breast cancer prevention.

  5. Human adipose tissue from normal and tumoral breast regulates the behavior of mammary epithelial cells.

    Science.gov (United States)

    Pistone Creydt, Virginia; Fletcher, Sabrina Johanna; Giudice, Jimena; Bruzzone, Ariana; Chasseing, Norma Alejandra; Gonzalez, Eduardo Gustavo; Sacca, Paula Alejandra; Calvo, Juan Carlos

    2013-02-01

    Stromal-epithelial interactions mediate both breast development and breast cancer progression. In the present work, we evaluated the effects of conditioned media (CMs) of human adipose tissue explants from normal (hATN) and tumor (hATT) breast on proliferation, adhesion, migration and metalloproteases activity on tumor (MCF-7 and IBH-7) and non-tumor (MCF-10A) human breast epithelial cell lines. Human adipose tissues were obtained from patients and the conditioned medium from hATN and hATT collected after 24 h of incubation. MCF-10A, MCF-7 and IBH-7 cells were grown and incubated with CMs and proliferation and adhesion, as well as migration ability and metalloprotease activity, of epithelial cells after exposing cell cultures to hATN- or hATT-CMs were quantified. The statistical significance between different experimental conditions was evaluated by one-way ANOVA. Tukey's post hoc tests were performed. Tumor and non-tumor breast epithelial cells significantly increased their proliferation activity after 24 h of treatment with hATT-CMs compared to control-CMs. Furthermore, cellular adhesion of these two tumor cell lines was significantly lower with hATT-CMs than with hATN-CMs. Therefore, hATT-CMs seem to induce significantly lower expression or less activity of the components involved in cellular adhesion than hATN-CMs. In addition, hATT-CMs induced pro-MMP-9 and MMP-9 activity and increased the migration of MCF-7 and IBH-7 cells compared to hATN-CMs. We conclude that the microenvironment of the tumor interacts in a dynamic way with the mutated epithelium. This evidence leads to the possibility to modify the tumor behavior/phenotype through the regulation or modification of its microenvironment. We developed a model in which we obtained CMs from adipose tissue explants completely, either from normal or tumor breast. In this way, we studied the contribution of soluble factors independently of the possible effects of direct cell contact.

  6. Mammary Stem Cell Self-Renewal Is Regulated by Slit2/Robo1 Signaling through SNAI1 and mINSC

    Directory of Open Access Journals (Sweden)

    Mimmi S. Ballard

    2015-10-01

    Full Text Available Tissue homeostasis requires somatic stem cell maintenance; however, mechanisms regulating this process during organogenesis are not well understood. Here, we identify asymmetrically renewing basal and luminal stem cells in the mammary end bud. We demonstrate that SLIT2/ROBO1 signaling regulates the choice between self-renewing asymmetric cell divisions (ACDs and expansive symmetric cell divisions (SCDs by governing Inscuteable (mInsc, a key member of the spindle orientation machinery, through the transcription factor Snail (SNAI1. Loss of SLIT2/ROBO1 signaling increases SNAI1 in the nucleus. Overexpression of SNAI1 increases mInsc expression, an effect that is inhibited by SLIT2 treatment. Increased mInsc does not change cell proliferation in the mammary gland (MG but instead causes more basal cap cells to divide via SCD, at the expense of ACD, leading to more stem cells and larger outgrowths. Together, our studies provide insight into how the number of mammary stem cells is regulated by the extracellular cue SLIT2.

  7. Tumour necrosis factor-alpha-induced protein 8 (TNFAIP8) expression associated with cell survival and death in cancer cell lines infected with canine distemper virus.

    Science.gov (United States)

    Garcia, J A; Ferreira, H L; Vieira, F V; Gameiro, R; Andrade, A L; Eugênio, F R; Flores, E F; Cardoso, T C

    2017-06-01

    Oncolytic virotherapy is a novel strategy for treatment of cancer in humans and companion animals as well. Canine distemper virus (CDV), a paramyxovirus, has proven to be oncolytic through induction of apoptosis in canine-derived tumour cells, yet the mechanism behind this inhibitory action is poorly understood. In this study, three human mammary tumour cell lines and one canine-derived adenofibrosarcoma cell line were tested regarding to their susceptibility to CDV infection, cell proliferation, apoptosis, mitochondrial membrane potential and expression of tumour necrosis factor-alpha-induced protein 8 (TNFAIP8). CDV replication-induced cytopathic effect, decrease of cell proliferation rates, and >45% of infected cells were considered death and/or under late apoptosis/necrosis. TNFAIP8 and CDVM gene expression were positively correlated in all cell lines. In addition, mitochondrial membrane depolarization was associated with increase in virus titres (p < 0.005). Thus, these results strongly suggest that both human and canine mammary tumour cells are potential candidates for studies concerning CDV-induced cancer therapy. © 2015 John Wiley & Sons Ltd.

  8. PRRX2 as a novel TGF-β-induced factor enhances invasion and migration in mammary epithelial cell and correlates with poor prognosis in breast cancer.

    Science.gov (United States)

    Juang, Yu-Lin; Jeng, Yung-Ming; Chen, Chi-Long; Lien, Huang-Chun

    2016-12-01

    TGF-β and cancer progression share a multifaceted relationship. Despite the knowledge of TGF-β biology in the development of cancer, several factors that mediate the cancer-promoting role of TGF-β continue to be identified. This study aimed to identify and characterise novel factors potentially related to TGF-β-mediated tumour aggression in breast cells. We treated the human mammary epithelial cell line MCF10A with TGF-β and identified TGF-β-dependent upregulation of PRRX2, the gene encoding paired-related homeobox 2 transcription factor. Overexpression of PRRX2 enhanced migration, invasion and anchorage-independent growth of MCF10A cells and induced partial epithelial mesenchymal transition (EMT), as determined by partial fibroblastoid morphology of cells, upregulation of EMT markers and partially disrupted acinar structure in a three-dimensional culture. We further identified PLAT, the gene encoding tissue-type plasminogen activator (tPA), as the highest differentially expressed gene in PRRX2-overexpressing MCF10A cells, and demonstrated direct binding and transactivation of the PLAT promoter by PRRX2. Furthermore, PLAT knockdown inhibited PRRX2-mediated enhanced migration and invasion, suggesting that tPA may mediate PRRX2-induced migration and invasion. Finally, the significant correlation of PRRX2 expression with poor survival in 118 primary breast tumour samples (P = 0.027) and the increased PRRX2 expression in metaplastic breast carcinoma samples, which is pathogenetically related to EMT, validated the biological importance of PRRX2-enhanced migration and invasion and PRRX2-induced EMT. Thus, our data suggest that upregulation of PRRX2 may be a mechanism contributing to TGF-β-induced invasion and EMT in breast cancer. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Cell lines authentication and mycoplasma detection as minimun quality control of cell lines in biobanking.

    Science.gov (United States)

    Corral-Vázquez, C; Aguilar-Quesada, R; Catalina, P; Lucena-Aguilar, G; Ligero, G; Miranda, B; Carrillo-Ávila, J A

    2017-06-01

    Establishment of continuous cell lines from human normal and tumor tissues is an extended and useful methodology for molecular characterization of cancer pathophysiology and drug development in research laboratories. The exchange of these cell lines between different labs is a common practice that can compromise assays reliability due to contamination with microorganism such as mycoplasma or cells from different flasks that compromise experiment reproducibility and reliability. Great proportions of cell lines are contaminated with mycoplasma and/or are replaced by cells derived for a different origin during processing or distribution process. The scientific community has underestimated this problem and thousand of research experiment has been done with cell lines that are incorrectly identified and wrong scientific conclusions have been published. Regular contamination and authentication tests are necessary in order to avoid negative consequences of widespread misidentified and contaminated cell lines. Cell banks generate, store and distribute cell lines for research, being mandatory a consistent and continuous quality program. Methods implementation for guaranteeing both, the absence of mycoplasma and authentication in the supplied cell lines, has been performed in the Andalusian Health System Biobank. Specifically, precise results were obtained using real time PCR detection for mycoplasma and 10 STRs identification by capillary electrophoresis for cell line authentication. Advantages and disadvantages of these protocols are discussed.

  10. Fraction against Human Cancer Cell Lines

    African Journals Online (AJOL)

    fraction of A. sieberi against seven cancer cell lines (Colo20, HCT116, DLD, MCF7, Jurkat, HepG2 and ... The morphology of the HepG2 cell nucleus was investigated by Hoechst 33342, ..... Gong F, Liang Y, Xie P, Chau F. Information theory.

  11. Essential role of miR-200c in regulating self-renewal of breast cancer stem cells and their counterparts of mammary epithelium

    International Nuclear Information System (INIS)

    Feng, Zhong-Ming; Qiu, Jun; Chen, Xie-Wan; Liao, Rong-Xia; Liao, Xing-Yun; Zhang, Lu-Ping; Chen, Xu; Li, Yan; Chen, Zheng-Tang; Sun, Jian-Guo

    2015-01-01

    Breast cancer stem cells (BCSCs) have been reported as the origin of breast cancer and the radical cause of drug resistance, relapse and metastasis in breast cancer. BCSCs could be derived from mutated mammary epithelial stem cells (MaSCs). Therefore, comparing the molecular differences between BCSCs and MaSCs may clarify the mechanism underlying breast carcinogenesis and the targets for gene therapy. Specifically, the distinct miRNome data of BCSCs and MaSCs need to be analyzed to find out the key miRNAs and reveal their roles in regulating the stemness of BCSCs. MUC1 − ESA + cells were isolated from normal mammary epithelial cell line MCF-10A by fluorescence-activated cell sorting (FACS) and tested for stemness by clonogenic assay and multi-potential differentiation experiments. The miRNA profiles of MaSCs, BCSCs and breast cancer MCF-7 cells were compared to obtain the candidate miRNAs that may regulate breast tumorigenesis. An miRNA consecutively upregulated from MaSCs to BCSCs to MCF-7 cells, miR-200c, was chosen to determine its role in regulating the stemness of BCSCs and MaSCs in vitro and in vivo. Based on bioinformatics, the targets of miR-200c were validated by dual-luciferase report system, western blot and rescue experiments. In a 2-D clonogenic assay, MUC1 − ESA + cells gave rise to multiple morphological colonies, including luminal colonies, myoepithelial colonies and mixed colonies. The clonogenic potential of MUC1 − ESA + (61.5 ± 3.87 %) was significantly higher than that of non-stem MCF-10A cells (53.5 ± 3.42 %) (P < 0.05). In a 3-D matrigel culture, MUC1 − ESA + cells grew into mammospheres with duct-like structures. A total of 12 miRNAs of interest were identified, 8 of which were upregulated and 4 downregulated in BCSCs compared with MaSCs. In gain- and lost-of-function assays, miR-200c was sufficient to inhibit the self-renewal of BCSCs and MaSCs in vitro and the growth of BCSCs in vivo. Furthermore, miR-200c negatively regulated

  12. Impact of Heat Stress on Cellular and Transcriptional Adaptation of Mammary Epithelial Cells in Riverine Buffalo (Bubalus Bubalis).

    Science.gov (United States)

    Kapila, Neha; Sharma, Ankita; Kishore, Amit; Sodhi, Monika; Tripathi, Pawan K; Mohanty, Ashok K; Mukesh, Manishi

    2016-01-01

    The present study aims to identify the heat responsive genes and biological pathways in heat stressed buffalo mammary epithelial cells (MECs). The primary mammary epithelial cells of riverine buffalo were exposed to thermal stress at 42°C for one hour. The cells were subsequently allowed to recover at 37°C and harvested at different time intervals (30 min to 48 h) along with control samples (un-stressed). In order to assess the impact of heat stress in buffalo MECs, several in-vitro cellular parameters (lactate dehydrogenase activity, cell proliferation assay, cellular viability, cell death and apoptosis) and transcriptional studies were conducted. The heat stress resulted in overall decrease in cell viability and cell proliferation of MECs while induction of cellular apoptosis and necrosis. The transcriptomic profile of heat stressed MECs was generated using Agilent 44 K bovine oligonucleotide array and at cutoff criteria of ≥3-or ≤3 fold change, a total of 153 genes were observed to be upregulated while 8 genes were down regulated across all time points post heat stress. The genes that were specifically up-regulated or down-regulated were identified as heat responsive genes. The upregulated genes in heat stressed MECs belonged to heat shock family viz., HSPA6, HSPB8, DNAJB2, HSPA1A. Along with HSPs, genes like BOLA, MRPL55, PFKFB3, PSMC2, ENDODD1, ARID5A, and SENP3 were also upregulated. Microarray data revealed that the heat responsive genes belonged to different functional classes viz., chaperons; immune responsive; cell proliferation and metabolism related. Gene ontology analysis revealed enrichment of several biological processes like; cellular process, metabolic process, response to stimulus, biological regulation, immune system processes and signaling. The transcriptome analysis data was further validated by RT-qPCR studies. Several HSP (HSP40, HSP60, HSP70, HSP90, and HSPB1), apoptotic (Bax and Bcl2), immune (IL6, TNFα and NF-kβ) and oxidative

  13. 4T1 Murine Mammary Carcinoma Cells Enhance Macrophage-Mediated Innate Inflammatory Responses.

    Directory of Open Access Journals (Sweden)

    Laurence Madera

    Full Text Available Tumor progression and the immune response are intricately linked. While it is known that cancers alter macrophage inflammatory responses to promote tumor progression, little is known regarding how cancers affect macrophage-dependent innate host defense. In this study, murine bone-marrow-derived macrophages (BMDM were exposed to murine carcinoma-conditioned media prior to assessment of the macrophage inflammatory response. BMDMs exposed to 4T1 mammary carcinoma-conditioned medium demonstrated enhanced production of pro-inflammatory cytokines tumor necrosis factor α, interleukin-6, and CCL2 in response to lipopolysaccharide (LPS while production of interleukin-10 remained unchanged. The increased LPS-induced production of pro-inflammatory cytokines was transient and correlated with enhanced cytokine production in response to other Toll-like receptor agonists, including peptidoglycan and flagellin. In addition, 4T1-conditioned BMDMs exhibited strengthened LPS-induced nitric oxide production and enhanced phagocytosis of Escherichia coli. 4T1-mediated augmentation of macrophage responses to LPS was partially dependent on the NFκB pathway, macrophage-colony stimulating factor, and actin polymerization, as well as the presence of 4T1-secreted extracellular vesicles. Furthermore, peritoneal macrophages obtained from 4T1 tumor-bearing mice displayed enhanced pro-inflammatory cytokine production in response to LPS. These results suggest that uptake of 4T1-secreted factors and actin-mediated ingestion of 4T1-secreted exosomes by macrophages cause a transient enhancement of innate inflammatory responses. Mammary carcinoma-mediated regulation of innate immunity may have significant implications for our understanding of host defense and cancer progression.

  14. The effect of G protein-coupled receptor kinase 2 (GRK2) on lactation and on proliferation of mammary epithelial cells from dairy cows.

    Science.gov (United States)

    Hou, Xiaoming; Hu, Hongliu; Lin, Ye; Qu, Bo; Gao, Xuejun; Li, Qingzhang

    2016-07-01

    Milk protein is an important component of milk and a nutritional source for human consumption. To better understand the molecular events underlying synthesis of milk proteins, the global gene expression patterns in mammary glands of dairy cow with high-quality milk (>3% milk protein; >3.5% milk fat) and low-quality milk (milk protein; milk fat) were examined via digital gene expression study. A total of 139 upregulated and 66 downregulated genes were detected in the mammary tissues of lactating cows with high-quality milk compared with the tissues of cows with low-quality milk. A pathway enrichment study of these genes revealed that the top 5 pathways that were differentially affected in the tissues of cows with high- versus low-quality milk involved metabolic pathways, cancer, cytokine-cytokine receptor interactions, regulation of the actin cytoskeleton, and insulin signaling. We also found that the G protein-coupled receptor kinase 2 (GRK2) was one of the most highly upregulated genes in lactating mammary tissue with low-quality milk compared with tissue with high-quality milk. The knockdown of GRK2 in cultured bovine mammary epithelial cells enhanced CSN2 expression and activated signaling molecules related to translation, including protein kinase B, mammalian target of rapamycin, and p70 ribosomal protein S6 kinase 1 (S6K1), whereas overexpression of GRK2 had the opposite effects. However, expression of genes involved in the mitogen-activated protein kinase pathway was positively regulated by GRK2. Therefore, GRK2 seems to act as a negative mediator of milk-protein synthesis via the protein kinase B-mammalian target of rapamycin signaling axis. Furthermore, GRK2 may negatively control milk-protein synthesis by activating the mitogen-activated protein kinase pathway in dairy cow mammary epithelial cells. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Tumor-Specific Immunotherapy of Mammary Cancer

    National Research Council Canada - National Science Library

    Ostrand-Rosenberg, Suzanne

    1998-01-01

    .... To enhance the activation of CD4(+) T helper cells, autologous mouse mammary tumor cells have been transfected with syngeneic MHC class II genes plus costimulatory and antigen presentation accessory molecules, including B7-1, B7-2...

  16. Differential biological effects of iodoacetate in mammalian cell lines; radio sensitization and radio protection

    International Nuclear Information System (INIS)

    Yadav, Usha; Anjaria, K.B.; Desai, Utkarsha N.; Chaurasia, Rajesh K.; Shirsath, K.B.; Bhat, Nagesh N.; Balakrishnan, Sreedevi; Sapra, B.K.; Nairy, Rajesha

    2014-01-01

    There are several studies where it has been shown that Iodoacetate (IA) possesses in vivo anti-tumor activity. The fact that it is a model glycolytic inhibitor makes it more interesting. As seen in recent trends, glycolytic inhibitors are emerging as new strategy for cancer therapeutic research taking advantage of glycolytic phenotype of cancerous tissues. IA has been reported to have radioprotective effects in yeast cells and human lymphocytes. Biological effects of IA in response to radiation in mammalian cell lines are not well documented. We screened IA for cytotoxicity using clonogenic assay at different concentrations ranging from 0.1 to 2.5 μg/ml using three different mammalian cell lines; A-549 (human lung carcinoma cell line), MCF-7 (human mammary cancer cell line) and a noncancerous CHO (Chinese hamster ovary cell line). For studying radioprotective/radio sensitizing efficacy, cells were exposed to 4 Gy of 60 Co-γ radiation using a teletherapy source at a dose rate of 1 Gy/min, following which IA post-treatment was carried out. Clonogenic and micronucleus assay were performed to assess radioprotection/sensitization. The results indicated that IA was highly cytotoxic in cancerous cell lines A-549 (IC 50 =1.25 μg/ml) and MCF-7 (IC 50 = 1.9 μg/ml). In contrast, it was totally non-toxic in non-cancerous cell line, viz. CHO, in the same concentration range. In addition, IA exhibited radio protective effect in CHO cell line, whereas in other two cancer cell lines, viz. A-549 and MCF-7, radio sensitizing effect was seen as judged by induction of cell killing and micronuclei. In conclusion, lA, a model glycolytic inhibitor, was found to be selectively cytotoxic in cancer cells as compared to normal cells. Further, it reduced radiation induced damage (micronuclei and cell killing) in normal cells but increased it in cancer cells indicating its potential use in cancer therapy. (author)

  17. Cell fusion induced by ionizing radiation in various cell lines

    International Nuclear Information System (INIS)

    Khair, M.B.

    1994-07-01

    Cell fusion induced by ionizing radiation has been studied in rat's hepatocytes in vivo and in different cell lines in vitro. These cell lines were: Hela cells, V-79 fibroblasts, human and rat lymphocytes. For irradiation, 0.85 MeV fission neutrons and 14 MeV fast neutrons were used. Cell analyses were performed by fluorescent dyes using immunofluorescent microscope and flow cytometre. Our results in vivo showed that, regardless the dose-rate, a dose of 1 Gy approximately was enough to induce a significant level of cell fusion depending on neutron energy and the age of rats. The level of cell fusion was also significant in Hela cells at a dose of 0.5 Gy. Similar effect, but to a lesser extent, was observed in V-79 cells. Whereas, in lymphocytes insignificant cell fusion was noticed. The varying levels of cell-fusion in different cell lines could be attributed to the type of cells and mutual contact between cells. Furthermore irradiation did not show any influence on cell division ability in both hepatocytes and Hela cells and that fused cells were also able to divide forming a new generation of cells. (author). 36 refs., 8 figs., 10 tabs

  18. Cell Line Data Base: structure and recent improvements towards molecular authentication of human cell lines.

    Science.gov (United States)

    Romano, Paolo; Manniello, Assunta; Aresu, Ottavia; Armento, Massimiliano; Cesaro, Michela; Parodi, Barbara

    2009-01-01

    The Cell Line Data Base (CLDB) is a well-known reference information source on human and animal cell lines including information on more than 6000 cell lines. Main biological features are coded according to controlled vocabularies derived from international lists and taxonomies. HyperCLDB (http://bioinformatics.istge.it/hypercldb/) is a hypertext version of CLDB that improves data accessibility by also allowing information retrieval through web spiders. Access to HyperCLDB is provided through indexes of biological characteristics and navigation in the hypertext is granted by many internal links. HyperCLDB also includes links to external resources. Recently, an interest was raised for a reference nomenclature for cell lines and CLDB was seen as an authoritative system. Furthermore, to overcome the cell line misidentification problem, molecular authentication methods, such as fingerprinting, single-locus short tandem repeat (STR) profile and single nucleotide polymorphisms validation, were proposed. Since this data is distributed, a reference portal on authentication of human cell lines is needed. We present here the architecture and contents of CLDB, its recent enhancements and perspectives. We also present a new related database, the Cell Line Integrated Molecular Authentication (CLIMA) database (http://bioinformatics.istge.it/clima/), that allows to link authentication data to actual cell lines.

  19. Cell Penetrating Capacity and Internalization Mechanisms Used by the Synthetic Peptide CIGB-552 and Its Relationship with Tumor Cell Line Sensitivity.

    Science.gov (United States)

    Astrada, Soledad; Fernández Massó, Julio Raúl; Vallespí, Maribel G; Bollati-Fogolín, Mariela

    2018-03-30

    CIGB-552 is a twenty-amino-acid novel synthetic peptide that has proven to be effective in reducing tumor size and increasing lifespan in tumor-bearing mice. Such capability is conferred by its cell-penetrating peptide character, which allows it to enter cells and elicit a pro-apoptotic effect through its major mediator, COMMD1 protein. Cell-penetrating peptides are able to use different internalization mechanisms, such as endocytosis or direct transduction through the plasma membrane. Although CIGB-552 cytotoxicity has been evaluated in several non-tumor- and tumor-derived cell lines, no data regarding the relationship between cell line sensitivity, cell penetrating capacity, the internalization mechanisms involved, COMMD1 expression levels, or its subcellular localization has yet been produced. Here, we present the results obtained from a comparative analysis of CIGB-552 sensitivity, internalization capacity and the mechanisms involved in three human tumor-derived cell lines from different origins: mammary gland, colon and lung (MCF-7, HT-29 and H460, respectively). Furthermore, cell surface markers relevant for internalization processes such as phosphatidylserine, as well as CIGB-552 target COMMD1 expression/localization, were also evaluated. We found that both endocytosis and transduction are involved in CIGB-552 internalization in the three cell lines evaluated. However, CIGB-552 incorporation efficiency and contribution of each mechanism is cell-line dependent. Finally, sensitivity was directly correlated with high internalization capacity in those cell lines where endocytosis had a major contribution on CIGB-552 internalization.

  20. Tuft (caveolated) cells in two human colon carcinoma cell lines.

    Science.gov (United States)

    Barkla, D H; Whitehead, R H; Foster, H; Tutton, P J

    1988-09-01

    The presence of an unusual cell type in two human colon carcinoma cell lines is reported. The cells show the same morphology as "tuft" (caveolated) cells present in normal gastrointestinal epithelium. Tuft cells were seen in cell line LIM 1863 growing in vitro and in human colon carcinoma cell line LIM 2210 growing as subcutaneous solid tumour xenografts in nude mice. Characteristic morphologic features of tuft cells included a wide base, narrow apex and a tuft of long microvilli projecting from the apical surface. The microvilli are attached by a core of long microfilaments passing deep into the apical cytoplasm. Between the microvilli are parallel arrays of vesicles (caveoli) containing flocculent material. Two different but not mutually exclusive explanations for the presence of tuft cells are proposed. The first explanation is that tuft cells came from the resected tumour and have survived by mitotic division during subsequent passages. The second explanation suggests that tuft cells are the progeny of undifferentiated tumour cells. Descriptions of tuft cells in colon carcinomas are uncommon and possible reasons for this are presented. The morphology of tuft cells is consistent with that of a highly differentiated cell specialised for absorption, and these new models provide an opportunity to further investigate the structure and function of tuft cells.

  1. Scribble Modulates the MAPK/Fra1 Pathway to Disrupt Luminal and Ductal Integrity and Suppress Tumour Formation in the Mammary Gland

    Science.gov (United States)

    Godde, Nathan J.; Sheridan, Julie M.; Smith, Lorey K.; Pearson, Helen B.; Britt, Kara L.; Galea, Ryan C.; Yates, Laura L.; Visvader, Jane E.; Humbert, Patrick O.

    2014-01-01

    Polarity coordinates cell movement, differentiation, proliferation and apoptosis to build and maintain complex epithelial tissues such as the mammary gland. Loss of polarity and the deregulation of these processes are critical events in malignant progression but precisely how and at which stage polarity loss impacts on mammary development and tumourigenesis is unclear. Scrib is a core polarity regulator and tumour suppressor gene however to date our understanding of Scrib function in the mammary gland has been limited to cell culture and transplantation studies of cell lines. Utilizing a conditional mouse model of Scrib loss we report for the first time that Scrib is essential for mammary duct morphogenesis, mammary progenitor cell fate and maintenance, and we demonstrate a critical and specific role for Scribble in the control of the early steps of breast cancer progression. In particular, Scrib-deficiency significantly induced Fra1 expression and basal progenitor clonogenicity, which resulted in fully penetrant ductal hyperplasia characterized by high cell turnover, MAPK hyperactivity, frank polarity loss with mixing of apical and basolateral membrane constituents and expansion of atypical luminal cells. We also show for the first time a role for Scribble in mammalian spindle orientation with the onset of mammary hyperplasia being associated with aberrant luminal cell spindle orientation and a failure to apoptose during the final stage of duct tubulogenesis. Restoring MAPK/Fra1 to baseline levels prevented Scrib-hyperplasia, whereas persistent Scrib deficiency induced alveolar hyperplasia and increased the incidence, onset and grade of mammary tumours. These findings, based on a definitive genetic mouse model provide fundamental insights into mammary duct maturation and homeostasis and reveal that Scrib loss activates a MAPK/Fra1 pathway that alters mammary progenitor activity to drive premalignancy and accelerate tumour progression. PMID:24852022

  2. Peptidomic analysis of human cell lines

    Science.gov (United States)

    Gelman, Julia S.; Sironi, Juan; Castro, Leandro M.; Ferro, Emer S.; Fricker, Lloyd D.

    2011-01-01

    Peptides have been proposed to function in intracellular signaling within the cytosol. Although cytosolic peptides are considered to be highly unstable, a large number of peptides have been detected in mouse brain and other biological samples. In the present study, we evaluated the peptidome of three diverse cell lines: SH-SY5Y, MCF7, and HEK293 cells. A comparison of the peptidomes revealed considerable overlap in the identity of the peptides found in each cell line. The majority of the observed peptides are not derived from the most abundant or least stable proteins in the cell, and approximately half of the cellular peptides correspond to the N- or C- termini of the precursor proteins. Cleavage site analysis revealed a preference for hydrophobic residues in the P1 position. Quantitative peptidomic analysis indicated that the levels of most cellular peptides are not altered in response to elevated intracellular calcium, suggesting that calpain is not responsible for their production. The similarity of the peptidomes of the three cell lines and the lack of correlation with the predicted cellular degradome implies the selective formation or retention of these peptides, consistent with the hypothesis that they are functional in the cells. PMID:21204522

  3. Selected Alkylating Agents Can Overcome Drug Tolerance of G0-like Tumor Cells and Eradicate BRCA1-Deficient Mammary Tumors in Mice.

    Science.gov (United States)

    Pajic, Marina; Blatter, Sohvi; Guyader, Charlotte; Gonggrijp, Maaike; Kersbergen, Ariena; Küçükosmanoğlu, Aslι; Sol, Wendy; Drost, Rinske; Jonkers, Jos; Borst, Piet; Rottenberg, Sven

    2017-11-15

    Purpose: We aimed to characterize and target drug-tolerant BRCA1-deficient tumor cells that cause residual disease and subsequent tumor relapse. Experimental Design: We studied responses to various mono- and bifunctional alkylating agents in a genetically engineered mouse model for BRCA1/p53 -mutant breast cancer. Because of the large intragenic deletion of the Brca1 gene, no restoration of BRCA1 function is possible, and therefore, no BRCA1-dependent acquired resistance occurs. To characterize the cell-cycle stage from which Brca1 -/- ;p53 -/- mammary tumors arise after cisplatin treatment, we introduced the fluorescent ubiquitination-based cell-cycle indicator (FUCCI) construct into the tumor cells. Results: Despite repeated sensitivity to the MTD of platinum drugs, the Brca1 -mutated mammary tumors are not eradicated, not even by a frequent dosing schedule. We show that relapse comes from single-nucleated cells delaying entry into the S-phase. Such slowly cycling cells, which are present within the drug-naïve tumors, are enriched in tumor remnants. Using the FUCCI construct, we identified nonfluorescent G 0 -like cells as the population most tolerant to platinum drugs. Intriguingly, these cells are more sensitive to the DNA-crosslinking agent nimustine, resulting in an increased number of multinucleated cells that lack clonogenicity. This is consistent with our in vivo finding that the nimustine MTD, among several alkylating agents, is the most effective in eradicating Brca1 -mutated mouse mammary tumors. Conclusions: Our data show that targeting G 0 -like cells is crucial for the eradication of BRCA1/p53-deficient tumor cells. This can be achieved with selected alkylating agents such as nimustine. Clin Cancer Res; 23(22); 7020-33. ©2017 AACR . ©2017 American Association for Cancer Research.

  4. Breast cancer cell lines: friend or foe?

    International Nuclear Information System (INIS)

    Burdall, Sarah E; Hanby, Andrew M; Lansdown, Mark RJ; Speirs, Valerie

    2003-01-01

    The majority of breast cancer research is conducted using established breast cancer cell lines as in vitro models. An alternative is to use cultures established from primary breast tumours. Here, we discuss the pros and cons of using both of these models in translational breast cancer research

  5. (Asteraceae) Fraction against Human Cancer Cell Lines

    African Journals Online (AJOL)

    Purpose: To investigate the anti-proliferative and apoptotic activity of crude and dichloromethane fraction of A. sieberi against seven cancer cell lines (Colo20, HCT116, DLD, MCF7, Jurkat, HepG2 and L929). Methods: A. sieberi was extracted with methanol and further purification was carried out using liquidliquid extraction ...

  6. Detection and quantitation of circulating tumor cell dynamics by bioluminescence imaging in an orthotopic mammary carcinoma model.

    Directory of Open Access Journals (Sweden)

    Laura Sarah Sasportas

    Full Text Available Circulating tumor cells (CTCs have been detected in the bloodstream of both early-stage and advanced cancer patients. However, very little is know about the dynamics of CTCs during cancer progression and the clinical relevance of longitudinal CTC enumeration. To address this, we developed a simple bioluminescence imaging assay to detect CTCs in mouse models of metastasis. In a 4T1 orthotopic metastatic mammary carcinoma mouse model, we demonstrated that this quantitative method offers sensitivity down to 2 CTCs in 0.1-1mL blood samples and high specificity for CTCs originating from the primary tumor, independently of their epithelial status. In this model, we simultaneously monitored blood CTC dynamics, primary tumor growth, and lung metastasis progression over the course of 24 days. Early in tumor development, we observed low numbers of CTCs in blood samples (10-15 cells/100 µL and demonstrated that CTC dynamics correlate with viable primary tumor growth. To our knowledge, these data represent the first reported use of bioluminescence imaging to detect CTCs and quantify their dynamics in any cancer mouse model. This new assay is opening the door to the study of CTC dynamics in a variety of animal models. These studies may inform clinical decision on the appropriate timing of blood sampling and value of longitudinal CTC enumeration in cancer patients.

  7. Paracrine Interactions between Adipocytes and Tumor Cells Recruit and Modify Macrophages to the Mammary Tumor Microenvironment: The Role of Obesity and Inflammation in Breast Adipose Tissue

    Energy Technology Data Exchange (ETDEWEB)

    Santander, Ana M.; Lopez-Ocejo, Omar; Casas, Olivia; Agostini, Thais; Sanchez, Lidia; Lamas-Basulto, Eduardo; Carrio, Roberto [Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136 (United States); Cleary, Margot P. [Hormel Institute, University of Minnesota, Austin, MN 55912 (United States); Gonzalez-Perez, Ruben R. [Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30314 (United States); Torroella-Kouri, Marta, E-mail: mtorroella@med.miami.edu [Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136 (United States); Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL 33136 (United States)

    2015-01-15

    The relationship between obesity and breast cancer (BC) has focused on serum factors. However, the mammary gland contains adipose tissue (AT) which may enable the crosstalk between adipocytes and tumor cells contributing to tumor macrophage recruitment. We hypothesize that the breast AT (bAT) is inflamed in obese females and plays a major role in breast cancer development. The effects of this interplay on macrophage chemotaxis were examined in vitro, using co-cultures of mouse macrophages, mammary tumor cells and adipocytes. Macrophages were exposed to the adipocyte and tumor paracrine factors leptin, CCL2 and lauric acid (alone or in combinations). In cell supernatants Luminex identified additional molecules with chemotactic and other pro-tumor functions. Focus on the adipokine leptin, which has been shown to have a central role in breast cancer pathogenesis, indicated it modulates macrophage phenotypes and functions. In vivo experiments demonstrate that mammary tumors from obese mice are larger and that bAT from obese tumor-bearers contains higher numbers of macrophages/CLS and hypertrophic adipocytes than bAT from lean tumor-bearers, thus confirming it is more inflamed. Also, bAT distal from the tumor is more inflamed in obese than in lean mice. Our results reveal that bAT plays a role in breast cancer development in obesity.

  8. Paracrine Interactions between Adipocytes and Tumor Cells Recruit and Modify Macrophages to the Mammary Tumor Microenvironment: The Role of Obesity and Inflammation in Breast Adipose Tissue

    International Nuclear Information System (INIS)

    Santander, Ana M.; Lopez-Ocejo, Omar; Casas, Olivia; Agostini, Thais; Sanchez, Lidia; Lamas-Basulto, Eduardo; Carrio, Roberto; Cleary, Margot P.; Gonzalez-Perez, Ruben R.; Torroella-Kouri, Marta

    2015-01-01

    The relationship between obesity and breast cancer (BC) has focused on serum factors. However, the mammary gland contains adipose tissue (AT) which may enable the crosstalk between adipocytes and tumor cells contributing to tumor macrophage recruitment. We hypothesize that the breast AT (bAT) is inflamed in obese females and plays a major role in breast cancer development. The effects of this interplay on macrophage chemotaxis were examined in vitro, using co-cultures of mouse macrophages, mammary tumor cells and adipocytes. Macrophages were exposed to the adipocyte and tumor paracrine factors leptin, CCL2 and lauric acid (alone or in combinations). In cell supernatants Luminex identified additional molecules with chemotactic and other pro-tumor functions. Focus on the adipokine leptin, which has been shown to have a central role in breast cancer pathogenesis, indicated it modulates macrophage phenotypes and functions. In vivo experiments demonstrate that mammary tumors from obese mice are larger and that bAT from obese tumor-bearers contains higher numbers of macrophages/CLS and hypertrophic adipocytes than bAT from lean tumor-bearers, thus confirming it is more inflamed. Also, bAT distal from the tumor is more inflamed in obese than in lean mice. Our results reveal that bAT plays a role in breast cancer development in obesity

  9. Short communication: Effect of inhibition of fatty acid synthase on triglyceride accumulation and effect on lipid metabolism genes in goat mammary epithelial cells.

    Science.gov (United States)

    Zhu, J J; Luo, J; Sun, Y T; Shi, H B; Li, J; Wu, M; Yu, K; Haile, A B; Loor, J J

    2015-05-01

    The role of fatty acid synthase (FASN) on de novo fatty acid synthesis has been well established. In monogastrics, unlike acetyl-coenzyme A carboxylase, FASN is primarily controlled at the transcriptional level. However, no data exist on ruminant mammary cells evaluating effects of FASN knockdown on mRNA expression of lipogenic genes. Inhibition of FASN in mammary cells by C75-mediated interference, a synthetic inhibitor of FASN activity, and short hairpin RNA-mediated interference markedly reduced cellular triglyceride content at least in part by decreasing the expression of genes related to triglyceride synthesis (GPAT, AGPAT6, and DGAT2) and enhancing the expression of lipolysis-related genes (ATGL and HSL). Consistent with the markedly lower expression of genes related to lipid droplet formation and secretion (TIP47, ADFP, BTN1A1, and XDH), cellular lipid droplets also were reduced sharply after incubation with C75 or adenovirus-short-hairpin-RNA. The results underscored the essential role of FASN in the overall process of milk-fat formation in goat mammary epithelial cells. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Radiation sensitivity of Merkel cell carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, J.H.; Ramsay, J.R.; Birrell, G.W. [Queensland Institute of Medical Research (Australia)] [and others

    1995-07-30

    Merkel cell carcinoma (MCC), being a small cell carcinoma, would be expected to be sensitive to radiation. Clinical analysis of patients at our center, especially those with macroscopic disease, would suggest the response is quite variable. We have recently established a number of MCC cell lines from patients prior to radiotherapy, and for the first time are in a position to determine their sensitivity under controlled conditions. Some of the MCC lines grew as suspension cultures and could not be single cell cloned; therefore, it was not possible to use clonogenic survival for all cell lines. A tetrazolium based (MTT) assay was used for these lines, to estimate cell growth after {gamma} irradiation. Control experiments were conducted on lymphoblastoid cell lines (LCL) and the adherent MCC line, MCC13, to demonstrate that the two assays were comparable under the conditions used. We have examined cell lines from MCC, small cell lung cancer (SCLC), malignant melanomas, Epstein Barr virus (EBV) transformed lymphocytes (LCL), and skin fibroblasts for their sensitivity to {gamma} irradiation using both clonogenic cell survival and MTT assays. The results show that the tumor cell lines have a range of sensitivities, with melanoma being more resistant (surviving fraction at 2 Gy (SF2) 0.57 and 0.56) than the small cell carcinoma lines, MCC (SF2 range 0.21-0.45, mean SF2 0.30, n = 8) and SCLC (SF2 0.31). Fibroblasts were the most sensitive (SF2 0.13-0.20, mean 0.16, n = 5). The MTT assay, when compared to clonogenic assay for the MCC13 adherent line and the LCL, gave comparable results under the conditions used. Both assays gave a range of SF2 values for the MCC cell lines, suggesting that these cancers would give a heterogeneous response in vivo. The results with the two derivative clones of MCC14 (SF2 for MCC14/1 0.38, MCC14/2 0.45) would further suggest that some of them may develop resistance during clonogenic evolution. 25 refs., 3 figs., 1 tab.

  11. Radiation sensitivity of Merkell cell carcinoma cell lines

    International Nuclear Information System (INIS)

    Leonard, J. Helen; Ramsay, Jonathan R.; Kearsley, John H.; Birrell, Geoff W.

    1995-01-01

    Purpose: Merkel cell carcinoma (MCC), being a small cell carcinoma, would be expected to be sensitive to radiation. Clinical analysis of patients at our center, especially those with macroscopic disease, would suggest the response is quite variable. We have recently established a number of MCC cell lines from patients prior to radiotherapy, and for the first time are in a position to determine their sensitivity under controlled conditions. Methods and Materials: Some of the MCC lines grew as suspension cultures and could not be single cell cloned; therefore, it was not possible to use clonogenic survival for all cell lines. A tetrazolium based (MTT) assay was used for these lines, to estimate cell growth after γ irradiation. Control experiments were conducted on lymphoblastoid cell lines (LCL) and the adherent MCC line, MCC13, to demonstrate that the two assays were comparable under the conditions used. Results: We have examined cell lines from MCC, small cell lung cancer (SCLC), malignant melanomas, Epstein Barr virus (EBV) transformed lymphocytes (LCL), and skin fibroblasts for their sensitivity to γ irradiation using both clonogenic cell survival and MTT assays. The results show that the tumor cell lines have a range of sensitivities, with melanoma being more resistant (surviving fraction at 2 Gy (SF2) 0.57 and 0.56) than the small cell carcinoma lines, MCC (SF2 range 0.21-0.45, mean SF2 0.30, n = 8) and SCLC (SF2 0.31). Fibroblasts were the most sensitive (SF2 0.13-0.20, mean 0.16, n = 5). The MTT assay, when compared to clonogenic assay for the MCC13 adherent line and the LCL, gave comparable results under the conditions used. Conclusion: Both assays gave a range of SF2 values for the MCC cell lines, suggesting that these cancers would give a heterogeneous response in vivo. The results with the two derivative clones of MCC14 (SF2 for MCC14/1 0.38, MCC14/2 0.45) would further suggest that some of them may develop resistance during clonogenic evolution

  12. Analysis of the regulation of fatty acid binding protein 7 expression in human renal carcinoma cell lines

    Directory of Open Access Journals (Sweden)

    Sugiyama Takayuki

    2011-07-01

    Full Text Available Abstract Background Improving the treatment of renal cell carcinoma (RCC will depend on the development of better biomarkers for predicting disease progression and aiding the design of appropriate therapies. One such marker may be fatty acid binding protein 7 (FABP7, also known as B-FABP and BLBP, which is expressed normally in radial glial cells of the developing central nervous system and cells of the mammary gland. Melanomas, glioblastomas, and several types of carcinomas, including RCC, overexpress FABP7. The abundant expression of FABP7 in primary RCCs compared to certain RCC-derived cell lines may allow the definition of the molecular components of FABP7's regulatory system. Results We determined FABP7 mRNA levels in six RCC cell lines. Two were highly expressed, whereas the other and the embryonic kidney cell line (HEK293 were weakly expressed FABP7 transcripts. Western blot analysis of the cell lines detected strong FABP7 expression only in one RCC cell line. Promoter activity in the RCC cell lines was 3- to 21-fold higher than that of HEK293. Deletion analysis demonstrated that three FABP7 promoter regions contributed to upregulated expression in RCC cell lines, but not in the HEK293 cell. Competition analysis of gel shifts indicated that OCT1, OCT6, and nuclear factor I (NFI bound to the FABP7 promoter region. Supershift experiments indicated that BRN2 (POU3F2 and NFI bound to the FABP7 promoter region as well. There was an inverse correlation between FABP7 promoter activity and BRN2 mRNA expression. The FABP7-positive cell line's NFI-DNA complex migrated faster than in other cell lines. Levels of NFIA mRNA were higher in the HEK293 cell line than in any of the six RCC cell lines. In contrast, NFIC mRNA expression was lower in the HEK293 cell line than in the six RCC cell lines. Conclusions Three putative FABP7 promoter regions drive reporter gene expression in RCC cell lines, but not in the HEK293 cell line. BRN2 and NFI may be key

  13. A Novel Strategy for Isolation, Molecular and Functional Characterization of Embryonic Mammary Stem Cells Using Molecular Genetics and Microfluidic Sorting

    National Research Council Canada - National Science Library

    Wahl, Geoffrey

    2007-01-01

    .... Our system consists of both activator and reporter components. The activator component is dependent both on Wnt signaling which is essential for mammary gland development and on doxycycline to toggle the system on and off...

  14. Role of the Stem Cell Niche in Hormone-induced Tumorigenesis in Fetal Mouse Mammary Epithelium

    National Research Council Canada - National Science Library

    Chepko, Gloria; Hilakivi-Clarke, Leena

    2006-01-01

    Develop an immunohistochemical method for identifying stem cells and stem cell niches, and to use this to determine if in utero estrogenic overstimulation causes changes in the number of stem cells or their niches...

  15. Effects of Arginine Concentration on the In Vitro Expression of Casein and mTOR Pathway Related Genes in Mammary Epithelial Cells from Dairy Cattle

    Science.gov (United States)

    Wang, Mengzhi; Xu, Bolin; Wang, Hongrong; Bu, Dengpan; Wang, Jiaqi; Loor, Juan-Jose

    2014-01-01

    Arginine (Arg) is a conditionally-essential amino acid that is taken up by bovine mammary gland in excess of its output in milk. In this study we evaluated the effects of Arg concentration on the expression of casein and signaling pathway-related genes in mammary epithelial cells. The treatments (applied for 24 h) were designed to be devoid of Arg 0X (control; 0.00 mg/L), resemble the profile of Arg in casein (Arg 1X; 278.00 mg/L), be deficient [Arg 0.25X (69.50 mg/L) and Arg 0.5X (139.00 mg/L)], or be in excess of the amount in casein [Arg 2X (556.00 mg/L), Arg 4X (1,112 mg/L), and Arg 8X (2,224 mg/L)]. The expression of CSN1S, CSN3 and mTOR in the experimental groups was higher than those of the control group (P0.05), the expression of CSN1S2, CSN2 and JAK2 in other experimental groups was higher (P0.05), the expression of STAT5 in the other experimental groups was higher than those of the control (Pcasein genes and mTOR-related genes in bovine mammary epithelial cells. PMID:24788778

  16. Functional interactions between 17 β -estradiol and progesterone regulate autophagy during acini formation by bovine mammary epithelial cells in 3D cultures.

    Science.gov (United States)

    Zielniok, Katarzyna; Motyl, Tomasz; Gajewska, Malgorzata

    2014-01-01

    Mammary gland epithelium forms a network of ducts and alveolar units under control of ovarian hormones: 17-beta-estradiol (E2) and progesterone (P4). Mammary epithelial cells (MECs) cultured on reconstituted basement membrane (rBM) form three-dimensional (3D) acini composed of polarized monolayers surrounding a lumen. Using the 3D culture of BME-UV1 bovine MECs we previously demonstrated that autophagy was induced in the centrally located cells of developing spheroids, and sex steroids increased this process. In the present study we showed that E2 and P4 enhanced the expression of ATG3, ATG5, and BECN1 genes during acini formation, and this effect was accelerated in the presence of both hormones together. The stimulatory action of E2 and P4 was also reflected by increased levels of Atg5, Atg3, and LC3-II proteins. Additionally, the activity of kinases involved in autophagy regulation, Akt, ERK, AMPK, and mTOR, was examined. E2 + P4 slightly increased the level of phosphorylated AMPK but diminished phosphorylated Akt and mTOR on day 9 of 3D culture. Thus, the synergistic actions of E2 and P4 accelerate the development of bovine mammary acini, which may be connected with stimulation of ATGs expression, as well as regulation of signaling pathways (PI3K/Akt/mTOR; AMPK/mTOR) involved in autophagy induction.

  17. A universal mammalian vaccine cell line substrate.

    Directory of Open Access Journals (Sweden)

    Jackelyn Murray

    Full Text Available Using genome-wide small interfering RNA (siRNA screens for poliovirus, influenza A virus and rotavirus, we validated the top 6 gene hits PV, RV or IAV to search for host genes that when knocked-down (KD enhanced virus permissiveness and replication over wild type Vero cells or HEp-2 cells. The enhanced virus replication was tested for 12 viruses and ranged from 2-fold to >1000-fold. There were variations in virus-specific replication (strain differences across the cell lines examined. Some host genes (CNTD2, COQ9, GCGR, NDUFA9, NEU2, PYCR1, SEC16G, SVOPL, ZFYVE9, and ZNF205 showed that KD resulted in enhanced virus replication. These findings advance platform-enabling vaccine technology, the creation of diagnostic cells substrates, and are informative about the host mechanisms that affect virus replication in mammalian cells.

  18. Mammary carcinoma diagnostics and therapy

    International Nuclear Information System (INIS)

    Fischer, Uwe; Baum, Friedemann

    2014-01-01

    The book on mammary carcinoma diagnostics and therapy covers the following issues: development, anatomy and physiology of the mammary glands, pathology of benign and malign mammary gland changes, non-imaging diagnostics; mammography; ultrasonic mammography; magnetic resonance tomography of the mammary glands; imaging diagnostics findings; mammary interventions; examination concepts; operative therapy of the mammary carcinoma; chemotherapy of the mammary carcinoma; radio-oncological therapy of the mammary carcinoma; logistics in a medical center for mammary gland diseases; logistics in an interdisciplinary center for mammary diseases; dialogue conduction and psycho-social attendance.

  19. Immunohistochemical localisation of keratin and luminal epithelial antigen in myoepithelial and luminal epithelial cells of human mammary and salivary gland tumours.

    Science.gov (United States)

    Nathrath, W B; Wilson, P D; Trejdosiewicz, L K

    1982-01-01

    Rabbit antisera to human 40-63 000 MW epidermal keratin, one batch with restricted distribution of reactivity from an initial (aK1) and one with "broad spectrum" distribution of reactivity from a late bleeding (aK), and to "luminal epithelial antigen" (aLEA) were applied to formalin fixed paraffin embedded sections of human normal and neoplastic mammary and salivary glands using an indirect immunoperoxidase method. aK1 reacted with myoepithelial cells, aLEA with luminal epithelial cells and aK with both cell types in normal mammary and salivary gland. In breast carcinomas the majority of intraluminal and infiltrating carcinoma cells reacted with aLEA but not with aK1 which reacted only with surrounding myoepithelial cells. aK reacted with both myoepithelial cells and with intraluminal and infiltrating tumour cells. In the salivary gland adenomas the majority of cells reacted with aK, and those cells arranged in a tubular fashion reacted with aLEA.

  20. Mammary gland involution is associated with rapid down regulation of major mammary Ca**2+-ATPases

    Science.gov (United States)

    Sixty percent of calcium in milk is transported across the mammary cells apical membrane by the plasma membrane Ca**2+-ATPase 2 (PMCA2). The effect of abrupt cessation of milk production on the Ca**2+-ATPases and mammary calcium transport is unknown. We found that 24 hours after stopping milk prod...

  1. Poly (A+ transcriptome assessment of ERBB2-induced alterations in breast cell lines.

    Directory of Open Access Journals (Sweden)

    Dirce Maria Carraro

    Full Text Available We report the first quantitative and qualitative analysis of the poly (A⁺ transcriptome of two human mammary cell lines, differentially expressing (human epidermal growth factor receptor an oncogene over-expressed in approximately 25% of human breast tumors. Full-length cDNA populations from the two cell lines were digested enzymatically, individually tagged according to a customized method for library construction, and simultaneously sequenced by the use of the Titanium 454-Roche-platform. Comprehensive bioinformatics analysis followed by experimental validation confirmed novel genes, splicing variants, single nucleotide polymorphisms, and gene fusions indicated by RNA-seq data from both samples. Moreover, comparative analysis showed enrichment in alternative events, especially in the exon usage category, in ERBB2 over-expressing cells, data indicating regulation of alternative splicing mediated by the oncogene. Alterations in expression levels of genes, such as LOX, ATP5L, GALNT3, and MME revealed by large-scale sequencing were confirmed between cell lines as well as in tumor specimens with different ERBB2 backgrounds. This approach was shown to be suitable for structural, quantitative, and qualitative assessment of complex transcriptomes and revealed new events mediated by ERBB2 overexpression, in addition to potential molecular targets for breast cancer that are driven by this oncogene.

  2. Cellular radiosensitivity of small-cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Krarup, M; Poulsen, H S; Spang-Thomsen, M

    1997-01-01

    PURPOSE: The objective of this study was to determine the radiobiological characteristics of a panel of small-cell lung cancer (SCLC) cell lines by use of a clonogenic assay. In addition, we tested whether comparable results could be obtained by employing a growth extrapolation method based...

  3. A PiggyBac mediated approach for lactoferricin gene transfer in bovine mammary epithelial stem cells for management of bovine mastitis.

    Science.gov (United States)

    Sharma, Neelesh; Huynh, Do Luong; Kim, Sung Woo; Ghosh, Mrinmoy; Sodhi, Simrinder Singh; Singh, Amit Kumar; Kim, Nam Eun; Lee, Sung Jin; Hussain, Kafil; Oh, Sung Jong; Jeong, Dong Kee

    2017-11-28

    The antibacterial and anti-inflammatory properties of lactoferricin have been ascribed to its ability to sequester essential iron. The objective of the study was to clone bovine lactoferricin ( LFcinB ) gene into PiggyBac Transposon vector, expression study in the bovine mammary epithelial stem cells (bMESCs) and also to determine the antimicrobial property of recombinant LFcinB against bovine mastitis-causing organisms. The PiggyBac-LFcinB was transfected into bMESCs by electroporation and a three fold of LFcinB secretion was observed in the transfected bMESCs medium by ELISA assay. Furthermore, the assessment of antimicrobial activity against mastitis causing pathogens Staphylococcus aureus and Escherichia coli demonstrated convincing evidence to prove strong antibacterial activity of LFcinB with 14.0±1.0 mm and 18.0±1.5 mm zone of inhibition against both organisms, respectively. The present study provides the convincing evidence to suggest the potential of PiggyBac transposon system to transfer antibacterial peptide into bMESCs or cow mammary gland and also pave the way to use bovine mammary gland as the bioreactors. Simultaneously, it also suggest toward commercial utilization of LFcinB bioreactor system in pharmaceutical industry.

  4. Mammary gland tumor formation in transgenic mice overexpressing stromelysin-1

    Energy Technology Data Exchange (ETDEWEB)

    Sympson, Carolyn J; Bissell, Mina J; Werb, Zena

    1995-06-01

    An intact basement membrane (BM) is essential for the proper function, differentiation and morphology of many epithelial cells. The disruption or loss of this BM occurs during normal development as well as in the disease state. To examine the importance of BM during mammary gland development in vivo, we generated transgenic mice that inappropriately express autoactivating isoforms of the matrix metalloproteinase stromelysin-1. The mammary glands from these mice are both functionally and morphologically altered throughout development. We have now documented a dramatic incidence of breast tumors in several independent lines of these mice. These data suggest that overexpression of stromelysin-1 and disruption of the BM may be a key step in the multi-step process of breast cancer.

  5. CLINICOPATHOLOGIC FEATURES OF MAMMARY MASSES IN CAPTIVE LIONS (PANTHERA LEO).

    Science.gov (United States)

    Sadler, Ryan A; Craig, Linden E; Ramsay, Edward C; Helmick, Kelly; Collins, Darin; Garner, Michael M

    2016-03-01

    A multi-institutional retrospective analysis of 330 pathology accessions from 285 different lions found 15 captive, female African lions (Panthera leo) with confirmed mammary masses. Aside from the presence of a mammary mass, the most common initial clinical sign was inappetence. Histologic diagnoses were predominantly adenocarcinoma (n = 12), though two benign masses (mammary hyperplasia and a mammary cyst) and one squamous cell carcinoma were identified. Nine of 13 malignant tumors had metastasized to lymph nodes or viscera at the time of necropsy. Six lions with adenocarcinoma and two lions with benign mammary masses had received hormonal contraception, though little evidence of mammary lobular hyperplasia was seen in association with the adenocarcinomas. The most common concurrent disease processes found at necropsy were chronic urinary tract disease and other malignancies. These cases demonstrate that mammary malignancies occur in captive lions and frequently metastasize.

  6. Radiation studies on sensitivity and repair of human mammary epithelial cells

    International Nuclear Information System (INIS)

    Tracy Chuihsu Yang; Stampfer, M.R.; Tobias, C.A.

    1989-01-01

    The authors present results indicating that normal breast epithelial cells and fibroblasts respond to X-rays similarly, lacking significant repair of sublethal damage when 2 Gy was used as the conditioning dose. Epithelial cells from tumor and from parenchymal tissue peripheral to the tumor, however, did show an efficient repair of sublethal damage. The reasons for this difference is unknown. Heavy-ion studies suggest energetic carbon and neon particles can be more effective in killing normal and tumour cells. The RBE for normal cells, however, appeared to be slightly less than for tumor cells. The repair of sublethal damage in tumor cells was less for neon particles than for X-rays. These findings suggest that heavy ions might be more advantageous than X-rays in treating breast tumors. (author)

  7. Effects of putrescine, cadaverine, spermine, spermidine and beta-phenylethylamine on cultured bovine mammary epithelial cells

    DEFF Research Database (Denmark)

    Fusi, Eleonora; Baldi, Antonella; Cheli, Federica

    2008-01-01

    (0-50 mM in BME-UV1 and 0-4 mM in primary bovine organoids) in the appropriate saline solution for the cell culture considered. In order to determine the activity of each compound tritiated thymidine incorporation was used. At low concentrations, all amines induced cell proliferation in both cultures....... In BME-UV1, spermine significantly inhibited cell proliferation (Pcultured in the presence of all amines...

  8. Matrix Metalloproteinase Stromelysin-1 Triggers a Cascade of Molecular Alterations that leads to stable epithelial-to-Mesenchymal Conversion and a Premalignant Phenotype in Mammary Epithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lochter, A.; Galosy, S.; Muschler, J.; Freedman, N.; Werb, Z.; Bissell, M.J.

    1997-08-11

    Matrix metalloproteinases (MMPs) regulate ductal morphogenesis, apoptosis, and neoplastic progression in mammary epithelial cells. To elucidate the direct effects of MMPs on mammary epithelium, we generated functionally normal cells expressing an inducible autoactivating stromelysin-1 (SL-1) transgene. Induction of SL-1 expression resulted in cleavage of E-cadherin, and triggered progressive phenotypic conversion characterized by disappearance of E-cadherin and catenins from cell-cell contacts, downregulation of cytokeratins, upregulation of vimentin, induction of keratinocyte growth factor expression and activation, and upregulation of endogenous MMPs. Cells expressing SL-1 were unable to undergo lactogenic differentiation and became invasive. Once initiated, this phenotypic conversion was essentially stable, and progressed even in the absence of continued SL-1 expression. These observations demonstrate that inappropriate expression of SL-1 initiates a cascade of events that may represent a coordinated program leading to loss of the differentiated epithelial phenotype and gain of some characteristics of tumor cells. Our data provide novel insights into how MMPs function in development and neoplastic conversion.

  9. 17β-estradiol-induced ACSL4 protein expression promotes an invasive phenotype in estrogen receptor positive mammary carcinoma cells.

    Science.gov (United States)

    Belkaid, Anissa; Ouellette, Rodney J; Surette, Marc E

    2017-04-01

    Long chain acyl-CoA synthase-4 (ACSL4) expression has been associated with an aggressive phenotype in breast carcinoma cells, whereas its role in ERα-positive breast cancer has not been studied. ACSL4 prefers 20-carbon polyunsaturated fatty acid (PUFA) substrates, and along with other ACSLs has been associated with cellular uptake of exogenous fatty acids. 17β-estradiol induces proliferation and invasive capacities in ERα+ve breast carcinoma that is associated with modifications of cellular lipid metabolism. In this study, treatment of steroid-starved ERα-positive MCF-7 and T47D mammary carcinoma cells with 17β-estradiol resulted in increased cellular uptake of the PUFA arachidonic acid (AA) and eicosapentaenoic acid (EPA), important building blocks for cellular membranes, and increased ACSL4 protein levels. There was no change in the expression of the ACSL1, ACSL3 and ACSL6 protein isotypes. Increased ACSL4 protein expression was not accompanied by changes in ACSL4 mRNA expression, but was associated with a significant increase in the protein half-life compared to untreated cells. ERα silencing reversed the impact of 17β-estradiol on ACSL4 protein levels and half-life. Silencing of ACSL4 eliminated the 17β-estradiol-induced increase in AA and EPA uptake, as well as the 17β-estradiol-induced cell migration, proliferation and invasion capacities. ASCL4 silencing also prevented the 17β-estradiol induced increases in p-Akt and p-GSK3β, and decrease in E-cadherin expression, important events in epithelial to mesenchymal transition. Taken together, these results demonstrate that ACSL4 is a target of 17β-estradiol-stimulated ERα and is required for the cellular uptake of exogenous PUFA and the manifestation of a more malignant phenotype in ERα+ve breast carcinoma cells. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Human Mammary Epithelial Cell Transformation by Rho GTPase Through a Novel Mechanism

    Science.gov (United States)

    2009-08-01

    87: 635-44. 18. Burbelo P, Wellstein A, Pestell RG. Altered Rho GTPase signaling pathways in breast cancer cells. Breast Cancer Res Treat 2004; 84...Burbelo P, Wellstein A, Pestell RG. Altered Rho GTPase signaling pathways in breast cancer cells. Breast Cancer Res Treat 2004;84:43–8. 19. Band V

  11. Stromal and Epithelial Caveolin-1 Both Confer a Protective Effect Against Mammary Hyperplasia and Tumorigenesis

    Science.gov (United States)

    Williams, Terence M.; Sotgia, Federica; Lee, Hyangkyu; Hassan, Ghada; Di Vizio, Dolores; Bonuccelli, Gloria; Capozza, Franco; Mercier, Isabelle; Rui, Hallgeir; Pestell, Richard G.; Lisanti, Michael P.

    2006-01-01

    Here, we investigate the role of caveolin-1 (Cav-1) in breast cancer onset and progression, with a focus on epithelial-stromal interactions, ie, the tumor microenvironment. Cav-1 is highly expressed in adipocytes and is abundant in mammary fat pads (stroma), but it remains unknown whether loss of Cav-1 within mammary stromal cells affects the differentiated state of mammary epithelia via paracrine signaling. To address this issue, we characterized the development of the mammary ductal system in Cav-1−/− mice and performed a series of mammary transplant studies, using both wild-type and Cav-1−/− mammary fat pads. Cav-1−/− mammary epithelia were hyperproliferative in vivo, with dramatic increases in terminal end bud area and mammary ductal thickness as well as increases in bromodeoxyuridine incorporation, extracellular signal-regulated kinase-1/2 hyperactivation, and up-regulation of STAT5a and cyclin D1. Consistent with these findings, loss of Cav-1 dramatically exacerbated mammary lobulo-alveolar hyperplasia in cyclin D1 Tg mice, whereas overexpression of Cav-1 caused reversion of this phenotype. Most importantly, Cav-1−/− mammary stromal cells (fat pads) promoted the growth of both normal mammary ductal epithelia and mammary tumor cells. Thus, Cav-1 expression in both epithelial and stromal cells provides a protective effect against mammary hyperplasia as well as mammary tumorigenesis. PMID:17071600

  12. Phenotypic and functional characterization of human mammary stem/progenitor cells in long term culture.

    Directory of Open Access Journals (Sweden)

    Devaveena Dey

    Full Text Available BACKGROUND: Cancer stem cells exhibit close resemblance to normal stem cells in phenotype as well as function. Hence, studying normal stem cell behavior is important in understanding cancer pathogenesis. It has recently been shown that human breast stem cells can be enriched in suspension cultures as mammospheres. However, little is known about the behavior of these cells in long-term cultures. Since extensive self-renewal potential is the hallmark of stem cells, we undertook a detailed phenotypic and functional characterization of human mammospheres over long-term passages. METHODOLOGY: Single cell suspensions derived from human breast 'organoids' were seeded in ultra low attachment plates in serum free media. Resulting primary mammospheres after a week (termed T1 mammospheres were subjected to passaging every 7th day leading to the generation of T2, T3, and T4 mammospheres. PRINCIPAL FINDINGS: We show that primary mammospheres contain a distinct side-population (SP that displays a CD24(low/CD44(low phenotype, but fails to generate mammospheres. Instead, the mammosphere-initiating potential rests within the CD44(high/CD24(low cells, in keeping with the phenotype of breast cancer-initiating cells. In serial sphere formation assays we find that even though primary (T1 mammospheres show telomerase activity and fourth passage T4 spheres contain label-retaining cells, they fail to initiate new mammospheres beyond T5. With increasing passages, mammospheres showed an increase in smaller sized spheres, reduction in proliferation potential and sphere forming efficiency, and increased differentiation towards the myoepithelial lineage. Significantly, staining for senescence-associated beta-galactosidase activity revealed a dramatic increase in the number of senescent cells with passage, which might in part explain the inability to continuously generate mammospheres in culture. CONCLUSIONS: Thus, the self-renewal potential of human breast stem cells is

  13. Xenobiotic Modulation of Human Mammary Epithelial Cell Gap junctional Intercellular Communication and Growth

    National Research Council Canada - National Science Library

    Ruch, Randall

    1998-01-01

    ...), phthalate esters, and dioxin have been implicated in this increase. Many xenobiotics such as DDT and PCBs have weak estrogenic activity and may enhance breast cancer formation by an estrogenic effect on breast epithelial cell growth...

  14. Xenobiotic Modulation of Human Mammary Epithelial Cell Gap Junctional Intercellular Communication and Growth

    National Research Council Canada - National Science Library

    Ruch, Randall

    1997-01-01

    ...), phthalate esters, and dioxin have been implicated in this increase. Many xenobiotics such as DDT and PCBs have weak estrogenic activity and may enhance breast cancer formation by an estrogenic effect on breast epithelial cell growth...

  15. Snail family members unequally trigger EMT and thereby differ in their ability to promote the neoplastic transformation of mammary epithelial cells.

    Directory of Open Access Journals (Sweden)

    Baptiste Gras

    Full Text Available By fostering cell commitment to the epithelial-to-mesenchymal transition (EMT, SNAIL proteins endow cells with motility, thereby favoring the metastatic spread of tumor cells. Whether the phenotypic change additionally facilitates tumor initiation has never been addressed. Here we demonstrate that when a SNAIL protein is ectopically produced in non-transformed mammary epithelial cells, the cells are protected from anoikis and proliferate under low-adherence conditions: a hallmark of cancer cells. The three SNAIL proteins show unequal oncogenic potential, strictly correlating with their ability to promote EMT. SNAIL3 especially behaves as a poor EMT-inducer comforting the concept that the transcription factor functionally diverges from its two related proteins.

  16. TASK-3 Downregulation Triggers Cellular Senescence and Growth Inhibition in Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Rafael Zúñiga

    2018-03-01

    Full Text Available TASK-3 potassium channels are believed to promote proliferation and survival of cancer cells, in part, by augmenting their resistance to both hypoxia and serum deprivation. While overexpression of TASK-3 is frequently observed in cancers, the understanding of its role and regulation during tumorigenesis remains incomplete. Here, we evaluated the effect of reducing the expression of TASK-3 in MDA-MB-231 and MCF-10F human mammary epithelial cell lines through small hairpin RNA (shRNA-mediated knockdown. Our results show that knocking down TASK-3 in fully transformed MDA-MB-231 cells reduces proliferation, which was accompanied by an induction of cellular senescence and cell cycle arrest, with an upregulation of cyclin-dependent kinase (CDK inhibitors p21 and p27. In non-tumorigenic MCF-10F cells, however, TASK-3 downregulation did not lead to senescence induction, although cell proliferation was impaired and an upregulation of CDK inhibitors was also evident. Our observations implicate TASK-3 as a critical factor in cell cycle progression and corroborate its potential as a therapeutic target in breast cancer treatment.

  17. Gordon Research Conference on Mammary Gland Biology

    International Nuclear Information System (INIS)

    1989-01-01

    The 1989 conference was the tenth in the series of biennial Gordon Research Conferences on Mammary Gland Biology. Traditionally this conference brings together scientists from diverse backgrounds and experience but with a common interest in the biology of the mammary gland. Investigators from agricultural and medical schools, biochemists, cell and molecular biologists, endocrinologists, immunologists, and representatives from the emerging biotechnology industries met to discuss current concepts and results on the function and regulation of the normal and neoplastic mammary gland in a variety of species. Of the participants, approximately three-fourths were engaged in studying the normal mammary gland function, whereas the other quarter were engaged in studying the neoplastic gland. The interactions between scientists, clinicians, veterinarians examining both normal and neoplastic cell function serves to foster the multi-disciplinary goals of the conference and has stimulated many cooperative projects among participants in previous years

  18. 4-Hydroxyestradiol induces mammary epithelial cell transformation through Nrf2-mediated heme oxygenase-1 overexpression

    OpenAIRE

    Park, Sin-Aye; Lee, Mee-Hyun; Na, Hye-Kyung; Surh, Young-Joon

    2016-01-01

    Estrogen (17?-estradiol, E2) undergoes oxidative metabolism by CYP1B1 to form 4-hydroxyestradiol (4-OHE2), a putative carcinogenic metabolite of estrogen. Our previous study showed that 4-OHE2-induced production of reactive oxygen species contributed to neoplastic transformation of human breast epithelial (MCF-10A) cells. In this study, 4-OHE2, but not E2, increased the expression of heme oxygenase-1 (HO-1), a sensor and regulator of oxidative stress, in MCF-10A cells. Silencing the HO-1 gene...

  19. Identification of Cytoplasmic Proteins Interacting with the Mammary Cell Transforming Domain of Ese-1

    Science.gov (United States)

    2009-04-01

    measure auto - fluorescence , cells were incubated overnight at 4°C with blocking buffer alone. shRNA tranfected cells under- went the same procedure at 48...to a 50-GGA(A/T)-30 DNA coremotif [2]. All ETS proteins, with the exception of GA-binding protein (GABP)a, bind to DNA as a monomer and are auto ...skin, retina and other epithelia [7-10]. During mouse embryo develop- ment, Elf3 mRNA expression levels increase progressively, from embryonic day 7 to

  20. Menadione inhibits MIBG uptake in two neuroendocrine cell lines

    NARCIS (Netherlands)

    Cornelissen, J.; Tytgat, G. A.; van den Brug, M.; van Kuilenburg, A. B.; Voûte, P. A.; van Gennip, A. H.

    1997-01-01

    In this paper we report on our studies of the effect of menadione on the uptake of MIBG in the neuroendocrine cell lines PC12 and SK-N-SH. Menadione inhibits the uptake of MIBG in both cell lines in a dose-dependent manner. Inhibition of MIBG uptake is most pronounced in the PC12 cell line.

  1. Exercise-induced muscle-derived cytokines inhibit mammary cancer cell growth

    DEFF Research Database (Denmark)

    Hojman, Pernille; Dethlefsen, Christine; Brandt, Claus

    2011-01-01

    in caspase activity was found after incubation of MCF-7 cells with conditioned media from electrically stimulated myotubes. PCR array analysis (CAPM-0838E; SABiosciences) revealed that seven genes were upregulated in the muscles after exercise, and of these oncostatin M (OSM) proved to inhibit MCF-7...

  2. Luminal progenitors restrict their lineage potential during mammary gland development.

    Science.gov (United States)

    Rodilla, Veronica; Dasti, Alessandro; Huyghe, Mathilde; Lafkas, Daniel; Laurent, Cécile; Reyal, Fabien; Fre, Silvia

    2015-02-01

    The hierarchical relationships between stem cells and progenitors that guide mammary gland morphogenesis are still poorly defined. While multipotent basal stem cells have been found within the myoepithelial compartment, the in vivo lineage potential of luminal progenitors is unclear. Here we used the expression of the Notch1 receptor, previously implicated in mammary gland development and tumorigenesis, to elucidate the hierarchical organization of mammary stem/progenitor cells by lineage tracing. We found that Notch1 expression identifies multipotent stem cells in the embryonic mammary bud, which progressively restrict their lineage potential during mammary ductal morphogenesis to exclusively generate an ERαneg luminal lineage postnatally. Importantly, our results show that Notch1-labelled cells represent the alveolar progenitors that expand during pregnancy and survive multiple successive involutions. This study reveals that postnatal luminal epithelial cells derive from distinct self-sustained lineages that may represent the cells of origin of different breast cancer subtypes.

  3. Celecoxib decreases growth and angiogenesis and promotes apoptosis in a tumor cell line resistant to chemotherapy

    Directory of Open Access Journals (Sweden)

    Carlos Rosas

    2014-01-01

    Full Text Available BACKGROUND: During the last few years it has been shown in several laboratories that Celecoxib (Cx, a non-steroidal anti-inflammatory agent (NSAID normally used for pain and arthritis, mediates antitumor and antiangiogenic effects. However, the effects of this drug on a tumor cell line resistant to chemotherapeutical drugs used in cancer have not been described. Herein we evaluate the angiogenic and antitumor effects of Cx in the development of a drug-resistant mammary adenocarcinoma tumor (TA3-MTXR. RESULTS: Cx reduces angiogenesis in the chick embryonic chorioallantoic membrane assay (CAM, inhibits the growth and microvascular density of the murine TA3-MTXR tumor, reduces microvascular density of tumor metastases, promotes apoptosis and reduces vascular endothelial growth factor (VEGF production and cell proliferation in the tumor. CONCLUSION: The antiangiogenic and antitumor Cx effects correlate with its activity on other tumor cell lines, suggesting that Prostaglandins (PGs and VEGF production are involved. These results open the possibility of using Celecoxib combined with other experimental therapies, ideally aiming to get synergic effects.

  4. The Cellosaurus, a Cell-Line Knowledge Resource

    Science.gov (United States)

    Bairoch, Amos

    2018-01-01

    The Cellosaurus is a knowledge resource on cell lines. It aims to describe all cell lines used in biomedical research. Its scope encompasses both vertebrates and invertebrates. Currently, information for >100,000 cell lines is provided. For each cell line, it provides a wealth of information, cross-references, and literature citations. The Cellosaurus is available on the ExPASy server (https://web.expasy.org/cellosaurus/) and can be downloaded in a variety of formats. Among its many uses, the Cellosaurus is a key resource to help researchers identify potentially contaminated/misidentified cell lines, thus contributing to improving the quality of research in the life sciences. PMID:29805321

  5. P/CAF Function in Transcriptional Activation by Steroid Hormone Receptors and Mammary Cell Proliferation

    Science.gov (United States)

    1999-07-01

    majority (see below) of GCN5 nulls, no expression of Shh and HNF-3ß was observed in the region of the notochord (Fig. 5f, 5g), suggesting that...apparent head fold and body axis. Notochord staining of Shh and tiny patches of paraxis expression are detected in a subset of these less severe...143, 363-73 (1991). 17. Ang, S.L. & Rossant, J. HNF-3 beta is essential for node and notochord formation in mouse development. Cell 78, 561-74 (1994

  6. Cellular radiosensitivity of small-cell lung cancer cell lines

    International Nuclear Information System (INIS)

    Krarup, Marianne; Poulsen, Hans Skovgaard; Spang-Thomsen, Mogens

    1997-01-01

    Purpose: The objective of this study was to determine the radiobiological characteristics of a panel of small-cell lung cancer (SCLC) cell lines by use of a clonogenic assay. In addition, we tested whether comparable results could be obtained by employing a growth extrapolation method based on the construction of continuous exponential growth curves. Methods and Materials: Fifteen SCLC cell lines were studied, applying a slightly modified clonogenic assay and a growth extrapolation method. A dose-survival curve was obtained for each experiment and used for calculating several survival parameters. The multitarget single hit model was applied to calculate the cellular radiosensitivity (D 0 ), the capacity for sublethal damage repair (D q ), and the extrapolation number (n). Values for α and β were determined from best-fit curves according to the linear-quadratic model and these values were applied to calculate the surviving fraction after 2-Gy irradiation (SF 2 ). Results: In our investigation, the extrapolation method proved to be inappropriate for the study of in vitro cellular radiosensitivity due to lack of reproducibility. The results obtained by the clonogenic assay showed that the cell lines studied were radiobiologically heterogeneous with no discrete features of the examined parameters including the repair capacity. Conclusion: The results indicate that SCLC tumors per se are not generally candidates for hyperfractionated radiotherapy

  7. Susceptibility testing of fish cell lines for virus isolation

    DEFF Research Database (Denmark)

    Ariel, Ellen; Skall, Helle Frank; Olesen, Niels Jørgen

    2009-01-01

    and laboratories, but also between lineages of the same cell line. To minimise the occurrence of false negatives in a cell culture based surveillance system, we have investigated methods, to select cell lineages that are relatively superior in their susceptibility to a panel of virus isolates. The procedures...... cell lineages, we increased the number of isolates of each virus, propagated stocks in a given cell line and tested all lineages of that line in use in the laboratory. Testing of relative cell line susceptibility between laboratories is carried out annually via the Inter-laboratory Proficiency Test...... sensitivity for surveillance purposes within a cell line and between laboratories.In terms of economic and practical considerations as well as attempting to approach a realistic test system, we suggest the optimal procedure for susceptibility testing of fish cell lines for virus isolation to be a combination...

  8. PTEN Loss in E-Cadherin-Deficient Mouse Mammary Epithelial Cells Rescues Apoptosis and Results in Development of Classical Invasive Lobular Carcinoma

    Directory of Open Access Journals (Sweden)

    Mirjam C. Boelens

    2016-08-01

    Full Text Available Invasive lobular carcinoma (ILC is an aggressive breast cancer subtype with poor response to chemotherapy. Besides loss of E-cadherin, a hallmark of ILC, genetic inactivation of PTEN is frequently observed in patients. Through concomitant Cre-mediated inactivation of E-cadherin and PTEN in mammary epithelium, we generated a mouse model of classical ILC (CLC, the main histological ILC subtype. While loss of E-cadherin induced cell dissemination and apoptosis, additional PTEN inactivation promoted cell survival and rapid formation of invasive mammary tumors that recapitulate the histological and molecular features, estrogen receptor (ER status, growth kinetics, metastatic behavior, and tumor microenvironment of human CLC. Combined inactivation of E-cadherin and PTEN is sufficient to cause CLC development. These CLCs showed significant tumor regression upon BEZ235-mediated inhibition of PI3K signaling. In summary, this mouse model provides important insights into CLC development and suggests inhibition of phosphatidylinositol 3-kinase (PI3K signaling as a potential therapeutic strategy for targeting CLC.

  9. PTEN Loss in E-Cadherin-Deficient Mouse Mammary Epithelial Cells Rescues Apoptosis and Results in Development of Classical Invasive Lobular Carcinoma.

    Science.gov (United States)

    Boelens, Mirjam C; Nethe, Micha; Klarenbeek, Sjoerd; de Ruiter, Julian R; Schut, Eva; Bonzanni, Nicola; Zeeman, Amber L; Wientjens, Ellen; van der Burg, Eline; Wessels, Lodewyk; van Amerongen, Renée; Jonkers, Jos

    2016-08-23

    Invasive lobular carcinoma (ILC) is an aggressive breast cancer subtype with poor response to chemotherapy. Besides loss of E-cadherin, a hallmark of ILC, genetic inactivation of PTEN is frequently observed in patients. Through concomitant Cre-mediated inactivation of E-cadherin and PTEN in mammary epithelium, we generated a mouse model of classical ILC (CLC), the main histological ILC subtype. While loss of E-cadherin induced cell dissemination and apoptosis, additional PTEN inactivation promoted cell survival and rapid formation of invasive mammary tumors that recapitulate the histological and molecular features, estrogen receptor (ER) status, growth kinetics, metastatic behavior, and tumor microenvironment of human CLC. Combined inactivation of E-cadherin and PTEN is sufficient to cause CLC development. These CLCs showed significant tumor regression upon BEZ235-mediated inhibition of PI3K signaling. In summary, this mouse model provides important insights into CLC development and suggests inhibition of phosphatidylinositol 3-kinase (PI3K) signaling as a potential therapeutic strategy for targeting CLC. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Effects of induced energy deficiency on lactoferrin concentration in milk and the lactoferrin reaction of primary bovine mammary epithelial cells in vitro.

    Science.gov (United States)

    Danowski, K; Gross, J J; Meyer, H H D; Kliem, H

    2013-08-01

    A dietary energy restriction to 49% of total energy requirements was conducted with Red Holstein cows for three weeks in mid-lactation. At the last day of the restriction phase, primary bovine mammary epithelial cells (pbMEC) of eight restriction (RF) and seven control-fed (CF) cows were extracted out of one litre of milk and cultured. In their third passage, an immune challenge with the most prevalent, heat-inactivated mastitis pathogens Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was conducted. Lactoferrin (LF) was determined on gene expression and protein level. An enzyme-linked immunosorbent assay (ELISA) was developed to determine LF in milk samples taken twice weekly throughout the animal trial, beginning on day 20 pp (post-partum) until day 150 pp, in cell culture total protein and in cell culture supernatant. Milk LF increased throughout the lactation and decreased significantly during the induced energy deficiency in the RF group. At the beginning of realimentation, LF concentration increased immediately in the RF group and reached higher levels than before the induced deficit following the upward trend seen in the CF group. Cell culture data revealed higher levels (up to sevenfold up-regulation in gene expression) and significant higher LF protein concentration in the RF compared to the CF group cells. A further emphasized effect was found in E. coli compared to S. aureus exposed cells. The general elevated LF levels in the RF pbMEC group and the further increase owing to the immune challenge indicate an unexpected memory ability of milk-extracted mammary cells that were transposed into in vitro conditions and even displayed in the third passage of cultivation. The study confirms the suitability of the non-invasive milk-extracted pbMEC culture model to monitor the influence of feeding experiments on immunological situations in vivo. © 2012 Blackwell Verlag GmbH.

  11. Immunoglobins in mammary secretions

    DEFF Research Database (Denmark)

    Hurley, W L; Theil, Peter Kappel

    2013-01-01

    Immunoglobulins secreted in colostrum and milk by the lactating mammal are major factors providing immune protection to the newborn. Immunoglobulins in mammary secretions represent the cumulative immune response of the lactating animal to exposure to antigenic stimulation that occurs through...... the immunoglobulins found in mammary secretions in the context of their diversity of structure, origin, mechanisms of transfer, and function....

  12. Raloxifene inhibits tumor growth and lymph node metastasis in a xenograft model of metastatic mammary cancer

    Directory of Open Access Journals (Sweden)

    Li Zhong-Lian

    2010-10-01

    Full Text Available Abstract Background The effects of raloxifene, a novel selective estrogen receptor modulator, were studied in a mouse metastatic mammary cancer model expressing cytoplasmic ERα. Methods Mammary tumors, induced by inoculation of syngeneic BALB/c mice with BJMC3879luc2 cells, were subsequently treated with raloxifene at 0, 18 and 27 mg/kg/day using mini-osmotic pumps. Results In vitro study demonstrated that the ERα in BJMC3879luc2 cells was smaller (between 50 and 64 kDa than the normal-sized ERα (66 kDa and showed cytoplasmic localization. A statistically significant but weak estradiol response was observed in this cell line. When BJMC3879luc2 tumors were implanted into mice, the ERα mRNA levels were significantly higher in females than in males. In vitro studies showed that raloxifene induced mitochondria-mediated apoptosis and cell-cycle arrest in the G1-phase and a decrease in the cell population in the S-phase. In animal experiments, tumor volumes were significantly suppressed in the raloxifene-treated groups. The multiplicity of lymph node metastasis was significantly decreased in the 27 mg/kg group. Levels of apoptosis were significantly increased in the raloxifene-treated groups, whereas the levels of DNA synthesis were significantly decreased in these groups. No differences in microvessel density in tumors were observed between the control and raloxifene-treated groups. The numbers of dilated lymphatic vessels containing intraluminal tumor cells were significantly reduced in mammary tumors in the raloxifene-treated groups. The levels of ERα mRNA in mammary tumors tended to be decreased in the raloxifene-treated groups. Conclusion These results suggest that the antimetastatic activity of raloxifene in mammary cancer expressing cytoplasmic ERα may be a crucial finding with clinical applications and that raloxifene may be useful as an adjuvant therapy and for the chemoprevention of breast cancer development.

  13. Characterization of a Merkel Cell Polyomavirus-Positive Merkel Cell Carcinoma Cell Line CVG-1.

    Science.gov (United States)

    Velásquez, Celestino; Amako, Yutaka; Harold, Alexis; Toptan, Tuna; Chang, Yuan; Shuda, Masahiro

    2018-01-01

    Merkel cell polyomavirus (MCV) plays a causal role in ∼80% of Merkel cell carcinomas (MCC). MCV is clonally integrated into the MCC tumor genome, which results in persistent expression of large T (LT) and small T (sT) antigen oncoproteins encoded by the early locus. In MCV-positive MCC tumors, LT is truncated by premature stop codons or deletions that lead to loss of the C-terminal origin binding (OBD) and helicase domains important for replication. The N-terminal Rb binding domain remains intact. MCV-positive cell lines derived from MCC explants have been valuable tools to study the molecular mechanism of MCV-induced Merkel cell carcinogenesis. Although all cell lines have integrated MCV and express truncated LT antigens, the molecular sizes of the LT proteins differ between cell lines. The copy number of integrated viral genome also varies across cell lines, leading to significantly different levels of viral protein expression. Nevertheless, these cell lines share phenotypic similarities in cell morphology, growth characteristics, and neuroendocrine marker expression. Several low-passage MCV-positive MCC cell lines have been established since the identification of MCV. We describe a new MCV-positive MCV cell line, CVG-1, with features distinct from previously reported cell lines. CVG-1 tumor cells grow in more discohesive clusters in loose round cell suspension, and individual cells show dramatic size heterogeneity. It is the first cell line to encode an MCV sT polymorphism resulting in a unique leucine (L) to proline (P) substitution mutation at amino acid 144. CVG-1 possesses a LT truncation pattern near identical to that of MKL-1 cells differing by the last two C-terminal amino acids and also shows an LT protein expression level similar to MKL-1. Viral T antigen knockdown reveals that, like other MCV-positive MCC cell lines, CVG-1 requires T antigen expression for cell proliferation.

  14. Reactive oxygen species via redox signaling to PI3K/AKT pathway contribute to the malignant growth of 4-hydroxy estradiol-transformed mammary epithelial cells.

    Directory of Open Access Journals (Sweden)

    Victor O Okoh

    Full Text Available The purpose of this study was to investigate the effects of 17-β-estradiol (E2-induced reactive oxygen species (ROS on the induction of mammary tumorigenesis. We found that ROS-induced by repeated exposures to 4-hydroxy-estradiol (4-OH-E2, a predominant catechol metabolite of E2, caused transformation of normal human mammary epithelial MCF-10A cells with malignant growth in nude mice. This was evident from inhibition of estrogen-induced breast tumor formation in the xenograft model by both overexpression of catalase as well as by co-treatment with Ebselen. To understand how 4-OH-E2 induces this malignant phenotype through ROS, we investigated the effects of 4-OH-E2 on redox-sensitive signal transduction pathways. During the malignant transformation process we observed that 4-OH-E2 treatment increased AKT phosphorylation through PI3K activation. The PI3K-mediated phosphorylation of AKT in 4-OH-E2-treated cells was inhibited by ROS modifiers as well as by silencing of AKT expression. RNA interference of AKT markedly inhibited 4-OH-E2-induced in vitro tumor formation. The expression of cell cycle genes, cdc2, PRC1 and PCNA and one of transcription factors that control the expression of these genes - nuclear respiratory factor-1 (NRF-1 was significantly up-regulated during the 4-OH-E2-mediated malignant transformation process. The increased expression of these genes was inhibited by ROS modifiers as well as by silencing of AKT expression. These results indicate that 4-OH-E2-induced cell transformation may be mediated, in part, through redox-sensitive AKT signal transduction pathways by up-regulating the expression of cell cycle genes cdc2, PRC1 and PCNA, and the transcription factor - NRF-1. In summary, our study has demonstrated that: (i 4-OH-E2 is one of the main estrogen metabolites that induce mammary tumorigenesis and (ii ROS-mediated signaling leading to the activation of PI3K/AKT pathway plays an important role in the generation of 4-OH-E2

  15. Proliferative Activity of Mammary Carcinoma Cells by AgNOR Count in C3H mice Receiving Ethanol Extract of Sponge Haliclona sp

    Science.gov (United States)

    Sijabat, Lanceria; Susilaningsih, Neni; Trianto, Agus; Murwani, Retno

    2018-02-01

    Quantification of argyrophilic nucleolar organizer region (AgNORs) was considered as one of markers of proliferative activity of cancer cells. Sponge Haliclona sp extract contains anticancer bioactive compounds and our previous study showed that the extract was able to improve histological grade of induced mammary adenocarcinoma in mice. The following research was conducted to study the extract administration on the proliferative activity of the carcinoma cells represented by AgNOR count in mice. This experimental study applied post test only control group design. Twenty C3H mice were divided into four groups namely C (control), H1, H2 and H3. Each group was given 0, 0.15, 1.5, and 15 mg Haliclona sp extract respectively. After three weeks of extract administration, mice were inoculated with breast cancer cells from donor mice. The extract administration were continued for another three weeks. AgNOR count was performed on tumor sections and expressed as mean of AgNOR (mAgNOR) and percentage of AgNOR (pAgNOR). Means of mAgNOR in C, H1, H2 and H3 were 4.070, 3.195, 3.450, and 3.190 respectively. Means of pAgNOR in C, H1, H2 and H3 were 34,40, 25,40, 38,40 and 19,80 respectively. The lowest means of mAgNOR and pAgNOR which is an indication of lower proliferative activity of the cancer cells was found in H3. However no significant difference can be found among treatment groups (p>0.05). Using AgNOR count, the ethanol extract of Haliclona sp could not show significant reduction in proliferation of mammary carcinoma cells of C3H mice. This finding support the view that AgNOR alone could not be used to determine pathology of cancer cells.

  16. Molecular network including eIF1AX, RPS7, and 14-3-3γ regulates protein translation and cell proliferation in bovine mammary epithelial cells.

    Science.gov (United States)

    Yu, Cuiping; Luo, Chaochao; Qu, Bo; Khudhair, Nagam; Gu, Xinyu; Zang, Yanli; Wang, Chunmei; Zhang, Na; Li, Qingzhang; Gao, Xuejun

    2014-12-15

    14-3-3γ, an isoform of the 14-3-3 protein family, was proved to be a positive regulator of mTOR pathway. Here, we analyzed the function of 14-3-3γ in protein synthesis using bovine mammary epithelial cells (BMECs). We found that 14-3-3γ interacted with eIF1AX and RPS7 by 14-3-3γ coimmunoprecipitation (CoIP) and matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight (MALDI-TOF/TOF) peptide mass fingerprinting analysis. These interactions of 14-3-3γ with eIF1AX and RPS7 were further confirmed by colocalization and fluorescence resonance energy transfer (FRET) analysis. We also found that methionine could promote protein synthesis and trigger the protein expression levels of 14-3-3γ, eIF1AX and RPS7. Analysis of overexpression and inhibition of 14-3-3γ confirmed that it positively affected the protein expression levels of eIF1AX, RPS7, Stat5 and mTOR pathway to promote protein synthesis and cell proliferation in BMECs. We further showed that overexpression of eIF1AX and RPS7 also triggered protein translation and cell proliferation. From these results, we conclude that molecular network including eIF1AX, RPS7, and 14-3-3γ regulates protein translation and cell proliferation in BMECs. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. The Effects of Fatty Acids on Retinoid Signaling in Human Mammary Epithelial Cells and Breast Cancer Cells

    National Research Council Canada - National Science Library

    Langton, Simne; Gudas, Lorraine J

    2005-01-01

    ...) and docosahexaenoic acid (DHA) are diet-derived fatty acids that bind to rexinoid X receptors (RXR). Therefore, we hypothesized that inhibitory effects on cell proliferation may be enhanced by the addition of PA and DHA to RA- treated cells...

  18. MODERATE CYTOTOXICITY OF PROANTHOCYANIDINS TO HUMAN TUMOR-CELL LINES

    NARCIS (Netherlands)

    KOLODZIEJ, H; HABERLAND, C; WOERDENBAG, HJ; KONINGS, AWT

    In the present study the cytotoxicity of 16 proanthocyanidins was evaluated in GLC(4), a human small cell lung carcinoma cell line, and in COLO 320, a human colorectal cancer cell line, using the microculture tetrazolium (MTT) assay. With IC50 values ranging from 18 to >200 mu m following continuous

  19. Progesterone receptor activates Msx2 expression by downregulating TNAP/Akp2 and activating the Bmp pathway in EpH4 mouse mammary epithelial cells.

    Directory of Open Access Journals (Sweden)

    Jodie M Fleming

    Full Text Available Previously we demonstrated that EpH4 mouse mammary epithelial cells induced the homeobox transcription factor Msx2 either when transfected with the progesterone receptor (PR or when treated with Bmp2/4. Msx2 upregulation was unaffected by Wnt inhibitors s-FRP or Dkk1, but was inhibited by the Bmp antagonist Noggin. We therefore hypothesized that PR signaling to Msx2 acts through the Bmp receptor pathway. Herein, we confirm that transcripts for Alk2/ActR1A, a non-canonical BmpR Type I, are upregulated in mammary epithelial cells overexpressing PR (EpH4-PR. Increased phosphorylation of Smads 1,5, 8, known substrates for Alk2 and other BmpR Type I proteins, was observed as was their translocation to the nucleus in EpH4-PR cells. Analysis also showed that Tissue Non-Specific Alkaline Phosphatase (TNAP/Akp2 was also found to be downregulated in EpH4-PR cells. When an Akp2 promoter-reporter construct containing a ½PRE site was transfected into EpH4-PR cells, its expression was downregulated. Moreover, siRNA mediated knockdown of Akp2 increased both Alk2 and Msx2 expression. Collectively these data suggest that PR inhibition of Akp2 results in increased Alk2 activity, increased phosphorylation of Smads 1,5,8, and ultimately upregulation of Msx2. These studies imply that re-activation of the Akp2 gene could be helpful in downregulating aberrant Msx2 expression in PR+ breast cancers.

  20. Comparative 2D-DIGE proteomic analysis of bovine mammary epithelial cells during lactation reveals protein signatures for lactation persistency and milk yield.

    Directory of Open Access Journals (Sweden)

    Jagadeesh Janjanam

    Full Text Available Mammary gland is made up of a branching network of ducts that end with alveoli which surrounds the lumen. These alveolar mammary epithelial cells (MEC reflect the milk producing ability of farm animals. In this study, we have used 2D-DIGE and mass spectrometry to identify the protein changes in MEC during immediate early, peak and late stages of lactation and also compared differentially expressed proteins in MEC isolated from milk of high and low milk producing cows. We have identified 41 differentially expressed proteins during lactation stages and 22 proteins in high and low milk yielding cows. Bioinformatics analysis showed that a majority of the differentially expressed proteins are associated in metabolic process, catalytic and binding activity. The differentially expressed proteins were mapped to the available biological pathways and networks involved in lactation. The proteins up-regulated during late stage of lactation are associated with NF-κB stress induced signaling pathways and whereas Akt, PI3K and p38/MAPK signaling pathways are associated with high milk production mediated through insulin hormone signaling.

  1. Pro-inflammatory cytokine TNF-α is a key inhibitory factor for lactose synthesis pathway in lactating mammary epithelial cells.

    Science.gov (United States)

    Kobayashi, Ken; Kuki, Chinatsu; Oyama, Shoko; Kumura, Haruto

    2016-01-15

    Lactose is a milk-specific carbohydrate synthesized by mammary epithelial cells (MECs) in mammary glands during lactation. Lactose synthesis is downregulated under conditions causing inflammation such as mastitis, in which MECs are exposed to high concentrations of inflammatory cytokines. In this study, we investigated whether inflammatory cytokines (TNF-α, IL-1β, and IL-6) directly influence the lactose synthesis pathway by using two types of murine MEC culture models: the monolayer culture of MECs to induce lactogenesis; and the three-dimensional culture of MECs surrounded by Matrigel to induce reconstitution of the alveolar structure in vitro. TNF-α caused severe down-regulation of lactose synthesis-related genes concurrently with the degradation of glucose transporter 1 (GLUT1) from the basolateral membranes in MECs. IL-1β also caused degradation of GLUT1 along with a decrease in the expression level of β-1,4-galactosylransferase 3. IL-6 caused both up-regulation and down-regulation of the expression levels of lactose synthesis-related genes in MECs. These results indicate that TNF-α, IL-1β, and IL-6 have different effects on the lactose synthesis pathway in MECs. Furthermore, TNF-α triggered activation of NFκB and inactivation of STAT5, suggesting that NFκB and STAT5 signaling pathways are involved in the multiple adverse effects of TNF-α on the lactose synthesis pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Cell clusters overlying focally disrupted mammary myoepithelial cell layers and adjacent cells within the same duct display different immunohistochemical and genetic features: implications for tumor progression and invasion

    International Nuclear Information System (INIS)

    Man, Yan-gao; Vinh, Tuyethoa N; Strauss, Brian L; Tai, Lisa; Barner, Ross; Vang, Russell; Saenger, Jeffrey S; Shekitka, Kris M; Bratthauer, Gary L; Wheeler, Darren T; Liang, Chang Y

    2003-01-01

    Our previous studies detected focal disruptions in myoepithelial cell layers of several ducts with carcinoma in situ. The cell cluster overlying each of the myoepithelial disruptions showed a marked reduction in or a total loss of immunoreactivity for the estrogen receptor (ER). This is in contrast to the adjacent cells within the same duct, which were strongly immunoreactive for the ER. The current study attempts to confirm and expand previous observations on a larger scale. Paraffin sections from 220 patients with ER-positive intraductal breast tumors were double immunostained with the same protocol previously used. Cross-sections of ducts lined by ≥ 40 epithelial cells were examined for myoepithelial cell layer disruptions and for ER expression. In five selected cases, ER-negative cells overlying the disrupted myoepithelial cell layer and adjacent ER-positive cells within the same duct were separately microdissected and assessed for loss of heterozygosity and microsatellite instability. Of the 220 cases with 5698 duct cross-sections examined, 94 showed disrupted myoepithelial cell layers with 405 focal disruptions. Of the 94 cases, 79 (84%) contained only ER-negative cell clusters, nine (9.6%) contained both ER-negative and ER-positive cell clusters, and six (6.4%) contained only ER-positive cell clusters overlying disrupted myoepithelial cell layers. Of the 405 disruptions, 350 (86.4%) were overlain by ER-negative cell clusters and 55 (13.6%) were overlain by ER-positive cell clusters (P < 0.01). Microdissected ER-negative and ER-positive cells within the same duct from all five selected cases displayed a different frequency or pattern of loss of heterozygosity and/or microsatellite instability at 10 of the 15 DNA markers. Cells overlying focally disrupted myoepithelial layers and their adjacent counterparts within the same duct displayed different immunohistochemical and molecular features. These features potentially represent an early sign of the formation

  3. WNT4 mediates estrogen receptor signaling and endocrine resistance in invasive lobular carcinoma cell lines.

    Science.gov (United States)

    Sikora, Matthew J; Jacobsen, Britta M; Levine, Kevin; Chen, Jian; Davidson, Nancy E; Lee, Adrian V; Alexander, Caroline M; Oesterreich, Steffi

    2016-09-20

    Invasive lobular carcinoma (ILC) of the breast typically presents with clinical biomarkers consistent with a favorable response to endocrine therapies, and over 90 % of ILC cases express the estrogen receptor (ER). However, a subset of ILC cases may be resistant to endocrine therapies, suggesting that ER biology is unique in ILC. Using ILC cell lines, we previously demonstrated that ER regulates a distinct gene expression program in ILC cells, and we hypothesized that these ER-driven pathways modulate the endocrine response in ILC. One potential novel pathway is via the Wnt ligand WNT4, a critical signaling molecule in mammary gland development regulated by the progesterone receptor. The ILC cell lines MDA-MB-134-VI, SUM44PE, and BCK4 were used to assess WNT4 gene expression and regulation, as well as the role of WNT4 in estrogen-regulated proliferation. To assess these mechanisms in the context of endocrine resistance, we developed novel ILC endocrine-resistant long-term estrogen-deprived (ILC-LTED) models. ILC and ILC-LTED cell lines were used to identify upstream regulators and downstream signaling effectors of WNT4 signaling. ILC cells co-opted WNT4 signaling by placing it under direct ER control. We observed that ER regulation of WNT4 correlated with use of an ER binding site at the WNT4 locus, specifically in ILC cells. Further, WNT4 was required for endocrine response in ILC cells, as WNT4 knockdown blocked estrogen-induced proliferation. ILC-LTED cells remained dependent on WNT4 for proliferation, by either maintaining ER function and WNT4 regulation or uncoupling WNT4 from ER and upregulating WNT4 expression. In the latter case, WNT4 expression was driven by activated nuclear factor kappa-B signaling in ILC-LTED cells. In ILC and ILC-LTED cells, WNT4 led to suppression of CDKN1A/p21, which is critical for ILC cell proliferation. CDKN1A knockdown partially reversed the effects of WNT4 knockdown. WNT4 drives a novel signaling pathway in ILC cells, with a

  4. Mouse mammary tumor virus uses mouse but not human transferrin receptor 1 to reach a low pH compartment and infect cells

    International Nuclear Information System (INIS)

    Wang Enxiu; Obeng-Adjei, Nyamekye; Ying Qihua; Meertens, Laurent; Dragic, Tanya; Davey, Robert A.; Ross, Susan R.

    2008-01-01

    Mouse mammary tumor virus (MMTV) is a pH-dependent virus that uses mouse transferrin receptor 1 (TfR1) for entry into cells. Previous studies demonstrated that MMTV could induce pH 5-dependent fusion-from-with of mouse cells. Here we show that the MMTV envelope-mediated cell-cell fusion requires both the entry receptor and low pH (pH 5). Although expression of the MMTV envelope and TfR1 was sufficient to mediate low pH-dependent syncytia formation, virus infection required trafficking to a low pH compartment; infection was independent of cathepsin-mediated proteolysis. Human TfR1 did not support virus infection, although envelope-mediated syncytia formation occurred with human cells after pH 5 treatment and this fusion depended on TfR1 expression. However, although the MMTV envelope bound human TfR1, virus was only internalized and trafficked to a low pH compartment in cells expressing mouse TfR1. Thus, while human TfR1 supported cell-cell fusion, because it was not internalized when bound to MMTV, it did not function as an entry receptor. Our data suggest that MMTV uses TfR1 for all steps of entry: cell attachment, induction of the conformational changes in Env required for membrane fusion and internalization to an appropriate acidic compartment

  5. Mammary Development and Breast Cancer: A Wnt Perspective

    Science.gov (United States)

    Yu, Qing Cissy; Verheyen, Esther M.; Zeng, Yi Arial

    2016-01-01

    The Wnt pathway has emerged as a key signaling cascade participating in mammary organogenesis and breast oncogenesis. In this review, we will summarize the current knowledge of how the pathway regulates stem cells and normal development of the mammary gland, and discuss how its various components contribute to breast carcinoma pathology. PMID:27420097

  6. Investigation of the selenium metabolism in cancer cell lines

    DEFF Research Database (Denmark)

    Lunøe, Kristoffer; Gabel-Jensen, Charlotte; Stürup, Stefan

    2011-01-01

    The aim of this work was to compare different selenium species for their ability to induce cell death in different cancer cell lines, while investigating the underlying chemistry by speciation analysis. A prostate cancer cell line (PC-3), a colon cancer cell line (HT-29) and a leukaemia cell line...... (Jurkat E6-1) were incubated with five selenium compounds representing inorganic as well as organic Se compounds in different oxidation states. Selenomethionine (SeMet), Se-methylselenocysteine (MeSeCys), methylseleninic acid (MeSeA), selenite and selenate in the concentration range 5-100 mu M were...... incubated with cells for 24 h and the induction of cell death was measured using flow cytometry. The amounts of total selenium in cell medium, cell lysate and the insoluble fractions was determined by ICP-MS. Speciation analysis of cellular fractions was performed by reversed phase, anion exchange and size...

  7. Derivation and characterization of a pig embryonic stem cell-derived exocrine pancreatic cell line

    Science.gov (United States)

    The establishment and initial characterization of a pig embryonic stem cell-derived pancreatic cell line, PICM-31, and a colony-cloned derivative cell line, PICM-31A, is described. The cell lines were propagated for several months at split ratios of 1:3 or 1:5 at each passage on STO feeder cells af...

  8. Human mammary fibroblasts stimulate invasion of breast cancer cells in a three-dimensional culture and increase stroma development in mouse xenografts

    International Nuclear Information System (INIS)

    Olsen, Charlotta J; Moreira, José; Lukanidin, Eugene M; Ambartsumian, Noona S

    2010-01-01

    Tumour phenotype is regulated in a complex fashion as a result of interactions between malignant cells and the tumour stroma. Fibroblasts are the most abundant and perhaps most active part of the tumour stroma. A better understanding of the changes that occur in fibroblasts in response to the presence of malignant cells may lead to the development of new strategies for cancer treatment. We explored the effects of fibroblasts on the growth and invasion of mammary carcinoma tumour cells in vitro and in vivo. In order to analyse secreted factors that affect invasive abilities of breast cancer cells we co-cultured human mammary fibroblasts (HMF3s) and cancer cells (MCF7S1) in three-dimensional (3D) growth conditions devoid of heterogeneous cell-cell contact. To study the possible influence of fibroblasts on MCF7S1 cancer cell growth in vivo we co-injected HMF3s and MCF7S1 cells in Balb/c nu/nu mice. In 3D co-culture both HMF3s and MCF7S1 cells demonstrated enhanced invasion into a Matrigel matrix. This was correlated with enhanced expression of the metastasis promoting S100A4 protein in fibroblasts, stimulation of the matrix metalloproteinase (MMP)-2 activity, and enhanced secretion of a range of different cytokines. Orthotopic injection of oestrogen-dependent MCF7S1 cancer cells together with fibroblasts showed stimulation of tumour growth in mice without an external oestrogen supply. The resulting tumours were characterized by increased development of extracellular matrix, as well as an increase of murine S100A4 concentration and activity of MMP-2 in the tumour interstitial fluid. Stimulation of the invasive phenotype of tumour cells in 3D co-cultures with fibroblasts could be correlated with increased production of S100A4 and MMP-2. We propose that enhanced development of mouse host-derived tumour stroma in a MCF7S1 co-injection xenograft model leads to oestrogen independency and is triggered by the initial presence of human fibroblasts

  9. The Effects of Fatty Acids on Retinoid Signaling in Human Mammary Epithelial Cells and Breast Cancer Cells

    National Research Council Canada - National Science Library

    Langton, Simne; Gudas, Lorraine J

    2004-01-01

    ...) and docosahexaenoic acid (DHA) are diet-derived fatty acids that bind to rexinoid X receptors (RXR). Therefore, we hypothesized that inhibitory effects on cell proliferation may be enhanced by the addition of PA and DHA to RA-treated cells...

  10. SU-F-T-678: Clotrimazole Sensitizes MCF-7 Breast Cancer Cell Line to Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, L; Tambasco, M [San Diego State University, San Diego, CA (United States)

    2016-06-15

    Purpose: To study the effects of Clotrimazole (CLT) on radiosensitivity of MCF-7 Cells in correlation to detachment of Hexokinase II from the Voltage Dependent Anion Channel on the outer membrane of the mitochondria. Apoptotic fractions were also analyzed in relation to the detachment of Hexokinase. Methods: This study focused on the mammary adenocarcinoma cell line, MCF-7. Colony forming assays were used to analyze radiosensitization by CLT. Flow cytometry methods were used to analyze apoptotic vs necrotic fractions after treatment with CLT. Spectrophotometery was used to analyze the mitochondrial bound and soluble fraction of Hexokinase by means of relative enzymatic activity. Results: Our preliminary data have shown that CLT sensitizes MCF-7 cells to radiation in a dose and incubation time dependent manner up. We have also demonstrated that there are two radiosensitizing periods in MCF-7 cells with the first corresponding to the cycle arrest after 24 hours observed in other cell lines. The second radiosensitizing period occurs with incubation in CLT after irradiation which reaches maximum effect around 24 hours of incubation time. Preliminary data from our Hexokinase detachment assay show a factor of two increase in the ratio of unbound to bound Hexokinase when comparing incubation for 24 hours in media containing 0 and 20 µM CLT. Conclusion: This study and others indicate CLT as a possible radiosensitizing agent in cancer therapies. While CLT itself shows toxicity to the liver in high doses, this study further demonstrates that disruption of the Warburg Effect and unbinding of mitochondrial bound Hexokinase as a possible pathway for cancer treatment.

  11. SU-F-T-678: Clotrimazole Sensitizes MCF-7 Breast Cancer Cell Line to Radiation

    International Nuclear Information System (INIS)

    Garcia, L; Tambasco, M

    2016-01-01

    Purpose: To study the effects of Clotrimazole (CLT) on radiosensitivity of MCF-7 Cells in correlation to detachment of Hexokinase II from the Voltage Dependent Anion Channel on the outer membrane of the mitochondria. Apoptotic fractions were also analyzed in relation to the detachment of Hexokinase. Methods: This study focused on the mammary adenocarcinoma cell line, MCF-7. Colony forming assays were used to analyze radiosensitization by CLT. Flow cytometry methods were used to analyze apoptotic vs necrotic fractions after treatment with CLT. Spectrophotometery was used to analyze the mitochondrial bound and soluble fraction of Hexokinase by means of relative enzymatic activity. Results: Our preliminary data have shown that CLT sensitizes MCF-7 cells to radiation in a dose and incubation time dependent manner up. We have also demonstrated that there are two radiosensitizing periods in MCF-7 cells with the first corresponding to the cycle arrest after 24 hours observed in other cell lines. The second radiosensitizing period occurs with incubation in CLT after irradiation which reaches maximum effect around 24 hours of incubation time. Preliminary data from our Hexokinase detachment assay show a factor of two increase in the ratio of unbound to bound Hexokinase when comparing incubation for 24 hours in media containing 0 and 20 µM CLT. Conclusion: This study and others indicate CLT as a possible radiosensitizing agent in cancer therapies. While CLT itself shows toxicity to the liver in high doses, this study further demonstrates that disruption of the Warburg Effect and unbinding of mitochondrial bound Hexokinase as a possible pathway for cancer treatment.

  12. Genistein inhibits phorbol ester-induced NF-κB transcriptional activity and COX-2 expression by blocking the phosphorylation of p65/RelA in human mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Myung-Hoon; Kim, Do-Hee [Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul (Korea, Republic of); Na, Hye-Kyung [Department of Food and Nutrition, Sungshin Women' s University, Seoul (Korea, Republic of); Kim, Jung-Hwan; Kim, Ha-Na [Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul (Korea, Republic of); Haegeman, Guy [LEGEST, University of Gent (Belgium); Surh, Young-Joon, E-mail: surh@snu.ac.kr [Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul (Korea, Republic of); Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul (Korea, Republic of); Cancer Research Institute, Seoul National University, Seoul (Korea, Republic of)

    2014-10-15

    Genistein, an isoflavone present in soy products, has chemopreventive effects on mammary carcinogenesis. In the present study, we have investigated the effects of genistein on phorbol ester-induced expression of cyclooxygenase-2 (COX-2) that plays an important role in the pathophysiology of inflammation-associated carcinogenesis. Pretreatment of cultured human breast epithelial (MCF10A) cells with genistein reduced COX-2 expression induced by 12-O-tetradecanoylphorbol-13-acetate (TPA). There are multiple lines of evidence supporting that the induction of COX-2 is regulated by the eukaryotic transcription factor NF-κB. Genistein failed to inhibit TPA-induced nuclear translocation and DNA binding of NF-κB as well as degradation of IκB. However, genistein abrogated the TPA-induced transcriptional activity of NF-κB as determined by the luciferase reporter gene assay. Genistein inhibited phosphorylation of the p65 subunit of NF-κB and its interaction with cAMP regulatory element-binding protein-binding protein (CBP)/p300 and TATA-binding protein (TBP). TPA-induced NF-κB phosphorylation was abolished by pharmacological inhibition of extracellular signal-regulated kinase (ERK). Likewise, pharmacologic inhibition or dominant negative mutation of ERK suppressed phosphorylation of p65. The above findings, taken together, suggest that genistein inhibits TPA-induced COX-2 expression in MCF10A cells by blocking ERK-mediated phosphorylation of p65 and its subsequent interaction with CBP and TBP.

  13. Feeder-cell-independent culture of the pig-embryonic-stem-cell-derived exocrine pancreatic cell line, PICM-31

    Science.gov (United States)

    The adaptation to feeder-independent growth of a pig embryonic stem cell-derived pancreatic cell line is described. The parental PICM-31 cell line, previously characterized as an exocrine pancreas cell line, was colony-cloned two times in succession resulting in the subclonal cell line, PICM-31A1. P...

  14. Mammary gland-specific nuclear factor activity is positively regulated by lactogenic hormones and negatively by milk stasis.

    Science.gov (United States)

    Schmitt-Ney, M; Happ, B; Hofer, P; Hynes, N E; Groner, B

    1992-12-01

    The mammary gland-specific nuclear factor (MGF) is a crucial contributor to the regulation of transcription from the beta-casein gene promoter. The beta-casein gene encodes a major milk protein, which is expressed in mammary epithelial cells during lactation and can be induced by lactogenic hormones in the clonal mammary epithelial cell line HC11. We have investigated the specific DNA-binding activity of MGF in mammary epithelial cells in vivo and in vitro. Comparison of MGF in HC11 cells and mammary gland cells from lactating mice revealed molecules with identical DNA-binding properties. Bandshift and UV cross-linking experiments indicated that MGF in HC11 cells has a higher mol wt than MGF found in mice. Little MGF activity was detected in nuclear extracts from HC11 cells cultured in the absence of lactogenic hormones. Lactogenic hormone treatment of HC11 cells led to a strong induction of MGF activity. The induction of MGF activity as well as utilization of the beta-casein promoter were suppressed when epidermal growth factor was present in the tissue culture medium simultaneously with the lactogenic hormones. In lactating animals, MGF activity is regulated by suckling, milk stasis, and systemic hormone signals. The mammary glands from maximally lactating animals, 16 days postpartum, contain drastically reduced MGF activity after removal of the pups for only 8 h. The down-regulation of MGF by pup withdrawal was slower in early lactation, 6 days postpartum. We also investigated the relative contributions of local signals, generated by milk stasis, and systemic hormone signals to the regulation of MGF activity. The access to one row of mammary glands of lactating mothers was denied to the pups for 24 h. High levels of MGF were found in the accessible mammary glands, and intermediate levels of MGF were found in the inaccessible glands of the same mouse. Very low MGF levels were detected when the pups were removed from the dams for 24 h. We conclude that systemic as

  15. Peroxisomal abnormalities in the immortalized human hepatocyte (IHH) cell line.

    Science.gov (United States)

    Klouwer, Femke C C; Koster, Janet; Ferdinandusse, Sacha; Waterham, Hans R

    2017-04-01

    The immortalized human hepatocyte (IHH) cell line is increasingly used for studies related to liver metabolism, including hepatic glucose, lipid, lipoprotein and triglyceride metabolism, and the effect of therapeutic interventions. To determine whether the IHH cell line is a good model to investigate hepatic peroxisomal metabolism, we measured several peroxisomal parameters in IHH cells and, for comparison, HepG2 cells and primary skin fibroblasts. This revealed a marked plasmalogen deficiency and a deficient fatty acid α-oxidation in the IHH cells, due to a defect of PEX7, a cytosolic receptor protein required for peroxisomal import of a subset of peroxisomal proteins. These abnormalities have consequences for the lipid homeostasis of these cells and thus should be taken into account for the interpretation of data previously generated by using this cell line and when considering using this cell line for future research.

  16. Radiation response of haematopoietic cell lines of human origin

    International Nuclear Information System (INIS)

    Lehnert, S.; Rybka, W.B.; Suissa, S.; Giambattisto, D.

    1986-01-01

    Six human haematopoietic cell lines, five of leukaemic origin, including cells with myeloid, lymphoid and undifferentiated phenotype have been studied with respect to radiation response. The intrinsic radio-sensitivity of the cells varied widely, the D 0 s ranging from 0.53 to 1.39 Gy. Five of the cell lines showed some capacity to accumulate sublethal damage; in three of these, enhanced survival was demonstrated in split-dose experiments. One cell line (HL-60) was anomalous in that although little accumulation of sublethal damage was demonstrable, survival was enhanced by fractionation of the dose. Five of the six cell lines studied were of leukaemic origin. The results support the belief that, in contrast to the almost constant radiosensitivity of normal haematopoietic cell progenitors, leukaemic cell progenitors may show a wide range of radiosensitivities. (author)

  17. The irreversible ERBB1/2/4 inhibitor neratinib interacts with the BCL-2 inhibitor venetoclax to kill mammary cancer cells.

    Science.gov (United States)

    Booth, Laurence; Roberts, Jane L; Avogadri-Connors, Francesca; Cutler, Richard E; Lalani, Alshad S; Poklepovic, Andrew; Dent, Paul

    2018-03-04

    The irreversible ERBB1/2/4 inhibitor, neratinib, down-regulates the expression of ERBB1/2/4 as well as the levels of MCL-1 and BCL-XL. Venetoclax (ABT199) is a BCL-2 inhibitor. At physiologic concentrations neratinib interacted in a synergistic fashion with venetoclax to kill HER2 + and TNBC mammary carcinoma cells. This was associated with the drug-combination: reducing the expression and phosphorylation of ERBB1/2/3; in an eIF2α-dependent fashion reducing the expression of MCL-1 and BCL-XL and increasing the expression of Beclin1 and ATG5; and increasing the activity of the ATM-AMPKα-ULK1 S317 pathway which was causal in the formation of toxic autophagosomes. Although knock down of BAX or BAK reduced drug combination lethality, knock down of BAX and BAK did not prevent the drug combination from increasing autophagosome and autolysosome formation. Knock down of ATM, AMPKα, Beclin1 or over-expression of activated mTOR prevented the induction of autophagy and in parallel suppressed tumor cell killing. Knock down of ATM, AMPKα, Beclin1 or cathepsin B prevented the drug-induced activation of BAX and BAK whereas knock down of BID was only partially inhibitory. A 3-day transient exposure of established estrogen-independent HER2 + BT474 mammary tumors to neratinib or venetoclax did not significantly alter tumor growth whereas exposure to [neratinib + venetoclax] caused a significant 7-day suppression of growth by day 19. The drug combination neither altered animal body mass nor behavior. We conclude that venetoclax enhances neratinib lethality by facilitating toxic BH3 domain protein activation via autophagy which enhances the efficacy of neratinib to promote greater levels of cell killing.

  18. Human rhabdomyosarcoma cell lines for rhabdomyosarcoma research: Utility and pitfalls

    Directory of Open Access Journals (Sweden)

    Ashley R.P. Hinson

    2013-07-01

    Full Text Available Rhabdomyosarcoma (RMS is the most common soft tissue sarcoma of childhood and adolescence. Despite intergroup clinical trials conducted in Europe and North America, outcomes for high risk patients with this disease have not significantly improved in the last several decades, and survival of metastatic or relapsed disease remains extremely poor. Accrual into new clinical trials is slow and difficult, so in vitro cell line research and in vivo xenograft models present an attractive alternative for preclinical research for this cancer type. Currently, 30 commonly used human RMS cell lines exist, with differing origins, karyotypes, histologies, and methods of validation. Selecting an appropriate cell line for RMS research has important implications for outcomes. There are also potential pitfalls in using certain cell lines including contamination with murine stromal cells, cross-contamination between cell lines, discordance between the cell line and its associated original tumor, imposter cell lines, and nomenclature errors that result in the circulation of two or more presumed unique cell lines that are actually from the same origin. These pitfalls can be avoided by testing for species-specific isoenzymes, microarray analysis, assays for subtype-specific fusion products, and short tandem repeat analysis.

  19. Human Rhabdomyosarcoma Cell Lines for Rhabdomyosarcoma Research: Utility and Pitfalls

    Science.gov (United States)

    Hinson, Ashley R. P.; Jones, Rosanne; Crose, Lisa E. S.; Belyea, Brian C.; Barr, Frederic G.; Linardic, Corinne M.

    2013-01-01

    Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood and adolescence. Despite intergroup clinical trials conducted in Europe and North America, outcomes for high risk patients with this disease have not significantly improved in the last several decades, and survival of metastatic or relapsed disease remains extremely poor. Accrual into new clinical trials is slow and difficult, so in vitro cell-line research and in vivo xenograft models present an attractive alternative for preclinical research for this cancer type. Currently, 30 commonly used human RMS cell lines exist, with differing origins, karyotypes, histologies, and methods of validation. Selecting an appropriate cell line for RMS research has important implications for outcomes. There are also potential pitfalls in using certain cell lines including contamination with murine stromal cells, cross-contamination between cell lines, discordance between the cell line and its associated original tumor, imposter cell lines, and nomenclature errors that result in the circulation of two or more presumed unique cell lines that are actually from the same origin. These pitfalls can be avoided by testing for species-specific isoenzymes, microarray analysis, assays for subtype-specific fusion products, and short tandem repeat analysis. PMID:23882450

  20. Mammary type myofibroblastoma of the buttock: A case report and review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Min; Yi, Jae Hyuck [Dept.of Radiology, Kyungpook National University Hospital, College of Medicine, Kyungpook National University, Daegu (Korea, Republic of)

    2017-02-15

    Mammary-type myofibroblastoma is a very rare, benign mesenchymal tumor consisting of spindle-shaped cells along with thick hyalinized collagen bundles and an intralesional fat component; its histopathological features are identical to those of myofibroblastomas of the breast. It usually occurs along the embryonic milk-line; however, unusual cases occurring outside of the embryonic milk-line have also been reported. Although this tumor always shows clinically benign behavior, its variable histological composition can easily be confused with many other fibrous and lipomatous neoplasms. Unfortunately, its radiological findings are extremely rarely described in the literature. Here, we present a rare case of mammary-type myofibroblastoma in a 38-year-old woman who presented with a well-circumscribed solitary mass in the buttock, and discuss various radiologic imaging findings, such as plain radiography, ultrasonography, and magnetic resonance imaging results.

  1. Maternal high fat diet promotion of mammary tumor risk in adult progeny is associated with early expansion of mammary cancer stem-like cells and increased maternal oxidative environment

    Science.gov (United States)

    Many adult chronic diseases might be programmed during early life by maternal nutritional history. Here, we evaluated effects of maternal high fat diet on mammary gland development and tumor formation in adult progeny. Female Wnt-1 transgenic mice exposed to high fat (HFD, 45% kcal fat) or control C...

  2. Transcriptional profiles of benzo(a)pyrene exposure in normal human mammary epithelial cells in the absence or presence of chlorophyllin

    International Nuclear Information System (INIS)

    John, Kaarthik; Keshava, Channa; Richardson, Diana L.; Weston, Ainsley; Nath, Joginder

    2008-01-01

    Benzo(a)pyrene (BP) exposure causes alterations in gene expression in normal human mammary epithelial cells (NHMECs). This study used Affymetrix Hu-Gene133A arrays, with 14,500 genes represented, to evaluate modulation of BP-induced gene expression by chlorophyllin in six NHMEC strains derived from different donors. A major goal was to seek potential biomarkers of carcinogen exposure and how they behave in the presence of a chemopreventive agent. NHMECs (passage 6 and 70% confluence) were exposed for 24 h to either vehicle control, or BP, or chlorophyllin followed by BP and chlorophyllin together. BP exposure resulted in approximately 3-fold altered expression of 49 genes in at least one of the six NHMEC strains. When cells were exposed to chlorophyllin pre-treatment followed by BP plus chlorophyllin, expression of 125 genes was similarly altered. Genes in the functional categories of xenobiotic metabolism, cell signaling, cell motility, cell proliferation, cellular transcription, metabolism, cell cycle control, apoptosis and DNA repair were identified. Only CYP1B1 and ALDH1A3 were consistently up-regulated by ∼3-fold in most of the cell strains (at least 4) when exposed to BP. Cluster analysis identified a suite of 13 genes induced by BP where induction was mitigated in the presence of chlorophyllin. Additionally, cluster analysis identified a suite of 16 genes down-regulated by BP where induction was partially restored in the presence of chlorophyllin

  3. Authentication of M14 melanoma cell line proves misidentification of MDA‐MB‐435 breast cancer cell line

    Science.gov (United States)

    Korch, Christopher; Hall, Erin M.; Dirks, Wilhelm G.; Ewing, Margaret; Faries, Mark; Varella‐Garcia, Marileila; Robinson, Steven; Storts, Douglas; Turner, Jacqueline A.; Wang, Ying; Burnett, Edward C.; Healy, Lyn; Kniss, Douglas; Neve, Richard M.; Nims, Raymond W.; Reid, Yvonne A.; Robinson, William A.

    2017-01-01

    A variety of analytical approaches have indicated that melanoma cell line UCLA‐SO‐M14 (M14) and breast carcinoma cell line MDA‐MB‐435 originate from a common donor. This indicates that at some point in the past, one of these cell lines became misidentified, meaning that it ceased to correspond to the reported donor and instead became falsely identified (through cross‐contamination or other means) as a cell line from a different donor. Initial studies concluded that MDA‐MB‐435 was the misidentified cell line and M14 was the authentic cell line, although contradictory evidence has been published, resulting in further confusion. To address this question, we obtained early samples of the melanoma cell line (M14), a lymphoblastoid cell line from the same donor (ML14), and donor serum preserved at the originator's institution. M14 samples were cryopreserved in December 1975, before MDA‐MB‐435 cells were established in culture. Through a series of molecular characterizations, including short tandem repeat (STR) profiling and cytogenetic analysis, we demonstrated that later samples of M14 and MDA‐MB‐435 correspond to samples of M14 frozen in 1975, to the lymphoblastoid cell line ML14, and to the melanoma donor's STR profile, sex and blood type. This work demonstrates conclusively that M14 is the authentic cell line and MDA‐MB‐435 is misidentified. With clear provenance information and authentication testing of early samples, it is possible to resolve debates regarding the origins of problematic cell lines that are widely used in cancer research. PMID:28940260

  4. Lauric Acid Stimulates Mammary Gland Development of Pubertal Mice through Activation of GPR84 and PI3K/Akt Signaling Pathway.

    Science.gov (United States)

    Meng, Yingying; Zhang, Jing; Zhang, Fenglin; Ai, Wei; Zhu, Xiaotong; Shu, Gang; Wang, Lina; Gao, Ping; Xi, Qianyun; Zhang, Yongliang; Liang, Xingwei; Jiang, Qingyan; Wang, Songbo

    2017-01-11

    It has been demonstrated that dietary fat affects pubertal mammary gland development. However, the role of lauric acid (LA) in this process remains unclear. Thus, this study aimed to investigate the effects of LA on mammary gland development in pubertal mice and to explore the underlying mechanism. In vitro, 100 μM LA significantly promoted proliferation of mouse mammary epithelial cell line HC11 by regulating expression of proliferative markers (cyclin D1/3, p21, PCNA). Meanwhile, LA activated the G protein-coupled receptor 84 (GPR84) and PI3K/Akt signaling pathway. In agreement, dietary 1% LA enhanced mammary duct development, increased the expression of GPR84 and cyclin D1, and activated PI3K/Akt in mammary gland of pubertal mice. Furthermore, knockdown of GPR84 or inhibition of PI3K/Akt totally abolished the promotion of HC11 proliferation induced by LA. These results showed that LA stimulated mammary gland development of pubertal mice through activation of GPR84 and PI3K/Akt signaling pathway.

  5. Trichloroethylene toxicity in a human hepatoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Thevenin, E.; McMillian, J. [Medical Univ. of Charleston South Carolina, SC (United States)

    1994-12-31

    The experiments conducted in this study were designed to determine the usefullness of hepatocyte cultures and a human hepatoma cell line as model systems for assessing human susceptibility to hepatocellular carcinoma due to exposure to trichloroethylene. The results from these studies will then be analyzed to determine if human cell lines can be used to conduct future experiments of this nature.

  6. Derivation of the human embryonic stem cell line RCM1

    Directory of Open Access Journals (Sweden)

    P.A. De Sousa

    2016-03-01

    Full Text Available The human embryonic stem cell line RCM-1 was derived from a failed to fertilise egg undergoing parthenogenetic stimulation. The cell line shows normal pluripotency marker expression and differentiation to three germ layers in vitro and in vivo. It has a normal 46XX female karyotype and microsatellite PCR identity, HLA and blood group typing data is available.

  7. Comparison of steroid receptors from the androgen responsive DDT1 cell line and the nonresponsive HVP cell line.

    Science.gov (United States)

    Norris, J S; Kohler, P O

    1978-01-01

    Two hamster cell lines have been isolated from androgen target tissue. The DDT1 cells derived from ductus deferens tissue exhibit a growth response to androgens, while the HVP cells derived from ventral prostate are androgen unresponsive. Both cell lines contain androgen receptors, that are similar when compared by kinetic methods, sedimentation velocity, chromatographic procedures or nuclear translocation ability. The forms of the high salt extracted nuclear receptors are indistinguishable chromatographically. Therefore, we postulate that the lesion preventing androgen induced growth in the HVP cell line is subseqent to nuclear translocation of the steroid receptor complex.

  8. Defined spatiotemporal features of RAS-ERK signals dictate cell fate in MCF-7 mammary epithelial cells.

    Science.gov (United States)

    Herrero, Ana; Casar, Berta; Colón-Bolea, Paula; Agudo-Ibáñez, Lorena; Crespo, Piero

    2016-06-15

    Signals conveyed through the RAS-ERK pathway are essential for the determination of cell fate. It is well established that signal variability is achieved in the different microenvironments in which signals unfold. It is also known that signal duration is critical for decisions concerning cell commitment. However, it is unclear how RAS-ERK signals integrate time and space in order to elicit a given biological response. To investigate this, we used MCF-7 cells, in which EGF-induced transient ERK activation triggers proliferation, whereas sustained ERK activation in response to heregulin leads to adipocytic differentiation. We found that both proliferative and differentiating signals emanate exclusively from plasma membrane-disordered microdomains. Of interest, the EGF signal can be transformed into a differentiating stimulus by HRAS overexpression, which prolongs ERK activation, but only if HRAS localizes at disordered membrane. On the other hand, HRAS signals emanating from the Golgi complex induce apoptosis and can prevent heregulin-induced differentiation. Our results indicate that within the same cellular context, RAS can exert different, even antagonistic, effects, depending on its sublocalization. Thus cell destiny is defined by the ability of a stimulus to activate RAS at the appropriate sublocalization for an adequate period while avoiding switching on opposing RAS signals. © 2016 Herrero et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. Genetic susceptibility to mammary carcinogenesis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Kenji; Nitta, Yumiko [Hiroshima Univ. (Japan). Research Inst. for Radiation Biology and Medicine

    1999-06-01

    The Copenhagen (COP) rat strain has previously been shown to be genetically resistant to chemical induction of breast cancer, while Wistar/Furth (WF) and Fischer 344 (F344) animals are relatively susceptible. We have compared the carcinogenic response of these three strains of rats to N-methyl-N-nitrosourea (MNU) with that to {sup 60}Co gamma rays. High incidences of mammary carcinomas were induced by MNU in the F344 and WF rats (100%), whereas the COP strain proved resistant (11.8%). In contrast, radiation-induced mammary carcinomas in COP rats developed in a similar incidence (37.0%) to those in the F344 (22.6%) and WF (26.9%) strains. The low incidence of papillary carcinomas in MNU-treated COP rats appeared to be directly related to the COP genetic resistance controlled by the Mcs genes. Ionizing radiation did, however, induce papillary carcinomas in all the three strains of rats. These carcinomas were more differentiated than MNU-induced cancers with regard to the two mammary differentiation markers, rat milk fat globule membrane (R-MFGM) and {alpha}-smooth muscle actin ({alpha}-SMA). Furthermore, ionizing radiation but not MNU induced mammary adenomas in all three strains, especially in COP rats. Such adenomas had differentiation marker profiles similar to these of carcinomas induced by {sup 60}Co gamma rays. When transplanted into syngenic hosts, growth of adenomas was 17 {beta}-estradiol (E{sub 2})-dependent and they progressed to carcinomas. Furthermore, one microcarcinoma was observed to develop from adenoma tissue in a radiation-exposed COP rat. The findings suggest that radiation and chemical carcinogens are likely to induce mammary cancers through different pathways or from different cell populations. The induction of relatively high incidences of mammary carcinomas and adenomas by radiation in COP rats may correlate with the genetically modulated and highly differentiated physiological status of their mammary glands. (author)

  10. trans-11 18:1 Vaccenic Acid (TVA Has a Direct Anti-Carcinogenic Effect on MCF-7 Human Mammary Adenocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Ji-Na Lim

    2014-02-01

    Full Text Available Trans vaccenic acid (TVA; trans-11 18:1 is a positional and geometric isomer of oleic acid and it is the predominant trans isomer found in ruminant fats. TVA can be converted into cis-9, trans-11 conjugated linoleic acid (c9, t11-CLA, a CLA isomer that has many beneficial effects, by stearoyl CoA desaturase 1 (SCD1 in the mammary gland. The health benefits associated with CLA are well documented, but it is unclear whether trans fatty acids (TFAs from ruminant products have healthy effects. Therefore, the effects of TVA on the proliferation of MCF-7 human breast adenocarcinoma cells and MCF-10A human breast epithelial cells were investigated in the present study. Results showed that TVA inhibited the proliferation of MCF-7 cells but not MCF-10A cells by down-regulating the expression of Bcl-2 as well as procaspase-9. In addition, the suppressive effect of TVA was confirmed in SCD1-depleted MCF-7 cells. Our results suggested that TVA exerts a direct anti-carcinogenic effect on MCF-7 cells. These findings provided a better understanding of the research on the anti-carcinogenic effects of TVA and this may facilitate the manufacture of TVA/c9, t11-CLA fortified ruminant products.

  11. Identification of a novel rhabdovirus in Spodoptera frugiperda cell lines.

    Science.gov (United States)

    Ma, Hailun; Galvin, Teresa A; Glasner, Dustin R; Shaheduzzaman, Syed; Khan, Arifa S

    2014-06-01

    The Sf9 cell line, derived from Spodoptera frugiperda, is used as a cell substrate for biological products, and no viruses have been reported in this cell line after extensive testing. We used degenerate PCR assays and massively parallel sequencing (MPS) to identify a novel RNA virus belonging to the order Mononegavirales in Sf9 cells. Sequence analysis of the assembled virus genome showed the presence of five open reading frames (ORFs) corresponding to the genes for the N, P, M, G, and L proteins in other rhabdoviruses and an unknown ORF of 111 amino acids located between the G- and L-protein genes. BLAST searches indicated that the S. frugiperda rhabdovirus (Sf-rhabdovirus) was related in a limited region of the L-protein gene to Taastrup virus, a newly discovered member of the Mononegavirales from a leafhopper (Hemiptera), and also to plant rhabdoviruses, particularly in the genus Cytorhabdovirus. Phylogenetic analysis of sequences in the L-protein gene indicated that Sf-rhabdovirus is a novel virus that branched with Taastrup virus. Rhabdovirus morphology was confirmed by transmission electron microscopy of filtered supernatant samples from Sf9 cells. Infectivity studies indicated potential transient infection by Sf-rhabdovirus in other insect cell lines, but there was no evidence of entry or virus replication in human cell lines. Sf-rhabdovirus sequences were also found in the Sf21 parental cell line of Sf9 cells but not in other insect cell lines, such as BT1-TN-5B1-4 (Tn5; High Five) cells and Schneider's Drosophila line 2 [D.Mel.(2); SL2] cells, indicating a species-specific infection. The results indicate that conventional methods may be complemented by state-of-the-art technologies with extensive bioinformatics analysis for identification of novel viruses. The Spodoptera frugiperda Sf9 cell line is used as a cell substrate for the development and manufacture of biological products. Extensive testing has not previously identified any viruses in this cell

  12. Polymer encapsulated dopaminergic cell lines as "alternative neural grafts".

    Science.gov (United States)

    Jaeger, C B; Greene, L A; Tresco, P A; Winn, S R; Aebischer, P

    1990-01-01

    Our preliminary findings (Jaeger et al., 1988; Aebischer et al., 1989; Tresco et al., 1989) and the studies in progress show that encapsulated dopaminergic cell lines survive enclosure within a semi-permeable membrane. The encapsulated cells remained viable for extended time periods when maintained in vitro. Moreover, encapsulated PC12 and T28 cells have the potential to survive following their implantation into the forebrain of rats. Cell lines are essentially "immortal" because they continue to divide indefinitely. This property allows perpetual "self-renewal" of a given cell population. However, the capacity of continuous uncontrolled cell division may also lead to tumor formation. This in fact is the case for unencapsulated PC12 cell implants placed into the brain of young Sprague Dawley rats (Jaeger, 1985). Cell line encapsulation has the potential to prevent tumor growth (Jaeger et al., 1988). Survival for 6 months in vitro suggests that encapsulation does not preclude long-term maintenance of an homogeneous cell line like PC12 cells. The presence of mitotic figures in the capsules further supports the likelihood of propagation and self renewal of the encapsulated population. Another significant property of cell lines is that they consist of a single, genetically homogeneous cell type. They do not require specific synaptic interactions for their survival. In the case of PC12 and T28 lines, the cells synthesize and release neurotransmitters. Our data show that PC12 and T28 cells continue to release dopamine spontaneously and to express specific transmitters and enzymes following encapsulation. Thus, cell lines such as these may constitute relatively simple "neural implants" exerting their function via humoral release.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Recombinant protein production from stable mammalian cell lines and pools.

    Science.gov (United States)

    Hacker, David L; Balasubramanian, Sowmya

    2016-06-01

    We highlight recent developments for the production of recombinant proteins from suspension-adapted mammalian cell lines. We discuss the generation of stable cell lines using transposons and lentivirus vectors (non-targeted transgene integration) and site-specific recombinases (targeted transgene integration). Each of these methods results in the generation of cell lines with protein yields that are generally superior to those achievable through classical plasmid transfection that depends on the integration of the transfected DNA by non-homologous DNA end-joining. This is the main reason why these techniques can also be used for the generation of stable cell pools, heterogenous populations of recombinant cells generated by gene delivery and genetic selection without resorting to single cell cloning. This allows the time line from gene transfer to protein production to be reduced. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Susceptibility of various cell lines to Neospora caninum tachyzoites cultivation

    Directory of Open Access Journals (Sweden)

    Khordadmehr, M.,

    2014-05-01

    Full Text Available Neospora caninum is a coccidian protozoan parasite which is a major cause of bovine abortions and neonatal mortality in cattle, sheep, goat and horse. Occasionally, cultured cells are used for isolation and multiplication of the agent in vitro with several purposes. In this study the tachyzoite yields of N. caninum were compared in various cell cultures as the host cell lines. Among the cell cultures tested, two presented good susceptibility to the agent: cell lines Vero and MA-104. SW742 and TLI (in vitro suspension culture of lymphoid cells infected with Theileria lestoquardi showed moderate sensitivity. No viable tachyzoite were detected in the culture of MDCK and McCoy cell lines. These results demonstrate that MA-104 and SW742 cells present adequate susceptibility to N. caninum compared to Vero cells, which have been largely used to multiply the parasite in vitro. Moreover, these have easy manipulation, fast multiplication and relatively low nutritional requirements. In addition, the result of this study showed that TLI cell line as a suspension cell culture is susceptible to Nc-1 tachyzoites infection and could be used as an alternative host cell line for tachyzoites culture in vitro studies.

  15. Selection of Novel Peptides Homing the 4T1 CELL Line: Exploring Alternative Targets for Triple Negative Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Vera L Silva

    Full Text Available The use of bacteriophages to select novel ligands has been widely explored for cancer therapy. Their application is most warranted in cancer subtypes lacking knowledge on how to target the cancer cells in question, such as the triple negative breast cancer, eventually leading to the development of alternative nanomedicines for cancer therapeutics. Therefore, the following study aimed to select and characterize novel peptides for a triple negative breast cancer murine mammary carcinoma cell line- 4T1. Using phage display, 7 and 12 amino acid random peptide libraries were screened against the 4T1 cell line. A total of four rounds, plus a counter-selection round using the 3T3 murine fibroblast cell line, was performed. The enriched selective peptides were characterized and their binding capacity towards 4T1 tissue samples was confirmed by immunofluorescence and flow cytometry analysis. The selected peptides (4T1pep1 -CPTASNTSC and 4T1pep2-EVQSSKFPAHVS were enriched over few rounds of selection and exhibited specific binding to the 4T1 cell line. Interestingly, affinity to the human MDA-MB-231 cell line was also observed for both peptides, promoting the translational application of these novel ligands between species. Additionally, bioinformatics analysis suggested that both peptides target human Mucin-16. This protein has been implicated in different types of cancer, as it is involved in many important cellular functions. This study strongly supports the need of finding alternative targeting systems for TNBC and the peptides herein selected exhibit promising future application as novel homing peptides for breast cancer therapy.

  16. Natural killer cells for immunotherapy – Advantages of cell lines over blood NK cells

    Directory of Open Access Journals (Sweden)

    Hans eKlingemann

    2016-03-01

    Full Text Available Natural killer cells are potent cytotoxic effector cells for cancer therapy and potentially for severe viral infections. However, there are technical challenges to obtain sufficient numbers of functionally active NK cells form a patient’s blood since they represent only 10% of the lymphocytes. Especially, cancer patients are known to have dysfunctional NK cells. The alternative is to obtain cells from a healthy donor, which requires depletion of the allogeneic T-cells. Establishing cell lines from donor blood NK cells have not been successful, in contrast to blood NK cells obtained from patients with a clonal NK cell lymphoma. Those cells can be expanded in culture in the presence of IL-2. However, except for the NK-92 cell line none of the other six known cell lines has consistent and reproducibly high anti-tumor cytotoxicity, nor can they be easily genetically manipulated to recognize specific tumor antigens or to augment monoclonal antibody activity through ADCC. NK-92 is also the only cell line product that has been widely given to patients with advanced cancer with demonstrated efficiency and minimal side effects.

  17. Application of DNA fingerprints for cell-line individualization.

    Science.gov (United States)

    Gilbert, D A; Reid, Y A; Gail, M H; Pee, D; White, C; Hay, R J; O'Brien, S J

    1990-09-01

    DNA fingerprints of 46 human cell lines were derived using minisatellite probes for hypervariable genetic loci. The incidence of 121 HaeIII DNA fragments among 33 cell lines derived from unrelated individuals was used to estimate allelic and genotypic frequencies for each fragment and for composite individual DNA fingerprints. We present a quantitative estimate of the extent of genetic difference between individuals, an estimate based on the percentage of restriction fragments at which they differ. The average percent difference (APD) among pairwise combinations from the population of 33 unrelated cell lines was 76.9%, compared with the APD in band sharing among cell lines derived from the same individual (less than or equal to 1.2%). Included in this survey were nine additional cell lines previously implicated as HeLa cell derivatives, and these lines were clearly confirmed as such by DNA fingerprints (APD less than or equal to 0.6%). On the basis of fragment frequencies in the tested cell line population, a simple genetic model was developed to estimate the frequencies of each DNA fingerprint in the population. The median incidence was 2.9 X 10(-17), and the range was 2.4 X 10(-21) to 6.6 X 10(-15). This value approximates the probability that a second cell line selected at random from unrelated individuals will match a given DNA fingerprint. Related calculations address the chance that any two DNA fingerprints would be identical among a large group of cell lines. This estimate is still very slight; for example, the chance of two or more common DNA fingerprints among 1 million distinct individuals is less than .001. The procedure provides a straightforward, easily interpreted, and statistically robust method for identification and individualization of human cells.

  18. Radiation sensitivity of human lung cancer cell lines

    International Nuclear Information System (INIS)

    Carmichael, J.; Degraff, W.G.; Gamson, J.; Russo, G.; Mitchell, J.B.; Gazdar, A.F.; Minna, J.D.; Levitt, M.L.

    1989-01-01

    X-Ray survival curves were determined using a panel of 17 human lung cancer cell lines, with emphasis on non-small cell lung cancer (NSCLC). In contrast to classic small cell lung cancer (SCLC) cell lines, NSCLC cell lines were generally less sensitive to radiation as evidenced by higher radiation survival curve extrapolation numbers, surviving fraction values following a 2Gy dose (SF2) and the mean inactivation dose values (D) values. The spectrum of in vitro radiation responses observed was similar to that expected in clinical practice, although mesothelioma was unexpectedly sensitive in vitro. Differences in radiosensitivity were best distinguished by comparison of SF2 values. Some NSCLC lines were relatively sensitive, and in view of this demonstrable variability in radiation sensitivity, the SF2 value may be useful for in vitro predictive assay testing of clinical specimens. (author)

  19. Cytotoxic effects induced by interferon-ω gene lipofection through ROS generation and mitochondrial membrane potential disruption in feline mammary carcinoma cells.

    Science.gov (United States)

    Villaverde, Marcela Solange; Targovnik, Alexandra Marisa; Miranda, María Victoria; Finocchiaro, Liliana María Elena; Glikin, Gerardo Claudio

    2016-08-01

    Progress in comparative oncology promises advances in clinical cancer treatments for both companion animals and humans. In this context, feline mammary carcinoma (FMC) cells have been proposed as a suitable model to study human breast cancer. Based on our previous data about the advantages of using type I interferon gene therapy over the respective recombinant DNA derived protein, the present work explored the effects of feline interferon-ω gene (fIFNω) transfer on FMC cells. Three different cell variants derived from a single spontaneous highly aggressive FMC tumor were successfully established and characterized. Lipofection of the fIFNω gene displayed a significant cytotoxic effect on the three cell variants. The extent of the response was proportional to ROS generation, mitochondrial membrane potential disruption and calcium uptake. Moreover, a lower sensitivity to the treatment correlated with a higher malignant phenotype. Our results suggest that fIFNω lipofection could offer an alternative approach in veterinary oncology with equal or superior outcome and with less adverse effects than recombinant fIFNω therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Collagen metabolism and basement membrane formation in cultures of mouse mammary epithelial cells: Induction of assembly on fibrillar type I collagen substrata

    International Nuclear Information System (INIS)

    David, G.; van der Schueren, B.; van den Berghe, H.; Nusgens, B.; Van Cauwenberge, D.; Lapiere, C.

    1987-01-01

    Collagen metabolism was compared in cultures of mouse mammary epithelial cells maintained on plastic or fibrillar type I collagen gel substrata. The accumulation of dialysable and non-dialysable [ 3 H]hydroxyproline and the identification of the collagens produced suggest no difference between substrata in the allover rates of collagen synthesis and degradation. The proportion of the [ 3 H]collagen which accumulates in the monolayers of cultures on collagen, however, markedly exceeds that of cultures on plastic. Cultures on collagen deposit a sheet-like layer of extracellular matrix materials on the surface of the collagen fibers. Transformed cells on collagen produce and accumulate more [ 3 H]collage, yet are less effective in basement membrane formation than normal cells, indicting that the accumulation of collagen alone and the effect of interstitial collagen thereupon do not suffice. Thus, exogenous fibrillar collagen appears to enhance, but is not sufficient for proper assembly of collagenous basement membrane components near the basal epithelial cell surface

  1. Oral beta-glucan adjuvant therapy converts nonprotective Th2 response to protective Th1 cell-mediated immune response in mammary tumor-bearing mice.

    Directory of Open Access Journals (Sweden)

    Gordon D Ross

    2007-06-01

    Full Text Available Beta (1-3-D-glucans were identified almost 40 years ago as biological response modifiers that stimulated tumor rejection. In vitro studies have shown that beta-glucans bind to a lectin domain within complement receptor type 3 (CR3, or to, more recently described dectin-1 a beta-glucan specific receptor, acting mainly on phagocytic cells. In this study, we assessed the intracellular cytokine profiles of peripheral blood lymphocytes from mice bearing mammary tumors receiving i.v. anti-tumor mAbs combined or not with whole glucan particle suspension given orally (WGP, 400 microg every 24 hours. The proportions of T cells producing IL-4 and IFNgamma were determined by flow cytometry. The proportion of T cells producing IL-4 was significantly higher in tumor-bearing mice not receiving beta-glucan-enhanced therapy. Conversely, T cells from mice undergoing beta-glucan-enhanced therapy showed increased production of the Th1 cytokine IFNgamma. The switch from a Th2 to a Th1 response after WGP therapy was possibly mediated by intestinal mucosal macrophages releasing IL-12.

  2. Cellular senescence of human mammary epithelial cells (HMEC) is associated with an altered MMP-7/HB-EGF signaling and increased formation of elastin-like structures.

    Science.gov (United States)

    Bertram, Catharina; Hass, Ralf

    2009-10-01

    The extracellular matrix (ECM) and a complex interplay of cell-to-cell and cell-to-matrix (ECM) interactions provide important platforms to determine cellular senescence and a potentially tumorigenic transformation of normal human mammary epithelial cells (HMEC). An enhanced formation of extracellular filaments, consisting of elastin-like structures, in senescent post-selection HMEC populations was paralleled by a significantly increased expression of its precursor protein tropoelastin and matched with a markedly elevated activity of the cross-linking enzyme family of lysyl oxidases (LOX). RNAi experiments revealed both the ECM metalloproteinase MMP-7 and the growth factor HB-EGF as potential effectors of an increased tropoelastin expression. Moreover, co-localization of MMP-7 and HB-EGF as well as a concomittant downstream signaling via Fra-1 indicated a possible association between the reduced MMP-7 enzyme activity and an impaired HB-EGF processing, resulting in an enhanced tropoelastin synthesis during senescence of HMEC. In agreement with previous work, these findings suggested an important influence of the extracellular proteinase MMP-7 on the aging process of HMEC, affecting both extracellular remodeling as well as intracellular signaling pathways.

  3. Immune response to a mammary adenocarcinoma. V. Sera from tumor-bearing rats contain multiple factors blocking cell-mediated cytotoxicity.

    Science.gov (United States)

    Huber, S A; Lucas, Z J

    1978-12-01

    Sera from Fischer rats 3 to 13 days after i.p. injection of syngeneic 13762A mammary adenocarcinoma contain three factors specifically blocking cell-mediated cytotoxicity (CMC). The major blocking factor is a 160,000-dalton IgG that combines specifically to cytolytic lymphocytes but not to tumor cells or tumor antigen, and that is not dissociated after treatment with 8 M urea. The other factors have been putatively identified as tumor antigen (less than 70,000 daltons) and as soluble antigen-antibody complexes (greater than 200,000 daltons). Injecting the tumor antigen into tumor-free rats induced spleen cells specifically cytotoxic to the 13762A tumor and provided partial protection to challenge with live tumor cells. Treating soluble antigen-antibody complexes with 8 M urea decreased the size of the blocking activity from greater than 200,000 to less than 70,000 daltons. Although the IgG fraction dissociated from the complex did not block CMC, it did recombine with the tumor antigen fraction to transfer activity to the greater than 200,000-dalton fraction. In contrast, mixing tumor antigen with the IgG fraction that did block CMC did not alter the size of the blocking activities.

  4. Differential heat shock response of primary human cell cultures and established cell lines

    DEFF Research Database (Denmark)

    Richter, W W; Issinger, O G

    1986-01-01

    degrees C treatment, whereas in immortalized cell lines usually 90% of the cells were found in suspension. Enhanced expression of the major heat shock protein (hsp 70) was found in all heat-treated cells. In contrast to the primary cell cultures, established and transformed cell lines synthesized...

  5. Antiproliferative effect of isopentenylated coumarins on several cancer cell lines.

    Science.gov (United States)

    Kawaii, S; Tomono, Y; Ogawa, K; Sugiura, M; Yano, M; Yoshizawa, Y; Ito, C; Furukawa, H

    2001-01-01

    33 coumarins, mainly the simple isopentenylated coumarins and derived pyrano- and furanocoumarins, were examined for their antiproliferative activity towards several cancer and normal human cell lines. The pyrano- and furanocoumarins showed strong activity against the cancer cell lines, whereas they had weak antiproliferative activity against the normal human cell lines. The decreasing rank order of potency was osthenone (10), clausarin (25), clausenidin (26), dentatin (24), nordentatin (23), imperatorin (29), seselin (27), xanthyletin (21), suberosin (17), phebalosin (8) and osthol (12). The structure-activity relationship established from the results revealed that the 1,1-dimethylallyl and isopentenyl groups have an important role for antiproliferative activity.

  6. Establishment and characterization of rat portal myofibroblast cell lines.

    Directory of Open Access Journals (Sweden)

    Michel Fausther

    Full Text Available The major sources of scar-forming myofibroblasts during liver fibrosis are activated hepatic stellate cells (HSC and portal fibroblasts (PF. In contrast to well-characterized HSC, PF remain understudied and poorly defined. This is largely due to the facts that isolation of rodent PF for functional studies is technically challenging and that PF cell lines had not been established. To address this, we have generated two polyclonal portal myofibroblast cell lines, RGF and RGF-N2. RGF and RGF-N2 were established from primary PF isolated from adult rat livers that underwent culture activation and subsequent SV40-mediated immortalization. Specifically, Ntpdase2/Cd39l1-sorted primary PF were used to generate the RGF-N2 cell line. Both cell lines were functionally characterized by RT-PCR, immunofluorescence, immunoblot and bromodeoxyuridine-based proliferation assay. First, immortalized RGF and RGF-N2 cells are positive for phenotypic myofibroblast markers alpha smooth muscle actin, type I collagen alpha-1, tissue inhibitor of metalloproteinases-1, PF-specific markers elastin, type XV collagen alpha-1 and Ntpdase2/Cd39l1, and mesenchymal cell marker ecto-5'-nucleotidase/Cd73, while negative for HSC-specific markers desmin and lecithin retinol acyltransferase. Second, both RGF and RGF-N2 cell lines are readily transfectable using standard methods. Finally, RGF and RGF-N2 cells attenuate the growth of Mz-ChA-1 cholangiocarcinoma cells in co-culture, as previously demonstrated for primary PF. Immortalized rat portal myofibroblast RGF and RGF-N2 cell lines express typical markers of activated PF-derived myofibroblasts, are suitable for DNA transfection, and can effectively inhibit cholangiocyte proliferation. Both RGF and RGF-N2 cell lines represent novel in vitro cellular models for the functional studies of portal (myofibroblasts and their contribution to the progression of liver fibrosis.

  7. Development of new therapy for canine mammary cancer with recombinant measles virus

    Directory of Open Access Journals (Sweden)

    Koichiro Shoji

    2016-01-01

    Full Text Available Oncolytic virotherapy is a promising treatment strategy for cancer. We previously generated a recombinant measles virus (rMV-SLAMblind that selectively uses a poliovirus receptor-related 4 (PVRL4/Nectin4 receptor, but not signaling lymphocyte activation molecule (SLAM. We demonstrated that the virus exerts therapeutic effects against human breast cancer cells. Here, we examined the applicability of rMV-SLAMblind to treating canine mammary cancers (CMCs. We found that the susceptibilities of host cells to rMV-SLAMblind were dependent on canine Nectin-4 expression. Nectin-4 was detected in four of nine CMC cell lines. The rMV-SLAMblind efficiently infected those four Nectin-4-positive cell lines and was cytotoxic for three of them (CF33, CHMm, and CTBm. In vivo experiment showed that the administration of rMV-SLAMblind greatly suppressed the progression of tumors in mice xenografted with a CMC cell line (CF33. Immunohistochemistry revealed that canine Nectin-4 was expressed in 45% of canine mammary tumors, and the tumor cells derived from one clinical specimen were efficiently infected with rMV-SLAMblind. These results suggest that rMV-SLAMblind infects CMC cells and displays antitumor activity in vitro, in xenografts, and ex vivo. Therefore, oncolytic virotherapy with rMV-SLAMblind can be a novel method for treating CMCs.

  8. A stromal myoid cell line provokes thymic erythropoiesis between ...

    African Journals Online (AJOL)

    Background: The thymus provides an optimal cellular and humoral microenvironment for cell line committed differentiation of haematopoietic stem cells. The immigration process requires the secretion of at least one peptide called thymotaxine by cells of the reticulo-epithelial (RE) network of the thymic stromal cellular ...

  9. Cytotoxicity against MCF-7 breast cancer cell line and interaction ...

    African Journals Online (AJOL)

    N6-furfuryladenine (kinetin) is a cytokinin growth factor with several biological effects observed in human cells and fruit flies. Kinetin exists naturally in the DNA of almost all organisms tested so far, including human cells and various plants. The cytotoxicity effect of kinetin on MCF-7 breast cancer cell lines was measured by ...

  10. Arginine inhibits the malignant transformation induced by interferon-gamma through the NF-κB-GCN2/eIF2α signaling pathway in mammary epithelial cells in vitro and in vivo.

    Science.gov (United States)

    Ren, Wenbo; Li, Yang; Xia, Xiaojing; Guo, Wenfei; Zhai, Taiyu; Jin, Yuting; Che, Yanyi; Gao, Haidi; Duan, Xiumei; Ma, Hongxi; Huang, Tinghao; Huang, Jing; Lei, Liancheng

    2018-07-15

    Breast cancer is the most common female malignant tumors in the world. It seriously affects women's physical and mental health and the leading cause of cancer death among women. Our previous study demonstrated that diet-derived IFN-γ promoted the malignant transformation of primary bovine mammary epithelial cells by accelerating arginine depletion. The current study aimed to explore whether arginine addition could inhibit the degree of malignant transformation and its molecular mechanism. The results indicate that arginine addition could alleviate the malignant transformation of mammary epithelial cells induced by IFN-γ, including reducing cell proliferation, cell migration and colony formation, through the NF-κB-GCN2/eIF2α pathway. The in vivo experiments also consistently confirmed that arginine supplementation could significantly inhibit tumor growth in tumor-bearing mice. Furthermore, the investigation of the clinical data also revealed that the plasma or tissue from human breast cancer patients owned lower arginine level and higher IFN-γ level than that from patients with benign breast disease, showing IFN-γ may be a potential control target. Our findings demonstrate that arginine supplement could antagonize the malignant transformation of mammary epithelial cells induced by IFN-γ (nutritionally induced) both in vitro and in vivo, and IFN-γ was higher in breast cancer women. This might provide a novel strategy for the prevention and treatment of breast cancer regarding to nutrition. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Control of ductal vs. alveolar differentiation of mammary clonogens and susceptibility to radiation-induced mammary cancer

    International Nuclear Information System (INIS)

    Kamiya, Kenji; Yokoro, Kenjiro; Clifton, K.H.; Gould, M.N.

    1991-01-01

    We have developed an in vitro-in vivo transplantation assay for measuring the concentration of clonogenic epithelial cells in cell suspensions of rat mammary tissue. Rat mammary clonogens from organoid cultures are capable of the same degree of PLDR as clonogens in vivo. The growth and differentiation of mammary clonogens to alveolar colonies or ductal colonies is regulated as follows: a) in the presence of E 2 and high prolactin (Prl), cortisol induces mammary clonogens to proliferate and differentiate to form alveolar colonies which secrete milk and begin losing clonogenic potential, b) in cortisol deficient rats, Prl and E 2 synergistically stimulate non-secretory ductal colonies, formation of which retain clonogenic potential, c) E 2 without progesterone stimulates alveolar colony formation in the presence of cortical and high Prl, d) progesterone inhibits mammary clonogen differentiation to milk-producing cells and induces ductogenesis in a dose responsive fashion in the presence of E 2 , cortisol and high Prl. High prolactin levels coupled with glucocorticoid deficiency increases the susceptibility to mammary carcinogenesis following low dose radiation exposure by increasing the number of total mammary clonogens which are the presumptive target cells and by stimulating their proliferation after exposure. (author)

  12. Potential transfer of neurotoxic amino acid β-N-methylamino-alanine (BMAA) from mother to infant during breast-feeding: Predictions from human cell lines

    International Nuclear Information System (INIS)

    Andersson, Marie; Ersson, Lisa; Brandt, Ingvar; Bergström, Ulrika

    2017-01-01

    β-N-methylamino-alanine (BMAA) is a non-protein amino acid produced by cyanobacteria, diatoms and dinoflagellates. BMAA has potential to biomagnify in a terrestrial food chain, and to bioaccumulate in fish and shellfish. We have reported that administration of [ 14 C]L-BMAA to lactating mice and rats results in a mother to off-spring transfer via the milk. A preferential enantiomer-specific uptake of [ 14 C]L-BMAA has also been demonstrated in differentiated murine mammary epithelium HC11 cells. These findings, together with neurotoxic effects of BMAA demonstrated both in vitro and in vivo, highlight the need to determine whether such transfer could also occur in humans. Here, we used four cell lines of human origin to examine and compare the transport of the two BMAA enantiomers in vitro. The uptake patterns of [ 14 C]L- and [ 14 C]D-BMAA in the human mammary MCF7 cell line were in agreement with the results in murine HC11 cells, suggesting a potential secretion of BMAA into human breast milk. The permeability coefficients for both [ 14 C]L- and [ 14 C]D-BMAA over monolayers of human intestinal Caco2 cells supported an efficient absorption from the human intestine. As a final step, transport experiments confirmed that [ 14 C]L-and [ 14 C]D-BMAA can be taken up by human SHSY5Y neuroblastoma cells and even more efficiently by human U343 glioblastoma cells. In competition experiments with various amino acids, the ASCT2 specific inhibitor benzylserine was the most effective inhibitor of [ 14 C]L-BMAA uptake tested here. Altogether, our results suggest that BMAA can be transferred from an exposed mother, via the milk, to the brain of the nursed infant. - Highlights: • Transport of BMAA in human intestinal, mammary and CNS cell lines was examined. • The transport of L-BMAA over intestinal cell monolayers was unidirectional. • Enantiomer-selective uptake of L-BMAA in breast, neuron and glia cells was evident. • Competition experiments indicate that L-BMAA uptake

  13. Potential transfer of neurotoxic amino acid β-N-methylamino-alanine (BMAA) from mother to infant during breast-feeding: Predictions from human cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Marie [Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala (Sweden); Ersson, Lisa [Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala (Sweden); Brandt, Ingvar, E-mail: Ingvar.Brandt@ebc.uu.se [Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala (Sweden); Bergström, Ulrika [Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala (Sweden); Swedish Defence Research Agency, Division of CBRN Defence and Security, SE-164 90 Stockholm (Sweden)

    2017-04-01

    β-N-methylamino-alanine (BMAA) is a non-protein amino acid produced by cyanobacteria, diatoms and dinoflagellates. BMAA has potential to biomagnify in a terrestrial food chain, and to bioaccumulate in fish and shellfish. We have reported that administration of [{sup 14}C]L-BMAA to lactating mice and rats results in a mother to off-spring transfer via the milk. A preferential enantiomer-specific uptake of [{sup 14}C]L-BMAA has also been demonstrated in differentiated murine mammary epithelium HC11 cells. These findings, together with neurotoxic effects of BMAA demonstrated both in vitro and in vivo, highlight the need to determine whether such transfer could also occur in humans. Here, we used four cell lines of human origin to examine and compare the transport of the two BMAA enantiomers in vitro. The uptake patterns of [{sup 14}C]L- and [{sup 14}C]D-BMAA in the human mammary MCF7 cell line were in agreement with the results in murine HC11 cells, suggesting a potential secretion of BMAA into human breast milk. The permeability coefficients for both [{sup 14}C]L- and [{sup 14}C]D-BMAA over monolayers of human intestinal Caco2 cells supported an efficient absorption from the human intestine. As a final step, transport experiments confirmed that [{sup 14}C]L-and [{sup 14}C]D-BMAA can be taken up by human SHSY5Y neuroblastoma cells and even more efficiently by human U343 glioblastoma cells. In competition experiments with various amino acids, the ASCT2 specific inhibitor benzylserine was the most effective inhibitor of [{sup 14}C]L-BMAA uptake tested here. Altogether, our results suggest that BMAA can be transferred from an exposed mother, via the milk, to the brain of the nursed infant. - Highlights: • Transport of BMAA in human intestinal, mammary and CNS cell lines was examined. • The transport of L-BMAA over intestinal cell monolayers was unidirectional. • Enantiomer-selective uptake of L-BMAA in breast, neuron and glia cells was evident. • Competition

  14. Radioimaging of human mammary carcinoma xenografts in nude mice with a new monoclonal antibody

    International Nuclear Information System (INIS)

    Senekowitsch, R.; Bode, W.; Kriegel, H.; Reidel, G.; Pabst, H.W.

    1986-01-01

    A female Wistar rat aged 33 days was immunized by repeated intraperitoneal injections of a cell suspension of mammary carcinoma for eight months. Spleen cells of the immunized rat were then fused with X63-Ag8.653, a mouse myeloma line. Hybridoma supernatants were screened by ELISA using cells of mammary carcinoma (MaCa) as target cells. Initially 72 hybridomas showed positive response with MaCa cells, but no cross-reaction with normal mammary tissue was seen. Clone Ma 10-11 was chosen for its stable growth in vitro and in ascitic fluid. Monoclonal antibody obtained from ascitic fluid induced by intraperitoneal injection of 10 7 hybridoma cell into BALB/c-nu/nu mice was separated from albumin and transferrin. After separation only one band positioned at 155000 MW on SDS-PAGE slabs was detected. Radiolabeling with 131 I was achieved with the Iodogen method, the efficiency of labeling was 88%. 1.85 MBq of the intact labeled rat antibody were injected into nude mice xenografted with human mammary carcinoma and scintigrams were obtained every 48 hours p.i. up to 15 days. Scintigraphic images permitted tumor detection at 3 days p.i., but good tumor localization needed 8 days p.i.. The tumor-to-blood ratios calculated after dissection of tumor-bearing mice in groups of 3 increased from 0.97 at day 3 to 3 at day 15 p.i.. No uptake of the antibody in other organs was found. The half-life of the whole body clearance of the rat immunoglobulin was 36 h. This is significantly shorter than the half-life found for mouse immunoglobulin in nude mice. (Author)

  15. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin

    2006-11-01

    Full Text Available Abstract Background Cell lines are used in experimental investigation of cancer but their capacity to represent tumor cells has yet to be quantified. The aim of the study was to identify significant alterations in pathway usage in cell lines in comparison with normal and tumor tissue. Methods This study utilized a pathway-specific enrichment analysis of publicly accessible microarray data and quantified the gene expression differences between cell lines, tumor, and normal tissue cells for six different tissue types. KEGG pathways that are significantly different between cell lines and tumors, cell lines and normal tissues and tumor and normal tissue were identified through enrichment tests on gene lists obtained using Significance Analysis of Microarrays (SAM. Results Cellular pathways that were significantly upregulated in cell lines compared to tumor cells and normal cells of the same tissue type included ATP synthesis, cell communication, cell cycle, oxidative phosphorylation, purine, pyrimidine and pyruvate metabolism, and proteasome. Results on metabolic pathways suggested an increase in the velocity nucleotide metabolism and RNA production. Pathways that were downregulated in cell lines compared to tumor and normal tissue included cell communication, cell adhesion molecules (CAMs, and ECM-receptor interaction. Only a fraction of the significantly altered genes in tumor-to-normal comparison had similar expressions in cancer cell lines and tumor cells. These genes were tissue-specific and were distributed sparsely among multiple pathways. Conclusion Significantly altered genes in tumors compared to normal tissue were largely tissue specific. Among these genes downregulation was a major trend. In contrast, cell lines contained large sets of significantly upregulated genes that were common to multiple tissue types. Pathway upregulation in cell lines was most pronounced over metabolic pathways including cell nucleotide metabolism and oxidative

  16. Global Conservation of Protein Status between Cell Lines and Xenografts

    Directory of Open Access Journals (Sweden)

    Julian Biau

    2016-08-01

    Full Text Available Common preclinical models for testing anticancer treatment include cultured human tumor cell lines in monolayer, and xenografts derived from these cell lines in immunodeficient mice. Our goal was to determine how similar the xenografts are compared with their original cell line and to determine whether it is possible to predict the stability of a xenograft model beforehand. We studied a selection of 89 protein markers of interest in 14 human cell cultures and respective subcutaneous xenografts using the reverse-phase protein array technology. We specifically focused on proteins and posttranslational modifications involved in DNA repair, PI3K pathway, apoptosis, tyrosine kinase signaling, stress, cell cycle, MAPK/ERK signaling, SAPK/JNK signaling, NFκB signaling, and adhesion/cytoskeleton. Using hierarchical clustering, most cell culture-xenograft pairs cluster together, suggesting a global conservation of protein signature. Particularly, Akt, NFkB, EGFR, and Vimentin showed very stable protein expression and phosphorylation levels highlighting that 4 of 10 pathways were highly correlated whatever the model. Other proteins were heterogeneously conserved depending on the cell line. Finally, cell line models with low Akt pathway activation and low levels of Vimentin gave rise to more reliable xenograft models. These results may be useful for the extrapolation of cell culture experiments to in vivo models in novel targeted drug discovery.

  17. Exogenous incorporation of neugc-rich mucin augments n-glycolyl sialic acid content and promotes malignant phenotype in mouse tumor cell lines

    Directory of Open Access Journals (Sweden)

    Alonso Daniel F

    2009-12-01

    Full Text Available Abstract Background Carbohydrates embedded in the plasma membrane are one of the main actors involved in the communication of cells with the microenvironment. Neuraminic sialic acids are glycocalyx sugars that play important roles in the modulation of malignant cell behaviour. N-glycolylneuraminic acid (NeuGc is synthesized by the cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH, an enzyme expressed in all mammals except humans. In mice, this sugar is synthesized in several somatic tissues. Methods We used the B16 melanoma and F3II mammary carcinoma mouse tumor cell lines. By CMAH directed RT-PCR and NeuGc detection with the specific anti-NeuGc-GM3 antibody 14F7 we evaluated enzyme and ganglioside expression in tumor cells, respectively. Expression of NeuGc-GM3 ganglioside was reached by in vitro incubation with NeuGc-rich bovine submaxillary mucin and evaluated by slot-blot and immunohistochemistry assays using the 14F7 antibody. Tumor cells treated with mucin or purified NeuGc were injected s.c. and i.v. in syngeneic mice to evaluate tumor and metastatic growth. Results In the present work we demonstrated the absence of expression of CMAH enzyme in B16 melanoma and F3II mammary carcinoma cells. In vitro incubation of these NeuGc-negative cells with NeuGc-rich mucin increased the presence of NeuGc in cell membranes for at least 48-72 h, as a component of the GM3 ganglioside. Preincubation with NeuGc-rich mucin reduced tumor latency and increased the metastatic potential of tumor cells in syngeneic animals. Similar results were obtained when cells were incubated with purified NeuGc alone. Conclusion Our results indicate that B16 and F3II mouse tumor cell lines do not express NeuGc in cell membranes but they are able to incorporate NeuGc from an exogenous source, contributing to the malignant phenotype of melanoma and mammary carcinoma cells.

  18. Induction of apoptosis by opium in some tumor cell lines.

    Science.gov (United States)

    Khaleghi, M; Farsinejad, A; Dabiri, S; Asadikaram, G

    2016-09-30

    The current study is aimed at investigation of the opium effects on the apoptosis of different cell lines in culture medium and compares such effects with one another. The study is carried out on over 8 cell lines (AA8, AGS, Hela, HepG2, MCF7, N2a, PC12, WEHI). A 2.86 x 10-4 g/ml opium concentration was prepared and added to the culture medium of the cell lines for 48 hours. Cytotoxicity was tested by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. The apoptotic effect of opium on the cell lines was analyzed by Annexin-PI test. Opium with concentration of 2.86 x 10-4 g/ml in 48 hours significantly induces apoptosis in certain cell lines (i.e. AA8, N2a, WEHI), apoptosis and necrosis in some others (i.e. Hela, HepG2, MCF7, and PC12), and also solely necrosis in the AGS cell line. One could infer that the usage of opium with different levels in different tissues leads to certain disorders in some tissues and may have therapeutic effects under distinctive conditions (i.e. unchecked growth of cells) as confirmed by the results.

  19. Lining cells on normal human vertebral bone surfaces

    International Nuclear Information System (INIS)

    Henning, C.B.; Lloyd, E.L.

    1982-01-01

    Thoracic vertebrae from two individuals with no bone disease were studied with the electron microscope to determine cell morphology in relation to bone mineral. The work was undertaken to determine if cell morphology or spatial relationships between the bone lining cells and bone mineral could account for the relative infrequency of bone tumors which arise at this site following radium intake, when compared with other sites, such as the head of the femur. Cells lining the vertebral mineral were found to be generally rounded in appearance with varied numbers of cytoplasmic granules, and they appeared to have a high density per unit of surface area. These features contrasted with the single layer of flattened cells characteristic of the bone lining cells of the femur. A tentative discussion of the reasons for the relative infrequency of tumors in the vertebrae following radium acquisition is presented

  20. An Anti-Oncogenic Role for Decorin in Mammary Carcinoma

    National Research Council Canada - National Science Library

    Iozzo, Renato V

    2004-01-01

    .... In the preliminary data that support the basis of this proposal, we discovered that decorin causes a functional inactivation of the oncogenic ErbB2 protein in mammary carcinoma cells overexpressing ErbB2...