WorldWideScience

Sample records for mammalian wax biosynthesis

  1. Structure and Biosynthesis of Branched Wax Compounds on Wild Type and Wax Biosynthesis Mutants of Arabidopsis thaliana.

    Science.gov (United States)

    Busta, Lucas; Jetter, Reinhard

    2017-06-01

    The cuticle is a waxy composite that protects the aerial organs of land plans from non-stomatal water loss. The chemical make-up of the cuticular wax mixture plays a central role in defining the water barrier, but structure-function relationships have not been established so far, in part due to gaps in our understanding of wax structures and biosynthesis. While wax compounds with saturated, linear hydrocarbon tails have been investigated in detail, very little is known about compounds with modified aliphatic tails, which comprise substantial portions of some plant wax mixtures. This study aimed to investigate the structures, abundances and biosynthesis of branched compounds on the species for which wax biosynthesis is best understood: Arabidopsis thaliana. Microscale derivatization, mass spectral interpretation and organic synthesis identified homologous series of iso-alkanes and iso-alcohols on flowers and leaves, respectively. These comprised approximately 10-15% of wild type wax mixtures. The abundances of both branched wax constituents and accompanying unbranched compounds were reduced on the cer6, cer3 and cer1 mutants but not cer4, indicating that branched compounds are in part synthesized by the same machinery as unbranched compounds. In contrast, the abundances of unbranched, but not branched, wax constituents were reduced on the cer2 and cer26 mutants, suggesting that the pathways to both types of compounds deviate in later steps of chain elongation. Finally, the abundances of branched, but not unbranched, wax compounds were reduced on the cer16 mutant, and the (uncharacterized) CER16 protein may therefore be controlling the relative abundances of iso-alkanes and iso-alcohols on Arabidopsis surfaces. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Effects of UV-B radiation on wax biosynthesis

    International Nuclear Information System (INIS)

    Barnes, J.; Paul, N.; Percy, K.; Broadbent, P.; McLaughlin, C.; Mullineaux, P.; Creissen, G.; Wellburn, A.

    1994-01-01

    Two genotypes of tobacco (Nicotiana tabacum L.) were exposed in controlled environment chambers to three levels of biologically effective ultraviolet-B radiation (UV-B BE ; 280-320nm): 0, 4.54 (ambient) and 5.66 (∼ 25% enhancement) kJ m -2 d -1 . After 28 days, the quantity of wax deposited on leaf surfaces was determined gravimetrically; epicuticular wax chemical composition was determined by capillary gas chromatography with homologue assignments confirmed by gas chromatography-mass spectrometry. Leaf wettability was assessed by measuring the contact angle of water droplets placed on leaf surfaces. Tobacco wax consisted of three major hydrocarbon classes: Straight-chain alkanes (C 27 -C 33 ) which comprised ∼ 59% of the hydrocarbon fraction, containing a predominance of odd-chain alkanes with C 31 as the most abundant homologue; branched-chain alkanes (C 25 -C 32 ) which comprised ∼38% of the hydrocarbon fraction with anteiso 3-methyltriacontane (C 30 ) as the predominant homologue; and fatty acids (C 14 -C 18 ) which comprised ∼ 3% of the wax. Exposure to enhanced UV-B radiation reduced the quantity of wax on the adaxial surface of the transgenic mutant, and resulted in marked changes in the chemical composition of the wax on the exposed leaf surface. Enhanced UV-B decreased the quantity of straight-chain alkanes, increased the quantity of branched-chain alkanes and fatty acids, and resulted in shifts toward shorter straight-chain lengths. Furthermore, UV-B-induced changes in wax composition were associated with increased wettability of tobacco leaf surfaces. Overall, the data are consistent with the view that UV-B radiation has a direct and fundamental effect on wax biosynthesis. Relationships between the physico-chemical nature of the leaf surface and sensitivity to UV-B radiation are discussed. (orig.)

  3. The MIEL1 E3 Ubiquitin Ligase Negatively Regulates Cuticular Wax Biosynthesis in Arabidopsis Stems.

    Science.gov (United States)

    Lee, Hong Gil; Kim, Juyoung; Suh, Mi Chung; Seo, Pil Joon

    2017-07-01

    Cuticular wax is an important hydrophobic layer that covers the plant aerial surface. Cuticular wax biosynthesis is shaped by multiple layers of regulation. In particular, a pair of R2R3-type MYB transcription factors, MYB96 and MYB30, are known to be the main participants in cuticular wax accumulation. Here, we report that the MYB30-INTERACTING E3 LIGASE 1 (MIEL1) E3 ubiquitin ligase controls the protein stability of the two MYB transcription factors and thereby wax biosynthesis in Arabidopsis. MIEL1-deficient miel1 mutants exhibit increased wax accumulation in stems, with up-regulation of wax biosynthetic genes targeted by MYB96 and MYB30. Genetic analysis reveals that wax accumulation of the miel1 mutant is compromised by myb96 or myb30 mutation, but MYB96 is mainly epistatic to MIEL1, playing a predominant role in cuticular wax deposition. These observations indicate that the MIEL1-MYB96 module is important for balanced cuticular wax biosynthesis in developing inflorescence stems. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Neutral Lipid Biosynthesis in Engineered Escherichia coli: Jojoba Oil-Like Wax Esters and Fatty Acid Butyl Esters

    OpenAIRE

    Kalscheuer, Rainer; Stöveken, Tim; Luftmann, Heinrich; Malkus, Ursula; Reichelt, Rudolf; Steinbüchel, Alexander

    2006-01-01

    Wax esters are esters of long-chain fatty acids and long-chain fatty alcohols which are of considerable commercial importance and are produced on a scale of 3 million tons per year. The oil from the jojoba plant (Simmondsia chinensis) is the main biological source of wax esters. Although it has a multitude of potential applications, the use of jojoba oil is restricted, due to its high price. In this study, we describe the establishment of heterologous wax ester biosynthesis in a recombinant E...

  5. Influence of light, UV-B radiation, and herbicides on wax biosynthesis of cucumber seedlings

    International Nuclear Information System (INIS)

    Tevini, M.; Steinmüller, D.

    1987-01-01

    The behavior of cuticular alkane-1-ols and alkanes were studied in different developmental stages of cucumber seedlings grown in the dark or under white light, with or without UV-B radiation or in presence of wax biosynthesis inhibitors, trichloroacetic acid and metolachlor. Accumulation of alkane-1-ols increased light independently with seedling age. Synthesis of alkanes was strictly light and dose dependent. Addition of UV-B radiation did not alter the amounts of alkanes or alcohols, however, the distribution of homologues was shifted towards shorter chain homologues. Treatments with Cl 3 AcOH resulted in strong inhibition of alkane accumulation, whereas the amount of alkane-1-ols was changed neither at low nor at moderate concentrations of Cl 3 AcOH but their homologue distribution shifted towards longer chain lengths. This shifting was depressed in the presence of UV-B. At high concentrations of Cl 3 Ac0H similar homologue distributions as produced by UV-B (shift to shorter homologues) were observed. Metolachlor treatment resulted in an inhibition of alkane-1-ol production connected with rising amounts of alkanes, predominantly of short chain species. A simple model of wax biosynthesis is proposed which describes the interactions with white light, UV-B radiation and herbicides. (author)

  6. Neutral lipid biosynthesis in engineered Escherichia coli: jojoba oil-like wax esters and fatty acid butyl esters.

    Science.gov (United States)

    Kalscheuer, Rainer; Stöveken, Tim; Luftmann, Heinrich; Malkus, Ursula; Reichelt, Rudolf; Steinbüchel, Alexander

    2006-02-01

    Wax esters are esters of long-chain fatty acids and long-chain fatty alcohols which are of considerable commercial importance and are produced on a scale of 3 million tons per year. The oil from the jojoba plant (Simmondsia chinensis) is the main biological source of wax esters. Although it has a multitude of potential applications, the use of jojoba oil is restricted, due to its high price. In this study, we describe the establishment of heterologous wax ester biosynthesis in a recombinant Escherichia coli strain by coexpression of a fatty alcohol-producing bifunctional acyl-coenzyme A reductase from the jojoba plant and a bacterial wax ester synthase from Acinetobacter baylyi strain ADP1, catalyzing the esterification of fatty alcohols and coenzyme A thioesters of fatty acids. In the presence of oleate, jojoba oil-like wax esters such as palmityl oleate, palmityl palmitoleate, and oleyl oleate were produced, amounting to up to ca. 1% of the cellular dry weight. In addition to wax esters, fatty acid butyl esters were unexpectedly observed in the presence of oleate. The latter could be attributed to solvent residues of 1-butanol present in the medium component, Bacto tryptone. Neutral lipids produced in recombinant E. coli were accumulated as intracytoplasmic inclusions, demonstrating that the formation and structural integrity of bacterial lipid bodies do not require specific structural proteins. This is the first report on substantial biosynthesis and accumulation of neutral lipids in E. coli, which might open new perspectives for the biotechnological production of cheap jojoba oil equivalents from inexpensive resources employing recombinant microorganisms.

  7. Effect of enhanced UV-B radiation of adaxial leaf surface micromorphology and epicuticular wax biosynthesis of sugar maple

    International Nuclear Information System (INIS)

    Gordon, D.C.; Percy, K.E.; Riding, R.T.

    1998-01-01

    Sugar maple (Acer saccharum [Marsh.]) seedlings were exposed to UV-B BE ranging from 0.61 kJ m -2 d -1 to 12.48 kJ m -2 d -1 . Increasing UV-B intensity was associated with changes in micromorphological characteristics of the adaxial leaf surface. In vivo incorporation of [1- 14 C] acetate into sugar maple adaxial leaf surface epicuticular wax indicated (p<0.05) a UV-B sensitivity threshold at or near 6.2 kJ m -2 d -1 . Exposure to dosages greater than 6.2 kJ m -2 d -1 resulted in a significant (p<0.05) decrease in wax biosynthesis. The proportion of [1- 14 C] acetate incorporated into each of the different epicuticular wax classes changed with increasing UV-B. Incorporation of [1- 14 C] acetate into alkyl esters decreased while incorporation into alkanes increased with increasing UV-B dose. The effects of enhanced UV-B dose recorded in this experiment may have implications for cuticle function. (author)

  8. McWRI1, a transcription factor of the AP2/SHEN family, regulates the biosynthesis of the cuticular waxes on the apple fruit surface under low temperature

    Science.gov (United States)

    Ji, Qianlong; Zhang, Kezhong; Yang, Mingfeng

    2017-01-01

    Cuticular waxes of plant and organ surfaces play an important role in protecting plants from biotic and abiotic stress and extending the freshness, storage time and shelf life in the post-harvest agricultural products. WRI1, a transcription factor of AP2/SHEN families, had been found to trigger the related genes taking part in the biosynthesis of seed oil in many plants. But whether WRI1 is involved in the biosynthesis of the cuticular waxes on the Malus fruits surface has been unclear. We investigated the changes of wax composition and structure, the related genes and WRI1 expression on Malus asiatica Nakai and sieversii fruits with the low temperature treatments, found that low temperature induced the up-regulated expression of McWRI1, which promoted gene expression of McKCS, McLACs and McWAX in very-long-chain fatty acid biosynthesis pathway, resulting in the accumulation of alkanes component and alteration of wax structure on the fruit surface. Corresponding results were verified in McWRI1 silenced by VIGS, and WRI1 silenced down-regulated the related genes on two kinds of fruits, it caused the diversity alteration in content of some alkanes, fatty acid and ester component in two kinds of fruits. We further conducted Y1H assay to find that McWRI1 transcription factor activated the promoter of McKCS, McLAC and McWAX to regulate their expression. These results demonstrated that McWRI1 is involved in regulating the genes related synthesis of very long chain fatty acid on surface of apple fruits in storage process, providing a highlight for improvement of the modified atmosphere storage of apple fruits. PMID:29073205

  9. Establishing very long-chain fatty alcohol and wax ester biosynthesis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Wenning, Leonie; Yu, Tao; David, Florian; Nielsen, Jens; Siewers, Verena

    2017-05-01

    Wax esters (WEs) are neutral lipids and can be used for a broad range of commercial applications, including personal care products, lubricants, or coatings. They are synthesized by enzymatic reactions catalyzed by a fatty acyl reductase (FAR) and a wax ester synthase (WS). At present, commercially used WEs are mainly isolated from Simmondsia chinensis (jojoba), but the high extraction costs and limited harvest areas constrain their use. The use of FARs in combination with different WSs to achieve a synthesis of jojoba-like WEs in bacteria and yeast has been reported previously, but the products were restricted to C28-C36 WEs. These rather short WEs make up only a very small percentage of the total WEs in natural jojoba oil. The synthesis of longer chain WEs (up to C44) in Saccharomyces cerevisiae has so far only been achieved after substrate feeding. Here we identified new routes for producing very long-chain fatty alcohols (VLCFOHs) up to a chain length of C22 by heterologous expression of a FAR derived from Apis mellifera (AmFAR1) or Marinobacter aquaeolei VT8 (Maqu_2220) in S. cerevisiae and achieved maximum yields of 3.22 ± 0.36 mg/g cell dry weight (CDW) and 7.84 ± 3.09 mg/g CDW, respectively, after 48 h. Moreover, we enabled the synthesis of jojoba-like WEs up to a chain length of C42, catalyzed by a combination of Maqu_2220 together with the WS from S. chinensis (SciWS) and the S. cerevisiae elongase Elo2p, with a maximum yield of 12.24 ± 3.35 mg/g CDW after 48 h. Biotechnol. Bioeng. 2017;114: 1025-1035. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. FAR5, a fatty acyl-coenzyme A reductase, is involved in primary alcohol biosynthesis of the leaf blade cuticular wax in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Wang, Yong; Wang, Meiling; Sun, Yulin; Wang, Yanting; Li, Tingting; Chai, Guaiqiang; Jiang, Wenhui; Shan, Liwei; Li, Chunlian; Xiao, Enshi; Wang, Zhonghua

    2015-03-01

    A waxy cuticle that serves as a protective barrier against non-stomatal water loss and environmental damage coats the aerial surfaces of land plants. It comprises a cutin polymer matrix and waxes. Cuticular waxes are complex mixtures of very long chain fatty acids (VLCFAs) and their derivatives. Results show that primary alcohols are the major components of bread wheat (Triticum aestivum L.) leaf blade cuticular waxes. Here, the characterization of TaFAR5 from wheat cv Xinong 2718, which is allelic to TAA1b, an anther-specific gene, is reported. Evidence is presented for a new function for TaFAR5 in the biosynthesis of primary alcohols of leaf blade cuticular wax in wheat. Expression of TaFAR5 cDNA in yeast (Saccharomyces cerevisiae) led to production of C22:0 primary alcohol. The transgenic expression of TaFAR5 in tomato (Solanum lycopersicum) cv MicroTom leaves resulted in the accumulation of C26:0, C28:0, and C30:0 primary alcohols. TaFAR5 encodes an alcohol-forming fatty acyl-coenzyme A reductase (FAR). Expression analysis revealed that TaFAR5 was expressed at high levels in the leaf blades, anthers, pistils, and seeds. Fully functional green fluorescent protein-tagged TaFAR5 protein was localized to the endoplasmic reticulum (ER), the site of primary alcohol biosynthesis. SDS-PAGE analysis indicated that the TaFAR5 protein possessed a molecular mass of 58.4kDa, and it was also shown that TaFAR5 transcript levels were regulated in response to drought, cold, and abscisic acid (ABA). Overall, these data suggest that TaFAR5 plays an important role in the synthesis of primary alcohols in wheat leaf blade. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Cgl2 plays an essential role in cuticular wax biosynthesis in cabbage (Brassica oleracea L. var. capitata).

    Science.gov (United States)

    Liu, Dongming; Tang, Jun; Liu, Zezhou; Dong, Xin; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao; Sun, Peitian; Liu, Yumei; Li, Zhansheng; Ye, Zhibiao; Fang, Zhiyuan; Yang, Limei

    2017-11-28

    The aerial parts of most land plants are covered with cuticular wax which is important for plants to avoid harmful factors. There is still no cloning study about wax synthesis gene of the alcohol-forming pathway in Brassica species. Scanning electron microscopy (SEM) showed that, compared with wild type (WT), wax crystal are severely reduced in both the adaxial and abaxial sides of cabbage (Brassica oleracea L. var. capitata L.) leaves from the LD10GL mutant. Genetic analysis results revealed that the glossy trait of LD10GL is controlled by a single recessive gene, and fine mapping results revealed that the target gene Cgl2 (Cabbage glossy 2) is located within a physical region of 170 kb on chromosome 1. Based on sequence analysis of the genes in the mapped region, the gene designated Bol013612 was speculated to be the candidate gene. Gene Bol013612 is homologous to Arabidopsis CER4, which encodes fatty acyl-coenzyme A reductase. Sequencing identified a single nucleotide substitution at an intron/exon boundary that results in an insertion of six nucleotides in the cDNA of Bol013612 in LD10GL. The phenotypic defect of LD10GL was confirmed by a functional complementation test with Arabidopsis mutant cer4. Our results indicated that wax crystals of cabbage mutant LD10GL are severely reduced and mutation of gene Bol013612 causes a glossy phenotype in the LD10GL mutant.

  12. Glutamine domain of the chimeric protein, CAD, that initiates pyrimidine biosynthesis in mammalian cells

    International Nuclear Information System (INIS)

    Kelly, R.E.; Kim, H.; Evans, D.R.

    1986-01-01

    Glutamine dependent carbamyl phosphate synthesis, the first step in mammalian de novo pyrimidine biosynthesis, is catalyzed by a 240 kDa chimeric protein, CAD, that also has the aspartate transcarbamylase and dihydroorotase activities. The complex was found to have a separate glutaminase activity of 0.04 μmol/min/mg, that increased five fold in the presence of bicarbonate and ATP. To determine whether the glutaminase activity, which provides ammonia for carbamyl phosphate synthesis, is associated with a separate structural domain (GLN), CAD was subjected to controlled proteolysis with elastase. The glutaminase, glutamine and ammonia dependent carbamyl phosphate synthetase activities, as well as the partial reactions; carbamyl phosphate dependent ATP synthesis and bicarbonate dependent ATPase, were correlated with the concentration of the various proteolytic fragments that accumulated in the digest. While the glutamine dependent carbamyl phosphate synthetase was rapidly inactivated, the glutaminase activity was found to be very resistant to proteolysis. The glutamine binding site of CAD was also specifically modified with 6-diazo-5-oxo-L-norleucine (DON). The modification was accompanied by a loss of both glutaminase and glutamine dependent carbamyl phosphate synthetase activities. Bicarbonate and ATP increased the rate of reaction of CAD with DON, while glutamine protected against inactivation. The stoichiometry of the reaction and the identity of the modified proteolytic fragments was determined using 14 C labelled DON

  13. Ear wax

    Science.gov (United States)

    See your provider if your ears are blocked with wax and you are unable to remove the wax. Also call if you have an ear wax blockage and you develop new symptoms, such as: Drainage from the ear Ear pain Fever Hearing loss that continues after you clean the wax

  14. The glossyhead1 allele of acc1 reveals a principal role for multidomain acetyl-coenzyme a carboxylase in the biosynthesis of cuticular waxes by Arabidopsis

    KAUST Repository

    Lu, Shiyou

    2011-09-23

    A novel mutant of Arabidopsis (Arabidopsis thaliana), having highly glossy inflorescence stems, postgenital fusion in floral organs, and reduced fertility, was isolated from an ethyl methanesulfonate-mutagenized population and designated glossyhead1 (gsd1). The gsd1 locus was mapped to chromosome 1, and the causal gene was identified as a new allele of Acetyl-Coenzyme A Carboxylase1 (ACC1), a gene encoding the main enzyme in cytosolic malonyl-coenzyme A synthesis. This, to our knowledge, is the first mutant allele of ACC1 that does not cause lethality at the seed or early germination stage, allowing for the first time a detailed analysis of ACC1 function in mature tissues. Broad lipid profiling of mature gsd1 organs revealed a primary role for ACC1 in the biosynthesis of the very-long-chain fatty acids (C 20:0 or longer) associated with cuticular waxes and triacylglycerols. Unexpectedly, transcriptome analysis revealed that gsd1 has limited impact on any lipid metabolic networks but instead has a large effect on environmental stress-responsive pathways, especially senescence and ethylene synthesis determinants, indicating a possible role for the cytosolic malonyl-coenzyme A-derived lipids in stress response signaling. © 2011 American Society of Plant Biologists. All Rights Reserved.

  15. Deoxyribonucleotide pool analysis: functional association of thymidylate synthase with the other enzymes of DNA biosynthesis in mammalian cells

    International Nuclear Information System (INIS)

    Reddy, G.P.V.; Christiansen, E.

    1986-01-01

    Allosteric interaction between thymidylate synthase (TS) and the other enzymes of DNA biosynthesis was suggested from the authors observation that inhibitors of ribonucleotide reductase, topoisomerase of DNA polymerase-α inhibit TS in intact S phase CHEF/18 cells, but not in their soluble extracts. In addition the authors observed that 4'-(9-acridinylamino)-methanesulfon-m-anisidide (m-AMSA), a poison of topoisomerase II, had similar effects on TS activity in mammalian cells. They have examined if the inhibitory effects of these antimetabolites on TS is due to the accumulation of thymidine nucleotide(s) in intact cells, rather than to an allosteric interaction in the replitase complex. A novel method of nucleotide pool analysis revealed that in the presence of these antimetabolites the incorporation of radioactivity from 3 H-deoxyuridine (dUrd) into thymidine nucleotide pools inside the cell did not increase as compared to the control. Furthermore, TS activity as measured in-vitro was not inhibited by supraphysiological concentrations (50μM) of thymidine mono- or tri-phosphates. None of these antimetabolites dramatically influenced the uptake of dUrd and its subsequent phosphorylation to deoxyuridine monophosphate. Therefore, they suggest that the inhibitory effect of these antimetabolites is due to the functional association of their target enzymes with TS

  16. Effects of air pollutants on epicuticular wax chemical composition

    International Nuclear Information System (INIS)

    Percy, K.E.; McQuattie, C.J.; Rebbeck, J.A.

    1994-01-01

    There are numerous reports in the literature of modifications to epicuticular wax structure as a consequence of exposure to air pollutants. Most authors have used scanning electron microscopy (SEM) to describe changes in wax crystallite morphology or distribution. ''Erosion'' or ''weathering'' of crystalline structure into an amorphous state is the most common observation, particularly in the case of conifer needles having the characteristic tube crystallites comprised of nonacosan-10-ol. Wax structure is largely determined by its chemical composition. Therefore, many of the reported changes in wax structure due to air pollutants probably arise from direct interactions between pollutants such as ozone and wax biosynthesis. The literature describing changes in wax composition due to pollutants is briefly reviewed. New evidence is introduced in support of the hypothesis for a direct interaction between air pollutants and epicuticular wax Biosynthesis. (orig.)

  17. [Overexpression of four fatty acid synthase genes elevated the efficiency of long-chain polyunsaturated fatty acids biosynthesis in mammalian cells].

    Science.gov (United States)

    Zhu, Guiming; Saleh, Abdulmomen Ali Mohammed; Bahwal, Said Ahmed; Wang, Kunfu; Wang, Mingfu; Wang, Didi; Ge, Tangdong; Sun, Jie

    2014-09-01

    Three long-chain polyunsaturated fatty acids, docosahexaenoic acid (DHA, 22:6n-3), eicosapentaenoic acid (EPA, 20:5n-3) and arachidonic acid (ARA, 20:4n-6), are the most biologically active polyunsaturated fatty acids in the body. They are important in developing and maintaining the brain function, and in preventing and treating many diseases such as cardiovascular disease, inflammation and cancer. Although mammals can biosynthesize these long-chain polyunsaturated fatty acids, the efficiency is very low and dietary intake is needed to meet the requirement. In this study, a multiple-genes expression vector carrying mammalian A6/A5 fatty acid desaturases and multiple-genes expression vector carrying mammalian Δ6/Δ5 fatty acid desaturases and Δ6/Δ5 fatty acid elongases coding genes was used to transfect HEK293T cells, then the overexpression of the target genes was detected. GC-MS analysis shows that the biosynthesis efficiency and level of DHA, EPA and ARA were significantly increased in cells transfected with the multiple-genes expression vector. Particularly, DHA level in these cells was 2.5 times higher than in the control cells. This study indicates mammal possess a certain mechanism for suppression of high level of biosynthesis of long chain polyunsaturated fatty acids, and the overexpression of Δ6/Δ5 fatty acid desaturases and Δ6/Δ5 fatty acid elongases broke this suppression mechanism so that the level of DHA, EPA and ARA was significantly increased. This study also provides a basis for potential applications of this gene construct in transgenic animal to produce high level of these long-chain polyunsaturated fatty acid.

  18. Critical importance of the de novo pyrimidine biosynthesis pathway for Trypanosoma cruzi growth in the mammalian host cell cytoplasm

    International Nuclear Information System (INIS)

    Hashimoto, Muneaki; Morales, Jorge; Fukai, Yoshihisa; Suzuki, Shigeo; Takamiya, Shinzaburo; Tsubouchi, Akiko; Inoue, Syou; Inoue, Masayuki; Kita, Kiyoshi; Harada, Shigeharu; Tanaka, Akiko; Aoki, Takashi; Nara, Takeshi

    2012-01-01

    Highlights: ► We established Trypanosoma cruzi lacking the gene for carbamoyl phosphate synthetase II. ► Disruption of the cpsII gene significantly reduced the growth of epimastigotes. ► In particular, the CPSII-null mutant severely retarded intracellular growth. ► The de novo pyrimidine pathway is critical for the parasite growth in the host cell. -- Abstract: The intracellular parasitic protist Trypanosoma cruzi is the causative agent of Chagas disease in Latin America. In general, pyrimidine nucleotides are supplied by both de novo biosynthesis and salvage pathways. While epimastigotes—an insect form—possess both activities, amastigotes—an intracellular replicating form of T. cruzi—are unable to mediate the uptake of pyrimidine. However, the requirement of de novo pyrimidine biosynthesis for parasite growth and survival has not yet been elucidated. Carbamoyl-phosphate synthetase II (CPSII) is the first and rate-limiting enzyme of the de novo biosynthetic pathway, and increased CPSII activity is associated with the rapid proliferation of tumor cells. In the present study, we showed that disruption of the T. cruzicpsII gene significantly reduced parasite growth. In particular, the growth of amastigotes lacking the cpsII gene was severely suppressed. Thus, the de novo pyrimidine pathway is important for proliferation of T. cruzi in the host cell cytoplasm and represents a promising target for chemotherapy against Chagas disease.

  19. Mammalian protein secretion without signal peptide removal. Biosynthesis of plasminogen activator inhibitor-2 in U-937 cells

    International Nuclear Information System (INIS)

    Ye, R.D.; Wun, T.C.; Sadler, J.E.

    1988-01-01

    Plasminogen activator inhibitor-2 (PAI-2) is a serine protease inhibitor that regulates plasmin generation by inhibiting urokinase and tissue plasminogen activator. The primary structure of PAI-2 suggests that it may be secreted without cleavage of a single peptide. To confirm this hypothesis we have studied the glycosylation and secretion of PAI-2 in human monocytic U-937 cells by metabolic labeling, immunoprecipitation, glycosidase digestion, and protein sequencing. PAI-2 is variably glycosylated on asparagine residues to yield intracellular intermediates with zero, one, two, or three high mannose-type oligosaccharide units. Secretion of the N-glycosylated species began by 1 h of chase and the secreted molecules contained both complex-type N-linked and O-linked oligosaccharides. Enzymatically deglycosylated PAI-2 had an electrophoretic mobility identical to that of the nonglycosylated precursor and also to that of PAI-2 synthesized in vitro in a rabbit reticulocyte lysate from synthetic mRNA derived from full length PAI-2 cDNA. The amino-terminal protein sequence of secreted PAI-2 began with the initiator methionine residue. These results indicate that PAI-2 is glycosylated and secreted efficiently without the cleavage of a signal peptide. PAI-2 shares this property with its nearest homologue in the serine protease inhibitor family, chicken ovalbumin, and appears to be the first well characterized example of this phenomenon among natural mammalian proteins

  20. Increased production of wax esters in transgenic tobacco plants by expression of a fatty acid reductase:wax synthase gene fusion.

    Science.gov (United States)

    Aslan, Selcuk; Hofvander, Per; Dutta, Paresh; Sun, Chuanxin; Sitbon, Folke

    2015-12-01

    Wax esters are hydrophobic lipids consisting of a fatty acid moiety linked to a fatty alcohol with an ester bond. Plant-derived wax esters are today of particular concern for their potential as cost-effective and sustainable sources of lubricants. However, this aspect is hampered by the fact that the level of wax esters in plants generally is too low to allow commercial exploitation. To investigate whether wax ester biosynthesis can be increased in plants using transgenic approaches, we have here exploited a fusion between two bacterial genes together encoding a single wax ester-forming enzyme, and targeted the resulting protein to chloroplasts in stably transformed tobacco (Nicotiana benthamiana) plants. Compared to wild-type controls, transgenic plants showed both in leaves and stems a significant increase in the total level of wax esters, being eight-fold at the whole plant level. The profiles of fatty acid methyl ester and fatty alcohol in wax esters were related, and C16 and C18 molecules constituted predominant forms. Strong transformants displayed certain developmental aberrations, such as stunted growth and chlorotic leaves and stems. These negative effects were associated with an accumulation of fatty alcohols, suggesting that an adequate balance between formation and esterification of fatty alcohols is crucial for a high wax ester production. The results show that wax ester engineering in transgenic plants is feasible, and suggest that higher yields may become achieved in the near future.

  1. Wax ester profiling of seed oil by nano-electrospray ionization tandem mass spectrometry

    Science.gov (United States)

    2013-01-01

    Background Wax esters are highly hydrophobic neutral lipids that are major constituents of the cutin and suberin layer. Moreover they have favorable properties as a commodity for industrial applications. Through transgenic expression of wax ester biosynthetic genes in oilseed crops, it is possible to achieve high level accumulation of defined wax ester compositions within the seed oil to provide a sustainable source for such high value lipids. The fatty alcohol moiety of the wax esters is formed from plant-endogenous acyl-CoAs by the action of fatty acyl reductases (FAR). In a second step the fatty alcohol is condensed with acyl-CoA by a wax synthase (WS) to form a wax ester. In order to evaluate the specificity of wax ester biosynthesis, analytical methods are needed that provide detailed wax ester profiles from complex lipid extracts. Results We present a direct infusion ESI-tandem MS method that allows the semi-quantitative determination of wax ester compositions from complex lipid mixtures covering 784 even chain molecular species. The definition of calibration prototype groups that combine wax esters according to their fragmentation behavior enables fast quantitative analysis by applying multiple reaction monitoring. This provides a tool to analyze wax layer composition or determine whether seeds accumulate a desired wax ester profile. Besides the profiling method, we provide general information on wax ester analysis by the systematic definition of wax ester prototypes according to their collision-induced dissociation spectra. We applied the developed method for wax ester profiling of the well characterized jojoba seed oil and compared the profile with wax ester-accumulating Arabidopsis thaliana expressing the wax ester biosynthetic genes MaFAR and ScWS. Conclusions We developed a fast profiling method for wax ester analysis on the molecular species level. This method is suitable to screen large numbers of transgenic plants as well as other wax ester samples

  2. Triterpene biosynthesis in plants.

    Science.gov (United States)

    Thimmappa, Ramesha; Geisler, Katrin; Louveau, Thomas; O'Maille, Paul; Osbourn, Anne

    2014-01-01

    The triterpenes are one of the most numerous and diverse groups of plant natural products. They are complex molecules that are, for the most part, beyond the reach of chemical synthesis. Simple triterpenes are components of surface waxes and specialized membranes and may potentially act as signaling molecules, whereas complex glycosylated triterpenes (saponins) provide protection against pathogens and pests. Simple and conjugated triterpenes have a wide range of applications in the food, health, and industrial biotechnology sectors. Here, we review recent developments in the field of triterpene biosynthesis, give an overview of the genes and enzymes that have been identified to date, and discuss strategies for discovering new triterpene biosynthetic pathways.

  3. 21 CFR 184.1978 - Carnauba wax.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Carnauba wax. 184.1978 Section 184.1978 Food and... Substances Affirmed as GRAS § 184.1978 Carnauba wax. (a) Carnauba wax (CAS Reg. No. 008-015-869) is obtained from the leaves and buds of the Brazilian wax palm Copernicia cerifera Martius. The wax is hard...

  4. Biochemical investigations of the effect of NaF on mammalian cells. 2. Influence on biosynthesis of nucleic acids and proteins in mouse spleen cells ''in vivo''

    Energy Technology Data Exchange (ETDEWEB)

    Klein, W; Kocsis, F; Altmann, H

    1974-10-01

    The influence of NaF on the biosynthesis of nucleic acids and proteins was studied ''in vivo'' with ''Swiss mice''. Using a fluoride concentration of 0.4 ..mu..g/g no effect on DNA-repair appeared within 12 weeks, while DNA-, RNA- and protein-synthesis were suppressed after 10 weeks. Fluoride in a concentration of 3.5 ..mu..g/g gives a nearly complete inhibition of DNA-repair after 10 weeks, while DNA-, RNA- and protein-synthesis were suppressed to various degrees from week 2 until week 12. The phosphorylation of DNA- and RNA-precursors indicated results comparable to both synthesis, but investigating the particular kinase-steps of the phosphorylation, no specific effect on one of them can be localized significantly. (auth)

  5. Preparing paraffin wax, etc

    Energy Technology Data Exchange (ETDEWEB)

    1935-12-27

    A process is described for preparing paraffin wax by separation from substances containing bitumen, consisting of treating the raw material at an elevated temperature under such moderate conditions and by means of such organic solvents that the bitumen present in the raw material or formed in the process dissolves as well as the asphaltic and phenolic substances and the humic acids which may be said to be neither extracts nor decomposed materials, and then submitting the products and extracts to a treatment with hydrogen gas, which is effected below 300/sup 0/C, and passing the material over fixed hydrogenation catalysts above 300/sup 0/C by means of hydrogenation catalysts finely dispersed in carbonaceous materials all avoiding decomposition with the formation of volatile products.

  6. 21 CFR 178.3710 - Petroleum wax.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Petroleum wax. 178.3710 Section 178.3710 Food and... and Production Aids § 178.3710 Petroleum wax. Petroleum wax may be safely used as a component of nonfood articles in contact with food, in accordance with the following conditions: (a) Petroleum wax is a...

  7. Molecular and Evolutionary Mechanisms of Cuticular Wax for Plant Drought Tolerance

    Directory of Open Access Journals (Sweden)

    Dawei Xue

    2017-04-01

    Full Text Available Cuticular wax, the first protective layer of above ground tissues of many plant species, is a key evolutionary innovation in plants. Cuticular wax safeguards the evolution from certain green algae to flowering plants and the diversification of plant taxa during the eras of dry and adverse terrestrial living conditions and global climate changes. Cuticular wax plays significant roles in plant abiotic and biotic stress tolerance and has been implicated in defense mechanisms against excessive ultraviolet radiation, high temperature, bacterial and fungal pathogens, insects, high salinity, and low temperature. Drought, a major type of abiotic stress, poses huge threats to global food security and health of terrestrial ecosystem by limiting plant growth and crop productivity. The composition, biochemistry, structure, biosynthesis, and transport of plant cuticular wax have been reviewed extensively. However, the molecular and evolutionary mechanisms of cuticular wax in plants in response to drought stress are still lacking. In this review, we focus on potential mechanisms, from evolutionary, molecular, and physiological aspects, that control cuticular wax and its roles in plant drought tolerance. We also raise key research questions and propose important directions to be resolved in the future, leading to potential applications of cuticular wax for water use efficiency in agricultural and environmental sustainability.

  8. Biosynthesis and degradation of mammalian glycosphingolipids.

    Science.gov (United States)

    Sandhoff, Konrad; Kolter, Thomas

    2003-01-01

    Glycolipids are a large and heterogeneous family of sphingolipids that form complex patterns on eukaryotic cell surfaces. This molecular diversity is generated by only a few enzymes and is a paradigm of naturally occurring combinatorial synthesis. We report on the biosynthetic principles leading to this large molecular diversity and focus on sialic acid-containing glycolipids of the ganglio-series. These glycolipids are particularly concentrated in the plasma membrane of neuronal cells. Their de novo synthesis starts with the formation of the membrane anchor, ceramide, at the endoplasmic reticulum (ER) and is continued by glycosyltransferases of the Golgi complex. Recent findings from genetically engineered mice are discussed. The constitutive degradation of glycosphingolipids (GSLs) occurs in the acidic compartments, the endosomes and the lysosomes. Here, water-soluble glycosidases sequentially cleave off the terminal carbohydrate residues from glycolipids. For glycolipid substrates with short oligosaccharide chains, the additional presence of membrane-active sphingolipid activator proteins (SAPs) is required. A considerable part of our current knowledge about glycolipid degradation is derived from a class of human diseases, the sphingolipidoses, which are caused by inherited defects within this pathway. A new post-translational modification is the attachment of glycolipids to proteins of the human skin. PMID:12803917

  9. 21 CFR 582.1978 - Carnauba wax.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Carnauba wax. 582.1978 Section 582.1978 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1978 Carnauba wax. (a) Product. Carnauba wax. (b) Conditions of use. This substance is generally...

  10. 21 CFR 186.1555 - Japan wax.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Japan wax. 186.1555 Section 186.1555 Food and Drugs... Substances Affirmed as GRAS § 186.1555 Japan wax. (a) Japan wax (CAS Reg. No. 8001-39-6), also known as Japan... fruits of the oriental sumac, Rhus succedanea (Japan, Taiwan, and Indo-China), R. vernicifera (Japan...

  11. Physical properties of beeswax, sunflower wax, and candelilla wax mixtures and organogels

    Science.gov (United States)

    There is increased interest in natural waxes as alternatives to partially hydrogenated oils and saturated fats as oil structuring agents. Using relatively low concentrations (0.5-5%), natural waxes are able to form crystalline networks, or organogels, which bind liquid oil. Each natural wax is uniqu...

  12. Surfactants from petroleum paraffin wax

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, T.M.; Hussein, M.H.; El Sayed, A.S.

    Paraffin wax from Egyptian petroleum was purified and then oxidized to fatty acids which were esterified to form their methyl esters, fractionated and then hydrolysed. The obtained fatty acids were converted into the corresponding primary amines which were converted with ethylene oxide to form nonionic surfactants. The prepared primary amines were also converted into tertiary amines and then converted into cationic surfactants through condensation with benzyl chloride or 1-chloromethylnaphthalene. Also, amine oxide surfactants were prepared by oxidation of the tertiary amines with hydrogen peroxide. The surface active properties of all the prepared surfactants were determined, and the effect of their chemical structure on the surfactant properties are discussed in this paper.

  13. Wax deposition in crude oil pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Assuncao, Pablo Morelato; Rodrigues, Lorennzo Marrochi Nolding [Universidade Federal do Espirito Santo, Sao Mateus, ES (Brazil). Centro Universitario Norte do Espirito Santo. Engenharia de Petroleo; Romero, Mao Ilich [University of Wyoming, Laramie, WY (United States). Enhanced Oil Recovery Institute], e-mail: mromerov@uwyo.edu

    2010-07-01

    Crude oil is a complex mixture of hydrocarbons which consists of aromatics, paraffins, naphthenics, resins asphaltenes, etc. When the temperature of crude oil is reduced, the heavy components, like paraffin, will precipitate and deposit on the pipe internal wall in the form of a wax-oil gel. The gel deposit consists of wax crystals that trap some amount of oil. As the temperature gets cooler, more wax will precipitate and the thickness of the wax gel will increase, causing gradual solidification of the crude and eventually the oil stop moving inside the offshore pipeline. Crude oil may not be able to be re-mobilized during re-startup. The effective diameter will be reduced with wax deposition, resulting in several problems, for example, higher pressure drop which means additional pumping energy costs, poor oil quality, use of chemical components like precipitation inhibitors or flowing facilitators, equipment failure, risk of leakage, clogging of the ducts and process equipment. Wax deposition problems can become so sever that the whole pipeline can be completely blocked. It would cost millions of dollars to remediate an offshore pipeline that is blocked by wax. Wax solubility decreases drastically with decreasing temperature. At low temperatures, as encountered in deep water production, is easy to wax precipitate. The highest temperature below which the paraffins begins to precipitate as wax crystals is defined as wax appearance temperature (WAT). Deposition process is a complex free surface problem involving thermodynamics, fluid dynamics, mass and heat transfer. In this work, a numerical analysis of wax deposition by molecular diffusion and shear dispersion mechanisms in crude oil pipeline is studied. Diffusion flux of wax toward the wall is estimated by Fick's law of diffusion, in similar way the shear dispersion; wax concentration gradient at the solid-liquid interface is obtained by the volume fraction conservation equation; and since the wax deposition

  14. Aplikasi Wax Sebagai Salah Satu Material Di Bidang Kedokteran Gigi

    OpenAIRE

    Rika Jamilah Israwati Lubis

    2008-01-01

    Wax merupakan salah satu bahan termoplastik yang terdiri dari berbagai bahan organis dan bahan alami sehingga membuatnya sebagai bahan dengan sifat-sifat yang sangat berguna. Unsur-unsur pokok dental wax terdiri dari 3 suraber utama, yaitu : mineral, serangga (hewani), dan sayur-sayuran (tumbuh-tumbuhan). Wax yang berasal dari bahan mineral diantaranya adalah paraffin wax dan microcrystallin wax yang diperoleh dari hasil residu petroleum melalui proses destilasi. Wax yang berasal dari serangg...

  15. The moss Funaria hygrometrica has cuticular wax similar to vascular plants, with distinct composition on leafy gametophyte, calyptra and sporophyte capsule surfaces.

    Science.gov (United States)

    Busta, Lucas; Budke, Jessica M; Jetter, Reinhard

    2016-09-01

    Aerial surfaces of land plants are covered with a waxy cuticle to protect against water loss. The amount and composition of cuticular waxes on moss surfaces had rarely been investigated. Accordingly, the degree of similarity between moss and vascular plant waxes, and between maternal and offspring moss structure waxes is unknown. To resolve these issues, this study aimed at providing a comprehensive analysis of the waxes on the leafy gametophyte, gametophyte calyptra and sporophyte capsule of the moss Funaria hygrometrica Waxes were extracted from the surfaces of leafy gametophytes, gametophyte calyptrae and sporophyte capsules, separated by gas chromatography, identified qualitatively with mass spectrometry, and quantified with flame ionization detection. Diagnostic mass spectral peaks were used to determine the isomer composition of wax esters. The surfaces of the leafy gametophyte, calyptra and sporophyte capsule of F. hygrometrica were covered with 0·94, 2·0 and 0·44 μg cm(-2) wax, respectively. While each wax mixture was composed of mainly fatty acid alkyl esters, the waxes from maternal and offspring structures had unique compositional markers. β-Hydroxy fatty acid alkyl esters were limited to the leafy gametophyte and calyptra, while alkanes, aldehydes and diol esters were restricted to the sporophyte capsule. Ubiquitous fatty acids, alcohols, fatty acid alkyl esters, aldehydes and alkanes were all found on at least one surface. This is the first study to determine wax coverage (μg cm(-2)) on a moss surface, enabling direct comparisons with vascular plants, which were shown to have an equal amount or more wax than F. hygrometrica Wax ester biosynthesis is of particular importance in this species, and the ester-forming enzyme(s) in different parts of the moss may have different substrate preferences. Furthermore, the alkane-forming wax biosynthesis pathway, found widely in vascular plants, is active in the sporophyte capsule, but not in the leafy

  16. Process for separating liquid hydrocarbons from waxes

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, F J

    1948-03-08

    A process is described for the separation of liquid hydrocarbons from waxes comprising adding to a mixture of liquid hydrocarbons and waxes a sufficient quantity of an organo-silicon compound to cause the separation of the hydrocarbon and wax. The organo-silicon compounds are selected from the class of organic silicanes and their hydrolysis products and polymers. The silicanes have the formula R/sub y/SiX/sub z/, in which R is a saturated or unsaturated hydrocarbon radical, X is a halogen or another hydrocarbon radical or an -OR group, y has a value 1, 2, or 3 and z has a value 1, 2, or 3.

  17. 21 CFR 872.6890 - Intraoral dental wax.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intraoral dental wax. 872.6890 Section 872.6890...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6890 Intraoral dental wax. (a) Identification. Intraoral dental wax is a device made of wax intended to construct patterns from which custom made metal...

  18. 21 CFR 172.888 - Synthetic petroleum wax.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Synthetic petroleum wax. 172.888 Section 172.888... CONSUMPTION Multipurpose Additives § 172.888 Synthetic petroleum wax. Synthetic petroleum wax may be safely used in or on foods in accordance with the following conditions: (a) Synthetic petroleum wax is a...

  19. Microencapsulation of Flavors in Carnauba Wax

    OpenAIRE

    Milanovic, Jelena; Manojlovic, Verica; Levic, Steva; Rajic, Nevenka; Nedovic, Viktor; Bugarski, Branko

    2010-01-01

    The subject of this study is the development of flavor wax formulations aimed for food and feed products. The melt dispersion technique was applied for the encapsulation of ethyl vanillin in wax microcapsules. The surface morphology of microparticles was investigated using scanning electron microscope (SEM), while the loading content was determined by HPLC measurements. This study shows that the decomposition process under heating proceeds in several steps: vanilla evaporation occurs at aroun...

  20. Extracting paraffin and mineral waxes

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, I C

    1930-01-17

    In a process for freezing liquids, particularly for precipitating wax from oils such as petroleum or shale oils, the liquid to be treated is cooled first in vessels 10, 11, and 12 by chilled liquid from the final separating tanks 22, then in vessels 13, 14 and 15 by brine cooled by an evaporator 38 and finally in vessels 16,17, 18 directly by the evaporator of a refrigerating plant. The cooling in vessels 10, 11, 12 is regulated by recirculating some of the chilled liquid through the valved pipe 30 while that in tanks 13, 14, 15 is regulated by short-circuiting the brine circulation through a tank 35. Refrigerant vapour from the evaporators in vessels 16, 17, 18 may return through pipe 61 to the compressor or absorber of the plant 45 or it may be withdrawn by pump 58. By the operation of valves A, B, 47, and a valve in pipe 61, the pressures in the evaporators may be varied individually to regulate the cooling in each vessel. Mechanical stirrers are provided in tanks 16, 17, 18.

  1. Refining of wax-containing oil by distillation

    Energy Technology Data Exchange (ETDEWEB)

    1930-04-28

    A continuous method is disclosed for producing low cold test oil from wax-containing mineral oil, which comprises continuously heating the oil in a tubular heater with avoidance of cracking, and fractionating the resulting liquid and vapor in a fractionating tower with reflux to produce a wax-containing fraction having therein substantially all of the amorphous wax and being sufficiently free of crystalline wax so as to be waxable by a method suitable for the removal of amorphous wax.

  2. Wax-bonding 3D microfluidic chips

    KAUST Repository

    Gong, Xiuqing; Yi, Xin; Xiao, Kang; Li, Shunbo; Kodzius, Rimantas; Qin, Jianhua; Wen, Weijia

    2013-01-01

    We report a simple, low-cost and detachable microfluidic chip incorporating easily accessible paper, glass slides or other polymer films as the chip materials along with adhesive wax as the recycling bonding material. We use a laser to cut through the paper or film to form patterns and then sandwich the paper and film between glass sheets or polymer membranes . The hot-melt adhesive wax can realize bridge bonding between various materials, for example, paper, polymethylmethacrylate (PMMA) film, glass sheets, or metal plate. The bonding process is reversible and the wax is reusable through a melting and cooling process. With this process, a three-dimensional (3D) microfluidic chip is achievable by vacuating and venting the chip in a hot-water bath. To study the biocompatibility and applicability of the wax-based microfluidic chip, we tested the PCR compatibility with the chip materials first. Then we applied the wax-paper based microfluidic chip to HeLa cell electroporation (EP ). Subsequently, a prototype of a 5-layer 3D chip was fabricated by multilayer wax bonding. To check the sealing ability and the durability of the chip, green fluorescence protein (GFP) recombinant Escherichia coli (E. coli) bacteria were cultured, with which the chemotaxis of E. coli was studied in order to determine the influence of antibiotic ciprofloxacin concentration on the E. coli migration.

  3. Wax-bonding 3D microfluidic chips

    KAUST Repository

    Gong, Xiuqing

    2013-10-10

    We report a simple, low-cost and detachable microfluidic chip incorporating easily accessible paper, glass slides or other polymer films as the chip materials along with adhesive wax as the recycling bonding material. We use a laser to cut through the paper or film to form patterns and then sandwich the paper and film between glass sheets or polymer membranes . The hot-melt adhesive wax can realize bridge bonding between various materials, for example, paper, polymethylmethacrylate (PMMA) film, glass sheets, or metal plate. The bonding process is reversible and the wax is reusable through a melting and cooling process. With this process, a three-dimensional (3D) microfluidic chip is achievable by vacuating and venting the chip in a hot-water bath. To study the biocompatibility and applicability of the wax-based microfluidic chip, we tested the PCR compatibility with the chip materials first. Then we applied the wax-paper based microfluidic chip to HeLa cell electroporation (EP ). Subsequently, a prototype of a 5-layer 3D chip was fabricated by multilayer wax bonding. To check the sealing ability and the durability of the chip, green fluorescence protein (GFP) recombinant Escherichia coli (E. coli) bacteria were cultured, with which the chemotaxis of E. coli was studied in order to determine the influence of antibiotic ciprofloxacin concentration on the E. coli migration.

  4. Cuticular wax accumulation is associated with drought tolerance in wheat near-isogenic lines

    Directory of Open Access Journals (Sweden)

    Jianmin Song

    2016-11-01

    Full Text Available Previous studies have shown that wheat grain yield is seriously affected by drought stress, and leaf cuticular wax is reportedly associated with drought tolerance. However, most studies have focused on cuticular wax biosynthesis and model species. The effects of cuticular wax on wheat drought tolerance have rarely been studied. The aims of the current study were to study the effects of leaf cuticular wax on wheat grain yield under drought stress using the above-mentioned wheat NILs and to discuss the possible physiological mechanism of cuticular wax on high grain yield under drought stress. Compared to water-irrigated (WI conditions, the cuticular wax content (CWC in glaucous and non-glaucous NILs under drought-stress (DS conditions both increased; mean increase values were 151.1% and 114.4%, respectively, which was corroborated by scanning electronic microscopy images of large wax particles loaded on the surfaces of flag leaves. The average yield of glaucous NILs was higher than that of non-glaucous NILs under DS conditions in 2014 and 2015; mean values were 7368.37 kg·ha-1 and 7103.51 kg·ha-1. This suggested that glaucous NILs were more drought-tolerant than non-glaucous NILs (P = 0.05, which was supported by the findings of drought tolerance indices TOL and SSI in both years, the relatively high water potential and relative water content, and the low ELWL. Furthermore, the photosynthesis rate (Pn of glaucous and non-glaucous wheat NILs under DS conditions decreased by 7.5% and 9.8%, respectively; however, glaucous NILs still had higher mean values of Pn than those of non-glaucous NILs, which perhaps resulted in the higher yield of glaucous NILs. This could be explained by the fact that glaucous NILs had a smaller Fv/Fm reduction, a smaller PI reduction and a greater ABS/RC increase than non-glaucous NILs under DS conditions. This is the first report to show that wheat cuticular wax accumulation is associated with drought tolerance. Moreover

  5. Measurement of Heme Synthesis Levels in Mammalian Cells.

    Science.gov (United States)

    Hooda, Jagmohan; Alam, Maksudul; Zhang, Li

    2015-07-09

    Heme serves as the prosthetic group for a wide variety of proteins known as hemoproteins, such as hemoglobin, myoglobin and cytochromes. It is involved in various molecular and cellular processes such as gene transcription, translation, cell differentiation and cell proliferation. The biosynthesis levels of heme vary across different tissues and cell types and is altered in diseased conditions such as anemia, neuropathy and cancer. This technique uses [4-(14)C] 5-aminolevulinic acid ([(14)C] 5-ALA), one of the early precursors in the heme biosynthesis pathway to measure the levels of heme synthesis in mammalian cells. This assay involves incubation of cells with [(14)C] 5-ALA followed by extraction of heme and measurement of the radioactivity incorporated into heme. This procedure is accurate and quick. This method measures the relative levels of heme biosynthesis rather than the total heme content. To demonstrate the use of this technique the levels of heme biosynthesis were measured in several mammalian cell lines.

  6. Mammalian sleep

    Science.gov (United States)

    Staunton, Hugh

    2005-05-01

    This review examines the biological background to the development of ideas on rapid eye movement sleep (REM sleep), so-called paradoxical sleep (PS), and its relation to dreaming. Aspects of the phenomenon which are discussed include physiological changes and their anatomical location, the effects of total and selective sleep deprivation in the human and animal, and REM sleep behavior disorder, the latter with its clinical manifestations in the human. Although dreaming also occurs in other sleep phases (non-REM or NREM sleep), in the human, there is a contingent relation between REM sleep and dreaming. Thus, REM is taken as a marker for dreaming and as REM is distributed ubiquitously throughout the mammalian class, it is suggested that other mammals also dream. It is suggested that the overall function of REM sleep/dreaming is more important than the content of the individual dream; its function is to place the dreamer protagonist/observer on the topographical world. This has importance for the developing infant who needs to develop a sense of self and separateness from the world which it requires to navigate and from which it is separated for long periods in sleep. Dreaming may also serve to maintain a sense of ‘I’ness or “self” in the adult, in whom a fragility of this faculty is revealed in neurological disorders.

  7. Rapid atmospheric transport and large-scale deposition of recently synthesized plant waxes

    Science.gov (United States)

    Nelson, Daniel B.; Ladd, S. Nemiah; Schubert, Carsten J.; Kahmen, Ansgar

    2018-02-01

    Sedimentary plant wax 2H/1H ratios are important tools for understanding hydroclimate and environmental changes, but large spatial and temporal uncertainties exist about transport mechanisms from ecosystem to sediments. To assess atmospheric pathways, we collected aerosol samples for two years at four locations within a ∼60 km radius in northern Switzerland. We measured n-alkane distributions and 2H/1H ratios in these samples, and from local plants, leaf litter, and soil, as well as surface sediment from six nearby lakes. Increased concentrations and 2H depletion of long odd chain n-alkanes in early summer aerosols indicate that most wax aerosol production occurred shortly after leaf unfolding, when plants synthesize waxes in large quantities. During autumn and winter, aerosols were characterized by degraded n-alkanes lacking chain length preferences diagnostic of recent biosynthesis, and 2H/1H values that were in some cases more than 100‰ higher than growing season values. Despite these seasonal shifts, modeled deposition-weighted average 2H/1H values of long odd chain n-alkanes primarily reflected summer values. This was corroborated by n-alkane 2H/1H values in lake sediments, which were similar to deposition-weighted aerosol values at five of six sites. Atmospheric deposition rates for plant n-alkanes on land were ∼20% of accumulation rates in lakes, suggesting a role for direct deposition to lakes or coastal oceans near similar production sources, and likely a larger role for deposition on land and transport in river systems. This mechanism allows mobilization and transport of large quantities of recently produced waxes as fine-grained material to low energy sedimentation sites over short timescales, even in areas with limited topography. Widespread atmospheric transfer well before leaf senescence also highlights the importance of the isotopic composition of early season source water used to synthesize waxes for the geologic record.

  8. Understanding the distribution of natural wax in starch-wax films using synchrotron-based FTIR (S-FTIR).

    Science.gov (United States)

    Muscat, Delina; Tobin, Mark J; Guo, Qipeng; Adhikari, Benu

    2014-02-15

    High amylose starch-glycerol (HAG) films were produced incorporating beeswax, candelilla wax and carnauba wax in the presence and absence of Tween-80 in order to determine the distribution of wax in the films during the film formation process. The distribution of these waxes within the film was studied using Synchrotron based Fourier Transform Infrared Spectroscopy (S-FTIR) which provided 2D mapping along the thickness of the film. The incorporation of 5% and 10% wax in HAG films produced randomly distributed wax or wax-rich domains, respectively, within these films. Consequently, the addition of these waxes to HAG increased the surface roughness and hydrophobicity of these films. The addition of Tween-80 caused variations in wax-rich bands within the films. The HAG+carnauba wax+Tween-80 films exhibited domed wax-rich domains displayed with high integrated CH2 absorption value at the interior of the films, rougher surface and higher contact angle values than the other films. The S-FTIR 2D images indicated that the distribution of wax in starch-wax films correlated with the roughness and hydrophobicity of the starch-wax films. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Microencapsulation of Flavors in Carnauba Wax

    Directory of Open Access Journals (Sweden)

    Branko Bugarski

    2010-01-01

    Full Text Available The subject of this study is the development of flavor wax formulations aimed for food and feed products. The melt dispersion technique was applied for the encapsulation of ethyl vanillin in wax microcapsules. The surface morphology of microparticles was investigated using scanning electron microscope (SEM, while the loading content was determined by HPLC measurements. This study shows that the decomposition process under heating proceeds in several steps: vanilla evaporation occurs at around 200 °C, while matrix degradation starts at 250 °C and progresses with maxima at around 360, 440 and 520 °C. The results indicate that carnauba wax is an attractive material for use as a matrix for encapsulation of flavours in order to improve their functionality and stability in products.

  10. Microencapsulation of flavors in carnauba wax.

    Science.gov (United States)

    Milanovic, Jelena; Manojlovic, Verica; Levic, Steva; Rajic, Nevenka; Nedovic, Viktor; Bugarski, Branko

    2010-01-01

    The subject of this study is the development of flavor wax formulations aimed for food and feed products. The melt dispersion technique was applied for the encapsulation of ethyl vanillin in wax microcapsules. The surface morphology of microparticles was investigated using scanning electron microscope (SEM), while the loading content was determined by HPLC measurements. This study shows that the decomposition process under heating proceeds in several steps: vanilla evaporation occurs at around 200 °C, while matrix degradation starts at 250 °C and progresses with maxima at around 360, 440 and 520 °C. The results indicate that carnauba wax is an attractive material for use as a matrix for encapsulation of flavours in order to improve their functionality and stability in products.

  11. Wax Point Determinations Using Acoustic Resonance Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, D.T.; Jubin, R.T.; Schmidt, T.W.

    2001-06-01

    The thermodynamic characterization of the wax point of a given crude is essential in order to maintain flow conditions that prevent plugging of undersea pipelines. This report summarizes the efforts made towards applying an Acoustic Cavity Resonance Spectrometer (ACRS) to the determination of pressures and temperatures at which wax precipitates from crude. Phillips Petroleum Company, Inc., the CRADA participant, supplied the ACRS. The instrumentation was shipped to Dr. Thomas Schmidt of ORNL, the CRADA contractor, in May 2000 after preliminary software development performed under the guidance of Dr. Samuel Colgate and Dr. Evan House of the University of Florida, Gainesville, Fl. Upon receipt it became apparent that a number of modifications still needed to be made before the ACRS could be precisely and safely used for wax point measurements. This report reviews the sequence of alterations made to the ACRS, as well as defines the possible applications of the instrumentation once the modifications have been completed. The purpose of this Cooperative Research and Development Agreement (CRADA) between Phillips Petroleum Company, Inc. (Participant) and Lockheed Martin Energy Research Corporation (Contractor) was the measurement of the formation of solids in crude oils and petroleum products that are commonly transported through pipelines. This information is essential in the proper design, operation and maintenance of the petroleum pipeline system in the United States. Recently, new petroleum discoveries in the Gulf of Mexico have shown that there is a potential for plugging of undersea pipeline because of the precipitation of wax. It is important that the wax points of the expected crude oils be well characterized so that the production facilities for these new wells are capable of properly transporting the expected production. The goal of this work is to perform measurements of solids formation in crude oils and petroleum products supplied by the Participant. It is

  12. wax matrix tablets and its implication on dissolution prof

    African Journals Online (AJOL)

    acetaminophen-wax matrix tablet and hence its implication on dissolution profile. Acetaminophen-wax ... inertness, cost effectiveness, non- toxicity and more importantly their ... Liver Poole, England) at constant load (30 arbitrary units on the ...

  13. Effects of air pollutants on epicuticular wax structure

    International Nuclear Information System (INIS)

    Huttunen, S.

    1994-01-01

    In xerophytes, like conifers, the epicuticular wax is well developed. Especially in and around stomatal entrances, a thick wax coating is present. Epicuticular waxes are modified by changes in plant growth conditions such as temperature, relative humidity, irradiance, and wind, or acid rain. The fine structure of epicuticular waxes, their chemistry, and ecophysiological function are modified, especially in evergreen, long-lived conifer needles with characteristic crystalline wax structures. During needle flushing and development, wax structure is easily modified. Acid rain-treated Scots pine needles had 50% less epicuticular waxes in early August. Pollution-induced delayed development, destruction, and disturbances have been identified in many plant species. The structural changes in wax crystals are known. Acid rain or polluted air can destroy the crystalloid epicuticular waxes in a few weeks. In Pinus sylvestris, the first sign of pollution effect is the fusion of wax tubes. In Picea abies and P. sitchensis, modifications of crystalloid wax structure are known. In Californian pine trees phenomena of recrystallization of wax tubes on second-year needles were observed after delayed epicuticular wax development in Pinus ponderosa and P. coulteri. Thus, the effects of air pollutants are modified by climate. Accelerated senescence of leaves and needles have been associated with natural and anthropogenic stresses. The accelerated erosion rate of epicuticular waxes has been measured under air pollution conditions. Many short-term air pollution experiments have failed to show any structural changes in epicuticular wax structures. The quantity and quality of needle waxes grown in open-top chambers, glass houses, or polluted air before treatment, differ from field conditions and make it difficult to detect effects of any treatment. (orig.)

  14. 75 FR 63200 - Petroleum Wax Candles From China

    Science.gov (United States)

    2010-10-14

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-282 (Third Review)] Petroleum Wax Candles... five-year review concerning the antidumping duty order on petroleum wax candles from China. SUMMARY... antidumping duty order on petroleum wax candles from China would be likely to lead to continuation or...

  15. 75 FR 80843 - Petroleum Wax Candles From China

    Science.gov (United States)

    2010-12-23

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-282 (Third Review)] Petroleum Wax Candles... Tariff Act of 1930 (19 U.S.C. 1675(c)), that revocation of the antidumping duty order on petroleum wax... contained in USITC Publication 4207 (December 2010), entitled Petroleum Wax Candles from China...

  16. 21 CFR 172.886 - Petroleum wax.

    Science.gov (United States)

    2010-04-01

    ... availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov/federal_register... it is very hygroscopic and will react with some metal containers in the presence of air. Phosphoric... high enough to keep the wax melted. (Note: In preheating the sulfoxide-acid mixture, remove the stopper...

  17. Composition of secondary alcohols, ketones, alkanediols, and ketols in Arabidopsis thaliana cuticular waxes

    Science.gov (United States)

    Wen, Miao; Jetter, Reinhard

    2009-01-01

    Arabidopsis wax components containing secondary functional groups were examined (i) to test the biosynthetic relationship between secondary alcohols and ketols and (ii) to determine the regiospecificity and substrate preference of the enzyme involved in ketol biosynthesis. The stem wax of Arabidopsis wild type contained homologous series of C27 to C31 secondary alcohols (2.4 μg cm−2) and C28 to C30 ketones (6.0 μg cm−2) dominated by C29 homologues. In addition, compound classes containing two secondary functional groups were identified as C29 diols (∼0.05 μg cm−2) and ketols (∼0.16 μg cm−2). All four compound classes showed characteristic isomer distributions, with functional groups located between C-14 and C-16. In the mah1 mutant stem wax, diols and ketols could not be detected, while the amounts of secondary alcohols and ketones were drastically reduced. In two MAH1-overexpressing lines, equal amounts of C29 and C31 secondary alcohols were detected. Based on the comparison of homologue and isomer compositions between the different genotypes, it can be concluded that biosynthetic pathways lead from alkanes to secondary alcohols, and via ketones or diols to ketols. It seems plausible that MAH1 is the hydroxylase enzyme involved in all these conversions in Arabidopsis thaliana. PMID:19346242

  18. Chemical composition of raw and deresinated peat waxes

    Energy Technology Data Exchange (ETDEWEB)

    Bel' kevich, P I; Ivanova, L A; Piskunova, T A; Tserlyukevich, Ya V; Yurkevich, E A

    1980-01-01

    Research was conducted using absorption chromatography and spectroscopy to study the changes in the chemical composition of raw peat wax taking place in the deresination process. Characteristics of the raw, deresinated waxes and resins removed are given. The fractions obtained showed that both raw and deresinated wax contain the same basic compound classes: hydrocarbons, alcohols, complex ether and acids; but their proportions in the waxes are different. After deresination most of the dark-colored polyfunctional compounds, a portion of the soluble unsaturated hydrocarbons and alcohols, and all the sterenes transfer into the resin. This causes the light color and specific physical properties of deresinated wax. (13 refs.) (In Russian)

  19. Sintering of wax for controlling release from pellets.

    Science.gov (United States)

    Singh, Reena; Poddar, S S; Chivate, Amit

    2007-09-14

    The purpose of the present study was to investigate incorporation of hydrophobic (ie, waxy) material into pellets using a thermal sintering technique and to evaluate the pellets in vitro for controlled release. Pellets prepared by extrusion-spheronization technology were formulated with a water-soluble drug, microcrystalline cellulose, and carnauba wax. Powdered carnauba wax (4%-20%) prepared by grinding or by emulsification was studied with an attempt to retard the drug release. The inclusion of ground or emulsified carnauba wax did not sustain the release of theophylline for more than 3 hours. Matrix pellets of theophylline prepared with various concentrations of carnauba wax were sintered thermally at various times and temperatures. In vitro drug release profiles indicated an increase in drug release retardation with increasing carnauba wax concentration. Pellets prepared with ground wax showed a higher standard deviation than did those prepared with emulsified wax. There was incomplete release at the end of 12 hours for pellets prepared with 20% ground or emulsified wax. The sintering temperature and duration were optimized to allow for a sustained release lasting at least 12 hours. The optimized temperature and duration were found to be 100 degrees C and 140 seconds, respectively. The sintered pellets had a higher hydrophobicity than did the unsintered pellets. Scanning electron micrographs indicated that the carnauba wax moved internally, thereby increasing the surface area of wax within the pellets.

  20. Dental wax decreases calculus accumulation in small dogs.

    Science.gov (United States)

    Smith, Mark M; Smithson, Christopher W

    2014-01-01

    A dental wax was evaluated after unilateral application in 20 client-owned, mixed and purebred small dogs using a clean, split-mouth study model. All dogs had clinical signs of periodontal disease including plaque, calculus, and/or gingivitis. The wax was randomly applied to the teeth of one side of the mouth daily for 30-days while the contralateral side received no treatment. Owner parameters evaluated included compliance and a subjective assessment of ease of wax application. Gingivitis, plaque and calculus accumulation were scored at the end of the study period. Owners considered the wax easy to apply in all dogs. Compliance with no missed application days was achieved in 8 dogs. The number of missed application days had no effect on wax efficacy. There was no significant difference in gingivitis or plaque accumulation scores when comparing treated and untreated sides. Calculus accumulation scores were significantly less (22.1 %) for teeth receiving the dental wax.

  1. Natural oils and waxes: studies on stick bases.

    Science.gov (United States)

    Budai, Lívia; Antal, István; Klebovich, Imre; Budai, Marianna

    2012-01-01

    The objective of the present article was to examine the role of origin and quantity of selected natural oils and waxes in the determination of the thermal properties and hardness of stick bases. The natural oils and waxes selected for the study were sunflower, castor, jojoba, and coconut oils. The selected waxes were yellow beeswax, candelilla wax, and carnauba wax. The hardness of the formulations is a critical parameter from the aspect of their application. Hardness was characterized by the measurement of compression strength along with the softening point, the drop point, and differential scanning calorimetry (DSC). It can be concluded that coconut oil, jojoba oil, and carnauba wax have the greatest influence on the thermal parameters of stick bases.

  2. In vivo evaluation of insect wax for hair growth potential

    Science.gov (United States)

    Ma, Jinju

    2018-01-01

    Insect wax is secreted by Ericerus pela Chavanness. It has been traditionally used to treat hair loss in China, but few reports have been published on the hair growth-promoting effect of insect wax. In this work, we examined the hair growth-promoting effects of insect wax on model animals. Different concentrations of insect wax were topically applied to the denuded backs of mice, and 5% minoxidil was applied topically as a positive control. We found that insect wax significantly promoted hair growth in a dose-dependent manner, 45% and 30% insect wax both induced hair to regrow, while less visible hair growth was observed in blank controls on the 16th day. The experimental areas treated with 45% and 30% insect wax exhibited significant differences in hair scores compared to blank controls, and hair lengths in the 45% and 30% insect wax group was significantly longer than in blank controls on the 16th and 20th days. There were no new hair follicles forming in the treated areas, and the hair follicles were prematurely converted to the anagen phase from the telogen phase in experimental areas treated with 45% and 30% insect wax. Both 45% and 30% insect wax upregulated vascular endothelial growth factor expression. The results indicated that 45% and 30% insect wax showed hair growth-promoting potential approximately as potent as 5% minoxidil by inducing the premature conversion of telogen-to-anagen and by prolonging the mature anagen phase rather than increasing the number of hair follicles, which was likely related to the upregulation of VEGF expression. The dissociative policosanol in insect wax was considered the key ingredient most likely responsible for the hair growth promoting potential. PMID:29438422

  3. Surfactants and Desensitizing Wax Substitutes for TNT-Based Systems.

    Science.gov (United States)

    1994-10-01

    greatly with the source of crude oil. Some crudes contain little wax. The U.S. crudes from Pennsylvania and the midcontinent areas contain high...years ago in Egypt for many different purposes. The term wax comes to us from the Anglo-Saxon "weax," the name given to material from the bee ...usually produced in the wild and not by large scale cultivation. Although plants produce small amounts of waxes in their tissues, seeds and pollen

  4. In vivo evaluation of insect wax for hair growth potential.

    Directory of Open Access Journals (Sweden)

    Jinju Ma

    Full Text Available Insect wax is secreted by Ericerus pela Chavanness. It has been traditionally used to treat hair loss in China, but few reports have been published on the hair growth-promoting effect of insect wax. In this work, we examined the hair growth-promoting effects of insect wax on model animals. Different concentrations of insect wax were topically applied to the denuded backs of mice, and 5% minoxidil was applied topically as a positive control. We found that insect wax significantly promoted hair growth in a dose-dependent manner, 45% and 30% insect wax both induced hair to regrow, while less visible hair growth was observed in blank controls on the 16th day. The experimental areas treated with 45% and 30% insect wax exhibited significant differences in hair scores compared to blank controls, and hair lengths in the 45% and 30% insect wax group was significantly longer than in blank controls on the 16th and 20th days. There were no new hair follicles forming in the treated areas, and the hair follicles were prematurely converted to the anagen phase from the telogen phase in experimental areas treated with 45% and 30% insect wax. Both 45% and 30% insect wax upregulated vascular endothelial growth factor expression. The results indicated that 45% and 30% insect wax showed hair growth-promoting potential approximately as potent as 5% minoxidil by inducing the premature conversion of telogen-to-anagen and by prolonging the mature anagen phase rather than increasing the number of hair follicles, which was likely related to the upregulation of VEGF expression. The dissociative policosanol in insect wax was considered the key ingredient most likely responsible for the hair growth promoting potential.

  5. Effect of solvent extraction on Tunisian esparto wax composition

    Directory of Open Access Journals (Sweden)

    Saâd Inès

    2016-08-01

    Full Text Available The increase of needs for renewable and vegetable based materials will help to drive the market growth of vegetable waxes. Because of their highly variable composition and physicochemical properties, plant waxes have found numerous applications in the: food, cosmetic, candle, coating, polish etc... The aim of this project is to determine the effect of solvent extraction (petroleum ether and ethanol on Tunisian esparto wax composition. The GC-MS was applied in order to determine the waxes compositions. Then, physicochemical parameters of these two samples of waxes: acid value, saponification value, iodine value and melting point were measured in order to deduct their properties and possible fields of uses. Results showed that esparto wax composition depended on the solvent extraction and that major components of the two samples of waxes were: alkanes, esters of fatty acids and phenols. Furthermore, esparto waxes were characterized by an antioxidant and antibacterial activities but the potential of these activities depended on the solvent of wax extraction.

  6. Absorption and distribution of orally administered jojoba wax in mice.

    Science.gov (United States)

    Yaron, A; Samoiloff, V; Benzioni, A

    1982-03-01

    The liquid wax obtained from the seeds of the arid-land shrub jojoba (Simmondsia chinensis) is finding increasing use in skin treatment preparations. The fate of this wax upon reaching the digestive tract was studied. 14C-Labeled wax was administered intragastrically to mice, and the distribution of the label in the body was determined as a function of time. Most of the wax was excreted, but a small amount was absorbed, as was indicated by the distribution of label in the internal organs and the epididymal fat. The label was incorporated into the body lipids and was found to diminish with time.

  7. Effect of 3 years' free-air exposure to elevated ozone on mature Norway spruce (Picea abies (L.) Karst.) needle epicuticular wax physicochemical characteristics

    International Nuclear Information System (INIS)

    Percy, Kevin E.; Manninen, Sirkku; Haeberle, Karl-Heinz; Heerdt, C.; Werner, H.; Henderson, Gary W.; Matyssek, Rainer

    2009-01-01

    We examined the effect of ozone (O 3 ) on Norway spruce (Picea abies) needle epicuticular wax over three seasons at the Kranzberg Ozone Fumigation Experiment. Exposure to 2x ambient O 3 ranged from 64.5 to 74.2 μl O 3 l -1 h AOT40, and 117.1 to 123.2 nl O 3 l -1 4th highest daily maximum 8-h average O 3 concentration. The proportion of current-year needle surface covered by wax tubes, tube aggregates, and plates decreased (P = 0.011) under 2x O 3 . Epistomatal chambers had increased deposits of amorphous wax. Proportion of secondary alcohols varied due to year (P = 0.004) and O 3 treatment (P = 0.029). Secondary alcohols were reduced by 9.1% under 2x O 3 . Exposure to 2x O 3 increased (P = 0.037) proportions of fatty acids by 29%. Opposing trends in secondary alcohols and fatty acids indicate a direct action of O 3 on wax biosynthesis. These results demonstrate O 3 -induced changes in biologically important needle surface characteristics of 50-year-old field-grown trees. - Free-air ozone exposure induced changes in needle wax characteristics of mature Picea abies.

  8. Effect of 3 years' free-air exposure to elevated ozone on mature Norway spruce (Picea abies (L.) Karst.) needle epicuticular wax physicochemical characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Percy, Kevin E., E-mail: kpercy@nbnet.nb.c [Natural Resources Canada, Canadian Forest Service-Atlantic Forestry Centre, 1350 Regent Street, Fredericton, NB, E3B 5P7 (Canada); Manninen, Sirkku [Department of Biological and Environmental Sciences, P.O. Box 56, University of Helsinki, 00014 Helsinki (Finland); Department of Biology, P.O. Box 3000, University of Oulu, 90014 Oulu (Finland); Haeberle, Karl-Heinz [Ecophysiology of Plants, Department of Ecology, Technische Universitaet Muenchen, Am Hochanger 13, 85354 Freising (Germany); Heerdt, C.; Werner, H. [Ecoclimatology, Department of Ecology, Technische Universitaet Muenchen, Am Hochanger 13, 85354 Freising (Germany); Henderson, Gary W. [Natural Resources Canada, Canadian Forest Service-Atlantic Forestry Centre, 1350 Regent Street, Fredericton, NB, E3B 5P7 (Canada); Matyssek, Rainer [Ecophysiology of Plants, Department of Ecology, Technische Universitaet Muenchen, Am Hochanger 13, 85354 Freising (Germany)

    2009-05-15

    We examined the effect of ozone (O{sub 3}) on Norway spruce (Picea abies) needle epicuticular wax over three seasons at the Kranzberg Ozone Fumigation Experiment. Exposure to 2x ambient O{sub 3} ranged from 64.5 to 74.2 mul O{sub 3} l{sup -1} h AOT40, and 117.1 to 123.2 nl O{sub 3} l{sup -1} 4th highest daily maximum 8-h average O{sub 3} concentration. The proportion of current-year needle surface covered by wax tubes, tube aggregates, and plates decreased (P = 0.011) under 2x O{sub 3}. Epistomatal chambers had increased deposits of amorphous wax. Proportion of secondary alcohols varied due to year (P = 0.004) and O{sub 3} treatment (P = 0.029). Secondary alcohols were reduced by 9.1% under 2x O{sub 3}. Exposure to 2x O{sub 3} increased (P = 0.037) proportions of fatty acids by 29%. Opposing trends in secondary alcohols and fatty acids indicate a direct action of O{sub 3} on wax biosynthesis. These results demonstrate O{sub 3}-induced changes in biologically important needle surface characteristics of 50-year-old field-grown trees. - Free-air ozone exposure induced changes in needle wax characteristics of mature Picea abies.

  9. Modeling of asphaltene and wax precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, F.; Sarathi, P.; Jones, R.

    1991-01-01

    This research project was designed to focus on the development of a predictive technique for organic deposition during gas injection for petroleum EOR. A thermodynamic model has been developed to describe the effects of temperature, pressure, and composition on asphaltene precipitation. The proposed model combines regular solution theory with Flory-Huggins polymer solutions theory to predict maximum volume fractions of asphaltene dissolved in oil. The model requires evaluation of vapor-liquid equilibria, first using an equation of state followed by calculations of asphaltene solubility in the liquid-phase. A state-of-the-art technique for C{sub 7+} fraction characterization was employed in developing this model. The preliminary model developed in this work was able to predict qualitatively the trends of the effects of temperature, pressure, and composition. Since the mechanism of paraffinic wax deposition is different from that of asphaltene deposition, another thermodynamic model based on the solid-liquid solution theory was developed to predict the wax formation. This model is simple and can predict the wax appearance temperature with reasonable accuracy. Accompanying the modeling work, experimental studies were conducted to investigate the solubility of asphaltene in oil land solvents and to examine the effects of oil composition, CO{sub 2}, and solvent on asphaltene precipitation and its properties. This research focused on the solubility reversibility of asphaltene in oil and the precipitation caused by CO{sub 2} injection at simulated reservoir temperature and pressure conditions. These experiments have provided many observations about the properties of asphaltenes for further improvement of the model, but more detailed information about the properties of asphaltenes in solution is needed for the development of more reliable asphaltene characterization techniques. 50 refs., 8 figs., 7 tabs.

  10. Study of phase transition in hard microcrystalline waxes and wax blends by differential scanning calorimetry

    Czech Academy of Sciences Publication Activity Database

    Kumar, S.; Agrawal, K. M.; Khan, H. U.; Sikora, Antonín

    2004-01-01

    Roč. 22, 3 & 4 (2004), s. 337-345 ISSN 1091-6466 R&D Projects: GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z4050913 Keywords : phase transition * hard microscrystalline waxes * differential scanning calorimetry Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.312, year: 2004

  11. Presence of carotinoids in peat wax

    Energy Technology Data Exchange (ETDEWEB)

    Yurkevich, E.A.; Dolidovich, E.F.; Bel' kevich, P.I.; Sheremet, L.S.; Drozdovskaya, S.V.

    1986-05-01

    Discusses biologically active substances present in peat which have various pharmacological properties. Describes separation of fractions rich in carotinoids from extracts of wax tar obtained by benzine treatment of highly decomposed pine-cotton grass peat. Extraction was carried out using hot ethanol. States that although identification of individual carotinoid in the fractions separated is very difficult due to complicity of composition, the tests carried out made it possible to infer that fractions studied contain not only xanthophylls but also fucoxanthains (formed in small amounts in nature) with fairly stable structure. Ultraviolet and infrared spectra of the carotinoid containing fraction in ethanol extracts are given. 6 refs.

  12. Wax Impaction in Nigerian School Children. | Eziyi | East and ...

    African Journals Online (AJOL)

    Background: Impacted wax has been classified as an ear disease. It can cause pain, itching, tinnitus hearing loss or otitis externa. The prevalence of cerumen impaction varies. The aim of this study was to determine the prevalence of impacted ear wax in primary school children and to determine, if there is any association ...

  13. Wax combs mediate nestmate recognition by guard honeybees

    DEFF Research Database (Denmark)

    D'Ettorre, Patrizia; Wenseleers, Tom; Dawson, Jenny

    2006-01-01

    Research has shown that the wax combs are important in the acquisition of colony odour in the honeybee, Apis mellifera. However, many of these studies were conducted in the laboratory or under artificial conditions. We investigated the role of the wax combs in nestmate recognition in the natural...

  14. Gluconeogenesis from storage wax in the cotyledons of jojoba seedlings.

    Science.gov (United States)

    Moreau, R A; Huang, A H

    1977-08-01

    The cotyledons of jojoba (Simmondsia chinensis) seeds contained 50 to 60% of their weight as intracellular wax esters. During germination there was a gradual decrease in the wax content with a concomitant rise in soluble carbohydrates, suggesting that the wax played the role of a food reserve. Thin layer chromatography revealed that both the fatty alcohol and fatty acid were metabolized. The disappearance of wax was matched with an increase of catalase, a marker enzyme of the gluconeogenic process in other fatty seedlings. Subcellular organelles were isolated by sucrose gradient centrifugation from the cotyledons at the peak stage of germination. The enzymes of the beta oxidation of fatty acid and of the glyoxylate cycle were localized in the glyoxysomes but not in the mitochondria. The glyoxysomes had specific activities of individual enzymes similar to those of the castor bean glyoxysomes. An active alkaline lipase was detected in the wax bodies at the peak stage of germination but not in the ungerminated seeds. No lipase was detected in glyoxysomes or mitochondria. After the wax in the wax bodies had been extracted with diethyl ether, the organelle membrane was isolated and it still retained the alkaline lipase. The gluconeogenesis from wax in the jojoba seedling appears to be similar, but with modification, to that from triglyceride in other fatty seedlings.

  15. Statistical Optimization of Sustained Release Venlafaxine HCI Wax Matrix Tablet.

    Science.gov (United States)

    Bhalekar, M R; Madgulkar, A R; Sheladiya, D D; Kshirsagar, S J; Wable, N D; Desale, S S

    2008-01-01

    The purpose of this research was to prepare a sustained release drug delivery system of venlafaxine hydrochloride by using a wax matrix system. The effects of bees wax and carnauba wax on drug release profile was investigated. A 3(2) full factorial design was applied to systemically optimize the drug release profile. Amounts of carnauba wax (X(1)) and bees wax (X(2)) were selected as independent variables and release after 12 h and time required for 50% (t(50)) drug release were selected as dependent variables. A mathematical model was generated for each response parameter. Both waxes retarded release after 12 h and increases the t(50) but bees wax showed significant influence. The drug release pattern for all the formulation combinations was found to be approaching Peppas kinetic model. Suitable combination of two waxes provided fairly good regulated release profile. The response surfaces and contour plots for each response parameter are presented for further interpretation of the results. The optimum formulations were chosen and their predicted results found to be in close agreement with experimental findings.

  16. Influence of Different Waxes on the Physical Properties of Linear ...

    African Journals Online (AJOL)

    NJD

    2005-12-22

    Dec 22, 2005 ... viscosity of a polymer melt. In many instances it ... amounts of different waxes on the viscosity (melt flow) of ..... Since the MFI is a direct measure of the viscosity .... melt flow index increasing with increasing wax content. There.

  17. Biochemical response of sweet potato to bemul-wax coating ...

    African Journals Online (AJOL)

    Sweet potato (Ipomoea batatas Linn) tuber is a very nutritious but highly perishable crop that is subject to high wastages due to non-availability of appropriate storage techniques. This work assessed the effectiveness of treating the tubers with calcium chloride dip (CCD), bemul-wax (B-wax) and their combinations ...

  18. Geometric accuracy of wax bade models manufactured in silicon moulds

    Directory of Open Access Journals (Sweden)

    G. Budzik

    2010-01-01

    Full Text Available The article presents the test results of the geometric accuracy of wax blade models manufactured in silicon moulds in the Rapid Tooling process, with the application of the Vacuum Casting technology. In batch production casting waxes are designed for the manufacture of models and components of model sets through injection into a metal die. The objective of the tests was to determine the possibility of using traditional wax for the production of casting models in the rapid prototyping process. Blade models made of five types of casting wax were measured. The definition of the geometric accuracy of wax blade models makes it possible to introduce individual modifications aimed at improving their shape in order to increase the dimensional accuracy of blade models manufactured in the rapid prototyping process.

  19. Pickering emulsions stabilized by paraffin wax and Laponite clay particles.

    Science.gov (United States)

    Li, Caifu; Liu, Qian; Mei, Zhen; Wang, Jun; Xu, Jian; Sun, Dejun

    2009-08-01

    Emulsions containing wax in dispersed droplets stabilized by disc-like Laponite clay particles are prepared. Properties of the emulsions prepared at different temperatures are examined using stability, microscopy and droplet-size analysis. At low temperature, the wax crystals in the oil droplets can protrude through the interface, leading to droplet coalescence. But at higher temperatures, the droplet size decreases with wax concentration. Considering the viscosity of the oil phase and the interfacial tension, we conclude that the wax is liquid-like during the high temperature emulsification process, but during cooling wax crystals appear around the oil/water interface and stabilize the droplets. The oil/water ratio has minimal effect on the emulsions between ratios of 3:7 and 7:3. The Laponite is believed to stabilize the emulsions by increasing the viscosity of the continuous phase and also by adsorbing at the oil/water interface, thus providing a physical barrier to coalescence.

  20. Purifying oils and waxes. [British patent

    Energy Technology Data Exchange (ETDEWEB)

    1926-01-27

    Fractions of petroleum, shale oil, coal oil, and paraffin wax are refined by passing the vapour under reduced pressure through fuller's earth, bauxite, silica gel, or other adsorbent at a temperature not substantially more than sufficient to maintain the vapour phase. The vapour may be passed in succession through adsorbent of increasing strength. Treatment with sulphuric acid, or with alkali, or with both may precede treatment with absorbent, and this successive treatment may be repeated any number of times. The action is accelerated by passing a current of inert gas insufficient to affect the vacuum materially along with the vapours. In an example a 160 to 225/sup 0/C kerosene fraction is treated with sulphuric acid of 10 percent strength, and passed into a fuller's earth chamber under a vacuum of 27 in. of mercury and heated by steam to about 140/sup 0/C. The apparatus is described.

  1. High-level accumulation of oleyl oleate in plant seed oil by abundant supply of oleic acid substrates to efficient wax ester synthesis enzymes.

    Science.gov (United States)

    Yu, Dan; Hornung, Ellen; Iven, Tim; Feussner, Ivo

    2018-01-01

    Biotechnology enables the production of high-valued industrial feedstocks from plant seed oil. The plant-derived wax esters with long-chain monounsaturated acyl moieties, like oleyl oleate, have favorite properties for lubrication. For biosynthesis of wax esters using acyl-CoA substrates, expressions of a fatty acyl reductase (FAR) and a wax synthase (WS) in seeds are sufficient. For optimization of the enzymatic activity and subcellular localization of wax ester synthesis enzymes, two fusion proteins were created, which showed wax ester-forming activities in Saccharomyces cerevisiae . To promote the formation of oleyl oleate in seed oil, WSs from Acinetobactor baylyi ( Ab WSD1) and Marinobacter aquaeolei ( Ma WS2), as well as the two created fusion proteins were tested in Arabidopsis to evaluate their abilities and substrate preference for wax ester production. The tested seven enzyme combinations resulted in different yields and compositions of wax esters. Expression of a FAR of Marinobacter aquaeolei ( Ma FAR) with Ab WSD1 or Ma WS2 led to a high incorporation of C 18 substrates in wax esters. The Ma FAR/TM Mm AWAT2- Ab WSD1 combination resulted in the incorporation of more C 18:1 alcohol and C 18:0 acyl moieties into wax esters compared with Ma FAR/ Ab WSD1. The fusion protein of a WS from Simmondsia chinensis ( Sc WS) with MaFAR exhibited higher specificity toward C 20:1 substrates in preference to C 18:1 substrates. Expression of Ma FAR/ Ab WSD1 in the Arabidopsis fad2 fae1 double mutant resulted in the accumulation of oleyl oleate (18:1/18:1) in up to 62 mol% of total wax esters in seed oil, which was much higher than the 15 mol% reached by Ma FAR/ Ab WSD1 in Arabidopsis Col-0 background. In order to increase the level of oleyl oleate in seed oil of Camelina , lines expressing Ma FAR/ Sc WS were crossed with a transgenic high oleate line. The resulting plants accumulated up to >40 mg g seed -1 of wax esters, containing 27-34 mol% oleyl oleate. The

  2. Plant surface wax affects parasitoid's response to host footprints

    Science.gov (United States)

    Rostás, Michael; Ruf, Daniel; Zabka, Vanessa; Hildebrandt, Ulrich

    2008-10-01

    The plant surface is the substrate upon which herbivorous insects and natural enemies meet and thus represents the stage for interactions between the three trophic levels. Plant surfaces are covered by an epicuticular wax layer which is highly variable depending on species, cultivar or plant part. Differences in wax chemistry may modulate ecological interactions. We explored whether caterpillars of Spodoptera frugiperda, when walking over a plant surface, leave a chemical trail (kairomones) that can be detected by the parasitoid Cotesia marginiventris. Chemistry and micromorphology of cuticular waxes of two barley eceriferum wax mutants ( cer-za.126, cer-yp.949) and wild-type cv. Bonus (wt) were assessed. The plants were then used to investigate potential surface effects on the detectability of caterpillar kairomones. Here we provide evidence that C. marginiventris responds to chemical footprints of its host. Parasitoids were able to detect the kairomone on wild-type plants and on both cer mutants but the response to cer-yp.949 (reduced wax, high aldehyde fraction) was less pronounced. Experiments with caterpillar-treated wt and mutant leaves offered simultaneously, confirmed this observation: no difference in wasp response was found when wt was tested against cer-za.126 (reduced wax, wt-like chemical composition) but wt was significantly more attractive than cer-yp.949. This demonstrates for the first time that the wax layer can modulate the detectability of host kairomones.

  3. Establishing very long-chain fatty alcohol and wax ester biosynthesis in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Wenning, Leonie; Yu, Tao; David, Florian

    2017-01-01

    used WEs are mainly isolated from Simmondsia chinensis (jojoba), but the high extraction costs and limited harvest areas constrain their use. The use of FARs in combination with different WSs to achieve a synthesis of jojoba-like WEs in bacteria and yeast has been reported previously, but the products...... were restricted to C28-C36 WEs. These rather short WEs make up only a very small percentage of the total WEs in natural jojoba oil. The synthesis of longer chain WEs (up to C44) in Saccharomyces cerevisiae has so far only been achieved after substrate feeding. Here we identified new routes......, respectively, after 48h. Moreover, we enabled the synthesis of jojoba-like WEs up to a chain length of C42, catalyzed by a combination of Maqu_2220 together with the WS from S. chinensis (SciWS) and the S. cerevisiae elongase Elo2p, with a maximum yield of 12.24±3.35mg/g CDW after 48h....

  4. Mammalian cell biology

    International Nuclear Information System (INIS)

    Elkind, M.M.

    1979-01-01

    This section contains summaries of research on mechanisms of lethality and radioinduced changes in mammalian cell properties, new cell systems for the study of the biology of mutation and neoplastic transformation, and comparative properties of ionizing radiations

  5. WAX ActiveLibrary: a tool to manage information overload.

    Science.gov (United States)

    Hanka, R; O'Brien, C; Heathfield, H; Buchan, I E

    1999-11-01

    WAX Active-Library (Cambridge Centre for Clinical Informatics) is a knowledge management system that seeks to support doctors' decision making through the provision of electronic books containing a wide range of clinical knowledge and locally based information. WAX has been piloted in several regions in the United Kingdom and formally evaluated in 17 GP surgeries based in Cambridgeshire. The evaluation has provided evidence that WAX Active-Library significantly improves GPs' access to relevant information sources and by increasing appropriate patient management and referrals this might also lead to an improvement in clinical outcomes.

  6. 21 CFR 155.120 - Canned green beans and canned wax beans.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Canned green beans and canned wax beans. 155.120... Vegetables § 155.120 Canned green beans and canned wax beans. (a) Identity—(1) Definition. Canned green beans and canned wax beans are the foods prepared from succulent pods of fresh green bean or wax bean plants...

  7. Oil-structuring characterization of natural waxes in canola oil oleogels: Rheological, thermal, and oxidative properties

    Science.gov (United States)

    Natural waxes (candelilla wax, carnauba wax, and beeswax) were utilized as canola oil structurants to produce oleogels and their physicochemical properties were evaluated from rheological, thermal, and oxidative points of view. The oleogels with candelilla wax exhibited the highest hardness, followe...

  8. Soil water stress affects both cuticular wax content and cuticle-related gene expression in young saplings of maritime pine (Pinus pinaster Ait).

    Science.gov (United States)

    Le Provost, Grégoire; Domergue, Frédéric; Lalanne, Céline; Ramos Campos, Patricio; Grosbois, Antoine; Bert, Didier; Meredieu, Céline; Danjon, Frédéric; Plomion, Christophe; Gion, Jean-Marc

    2013-07-01

    The cuticle is a hydrophobic barrier located at the aerial surface of all terrestrial plants. Recent studies performed on model plants, such as Arabidopsis thaliana, have suggested that the cuticle may be involved in drought stress adaptation, preventing non-stomatal water loss. Although forest trees will face more intense drought stresses (in duration and intensity) with global warming, very few studies on the role of the cuticle in drought stress adaptation in these long-lived organisms have been so far reported. This aspect was investigated in a conifer, maritime pine (Pinus pinaster Ait.), in a factorial design with two genetic units (two half-sib families with different growth rates) and two treatments (irrigated vs non-irrigated), in field conditions. Saplings were grown in an open-sided greenhouse and half were irrigated three times per week for two growing seasons. Needles were sampled three times per year for cuticular wax (composition and content) and transcriptome (of 11 genes involved in cuticle biosynthesis) analysis. Non-irrigated saplings (i) had a higher cuticular wax content than irrigated saplings and (ii) overexpressed most of the genes studied. Both these trends were more marked in the faster growing family. The higher cuticular wax content observed in the non-irrigated treatment associated with strong modifications in products from the decarbonylation pathway suggest that cuticular wax may be involved in drought stress adaptation in maritime pine. This study provides also a set of promising candidate genes for future forward genetic studies in conifers.

  9. Reproduction and subchronic feeding study of carnauba wax in rats.

    Science.gov (United States)

    Parent, R A; Re, T A; Babish, J G; Cox, G E; Voss, K A; Becci, P J

    1983-02-01

    The reproductive performance of Wistar rats fed carnauba wax at levels of 0.1, 0.3 or 1% in the diet and the effects of subchronic administration of carnauba wax at these dose levels on the resultant progeny were studied. Reproductive indices, body-weight gain, food consumption, haematological and clinical chemical data, ophthalmic, gross and histopathological examinations were used to study the possible toxic or pathological effects. Serum free fatty acid levels were found to be decreased in male and female rats fed carnauba wax at dietary levels of 0.3 and 1.0%. No other effects of feeding carnauba wax at levels up to 1.0% of the diet were observed.

  10. The effects of magnetic fields on carnauba wax electret formation

    Science.gov (United States)

    Clator, Irvin G.

    1987-08-01

    The results of thermally stimulated depolarization current and effective surface charge-density measurements indicate that magnetic fields do not produce carnauba wax electrets and that previously reported data can be attributed to nonmagnetic effects.

  11. Characterization and chemical composition of epicuticular wax from banana leaves grown in Northern Thailand

    Directory of Open Access Journals (Sweden)

    Suporn Charumanee

    2017-08-01

    Full Text Available This study aimed to investigate the physicochemical properties and chemical composition of epicuticular wax extracted from leaves of Kluai Namwa, a banana cultivar which is widely grown in Northern Thailand. Its genotype was identified by a botanist. The wax was extracted using solvent extraction. The fatty acid profiles and physicochemical properties of the wax namely melting point, congealing point, crystal structures and polymorphism, hardness, color, and solubility were examined and compared to those of beeswax, carnauba wax and paraffin wax. The results showed that the genotype of Kluai Namwa was Musa acuminata X M. balbisiana (ABB group cv. Pisang Awak. The highest amount of wax extracted was 274 μg/cm2 surface area. The fatty acid composition and the physicochemical properties of the wax were similar to those of carnauba wax. It could be suggested that the banana wax could be used as a replacement for carnauba wax in various utilizing areas.

  12. CARNAUBA WAX USED AS AN HYDROPHOBIC AGENT FOR EXPANDED VERMICULITE

    Directory of Open Access Journals (Sweden)

    M.A.F. Melo

    1998-03-01

    Full Text Available This work deals with the use of carnauba wax as an expansion and hydrophobicity agent for vermiculite, to be utilized in the sorption process of oil in water. Evaluation of the system (oil-water-hydrophobic vermiculite submersion percentage was considered in assessing the performance of vermiculite in comparison to a Mexican turf. Carnauba wax seems to be more efficient in both fresh and salt waters.

  13. Subchronic feeding study of carnauba wax in beagle dogs.

    Science.gov (United States)

    Parent, R A; Cox, G E; Babish, J G; Gallo, M A; Hess, F G; Becci, P J

    1983-02-01

    Carnauba wax fed at levels of 0.1, 0.3 and 1% in the diet to beagle dogs for 28 wk did not produce evidence of toxicity or pathological effects. Body weight gain, food consumption, clinical chemical, haematological, and urine analysis data, and organ weights of animals fed carnauba wax were comparable with those of control animals. Ophthalmic, gross and histopathological examinations revealed no significant treatment-related findings.

  14. Sintering of wax for controlling release from pellets

    OpenAIRE

    Singh, Reena; Poddar, S. S.; Chivate, Amit

    2007-01-01

    The purpose of the present study was to investigate incorporation of hydrophobic (ie, waxy) material into pellets using a thermal sintering technique and to evaluate the pellets in vitro for controlled release. Pellets prepared by extrusion-spheronization technology were formulated with a water-soluble drug, microcrystalline cellulose, and carnauba wax. Powdered carnauba wax (4%–20%) prepared by grinding or by emulsification was studied with an attempt to retard the drug release. The inclusio...

  15. Antiprotozoal activity of extracts and isolated triterpenoids of 'carnauba' (Copernicia prunifera) wax from Brazil.

    Science.gov (United States)

    de Almeida, Buana C; Araújo, Bruno Q; Carvalho, Adonias A; Freitas, Sâmya Danielle L; Maciel, Dayany da S Alves; Ferreira, Ari José S; Tempone, Andre G; Martins, Ligia F; Alexandre, Tatiana R; Chaves, Mariana H; Lago, João Henrique G

    2016-12-01

    'Carnauba' wax is a natural product obtained from the processing of the powder exuded from Copernicia prunifera (Miller) H. E. Moore (Arecaceae). This material is widely used in the Brazilian folk medicine, including the treatment of rheumatism and syphilis. To investigate the antiprotozoal activity of hexane and EtOH extracts from the 'carnauba' wax as well as from the isolated compounds from the bioactive extracts. Two different samples of 'carnauba' (C. prunifera) waxes - types 1 and 4 - were individually extracted using hexane (EH) and EtOH (EE). Aliquots of hexane (type 1 - EH-1 and EH-4) and EtOH (type 4 - EE-1 and EE-4) extracts were tested against promastigote (2-200 μg/mL in DMSO during 48 h at 24 °C) and amastigote (3-150 μg/mL in DMSO during 120 h at 37 °C) forms of Leishmania infantum as well as against trypomastigote (3-150 μg/mL in DMSO during 24 h at 37 °C) forms of Trypanosoma cruzi. Bioactive extracts EH-1 and EE-4 were subjected to a bioactivity-guided fractionation to afford three dammarane-type triterpenoids (1-3). The in vitro antiprotozoal activities of the obtained compounds were evaluated as described above. Additionally, the cytotoxicity activity of compounds 1-3 against mammalian conjunctive cells (NCTC - 2-200 μg/mL in DMSO during 48 h at 37 °C) was determined. From the bioactive hexane and EtOH extracts from the 'carnauba' (C. prunifera) wax, were isolated three dammarane-type triterpenoids: (24R*)-methyldammar-25-ene-3β,20-diol (carnaubadiol, 1), (24R*)-methyldammara-20,25-dien-3-one (2) and (24R*)-methyldammara-20,25-dien-3α-ol (3). These compounds were identified based on the analysis of NMR and MS spectroscopic data. Compounds 1-3 were effective against the intracellular amastigotes of L. infantum, with IC 50 values ranging from 8 to 52 μM, while compounds 1 and 3 displayed activity against trypomastigote forms of T. cruzi with IC 50 values of 15 and 35 μM, respectively. The mammalian

  16. Nest wax triggers worker reproduction in the bumblebee Bombus terrestris.

    Science.gov (United States)

    Rottler-Hoermann, Ann-Marie; Schulz, Stefan; Ayasse, Manfred

    2016-01-01

    Social insects are well known for their high level of cooperation. Workers of the primitively eusocial bumblebee Bombus terrestris are able to produce male offspring in the presence of a queen. Nonetheless, they only compete for reproduction, in the so-called competition phase, when the workforce is large enough to support the rearing of reproductives. So far, little is known about the proximate mechanisms underlying the shift between altruism and selfish behaviour in bumblebee workers. In this study, we have examined the influence of chemical cues from the nest wax on the onset of worker reproduction. Chemical analyses of wax extracts have revealed that the patterns and amounts of cuticular lipids change considerably during colony development. These changes in wax scent mirror worker abundance and the presence of fertile workers. In bioassays with queen-right worker groups, wax affects the dominance behaviour and ovarian development of workers. When exposed to wax from a colony in competition phase, workers start to compete for reproduction. We suggest that wax scent enables workers to time their reproduction by providing essential information concerning the social condition of the colony.

  17. Phototransformation of the herbicide sulcotrione on maize cuticular wax.

    Science.gov (United States)

    Ter Halle, Alexandra; Drncova, Daniela; Richard, Claire

    2006-05-01

    Vegetation plays a key role in environmental cycling and the fate of many organic pollutants. This is especially the case for pesticides because plant leaves are their first reaction environment after application. It is commonly accepted that photochemical reactions of pollutants on plants predominantly take place in the cuticular wax coating of the leaves. Thus, we used films made of either cuticular wax extracted from maize or carnauba gray wax as a model support. Under simulated sunlight irradiation, sulcotrione (a new class of triketone herbicides) sorbed on cuticular wax films was photolyzed and mainly underwent an intramolecular cyclization. The photoproduct is a chromone derivative which was isolated and fully characterized. It is reported for the first time as a sulcotrione degradation product. The photoreactivity of formulated sulcotrione at the surface of cuticular waxes was investigated too. It photodegraded more rapidly than nonformulated sulcotrione. This study also shows that the rate of sulcotrione photolysis was much faster than the rate of penetration into the wax; photolysis should be, thus, a relevant process in real conditions.

  18. Biosynthesis of tylophora alkaloids

    International Nuclear Information System (INIS)

    Mulchandani, N.B.; Iyer, S.S.; Badheka, L.P.

    1974-01-01

    Using labelled precursors, biosynthesis of the tylophora alkaloids, tylophorine, tylophorinidine and tylophorinide has been investigated in Tylophora asthmatica plants. The radioactive precursors, phenylalanine-2- 14 C, benzoic acid-1- 14 C, benzoic acid-ring 14 C, acetate-2- 14 C, ornithine-5- 14 C, acetate-2- 14 C, ornithine-5- 14 C and cinnamic acid-2- 14 C were administered to the plants individually by wick technique. Tylophorine was isolated in each case and assayed for its radioactivity to find out the incorporation of the label into it. The results indicate that: (1) phenylalanine via cinnamic acid is an important precursor in the biosynthesis of tylophorine (2) orinithine participates in tylophorine biosynthesis via pyrroline and (3) tylophorinidine may be a direct precursor of tylophorine. (M.G.B.)

  19. Mammalian cell biology

    International Nuclear Information System (INIS)

    Elkind, M.M.

    1975-01-01

    Progress is reported on the following research projects: the effects of N-ethyl-maleimide and hydroxyurea on hamster cells in culture; sensitization of synchronized human cells to x rays by N-ethylmaleimide; sensitization of hypoxic mammalian cells with a sulfhydryl inhibitor; damage interaction due to ionizing and nonionizing radiation in mammalian cells; DNA damage relative to radioinduced cell killing; spurious photolability of DNA labeled with methyl- 14 C-thymidine; radioinduced malignant transformation of cultured mouse cells; a comparison of properties of uv and near uv light relative to cell function and DNA damage; Monte Carlo simulation of DNA damage and repair mechanisms; and radiobiology of fast neutrons

  20. Investigation of liquid wax components of Egyptian jojoba seeds.

    Science.gov (United States)

    El-Mallah, Mohammed Hassan; El-Shami, Safinaz Mohammed

    2009-01-01

    Egyptian jojoba seeds newly cultivated in Ismailia desert in Egypt promoted us to determine its lipid components. Fatty alcohols, fatty acids, wax esters and sterols patterns were determined by capillary GLC whereas, tocopherols profile, isopropenoid alcohols and sterylglycosides were determined by HPLC. The Egyptian seeds are rich in wax esters (55 %) with fatty alcohols C20:1 and C22:1 as major components and amounted to 43.0 % and 45.6 % respectively followed by C24:1 and C18:1(9.6 % and 1.3 % respectively). The fatty acids profile showed that C20:1 is the major constituent (60 %) followed by C18:1 and C22:1 (14.5 and 11.8 % respectively) whereas C24:1 was present at low concentration amounted to 1.6 %. In addition, the Egyptian jojoba wax contained C18:2 fatty acid at a level of 8.7 %. Wax esters composition showed that the local wax had C42 and C40 esters as major components amounted to 51.1 and 30.1 % respectively. Also, it had C44 and C38 at reasonable amounts (10.0 and 6.3 % respectively). Whereas C36 and C46 were present at lower concentrations amounted to 1.4 and 1.1 respectively. The sterols analysis showed the presence of campe-, stigma-, beta-sito-, and isofuco- sterol amounting to 18.4 %, 6.9 %, 68.7 %, and 6.0 % respectively. The tocopherols pattern revealed that the local seed wax contained gamma-tocopherol as major constituent (79.2 %) followed by alpha-tocopherol (20.3 %). beta-tocopherol as well as delta-tocopherol were found as minor constituents. The isopropenoid alcohols and the sterylglycosides (free and acylated) were not detected. The wax is proposed to be used in oleo chemistry and cosmetics.

  1. Building the mammalian testis

    DEFF Research Database (Denmark)

    Svingen, Terje; Koopman, Peter

    2013-01-01

    Development of testes in the mammalian embryo requires the formation and assembly of several cell types that allow these organs to achieve their roles in male reproduction and endocrine regulation. Testis development is unusual in that several cell types such as Sertoli, Leydig, and spermatogonial...

  2. Mammalian development in space

    Science.gov (United States)

    Ronca, April E.

    2003-01-01

    Life on Earth, and thus the reproductive and ontogenetic processes of all extant species and their ancestors, evolved under the constant influence of the Earth's l g gravitational field. These considerations raise important questions about the ability of mammals to reproduce and develop in space. In this chapter, I review the current state of our knowledge of spaceflight effects on developing mammals. Recent studies are revealing the first insights into how the space environment affects critical phases of mammalian reproduction and development, viz., those events surrounding fertilization, embryogenesis, pregnancy, birth, postnatal maturation and parental care. This review emphasizes fetal and early postnatal life, the developmental epochs for which the greatest amounts of mammalian spaceflight data have been amassed. The maternal-offspring system, the coordinated aggregate of mother and young comprising mammalian development, is of primary importance during these early, formative developmental phases. The existing research supports the view that biologically meaningful interactions between mothers and offspring are changed in the weightlessness of space. These changes may, in turn, cloud interpretations of spaceflight effects on developing offspring. Whereas studies of mid-pregnant rats in space have been extraordinarily successful, studies of young rat litters launched at 9 days of postnatal age or earlier, have been encumbered with problems related to the design of in-flight caging and compromised maternal-offspring interactions. Possibilities for mammalian birth in space, an event that has not yet transpired, are considered. In the aggregate, the results indicate a strong need for new studies of mammalian reproduction and development in space. Habitat development and systematic ground-based testing are important prerequisites to future research with young postnatal rodents in space. Together, the findings support the view that the environment within which young

  3. The β-Ketoacyl-CoA Synthase HvKCS1, Encoded by Cer-zh, Plays a Key Role in Synthesis of Barley Leaf Wax and Germination of Barley Powdery Mildew.

    Science.gov (United States)

    Li, Chao; Haslam, Tegan M; Krüger, Anna; Schneider, Lizette M; Mishina, Kohei; Samuels, Lacey; Yang, Hongxing; Kunst, Ljerka; Schaffrath, Ulrich; Nawrath, Christiane; Chen, Guoxiong; Komatsuda, Takao; von Wettstein-Knowles, Penny

    2018-04-01

    The cuticle coats the primary aerial surfaces of land plants. It consists of cutin and waxes, which provide protection against desiccation, pathogens and herbivores. Acyl cuticular waxes are synthesized via elongase complexes that extend fatty acyl precursors up to 38 carbons for downstream modification pathways. The leaves of 21 barley eceriferum (cer) mutants appear to have less or no epicuticular wax crystals, making these mutants excellent tools for identifying elongase and modification pathway biosynthetic genes. Positional cloning of the gene mutated in cer-zh identified an elongase component, β-ketoacyl-CoA synthase (CER-ZH/HvKCS1) that is one of 34 homologous KCSs encoded by the barley genome. The biochemical function of CER-ZH was deduced from wax and cutin analyses and by heterologous expression in yeast. Combined, these experiments revealed that CER-ZH/HvKCS1 has a substrate specificity for C16-C20, especially unsaturated, acyl chains, thus playing a major role in total acyl chain elongation for wax biosynthesis. The contribution of CER-ZH to water barrier properties of the cuticle and its influence on the germination of barley powdery mildew fungus were also assessed.

  4. Content of Wax during Dewaxing Process: Adopting a DOE Method

    Directory of Open Access Journals (Sweden)

    Mohammad Hosein Eghbali

    2013-01-01

    Full Text Available The oil content of the wax produced in a dewaxing process is the key economic parameter that should be reduced as much as possible. Some factors such as the type of solvents, cooling rate, temperature, and solvent to oil ratio influence the dewaxing process. Due to the fact that crude oil differs from place to place and since the operational conditions for wax extraction vary for different types of crude oil, the objective of this work is to study the operational conditions for wax production from an Iranian raffinate sample used in Sepahan Oil Company. All the experiments are conducted based on a design of experiment (DOE technique for minimizing the oil content of the wax produced. The effects of five factors have been determined quantitatively and appropriate levels are suggested for reducing the oil content. The results show that the solvent ratio, solvent composition, and cooling rate play the most important role in minimizing the oil content of the produced wax.

  5. Laboratory Deposition Apparatus to Study the Effects of Wax Deposition on Pipe Magnetic Field Leakage Signals

    Directory of Open Access Journals (Sweden)

    Karim Mohd Fauzi Abd

    2014-07-01

    Full Text Available Accurate technique for wax deposition detection and severity measurement on cold pipe wall is important for pipeline cleaning program. Usually these techniques are validated by conventional techniques on laboratory scale wax deposition flow loop. However conventional techniques inherent limitations and it is difficult to reproduce a predetermine wax deposit profile and hardness at designated location in flow loop. An alternative wax deposition system which integrates modified pour casting method and cold finger method is presented. This system is suitable to reproduce high volume of medium hard wax deposit in pipe with better control of wax deposit profile and hardness.

  6. Unheimlich. From Wax Figures to the Uncanny Valley

    Directory of Open Access Journals (Sweden)

    Pietro Conte

    2012-01-01

    Full Text Available In his pioneering History of Portraiture in Wax, Julius von Schlosser traced back the age-old history of a material which at that time seemed to be already antiquated, if not obsolete. Wax sculptures were rejected and ousted from art history because of their excessive similarity and adherence to models. One hundred years later, however, hyperrealism got its revenge with Maurizio Cattelan’s celebrated hanging children. Moving from that controversial artwork and focusing on the heated polemics over it, my paper will address the question of the well-known Unheimlichkeit of wax figures, investigated by Ernst Jentsch and Sigmund Freud in the early Twentieth Century and nowadays becoming increasingly topical thanks to the recent debate about the existence and nature of the so called Uncanny Valley.

  7. Oils; lubricants; paraffin-wax compositions; hydrocarbon condensation products

    Energy Technology Data Exchange (ETDEWEB)

    1934-04-04

    Petroleum hydrocarbons such as gasoline, kerosene, Diesel fuel oil, lubricating-oil, and paraffin wax, and like hydrocarbons such as are obtainable from shale oil and by the hydrogenation of carbonaceous materials, are improved by addition of products obtained by condensing a cyclic hydrocarbon with a saturated dihalogen derivative of an aliphatic hydrocarbon containing less than five carbon atoms. The addition of the condensation products increases the viscosity of the hydrocarbon oils specified, and is particularly useful in the case of lubricating-oils; addition of the condensation products to paraffin wax increases the transparency and adherent properties of the wax, and is useful in the manufacture of moulded articles such as candles; the products may also be used in solid lubricating-compositions.

  8. Homogenization of Mammalian Cells.

    Science.gov (United States)

    de Araújo, Mariana E G; Lamberti, Giorgia; Huber, Lukas A

    2015-11-02

    Homogenization is the name given to the methodological steps necessary for releasing organelles and other cellular constituents as a free suspension of intact individual components. Most homogenization procedures used for mammalian cells (e.g., cavitation pump and Dounce homogenizer) rely on mechanical force to break the plasma membrane and may be supplemented with osmotic or temperature alterations to facilitate membrane disruption. In this protocol, we describe a syringe-based homogenization method that does not require specialized equipment, is easy to handle, and gives reproducible results. The method may be adapted for cells that require hypotonic shock before homogenization. We routinely use it as part of our workflow to isolate endocytic organelles from mammalian cells. © 2015 Cold Spring Harbor Laboratory Press.

  9. Applications of micro-SAXS/WAXS to study polymer fibers

    International Nuclear Information System (INIS)

    Riekel, C.

    2003-01-01

    Instrumentation and selected applications for X-ray microdiffraction experiments on polymer and biopolymer fibers at the European Synchrotron Radiation Facility (ESRF) microfocus beamline are reviewed. Combined SAXS/WAXS experiments can be performed on single fibers with a beam size down to about 5 μm. WAXS experiments can be performed down to about 2 μm and in exceptional cases down to 0.1 μm beam size. The instrumental possibilities are demonstrated for the production line of spider silk

  10. Applications of micro-SAXS/WAXS to study polymer fibers

    Energy Technology Data Exchange (ETDEWEB)

    Riekel, C. E-mail: riekel@esrf.fr

    2003-01-01

    Instrumentation and selected applications for X-ray microdiffraction experiments on polymer and biopolymer fibers at the European Synchrotron Radiation Facility (ESRF) microfocus beamline are reviewed. Combined SAXS/WAXS experiments can be performed on single fibers with a beam size down to about 5 {mu}m. WAXS experiments can be performed down to about 2 {mu}m and in exceptional cases down to 0.1 {mu}m beam size. The instrumental possibilities are demonstrated for the production line of spider silk.

  11. Applications of micro-SAXS/WAXS to study polymer fibers

    Science.gov (United States)

    Riekel, C.

    2003-01-01

    Instrumentation and selected applications for X-ray microdiffraction experiments on polymer and biopolymer fibers at the European Synchrotron Radiation Facility (ESRF) microfocus beamline are reviewed. Combined SAXS/WAXS experiments can be performed on single fibers with a beam size down to about 5 μm. WAXS experiments can be performed down to about 2 μm and in exceptional cases down to 0.1 μm beam size. The instrumental possibilities are demonstrated for the production line of spider silk.

  12. Cannabis-induced psychosis associated with high potency "wax dabs".

    Science.gov (United States)

    Pierre, Joseph M; Gandal, Michael; Son, Maya

    2016-04-01

    With mounting evidence that the risk of cannabis-induced psychosis may be related to both dose and potency of tetrahydrocannbinol (THC), increasing reports of psychosis associated with cannabinoids containing greater amounts of THC are anticipated. We report two cases of emergent psychosis after using a concentrated THC extract known as cannabis "wax," "oil," or "dabs" raising serious concerns about its psychotic liability. Although "dabbing" with cannabis wax is becoming increasingly popular in the US for both recreational and "medicinal" intentions, our cases raise serious concerns about its psychotic liability and highlight the importance of understanding this risk by physicians recommending cannabinoids for purported medicinal purposes. Published by Elsevier B.V.

  13. Wax Precipitation Modeled with Many Mixed Solid Phases

    DEFF Research Database (Denmark)

    Heidemann, Robert A.; Madsen, Jesper; Stenby, Erling Halfdan

    2005-01-01

    The behavior of the Coutinho UNIQUAC model for solid wax phases has been examined. The model can produce as many mixed solid phases as the number of waxy components. In binary mixtures, the solid rich in the lighter component contains little of the heavier component but the second phase shows sub......-temperature and low-temperature forms, are pure. Model calculations compare well with the data of Pauly et al. for C18 to C30 waxes precipitating from n-decane solutions. (C) 2004 American Institute of Chemical Engineers....

  14. Three-dimensional wax patterning of paper fluidic devices.

    Science.gov (United States)

    Renault, Christophe; Koehne, Jessica; Ricco, Antonio J; Crooks, Richard M

    2014-06-17

    In this paper we describe a method for three-dimensional wax patterning of microfluidic paper-based analytical devices (μPADs). The method is rooted in the fundamental details of wax transport in paper and provides a simple way to fabricate complex channel architectures such as hemichannels and fully enclosed channels. We show that three-dimensional μPADs can be fabricated with half as much paper by using hemichannels rather than ordinary open channels. We also provide evidence that fully enclosed channels are efficiently isolated from the exterior environment, decreasing contamination risks, simplifying the handling of the device, and slowing evaporation of solvents.

  15. Rheotaxis guides mammalian sperm

    Science.gov (United States)

    Miki, Kiyoshi; Clapham, David E

    2013-01-01

    Background In sea urchins, spermatozoan motility is altered by chemotactic peptides, giving rise to the assumption that mammalian eggs also emit chemotactic agents that guide spermatozoa through the female reproductive tract to the mature oocyte. Mammalian spermatozoa indeed undergo complex adaptations within the female (the process of capacitation) that are initiated by agents ranging from pH to progesterone, but these factors are not necessarily taxic. Currently, chemotaxis, thermotaxis, and rheotaxis have not been definitively established in mammals. Results Here, we show that positive rheotaxis, the ability of organisms to orient and swim against the flow of surrounding fluid, is a major taxic factor for mouse and human sperm. This flow is generated within 4 hours of sexual stimulation and coitus in female mice; prolactin-triggered oviductal fluid secretion clears the oviduct of debris, lowers viscosity, and generates the stream that guides sperm migration in the oviduct. Rheotaxic movement is demonstrated in capacitated and uncapacitated spermatozoa in low and high viscosity medium. Finally, we show that a unique sperm motion we quantify using the sperm head's rolling rate reflects sperm rotation that generates essential force for positioning the sperm in the stream. Rotation requires CatSper channels, presumably by enabling Ca2+ influx. Conclusions We propose that rheotaxis is a major determinant of sperm guidance over long distances in the mammalian female reproductive tract. Coitus induces fluid flow to guide sperm in the oviduct. Sperm rheotaxis requires rotational motion during CatSper channel-dependent hyperactivated motility. PMID:23453951

  16. Glycopeptide antibiotic biosynthesis.

    Science.gov (United States)

    Yim, Grace; Thaker, Maulik N; Koteva, Kalinka; Wright, Gerard

    2014-01-01

    Glycopeptides such as vancomycin, teicoplanin and telavancin are essential for treating infections caused by Gram-positive bacteria. Unfortunately, the dwindled pipeline of new antibiotics into the market and the emergence of glycopeptide-resistant enterococci and other resistant bacteria are increasingly making effective antibiotic treatment difficult. We have now learned a great deal about how bacteria produce antibiotics. This information can be exploited to develop the next generation of antimicrobials. The biosynthesis of glycopeptides via nonribosomal peptide assembly and unusual amino acid synthesis, crosslinking and tailoring enzymes gives rise to intricate chemical structures that target the bacterial cell wall. This review seeks to describe recent advances in our understanding of both biosynthesis and resistance of these important antibiotics.

  17. Biosynthesis of plasmenylcholine in guinea pig heart

    International Nuclear Information System (INIS)

    Wientzek, M.; Choy, P.C.

    1986-01-01

    In some mammalian hearts, up to 40% of the choline phosphoglyceride (CPG) exists as plasmenylcholine (1-alkenyl-2-acyl-glycero-3-phosphocholine). Although the majority of diacylphosphatidylcholine (PC) in mammalian hearts is synthesized from choline via the CDP-choline pathway, the formation of plasmenylcholine from choline was not known. In this study, they investigated the biosynthesis of plasmenyl-choline in the isolated guinea pig heart by perfusion with [ 3 H]choline. Labelled choline containing metabolites and labelled plasmenylcholine were isolated and determined at different perfusion time points. Significant amounts of labelling were found only in choline, phosphocholine, CDP-choline, plasmenyl-choline and PC. In addition, a precursor-product relationship was observed between the labelling of CDP-choline and plasmenylcholine. Such a relationship was not observed between choline and plasmenylcholine. Hence, they postulate that the incorporation of choline into plasmenylcholine is via the CDP-choline pathway and not via base exchange. The ability to condense 1-alkenyl-2-acyl-glycerol with CDP-choline was also demonstrated in vitro with guinea pig heart microsomes

  18. ASPHALT-RESIN-WAX DEPOSITS ANALYSIS WITH PETROLEUM REFINERY EQUIPMENT USAGE

    Directory of Open Access Journals (Sweden)

    Nadejda Bondar

    2013-12-01

    Full Text Available The methodology and analysis of wax deposits formed in-water-cooling tower, cistern and tank from wax petroleum were developed. It was shown, that deposits consist of organic (>90% and inorganic components – the first one was enriched by high molecular wax hydrocarbons, the second one – by mechanical impurities. The methods of deposits utilization were proposed

  19. Wax-incorporated emulsion gel beads of calcium pectinate for intragastric floating drug delivery.

    Science.gov (United States)

    Sriamornsak, Pornsak; Asavapichayont, Panida; Nunthanid, Jurairat; Luangtana-Anan, Manee; Limmatvapirat, Sontaya; Piriyaprasarth, Suchada

    2008-01-01

    The purpose of this study was to prepare wax-incorporated pectin-based emulsion gel beads using a modified emulsion-gelation method. The waxes in pectin-olive oil mixtures containing a model drug, metronidazole, were hot-melted, homogenized and then extruded into calcium chloride solution. The beads formed were separated, washed with distilled water and dried for 12 h. The influence of various types and amounts of wax on floating and drug release behavior of emulsion gel beads of calcium pectinate was investigated. The drug-loaded gel beads were found to float on simulated gastric fluid if the sufficient amount of oil was used. Incorporation of wax into the emulsion gel beads affected the drug release. Water-soluble wax (i.e. polyethylene glycol) increased the drug release while other water-insoluble waxes (i.e. glyceryl monostearate, stearyl alcohol, carnauba wax, spermaceti wax and white wax) significantly retarded the drug release. Different waxes had a slight effect on the drug release. However, the increased amount of incorporated wax in the formulations significantly sustained the drug release while the beads remained floating. The results suggest that wax-incorporated emulsion gel beads could be used as a carrier for intragastric floating drug delivery.

  20. Diversity of cuticular wax among Salix species and Populus species hybrids.

    Science.gov (United States)

    Cameron, Kimberly D; Teece, Mark A; Bevilacqua, Eddie; Smart, Lawrence B

    2002-08-01

    The leaf cuticular waxes of three Salix species and two Populus species hybrids, selected for their ability to produce high amounts of biomass, were characterized. Samples were extracted in CH(2)Cl(2) three times over the growing season. Low kV SEM was utilized to observe differences in the ultrastructure of leaf surfaces from each clone. Homologous series of wax components were classified into organic groups, and the variation in wax components due to clone, sample time, and their interaction was identified. All Salix species and Populus species hybrids showed differences in total wax load at each sampling period, whereas the pattern of wax deposition over time differed only between the Salix species. A strong positive relationship was identified between the entire homologous series of alcohols and total wax load in all clones. Similarly strong relationships were observed between fatty acids and total wax load as well as fatty acids and alcohols in two Salix species and one Populus species hybrid. One Salix species, S. dasyclados, also displayed a strong positive relationship between alcohols and alkanes. These data indicate that species grown under the same environmental conditions produce measurably different cuticular waxes and that regulation of wax production appears to be different in each species. The important roles cuticular waxes play in drought tolerance, pest, and pathogen resistance, as well as the ease of wax extraction and analysis, strongly suggest that the characteristics of the cuticular wax may prove to be useful selectable traits in a breeding program.

  1. Gourds: Bitter, Bottle, Wax, Snake, Sponge and Ridge

    Science.gov (United States)

    Minor cucurbits include bitter gourd, bottle gourd, wax gourd, snake gourd, and sponge and ridge gourd, which are significant dietary sources of nutrients such as vitamin A and C, iron and calcium. These cucurbits are cultivated and marketed by smallholder farmers and remain important components of ...

  2. Effects of wax treatment on quality and postharvest physiology of ...

    African Journals Online (AJOL)

    ... cell membrane permeability and malondialdehyde content when compared with those in control. This waxing also improved total sugars and the contents of ascorbic acid in pineapple fruits. These results suggested that this treatment might be a useful technique to alleviate chilling injury and maintain fruit quality during ...

  3. Structural characterization of wax esters by electron ionization mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Urbanová, Klára; Vrkoslav, Vladimír; Valterová, Irena; Háková, Martina; Cvačka, Josef

    2012-01-01

    Roč. 53, č. 1 (2012), s. 204-213 ISSN 0022-2275 R&D Projects: GA ČR GA203/09/0139 Institutional research plan: CEZ:AV0Z40550506 Keywords : interpretation * neutral lipids * spectral database * waxes Subject RIV: CC - Organic Chemistry Impact factor: 4.386, year: 2012

  4. Uncovered secret of a Vasseur-Tramond wax model.

    Science.gov (United States)

    Pastor, J F; Gutiérrez, B; Montes, J M; Ballestriero, R

    2016-01-01

    The technique of anatomical wax modelling reached its heyday in Italy during the 18th century, through a fruitful collaboration between sculptors and anatomists. It soon spread to other countries, and prestigious schools were created in England, France, Spain and Austria. Paris subsequently replaced Italy as the major centre of manufacture, and anatomical waxes were created there from the mid-19th century in workshops such as that of Vasseur-Tramond. This workshop began to sell waxes to European Faculties of Medicine and Schools of Surgery around 1880. Little is known of the technique employed in the creation of such artefacts as this was deemed a professional secret. To gain some insight into the methods of construction, we have studied a Vasseur-Tramond wax model in the Valladolid University Anatomy Museum, Spain, by means of multi-slice computerised tomography and X-ray analysis by means of environmental scanning electron microscopy. Scanning electron microscopy was used to examine the hair. These results have revealed some of the methods used to make these anatomical models and the materials employed. © 2015 Anatomical Society.

  5. Effect of asphaltenes on crude oil wax crystallization

    DEFF Research Database (Denmark)

    Kriz, Pavel; Andersen, Simon Ivar

    2005-01-01

    The paper summarizes the experimental work done on asphaltene influenced wax crystallization. Three different asphaltenes (from stable oil, instable oil, and deposit) were mixed at several concentrations or dispersions into the waxy crude oil. These blends were evaluated by viscometry and yield s...

  6. Leaf waxes in litter and topsoils along a European transect

    Czech Academy of Sciences Publication Activity Database

    Schäfer, I. K.; Lanny, V.; Franke, J.; Eglinton, T. I.; Zech, M.; Vysloužilová, Barbora; Zech, R.

    2016-01-01

    Roč. 2, č. 4 (2016), s. 551-564 ISSN 2199-3971 Institutional support: RVO:67985912 Keywords : leaf waxes * soil s Subject RIV: AC - Archeology, Anthropology, Ethnology http://www. soil -journal.net/2/551/2016/ soil -2-551-2016.pdf

  7. Investigation of wax precipitation in crude oil: Experimental and modeling

    Directory of Open Access Journals (Sweden)

    Taraneh Jafari Behbahani

    2015-09-01

    Full Text Available In this work, a series of experiments were carried to investigation of rheological behavior of crude oil using waxy crude oil sample in the absence/presence of flow improver such as ethylene-vinyl acetate copolymer. The rheological data covered the temperature range of 5–30 °C. The results indicated that the performance of flow improver was dependent on its molecular weight. Addition of small quantities of flow improver, can improve viscosity and pour point of crude oil. Also, an Artificial Neural Network (ANN model using Multi-Layer Perceptron (MLP topology has been developed to account wax appearance temperature and the amount of precipitated wax and the model was verified using experimental data given in this work and reported in the literature. In order to compare the performance of the proposed model based on Artificial Neural Network, the wax precipitation experimental data at different temperatures were predicted using solid solution model and multi-solid phase model. The results showed that the developed model based on Artificial Neural Network can predict more accurately the wax precipitation experimental data in comparison to the previous models such as solid solution and multi-solid phase model with AADs less than 0.5%. Furthermore, the number of parameters required for the Artificial Neural Network (ANN model is less than the studied thermodynamic models.

  8. EPICUTICULAR WAX COMPOSITION OF SOME EUROPEAN SEDUM SPECIES

    NARCIS (Netherlands)

    STEVENS, JF; THART, H; BOLCK, A; ZWAVING, JH; MALINGRE, TM

    Epicuticular waxes from 30 species of Sedum and 2 species of Sempervivoideae, i.e. Aeonium spathulatum and Sempervivum nevadense, have been analysed by GC and GC-MS. The Sedum taxa examined were S. acre, S. album, S. series Alpestria (13 species), S. anglicum, S. brevifolium, S. litoreum, S. lydium,

  9. Preparation and Characterization of Sugar Cane Wax Microspheres ...

    African Journals Online (AJOL)

    ... and characterize indomethacin (IM) microspheres prepared with sugar cane wax microsperes. Methods: Microspheres were prepared by melt-emulsified dispersion and cooling-induced solidification method. The microspheres were characterized by scanning electron microscopy (SEM) and differntial scanning calorimetry ...

  10. Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier.

    Science.gov (United States)

    Zeisler, Viktoria; Schreiber, Lukas

    2016-01-01

    Epicuticular wax of cherry laurel does not contribute to the formation of the cuticular transpiration barrier, which must be established by intracuticular wax. Barrier properties of cuticles are established by cuticular wax deposited on the outer surface of the cuticle (epicuticular wax) and in the cutin polymer (intracuticular wax). It is still an open question to what extent epi- and/or intracuticular waxes contribute to the formation of the transpiration barrier. Epicuticular wax was mechanically removed from the surfaces of isolated cuticles and intact leaf disks of cherry laurel (Prunus laurocerasus L.) by stripping with different polymers (collodion, cellulose acetate and gum arabic). Scanning electron microscopy showed that two consecutive treatments with all three polymers were sufficient to completely remove epicuticular wax since wax platelets disappeared and cuticle surfaces appeared smooth. Waxes in consecutive polymer strips and wax remaining in the cuticle after treatment with the polymers were determined by gas chromatography. This confirmed that two treatments of the polymers were sufficient for selectively removing epicuticular wax. Water permeability of isolated cuticles and cuticles covering intact leaf disks was measured using (3)H-labelled water before and after selectively removing epicuticular wax. Cellulose acetate and its solvent acetone led to a significant increase of cuticular permeability, indicating that the organic solvent acetone affected the cuticular transpiration barrier. However, permeability did not change after two subsequent treatments with collodion and gum arabic or after treatment with the corresponding solvents (diethyl ether:ethanol or water). Thus, in the case of P. laurocerasus the epicuticular wax does not significantly contribute to the formation of the cuticular transpiration barrier, which evidently must be established by the intracuticular wax.

  11. Development of a Parafin Wax deposition Unit for Fused Deposition Modelling (FDM)

    DEFF Research Database (Denmark)

    D'Angelo, Greta; Hansen, Hans Nørgaard; Pedersen, David Bue

    2014-01-01

    . This project illustrates the redesign of an extrusion unit for the deposition of paraffin wax in Fused Deposition Modelling (FDM) instead of the conventional polymeric materials. Among the benefits and brought by the use of paraffin wax in such system are: the possibility to make highly complex and precise...... parts to subsequently use in a Lost Wax Casting process, multi-material Additive Manufacturing and the use of wax as support material during the production of complicated parts. Moreover it is believed that including waxes among the materials usable in FDM would promote new ways of using and exploring...

  12. The antimalarial drug quinine interferes with serotonin biosynthesis and action

    DEFF Research Database (Denmark)

    Islahudin, Farida; Tindall, Sarah M.; Mellor, Ian R.

    2014-01-01

    The major antimalarial drug quinine perturbs uptake of the essential amino acid tryptophan, and patients with low plasma tryptophan are predisposed to adverse quinine reactions; symptoms of which are similar to indications of tryptophan depletion. As tryptophan is a precursor of the neurotransmit......The major antimalarial drug quinine perturbs uptake of the essential amino acid tryptophan, and patients with low plasma tryptophan are predisposed to adverse quinine reactions; symptoms of which are similar to indications of tryptophan depletion. As tryptophan is a precursor...... tryptophan. The study shows that quinine disrupts both serotonin biosynthesis and function, giving important new insight to the action of quinine on mammalian cells....

  13. Studies on Hydrotreating Process of Microcrystalline Wax Produced from Marine Belayim Crude Oil

    International Nuclear Information System (INIS)

    EI Karashi, S.; Marawan, H.

    2004-01-01

    Abstract Microcrystalline wax was produced from solvent dewaxing process of vacuum residue raffinate produced from Marine Belayim origin. The untreated microcrystalline wax contains trace amounts of sulfur, oxygen, nitrogen and organometallic compounds as well as heavy aromatics which affect the properties of wax applications in pharmaceutical and technical fields . Microcrystalline wax hydrotreating process was studied using digital controlled unit and Ni O-MoO 3 / Al 2 O 3 catalyst, where operating parameters that controlled the efficiency of the hydrotreated wax were studied separately at different values including reactor temperature, reactor pressure, liquid hourly space velocity and hydrogen to hydrocarbon ratio . Hydrotreated microcrystalline wax at operating conditions (temperature 300 degree C, pressure 73 kg/cm 2 , LHS V 0.52 h-l and H 2 /HC ratio 266.6 Nm 3 /m 3 ) has the best quality to be used as food grade wax

  14. Radiotherapic Valuation of Paraffin Wax for Patients with Oral Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Na, Kyung Su; Seo, Seuk Jin; Lee, Je Hee; Yoo, Sook Heun [Dept. of Radiation Oncology, Seoul National University Hosdital, Seoul (Korea, Republic of)

    2011-03-15

    This study is designed to investigate radiotherapic valuation of Paraffin Wax, which is newly formed for this study and generally utilized in dentistry, and Mouth Piece and Putty impression, which are commonly used in radiotherapy, for oral cavity as a compensator. Each compensator was formed by 10 x 10 x 1 cm and measured radiation dose attenuation ratio with reference of water phantom which is made of tissue-equivalent materials. Two patients with oral cancer underwent DRR (Digitally Reconstructed Radiogrph) of Offline Review Program of Aria System and Portal vision for 5 times for each material to evaluate reproducibility by each filling materials. Moreover, MU (monitor unit) changes by dose absorption were considered in the case of inevitable implication of an filling materials in the range for radiotherapy. Radiation dose attenuation ratios were shown -0.7{approx}+3.7% for Mouth Piece, +0.21{approx}+0.39% for Paraffin Wax and -2.71{approx}-1.76% for Putty impression. Error ranges of reproducibility of positions were measured {+-}3 mm for Mouth Piece, {+-}2 mm for Paraffin Wax and {+-}2 mm for Putty impression. Difference of prescription MU from dose absorption with an filling material increased +7.8% (250 MU) in Putty impression and -0.9% (230 MU) in Paraffin Wax as converted into a percentage from the standard phantom, Water 232 MU. Dose reduction of boundary between cavity and tissue was observed for Mouth Piece. Mouth Piece also had low reproducibility of positions as it had no reflection of anatomy of oral cavity even though it was a proper material to separate Maxilla and Mandible during therapy. On the other hand, Putty impression was a suitable material to correctly re-position oral cavity as before. However, it risked normal tissues getting unnecessary over irradiation and it caused radiation dose decrease by -2.5% for 1cm volume in comparison of it of water phantom. Dose reduction in Paraffin Wax, Fat Tissue-Equivalent Material, was smaller than other

  15. Radiotherapic Valuation of Paraffin Wax for Patients with Oral Cancer

    International Nuclear Information System (INIS)

    Na, Kyung Su; Seo, Seuk Jin; Lee, Je Hee; Yoo, Sook Heun

    2011-01-01

    This study is designed to investigate radiotherapic valuation of Paraffin Wax, which is newly formed for this study and generally utilized in dentistry, and Mouth Piece and Putty impression, which are commonly used in radiotherapy, for oral cavity as a compensator. Each compensator was formed by 10 x 10 x 1 cm and measured radiation dose attenuation ratio with reference of water phantom which is made of tissue-equivalent materials. Two patients with oral cancer underwent DRR (Digitally Reconstructed Radiogrph) of Offline Review Program of Aria System and Portal vision for 5 times for each material to evaluate reproducibility by each filling materials. Moreover, MU (monitor unit) changes by dose absorption were considered in the case of inevitable implication of an filling materials in the range for radiotherapy. Radiation dose attenuation ratios were shown -0.7∼+3.7% for Mouth Piece, +0.21∼+0.39% for Paraffin Wax and -2.71∼-1.76% for Putty impression. Error ranges of reproducibility of positions were measured ±3 mm for Mouth Piece, ±2 mm for Paraffin Wax and ±2 mm for Putty impression. Difference of prescription MU from dose absorption with an filling material increased +7.8% (250 MU) in Putty impression and -0.9% (230 MU) in Paraffin Wax as converted into a percentage from the standard phantom, Water 232 MU. Dose reduction of boundary between cavity and tissue was observed for Mouth Piece. Mouth Piece also had low reproducibility of positions as it had no reflection of anatomy of oral cavity even though it was a proper material to separate Maxilla and Mandible during therapy. On the other hand, Putty impression was a suitable material to correctly re-position oral cavity as before. However, it risked normal tissues getting unnecessary over irradiation and it caused radiation dose decrease by -2.5% for 1cm volume in comparison of it of water phantom. Dose reduction in Paraffin Wax, Fat Tissue-Equivalent Material, was smaller than other impressions and

  16. Mechanical properties of carving wax with various Ca-bentolite filter composition

    Directory of Open Access Journals (Sweden)

    Widjijono Widjijono

    2009-09-01

    Full Text Available Background: The carving wax is used as a medium in dental anatomy study. This wax composes of many waxes and sometimes a filler is added. Carving wax is not sold in Indonesian market. Whereas the gradients of carving wax such as beeswax, paraffin and bentonite are abundant in Indonesia. Based on that fact, to make high quality and standard,the exact composition if this carving wax should be known. Purpose: The aim of this study was to investigate the effect of carving wax composition with Ca-bentonite filler on the melting point, hardness, and thermal expansion. Methods: Five carving wax compositions were made with paraffin, Ca-bentonite, carnauba wax, and beeswax in ratio (% weight: 50:20:25:5 (KI, 55:15:25:5 (KII, 60:10:25:5 (KIII, 65:5:25:5 (KIV, 70:0:25:5(KV. All components were melted, then poured into the melting point, hardness, and thermal expansion moulds (n = 5. Three carving wax properties were tested: melting point by melting point apparatus; hardness by penetrometer; thermal expansion by digital sliding caliper. The data were analyzed statistically using One-Way ANOVA and LSD0.05. Result: The Ca-bentonite addition influenced the melting point and thermal expansion of carving wax with significant differences between KI and other groups (p < 0.05. Ca-bentonite addition influenced the carving wax hardness and the mean differences among the groups were significant (p < 0.05. Conclusion: Ca-bentonite filler addition on the composition of carving wax influenced the physical and mechanical properties. The carving wax with high Ca-bentonite concentration had high melting point and hardness, but low thermal expansion.

  17. Mammalian cell biology

    International Nuclear Information System (INIS)

    Elkind, M.M.

    1975-01-01

    Studies of the action of N-ethylmaleimide (NEM), as an inhibitor of repair of x radioinduced injuries were extended from synchronous Chinese hamster cells to synchronous human HeLa cells. These studies showed a similar mode of action in both cell types lending support to the notion that conclusions may be extracted from such observations that are of fairly general applicability to mammalian cells. Radiation studies with NEM are being extended to hypoxic cells to inquire if NEM is effective relative to oxygen-independent damage. Observations relative to survival, DNA synthesis, and DNA strand elongation resulting from the addition products to DNA when cells were exposed to near uv in the presence of psoralen were extended. (U.S.)

  18. Study of Plant Waxes Using Low Temperature Method for ESEM

    Czech Academy of Sciences Publication Activity Database

    Neděla, Vilém; Tihlaříková, Eva; Schiebertová, P.; Zajícová, I.; Schwarzerová, K.

    2016-01-01

    Roč. 22, S3 (2016), s. 1180-1181 ISSN 1431-9276 R&D Projects: GA ČR(CZ) GA14-22777S; GA MŠk ED0017/01/01 Grant - others:GA MŠk(CZ) LO1211 Institutional support: RVO:68081731 Keywords : ESEM * plant waxes * low temperature method Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.891, year: 2016

  19. Wax solidification of drying agents containing tritiated water

    International Nuclear Information System (INIS)

    Mishikawa, M.; Kido, H.

    1984-01-01

    It is necessary to immobilize the tritium not to give any impact on the environmental biosphere because tritium may give profound effects in the metabolic pathway. One of the most probable methods of immobilizing tritium would be incorporation of tritiated water in solid forms. Any drying or dehydration technique would be effective in a tritium cleanup system for off-gas streams containing tritium or tritiated water. Commonly used drying agents such as activated alumina, silica gel, molecular sieves and calcium sulfate are of value for removal of water vapour from air or other gases. For long term tritium storage, however, these adsorptive materials should be enveloped to prevent contact with water or water vapour because the rate of leaching, evaporation or diffusion of tritium from these porous materials is so large. The beeswax solidification method of the packed bed of drying agents adsorbing tritiated water is developed in this study, where the wax solidification procedure is performed by pouring the melt of wax into the void space of the packed bed of the drying agents and successive gradual cooling. The observed values of diffusivity or permeability of tritium in the wax solidified materials are about one-thousandth of those obtained for the cement block. Effect of coating on the rate of leaching is also discussed

  20. Radiological properties of a wax-gypsum compensator material

    International Nuclear Information System (INIS)

    Plessis, F.C.P. du; Willemse, C.A.

    2005-01-01

    In this paper the radiological properties of a compensator material consisting of wax and gypsum is presented. Effective attenuation coefficients (EACs) have been determined from transmission measurements with an ion chamber in a Perspex phantom. Measurements were made at 80 and 100 cm source-to-skin distance (SSD) for beam energies of 6, 8, and 15 MV, for field sizes ranging from narrow beam geometries up to 40x40 cm 2 , and at measurement depths of maximum dose build-up, 5 and 10 cm. A parametrization equation could be constructed to predict the EAC values within 4% uncertainty as a function of field size and depth of measurement. The EAC dependence on off-axis position was also quantified at each beam energy and SSD. It was found that the compensator material reduced the required thickness for compensation by 26% at 8 MV when compared to pure paraffin wax for a 10x10 cm 2 field. Relative surface ionization (RSI) measurements have been made to quantify the effect of scattered electrons from the wax-gypsum compensator. Results indicated that for 80 cm SSD the RSI would exceed 50% for fields larger than 15x15 cm 2 . At 100 cm SSD the RSI values were below 50% for all field sizes used

  1. Modified paraffin wax for improvement of histological analysis efficiency.

    Science.gov (United States)

    Lim, Jin Ik; Lim, Kook-Jin; Choi, Jin-Young; Lee, Yong-Keun

    2010-08-01

    Paraffin wax is usually used as an embedding medium for histological analysis of natural tissue. However, it is not easy to obtain enough numbers of satisfactory sectioned slices because of the difference in mechanical properties between the paraffin and embedded tissue. We describe a modified paraffin wax that can improve the histological analysis efficiency of natural tissue, composed of paraffin and ethylene vinyl acetate (EVA) resin (0, 3, 5, and 10 wt %). Softening temperature of the paraffin/EVA media was similar to that of paraffin (50-60 degrees C). The paraffin/EVA media dissolved completely in xylene after 30 min at 50 degrees C. Physical properties such as the amount of load under the same compressive displacement, elastic recovery, and crystal intensity increased with increased EVA content. EVA medium (5 wt %) was regarded as an optimal composition, based on the sectioning efficiency measured by the numbers of unimpaired sectioned slices, amount of load under the same compressive displacement, and elastic recovery test. Based on the staining test of sectioned slices embedded in a 5 wt % EVA medium by hematoxylin and eosin (H&E), Masson trichrome (MT), and other staining tests, it was concluded that the modified paraffin wax can improve the histological analysis efficiency with various natural tissues. (c) 2010 Wiley-Liss, Inc.

  2. Characterization of a plant leaf cuticle model wax, phase behaviour of model wax–water systems

    International Nuclear Information System (INIS)

    Fagerström, Anton; Kocherbitov, Vitaly; Westbye, Peter; Bergström, Karin; Mamontova, Varvara; Engblom, Johan

    2013-01-01

    Highlights: • Four individual crystalline phases were discovered in the model wax–water system. • Eutectic melting occurred in both dry and hydrated model wax. • The total transition enthalpy is smaller for the cuticle wax than for the model wax. • Water has a large plasticizing effect on cuticle wax. • The thermotropic transitions of model wax fit in the window of extracted leaf waxes. - Abstract: We investigated the thermotropic phase behaviour of plant leaf intracuticular wax and two representatives of its main components, 1-docosanol (C 22 H 45 OH) and dotriacontane (C 32 H 66 ), in dry and hydrated state. One objective was to obtain a model wax, which can be used to estimate formulations effects on cuticle diffusivity in vitro. The two wax components were chosen based on results from Gas Chromatography coupled to Mass Spectrometry analysis of cuticular wax. The wax was extracted from Clivia Miniata Regel leaves and contained 68% primary alcohols (C 16 –C 32 ) and 16% n-alkanes (C 21 –C 33 ). Differential Scanning Calorimetry, Polarized Light Microscopy and Small- and Wide Angle X-ray Diffraction were used to characterize the cuticular extract and the phase behaviour of the C 22 H 45 OH/C 32 H 66 /H 2 O model system. Four individual crystalline phases were discovered in the model wax–water system and eutectic melting occurred in both dry and hydrated state. The thermotropic transitions of the model wax occur within the broader transition region of the extracted leaf wax

  3. Rheological profiling of organogels prepared at critical gelling concentrations of natural waxes in a triacylglycerol solvent.

    Science.gov (United States)

    Patel, Ashok R; Babaahmadi, Mehrnoosh; Lesaffer, Ans; Dewettinck, Koen

    2015-05-20

    The aim of this study was to use a detailed rheological characterization to gain new insights into the gelation behavior of natural waxes. To make a comprehensive case, six natural waxes (differing in the relative proportion of chemical components: hydrocarbons, fatty alcohols, fatty acids, and wax esters) were selected as organogelators to gel high-oleic sunflower oil. Flow and dynamic rheological properties of organogels prepared at critical gelling concentrations (Cg) of waxes were studied and compared using drag (stress ramp and steady flow) and oscillatory shear (stress and frequency sweeps) tests. Although, none of the organogels satisfied the rheological definition of a "strong gel" (G″/G' (ω) ≤ 0.1), on comparing the samples, the strongest gel (highest critical stress and dynamic, apparent, and static yield stresses) was obtained not with wax containing the highest proportion of wax esters alone (sunflower wax, SFW) but with wax containing wax esters along with a higher proportion of fatty alcohols (carnauba wax, CRW) although at a comparatively higher Cg (4%wt for latter compared to 0.5%wt for former). As expected, gel formation by waxes containing a high proportion of lower melting fatty acids (berry, BW, and fruit wax, FW) required a comparatively higher Cg (6 and 7%wt, respectively), and in addition, these gels showed the lowest values for plateau elastic modulus (G'LVR) and a prominent crossover point at higher frequency. The gelation temperatures (TG'=G″) for all the studied gels were lower than room temperature, except for SFW and CRW. The yielding-type behavior of gels was evident, with most gels showing strong shear sensitivity and a weak thixotropic recovery. The rheological behavior was combined with the results of thermal analysis and microstructure studies (optical, polarized, and cryo-scanning electron microscopy) to explain the gelation properties of these waxes.

  4. Characterization of a plant leaf cuticle model wax, phase behaviour of model wax–water systems

    Energy Technology Data Exchange (ETDEWEB)

    Fagerström, Anton, E-mail: anton.fagerstrom@mah.se [Biomedical Science, Faculty of Health and Society, Malmö University, Malmö (Sweden); Kocherbitov, Vitaly [Biomedical Science, Faculty of Health and Society, Malmö University, Malmö (Sweden); Westbye, Peter; Bergström, Karin [Agro Applications Europe, AkzoNobel Surface Chemistry AB, Stenungsund (Sweden); Mamontova, Varvara [Ecological and Chemical Research, St. Petersburg Scientific Research Center for Ecological Safety, Russian Academy of Sciences, St. Petersburg (Russian Federation); Engblom, Johan [Biomedical Science, Faculty of Health and Society, Malmö University, Malmö (Sweden)

    2013-11-10

    Highlights: • Four individual crystalline phases were discovered in the model wax–water system. • Eutectic melting occurred in both dry and hydrated model wax. • The total transition enthalpy is smaller for the cuticle wax than for the model wax. • Water has a large plasticizing effect on cuticle wax. • The thermotropic transitions of model wax fit in the window of extracted leaf waxes. - Abstract: We investigated the thermotropic phase behaviour of plant leaf intracuticular wax and two representatives of its main components, 1-docosanol (C{sub 22}H{sub 45}OH) and dotriacontane (C{sub 32}H{sub 66}), in dry and hydrated state. One objective was to obtain a model wax, which can be used to estimate formulations effects on cuticle diffusivity in vitro. The two wax components were chosen based on results from Gas Chromatography coupled to Mass Spectrometry analysis of cuticular wax. The wax was extracted from Clivia Miniata Regel leaves and contained 68% primary alcohols (C{sub 16}–C{sub 32}) and 16% n-alkanes (C{sub 21}–C{sub 33}). Differential Scanning Calorimetry, Polarized Light Microscopy and Small- and Wide Angle X-ray Diffraction were used to characterize the cuticular extract and the phase behaviour of the C{sub 22}H{sub 45}OH/C{sub 32}H{sub 66}/H{sub 2}O model system. Four individual crystalline phases were discovered in the model wax–water system and eutectic melting occurred in both dry and hydrated state. The thermotropic transitions of the model wax occur within the broader transition region of the extracted leaf wax.

  5. Localization of two mammalian cyclin dependent kinases during mammalian meiosis

    NARCIS (Netherlands)

    Ashley, T.; Walpita, D.; de rooij, D. G.

    2001-01-01

    Mammalian meiotic progression, like mitotic cell cycle progression, is regulated by cyclins and cyclin dependent kinases (CDKs). However, the unique requirements of meiosis (homologous synapsis, reciprocal recombination and the dual divisions that segregate first homologues, then sister chromatids)

  6. Mammalian Gut Immunity

    Science.gov (United States)

    Chassaing, Benoit; Kumar, Manish; Baker, Mark T.; Singh, Vishal; Vijay-Kumar, Matam

    2016-01-01

    The mammalian intestinal tract is the largest immune organ in the body and comprises cells from non-hemopoietic (epithelia, Paneth cells, goblet cells) and hemopoietic (macrophages, dendritic cells, T-cells) origin, and is also a dwelling for trillions of microbes collectively known as the microbiota. The homeostasis of this large microbial biomass is prerequisite to maintain host health by maximizing beneficial symbiotic relationships and minimizing the risks of living in such close proximity. Both microbiota and host immune system communicate with each other to mutually maintain homeostasis in what could be called a “love–hate relationship.” Further, the host innate and adaptive immune arms of the immune system cooperate and compensate each other to maintain the equilibrium of a highly complex gut ecosystem in a stable and stringent fashion. Any imbalance due to innate or adaptive immune deficiency or aberrant immune response may lead to dysbiosis and low-grade to robust gut inflammation, finally resulting in metabolic diseases. PMID:25163502

  7. Mammalian cell biology

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Progress is reported on studies of the molecular biology and functional changes in cultured mammalian cells following exposure to x radiation, uv radiation, fission neutrons, or various chemical environmental pollutants alone or in combinations. Emphasis was placed on the separate and combined effects of polycyclic aromatic hydrocarbons released during combustion of fossil fuels and ionizing and nonionizing radiations. Sun lamps, which emit a continuous spectrum of near ultraviolet light of 290 nm to 315 nm were used for studies of predictive cell killing due to sunlight. Results showed that exposure to uv light (254 nm) may not be adequate to predict effects produced by sunlight. Data are included from studies on single-strand breaks and repair in DNA of cultured hamster cells exposed to uv or nearultraviolet light. The possible interactions of the polycyclic aromatic hydrocarbon 7,12-dimethylbenz(a)-anthracene (DmBA) alone or combined with exposure to x radiation, uv radiation (254 nm) or near ultraviolet simulating sunlight were compared for effects on cell survival

  8. Cryopreservation of mammalian semen.

    Science.gov (United States)

    Curry, Mark R

    2007-01-01

    Mammalian spermatozoa were among the very first cells to be successfully cryopreserved and over the last five decades the use of frozen-thawed semen for artificial insemination has come to play an important role in domestic livestock production. More recently, semen freezing has increasingly been utilized in the establishment of genetic resource banks for endangered species. Semen is collected, most commonly either by use of an artificial vagina or by electroejaculation of an anaesthetized animal, and basic sperm parameters assessed. Semen is extended using a TEST-egg yolk-glycerol diluent, packaged in 0.25-mL plastic straws and slowly cooled to 5 degrees C over a period of 1-2 h. Cooled straws are frozen by suspending within liquid nitrogen vapor above the liquid nitrogen surface before plunging into the liquid phase. Straws are thawed briefly in air before immersing in a 35 degrees C water bath for 15 s, and often are used directly for insemination without any further processing.

  9. mammalian brain system

    Directory of Open Access Journals (Sweden)

    Alan Kania

    2014-06-01

    Full Text Available Relaxin-3, a member of the relaxin peptide family, was discovered in 2001 as a homologue of relaxin – a well-known reproductive hormone. However, it is the brain which turned out to be a major expression site of this newly discovered peptide. Both its molecular structure and expression pattern were shown to be very conserved among vertebrates. Extensive research carried out since the discovery of relaxin-3 contributed to the significant progress in our knowledge regarding this neuropeptide. The endogenous relaxin-3 receptor (RXFP3 was identified and the anatomy of the yet uncharacterized mammalian brain system was described, with nucleus incertus as the main center of relaxin-3 expression. Not only its diffusive projections throughout the whole brain, which reach various brain structures such as the hippocampus, septum, intergeniculate leaflet or amygdala, but also functional studies of the relaxin-3/RXFP3 signaling system, allowed this brain network to be classified as one of the ascending nonspecific brain systems. Thus far, research depicts the connection of relaxin-3 with phenomena such as feeding behavior, spatial memory, sleep/wake cycle or modulation of pituitary gland hormone secretion. Responsiveness of relaxin-3 neurons to stress factors and the strong orexigenic effect exerted by this peptide suggest its participation in modulation of feeding by stress, in particular of the chronic type. The discovery of relaxin-3 opened a new research field which will contribute to our better understanding of the neurobiological basis of feeding disorders.

  10. Effect of waste wax and chain structure on the mechanical and physical properties of polyethylene

    Directory of Open Access Journals (Sweden)

    M.A. AlMaadeed

    2015-05-01

    The wax dispersion in the matrix strongly depends on the percentage of wax added to the polymer and the molecular structure of the polymer. It was found that increasing the wax content enhances the phase separation. LDPE undergoes less phase separation due to its highly branched structure composed of a network of short and long chain branches. The wax has no pronounced plasticising effect on the polymer. This is clearly manifested in LDPE as no change in the melting temperature occurred. LLDPE and HDPE were slightly affected by a high concentration of wax (30% and 40%. This is due to the non-uniform distribution of short chain branching along the LLDPE and HDPE main chains, which can interact with the wax structure.

  11. Effects of sunflower wax coating on physicochemical changes of mangifera indica L. in storage life

    International Nuclear Information System (INIS)

    Soomro, R.K.; Sherazi, S.T.H.

    2013-01-01

    Mango (Mangifera indica L.) fruit has a relatively short storage life due to perishable nature. In order to increases the storage life of langra mangoes, fruits were coated with sunflower wax. Mangoes were stored at room and refrigerated temperature. Sunflower wax coating protects the mangoes in greater proportion to change their color, weight loss, moisture loss, pH and total soluble solids content. The sensorial panel also favors the grander role of sunflower wax coating. Application of sunflower wax coatings had no effect on vitamin C content of mangoes variety and could increases mango storage time around 30 days under regular storage conditions. Sunflower wax coating also inhibited the growth of micro-organisms. The data reveal that by applying a sunflower wax coating effectively prolongs the quality which attributes and extends the shelf life of mango. (author)

  12. 46_ _267 - 278__Aminu- Biosynthesis

    African Journals Online (AJOL)

    User

    ISSN 2006 – 6996. BIOSYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL STUDY OF .... the excitation of surface Plasmon vibration with. AgNPs. ... Thin films of the sample were prepared on a carbon ... The resulting film on the SEM.

  13. Characterization and chemical composition of epicuticular wax from banana leaves grown in Northern Thailand

    OpenAIRE

    Suporn Charumanee; Songwut Yotsawimonwat; Panee Sirisa-ard; Kiatisak Pholsongkram

    2017-01-01

    This study aimed to investigate the physicochemical properties and chemical composition of epicuticular wax extracted from leaves of Kluai Namwa, a banana cultivar which is widely grown in Northern Thailand. Its genotype was identified by a botanist. The wax was extracted using solvent extraction. The fatty acid profiles and physicochemical properties of the wax namely melting point, congealing point, crystal structures and polymorphism, hardness, color, and solubility were examin...

  14. Methods for separating boron from borated paraffin wax and its determination by ion chromatography

    International Nuclear Information System (INIS)

    Jeyakumar, S.

    2015-01-01

    Boron compounds are found to be useful in shielding against high-energy neutrons. In radiotherapy treatments, in order to protect occupational workers and patients from the undesirable neutron and gamma doses, paraffin wax containing B 4 C/boric acid is used. Low-level borate wastes generated from the nuclear power plants have been immobilized with paraffin wax using a concentrate waste drying system (CWDS). Borated paraffin waxes are prepared by mixing calculated amounts of either boric acid or boron carbide with the molten wax. This necessitates the determination of boron at different locations in order to check the homogeneous distribution of B over the borated wax. The determination of boron in nuclear materials is inevitable due to its high neutron absorption cross section. For the determination of boron in borated waxes, not many methods have been reported. A method based on the pyrohydrolysis extraction of boron and its quantification with ion chromatography was proposed for paraffin waxes borated with H 3 BO 3 and B 4 C. The B 4 C optimum pyrohydrolysis conditions were identified. Wax samples were mixed with U 3 O 8 , which prevents the sample from flare up, and also accelerates the extraction of boron. Pyrohydrolysis was carried out with moist O 2 at 950℃ for 60 and 90 min for wax with H 3 BO 3 and wax with B 4 C, respectively. Two simple methods of separation based on alkali extraction and melting wax in alkali were also developed exclusively for wax with H 3 BO 3 . In all the separations, the recovery of B was above 98%. During IC separation, B was separated as boron-mannitol anion complex. Linear calibration was obtained between 0.1 and 50 ppm of B, and LOD was calculated as 5 ppb (S/N=3). The reproducibility was better than 5% (RSD)

  15. Mammalian DNA Repair. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Richard D.

    2003-01-24

    The Gordon Research Conference (GRC) on Mammalian DNA Repair was held at Harbortown Resort, Ventura Beach, CA. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  16. Serine biosynthesis and transport defects.

    Science.gov (United States)

    El-Hattab, Ayman W

    2016-07-01

    l-serine is a non-essential amino acid that is biosynthesized via the enzymes phosphoglycerate dehydrogenase (PGDH), phosphoserine aminotransferase (PSAT), and phosphoserine phosphatase (PSP). Besides its role in protein synthesis, l-serine is a potent neurotrophic factor and a precursor of a number of essential compounds including phosphatidylserine, sphingomyelin, glycine, and d-serine. Serine biosynthesis defects result from impairments of PGDH, PSAT, or PSP leading to systemic serine deficiency. Serine biosynthesis defects present in a broad phenotypic spectrum that includes, at the severe end, Neu-Laxova syndrome, a lethal multiple congenital anomaly disease, intermediately, infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end, the childhood disease with intellectual disability. A serine transport defect resulting from deficiency of the ASCT1, the main transporter for serine in the central nervous system, has been recently described in children with neurological manifestations that overlap with those observed in serine biosynthesis defects. l-serine therapy may be beneficial in preventing or ameliorating symptoms in serine biosynthesis and transport defects, if started before neurological damage occurs. Herein, we review serine metabolism and transport, the clinical, biochemical, and molecular aspects of serine biosynthesis and transport defects, the mechanisms of these diseases, and the potential role of serine therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Biosynthesis of oleamide.

    Science.gov (United States)

    Mueller, Gregory P; Driscoll, William J

    2009-01-01

    Oleamide (cis-9-octadecenamide) is the prototype long chain primary fatty acid amide lipid messenger. The natural occurrence of oleamide was first reported in human serum in 1989. Subsequently oleamide was shown to accumulate in the cerebrospinal fluid of sleep-deprived cats and to induce sleep when administered to experimental animals. Accordingly, oleamide first became known for its potential role in the mechanisms that mediate the drive to sleep. Oleamide also has profound effects on thermoregulation and acts as an analgesic in several models of experimental pain. Although these important pharmacologic effects are well establish, the biochemical mechanism for the synthesis of oleamide has not yet been defined. This chapter reviews the biosynthetic pathways that have been proposed and highlights two mechanisms which are most supported by experimental evidence: the generation of oleamide from oleoylglycine by the neuropeptide processing enzyme, peptidylglycine alpha-amidating monooxygenase (PAM), and alternatively, the direct amidation of oleic acid via oleoyl coenzyme A by cytochrome c using ammonia as the nitrogen source. The latter mechanism is discussed in the context of apoptosis where oleamide may play a role in regulating gap junction communication. Lastly, several considerations and caveats pertinent to the future study oleamide biosynthesis are discussed.

  18. Glycolipid biosynthesis in cyanobacteria

    International Nuclear Information System (INIS)

    Van Dusen, W.J.; Jaworski, J.G.

    1987-01-01

    The biosynthesis of monogalactosyldiacyl-glycerol (MGDG) was studied in five different cyanobacteria. Previous work has shown Anabaena variabilis to synthesize both MGDG and monoglucosyl-diacylglycerol (MG1cDG) with MG1cDG being the precursor of MGDG. They have examined four other cyanobacteria to determine if a similar relationship exists. The cyanobacteria studied were Anabaena variabilis, Chlorogloeopsis sp., Schizothrix calcicola, Anacystis nidulans, and Anacystis marina. Each were grown in liquid culture and lipids were labeled with 14 C]CO 2 for 20 min., 1.0 hr, 1.0 hr + 10 hr chase. Glycolipids were analyzed by initial separation of MGDG and MG1cDG by TLC followed by further analysis by HPLC. Complete separation of molecular species was obtained isocratically on an ODS column. All of the cyanobacteria labeled 16-C and 18-C fatty acids except for A. marina which labeled only 14-C and 16-C fatty acids. Desaturation of the fatty acids could be observed in the 1.0 hr and chase experiments. All were capable of labeling both MG1cDG and MGDG with the precursor-product relationship being observed. There does not appear to be a direct relationship between the epimerization of the sugar moiety and fatty acid desaturation

  19. Structural-mechanical model of wax crystal networks—a mesoscale cellular solid approach

    International Nuclear Information System (INIS)

    Miyazaki, Yukihiro; Marangoni, Alejandro G

    2014-01-01

    Mineral waxes are widely used materials in industrial applications; however, the relationship between structure and mechanical properties is poorly understood. In this work, mineral wax-oil networks were characterized as closed-cell cellular solids, and differences in their mechanical response predicted from structural data. The systems studied included straight-chain paraffin wax (SW)-oil mixtures and polyethylene wax (PW)-oil mixtures. Analysis of cryogenic-SEM images of wax-oil networks allowed for the determination of the length (l) and thickness (t) of the wax cell walls as a function of wax mass fraction (Φ). A linear relationship between t/l and Φ (t/l ∼ Φ 0.89 ) suggested that wax-oil networks were cellular solids of the closed-cell type. However, the scaling behavior of the elastic modulus with the volume fraction of solids did not agree with theoretical predictions, yielding the same scaling exponent, μ = 0.84, for both waxes. This scaling exponent obtained from mechanical measurements could be predicted from the scaling behavior of the effective wax cell size as a function of wax mass fraction in oil obtained by cryogenic scanning electron microscopy. Microscopy studies allowed us to propose that wax-oil networks are structured as an ensemble of close-packed spherical cells filled with oil, and that it is the links between cells that yield under simple uniaxial compression. Thus, the Young’s moduli for the links between cells in SW and PW wax systems could be estimated as E L (SW) = 2.76 × 10 9 Pa and E L (PW) = 1.64 × 10 9 Pa, respectively. The structural parameter responsible for the observed differences in the mechanical strength between the two wax-oil systems is the size of the cells. Polyethylene wax has much smaller cell sizes than the straight chain wax and thus displays a higher Young’s modulus and yield stress. (papers)

  20. Characterization of rice bran wax policosanol and its nanoemulsion formulation

    Directory of Open Access Journals (Sweden)

    Ishaka A

    2014-05-01

    Full Text Available Aminu Ishaka,1,2 Mustapha Umar Imam,1 Rozi Mahamud,3 Abu Bakar Zakaria Zuki,4 Ismail Maznah1 1Laboratory of Molecular Biomedicine, Institute of Bioscience, University Putra Malaysia, Serdang, Selangor, Malaysia; 2Department of Medical Biochemistry, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria; 3Faculty of Medicine and Health Sciences, 4Faculty of Veterinary Medicine, University Putra Malaysia, Serdang, Selangor, Malaysia Abstract: Policosanol, a mixture of long-chain alcohols found in animal and plant waxes, has several biological effects; however, it has a bioavailability of less than 10%. Therefore, there is a need to improve its bioavailability, and one of the ways of doing this is by nanoemulsion formulation. Different droplet size distributions are usually achieved when emulsions are formed, which solely depends on the preparation method used. Mostly, emulsions are intended for better delivery with maintenance of the characteristics and properties of the leading components. In this study, policosanol was extracted from rice bran wax, its composition was determined by gas chromatography mass spectrophotometry, nanoemulsion was made, and the physical stability characteristics were determined. The results showed that policosanol nanoemulsion has a nanosize particle distribution below 100 nm (92.56–94.52 nm, with optimum charge distribution (-55.8 to -45.12 mV, pH (6.79–6.92 and refractive index (1.50; these were monitored and found to be stable for 8 weeks. The stability of policosanol nanoemulsion confers the potential to withstand long storage times. Keywords: rice bran wax, policosanol, nanoemulsion, characterization

  1. Laser-assisted fabrication of batteries on wax paper

    International Nuclear Information System (INIS)

    Chitnis, G; Ziaie, B; Tan, T

    2013-01-01

    The functionality of paper-based diagnostic devices can be significantly enhanced by their integration with an on-board energy source. Here, we demonstrate the fabrication of paper-based electrochemical cells on wax paper using CO 2 laser surface treatment and micromachining. A four cell zinc–copper battery shows a steady open-circuit voltage of ∼3 V and can provide 0.25 mA for at least 30 min when connected to a 10 kΩ load. Higher voltages and current values can be obtained by adjusting the number and size of electrochemical cells in the battery without changing the fabrication process. (paper)

  2. Evaluation of Wax Deposition and Its Control During Production of Alaska North Slope Oils

    Energy Technology Data Exchange (ETDEWEB)

    Tao Zhu; Jack A. Walker; J. Liang

    2008-12-31

    Due to increasing oil demand, oil companies are moving into arctic environments and deep-water areas for oil production. In these regions of lower temperatures, wax deposits begin to form when the temperature in the wellbore falls below wax appearance temperature (WAT). This condition leads to reduced production rates and larger pressure drops. Wax problems in production wells are very costly due to production down time for removal of wax. Therefore, it is necessary to develop a solution to wax deposition. In order to develop a solution to wax deposition, it is essential to characterize the crude oil and study phase behavior properties. The main objective of this project was to characterize Alaskan North Slope crude oil and study the phase behavior, which was further used to develop a dynamic wax deposition model. This report summarizes the results of the various experimental studies. The subtasks completed during this study include measurement of density, molecular weight, viscosity, pour point, wax appearance temperature, wax content, rate of wax deposition using cold finger, compositional characterization of crude oil and wax obtained from wax content, gas-oil ratio, and phase behavior experiments including constant composition expansion and differential liberation. Also, included in this report is the development of a thermodynamic model to predict wax precipitation. From the experimental study of wax appearance temperature, it was found that wax can start to precipitate at temperatures as high as 40.6 C. The WAT obtained from cross-polar microscopy and viscometry was compared, and it was discovered that WAT from viscometry is overestimated. From the pour point experiment it was found that crude oil can cease to flow at a temperature of 12 C. From the experimental results of wax content, it is evident that the wax content in Alaskan North Slope crude oil can be as high as 28.57%. The highest gas-oil ratio for a live oil sample was observed to be 619.26 SCF

  3. Five Fatty Acyl-Coenzyme A Reductases Are Involved in the Biosynthesis of Primary Alcohols in Aegilops tauschii Leaves

    Directory of Open Access Journals (Sweden)

    Meiling Wang

    2017-06-01

    Full Text Available The diploid Aegilops tauschii is the D-genome donor to hexaploid wheat (Triticum aestivum and represents a potential source for genetic study in common wheat. The ubiquitous wax covering the aerial parts of plants plays an important role in protecting plants against non-stomatal water loss. Cuticular waxes are complex mixtures of very-long-chain fatty acids, alkanes, primary and/or secondary alcohols, aldehydes, ketones, esters, triterpenes, sterols, and flavonoids. In the present work, primary alcohols were identified as the major components of leaf cuticular wax in Ae. tauschii, with C26:0-OH being the dominant primary alcohol. Analysis by scanning electron microscope revealed that dense platelet-shaped wax crystals were deposited on leaf surfaces of Ae. tauschii. Ten putative wax biosynthetic genes encoding fatty acyl-coenzyme A reductase (FAR were identified in the genome of Ae. tauschii. Five of these genes, Ae.tFAR1, Ae.tFAR2, Ae.tFAR3, Ae.tFAR4, and Ae.tFAR6, were found expressed in the leaf blades. Heterologous expression of the five Ae.tFARs in yeast (Saccharomyces cerevisiae showed that Ae.tFAR1, Ae.tFAR2, Ae.tFAR3, Ae.tFAR4, and Ae.tFAR6 were predominantly responsible for the accumulation of C16:0, C18:0, C26:0, C24:0, and C28:0 primary alcohols, respectively. In addition, nine Ae.tFAR paralogous genes were located on D chromosome of wheat and the wheat nullisomic–tetrasomic lines with the loss of Ae.tFAR3 and Ae.tFAR4 paralogous genes had significantly reduced levels of primary alcohols in the leaf blades. Collectively, these data suggest that Ae.tFAR1, Ae.tFAR2, Ae.tFAR3, Ae.tFAR4, and Ae.tFAR6 encode alcohol-forming FARs involved in the biosynthesis of primary alcohols in the leaf blades of Ae. tauschii. The information obtained in Ae. tauschii enables us to better understand wax biosynthesis in common wheat.

  4. Synthesis of oleyl oleate wax esters in Arabidopsis thaliana and Camelina sativa seed oil.

    Science.gov (United States)

    Iven, Tim; Hornung, Ellen; Heilmann, Mareike; Feussner, Ivo

    2016-01-01

    Seed oil composed of wax esters with long-chain monoenoic acyl moieties represents a high-value commodity for industry. Such plant-derived sperm oil-like liquid wax esters are biodegradable and can have excellent properties for lubrication. In addition, wax ester oil may represent a superior substrate for biodiesel production. In this study, we demonstrate that the low-input oil seed crop Camelina sativa can serve as a biotechnological platform for environmentally benign wax ester production. Two biosynthetic steps catalysed by a fatty alcohol-forming acyl-CoA reductase (FAR) and a wax ester synthase (WS) are sufficient to achieve wax ester accumulation from acyl-CoA substrates. To produce plant-derived sperm oil-like liquid wax esters, the WS from Mus musculus (MmWS) or Simmondsia chinensis (ScWS) were expressed in combination with the FAR from Mus musculus (MmFAR1) or Marinobacter aquaeolei (MaFAR) in seeds of Arabidopsis thaliana and Camelina sativa. The three analysed enzyme combinations Oleo3:mCherry:MmFAR1∆c/Oleo3:EYFP:MmWS, Oleo3:mCherry:MmFAR1∆c/ScWS and MaFAR/ScWS showed differences in the wax ester molecular species profiles and overall biosynthetic performance. By expressing MaFAR/ScWS in Arabidopsis or Camelina up to 59% or 21% of the seed oil TAGs were replaced by wax esters, respectively. This combination also yielded wax ester molecular species with highest content of monounsaturated acyl moieties. Expression of the enzyme combinations in the Arabidopsis fae1 fad2 mutant background high in oleic acid resulted in wax ester accumulation enriched in oleyl oleate (18:1/18:1 > 60%), suggesting that similar values may be obtained with a Camelina high oleic acid line. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Preliminary evaluation of an aqueous wax emulsion for controlled-release coating.

    Science.gov (United States)

    Walia, P S; Stout, P J; Turton, R

    1998-02-01

    The purpose of this work was to evaluate the use of an aqueous carnauba wax emulsion (Primafresh HS, Johnson Wax) in a spray-coating process. This involved assessing the effectiveness of the wax in sustaining the release of the drug, theophylline. Second, the process by which the drug was released from the wax-coated pellets was modeled. Finally, a method to determine the optimum blend of pellets with different wax thicknesses, in order to yield a zero-order release profile of the drug, was addressed. Nonpareil pellets were loaded with theophylline using a novel powder coating technique. These drug-loaded pellets were then coated with different levels of carnauba wax in a 6-in. diameter Plexiglas fluid bed with a 3.5-in. diameter Wurster partition. Drug release was measured using a spin-filter dissolution device. The study resulted in continuous carnauba wax coatings which showed sustained drug release profile characteristics typical of a barrier-type, diffusion-controlled system. The effect of varying wax thickness on the release profiles was investigated. It was observed that very high wax loadings would be required to achieve long sustained-release times. The diffusion model, developed to predict the release of the drug, showed good agreement with the experimental data. However, the data exhibited an initial lag-time for drug release which could not be predicted a priori based on the wax coating thickness. A method of mixing pellets with different wax thicknesses was proposed as a way to approximate zero-order release.

  6. Composition of epicuticular wax on Prosopis glandulosa leaves

    International Nuclear Information System (INIS)

    Mayeux, H.S. Jr.; Wilkinson, R.E.

    1990-01-01

    Epicuticular wax on leaves of field-grown honey mesquite (Prosopis glandulosa Torr.) trees consisted of 35% esters, 32% alkanes, 25% free fatty alcohols, and 7% free fatty acids. Aldehydes were present in very low concentrations. The number of carbon atoms (C n ) of alkanes ranged from 25 to 31, with a maximum (57%) at 29. Esters consisted of fatty acids with C n of 16, 18, and 20, with most (70%) at 18 and fatty alcohols with C n of 24-32. The C n of free fatty alcohols and free fatty acids also ranged from 24 to 32. Only primary alcohols were present. Immediately after exposure of glasshouse-grown seedlings to 14 CO 2 for 4 h, 60% of the recovered 14 C was incorporated into free fatty acids; the percentage decreased progressively to 18% 8 h after exposure and remained stable thereafter. The proportion of 14 C in free fatty alcohols increased from ca. 12% immediately after exposure to 14 CO 2 to 55% at 8 h. Little 14 C was associated with other wax components over the 24-h period; 3% or less was incorporated into alkanes

  7. Characterisation of wax works of art by gas chromatographic procedures.

    Science.gov (United States)

    Regert, M; Langlois, J; Colinart, S

    2005-10-14

    To identify the various natural and synthetic substances used by sculptors at the end of the 19th century, several contemporary reference samples were investigated by high temperature gas chromatography (HT GC) and HT GC-MS. Using specific chromatographic conditions and minimising sample preparation, we could separate, detect and identify a wide range of biomolecular markers covering a great variety of molecular weights and volatilities, with a minimum amount of sample, in a single run. Beeswax, spermaceti, carnauba, candellila and Japan waxes as well as pine resin derivatives, animal fats, paraffin, ozokerite and stearin, used as additives in wax works of art, were chemically investigated. In the case of low volatile compounds, transbutylation was performed. The structure of long-chain esters of spermaceti was elucidated for the first time by HT GC-MS analysis. Such a method was then carried out on 10 samples collected on a statuette of Junon by Antoine-Louis Barye (Louvre Museum, Paris, France) and on a sculpture by Aimé-Jules Dalou (Musée de la Révolution Française, Vizille, France). The analytical results obtained provide new data on the complex recipes elaborated by sculptors at the end of the 19th century.

  8. Thermal Cracking to Improve the Qualification of the Waxes

    Science.gov (United States)

    He, B.; Agblevor, F. A.; Chen, C. G.; Feng, J.

    2018-05-01

    Thermal cracking of waxes at mild conditions (430-500°C) has been reconsidered as a possible refining technology for the production of fuels and chemicals. In this study, the more moderate thermal cracking was investigated to process Uinta Basin soft waxes to achieve the required pour point so that they can be pumped to the refineries. The best thermal cracking conditions were set 420°C and 20 minutes. The viscosity and density of the final liquid product were respectively achieved as 2.63 mP•s and 0.784 g/cm3 at 40°C. The result of FT-IR analysis of the liquid product indicated that the unsaturated hydrocarbons were produced after thermal cracking, which was corroborated by the 13C NMR spectrum. The GC analysis of the final gas product indicated that the hydrogen was produced; the dehydrogenation reaction was also proved by the elemental analysis and HHV results. The pour point of the final liquid product met the requirement.

  9. Regulation of cell wall biosynthesis.

    Science.gov (United States)

    Zhong, Ruiqin; Ye, Zheng-Hua

    2007-12-01

    Plant cell walls differ in their amount and composition among various cell types and even in different microdomains of the wall of a given cell. Plants must have evolved regulatory mechanisms controlling biosynthesis, targeted secretion, and assembly of wall components to achieve the heterogeneity in cell walls. A number of factors, including hormones, the cytoskeleton, glycosylphosphatidylinositol-anchored proteins, phosphoinositides, and sugar nucleotide supply, have been implicated in the regulation of cell wall biosynthesis or deposition. In the past two years, there have been important discoveries in transcriptional regulation of secondary wall biosynthesis. Several transcription factors in the NAC and MYB families have been shown to be the key switches for activation of secondary wall biosynthesis. These studies suggest a transcriptional network comprised of a hierarchy of transcription factors is involved in regulating secondary wall biosynthesis. Further investigation and integration of the regulatory players participating in the making of cell walls will certainly lead to our understanding of how wall amounts and composition are controlled in a given cell type. This may eventually allow custom design of plant cell walls on the basis of our needs.

  10. Inverse gradients in leaf wax δD and δ13C values along grass blades of Miscanthus sinensis: implications for leaf wax reproduction and plant physiology.

    Science.gov (United States)

    Gao, Li; Huang, Yongsong

    2013-06-01

    Compound specific hydrogen and carbon isotopic ratios of higher plant leaf waxes have been extensively used in paleoclimate and paleoenvironmental reconstructions. However, studies so far have focused on the comparison of leaf wax isotopic differences in bulk leaf samples between different plant species. We sampled three different varieties of tall grasses (Miscanthus sinensis) in six segments from base to tip and determined hydrogen and carbon isotopic ratios of leaf waxes, as well as hydrogen and oxygen isotopic ratios of leaf water samples. We found an increasing, base-to-tip hydrogen isotopic gradient along the grass blades that can probably be attributed to active leaf wax regeneration over the growth season. Carbon isotopic ratios, on the other hand, show opposite trends to hydrogen isotopic ratios along the grass blades, which may reflect different photosynthetic efficiencies at different blade locales.

  11. A news magnetic tools designed by ECOPETROL to inhibit wax in the petroleum production systems

    Energy Technology Data Exchange (ETDEWEB)

    Pelaez U, C.; Medina Z, C. [ECOPETROL, Instituto Colombiano del Petroleo (Colombia); Pena C, A. [INSERPET, Bucaramanga (Colombia)

    1996-12-31

    The deposition of wax and asphaltenes in production systems cause plugging in the flow lines reducing the oil production and increasing significantly the produced barrels prices. A wax magnetic inhibition technique has been tested with great success. The method has been improved with the use of magnetic tools. This work describes the experience and the results obtained with these tools. 6 figs., 1 tab.

  12. Changes in Cuticular Wax Composition of Two Blueberry Cultivars during Fruit Ripening and Postharvest Cold Storage.

    Science.gov (United States)

    Chu, Wenjing; Gao, Haiyan; Chen, Hangjun; Wu, Weijie; Fang, Xiangjun

    2018-03-21

    Cuticular wax plays an important role for the quality of blueberry fruits. In this study, the cuticular wax composition of two blueberry cultivars, 'Legacy' ( Vaccinium corymbosum) and 'Brightwell' ( Vaccinium ashei), was examined during fruit ripening and postharvest cold storage. The results showed that wax was gradually deposited on the epidermis of blueberry fruits and the content of major wax compounds, except that for diketones, increased significantly during fruit ripening. The total wax content was 2-fold greater in 'Brightwell' blueberries than that in 'Legacy' blueberries during fruit ripening. The total wax content of both cultivars decreased during 30 days of storage at 4 °C, and the variation of cuticular wax composition was cultivar-dependent. The content of diketones decreased significantly in 'Legacy' blueberries, while the content of triterpenoids and aliphatic compounds showed different fold changes in 'Brightwell' blueberries after 30 days of storage at 4 °C. Overall, our study provided a quantitative and qualitative overview of cuticular wax compounds of blueberry fruits during ripening and postharvest cold storage.

  13. Development and Performance Evaluation of Image-Based Robotic Waxing System for Detailing Automobiles.

    Science.gov (United States)

    Lin, Chi-Ying; Hsu, Bing-Cheng

    2018-05-14

    Waxing is an important aspect of automobile detailing, aimed at protecting the finish of the car and preventing rust. At present, this delicate work is conducted manually due to the need for iterative adjustments to achieve acceptable quality. This paper presents a robotic waxing system in which surface images are used to evaluate the quality of the finish. An RGB-D camera is used to build a point cloud that details the sheet metal components to enable path planning for a robot manipulator. The robot is equipped with a multi-axis force sensor to measure and control the forces involved in the application and buffing of wax. Images of sheet metal components that were waxed by experienced car detailers were analyzed using image processing algorithms. A Gaussian distribution function and its parameterized values were obtained from the images for use as a performance criterion in evaluating the quality of surfaces prepared by the robotic waxing system. Waxing force and dwell time were optimized using a mathematical model based on the image-based criterion used to measure waxing performance. Experimental results demonstrate the feasibility of the proposed robotic waxing system and image-based performance evaluation scheme.

  14. Gluconeogenesis from Storage Wax in the Cotyledons of Jojoba Seedlings 1

    Science.gov (United States)

    Moreau, Robert A.; Huang, Anthony H. C.

    1977-01-01

    The cotyledons of jojoba (Simmondsia chinensis) seeds contained 50 to 60% of their weight as intracellular wax esters. During germination there was a gradual decrease in the wax content with a concomitant rise in soluble carbohydrates, suggesting that the wax played the role of a food reserve. Thin layer chromatography revealed that both the fatty alcohol and fatty acid were metabolized. The disappearance of wax was matched with an increase of catalase, a marker enzyme of the gluconeogenic process in other fatty seedlings. Subcellular organelles were isolated by sucrose gradient centrifugation from the cotyledons at the peak stage of germination. The enzymes of the β oxidation of fatty acid and of the glyoxylate cycle were localized in the glyoxysomes but not in the mitochondria. The glyoxysomes had specific activities of individual enzymes similar to those of the castor bean glyoxysomes. An active alkaline lipase was detected in the wax bodies at the peak stage of germination but not in the ungerminated seeds. No lipase was detected in glyoxysomes or mitochondria. After the wax in the wax bodies had been extracted with diethyl ether, the organelle membrane was isolated and it still retained the alkaline lipase. The gluconeogenesis from wax in the jojoba seedling appears to be similar, but with modification, to that from triglyceride in other fatty seedlings. Images PMID:16660087

  15. Simple Synthesis Hydrogenated Castor Oil Fatty Amide Wax and Its Coating Characterization.

    Science.gov (United States)

    Yu, Xiuzhu; Wang, Ning; Zhang, Rui; Zhao, Zhong

    2017-07-01

    A simple method for incorporating amine groups in hydrogenated castor oil (HCO) to produce wax for beeswax or carnauba wax substitution in packaging and coating was developed. From the conversion rate of the products, HCO was reacted with ethanolamine at 150°C for 5 h, and the molar ratio of HCO and ethanolamine was 1:4. The hardness of the final product was seven times higher than that of beeswax, the cohesiveness of the final product was 1.3 times higher than that of beeswax and approximately one half of that of carnauba wax, and the melting point of the final product is 98°C. The Fourier transform Infrared spectroscopy showed that the amide groups were incorporated to form the amide products. In coating application, the results showed that the force of the final product coating cardboard was higher than that of beeswax and paraffin wax and less than that of carnauba wax. After 24 h soaking, the compression forces were decreased. HCO fatty acid wax can be an alternative wax for carnauba wax and beeswax in coating applications.

  16. Epicuticular wax on stomata of damaged silver fir trees (Abies alba Mili.

    Directory of Open Access Journals (Sweden)

    Tomislav Bačić

    2011-01-01

    Full Text Available Condition of epistomatal wax on the abaxial surface of the current and previous-year needles of damaged silver fir trees (Abies alba Mill., both from the polluted Risnjak and "clean" Donja Dobra sites in Gorski Kotar region, both influenced by pollutants coming from Europe, during two years, three times a year, were examined with Scanning Electron Microscope. In the course of time the wax tubules on the epistomatal rims of stomata in polluted, but also in "clean" needles surface, become fused and agglomerated rapidly to various extents of morphologically different types of amorphous wax crusts, primarily compact and particulate ones. This process begins very early, especially in polluted Risnjak site, and may be interpreted as a possible result of air pollution. However, the recrystalization, or production of new tubules, also appears relatively quickly in mostly cases. Quantitative estimations indicate a very large total amount of amorphous wax crusts in the current-year needles, and a very high percentage of the same wax in previous-year needles. Amorphous wax crusts cover stomatal pores, as well as the rims, disturbing the normal gas exchange. Statistically there is a signicant tendency of increase in wax degradation in the needles of the polluted site in comparison with those of the unpolluted one, but there is an insignificant wax degradation among the needles of damaged trees within each site. These results confirmed most of the research done in our preliminary report.

  17. A news magnetic tools designed by ECOPETROL to inhibit wax in the petroleum production systems

    Energy Technology Data Exchange (ETDEWEB)

    Pelaez U, C; Medina Z, C [ECOPETROL, Instituto Colombiano del Petroleo (Colombia); Pena C, A [INSERPET, Bucaramanga (Colombia)

    1997-12-31

    The deposition of wax and asphaltenes in production systems cause plugging in the flow lines reducing the oil production and increasing significantly the produced barrels prices. A wax magnetic inhibition technique has been tested with great success. The method has been improved with the use of magnetic tools. This work describes the experience and the results obtained with these tools. 6 figs., 1 tab.

  18. Effect of soil moisture management on the quality of wax apple | Lin ...

    African Journals Online (AJOL)

    Wax apple (Syzygium samarngense Merr.et Perry) was one of the economically planted fruits in Taiwan. This research was conducted to evaluate the effects of different soil moisture management on increasing wax apple quality. It was preceded at two different soil properties (shallow soil and alluvial soil) in Pingtung, ...

  19. Morphology and accumulation of epicuticular wax on needles of Douglas-fir (Pseudotsuga menziesii var. menziesii)

    Science.gov (United States)

    Constance A. Harrington; William C. Carlson

    2015-01-01

    Past studies have documented differences in epicuticular wax among several tree species but little attention has been paid to changes in accumulation of foliar wax that can occur during the year. We sampled current-year needles from the terminal shoots of Douglas-fir (Pseudotsuga menziesii var. menziesii) in late June/early...

  20. Overexpression of transcription factor OsWR2 1 regulates wax/cutin biosynthesis and enhances drought tolerance in rice

    Science.gov (United States)

    Drought is the major abiotic stress limiting crop production. Plant cuticle represents the outer-most layer of the epidermis and previous studies demonstrate its association with plant response to climatological drought. We report here the functional characterization of the rice ((Oryza sativa L.) W...

  1. Composition and morphology of cuticular wax in blueberry (Vaccinium spp.) fruits.

    Science.gov (United States)

    Chu, Wenjing; Gao, Haiyan; Cao, Shifeng; Fang, Xiangjun; Chen, Hangjun; Xiao, Shangyue

    2017-03-15

    The chemical composition and morphology of cuticular wax in mature fruit of nine blueberry cultivars were investigated using gas chromatography-mass spectrometry (GC-MS) and scanning electron microscope (SEM). Triterpenoids and β-diketones were the most prominent compounds, accounting for on average 64.2% and 16.4% of the total wax, respectively. Ursolic or oleanolic acid was identified as the most abundant triterpenoids differing in cultivars. Two β-diketones, hentriacontan-10,12-dione and tritriacontan-12,14-dione, were detected in cuticular wax of blueberry fruits for the first time. Notably, hentriacontan-10,12-dione and tritriacontan-12,14-dione were only detected in highbush (V. corymbosum) and rabbiteye (V. ashei) blueberries, respectively. The results of SEM showed that a large amount of tubular wax deposited on the surface of blueberry fruits. There was no apparent difference in wax morphology among the nine cultivars. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effects of cuticular wax on the postharvest quality of blueberry fruit.

    Science.gov (United States)

    Chu, Wenjing; Gao, Haiyan; Chen, Hangjun; Fang, Xiangjun; Zheng, Yonghua

    2018-01-15

    The blueberry fruit has a light-blue appearance because its blue-black skin is covered with a waxy bloom. This layer is easily damaged or removed during fruit harvesting and postharvest handling. We investigated the effects of wax removal on the postharvest quality of blueberry fruit and their possible mechanisms. The removal of natural wax on the fruit was found to accelerate the postharvest water loss and decay, reduce the sensory and nutritional qualities, and shorten the shelf-life. Wax removal decreased the activities of antioxidant enzymes and contents of antioxidants, and accelerated accumulation of ROS and lipid peroxidation, especially at the later period of storage. Moreover, the organellar membrane structure was disrupted in fruit with wax removed. These results indicate that cuticular wax plays an important role in maintaining the postharvest quality and delaying fruit senescence. The results should improve our understanding for better preservation of postharvest quality of blueberry fruit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Biosynthesis of silver nanoparticles synthesized by Aspergillus ...

    Indian Academy of Sciences (India)

    Biotechnology Division, Applied Science Department, University of ... Abstract. In the present study, biosynthesis of silver nanoparticles and its antioxidant, antimicrobial and cytotoxic ... example of the biosynthesis using fungi was that the cell-.

  4. 76 FR 773 - Petroleum Wax Candles From the People's Republic of China: Continuation of Antidumping Duty Order

    Science.gov (United States)

    2011-01-06

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-504] Petroleum Wax Candles From... Trade Commission (``ITC'') that revocation of the antidumping duty order on petroleum wax candles from... order on petroleum wax candles from the PRC pursuant to section 751(c)(2) of the Tariff Act of 1930, as...

  5. The shape of mammalian phylogeny

    DEFF Research Database (Denmark)

    Purvis, Andy; Fritz, Susanne A; Rodríguez, Jesús

    2011-01-01

    an assemblage, ecoregion or larger area always tends to be more unbalanced than expected from the phylogeny of species at the next more inclusive spatial scale. We conclude with a verbal model of mammalian macroevolution, which emphasizes the importance to diversification of accessing new regions...

  6. Evolutionary dynamics of mammalian karyotypes

    Directory of Open Access Journals (Sweden)

    Carlo Alberto Redi

    2012-12-01

    Full Text Available This special volume of Cytogenetic and Genome Research (edited by Roscoe Stanyon, University of Florence and Alexander Graphodatsky, Siberian division of the Russian Academy of Sciences is dedicated to the fascinating long search of the forces behind the evolutionary dynamics of mammalian karyotypes, revealed after the hypotonic miracle of the 1950s....

  7. Technology of mammalian cell encapsulation

    NARCIS (Netherlands)

    Uludag, H; De Vos, P; Tresco, PA

    2000-01-01

    Entrapment of mammalian cells in physical membranes has been practiced since the early 1950s when it was originally introduced as a basic research tool. The method has since been developed based on the promise of its therapeutic usefulness in tissue transplantation. Encapsulation physically isolates

  8. Marginal adaptation of four inlay casting waxes on stone, titanium, and zirconia dies.

    Science.gov (United States)

    Michalakis, Konstantinos X; Kapsampeli, Vassiliki; Kitsou, Aikaterini; Kirmanidou, Yvone; Fotiou, Anna; Pissiotis, Argirios L; Calvani, Pasquale Lino; Hirayama, Hiroshi; Kudara, Yukio

    2014-07-01

    Different inlay casting waxes do not produce copings with satisfactory marginal accuracy when used on different die materials. The purpose of this study was to evaluate the marginal accuracy of 4 inlay casting waxes on stone dies and titanium and zirconia abutments and to correlate the findings with the degree of wetting between the die specimens and the inlay casting waxes. The inlay casting waxes tested were Starwax (Dentaurum), Unterziehwachs (Bredent), SU Esthetic wax (Schuler), and Sculpturing wax (Renfert). The marginal opening of the waxes was measured with a stereomicroscope on high-strength stone dies and on titanium and zirconia abutments. Photographic images were obtained, and the mean marginal opening for each specimen was calculated. A total of 1440 measurements were made. Wetting between die materials and waxes was determined after fabricating stone, titanium, and zirconia rectangular specimens. A calibrated pipette was used to place a drop of molten wax onto each specimen. The contact angle was calculated with software after an image of each specimen had been made with a digital camera. Collected data were subjected to a 2-way analysis of variance (α=.05). Any association between marginal accuracy and wetting of different materials was found by using the Pearson correlation. The wax factor had a statistically significant effect both on the marginal discrepancy (F=158.31, P<.001) and contact angle values (F=68.09, P<.001). A statistically significant effect of the die material factor both on the marginal adaptation (F=503.47, P<.001) and contact angle values (F=585.02, P<.001) was detected. A significant correlation between the marginal accuracy and the contact angle values (Pearson=0.881, P=.01) was also found. Stone dies provided wax copings with the best marginal integrity, followed by titanium and zirconia abutments. Unterziehwachs (Bredent), wax produced the best marginal adaptation on different die materials. A significant correlation was found

  9. The effect of the environment on the structure, quantity and composition of spruce needle wax

    International Nuclear Information System (INIS)

    Guenthardt-Goerg, M.S.

    1994-01-01

    The tubular structure (10-nonacosanol), as formed in spring on the wax surface of new spruce needles (Picea abies (L.)Karst.), or as regenerated on previous-year needles, becomes gradually fused and flattened in relation to needle exposure, particularly wind and rain. Structural flattening does not necessarily imply changes in wax quantity, composition or lead to changes in needle transpiration or photosynthesis, and was approximately reproduced by bathing excised twigs in water (with pH having little effect). In 4-year-old plants of one clone planted out at a Swiss plateau and alpine sites, changes in wax structure were similar to those found in mature trees. No such changes were found in plants with O 3 , SO 2 , ambient air, charcoal-filtered air, or in plants grown outside the chambers but shielded from rain. Area-related needle wax quantity in mature trees differed between the two sites, but did not differ in young plants under different treatments (fumigation or planted out at the sites). Minor differences in wax composition, however, were found to be related to the ozone dose of the fumigation or the ambient ozone dose at the sites. In each needle wax sample, 68 compounds grouped into 12 constituent classes were quantified. The quantity of the individual substituent classes varied among wax samples from genetically different mature trees at the two sites in a tree-specific way. Variation of these quantities was not larger than among young cloned plants after different treatments. (orig.)

  10. Wax inhibitor based on ethylene vinyl acetate with methyl methacrylate and diethanolamine for crude oil pipeline

    Science.gov (United States)

    Anisuzzaman, S. M.; Abang, S.; Bono, A.; Krishnaiah, D.; Karali, R.; Safuan, M. K.

    2017-06-01

    Wax precipitation and deposition is one of the most significant flow assurance challenges in the production system of the crude oil. Wax inhibitors are developed as a preventive strategy to avoid an absolute wax deposition. Wax inhibitors are polymers which can be known as pour point depressants as they impede the wax crystals formation, growth, and deposition. In this study three formulations of wax inhibitors were prepared, ethylene vinyl acetate, ethylene vinyl acetate co-methyl methacrylate (EVA co-MMA) and ethylene vinyl acetate co-diethanolamine (EVA co-DEA) and the comparison of their efficiencies in terms of cloud point¸ pour point, performance inhibition efficiency (%PIE) and viscosity were evaluated. The cloud point and pour point for both EVA and EVA co-MMA were similar, 15°C and 10-5°C, respectively. Whereas, the cloud point and pour point for EVA co-DEA were better, 10°C and 10-5°C respectively. In conclusion, EVA co-DEA had shown the best % PIE (28.42%) which indicates highest percentage reduction of wax deposit as compared to the other two inhibitors.

  11. Anatomical models and wax Venuses: art masterpieces or scientific craft works?

    Science.gov (United States)

    Ballestriero, R

    2010-02-01

    The art of wax modelling has an ancient origin but rose to prominence in 14th century Italy with the cult of votive artefacts. With the advent of Neoclassicism this art, now deemed repulsive, continued to survive in a scientific environment, where it flourished in the study of normal and pathological anatomy, obstetrics, zoology and botany. The achievement of having originated the creation of anatomical models in coloured wax must be ascribed to a joint effort undertaken by the Sicilian wax modeller Gaetano Giulio Zumbo and the French surgeon Guillaume Desnoues in the late 17th century. Interest in anatomical wax models spread throughout Europe during the 18th century, first in Bologna with Ercole Lelli, Giovanni Manzolini and Anna Morandi, and then in Florence with Felice Fontana and Clemente Susini. In England, the art of anatomical ceroplastics was brought to London from Florence by the sculptor Joseph Towne. Throughout the centuries many anatomical artists preferred this material due to the remarkable mimetic likeness obtained, far surpassing any other material. Independent of the material used, whether wood, wax or clay, anatomical models were always considered merely craft works confined to hospitals or faculties of medicine and have survived to this day only because of their scientific interest. Italian and English waxes are stylistically different but the remarkable results obtained by Susini and Towne, and the fact that some contemporary artists are again representing anatomical wax bodies in their works, makes the border that formerly separated art and craft indistinguishable.

  12. Phase Change Insulation for Energy Efficiency Based on Wax-Halloysite Composites

    International Nuclear Information System (INIS)

    Zhao, Yafei; Thapa, Suvhashis; Weiss, Leland; Lvov, Yuri

    2014-01-01

    Phase change materials (PCMs) have gained extensive attention in thermal energy storage. Wax can be used as a PCM in solar storage but it has low thermal conductivity. Introducing 10% halloysite admixed into wax yields a novel composite (wax-halloysite) which has a thermal conductivity of 0.5 W/mK. To increase the base conductivity, graphite and carbon nanotubes were added into the PCM composite improving its thermal energy storage. Thermal conductivity of wax-halloysite-graphite (45/45/10%) composite showed increased conductivity of 1.4 W/mK (3 times higher than the base wax-halloysite composite). Wax- halloysite-graphite-carbon nanotubes (45/45/5/5%) composite showed conductivity of 0.85 W/mK while maintaining the original shape perfectly until 91 °C (above the original wax melting point). Thermal conductivity can be further increased with higher doping of carbon nanotubes. This new composites are promising heat storage material due to good thermal stability, high thermal/electricity conductivity and ability to preserve its shape during phase transitions

  13. Development of formulations and processes to incorporate wax oleogels in ice cream.

    Science.gov (United States)

    Zulim Botega, Daniele C; Marangoni, Alejandro G; Smith, Alexandra K; Goff, H Douglas

    2013-12-01

    The objective of this study was to investigate the influence of emulsifiers, waxes, fat concentration, and processing conditions on the application of wax oleogel to replace solid fat content and create optimal fat structure in ice cream. Ice creams with 10% or 15% fat were formulated with rice bran wax (RBW), candelilla wax (CDW), or carnauba wax (CBW) oleogels, containing 10% wax and 90% high-oleic sunflower oil. The ice creams were produced using batch or continuous freezing processes. Transmission electron microscopy (TEM) and cryo-scanning electron microscopy were used to evaluate the microstructure of ice cream and the ultrastructure of oleogel droplets in ice cream mixes. Among the wax oleogels, RBW oleogel had the ability to form and sustain structure in 15% fat ice creams when glycerol monooleate (GMO) was used as the emulsifier. TEM images revealed that the high degree of fat structuring observed in GMO samples was associated with the RBW crystal morphology within the fat droplet, which was characterized by the growth of crystals at the outer edge of the droplet. Continuous freezing improved fat structuring compared to batch freezing. RBW oleogels established better structure compared to CDW or CBW oleogels. These results demonstrate that RBW oleogel has the potential to develop fat structure in ice cream in the presence of GMO and sufficiently high concentrations of oleogel. © 2013 Institute of Food Technologists®

  14. Accuracy of ringless casting and accelerated wax-elimination technique: a comparative in vitro study.

    Science.gov (United States)

    Prasad, Rahul; Al-Keraif, Abdulaziz Abdullah; Kathuria, Nidhi; Gandhi, P V; Bhide, S V

    2014-02-01

    The purpose of this study was to determine whether the ringless casting and accelerated wax-elimination techniques can be combined to offer a cost-effective, clinically acceptable, and time-saving alternative for fabricating single unit castings in fixed prosthodontics. Sixty standardized wax copings were fabricated on a type IV stone replica of a stainless steel die. The wax patterns were divided into four groups. The first group was cast using the ringless investment technique and conventional wax-elimination method; the second group was cast using the ringless investment technique and accelerated wax-elimination method; the third group was cast using the conventional metal ring investment technique and conventional wax-elimination method; the fourth group was cast using the metal ring investment technique and accelerated wax-elimination method. The vertical marginal gap was measured at four sites per specimen, using a digital optical microscope at 100× magnification. The results were analyzed using two-way ANOVA to determine statistical significance. The vertical marginal gaps of castings fabricated using the ringless technique (76.98 ± 7.59 μm) were significantly less (p castings fabricated using the conventional metal ring technique (138.44 ± 28.59 μm); however, the vertical marginal gaps of the conventional (102.63 ± 36.12 μm) and accelerated wax-elimination (112.79 ± 38.34 μm) castings were not statistically significant (p > 0.05). The ringless investment technique can produce castings with higher accuracy and can be favorably combined with the accelerated wax-elimination method as a vital alternative to the time-consuming conventional technique of casting restorations in fixed prosthodontics. © 2013 by the American College of Prosthodontists.

  15. Tectonic microplates in a wax model of sea-floor spreading

    International Nuclear Information System (INIS)

    Katz, Richard F; Ragnarsson, Rolf; Bodenschatz, Eberhard

    2005-01-01

    Rotating, growing microplates are observed in a wax analogue model of sea-floor spreading. Wax microplates are kinematically similar to sea-floor tectonic microplates in terms of spreading rate and growth rate. Furthermore, their spiral pseudofault geometry is quantitatively consistent with Schouten's oceanic microplate model. These results suggest that Schouten's edge-driven microplate model captures the kinematics of tectonic microplate evolution on Earth. Based on the wax observations, a theory for the nucleation of overlapping spreading centres, the precursors of tectonic microplates, is developed

  16. Caffeine and theobromine in epicuticular wax of Ilex paraguariensis A. St.-Hil.

    Science.gov (United States)

    Athayde, M L; Coelho, G C; Schenkel, E P

    2000-12-01

    Caffeine and theobromine were identified and quantified in leaf epicuticular waxes of Ilex paraguariensis A. St.-Hil. (Aquifoliaceae). The total epicuticular leaf wax content was ca. 0.5% on average of dry leaf weight. Epicuticular caffeine and theobromine contents varied from 0.16 to 127.6 microg/mg and from 0 to 9.5 microg/mg of wax, respectively. For some selected samples, the intracellular methylxanthine concentration was also determined. A positive correlation was found between inner and epicuticular caffeine contents.

  17. Purification of a jojoba embryo wax synthase, cloning of its cDNA, and production of high levels of wax in seeds of transgenic arabidopsis.

    Science.gov (United States)

    Lardizabal, K D; Metz, J G; Sakamoto, T; Hutton, W C; Pollard, M R; Lassner, M W

    2000-03-01

    Wax synthase (WS, fatty acyl-coenzyme A [coA]: fatty alcohol acyltransferase) catalyzes the final step in the synthesis of linear esters (waxes) that accumulate in seeds of jojoba (Simmondsia chinensis). We have characterized and partially purified this enzyme from developing jojoba embryos. A protein whose presence correlated with WS activity during chromatographic fractionation was identified and a cDNA encoding that protein was cloned. Seed-specific expression of the cDNA in transgenic Arabidopsis conferred high levels of WS activity on developing embryos from those plants. The WS sequence has significant homology with several Arabidopsis open reading frames of unknown function. Wax production in jojoba requires, in addition to WS, a fatty acyl-CoA reductase (FAR) and an efficient fatty acid elongase system that forms the substrates preferred by the FAR. We have expressed the jojoba WS cDNA in Arabidopsis in combination with cDNAs encoding the jojoba FAR and a beta-ketoacyl-CoA synthase (a component of fatty acid elongase) from Lunaria annua. (13)C-Nuclear magnetic resonance analysis of pooled whole seeds from transgenic plants indicated that as many as 49% of the oil molecules in the seeds were waxes. Gas chromatography analysis of transmethylated oil from individual seeds suggested that wax levels may represent up to 70% (by weight) of the oil present in those seeds.

  18. Particulate pollutants are capable to 'degrade' epicuticular waxes and to decrease the drought tolerance of Scots pine (Pinus sylvestris L.).

    Science.gov (United States)

    Burkhardt, Juergen; Pariyar, Shyam

    2014-01-01

    Air pollution causes the amorphous appearance of epicuticular waxes in conifers, usually called wax 'degradation' or 'erosion', which is often correlated with tree damage symptoms, e.g., winter desiccation. Previous investigations concentrated on wax chemistry, with little success. Here, we address the hypothesis that both 'wax degradation' and decreasing drought tolerance of trees may result from physical factors following the deposition of salt particles onto the needles. Pine seedlings were sprayed with dry aerosols or 50 mM solutions of different salts. The needles underwent humidity changes within an environmental scanning electron microscope, causing salt expansion on the surface and into the epistomatal chambers. The development of amorphous wax appearance by deliquescent salts covering tubular wax fibrils was demonstrated. The minimum epidermal conductance of the sprayed pine seedlings increased. Aerosol deposition potentially 'degrades' waxes and decreases tree drought tolerance. These effects have not been adequately considered thus far in air pollution research. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Bioenergetics of mammalian sperm capacitation.

    Science.gov (United States)

    Ferramosca, Alessandra; Zara, Vincenzo

    2014-01-01

    After ejaculation, the mammalian male gamete must undergo the capacitation process, which is a prerequisite for egg fertilization. The bioenergetics of sperm capacitation is poorly understood despite its fundamental role in sustaining the biochemical and molecular events occurring during gamete activation. Glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) are the two major metabolic pathways producing ATP which is the primary source of energy for spermatozoa. Since recent data suggest that spermatozoa have the ability to use different metabolic substrates, the main aim of this work is to present a broad overview of the current knowledge on the energy-producing metabolic pathways operating inside sperm mitochondria during capacitation in different mammalian species. Metabolism of glucose and of other energetic substrates, such as pyruvate, lactate, and citrate, is critically analyzed. Such knowledge, besides its obvious importance for basic science, could eventually translate into the development of novel strategies for treatment of male infertility, artificial reproduction, and sperm selection methods.

  20. The enzymology of polyether biosynthesis.

    Science.gov (United States)

    Liu, Tiangang; Cane, David E; Deng, Zixin

    2009-01-01

    Polyether ionophore antibiotics are a special class of polyketides widely used in veterinary medicine, and as food additives in animal husbandry. In this article, we review current knowledge about the mechanism of polyether biosynthesis, and the genetic and biochemical strategies used for its study. Several clear differences distinguish it from traditional type I modular polyketide biosynthesis: polyether backbones are assembled by modular polyketide synthases but are modified by two key enzymes, epoxidase and epoxide hydrolase, to generate the product. All double bonds involved in the oxidative cyclization in the polyketide backbone are of E geometry. Chain release in the polyether biosynthetic pathway requires a special type II thioesterase which specifically hydrolyzes the polyether thioester. All these discoveries should be very helpful for a deep understanding of the biosynthetic mechanism of this class of important natural compounds, and for the targeted engineering of polyether derivatives.

  1. DGAT enzymes and triacylglycerol biosynthesis

    OpenAIRE

    Yen, Chi-Liang Eric; Stone, Scot J.; Koliwad, Suneil; Harris, Charles; Farese, Robert V.

    2008-01-01

    Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, ...

  2. In search of low cost biological analysis: Wax or acrylic glue bonded paper microfluidic devices

    KAUST Repository

    Kodzius, Rimantas

    2011-11-04

    In this body of work we have been developing and characterizing paper based microfluidic fabrication technologies to produce low cost biological analysis. Specifically we investigated the performance of paper microfluidics that had been bonded using wax o

  3. Effect of matrix granulation and wax coating on the dissolution rates ...

    African Journals Online (AJOL)

    disintegrating) granules consisting of paracetamol (drug) and acrylatemethacrylate copolymer, a matrix forming material. The effect of coating the matrix granules with wax on the drug release profiles was also investigated. The objective was to ...

  4. In search of low cost biological analysis: Wax or acrylic glue bonded paper microfluidic devices

    KAUST Repository

    Kodzius, Rimantas

    2011-01-01

    In this body of work we have been developing and characterizing paper based microfluidic fabrication technologies to produce low cost biological analysis. Specifically we investigated the performance of paper microfluidics that had been bonded using wax o

  5. Development and Properties of a Wax Ester Hydrolase in the Cotyledons of Jojoba Seedlings 1

    Science.gov (United States)

    Huang, Anthony H. C.; Moreau, Robert A.; Liu, Kitty D. F.

    1978-01-01

    The activity of a wax ester hydrolase in the cotyledons of jojoba (Simmondsia chinensis) seedlings increased drastically during germination, parallel to the development of the gluconeogenic process. The enzyme at its peak of development was obtained in association with the wax body membrane, and its properties were studied. It had an optimal activity at alkaline pH (8.5-9). The apparent Km value for N-methylindoxylmyristate was 93 μM. It was stable at 40 C for 30 min but was inactivated at higher temperature. Various divalent cations and ethylenediaminetetraacetate had little effect on the activity. p-Chloromercuribenzoate was a strong inhibitor of the enzyme activity, and its effect was reversed by subsequent addition of dithiothreitol. It had a broad substrate specificity with highest activities on monoglycerides, wax esters, and the native substrate (jojoba wax). PMID:16660288

  6. Development and properties of a wax ester hydrolase in the cotyledons of jojoba seedlings.

    Science.gov (United States)

    Huang, A H; Moreau, R A; Liu, K D

    1978-03-01

    The activity of a wax ester hydrolase in the cotyledons of jojoba (Simmondsia chinensis) seedlings increased drastically during germination, parallel to the development of the gluconeogenic process. The enzyme at its peak of development was obtained in association with the wax body membrane, and its properties were studied. It had an optimal activity at alkaline pH (8.5-9). The apparent K(m) value for N-methylindoxylmyristate was 93 muM. It was stable at 40 C for 30 min but was inactivated at higher temperature. Various divalent cations and ethylenediaminetetraacetate had little effect on the activity. p-Chloromercuribenzoate was a strong inhibitor of the enzyme activity, and its effect was reversed by subsequent addition of dithiothreitol. It had a broad substrate specificity with highest activities on monoglycerides, wax esters, and the native substrate (jojoba wax).

  7. Printed wax masks for 254 nm deep-UV pattering of PMMA-based microfluidics

    KAUST Repository

    Fan, Yiqiang; Liu, Yang; Li, Huawei; Foulds, Ian G.

    2012-01-01

    This paper reports a new technique for masking deep-UV exposure of poly(methyl methacrylate) (PMMA) using a printed wax mask. This technique provides an inexpensive and bulk fabrication method for PMMA structures. The technique involves the direct

  8. "Wax bloom" on beeswax cultural heritage objects: exploring the causes of the phenomenon

    Czech Academy of Sciences Publication Activity Database

    Bartl, B.; Kobera, Libor; Drábková, K.; Ďurovič, M.; Brus, Jiří

    2015-01-01

    Roč. 53, č. 7 (2015), s. 509-513 ISSN 0749-1581 Institutional support: RVO:61389013 Keywords : 13-C NMR * wax bloom * efflorescence Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.226, year: 2015

  9. Bee waxes: a model of characterization for using as base simulator tissue in teletherapy with photons

    International Nuclear Information System (INIS)

    Silva, Rogerio Matias Vidal da; Souza, Divanizia do Nascimento

    2011-01-01

    This paper presents a model of characterization and selection of bee waxes which makes possible to certify the usage viability of that base simulator tissue in the manufacture of appropriated objects for external radiotherapy with mega volt photon beams. The work was divide into three stages, where was evaluated physical and chemical properties besides the aspects related to the capacity of beam attenuation. All the process was carefully accompanied related to the wax origin such as the bee specimen and the flora surrounding the beehives. The chemical composition of the waxes is similar to others simulators usually used in radiotherapy. The behavior of mass attenuation coefficient in the radiotherapeutic energy range is comparable to other simulators, and consequently to the soft tissue. The proposed model is efficient and allows the affirmative that the usage of determined bee wax as base simulator tissue is convenient

  10. A comparative evaluation of the marginal adaptation of a thermoplastic resin, a light cured wax and an inlay casting wax on stone dies: An in vitro study.

    Science.gov (United States)

    Gopalan, Reji P; Nair, Vivek V; Harshakumar, K; Ravichandran, R; Lylajam, S; Viswambaran, Prasanth

    2018-01-01

    Different pattern materials do not produce copings with satisfactory, marginal accuracy when used on stone dies at varying time intervals. The purpose of this study was to evaluate and compare the vertical marginal accuracy of patterns formed from three materials, namely, thermoplastic resin, light cured wax and inlay casting wax at three-time intervals of 1, 12, and 24 h. A master die (zirconia abutment mimicking a prepared permanent maxillary central incisor) and metal sleeve (direct metal laser sintering crown #11) were fabricated. A total of 30 stone dies were obtained from the master die. Ten patterns were made each from the three materials and stored off the die at room temperature. The vertical marginal gaps were measured using digital microscope at 1, 12, and 24 h after reseating with gentle finger pressure. The results revealed a significant statistical difference in the marginal adaptation of three materials at all the three-time intervals. Light cured wax was found to be most accurate at all time intervals, followed by thermoplastic resin and inlay casting wax. Furthermore, there was a significant difference between all pairs of materials. The change in vertical marginal gap from 1 to 24 h between thermoplastic resin and light cured wax was not statistically significant. The marginal adaptation of all the three materials used, was well within the acceptable range of 25-70 μm. The resin pattern materials studied revealed significantly less dimensional change than inlay casting wax on storage at 1, 12, and 24 h time intervals. They may be employed in situations where high precision and delayed investing is expected.

  11. Accuracy of Digitally Fabricated Wax Denture Bases and Conventional Completed Complete Dentures

    Directory of Open Access Journals (Sweden)

    Bogna Stawarczyk

    2017-12-01

    Full Text Available The purpose of this investigation was to analyze the accuracy of digitally fabricated wax trial dentures and conventionally finalized complete dentures in comparison to a surface tessellation language (STL-dataset. A generated data set for the denture bases and the tooth sockets was used, converted into STL-format, and saved as reference. Five mandibular and 5 maxillary denture bases were milled from wax blanks and denture teeth were waxed into their tooth sockets. Each complete denture was checked on fit, waxed onto the dental cast, and digitized using an optical laboratory scanning device. The complete dentures were completed conventionally using the injection method, finished, and scanned. The resulting STL-datasets were exported into the three-dimensional (3D software GOM Inspect. Each of the 5 mandibular and 5 maxillary complete dentures was aligned with the STL- and the wax trial denture dataset. Alignment was performed based on a best-fit algorithm. A three-dimensional analysis of the spatial divergences in x-, y- and z-axes was performed by the 3D software and visualized in a color-coded illustration. The mean positive and negative deviations between the datasets were calculated automatically. In a direct comparison between maxillary wax trial dentures and complete dentures, complete dentures showed higher deviations from the STL-dataset than the wax trial dentures. The deviations occurred in the area of the teeth as well as in the distal area of the denture bases. In contrast, the highest deviations in both the mandibular wax trial dentures and the mandibular complete dentures were observed in the distal area. The complete dentures showed higher deviations on the occlusal surfaces of the teeth compared to the wax dentures. Computer-aided design/computer-aided manufacturing (CAD/CAM-fabricated wax dentures exhibited fewer deviations from the STL-reference than the complete dentures. The deviations were significantly greater in the

  12. Isolation and recrystallization of epicuticular waxes from Sorbus and Cotoneaster leaves

    OpenAIRE

    Ganeva Tsveta; Stefanova Miroslava; Koleva Dimitrina; Ruiz Segundo Ríos

    2015-01-01

    Wax morphology and chemical composition are widely accepted to be important for the protective properties of the leaf’s surface and also valuable characteristics in plant systematics. The leaves of Sorbus domestica L. and Cotoneaster granatensis Boiss., species of two large genera with intricate taxonomy referred to subtribe Pyrinae, Rosaceae (formerly subfamily Maloideae), were studied by scanning electron microscope (SEM) and performing different methods of wax isola...

  13. ETHNOECOLOGY AND ETHNOBOTANY OF THE PALM CARNAUBA WAX IN BRAZILIAN SEMI-ARID

    OpenAIRE

    Rodrigo Ferreira de Sousa; Richeliel Albert Rodrigues Silva; Talita Geovanna Fernandes Rocha; José Augusto da Silva Santana; Fábio de Almeida Vieira

    2015-01-01

    The aim of this study was to investigate aspects of ethnoecological and ethnobotanical of carnauba wax (Copernicia prunifera (Miller) H. E. Moore, Arecaceae) in an extractive community of municipality of Ipanguaçu, Rio Grande do Norte state. We interviewed key informants, using the technique of inducing nonspecific, guided tour and direct observation to confirm the data. According to most residents of Pedro Ezequiel Araújo community, the area of carnauba wax in the region is natural. In the r...

  14. Policosanol fabrication from insect wax and optimization by response surface methodology.

    Science.gov (United States)

    Ma, Jinju; Ma, Liyi; Zhang, Hong; Zhang, Zhongquan; Wang, Youqiong; Li, Kai; Chen, Xiaoming

    2018-01-01

    Insect wax is a famous biological resource for the role in economic production in China. Insect wax is a good source of policosanol, which may is a candidate supplement in foodstuff and pharmaceuticals that has important physiological activities. Therefore, this work aims to investigate a high-yield and rapid method for policosanol fabrication from insect wax. The conditions for policosanol fabrication were optimized as follows: an oil bath temperature of 112.7°C and reductant dosage of 0.97 g (used for the reduction of 10.00 g of insect wax). The yield of policosanol reached 83.20%, which was 4 times greater than that of existing methods, such as saponification. The total content of policosanol obtained under the optimal conditions reached 87%. In other words, a high yield of policosanol was obtained from insect wax (723.84 mg/g), that was 55 times higher than that generated from beeswax-brown via saponification. The concentrations of metal residues in policosanol were within the limits of the European Union regulations and EFSA stipulation. The LD50 values for oral doses of insect wax and policosanol were both > 5 g/kg. Policosanol was fabricated via solvent-free reduction from insect wax using LiAlH4 at a high yield. The fabrication conditions were optimized. Policosanol and insect wax showed high security, which made them potential candidates as supplements in foods, pharmaceuticals and cosmetics. The rapid and high-yield method has great potential for commercial manufacturing of policosanol.

  15. Epicuticular wax on stomata of damaged silver fir trees (Abies alba Mili.)

    OpenAIRE

    Tomislav Bačić; Ljiljana Krstin; Jadranka Roša; Željko Popović

    2011-01-01

    Condition of epistomatal wax on the abaxial surface of the current and previous-year needles of damaged silver fir trees (Abies alba Mill.), both from the polluted Risnjak and "clean" Donja Dobra sites in Gorski Kotar region, both influenced by pollutants coming from Europe, during two years, three times a year, were examined with Scanning Electron Microscope. In the course of time the wax tubules on the epistomatal rims of stomata in polluted, but also in "clean" needles surface, become fuse...

  16. A review of the performance and structural considerations of paraffin wax hybrid rocket fuels with additives

    Science.gov (United States)

    Veale, Kirsty; Adali, Sarp; Pitot, Jean; Brooks, Michael

    2017-12-01

    Paraffin wax as a hybrid rocket fuel has not been comprehensively characterised, especially regarding the structural feasibility of the material in launch applications. Preliminary structural testing has shown paraffin wax to be a brittle, low strength material, and at risk of failure under launch loading conditions. Structural enhancing additives have been identified, but their effect on motor performance has not always been considered, nor has any standard method of testing been identified between research institutes. A review of existing regression rate measurement techniques on paraffin wax based fuels and the results obtained with various additives are collated and discussed in this paper. The review includes 2D slab motors that enable visualisation of liquefying fuel droplet entrainment and the effect of an increased viscosity on the droplet entrainment mechanism, which can occur with the addition of structural enhancing polymers. An increased viscosity has been shown to reduce the regression rate of liquefying fuels. Viscosity increasing additives that have been tested include EVA and LDPE. Both these additives increase the structural properties of paraffin wax, where the elongation and UTS are improved. Other additives, such as metal hydrides, aluminium and boron generally offer improvements on the regression rate. However, very little consideration has been given to the structural effects these additives have on the wax grain. A 40% aluminised grain, for example, offers a slight increase in the UTS but reduces the elongation of paraffin wax. Geometrically accurate lab-scale motors have also been used to determine the regression rate properties of various additives in paraffin wax. A concise review of all available regression rate testing techniques and results on paraffin wax based hybrid propellants, as well as existing structural testing data, is presented in this paper.

  17. Monitoring agrochemical diffusion through cuticle wax with coherent Raman scattering

    Science.gov (United States)

    Gaunt, Nicholas P.; Thomson, Niall; Padia, Faheem; Moger, Julian

    2018-02-01

    The world's population is increasing rapidly and higher calorific diets are becoming more common; as a consequence the demand for grain is predicted to increase by more than 50% by 2050 without a significant increase in the available agricultural land. Maximising the productivity of the existing agricultural land is key to maintaining food security and agrochemicals continue to be a key enabler for the efficiency gains required. However, agrochemicals can be susceptible to significant losses and thus often require further chemical to be applied to compensate. Sources of such losses include spray drift, poor spray retention/capture by the target and poor penetration through the plant cuticle. Adjuvants can be used to help mitigate such losses but characterising how they alter the movement of the active ingredients (AIs) can be challenging. In this contribution we demonstrate the use of coherent Raman Scattering (CRS) as a tool to enable in-situ, real-time, label free characterisation of agrochemical AI as they move through wax.

  18. Mineral and tar oils and paraffin and mineral waxes, extracting

    Energy Technology Data Exchange (ETDEWEB)

    1927-09-01

    In the extraction of soluble bodies from coal and the like carbonaceous material, the coal is preheated in a closed vessel and then heated under pressure with the solvent. The pressure in either or both stages may be increased by gases or vapours more or less inert under the conditions, e.g. hydrogen, steam, carbon monoxide, and nitrogen. In an example, brown coal is maintained at 300/sup 0/C for 10 hours, thus producing a pressure of 100 atmospheres, and is then extracted for 10 hours at 300/sup 0/C and 100 atmospheres with benzene in a closed vessel. Over 60 per cent of the coal is dissolved. After separation of the undissolved coal and removal of the solvent the soluble products may be treated with either to extract resinous matter, and then with cyclohexane to extract wax-like matters. Alternatively the soluble products, alone or in solution or with the undissolved coal, may be destructively hydrogenated, or be cracked in presence of activated aluminium and hydrogen chloride.

  19. Testing of sawdust-wax firelogs in an open fireplace

    International Nuclear Information System (INIS)

    Shelton, J.

    1992-01-01

    A total of 14 emissions tests of sawdust-wax firelogs were conducted in an open fireplace. Twelve tests used a cold-to-cold test cycle (i.e., they included the initial light-up and final charcoal phases which are not included in certification tests for wood stoves). Of these 12 tests, half were with wood and half with firelogs. Firelogs were equivalent to or better than wood in all measured parameters except heat output rate, Specifically, the firelogs had lower PM and CO emission rates by about 66 and 78 percent, respectively, had lower creosote accumulation per hour by about 66 percent, had lower opacity, and had comparable efficiency despite a lower burn rate. The heat output rate from the wood fires rose faster and peaked earlier, but the average heat output for the main load (2 hours) phases was about the same (about 6000 to 7000 BTU/hr) for the large size firelogs. Opacity was measured continuously and never exceeded the limits of 20 and 40 percent in the Washington State 1988 woodburning emissions regulation. All these results are based on using the firelogs as their instructions specify - namely using one log at a time and starting it with a match in a room temperature fireplace

  20. Physico-chemical properties and efficacy of silk fibroin fabric coated with different waxes as wound dressing.

    Science.gov (United States)

    Kanokpanont, Sorada; Damrongsakkul, Siriporn; Ratanavaraporn, Juthamas; Aramwit, Pornanong

    2013-04-01

    Silk fibroin (SF) has been widely used as a wound dressing material due to its suitable physical and biological characteristics. In this study, a non-adhesive wound dressing which applies to cover the wound surface as an absorbent pad that would absorb wound fluid while accelerate wound healing was developed. The modification of SF fabrics by wax coating was purposed to prepare the non-adhesive wound dressing that is required in order to minimize pain and risk of repeated injury. SF woven fabrics were coated with different types of waxes including shellac wax, beeswax, or carnauba wax. Physical and mechanical properties of the wax-coated SF fabrics were characterized. It was clearly observed that all waxes could be successfully coated on the SF fabrics, possibly due to the hydrophobic interactions between hydrophobic domains of SF and waxes. The wax coating improved tensile modulus and percentage of elongation of the SF fabrics due to the denser structure and the thicker fibers coated. The in vitro degradation study demonstrated that all wax-coated SF fabrics remained up to 90% of their original weights after 7 weeks of incubation in lysozyme solution under physiological conditions. The wax coating did not affect the degradation behavior of the SF fabrics. A peel test of the wax-coated SF fabrics was carried out in the partial- and full-thickness wounds of porcine skin in comparison to that of the commercial wound dressing. Any wax-coated SF fabrics were less adhesive than the control, as confirmed by less number of cells attached and less adhesive force. This might be that the wax-coated SF fabrics showed the hydrophobic property, allowing the loosely adherence to the hydrophilic wound surface. In addition, the in vivo biocompatibility test of the wax-coated SF fabrics was performed in Sprague-Dawley rats with subcutaneous model. The irritation scores indicated that the carnauba wax-coated SF fabric was not irritant while the shellac wax or beeswax-coated SF

  1. Prediction of wax buildup in 24 inch cold, deep sea oil loading line

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, R.G.; Sattler, R.E.; Tolonen, W.J.; Pitchford, A.C.

    1981-10-01

    When designing pipelines for cold environments, it is important to know how to predict potential problems due to wax deposition on the pipeline's inner surface. The goal of this work was to determine the rate of wax buildup and the maximum, equlibrium wax thickness for a North Sea field loading line. The experimental techniques and results used to evaluate the waxing potential of the crude oil (B) are described. Also, the theoretic model which was used for predicting the maximum wax deposit thickness in the crude oil (B) loading pipeline at controlled temperatures of 40 F (4.4 C) and 100 F (38 C), is illustrated. Included is a recommendation of a procedure for using hot oil at the end of a tanker loading period in order to dewax the crude oil (B) line. This technique would give maximum heating of the pipeline and should be followed by shutting the hot oil into the pipeline at the end of the loading cycle which will provide a hot oil soaking to help soften existing wax. 14 references.

  2. Problems in interpreting effects of air pollutants on spruce epicuticular waxes

    International Nuclear Information System (INIS)

    Bermadinger-Stabentheiner, E.

    1994-01-01

    Spruce needles are covered with rod-like crystals, which also fill the antechambers of the stomata with a dense meshwork. The scanning electron microscope (SEM) is very useful for studying epicuticular wax structure; with no intricate or laborious preparation, it is possible to obtain valuable information about the needle surface. Because the epicuticular wax layer forms a barrier between the plant and its environment, all influences that reach the surface from outside impact on this layer and, therefore, changes in epicuticular wax structure serve as diagnostic criteria for damage caused by air pollutants. This pollution influence begins as fusion of wax rods at the tips and results finally in total loss of the crystalline structure. Despite the simplicity of SEM investigations, alterations (artefacts) can occur to wax structures that may be confused with alterations caused by air pollutants (i.e., a too dense layer of twigs and needles, or careless handling with tweezers, results in mechanical damage that often influences the entire surface). Overheating occurring during transport or preparation and/or incorrect storage also produce artefacts. If the occurrence of such artefacts is taken into consideration, several contradictory interpretations of effects of air pollutants on epicuticular waxes can be explained. (orig.)

  3. QUALITATIVE ANALYSIS METHOD OF DETECTION OF WAX CONTENT IN GORENGAN USING SMARTPHONE

    Directory of Open Access Journals (Sweden)

    Yulia Yulia

    2018-05-01

    Full Text Available Wax is one of the compounds that can be misused to be added to Gorengan, Indonesian fritter, to keep them crispy. Gorengan containing wax is difficult to identify visually, so a quick and easy method of detecting wax content is required. The purpose of this research is to develop and evaluate the analytical performance of detecting wax content in gorengan using smartphone. Gorengan sample was dissolved with hexane and then added reagent that will give discoloration followed by analysis using smartphone. Some analysis performance parameters were evaluated in terms of linearity and detection limit, qualitative analysis capability, precision, and selectivity test. The developed method was also applied in some gorengan samples. The result shows that the detection of wax content in gorengan can be conducted by using reagent consisting of NaOH, Schift, and curcumin (1 : 2 : 2. Performance analysis shows that the linearity measurement at concentration between 10% and 25% has correlation coefficient (r of 0.9537 with detection limit at concentration of 2% and precision (%RSD less than 3%. The developed method can be applied for the detection of wax content in gorengan in the market.

  4. Epicuticular waxes from caatinga and cerrado species and their efficiency against water loss

    Directory of Open Access Journals (Sweden)

    Oliveira Antonio F. M.

    2003-01-01

    Full Text Available The effects of the contents and chemical composition of the foliar epicuticular waxes of species from the caatinga (Aspidosperma pyrifolium, Capparis yco, Maytenus rigida and Ziziphus joazeiro and cerrado (Aristolochia esperanzae, Didymopanax vinosum, Strychnos pseudoquina and Tocoyena formosa were evaluated as to the resistance to water loss by means of an experimental device constructed for this purpose. In general, the waxes of the caatinga species investigated were more efficient against water loss than cerrado species. Increase of the thickness of the waxy deposits from 40 to 90m g.cm-2 had no significant effect on the resistance to water loss. The chemistry of the wax constituents was shown to be an important factor to determine the degree of resistance to evaporation. n-Alkanes and alcoholic triterpenes were the most efficient barriers, while hentriacontan-16-one (a ketone and ursolic acid (an acid triterpene revealed lowefficiency. The higher efficiency of the waxes of the leaves from caatinga species (mainly those of C. yco and Z. joazeiro is probably accounted for the predominance of n-alkanes in their composition. The lower efficiency of the waxes of A. pyrifolium (caatinga, T. formosa and A. esperanzae (both species from the cerrado is probably a consequence of the predominance of triterpenoids in the waxes of the two former species and hentriacontan-16-one in the latter.

  5. Electrochemical behaviors of wax-coated Li powder/Li 4Ti 5O 12 cells

    Science.gov (United States)

    Park, Han Eol; Seong, Il Won; Yoon, Woo Young

    The wax-coated Li powder specimen was effectively synthesized using the drop emulsion technique (DET). The wax layer on the powder was verified by SEM, Focused Ion Beam (FIB), EDX and XPS. The porosity of a sintered wax-coated Li electrode was measured by linear sweep voltammetry (LSV) and compared with that of a bare, i.e., un-coated Li electrode. The electrochemical behavior of the wax-coated Li powder anode cell was examined by the impedance analysis and cyclic testing methods. The cyclic behavior of the wax-coated Li powder anode with the Li 4Ti 5O 12 (LTO) cathode cell was examined at a constant current density of 0.35 mA cm -2 with the cut-off voltages of 1.2-2.0 V at 25 °C. Over 90% of the initial capacity of the cell remained even after the 300th cycle. The wax-coated Li powder was confirmed to be a stable anode material.

  6. The use of paraffin wax in a new solar cooker with inner and outer reflectors

    Directory of Open Access Journals (Sweden)

    Arabacigil Bihter

    2015-01-01

    Full Text Available In this paper, the potential use and effectiveness of paraffin wax in a new solar cooker was experimentally investigated during daylight and late evening hours. For these experiments, a cooker having an inner reflecting surface was designed, constructed by filling paraffin wax and metal shavings. The side- and sub-surface temperatures of the paraffin wax in the cooker are measured in the summer months of June and July. The thermal efficiency of the cooker was tested on different conditions. The results show that the optimum angle of the outer reflector is 30°. Here, the peak temperature of the paraffin wax in the solar cooker was 83.4 °C. The average solar radiation reflected makes a contribution of 9.26% to the temperature of paraffin wax with the outer reflector. The solar cooker with the outer reflector angle of 30° receives also reflected radiation from the inner reflectors. Besides, the heating time is decreased to approximately 1 hour. The designed solar cooker can be effectively used with 30.3% daily thermal efficiency and paraffin wax due to the amount of energy stored.

  7. Wax encapsulation of water-soluble compounds for application in foods.

    Science.gov (United States)

    Mellema, M; Van Benthum, W A J; Boer, B; Von Harras, J; Visser, A

    2006-11-01

    Water-soluble ingredients have been successfully encapsulated in wax using two preparation techniques. The first technique ('solid preparation') leads to relatively large wax particles. The second technique ('liquid preparation') leads to relatively small wax particles immersed in vegetable oil. On the first technique: stable encapsulation of water-soluble colourants (dissolved at low concentration in water) has been achieved making use of beeswax and PGPR. The leakage from the capsules, for instance of size 2 mm, is about 30% after 16 weeks storage in water at room temperature. To form such capsules a minimum wax mass of 40% relative to the total mass is needed. High amounts of salt or acids at the inside water phase causes more leaking, probably because of the osmotic pressure difference. Osmotic matching of inner and outer phase can lead to a dramatic reduction in leakage. Fat capsules are less suitable to incorporate water soluble colourants. The reason for this could be a difference in crystal structure (fat is less ductile and more brittle). On the second technique: stable encapsulation of water-soluble colourants (encapsulated in solid wax particles) has been achieved making use of carnauba wax. The leakage from the capsules, for instance of size 250 mm, is about 40% after 1 weeks storage in water at room temperature.

  8. Waxes and plastic film in relation to the shelf life of yellow passion fruit

    Directory of Open Access Journals (Sweden)

    Mota Wagner Ferreira da

    2003-01-01

    Full Text Available The high perishability of the yellow passion fruit (Passiflora edulis f. flavicarpa reduces its postharvest conservation and availability, mainly for in natura consumption. These losses of quality and commercial value occur due to the high respiration and loss of water. This work aimed to evaluate the influence of a modified atmosphere - wax emulsions and plastic film - on the shelf life of the yellow passion fruit. Plastic film (Cryovac D-955, 15 mum thickness reduced fresh weight loss and fruit wilting, kept higher fruit and rind weight and higher pulp osmotic potential over the storage period. However, it was not efficient in the control of rottenness. Sparcitrus wax (22-23% polyethylene/maleyc resin caused injury to the fruit, high fruit weight losses and wilting and resulted in lower pulp osmotic potential; this wax lead to a higher concentration of acid and a lower relation of soluble solids/acidity. Among the tested waxes, Fruit Wax (18-21% carnauba wax was the best, promoting reduced weight loss, wilting and rottenness.

  9. Effects of Wax Coating on the Moisture Loss of Cucumbers at Different Storage Temperatures

    Directory of Open Access Journals (Sweden)

    Jian Li

    2018-01-01

    Full Text Available The effects of wax coating on moisture loss of cucumbers (Cucumis sativus L., cv. Jinglv were investigated at different temperatures. Cucumbers were treated with 10% (volume : volume wax and then stored at 15, 20, 25, or 30°C and 55% relative humidity. The changes in the mass of samples were recorded every 6 h. Results showed that wax coating along with low temperature was very effective in preventing moisture loss of cucumbers during simulated distribution. After 48 h storage, moisture loss in wax treated cucumbers at 15°C was 45% lower than the control at 30°C. Furthermore, a kinetic model was developed to study the influence of temperature on moisture loss based on the Arrhenius law. The model successfully described changes in cucumber moisture loss at different temperatures during storage. The shelf life of cucumber was also predicted using the kinetic model. A synergistic effect was found between wax coating and storage temperature on cucumber shelf life. Wax coating combined with low storage temperature was an effective method to extend the shelf life of cucumber fruit.

  10. Electrically conductive carbon nanofiber/paraffin wax composites for electric thermal storage

    International Nuclear Information System (INIS)

    Zhang Kun; Han Baoguo; Yu Xun

    2012-01-01

    Highlights: ► Carbon nanofiber (CNF)/paraffin wax composite is found to be a promising electric thermal storage material. ► The thermal storage capacity of CNF/paraffin wax composite is five times of traditional electric thermal storage material. ► CNF is shown to be an effective conductive filler for the composite. - Abstract: The research of electric thermal storage (ETS) has attracted a lot of attention recently, which converts off-peak electrical energy into thermal energy and release it later at peak hours. In this study, new electric thermal storage composites are developed by employing paraffin wax as thermal storage media and carbon nanofiber (CNF) as conductive fillers. Electric heating and thermal energy release performances of the CNF/paraffin wax composites are experimentally investigated. Experimental results show that, when the composites are heated to about 70 °C, the developed electrically conductive CNF/paraffin wax composites present a thermal storage capacity of about 280 kJ/kg, which is five times of that of traditional thermal storage medium such as ceramic bricks (54 kJ/kg). The CNF/paraffin wax composites can also effectively store the thermal energy and release the thermal energy in later hours.

  11. Composition of the epicuticular and intracuticular wax layers on Kalanchoe daigremontiana (Hamet et Perr. de la Bathie) leaves.

    Science.gov (United States)

    van Maarseveen, Clare; Jetter, Reinhard

    2009-05-01

    Epicuticular and intracuticular waxes from both adaxial and abaxial surfaces of the leaves of Kalanchoe daigremontiana were analyzed. All wax mixtures were found to contain approximately equal amounts of triterpenoids and very long chain fatty acid (VLCFA) derivatives. The triterpenoid fraction consisted of glutinol (8-19% of the total wax) and friedelin (4-9%), together with smaller amounts of glutanol, glutinol acetate, epifriedelanol, germanicol and beta-amyrin. The VLCFA derivatives comprised C27-C35 alkanes (19-37% of the total wax), C32-C34 aldehydes (3-7%), C32 and C34 fatty acids (0.2-3%), C26-C36 primary alcohols (4-8%), and C42-C52 alkyl esters (2-9%). The wax layers were found to differ in triterpenoid amounts, with the intracuticular wax containing higher percentages of most triterpenoids than the epicuticular wax. Friedelin, the only triterpenoid ketone present, showed the opposite distribution with higher proportions in the epicuticular wax. VLCFA derivatives also accumulated to higher percentages in the epicuticular than in the intracuticular wax layer. Epicuticular wax crystals were observed on both the adaxial and abaxial leaf surfaces.

  12. Sterol Biosynthesis Pathway as Target for Anti-trypanosomatid Drugs

    Directory of Open Access Journals (Sweden)

    Wanderley de Souza

    2009-01-01

    Full Text Available Sterols are constituents of the cellular membranes that are essential for their normal structure and function. In mammalian cells, cholesterol is the main sterol found in the various membranes. However, other sterols predominate in eukaryotic microorganisms such as fungi and protozoa. It is now well established that an important metabolic pathway in fungi and in members of the Trypanosomatidae family is one that produces a special class of sterols, including ergosterol, and other 24-methyl sterols, which are required for parasitic growth and viability, but are absent from mammalian host cells. Currently, there are several drugs that interfere with sterol biosynthesis (SB that are in use to treat diseases such as high cholesterol in humans and fungal infections. In this review, we analyze the effects of drugs such as (a statins, which act on the mevalonate pathway by inhibiting HMG-CoA reductase, (b bisphosphonates, which interfere with the isoprenoid pathway in the step catalyzed by farnesyl diphosphate synthase, (c zaragozic acids and quinuclidines, inhibitors of squalene synthase (SQS, which catalyzes the first committed step in sterol biosynthesis, (d allylamines, inhibitors of squalene epoxidase, (e azoles, which inhibit C14α-demethylase, and (f azasterols, which inhibit Δ24(25-sterol methyltransferase (SMT. Inhibition of this last step appears to have high selectivity for fungi and trypanosomatids, since this enzyme is not found in mammalian cells. We review here the IC50 values of these various inhibitors, their effects on the growth of trypanosomatids (both in axenic cultures and in cell cultures, and their effects on protozoan structural organization (as evaluted by light and electron microscopy and lipid composition. The results show that the mitochondrial membrane as well as the membrane lining the protozoan cell body and flagellum are the main targets. Probably as a consequence of these primary effects, other important changes take

  13. Wax on, wax off

    DEFF Research Database (Denmark)

    Bos, Nicky Peter Maria; Grinsted, Lena; Holman, Luke

    2011-01-01

    of a waxy layer of colony-specific hydrocarbons on the body surface. Genetic and environmental differences between colony members may confound recognition and social cohesion, so many species perform behaviors that homogenize the odor label, such as mouth-to-mouth feeding and allogrooming. Here, we test....... We also found evidence that olfactory cues on the nest soil influence nestmate recognition, but this effect was not observed in all colonies. These results demonstrate that cuticular hydrocarbons deposited on the nest soil are important in creating uniformity in the odor label and may also contribute...

  14. A Metabolic Gene Cluster in the Wheat W1 and the Barley Cer-cqu Loci Determines β-Diketone Biosynthesis and Glaucousness.

    Science.gov (United States)

    Hen-Avivi, Shelly; Savin, Orna; Racovita, Radu C; Lee, Wing-Sham; Adamski, Nikolai M; Malitsky, Sergey; Almekias-Siegl, Efrat; Levy, Matan; Vautrin, Sonia; Bergès, Hélène; Friedlander, Gilgi; Kartvelishvily, Elena; Ben-Zvi, Gil; Alkan, Noam; Uauy, Cristobal; Kanyuka, Kostya; Jetter, Reinhard; Distelfeld, Assaf; Aharoni, Asaph

    2016-06-01

    The glaucous appearance of wheat (Triticum aestivum) and barley (Hordeum vulgare) plants, that is the light bluish-gray look of flag leaf, stem, and spike surfaces, results from deposition of cuticular β-diketone wax on their surfaces; this phenotype is associated with high yield, especially under drought conditions. Despite extensive genetic and biochemical characterization, the molecular genetic basis underlying the biosynthesis of β-diketones remains unclear. Here, we discovered that the wheat W1 locus contains a metabolic gene cluster mediating β-diketone biosynthesis. The cluster comprises genes encoding proteins of several families including type-III polyketide synthases, hydrolases, and cytochrome P450s related to known fatty acid hydroxylases. The cluster region was identified in both genetic and physical maps of glaucous and glossy tetraploid wheat, demonstrating entirely different haplotypes in these accessions. Complementary evidence obtained through gene silencing in planta and heterologous expression in bacteria supports a model for a β-diketone biosynthesis pathway involving members of these three protein families. Mutations in homologous genes were identified in the barley eceriferum mutants defective in β-diketone biosynthesis, demonstrating a gene cluster also in the β-diketone biosynthesis Cer-cqu locus in barley. Hence, our findings open new opportunities to breed major cereal crops for surface features that impact yield and stress response. © 2016 American Society of Plant Biologists. All rights reserved.

  15. Large scale purification and characterization of recombinant human autotaxin/lysophospholipase D from mammalian cells

    OpenAIRE

    Song, Yuanda; Dilger, Emily; Bell, Jessica; Barton, William A; Fang, Xianjun

    2010-01-01

    We utilized a mammalian expression system to purify and characterize autotaxin (ATX)/lysophospholipase D, an enzyme present in the blood responsible for biosynthesis of lysophosphatidic acid. The human ATX cDNA encoding amino acids 29–915 was cloned downstream of a secretion signal of CD5. At the carboxyl terminus was a thrombin cleavage site followed by the constant domain (Fc) of IgG to facilitate protein purification. The ATX-Fc fusion protein was expressed in HEK293 cells and isolated fro...

  16. A comparative evaluation of the marginal adaptation of a thermoplastic resin, a light cured wax and an inlay casting wax on stone dies: An in vitro study

    Directory of Open Access Journals (Sweden)

    Reji P Gopalan

    2018-01-01

    Conclusion: The marginal adaptation of all the three materials used, was well within the acceptable range of 25–70 μm. The resin pattern materials studied revealed significantly less dimensional change than inlay casting wax on storage at 1, 12, and 24 h time intervals. They may be employed in situations where high precision and delayed investing is expected.

  17. Comparison the Marginal and Internal Fit of Metal Copings Cast from Wax Patterns Fabricated by CAD/CAM and Conventional Wax up Techniques

    Science.gov (United States)

    Vojdani, M; Torabi, K; Farjood, E; Khaledi, AAR

    2013-01-01

    Statement of Problem: Metal-ceramic crowns are most commonly used as the complete coverage restorations in clinical daily use. Disadvantages of conventional hand-made wax-patterns introduce some alternative ways by means of CAD/CAM technologies. Purpose: This study compares the marginal and internal fit of copings cast from CAD/CAM and conventional fabricated wax-patterns. Materials and Method: Twenty-four standardized brass dies were prepared and randomly divided into 2 groups according to the wax-patterns fabrication method (CAD/CAM technique and conventional method) (n=12). All the wax-patterns were fabricated in a standard fashion by means of contour, thickness and internal relief (M1-M12: representative of CAD/CAM group, C1-C12: representative of conventional group). CAD/CAM milling machine (Cori TEC 340i; imes-icore GmbH, Eiterfeld, Germany) was used to fabricate the CAD/CAM group wax-patterns. The copings cast from 24 wax-patterns were cemented to the corresponding dies. For all the coping-die assemblies cross-sectional technique was used to evaluate the marginal and internal fit at 15 points. The Student’s t- test was used for statistical analysis (α=0.05). Results: The overall mean (SD) for absolute marginal discrepancy (AMD) was 254.46 (25.10) um for CAD/CAM group and 88.08(10.67) um for conventional group (control). The overall mean of internal gap total (IGT) was 110.77(5.92) um for CAD/CAM group and 76.90 (10.17) um for conventional group. The Student’s t-test revealed significant differences between 2 groups. Marginal and internal gaps were found to be significantly higher at all measured areas in CAD/CAM group than conventional group (pmarginal and internal fit than CAD/CAM (machine-milled) technique. All the factors for 2 groups were standardized except wax pattern fabrication technique, therefore, only the conventional group results in copings with clinically acceptable margins of less than 120um. PMID:24724133

  18. Numerical performance study of paraffin wax dispersed with alumina in a concentric pipe latent heat storage system

    Directory of Open Access Journals (Sweden)

    Valan Arasu Amirtham

    2013-01-01

    Full Text Available Latent heat energy storage systems using paraffin wax could have lower heat transfer rates during melting/freezing processes due to its inherent low thermal conductivity. The thermal conductivity of paraffin wax can be enhanced by employing high conductivity materials such as alumina (Al2O3. A numerical analysis has been carried out to study the performance enhancement of paraffin wax with nanoalumina (Al2O3 particles in comparison with simple paraffin wax in a concentric double pipe heat exchanger. Numerical analysis indicates that the charge-discharge rates of thermal energy can be greatly enhanced using paraffin wax with alumina as compared with a simple paraffin wax as PCM.

  19. Dental students' preferences and performance in crown design: conventional wax-added versus CAD.

    Science.gov (United States)

    Douglas, R Duane; Hopp, Christa D; Augustin, Marcus A

    2014-12-01

    The purpose of this study was to evaluate dental students' perceptions of traditional waxing vs. computer-aided crown design and to determine the effectiveness of either technique through comparative grading of the final products. On one of twoidentical tooth preparations, second-year students at one dental school fabricated a wax pattern for a full contour crown; on the second tooth preparation, the same students designed and fabricated an all-ceramic crown using computer-aided design (CAD) and computer-aided manufacturing (CAM) technology. Projects were graded for occlusion and anatomic form by three faculty members. On completion of the projects, 100 percent of the students (n=50) completed an eight-question, five-point Likert scalesurvey, designed to assess their perceptions of and learning associated with the two design techniques. The average grades for the crown design projects were 78.3 (CAD) and 79.1 (wax design). The mean numbers of occlusal contacts were 3.8 (CAD) and 2.9(wax design), which was significantly higher for CAD (p=0.02). The survey results indicated that students enjoyed designing afull contour crown using CAD as compared to using conventional wax techniques and spent less time designing the crown using CAD. From a learning perspective, students felt that they learned more about position and the size/strength of occlusal contacts using CAD. However, students recognized that CAD technology has limits in terms of representing anatomic contours and excursive occlusion compared to conventional wax techniques. The results suggest that crown design using CAD could be considered as an adjunct to conventional wax-added techniques in preclinical fixed prosthodontic curricula.

  20. Review of the Factors that Influence the Condition of Wax Deposition in Subsea Pipelines

    Directory of Open Access Journals (Sweden)

    Koh Junyi

    2018-03-01

    Full Text Available When crude oil is transported via sub-sea pipeline, the temperature of the pipeline decreases at a deep depth which causes a difference in temperature with the crude oil inside. This causes the crude oil to dissipate its heat to the surrounding until thermal equilibrium is achieved. This is also known as the cloud point where wax begins to precipitate and solidifies at the walls of the pipeline which obstruct the flow of fluid. The main objective of this review is to quantify the factors that influence wax deposition such as temperature difference between the wall of the pipeline and the fluid flowing within, the flow rate of the fluid in the pipeline and residence time of the fluid in the pipeline. It is found the main factor that causes wax deposition in the pipeline is the difference in temperature between the petroleum pipeline and the fluid flowing within. Most Literature deduces that decreasing temperature difference results in lower wax content deposited on the wall of the pipeline. The wax content increases with rising flow rate. As for the residence time, the amount of deposited wax initially increases when residence time increases until it reaches a peak value and gradually decreases. Flow-loop system and cold finger apparatus were used in literature investigations to determine the trends above. Three new models are generated through a regression analysis based on the results from other authors. These new models form a relationship between temperature difference, flow rate, residence time and Reynolds number with wax deposition. These models have high values of R-square and adjusted R-square which demonstrate the reliability of these models.

  1. Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds

    Science.gov (United States)

    Maneas, Efthymios; Xia, Wenfeng; Nikitichev, Daniil I.; Daher, Batol; Manimaran, Maniragav; Wong, Rui Yen J.; Chang, Chia-Wei; Rahmani, Benyamin; Capelli, Claudio; Schievano, Silvia; Burriesci, Gaetano; Ourselin, Sebastien; David, Anna L.; Finlay, Malcolm C.; West, Simeon J.; Vercauteren, Tom; Desjardins, Adrien E.

    2018-01-01

    Here we describe methods for creating tissue-mimicking ultrasound phantoms based on patient anatomy using a soft material called gel wax. To recreate acoustically realistic tissue properties, two additives to gel wax were considered: paraffin wax to increase acoustic attenuation, and solid glass spheres to increase backscattering. The frequency dependence of ultrasound attenuation was well described with a power law over the measured range of 3-10 MHz. With the addition of paraffin wax in concentrations of 0 to 8 w/w%, attenuation varied from 0.72 to 2.91 dB cm-1 at 3 MHz and from 6.84 to 26.63 dB cm-1 at 10 MHz. With solid glass sphere concentrations in the range of 0.025-0.9 w/w%, acoustic backscattering consistent with a wide range of ultrasonic appearances was achieved. Native gel wax maintained its integrity during compressive deformations up to 60%; its Young’s modulus was 17.4  ±  1.4 kPa. The gel wax with additives was shaped by melting and pouring it into 3D printed moulds. Three different phantoms were constructed: a nerve and vessel phantom for peripheral nerve blocks, a heart atrium phantom, and a placental phantom for minimally-invasive fetal interventions. In the first, nerves and vessels were represented as hyperechoic and hypoechoic tubular structures, respectively, in a homogeneous background. The second phantom comprised atria derived from an MRI scan of a patient with an intervening septum and adjoining vena cavae. The third comprised the chorionic surface of a placenta with superficial fetal vessels derived from an image of a post-partum human placenta. Gel wax is a material with widely tuneable ultrasound properties and mechanical characteristics that are well suited for creating patient-specific ultrasound phantoms in several clinical disciplines.

  2. Enhancer evolution across 20 mammalian species

    DEFF Research Database (Denmark)

    Villar, Diego; Berthelot, Camille; Aldridge, Sarah

    2015-01-01

    The mammalian radiation has corresponded with rapid changes in noncoding regions of the genome, but we lack a comprehensive understanding of regulatory evolution in mammals. Here, we track the evolution of promoters and enhancers active in liver across 20 mammalian species from six diverse orders...... by profiling genomic enrichment of H3K27 acetylation and H3K4 trimethylation. We report that rapid evolution of enhancers is a universal feature of mammalian genomes. Most of the recently evolved enhancers arise from ancestral DNA exaptation, rather than lineage-specific expansions of repeat elements....... These results provide important insight into the functional genetics underpinning mammalian regulatory evolution....

  3. Influence of putrescine and carnauba wax on functional and sensory quality of pomegranate (Punica granatum L.) fruits during storage

    OpenAIRE

    Barman, Kalyan; Asrey, Ram; Pal, R. K.; Kaur, Charanjit; Jha, S. K.

    2011-01-01

    Functional properties (anthocyanins, antioxidant, ascorbic acid and tannin) and sensory score were determined in pomegranate fruits at two storage temperatures (3 and 5 °C) after treatment with 2 mM putrescine and 1 : 10 carnauba wax (carnauba wax : water). The treatments (putrescine and carnauba wax) were given by immersion method followed by storage up to 60 days. Both treatments retained significantly higher anthocyanins, antioxidant, ascorbic acid, tannin and sensory qualities as compared...

  4. Oleic acid biosynthesis in cyanobacteria

    International Nuclear Information System (INIS)

    VanDusen, W.J.; Jaworski, J.G.

    1986-01-01

    The biosynthesis of fatty acids in cyanobacteria is very similar to the well characterized system found in green plants. However, the initial desaturation of stearic acid in cyanobacteria appears to represent a significant departure from plant systems in which stearoyl-ACP is the exclusive substrate for desaturation. In Anabaena variabilis, the substrate appears to be monoglucosyldiacylglycerol, a lipid not found in plants. The authors examined five different cyanobacteria to determine if the pathway in A. variabilis was generally present in other cyanobacteria. The cyanobacteria studied were A. variabilis, Chlorogloeopsis sp., Schizothrix calcicola, Anacystis marina, and Anacystis nidulans. Each were grown in liquid culture, harvested, and examined for stearoyl-ACP desaturase activity or incubated with 14 CO 2 . None of the cyanobacteria contained any stearoyl-ACP desaturase activity in whole homogenates or 105,000g supernatants. All were capable of incorporating 14 CO 2 into monoglucosyldiacylglycerol and results from incubations of 20 min, 1 hr, 1 hr + 10 hr chase were consistent with monoglucosyldiacylglycerol serving as precursor for monogalctosyldiacylglycerol. Thus, initial evidence is consistent with oleic acid biosynthesis occurring by desaturation of stearoyl-monoglucosyldiacylglycerol in all cyanobacteria

  5. Effect of high dose SO2 and ethylene exposure on the structure of epicuticular wax of picea pungens

    International Nuclear Information System (INIS)

    Patrie, J.; Berg, V.

    1994-01-01

    Conifers in polluted air generally exhibit accelerated degradation of epicuticular wax, but it is not clear whether the change is due to direct exposure to the pollutant or some other mechanism. Needles from blue spruce (Picea pungens) were exposed to sulfur dioxide or ethylene gas at 0 to 10,000 microliters per liter for 2 to 196 h; samples were examined by scanning electron microscopy. Neither gas caused changes in the wax crystals, although late in the growing season a fungal infestation was associated with degradation of wax structures. This supports hypotheses explaining accelerated epicuticular wax degradation by indirect effects of exposure to air pollutants. (orig.)

  6. Comparative genomics and proteomics of vertebrate diacylglycerol acyltransferase (DGAT), acyl CoA wax alcohol acyltransferase (AWAT) and monoacylglycerol acyltransferase (MGAT).

    Science.gov (United States)

    Holmes, Roger S

    2010-03-01

    BLAT (BLAST-Like Alignment Tool) analyses of the opossum (Monodelphis domestica) and zebrafish (Danio rerio) genomes were undertaken using amino acid sequences of the acylglycerol acyltransferase (AGAT) superfamily. Evidence is reported for 8 opossum monoacylglycerol acyltransferase-like (MGAT) (E.C. 2.3.1.22) and diacylglycerol acyltransferase-like (DGAT) (E.C. 2.3.1.20) genes and proteins, including DGAT1, DGAT2, DGAT2L6 (DGAT2-like protein 6), AWAT1 (acyl CoA wax alcohol acyltransferase 1), AWAT2, MGAT1, MGAT2 and MGAT3. Three of these genes (AWAT1, AWAT2 and DGAT2L6) are closely localized on the opossum X chromosome. Evidence is also reported for six zebrafish MGAT- and DGAT-like genes, including two DGAT1-like genes, as well as DGAT2-, MGAT1-, MGAT2- and MGAT3-like genes and proteins. Predicted primary, secondary and transmembrane structures for the opossum and zebrafish MGAT-, AWAT- and DGAT-like subunits and the intron-exon boundaries for genes encoding these enzymes showed a high degree of similarity with other members of the AGAT superfamily, which play major roles in triacylglyceride (DGAT), diacylglyceride (MGAT) and wax ester (AWAT) biosynthesis. Alignments of predicted opossum, zebrafish and other vertebrate DGAT1, DGAT2, other DGAT2-like and MGAT-like amino acid sequences with known human and mouse enzymes demonstrated conservation of residues which are likely to play key roles in catalysis, lipid binding or in maintaining structure. Phylogeny studies of the human, mouse, opossum, zebrafish and pufferfish MGAT- and DGAT-like enzymes indicated that the common ancestors for these genes predated the appearance of bony fish during vertebrate evolution whereas the AWAT- and DGAT2L6-like genes may have appeared more recently prior to the appearance of marsupial and eutherian mammals. Copyright 2009 Elsevier Inc. All rights reserved.

  7. EFFECT OF OIL TEMPERATURE ON THE WAX DEPOSITION OF CRUDE OIL WITH COMPOSITION ANALYSIS

    Directory of Open Access Journals (Sweden)

    Qing Quan

    Full Text Available Abstract Wax deposition behavior was investigated in a set of one-inch experiment flow loops, using a local crude oil with high wax content. The temperature of the oil phase is chosen as a variable parameter while the temperature of the coolant media is maintained constant. Detailed composition of the deposit is characterized using High Temperature Gas Chromatography. It was found that the magnitude of the diffusion of the heavier waxy components (C35-C50 decreases when the oil temperature decreases, but the magnitude of the diffusion of the lighter waxy components increases. This result means that the diffusion of wax molecules shifts towards lower carbon number, which further proves the concept of molecular diffusion. Meanwhile, a meaningful phenomenon is that the mass of the deposit increases with the oil temperature decrease, which definitely proves the influence of wax solubility on deposition, while the formation of an incipient gel layer reflects the fact that an increase in the mass of the deposit does not mean a larger wax percentage fraction at lower oil temperature.

  8. Role of needle surface waxes in dynamic exchange of mono- and sesquiterpenes

    Directory of Open Access Journals (Sweden)

    J. Joensuu

    2016-06-01

    Full Text Available Biogenic volatile organic compounds (BVOCs produced by plants have a major role in atmospheric chemistry. The different physicochemical properties of BVOCs affect their transport within and out of the plant as well as their reactions along the way. Some of these compounds may accumulate in or on the waxy surface layer of conifer needles and participate in chemical reactions on or near the foliage surface. The aim of this work was to determine whether terpenes, a key category of BVOCs produced by trees, can be found on the epicuticles of Scots pine (Pinus sylvestris L. and, if so, how they compare with the terpenes found in shoot emissions of the same tree. We measured shoot-level emissions of pine seedlings at a remote outdoor location in central Finland and subsequently analysed the needle surface waxes for the same compounds. Both emissions and wax extracts were clearly dominated by monoterpenes, but the proportion of sesquiterpenes was higher in the wax extracts. There were also differences in the terpene spectra of the emissions and the wax extracts. The results, therefore, support the existence of BVOC associated to the epicuticular waxes. We briefly discuss the different pathways for terpenes to reach the needle surfaces and the implications for air chemistry.

  9. [Comparative adaptation of crowns of selective laser melting and wax-lost-casting method].

    Science.gov (United States)

    Li, Guo-qiang; Shen, Qing-yi; Gao, Jian-hua; Wu, Xue-ying; Chen, Li; Dai, Wen-an

    2012-07-01

    To investigate the marginal adaptation of crowns fabricated by selective laser melting (SLM) and wax-lost-casting method, so as to provide an experimental basis for clinic. Co-Cr alloy full crown were fabricated by SLM and wax-lost-casting for 24 samples in each group. All crowns were cemented with zinc phosphate cement and cut along longitudinal axis by line cutting machine. The gap between crown tissue surface and die was measured by 6-point measuring method with scanning electron microscope (SEM). The marginal adaptation of crowns fabricated by SLM and wax-lost-casting were compared statistically. The gap between SLM crowns were (36.51 ± 2.94), (49.36 ± 3.31), (56.48 ± 3.35), (42.20 ± 3.60) µm, and wax-lost-casting crowns were (68.86 ± 5.41), (58.86 ± 6.10), (70.62 ± 5.79), (69.90 ± 6.00) µm. There were significant difference between two groups (P casting method and SLM method provide acceptable marginal adaptation in clinic, and the marginal adaptation of SLM is better than that of wax-lost-casting method.

  10. Crystallography of waxes - an electron diffraction study of refined and natural products

    Science.gov (United States)

    Dorset, Douglas L.

    1997-02-01

    The crystal structure of four waxes has been investigated by electron crystallography. Two of these waxes, including a refined petroleum product (Gulfwax) and a material from lignite (montan wax), form well ordered crystals and their structure could be solved quantitatively from the observed 0022-3727/30/3/018/img1 diffraction patterns. As also found previously for simpler binary n-paraffin solid solutions, the average structure resembles that of a pure paraffin (e.g. n-0022-3727/30/3/018/img2) but with a Gaussian distribution of atomic occupancies near the chain ends to account for the statistical distribution of chain lengths within a lamella. Two other waxes from living organisms, South African bee honeycomb and the leaves of the Brazilian carnauba palm, are much less ordered, even though they share the same methylene subcell packing of the most crystalline parts of the previous materials. It appears that these waxes cannot fully separate into distinct lamellae, perhaps due to the presence of very long `tie' molecules, and are therefore `frustrated' crystal structures.

  11. ETHNOECOLOGY AND ETHNOBOTANY OF THE PALM CARNAUBA WAX IN BRAZILIAN SEMI-ARID

    Directory of Open Access Journals (Sweden)

    Rodrigo Ferreira de Sousa

    2015-12-01

    Full Text Available The aim of this study was to investigate aspects of ethnoecological and ethnobotanical of carnauba wax (Copernicia prunifera (Miller H. E. Moore, Arecaceae in an extractive community of municipality of Ipanguaçu, Rio Grande do Norte state. We interviewed key informants, using the technique of inducing nonspecific, guided tour and direct observation to confirm the data. According to most residents of Pedro Ezequiel Araújo community, the area of carnauba wax in the region is natural. In the research ethnoecological, 73% of informants reported the occurrence of “a different kind of carnauba”, known as “white carnauba” phenotypically distinct from the “common carnauba wax” by presenting clear stipe, smaller fruits and absence of spines on the petiole, and is rare at the study site. Much of the informants observed phenological phases of carnauba wax, being consistent in stating that the species has fruits dispersed by bats. In ethnobotany, powder wax was cited by all as the most important product extracted from leaves of carnauba and the most used, followed by fruit, stem and root. Were still reported the division of work in the extraction of powder wax from the carnauba. The results of this research will contribute to knowledge of ethnobotanical and ethnoecological carnauba, supporting strategies for management and conservation of natural populations.

  12. Modeling the hydration process of bean grains coated with carnauba wax

    Directory of Open Access Journals (Sweden)

    Aline Almeida da Paixão

    2017-08-01

    Full Text Available Edible waxes are widely used to maintain foodstuff until they are consumed. However, some products may be subjected to industrial procedures, such as hydration, prior to their consumption. Hydration of a material is a complex process, which aims to reconstitute the original characteristics of a product when in contact with a liquid phase. An important agricultural product that requires this procedure is beans. Thus, the purpose of this work is to study the hydration process of beans (cultivar BRSMG Majestoso in different temperatures and concentrations of carnauba wax, which is applied on the product surface. Beans with initial moisture content of 0.2015, 0.1972 and 0.1745 (d.b. corresponding to treatments 0 (witness, 1 (wax diluted in water in the ratio 1:1, and 2 (carnauba wax, without dilution were used. Later, these samples were imbibed in distilled water at temperatures of 20, 30 and 40 ºC, for 15 h. The temperature and the carnauba wax influenced the water absorption rate. The Peleg model described satisfactory experimental data and the Mitscherlich model presented biased residual distribution. The constants C1 and C2 of the Peleg model exhibited opposite behaviors with increasing temperatures in the hydration process.

  13. Heat transfer enhancement in energy storage in spherical capsules filled with paraffin wax and metal beads

    International Nuclear Information System (INIS)

    Ettouney, Hisham; Alatiqi, Imad; Al-Sahali, Mohammad; Al-Hajirie, Khalida

    2006-01-01

    Energy storage is an attractive option to conserve limited energy resources, where more than 50% of the generated industrial energy is discarded in cooling water and stack gases. This study focuses on the evaluation of heat transfer enhancement in phase change energy storage units. The experiments are performed using spherical capsules filled with paraffin wax and metal beads. The experiments are conducted by inserting a single spherical capsule filled with wax and metal beads in a stream of hot/cold air. Experimental measurements include the temperature field within the spherical capsule and in the air stream. To determine the enhancement effects of the metal beads, the measured data is correlated against those for a spherical capsule filled with pure wax. Data analysis shows a reduction of 15% in the melting and solidification times upon increasing the number and diameter of the metal beads. This reduction is caused by a similar decrease in the thermal load of the sphere due to replacement of the wax by metal beads. The small size of the spherical capsule limits the enhancement effects; this is evident upon comparison of the heat transfer in a larger size, double pipe energy storage unit, where 2% of the wax volume is replaced with metal inserts, result in a three fold reduction in the melting/solidification time and a similar enhancement in the heat transfer rate

  14. SEPARATION OF FISCHER-TROPSCH WAX PRODUCTS FROM ULTRAFINE IRON CATALYST PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    James K. Neathery; Gary Jacobs; Burtron H. Davis

    2004-03-31

    In this reporting period, a fundamental filtration study was started to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. Slurry-phase FTS in slurry bubble column reactor systems is the preferred mode of production since the reaction is highly exothermic. Consequently, heavy wax products must be separated from catalyst particles before being removed from the reactor system. Achieving an efficient wax product separation from iron-based catalysts is one of the most challenging technical problems associated with slurry-phase FTS. The separation problem is further compounded by catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbon particles. Existing pilot-scale equipment was modified to include a filtration test apparatus. After undergoing an extensive plant shakedown period, filtration tests with cross-flow filter modules using simulant FTS wax slurry were conducted. The focus of these early tests was to find adequate mixtures of polyethylene wax to simulate FTS wax. Catalyst particle size analysis techniques were also developed. Initial analyses of the slurry and filter permeate particles will be used by the research team to design improved filter media and cleaning strategies.

  15. Biodegradation of paraffin wax by crude Aspergillus enzyme preparations for potential use in removing paraffin deposits.

    Science.gov (United States)

    Zhang, Junhui; Xue, Quanhong; Gao, Hui; Wang, Ping

    2015-11-01

    Paraffin deposition problems have plagued the oil industry. Whist mechanical and chemical methods are problematic, microbiological method of paraffin removal is considered an alternative. However, studies have mainly investigated the use of bacteria, with little attention to the potential of fungi. The performance of six Aspergillus isolates to degrade paraffin wax was evaluated under laboratory conditions using solid enzyme preparations. The results showed that all the six enzyme preparations efficiently improved the solubility of paraffin wax in n-hexane and degraded n-alkanes in paraffin wax. The degradation process was accompanied by dynamic production of gases (CO2 and H2 ) and organic acids (oxalate and propionate). The shape of wax crystals markedly changed after enzymatic degradation, with a rough surface and a loose structure. This study indicates that extracellular enzymes from Aspergillus spp. can efficiently degrade paraffin wax. These enzyme preparations have the potential for use in oil wells with paraffin deposition problems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Mutation in cultured mammalian cells

    International Nuclear Information System (INIS)

    Nakamura, N.; Okada, S.

    1982-01-01

    Mammalian cell cultures were exposed to gamma-rays at various dose rates. Dose-rate effects were observed in cultured somatic cells of the mouse for cell killing and mutations resistant to 6-thioguanine (TGsup(r)) and to methotrexate (MTXsup(r)). Linear quadratic model may be applied to cell killing and TGsup(r) mutations in some cases but can not explain the whole data. Results at low doses with far low dose-rate were not predictable from data at high doses with acute or chronic irradiation. Radioprotective effects of dimethyl sulfoxide were seen only after acute exposure but not after chronic one, suggesting that damages by indirect action of radiations may be potentially reparable by cells. TGsup(r) mutations seem to contain gross structural changes whereas MTXsup(r) ones may have smaller alterations. (Namekawa, K.)

  17. Interaction theory of mammalian mitochondria.

    Science.gov (United States)

    Nakada, K; Inoue, K; Hayashi, J

    2001-11-09

    We generated mice with deletion mutant mtDNA by its introduction from somatic cells into mouse zygotes. Expressions of disease phenotypes are limited to tissues expressing mitochondrial dysfunction. Considering that all these mice share the same nuclear background, these observations suggest that accumulation of the mutant mtDNA and resultant expressions of mitochondrial dysfunction are responsible for expression of disease phenotypes. On the other hand, mitochondrial dysfunction and expression of clinical abnormalities were not observed until the mutant mtDNA accumulated predominantly. This protection is due to the presence of extensive and continuous interaction between exogenous mitochondria from cybrids and recipient mitochondria from embryos. Thus, we would like to propose a new hypothesis on mitochondrial biogenesis, interaction theory of mitochondria: mammalian mitochondria exchange genetic contents, and thus lost the individuality and function as a single dynamic cellular unit. Copyright 2001 Academic Press.

  18. Producing Newborn Synchronous Mammalian Cells

    Science.gov (United States)

    Gonda, Steve R.; Helmstetter, Charles E.; Thornton, Maureen

    2008-01-01

    A method and bioreactor for the continuous production of synchronous (same age) population of mammalian cells have been invented. The invention involves the attachment and growth of cells on an adhesive-coated porous membrane immersed in a perfused liquid culture medium in a microgravity analog bioreactor. When cells attach to the surface divide, newborn cells are released into the flowing culture medium. The released cells, consisting of a uniform population of synchronous cells are then collected from the effluent culture medium. This invention could be of interest to researchers investigating the effects of the geneotoxic effects of the space environment (microgravity, radiation, chemicals, gases) and to pharmaceutical and biotechnology companies involved in research on aging and cancer, and in new drug development and testing.

  19. Mammalian gastrointestinal parasites in rainforest remnants

    Indian Academy of Sciences (India)

    Here, we studied the gastrointestinal parasites of nonhuman mammalian hosts living in 10 rainforest patches of the Anamalai Tiger Reserve, India. We examined 349 faecal samples of 17 mammalian species and successfully identified 24 gastroin-testinal parasite taxa including 1 protozoan, 2 trematode, 3 cestode and 18 ...

  20. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    Directory of Open Access Journals (Sweden)

    Liliana Costa

    2012-06-01

    Full Text Available Photodynamic inactivation (PDI has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process.

  1. Analysis of the constituents in jojoba wax used as a food additive by LC/MS/MS.

    Science.gov (United States)

    Tada, Atsuko; Jin, Zhe-Long; Sugimoto, Naoki; Sato, Kyoko; Yamazaki, Takeshi; Tanamoto, Kenichi

    2005-10-01

    Jojoba wax is a natural gum base used as a food additive in Japan, and is obtained from jojoba oil with a characteristically high melting point. Although the constituents of jojoba oil have been reported, the quality of jojoba wax used as a food additive has not yet been clarified. In order to evaluate its quality as a food additive and to obtain basic information useful for setting official standards, we investigated the constituents and their concentrations in jojoba wax. LC/MS analysis of the jojoba wax showed six peaks with [M+H]+ ions in the range from m/z 533.6 to 673.7 at intervals of m/z 28. After isolation of the components of the four main peaks by preparative LC/MS, the fatty acid and long chain alcohol moieties of the wax esters were analyzed by methanolysis and hydrolysis, followed by GC/MS. The results indicated that the main constituents in jojoba wax were various kinds of wax esters, namely eicosenyl octadecenoate (C20:1-C18:1) (1), eicosenyl eicosenoate (C20:1-C20:1) (II), docosenyl eicosenoate (C22:1-C20:1) (III), eicosenyl docosenoate (C20:1-C22:1) (IV) and tetracosenyl eiosenoate (C24:1-C20:1) (V). To confirm and quantify the wax esters in jojoba wax directly, LC/MS/MS analysis was performed. The product ions corresponding to the fatty acid moieties of the wax esters were observed, and by using the product ions derived from the protonated molecular ions of wax esters the fatty acid moieties were identified by MRM analysis. The concentrations of the wax esters I, II and III, in jojoba wax were 5.5, 21.4 and 37.8%, respectively. In summary, we clarified the main constituents of jojoba wax and quantified the molecular species of the wax esters without hydrolysis by monitoring their product ions, using a LC/MS/MS system.

  2. GC-MS Metabolomics to Evaluate the Composition of Plant Cuticular Waxes for Four Triticum aestivum Cultivars

    Directory of Open Access Journals (Sweden)

    Florent D. Lavergne

    2018-01-01

    Full Text Available Wheat (Triticum aestivum L. is an important food crop, and biotic and abiotic stresses significantly impact grain yield. Wheat leaf and stem surface waxes are associated with traits of biological importance, including stress resistance. Past studies have characterized the composition of wheat cuticular waxes, however protocols can be relatively low-throughput and narrow in the range of metabolites detected. Here, gas chromatography-mass spectrometry (GC-MS metabolomics methods were utilized to provide a comprehensive characterization of the chemical composition of cuticular waxes in wheat leaves and stems. Further, waxes from four wheat cultivars were assayed to evaluate the potential for GC-MS metabolomics to describe wax composition attributed to differences in wheat genotype. A total of 263 putative compounds were detected and included 58 wax compounds that can be classified (e.g., alkanes and fatty acids. Many of the detected wax metabolites have known associations to important biological functions. Principal component analysis and ANOVA were used to evaluate metabolite distribution, which was attributed to both tissue type (leaf, stem and cultivar differences. Leaves contained more primary alcohols than stems such as 6-methylheptacosan-1-ol and octacosan-1-ol. The metabolite data were validated using scanning electron microscopy of epicuticular wax crystals which detected wax tubules and platelets. Conan was the only cultivar to display alcohol-associated platelet-shaped crystals on its abaxial leaf surface. Taken together, application of GC-MS metabolomics enabled the characterization of cuticular wax content in wheat tissues and provided relative quantitative comparisons among sample types, thus contributing to the understanding of wax composition associated with important phenotypic traits in a major crop.

  3. Cuticular waxes in alpine meadow plants: climate effect inferred from latitude gradient in Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Guo, Yanjun; Guo, Na; He, Yuji; Gao, Jianhua

    2015-09-01

    Alpine meadow ecosystems are susceptible to climate changes. Still, climate impact on cuticular wax in alpine meadow plants is poorly understood. Assessing the variations of cuticular wax in alpine meadow plants across different latitudes might be useful for predicting how they may respond to climate change. We studied nine alpine meadows in a climate gradient in the east side of Qinghai-Tibetan Plateau, with mean annual temperature ranging from -7.7 to 3.2°C. In total, 42 plant species were analyzed for cuticular wax, averaged 16 plant species in each meadow. Only four plant species could be observed in all sampling meadows, including Kobresia humilis,Potentilla nivea,Anaphalis lacteal, and Leontopodium nanum. The amounts of wax compositions and total cuticular wax in the four plant species varied among sampling meadows, but no significant correlation could be observed between them and temperature, precipitation, and aridity index based on plant species level. To analyze the variations of cuticular wax on community level, we averaged the amounts of n-alkanes, aliphatic acids, primary alcohols, and total cuticular wax across all investigated plant species in each sampling site. The mean annual temperature, mean temperature in July, and aridity index were significantly correlated with the averaged amounts of wax compositions and total cuticular wax. The average chain length of n-alkanes in both plant and soil linearly increased with increased temperature, whereas reduced with increased aridity index. No significant correlation could be observed between mean annual precipitation and mean precipitation from June to August and the cuticular wax amounts and average chain length. Our results suggest that the survival of some alpine plants in specific environments might be depended on their abilities in adjusting wax deposition on plant leaves, and the alpine meadow plants as a whole respond to climate change, benefiting the stability of alpine meadow ecosystem.

  4. DGAT enzymes and triacylglycerol biosynthesis

    Science.gov (United States)

    Yen, Chi-Liang Eric; Stone, Scot J.; Koliwad, Suneil; Harris, Charles; Farese, Robert V.

    2008-01-01

    Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, and the use of molecular tools, including mice deficient in either enzyme, has shed light on their functions. Although DGAT enzymes are involved in TG synthesis, they have distinct protein sequences and differ in their biochemical, cellular, and physiological functions. Both enzymes may be useful as therapeutic targets for diseases. Here we review the current knowledge of DGAT enzymes, focusing on new advances since the cloning of their genes, including possible roles in human health and diseases. PMID:18757836

  5. Retained bone wax on CT at one year after dacryocystorhinostomy: A case report

    International Nuclear Information System (INIS)

    Kim, Seung Hyun; Park, Dong Woo; Jeong, Jin Yeok; Lee, Jong Ah; Lee, Young Jun

    2015-01-01

    A 71-year-old man with chronic rhinosinusitis presented with a purulent, foul-smelling nasal discharge and obstruction. One year earlier he had been treated with a dacryocystorhinostomy for nasolacrimal duct obstruction. During the procedure, bone wax had been used to control bleeding in the anterior upper nasal cavity. On computed tomographic imaging, a fat-density lesion was seen in the anterior upper sinonasal cavity and was found to be hypointense or signal-void on all magnetic resonance imaging sequences. The lesion, which proved to consist of bone wax, was surgically removed. Here, we present the imaging features of retained bone wax in a patient with clinically diagnosed chronic rhinosinusitis after dacryocystorhinostomy

  6. Retained bone wax on CT at one year after dacryocystorhinostomy: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Hyun; Park, Dong Woo; Jeong, Jin Yeok [Guri Hospital, Hanyang University College of Medicine, Guri (Korea, Republic of); Lee, Jong Ah; Lee, Young Jun [Dept. of Radiology, Seoul Hospital, Hanyang University College of Medicine, Seoul (Korea, Republic of)

    2015-09-15

    A 71-year-old man with chronic rhinosinusitis presented with a purulent, foul-smelling nasal discharge and obstruction. One year earlier he had been treated with a dacryocystorhinostomy for nasolacrimal duct obstruction. During the procedure, bone wax had been used to control bleeding in the anterior upper nasal cavity. On computed tomographic imaging, a fat-density lesion was seen in the anterior upper sinonasal cavity and was found to be hypointense or signal-void on all magnetic resonance imaging sequences. The lesion, which proved to consist of bone wax, was surgically removed. Here, we present the imaging features of retained bone wax in a patient with clinically diagnosed chronic rhinosinusitis after dacryocystorhinostomy.

  7. Development of lamellar structures in natural waxes - an electron diffraction investigation

    Energy Technology Data Exchange (ETDEWEB)

    Dorset, Douglas L. [Electron Diffraction Department, Hauptman-Woodward Medical Research Institute, Inc., Buffalo, NY (United States)

    1999-06-07

    When they are recrystallized from the melt, natural plant or insect waxes tend to form solid phases with a nematic-like structure (i.e. a parallel array of polymethylene chains with little or no aggregation of the molecules into distinct layers). An electron diffraction study of carnauba wax and two types of beeswax has shown that the degree of molecular organization into lamellar structures can be enhanced by annealing in the presence of benzoic acid, which also acts as an epitaxial substrate. Nevertheless, the resultant layer structure in the annealed solid is not the same as that found for paraffin wax fractions refined from petroleum. Probably because of a small but significant fraction of a very long chain ingredient, the lamellar separation is incomplete, incorporating a number of 'bridging molecules' that span the nascent lamellar interface.The same phenomenon has been described recently for a low molecular weight polyethylene. (author)

  8. Low-pressure injection molding of alumina ceramics using a carnauba wax binder: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Quevedo Nogueira, R.E.F.; Bezerra, A.C.; Santos, F.C. dos [Dept. de Engenharia Mecanica, Centro de Tecnologia-UFC, Fortaleza, CE (Brazil); Sousa, M.R. de; Acchar, W. [Dept. de Engenharia Mecanica, Univ. Federal do Rio Grande do Norte, UFRN-Campus Univ., Natal, RN (Brazil)

    2001-07-01

    Carnauba wax, a natural product from Northeastern Brazil, has found application in the processing of ceramics. However, the use of pure carnauba wax is not recommended due to its narrow melting range and poor mechanical properties. In the present work carnauba wax based organic vehicles with the addition of low-density polyethylene and stearic acid were developed for use in the low-pressure injection molding of alumina ceramics. Viscosimetric testing was employed for the determination of optimal composition of the organic vehicle. The optimal content of ceramic powder in the mixture was also determined. All the materials used are easily available in the Brazilian market. A simple ceramic part was injected at low pressures (0.6 MPa) using a semi-automatic injection molding machine. For this purpose a double cavity mold was designed and built. Preliminary results demonstrate the technical viability of the process using the organic vehicle developed. (orig.)

  9. Development of lamellar structures in natural waxes - an electron diffraction investigation

    Science.gov (United States)

    Dorset, Douglas L.

    1999-06-01

    When they are recrystallized from the melt, natural plant or insect waxes tend to form solid phases with a nematic-like structure (i.e. a parallel array of polymethylene chains with little or no aggregation of the molecules into distinct layers). An electron diffraction study of carnauba wax and two types of beeswax has shown that the degree of molecular organization into lamellar structures can be enhanced by annealing in the presence of benzoic acid, which also acts as an epitaxial substrate. Nevertheless, the resultant layer structure in the annealed solid is not the same as that found for paraffin wax fractions refined from petroleum. Probably because of a small but significant fraction of a very long chain ingredient, the lamellar separation is incomplete, incorporating a number of `bridging molecules' that span the nascent lamellar interface.The same phenomenon has been described recently for a low molecular weight polyethylene.

  10. Printed wax masks for 254 nm deep-UV pattering of PMMA-based microfluidics

    KAUST Repository

    Fan, Yiqiang

    2012-01-13

    This paper reports a new technique for masking deep-UV exposure of poly(methyl methacrylate) (PMMA) using a printed wax mask. This technique provides an inexpensive and bulk fabrication method for PMMA structures. The technique involves the direct printing of the mask onto a polymer sheet using a commercial wax printer. The wax layer was then transferred to a PMMA substrate using a thermal laminator, exposed using deep-UV (with a wavelength of 254 nm), developed in an IPA:water solution, and completed by bonding on a PMMA cap layer. A sample microfluidic device fabricated with this method is also presented, with the microchannel as narrow as 50 μm. The whole process is easy to perform without the requirement for any microfabrication facilities. © 2012 IOP Publishing Ltd.

  11. The analysis of the wax foundry models fabrication process for the CPX3000 device

    Directory of Open Access Journals (Sweden)

    G. Budzik

    2011-04-01

    Full Text Available The paper presents possibilities of creating wax founding models by means of CPX3000 device. The device is used for Rapid Prototypingof models made of foundry wax in an incremental process. The paper also presents problems connected with choosing technologicalparameters for incremental shaping which influence the accuracy of created models. Issues connected with post-processing are alsodescribed. This process is of great importance for obtaining geometrically correct models. The analysis of parameters of cleaning models from supporting material is also presented. At present CPX3000 printer is the first used in Poland device by 3D Systems firm for creating wax models. The printer is at The Faculty of Mechanical Engineering at Rzeszów University of Technology.

  12. Printed wax masks for 254 nm deep-UV pattering of PMMA-based microfluidics

    International Nuclear Information System (INIS)

    Fan, Yiqiang; Liu, Yang; Li, Huawei; Foulds, Ian G

    2012-01-01

    This paper reports a new technique for masking deep-UV exposure of poly(methyl methacrylate) (PMMA) using a printed wax mask. This technique provides an inexpensive and bulk fabrication method for PMMA structures. The technique involves the direct printing of the mask onto a polymer sheet using a commercial wax printer. The wax layer was then transferred to a PMMA substrate using a thermal laminator, exposed using deep-UV (with a wavelength of 254 nm), developed in an IPA:water solution, and completed by bonding on a PMMA cap layer. A sample microfluidic device fabricated with this method is also presented, with the microchannel as narrow as 50 µm. The whole process is easy to perform without the requirement for any microfabrication facilities. (technical note)

  13. Procedures for extraction and purification of leaf wax biomarkers from peats

    Directory of Open Access Journals (Sweden)

    J.E. Nichols

    2011-12-01

    Full Text Available Palaeoecological and palaeoclimate reconstruction, using leaf wax biomarkers, is a relatively new sub-discipline of peatland science. The ability to process large numbers of samples rapidly for biomarkers makes this type of analysis particularly appealing. This review is a guide to the preparation of leaf waxes for analysis by gas chromatography. The main phases of preparation are extraction of soluble organic compounds from sediment, separation of the total extract into fractions of differing polarity, and the derivatisation of polar functional groups. The procedures described here are not meant be exhaustive of all organic geochemical possibilities in peatlands, but a distillation of methods for the preparation of leaf waxes that are commonly and increasingly being used in palaeoecological and palaeoclimatological studies.

  14. Effects of irradiation in combination with waxing on the essential oils in orange peel

    International Nuclear Information System (INIS)

    Moussaid, M.; Lacroix, M.; Nketsia-Tabiri, J.; Boubekri, C.

    2000-01-01

    The study evaluated the effects of waxing and irradiation dose on the essential oils in orange peel. Mature oranges (Maroc late) waxed or unwaxed were treated with 0-2 kGy radiation. Volatiles in the peel were extracted and analyzed by G.C. D-limonene was significantly lower (P≤0.05) in waxed oranges; levels in samples treated with 2 kGy were higher than those treated with 0 or 1 kGy. Linalool, methyl anthranilate and 3.7-dimethyl-2.6-octadienal decreased as the dose increased. The analysis of variance indicates that only linalool was influenced by post-irradiation storage time. The level of this compound increased with storage time. (author)

  15. Thermal characterizations of the paraffin wax/low density polyethylene blends as a solid fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soojong; Moon, Heejang; Kim, Jinkon, E-mail: jkkim@kau.ac.kr

    2015-08-10

    Highlights: • Regression rate of blends fuel is higher than polymer fuel. • LDPE is an effective mixing ingredient for the combustion efficiency. • Blends fuel is a uniform mixture with two degradation steps. • LDPE plays a positive role for the low sensitivity to the thermal deformation • Blends with low LDPE content can be an effective fuel for hybrid rocket application. - Abstract: Thermal characterizations of a novel solid fuel for hybrid rocket application, based on the paraffin wax blends with low density polyethylene (LDPE) concentration of 5% (SF-5) and 10% (SF-10) were conducted. Both the increased regression rate in comparison with the polymeric fuel, and the improved combustion efficiency in comparison with the pure paraffin fuel reveal that the blend fuels achieve higher combustion performance. The morphology of the shape stabilized paraffin wax/LDPE blends was characterized by the scanning electron microscopy (SEM). Although the SEM observation indicated the blends have uniform mixtures, they showed two degradation steps confirming the immiscibility of components in the crystalline phase from thermogravimetric analysis (TGA). The differential scanning calorimeter (DSC) results showed that the melting temperature of LDPE in the blends decreased with an increase of paraffin wax content. The decreasing total specific melting enthalpy of blended fuels with decreasing paraffin wax content is in fairly good agreement with the additive rule. In thermomechanical analysis (TMA), the linear coefficient of thermal expansion (LCTE) seems to decrease with an increase of LDPE loading, however, the loaded LDPE do merely affect the LCTE in case of the blends with low LDPE concentration. It was found that a blend of low concentration of LDPE with a relatively high concentration of paraffin wax can lead to a potential novel fuel for rocket application, a contrary case with respect to the field of phase change materials (PCM) where a blend of high concentration

  16. Effect of gamma radiation and entomopathogenic nematodes on greater wax moth, Galleria mellonella (Linnaeus) [Lep., Pyralidae

    International Nuclear Information System (INIS)

    Ali, R.M.S.

    2008-01-01

    The greater wax moth, Galleria mellonella (L.), is a lepidoptera insect; its larval stage, feeds on wax and pollen stored in combs of active honey bee colonies (Milam, 1970). It does not attack adult bees but destructs combs of a weak colony by chewing the comb; spinning silk-lined tunnels through the cell wall and over the face of the comb, which prevent the bees to emerge by their abdomen from their cell, so they die by starvation as they unable to escape from their cell. They also eat out a place to spin their cocoons in the soft wood of the bee hive. Galleria mellonella can also destroy stored honey combs. Therefore, it is considered a major pest of the honeybee. Damage will vary with the level of infestation and the time that has elapsed since the infestation first began. In time, stored combs may be completely destroyed and the frames and combs become filled with a mass of tough, silky web. In ideal conditions for wax moth development, a box (super) of combs may be rendered useless in about a week. Damage occurs mainly in the warm and hot months of the year when wax moths are most active. However, considerable damage can still occur during the cool part of late autumn and early spring as greater wax moth can produce a large amount of metabolic heat which can raise the immediate temperature around them by up to 25 degree C above the normal environment temperature. At the time of storage, combs that are apparently free of wax moth may contain eggs that will hatch later. They should be monitored

  17. Review of data on the dermal penetration of mineral oils and waxes used in cosmetic applications.

    Science.gov (United States)

    Petry, T; Bury, D; Fautz, R; Hauser, M; Huber, B; Markowetz, A; Mishra, S; Rettinger, K; Schuh, W; Teichert, T

    2017-10-05

    Mineral oils and waxes used in cosmetic products, also referred to as "personal care products" outside the European Union, are mixtures of predominantly saturated hydrocarbons consisting of straight-chain, branched and ring structures with carbon chain lengths greater than C16. They are used in skin and lip care cosmetic products due to their excellent skin tolerance as well as their high protecting and cleansing performance and broad viscosity options. Recently, concerns have been raised regarding potential adverse health effects of mineral oils and waxes from dermal application of cosmetics. In order to be able to assess the risk for the consumer the dermal penetration potential of these ingredients has to be evaluated. The scope and objective of this review are to identify and summarize publicly available literature on the dermal penetration of mineral oils and waxes as used in cosmetic products. For this purpose, a comprehensive literature search was conducted. A total of 13 in vivo (human, animal) and in vitro studies investigating the dermal penetration of mineral oils and waxes has been identified and analysed. The majority of the substances were dermally adsorbed to the stratum corneum and only a minor fraction reached deeper skin layers. Overall, there is no evidence from the various studies that mineral oils and waxes are percutaneously absorbed and become systemically available. Thus, given the absence of dermal uptake, mineral oils and waxes as used in cosmetic products do not present a risk to the health of the consumer. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Co-metabolism of DDT by the newly isolated bacterium, Pseudoxanthomonas sp. wax

    Directory of Open Access Journals (Sweden)

    Guangli Wang

    2010-06-01

    Full Text Available Microbial degradation of 1,1,1-trichloro-2,2-bis(p-chlorophenylethane (DDT is the most promising way to clean up DDT residues found in the environment. In this paper, a bacterium designated as wax, which was capable of co-metabolizing DDT with other carbon sources, was isolated from a long-term DDT-contaminated soil sample by an enrichment culture technique. The new isolate was identified as a member of the Pseudoxanthomonas sp., based on its morphological, physiological and biochemical properties, as well as by 16S rRNA gene analysis. In the presence of 100 mg l-1 glucose, the wax strain could degrade over 95% of the total DDT, at a concentration of 20 mg l-1, in 72 hours, and could degrade over 60% of the total DDT, at a concentration of 100 mg l-1, in 144 hours. The wax strain had the highest degradation efficiency among all of the documented DDT-degrading bacteria. The wax strain could efficiently degrade DDT at temperatures ranging from 20 to 37ºC, and with initial pH values ranging from 7 to 9. The bacterium could also simultaneously co-metabolize 1,1-dichloro-2,2-bis(p-chlorophenylethane (DDD, 2,2-bis(p-chlorophenyl-1,1-dichlorethylene (DDE, and other organochlorine compounds. The wax strain could also completely remove 20 mg kg-1 of DDT from both sterile and non-sterile soils in 20 days. This study demonstrates the significant potential use of Pseudoxanthomonas sp. wax for the bioremediation of DDT in the environment.

  19. Thermal characterizations of the paraffin wax/low density polyethylene blends as a solid fuel

    International Nuclear Information System (INIS)

    Kim, Soojong; Moon, Heejang; Kim, Jinkon

    2015-01-01

    Highlights: • Regression rate of blends fuel is higher than polymer fuel. • LDPE is an effective mixing ingredient for the combustion efficiency. • Blends fuel is a uniform mixture with two degradation steps. • LDPE plays a positive role for the low sensitivity to the thermal deformation • Blends with low LDPE content can be an effective fuel for hybrid rocket application. - Abstract: Thermal characterizations of a novel solid fuel for hybrid rocket application, based on the paraffin wax blends with low density polyethylene (LDPE) concentration of 5% (SF-5) and 10% (SF-10) were conducted. Both the increased regression rate in comparison with the polymeric fuel, and the improved combustion efficiency in comparison with the pure paraffin fuel reveal that the blend fuels achieve higher combustion performance. The morphology of the shape stabilized paraffin wax/LDPE blends was characterized by the scanning electron microscopy (SEM). Although the SEM observation indicated the blends have uniform mixtures, they showed two degradation steps confirming the immiscibility of components in the crystalline phase from thermogravimetric analysis (TGA). The differential scanning calorimeter (DSC) results showed that the melting temperature of LDPE in the blends decreased with an increase of paraffin wax content. The decreasing total specific melting enthalpy of blended fuels with decreasing paraffin wax content is in fairly good agreement with the additive rule. In thermomechanical analysis (TMA), the linear coefficient of thermal expansion (LCTE) seems to decrease with an increase of LDPE loading, however, the loaded LDPE do merely affect the LCTE in case of the blends with low LDPE concentration. It was found that a blend of low concentration of LDPE with a relatively high concentration of paraffin wax can lead to a potential novel fuel for rocket application, a contrary case with respect to the field of phase change materials (PCM) where a blend of high concentration

  20. The effects of surgicel and bone wax hemostatic agents on bone healing: An experimental study

    Directory of Open Access Journals (Sweden)

    Nasser Nooh

    2014-01-01

    Full Text Available Background: The biological effects of hemostatic agends on the physiological healing process need to be tested. The aim of this study was to assess the effects of oxidized cellulose (surgicel and bone wax on bone healing in goats′ feet. Materials and Methods: Three congruent circular bone defects were created on the lateral aspects of the right and left metacarpal bones of ten goats. One defect was left unfilled and acted as a control; the remaining two defects were filled with bone wax and surgicel respectively. The 10 animals were divided into two groups of 5 animals each, to be sacrificed at the 3rd and 5th week postoperatively. Histological analysis assessing quality of bone formed and micro-computed tomography (MCT measuring the quantities of bone volume (BV and bone density (BD were performed. The results of MCT analysis pertaining to BV and BD were statistically analyzed using two-way analysis of variance (ANOVA and posthoc least significant difference tests. Results: Histological analysis at 3 weeks showed granulation tissue with new bone formation in the control defects, active bone formation only at the borders for surgicel filled defects and fibrous encapsulation with foreign body reaction in the bone wax filled defects. At 5 weeks, the control and surgicel filled defects showed greater bone formation; however the control defects had the greatest amount of new bone. Bone wax filled defects showed very little bone formation. The two-way ANOVA for MCT results showed significant differences for BV and BD between the different hemostatic agents during the two examination periods. Conclusion: Surgicel has superiority over bone wax in terms of osseous healing. Bone wax significantly hinders osteogenesis and induces inflammation.

  1. Molecular and Biochemical Characterization of Cotton Epicuticular Wax in Defense Against Cotton Leaf Curl Disease.

    Science.gov (United States)

    Khan, Muhammad Azmat Ullah; Shahid, Ahmad Ali; Rao, Abdul Qayyum; Bajwa, Kamran Shehzad; Samiullah, Tahir Rehman; Muzaffar, Adnan; Nasir, Idrees Ahmad; Husnain, Tayyab

    2015-12-01

    Gossypium arboreumis resistant to Cotton leaf curl Burewala virus and its cognate Cotton leaf curl Multan beta satellite ( CLCuBuV and CLCuMB ). However, the G. arboreum wax deficient mutant (GaWM3) is susceptible to CLCuV . Therefore, epicuticular wax was characterized both quantitatively and qualitatively for its role as physical barrier against whitefly mediated viral transmission and co-related with the titer of each viral component (DNA-A, alphasatellite and betasatellite) in plants. The hypothesis was the CLCuV titer in cotton is dependent on the amount of wax laid down on plant surface and the wax composition. Analysis of the presence of viral genes, namely alphasatellite, betasatellite and DNA-A, via real-time PCR in cotton species indicated that these genes are detectable in G. hirsutum , G. harknessii and GaWM3, whereas no particle was detected in G. arboreum . Quantitative wax analysis revealed that G. arboreum contained 183 μg.cm -2 as compared to GaWM3 with only 95 μg.cm -2 . G. hirsutum and G. harknessii had 130 μg.cm -2 and 146 μg.cm -2 , respectively. The GCMS results depicted that Lanceol, cis was 45% in G. harknessii . Heptadecanoic acid was dominant in G. arboreum with 25.6%. GaWM3 had 18% 1,2,-Benenedicarboxylic acid. G. hirsutum contained 25% diisooctyl ester. The whitefly feeding assay with Nile Blue dye showed no color in whiteflies gut fed on G. arboreum . In contrast, color was observed in the rest of whiteflies. From results, it was concluded that reduced quantity as well as absence of (1) 3-trifluoroacetoxytetradecane, (2) 2-piperidinone,n-|4-bromo-n-butyl|, (3) 4-heptafluorobutyroxypentadecane, (4) Silane, trichlorodocosyl-, (5) 6- Octadecenoic acid, methyl ester, and (6) Heptadecanoicacid,16-methyl-,methyl ester in wax could make plants susceptible to CLCuV , infested by whiteflies.

  2. The deformation of wax patterns and castings in investment casting technology

    Directory of Open Access Journals (Sweden)

    A. Herman

    2012-01-01

    Full Text Available The dimensional accuracy of the final casting of Inconel alloy 738 LC is affected by many aspects. One of them is the choice of method and time of cooling wax model for precision investment casting. The main objective was to study the initial deformation of the complex shape of the casting of the rotor blades. Various approaches have been tested for cooling wax pattern. When wax models are cooling on the air, without clamping in jig for cooling, deviations from the ideal shape of the casting are very noticeable (up to 8 mm and most are in extreme positions of the model. When blade is cooled in fixing jig in water environment, the resulting deviations compared with cooling in air are significantly larger, sometimes up to 10 mm. This itself does not mean that the final shape of the casting is dimensionally more accurate with usage of wax models, which have deviations from the ideal position smaller. Another deformation occurs when shell mould is produced around wax pattern and furthermore deformations emerge while casting of blade is cooling. This paper demonstrates first steps in describing complex process of deformations of Inconel alloy blades produced with investment casting technology by comparing results from thermal imagery, simulations in foundry simulation software ProCAST 2010 and measurements from CNC scanning system Carl Zeiss MC 850. Conclusions are so far not groundbreaking, but it seems deformations of wax pattern and deformations of castings do in some cases cancel each other by having opposite directions. Describing entirely whole process of deformations will help increase precision of blade castings so that models at the beginning and blades in the end are the same.

  3. In search of low cost biological analysis: Wax or acrylic glue bonded paper microfluidic devices

    KAUST Repository

    Kodzius, Rimantas

    2011-01-22

    In this body of work we have been developing and characterizing paper based microfluidic fabrication technologies to produce low cost biological analysis. Specifically we investigated the performance of paper microfluidics that had been bonded using wax or acrylic glue, and characterized the affect of these and other microfluidic materials on the polymerase chain reaction (PCR). We report a simple, low-cost and detachable microfluidic chip incorporating easily accessible paper, glass slides or other polymer films as the chip materials along with adhesive wax or cyanoacrylate-based resin as the recycling bonding material. We use a laser to cut through the paper or film to form patterns and then sandwich the paper and film between glass sheets or polymer membranes. The hot-melt adhesive wax or simple cyanoacrylate-based resin can realize bridge bonding between various materials, for example, paper, polymethylmethacrylate film, glass sheets, or metal plate. The wax bonding process is reversible and the wax is reusable through a melting and cooling process. With this process, a three-dimensional (3D) microfluidic chip is achievable by evacuating the channels of adhesive material in a hot-water. We applied the wax-paper based microfluidic chip to HeLa cell electroporation. Subsequently, a prototype of a 5-layer 3D chip was fabricated by multilayer wax bonding. To check the sealing ability and the durability of the chip, green fluorescence protein recombinant E. coli bacteria were cultured, with which the chemotaxis of E. coli was studied in order to determine the influence of antibiotic ciprofloxacin concentration on the E. coli migration. The chip bonded with cyanoacrylate-based resin was tested by measuring protein concentration and carrying out DNA capillary electrophoresis. To study the biocompatibility and applicability of our microfluidic chip fabrication technology, we tested the PCR compatibility of our chip materials along with various other common materials

  4. Scientific Opinion on the re-evaluation of carnauba wax (E 903) as a food additive

    OpenAIRE

    EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS)

    2012-01-01

    The Panel on Food Additives and Nutrient Sources added to Food (ANS) delivers a scientific opinion re-evaluating the safety of carnauba wax (E 903). Carnauba wax (E 903) is authorised in the EU as food additive as glazing agent. It has been evaluated by the Scientific Committee on Food (SCF) and by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) who allocated an Acceptable Daily Intake (ADI) of 7 mg/kg bw/day. The SCF did not establish an ADI but considered the use of ca...

  5. Evaluation of experimental data for wax and diamondoids solubility in gaseous systems

    DEFF Research Database (Denmark)

    Mohammadi, Amir H.; Gharagheizi, Farhad; Eslamimanesh, Ali

    2012-01-01

    The Leverage statistical approach is herein applied for evaluation of experimental data of the paraffin waxes/diamondoids solubility in gaseous systems. The calculation steps of this algorithm consist of determination of the statistical Hat matrix, sketching the Williams Plot, and calculation......-Santiago and Teja correlations are used to calculate/estimate the solubility of paraffin waxes (including n-C24H50 to n-C33H68) and diamondoids (adamantane and diamantane) in carbon dioxide/ethane gases, respectively. It can be interpreted from the obtained results that the applied equations for calculation...

  6. Anti-botrytis activity in epicuticular waxes of young grape berries of Vitis vinifera (Pinot noir

    Directory of Open Access Journals (Sweden)

    Pascal Comménil

    1996-03-01

    The evidence of a substance which exhibits a strong inhibition on the conidial germination of Botrytis cinerea was made after epicuticular waxes chromatographic analysis and biological tests. This compound, characterized by a Rf (0,2 closely related to the Rf of the primary alcohols, was present in the wax extracts originated from bloom and immature grape berries stages and it was absent in the extracts issued to the mature grape berries. The concentration of the conidial germination inhibitor was markedly different between the sensible (S792 and tolerant (T7613 cultivars of Pinot vineyards. Also this antifungal product would be considereted as an hypothetical resistance marked against Botrytis cinerea.

  7. The Spatial Organization of Glucosinolate Biosynthesis

    DEFF Research Database (Denmark)

    Nintemann, Sebastian

    cells is an open question. Likewise, it is not known how glucosinolate biosynthesis is orchestrated at the subcellular level. These open questions were addressed with several approaches in this project, with the aim of shedding light on the spatial organization of glucosinolate biosynthesis from...... between the individual classes of glucosinolates under constitutive and induced conditions and identified the source tissues of these defense compounds. Protein-protein interaction studies were carried out to investigate the subcellular organization of glucosinolate biosynthesis. We identified a family...

  8. Molecular analysis of intact preen waxes of Calidris Canutus (Aves: Scolopacidae) by GC/MS and GC/MS/MS

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Dekker, M.H.A.; Piersma, T.

    2000-01-01

    The intact preen wax esters of the red knot Calidris canutus were studied with gas chromatography/mass spectrometry (GC/MS) and GC/MS/MS. In this latter technique, transitions from the molecular ion to fragment ions representing the fatty acid moiety of the wax esters were measured, providing

  9. Molecular analysis of intact preen waxes of Calidris canutus (Aves : Scolopacidae) by gas chromatography/mass spectrometry

    NARCIS (Netherlands)

    Dekker, MHA; Piersma, T; Damste, JSS; Dekker, Marlèn H.A.; Sinninghe Damsté, Jaap S.

    The intact preen wax esters of the red knot Calidris canutus were studied with gas chromatography/mass spectrometry (GC/MS) and GC/MS/MS. In this latter technique, transitions from the molecular ion to fragment ions representing the fatty acid moiety of the wax esters were measured, providing

  10. Geometrical effects of conventional and digital prosthodontic planning wax-ups on lateral occlusal contact number, contact area, and steepness.

    Science.gov (United States)

    Abduo, Jaafar

    2017-01-01

    This study evaluated and compared the effect of conventional and digital wax-ups on three lateral occlusion variables: contact number, contact area, and steepness. Dental casts of 10 patients with Angle Class I relationship were included in the study. All patients required fixed prosthodontic treatment that would affect lateral occlusion. The casts of all patients received conventional and digital wax-ups. For pretreatment, conventional wax-up, and digital wax-up casts, contact number, contact area, and occlusion steepness were measured at four lateral positions, that is, at excursions of 0.5, 1.0, 2.0, and 3.0 mm from maximal intercuspation. Lateral occlusion scheme variables were affected by use of diagnostic wax-ups. For all types of casts, contact number decreased as excursion increased. The two types of wax-ups had similar contact number patterns, and contact number was significantly greater for these casts than for pretreatment casts in the earlier stages of excursion. Similarly, contact area gradually decreased with increasing excursion in the pretreatment and conventional and digital wax-up casts. There was only a minimal decrease in occlusion steepness as excursion increased. However, lateral occlusion was generally steeper for digital wax-up casts.

  11. Enhanced ethanol production by removal of cutin and epicuticular waxes of wheat straw by plasma assisted pretreatment

    DEFF Research Database (Denmark)

    Kádár, Zsófia; Schultz-Jensen, Nadja; Jensen, J. S.

    2015-01-01

    as with Scanning Electron Microscopy (SEM) imaging. Compounds resulting from wax degradation were analyzed in the washing water of PAP wheat straw. The wax removal enhanced enzymatic hydrolysis yield and, consequently, the efficiency of wheat straw conversion into ethanol. In total, PAP increased the conversion...

  12. Catalytic cracking of slack wax with molten mixtures containing aluminum chloride and bromide. [Wax obtained in the process of dewaxing lubricating oils

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuka, Y; Oizumi, K; Tamai, Y

    1983-09-01

    The catalytic cracking of slack wax with molten mixtures of AlCl/sub 3/ (aluminum chloride) and AlBr/sub 3/ (aluminum bromide) was investigated in an atmospheric semi-batch reactor at low temperatures of 100 to 160/sup 0/C. The cracking rate was proportional to the amount of unreacted wax. The conversion at 135/sup 0/C reached 25 wt % under typical reaction conditions. About 95 wt % of the cracking products consisted of isobutane, 2-methylbutane, and methylpentanes, ca. 50% of these isoparaffins being isobutane. The difference in cracking activity between this catalyst and a solid acid catalyst is discussed based on the product distribution. Hardly any reaction took place without HCl, which shows that the presence of HCl is essential for this cracking. The cracking rate increased sharply with an increase in the amount of the catalyst. The rate did not depend on the composition of the AlCl/sub 3//sup -/ AlBr/sub 3/ catalyst, but the product distribution did depend on it and the content of the gasoline fraction in the products increased with an increase in the concentration of AlBr/sub 3/. The cracking residue was characterized by IR and NMR spectroscopy. The results show that the cracking reaction probably occurs heterogeneously at the interface between the liquid wax and the molten catalyst. 3 figures, 4 tables.

  13. Isolation and characterization of mammalian eumelanins from hair and irides.

    Science.gov (United States)

    Novellino, L; Napolitano, A; Prota, G

    2000-07-26

    A new enzymatic procedure was developed for isolation of eumelanin from black human hair which might provide a substantially intact pigment for structural characterization. Sequential digestion with protease, proteinase K and papaine in the presence of dithiothreitol afforded a pigment with a 6% w/w protein content. HPLC analysis of pyrrole acids resulting from alkaline H(2)O(2) degradation, carboxyl content determination, and ferricyanide titration showed that the isolated pigment is made up of 5,6-dihydroxyindole (DHI)- and 5, 6-dihydroxyindole-2-carboxylic acid (DHICA)-derived units at a 6:1 ratio, exhibiting a significant degree of oxidative degradation. For comparison, a different eumelanin isolated from black bovine irides by a similar enzymatic procedure was analyzed. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry of the final pigment provided evidence for homologous series of DHICA oligomers, while chemical analysis allowed an estimate of 2:1 DHICA/DHI-derived units in the polymer, with a substantial proportion of intact o-diphenolic functions. Iris melanin proved able to promote the Fenton oxidation of deoxyribose while hair melanin was ineffective. Overall, these results provide, for the first time, unambiguous evidence for marked structural differences of mammalian eumelanins which may be directly related to the diversity of the sites of biosynthesis and storage, as well as to functional role of these pigments.

  14. Online estimation of wax deposition thickness in single-phase sub-sea pipelines based on acoustic chemometrics: A feasibility study

    OpenAIRE

    Halstensen, Maths; Arvoh, Benjamin Kaku; Amundsen, Lene; Hoffmann, Rainer

    2012-01-01

    Wax deposition in sub-sea oil producing pipelines is a concern to the oil producing companies. The deposition of wax in pipelines can cause serious economic implications if not monitored and controlled. Several researchers have developed models and investigated the deposition of wax in crude oil pipelines. As of today, there is no off the shelf instrument available for reliable online estimation of the wax depo- sition thickness in sub-sea pipelines. Acoustic chemometrics was applied to inves...

  15. Monoterpene biosynthesis potential of plant subcellular compartments

    NARCIS (Netherlands)

    Dong, L.; Jongedijk, E.J.; Bouwmeester, H.J.; Krol, van der A.R.

    2016-01-01

    Subcellular monoterpene biosynthesis capacity based on local geranyl diphosphate (GDP) availability or locally boosted GDP production was determined for plastids, cytosol and mitochondria. A geraniol synthase (GES) was targeted to plastids, cytosol, or mitochondria. Transient expression in Nicotiana

  16. Method for determining heterologous biosynthesis pathways

    KAUST Repository

    Gao, Xin; Kuwahara, Hiroyuki; Alazmi, Meshari Saud; Cui, Xuefeng

    2017-01-01

    suitable pathways for the endogenous metabolism of a host organism because the efficacy of heterologous biosynthesis is affected by competing endogenous pathways. The present invention is called MRE (Metabolic Route Explorer), and it was conceived

  17. Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco.

    Science.gov (United States)

    Cameron, Kimberly D; Teece, Mark A; Smart, Lawrence B

    2006-01-01

    Cuticular wax deposition and composition affects drought tolerance and yield in plants. We examined the relationship between wax and dehydration stress by characterizing the leaf cuticular wax of tree tobacco (Nicotiana glauca L. Graham) grown under periodic dehydration stress. Total leaf cuticular wax load increased after each of three periods of dehydration stress using a CH2Cl2 extraction process. Overall, total wax load increased 1.5- to 2.5-fold, but composition of the wax was not altered. Homologous series of wax components were classified into organic groups; n-hentriacontane was the largest component (>75%) with alcohols and fatty acids representing drying event. Leaves excised from plants subjected to multiple drying events were more resistant to water loss compared to leaves excised from well-watered plants, indicating that there is a negative relationship between total wax load and epidermal conductance. Lipid transfer proteins (LTPs) are thought to be involved in the transfer of lipids through the extracellular matrix for the formation of cuticular wax. Using northern analysis, a 6-fold increase of tree tobacco LTP gene transcripts was observed after three drying events, providing further evidence that LTP is involved in cuticle deposition. The simplicity of wax composition and the dramatic wax bloom displayed by tree tobacco make this an excellent species in which to study the relationship between leaf wax deposition and drought tolerance.

  18. Effect of Zeolite Treatment on the Blooming Behavior of Paraffin Wax in Natural Rubber Composites

    Directory of Open Access Journals (Sweden)

    Bryan B. Pajarito

    2016-06-01

    Full Text Available The blooming behavior of paraffin wax in natural rubber (NR composites was studied as function of zeolite treatment. Three types of zeolite treatment were treated as factors: acid activation using hydrochloric acid (HCl solution, ion exchange using tetradecyldimethyl amine (TDA chloride salt, and organic modification using glycerol monostearate (GMS. The zeolite was treated according to a 23 full factorial design of experiment. Attenuated total reflectance – Fourier transform infrared (ATR-FTIR spectroscopy was used to characterize the chemical structure of treated zeolite. Treated zeolite was applied as filler to NR composites deliberately compounded with high amount of paraff in wax. The amount of bloomed wax in surface of NR composite sheets was monitored with time at 50oC. Results show the bloom amount to be linear with the square root of time. NR composites reinforced with untreated, acid-activated, and ion-exchanged zeolite fillers indicate reduction in wax blooming as compared to unfilled NR. The bloom rate (slope and initial bloom (y-intercept were determined from the experimental plots. Analysis of variance (ANOVA shows the bloom rate to be signif icantly increased when zeolite fillers are treated with GMS. Meanwhile, initial bloom was significantly enhanced when zeolite fillers are treated with TDA chloride salt and GMS. The significant increase in bloom rate and initial bloom can be attributed to the softening of the NR matrix at high amounts of TDA chloride salt and GMS.

  19. Thermodynamics Prediction of Wax Precipitation in Black Oil Using Regular Solution Model and Plus Fraction Characterization

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2013-01-01

    Full Text Available The precipitation of wax/solid paraffin during production, transportation, and processing of crude oil is a serious problem. It is essential to have a reliable model to predict the wax appearance temperature and the amount of solid precipitated at different conditions. This paper presents a work to predict the solid precipitation based on solid-liquid equilibrium with regular solution-molecular thermodynamic theory and characterization of the crude oil plus fraction. Due to the differences of solubility characteristics between solid and liquid phase, the solubility parameters of liquid and solid phase are calculated by a modified model. The heat capacity change between solid and liquid phase is considered and estimated in the thermodynamic model. An activity coefficient based thermodynamic method combined with two characteristic methods to calculate wax precipitation in crude oil, especially heavy oil, has been tested with experimental data. The results show that the wax appearance temperature and the amount of weight precipitated can be predicted well with the experimental data.

  20. Morphology evaluation of biodegradable copolyesters based on dimerized fatty acid studied by DSC, SAXS and WAXS

    Czech Academy of Sciences Publication Activity Database

    Kozlowska, A.; Gromadzki, Daniel; El Fray, M.; Štěpánek, Petr

    2008-01-01

    Roč. 16, č. 6 (2008), s. 85-88 ISSN 1230-3666 Institutional research plan: CEZ:AV0Z40500505 Keywords : multiblock copolymers * DSC * WAXS Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.439, year: 2008

  1. Hearing and evasive behavior in the greater wax moth, Galleria mellonella (Pyralidae)

    DEFF Research Database (Denmark)

    Skals, Niels; Surlykke, Annemarie

    2000-01-01

    Greater wax moths (Galleria mellonella L., Pyraloidea) use ultrasound sensitive ears to detect clicking conspeci®cs and echolocating bats. Pyralid ears have four sensory cells, A1±4. The audiogram of G. mellonella has best frequency at 60 kHz with a threshold around 47 dB sound pressure level. A1...

  2. New MALDI matrices based on lithium salts for the analysis of hydrocarbons and wax esters

    Czech Academy of Sciences Publication Activity Database

    Horká, Petra; Vrkoslav, Vladimír; Hanus, Robert; Pecková, K.; Cvačka, Josef

    2014-01-01

    Roč. 49, č. 7 (2014), s. 628-638 ISSN 1076-5174 R&D Projects: GA ČR GA203/09/0139 Institutional support: RVO:61388963 Keywords : cuticular hydrocarbons * lipids * lithium attachment * MALDI matrix * waxes Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.379, year: 2014

  3. Clustering of comb and propolis waxes based on the distribution of aliphatic constituents

    Directory of Open Access Journals (Sweden)

    Custodio Angela R.

    2003-01-01

    Full Text Available Chemical composition data for 41 samples of propolis waxes and 9 samples of comb waxes of Apis mellifera collected mainly in Brazil were treated using Principal Component Analysis (PCA and Hierarchical Cluster Analysis (HCA. For chemometrical analysis, the distribution of hydrocarbons and residues of alcohols and carboxylic acids of monoesters were considered. The clustering obtained revealed chemical affinities and differences not previously grasped by simple eye-inspection of the data. No consistent differences were detected between comb and propolis waxes. These and previous results suggest that hydrocarbons, carboxylic acids, aliphatic alcohols and esters from both comb and propolis waxes are bee-produced compounds and, hence, the differences detected between one and another region are dependent on genetic factors related to the insects rather than the local flora. The samples analyzed were split into two main clusters, one of them comprising exclusively material collected in the State of São Paulo. The results are discussed with respect to the africanization of honeybees that first took place in that State and therefrom irradiated to other parts of Brazil.

  4. The casting of western sculpture during the XIXth century: sand casting versus lost wax casting

    NARCIS (Netherlands)

    Beentjes, T.P.C.

    2014-01-01

    This paper will discuss research into bronze casting techniques as practiced during the XIXth and early XXth century. Both natural sand casting (fonte au sable naturel) and lost wax casting (fonte à la cire perdue) were employed during this period and sometimes rivalled for commissions. Before the

  5. A prediction method for the wax deposition rate based on a radial basis function neural network

    Directory of Open Access Journals (Sweden)

    Ying Xie

    2017-06-01

    Full Text Available The radial basis function neural network is a popular supervised learning tool based on machinery learning technology. Its high precision having been proven, the radial basis function neural network has been applied in many areas. The accumulation of deposited materials in the pipeline may lead to the need for increased pumping power, a decreased flow rate or even to the total blockage of the line, with losses of production and capital investment, so research on predicting the wax deposition rate is significant for the safe and economical operation of an oil pipeline. This paper adopts the radial basis function neural network to predict the wax deposition rate by considering four main influencing factors, the pipe wall temperature gradient, pipe wall wax crystal solubility coefficient, pipe wall shear stress and crude oil viscosity, by the gray correlational analysis method. MATLAB software is employed to establish the RBF neural network. Compared with the previous literature, favorable consistency exists between the predicted outcomes and the experimental results, with a relative error of 1.5%. It can be concluded that the prediction method of wax deposition rate based on the RBF neural network is feasible.

  6. Physical characteristics of tetrahydroxy and acylated derivatives of jojoba liquid wax

    Science.gov (United States)

    Jojoba liquid wax is a mixture of esters of long chain fatty acids and fatty alcohols, mainly (C38:2-C46:2). The oil exhibits excellent emolliency on the skin and therefore is a component in many personal care cosmetic formulations. The virgin oil is a component of the seed of the Jojoba (Simmondsia...

  7. In vitro and In vivo Characterisation of Piroxicam-Loaded Dika Wax ...

    African Journals Online (AJOL)

    Purpose: To formulate piroxicam-loaded lipospheres and evaluate their in vitro and in vivo properties. Method: Piroxicam-loaded lipospheres were prepared by hot homogenization technique using dika wax and Phospholipon® 90G (1:1, 1:2 and 2:1) as the lipid matrix. Characterisation, based on particle size

  8. 1H and 13C NMR spectral assignments of four dammarane triterpenoids from carnauba wax.

    Science.gov (United States)

    Cysne, Juliana de Brito; Braz-Filho, Raimundo; Assunção, Marcus Vinícius; Uchoa, Daniel E de Andrade; Silveira, Edilberto R; Pessoa, Otília Deusdênia L

    2006-06-01

    The phytochemical investigation of carnauba wax led to the isolation of three new dammarane triterpenoids 1, 2 and 4, together with the known triterpene 3. The structures of the new compounds were determined by 1D and 2D NMR spectroscopy and by comparison with published data for closely related compounds. 2006 John Wiley & Sons, Ltd.

  9. Simulation of temperature-pressure profiles and wax deposition in gas-lift wells

    Directory of Open Access Journals (Sweden)

    Sevic Snezana

    2017-01-01

    Full Text Available Gas-lift is an artificial lift method in which gas is injected down the tubing- -casing annulus and enters the production tubing through the gas-lift valves to reduce the hydrostatic pressure of the formation fluid column. The gas changes pressure, temperature and fluid composition profiles throughout the production tubing string. Temperature and pressure drop along with the fluid composition changes throughout the tubing string can lead to wax, asphaltenes and inorganic salts deposition, increased emulsion stability and hydrate formation. This paper presents a new model that can sucesfully simulate temperature and pressure profiles and fluid composition changes in oil well that operates by means of gas-lift. This new model includes a pipe-in-pipe segment (production tubing inside production casing, countercurrent flow of gas-lift gas and producing fluid, heat exchange between gas-lift gas and the surrounding ambient – ground; and gas-lift gas with the fluid in the tubing. The model enables a better understanding of the multiphase fluid flow up the production tubing. Model was used to get insight into severity and locations of wax deposition. The obtained information on wax deposition can be used to plan the frequency and depth of wax removing operations. Model was developed using Aspen HYSYS software.

  10. Plumage reflectance is not affected by preen wax composition in red knots Calidris canutus

    NARCIS (Netherlands)

    Reneerkens, J; Korsten, P

    It has recently been shown that sandpipers (Scolopacidae) abruptly switch the chemical composition of their preen gland secretions from mono- to diester waxes just before the period of courtship. The timing and context of the shift suggested that diesters could provide a visible quality signal

  11. Wax co-cracking synergism of high density polyethylene to alternative fuels

    Directory of Open Access Journals (Sweden)

    Magdy Motawie

    2015-09-01

    Full Text Available Attempts have been made to understand the thermal degradation of high density polyethylene (HDPE and their combined co-cracking using different ratios of HDPE and petroleum wax under nitrogen atmosphere. We have conducted the experiments using HDPE as the raw material and petroleum wax as co-feed by at 400 and 450 °C reaction temperatures. The product distribution was noted along with reaction time of 0.5–3 h for the degradation. Thermal gravimetric analysis (TGA technique was used to measure the weight change of the feedstock as a function of temperature and time. Differential scanning calorimetry (DSC was used to determine the degradation temperature. Products were characterized using gas chromatography (GC and infrared spectroscopy (FTIR, some other standard physical methods were used to determine the main properties of the liquid products. Results show that the mixed plastic-wax samples could be converted into gases, gasoline, and middle distillate depending upon the composition of feed polymer/wax ratio. It was found that the products mostly consisted of paraffin and olefin compounds, with carbon numbers of C1–C4, C5–C9 and C10–C19 in the case of gases, gasoline and middle distillate respectively.

  12. Cross-linking of LDPE/wax blends by using dicumyl peroxide

    African Journals Online (AJOL)

    Igor Krupa

    They are not soluble in many solvents due to their high crystallinity, but they ... macroradical formation via thermal decomposition of organic peroxides.6,7,8 A ... as potential applications of LDPE/wax blends are concerned, lower viscosity of ...

  13. Investigation of Carnuba Wax as Matrix in the Formulation of Solid ...

    African Journals Online (AJOL)

    This study was carried out to investigate the drug entrapment efficiency, release potential and drug release mechanisms of solid lipid microparticles (SLMs) prepared with different concentrations of two non ionic surfactants using carnauba wax as the lipid matrix. SLMs were prepared by melt dispersion technique, whereby ...

  14. Spectroscopic characterization of D-003 obtained from the sugar cane (Saccharum officinarum L.) wax

    International Nuclear Information System (INIS)

    Marrero Delange, David; Cora Medina, Miriam; Laguna Granja, Abilio; Gonzalez Canavaciolo Victor L

    2013-01-01

    D-003, an active pharmaceutical ingredient (API) purified from sugar cane (Saccharum officinarum L.) wax with cholesterol-lowering and antioxidant effects, is composed of a mixture of free saturated very long chain fatty acids (VLCFAs), each within specific relative concentration ranges as determined by the gas chromatography (GC). However, the spectroscopic characterization of D-003 had not been previously reported

  15. Antibacterial and antifungal effect of high pH and paraffin wax ...

    African Journals Online (AJOL)

    The antibacterial and antifungal effects of high pH (9, 10) and paraffin wax were determined. Determination of antibacterial and antifungal activity of the combined treatments was achieved by aerobic mesophilic count of bacteria and fungi on the surface of the tomatoes, peppers and oranges using serial dilution and pour ...

  16. Spectroscopic characterization of Simultaneous determination of Albendazol from the sugar cane (Saccharum officinarum L.) wax

    International Nuclear Information System (INIS)

    Marrero Delange, David; Cora Medina, Miriam; Laguna Granja, Abilio; Gonzalez Canavaciolo, Victor L

    2013-01-01

    D-003, an active pharmaceutical ingredient (API) purified from sugar cane (Saccharum officinarum L.) wax with cholesterol-lowering and antioxidant effects, is composed of a mixture of free saturated very long chain fatty acids (VLCFAs), each within specific relative concentration ranges as determined by the gas chromatography (GC). However, the spectroscopic characterization of D-003 had not been previously reported

  17. Cellulose biosynthesis in higher plants

    Directory of Open Access Journals (Sweden)

    Krystyna Kudlicka

    2014-01-01

    Full Text Available Knowledge of the control and regulation of cellulose synthesis is fundamental to an understanding of plant development since cellulose is the primary structural component of plant cell walls. In vivo, the polymerization step requires a coordinated transport of substrates across membranes and relies on delicate orientations of the membrane-associated synthase complexes. Little is known about the properties of the enzyme complexes, and many questions about the biosynthesis of cell wall components at the cell surface still remain unanswered. Attempts to purify cellulose synthase from higher plants have not been successful because of the liability of enzymes upon isolation and lack of reliable in vitro assays. Membrane preparations from higher plant cells incorporate UDP-glucose into a glucan polymer, but this invariably turns out to be predominantly β -1,3-linked rather than β -1,4-linked glucans. Various hypotheses have been advanced to explain this phenomenon. One idea is that callose and cellulose-synthase systems are the same, but cell disruption activates callose synthesis preferentially. A second concept suggests that a regulatory protein as a part of the cellulose-synthase complex is rapidly degraded upon cell disruption. With new methods of enzyme isolation and analysis of the in vitro product, recent advances have been made in the isolation of an active synthase from the plasma membrane whereby cellulose synthase was separated from callose synthase.

  18. Mammalian synthetic biology: emerging medical applications.

    Science.gov (United States)

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M; Krams, Rob

    2015-05-06

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON-OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  19. Mammalian Sperm Motility: Observation and Theory

    KAUST Repository

    Gaffney, E.A.; Gadê lha, H.; Smith, D.J.; Blake, J.R.; Kirkman-Brown, J.C.

    2011-01-01

    the mechanics of these specialized cells, especially during their remarkable journey to the egg. The biological structure of the motile sperm appendage, the flagellum, is described and placed in the context of the mechanics underlying the migration of mammalian

  20. Enhancer Evolution across 20 Mammalian Species

    Science.gov (United States)

    Villar, Diego; Berthelot, Camille; Aldridge, Sarah; Rayner, Tim F.; Lukk, Margus; Pignatelli, Miguel; Park, Thomas J.; Deaville, Robert; Erichsen, Jonathan T.; Jasinska, Anna J.; Turner, James M.A.; Bertelsen, Mads F.; Murchison, Elizabeth P.; Flicek, Paul; Odom, Duncan T.

    2015-01-01

    Summary The mammalian radiation has corresponded with rapid changes in noncoding regions of the genome, but we lack a comprehensive understanding of regulatory evolution in mammals. Here, we track the evolution of promoters and enhancers active in liver across 20 mammalian species from six diverse orders by profiling genomic enrichment of H3K27 acetylation and H3K4 trimethylation. We report that rapid evolution of enhancers is a universal feature of mammalian genomes. Most of the recently evolved enhancers arise from ancestral DNA exaptation, rather than lineage-specific expansions of repeat elements. In contrast, almost all liver promoters are partially or fully conserved across these species. Our data further reveal that recently evolved enhancers can be associated with genes under positive selection, demonstrating the power of this approach for annotating regulatory adaptations in genomic sequences. These results provide important insight into the functional genetics underpinning mammalian regulatory evolution. PMID:25635462

  1. In search of low cost biological analysis: Wax or acrylic glue bonded paper microfluidic devices

    KAUST Repository

    Kodzius, Rimantas; Gong, Xiuqing; Li, Shunbo; Qin, Jianhua; Wen, Weijia; Wu, Jinbo; Xiao, Kang; Yi, Xin

    2011-01-01

    We report a simple, low-cost and detachable microfluidic chip incorporating easily accessible paper, glass slides or other polymer films as the chip materials along with adhesive wax or cyanoacrylate-based resin as the recycling bonding material. We use a laser to cut through the paper or film to form patterns and then sandwich the paper and film between glass sheets or polymer membranes. The hot-melt adhesive wax or simple cyanoacrylate-based resin can realize bridge bonding between various materials, for example, paper, polymethylmethacrylate film, glass sheets, or metal plate. The wax bonding process is reversible and the wax is reusable through a melting and cooling process. With this process, a three-dimensional (3D) microfluidic chip is achievable by evacuating the channels of adhesive material in a hot-water. We applied the wax-paper based microfluidic chip to HeLa cell electroporation. Subsequently, a prototype of a 5-layer 3D chip was fabricated by multilayer wax bonding. To check the sealing ability and the durability of the chip, green fluorescence protein recombinant E. coli bacteria were cultured, with which the chemotaxis of E. coli was studied in order to determine the influence of antibiotic ciprofloxacin concentration on the E. coli migration. The chip bonded with cyanoacrylate-based resin was tested by measuring protein concentration and carrying out DNA capillary electrophoresis. To study the biocompatibility and applicability of our microfluidic chip fabrication technology, we tested the PCR compatibility of our chip materials along with various other common materials employed in the fabrication of microfluidic chips including: silicon, several kinds of silicon oxide, glasses, plastics, wax, and adhesives, etc. Two-temperature PCR was performed with these materials to determine their PCR-inhibitory effect. In most of the cases, addition of bovine serum albumin effectively improved the reaction yield. We also studied the individual PCR components

  2. Mammalian Genetics and Teratology Section

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The work of the Mammalian Genetics and Teratology Section includes research in mutagenesis, basic genetics, reproductive biology, and teratogenesis involving basic studies, method development, including exploration of the biological material, and testing. The basic studies make good use of the genetic material accumulated in mutagenesis experiments of various kinds, or of the findings of mutagenesis experiments themselves. In the latter category is the finding of a repair system in the fertilized egg. The genetics of repair competency or deficiency are now under study. A linear relationship between gene dosage and level of expression of an enzyme has been demonstrated. Opportunities for the study of gene action are provided by a number of X-autosome translocations which continue to be discovered in the course of mutagenesis experiments. In these rearrangements, X-chromosome inactivation extends to neighboring autosomal loci. Considerable progress has been made in developing the skeletal mutation system, which provides information on dominants that is highly useful for risk assessment. A sensitive-indicator test is now under development which will make the screening for skeletal mutations much faster and easier. Method development has also progressed on the in vivo somatic-mutation test now being widely used as an in vivo screen for mutagens. Another method developed here is the numerical sex-chromosome anomaly (NSA) test for nondisjunction. The NSA method is being used to explore the effects of female age on chromosome loss and nondisjunction. A model for estimating the misclassification error was experimentally established for the heritable translocation test. A rapid, easy, and sensitive in vivo screening test for teratogenesis was developed. An in vitro teratogenic prescreen being developed makes use of teratocarcinoma-derived cell lines

  3. Elevated expression of protein biosynthesis genes in liver and muscle of hibernating black bears (Ursus americanus).

    Science.gov (United States)

    Fedorov, Vadim B; Goropashnaya, Anna V; Tøien, Øivind; Stewart, Nathan C; Gracey, Andrew Y; Chang, Celia; Qin, Shizhen; Pertea, Geo; Quackenbush, John; Showe, Louise C; Showe, Michael K; Boyer, Bert B; Barnes, Brian M

    2009-04-10

    We conducted a large-scale gene expression screen using the 3,200 cDNA probe microarray developed specifically for Ursus americanus to detect expression differences in liver and skeletal muscle that occur during winter hibernation compared with animals sampled during summer. The expression of 12 genes, including RNA binding protein motif 3 (Rbm3), that are mostly involved in protein biosynthesis, was induced during hibernation in both liver and muscle. The Gene Ontology and Gene Set Enrichment analysis consistently showed a highly significant enrichment of the protein biosynthesis category by overexpressed genes in both liver and skeletal muscle during hibernation. Coordinated induction in transcriptional level of genes involved in protein biosynthesis is a distinctive feature of the transcriptome in hibernating black bears. This finding implies induction of translation and suggests an adaptive mechanism that contributes to a unique ability to reduce muscle atrophy over prolonged periods of immobility during hibernation. Comparing expression profiles in bears to small mammalian hibernators shows a general trend during hibernation of transcriptional changes that include induction of genes involved in lipid metabolism and carbohydrate synthesis as well as depression of genes involved in the urea cycle and detoxification function in liver.

  4. Elucidation of cladofulvin biosynthesis reveals a cytochrome P450 monooxygenase required for anthraquinone dimerization.

    Science.gov (United States)

    Griffiths, Scott; Mesarich, Carl H; Saccomanno, Benedetta; Vaisberg, Abraham; De Wit, Pierre J G M; Cox, Russell; Collemare, Jérôme

    2016-06-21

    Anthraquinones are a large family of secondary metabolites (SMs) that are extensively studied for their diverse biological activities. These activities are determined by functional group decorations and the formation of dimers from anthraquinone monomers. Despite their numerous medicinal qualities, very few anthraquinone biosynthetic pathways have been elucidated so far, including the enzymatic dimerization steps. In this study, we report the elucidation of the biosynthesis of cladofulvin, an asymmetrical homodimer of nataloe-emodin produced by the fungus Cladosporium fulvum A gene cluster of 10 genes controls cladofulvin biosynthesis, which begins with the production of atrochrysone carboxylic acid by the polyketide synthase ClaG and the β-lactamase ClaF. This compound is decarboxylated by ClaH to yield emodin, which is then converted to chrysophanol hydroquinone by the reductase ClaC and the dehydratase ClaB. We show that the predicted cytochrome P450 ClaM catalyzes the dimerization of nataloe-emodin to cladofulvin. Remarkably, such dimerization dramatically increases nataloe-emodin cytotoxicity against mammalian cell lines. These findings shed light on the enzymatic mechanisms involved in anthraquinone dimerization. Future characterization of the ClaM enzyme should facilitate engineering the biosynthesis of novel, potent, dimeric anthraquinones and structurally related compound families.

  5. Suppression of wheat TaCDK8/TaWIN1 interaction negatively affects germination of Blumeria graminis f.sp. tritici by interfering with very-long-chain aldehyde biosynthesis.

    Science.gov (United States)

    Kong, Lingyao; Chang, Cheng

    2018-01-01

    Wheat TaCDK8 interacts with TaWIN1 to regulate very-long-chain aldehyde biosynthesis required for efficient germination of Blumeria graminis f.sp. tritici. Powdery mildew caused by Blumeria graminis f.sp. tritici (Bgt) is a devastating disease of common wheat (Triticum aestivum L.). Bgt infection initiates with its conidia germination on the aerial surface of wheat. In this study, we isolated the cyclin-dependent kinase 8 (TaCDK8) from wheat cultivar Jing411 and found that silencing of TaCDK8 impeded Bgt germination. The biochemical and molecular-biological assays revealed that TaCDK8 interacts with and phosphorylates the wheat transcription factor wax inducer 1 (TaWIN1) to stimulate the TaWIN1-dependent transcription. Bgt conidia on the leaves of TaWIN1-silenced plants also showed reduced germination. Gas chromatographic analysis revealed that knockdown of TaCDK8 or TaWIN1 resulted in decreases of wax components and cutin monomers in wheat leaves. Moreover, Bgt germination on leaves of TaCDK8 or TaWIN1 silenced plants could be fully restored by application of wild-type cuticular wax. In vitro studies demonstrated that very-long-chain aldehydes absent from the cuticular wax of the TaCDK8 or TaWIN1 silenced plants were capable of chemically stimulating Bgt germination. These results implicated that the suppression of TaCDK8/TaWIN1 interaction negatively affects Bgt germination by interfering with very-long-chain aldehyde biosynthesis required for efficient fungal germination.

  6. A review on wax printed microfluidic paper-based devices for international health.

    Science.gov (United States)

    Altundemir, S; Uguz, A K; Ulgen, K

    2017-07-01

    Paper-based microfluidics has attracted attention for the last ten years due to its advantages such as low sample volume requirement, ease of use, portability, high sensitivity, and no necessity to well-equipped laboratory equipment and well-trained manpower. These characteristics have made paper platforms a promising alternative for a variety of applications such as clinical diagnosis and quantitative analysis of chemical and biological substances. Among the wide range of fabrication methods for microfluidic paper-based analytical devices ( μ PADs), the wax printing method is suitable for high throughput production and requires only a commercial printer and a heating source to fabricate complex two or three-dimensional structures for multipurpose systems. μ PADs can be used by anyone for in situ diagnosis and analysis; therefore, wax printed μ PADs are promising especially in resource limited environments where people cannot get sensitive and fast diagnosis of their serious health problems and where food, water, and related products are not able to be screened for toxic elements. This review paper is focused on the applications of paper-based microfluidic devices fabricated by the wax printing technique and used for international health. Besides presenting the current limitations and advantages, the future directions of this technology including the commercial aspects are discussed. As a conclusion, the wax printing technology continues to overcome the current limitations and to be one of the promising fabrication techniques. In the near future, with the increase of the current interest of the industrial companies on the paper-based technology, the wax-printed paper-based platforms are expected to take place especially in the healthcare industry.

  7. Metabolism of dietary fatty alcohol, fatty acid, and wax ester in carp

    International Nuclear Information System (INIS)

    Mankura, Mitsumasa; Kayama, Mitsu; Iijima, Noriaki.

    1987-01-01

    Lipids in various tissues of the carp, Cyprinus carpio were analyzed. The fates of force-fed [1- 14 C]palmitic acids, [1- 14 C]cetyl alcohol, and oleyl[1- 14 C]linoleate, were compared with those given in vitro experiments. Major lipid classes in all except adipose tissue were found to be polar lipids (phospholipids) and triacylglycerols. The major fatty acids in nearly all the tissues were 16 : 0, 18 : 1, 18 : 2, and 22 : 6. Although the radioactivity incorporation into wax esters from [1- 14 C]palmitic acid and [1- 14 C]cetyl alcohol for various tissue homogenates was quite high, in vivo incorporation of these labelled compounds into wax esters was very low and radioactivity was distributed mainly in the lipids of muscle, skin, hepatopancreas, intestine, and gill. Almost all the radioactivity in various tissues was present in phospatidylcholine and triacylglycerols. Most of the oleyl[1- 14 C]linoleate was easily hydrolyzed by various tissue homogenates. Force-fed oleyl[1- 14 C]linoleate was hydrolyzed in the intestine and then transported to other tissues, such as muscle, kin, gill, and hepatopancreas. Moreover, released radioactivity from oleyl[1- 14 C]linoleate was present in mainly phosphatidylcholine and triacylglycerols. Radioactivity was also detected in wax esters in plasma. Certain amounts for fatty acids released from [1- 14 C]triolein in the hepatopancreas homogenates were incorporated into wax esters; this was stimulated by the addition of oleyl alcohol. The present results indicate extensive hydrolysis of wax ester to possibly occur in the intestine and certain portions of the fatty alcohol moiety to be resterfied. The portions may be oxidized to fatty acids and which subsequently behave as dietary fatty acids. (author) 50 ref

  8. Experimental analysis, modeling and simulation of a solar energy accumulator with paraffin wax as PCM

    International Nuclear Information System (INIS)

    Reyes, A.; Henríquez-Vargas, L.; Aravena, R.; Sepúlveda, F.

    2015-01-01

    Highlights: • Enhancement of paraffin wax thermal conductivity using soft drink can stripes. • Thermal analysis and simulations results agree well with experimental data. • Increase in accumulator thermal efficiencies through addition of external aluminum stripes. • Proposed accumulator allows up to 13,000 kJ of energy storage. - Abstract: Soft drink cans filled with paraffin wax mixed with 7.5% aluminum stripes, obtained from disposable cans, doubled the thermal conductivity of cans filled only with paraffin wax. Promising results obtained in a prototype heat exchanger encouraged the construction of this unit 6 times bigger. We experimentally evaluated and model a heat exchanger for solar energy accumulation, composed by 300 disposable soft drink cans filled with a total of 59.25 kg of paraffin wax mixed with 7.5% aluminum stripes. The effect of adding 2.75 kg of aluminum fins for enhancing heat transfer from the outer surface of the cans to the circulant air was experimentally analyzed. In sunny days, the wax melted completely in about 4 h. The accumulated energy in form of latent heat (about 13,000 kJ) allowed to increase the temperature of 0.040 kg/s of circulant air in at least 20 °C during a period of 2.5 h. For an air mass rate of 0.018 kg/s the period was extended practically to 5 h. The accumulator thermal analysis was presented and a subsequent numerical simulation with Matlab was performed to compare with the experimental results obtaining good agreement specially for higher air mass flow rates. The low cost accumulator presented is of simple construction and will allow extended use of solar energy for applications such as drying processes or household calefaction system.

  9. Pathways and Subcellular Compartmentation of NAD Biosynthesis in Human Cells

    Science.gov (United States)

    Nikiforov, Andrey; Dölle, Christian; Niere, Marc; Ziegler, Mathias

    2011-01-01

    NAD is a vital redox carrier, and its degradation is a key element of important regulatory pathways. NAD-mediated functions are compartmentalized and have to be fueled by specific biosynthetic routes. However, little is known about the different pathways, their subcellular distribution, and regulation in human cells. In particular, the route(s) to generate mitochondrial NAD, the largest subcellular pool, is still unknown. To visualize organellar NAD changes in cells, we targeted poly(ADP-ribose) polymerase activity into the mitochondrial matrix. This activity synthesized immunodetectable poly(ADP-ribose) depending on mitochondrial NAD availability. Based on this novel detector system, detailed subcellular enzyme localizations, and pharmacological inhibitors, we identified extracellular NAD precursors, their cytosolic conversions, and the pathway of mitochondrial NAD generation. Our results demonstrate that, besides nicotinamide and nicotinic acid, only the corresponding nucleosides readily enter the cells. Nucleotides (e.g. NAD and NMN) undergo extracellular degradation resulting in the formation of permeable precursors. These precursors can all be converted to cytosolic and mitochondrial NAD. For mitochondrial NAD synthesis, precursors are converted to NMN in the cytosol. When taken up into the organelles, NMN (together with ATP) serves as substrate of NMNAT3 to form NAD. NMNAT3 was conclusively localized to the mitochondrial matrix and is the only known enzyme of NAD synthesis residing within these organelles. We thus present a comprehensive dissection of mammalian NAD biosynthesis, the groundwork to understand regulation of NAD-mediated processes, and the organismal homeostasis of this fundamental molecule. PMID:21504897

  10. Combined hydrogen and carbon isotopes of plant waxes as an indicator of drought impacts on ancient Maya agriculture

    Science.gov (United States)

    Douglas, P. M.; Pagani, M.; Eglinton, T. I.; Brenner, M.; Hodell, D. A.; Curtis, J. H.

    2012-12-01

    There is increasing evidence suggesting that a series of droughts in the Yucatan Peninsula coincided with the Terminal Classic decline of the Classic Maya civilization (ca. 1250 to 1000 years BP). However, there is little evidence directly linking climatic change and changes in human activities in this region. In this study we combine plant-wax δD, δ13C, and Δ14C analyses in two lake sediment cores from southeastern Mexico and northern Guatemala to develop coupled records of hydroclimate variability and human-driven vegetation change. Plant-wax specific Δ14C ages indicate a large input of pre-aged plant waxes into lake sediment. Comparison of plant-wax δD records with other regional hydroclimate proxy records suggest that plant-wax ages are evenly distributed around plant-wax radiocarbon ages, and that applying an age model based on plant-wax radiocarbon ages is appropriate for these lake sediments. We evaluate how differences in plant-wax age distributions influence stable isotope records to assess the age uncertainty associated with records of climate and vegetation change derived from plant-wax stable isotopes. In this low-elevation tropical environment plant-wax δ13C is largely controlled by the relative abundance of C3 and C4 plants. The ancient Maya practiced widespread maize (C4) agriculture and strongly influenced regional C3-C4 vegetation dynamics. Under natural conditions C4 plant coverage and plant-wax δ13C would tend to co-vary positively since C4 plants are well adapted for dry conditions. Under ancient Maya land-use, however, this relationship is likely to be decoupled, since drought would have disrupted C4 agriculture. Combined analysis of plant-wax δD and δ13C from both lakes indicates increasingly divergent trends following ca. 3500 years BP, around the onset of widespread ancient Maya agriculture. After this time high plant-wax δD values tend to correspond with low plant-wax δ13C values and vice versa. This pattern is consistent with

  11. Identification of In-Chain-Functionalized Compounds and Methyl-Branched Alkanes in Cuticular Waxes of Triticum aestivum cv. Bethlehem.

    Directory of Open Access Journals (Sweden)

    Radu C Racovita

    Full Text Available In this work, cuticular waxes from flag leaf blades and peduncles of Triticum aestivum cv. Bethlehem were investigated in search for novel wax compounds. Seven wax compound classes were detected that had previously not been reported, and their structures were elucidated using gas chromatography-mass spectrometry of various derivatives. Six of the classes were identified as series of homologs differing by two methylene units, while the seventh was a homologous series with homologs with single methylene unit differences. In the waxes of flag leaf blades, secondary alcohols (predominantly C27 and C33, primary/secondary diols (predominantly C28 and esters of primary/secondary diols (predominantly C50, combining C28 diol with C22 acid were found, all sharing similar secondary hydroxyl group positions at and around C-12 or ω-12. 7- and 8-hydroxy-2-alkanol esters (predominantly C35, 7- and 8-oxo-2-alkanol esters (predominantly C35, and 4-alkylbutan-4-olides (predominantly C28 were found both in flag leaf and peduncle wax mixtures. Finally, a series of even- and odd-numbered alkane homologs was identified in both leaf and peduncle waxes, with an internal methyl branch preferentially on C-11 and C-13 of homologs with even total carbon number and on C-12 of odd-numbered homologs. Biosynthetic pathways are suggested for all compounds, based on common structural features and matching chain length profiles with other wheat wax compound classes.

  12. Understanding nucleic acid structural changes by comparing wide-angle x-ray scattering (WAXS) experiments to molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Pabit, Suzette A.; Katz, Andrea M.; Pollack, Lois [School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853 (United States); Tolokh, Igor S. [Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061 (United States); Drozdetski, Aleksander [Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 (United States); Baker, Nathan [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Onufriev, Alexey V. [Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061 (United States); Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2016-05-28

    Wide-angle x-ray scattering (WAXS) is emerging as a powerful tool for increasing the resolution of solution structure measurements of biomolecules. Compared to its better known complement, small angle x-ray scattering (SAXS), WAXS targets higher scattering angles and can enhance structural studies of molecules by accessing finer details of solution structures. Although the extension from SAXS to WAXS is easy to implement experimentally, the computational tools required to fully harness the power of WAXS are still under development. Currently, WAXS is employed to study structural changes and ligand binding in proteins; however, the methods are not as fully developed for nucleic acids. Here, we show how WAXS can qualitatively characterize nucleic acid structures as well as the small but significant structural changes driven by the addition of multivalent ions. We show the potential of WAXS to test all-atom molecular dynamics (MD) simulations and to provide insight into understanding how the trivalent ion cobalt(III) hexammine (CoHex) affects the structure of RNA and DNA helices. We find that MD simulations capture the RNA structural change that occurs due to addition of CoHex.

  13. Compound-Specific Radiocarbon Dating Reveals the Age Distribution of Plant-Wax Biomarkers Exported to the Bengal Fan

    Science.gov (United States)

    Galy, V.; French, K. L.; Hein, C. J.; Haghipour, N.; Wacker, L.; Kudrass, H.; Eglinton, T. I.

    2017-12-01

    The stable isotope composition of leaf-wax compounds preserved in lacustrine and marine sediments has been widely used to reconstruct terrestrial paleo-environments. However, the timescales of plant-wax storage in continental reservoirs before riverine export are not well known, representing a key uncertainty in paleo-environment studies. We couple numerical models with bulk and leaf-wax fatty acid organic 13C and 14C signatures hosted in a high-deposition-rate sediment core from the Bengal shelf canyon in order to estimate storage timescales within the Ganges-Brahmaputra catchment area. The fatty acid 14C record reveals a muted nuclear weapons bomb spike, requiring that the Ganges-Brahmaputra river system exports a mixture of young and old (pre-aged) leaf-wax compounds. According to numerical simulations, 79-83% of the leaf-wax fatty acids in this core are sourced from continental reservoirs that store organic carbon on an average of 1000-1200 calendar years, while the remainder has an average age of 15 years. These results demonstrate that a majority of the leaf-wax compounds produced in the Ganges-Brahmaputra river basin was stored in soils, floodplains, and wetlands prior to its export to the Bengal Fan. We will discuss the implications of these findings for plant-wax based paleoenvironmental records.

  14. Effect of spatial distribution of wax and PEG-isocyanate on the morphology and hydrophobicity of starch films.

    Science.gov (United States)

    Muscat, Delina; Adhikari, Raju; Tobin, Mark J; McKnight, Stafford; Wakeling, Lara; Adhikari, Benu

    2014-10-13

    This study proposes a novel method for improving surface hydrophobicity of glycerol plasticized high amylose (HAG) films. We used polyethylene glycol isocyanate (PEG-iso) crosslinker to link HAG and three natural waxes (beeswax, candelilla wax and carnauba wax) to produce HAG+wax+PEG-iso films. The spatial distributions of wax and PEG-iso across the thickness of these films were determined using Synchrotron-based Fourier transform infrared spectroscopy. The hydrophobicity and surface morphology of the films were determined using contact angle (CA) and scanning electron microscopic measurements, respectively. The distribution patterns of wax and the PEG-iso across the thickness of the film, and the nature of crystalline patterns formed on the surface of these films were found to be the key factors affecting surface hydrophobicity. The highest hydrophobicity (CA >90°) was created when the PEG-iso was primarily distributed in the interior of the films and a hierarchical circular pinnacle structure of solidified wax was formed on the surface. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Effect of new type of synthetic waxes on reduced production and compaction temperature of asphalt mixture with reclaimed asphalt

    Science.gov (United States)

    Valentová, Tereza; Benešová, Lucie; Mastný, Jan; Valentin, Jan

    2017-09-01

    Lower mixing and paving temperatures of asphalt mixtures, which are an important issue in recent years, with respect to increased energy demand of civil engineering structures during their processing, allow reduction of this demand and result in minimized greenhouse gas production. In present time, there are many possibilities how to achieve reduction of production temperature during the mixing and paving of an asphalt mixture. The existing solutions distinguish in target operating temperature behaviour which has to be achieved in terms of good workability. This paper is focused on technical solutions based on use of new types of selected synthetic and bio-based waxes. In case of bio-based additive sugar cane wax was used, which is free of paraffins and is reclaimed as waste product during processing of sugar cane. The used waxes are added to bituminous binder in form of free-flowing granules or fine-grained powder. Synthetic waxes are represented by new series of Fischer-Tropsch wax in form of fine granules as well as by polyethylene waxes in form of fine-grained powder or granules. Those waxes were used to modify a standard paving grade bitumen dosed into asphalt mixture of ACsurf type containing up to 30 % of reclaimed asphalt (RA).

  16. Leaf surface wax is a source of plant methane formation under UV radiation and in the presence of oxygen

    DEFF Research Database (Denmark)

    Bruhn, Dan; Mikkelsen, Teis Nørgaard; Rolsted, M. M. M.

    2014-01-01

    to this, we demonstrated that the UV radiation-induced CH4 emission is independent of leaf area index above unity. Further, we observed that the presence of O2 in the atmosphere was necessary for achieving the highest rates of CH4 emission. Methane formation from leaf surface wax is supposedly a two...... investigated the potential of the leaf surface wax itself as a source of UV radiationinduced leaf aerobic CH4 formation. Isolated leaf surface wax emitted CH4 at substantial rates in response to UV radiation. This discovery has implications for how the phenomenon should be scaled to global levels. In relation...

  17. Impact of Chemical Analogs of 4-Hydroxybenzoic Acid on Coenzyme Q Biosynthesis: From Inhibition to Bypass of Coenzyme Q Deficiency

    Directory of Open Access Journals (Sweden)

    Fabien Pierrel

    2017-06-01

    Full Text Available Coenzyme Q is a lipid that participates to important physiological functions. Coenzyme Q is synthesized in multiple steps from the precursor 4-hydroxybenzoic acid. Mutations in enzymes that participate to coenzyme Q biosynthesis result in primary coenzyme Q deficiency, a type of mitochondrial disease. Coenzyme Q10 supplementation of patients is the classical treatment but it shows limited efficacy in some cases. The molecular understanding of the coenzyme Q biosynthetic pathway allowed the design of experiments to bypass deficient biosynthetic steps with analogs of 4-hydroxybenzoic acid. These molecules provide the defective chemical group and can reactivate endogenous coenzyme Q biosynthesis as demonstrated recently in yeast, mammalian cell cultures, and mouse models of primary coenzyme Q deficiency. This mini review presents how the chemical properties of various analogs of 4-hydroxybenzoic acid dictate the effect of the molecules on CoQ biosynthesis and how the reactivation of endogenous coenzyme Q biosynthesis may achieve better results than exogenous CoQ10 supplementation.

  18. Variations of Leaf Cuticular Waxes Among C3 and C4 Gramineae Herbs.

    Science.gov (United States)

    He, Yuji; Gao, Jianhua; Guo, Na; Guo, Yanjun

    2016-11-01

    Modern C4 plants are commonly distributed in hot and dry environments whereas C3 plants predominate in cool and shade areas. At the outmost of plant surface, the deposition and chemical composition of cuticular waxes vary under different environmental conditions. However, whether such variation of cuticular wax is related to the distribution of C3 and C4 under different environmental conditions is still not clear. In this study, leaves of six C3 Gramineae herbs distributed in spring, Roegneria kamoji, Polypogon fugax, Poa annua, Avena fatua, Alopecurus aequalis, and Oplismenus undulatifolius, and four C4 and one C3 Gramineae herbs distributed in summer, Digitaria sanguinalis, Eleusine indica, Setaria viridis, S. plicata, and O. undulatifolius, were sampled and analyzed for cuticular wax. Plates were the main epicuticular wax morphology in both C3 and C4 plants except S. plicata. The plates melted in C4 plants but not in C3 plants. The total cuticular wax amounts in C4 plants were significantly lower than those in C3 plants, except for O. undulatifolius. Primary alcohols were the most abundant compounds in C3 plants, whereas n-alkanes were relatively the most abundant compounds in C4 plants. C 29 was the most abundant n-alkane in C3 plants except for O. undulatifolius, whereas the most abundant n-alkane was C 31 or C 33 in C4 plants. The average chain length (ACL) of n-alkanes was higher in C4 than in C3 plants, whereas the ACL of n-alkanoic acids was higher in C3 than C4 plants. The cluster analysis based on the distribution of n-alkanes clearly distinguished C3 and C4 plants into two groups, except for O. undulatifolius which was grouped with C4 plants. These results suggest that the variations of cuticular waxes among C3 and C4 Gramineae herbs are related to the distribution of C3 and C4 plants under different environmental conditions. © 2016 Wiley-VHCA AG, Zurich, Switzerland.

  19. Role of Wax Ester Synthase/Acyl Coenzyme A:Diacylglycerol Acyltransferase in Oleaginous Streptomyces sp. Strain G25

    Science.gov (United States)

    Röttig, Annika; Strittmatter, Carl Simon; Schauer, Jennifer; Hiessl, Sebastian; Daniel, Rolf

    2016-01-01

    ABSTRACT Recently, we isolated a novel Streptomyces strain which can accumulate extraordinarily large amounts of triacylglycerol (TAG) and consists of 64% fatty acids (dry weight) when cultivated with glucose and 50% fatty acids (dry weight) when cultivated with cellobiose. To identify putative gene products responsible for lipid storage and cellobiose utilization, we analyzed its draft genome sequence. A single gene encoding a wax ester synthase/acyl coenzyme A (CoA):diacylglycerol acyltransferase (WS/DGAT) was identified and heterologously expressed in Escherichia coli. The purified enzyme AtfG25 showed acyltransferase activity with C12- or C16-acyl-CoA, C12 to C18 alcohols, or dipalmitoyl glycerol. This acyltransferase exhibits 24% amino acid identity to the model enzyme AtfA from Acinetobacter baylyi but has high sequence similarities to WS/DGATs from other Streptomyces species. To investigate the impact of AtfG25 on lipid accumulation, the respective gene, atfG25, was inactivated in Streptomyces sp. strain G25. However, cells of the insertion mutant still exhibited DGAT activity and were able to store TAG, albeit in lower quantities and at lower rates than the wild-type strain. These findings clearly indicate that AtfG25 has an important, but not exclusive, role in TAG biosynthesis in the novel Streptomyces isolate and suggest the presence of alternative metabolic pathways for lipid accumulation which are discussed in the present study. IMPORTANCE A novel Streptomyces strain was isolated from desert soil, which represents an extreme environment with high temperatures, frequent drought, and nutrient scarcity. We believe that these harsh conditions promoted the development of the capacity for this strain to accumulate extraordinarily large amounts of lipids. In this study, we present the analysis of its draft genome sequence with a special focus on enzymes potentially involved in its lipid storage. Furthermore, the activity and importance of the detected

  20. Mosaic evolution of the mammalian auditory periphery.

    Science.gov (United States)

    Manley, Geoffrey A

    2013-01-01

    The classical mammalian auditory periphery, i.e., the type of middle ear and coiled cochlea seen in modern therian mammals, did not arise as one unit and did not arise in all mammals. It is also not the only kind of auditory periphery seen in modern mammals. This short review discusses the fact that the constituents of modern mammalian auditory peripheries arose at different times over an extremely long period of evolution (230 million years; Ma). It also attempts to answer questions as to the selective pressures that led to three-ossicle middle ears and the coiled cochlea. Mammalian middle ears arose de novo, without an intermediate, single-ossicle stage. This event was the result of changes in eating habits of ancestral animals, habits that were unrelated to hearing. The coiled cochlea arose only after 60 Ma of mammalian evolution, driven at least partly by a change in cochlear bone structure that improved impedance matching with the middle ear of that time. This change only occurred in the ancestors of therian mammals and not in other mammalian lineages. There is no single constellation of structural features of the auditory periphery that characterizes all mammals and not even all modern mammals.

  1. The mysterious trace amines: protean neuromodulators of synaptic transmission in mammalian brain.

    Science.gov (United States)

    Burchett, Scott A; Hicks, T Philip

    2006-08-01

    The trace amines are a structurally related group of amines and their isomers synthesized in mammalian brain and peripheral nervous tissues. They are closely associated metabolically with the dopamine, noradrenaline and serotonin neurotransmitter systems in mammalian brain. Like dopamine, noradrenaline and serotonin the trace amines have been implicated in a vast array of human disorders of affect and cognition. The trace amines are unique as they are present in trace concentrations, exhibit high rates of metabolism and are distributed heterogeneously in mammalian brain. While some are synthesized in their parent amine neurotransmitter systems, there is also evidence to suggest other trace amines may comprise their own independent neurotransmitter systems. A substantial body of evidence suggests that the trace amines may play very significant roles in the coordination of biogenic amine-based synaptic physiology. At high concentrations, they have well-characterized presynaptic "amphetamine-like" effects on catecholamine and indolamine release, reuptake and biosynthesis; at lower concentrations, they possess postsynaptic modulatory effects that potentiate the activity of other neurotransmitters, particularly dopamine and serotonin. The trace amines also possess electrophysiological effects that are in opposition to these neurotransmitters, indicating to some researchers the existence of receptors specific for the trace amines. While binding sites or receptors for a few of the trace amines have been advanced, the absence of cloned receptor protein has impeded significant development of their detailed mechanistic roles in the coordination of catecholamine and indolamine synaptic physiology. The recent discovery and characterization of a family of mammalian G protein-coupled receptors responsive to trace amines such as beta-phenylethylamine, tyramine, and octopamine, including socially ingested psychotropic drugs such as amphetamine, 3,4-methylenedioxymethamphetamine, N

  2. Biosynthesis and function of chondroitin sulfate.

    Science.gov (United States)

    Mikami, Tadahisa; Kitagawa, Hiroshi

    2013-10-01

    Chondroitin sulfate proteoglycans (CSPGs) are principal pericellular and extracellular components that form regulatory milieu involving numerous biological and pathophysiological phenomena. Diverse functions of CSPGs can be mainly attributed to structural variability of their polysaccharide moieties, chondroitin sulfate glycosaminoglycans (CS-GAG). Comprehensive understanding of the regulatory mechanisms for CS biosynthesis and its catabolic processes is required in order to understand those functions. Here, we focus on recent advances in the study of enzymatic regulatory pathways for CS biosynthesis including successive modification/degradation, distinct CS functions, and disease phenotypes that have been revealed by perturbation of the respective enzymes in vitro and in vivo. Fine-tuned machineries for CS production/degradation are crucial for the functional expression of CS chains in developmental and pathophysiological processes. Control of enzymes responsible for CS biosynthesis/catabolism is a potential target for therapeutic intervention for the CS-associated disorders. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Triterpenoid biosynthesis in Euphorbia lathyris latex

    International Nuclear Information System (INIS)

    Hawkins, D.R.

    1987-11-01

    The structures of triterpenols, not previously been known, from Euphorbia lathyris latex are reported. A method for quantifying very small amounts of these compounds was developed. Concerning the biochemistry of the latex, no exogenous cofactors were required for the biosynthesis and the addition of compounds such as NADPAH and ATP do not stimulate the biosynthesis. The addition of DTE or a similar anti-oxidant was found to help reduce the oxidation of the latex, thus increasing the length of time that the latex remains active. The requirement of a divalent cation and the preference for Mn in the pellet was observed. The effect of several inhibitors on the biosynthesis of the triterpenoids was examined. Mevinolin was found to inhibit the biosynthesis of the triterpenoids from acetate, but not mevalonate. A dixon plot of the inhibition of acetate incorporation showed an I 50 concentration of 3.2 μM. Fenpropimorph was found to have little or no effect on the biosynthesis. Tridemorph was found to inhibit the biosynthesis of all of the triterpenoids with an I 50 of 4 μM. It was also observed that the cyclopropyl containing triterpenols, cycloartenol and 24-methylenecycloartenol were inhibited much more strongly than those containing an 8-9 double bond, lanosterol and 24-methylenelanosterol. The evidence indicates, but does not definetely prove, that lanosterol and 24-methylenelanosterol are not made from cycloartenol and 24-methylenecycloartenol via a ring-opening enzyme such as cycloeucalenol-obtusifoliol isomerase. The possibilty that cycloartenol is made via lanosterol was investigated by synthesizing 4-R-4- 3 H-mevalonic acid and incubating latex with a mixture of this and 14 C-mevalonic acid. From the 3 H/ 14 C ratio it was shown that cycloartenol and 24-methylenecycloartenol are not made via an intermediate containing as 8-9 double bond. 88 refs., 15 figs., 30 tabs

  4. Triterpenoid biosynthesis in Euphorbia lathyris latex

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, D.R.

    1987-11-01

    The structures of triterpenols, not previously been known, from Euphorbia lathyris latex are reported. A method for quantifying very small amounts of these compounds was developed. Concerning the biochemistry of the latex, no exogenous cofactors were required for the biosynthesis and the addition of compounds such as NADPAH and ATP do not stimulate the biosynthesis. The addition of DTE or a similar anti-oxidant was found to help reduce the oxidation of the latex, thus increasing the length of time that the latex remains active. The requirement of a divalent cation and the preference for Mn in the pellet was observed. The effect of several inhibitors on the biosynthesis of the triterpenoids was examined. Mevinolin was found to inhibit the biosynthesis of the triterpenoids from acetate, but not mevalonate. A dixon plot of the inhibition of acetate incorporation showed an I/sub 50/ concentration of 3.2 ..mu..M. Fenpropimorph was found to have little or no effect on the biosynthesis. Tridemorph was found to inhibit the biosynthesis of all of the triterpenoids with an I/sub 50/ of 4 ..mu..M. It was also observed that the cyclopropyl containing triterpenols, cycloartenol and 24-methylenecycloartenol were inhibited much more strongly than those containing an 8-9 double bond, lanosterol and 24-methylenelanosterol. The evidence indicates, but does not definetely prove, that lanosterol and 24-methylenelanosterol are not made from cycloartenol and 24-methylenecycloartenol via a ring-opening enzyme such as cycloeucalenol-obtusifoliol isomerase. The possibilty that cycloartenol is made via lanosterol was investigated by synthesizing 4-R-4-/sup 3/H-mevalonic acid and incubating latex with a mixture of this and /sup 14/C-mevalonic acid. From the /sup 3/H//sup 14/C ratio it was shown that cycloartenol and 24-methylenecycloartenol are not made via an intermediate containing as 8-9 double bond. 88 refs., 15 figs., 30 tabs.

  5. Biosynthesis of lipids by bovine meibomian glands

    International Nuclear Information System (INIS)

    Kolattukudy, P.E.; Rogers, L.M.; Nicolaides, N.

    1985-01-01

    Isolated bovine meibomian glands incorporated exogenous [1- 14 C]acetate into lipids. Thin layer chromatographic analysis of the lipids showed that wax esters and sterol esters contained 61% of the total label. Radio gas liquid chromatographic analysis of the acid and alcohol moieties of both ester fractions showed the label was distributed equally between the two portions of the ester in both cases. Cholesterol and 5-alpha-cholest-7-en-3 beta-ol were the major labeled sterols, and anteiso-C25, anteiso-C27 and anteiso-C23 were the most highly labeled alcohols. The major labeled fatty acids in the wax esters were anteiso-C15, n-C16, anteiso-C17 and n-C18:1, whereas anteiso-C25 and anteiso-C27 were the major labeled acids in the sterol esters. The diester region with 6% of the total label contained labeled fatty acids and fatty alcohols each with anteiso-C25 as the major component and omega-hydroxy acids in which n-C32:1 was the major labeled component. The triglyceride fraction which contained 8% of the total lipids was composed of labeled fatty acids similar to those found in both sterol and wax ester fractions. Chromatographic analyses of the labeled lipids derived from exogenous labeled isoleucine showed that anteiso-branched products were preferentially labeled. The labeled triglyceride fraction derived from [U- 14 C] isoleucine also contained esterified C15, C13, C11, C9, C7 and possibly shorter anteiso-branched acids

  6. Surgical manipulation of mammalian embryos in vitro.

    Science.gov (United States)

    Naruse, I; Keino, H; Taniguchi, M

    1997-04-01

    Whole-embryo culture systems are useful in the fields of not only embryology but also teratology, toxicology, pharmacology, and physiology. Of the many advantages of whole-embryo culture, we focus here on the surgical manipulation of mammalian embryos. Whole-embryo culture allows us to manipulate mammalian embryos, similarly to fish, amphibian and avian embryos. Many surgical experiments have been performed in mammalian embryos in vitro. Such surgical manipulation alters the destiny of morphogenesis of the embryos and can answer many questions concerning developmental issues. As an example of surgical manipulation using whole-embryo culture systems, one of our experiments is described. Microsurgical electrocauterization of the deep preaxial mesodermal programmed cell death zone (fpp) in the footplate prevented the manifestation of polydactyly in genetic polydactyly mouse embryos (Pdn/Pdn), in which fpp was abolished.

  7. Mammalian diversity: gametes, embryos and reproduction.

    Science.gov (United States)

    Behringer, Richard R; Eakin, Guy S; Renfree, Marilyn B

    2006-01-01

    The class Mammalia is composed of approximately 4800 extant species. These mammalian species are divided into three subclasses that include the monotremes, marsupials and eutherians. Monotremes are remarkable because these mammals are born from eggs laid outside of the mother's body. Marsupial mammals have relatively short gestation periods and give birth to highly altricial young that continue a significant amount of 'fetal' development after birth, supported by a highly sophisticated lactation. Less than 10% of mammalian species are monotremes or marsupials, so the great majority of mammals are grouped into the subclass Eutheria, including mouse and human. Mammals exhibit great variety in morphology, physiology and reproduction. In the present article, we highlight some of this remarkable diversity relative to the mouse, one of the most widely used mammalian model organisms, and human. This diversity creates challenges and opportunities for gamete and embryo collection, culture and transfer technologies.

  8. Convergent Evolution of Ergothioneine Biosynthesis in Cyanobacteria.

    Science.gov (United States)

    Liao, Cangsong; Seebeck, Florian P

    2017-11-02

    Biosynthesis of N-α-trimethyl-2-thiohistidine (ergothioneine) is a frequent trait in cyanobacteria. This sulfur compound may provide essential relief from oxidative stress related to oxygenic photosynthesis. The central steps in ergothioneine biosynthesis are catalyzed by a histidine methyltransferase and an iron-dependent sulfoxide synthase. In this report, we present evidence that some cyanobacteria recruited and adapted a sulfoxide synthase from a different biosynthetic pathway to make ergothioneine. The discovery of a second origin of ergothioneine production underscores the physiological importance of this metabolite and highlights the evolutionary malleability of the thiohistidine biosynthetic machinery. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Method for determining heterologous biosynthesis pathways

    KAUST Repository

    Gao, Xin

    2017-08-10

    The present invention relates to a method and system for dynamically analyzing, determining, predicting and displaying ranked suitable heterologous biosynthesis pathways for a specified host. The present invention addresses the problem of finding suitable pathways for the endogenous metabolism of a host organism because the efficacy of heterologous biosynthesis is affected by competing endogenous pathways. The present invention is called MRE (Metabolic Route Explorer), and it was conceived and developed to systematically and dynamically search for, determine, analyze, and display promising heterologous pathways while considering competing endogenous reactions in a given host organism.

  10. Nucleoside antibiotics: biosynthesis, regulation, and biotechnology.

    Science.gov (United States)

    Niu, Guoqing; Tan, Huarong

    2015-02-01

    The alarming rise in antibiotic-resistant pathogens has coincided with a decline in the supply of new antibiotics. It is therefore of great importance to find and create new antibiotics. Nucleoside antibiotics are a large family of natural products with diverse biological functions. Their biosynthesis is a complex process through multistep enzymatic reactions and is subject to hierarchical regulation. Genetic and biochemical studies of the biosynthetic machinery have provided the basis for pathway engineering and combinatorial biosynthesis to create new or hybrid nucleoside antibiotics. Dissection of regulatory mechanisms is leading to strategies to increase the titer of bioactive nucleoside antibiotics. Copyright © 2014. Published by Elsevier Ltd.

  11. The expanding universe of alkaloid biosynthesis.

    Science.gov (United States)

    De Luca, V; Laflamme, P

    2001-06-01

    Characterization of many of the major gene families responsible for the generation of central intermediates and for their decoration, together with the development of large genomics and proteomics databases, has revolutionized our capability to identify exotic and interesting natural-product pathways. Over the next few years, these tools will facilitate dramatic advances in our knowledge of the biosynthesis of alkaloids, which will far surpass that which we have learned in the past 50 years. These tools will also be exploited for the rapid characterization of regulatory genes, which control the development of specialized cell factories for alkaloid biosynthesis.

  12. Long-term evaluation of the needle surface wax condition of Pinus sylvestris around different industries in Lithuania

    International Nuclear Information System (INIS)

    Kupcinskiene, Eugenija; Huttunen, Satu

    2005-01-01

    The aim of our study was to evaluate the annual dynamics of needle surface wax erosion and wettability in Scots pines exposed to a gradient of industrial pollutants emitted from the main factories of Lithuania: a nitrogen fertilizer factory, an oil refinery and a cement factory. Decreased emissions (in the case of the oil refinery and the cement factory) were reflected in the increased structural surface area (SSA, i.e. area covered by tubular waxes) on the needles. The nearly constant amount of emissions from the nitrogen fertilizer factory within the 1994-2000 period corresponded to negligible annual differences in SSA. Annual changes in the hydrophobicity of needles on the investigated transects were small. Despite the decreased pollution within the 7-year period, industrial emissions are still causing significantly accelerated wax erosion and increased wettability in needles sampled from the stands most heavily affected by pollutants. - Tubular wax on the pine needle surface reflects changes/differences in industrial emissions

  13. Designing maleic anhydride-{alpha}-olifin copolymeric combs as wax crystal growth nucleators

    Energy Technology Data Exchange (ETDEWEB)

    Soni, Hemant P. [Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390 002 (India); Kiranbala; Bharambe, D.P. [Department of Applied Chemistry, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara-390 001 (India); Agrawal, K.S. [Department of Petrochemical Technology, Polytechnic, The Maharaja Sayajirao University of Baroda, Vadodara-390 002 (India); Nagar, A. [MH ASSET, ONGC, Mumbai (India)

    2010-09-15

    Modification of the wax crystal habit is of great practical interest during transportation and processing of crude oil at low temperature. Various pour point depressant (PPD) additives can facilitate this modification by different mechanisms. Comb shaped polymer additives are known to depress the pour point of crude oil by providing different nucleation sites for the precipitation of wax. This paper describes performance based design, synthesis, characterization and evaluation of comb shaped polymeric diesters. Copolymers of maleic anhydride with different unsaturated C{sub 22} esters were synthesized and copolymers then reacted with two unsaturated fatty alcohols. All products were characterized by Fourier Transform Infra Red (FTIR) spectroscopy and Gel Permeation Chromatography (GPC). Rheological properties of crude (with and without additive) were studied by Advance Rheometer AR-500. In this study the additive based on oleic acid was evaluated as good PPD and rheology modifier. (author)

  14. MEDITERRANEAN FOREST TREE DECLINE IN ITALY: RELATIONSHIPS BETWEEN DROUGHT, POLLUTANTS AND THE WAX STRUCTURE OF LEAVES

    Directory of Open Access Journals (Sweden)

    E. PAOLETTI

    1996-04-01

    Full Text Available After presenting the situation of forest decline in Italy and analyzing the factors that play a contributing role, tbis paper studies the response of the epicuticular wax structures and the stomata in ten broadleaf species and one conifer to fog-like treatments with acids andlor surfactants and to severe water stress. The main results are that wax structure alterations vary in intensity in the different species studied and that the microstructural alterations observed in field conditions cannot be attributed only to severe drought. since sample trccs put through water stress simulations do nol differ significantly from controls. In the artificial surfactant treatment, a positive relationship between structural damage to tbe stomata and transpiration suggests possible synergies between the effects of drought and those of pollutants in inducing stress conditions in Mediterranean vegetation.

  15. Comparison of ossification of demineralized bone, hydroxyapatite, Gelfoam, and bone wax in cranial defect repair.

    Science.gov (United States)

    Papay, F A; Morales, L; Ahmed, O F; Neth, D; Reger, S; Zins, J

    1996-09-01

    Demineralized bone allografts in the repair of calvarial defects are compared with other common bone fillers. This study uses a video-digitizing radiographic analysis of calvarial defect ossification to determine calcification of bone defects and its relation to postoperative clinical examination and regional controls. The postoperative clinical results at 3 months demonstrated that bony healing was greatest in bur holes filled with demineralized bone and hydroxyapatite. Radiographic analysis demonstrated calcification of demineralized bone-filled defects compared to bone wax- and Gelfoam-filled regions. Hydroxyapatite granules are radiographically dense, thus not allowing accurate measurement of true bone healing. The results suggest that demineralized bone and hydroxyapatite provide better structural support via bone healing to defined calvarial defects than do Gelfoam and bone wax.

  16. The Effect of Paraffin Wax to Properties of Radiation Vulcanization Natural Rubber Latex (RVNRL)

    International Nuclear Information System (INIS)

    Mohd Noorwadi Mat Lazim; Sofian Ibrahim; Muhammad Saiful Omar

    2015-01-01

    Dipping factories often encounter a serious problem with high tackiness of the finish products during storage. The tackiness effect can be lead to rejection of products. This tackiness effect of natural (NR) rubber film originates in the free rubber chain ends at the surface of the film. The tackiness is not depends on the degree of crosslinking (vulcanization), since radiation itself unable to reduce the tackiness effect. The RVNRL requires addition of additive or anti-tack agent into formulation to reduce tackiness effect. In this experiment, paraffin wax manufactured by Emulco Sdn Bhd under the trade name Aquawax 48 was added into RVNRL formulation as anti-tack and the effect of paraffin wax to physical and mechanical properties of RVNRL was study. (author)

  17. A comparison of epicuticular wax of Pinus sylvestris needles from three sites in Ireland

    International Nuclear Information System (INIS)

    Donnelly, A.; Dowding, P.

    1994-01-01

    Three forest stands of Pinus sylvestris were chosen for comparison in Ireland. Needles from three year classes were collected. Cuticular transpiration curves showed that the rate of water loss from 1-year-old needles was faster than either 2-year-old or current-year needles at all sites. The amount of epicuticular wax extracted was similar to that reported in the literature. Needle wettability increased with needle age. Amorphous wax coverage was estimated using scanning electron microscopy (SEM) and was found to increase with needle age. Algal cells were noted on needles of all ages at one site and appeared to affect transpiration and microroughness. The presence of fungal hyphae was also noted. (orig.)

  18. Evaluation of Physical Properties of Wax Mixtures Obtained From Recycling of Patterns Used in Precision Casting

    Directory of Open Access Journals (Sweden)

    Biernacki R.

    2015-04-01

    Full Text Available The study investigated the properties of selected certified mixtures used to make wax patterns for the production of precision castings for the aerospace industry. In addition, an assessment of the recycled mixtures consisting of certified wax materials recovered during autoclaving was carried out. Hardness was tested via a proposed method based on penetration, creep related deformation, bending strength and linear contraction. The hardness was studied on laboratory specimens and patterns made with the use of injection molding equipment. For these patterns, linear contraction was estimated at variable pressure and for different temperature injection parameters. Deformations connected with creep and resistance were evaluated on cylindrical specimens. Differences in creep resistance in relation to the hardness were observed depending on the type of pattern mixtures. Recycled mixture has a greater resistance and smaller linear contraction than certified mixtures used for making sprue, raisers and other parts of filler system.

  19. Biosynthesis of silver nanoparticles by Aspergillus niger , Fusarium ...

    African Journals Online (AJOL)

    ... scanning electron microscope (SEM). Results indicate the synthesis of silver nanoparticles in the reaction mixture. The synthesis of nanoparticles would be suitable for developing a microbial nanotechnology biosynthesis process for mass scale production. Keywords: Silver nanoparticles, biosynthesis, fungi, Aspergillus.

  20. The importance of being Florentine: a journey around the world for wax anatomical Venuses.

    Science.gov (United States)

    de Ceglia, Francesco Paolo

    2011-01-01

    This article reconstructs the 19th century history of events regarding a few female wax anatomical models made in Florence. More or less faithful copies of those housed in Florence's Museum of Physics and Natural History, these models were destined for display in temporary exhibitions. In their travels through Europe and the United States, they transformed the expression "Florentine Venus" into a sort of brand name used to label and offer respectability to pieces of widely varying quality.

  1. Effect of expanded graphite on the phase change materials of high density polyethylene/wax blends

    Energy Technology Data Exchange (ETDEWEB)

    AlMaadeed, M.A., E-mail: m.alali@qu.edu.qa [Center for Advanced Materials, Qatar University, 2713 Doha (Qatar); Labidi, Sami [Center for Advanced Materials, Qatar University, 2713 Doha (Qatar); Krupa, Igor [QAPCO Polymer Chair, Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha (Qatar); Karkri, Mustapha [Université Paris-Est CERTES, 61 avenue du Général de Gaulle, 94010 Créteil (France)

    2015-01-20

    Highlights: • Expanded graphite (EG) and low melting point (42.3 °C) wax were added to HDPE to form phase change material. • EG was well dispersed in the composites and did not affect the melting or crystallization of the HDPE matrix. • EG increased the thermal stability of the composites by reducing chain mobility and inhibiting degradation. • The addition of a relatively small quantity of EG enhances the heat conduction in the composite. • HDPE/40% RT42 that contained up to 15% EG demonstrated excellent mechanical and thermal properties and can be used as PCM. - Abstract: Phase change materials fabricated from high density polyethylene (HDPE) blended with 40 or 50 wt% commercial wax (melting point of 43.08 °C) and up to 15 wt% expanded graphite (EG) were studied. Techniques including scanning electron microscope (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and an experimental device to measure diffusivity and conductivity (DICO) were used to determine the microstructural, mechanical and thermal properties of the composites. The composites possessed good mechanical properties. Additionally, no leaching was observed during material processing or characterization. Although the Young’s modulus increased with the addition of EG, no significant changes in tensile strength were detected. The maximum Young’s modulus achieved was 650 MPa for the HDPE/40% wax composite with 15 wt% EG. The EG was well dispersed within the composites and did not affect the melting or crystallization of the HDPE matrix. The incorporation of EG increased the thermal stability of the composites by reducing chain mobility and inhibiting degradation. The intensification of thermal conductivity occurred with increasing fractions of EG, which was attributed to the high thermal conductivity of graphite. The maximum quantity of heat stored by latent heat was found for the HDPE/40% wax composite with EG. The addition of a relatively small quantity

  2. Effect of expanded graphite on the phase change materials of high density polyethylene/wax blends

    International Nuclear Information System (INIS)

    AlMaadeed, M.A.; Labidi, Sami; Krupa, Igor; Karkri, Mustapha

    2015-01-01

    Highlights: • Expanded graphite (EG) and low melting point (42.3 °C) wax were added to HDPE to form phase change material. • EG was well dispersed in the composites and did not affect the melting or crystallization of the HDPE matrix. • EG increased the thermal stability of the composites by reducing chain mobility and inhibiting degradation. • The addition of a relatively small quantity of EG enhances the heat conduction in the composite. • HDPE/40% RT42 that contained up to 15% EG demonstrated excellent mechanical and thermal properties and can be used as PCM. - Abstract: Phase change materials fabricated from high density polyethylene (HDPE) blended with 40 or 50 wt% commercial wax (melting point of 43.08 °C) and up to 15 wt% expanded graphite (EG) were studied. Techniques including scanning electron microscope (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and an experimental device to measure diffusivity and conductivity (DICO) were used to determine the microstructural, mechanical and thermal properties of the composites. The composites possessed good mechanical properties. Additionally, no leaching was observed during material processing or characterization. Although the Young’s modulus increased with the addition of EG, no significant changes in tensile strength were detected. The maximum Young’s modulus achieved was 650 MPa for the HDPE/40% wax composite with 15 wt% EG. The EG was well dispersed within the composites and did not affect the melting or crystallization of the HDPE matrix. The incorporation of EG increased the thermal stability of the composites by reducing chain mobility and inhibiting degradation. The intensification of thermal conductivity occurred with increasing fractions of EG, which was attributed to the high thermal conductivity of graphite. The maximum quantity of heat stored by latent heat was found for the HDPE/40% wax composite with EG. The addition of a relatively small quantity

  3. Diagnosis of lymphoma in paraffin wax sections by nested PCR and immunohistochemistry.

    OpenAIRE

    Kitamura, Y; Nanba, E; Inui, S; Tanigawa, T; Ichihara, K

    1996-01-01

    AIMS: To investigate whether nested polymerase chain reaction (PCR) and immunohistochemistry can be used to diagnose malignant lymphoma. METHODS: Paraffin wax embedded tissue sections from 31 patients with malignant lymphoma were analysed by nested PCR and immunohistochemistry using standard protocols. RESULTS: Nested PCR amplification of 1 pg DNA confirmed monoclonality in B cell lymphoma; PCR amplification of 10 pg DNA confirmed monoclonality in T cell lymphoma. Twenty seven (87%) samples w...

  4. Acoustophoretic Synchronization of Mammalian Cells in Microchannels

    DEFF Research Database (Denmark)

    Thévoz, P.; Adams, J.D.; Shea, H.

    2010-01-01

    We report the first use of ultrasonic standing waves to achieve cell cycle phase synchronization in mammalian cells in a high-throughput and reagent-free manner. The acoustophoretic cell synchronization (ACS) device utilizes volume-dependent acoustic radiation force within a microchannel to selec......We report the first use of ultrasonic standing waves to achieve cell cycle phase synchronization in mammalian cells in a high-throughput and reagent-free manner. The acoustophoretic cell synchronization (ACS) device utilizes volume-dependent acoustic radiation force within a microchannel...

  5. DNA repair in non-mammalian animals

    International Nuclear Information System (INIS)

    Mitani, Hiroshi

    1984-01-01

    Studies on DNA repair have been performed using microorganisms such as Escherichia coli and cultured human and mammalian cells. However, it is well known that cultured organic cells differ from each other in many respects, although DNA repair is an extremely fundamental function of organisms to protect genetic information from environmental mutagens such as radiation and 0 radicals developing in the living body. To answer the question of how DNA repair is different between the animal species, current studies on DNA repair of cultured vertebrate cells using the methods similar to those in mammalian experiments are reviewed. (Namekawa, K.)

  6. De novo assembly and characterization of the transcriptome, and development of SSR markers in wax gourd (Benicasa hispida.

    Directory of Open Access Journals (Sweden)

    Biao Jiang

    Full Text Available BACKGROUND: Wax gourd is a widely used vegetable of Cucuribtaceae, and also has important medicinal and health values. However, the genomic resources of wax gourd were scarcity, and only a few nucleotide sequences could be obtained in public databases. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we examined transcriptome in wax gourd. More than 44 million of high quality reads were generated from five different tissues of wax gourd using Illumina paired-end sequencing technology. Approximately 4 Gbp data were generated, and de novo assembled into 65,059 unigenes, with an N50 of 1,132 bp. Based on sequence similarity search with known protein database, 36,070 (55.4% showed significant similarity to known proteins in Nr database, and 24,969 (38.4% had BLAST hits in Swiss-Prot database. Among the annotated unigenes, 14,994 of wax gourd unigenes were assigned to GO term annotation, and 23,977 were found to have COG classifications. In addition, a total of 18,713 unigenes were assigned to 281 KEGG pathways. Furthermore, 6,242 microsatellites (simple sequence repeats were detected as potential molecular markers in wax gourd. Two hundred primer pairs for SSRs were designed for validation of the amplification and polymorphism. The result showed that 170 of the 200 primer pairs were successfully amplified and 49 (28.8% of them exhibited polymorphisms. CONCLUSION/SIGNIFICANCE: Our study enriches the genomic resources of wax gourd and provides powerful information for future studies. The availability of this ample amount of information about the transcriptome and SSRs in wax gourd could serve as valuable basis for studies on the physiology, biochemistry, molecular genetics and molecular breeding of this important vegetable crop.

  7. Real-time monitoring and measurement of wax deposition in pipelines via non-invasive electrical capacitance tomography

    Science.gov (United States)

    Lock Sow Mei, Irene; Ismail, Idris; Shafquet, Areeba; Abdullah, Bawadi

    2016-02-01

    Tomographic analysis of the behavior of waxy crude oil in pipelines is important to permit appropriate corrective actions to be taken to remediate the wax deposit layer before pipelines are entirely plugged. In this study, a non-invasive/non-intrusive electrical capacitance tomography (ECT) system has been applied to provide real-time visualization of the formation of paraffin waxes and to measure the amount of wax fraction from the Malay Basin waxy crude oil sample under the static condition. Analogous expressions to estimate the wax fraction of the waxy crude oil across the temperatures range of 30-50 °C was obtained by using Otsu’s and Kuo’s threshold algorithms. Otsu’s method suggested that the wax fraction can be estimated by the correlation coefficient β =0.0459{{T}3}-5.3535{{T}2}+200.36T-2353.7 while Kuo’s method provides a similar correlation with β =0.0741{{T}3}-8.4915{{T}2}+314.96T-3721.2 . These correlations show good agreements with the results which are obtained from the conventional weighting method. This study suggested that Kuo’s threshold algorithm is more promising when integrated into the ECT system compared to Otsu’s algorithm because the former provides higher accuracy wax fraction measurement results below the wax appearance temperature for waxy crude oil. This study is significant because it serves as a preliminary investigation for the application of ECT in the oil and gas industry for online measurement and detection of wax fraction without causing disturbance to the process flow.

  8. Fruit development, pigmentation and biochemical properties of wax apple as affected by localized Application of GA3 under field conditions

    OpenAIRE

    Khandaker, Mohammad Moneruzzaman; Boyce, Amru Nasrulhaq; Osman, Normaniza; Golam, Faruq; Rahman, M. Motior; Sofian-Azirun, M.

    2013-01-01

    This study investigated the effects of gibberellin (GA3) on the fruit development, pigmentation and biochemical properties of wax apple. The wax apple trees were rubbing treated with 0, 20, 50 and 100 mgGA3/l under field conditions. The localized application (rubbing) of 50 mg GA3/l significantly increased the fruit set, fruit length and diameter, color development, weight and yieldcompared to the control. In addition, GA3 treatments significantly reduced the fruit drop. With regard to the fr...

  9. Phase Change Material Trade Study: A Comparison Between Wax and Water for Manned Spacecraft

    Science.gov (United States)

    Quinn, Gregory; Hodgson, Ed; Stephan, Ryan A,

    2011-01-01

    Phase change material heat sinks have been recognized as an important tool in optimizing thermal control systems for space exploration vehicles and habitats that must deal with widely varying thermal loads and environments. In order to better focus technology investment in this arena, NASA has supported a trade study with the objective of identifying where the best potential pay-off can be found among identified aqueous and paraffin wax phase change materials and phase change material heat sink design approaches. The study used a representative exploration mission with well understood parameters to support the trade. Additional sensitivity studies were performed to ensure the applicability of study results across varying systems and destinations. Results from the study indicate that replacing a wax PCM heat sink with a water ice PCM heat sink has the potential to decrease the equivalent system mass of the mission s vehicle through a combination of a smaller heat sink and a slight 5% increase in radiator size or the addition of a lightweight heat pump. An evaluation of existing and emerging PCM heat sink technologies indicates that further mass savings should be achievable through continued development of those technologies. The largest mass savings may be realized by eliminating the melting and freezing pressure of wax and water, respectively.

  10. Effects of ozone exposures on epicuticular wax of ponderosa pine needles

    International Nuclear Information System (INIS)

    Bytnerowicz, A.; Turunen, M.

    1994-01-01

    Two-year-old ponderosa pine (Pinus ponderosa L.) seedlings were exposed during the 1989 and 1990 growing seasons to ozone in open-top chambers placed in a forested location at Shirley Meadow, Greenhorn Mountain Range, Sierra Nevada. The ozone treatments were as follows: charcoal-filtered air (CF); charcoal-filtered air with addition of ambient concentrations of ozone (CF + O 3 ); and charcoal-filtered air with addition of doubled concentrations of ozone (CF + 2 x O 3 ). Ozone effects on ponderosa pine seedlings progressed and accumulated over two seasons of exposure. Throughout the first season, increased visible injury and accelerated senescence of the foliage were noted. Subsequently, during the second season of ozone exposure, various physiological and biochemical changes in the foliage took place. All these changes led to reduced growth and biomass of the seedlings. Epistomatal waxes of needles from the CA + 2 x O 3 treatment had an occluded appearance. This phenomenon may be caused by earlier phenological development of needles from the high-ozone treatments and disturbed development and synthesis of waxes. It may also be caused by chemical degradation of waxes by exposures to high ozone concentrations. (orig.)

  11. Trimethylamine (fishy odor) adsorption by biomaterials: effect of fatty acids, alkanes, and aromatic compounds in waxes.

    Science.gov (United States)

    Boraphech, Phattara; Thiravetyan, Paitip

    2015-03-02

    Thirteen plant leaf materials were selected to be applied as dried biomaterial adsorbents for polar gaseous trimethylamine (TMA) adsorption. Biomaterial adsorbents were efficient in adsorbing gaseous TMA up to 100% of total TMA (100 ppm) within 24 h. Sansevieria trifasciata is the most effective plant leaf material while Plerocarpus indicus was the least effective in TMA adsorption. Activated carbon (AC) was found to be lower potential adsorbent to adsorb TMA when compared to biomaterial adsorbents. As adsorption data, the Langmuir isotherm supported that the gaseous TMA adsorbed monolayer on the adsorbent surface and was followed pseudo-second order kinetic model. Wax extracted from plant leaf could also adsorb gaseous TMA up to 69% of total TMA within 24 h. Another 27-63% of TMA was adsorbed by cellulose and lignin that naturally occur in high amounts in plant leaf. Subsequently, the composition appearing in biomaterial wax showed a large quantity of short-chain fatty acids (≤C18) especially octadecanoic acid (C18), and short-chain alkanes (C12-C18) as well as total aromatic components dominated in the wax, which affected TMA adsorption. Hence, it has been demonstrated that plant biomaterial is a superior biosorbent for TMA removal.

  12. Biodiesel from Jojoba oil-wax: Transesterification with methanol and properties as a fuel

    Energy Technology Data Exchange (ETDEWEB)

    Canoira, Laureano; Alcantara, Ramon; Garcia-Martinez, Jesus; Carrasco, Jesus [Department of Chemical Engineering and Fuels, School of Mines, Polytechnic University of Madrid, Rios Rosas 21, 28003-Madrid (Spain)

    2006-01-15

    The Jojoba oil-wax is extracted from the seeds of the Jojoba (Simmondsia chinensis Link Schneider), a perennial shrub that grows in semi desert areas in some parts of the world. The main uses of Jojoba oil-wax are in the cosmetics and pharmaceutical industry, but new uses could arise related to the search of new energetic crops. This paper summarizes a process to convert the Jojoba oil-wax to biodiesel by transesterification with methanol, catalysed with sodium methoxide (1wt% of the oil). The transesterification reaction has been carried out in an autoclave at 60 deg C, with a molar ratio methanol/oil 7.5:1, and vigorous stirring (600rpm), reaching a quantitative conversion of the oil after 4h. The separation of the fatty acid methyl esters (the fraction rich in FAME, 79% FAME mixture; 21% fatty alcohols; 51% of methyl cis-11-eicosenoate) from the fatty alcohols rich fraction (72% fatty alcohols; 28% FAME mixture; 26% of cis-11-eicosen-1-ol, 36% of cis-13-docosen-1-ol) has been accomplished in a single crystallization step at low temperature (-18 deg C) from low boiling point petroleum ether. The fraction rich in FAME has a density (at 15 deg C), a kinematic viscosity (at 40 deg C), a cold filter plugging point and a high calorific value in the range of the European standard for biodiesel (EN 14214)

  13. Application of carnauba-based wax maintains postharvest quality of 'Ortanique' tangor

    Directory of Open Access Journals (Sweden)

    Francisca Ligia de Castro Machado

    2012-06-01

    Full Text Available This study aimed at evaluating compositional changes in the quality of 'Ortanique' tangor after coating with the carnauba-based waxes Aruá Tropical® or Star Light®. The storage conditions studied simulated those of local marketing (22 ± 2 °C, 60 ± 5% RH. Non-destructive analysis, mass loss, peel color, and sensory evaluation, were performed upon coating and every three days up to the fifteenth day of storage. Destructive analysis, peel moisture content, chlorophyll of the peel, pulp color, juice content, soluble solids (SS, titratable acidity (TA, pH, and soluble solids to titratable acidity ratio, were performed upon coating and every four days up to the sixteenth day of storage. The assay was conducted using an entirely randomized design, with three replications (destructive analyses or ten replications (non-destructive analyses, in a split plot scheme. Wax-coating, especially Aruá Tropical®, maintained fruit freshness by reducing mass loss and peel dehydration and retaining green color. Peel moisture content, chlorophyll content, and juice content had lower rates in the wax coated fruits. Puncture force, soluble solids, titratable acidity, pH, and soluble solids to titratable acidity ratio varied vary little over the course of storage. Sensory evaluation showed that the application of Aruá Tropical keeps 'Ortanique' tangor fresher for 6 days longer for commercialization.

  14. Enhanced Thermo-Optical Switching of Paraffin-Wax Composite Spots under Laser Heating.

    Science.gov (United States)

    Said, Asmaa; Salah, Abeer; Fattah, Gamal Abdel

    2017-05-12

    Thermo-optical switches are of particular significance in communications networks where increasingly high switching speeds are required. Phase change materials (PCMs), in particular those based on paraffin wax, provide wealth of exciting applications with unusual thermally-induced switching properties, only limited by paraffin's rather low thermal conductivity. In this paper, the use of different carbon fillers as thermal conductivity enhancers for paraffin has been investigated, and a novel structure based on spot of paraffin wax as a thermo-optic switch is presented. Thermo-optical switching parameters are enhanced with the addition of graphite and graphene, due to the extreme thermal conductivity of the carbon fillers. Differential Scanning Calorimetry (DSC) and Scanning electron microscope (SEM) are performed on paraffin wax composites, and specific heat capacities are calculated based on DSC measurements. Thermo-optical switching based on transmission is measured as a function of the host concentration under conventional electric heating and laser heating of paraffin-carbon fillers composites. Further enhancements in thermo-optical switching parameters are studied under Nd:YAG laser heating. This novel structure can be used in future networks with huge bandwidth requirements and electric noise free remote aerial laser switching applications.

  15. Control of the wax moth Galleria mellonella L. (Lepidoptera: Pyralidae by the male sterile technique (MST

    Directory of Open Access Journals (Sweden)

    Jafari Reza

    2010-01-01

    Full Text Available In this study we examined the control of wax moth using the male sterile technique (MST with gamma-rays. To determine the safe and effective dosage of gamma-rays capable of sterilizing male pupae of the wax moth, male pupae were exposed to increasing single doses of gamma-rays (250, 300, 350 and 400 Gy. The release ratio of sterile to normal males was also studied in a similar experiment. Treatments included sterile males, normal males and virgin females at the following ratios: 1:1:1, 2:1:1, 3:1:1, 4:1:1 and 5:1:1. Possible parthenogenetic reproduction of this pest was also examined. The results showed that 350 Gy was the most effective dose capable of sterilizing the male pupae of the wax moth. The best release ratio was established at four sterile males, one normal male for each normal female (4:1:1. Also females were incapable of producing offspring without males.

  16. Insecticidal Properties of a Highly Potent Wax Isolated from Dolichandra cynanchoides Cham

    Directory of Open Access Journals (Sweden)

    Georgina Díaz Napal

    2016-08-01

    Full Text Available Bioassay-guided fractionation of an ethanolic extract of the aerial parts of Dolichandra cynanchoides Cham. (Bignoniaceae led to the isolation of a natural wax with anti-insect activity against Spodoptera frugiperda (Noctuidae and Epilachna paenulata (Coleptera. The compound was identified spectroscopically as an ester of a C27 fatty acid and a C25 alcohol, pentacosyl heptacosanoate (1. The effective doses of 1 for 50% feeding inhibition (ED50 of S. frugiperda and E. paenulata were 0.82 and 8.53 µg/cm2, respectively, in a choice test, while azadirachtin showed ED50 of 0.10 and 0.59 µg/cm2, respectively. In a no-choice test, both insects refused to feed on leaves treated with 1 at doses of 0.1 µg/cm2 or greater inhibiting larval growth and dramatically reducing survival. The lethal doses 50 (LD50 of 1 were 0.39 and 0.68 µg/cm2 for S. frugiperda and E. paenulata, respectively. These results indicate that 1 has potential for development as botanical insecticides. Similar esters might be obtainable in large quantities as many edible crops produce wax esters that are discarded during food processing. Research on these materials could lead to the detection of similar waxes with insecticidal activity.

  17. Flow and linear coefficient of thermal expansion of four types of Base Plate waxes compared with ADA standard

    Directory of Open Access Journals (Sweden)

    Monzavi A

    2002-07-01

    Full Text Available Waxes have a lot of applications in dentistry. Such materials are of thermoplastic type that undergoes deformation in different temperatures. Two important properties of base plate waxes are flow and their coefficient of linear thermal expansion. Recently, different institutions, inside the country, produce dentistry waxes, while they have not been standardized. Consequently, consumers' dissatisfaction are observed. In this research, the two above- mentioned factors were compared between three kinds of Iranian waxes with Cavex that is foreign production, based on test number 24 of ADA. To measure the flow rate in the temperatures of 23, 37 and 45°c, Wilcoxon statistical analysis was used. The results showed that in 23°c, the flow rate of Cavex and Azardent waxes met ADA standards; however, it was not true for two others types. In 37°c, the flow of none of the waxes was standardized and in 45°c their flow was acceptable, moreover, thermal expansion coefficient, for Cavex and Azardent types, was based on ADA standard.

  18. Influence of putrescine and carnauba wax on functional and sensory quality of pomegranate (Punica granatum L.) fruits during storage.

    Science.gov (United States)

    Barman, Kalyan; Asrey, Ram; Pal, R K; Kaur, Charanjit; Jha, S K

    2014-01-01

    Functional properties (anthocyanins, antioxidant, ascorbic acid and tannin) and sensory score were determined in pomegranate fruits at two storage temperatures (3 and 5 °C) after treatment with 2 mM putrescine and 1 : 10 carnauba wax (carnauba wax : water). The treatments (putrescine and carnauba wax) were given by immersion method followed by storage up to 60 days. Both treatments retained significantly higher anthocyanins, antioxidant, ascorbic acid, tannin and sensory qualities as compared with control fruits under both the storage conditions. Combined application of putrescine + carnauba wax showed better response in retaining functional properties than putrescine treated or nontreated fruits. The impacts of putrescine and carnauba wax treatments were found more pronounced after 30 days at 3-5 °C storage temperature in retaining functional and sensory qualities. After 60 days of storage, putrescine + carnauba wax retained about 25% higher antioxidant activity both at 3 and 5 °C storage temperatures.

  19. A new experimental method to prevent paraffin - wax formation on the crude oil wells: A field case study in Libya

    Directory of Open Access Journals (Sweden)

    Elhaddad Elnori E.

    2015-01-01

    Full Text Available Wax formation and deposition is one of the most common problems in oil producing wells. This problem occurs as a result of the reduction of the produced fluid temperature below the wax appearance temperature (range between 46°C and 50°C and the pour point temperature (range between 42°C and 44°C. In this study, two new methods for preventing wax formation were implemented on three oil wells in Libya, where the surface temperature is, normally, 29°C. In the first method, the gas was injected at a pressure of 83.3 bar and a temperature of 65°C (greater than the pour point temperature during the gas-lift operation. In the second method, wax inhibitors (Trichloroethylene-xylene (TEX, Ethylene copolymers, and Comb polymers were injected down the casings together with the gas. Field observations confirmed that by applying these techniques, the production string was kept clean and no wax was formed. The obtained results show that the wax formation could be prevented by both methods.

  20. Evaluation of methods for wax determination in crude oil; Avaliacao de metodos de determinacao de parafinas em petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Julio Cesar M.; Silva, Maria do Socorro A.J. da; Vasconcellos, Rosa C.U. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; Tamanqueira, Juliana B. [Fundacao Gorceix, Ouro Preto, MG (Brazil)

    2008-07-01

    Determining the wax content of crude oil is of great importance for petroleum industry, especially for production, storage and transportation of crude oils. Many different methodologies of wax determining are available in the technical literature. However, the selection of the most suitable method must be in accordance with the aim of the analysis and observing the specificities of each technique. The purpose of this work was to determine the performance of different techniques of wax determining applied to characterization of precipitation properties of waxy compounds in crude oils. Twelve samples of crude oils proceeding from the main Brazilian oil producing sedimentary basins were selected for this study. These samples were analyzed by three important analytical techniques of wax determining: precipitation by cooled solvent; liquid chromatography with precipitation by cooled solvent; and liquid chromatography followed by gas chromatography. Differential scanning calorimetry data related to the wax crystallization in these oils were used as parameters of validation. The results obtained in this study indicate that the liquid chromatography followed by gas chromatography method has the best performance for wax determining in crude oils. (author)

  1. Development of the cuticular wax during growth of Kalanchoe daigremontiana (Hamet et Perr. de la Bathie) leaves.

    Science.gov (United States)

    Van Maarseveen, Clare; Han, Hong; Jetter, Reinhard

    2009-01-01

    The goal of the present study was to monitor cuticular wax accumulation during leaf development of Kalanchoe daigremontiana. Leaves expanded linearly until they were 40-60 d old. Wax coverages of leaves on the third node increased steadily during initial leaf development, from 6.5 microg x cm(-2) on day 22 to 15.3 microg x cm(-2) on day 53, and then levelled off. Triterpenoids dominated the wax mixture throughout leaf development, but decreased from 74 to 40-45% in mature leaves, while very long-chain fatty acid (VLCFA) derivatives increased from 19 to 39-44%. The major VLCFA derivatives were alkanes, accompanied by fatty acids, primary alcohols, aldehydes and alkyl esters. In all compound classes, either C(34) or C(33) homologs predominated during leaf development. Eight different triterpenoids were identified, with glutinol constituting 70% of the fraction, and friedelin (20%) and germanicol (10%) as further major components of the young leaf wax. The glutinol percentage decreased, while the relative amounts of epifriedelanol and glutanol increased during development. Various leaf pairs upwards from the third node showed similar growth patterns and developmental time courses of cuticular wax amounts and composition. Based on these surface chemical analyses, the relative activities of biosynthetic pathways leading to various wax components can be assessed.

  2. Importance of Lipopolysaccharide and Cyclic β-1,2-Glucans in Brucella-Mammalian Infections

    Directory of Open Access Journals (Sweden)

    Andreas F. Haag

    2010-01-01

    Full Text Available Brucella species are the causative agents of one of the most prevalent zoonotic diseases: brucellosis. Infections by Brucella species cause major economic losses in agriculture, leading to abortions in infected animals and resulting in a severe, although rarely lethal, debilitating disease in humans. Brucella species persist as intracellular pathogens that manage to effectively evade recognition by the host's immune system. Sugar-modified components in the Brucella cell envelope play an important role in their host interaction. Brucella lipopolysaccharide (LPS, unlike Escherichia coli LPS, does not trigger the host's innate immune system. Brucella produces cyclic β-1,2-glucans, which are important for targeting them to their replicative niche in the endoplasmic reticulum within the host cell. This paper will focus on the role of LPS and cyclic β-1,2-glucans in Brucella-mammalian infections and discuss the use of mutants, within the biosynthesis pathway of these cell envelope structures, in vaccine development.

  3. Poly (ADP-ribose) catabolism in mammalian cells exposed to DNA-damaging agents

    International Nuclear Information System (INIS)

    Alvarez-Gonzalez, R.; Althaus, F.R.

    1989-01-01

    DNA damage inflicted by the alkylating agens N-methyl-N-nitro-N-nitrosoquanidine, or by UV stimulated the catabolism of protein-bound poly (ADP-ribose) in the chromatin of cultured hepatocytes. The stimulation was highest at the largest doses of DNA-damaging treatment. As a consequence, the half-life of ADP-ribosyl polymers may drop to less than 41 s. This rapid turnover contrasts with the slow catabolism of a constitutive fraction of polymers exhibiting a half-life of 7.7 h. These data suggest that post-incisional stimulation of poly (ADP-ribose) biosynthesis in DNA-excision repair is coupled with an adaptation of poly (ADP-ribose) catabolism in mammalian cells. (Author). 37 refs.; 3 figs

  4. Combinatorial biosynthesis of medicinal plant secondary metabolites

    NARCIS (Netherlands)

    Julsing, Mattijs K.; Koulman, Albert; Woerdenbag, Herman J.; Quax, Wim J.; Kayser, Oliver

    2006-01-01

    Combinatorial biosynthesis is a new tool in the generation of novel natural products and for the production of rare and expensive natural products. The basic concept is combining metabolic pathways in different organisms on a genetic level. As a consequence heterologous organisms provide precursors

  5. Peroxidase enzymes regulate collagen extracellular matrix biosynthesis.

    Science.gov (United States)

    DeNichilo, Mark O; Panagopoulos, Vasilios; Rayner, Timothy E; Borowicz, Romana A; Greenwood, John E; Evdokiou, Andreas

    2015-05-01

    Myeloperoxidase and eosinophil peroxidase are heme-containing enzymes often physically associated with fibrotic tissue and cancer in various organs, without any direct involvement in promoting fibroblast recruitment and extracellular matrix (ECM) biosynthesis at these sites. We report herein novel findings that show peroxidase enzymes possess a well-conserved profibrogenic capacity to stimulate the migration of fibroblastic cells and promote their ability to secrete collagenous proteins to generate a functional ECM both in vitro and in vivo. Mechanistic studies conducted using cultured fibroblasts show that these cells are capable of rapidly binding and internalizing both myeloperoxidase and eosinophil peroxidase. Peroxidase enzymes stimulate collagen biosynthesis at a post-translational level in a prolyl 4-hydroxylase-dependent manner that does not require ascorbic acid. This response was blocked by the irreversible myeloperoxidase inhibitor 4-amino-benzoic acid hydrazide, indicating peroxidase catalytic activity is essential for collagen biosynthesis. These results suggest that peroxidase enzymes, such as myeloperoxidase and eosinophil peroxidase, may play a fundamental role in regulating the recruitment of fibroblast and the biosynthesis of collagen ECM at sites of normal tissue repair and fibrosis, with enormous implications for many disease states where infiltrating inflammatory cells deposit peroxidases. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  6. Biosynthesis of polyhydroxyalkanotes in wildtype yeasts | Desuoky ...

    African Journals Online (AJOL)

    Biosynthesis of the biodegradable polymers polyhydroxyalkanotes (PHAs) are studied extensively in wild type and genetically modified prokaryotic cells, however the content and structure of PHA in wild type yeasts are not well documented. The purpose of this study was to screen forty yeast isolates collected from different ...

  7. Metabolic engineering for improved heterologous terpenoid biosynthesis

    NARCIS (Netherlands)

    Ryden, A.; Melillo, E.; Czepnik, M.; Kayser, O.

    Terpenoids belong to the largest class of natural compounds and are produced in all living organisms. The isoprenoid skeleton is based on assembling of C5 building blocks, but the biosynthesis of a great variety of terpenoids ranging from monoterpenoids to polyterpenoids is not fully understood

  8. Biosynthesis of silver nanoparticles synthesized by Aspergillus

    Indian Academy of Sciences (India)

    In the present study, biosynthesis of silver nanoparticles and its antioxidant, antimicrobial and cytotoxic activities were investigated. Silver nanoparticles were extracellularly synthesized using Aspergillus flavus and the formation of nanoparticles was observed after 72 h of incubation. The results recorded from colour ...

  9. Biosynthesis of furanochromones in Pimpinella monoica

    Indian Academy of Sciences (India)

    polyketide origin of their aromatic and pyrone rings while the furan ring originates via an acetate-mevalonate pathway. The plant also utilises glycine and leucine as substrate via acetate. Biotransformation of 3-H-visnagin to (6) but not to (2) was also observed. Keywords. Biosynthesis; furochromones; polyketide origin; ...

  10. Calculation of the store house worker dose in a lost wax foundry using MCNP-4C

    International Nuclear Information System (INIS)

    Alegria, N.; Legarda, F.; Herranz, M.; Idoeta, R.

    2005-01-01

    Lost wax casting is an industrial process which permits the transmutation into metal of models made in wax. The wax model is covered with a siliceous shell of the required thickness and once this shell is built the set is heated and wax melted. Liquid metal is then cast into the shell replacing the wax. When the metal is cool, the shell is broken away in order to recover the metallic piece. In this process zircon sands are used for the preparation of the siliceous shell. These sands have varying concentrations of natural radionuclides: 238 U, 232 Th and 235 U together with their progenics. The zircon sand is distributed in bags of 50 kg, and 30 bags are on a pallet, weighing 1,500 kg. The pallets with the bags have dimensions 80 cm x 120 cm x 80 cm, and constitute the radiation source in this case. The only pathway of exposure to workers in the store house is external radiation. In this case there is no dust because the bags are closed and covered by plastic, the store house has a good ventilation rate and so radon accumulation is not possible. The workers do not touch with their hands the bags and consequently skin contamination will not take place. In this study all situations of external irradiation to the workers have been considered; transportation of the pallets from vehicle to store house, lifting the pallets to the shelf, resting of the stock on the shelf, getting down the pallets, and carrying the pallets to production area. Using MCNP-4C exposure situations have been simulated, considering that the source has a homogeneous composition, the minimum stock in the store house is constituted by 7 pallets, and the several distances between pallets and workers when they are at work. The photons flux obtained by MCNP-4C is multiplied by the conversion factor of Flux to Kerma for air by conversion factor to Effective Dose by Kerma unit, and by the number of emitted photons. Those conversion factors are obtained of ICRP 74 table 1 and table 17 respectively. This is

  11. Calculation of the store house worker dose in a lost wax foundry using MCNP-4C.

    Science.gov (United States)

    Alegría, Natalia; Legarda, Fernando; Herranz, Margarita; Idoeta, Raquel

    2005-01-01

    Lost wax casting is an industrial process which permits the transmutation into metal of models made in wax. The wax model is covered with a silicaceous shell of the required thickness and once this shell is built the set is heated and wax melted. Liquid metal is then cast into the shell replacing the wax. When the metal is cool, the shell is broken away in order to recover the metallic piece. In this process zircon sands are used for the preparation of the silicaceous shell. These sands have varying concentrations of natural radionuclides: 238U, 232Th and 235U together with their progenics. The zircon sand is distributed in bags of 50 kg, and 30 bags are on a pallet, weighing 1,500 kg. The pallets with the bags have dimensions 80 cm x 120 cm x 80 cm, and constitute the radiation source in this case. The only pathway of exposure to workers in the store house is external radiation. In this case there is no dust because the bags are closed and covered by plastic, the store house has a good ventilation rate and so radon accumulation is not possible. The workers do not touch with their hands the bags and consequently skin contamination will not take place. In this study all situations of external irradiation to the workers have been considered; transportation of the pallets from vehicle to store house, lifting the pallets to the shelf, resting of the stock on the shelf, getting down the pallets, and carrying the pallets to production area. Using MCNP-4C exposure situations have been simulated, considering that the source has a homogeneous composition, the minimum stock in the store house is constituted by 7 pallets, and the several distances between pallets and workers when they are at work. The photons flux obtained by MCNP-4C is multiplied by the conversion factor of Flux to Kerma for air by conversion factor to Effective Dose by Kerma unit, and by the number of emitted photons. Those conversion factors are obtained of ICRP 74 table 1 and table 17 respectively. This

  12. A promoter-level mammalian expression atlas

    KAUST Repository

    Forest, Alistair R R

    2014-03-26

    Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body. We find that few genes are truly ‘housekeeping’, whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles. TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved. Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs. The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses. The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research.

  13. Endogenous retrovirus sequences expressed in male mammalian ...

    African Journals Online (AJOL)

    Objectives: To review the research findings on the expression of endogenous retroviruses and retroviral-related particles in male mammalian reproductive tissues, and to discuss their possible role in normal cellular events and association with disease conditions in male reproductive tissues. Data sources: Published ...

  14. Locomotor circuits in the mammalian spinal cord

    DEFF Research Database (Denmark)

    Kiehn, Ole

    2006-01-01

    Intrinsic spinal networks, known as central pattern generators (CPGs), control the timing and pattern of the muscle activity underlying locomotion in mammals. This review discusses new advances in understanding the mammalian CPGs with a focus on experiments that address the overall network struct...

  15. A promoter-level mammalian expression atlas

    KAUST Repository

    Forest, Alistair R R; Kawaji, Hideya; Rehli, Michael; Baillie, John Kenneth; De Hoon, Michiel Jl L; Haberle, Vanja; Lassmann, Timo; Kulakovskiy, Ivan V.; Lizio, Marina; Itoh, Masayoshi; Andersson, Robin; Iida, Kei; Ikawa, Tomokatsu; Jankovic, Boris R.; Jia, Hui; Joshi, Anagha Madhusudan; Jurman, Giuseppe; Kaczkowski, Bogumił; Kai, Chieko; Kaida, Kaoru; Kaiho, Ai; Mungall, Christopher J.; Kajiyama, Kazuhiro; Kanamori-Katayama, Mutsumi; Kasianov, Artem S.; Kasukawa, Takeya; Katayama, Shintaro; Kato, Sachi; Kawaguchi, Shuji; Kawamoto, Hiroshi; Kawamura, Yuki I.; Kawashima, Tsugumi; Meehan, Terrence F.; Kempfle, Judith S.; Kenna, Tony J.; Kere, Juha; Khachigian, Levon M.; Kitamura, Toshio; Klinken, Svend Peter; Knox, Alan; Kojima, Miki; Kojima, Soichi; Kondo, Naoto; Schmeier, Sebastian; Koseki, Haruhiko; Koyasu, Shigeo; Krampitz, Sarah; Kubosaki, Atsutaka; Kwon, Andrew T.; Laros, Jeroen F J; Lee, Weonju; Lennartsson, Andreas; Li, Kang; Lilje, Berit; Bertin, Nicolas; Lipovich, Leonard; MacKay-Sim, Alan; Manabe, Riichiroh; Mar, Jessica; Marchand, Benoî t; Mathelier, Anthony; Mejhert, Niklas; Meynert, Alison M.; Mizuno, Yosuke; De Morais, David A Lima; Jø rgensen, Mette Christine; Morikawa, Hiromasa; Morimoto, Mitsuru; Moro, Kazuyo; Motakis, Efthymios; Motohashi, Hozumi; Mummery, Christine L.; Murata, Mitsuyoshi; Nagao-Sato, Sayaka; Nakachi, Yutaka; Nakahara, Fumio; Dimont, Emmanuel; Nakamura, Toshiyuki; Nakamura, Yukio; Nakazato, Kenichi; Van Nimwegen, Erik; Ninomiya, Noriko; Nishiyori, Hiromi; Noma, Shohei; Nozaki, Tadasuke; Ogishima, Soichi; Ohkura, Naganari; Arner, Erik; Ohmiya, Hiroko; Ohno, Hiroshi; Ohshima, Mitsuhiro; Okada-Hatakeyama, Mariko; Okazaki, Yasushi; Orlando, Valerio; Ovchinnikov, Dmitry A.; Pain, Arnab; Passier, Robert C J J; Patrikakis, Margaret; Schmidl, Christian; Persson, Helena A.; Piazza, Silvano; Prendergast, James G D; Rackham, Owen J L; Ramilowski, Jordan A.; Rashid, Mamoon; Ravasi, Timothy; Rizzu, Patrizia; Roncador, Marco; Roy, Sugata; Schaefer, Ulf; Rye, Morten Beck; Saijyo, Eri; Sajantila, Antti; Saka, Akiko; Sakaguchi, Shimon; Sakai, Mizuho; Sato, Hiroki; Satoh, Hironori; Savvi, Suzana; Saxena, Alka; Medvedeva, Yulia; Schneider, Claudio H.; Schultes, Erik A.; Schulze-Tanzil, Gundula G.; Schwegmann, Anita; Sengstag, Thierry; Sheng, Guojun; Shimoji, Hisashi; Shimoni, Yishai; Shin, Jay W.; Simon, Chris M.; Plessy, Charles; Sugiyama, Daisuke; Sugiyama, Takaaki; Suzuki, Masanori; Suzuki, Naoko; Swoboda, Rolf K.; 't Hoen, Peter Ac Chr; Tagami, Michihira; Tagami, Naokotakahashi; Takai, Jun; Tanaka, Hiroshi; Vitezic, Morana; Tatsukawa, Hideki; Tatum, Zuotian; Thompson, Mark; Toyoda, Hiroo; Toyoda, Tetsuro; Valen, Eivind; Van De Wetering, Marc L.; Van Den Berg, Linda M.; Verardo, Roberto; Vijayan, Dipti; Severin, Jessica M.; Vorontsov, Ilya E.; Wasserman, Wyeth W.; Watanabe, Shoko; Wells, Christine A.; Winteringham, Louise Natalie; Wolvetang, Ernst Jurgen; Wood, Emily J.; Yamaguchi, Yoko; Yamamoto, Masayuki; Yoneda, Misako; Semple, Colin Am M; Yonekura, Yohei; Yoshida, Shigehiro; Zabierowski, Susan E.; Zhang, Peter; Zhao, Xiaobei; Zucchelli, Silvia; Summers, Kim M.; Suzuki, Harukazu; Daub, Carsten Olivier; Kawai, Jun; Ishizu, Yuri; Heutink, Peter; Hide, Winston; Freeman, Tom C.; Lenhard, Boris; Bajic, Vladimir B.; Taylor, Martin S.; Makeev, Vsevolod J.; Sandelin, Albin; Hume, David A.; Carninci, Piero; Young, Robert S.; Hayashizaki, Yoshihide Yoshihide; Francescatto, Margherita; Altschuler, Intikhab Alam; Albanese, Davide; Altschule, Gabriel M.; Arakawa, Takahiro; Archer, John A.C.; Arner, Peter; Babina, Magda; Rennie, Sarah; Balwierz, Piotr J.; Beckhouse, Anthony G.; Pradhan-Bhatt, Swati; Blake, Judith A.; Blumenthal, Antje; Bodega, Beatrice; Bonetti, Alessandro; Briggs, James A.; Brombacher, Frank; Burroughs, Alexander Maxwell; Califano, Andrea C.; Cannistraci, Carlo; Carbajo, Daniel; Chen, Yun; Chierici, Marco; Ciani, Yari; Clevers, Hans C.; Dalla, Emiliano; Davis, Carrie Anne; Detmar, Michael J.; Diehl, Alexander D.; Dohi, Taeko; Drablø s, Finn; Edge, Albert SB B; Edinger, Matthias G.; Ekwall, Karl; Endoh, Mitsuhiro; Enomoto, Hideki; Fagiolini, Michela; Fairbairn, Lynsey R.; Fang, Hai; Farach-Carson, Mary Cindy; Faulkner, Geoffrey J.; Favorov, Alexander V.; Fisher, Malcolm E.; Frith, Martin C.; Fujita, Rie; Fukuda, Shiro; Furlanello, Cesare; Furuno, Masaaki; Furusawa, Junichi; Geijtenbeek, Teunis Bh H; Gibson, Andrew P.; Gingeras, Thomas R.; Goldowitz, Dan; Gough, Julian; Guhl, Sven; Guler, Reto; Gustincich, Stefano; Ha, Thomas; Hamaguchi, Masahide; Hara, Mitsuko; Harbers, Matthias; Harshbarger, Jayson; Hasegawa, Akira; Hasegawa, Yuki; Hashimoto, Takehiro; Herlyn, Meenhard F.; Hitchens, Kelly J.; Sui, Shannan J Ho; Hofmann, Oliver M.; Hoof, Ilka; Hori, Fumi; Huminiecki, Łukasz B.

    2014-01-01

    Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body. We find that few genes are truly ‘housekeeping’, whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles. TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved. Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs. The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses. The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research.

  16. Structure and function of mammalian cilia

    DEFF Research Database (Denmark)

    Satir, Peter; Christensen, Søren T

    2008-01-01

    In the past half century, beginning with electron microscopic studies of 9 + 2 motile and 9 + 0 primary cilia, novel insights have been obtained regarding the structure and function of mammalian cilia. All cilia can now be viewed as sensory cellular antennae that coordinate a large number...

  17. Archetype, adaptation and the mammalian heart

    NARCIS (Netherlands)

    Meijler, F.L.; Meijler, T.D.

    2011-01-01

    Forty years ago, we started our quest for 'The Holy Grail' of understanding ventricular rate control and rhythm in atrial fibrillation (AF). We therefore studied the morphology and function of a wide range of mammalian hearts. From mouse to whale, we found that all hearts show similar structural

  18. Horizontally Acquired Biosynthesis Genes Boost Coxiella burnetii's Physiology.

    Science.gov (United States)

    Moses, Abraham S; Millar, Jess A; Bonazzi, Matteo; Beare, Paul A; Raghavan, Rahul

    2017-01-01

    Coxiella burnetii , the etiologic agent of acute Q fever and chronic endocarditis, has a unique biphasic life cycle, which includes a metabolically active intracellular form that occupies a large lysosome-derived acidic vacuole. C. burnetii is the only bacterium known to thrive within such an hostile intracellular niche, and this ability is fundamental to its pathogenicity; however, very little is known about genes that facilitate Coxiella 's intracellular growth. Recent studies indicate that C. burnetii evolved from a tick-associated ancestor and that the metabolic capabilities of C. burnetii are different from that of Coxiella -like bacteria found in ticks. Horizontally acquired genes that allow C. burnetii to infect and grow within mammalian cells likely facilitated the host shift; however, because of its obligate intracellular replication, C. burnetii would have lost most genes that have been rendered redundant due to the availability of metabolites within the host cell. Based on these observations, we reasoned that horizontally derived biosynthetic genes that have been retained in the reduced genome of C. burnetii are ideal candidates to begin to uncover its intracellular metabolic requirements. Our analyses identified a large number of putative foreign-origin genes in C. burnetii , including tRNA Glu 2 that is potentially required for heme biosynthesis, and genes involved in the production of lipopolysaccharide-a virulence factor, and of critical metabolites such as fatty acids and biotin. In comparison to wild-type C. burnetii , a strain that lacks tRNA Glu 2 exhibited reduced growth, indicating its importance to Coxiella 's physiology. Additionally, by using chemical agents that block heme and biotin biosyntheses, we show that these pathways are promising targets for the development of new anti- Coxiella therapies.

  19. Cloning and sequencing of Staphylococcus aureus murC, a gene essential for cell wall biosynthesis.

    Science.gov (United States)

    Lowe, A M; Deresiewicz, R L

    1999-01-01

    Staphylococcus aureus is a major human pathogen that is increasingly resistant to clinically useful antimicrobial agents. While screening for S. aureus genes expressed during mammalian infection, we isolated murC. This gene encodes UDP-N-acetylmuramoyl-L-alanine synthetase, an enzyme essential for cell wall biosynthesis in a number of bacteria. S. aureus MurC has a predicted mass 49,182 Da and complements the temperature-sensitive murC mutation of E. coli ST222. Sequence data on the DNA flanking staphylococcal murC suggests that the local gene organization there parallels that found in B. subtilis, but differs from that found in gram-negative bacterial pathogens. MurC proteins represent promising targets for broad spectrum antimicrobial drug development.

  20. Hair growth promoting effect of white wax and policosanol from white wax on the mouse model of testosterone-induced hair loss.

    Science.gov (United States)

    Wang, Zhan-di; Feng, Ying; Ma, Li-Yi; Li, Xian; Ding, Wei-Feng; Chen, Xiao-Ming

    2017-05-01

    White wax (WW) has been traditionally used to treat hair loss in China. However there has been no reporter WW and its extract responsible for hair growth-promoting effect on androgenetic alopecia. In this paper, we examined the hair growth-promoting effects of WW and policosanol of white wax (WWP) on model animal of androgenetic alopecia and the potential target cell of WW and WWP. WW (1, 10 and 20%) and WWP (0.5, 1 and 2%) were applied topically to the backs of mice. Finasteride (2%) was applied topically as a positive control. MTS assays were performed to evaluate cell proliferation in culture human follicle dermal papilla cells (HFDPCs). The inhibition of WW and WWP for 5α- reductase were tested in Vitro. Results showed more lost hairs were clearly seen in mice treated with TP only and TP plus vehicle. Mice which received TP plus WW and WWP showed less hair loss. WW and WWP showed an outstanding hair growth-promoting activity as reflected by the follicular length, follicular density, A/T ratio, and hair bulb diameter. The optimal treatment effect was observed at 10% WW and 1% WWP, which were better than 2% finasteride treatment. MTS assay results suggested that WW and WWP remarkably increased the proliferation of HFDPCs. Inhibitor assay of 5α- reductase showed that WW and WWP inhibited significantly the conversion of testosterone to dihydrotesterone, and the IC 50 values of WW and WWP were higher than that of finasteride. In Conclusion, WW and WWP could act against testosterone-induced alopecia in mice, and they promoted hair growth by inhibiting 5α-reductase activity and HFDPCs proliferation. DPCs is the target cell of WW and WWP. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. The glossyhead1 allele of acc1 reveals a principal role for multidomain acetyl-coenzyme a carboxylase in the biosynthesis of cuticular waxes by Arabidopsis

    KAUST Repository

    Lu, Shiyou; Zhao, Huayan; Parsons, Eugene P.; Xu, Changcheng; Kosma, Dylan K.; Xu, Xiaojing; Chao, Daiyin; Lohrey, Gregory T.; Bangarusamy, Dhinoth Kumar; Wang, Guangchao; Bressan, Ray Anthony; Jenks, Matthew A.

    2011-01-01

    A novel mutant of Arabidopsis (Arabidopsis thaliana), having highly glossy inflorescence stems, postgenital fusion in floral organs, and reduced fertility, was isolated from an ethyl methanesulfonate-mutagenized population and designated glossyhead1

  2. Design and evaluation of a heat exchanger that uses paraffin wax and recycled materials as solar energy accumulator

    International Nuclear Information System (INIS)

    Reyes, Alejandro; Negrete, Daniela; Mahn, Andrea; Sepúlveda, Francisco

    2014-01-01

    Highlights: • Thermal conductivity of paraffin wax was improved with aluminum wool. • Aluminum wool surrounding the cans favored the energy recuperation from the wax. • The heat exchanger accumulated 3000 kJ energy. • The accumulated energy can be easily increased with larger units. • COMSOL simulated adequately the energy removal process from the cans. - Abstract: Soft drink cans filled with paraffin wax mixed with 5% w/w aluminum wool, obtained from disposable cans, doubled the thermal conductivity of cans filled only with paraffin wax. Thermal conductivity of the systems was determined by two ways: directly using a thermal conductivimeter, and indirectly based on temperature profiles and on the analytical solution of a cylinder. We designed, built and evaluated a heat exchanger for solar energy accumulation, composed by 48 disposable soft drink cans filled with a total of 9.5 kg of paraffin wax mixed with 5% w/w aluminum wool. In sunny days, the wax melted completely in 3 h. The accumulated energy of 3000 kJ, allowed increasing the temperature of 3.5 m 3 /h air flow rate from 20 to 40 °C during a period of 2 h. This application will allow extending the use of solar energy in drying processes or could be used as household calefaction system. The progress of the phase change front in time during the energy discharge period was simulated with COMSOL, whereas the effect of the number of cans and thermal conductivity of the paraffin wax on the air temperature increase was simulated with MATLAB

  3. Effect of emulsifier type and concentration, aqueous phase volume and wax ratio on physical, material and mechanical properties of water in oil lipsticks.

    Science.gov (United States)

    Beri, A; Norton, J E; Norton, I T

    2013-12-01

    Water-in-oil emulsions in lipsticks could have the potential to improve moisturizing properties and deliver hydrophilic molecules to the lips. The aims of this work were (i) to investigate the effect of emulsifier type (polymer vs. monomer, and saturated vs. unsaturated chain) and concentration on droplet size and (ii) to investigate the effect of wax ratio (carnauba wax, microcrystalline wax, paraffin wax and performalene) and aqueous phase volume on material properties (Young's modulus, point of fracture, elastic modulus and viscous modulus). Emulsion formation was achieved using a high shear mixer. Results showed that the saturated nature of the emulsifier had very little effect on droplet size, neither did the use of an emulsifier with a larger head group (droplet size ~18-25 μm). Polyglycerol polyricinoleate (PGPR) resulted in emulsions with the smallest droplets (~3-5 μm), as expected from previous studies that show that it produces a thick elastic interface. The results also showed that both Young's modulus and point of fracture increase with increasing percentage of carnauba wax (following a power law dependency of 3), but decrease with increasing percentage of microcrystalline wax, suggesting that the carnauba wax is included in the overall wax network formed by the saturated components, whereas the microcrystalline wax forms irregular crystals that disrupt the overall wax crystal network. Young's modulus, elastic modulus and viscous modulus all decrease with increasing aqueous phase volume in the emulsions, although the slope of the decrease in elastic and viscous moduli is dependent on the addition of solid wax, as a result of strengthening the network. This work suggests the potential use for emulsions in lipstick applications, particularly when PGPR is used as an emulsifier, and with the addition of solid wax, as it increases network strength. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  4. Particulate pollutants are capable to ‘degrade’ epicuticular waxes and to decrease the drought tolerance of Scots pine (Pinus sylvestris L.)

    International Nuclear Information System (INIS)

    Burkhardt, Juergen; Pariyar, Shyam

    2014-01-01

    Air pollution causes the amorphous appearance of epicuticular waxes in conifers, usually called wax ‘degradation’ or ‘erosion’, which is often correlated with tree damage symptoms, e.g., winter desiccation. Previous investigations concentrated on wax chemistry, with little success. Here, we address the hypothesis that both ‘wax degradation’ and decreasing drought tolerance of trees may result from physical factors following the deposition of salt particles onto the needles. Pine seedlings were sprayed with dry aerosols or 50 mM solutions of different salts. The needles underwent humidity changes within an environmental scanning electron microscope, causing salt expansion on the surface and into the epistomatal chambers. The development of amorphous wax appearance by deliquescent salts covering tubular wax fibrils was demonstrated. The minimum epidermal conductance of the sprayed pine seedlings increased. Aerosol deposition potentially ‘degrades’ waxes and decreases tree drought tolerance. These effects have not been adequately considered thus far in air pollution research. Highlights: • Demonstrated capability of particles to produce ‘wax degradation’. • Dynamics of particles on pine needles, shown by videos. • Salt particles sprayed on pine needles increased minimum epidermal conductance g min . • Results strongly suggest direct link between air pollution and drought tolerance. • Linkage between different types of forest decline is suggested. -- ‘Wax degradation’ on pine needles and increased minimum epidermal conductance (i.e. uncontrollable water loss) were created by particles, suggesting a link between air pollution and tree drought tolerance

  5. "Coding" and "Decoding": hypothesis for the regulatory mechanism involved in heparan sulfate biosynthesis.

    Science.gov (United States)

    Zhang, Xu; Wang, Fengshan; Sheng, Juzheng

    2016-06-16

    Heparan sulfate (HS) is widely distributed in mammalian tissues in the form of HS proteoglycans, which play essential roles in various physiological and pathological processes. In contrast to the template-guided processes involved in the synthesis of DNA and proteins, HS biosynthesis is not believed to involve a template. However, it appears that the final structure of HS chains was strictly regulated. Herein, we report research based hypothesis that two major steps, namely "coding" and "decoding" steps, are involved in the biosynthesis of HS, which strictly regulate its chemical structure and biological activity. The "coding" process in this context is based on the distribution of sulfate moieties on the amino groups of the glucosamine residues in the HS chains. The sulfation of these amine groups is catalyzed by N-deacetylase/N-sulfotransferase, which has four isozymes. The composition and distribution of sulfate groups and iduronic acid residues on the glycan chains of HS are determined by several other modification enzymes, which can recognize these coding sequences (i.e., the "decoding" process). The degree and pattern of the sulfation and epimerization in the HS chains determines the extent of their interactions with several different protein factors, which further influences their biological activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Structural basis for phosphatidylinositol-phosphate biosynthesis

    Science.gov (United States)

    Clarke, Oliver B.; Tomasek, David; Jorge, Carla D.; Dufrisne, Meagan Belcher; Kim, Minah; Banerjee, Surajit; Rajashankar, Kanagalaghatta R.; Shapiro, Lawrence; Hendrickson, Wayne A.; Santos, Helena; Mancia, Filippo

    2015-10-01

    Phosphatidylinositol is critical for intracellular signalling and anchoring of carbohydrates and proteins to outer cellular membranes. The defining step in phosphatidylinositol biosynthesis is catalysed by CDP-alcohol phosphotransferases, transmembrane enzymes that use CDP-diacylglycerol as donor substrate for this reaction, and either inositol in eukaryotes or inositol phosphate in prokaryotes as the acceptor alcohol. Here we report the structures of a related enzyme, the phosphatidylinositol-phosphate synthase from Renibacterium salmoninarum, with and without bound CDP-diacylglycerol to 3.6 and 2.5 Å resolution, respectively. These structures reveal the location of the acceptor site, and the molecular determinants of substrate specificity and catalysis. Functional characterization of the 40%-identical ortholog from Mycobacterium tuberculosis, a potential target for the development of novel anti-tuberculosis drugs, supports the proposed mechanism of substrate binding and catalysis. This work therefore provides a structural and functional framework to understand the mechanism of phosphatidylinositol-phosphate biosynthesis.

  7. Occurrence and biosynthesis of carotenoids in phytoplankton.

    Science.gov (United States)

    Huang, Jim Junhui; Lin, Shaoling; Xu, Wenwen; Cheung, Peter Chi Keung

    2017-09-01

    Naturally occurring carotenoids are important sources of antioxidants, anti-cancer compounds and anti-inflammatory agents and there is thus considerable market demand for their pharmaceutical applications. Carotenoids are widely distributed in marine and freshwater organisms including microalgae, phytoplankton, crustaceans and fish, as well as in terrestrial plants and birds. Recently, phytoplankton-derived carotenoids have received much attention due to their abundance, rapid rate of biosynthesis and unique composition. The carotenoids that accumulate in particular phytoplankton phyla are synthesized by specific enzymes and play unique physiological roles. This review focuses on studies related to the occurrence of carotenoids in different phytoplankton phyla and the molecular aspects of their biosynthesis. Recent biotechnological advances in the isolation and characterization of some representative carotenoid synthases in phytoplankton are also discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Surfactant-free carnauba wax dispersion and its use for layer-by-layer assembled protective surface coatings on wood

    International Nuclear Information System (INIS)

    Lozhechnikova, Alina; Bellanger, Hervé; Michen, Benjamin; Burgert, Ingo; Österberg, Monika

    2017-01-01

    Highlights: • A facile sonication route to produce aqueous wax dispersions is developed. • The wax dispersion is naturally stable and free of surfactants or stabilizers. • Wax and ZnO particles are coated onto wood using layer-by-layer assembly. • The coating brings superhydrophobicity while preserving moisture buffering. • ZnO improves the color stability of wood to UV light. - Abstract: Protection from liquid water and UV radiation are equally important, and a sophisticated approach is needed when developing surface coatings that preserve the natural and well-appreciated aesthetic appearance of wood. In order to prevent degradation and prolong the service life of timber, a protective coating was assembled using carnauba wax particles and zinc oxide nanoparticles via layer-by-layer deposition in water. For this purpose, a facile sonication route was developed to produce aqueous wax dispersion without any surfactants or stabilizers. The suspension was stable above pH 4 due to the electrostatic repulsion between the negatively charged wax particles. The particle size could be controlled by the initial wax concentration with average particle sizes ranging from 260 to 360 nm for 1 and 10 g/L, respectively. The deposition of wax particles onto the surface of spruce wood introduced additional roughness to the wood surface at micron level, while zinc oxide provided nano roughness and UV-absorbing properties. In addition to making wood superhydrophobic, this novel multilayer coating enhanced the natural moisture buffering capability of spruce. Moreover, wood surfaces prepared in this fashion showed a significant reduction in color change after exposure to UV light. A degradation of the wax through photocatalytic activity of the ZnO particles was measured by FTIR, indicating that further studies are required to achieve long-term stability. Nevertheless, the developed coating showed a unique combination of superhydrophobicity and excellent moisture buffering

  9. Surfactant-free carnauba wax dispersion and its use for layer-by-layer assembled protective surface coatings on wood

    Energy Technology Data Exchange (ETDEWEB)

    Lozhechnikova, Alina [Department of Forest Products Technology, School of Chemical Technology, Aalto University, P.O. Box 16300, FI-00076, Aalto (Finland); Bellanger, Hervé; Michen, Benjamin; Burgert, Ingo [Institute for Building Materials (IfB), Wood Materials Science, ETH Zürich, Stefano-Franscini-Platz 3, 8093 Zürich (Switzerland); Applied Wood Materials Laboratory, Empa − Swiss Federal Laboratories for Material Testing and Research, 8600 Dübendorf (Switzerland); Österberg, Monika, E-mail: monika.osterberg@aalto.fi [Department of Forest Products Technology, School of Chemical Technology, Aalto University, P.O. Box 16300, FI-00076, Aalto (Finland)

    2017-02-28

    Highlights: • A facile sonication route to produce aqueous wax dispersions is developed. • The wax dispersion is naturally stable and free of surfactants or stabilizers. • Wax and ZnO particles are coated onto wood using layer-by-layer assembly. • The coating brings superhydrophobicity while preserving moisture buffering. • ZnO improves the color stability of wood to UV light. - Abstract: Protection from liquid water and UV radiation are equally important, and a sophisticated approach is needed when developing surface coatings that preserve the natural and well-appreciated aesthetic appearance of wood. In order to prevent degradation and prolong the service life of timber, a protective coating was assembled using carnauba wax particles and zinc oxide nanoparticles via layer-by-layer deposition in water. For this purpose, a facile sonication route was developed to produce aqueous wax dispersion without any surfactants or stabilizers. The suspension was stable above pH 4 due to the electrostatic repulsion between the negatively charged wax particles. The particle size could be controlled by the initial wax concentration with average particle sizes ranging from 260 to 360 nm for 1 and 10 g/L, respectively. The deposition of wax particles onto the surface of spruce wood introduced additional roughness to the wood surface at micron level, while zinc oxide provided nano roughness and UV-absorbing properties. In addition to making wood superhydrophobic, this novel multilayer coating enhanced the natural moisture buffering capability of spruce. Moreover, wood surfaces prepared in this fashion showed a significant reduction in color change after exposure to UV light. A degradation of the wax through photocatalytic activity of the ZnO particles was measured by FTIR, indicating that further studies are required to achieve long-term stability. Nevertheless, the developed coating showed a unique combination of superhydrophobicity and excellent moisture buffering

  10. Mammalian Sperm Motility: Observation and Theory

    KAUST Repository

    Gaffney, E.A.

    2011-01-21

    Mammalian spermatozoa motility is a subject of growing importance because of rising human infertility and the possibility of improving animal breeding. We highlight opportunities for fluid and continuum dynamics to provide novel insights concerning the mechanics of these specialized cells, especially during their remarkable journey to the egg. The biological structure of the motile sperm appendage, the flagellum, is described and placed in the context of the mechanics underlying the migration of mammalian sperm through the numerous environments of the female reproductive tract. This process demands certain specific changes to flagellar movement and motility for which further mechanical insight would be valuable, although this requires improved modeling capabilities, particularly to increase our understanding of sperm progression in vivo. We summarize current theoretical studies, highlighting the synergistic combination of imaging and theory in exploring sperm motility, and discuss the challenges for future observational and theoretical studies in understanding the underlying mechanics. © 2011 by Annual Reviews. All rights reserved.

  11. Non-Invasive Delivery of dsRNA into De-Waxed Tick Eggs by Electroporation

    Science.gov (United States)

    Ruiz, Newton; de Abreu, Leonardo Araujo; Parizi, Luís Fernando; Kim, Tae Kwon; Mulenga, Albert; Braz, Gloria Regina Cardoso; Vaz, Itabajara da Silva; Logullo, Carlos

    2015-01-01

    RNA interference-mediated gene silencing was shown to be an efficient tool for validation of targets that may become anti-tick vaccine components. Here, we demonstrate the application of this approach in the validation of components of molecular signaling cascades, such as the Protein Kinase B (AKT) / Glycogen Synthase Kinase (GSK) axis during tick embryogenesis. It was shown that heptane and hypochlorite treatment of tick eggs can remove wax, affecting corium integrity and but not embryo development. Evidence of AKT and GSK dsRNA delivery into de-waxed eggs of via electroporation is provided. Primers designed to amplify part of the dsRNA delivered into the electroporated eggs dsRNA confirmed its entry in eggs. In addition, it was shown that electroporation is able to deliver the fluorescent stain, 4',6-diamidino-2-phenylindole (DAPI). To confirm gene silencing, a second set of primers was designed outside the dsRNA sequence of target gene. In this assay, the suppression of AKT and GSK transcripts (approximately 50% reduction in both genes) was demonstrated in 7-day-old eggs. Interestingly, silencing of GSK in 7-day-old eggs caused 25% reduction in hatching. Additionally, the effect of silencing AKT and GSK on embryo energy metabolism was evaluated. As expected, knockdown of AKT, which down regulates GSK, the suppressor of glycogen synthesis, decreased glycogen content in electroporated eggs. These data demonstrate that electroporation of de-waxed R. microplus eggs could be used for gene silencing in tick embryos, and improve the knowledge about arthropod embryogenesis. PMID:26091260

  12. Radiation effects in mammalian cells in vitro

    International Nuclear Information System (INIS)

    Hill, C.K.; Han, A.; Elkind, M.M.; Wells, R.L.; Buess, E.M.; Lin, C.M.

    1985-01-01

    The purpose of this research effort is to elucidate the mechanisms for the radiation-induced changes in mammalian cells that lead to cell death, mutation, neoplastic transformation, DNA damage, and chromosomal alterations. Of particular interest are the effects of low-dose-rate and fractionated irradiation on these end points with respect to the mechanisms whereby these effects are influenced by cellular repair processes, inhibitors, and promoters that act at the genetic or biochemical level. 17 refs

  13. Cellular and Chemical Neuroscience of Mammalian Sleep

    OpenAIRE

    Datta, Subimal

    2010-01-01

    Extraordinary strides have been made toward understanding the complexities and regulatory mechanisms of sleep over the past two decades, thanks to the help of rapidly evolving technologies. At its most basic level, mammalian sleep is a restorative process of the brain and body. Beyond its primary restorative purpose, sleep is essential for a number of vital functions. Our primary research interest is to understand the cellular and molecular mechanisms underlying the regulation of sleep and it...

  14. Microbial biosynthesis of nontoxic gold nanoparticles

    International Nuclear Information System (INIS)

    Roy, Swarup; Das, Tapan Kumar; Maiti, Guru Prasad; Basu, Utpal

    2016-01-01

    Graphical abstract: The manuscript deals with the fungus mediated optimized biologically synthesized GNPs using Aspergillus foetidus and characterization of biosynthesized GNPs using various physico-chemical methods. The fairly stable synthesized nanoparticles have size in the range of 10–40 nm. Cytotoxicity study of biosynthesized GNPs on Human lung cancer cell line A549 showed no significant toxicity of GNPs. - Highlights: • A novel biosynthesis process of GNPs using Aspergillus foetidus. • Biosynthesized GNPs are in the range of 10–40 nm as observed from TEM. • This process of synthesis is an optimized biosynthesis process of GNPs. • Biosynthesized GNPs are noncytotoxic against A549 cell line. - Abstract: We study the extracellular biosynthesis of gold nanoparticles (GNPs) using the fungal species Aspergillus foetidus. The formation of GNPs were initially monitored by visual observation and then characterized with the help of various characterization techniques. X-ray diffraction (XRD) results revealed distinctive formation of face centered cubic crystalline GNPs. From field emission scanning electron microscopy (FESEM) the morphology of the nanoparticles were found to be roughly spherical and within the size range of 30–50 nm. The spherical and polydispersed GNPs in the range of 10–40 nm were observed by transmission electron microscopy (TEM) analysis. It was established that alkaline pH, 1 mM gold salt concentration and 75 °C temperature were the respective optimum parameter for biosynthesis of GNPs. Cell cytotoxicity of GNP was compared with that of normal gold salt solution on A549 cell. The A549 cell growth in presence of GNPs was found to be comparatively less toxic than the gold ion.

  15. Microbial biosynthesis of nontoxic gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Swarup, E-mail: swaruproy@klyuniv.ac.in [Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal (India); Das, Tapan Kumar [Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal (India); Maiti, Guru Prasad [Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, West Bengal (India); Department of Anesthesiology, Texas Tech University Health science Center, 3601 4th Street, Lubbock, TX 79430 (United States); Basu, Utpal [Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, West Bengal (India)

    2016-01-15

    Graphical abstract: The manuscript deals with the fungus mediated optimized biologically synthesized GNPs using Aspergillus foetidus and characterization of biosynthesized GNPs using various physico-chemical methods. The fairly stable synthesized nanoparticles have size in the range of 10–40 nm. Cytotoxicity study of biosynthesized GNPs on Human lung cancer cell line A549 showed no significant toxicity of GNPs. - Highlights: • A novel biosynthesis process of GNPs using Aspergillus foetidus. • Biosynthesized GNPs are in the range of 10–40 nm as observed from TEM. • This process of synthesis is an optimized biosynthesis process of GNPs. • Biosynthesized GNPs are noncytotoxic against A549 cell line. - Abstract: We study the extracellular biosynthesis of gold nanoparticles (GNPs) using the fungal species Aspergillus foetidus. The formation of GNPs were initially monitored by visual observation and then characterized with the help of various characterization techniques. X-ray diffraction (XRD) results revealed distinctive formation of face centered cubic crystalline GNPs. From field emission scanning electron microscopy (FESEM) the morphology of the nanoparticles were found to be roughly spherical and within the size range of 30–50 nm. The spherical and polydispersed GNPs in the range of 10–40 nm were observed by transmission electron microscopy (TEM) analysis. It was established that alkaline pH, 1 mM gold salt concentration and 75 °C temperature were the respective optimum parameter for biosynthesis of GNPs. Cell cytotoxicity of GNP was compared with that of normal gold salt solution on A549 cell. The A549 cell growth in presence of GNPs was found to be comparatively less toxic than the gold ion.

  16. The Preparation and Performances of Self-Dispersed Nanomicron Emulsified Wax Solid Lubricant Ewax for Drilling Fluids

    Directory of Open Access Journals (Sweden)

    Feng-shan Zhou

    2014-01-01

    Full Text Available An oil-in-water nanomicron wax emulsion with oil phase content 45 wt% was prepared by using the emulsifying method of surfactant-in-oil. The optimum prepared condition is 85°C, 20 min, and 5 wt% complex emulsifiers. Then the abovementioned nanomicron emulsifying wax was immersed into a special water-soluble polymer in a certain percentage by the semidry technology. At last, a solidified self-dispersed nanomicron emulsified wax named as Ewax, a kind of solid lubricant for water based drilling fluid, was obtained after dried in the special soluble polymer containing emulsifying wax in low temperature. It is shown that the adhesion coefficient reduced rate (ΔKf is 73.5% and the extreme pressure (E-P friction coefficient reduced rate (Δf is 77.6% when the produced Ewax sample was added to fresh water based drilling fluid at dosage 1.0 wt%. In comparison with other normal similar liquid products, Ewax not only has better performances of lubrication, filtration loss control property, heat resistance, and tolerance to salt and is environmentally friendly, but also can solve the problems of freezing in the winter and poor storage stability of liquid wax emulsion in oilfield applications.

  17. Immobilized Rhizopus oryzae lipase catalyzed synthesis of palm stearin and cetyl alcohol wax esters: Optimization by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Gargouri Youssef

    2011-06-01

    Full Text Available Abstract Background Waxes are esters of long-chain fatty acids and long-chain alcohols. Their principal natural sources are animals (sperm whale oil and vegetables (jojoba which are expensive and not easily available. Wax esters synthesized by enzymatic transesterification, using palm stearin as raw material, can be considered as an alternative to natural ones. Results Palm stearin is a solid fraction obtained by fractionation of palm oil. Palm stearin was esterified with cetyl alcohol to produce a mixture of wax esters. A non-commercial immobilized lipase from Rhizopus oryzae was used as biocatalyst. Response surface methodology was employed to determine the effects of the temperature (30-50°C, the enzyme concentration (33.34-300 IU/mL, the alcohol/palm stearin molar ratio (3-7 mol/mol and the substrate concentration (0.06-0.34 g/mL on the conversion yield of palm stearin. Under optimal conditions (temperature, 30°C; enzyme concentration, 300 IU/mL; molar ratio 3 and substrate concentration 0.21 g/mL a high conversion yield of 98.52% was reached within a reaction time of 2 h. Conclusions Response surface methodology was successfully applied to determine the optimum operational conditions for synthesis of palm stearin based wax esters. This study may provide useful tools to develop economical and efficient processes for the synthesis of wax esters.

  18. Production of wax esters via microbial oil synthesis from food industry waste and by-product streams.

    Science.gov (United States)

    Papadaki, Aikaterini; Mallouchos, Athanasios; Efthymiou, Maria-Nefeli; Gardeli, Chryssavgi; Kopsahelis, Nikolaos; Aguieiras, Erika C G; Freire, Denise M G; Papanikolaou, Seraphim; Koutinas, Apostolis A

    2017-12-01

    The production of wax esters using microbial oils was demonstrated in this study. Microbial oils produced from food waste and by-product streams by three oleaginous yeasts were converted into wax esters via enzymatic catalysis. Palm oil was initially used to evaluate the influence of temperature and enzyme activity on wax ester synthesis catalysed by Novozyme 435 and Lipozyme lipases using cetyl, oleyl and behenyl alcohols. The highest conversion yields (up to 79.6%) were achieved using 4U/g of Novozyme 435 at 70°C. Transesterification of microbial oils to behenyl and cetyl esters was achieved at conversion yields up to 87.3% and 69.1%, respectively. Novozyme 435 was efficiently reused for six and three cycles during palm esters and microbial esters synthesis, respectively. The physicochemical properties of microbial oil derived behenyl esters were comparable to natural waxes. Wax esters from microbial oils have potential applications in cosmetics, chemical and food industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Synchrotron WAXS and XANES studies of silica (SiO2) powders synthesized from Indonesian natural sands

    International Nuclear Information System (INIS)

    Muchlis, Khairanissa; Fauziyah, Nur Aini; Pratapa, Suminar; Soontaranon, Siriwat; Limpirat, Wanwisa

    2017-01-01

    In this study, we have investigated polymorphic silica (SiO 2 ) powders using, Wide Angle X-ray Scattering (WAXS) and X-Ray Absorption Near Edge Spectroscopy (XANES), laboratory X-Ray Diffraction (XRD) instruments. The WAXS and XANES spectra were collected using synchrotron radiation at Synchrotron Light Research Institute (SLRI), Nakhon Ratchasima, Thailand. The silica powders were obtained by processing silica sand from Tanah Laut, South Kalimantan, Indonesia. Purification process of silica sand was done by magnetic separation and immersion with HCl. The purification step was needed to reduce impurity or undesirable non Si elements. Three polymorphs of silica were produced, i.e. amorphous phase (A), quartz (B), and cristobalite (C). WAXS profile for each phase was presented in terms of intensity vs. 2θ prior to analyses. Both XRD (λ CuKα =1.54056 Å) and WAXS (λ=1.09 Å) patttern show that (1) A sample contains no crystallites, (2) B sample is monophasic, contains only quartz, and (3) C sample contains cristobalite and trydimite. XRD quantitative analysis using Rietica gave 98,8 wt% cristobalite, while the associated WAXS data provided 98.7 wt% cristobalite. Si K-edge XANES spectra were measured at energy range 1840 to 1920 eV. Qualitatively, the pre-edge and edge features for all phases are similar, but their main peaks in the post-edge region are different. (paper)

  20. Photon correlation spectroscopic analysis of a natural electret material: Carnauba wax

    Science.gov (United States)

    Barbosa, G. A.; Russi, R.; Pires, A. S. T.; Mesquita, O. N.

    1981-02-01

    For the first time, photon correlation spectroscopy is applied to the study of an electret material. We show that the average self-diffusion parameter of Carnauba wax in liquid phase, from 85 to 170 °C can be written as D=D0+A exp[-ΔE/k(T-T0)], where D0=1.6×10-10 and A=20×10-10 cm2/sec, ΔE=82 cm-1 and T0=68 °C

  1. Evaluating sourcing and fluvial integration of plant wax biomarkers from the Peruvian Andes to Amazonian lowlands

    Science.gov (United States)

    Wu, M. S.; Feakins, S. J.; Ponton, C.; West, A. J.; Galy, V.

    2017-12-01

    The carbon and hydrogen isotopic compositions (respectively δ13C and δD) of plant wax biomarkers have been widely used to reconstruct past climate and environment. To understand how leaf waxes are sourced within a river catchment, and how their isotopic signature is transferred from source to sink, we study δ13C and δD of C29 n-alkanes and C30 n-alkanoic acids in the Madre de Dios River catchment along the eastern flank of the Peruvian Andes. We sampled soils across a 3.5km elevation transect and find gradients in δ13Cwax (ca. +1.5‰/km) and δDwax (ca. -10 ‰/km) similar to gradients in tree canopy leaves (Feakins et al., 2016 GCA; Wu et al., 2017 GCA). We also collected river suspended sediment samples along the Madre de Dios River and its tributaries, which together drain an area of 75,400 km2 and 6 km of elevation. We utilize soil data and a digital elevation model to construct isoscapes, delineate catchments for each river sampling location, predict river values assuming spatial uniform integration, and compare our predictions with observed values. Although both compounds generally follow isotopic gradients defined by catchment elevations, the dual isotope and compound-class comparison reveals additional processes. For C30 n-alkanoic acid we find an up to 1km lower-than-expected catchment signal, indicating degradation of upland contributions in transit and replacement with lowland inputs. In contrast, mountain-front river locations are susceptible to upland-biases (up to 1km higher sourcing) in C29 n-alkane sourcing, likely due to enhanced erosion and higher leaf wax stock in Andean soil compared to the lowland, and greater persistence of n-alkanes than n-alkanoic acids. For both compounds, the bias is eliminated with several hundred km of river transit across the floodplain. In one location, we identify significant petrogenic contamination of n-alkanes but not n-alkanoic acids. These results indicate the power in combining dual compound classes and

  2. Mammalian Synthetic Biology: Engineering Biological Systems.

    Science.gov (United States)

    Black, Joshua B; Perez-Pinera, Pablo; Gersbach, Charles A

    2017-06-21

    The programming of new functions into mammalian cells has tremendous application in research and medicine. Continued improvements in the capacity to sequence and synthesize DNA have rapidly increased our understanding of mechanisms of gene function and regulation on a genome-wide scale and have expanded the set of genetic components available for programming cell biology. The invention of new research tools, including targetable DNA-binding systems such as CRISPR/Cas9 and sensor-actuator devices that can recognize and respond to diverse chemical, mechanical, and optical inputs, has enabled precise control of complex cellular behaviors at unprecedented spatial and temporal resolution. These tools have been critical for the expansion of synthetic biology techniques from prokaryotic and lower eukaryotic hosts to mammalian systems. Recent progress in the development of genome and epigenome editing tools and in the engineering of designer cells with programmable genetic circuits is expanding approaches to prevent, diagnose, and treat disease and to establish personalized theranostic strategies for next-generation medicines. This review summarizes the development of these enabling technologies and their application to transforming mammalian synthetic biology into a distinct field in research and medicine.

  3. Comparison of amphibian and mammalian thyroperoxidase ...

    Science.gov (United States)

    Thyroperoxidase (TPO) catalyzes the production of thyroid hormones in the vertebrate thyroid gland by oxidizing iodide (I- ) to produce iodinated tyrosines on thyroglobulin, and further coupling of specific mono- or di-iodinated tyrosines to generate the triiodo- and tetra-iodothyronine, precursors to thyroid hormone. This enzyme is a target for thyroid disrupting chemicals. TPO-inhibition by xenobiotics is a molecular initiating event that is known to perturb the thyroid axis by preventing synthesis of thyroid hormone. Previous work on TPO-inhibition has been focused on mammalian TPO; specifically, the rat and pig. A primary objective of this experiment was to directly measure TPO activity in a non-mammalian system, in this case a thyroid gland homogenate from Xenopus laevis; as well as compare chemical inhibition from past mammalian studies to the amphibian data generated. Thyroid glands obtained from X. laevis tadpoles at NF stages 58-60, were pooled and homogenized by sonication in phosphate buffer. This homogenate was then used to test 24 chemicals for inhibition of TPO as measured by conversion of Amplex UltraRed (AUR) substrate to its fluorescent product. The test chemicals were selected based upon previous results from rat in vitro TPO assays, and X. laevis in vitro and in vivo studies for thyroid disrupting endpoints, and included both positive and negative chemicals in these assays. An initial screening of the chemicals was done at a single high con

  4. A multidomain fusion protein in Listeria monocytogenes catalyzes the two primary activities for glutathione biosynthesis.

    Science.gov (United States)

    Gopal, Shubha; Borovok, Ilya; Ofer, Amos; Yanku, Michaela; Cohen, Gerald; Goebel, Werner; Kreft, Jürgen; Aharonowitz, Yair

    2005-06-01

    Glutathione is the predominant low-molecular-weight peptide thiol present in living organisms and plays a key role in protecting cells against oxygen toxicity. Until now, glutathione synthesis was thought to occur solely through the consecutive action of two physically separate enzymes, gamma-glutamylcysteine ligase and glutathione synthetase. In this report we demonstrate that Listeria monocytogenes contains a novel multidomain protein (termed GshF) that carries out complete synthesis of glutathione. Evidence for this comes from experiments which showed that in vitro recombinant GshF directs the formation of glutathione from its constituent amino acids and the in vivo effect of a mutation in GshF that abolishes glutathione synthesis, results in accumulation of the intermediate gamma-glutamylcysteine, and causes hypersensitivity to oxidative agents. We identified GshF orthologs, consisting of a gamma-glutamylcysteine ligase (GshA) domain fused to an ATP-grasp domain, in 20 gram-positive and gram-negative bacteria. Remarkably, 95% of these bacteria are mammalian pathogens. A plausible origin for GshF-dependent glutathione biosynthesis in these bacteria was the recruitment by a GshA ancestor gene of an ATP-grasp gene and the subsequent spread of the fusion gene between mammalian hosts, most likely by horizontal gene transfer.

  5. Waxing Poetic.

    Science.gov (United States)

    Greenman, Geri

    2003-01-01

    Describes an art project using the technique called "Batik" that incorporated watercolor painting with mixed media to appeal to students in a combined art class. Discusses how the students created their artworks and includes a list of materials and objectives. (CMK)

  6. Paraffin wax

    Energy Technology Data Exchange (ETDEWEB)

    Elborne, W

    1917-06-16

    Powdered, granulated, or finely divided paraffin is obtained by subjecting paraffin to a grinding, crushing, or disintegrating operation in the presence of an alcohol such as ethyl alcohol, methyl alcohol (wood spirit), or methylated spirit. The alcohol is afterwards removed by a current of air and is recovered. The product can be used in conjunction with a heating-agent for producing smoke or vapor for use in warfare.

  7. Fuel Pellets from Wheat Straw: The Effect of Lignin Glass Transition and Surface Waxes on Pelletizing Properties

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Clemons, Craig; Holm, Jens K.

    2012-01-01

    and a high concentration of hydrophobic waxes on its outer surface that may limit the pellet strength. The present work studies the impact of the lignin glass transition on the pelletizing properties of wheat straw. Furthermore, the effect of surface waxes on the pelletizing process and pellet strength...... are investigated by comparing wheat straw before and after organic solvent extraction. The lignin glass transition temperature for wheat straw and extracted wheat straw is determined by dynamic mechanical thermal analysis. At a moisture content of 8%, transitions are identified at 53°C and 63°C, respectively....... Pellets are pressed from wheat straw and straw where the waxes have been extracted from. Two pelletizing temperatures were chosen—one below and one above the glass transition temperature of lignin. The pellets compression strength, density, and fracture surface were compared to each other. Pellets pressed...

  8. Water Activated Graphene Oxide Transfer Using Wax Printed Membranes for Fast Patterning of a Touch Sensitive Device.

    Science.gov (United States)

    Baptista-Pires, Luis; Mayorga-Martínez, Carmen C; Medina-Sánchez, Mariana; Montón, Helena; Merkoçi, Arben

    2016-01-26

    We demonstrate a graphene oxide printing technology using wax printed membranes for the fast patterning and water activation transfer using pressure based mechanisms. The wax printed membranes have 50 μm resolution, longtime stability and infinite shaping capability. The use of these membranes complemented with the vacuum filtration of graphene oxide provides the control over the thickness. Our demonstration provides a solvent free methodology for printing graphene oxide devices in all shapes and all substrates using the roll-to-roll automatized mechanism present in the wax printing machine. Graphene oxide was transferred over a wide variety of substrates as textile or PET in between others. Finally, we developed a touch switch sensing device integrated in a LED electronic circuit.

  9. Effect of maleic hydrazide and waxing on quality and shelf life of papaya (carica papaya L.) fruits

    International Nuclear Information System (INIS)

    Abu-Goukh, A. A.; Shattir, A. E.

    2012-01-01

    The effect of post harvest treatment of maleic hydrazide (MH) with and with out waxing on the quality and shelf-life of Baladi and Ekostika I papaya fruits at 18 ±1°C and 85%-90% relative humidity was evaluated. Maleic hydrazide at 250 and 500 ppm significantly delayed fruit ripening by two and three days in both papaya cultivars, respectively, compared with untreated fruits. The higher the concentration, the more was the delay in fruit ripening. The results also showed that waxing addition to MH resulted in a delay of two more days in fruit ripening that treatment with MH alone. The effect of MH and waxing treatments in delaying papaya fruits ripening was manifested in retarded respiratory climacteric, reduced weight loss and delayed fruit softening and increase in total soluble solids and ascorbic acid content.(Author)

  10. Two bifunctional enzymes from the marine protist Thraustochytrium roseum: biochemical characterization of wax ester synthase/acyl-CoA:diacylglycerol acyltransferase activity catalyzing wax ester and triacylglycerol synthesis.

    Science.gov (United States)

    Zhang, Nannan; Mao, Zejing; Luo, Ling; Wan, Xia; Huang, Fenghong; Gong, Yangmin

    2017-01-01

    Triacylglycerols (TAGs) and wax esters (WEs) are important neutral lipids which serve as energy reservoir in some plants and microorganisms. In recent years, these biologically produced neutral lipids have been regarded as potential alternative energy sources for biofuel production because of the increased interest on developing renewable and environmentally benign alternatives for fossil fuels. In bacteria, the final step in TAG and WE biosynthetic pathway is catalyzed by wax ester synthase/acyl coenzyme A (acyl-CoA):diacylglycerol acyltransferase (WS/DGAT). This bifunctional WS/DGAT enzyme is also a key enzyme in biotechnological production of liquid WE via engineering of plants and microorganisms. To date, knowledge about this class of biologically and biotechnologically important enzymes is mainly from biochemical characterization of WS/DGATs from Arabidopsis, jojoba and some bacteria that can synthesize both TAGs and WEs intracellularly, whereas little is known about WS/DGATs from eukaryotic microorganisms. Here, we report the identification and characterization of two bifunctional WS/DGAT enzymes (designated TrWSD4 and TrWSD5) from the marine protist Thraustochytrium roseum . Both TrWSD4 and TrWSD5 comprise a WS-like acyl-CoA acyltransferase domain and the recombinant proteins purified from Escherichia coli Rosetta (DE3) have substantial WS and lower DGAT activity. They exhibit WS activity towards various-chain-length saturated and polyunsaturated acyl-CoAs and fatty alcohols ranging from C 10 to C 18 . TrWSD4 displays WS activity with the lowest K m value of 0.14 μM and the highest k cat / K m value of 1.46 × 10 5  M -1  s -1 for lauroyl-CoA (C 12:0 ) in the presence of 100 μM hexadecanol, while TrWSD5 exhibits WS activity with the lowest K m value of 0.96 μM and the highest k cat / K m value of 9.83 × 10 4  M -1  s -1 for decanoyl-CoA (C 10:0 ) under the same reaction condition. Both WS/DGAT enzymes have the highest WS activity at 37 and 47

  11. Biochemical characterization and substrate specificity of jojoba fatty acyl-CoA reductase and jojoba wax synthase.

    Science.gov (United States)

    Miklaszewska, Magdalena; Banaś, Antoni

    2016-08-01

    Wax esters are used in industry for production of lubricants, pharmaceuticals and cosmetics. The only natural source of wax esters is jojoba oil. A much wider variety of industrial wax esters-containing oils can be generated through genetic engineering. Biotechnological production of tailor-made wax esters requires, however, a detailed substrate specificity of fatty acyl-CoA reductases (FAR) and wax synthases (WS), the two enzymes involved in wax esters synthesis. In this study we have successfully characterized the substrate specificity of jojoba FAR and jojoba WS. The genes encoding both enzymes were expressed heterologously in Saccharomyces cerevisiae and the activity of tested enzymes was confirmed by in vivo studies and in vitro assays using microsomal preparations from transgenic yeast. Jojoba FAR exhibited the highest in vitro activity toward 18:0-CoA followed by 20:1-CoA and 22:1-CoA. The activity toward other 11 tested acyl-CoAs was low or undetectable as with 18:2-CoA and 18:3-CoA. In assays characterizing jojoba WS combinations of 17 fatty alcohols with 14 acyl-CoAs were tested. The enzyme displayed the highest activity toward 14:0-CoA and 16:0-CoA in combination with C16-C20 alcohols as well as toward C18 acyl-CoAs in combination with C12-C16 alcohols. 20:1-CoA was efficiently utilized in combination with most of the tested alcohols. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Surfactant-free carnauba wax dispersion and its use for layer-by-layer assembled protective surface coatings on wood

    Science.gov (United States)

    Lozhechnikova, Alina; Bellanger, Hervé; Michen, Benjamin; Burgert, Ingo; Österberg, Monika

    2017-02-01

    Protection from liquid water and UV radiation are equally important, and a sophisticated approach is needed when developing surface coatings that preserve the natural and well-appreciated aesthetic appearance of wood. In order to prevent degradation and prolong the service life of timber, a protective coating was assembled using carnauba wax particles and zinc oxide nanoparticles via layer-by-layer deposition in water. For this purpose, a facile sonication route was developed to produce aqueous wax dispersion without any surfactants or stabilizers. The suspension was stable above pH 4 due to the electrostatic repulsion between the negatively charged wax particles. The particle size could be controlled by the initial wax concentration with average particle sizes ranging from 260 to 360 nm for 1 and 10 g/L, respectively. The deposition of wax particles onto the surface of spruce wood introduced additional roughness to the wood surface at micron level, while zinc oxide provided nano roughness and UV-absorbing properties. In addition to making wood superhydrophobic, this novel multilayer coating enhanced the natural moisture buffering capability of spruce. Moreover, wood surfaces prepared in this fashion showed a significant reduction in color change after exposure to UV light. A degradation of the wax through photocatalytic activity of the ZnO particles was measured by FTIR, indicating that further studies are required to achieve long-term stability. Nevertheless, the developed coating showed a unique combination of superhydrophobicity and excellent moisture buffering ability and some UV protection, all achieved using an environmentally friendly coating process, which is beneficial to retain the natural appearance of wood and improve indoor air quality and comfort.

  13. The Biology and Control of the Greater Wax Moth, Galleria mellonella.

    Science.gov (United States)

    Kwadha, Charles A; Ong'amo, George O; Ndegwa, Paul N; Raina, Suresh K; Fombong, Ayuka T

    2017-06-09

    The greater wax moth, Galleria mellonella Linnaeus , is a ubiquitous pest of the honeybee, Apis mellifera Linnaeus, and Apis cerana Fabricius . The greater wax moth larvae burrow into the edge of unsealed cells with pollen, bee brood, and honey through to the midrib of honeybee comb. Burrowing larvae leave behind masses of webs which causes galleriasis and later absconding of colonies. The damage caused by G. mellonella larvae is severe in tropical and sub-tropical regions, and is believed to be one of the contributing factors to the decline in both feral and wild honeybee populations. Previously, the pest was considered a nuisance in honeybee colonies, therefore, most studies have focused on the pest as a model for in vivo studies of toxicology and pathogenicity. It is currently widespread, especially in Africa, and the potential of transmitting honeybee viruses has raised legitimate concern, thus, there is need for more studies to find sustainable integrated management strategies. However, our knowledge of this pest is limited. This review provides an overview of the current knowledge on the biology, distribution, economic damage, and management options. In addition, we provide prospects that need consideration for better understanding and management of the pest.

  14. Applicability of low-melting-point microcrystalline wax to develop temperature-sensitive formulations.

    Science.gov (United States)

    Matsumoto, Kohei; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2017-10-30

    Low-melting-point substances are widely used to develop temperature-sensitive formulations. In this study, we focused on microcrystalline wax (MCW) as a low-melting-point substance. We evaluated the drug release behavior of wax matrix (WM) particles using various MCW under various temperature conditions. WM particles containing acetaminophen were prepared using a spray congealing technique. In the dissolution test at 37°C, WM particles containing low-melting-point MCWs whose melting was starting at approx. 40°C (Hi-Mic-1045 or 1070) released the drug initially followed by the release of only a small amount. On the other hand, in the dissolution test at 20 and 25°C for WM particles containing Hi-Mic-1045 and at 20, 25, and 30°C for that containing Hi-Mic-1070, both WM particles showed faster drug release than at 37°C. The characteristic drug release suppression of WM particles containing low-melting-point MCWs at 37°C was thought attributable to MCW melting, as evidenced by differential scanning calorimetry analysis and powder X-ray diffraction analysis. Taken together, low-melting-point MCWs may be applicable to develop implantable temperature-sensitive formulations that drug release is accelerated by cooling at administered site. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Replication of specifically microstructured surfaces in A356-alloy via lost wax investment casting

    International Nuclear Information System (INIS)

    Ivanov, Todor; Bührig-Polaczek, Andreas; Vroomen, Uwe; Hartmann, Claudia; Holtkamp, Jens; Gillner, Arnold; Bobzin, Kirsten; Bagcivan, Nazlim; Theiss, Sebastian

    2011-01-01

    A common way of realizing microstructural features on metallic surfaces is to generate the designated pattern on each single part by means of microstructuring technologies such as e.g. laser ablation, electric discharge machining or micromilling. The disadvantage of these process chains is the limited productivity due to the additional processing of each part. The approach of this work is to replicate microstructured surfaces from a master pattern via lost wax investment casting in order to reach a higher productivity. We show that microholes of different sizes ( 15–22 µm at depths of 6–14 µm) can be replicated in AlSi7Mg-alloy from a laser-structured master pattern via investment casting. However, some loss of molding accuracy during the multi-stage molding process occurs. Approximately 50% of the original microfeature's heights are lost during the wax injection step. In the following process step of manufacturing a gypsum-bonded mold, a further loss in the surface quality of the microfeatures can be observed. In the final process step of casting the aluminum melt, the microfeatures are filled without any loss of molding accuracy and replicate the surface quality of the gypsum mold. The contact angle measurements of ultrapure water on the cast surfaces show a decrease in wettability on the microstructured regions (75°) compared to the unstructured region (60°)

  16. Tidal modulated flow and sediment flux through Wax Lake Delta distributary channels: Implications for delta development

    Directory of Open Access Journals (Sweden)

    K. Hanegan

    2015-03-01

    Full Text Available In this study, a Delft3D model of the Wax Lake Delta was developed to simulate flow and sediment flux through delta distributary channels. The model was calibrated for tidal constituents as well as velocity and sediment concentration across channel transects. The calibrated model was then used to simulate full spring–neap tidal cycles under constant low flow upstream boundary conditions, with grain size variation in suspended load represented using two sediment fractions. Flow and sediment flux results through distributary channel cross-sections were examined for spatial and temporal variability with the goal of characterizing the role of tides in sediment reworking and delta development. The Wax Lake Delta has prograded through channel extension, river mouth bar deposition, and channel bifurcation. Here we show that tidal modulation of currents influences suspended sand transport, and spatial acceleration through distributary channels at low tides is sufficient to suspend sand in distal reaches during lower flows. The basinward-increasing transport capacity in distributary channels indicates that erosive channel extension could be an important process, even during non-flood events.

  17. Anti-inflammatory effects of jojoba liquid wax in experimental models.

    Science.gov (United States)

    Habashy, Ramy R; Abdel-Naim, Ashraf B; Khalifa, Amani E; Al-Azizi, Mohammed M

    2005-02-01

    Jojoba [Simmondsia chinensis (Link 1822) Schneider 1907] is an arid perennial shrub grown in several American and African countries. Jojoba seeds, which are rich in liquid wax, were used in folk medicine for diverse ailments. In the current study, the potential anti-inflammatory activity of jojoba liquid wax (JLW) was evaluated in a number of experimental models. Results showed that JLW caused reduction of carrageenin-induced rat paw oedema in addition to diminishing prostaglandin E2 (PGE2) level in the inflammatory exudates. In a test for anti-inflammatory potential utilizing the chick's embryo chroioallantoic membrane (CAM), JLW also caused significant lowering of granulation tissue formation. Topical application of JLW reduced ear oedema induced by croton oil in rats. In the same animal model, JLW also reduced neutrophil infiltration, as indicated by decreased myeloperoxidase (MPO) activity. In addition, JLW ameliorated histopathological changes affected by croton oil application. In the lipopolysaccharide (LPS)-induced inflammation in air pouch in rats, JLW reduced nitric oxide (NO) level and tumor necrosis factor-alpha (TNF-alpha) release. In conclusion, this study demonstrates the effectiveness of JLW in combating inflammation in several experimental models. Further investigations are needed to identify the active constituents responsible for the anti-inflammatory property of JLW.

  18. Physical Characteristics of Tetrahydroxy and Acylated Derivatives of Jojoba Liquid Wax in Lubricant Applications.

    Science.gov (United States)

    Harry-O'kuru, Rogers E; Biresaw, Girma; Gordon, Sherald; Xu, Jingyuan

    2018-01-01

    Jojoba liquid wax is a mixture of esters of long-chain fatty acids and fatty alcohols mainly C38:2-C46:2. The oil exhibits excellent emolliency on the skin and, therefore, is a component in many personal care cosmetic formulations. The virgin oil is a component of the seed of the jojoba ( Simmondsia chinensis ) plant which occurs naturally in the Sonora Desert in the United States and northwestern Mexico as well as in the northeastern Sahara desert. The seed contains 50-60% oil by dry weight. The plant has been introduced into Australia, Argentina, and Israel for commercial production of the jojoba oil. As a natural lubricant, we are seeking to explore its potential as a renewable industrial lubricant additive. Thus, we have chemically modified the carbon-carbon double bonds in the oil structure in order to improve its already good resistance to air oxidation so as to enhance its utility as well as its shelf life in nonpersonal care applications. To achieve this goal, we have hydroxylated its -C=C- bonds. Acylation of the resulting hydroxyl moieties has generated short-chain vicinal acyl substituents on the oil which keep the wax liquid, improving its cold flow properties and also protecting it from auto-oxidation and rancidity.

  19. Physical Characteristics of Tetrahydroxy and Acylated Derivatives of Jojoba Liquid Wax in Lubricant Applications

    Directory of Open Access Journals (Sweden)

    Rogers E. Harry-O’kuru

    2018-01-01

    Full Text Available Jojoba liquid wax is a mixture of esters of long-chain fatty acids and fatty alcohols mainly C38:2–C46:2. The oil exhibits excellent emolliency on the skin and, therefore, is a component in many personal care cosmetic formulations. The virgin oil is a component of the seed of the jojoba (Simmondsia chinensis plant which occurs naturally in the Sonora Desert in the United States and northwestern Mexico as well as in the northeastern Sahara desert. The seed contains 50–60% oil by dry weight. The plant has been introduced into Australia, Argentina, and Israel for commercial production of the jojoba oil. As a natural lubricant, we are seeking to explore its potential as a renewable industrial lubricant additive. Thus, we have chemically modified the carbon-carbon double bonds in the oil structure in order to improve its already good resistance to air oxidation so as to enhance its utility as well as its shelf life in nonpersonal care applications. To achieve this goal, we have hydroxylated its –C=C– bonds. Acylation of the resulting hydroxyl moieties has generated short-chain vicinal acyl substituents on the oil which keep the wax liquid, improving its cold flow properties and also protecting it from auto-oxidation and rancidity.

  20. 5-Fluorouracil:carnauba wax microspheres for chemoembolization: an in vitro evaluation.

    Science.gov (United States)

    Benita, S; Zouai, O; Benoit, J P

    1986-09-01

    5-Fluorouracil:carnauba wax microspheres were prepared using a meltable dispersion process with the aid of a surfactant as a wetting agent. It was noted that only hydrophilic surfactants were able to wet the 5-fluorouracil and substantially increased its content in the microspheres. No marked effect was observed in the particle size distribution of the solid microspheres as a function of the nature of the surfactant. Increasing the stirring rate in the preparation process decreased, first, the mean droplet size of the emulsified melted dispersion in the vehicle during the heating process, and, consequently, the mean particle size of the solidified microspheres during the cooling process. 5-Fluorouracil cumulative release from the microspheres followed first-order kinetics, as shown by nonlinear regression analysis. Although the kinetic results were not indicative of the true release mechanism from a single microsphere, it was believed that 5-fluorouracil release from the microspheres was probably governed by a dissolution process, rather than by a leaching process through the carnauba wax microspheres.

  1. Preparation and characterization of ketoprofen-loaded solid lipid nanoparticles made from beeswax and carnauba wax.

    Science.gov (United States)

    Kheradmandnia, Soheila; Vasheghani-Farahani, Ebrahim; Nosrati, Mohsen; Atyabi, Fatemeh

    2010-12-01

    Solid lipid nanoparticles (SLNs) have been proposed as suitable colloidal carriers for delivery of drugs with limited solubility. Ketoprofen as a model drug was incorporated into SLNs prepared from a mixture of beeswax and carnauba wax using Tween 80 and egg lecithin as emulsifiers. The characteristics of the SLNs with various lipid and surfactant composition were investigated. The mean particle size of drug-loaded SLNs decreased upon mixing with Tween 80 and egg lecithin as well as upon increasing total surfactant concentration. SLNs of 75 ± 4 nm with a polydispersity index of 0.2 ± 0.02 were obtained using 1% (vol/vol) mixed surfactant at a ratio of 60:40 Tween 80 to egg lecithin. The zeta potential of these SLNs varied in the range of -15 to -17 (mV), suggesting the presence of similar interface properties. High drug entrapment efficiency of 97% revealed the ability of SLNs to incorporate a poorly water-soluble drug such as ketoprofen. Differential scanning calorimetry thermograms and high-performance liquid chromatographic analysis indicated the stability of nanoparticles with negligible drug leakage after 45 days of storage. It was also found that nanoparticles with more beeswax content in their core exhibited faster drug release as compared with those containing more carnauba wax in their structure. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Design and characterization of sustained release ketoprofen entrapped carnauba wax microparticles.

    Science.gov (United States)

    Oliveira, Rodinelli B; Nascimento, Thais L; Lima, Eliana M

    2012-01-01

    Ketoprofen is a non-steroid anti-inflammatory drug (NSAID) used in the treatment of rheumatic diseases and in mild to moderate pain. Ketoprofen has a short biological half-life and the commercially available conventional release formulations require dosages to be administered at least 2-3 times a day. Due to these characteristics, ketoprofen is a good candidate for the preparation of controlled release formulations. In this work, a multiparticulate-sustained release dosage form containing ketoprofen in a carnauba wax matrix was developed. Particles were prepared by an emulsion congealing technique. System variables were optimized using fractional factorial and response surface experimental design. Characterization of the particles included size and morphology, flow rate, drug loading and in vitro drug release. Spherical particles were obtained with high drug load and sustained drug release profile. The optimized particles had an average diameter of approximately 200 µm, 50% (w/w) drug load, good flow properties and prolonged ketoprofen release for more than 24 h. Carnauba wax microspheres prepared in this work represent a new multiparticulate-sustained release system for the NSAID ketoprofen, exhibiting good potential for application in further pharmaceutical processes.

  3. A case of butane hash oil (marijuana wax)-induced psychosis.

    Science.gov (United States)

    Keller, Corey J; Chen, Evan C; Brodsky, Kimberly; Yoon, Jong H

    2016-01-01

    Marijuana is one of the most widely used controlled substances in the United States. Despite extensive research on smoked marijuana, little is known regarding the potential psychotropic effects of marijuana "wax," a high-potency form of marijuana that is gaining in popularity. The authors present a case of "Mr. B," a 34-year-old veteran who presented with profound psychosis in the setting of recent initiation of heavy, daily marijuana wax use. He exhibited incoherent speech and odd behaviors and appeared to be in a dream-like state with perseverating thoughts about his combat experience. His condition persisted despite treatment with risperidone 4 mg twice a day (BID), but improved dramatically on day 8 of hospitalization with the return of baseline mental function. Following discharge, Mr. B discontinued all marijuana use and did not exhibit the return of any psychotic symptoms. This study highlights the need for future research regarding the potential medical and psychiatric effects of new, high-potency forms of marijuana. Could cannabis have a dose-dependent impact on psychosis? What other potential psychiatric effects could emerge heretofore unseen in lower potency formulations? Given the recent legalization of marijuana, these questions merit timely exploration.

  4. Epicuticular Wax in Developing Olives (Olea europaea) Is Highly Dependent upon Cultivar and Fruit Ripeness.

    Science.gov (United States)

    Vichi, Stefania; Cortés-Francisco, Nuria; Caixach, Josep; Barrios, Gonçal; Mateu, Jordi; Ninot, Antonia; Romero, Agustí

    2016-08-03

    The epicuticular wax (EW) layer is located on the surface of most plant organs. It provides the cuticle with most of its properties and is the primary barrier against biotic and abiotic stress. Despite the importance of Olea europaea cultivation, few studies have characterized the EW covering leaves and olives, which could be involved in resistance to both infection and environmental conditions. In the present study, wide-ranging screening was carried out using direct-injection electrospray ionization coupled to high-resolution mass spectrometry to analyze EW in developing olives of nine varieties. The proportions of EW fractions [wax esters (WEs), diacylglycerols, triacylglycerols (TAGs), triterpenic acids, and aldehydes] strongly depended upon the olive cultivar and, in only a few cases, were influenced by the sampling date. The specific compositions of the major fractions, WEs and TAGs, were strictly related to the cultivar, while the degree of unsaturation and chain length of the WEs evolved throughout the 4 weeks prior to the olive turning color.

  5. SEPARATION OF FISCHER-TROPSCH WAX FROM CATALYST BY SUPERCRITICAL EXTRACTION

    Energy Technology Data Exchange (ETDEWEB)

    Patrick C. Joyce; Mark C. Thies

    1999-03-31

    The objective of this research project was to evaluate the potential of supercritical fluid (SCF) extraction for the recovery and fractionation of the wax product from the slurry bubble column (SBC) reactor of the Fischer-Tropsch (F-T) process. The wax, comprised mostly of branched and linear alkanes with a broad molecular weight distribution up to C{sub 100}, is to be extracted with a hydrocarbon solvent that has a critical temperature near the operating temperature of the SBC reactor, i.e., 200-300 C. Aspen Plus{trademark} was used to perform process simulation studies on the proposed extraction process, with Redlich-Kwong-Soave (RKS) being used for the thermodynamic property model. In summary, we have made comprehensive VLE measurements for short alkane + long alkane systems over a wide range of pressures and temperatures, dramatically increasing the amount of high-quality data available for these simple, yet highly relevant systems. In addition, our work has demonstrated that, surprisingly, no current thermodynamic model can adequately predict VLE behavior for these systems. Thus, process simulations (such as those for our proposed SCF extraction process) that incorporate these systems can currently only give results that are qualitative at best. Although significant progress has been made in the past decade, more experimental and theoretical work remain to be done before the phase equilibria of asymmetric alkane mixtures can be predicted with confidence.

  6. Fluorescent Molecular Rotor-in-Paraffin Waxes for Thermometry and Biometric Identification.

    Science.gov (United States)

    Jin, Young-Jae; Dogra, Rubal; Cheong, In Woo; Kwak, Giseop

    2015-07-08

    Novel thermoresponsive sensor systems consisting of a molecular rotor (MR) and paraffin wax (PW) were developed for various thermometric and biometric identification applications. Polydiphenylacetylenes (PDPAs) coupled with long alkyl chains were used as MRs, and PWs of hydrocarbons having 16-20 carbons were utilized as phase-change materials. The PDPAs were successfully dissolved in the molten PWs and did not act as an impurity that prevents phase transition of the PWs. These PDPA-in-PW hybrids had almost the same enthalpies and phase-transition temperatures as the corresponding pure PWs. The hybrids exhibited highly reversible fluorescence (FL) changes at the critical temperatures during phase transition of the PWs. These hybrids were impregnated into common filter paper in the molten state by absorption or were encapsulated into urea resin to enhance their mechanical integrity and cyclic stability during repeated use. The wax papers could be utilized in highly advanced applications including FL image writing/erasing, an array-type thermo-indicator, and fingerprint/palmprint identification. The present findings should facilitate the development of novel fluorescent sensor systems for biometric identification and are potentially applicable for biological and biomedical thermometry.

  7. Paraffin wax removal from metal injection moulded cocrmo alloy compact by solvent debinding process

    Science.gov (United States)

    Dandang, N. A. N.; Harun, W. S. W.; Khalil, N. Z.; Ahmad, A. H.; Romlay, F. R. M.; Johari, N. A.

    2017-10-01

    One of the most crucial and time consuming phase in metal injection moulding (MIM) process is “debinding”. These days, in metal injection moulding process, they had recounted that first debinding practice was depend on thermal binder degradation, which demanding more than 200 hours for complete removal of binder. Fortunately, these days world had introduced multi-stage debinding techniques to simplified the debinding time process. This research study variables for solvent debinding which are temperature and soaking time for samples made by MIM CoCrMo powder. Since wax as the key principal in the binder origination, paraffin wax will be removed together with stearic acid from the green bodies. Then, debinding process is conducted at 50, 60 and 70°C for 30-240 minutes. It is carried out in n-heptane solution. Percentage weight loss of the binder were measured. Lastly, scanning electron microscope (SEM) analysis and visual inspection were observed for the surface of brown compact. From the results, samples debound at 70°C exhibited a significant amount of binder loss; nevertheless, sample collapse, brittle surface and cracks were detected. But, at 60°C temperature and time of 4 hours proven finest results as it shows sufficient binder loss, nonappearance of surface cracks and easy to handle. Overall, binder loss is directly related to solvent debinding temperature and time.

  8. SAXS-WAXS studies of the low-resolution structure in solution of xylose/glucose isomerase from Streptomyces rubiginosus

    Science.gov (United States)

    Kozak, Maciej; Taube, Michał

    2009-10-01

    The structure and conformation of molecule of xylose/glucose isomerase from Streptomyces rubiginosus in solution (at pH 6 and 7.6; with and without the substrate) has been studied by small- and wide-angle scattering of synchrotron radiation (SAXS-WAXS). On the basis of the SAXS-WAXS data, the low-resolution structure in solution has been reconstructed using ab inito methods. A comparison of the models of glucose isomerase shows only small differences between the model in solution and the crystal structure.

  9. Mutations in Four Glycosyl Hydrolases Reveal a Highly Coordinated Pathway for Rhodopsin Biosynthesis and N-Glycan Trimming in Drosophila melanogaster

    Science.gov (United States)

    Rosenbaum, Erica E.; Vasiljevic, Eva; Brehm, Kimberley S.; Colley, Nansi Jo

    2014-01-01

    As newly synthesized glycoproteins move through the secretory pathway, the asparagine-linked glycan (N-glycan) undergoes extensive modifications involving the sequential removal and addition of sugar residues. These modifications are critical for the proper assembly, quality control and transport of glycoproteins during biosynthesis. The importance of N-glycosylation is illustrated by a growing list of diseases that result from defects in the biosynthesis and processing of N-linked glycans. The major rhodopsin in Drosophila melanogaster photoreceptors, Rh1, is highly unique among glycoproteins, as the N-glycan appears to be completely removed during Rh1 biosynthesis and maturation. However, much of the deglycosylation pathway for Rh1 remains unknown. To elucidate the key steps in Rh1 deglycosylation in vivo, we characterized mutant alleles of four Drosophila glycosyl hydrolases, namely α-mannosidase-II (α-Man-II), α-mannosidase-IIb (α-Man-IIb), a β-N-acetylglucosaminidase called fused lobes (Fdl), and hexosaminidase 1 (Hexo1). We have demonstrated that these four enzymes play essential and unique roles in a highly coordinated pathway for oligosaccharide trimming during Rh1 biosynthesis. Our results reveal that α-Man-II and α-Man-IIb are not isozymes like their mammalian counterparts, but rather function at distinct stages in Rh1 maturation. Also of significance, our results indicate that Hexo1 has a biosynthetic role in N-glycan processing during Rh1 maturation. This is unexpected given that in humans, the hexosaminidases are typically lysosomal enzymes involved in N-glycan catabolism with no known roles in protein biosynthesis. Here, we present a genetic dissection of glycoprotein processing in Drosophila and unveil key steps in N-glycan trimming during Rh1 biosynthesis. Taken together, our results provide fundamental advances towards understanding the complex and highly regulated pathway of N-glycosylation in vivo and reveal novel insights into the

  10. Mutations in four glycosyl hydrolases reveal a highly coordinated pathway for rhodopsin biosynthesis and N-glycan trimming in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Erica E Rosenbaum

    2014-05-01

    Full Text Available As newly synthesized glycoproteins move through the secretory pathway, the asparagine-linked glycan (N-glycan undergoes extensive modifications involving the sequential removal and addition of sugar residues. These modifications are critical for the proper assembly, quality control and transport of glycoproteins during biosynthesis. The importance of N-glycosylation is illustrated by a growing list of diseases that result from defects in the biosynthesis and processing of N-linked glycans. The major rhodopsin in Drosophila melanogaster photoreceptors, Rh1, is highly unique among glycoproteins, as the N-glycan appears to be completely removed during Rh1 biosynthesis and maturation. However, much of the deglycosylation pathway for Rh1 remains unknown. To elucidate the key steps in Rh1 deglycosylation in vivo, we characterized mutant alleles of four Drosophila glycosyl hydrolases, namely α-mannosidase-II (α-Man-II, α-mannosidase-IIb (α-Man-IIb, a β-N-acetylglucosaminidase called fused lobes (Fdl, and hexosaminidase 1 (Hexo1. We have demonstrated that these four enzymes play essential and unique roles in a highly coordinated pathway for oligosaccharide trimming during Rh1 biosynthesis. Our results reveal that α-Man-II and α-Man-IIb are not isozymes like their mammalian counterparts, but rather function at distinct stages in Rh1 maturation. Also of significance, our results indicate that Hexo1 has a biosynthetic role in N-glycan processing during Rh1 maturation. This is unexpected given that in humans, the hexosaminidases are typically lysosomal enzymes involved in N-glycan catabolism with no known roles in protein biosynthesis. Here, we present a genetic dissection of glycoprotein processing in Drosophila and unveil key steps in N-glycan trimming during Rh1 biosynthesis. Taken together, our results provide fundamental advances towards understanding the complex and highly regulated pathway of N-glycosylation in vivo and reveal novel insights

  11. Ultrastructure of Wax-Producing Structures on the Integument of the Melaleuca Psyllid Boreioglycaspis melaleucae (Hemiptera: Psyllidae), with Honeydew Excretion Behavior in Males and Females

    Science.gov (United States)

    Ammar, El-Desouky; Hentz, Matthew; Hall, David G.; Shatters, Robert G.

    2015-01-01

    The melaleuca psyllid, Boreioglycaspis melaleucae (Hemiptera: Psyllidae), was introduced to Florida as a biological control agent against Melaleuca quinquenervia, an invasive evergreen tree that has invaded large areas of Florida Everglades. Colonies of B. melaleucae nymphs are normally covered by white waxy secretions, and nymphs of various instars produce long bundles of white waxy filaments extending laterally and posteriorly from their abdomen. Scanning electron microscopy of ‘naturally waxed’ and ‘dewaxed’ nymphs (cleaned from wax) revealed two types of wax pore plates located dorsally and laterally on the integument of posterior abdominal segments starting with the 4th segment. Type-1 wax pore plates, with raised rim, peripheral groove, slits and pits, produce long ribbons and filaments of waxy secretions that are wound together forming long wax bundles, whereas type-2 wax pore plates, with slits only, produce shorter wax curls. Additionally, in both nymphs and adult females, the circumanal ring contained ornate rows of wax pores that produce wax filaments covering their honeydew excretions. Video recordings with stereomicroscopy showed that adult females produce whitish honeydew balls, powerfully propelled away from their body, probably to get these sticky excretions away from their eggs and newly hatched nymphs. Adult males, however, produce clear droplets of honeydew immediately behind them, simply by bending the posterior end of the abdomen downward. The possible role(s) of waxy secretions by nymphs and adults of B. melaleucae in reducing contamination of their colonies with honeydew, among other possibilities, are discussed. PMID:25793934

  12. Evolutionary Conserved Function of Barley and Arabidopsis 3-KETOACYL-CoA SYNTHASES in Providing Wax Signals for Germination of Powdery Mildew Fungi1[C][W

    Science.gov (United States)

    Weidenbach, Denise; Jansen, Marcus; Franke, Rochus B.; Hensel, Goetz; Weissgerber, Wiebke; Ulferts, Sylvia; Jansen, Irina; Schreiber, Lukas; Korzun, Viktor; Pontzen, Rolf; Kumlehn, Jochen; Pillen, Klaus; Schaffrath, Ulrich

    2014-01-01

    For plant pathogenic fungi, such as powdery mildews, that survive only on a limited number of host plant species, it is a matter of vital importance that their spores sense that they landed on the right spot to initiate germination as quickly as possible. We investigated a barley (Hordeum vulgare) mutant with reduced epicuticular leaf waxes on which spores of adapted and nonadapted powdery mildew fungi showed reduced germination. The barley gene responsible for the mutant wax phenotype was cloned in a forward genetic screen and identified to encode a 3-KETOACYL-CoA SYNTHASE (HvKCS6), a protein participating in fatty acid elongation and required for synthesis of epicuticular waxes. Gas chromatography-mass spectrometry analysis revealed that the mutant has significantly fewer aliphatic wax constituents with a chain length above C-24. Complementation of the mutant restored wild-type wax and overcame germination penalty, indicating that wax constituents less present on the mutant are a crucial clue for spore germination. Investigation of Arabidopsis (Arabidopsis thaliana) transgenic plants with sense silencing of Arabidopsis REQUIRED FOR CUTICULAR WAX PRODUCTION1, the HvKCS6 ortholog, revealed the same germination phenotype against adapted and nonadapted powdery mildew fungi. Our findings hint to an evolutionary conserved mechanism for sensing of plant surfaces among distantly related powdery mildews that is based on KCS6-derived wax components. Perception of such a signal must have been evolved before the monocot-dicot split took place approximately 150 million years ago. PMID:25201879

  13. Mammalian Synthetic Biology: Time for Big MACs.

    Science.gov (United States)

    Martella, Andrea; Pollard, Steven M; Dai, Junbiao; Cai, Yizhi

    2016-10-21

    The enabling technologies of synthetic biology are opening up new opportunities for engineering and enhancement of mammalian cells. This will stimulate diverse applications in many life science sectors such as regenerative medicine, development of biosensing cell lines, therapeutic protein production, and generation of new synthetic genetic regulatory circuits. Harnessing the full potential of these new engineering-based approaches requires the design and assembly of large DNA constructs-potentially up to chromosome scale-and the effective delivery of these large DNA payloads to the host cell. Random integration of large transgenes, encoding therapeutic proteins or genetic circuits into host chromosomes, has several drawbacks such as risks of insertional mutagenesis, lack of control over transgene copy-number and position-specific effects; these can compromise the intended functioning of genetic circuits. The development of a system orthogonal to the endogenous genome is therefore beneficial. Mammalian artificial chromosomes (MACs) are functional, add-on chromosomal elements, which behave as normal chromosomes-being replicating and portioned to daughter cells at each cell division. They are deployed as useful gene expression vectors as they remain independent from the host genome. MACs are maintained as a single-copy and can accommodate multiple gene expression cassettes of, in theory, unlimited DNA size (MACs up to 10 megabases have been constructed). MACs therefore enabled control over ectopic gene expression and represent an excellent platform to rapidly prototype and characterize novel synthetic gene circuits without recourse to engineering the host genome. This review describes the obstacles synthetic biologists face when working with mammalian systems and how the development of improved MACs can overcome these-particularly given the spectacular advances in DNA synthesis and assembly that are fuelling this research area.

  14. Dedifferentiation and proliferation of mammalian cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Yiqiang Zhang

    2010-09-01

    Full Text Available It has long been thought that mammalian cardiomyocytes are terminally-differentiated and unable to proliferate. However, myocytes in more primitive animals such as zebrafish are able to dedifferentiate and proliferate to regenerate amputated cardiac muscle.Here we test the hypothesis that mature mammalian cardiomyocytes retain substantial cellular plasticity, including the ability to dedifferentiate, proliferate, and acquire progenitor cell phenotypes. Two complementary methods were used: 1 cardiomyocyte purification from rat hearts, and 2 genetic fate mapping in cardiac explants from bi-transgenic mice. Cardiomyocytes isolated from rodent hearts were purified by multiple centrifugation and Percoll gradient separation steps, and the purity verified by immunostaining and RT-PCR. Within days in culture, purified cardiomyocytes lost their characteristic electrophysiological properties and striations, flattened and began to divide, as confirmed by proliferation markers and BrdU incorporation. Many dedifferentiated cardiomyocytes went on to express the stem cell antigen c-kit, and the early cardiac transcription factors GATA4 and Nkx2.5. Underlying these changes, inhibitory cell cycle molecules were suppressed in myocyte-derived cells (MDCs, while microRNAs known to orchestrate proliferation and pluripotency increased dramatically. Some, but not all, MDCs self-organized into spheres and re-differentiated into myocytes and endothelial cells in vitro. Cell fate tracking of cardiomyocytes from 4-OH-Tamoxifen-treated double-transgenic MerCreMer/ZEG mouse hearts revealed that green fluorescent protein (GFP continues to be expressed in dedifferentiated cardiomyocytes, two-thirds of which were also c-kit(+.Contradicting the prevailing view that they are terminally-differentiated, postnatal mammalian cardiomyocytes are instead capable of substantial plasticity. Dedifferentiation of myocytes facilitates proliferation and confers a degree of stemness

  15. Mammalian niche conservation through deep time.

    Directory of Open Access Journals (Sweden)

    Larisa R G DeSantis

    Full Text Available Climate change alters species distributions, causing plants and animals to move north or to higher elevations with current warming. Bioclimatic models predict species distributions based on extant realized niches and assume niche conservation. Here, we evaluate if proxies for niches (i.e., range areas are conserved at the family level through deep time, from the Eocene to the Pleistocene. We analyze the occurrence of all mammalian families in the continental USA, calculating range area, percent range area occupied, range area rank, and range polygon centroids during each epoch. Percent range area occupied significantly increases from the Oligocene to the Miocene and again from the Pliocene to the Pleistocene; however, mammalian families maintain statistical concordance between rank orders across time. Families with greater taxonomic diversity occupy a greater percent of available range area during each epoch and net changes in taxonomic diversity are significantly positively related to changes in percent range area occupied from the Eocene to the Pleistocene. Furthermore, gains and losses in generic and species diversity are remarkably consistent with ~2.3 species gained per generic increase. Centroids demonstrate southeastern shifts from the Eocene through the Pleistocene that may correspond to major environmental events and/or climate changes during the Cenozoic. These results demonstrate range conservation at the family level and support the idea that niche conservation at higher taxonomic levels operates over deep time and may be controlled by life history traits. Furthermore, families containing megafauna and/or terminal Pleistocene extinction victims do not incur significantly greater declines in range area rank than families containing only smaller taxa and/or only survivors, from the Pliocene to Pleistocene. Collectively, these data evince the resilience of families to climate and/or environmental change in deep time, the absence of

  16. Mammalian developmental genetics in the twentieth century.

    Science.gov (United States)

    Artzt, Karen

    2012-12-01

    This Perspectives is a review of the breathtaking history of mammalian genetics in the past century and, in particular, of the ways in which genetic thinking has illuminated aspects of mouse development. To illustrate the power of that thinking, selected hypothesis-driven experiments and technical advances are discussed. Also included in this account are the beginnings of mouse genetics at the Bussey Institute, Columbia University, and The Jackson Laboratory and a retrospective discussion of one of the classic problems in developmental genetics, the T/t complex and its genetic enigmas.

  17. Nutrient acquisition strategies of mammalian cells.

    Science.gov (United States)

    Palm, Wilhelm; Thompson, Craig B

    2017-06-07

    Mammalian cells are surrounded by diverse nutrients, such as glucose, amino acids, various macromolecules and micronutrients, which they can import through transmembrane transporters and endolysosomal pathways. By using different nutrient sources, cells gain metabolic flexibility to survive periods of starvation. Quiescent cells take up sufficient nutrients to sustain homeostasis. However, proliferating cells depend on growth-factor-induced increases in nutrient uptake to support biomass formation. Here, we review cellular nutrient acquisition strategies and their regulation by growth factors and cell-intrinsic nutrient sensors. We also discuss how oncogenes and tumour suppressors promote nutrient uptake and thereby support the survival and growth of cancer cells.

  18. Preservation of mammalian germ plasm by freezing

    Energy Technology Data Exchange (ETDEWEB)

    Mazur, P.

    1978-01-01

    Embryos of several mammalian species can be frozen to -196/sup 0/C (or below) by procedures that result in the thawed embryos being indistinguishable from their unfrozen counterparts. The survival often exceeds 90%, and in liquid nitrogen it should remain at that high level for centuries. Sublethal biochemical changes are also precluded at -196/sup 0/C. No developmental abnormalities have been detected in mouse offspring derived from frozen-thawed embryos, and, since all the manipulations are carried out on the preimplantation stages, none would be expected.

  19. Mammalian cell culture capacity for biopharmaceutical manufacturing.

    Science.gov (United States)

    Ecker, Dawn M; Ransohoff, Thomas C

    2014-01-01

    : With worldwide sales of biopharmaceuticals increasing each year and continuing growth on the horizon, the manufacture of mammalian biopharmaceuticals has become a major global enterprise. We describe the current and future industry wide supply of manufacturing capacity with regard to capacity type, distribution, and geographic location. Bioreactor capacity and the use of single-use products for biomanufacturing are also profiled. An analysis of the use of this capacity is performed, including a discussion of current trends that will influence capacity growth, availability, and utilization in the coming years.

  20. Mammalian Gravity Receptors: Structure and Metabolism

    Science.gov (United States)

    Ross, M. D.

    1985-01-01

    Calcium metabolism in mammalian gravity receptors is examined. To accomplish this objective it is necessary to study both the mineral deposits of the receptors, the otoconia, and the sensory areas themselves, the saccular and utricular maculas. The main focus was to elucidate the natures of the organic and inorganic phases of the crystalline masses, first in rat otoconia but more recently in otoliths and otoconia of a comparative series of vertebrates. Some of the ultrastructural findings in rat maculas, however, have prompted a more thorough study of the organization of the hair cells and innervation patterns in graviceptors.

  1. Heme biosynthesis and its regulation : Toward understanding and improvement of heme biosynthesis in filamentous fungi.

    NARCIS (Netherlands)

    S. de Weert; P.J. Punt; Christien Lokman; C.A. van den Hondel; A.C. Franken; A.F. Ram

    2011-01-01

    Heme biosynthesis in fungal host strains has acquired considerable interest in relation to the production of secreted heme-containing peroxidases. Class II peroxidase enzymes have been suggested as eco-friendly replacements of polluting chemical processes in industry. These peroxidases are naturally

  2. Heme biosynthesis and its regulation: Towards understanding and improvement of heme biosynthesis in filamentous fungi

    NARCIS (Netherlands)

    Franken, A.C.W.; Lokman, B.C.; Ram, A.F.J.; Punt, P.J.; Hondel, C.A.M.J.J. van den; Weert, S. de

    2011-01-01

    Heme biosynthesis in fungal host strains has acquired considerable interest in relation to the production of secreted heme-containing peroxidases. Class II peroxidase enzymes have been suggested as eco-friendly replacements of polluting chemical processes in industry. These peroxidases are naturally

  3. Biosynthesis of Gold Nanoparticles Using Pseudomonas Aeruginosa

    International Nuclear Information System (INIS)

    Abd El-Aziz, M.; Badr, Y.; Mahmoud, M. A.

    2007-01-01

    Pseudomonas aeruginosa were used for extracellular biosynthesis of gold nanoparticles (Au NPs). Consequently, Au NPs were formed due to reduction of gold ion by bacterial cell supernatant of P. aeruginos ATCC 90271, P. aeruginos (2) and P. aeruginos (1). The UV-Vis. and fluorescence spectra of the bacterial as well as chemical prepared Au NPs were recorded. Transmission electron microscopy (TEM) micrograph showed the formation of well-dispersed gold nanoparticles in the range of 15-30 nm. The process of reduction being extracellular and may lead to the development of an easy bioprocess for synthesis of Au NPs

  4. Wybutosine biosynthesis: Structural and mechanistic overview

    Science.gov (United States)

    Perche-Letuvée, Phanélie; Molle, Thibaut; Forouhar, Farhad; Mulliez, Etienne; Atta, Mohamed

    2014-01-01

    Over the last 10 years, significant progress has been made in understanding the genetics, enzymology and structural components of the wybutosine (yW) biosynthetic pathway. These studies have played a key role in expanding our understanding of yW biosynthesis and have revealed unexpected evolutionary ties, which are presently being unraveled. The enzymes catalyzing the 5 steps of this pathway, from genetically encoded guanosine to wybutosine base, provide an ensemble of amazing reaction mechanisms that are to be discussed in this review article. PMID:25629788

  5. Chemical Elicitors of Antibiotic Biosynthesis in Actinomycetes

    Directory of Open Access Journals (Sweden)

    Anton P. Tyurin

    2018-06-01

    Full Text Available Whole genome sequencing of actinomycetes has uncovered a new immense realm of microbial chemistry and biology. Most biosynthetic gene clusters present in genomes were found to remain “silent” under standard cultivation conditions. Some small molecules—chemical elicitors—can be used to induce the biosynthesis of antibiotics in actinobacteria and to expand the chemical diversity of secondary metabolites. Here, we outline a brief account of the basic principles of the search for regulators of this type and their application.

  6. The Inhibitor of wax 1 locus (Iw1) prevents formation of β- and OH-β-diketones in wheat cuticular waxes and maps to a sub-cM interval on chromosome arm 2BS

    DEFF Research Database (Denmark)

    Adamski, Nikolai; Bush, Maxwell; Simmonds, James

    2013-01-01

    not previously been described in wheat waxes were identified. Using six pairs of BC2 F3 near-isogenic lines, we show that Iw1 inhibits the formation of β- and hydroxy-β-diketones in the peduncle and flag leaf blade cuticles. This inhibitory effect is independent of genetic background or tissue...

  7. New hybrid nanofluid containing encapsulated paraffin wax and sand nanoparticles in propylene glycol-water mixture: Potential heat transfer fluid for energy management

    International Nuclear Information System (INIS)

    Manikandan, S.; Rajan, K.S.

    2017-01-01

    Highlights: • Hybrid nanofluid containing sand nanoparticles & encapsulated paraffin wax prepared. • Specific heat of hybrid nanofluid 9% greater than that of PG-water mixture. • Specific heat & thermal conductivity enhanced at optimum paraffin wax concentration. • Hybrid nanofluid with 1 wt.% paraffin wax & 1 vol% sand nanoparticles best suited. - Abstract: The reduction in specific heat commonly encountered due to the addition of nanoparticles to a heat transfer fluid such as propylene glycol-water mixture, can be overcome by co-dispersing surfactant-encapsulated paraffin wax, leading to formation of a hybrid nanofluid. Experimental investigations have been carried out on the preparation and evaluation of thermophysical properties of a hybrid nanofluid containing pluronic P-123 encapsulated paraffin wax (70–120 nm diameter, 1–5 wt.%) and sand nanoparticles (1 vol%) in propylene glycol-water mixture. The comparison of results of differential scanning calorimetry of pure paraffin wax and encapsulated paraffin wax revealed encapsulation efficiency of 84.4%. The specific heat of hybrid nanofluids monotonously increased with paraffin wax concentration, with 9.1% enhancement in specific heat for hybrid nanofluid containing 5 wt.% paraffin wax, in comparison to propylene glycol-water mixture. There exists an optimum paraffin wax concentration (1 wt.%) for the hybrid nanofluid at which the combination of various thermophysical properties such as specific heat, thermal conductivity and viscosity are favorable for use as heat transfer fluid. Such a hybrid nanofluid can be used as a substitute for propylene glycol-water mixture in solar thermal systems.

  8. Mesozoic mammals from Arizona: new evidence on Mammalian evolution.

    Science.gov (United States)

    Jenkins, F A; Crompton, A W; Downs, W R

    1983-12-16

    Knowledge of early mammalian evolution has been based on Old World Late Triassic-Early Jurassic faunas. The discovery of mammalian fossils of approximately equivalent age in the Kayenta Formation of northeastern Arizona gives evidence of greater diversity than known previously. A new taxon documents the development of an angular region of the jaw as a neomorphic process, and represents an intermediate stage in the origin of mammalian jaw musculature.

  9. Synthetic RNA Controllers for Programming Mammalian Cell Fate and Function

    Science.gov (United States)

    2015-11-04

    Final report for “Synthetic RNA controllers for programming mammalian cell fate and function” Principal Investigator: Christina D. Smolke...SUBTITLE Synthetic RNA controllers for programming mammalian cell fate and function 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18   2 Synthetic RNA controllers for programming mammalian cell fate and function Task 1

  10. Ecology and evolution of mammalian biodiversity.

    Science.gov (United States)

    Jones, Kate E; Safi, Kamran

    2011-09-12

    Mammals have incredible biological diversity, showing extreme flexibility in eco-morphology, physiology, life history and behaviour across their evolutionary history. Undoubtedly, mammals play an important role in ecosystems by providing essential services such as regulating insect populations, seed dispersal and pollination and act as indicators of general ecosystem health. However, the macroecological and macroevolutionary processes underpinning past and present biodiversity patterns are only beginning to be explored on a global scale. It is also particularly important, in the face of the global extinction crisis, to understand these processes in order to be able to use this knowledge to prevent future biodiversity loss and loss of ecosystem services. Unfortunately, efforts to understand mammalian biodiversity have been hampered by a lack of data. New data compilations on current species' distributions, ecologies and evolutionary histories now allow an integrated approach to understand this biodiversity. We review and synthesize these new studies, exploring the past and present ecology and evolution of mammalian biodiversity, and use these findings to speculate about the mammals of our future.

  11. The mammalian ovary from genesis to revelation.

    Science.gov (United States)

    Edson, Mark A; Nagaraja, Ankur K; Matzuk, Martin M

    2009-10-01

    Two major functions of the mammalian ovary are the production of germ cells (oocytes), which allow continuation of the species, and the generation of bioactive molecules, primarily steroids (mainly estrogens and progestins) and peptide growth factors, which are critical for ovarian function, regulation of the hypothalamic-pituitary-ovarian axis, and development of secondary sex characteristics. The female germline is created during embryogenesis when the precursors of primordial germ cells differentiate from somatic lineages of the embryo and take a unique route to reach the urogenital ridge. This undifferentiated gonad will differentiate along a female pathway, and the newly formed oocytes will proliferate and subsequently enter meiosis. At this point, the oocyte has two alternative fates: die, a common destiny of millions of oocytes, or be fertilized, a fate of at most approximately 100 oocytes, depending on the species. At every step from germline development and ovary formation to oogenesis and ovarian development and differentiation, there are coordinated interactions of hundreds of proteins and small RNAs. These studies have helped reproductive biologists to understand not only the normal functioning of the ovary but also the pathophysiology and genetics of diseases such as infertility and ovarian cancer. Over the last two decades, parallel progress has been made in the assisted reproductive technology clinic including better hormonal preparations, prenatal genetic testing, and optimal oocyte and embryo analysis and cryopreservation. Clearly, we have learned much about the mammalian ovary and manipulating its most important cargo, the oocyte, since the birth of Louise Brown over 30 yr ago.

  12. Ecology and evolution of mammalian biodiversity

    Science.gov (United States)

    Jones, Kate E.; Safi, Kamran

    2011-01-01

    Mammals have incredible biological diversity, showing extreme flexibility in eco-morphology, physiology, life history and behaviour across their evolutionary history. Undoubtedly, mammals play an important role in ecosystems by providing essential services such as regulating insect populations, seed dispersal and pollination and act as indicators of general ecosystem health. However, the macroecological and macroevolutionary processes underpinning past and present biodiversity patterns are only beginning to be explored on a global scale. It is also particularly important, in the face of the global extinction crisis, to understand these processes in order to be able to use this knowledge to prevent future biodiversity loss and loss of ecosystem services. Unfortunately, efforts to understand mammalian biodiversity have been hampered by a lack of data. New data compilations on current species' distributions, ecologies and evolutionary histories now allow an integrated approach to understand this biodiversity. We review and synthesize these new studies, exploring the past and present ecology and evolution of mammalian biodiversity, and use these findings to speculate about the mammals of our future. PMID:21807728

  13. Focusing on RISC assembly in mammalian cells.

    Science.gov (United States)

    Hong, Junmei; Wei, Na; Chalk, Alistair; Wang, Jue; Song, Yutong; Yi, Fan; Qiao, Ren-Ping; Sonnhammer, Erik L L; Wahlestedt, Claes; Liang, Zicai; Du, Quan

    2008-04-11

    RISC (RNA-induced silencing complex) is a central protein complex in RNAi, into which a siRNA strand is assembled to become effective in gene silencing. By using an in vitro RNAi reaction based on Drosophila embryo extract, an asymmetric model was recently proposed for RISC assembly of siRNA strands, suggesting that the strand that is more loosely paired at its 5' end is selectively assembled into RISC and results in target gene silencing. However, in the present study, we were unable to establish such a correlation in cell-based RNAi assays, as well as in large-scale RNAi data analyses. This suggests that the thermodynamic stability of siRNA is not a major determinant of gene silencing in mammalian cells. Further studies on fork siRNAs showed that mismatch at the 5' end of the siRNA sense strand decreased RISC assembly of the antisense strand, but surprisingly did not increase RISC assembly of the sense strand. More interestingly, measurements of melting temperature showed that the terminal stability of fork siRNAs correlated with the positions of the mismatches, but not gene silencing efficacy. In summary, our data demonstrate that there is no definite correlation between siRNA stability and gene silencing in mammalian cells, which suggests that instead of thermodynamic stability, other features of the siRNA duplex contribute to RISC assembly in RNAi.

  14. Focusing on RISC assembly in mammalian cells

    International Nuclear Information System (INIS)

    Hong Junmei; Wei Na; Chalk, Alistair; Wang Jue; Song, Yutong; Yi Fan; Qiao Renping; Sonnhammer, Erik L.L.; Wahlestedt, Claes; Liang Zicai; Du, Quan

    2008-01-01

    RISC (RNA-induced silencing complex) is a central protein complex in RNAi, into which a siRNA strand is assembled to become effective in gene silencing. By using an in vitro RNAi reaction based on Drosophila embryo extract, an asymmetric model was recently proposed for RISC assembly of siRNA strands, suggesting that the strand that is more loosely paired at its 5' end is selectively assembled into RISC and results in target gene silencing. However, in the present study, we were unable to establish such a correlation in cell-based RNAi assays, as well as in large-scale RNAi data analyses. This suggests that the thermodynamic stability of siRNA is not a major determinant of gene silencing in mammalian cells. Further studies on fork siRNAs showed that mismatch at the 5' end of the siRNA sense strand decreased RISC assembly of the antisense strand, but surprisingly did not increase RISC assembly of the sense strand. More interestingly, measurements of melting temperature showed that the terminal stability of fork siRNAs correlated with the positions of the mismatches, but not gene silencing efficacy. In summary, our data demonstrate that there is no definite correlation between siRNA stability and gene silencing in mammalian cells, which suggests that instead of thermodynamic stability, other features of the siRNA duplex contribute to RISC assembly in RNAi

  15. Specificity of chicken and mammalian transferrins in myogenesis

    International Nuclear Information System (INIS)

    Beach, R.L.; Popiela, Heinz; Festoff, B.W.

    1985-01-01

    Chicken transferrins isolated from eggs, embryo extract, serum or ischiatic-peroneal nerves are able to stimulate incorporation of ( 3 H)thymidine, and promote myogenesis by primary chicken muscles cells in vitro. Mammalian transferrins (bovine, rat, mouse, horse, rabbit, and human) do not promote ( 3 H)thymidine incorporation or myotube development. Comparison of the peptide fragments obtained after chemical or limited proteolytic cleavage demonstrates that the four chicken transferrins are all indistinguishable, but they differ considerably from the mammalian transferrins. The structural differences between chicken and mammalian transferrins probably account for the inability of mammalian transferrins to act as mitogens for, and to support myogenesis of, primary chicken muscle cells. (author)

  16. Quality-grade evaluation of petroleum waxes using an electronic nose with a TGS gas sensor array

    International Nuclear Information System (INIS)

    Wang, Ji; Gao, Daqi; Wang, Zejian

    2015-01-01

    In this paper, the potential of an improved electronic nose to discriminate the quality of petroleum waxes based on their volatile profile was analyzed. Two datasets at 25 and 50 °C were collected from an experiment in order to compare influence by temperature. More fine-grained levels were further labeled for classification to meet various purposes. As petroleum waxes with lower odor levels are more difficult and important to identify than those with higher odor levels, we focus on the discrimination task for low-level ones. Principal component analysis was used for dimensionality reduction and data visualization. k-nearest neighbors, support vector machine, and multilayer perceptron were employed to classify among different qualities of petroleum waxes. The leave-one-out cross-validation method was employed due to the small sample sizes. Results showed good performance on both datasets, and at a temperature of 50 °C all pattern recognition methods showed improved classification rates. The improved electronic nose can potentially be applied to discriminate the quality of petroleum wax. (paper)

  17. SoftWAXS: a computational tool for modeling wide-angle X-ray solution scattering from biomolecules.

    Science.gov (United States)

    Bardhan, Jaydeep; Park, Sanghyun; Makowski, Lee

    2009-10-01

    This paper describes a computational approach to estimating wide-angle X-ray solution scattering (WAXS) from proteins, which has been implemented in a computer program called SoftWAXS. The accuracy and efficiency of SoftWAXS are analyzed for analytically solvable model problems as well as for proteins. Key features of the approach include a numerical procedure for performing the required spherical averaging and explicit representation of the solute-solvent boundary and the surface of the hydration layer. These features allow the Fourier transform of the excluded volume and hydration layer to be computed directly and with high accuracy. This approach will allow future investigation of different treatments of the electron density in the hydration shell. Numerical results illustrate the differences between this approach to modeling the excluded volume and a widely used model that treats the excluded-volume function as a sum of Gaussians representing the individual atomic excluded volumes. Comparison of the results obtained here with those from explicit-solvent molecular dynamics clarifies shortcomings inherent to the representation of solvent as a time-averaged electron-density profile. In addition, an assessment is made of how the calculated scattering patterns depend on input parameters such as the solute-atom radii, the width of the hydration shell and the hydration-layer contrast. These results suggest that obtaining predictive calculations of high-resolution WAXS patterns may require sophisticated treatments of solvent.

  18. Analysis of wax esters by silver-ion high-performance liquid chromatography-tandem mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Vrkoslav, Vladimír; Urbanová, Klára; Háková, Martina; Cvačka, Josef

    2013-01-01

    Roč. 1302, Aug 9 (2013), s. 105-110 ISSN 0021-9673 R&D Projects: GA ČR GA203/09/0139 Institutional support: RVO:61388963 Keywords : jojoba * human hair * wax esters * mass spectrometry * silver-ion liquid chromatography * long-chain esters Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.258, year: 2013

  19. Fruit development, pigmentation and biochemical properties of wax apple as affected by localized Application of GA3 under field conditions

    Directory of Open Access Journals (Sweden)

    Mohammad Moneruzzaman Khandaker

    2013-02-01

    Full Text Available This study investigated the effects of gibberellin (GA3 on the fruit development, pigmentation and biochemical properties of wax apple. The wax apple trees were rubbing treated with 0, 20, 50 and 100 mgGA3/l under field conditions. The localized application (rubbing of 50 mg GA3/l significantly increased the fruit set, fruit length and diameter, color development, weight and yieldcompared to the control. In addition, GA3 treatments significantly reduced the fruit drop. With regard to the fruit quality, 50 mg/l GA3 treatment increased the juice content, K+, TSS, total sugar and sugar acid ratio of wax apple fruits. In addition, higher vitamin C, phenol, flavonoid, anthocyanin, carotene content, PAL and antioxidant activities were recorded in the treated fruits. There was a positive correlation between the peel colour and TSS content and between the PAL activity and anthocyanin formation in the GA3-treated fruit. It was concluded that rubbing with 50 mg/L GA3 at inflorescence developing point of phloem once a week from the tiny inflorescence bud until the flower opening resulted in better yield and quality of wax apple fruits and could be an effective technique to safe the environment from excessive spray.

  20. Accelerated Thermal Cycling Test of Microencapsulated Paraffin Wax/Polyaniline Made by Simple Preparation Method for Solar Thermal Energy Storage.

    Science.gov (United States)

    Silakhori, Mahyar; Naghavi, Mohammad Sajad; Metselaar, Hendrik Simon Cornelis; Mahlia, Teuku Meurah Indra; Fauzi, Hadi; Mehrali, Mohammad

    2013-04-29

    Microencapsulated paraffin wax/polyaniline was prepared using a simple in situ polymerization technique, and its performance characteristics were investigated. Weight losses of samples were determined by Thermal Gravimetry Analysis (TGA). The microencapsulated samples with 23% and 49% paraffin showed less decomposition after 330 °C than with higher percentage of paraffin. These samples were then subjected to a thermal cycling test. Thermal properties of microencapsulated paraffin wax were evaluated by Differential Scanning Calorimeter (DSC). Structure stability and compatibility of core and coating materials were also tested by Fourier transform infrared spectrophotometer (FTIR), and the surface morphology of the samples are shown by Field Emission Scanning Electron Microscopy (FESEM). It has been found that the microencapsulated paraffin waxes show little change in the latent heat of fusion and melting temperature after one thousand thermal recycles. Besides, the chemical characteristics and structural profile remained constant after one thousand thermal cycling tests. Therefore, microencapsulated paraffin wax/polyaniline is a stable material that can be used for thermal energy storage systems.

  1. Fuel Pellets from Wheat Straw: The Effect of Lignin Glass Transition and Surface Waxes on Pelletizing Properties

    Science.gov (United States)

    Wolfgang Stelte; Craig Clemons; Jens K. Holm; Jesper Ahrenfeldt; Ulrik B. Henriksen; Anand R. Sanadi

    2012-01-01

    The utilization of wheat straw as a renewable energy resource is limited due to its low bulk density. Pelletizing wheat straw into fuel pellets of high density increases its handling properties but is more challenging compared to pelletizing wood biomass. Straw has a lower lignin content and a high concentration of hydrophobic waxes on its outer surface that may limit...

  2. Passive vectoring of entomopathogenic fungus Beauveria bassiana among the wax moth Galleria mellonella larvae by the ectoparasitoid Habrobracon hebetor females.

    Science.gov (United States)

    Kryukov, Vadim Yu; Kryukova, Natalia A; Tyurin, Maksim V; Yaroslavtseva, Olga N; Glupov, Viktor V

    2017-03-15

    Females of the ectoparasitoid Habrobracon hebetor attack and envenomate numerous host individuals during oviposition. The vectoring of the entomopathogenic fungus Beauveria bassiana during the adhesion stage by ectoparasitoid females among the wax moth larvae Galleria mellonella was explored under laboratory conditions. Vectoring occurred both from infected parasitoids to wax moth larvae and from infected to healthy wax moth larvae by parasitoids. The efficacy of vectoring in both cases was dose dependent. Parasitoid females were unable to recognize infected larvae in a labyrinth test. In addition, the presence of H. hebetor females significantly (1.5-13 fold) increased the mycoses level in clusters of G. mellonella, with 40% of the larvae infected with fungal conidia. Envenomation by H. hebetor increased conidia germination on the cuticles of the wax moth larvae by 4.4 fold. An enhanced germination rate (2 fold) was registered in the n-hexane epicuticular extract of envenomated larvae compared to that of healthy larvae. Both envenomation and mycoses enhanced the phenoloxidase (PO) activity in the integument of G. mellonella and, in contrast, decreased the encapsulation rate in hemolymphs. We hypothesize that changes in the integument property and inhibition of cellular immunity provide the highest infection efficacy of entomopathogenic fungi with H. hebetor. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  3. Monoterpene biosynthesis potential of plant subcellular compartments.

    Science.gov (United States)

    Dong, Lemeng; Jongedijk, Esmer; Bouwmeester, Harro; Van Der Krol, Alexander

    2016-01-01

    Subcellular monoterpene biosynthesis capacity based on local geranyl diphosphate (GDP) availability or locally boosted GDP production was determined for plastids, cytosol and mitochondria. A geraniol synthase (GES) was targeted to plastids, cytosol, or mitochondria. Transient expression in Nicotiana benthamiana indicated local GDP availability for each compartment but resulted in different product levels. A GDP synthase from Picea abies (PaGDPS1) was shown to boost GDP production. PaGDPS1 was also targeted to plastids, cytosol or mitochondria and PaGDPS1 and GES were coexpressed in all possible combinations. Geraniol and geraniol-derived products were analyzed by GC-MS and LC-MS, respectively. GES product levels were highest for plastid-targeted GES, followed by mitochondrial- and then cytosolic-targeted GES. For each compartment local boosting of GDP biosynthesis increased GES product levels. GDP exchange between compartments is not equal: while no GDP is exchanged from the cytosol to the plastids, 100% of GDP in mitochondria can be exchanged to plastids, while only 7% of GDP from plastids is available for mitochondria. This suggests a direct exchange mechanism for GDP between plastids and mitochondria. Cytosolic PaGDPS1 competes with plastidial GES activity, suggesting an effective drain of isopentenyl diphosphate from the plastids to the cytosol. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  4. Fatty acid biosynthesis in pea root plastids

    International Nuclear Information System (INIS)

    Stahl, R.J.; Sparace, S.A.

    1989-01-01

    Fatty acid biosynthesis from [1- 14 C]acetate was optimized in plastids isolated from primary root tips of 7-day-old germinating pea seeds. Fatty acid synthesis was maximum at approximately 80 nmoles/hr/mg protein in the presence of 200 μM acetate, 0.5 mM each of NADH, NADPH and CoA, 6 mM each of ATP and MgCl 2 , 1 mM each of the MnCl 2 and glycerol-3-phosphate, 15 mM KHCO 3 , and 0.1M Bis-tris-propane, pH 8.0 incubated at 35C. At the standard incubation temperature of 25C, fatty acid synthesis was linear from up to 6 hours with 80 to 100 μg/mL plastid protein. ATP and CoA were absolute requirements, whereas KHCO 3 , divalent cations and reduced nucleotides all improved activity by 80 to 85%. Mg 2+ and NADH were the preferred cation and nucleotide, respectively. Dithiothreitol and detergents were generally inhibitory. The radioactive products of fatty acid biosynthesis were approximately 33% 16:0, 10% 18:0 and 56% 18:1 and generally did not vary with increasing concentrations of each cofactor

  5. Molecular Regulation of Antibiotic Biosynthesis in Streptomyces

    Science.gov (United States)

    Liu, Gang; Chandra, Govind; Niu, Guoqing

    2013-01-01

    SUMMARY Streptomycetes are the most abundant source of antibiotics. Typically, each species produces several antibiotics, with the profile being species specific. Streptomyces coelicolor, the model species, produces at least five different antibiotics. We review the regulation of antibiotic biosynthesis in S. coelicolor and other, nonmodel streptomycetes in the light of recent studies. The biosynthesis of each antibiotic is specified by a large gene cluster, usually including regulatory genes (cluster-situated regulators [CSRs]). These are the main point of connection with a plethora of generally conserved regulatory systems that monitor the organism's physiology, developmental state, population density, and environment to determine the onset and level of production of each antibiotic. Some CSRs may also be sensitive to the levels of different kinds of ligands, including products of the pathway itself, products of other antibiotic pathways in the same organism, and specialized regulatory small molecules such as gamma-butyrolactones. These interactions can result in self-reinforcing feed-forward circuitry and complex cross talk between pathways. The physiological signals and regulatory mechanisms may be of practical importance for the activation of the many cryptic secondary metabolic gene cluster pathways revealed by recent sequencing of numerous Streptomyces genomes. PMID:23471619

  6. Benzylisoquinoline alkaloid biosynthesis in opium poppy.

    Science.gov (United States)

    Beaudoin, Guillaume A W; Facchini, Peter J

    2014-07-01

    Opium poppy (Papaver somniferum) is one of the world's oldest medicinal plants and remains the only commercial source for the narcotic analgesics morphine, codeine and semi-synthetic derivatives such as oxycodone and naltrexone. The plant also produces several other benzylisoquinoline alkaloids with potent pharmacological properties including the vasodilator papaverine, the cough suppressant and potential anticancer drug noscapine and the antimicrobial agent sanguinarine. Opium poppy has served as a model system to investigate the biosynthesis of benzylisoquinoline alkaloids in plants. The application of biochemical and functional genomics has resulted in a recent surge in the discovery of biosynthetic genes involved in the formation of major benzylisoquinoline alkaloids in opium poppy. The availability of extensive biochemical genetic tools and information pertaining to benzylisoquinoline alkaloid metabolism is facilitating the study of a wide range of phenomena including the structural biology of novel catalysts, the genomic organization of biosynthetic genes, the cellular and sub-cellular localization of biosynthetic enzymes and a variety of biotechnological applications. In this review, we highlight recent developments and summarize the frontiers of knowledge regarding the biochemistry, cellular biology and biotechnology of benzylisoquinoline alkaloid biosynthesis in opium poppy.

  7. Essences in Metabolic Engineering of Lignan Biosynthesis

    Directory of Open Access Journals (Sweden)

    Honoo Satake

    2015-05-01

    Full Text Available Lignans are structurally and functionally diverse phytochemicals biosynthesized in diverse plant species and have received wide attentions as leading compounds of novel drugs for tumor treatment and healthy diets to reduce of the risks of lifestyle-related non-communicable diseases. However, the lineage-specific distribution and the low-amount of production in natural plants, some of which are endangered species, hinder the efficient and stable production of beneficial lignans. Accordingly, the development of new procedures for lignan production is of keen interest. Recent marked advances in the molecular and functional characterization of lignan biosynthetic enzymes and endogenous and exogenous factors for lignan biosynthesis have suggested new methods for the metabolic engineering of lignan biosynthesis cascades leading to the efficient, sustainable, and stable lignan production in plants, including plant cell/organ cultures. Optimization of light conditions, utilization of a wide range of elicitor treatments, and construction of transiently gene-transfected or transgenic lignan-biosynthesizing plants are mainly being attempted. This review will present the basic and latest knowledge regarding metabolic engineering of lignans based on their biosynthetic pathways and biological activities, and the perspectives in lignan production via metabolic engineering.

  8. Biosynthesis of nanoparticles using microbes- a review.

    Science.gov (United States)

    Hulkoti, Nasreen I; Taranath, T C

    2014-09-01

    The biosynthesis of nanoparticles by microorganism is a green and eco-friendly technology. This review focuses on the use of consortium of diverse microorganisms belonging to both prokaryotes and eukaryotes for the synthesis of metallic nanoparticles viz. silver, gold, platinum, zirconium, palladium, iron, cadmium and metal oxides such as titanium oxide, zinc oxide, etc. These microorganisms include bacteria, actinomycetes, fungi and algae. The synthesis of nanoparticles may be intracellular or extracellular. The several workers have reported that NADH dependent nitrate reductase enzyme plays a vital role in the conversion of metallic ions to nanoparticles. The FTIR study reveals that diverse biomolecules viz. carboxyl group, primary and secondary amines, amide I, II, and III bands etc serve as a tool for bioreduction and capping agents there by offering stability to particles by preventing agglomeration and growth. The size and shape of the nanoparticles vary with the organism employed and conditions employed during the synthesis which included pH, temperature and substrate concentration. The microorganisms provide diverse environment for biosynthesis of nanoparticles. These particles are safe and eco-friendly with a lot of applications in medicine, agriculture, cosmetic industry, drug delivery and biochemical sensors. The challenges for redressal include optimal production and minimal time to obtain desired size and shape, to enhance the stability of nanoparticles and optimization of specific microorganisms for specific application. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Metabolic plasticity for isoprenoid biosynthesis in bacteria.

    Science.gov (United States)

    Pérez-Gil, Jordi; Rodríguez-Concepción, Manuel

    2013-05-15

    Isoprenoids are a large family of compounds synthesized by all free-living organisms. In most bacteria, the common precursors of all isoprenoids are produced by the MEP (methylerythritol 4-phosphate) pathway. The MEP pathway is absent from archaea, fungi and animals (including humans), which synthesize their isoprenoid precursors using the completely unrelated MVA (mevalonate) pathway. Because the MEP pathway is essential in most bacterial pathogens (as well as in the malaria parasites), it has been proposed as a promising new target for the development of novel anti-infective agents. However, bacteria show a remarkable plasticity for isoprenoid biosynthesis that should be taken into account when targeting this metabolic pathway for the development of new antibiotics. For example, a few bacteria use the MVA pathway instead of the MEP pathway, whereas others possess the two full pathways, and some parasitic strains lack both the MVA and the MEP pathways (probably because they obtain their isoprenoids from host cells). Moreover, alternative enzymes and metabolic intermediates to those of the canonical MVA or MEP pathways exist in some organisms. Recent work has also shown that resistance to a block of the first steps of the MEP pathway can easily be developed because several enzymes unrelated to isoprenoid biosynthesis can produce pathway intermediates upon spontaneous mutations. In the present review, we discuss the major advances in our knowledge of the biochemical toolbox exploited by bacteria to synthesize the universal precursors for their essential isoprenoids.

  10. Brassinosteroid biosynthesis and signalling in Petunia hybrida.

    Science.gov (United States)

    Verhoef, Nathalie; Yokota, Takao; Shibata, Kyomi; de Boer, Gert-Jan; Gerats, Tom; Vandenbussche, Michiel; Koes, Ronald; Souer, Erik

    2013-05-01

    Brassinosteroids (BRs) are steroidal plant hormones that play an important role in the growth and development of plants. The biosynthesis of sterols and BRs as well as the signalling cascade they induce in plants have been elucidated largely through metabolic studies and the analysis of mutants in Arabidopsis and rice. Only fragmentary details about BR signalling in other plant species are known. Here a forward genetics strategy was used in Petunia hybrida, by which 19 families with phenotypic alterations typical for BR deficiency mutants were identified. In all mutants, the endogenous BR levels were severely reduced. In seven families, the tagged genes were revealed as the petunia BR biosynthesis genes CYP90A1 and CYP85A1 and the BR receptor gene BRI1. In addition, several homologues of key regulators of the BR signalling pathway were cloned from petunia based on homology with their Arabidopsis counterparts, including the BRI1 receptor, a member of the BES1/BZR1 transcription factor family (PhBEH2), and two GSK3-like kinases (PSK8 and PSK9). PhBEH2 was shown to interact with PSK8 and 14-3-3 proteins in yeast, revealing similar interactions to those during BR signalling in Arabidopsis. Interestingly, PhBEH2 also interacted with proteins implicated in other signalling pathways. This suggests that PhBEH2 might function as an important hub in the cross-talk between diverse signalling pathways.

  11. BIOSYNTHESIS AND ACTION OF JASMONATES IN PLANTS.

    Science.gov (United States)

    Creelman, Robert A.; Mullet, John E.

    1997-06-01

    Jasmonic acid and its derivatives can modulate aspects of fruit ripening, production of viable pollen, root growth, tendril coiling, and plant resistance to insects and pathogens. Jasmonate activates genes involved in pathogen and insect resistance, and genes encoding vegetative storage proteins, but represses genes encoding proteins involved in photosynthesis. Jasmonic acid is derived from linolenic acid, and most of the enzymes in the biosynthetic pathway have been extensively characterized. Modulation of lipoxygenase and allene oxide synthase gene expression in transgenic plants raises new questions about the compartmentation of the biosynthetic pathway and its regulation. The activation of jasmonic acid biosynthesis by cell wall elicitors, the peptide systemin, and other compounds will be related to the function of jasmonates in plants. Jasmonate modulates gene expression at the level of translation, RNA processing, and transcription. Promoter elements that mediate responses to jasmonate have been isolated. This review covers recent advances in our understanding of how jasmonate biosynthesis is regulated and relates this information to knowledge of jasmonate modulated gene expression.

  12. Rapid biosynthesis of cadmium sulfide (CdS) nanoparticles using ...

    African Journals Online (AJOL)

    Rapid biosynthesis of cadmium sulfide (CdS) nanoparticles using culture supernatants of Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633 and Lactobacillus ... The process of extracellular and fast biosynthesis may help in the development of an easy and eco-friendly route for the synthesis of CdS nanoparticles.

  13. Rare cause of post-squalene disorder of cholesterol biosynthesis ...

    African Journals Online (AJOL)

    Errors of cholesterol biosynthesis represent a heterogeneous group of metabolic disorders. The aim of the authors of this article is to present a case of a patient with typical symptoms of a rare post-squalene disorder of cholesterol biosynthesis, its diagnostics and progress in neonatal period. The differential diagnosis of a ...

  14. Isoprenoid biosynthesis in hereditary periodic fever syndromes and inflammation

    NARCIS (Netherlands)

    Houten, S. M.; Frenkel, J.; Waterham, H. R.

    2003-01-01

    Mevalonate kinase (MK) is an essential enzyme in the isoprenoid biosynthesis pathway which produces numerous biomolecules (isoprenoids) involved in a variety of cellular processes. The indispensability of MK and isoprenoid biosynthesis for human health is demonstrated by the identification of its

  15. Radiotherapy in differentiated thyroid cancer: Optimal dose distribution using a wax bolus

    International Nuclear Information System (INIS)

    Mayer, R.; Stucklschweiger, G.; Oechs, A.; Pakish, B.; Hackl, A.; Preidler, K.; Szola, D.

    1994-01-01

    The study includes 53 patients with differentiated thyroid cancer, who underwent surgical and radioiodine therapy as well as hormone therapy. Postoperative radiotherapy was performed in all patients in 'mini-mantle-technique' with parallel opposed fields, followed by an anterior boost-field with electrons up to 60-64 Gy, using a wax bolus for optimal dose distribution in the target volume sparing out the spinal cord as much as possible. The dose to the spinal cord did not exceed 44 Gy in any case. The study shows that radiotherapy with doses up to 60-64 Gy plays an important role in postsurgical therapeutic management. Therefore nonradical surgery is a less important prognostic factor for survival and local recurrence in patients with differentiated thyroid cancer than histological diagnosis in combination with age and lymph node involvement

  16. Wax Ester Analysis of Bats Suffering from White Nose Syndrome in Europe.

    Science.gov (United States)

    Řezanka, Tomáš; Viden, Ivan; Nováková, Alena; Bandouchová, Hana; Sigler, Karel

    2015-07-01

    The composition of wax esters (WE) in the fur of adult greater mouse-eared bats (Myotis myotis), either healthy or suffering from white nose syndrome (WNS) caused by the psychrophilic fungus Pseudogymnoascus destructans, was investigated by high-resolution mass spectrometry analysis in the positive ion mode. Profiling of lipid classes showed that WE are the most abundant lipid class, followed by cholesterol esters, and other lipid classes, e.g., triacylglycerols and phospholipids. WE abundance in non-polar lipids was gender-related, being higher in males than in females; in individuals suffering from WNS, both male and female, it was higher than in healthy counterparts. WE were dominated by species containing 18:1 fatty acids. Fatty alcohols were fully saturated, dominated by species containing 24, 25, or 26 carbon atoms. Two WE species, 18:1/18:0 and 18:1/20:0, were more abundant in healthy bats than in infected ones.

  17. Preliminary study of human breast tissue using synchrotron radiation combining WAXS and SAXS techniques

    International Nuclear Information System (INIS)

    Conceicao, A.L.C.; Antoniassi, M.; Poletti, M.E.; Caldas, L.V.E.

    2010-01-01

    Using synchrotron radiation, we combined simultaneously wide angle X-ray scattering (WAXS) and small angle X-ray scattering (SAXS) techniques to obtain the scattering profiles of normal and neoplastic breast tissues samples at the momentum transfer range 6.28 nm -1 ≤Q(=4π.sin(θ/2)/λ)≤50.26 nm -1 and 0.15 nm -1 ≤Q≤1.90 nm -1 , respectively. The results obtained show considerable differences between the scattering profiles of these tissues. We verified that the combination of some parameters (ratio between glandular and adipose peak intensity and third-order axial peak intensity) extracted from scattering profiles can be used for identifying breast cancer.

  18. Carbon Black-Modified Electrodes Screen-Printed onto Paper Towel, Waxed Paper and Parafilm M®.

    Science.gov (United States)

    Cinti, Stefano; Mazzaracchio, Vincenzo; Cacciotti, Ilaria; Moscone, Danila; Arduini, Fabiana

    2017-10-03

    Herein, we evaluated the use of paper towel, waxed paper, and Parafilm M ® (Heathrow Scientific, Vernon Hills, IL, USA) as alternative substrates for screen-printed sensor manufacturing. Morphological study was performed to evaluate the adhesion of the ink on these uncommon substrates, as well as the morphology of the working electrode. The electrochemical characterization was carried out using ferricyanide/ferrocyanide as redox couple. To enhance the electrochemical properties of the developed sensors, the nanomaterial carbon black was used as nanomodifier. The modification by drop casting of the working electrode surface, using a stable dispersion of carbon black, allows to obtain a sensor with improved electrochemical behavior in terms of peak-to-peak separation, current intensity, and the resistance of charge transfer. The results achieved confirm the possibility of printing the electrode on several cost-effective paper-based materials and the improvement of the electrochemical behavior by using carbon black as sustainable nanomaterial.

  19. Carbon Black-Modified Electrodes Screen-Printed onto Paper Towel, Waxed Paper and Parafilm M®

    Directory of Open Access Journals (Sweden)

    Stefano Cinti

    2017-10-01

    Full Text Available Herein, we evaluated the use of paper towel, waxed paper, and Parafilm M® (Heathrow Scientific, Vernon Hills, IL, USA as alternative substrates for screen-printed sensor manufacturing. Morphological study was performed to evaluate the adhesion of the ink on these uncommon substrates, as well as the morphology of the working electrode. The electrochemical characterization was carried out using ferricyanide/ferrocyanide as redox couple. To enhance the electrochemical properties of the developed sensors, the nanomaterial carbon black was used as nanomodifier. The modification by drop casting of the working electrode surface, using a stable dispersion of carbon black, allows to obtain a sensor with improved electrochemical behavior in terms of peak-to-peak separation, current intensity, and the resistance of charge transfer. The results achieved confirm the possibility of printing the electrode on several cost-effective paper-based materials and the improvement of the electrochemical behavior by using carbon black as sustainable nanomaterial.

  20. Oleogels of virgin olive oil with carnauba wax and monoglyceride as spreadable products

    Directory of Open Access Journals (Sweden)

    Öǧütcü, M.

    2014-09-01

    Full Text Available The oleogels of virgin olive oil with carnauba wax and monoglyceride were prepared to determine the most suitable spreadable product. The oil binding capacities of monoglyceride oleogels were higher than those of the carnauba wax oleogels. There was no true crystalline structure with carnauba wax at 3%. Although the highest solid fat content was in the 10% monoglyceride oleogel (9.38%, it was 12.15% in the commercial breakfast margarine at 20 °C. The peak melting temperature of the margarine was 47.11 °C, and among all oleogels, monoglyceride oleogel at 7% addition had the closest value (48.70 °C. The melting enthalpies of the oleogels ranged from 1.25 to 103.97 J·g−1, while it was 94.19 J·g−1 for the margarine sample. The firmness and stickiness values were usually lower in the oleogel samples than those of the margarine sample. There was no significant change in the texture parameters during storage, indicating good structural stability. The polarized light microscopy pictures revealed rod-like crystals for carnauba wax and rosette-like aggregates for monoglyceride oleogels. X-ray diffraction patterns of the samples have revealed a β´-type polymorphic structure for the oleogels. These oleogels can be used in a spreadable, breakfast margarin-like product to promote new consumption habits for this healthy oil.Se prepararon oleogeles de aceites de oliva virgen con cera de carnaúba y monoglicéridos para encontrar el producto más adecuado para untar. La capacidad de unión de aceites de oleogeles de monoglicéridos fue más alto que el de los oleogeles de cera de carnaúba. No hubo ninguna estructura cristalina verdadera con cera de carnaúba al 3%. Aunque el mayor contenido de grasa sólida fue con el 10 % de oleogeles de monoglicérido (9,38 %, fue del 12.15 % en el de margarina comercial a 20 °C. La temperatura pico de fusión de la margarina fue 47,11 ºC, y entre todos los oleogeles, los de monoglicérido al 7 % tuvo el valor m