WorldWideScience

Sample records for malignant gliomas 2001-2004

  1. Temozolomide in malignant glioma

    OpenAIRE

    Gregor Dresemann

    2010-01-01

    Gregor DresemannCenter for Neurooncology at Aerztehaus Velen, Velen, GermanyAbstract: Glioblastoma multiforme WHO grade IV (GBM) is the most aggressive ­malignant glioma and the most frequent primary tumor of the central nervous system. The median ­survival of newly diagnosed GBM patients was between 9 to 12 months prior to treatment with ­temozolomide being introduced. Primary resection that is as complete as possible is recommended for malignant glioma. Conventional ...

  2. Temozolomide in malignant glioma

    Directory of Open Access Journals (Sweden)

    Gregor Dresemann

    2010-07-01

    Full Text Available Gregor DresemannCenter for Neurooncology at Aerztehaus Velen, Velen, GermanyAbstract: Glioblastoma multiforme WHO grade IV (GBM is the most aggressive ­malignant glioma and the most frequent primary tumor of the central nervous system. The median ­survival of newly diagnosed GBM patients was between 9 to 12 months prior to treatment with ­temozolomide being introduced. Primary resection that is as complete as possible is recommended for malignant glioma. Conventional fractionated irradiation 55 to 60 gy with concomitant temozolomide followed by standard temozolomide 6 cycles (5/28 (EORTC/NCIC-regime published by R Stupp in 2005 is the standard of care for newly diagnosed GBM after surgery, independent of the methylation status of the MGM-T gene promoter. Age is no ­contraindication for treatment with temozolomide, although comorbidity and performance status have to be ­considered. For temozolomide naive GBM and astrocytoma grade III patients with disease progression, temozolomide is still the treatment of choice outside of clinical studies. A ­general consensus regarding the schedule of choice has not yet been achieved; so far the 5 out of 28 days regimen (5/28 is the standard of care in most countries. Patients with disease progression after standard temozolomide (5/28 are candidates for clinical studies. Outside of clinical ­studies, dose-dense (7/7, prolonged (21/28, or metronomic (28/28 temozolomide, or alternatively a nitrosourea-based regimen can be an option. The excellent toxicity profile of ­temozolomide allows for various combinations with antitumor agents. None of these ­combinations, however, have been demonstrated to be statistically significantly superior compared to temozolomide alone. The role of lower dosed, dose-dense, or continuous regimen with or without drug combination and the role of temozolomide for newly diagnosed astrocytoma grade III and low grade glioma still has to be determined.Keywords: glioblastoma

  3. Immunotherapy for malignant glioma

    Directory of Open Access Journals (Sweden)

    Carter M Suryadevara

    2015-01-01

    Full Text Available Malignant gliomas (MG are the most common type of primary malignant brain tumor. Most patients diagnosed with glioblastoma (GBM, the most common and malignant glial tumor, die within 12-15 months. Moreover, conventional treatment, which includes surgery followed by radiation and chemotherapy, can be highly toxic by causing nonspecific damage to healthy brain and other tissues. The shortcomings of standard-of-care have thus created a stimulus for the development of novel therapies that can target central nervous system (CNS-based tumors specifically and efficiently, while minimizing off-target collateral damage to normal brain. Immunotherapy represents an investigational avenue with the promise of meeting this need, already having demonstrated its potential against B-cell malignancy and solid tumors in clinical trials. T-cell engineering with tumor-specific chimeric antigen receptors (CARs is one proven approach that aims to redirect autologous patient T-cells to sites of tumor. This platform has evolved dramatically over the past two decades to include an improved construct design, and these modern CARs have only recently been translated into the clinic for brain tumors. We review here emerging immunotherapeutic platforms for the treatment of MG, focusing on the development and application of a CAR-based strategy against GBM.

  4. Paediatric and adult malignant glioma

    DEFF Research Database (Denmark)

    Jones, Chris; Perryman, Lara; Hargrave, Darren

    2012-01-01

    Gliomas in children differ from their adult counterparts by their distribution of histological grade, site of presentation and rate of malignant transformation. Although rare in the paediatric population, patients with high-grade gliomas have, for the most part, a comparably dismal clinical outcome...... to older patients with morphologically similar lesions. Molecular profiling data have begun to reveal the major genetic alterations underpinning these malignant tumours in children. Indeed, the accumulation of large datasets on adult high-grade glioma has revealed key biological differences between...... the adult and paediatric disease. Furthermore, subclassifications within the childhood age group can be made depending on age at diagnosis and tumour site. However, challenges remain on how to reconcile clinical data from adult patients to tailor novel treatment strategies specifically for paediatric...

  5. Tumor Metabolism of Malignant Gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Ru, Peng; Williams, Terence M.; Chakravarti, Arnab; Guo, Deliang, E-mail: deliang.guo@osumc.edu [Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center & Arthur G James Cancer Hospital, Columbus, OH 43012 (United States)

    2013-11-08

    Constitutively activated oncogenic signaling via genetic mutations such as in the EGFR/PI3K/Akt and Ras/RAF/MEK pathways has been recognized as a major driver for tumorigenesis in most cancers. Recent insights into tumor metabolism have further revealed that oncogenic signaling pathways directly promote metabolic reprogramming to upregulate biosynthesis of lipids, carbohydrates, protein, DNA and RNA, leading to enhanced growth of human tumors. Therefore, targeting cell metabolism has become a novel direction for drug development in oncology. In malignant gliomas, metabolism pathways of glucose, glutamine and lipid are significantly reprogrammed. Moreover, molecular mechanisms causing these metabolic changes are just starting to be unraveled. In this review, we will summarize recent studies revealing critical gene alterations that lead to metabolic changes in malignant gliomas, and also discuss promising therapeutic strategies via targeting the key players in metabolic regulation.

  6. Tumor Metabolism of Malignant Gliomas

    Directory of Open Access Journals (Sweden)

    Deliang Guo

    2013-11-01

    Full Text Available Constitutively activated oncogenic signaling via genetic mutations such as in the EGFR/PI3K/Akt and Ras/RAF/MEK pathways has been recognized as a major driver for tumorigenesis in most cancers. Recent insights into tumor metabolism have further revealed that oncogenic signaling pathways directly promote metabolic reprogramming to upregulate biosynthesis of lipids, carbohydrates, protein, DNA and RNA, leading to enhanced growth of human tumors. Therefore, targeting cell metabolism has become a novel direction for drug development in oncology. In malignant gliomas, metabolism pathways of glucose, glutamine and lipid are significantly reprogrammed. Moreover, molecular mechanisms causing these metabolic changes are just starting to be unraveled. In this review, we will summarize recent studies revealing critical gene alterations that lead to metabolic changes in malignant gliomas, and also discuss promising therapeutic strategies via targeting the key players in metabolic regulation.

  7. Adult high-grade malignant gliomas

    Directory of Open Access Journals (Sweden)

    Fable Zustovich

    2011-12-01

    Full Text Available Central nervous system (CNS malignant gliomas are relatively rare diseases. Prognosis is poor but has improved over recent years due to the improvement in the multi-disciplinary treatment: surgery, radiotherapy and chemotherapy...

  8. Targeting immune checkpoints in malignant glioma

    Science.gov (United States)

    Li, Tete; Liu, Yong-Jun; Chen, Wei; Chen, Jingtao

    2017-01-01

    Malignant glioma is the most common and a highly aggressive cancer in the central nervous system (CNS). Cancer immunotherapy, strategies to boost the bodys anti-cancer immune responses instead of directly targeting tumor cells, recently achieved great success in treating several human solid tumors. Although once considered immune privileged and devoid of normal immunological functions, CNS is now considered a promising target for cancer immunotherapy, featuring the recent progresses in neurobiology and neuroimmunology and a highly immunosuppressive state in malignant glioma. In this review, we focus on immune checkpoint inhibitors, specifically, antagonizing monoclonal antibodies for programmed cell death protein-1 (PD-1), cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), and indoleamine 2,3-dioxygenase (IDO). We discuss advances in the working mechanisms of these immune checkpoint molecules, their status in malignant glioma, and current preclinical and clinical trials targeting these molecules in malignant glioma. PMID:27756892

  9. Molecular targeting for malignant gliomas (Review).

    Science.gov (United States)

    Kondo, Yasuko; Hollingsworth, Emporia F; Kondo, Seiji

    2004-05-01

    With tendency to invade rapidly in the brain, malignant gliomas are very resistant to conventional therapies including radiation and chemotherapy. Recent advances in genetic and molecular techniques have made it possible to define characteristic molecular profiles of malignant gliomas. Based on the list of the molecules closely related to glioblastoma tissues, we reviewed strategies targeting them. Target molecules extensively studied include EGFR, PTEN, telomerase and signal pathway modulators for Ras/Raf/MAPK and PI3K/Akt/mTOR pathways. Therapies targeting specific molecules may result in killing tumor cells effectively while keeping normal cells intact.

  10. Treatment of malignant glioma using hyperthermia*

    Institute of Scientific and Technical Information of China (English)

    Jiahang Sun; Mian Guo; Hengyuan Pang; Jingtao Qi; Jinwei Zhang; Yunlong Ge

    2013-01-01

    Thirty pathological y diagnosed patients with grade III-IV primary or recurrent malignant glioma (tumor diameter 3-7 cm) were randomly divided into two groups. The control group underwent conventional radiotherapy and chemotherapy. In the hyperthermia group, primary cases received hyperthermia treatment, and patients with recurrent tumors were treated with hyperthermia in com-bination with radiotherapy and chemotherapy. Hyperthermia treatment was administered using a 13.56-MHz radio frequency hyperthermia device. Electrodes were inserted into the tumor with the aid of a CT-guided stereotactic apparatus and heat was applied for 1 hour. During 3 months after hyperthermia, patients were evaluated with head CT or MRI every month. Gliomas in the hyper-thermia group exhibited growth retardation or growth termination. Necrosis was evident in 80%of the heated tumor tissue and there was a decrease in tumor diameter. Our findings indicate that ra-dio frequency hyperthermia has a beneficial effect in the treatment of malignant glioma.

  11. CURRENT APPROACHES TO CHEMORADIOTHERAPY FOR MALIGNANT GLIOMAS

    Directory of Open Access Journals (Sweden)

    Ye. L. Choinzonov

    2014-01-01

    Full Text Available High-grade malignant gliomas (WHO grade G III–IV account for more than 50% of all primary brain tumors. Despite aggressive treatment, survival rates are still very low with a median reported survival of no more than 1.5 years.Radiation therapy is an integral part of the combined treatment, but often does not influence lethally on resistant tumor cells. Thereby, in recent decades there has been an active search for novel approaches to the treatment of malignant gliomas (chemotherapeutic drugs, biological modifiers, local hyperthermia. Experimental data showed that the effect of high temperatures has both a direct damaging effect on tumor cells and a sensitizing effect. Significant advantages are achieved when the complex treatment of different malignant tumorsincludes local hyperthermia. However data on the treatment of patients with primary and recurrent gliomas G III–IV using local hyperthermia are scarce.The literature review is given in the article provides an overview of the existing treatment methods for brain tumors.

  12. Intraoperative radiation therapy for malignant glioma

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Noboru; Yamada, Hiromu; Andoh, Takashi; Takada, Mitsuaki; Hirata, Toshifumi; Funakoshi, Takashi; Doi, Hidetaka; Yanagawa, Shigeo (Gifu Univ. (Japan). Faculty of Medicine)

    1989-04-01

    Intraoperative radiation therapy (IOR) is an ideal means of exterminating residual tumor after surgical resection. In this study, the clinical results of IOR using a Scanditronix Microtron MM-22 were evaluated in 14 patients with malignant glioma, five of whom had recurrent tumors. Between July, 1985 and October, 1986, 11 patients with glioblastoma multiforme (GB) were irradiated 18 times (mean, 1.6 times/case), and three with astrocytoma (Kernohan grade III) underwent IOR once each. The target-absorbed dose at 1 to 2 cm deeper than the tumor resection surface was 15 to 50 Gy. During irradiation, a cotton bolus was placed in the dead space after over 91% of the tumor had been resected. As a rule, external irradiation therapy was also given postoperatively at a dose of 30 to 52 Gy. One patient died of pneumonia and disseminated intravascular coagulation syndrome 1 month postoperatively. The 1- and 2-year survival rates of the ramaining 13 patients were 84.6% and 61.5%, respectively; among the 10 with GB, they were 80% and 50%. Generally, the smaller the tumor size, the better the results. There were no adverse effects, despite the dose 15 to 50 Gy applied temporally to the tumor bed. IOR was especially effective against small, localized tumors, but was not always beneficial in cases of large tumors, particularly those with a contralateral focus. The improved survival rate in this series demonstrates that IOR is significantly effective in the 'induction of remission' following surgical excision of malignant gliomas. (author).

  13. Fluorescence-Guided Resection of Malignant Glioma with 5-ALA

    Directory of Open Access Journals (Sweden)

    Sadahiro Kaneko

    2016-01-01

    Full Text Available Malignant gliomas are extremely difficult to treat with no specific curative treatment. On the other hand, photodynamic medicine represents a promising technique for neurosurgeons in the treatment of malignant glioma. The resection rate of malignant glioma has increased from 40% to 80% owing to 5-aminolevulinic acid-photodynamic diagnosis (ALA-PDD. Furthermore, ALA is very useful because it has no serious complications. Based on previous research, it is apparent that protoporphyrin IX (PpIX accumulates abundantly in malignant glioma tissues after ALA administration. Moreover, it is evident that the mechanism underlying PpIX accumulation in malignant glioma tissues involves an abnormality in porphyrin-heme metabolism, specifically decreased ferrochelatase enzyme activity. During resection surgery, the macroscopic fluorescence of PpIX to the naked eye is more sensitive than magnetic resonance imaging, and the alert real time spectrum of PpIX is the most sensitive method. In the future, chemotherapy with new anticancer agents, immunotherapy, and new methods of radiotherapy and gene therapy will be developed; however, ALA will play a key role in malignant glioma treatment before the development of these new treatments. In this paper, we provide an overview and present the results of our clinical research on ALA-PDD.

  14. Treating malignant glioma in Chinese patients: update on temozolomide

    Directory of Open Access Journals (Sweden)

    Chang L

    2014-02-01

    Full Text Available Liang Chang,1 Jun Su,1 Xiuzhi Jia,2,3 Huan Ren2,3 1Department of Neurosurgery, The Tumor Hospital of Harbin Medical University, 2Department of Immunology, Harbin Medical University, 3Key Lab Infection and Immunity, Heilongjiang Province, Harbin, People's Republic of China Abstract: Malignant glioma, ie, anaplastic astrocytoma and glioblastoma, is the most common type of primary malignant brain tumor in the People's Republic of China, and is particularly aggressive. The median survival of patients with newly diagnosed glioblastoma is only 12–14 months despite advanced therapeutic strategies. Treatment of malignant glioma consists mainly of surgical resection followed by adjuvant radiation and chemotherapy. Temozolomide (TMZ, a second-generation oral alkylating agent, is playing an increasingly important role in the treatment of malignant glioma in Chinese patients. Since the publication of a study by Stupp et al in 2005, which used a protocol of conventional fractionated irradiation with concomitant TMZ followed by standard TMZ for six cycles, many clinical studies in the People's Republic of China have demonstrated that such a treatment strategy has significantly improved efficacy with limited side effects for newly diagnosed glioblastoma after surgery as compared with strategies that do not contain TMZ. However, as a relatively new agent, the history and development of TMZ for malignant glioma is not well documented in Chinese patients. Multicenter, randomized controlled trials including appropriately sized patient populations investigating multiple aspects of TMZ therapy and related combination therapies are warranted in patients with malignant glioma. This review provides an update on the efficacy, mechanism of action, adverse reactions, and clinical role of TMZ in the treatment of malignant glioma in Chinese patients. Keywords: malignant glioma, chemotherapy, temozolomide, efficacy, side effect, People's Republic of China

  15. Targeted therapies for malignant gliomas: novel agents, same barrier

    NARCIS (Netherlands)

    Lin, F.

    2013-01-01

    Malignant gliomas are common and devastating brain malignancies. Despite this extensive treatment the mean overall survival is still only 14.6 months and more effective treatments are urgently needed. Targeted therapy holds the promise for the new generation of chemotherapy due to the selectively ta

  16. Efficacy of ribavirin against malignant glioma cell lines

    Science.gov (United States)

    OGINO, AKIYOSHI; SANO, EMIKO; OCHIAI, YUSHI; YAMAMURO, SHUN; TASHIRO, SHINYA; YACHI, KAZUNARI; OHTA, TAKASHI; FUKUSHIMA, TAKAO; OKAMOTO, YUTAKA; TSUMOTO, KOUHEI; UEDA, TAKUYA; YOSHINO, ATSUO; KATAYAMA, YOICHI

    2014-01-01

    Ribavirin (1-β-D-ribofuranosy-1,2,4-triazole-3-carboxamide) has been widely administered as an antiviral agent against RNA and DNA viruses. Ribavirin, in combination with interferon, has predominantly been applied in the treatment of the hepatitis C virus infection and its potential antitumor efficacy has recently become a point of interest. The aim of the present study was to evaluate the effect of ribavirin on the growth of malignant glioma cells, to identify novel predictive genes in malignant glioma cells (by analyzing gene expression profiles) and to assess the influence of ribavirin on the cell cycle of malignant glioma cells. The present study evaluated the antitumor efficacy of ribavirin against various malignant glioma cell lines (A-172, AM-38, T98G, U-87MG, U-138MG, U-251MG and YH-13). After culturing the cells in ribavirin-containing culture medium (final concentration, 0–1,000 μM) for 72 h, the viable proliferated cells were harvested and counted. The half maximal inhibitory concentration of ribavirin, with regard to the growth of the malignant glioma cell lines, was determined from the concentration of ribavirin required for 50% growth inhibition in comparison to the untreated control cells. Furthermore, the current study identified the genes in which the gene expression levels correlated with the ribavirin sensitivity of the malignant glioma cells lines, using a high-density oligonucleotide array. Finally, cell cycle analysis was performed on the U-87MG cell line. It was identified that ribavirin inhibited the growth of all of the malignant glioma cell lines in a dose-dependent manner, although the ribavirin sensitivity varied between each cell line. Of the extracted genes, PDGFRA demonstrated the strongest positive correlation between gene expression level and ribavirin sensitivity. Cell cycle analysis of the U-87MG cell line demonstrated that ribavirin treatment induces G0/G1 arrest and thus may be an effective agent for inhibiting malignant

  17. Changing paradigms - An update on the multidisciplinary management of malignant glioma

    NARCIS (Netherlands)

    R. Stupp (Roger); M.E. Hegi (Monika); M.J. van den Bent (Martin); W.P. Mason (Warren); M. Weller (Michael); R.O. Mirimanoff; J.G. Cairncross (Gregory)

    2006-01-01

    textabstractTreatment of malignant glioma requires a multidisciplinary team. Treatment includes surgery, radiotherapy, and chemotherapy. Recently developed agents have demonstrated activity against recurrent malignant glioma and efficacy if given concurrently with radiotherapy in the upfront setting

  18. Possible novel therapy for malignant gliomas with secretable trimeric TRAIL.

    Directory of Open Access Journals (Sweden)

    Moonsup Jeong

    Full Text Available Malignant gliomas are the most common primary brain tumors. Despite intensive clinical investigation and many novel therapeutic approaches, average survival for the patients with malignant gliomas is only about 1 year. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL has shown potent and cancer-selective killing activity and drawn considerable attention as a promising therapy for cancers, but concerns over delivery and toxicity have limited progress. We have developed a secretable trimeric TRAIL (stTRAIL and here evaluated the therapeutic potential of this stTRAIL-based gene therapy in brain tumors. An adenovirus (Ad-stTRAIL delivering stTRAIL was injected into intra-cranial human glioma tumors established in nude mice and tumor growth monitored using the magnetic resonance imaging (MRI. Ad-stTRAIL gene therapy showed potent tumor suppressor activity with no toxic side effects at therapeutically effective doses. When compared with 1, 3-bis(2-chloroethyl-1-nitrosourea (BCNU, a conventional therapy for malignant gliomas, Ad-stTRAIL suppressed tumor growth more potently. The combination of Ad-stTRAIL and BCNU significantly increased survival compared to the control mice or mice receiving Ad-stTRAIL alone. Our data indicate that Ad-stTRAIL, either alone or combined with BCNU, has promise as a novel therapy for malignant gliomas.

  19. Role of MicroRNAs in Malignant Glioma

    Institute of Scientific and Technical Information of China (English)

    Bao-Cheng Wang; Jie Ma

    2015-01-01

    Objective:This overview seeked to bring together the microRNA (miRNA) researches on biogenesis and bio-function in these areas of clinical diagnosis and therapy for malignant glioma.Data Sources:Using the keyword terms "glioma" and "miRNA," we performed the literature search in PubMed,Ovid,and web.metstr.com databases from their inception to October 2014.Study Selection:In screening out the quality of the articles,factors such as clinical setting of the study,the size of clinical samples were taken into consideration.Animal studied for verification and reviews article were also included in our data collection.Results:Despite many advance in miRNA for malignant glioma,further studies were still required to focus on the following aspects:(i) Improving the understanding about biogenesis of miRNA and up-down regulation;(ii) utilizing high-throughput miRNA expression analysis to screen out the core miRNA for glioma;(iii) Focusing related miRNAs on the signal transduction pathways that regulate the proliferation and growth of glioma.Conclusions:We discussed the most promising miRNA,correlative signaling pathway and their relation with gliomas in the way of prompting miRNA target into being a clinical therapeutic strategy.

  20. Impact of Temozolomide on Immune Response during Malignant Glioma Chemotherapy

    Directory of Open Access Journals (Sweden)

    Sadhak Sengupta

    2012-01-01

    Full Text Available Malignant glioma, or glioblastoma, is the most common and lethal form of brain tumor with a median survival time of 15 months. The established therapeutic regimen includes a tripartite therapy of surgical resection followed by radiation and temozolomide (TMZ chemotherapy, concurrently with radiation and then as an adjuvant. TMZ, a DNA alkylating agent, is the most successful antiglioma drug and has added several months to the life expectancy of malignant glioma patients. However, TMZ is also responsible for inducing lymphopenia and myelosuppression in malignant glioma patients undergoing chemotherapy. Although TMZ-induced lymphopenia has been attributed to facilitate antitumor vaccination studies by inducing passive immune response, in general lymphopenic conditions have been associated with poor immune surveillance leading to opportunistic infections in glioma patients, as well as disrupting active antiglioma immune response by depleting both T and NK cells. Deletion of O6-methylguanine-DNA-methyltransferase (MGMT activity, a DNA repair enzyme, by temozolomide has been determined to be the cause of lymphopenia. Drug-resistant mutation of the MGMT protein has been shown to render chemoprotection against TMZ. The immune modulating role of TMZ during glioma chemotherapy and possible mechanisms to establish a strong TMZ-resistant immune response have been discussed.

  1. Mutant tristetraprolin: a potent inhibitor of malignant glioma cell growth

    Science.gov (United States)

    Malignant gliomas rely on the production of certain critical growth factors including VEGF, interleukin (IL)-6 and IL-8, to fuel rapid tumor growth, angiogenesis, and treatment resistance. Post-transcriptional regulation through adenine and uridine-rich elements of the 3' untranslated region is one ...

  2. Prognostic Marker before Treatment of Patients with Malignant Glioma

    Directory of Open Access Journals (Sweden)

    Norbert Galldiks

    2012-11-01

    Full Text Available The purpose of this positron emission tomography (PET study was to compare the prognostic value of pretreatment volume of [11C] methionine (MET uptake and semiquantitative MET uptake ratio in patients with malignant glioma. The study population comprised 40 patients with malignant glioma. Pretreatment magnetic resonance imaging (MRI and MET-PET imaging were performed before the initiation of glioma treatment in all patients. The pretreatment MET uptake ratios and volumes were assessed. To create prognostically homogeneous subgroups, patients′ pretreatment prognostic factors were stratified according to the six classes of Radiation Therapy Oncology Group recursive partitioning analysis (RTOG RPA. Univariate and multivariate analyses were performed to determine significant prognostic factors. Survival analyses identified the pretreatment volume of MET uptake and a higher RTOG RPA class as significant predictors. In contrast, pretreatment maximum areas of contrast enhancement on MRI and semiquantitative MET uptake ratios could not be identified as significant prognostic factors. The patients′ outcomes and Karnofsky Performance Scale scores were significantly correlated with pretreatment volume of MET uptake but not with semiquantitative MET uptake ratio. The data suggest that pretreatment volumetry of MET uptake but not the semiquantitative MET uptake ratio is a useful biologic prognostic marker in patients with malignant glioma.

  3. The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma.

    Science.gov (United States)

    Bhat, Krishna P L; Salazar, Katrina L; Balasubramaniyan, Veerakumar; Wani, Khalida; Heathcock, Lindsey; Hollingsworth, Faith; James, Johanna D; Gumin, Joy; Diefes, Kristin L; Kim, Se Hoon; Turski, Alice; Azodi, Yasaman; Yang, Yuhui; Doucette, Tiffany; Colman, Howard; Sulman, Erik P; Lang, Frederick F; Rao, Ganesh; Copray, Sjef; Vaillant, Brian D; Aldape, Kenneth D

    2011-12-15

    Recent molecular classification of glioblastoma (GBM) has shown that patients with a mesenchymal (MES) gene expression signature exhibit poor overall survival and treatment resistance. Using regulatory network analysis of available expression microarray data sets of GBM, including The Cancer Genome Atlas (TCGA), we identified the transcriptional coactivator with PDZ-binding motif (TAZ), to be highly associated with the MES network. TAZ expression was lower in proneural (PN) GBMs and lower-grade gliomas, which correlated with CpG island hypermethylation of the TAZ promoter compared with MES GBMs. Silencing of TAZ in MES glioma stem cells (GSCs) decreased expression of MES markers, invasion, self-renewal, and tumor formation. Conversely, overexpression of TAZ in PN GSCs as well as murine neural stem cells (NSCs) induced MES marker expression and aberrant osteoblastic and chondrocytic differentiation in a TEAD-dependent fashion. Using chromatin immunoprecipitation (ChIP), we show that TAZ is directly recruited to a majority of MES gene promoters in a complex with TEAD2. The coexpression of TAZ, but not a mutated form of TAZ that lacks TEAD binding, with platelet-derived growth factor-B (PDGF-B) resulted in high-grade tumors with MES features in a murine model of glioma. Our studies uncover a direct role for TAZ and TEAD in driving the MES differentiation of malignant glioma.

  4. Convection-enhanced Delivery of Therapeutics for Malignant Gliomas

    Science.gov (United States)

    SAITO, Ryuta; TOMINAGA, Teiji

    2017-01-01

    Convection-enhanced delivery (CED) circumvents the blood–brain barrier by delivering agents directly into the tumor and surrounding parenchyma. CED can achieve large volumes of distribution by continuous positive-pressure infusion. Although promising as an effective drug delivery method in concept, the administration of therapeutic agents via CED is not without challenges. Limitations of distribution remain a problem in large brains, such as those of humans. Accurate and consistent delivery of an agent is another challenge associated with CED. Similar to the difficulties caused by immunosuppressive environments associated with gliomas, there are several mechanisms that make effective local drug distribution difficult in malignant gliomas. In this review, methods for local drug application targeting gliomas are discussed with special emphasis on CED. Although early clinical trials have failed to demonstrate the efficacy of CED against gliomas, CED potentially can be a platform for translating the molecular understanding of glioblastomas achieved in the laboratory into effective clinical treatments. Several clinical studies using CED of chemotherapeutic agents are ongoing. Successful delivery of effective agents should prove the efficacy of CED in the near future. PMID:27980285

  5. The ketogenic diet for the treatment of malignant glioma.

    Science.gov (United States)

    Woolf, Eric C; Scheck, Adrienne C

    2015-01-01

    Advances in our understanding of glioma biology has led to an increase in targeted therapies in preclinical and clinical trials; however, cellular heterogeneity often precludes the targeted molecules from being found on all glioma cells, thus reducing the efficacy of these treatments. In contrast, one trait shared by virtually all tumor cells is altered (dysregulated) metabolism. Tumor cells have an increased reliance on glucose, suggesting that treatments affecting cellular metabolism may be an effective method to improve current therapies. Indeed, metabolism has been a focus of cancer research in the last few years, as many pathways long associated with tumor growth have been found to intersect metabolic pathways in the cell. The ketogenic diet (high fat, low carbohydrate and protein), caloric restriction, and fasting all cause a metabolic change, specifically, a reduction in blood glucose and an increase in blood ketones. We, and others, have demonstrated that these metabolic changes improve survival in animal models of malignant gliomas and can potentiate the anti-tumor effect of chemotherapies and radiation treatment. In this review we discuss the use of metabolic alteration for the treatment of malignant brain tumors.

  6. Radiochemotherapy of malignant glioma in adults. Clinical experiences

    Energy Technology Data Exchange (ETDEWEB)

    Kortmann, R.D.; Jeremic, B.; Plasswilm, L.; Bamberg, M. [Dept. for Radiation Oncology, Univ. of Tuebingen (Germany); Weller, M. [Dept. of Neurology, Univ. of Tuebingen (Germany)

    2003-04-01

    Background: Standard treatment in patients with malignant glioma consists of surgery and postoperative radiotherapy. A high early recurrence rate, particularly in glioblastoma, has led to the investigation of additional chemotherapy. Material and Methods: Recent results of radiochemotherapy published in the literature were reviewed with respect to outcome in phase II and III trials. Based on these experiences, aspects of future strategies were discussed. Results: 3 decades of intensive research had, unfortunately, little impact on the overall results. While early prospective studies established adjuvant nitrosoureas, particularly BCNU, as suitable adjuvant to surgery and postoperative radiotherapy, further studies largely concentrated on combined chemotherapeutic protocols, mostly procarbazine, CCNU and vincristine (PCV), which was shown to prolong survival in anaplastic astrocytoma. The recent MRC study, however, showed no effect for adjuvant PCV in grade III and IV malignant glioma. Only in high-grade glioma with an oligodendroglial component, additional chemotherapy may be of a decisive benefit. The introduction of newer drugs such as paclitaxel, temozolomide, or gemcitabine demonstrated no decisive advantage. Different modes of application and sequencing of radiotherapy and chemotherapy are presently actively investigated, but failed to substantially improve outcome. Conclusions: Therefore, search for newer and more effective drugs continues, as well as for ''optimal'' administration and sequencing, especially from the standpoint of accompanying acute and late toxicity. Finally, recent endeavors focused on basic research such as angiogenesis, migration and invasion, or induction of cell differentiation, but these strategies are still away from broader clinical investigation. (orig.)

  7. Targeted therapy in the treatment of malignant gliomas

    Directory of Open Access Journals (Sweden)

    Rimas V Lukas

    2009-05-01

    Full Text Available Rimas V Lukas1, Adrienne Boire2, M Kelly Nicholas1,2 1Department of Neurology; 2Department of Medicine, University of Chicago, Chicago, IL, USAAbstract: Malignant gliomas are invasive tumors with the potential to progress through current available therapies. These tumors are characterized by a number of abnormalities in molecular signaling that play roles in tumorigenesis, spread, and survival. These pathways are being actively investigated in both the pre-clinical and clinical settings as potential targets in the treatment of malignant gliomas. We will review many of the therapies that target the cancer cell, including the epidermal growth factor receptor, mammalian target of rapamycin, histone deacetylase, and farnesyl transferase. In addition, we will discuss strategies that target the extracellular matrix in which these cells reside as well as angiogenesis, a process emerging as central to tumor development and growth. Finally, we will briefly touch on the role of neural stem cells as both potential targets as well as delivery vectors for other therapies. Interdependence between these varied pathways, both in maintaining health and in causing disease, is clear. Thus, attempts to easily classify some targeted therapies are problematic.Keywords: glioma, EGFR, mTOR, HDAC, Ras, angiogenesis

  8. Relapse of herpes encephalitis induced by temozolomide-based chemoradiation in a patient with malignant glioma.

    Science.gov (United States)

    Okada, Masaki; Miyake, Keisuke; Shinomiya, Aya; Kawai, Nobuyuki; Tamiya, Takashi

    2013-02-01

    The authors report on a case of concurrent herpes simplex encephalitis (HSE) and malignant glioma. The co-occurrence of HSE and malignant glioma is very rare, but it can occur during glioma treatment. Both radiotherapy and chemoradiation with temozolomide can induce viral reactivation, leading to HSE relapse. Careful observation for HSE is necessary when administering chemoradiation to patients with a history of HSE. Antiviral therapy for HSE must be initiated immediately, and the chemoradiation for glioma should be stopped; however, it is not clear what antitumor therapy is optimal when HSE co-occurs during the treatment of glioma.

  9. Efficacy and toxicity of postoperative temozolomide radiochemotherapy in malignant glioma

    Energy Technology Data Exchange (ETDEWEB)

    Kocher, M.; Kunze, S.; Eich, H.T.; Semrau, R.; Mueller, R.P. [Dept. of Radiation Oncology, Univ. of Cologne (Germany)

    2005-03-01

    Purpose: to evaluate the feasibility, safety and efficacy of daily temozolomide concurrent with postoperative radiotherapy in malignant glioma. Patients and methods: from 11/1999 to 03/2003, n = 81 patients aged 15-72 years (median 52 years, karnofsky score 80-100% in 83%) suffering from primary glioblastoma (n = 47), anaplastic astrocytoma (n = 6), anaplastic oligodendroglioma (n = 16), and recurrent glioma (n = 12) were treated. Patients with primary gliomas received a combination of postoperative radiotherapy (60 Gy/1.8- to 2.0-Gy fractions) and daily oral temozolomide (75 mg/m{sup 2}) at all irradiation days (30-33 doses), while recurrent tumors were treated with 45-60 Gy and temozolomide. Initially, 6/81 patients had daily temozolomide doses of 50 mg/m{sup 2}. Results: in total, 70/81 patients (86%) completed both radio- and chemotherapy. Grade 1 nausea/vomiting was seen in 28%, grade 2 in 11%, grade 3 in 1%. Antiemetics were applied in 41%. Hematologic toxicities were observed as follows: leukopenia grade 3/4 1%, lymphopenia grade 3/4 46%, thrombopenia grade 3/4 1%. Two patients under dexamethasone suffered herpes encephalitis after one and 16 doses of temozolomide (75 mg/m{sup 2}). Median survival was 15 months for glioblastoma. In oligodendroglioma patients, a 4-year survival rate of 78% was observed. Conclusion: postoperative radiochemotherapy with 30-33 daily doses of temozolomide (75 mg/m{sup 2}) is safe in patients with malignant glioma. The combined schedule is effective in oligodendroglioma patients and may prolong survival in glioblastoma. Effort should be taken to minimize corticosteroid doses, since both steroids and temozolomide lead to immunosuppression. (orig.)

  10. Experimental approaches for the treatment of malignant gliomas.

    Science.gov (United States)

    Arko, Leopold; Katsyv, Igor; Park, Grace E; Luan, William Patrick; Park, John K

    2010-10-01

    Malignant gliomas, which include glioblastomas and anaplastic astrocytomas, are the most common primary tumors of the brain. Over the past 30 years, the standard treatment for these tumors has evolved to include maximal safe surgical resection, radiation therapy and temozolomide chemotherapy. While the median survival of patients with glioblastomas has improved from 6 months to 14.6 months, these tumors continue to be lethal for the vast majority of patients. There has, however, been recent substantial progress in our mechanistic understanding of tumor development and growth. The translation of these genetic, epigenetic and biochemical findings into therapies that have been tested in clinical trials is the subject of this review.

  11. Survival following interstitial brachytherapy for recurrent malignant glioma.

    Science.gov (United States)

    Kitchen, N D; Hughes, S W; Taub, N A; Sofat, A; Beaney, R P; Thomas, D G

    1994-01-01

    The treatment of recurrent malignant glioma is difficult and at present largely disappointing. Furthermore the results of any treatment modality need to be interpreted with knowledge regarding patient selection and timing of treatment. The results of interstitial brachytherapy using iodine-125 in 23 patients are presented. There were no operative complications. Median survival time from tumour recurrence and implantation was 36 and 25 weeks respectively. Karnofsky Performance Status (KPS) was significantly associated with survival, though patient age, original tumour histology, prior chemotherapy, and time to recurrence were not. Treatment does confer modest survival benefit as compared to controls, but our results are not as impressive as others. Reasons for this finding are discussed.

  12. Photochemical internalization for the treatment of malignant gliomas

    Science.gov (United States)

    Madsen, Steen J.; Kharkhuu, Khishigzaya; Berg, Kristian; Hirschberg, Henry

    2007-02-01

    Photochemical internalization (PCI) is a technique to improve the utilization of macromolecules (e.g. chemotherapeutic agents) in cancer therapy in a site-specific manner. The concept is based on the use of specially designed photosensitizers which localize preferentially in the membranes of endocytic vesicles. Upon exposure to light the photosensitizers induce the formation of reactive oxygen species such as singlet molecular oxygen. The photooxidation of the endocytic membranes leads to the release of the contents of the vesicles into the cytosol. In this way, macromolecules encapsulated by the vesicles will reach the cytosol and exert their biological activity instead of being degraded by lysosomal hydrolases. The utility of PCI for the treatment of malignant gliomas was investigated in vitro using an F98 rat glioma cell line. The cytotoxicity of 5-aminolevulinic acid (ALA) based PCI of bleomycin was compared to: (1) ALA-PDT, and (2) bleomycin. In all cases, monolayers were incubated in ALA, bleomycin, or ALA + bleomycin for 4 hours and were subsequently exposed to 635 nm light. Toxicity was evaluated using colony formation assays. F98 rat glioma cells in monolayer were found to be susceptible to the effects of both ALA-PDT and bleomycin. ALA-PDT was found to be particularly effective when light was delivered at a low irradiance of 5 mW cm -2. In this case, a radiant exposure of 20 J cm -2 resulted in only 4% survival. Bleomycin was found to be toxic at relatively low concentrations, incubation of F98 cells in 10 μg ml -1 for 4 hours resulted in 1% survival. The PCI effect was found to be negligible for the parameters investigated in the F98 cell line suggesting that: (1) the incubation time was sub-optimal and/or (2) ALA was inappropriate for this application.

  13. MicroRNA profiling in the malignant progression of gliomas

    Science.gov (United States)

    Stupak, E. V.; Veryaskina, Yu. A.; Titov, S. E.; Achmerova, L. G.; Stupak, V. V.; Ivanov, M. K.; Zhimulev, I. F.; Kolesnikov, N. N.

    2016-08-01

    Wealth of data indicates that microRNAs (miRNAs) are directly involved in carcinogenesis and that miRNA can, on their own, act as diagnostic and prognostic markers for various types of cancers, including gliomas. The aim of this study was to conduct a comparative analysis of expression profile for 10 microRNAs (miR-124, -125b, -16, -181b, -191, -21, -221, -223, -31, and -451) in surgical specimens of various hystotypes of glioimatissues vs adjacent normal tissues from the same patient (n = 77). The study identified specific microRNA expression profiles for different histotypes of tumors that are related to their degree of malignancy. We have outlined approaches to development of miRNA-based diagnostic and prognostic panel, which may be used to compensate for the lack of appropriate screening methods.

  14. EXPERIMENTAL STUDY ON THE GENE THERAPY OF MALIGNANT GLIOMA WITH ANTISENSE VEGF RNA

    Institute of Scientific and Technical Information of China (English)

    浦佩玉; 王建桢; 黄强; 张敬; 张云亭

    2003-01-01

    Objective: To study the effect of antisense VEGF RNA on rat C6 gliomas in vivo and find out the feasibility of antiangiogenesis therapy with antisense VEGF RNA for malignant gliomas. Methods: Parental rat C6 glioma cells and C6 cells transfected with antisense VEGF cDNA were implanted intracerebrally and subcutaneously into SD rats as control and transfected group. Rats bearing cerebral and subcutaneous C6 gliomas were treated with antisense VEGF cDNA as treated group and sense VEGF cDNA and empty vector as control of treated group. The general manifestation, survival time, MRI and histopathological changes of all rats were observed. The volume of subcutaneously implanted tumors was determined regularly. In situ hybridization and immunohistochemical staining were used for detection of VEGF gene expression of gliomas while PCNA immunostaining and TUNEL method for examination of proliferation activity and apoptosis of gliomas, respectively. Results: The survival of the rats in transfected and treated group was prolonged. There were two rats surviving over 90 d in the treated group and their tumors disappeared. The VEGF gene expression, the number of microvessels and the proliferation activity were decreased and a large amount of apoptotic cells could be found in cerebral and subcutaneous gliomas in treated and transfected groups. Conclusion: VEGF is one of the candidate genes for gene therapy of malignant gliomas. Antisense VEGF RNA combined with other therapies should be studied further for enhancing the therapeutic effect of malignant gliomas.

  15. Spontaneous immune responses against glioma-associated antigens in a long term survivor with malignant glioma

    Directory of Open Access Journals (Sweden)

    Fujita Mitsugu

    2007-12-01

    Full Text Available Abstract Background In patients with high grade glioma, little is known regarding existence of naturally occurring adaptive T cell reactivity against glioma-associated antigens (GAAs. In this report, we characterized GAA-specific CD8+ T cells and innate immune cells in a patient who has survived with anaplastic astrocytoma (AA for over 12 years without recurrence. Methods Peripheral blood mononuclear cells (PBMCs derived from the long term survivor with AA were evaluated for the frequency, cytotoxic T lymphocyte (CTL activity and differentiation status of CD8+ cells recognizing GAA-derived epitopes as well as relative numbers of other immune cell subsets. This patient's AA tissue was evaluated for expression of two GAAs EphA2 and interleukin-13 receptor α2 subunit (IL-13Rα2 by immunohistochemistry. Results The patient's tumor expressed both EphA2 and IL-13Rα2, and in vitro stimulated PBMC demonstrated superior EphA2883–891 and IL-13Rα2345–353-specific CTL reactivity compared to PBMC samples from two other patients with progressing malignant glioma. Unstimulated EphA2883–891-reactive CD8+ T cells contained high numbers of CD45RA-/CCR7- late effector and CD45RA-/CCR7+ central memory cells. Among other leukocyte subsets, elevated numbers of NK-T cells were found. Conclusion To our knowledge, the current study is one of the first demonstrating the presence of antigen-experienced, GAA-reactive CD8+ T cells in a patient who has survived with AA for over 12 years without recurrence. Further studies are warranted to determine whether the status of GAA-reactive CD8+ T cells dictates survival of patients and/or response to therapeutic vaccines.

  16. Malignant glioma of the optic chiasm eight years after radiotherapy for prolactinoma

    Energy Technology Data Exchange (ETDEWEB)

    Hufnagel, T.J.; Kim, J.H.; Lesser, R.; Miller, J.M.; Abrahams, J.J.; Piepmeier, J.; Manuelidis, E.E.

    1988-12-01

    A 41-year-old man had rapidly progressive visual loss caused by a malignant glioma that developed in the optic chiasm eight years after radiation therapy for a recurrent prolactinoma. Radiation-induced glioma should be considered as a cause of progressive visual loss in patients who have received irradiation in the region of the sella turcica.

  17. Over-expression of tetraspanin 8 in malignant glioma regulates tumor cell progression

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Si-Jian [Department of Neurosurgery, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025 (China); Wu, Yue-Bing [Department of Internal Medicine Oncology, Hubei Cancer Hospital, Wuhan, Hubei 430079 (China); Cai, Shang [Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Suzhou 21500 (China); Pan, Yi-Xin; Liu, Wei [Department of Stereotactic and Functional Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Bian, Liu-Guan [Department of Neurosurgery, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025 (China); Sun, Bomin [Department of Stereotactic and Functional Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Sun, Qing-Fang, E-mail: sunqingfang11@163.com [Department of Neurosurgery, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025 (China)

    2015-03-13

    Tumor cell invasion and proliferation remain the overwhelming causes of death for malignant glioma patients. To establish effective therapeutic methods, new targets implied in these processes have to be identified. Tetraspanin 8 (Tspn8) forms complexes with a large variety of trans-membrane and/or cytosolic proteins to regulate several important cellular functions. In the current study, we found that Tspn8 was over-expressed in multiple clinical malignant glioma tissues, and its expression level correlated with the grade of tumors. Tspn8 expression in malignant glioma cells (U251MG and U87MG lines) is important for cell proliferation and migration. siRNA-mediated knockdown of Tspn8 markedly reduced in vitro proliferation and migration of U251MG and U87MG cells. Meanwhile, Tspn8 silencing also increased the sensitivity of temozolomide (TMZ), and significantly increased U251MG or U87MG cell death and apoptosis by TMZ were achieved with Tspn8 knockdown. We observed that Tspn8 formed a complex with activated focal adhesion kinase (FAK) in both human malignant glioma tissues and in above glioma cells. This complexation appeared required for FAK activation, since Tspn8 knockdown inhibited FAK activation in U251MG and U87MG cells. These results provide evidence that Tspn8 contributes to the pathogenesis of glioblastoma probably by promoting proliferation, migration and TMZ-resistance of glioma cells. Therefore, targeting Tspn8 may provide a potential therapeutic intervention for malignant glioma. - Highlights: • Tspn8 is over-expressed in multiple clinical malignant glioma tissues. • Tspn8 expression is correlated with the grade of malignant gliomas. • Tspn8 knockdown suppresses U251MG/U87MG proliferation and in vitro migration. • Tspn8 knockdown significantly increases TMZ sensitivity in U251MG/U87MG cells. • Tspn8 forms a complex with FAK, required for FAK activation.

  18. Antisense MMP-9 RNA inhibits malignant glioma cell growth in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    Cuiyun Sun; Qian Wang; Hongxu Zhou; Shizhu Yu; Alain R.Simard; Chunsheng Kang; Yanyan Li

    2013-01-01

    The matrix-degrading metalloproteinases (MMPs),particularly MMP-9,play important roles in the pathogenesis and development of malignant gliomas.In the present study,the oncogenic role of MMP-9 in malignant glioma cells was investigated via antisense RNA blockade in vitro and in vivo.TJ905 malignant glioma cells were transfected with pcDNA3.0 vector expressing antisense MMP-9 RNA (pcDNA-ASMMP9),which significantly decreased MMP-9 expression,and cell proliferation was assessed.For in vivo studies,U251 cells,a human malignant glioma cell line,were implanted subcutaneously into 4-to 6-week-old BALB/c nude mice.The mice bearing well-established U251 gliomas were treated with intratumoral pcDNA-AS-MMP9-Lipofectamine complex (AS-MMP-9-treated group),subcutaneous injection of endostatin (endostatin-treated group),or both (combined therapy group).Mice treated with pcDNA (empty vector)-Lipofectamine served as the control group.Four or eight weeks later,the volume and weight of tumor,MMP-9 expression,microvessel density and proliferative activity were assayed.We demonstrate that pcDNA-AS-MMP9 significantly decreased MMP-9 expression and inhibited glioma cell proliferation.Volume and weight of tumor,MMP-9 expression,microvessel density and proliferative activity in the antisense-MMP-9-treated and therapeutic alliance groups were significantly lower than those in the control group.The results suggest that MMP-9 not only promotes malignant glioma cell invasiveness,but also affects tumor cell proliferation.Blocking the expression of MMP-9 with antisense RNA substantially suppresses the malignant phenotype of glioma cells,and thus can be used as an effective therapeutic strategy for malignant gliomas.

  19. Dissection of mitogenic and neurodegenerative actions of cystine and glutamate in malignant gliomas.

    Science.gov (United States)

    Savaskan, N E; Seufert, S; Hauke, J; Tränkle, C; Eyüpoglu, I Y; Hahnen, E

    2011-01-06

    Malignant glioma represents one of the most aggressive and lethal human neoplasias. A hallmark of gliomas is their rapid proliferation and destruction of vital brain tissue, a process in which excessive glutamate release by glioma cells takes center stage. Pharmacologic antagonism with glutamate signaling through ionotropic glutamate receptors attenuates glioma progression in vivo, indicating that glutamate release by glioma cells is a prerequisite for rapid glioma growth. Glutamate has been suggested to promote glioma cell proliferation in an autocrine or paracrine manner, in particular by activation of the (RS)-α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid hydrate (AMPA) subtype of glutamate receptors. Here, we dissect the effects of glutamate secretion on glioma progression. Glioma cells release glutamate through the amino-acid antiporter system X(c)(-), a process that is mechanistically linked with cystine incorporation. We show that disrupting glutamate secretion by interfering with the system X(c)(-) activity attenuates glioma cell proliferation solely cystine dependently, whereas glutamate itself does not augment glioma cell growth in vitro. Neither AMPA receptor agonism nor antagonism affects glioma growth in vitro. On a molecular level, AMPA insensitivity is concordant with a pronounced transcriptional downregulation of AMPA receptor subunits or overexpression of the fully edited GluR2 subunit, both of which block receptor activity. Strikingly, AMPA receptor inhibition in tumor-implanted brain slices resulted in markedly reduced tumor progression associated with alleviated neuronal cell death, suggesting that the ability of glutamate to promote glioma progression strictly requires the tumor microenvironment. Concerning a potential pharmacotherapy, targeting system X(c)(-) activity disrupts two major pathophysiological properties of glioma cells, that is, the induction of excitotoxic neuronal cell death and incorporation of cystine required for

  20. Transformation of quiescent adult oligodendrocyte precursor cells into malignant glioma through a multistep reactivation process.

    Science.gov (United States)

    Galvao, Rui Pedro; Kasina, Anita; McNeill, Robert S; Harbin, Jordan E; Foreman, Oded; Verhaak, Roel G W; Nishiyama, Akiko; Miller, C Ryan; Zong, Hui

    2014-10-07

    How malignant gliomas arise in a mature brain remains a mystery, hindering the development of preventive and therapeutic interventions. We previously showed that oligodendrocyte precursor cells (OPCs) can be transformed into glioma when mutations are introduced perinatally. However, adult OPCs rarely proliferate compared with their perinatal counterparts. Whether these relatively quiescent cells have the potential to transform is unknown, which is a critical question considering the late onset of human glioma. Additionally, the premalignant events taking place between initial mutation and a fully developed tumor mass are particularly poorly understood in glioma. Here we used a temporally controllable Cre transgene to delete p53 and NF1 specifically in adult OPCs and demonstrated that these cells consistently give rise to malignant gliomas. To investigate the transforming process of quiescent adult OPCs, we then tracked these cells throughout the premalignant phase, which revealed a dynamic multistep transformation, starting with rapid but transient hyperproliferative reactivation, followed by a long period of dormancy, and then final malignant transformation. Using pharmacological approaches, we discovered that mammalian target of rapamycin signaling is critical for both the initial OPC reactivation step and late-stage tumor cell proliferation and thus might be a potential target for both glioma prevention and treatment. In summary, our results firmly establish the transforming potential of adult OPCs and reveal an actionable multiphasic reactivation process that turns slowly dividing OPCs into malignant gliomas.

  1. Genetically Engineered Multilineage-Differentiating Stress-Enduring Cells as Cellular Vehicles against Malignant Gliomas

    Directory of Open Access Journals (Sweden)

    Tomohiro Yamasaki

    2017-09-01

    Full Text Available Malignant glioma, the most common malignant brain tumor in adults, is difficult to treat due to its aggressive invasive nature. Enzyme/prodrug suicide gene therapy based on the herpes simplex virus thymidine kinase (HSVtk/ganciclovir (GCV system is an efficient strategy for treating malignant gliomas. In the present study, we evaluated treatment with multilineage-differentiating stress-enduring (Muse cells, which are endogenous non-tumorigenic pluripotent-like stem cells that are easily collectable from the bone marrow as SSEA-3+ cells, as carriers of the HSVtk gene. Human Muse cells showed potent migratory activity toward glioma cells both in vitro and in vivo. HSVtk gene-transduced Muse cells (Muse-tk cells at a cell number of only 1/32 that of U87 human glioma cells completely eradicated U87 gliomas in nude mouse brains, showing a robust in vivo bystander effect. Pre-existing intracranial U87 gliomas in nude mouse brains injected intratumorally with Muse-tk cells followed by intraperitoneal GCV administration were significantly reduced in size within 2 weeks, and 4 of 10 treated mice survived over 200 days. These findings suggest that intratumoral Muse-tk cell injection followed by systemic GCV administration is safe and effective and that allogeneic Muse-tk cell-medicated suicide gene therapy for malignant glioma is clinically feasible.

  2. Fatty acid oxidation is required for the respiration and proliferation of malignant glioma cells.

    Science.gov (United States)

    Lin, Hua; Patel, Shaan; Affleck, Valerie S; Wilson, Ian; Turnbull, Douglass M; Joshi, Abhijit R; Maxwell, Ross; Stoll, Elizabeth A

    2017-01-01

    Glioma is the most common form of primary malignant brain tumor in adults, with approximately 4 cases per 100 000 people each year. Gliomas, like many tumors, are thought to primarily metabolize glucose for energy production; however, the reliance upon glycolysis has recently been called into question. In this study, we aimed to identify the metabolic fuel requirements of human glioma cells. We used database searches and tissue culture resources to evaluate genotype and protein expression, tracked oxygen consumption rates to study metabolic responses to various substrates, performed histochemical techniques and fluorescence-activated cell sorting-based mitotic profiling to study cellular proliferation rates, and employed an animal model of malignant glioma to evaluate a new therapeutic intervention. We observed the presence of enzymes required for fatty acid oxidation within human glioma tissues. In addition, we demonstrated that this metabolic pathway is a major contributor to aerobic respiration in primary-cultured cells isolated from human glioma and grown under serum-free conditions. Moreover, inhibiting fatty acid oxidation reduces proliferative activity in these primary-cultured cells and prolongs survival in a syngeneic mouse model of malignant glioma. Fatty acid oxidation enzymes are present and active within glioma tissues. Targeting this metabolic pathway reduces energy production and cellular proliferation in glioma cells. The drug etomoxir may provide therapeutic benefit to patients with malignant glioma. In addition, the expression of fatty acid oxidation enzymes may provide prognostic indicators for clinical practice. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology.

  3. Government/Andra 2001/2004 quadrennial contract; Contrat quadriennal 2001/2004 Etat/Andra

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The French national agency for the management of radioactive wastes (ANDRA) was created on December 31, 1991 with the objective of carrying out research works in the domain of the long term management of radioactive wastes: research programs, management of waste disposal facilities, realisation and exploitation of underground laboratories for the design and setting up of new disposal facilities, definition of safety rules, conditioning and disposal specifications, inventory and localization of all radioactive wastes inside the French territory. This documents aims at defining the missions of the Andra for the 2001-2004 era, ten years after its creation: classification of radioactive wastes; positioning and missions of the Agency; objectives for the industrial mission (safety, storage and disposal solutions, management solutions, continuation of the inventory work, optimization of disposal costs, memory and surveillance); objectives of the research mission (high scientific level projects, structuration of researches, reinforcement of the coordination between the 3 axes of the 1991 law, exploitation and management of underground laboratories, spreading out of scientific results); objectives of the information mission (inventory and localization of wastes, realization of a reference inventory, contribution to the local information, proposal for a clear and verifiable information); international policy objectives (promotion of contacts and cooperations with foreign partners, representation of the Agency among the big international organizations, punctual missions for the valorization of the Agency competencies); evaluation and quality assurance inside the Agency (safety evaluation, scientific and technical evaluation, quality policy and environment, ethics, contract follow up). (J.S.)

  4. The strategy for enhancing temozolomide against malignant glioma

    Directory of Open Access Journals (Sweden)

    Mitsutoshi eNakada

    2012-08-01

    Full Text Available A combined therapy of the alkylating agent temozolomide (TMZ and radiotherapy is standard treatment, and it improves the survival of patients with newly diagnosed glioblastoma (GBM. The DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT removes the most cytotoxic lesions generated by TMZ, O6-methylguanine, establishing MGMT as one of the most important DNA repair mechanisms of TMZ-induced DNA damage. Thus, the expression of MGMT, its activity, and its promoter methylation status are associated with the response of GBM to TMZ, confirming that MGMT promotes clinical resistance to TMZ. Previous studies have shown that a variety of drugs such as interferon-β, levetiracetam, resveratrol, and valproic acid increased the sensitivity of TMZ through MGMT-dependent or MGMT-independent mechanisms. In this review, we describe drugs and promising molecules that influence the responsiveness of GBM to TMZ and discuss their putative mechanism of action. In MGMT-positive GBMs, drugs that modulate MGMT activity could enhance the therapeutic activity of TMZ. Thus, administration of these drugs as an adjunct to TMZ chemotherapy may have clinical applications in patients with malignant gliomas to improve the outcome.

  5. Surgery for malignant gliomas: mechanistic reasoning and slippery statistics.

    Science.gov (United States)

    Mitchell, Patrick; Ellison, David W; Mendelow, A David

    2005-07-01

    Current surgical treatment of malignant gliomas largely depends on mechanistic reasoning and data collected in non-randomised studies. Technological advance has enabled more accurate resection of tumours and preservation of eloquent brain areas but ethical considerations have restricted randomised trials on the efficacy of surgery to one small trial that found a 3 month survival advantage for patients over age 65 years who received surgery and interim analysis of a larger trial. There is an argument for surgery as a palliative measure in patients with symptoms caused by mechanisms that are surgically remediable. Whether there is any survival advantage from surgery in patients other than those with immediately life-threatening, surgically remediable complications, such as raised intracranial pressure, is unclear. The available data show that if such an advantage does exist, it is modest at best. Adjuvant treatments given surgically are being studied. Chemotherapy wafers are the most prominent of the adjuvant treatments but the evidence available is insufficient to recommend their use in routine practice. In this review we examine the prevailing mechanistic model and observational data; we assess how these are applied and the priorities they indicate for future research.

  6. Hyperbaric oxygen promotes malignant glioma cell growth and inhibits cell apoptosis.

    Science.gov (United States)

    Wang, Yong-Gang; Zhan, Yi-Ping; Pan, Shu-Yi; Wang, Hai-Dong; Zhang, Dun-Xiao; Gao, Kai; Qi, Xue-Ling; Yu, Chun-Jiang

    2015-07-01

    Glioblastoma multiforme (GBM) is the most frequently diagnosed intracranial malignant tumor in adults. Clinical studies have indicated that hyperbaric oxygen may improve the prognosis and reduce complications in glioma patients; however, the specific mechanism by which this occurs remains unknown. The present study investigated the direct effects of hyperbaric oxygen stimulation on glioma by constructing an intracranial transplanted glioma model in congenic C57BL/6J mice. Bioluminescent imaging (BLI) was used to assess the growth of intracranial transplanted GL261-Luc glioma cells in vivo, while flow cytometric and immunohistochemical assays were used to detect and compare the expression of the biomarkers, Ki-67, CD34 and TUNEL, reflecting the cell cycle, apoptosis and angiogenesis. BLI demonstrated that hyperbaric oxygen promoted the growth of intracranially transplanted GL261-Luc glioma cells in vivo. Flow cytometric analysis indicated that hyperbaric oxygen promoted GL261-Luc glioma cell proliferation and also prevented cell cycle arrest. In addition, hyperbaric oxygen inhibited the apoptosis of the transplanted glioma cells. Immunohistochemical analysis also indicated that hyperbaric oxygen increased positive staining for Ki-67 and CD34, while reducing staining for TUNEL (a marker of apoptosis). The microvessel density was significantly increased in the hyperbaric oxygen treatment group compared with the control group. In conclusion, hyperbaric oxygen treatment promoted the growth of transplanted malignant glioma cells in vivo and also inhibited the apoptosis of these cells.

  7. Comprehensive RNA-seq transcriptomic profiling in the malignant progression of gliomas

    Science.gov (United States)

    Zhao, Zheng; Meng, Fanlin; Wang, Wen; Wang, Zheng; Zhang, Chuanbao; Jiang, Tao

    2017-01-01

    Gliomas are the most common and lethal intracranial tumours. RNA sequencing technologies and advanced data analyses recently enabled the characterization of transcriptomic information, including protein-coding gene expression, non-coding gene expression, alternative splicing, and fusion gene detection, to facilitate detection of diseases and altered phenotypes. As a part of the Chinese Glioma Genome Atlas (CGGA) project, our aim was to delineate comprehensive transcriptome profiling in the malignant progression of human gliomas. Three hundred twenty five gliomas with different grades were collected over the past twelve years. Using the Illumina HiSeq 2,000 system, over 92 million high quality 101-bp paired-end reads were generated per sample, yielding a total of 30 billion reads. This comprehensive dataset will be useful to deepen the comprehensive understanding of gliomas, providing an opportunity to generate new therapies, diagnoses, and preventive strategies. PMID:28291232

  8. The limited capacity of malignant glioma-derived exosomes to suppress peripheral immune effectors.

    Science.gov (United States)

    Iorgulescu, J Bryan; Ivan, Michael E; Safaee, Michael; Parsa, Andrew T

    2016-01-15

    Tumor-derived microvesicular exosomes permit intercellular communication both locally and systemically by delivering a snapshot of the tumor cell's constituents. We thus investigated whether exosomes mediate malignant glioma's facility for inducing peripheral immunosuppression. In Western blot and RT-PCR analyses, glioma-derived exosomes displayed exosome-specific markers, but failed to recapitulate the antigen-presentation machinery, surface co-modulatory signals, or immunosuppressive mediator status of their parent tumor cells. Treatment with glioma-derived exosomes promoted immunosuppressive HLA-DR(low) monocytic phenotypes, but failed to induce monocytic PD-L1 expression or alter the activation of cytotoxic T-cells from patients' peripheral blood by FACS and RT-PCR analyses. Our results suggest that malignant glioma-derived exosomes are restricted in their capacity to directly prime peripheral immunosuppression.

  9. Effects of radiotherapy and estramustine on the microvasculature in malignant glioma

    OpenAIRE

    Johansson, M; Bergenheim, A. T.; Widmark, A; Henriksson, R.

    1999-01-01

    Tumour angiogenesis is essential for progression of solid tumours and constitutes an interesting target for therapy. However, impaired tumour blood supply may also be an important obstacle for treatment by radiotherapy and chemotherapy. Estramustine has been shown to increase tumour blood flow and potentiate the effect of radiotherapy in experimental glioma. This study investigated the effects of fractionated radiotherapy and estramustine on angiogenesis in malignant glioma. The intracerebral...

  10. Downregulation of RKIP is associated with poor outcome and malignant progression in gliomas.

    Directory of Open Access Journals (Sweden)

    Olga Martinho

    Full Text Available Malignant gliomas are highly infiltrative and invasive tumors, which precludes the few treatment options available. Therefore, there is an urgent need to elucidate the molecular mechanisms underlying gliomas aggressive phenotype and poor prognosis. The Raf Kinase Inhibitory protein (RKIP, besides regulating important intracellular signaling cascades, was described to be associated with progression, metastasis and prognosis in several human neoplasms. Its role in the prognosis and tumourigenesis of gliomas remains unclear. In the present study, we found that RKIP protein is absent in a low frequency (10%, 20/193 of glioma tumors. Nevertheless, the absence of RKIP expression was an independent prognostic marker in glioma. Additionally, by in vitro downregulation of RKIP, we found that RKIP inhibition induces a higher viability and migration of the cells, having no effect on cellular proliferation and angiogenesis, as assessed by in vivo CAM assay. In conclusion, this is the largest series studied so far evaluating the expression levels of this important cancer suppressor protein in glioma tumors. Our results suggest that in a subset of tumors, the absence of RKIP associates with highly malignant behavior and poor survival of patients, which may be a useful biomarker for tailored treatment of glioma patients.

  11. Chemotherapy of malignant gliomas: studies of the BTCG.

    Science.gov (United States)

    Shapiro, W R

    1992-01-01

    Phase III Trial 8,301 tested the efficacy and safety of intraarterial (IA) BCNU for the treatment of newly resected malignant glioma, comparing IA BCNU vs intravenous (IV) BCNU (200 mg/m2 q 8 wks), each regimen without or with IV 5-FU (1 g/m2/d x 3 two wks after BCNU). All patients also received radiation therapy. 505 patients entered the study; 448 were in the Valid Study Group (VSG). Excluding 190 patients who for medical reasons were not eligible for IA BCNU, 315 patients were randomized between IA (167) and IV (148) BCNU. Actuarial analysis (log-rank) demonstrated worse survival for the IA group (p = 0.002). Serious toxicity was observed in the IA group; 16 patients (9.5%) developed irreversible encephalopathy with CT evidence of cerebral edema, and 26 patients developed visual loss ipsilateral to the infused carotid artery. 5-FU did not influence survival. Survival between the IV and the IA BCNU patients with glioblastoma multiforme did not differ, but was worse for IA BCNU patients with anaplastic astrocytoma than for IV BCNU (p = 0.002). Neuropathologically, IA BCNU produced white matter necrosis. IA BCNU is neither safe nor effective. Phase II Trial 8420, compared IA cisplatin, 60 mg/m2 every 4 wks, vs IV PCNU, 100 mg/m2 q 8 wks; 311 patients were randomized. Preliminary results have been presented. Severe encephalopathy occurred in only 1.5% of patients receiving IA cisplatin. The median survival of the IV PCNU patients was 11.8 months; that of the IA cisplatin patients was 9.4 months, not statistically different.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. The role of autophagy in sensitizing malignant glioma cells to radiation therapy

    Institute of Scientific and Technical Information of China (English)

    Wenzhuo Zhuang; Zhenghong Qin; Zhongqin Liang

    2009-01-01

    Malignant gliomas representthe majority of primary brain tumors.The current standard treatments for malignant gliomas include surgical resection,radiation therapy,and chemotherapy.Radiotherapy,a standard adjuvant therapy,confers some survival advantages,but resistance of the glioma cells to the efficacy of radiation limits the success of the treatment.The mechanisms underlying glioma cell radioresistance have remained elusive.Autophagy is a protein degradation system characterized by a prominent formation of double-membrane vesicles in the cytoplasm.Recent studies suggest that autophagy may be important in the regulation of cancer development and progression and in determining the response of tumor cells to anticancer therapy.Also,autophagy is a novel response of glioma cells to ionizing radiation.Autophagic cell death is considered programmed cell death type Ⅱ,whereas apoptosis is programmed cell death type Ⅰ.These two types of cell death are predominantly distinctive,but many studies demonstrate a cross-talk between them.Whether autophagy in cancer cells causes death or protects cells is controversial.The regulatory pathways of autophagy share several molecules.P13K/Akt/Mtor,DNA-PK,tumor suppressor genes, mitochondrial damage,and lysosome may play important roles in radiation-induced autophagy in glioma cells.Recently,a highly tumorigenic glioma tumor subpopulation,termed cancer stem cell or tumor-initiating cell,has been shown to promote therapeutic resistance.This review summarizes the main mediators associated with radiation-induced autophagy in malignant glioma cells and discusses the implications of the cancer stem cell hypothesis for the development of future therapies for brain tumors.

  13. Plant thymidine kinase 1: a novel efficient suicide gene for malignant glioma therapy

    DEFF Research Database (Denmark)

    Khan, Z.; Knecht, Wolfgang; Willer, Mette

    2010-01-01

    The prognosis for malignant gliomas remains poor, and new treatments are urgently needed. Targeted suicide gene therapy exploits the enzymatic conversion of a prodrug, such as a nucleoside analog, into a cytotoxic compound. Although this therapeutic strategy has been considered a promising regimen...... suicide gene therapy system in combination with stem cell mediated gene delivery promises new treatment of malignant gliomas....... for central nervous system (CNS) tumors, several obstacles have been encountered such as inefficient gene transfer to the tumor cells, limited prodrug penetration into the CNS, and inefficient enzymatic activity of the suicide gene. We report here the cloning and successful application of a novel thymidine...

  14. Radiation treatment parameters for re-irradiation of malignant glioma

    Energy Technology Data Exchange (ETDEWEB)

    Niyazi, M.; Soehn, M.; Schwarz, S.B.; Lang, P.; Belka, C.; Ganswindt, U. [Ludwig-Maximilians-Univ., Muenchen (Germany). Dept. of Radiation Oncology

    2012-04-15

    Background and purpose: Most patients with malignant glioma ultimately fail locally or loco-regionally after the first treatment, with re-irradiation being a reasonable treatment option. However, only limited data are presently available allowing for a precise selection of patients suitable for re-treatment with regard to safety and efficacy. Material and methods: Using the department database, 39 patients with a second course of radiation were identified. Doses to gross tumor volume (GTV), planning target volume (PTV), and relevant organs at risk (OARs; brainstem, optic chiasm, optic nerves, brain) were retrospectively analyzed and correlated to outcome parameters. Relevant treatment parameters including D{sub max}, D{sub min}, D{sub mean}, and volume (ml) were obtained. Equivalent uniform dose (EUD) values were calculated for the tumor and OARs. To address the issue of radiation necrosis/leukoencephalopathy posttherapeutic MRI images were routinely examined every 3 months. Results: Median follow-up was 147 days. The time interval between first and second irradiation was regularly greater than 6 months. Median EUDs to the OARs were 11.9 Gy (range 0.7-27.4 Gy) to the optic chiasm, 17.6 Gy (range 0.7-43.0 Gy) to the brainstem, 4.9/2.1 Gy (range 0.3-24.5 Gy) to the right/left optic nerve, and 29.4 Gy (range 25.2-32.5 Gy) to the brain. No correlation between treated volume and survival was observed. Cold spots and dose did not correlate with survival. Re-irradiated volumes were treated with on average lower doses if they were larger and vice versa. Conclusion: In general, re-irradiation is a safe and feasible re-treatment option. No relevant toxicity was observed after re-irradiation in our patient cohort during follow-up. In this regard, this analysis provides baseline data for the selection of putative patients. EUD values are derived and may serve as reference for further studies, including intensity-modulated radiotherapy (IMRT) protocols. (orig.)

  15. Fotemustine: A Third-Generation Nitrosourea for the Treatment of Recurrent Malignant Gliomas

    Directory of Open Access Journals (Sweden)

    Patrick Beauchesne

    2012-02-01

    Full Text Available Malignant gliomas account for approximately 60% of all primary brain tumors in adults. The prognosis for patients with malignant glioma has not changed significantly in recent years. Despite debulking surgery, radiotherapy and cytotoxic chemotherapy, the median survival time is nine to 12 months, and very few, if any, patients are cured from this illness. Fotemustine is an alkylating agent characterized by the grafting of a phosphonoalanine group onto the nitrosourea radical with consequent high lipophilicity and improved diffusion through the cell membrane and the blood-brain barrier. Fotemustine has been registered for use in two indications: disseminated malignant melanoma, including cerebral metastases, and primary brain tumors. Fotemustine is currently used in Europe, particularly in France and Italy, as a salvage therapy for recurrent malignant gliomas. Myelosuppression, leucopenia and thrombocytopenia are the most frequent side effects of treatment with fotemustine. The objective response to this treatment is between 26% and 70%, and the reported median survival time is 10 months. New drug combinations containing fotemustine and angiogenesis inhibitors, such as bevacizumab, are currently under development. In this review, we describe all the combinations of fotemustine currently used in clinical practice for recurrent malignant gliomas.

  16. Fotemustine: A Third-Generation Nitrosourea for the Treatment of Recurrent Malignant Gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Beauchesne, Patrick [Neuro-oncology/Neurology, University Hospital of Nancy, Hôpital CENTRAL, CO N 34,54035 Nancy cedex (France)

    2012-02-01

    Malignant gliomas account for approximately 60% of all primary brain tumors in adults. The prognosis for patients with malignant glioma has not changed significantly in recent years. Despite debulking surgery, radiotherapy and cytotoxic chemotherapy, the median survival time is nine to 12 months, and very few, if any, patients are cured from this illness. Fotemustine is an alkylating agent characterized by the grafting of a phosphonoalanine group onto the nitrosourea radical with consequent high lipophilicity and improved diffusion through the cell membrane and the blood-brain barrier. Fotemustine has been registered for use in two indications: disseminated malignant melanoma, including cerebral metastases, and primary brain tumors. Fotemustine is currently used in Europe, particularly in France and Italy, as a salvage therapy for recurrent malignant gliomas. Myelosuppression, leucopenia and thrombocytopenia are the most frequent side effects of treatment with fotemustine. The objective response to this treatment is between 26% and 70%, and the reported median survival time is 10 months. New drug combinations containing fotemustine and angiogenesis inhibitors, such as bevacizumab, are currently under development. In this review, we describe all the combinations of fotemustine currently used in clinical practice for recurrent malignant gliomas.

  17. Convection enhanced delivery and in vivo imaging of polymeric nanoparticles for the treatment of malignant glioma

    Science.gov (United States)

    Mansour, Nassir; Pytel, Peter; Cahill, Kirk E; Voce, David J; Kang, Shijun; Spretz, Ruben; Welp, Ulrich; Noriega, Sandra E; Nunez, Luis; Larsen, Gustavo F; Weichselbaum, Ralph R.; Yamini, Bakhtiar

    2013-01-01

    A major obstacle to the management of malignant glioma is the inability to effectively deliver therapeutic agent to the tumor. In this study, we describe a polymeric nanoparticle vector that not only delivers viable therapeutic, but can also be tracked in vivo using MRI. Nanoparticles, produced by a non-emulsion technique, were fabricated to carry iron oxide within the shell and the chemotherapeutic agent, temozolomide (TMZ), as the payload. Nanoparticle properties were characterized and subsequently their endocytosis-mediated uptake by glioma cells demonstrated. Convection enhanced delivery (CED) can disperse nanoparticles through the rodent brain and their distribution is accurately visualized by MRI. Infusion of nanoparticles does not result in observable animal toxicity relative to control. CED of TMZ bearing nanoparticles prolongs the survival of animals with intracranial xenografts compared to control. In conclusion, the described nanoparticle vector represents a unique multifunctional platform that can be used for image-guided treatment of malignant glioma. PMID:23891990

  18. Chimeric adeno-associated virus and bacteriophage: a potential targeted gene therapy vector for malignant glioma.

    Science.gov (United States)

    Asavarut, Paladd; O'Neill, Kevin; Syed, Nelofer; Hajitou, Amin

    2014-01-01

    The incipient development of gene therapy for cancer has fuelled its progression from bench to bedside in mere decades. Of all malignancies that exist, gliomas are the largest class of brain tumors, and are renowned for their aggressiveness and resistance to therapy. In order for gene therapy to achieve clinical success, a multitude of barriers ranging from glioma tumor physiology to vector biology must be overcome. Many viral gene delivery systems have been subjected to clinical investigation; however, with highly limited success. In this review, the current progress and challenges of gene therapy for malignant glioma are discussed. Moreover, we highlight the hybrid adeno-associated virus and bacteriophage vector as a potential candidate for targeted gene delivery to brain tumors.

  19. Myxoma virus infection promotes NK lysis of malignant gliomas in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Henry Ogbomo

    Full Text Available Myxoma virus (MYXV is a well-established oncolytic agent against different types of tumors. MYXV is also known for its immunomodulatory properties in down-regulating major histocompatibility complex (MHC I surface expression (via the M153R gene product, a viral E3-ubiquitin ligase and suppressing T cell killing of infected target cells. MHC I down-regulation, however, favors NK cell activation. Brain tumors including gliomas are characterized by high MHC I expression with impaired NK activity. We thus hypothesized that MYXV infection of glioma cells will promote NK cell-mediated recognition and killing of gliomas. We infected human gliomas with MYXV and evaluated their susceptibility to NK cell-mediated cytotoxicity. MYXV enhanced NK cell-mediated killing of glioma cells (U87 cells, MYXV vs. Mock: 51.73% vs. 28.63%, P = .0001, t test; U251 cells, MYXV vs. Mock: 40.4% vs. 20.03%, P .0007, t test. Using MYXV M153R targeted knockout (designated vMyx-M153KO to infect gliomas, we demonstrate that M153R was responsible for reduced expression of MHC I on gliomas and enhanced NK cell-mediated antiglioma activity (U87 cells, MYXV vs. vMyx-M153KO: 51.73% vs. 25.17%, P = .0002, t test; U251 cells, MYXV vs. vMyx-M153KO: 40.4% vs. 19.27, P = .0013, t test. Consequently, NK cell-mediated lysis of established human glioma tumors in CB-17 SCID mice was accelerated with improved mouse survival (log-rank P = .0072. These results demonstrate the potential for combining MYXV with NK cells to effectively kill malignant gliomas.

  20. Myxoma virus infection promotes NK lysis of malignant gliomas in vitro and in vivo.

    Science.gov (United States)

    Ogbomo, Henry; Zemp, Franz J; Lun, Xueqing; Zhang, Jiqing; Stack, Danuta; Rahman, Masmudur M; McFadden, Grant; Mody, Christopher H; Forsyth, Peter A

    2013-01-01

    Myxoma virus (MYXV) is a well-established oncolytic agent against different types of tumors. MYXV is also known for its immunomodulatory properties in down-regulating major histocompatibility complex (MHC) I surface expression (via the M153R gene product, a viral E3-ubiquitin ligase) and suppressing T cell killing of infected target cells. MHC I down-regulation, however, favors NK cell activation. Brain tumors including gliomas are characterized by high MHC I expression with impaired NK activity. We thus hypothesized that MYXV infection of glioma cells will promote NK cell-mediated recognition and killing of gliomas. We infected human gliomas with MYXV and evaluated their susceptibility to NK cell-mediated cytotoxicity. MYXV enhanced NK cell-mediated killing of glioma cells (U87 cells, MYXV vs. Mock: 51.73% vs. 28.63%, P = .0001, t test; U251 cells, MYXV vs. Mock: 40.4% vs. 20.03%, P .0007, t test). Using MYXV M153R targeted knockout (designated vMyx-M153KO) to infect gliomas, we demonstrate that M153R was responsible for reduced expression of MHC I on gliomas and enhanced NK cell-mediated antiglioma activity (U87 cells, MYXV vs. vMyx-M153KO: 51.73% vs. 25.17%, P = .0002, t test; U251 cells, MYXV vs. vMyx-M153KO: 40.4% vs. 19.27, P = .0013, t test). Consequently, NK cell-mediated lysis of established human glioma tumors in CB-17 SCID mice was accelerated with improved mouse survival (log-rank P = .0072). These results demonstrate the potential for combining MYXV with NK cells to effectively kill malignant gliomas.

  1. Perioperative high-dose-rate brachytherapy in the treatment of recurrent malignant gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Fabrini, Maria Grazia; Pasqualetti, Francesco; Grespi, Silvia [Div. of Radiation Oncology, ' ' S. Chiara' ' Pisa Hospital (Italy); Perrone, Franco [Div. of Health Physics, ' ' S. Chiara' ' Pisa Hospital (Italy); De Franco, Lucia; Vannozzi, Riccardo [Div. of Neurosurgery, ' ' S. Chiara' ' Pisa Hospital (Italy); Cionini, Luca [Div. of Radiation Oncology, ' ' S. Chiara' ' Pisa Hospital (Italy); Pisa Univ. (Italy)

    2009-08-15

    Purpose: To assess the feasibility and effectiveness of perioperative high-dose-rate brachytherapy for recurrent malignant gliomas. Patients and Methods: Between 2005 and 2008, 21 patients (14 males and seven females) with relapsed malignant glioma underwent a second surgery followed by a brachytherapy implant in the surgical cavity. Median age was 60 years, and median Karnofsky performance status 80. A single fraction of 18 Gy specified at 5 mm depth was administered perioperatively. Then, the applicator was removed nonsurgically. Mean postoperative hospitalization time was 3 days. Results: At the time of analysis, 15 patients (71%) had died and six (29%) were alive. Median follow-up was 32.3 months. Median overall survival from diagnosis amounted to 21.7 months. Median survival after recurrence was 8.0 months, and 6-month progression-free survival 42%. Patients were stratified into classes according to the prognostic recursive partitioning analysis. Conclusion: Perioperative brachytherapy has proven to be safe and well tolerated in patients with recurrent malignant glioma. No severe toxicity was reported, and the treatment has proven to be effective in symptomatic recurrences of malignant gliomas. (orig.)

  2. BH3 Mimetics Reactivate Autophagic Cell Death in Anoxia-Resistant Malignant Glioma Cells

    Directory of Open Access Journals (Sweden)

    Holger Hetschko

    2008-08-01

    Full Text Available Here, we investigated the specific roles of Bcl-2 family members in anoxia tolerance of malignant glioma. Flow cytometry analysis of cell death in 17 glioma cell lines revealed drastic differences in their sensitivity to oxygen withdrawal (<0.1% O2. Cell death correlated with mitochondrial depolarization, cytochrome C release, and translocation of green fluorescent protein (GFP-tagged light chain 3 to autophagosomes but occurred in the absence of caspase activation or phosphatidylserine exposure. In both sensitive and tolerant glioma cell lines, anoxia caused a significant up-regulation of BH3-only genes previously implicated in mediating anoxic cell death in other cell types (BNIP3, NIX, PUMA, and Noxa. In contrast, we detected a strong correlation between anoxia resistance and high expression levels of antiapoptotic Bcl-2 family proteins Bcl-xL, Bcl-2, and Mcl-1 that function to neutralize the proapoptotic activity of BH3-only proteins. Importantly, inhibition of both Bcl-2 and Bcl-xL with the small-molecule BH3 mimetics HA14-1 and BH3I-2′ and by RNA interference reactivated anoxia-induced autophagic cell death in previously resistant glioma cells. Our data suggest that endogenous BH3-only protein induction may not be able to compensate for the high expression of antiapoptotic Bcl-2 family proteins in anoxia-resistant astrocytomas. They also support the conjecture that BH3 mimetics may represent an exciting new approach for the treatment of malignant glioma.

  3. Characterization of highly proliferative secondary tumor clusters along host blood vessels in malignant glioma.

    Science.gov (United States)

    Wang, Ting-Chung; Cheng, Chun-Yu; Yang, Wei-Hsun; Chen, Wen-Cheng; Chang, Pey-Jium

    2015-11-01

    The aim of the present study was to investigate the extensive invasion of tumor cells into normal brain tissue, a life‑threatening feature of malignant gliomas. How invasive tumor cells migrate into normal brain tissue and form a secondary tumor structure remains to be elucidated. In the present study, the morphological and phenotypic changes of glioma cells during invasion in a C6 glioma model were investigated. C6 glioma cells were stereotactically injected into the right putamen region of adult Sprague‑Dawley rats. The brain tissue sections were then subjected to hematoxylin and eosin, immunohistochemical or immunofluorescent staining. High magnification views of the tissue sections revealed that C6 cells formed tumor spheroids following implantation and marked invasion was observed shortly after spheroid formation. In the later stages of invasion, certain tumor cells invaded the perivascular space and formed small tumor clusters. These small tumor clusters exhibited certain common features, including tumor cell multilayers surrounding an arteriole, which occurred up to several millimeters away from the primary tumor mass; a high proliferation rate; and similar gene expression profiles to the primary tumor. In conclusion, the present study revealed that invading tumor cells are capable of forming highly proliferative cell clusters along arterioles near the tumor margin, which may be a possible cause of the recurrence of malignant glioma.

  4. Epidermal growth factor receptor:a key manipulator in molecular pathways of malignant glioma

    Institute of Scientific and Technical Information of China (English)

    Changshu Ke

    2016-01-01

    The epidermal growth factor receptor (EGFR) is a member of the ErbB/EGFR family, including EGFR/Her1, ErbB2/Her2, ErbB-3/Her3, and ErbB-4/Her4. EGFR exerts its efects through the receptor tyrosine kinase phosphorylation and activation of important downstream signaling pathways in normal and neoplastic cels, mainly the Ras GTPase/MAP kinase (MAPK), STAT3, and phosphatidylinositide 3 kinase-AKT pathways. EGFR deregulation is common in malignant glioma, especialy primary glioblastoma, and exists in three forms: gene overexpression (amplification), autocrine efects of EGFR activation, and activating receptor mutation (EGFRvIII). However, some EGFR abnormalities have also been found in low-grade gliomas, including the nuclear localization of EGFR, expression in the microfoci of anaplastic transformation, and association with neovascularization in the mesenchyma of the glioma, which suggests that some unknown EGFR-related mechanisms are possibly responsible for its central role in the initiation and progression of malignant glioma. Uncovering these mechanisms wil have potential value in the development of radio-therapy, chemotherapy, and EGFR-targeted therapy for glioma.

  5. The EGF Receptor Promotes the Malignant Potential of Glioma by Regulating Amino Acid Transport System xc(-).

    Science.gov (United States)

    Tsuchihashi, Kenji; Okazaki, Shogo; Ohmura, Mitsuyo; Ishikawa, Miyuki; Sampetrean, Oltea; Onishi, Nobuyuki; Wakimoto, Hiroaki; Yoshikawa, Momoko; Seishima, Ryo; Iwasaki, Yoshimi; Morikawa, Takayuki; Abe, Shinya; Takao, Ayumi; Shimizu, Misato; Masuko, Takashi; Nagane, Motoo; Furnari, Frank B; Akiyama, Tetsu; Suematsu, Makoto; Baba, Eishi; Akashi, Koichi; Saya, Hideyuki; Nagano, Osamu

    2016-05-15

    Extracellular free amino acids contribute to the interaction between a tumor and its microenvironment through effects on cellular metabolism and malignant behavior. System xc(-) is composed of xCT and CD98hc subunits and functions as a plasma membrane antiporter for the uptake of extracellular cystine in exchange for intracellular glutamate. Here, we show that the EGFR interacts with xCT and thereby promotes its cell surface expression and function in human glioma cells. EGFR-expressing glioma cells manifested both enhanced antioxidant capacity as a result of increased cystine uptake, as well as increased glutamate, which promotes matrix invasion. Imaging mass spectrometry also revealed that brain tumors formed in mice by human glioma cells stably overexpressing EGFR contained higher levels of reduced glutathione compared with those formed by parental cells. Targeted inhibition of xCT suppressed the EGFR-dependent enhancement of antioxidant capacity in glioma cells, as well as tumor growth and invasiveness. Our findings establish a new functional role for EGFR in promoting the malignant potential of glioma cells through interaction with xCT at the cell surface. Cancer Res; 76(10); 2954-63. ©2016 AACR.

  6. The involvement of heparan sulfate proteoglycans in stem cell differentiation and in malignant glioma

    Science.gov (United States)

    Kundu, Soumi; Xiong, Anqi; Forsberg-Nilsson, Karin

    2016-04-01

    Heparan sulfate (HS) proteoglycans (HSPG) are major components of the extracellular matrix. They interact with a plethora of macromolecules that are of physiological importance. The pattern of sulfation of the HS chain determines the specificity of these interactions. The enzymes that synthesize and degrade HS are thus key regulators of processes ranging from embryonic development to tissue homeostasis and tumor development. Formation of the nervous system is also critically dependent on appropriate HSPGs as shown by several studies on the role of HS in neural induction from embryonic stem cells. High-grade glioma is the most common primary malignant brain tumor among adults, and the prognosis is poor. Neural and glioma stem cells share several traits, including sustained proliferation and highly efficient migration in the brain. There are also similarities between the neurogenic niche where adult neural stem cells reside and the tumorigenic niche, including their interactions with components of the extracellular matrix (ECM). The levels of many of these components, for example HSPGs and enzymes involved in the biosynthesis and modification of HS are attenuated in gliomas. In this paper, HS regulation of pathways involved in neural differentiation and how these may be of importance for brain development are discussed. The literature suggesting that modifications of HS could regulate glioma growth and invasion is reviewed. Targeting the invasiveness of glioma cells by modulating HS may improve upon present therapeutic options, which only marginally enhance the survival of glioma patients.

  7. Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas.

    Science.gov (United States)

    Jiao, Yuchen; Killela, Patrick J; Reitman, Zachary J; Rasheed, Ahmed B; Heaphy, Christopher M; de Wilde, Roeland F; Rodriguez, Fausto J; Rosemberg, Sergio; Oba-Shinjo, Sueli Mieko; Nagahashi Marie, Suely Kazue; Bettegowda, Chetan; Agrawal, Nishant; Lipp, Eric; Pirozzi, Christopher; Lopez, Giselle; He, Yiping; Friedman, Henry; Friedman, Allan H; Riggins, Gregory J; Holdhoff, Matthias; Burger, Peter; McLendon, Roger; Bigner, Darell D; Vogelstein, Bert; Meeker, Alan K; Kinzler, Kenneth W; Papadopoulos, Nickolas; Diaz, Luis A; Yan, Hai

    2012-07-01

    Mutations in the critical chromatin modifier ATRX and mutations in CIC and FUBP1, which are potent regulators of cell growth, have been discovered in specific subtypes of gliomas, the most common type of primary malignant brain tumors. However, the frequency of these mutations in many subtypes of gliomas, and their association with clinical features of the patients, is poorly understood. Here we analyzed these loci in 363 brain tumors. ATRX is frequently mutated in grade II-III astrocytomas (71%), oligoastrocytomas (68%), and secondary glioblastomas (57%), and ATRX mutations are associated with IDH1 mutations and with an alternative lengthening of telomeres phenotype. CIC and FUBP1 mutations occurred frequently in oligodendrogliomas (46% and 24%, respectively) but rarely in astrocytomas or oligoastrocytomas ( more than 10%). This analysis allowed us to define two highly recurrent genetic signatures in gliomas: IDH1/ATRX (I-A) and IDH1/CIC/FUBP1 (I-CF). Patients with I-CF gliomas had a significantly longer median overall survival (96 months) than patients with I-A gliomas (51 months) and patients with gliomas that did not harbor either signature (13 months). The genetic signatures distinguished clinically distinct groups of oligoastrocytoma patients, which usually present a diagnostic challenge, and were associated with differences in clinical outcome even among individual tumor types. In addition to providing new clues about the genetic alterations underlying gliomas, the results have immediate clinical implications, providing a tripartite genetic signature that can serve as a useful adjunct to conventional glioma classification that may aid in prognosis, treatment selection, and therapeutic trial design.

  8. TRPM7 channel inhibition mediates midazolam-induced proliferation loss in human malignant glioma.

    Science.gov (United States)

    Chen, Jingkao; Dou, Yunling; Zheng, Xiaoke; Leng, Tiandong; Lu, Xiaofang; Ouyang, Ying; Sun, Huawei; Xing, Fan; Mai, Jialuo; Gu, Jiayu; Lu, Bingzheng; Yan, Guangmei; Lin, Jun; Zhu, Wenbo

    2016-11-01

    The melastatin-like transient receptor potential 7 (TRPM7) has been implicated in proliferation or apoptosis of some cancers, indicating the potential of TRPM7 as an anti-anaplastic target. Here, we identified the characteristic TRPM7 channel currents in human malignant glioma MGR2 cells, which could be blocked by a pharmacologic inhibitor Gd(3+). We mined the clinical sample data from Oncomine Database and found that human malignant glioma tissues expressed higher TRPM7 mRNA than normal brain ones. Importantly, we identified a widely used clinical anesthetic midazolam as a TRPM7 inhibitor. Midazolam treatment for seconds suppressed the TRPM7 currents and calcium influx, and treatment for 48 h inhibited the TRPM7 expression. The inhibitory effect on TRPM7 accounts for the proliferation loss and G0/G1 phase cell cycle arrest induced by midazolam. Our data demonstrates that midazolam represses proliferation of human malignant glioma cells through inhibiting TRPM7 currents, which may be further potentiated by suppressing the expression of TRPM7. Our result indicates midazolam as a pharmacologic lead compound with brain-blood barrier permeability for targeting TRPM7 in the glioma.

  9. Microglia and Macrophages in Malignant Gliomas: Recent Discoveries and Implications for Promising Therapies

    Directory of Open Access Journals (Sweden)

    Anna Carolina Carvalho da Fonseca

    2013-01-01

    Full Text Available Malignant gliomas are the most common primary brain tumors. Their deadliest manifestation, glioblastoma multiforme (GBM, accounts for 15% of all primary brain tumors and is associated with a median survival of only 15 months even after multimodal therapy. There is substantial presence of microglia and macrophages within and surrounding brain tumors. These immune cells acquire an alternatively activated phenotype with potent tumor-tropic functions that contribute to glioma growth and invasion. In this review, we briefly summarize recent data that has been reported on the interaction of microglia/macrophages with brain tumors and discuss potential application of these findings to the development of future antiglioma therapies.

  10. Surgical and therapeutic strategy of recurrent malignant gliomas in intractable location

    Directory of Open Access Journals (Sweden)

    LU Yun-tao

    2012-12-01

    Full Text Available Objective Recurrent malignant gliomas often violate important neurological function parts or deep brain structures due to tumor invasion, further increasing the difficulty of reoperation and treatment. Therefore, how to develop a reasonable treatment strategy, maximize the removal of the tumor, and ensure a basic quality of life of the patient, is nowadays hotly debated by scholars from various countries. This article aims to explore the reasonable treatment and optimal surgical strategy of recurrent malignant gliomas. Methods Four cases of recurrent malignant glioma were collceted. A comprehensive assessment on preoperative imaging, intraoperative operation, postoperative complications and long-term follow-up was made, and treatment strategy was elaborated. Results Postoperative MRI in 2 cases showed the recurrent tumors located in remnant edema parts, which were revealed by T2WI after first resections. One case underwent expanded resection of edema parts according to T2WI. This patient suffered short-sensory aphasia and weakness of right limbs, but recovered by improving cerebral circulation, hyperbaric oxygen, auxiliary acupuncture and physical rehabilitation trainings. One case with brainstem glioma underwent precise resection by laser knife, without postoperative neurological disorders. All the 4 cases received postoperative chemotherapy with TMZ (200 mg/kg, 5 d/28 d. The average follow-up period was (14.00 ± 12.50 months. Conclusion For obvious recurrence of malignant glioma, reoperation is still the key factor to lengthen the survival of patients, and expanded resection of the edema area supplemented by T2WI can reduce recurrence. Under the precondition of maintaining the basic postoperative quality of life of patients (KPS > 70, expanded resection should be used. As for tumors adjacent to the eloquent areas, precise engraving resection should be used to minimize residual tumor cells.

  11. Conditional astroglial Rictor overexpression induces malignant glioma in mice.

    Directory of Open Access Journals (Sweden)

    Tariq Bashir

    Full Text Available BACKGROUND: Hyperactivation of the mTORC2 signaling pathway has been shown to contribute to the oncogenic properties of gliomas. Moreover, overexpression of the mTORC2 regulatory subunit Rictor has been associated with increased proliferation and invasive character of these tumor cells. METHODOLOGY/PRINCIPAL FINDINGS: To determine whether Rictor overexpression was sufficient to induce glioma formation in mice, we inserted a Cre-lox-regulated human Rictor transgene into the murine ROSA26 locus. This floxed Rictor strain was crossed with mice expressing the Cre recombinase driven from the glial fibrillary acidic protein (GFAP promoter whose expression is limited to the glial cell compartment. Double transgenic GFAP-Cre/Rictor(loxP/loxP mice developed multifocal infiltrating glioma containing elevated mTORC2 activity and typically involved the subventricular zone (SVZ and lateral ventricle. Analysis of Rictor-dependent signaling in these tumors demonstrated that in addition to elevated mTORC2 activity, an mTORC2-independent marker of cortical actin network function, was also elevated. Upon histological examination of the neoplasms, many displayed oligodendroglioma-like phenotypes and expressed markers associated with oligodendroglial lineage tumors. To determine whether upstream oncogenic EGFRvIII signaling would alter tumor phenotypes observed in the GFAP-Cre/Rictor(loxP/loxP mice, transgenic GFAP-EGFRvIII; GFAP-Cre/Rictor(loxP/loxP mice were generated. These mice developed mixed astrocytic-oligodendroglial tumors, however glioma formation was accelerated and correlated with increased mTORC2 activity. Additionally, the subventricular zone within the GFAP-Cre/Rictor(loxP/loxP mouse brain was markedly expanded, and a further proliferation within this compartment of the brain was observed in transgenic GFAP-EGFRvIII; GFAP-Cre/Rictor(loxP/loxP mice. CONCLUSION/SIGNIFICANCE: These data collectively establish Rictor as a novel oncoprotein and support

  12. Conditional Astroglial Rictor Overexpression Induces Malignant Glioma in Mice

    Science.gov (United States)

    Bashir, Tariq; Cloninger, Cheri; Artinian, Nicholas; Anderson, Lauren; Bernath, Andrew; Holmes, Brent; Benavides-Serrato, Angelica; Sabha, Nesrin; Nishimura, Robert N.; Guha, Abhijit; Gera, Joseph

    2012-01-01

    Background Hyperactivation of the mTORC2 signaling pathway has been shown to contribute to the oncogenic properties of gliomas. Moreover, overexpression of the mTORC2 regulatory subunit Rictor has been associated with increased proliferation and invasive character of these tumor cells. Methodology/Principal Findings To determine whether Rictor overexpression was sufficient to induce glioma formation in mice, we inserted a Cre-lox-regulated human Rictor transgene into the murine ROSA26 locus. This floxed Rictor strain was crossed with mice expressing the Cre recombinase driven from the glial fibrillary acidic protein (GFAP) promoter whose expression is limited to the glial cell compartment. Double transgenic GFAP-Cre/RictorloxP/loxP mice developed multifocal infiltrating glioma containing elevated mTORC2 activity and typically involved the subventricular zone (SVZ) and lateral ventricle. Analysis of Rictor-dependent signaling in these tumors demonstrated that in addition to elevated mTORC2 activity, an mTORC2-independent marker of cortical actin network function, was also elevated. Upon histological examination of the neoplasms, many displayed oligodendroglioma-like phenotypes and expressed markers associated with oligodendroglial lineage tumors. To determine whether upstream oncogenic EGFRvIII signaling would alter tumor phenotypes observed in the GFAP-Cre/RictorloxP/loxP mice, transgenic GFAP-EGFRvIII; GFAP-Cre/RictorloxP/loxP mice were generated. These mice developed mixed astrocytic-oligodendroglial tumors, however glioma formation was accelerated and correlated with increased mTORC2 activity. Additionally, the subventricular zone within the GFAP-Cre/RictorloxP/loxP mouse brain was markedly expanded, and a further proliferation within this compartment of the brain was observed in transgenic GFAP-EGFRvIII; GFAP-Cre/RictorloxP/loxP mice. Conclusion/Significance These data collectively establish Rictor as a novel oncoprotein and support the role of dysregulated

  13. Effect of inhibition of the ROCK isoform on RT2 malignant glioma cells.

    Science.gov (United States)

    Inaba, Nobuharu; Ishizawa, Sho; Kimura, Masaki; Fujioka, Kouki; Watanabe, Michiko; Shibasaki, Toshiaki; Manome, Yoshinobu

    2010-09-01

    Malignant glioma is one of the most intractable diseases in the human body. Rho-kinase (ROCK) is overexpressed and has been proposed as the main cause for the refractoriness of the disease. Since efficacious treatment is required, this study investigated the effect of inhibition of ROCK isoforms. The short hairpin RNA transcription vector was transfected into the RT2 rat glioma cell line and the characteristics of the cells were investigated. The effect of nimustine hydrochloride (ACNU) anti-neoplastic agent on cells was also measured. Inhibition of ROCK isoforms did not alter cell growth. Cell cycle analysis revealed that ROCK1 down-regulation reduced the G(0) phase population and ROCK2 down-regulation reduced the G(2)/M phase population. When ROCK1-down-regulated cells were exposed to ACNU, they demonstrated susceptibility to the agent. The roles of ROCK1 and ROCK2 may be different in glioma cells. Furthermore, the combination of ROCK1 down-regulation and an anti-neoplastic agent may be useful for the therapy of malignant glioma.

  14. Malignant gliomas: current perspectives in diagnosis, treatment, and early response assessment using advanced quantitative imaging methods

    Directory of Open Access Journals (Sweden)

    Ahmed R

    2014-03-01

    Full Text Available Rafay Ahmed,1 Matthew J Oborski,2 Misun Hwang,1 Frank S Lieberman,3 James M Mountz11Department of Radiology, 2Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; 3Department of Neurology and Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USAAbstract: Malignant gliomas consist of glioblastomas, anaplastic astrocytomas, anaplastic oligodendrogliomas and anaplastic oligoastrocytomas, and some less common tumors such as anaplastic ependymomas and anaplastic gangliogliomas. Malignant gliomas have high morbidity and mortality. Even with optimal treatment, median survival is only 12–15 months for glioblastomas and 2–5 years for anaplastic gliomas. However, recent advances in imaging and quantitative analysis of image data have led to earlier diagnosis of tumors and tumor response to therapy, providing oncologists with a greater time window for therapy management. In addition, improved understanding of tumor biology, genetics, and resistance mechanisms has enhanced surgical techniques, chemotherapy methods, and radiotherapy administration. After proper diagnosis and institution of appropriate therapy, there is now a vital need for quantitative methods that can sensitively detect malignant glioma response to therapy at early follow-up times, when changes in management of nonresponders can have its greatest effect. Currently, response is largely evaluated by measuring magnetic resonance contrast and size change, but this approach does not take into account the key biologic steps that precede tumor size reduction. Molecular imaging is ideally suited to measuring early response by quantifying cellular metabolism, proliferation, and apoptosis, activities altered early in treatment. We expect that successful integration of quantitative imaging biomarker assessment into the early phase of clinical trials could provide a novel approach for testing new therapies

  15. Evolution of radiotherapy and chemotherapy practice in malignant gliomas

    Directory of Open Access Journals (Sweden)

    Anusheel Munshi

    2013-01-01

    Full Text Available Malignant astrocytomas of the brain carry a poor prognosis. This article traces the evolution of radiotherapy and chemotherapy practice including the development of concurrent chemo-radiation schedules in the context of these tumors.

  16. Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of patients with malignant gliomas

    Directory of Open Access Journals (Sweden)

    Torres-Trejo Alejandro

    2007-12-01

    Full Text Available Abstract Background The prognosis for malignant gliomas remains dismal. We addressed the safety, feasibility and preliminary clinical activity of the vaccinations using autologous glioma cells and interleukin (IL-4 gene transfected fibroblasts. Methods In University of Pittsburgh Cancer Institute (UPCI protocol 95-033, adult participants with recurrent glioblastoma multiforme (GBM or anaplastic astrocytoma (AA received gross total resection (GTR of the recurrent tumors, followed by two vaccinations with autologous fibroblasts retrovirally transfected with TFG-IL4-Neo-TK vector admixed with irradiated autologous glioma cells. In UPCI 99-111, adult participants with newly diagnosed GBM or AA, following GTR and radiation therapy, received two intradermal vaccinations with the TFG-IL4-Neo-TK-transfected fibroblasts admixed with type-1 dendritic cells (DC loaded with autologous tumor lysate. The participants were evaluated for occurrence of adverse events, immune response, and clinical response by radiological imaging. Results and Discussion In UPCI 95-033, only 2 of 6 participants received the vaccinations. Four other participants were withdrawn from the trial because of tumor progression prior to production of the cellular vaccine. However, both participants who received two vaccinations demonstrated encouraging immunological and clinical responses. Biopsies from the local vaccine sites from one participant displayed IL-4 dose-dependent infiltration of CD4+ as well as CD8+ T cells. Interferon (IFN-γ Enzyme-Linked Immuno-SPOT (ELISPOT assay in another human leukocyte antigen (HLA-A2+ participant demonstrated systemic T-cell responses against an HLA-A2-restricted glioma-associated antigen (GAA epitope EphA2883–891. Moreover, both participants demonstrated clinical and radiological improvement with no evidence of allergic encephalitis, although both participants eventually succumbed with the tumor recurrence. In 99-111, 5 of 6 enrolled participants

  17. Demethoxycurcumin Retards Cell Growth and Induces Apoptosis in Human Brain Malignant Glioma GBM 8401 Cells

    Directory of Open Access Journals (Sweden)

    Tzuu-Yuan Huang

    2012-01-01

    Full Text Available Demethoxycurcumin (DMC; a curcumin-related demethoxy compound has been recently shown to display antioxidant and antitumor activities. It has also produced a potent chemopreventive action against cancer. In the present study, the antiproliferation (using the MTT assay, DMC was found to have cytotoxic activities against GBM 8401 cell with IC50 values at 22.71 μM and induced apoptosis effects of DMC have been investigated in human brain malignant glioma GBM 8401 cells. We have studied the mitochondrial membrane potential (MMP, DNA fragmentation, caspase activation, and NF-κB transcriptional factor activity. By these approaches, our results indicated that DMC has produced an inhibition of cell proliferation as well as the activation of apoptosis in GBM 8401 cells. Both effects were observed to increase in proportion with the dosage of DMC treatment, and the apoptosis was induced by DMC in human brain malignant glioma GBM 8401 cells via mitochondria- and caspase-dependent pathways.

  18. Interstitial chemotherapy for malignant glioma: Future prospects in the era of multimodal therapy

    Directory of Open Access Journals (Sweden)

    Antonella Mangraviti

    2015-01-01

    Full Text Available The advent of interstitial chemotherapy has significantly increased therapeutic options for patients with malignant glioma. Interstitial chemotherapy can deliver high concentrations of chemotherapeutic agents, directly at the site of the brain tumor while bypassing systemic toxicities. Gliadel, a locally implanted polymer that releases the alkylating agent carmustine, given alone and in combination with various other antitumor and resistance modifying therapies, has significantly increased the median survival for patients with malignant glioma. Convection enhanced delivery, a technique used to directly infuse drugs into brain tissue, has shown promise for the delivery of immunotoxins, monoclonal antibodies, and chemotherapeutic agents. Preclinical studies include delivery of chemotherapeutic and immunomodulating agents by polymer and microchips. Interstitial chemotherapy was shown to maximize local efficacy and is an important strategy for the efficacy of any multimodal approach.

  19. Dendritic cell immunotherapy versus bevacizumab plus irinotecan in recurrent malignant glioma patients: a survival gain analysis

    Science.gov (United States)

    Artene, Stefan-Alexandru; Turcu-Stiolica, Adina; Hartley, Richard; Ciurea, Marius Eugen; Daianu, Oana; Brindusa, Corina; Alexandru, Oana; Tataranu, Ligia Gabriela; Purcaru, Stefana Oana; Dricu, Anica

    2016-01-01

    Background The bevacizumab and irinotecan protocol is considered a standard treatment regimen for recurrent malignant glioma. Recent advances in immunotherapy have hinted that vaccination with dendritic cells could become an alternative salvage therapy for the treatment of recurrent malignant glioma. Methods A search was performed on PubMed, Cochrane Library, Web of Science, ScienceDirect, and Embase in order to identify studies with patients receiving bevacizumab plus irinotecan or dendritic cell therapy for recurrent malignant gliomas. The data obtained from these studies were used to perform a systematic review and survival gain analysis. Results Fourteen clinical studies with patients receiving either bevacizumab plus irinotecan or dendritic cell vaccination were identified. Seven studies followed patients that received bevacizumab plus irinotecan (302 patients) and seven studies included patients that received dendritic cell immunotherapy (80 patients). For the patients who received bevacizumab plus irinotecan, the mean reported median overall survival was 7.5 (95% confidence interval [CI] 4.84–10.16) months. For the patients who received dendritic cell immunotherapy, the mean reported median overall survival was 17.9 (95% CI 11.34–24.46) months. For irinotecan + bevacizumab group, the mean survival gain was −0.02±2.00, while that for the dendritic cell immunotherapy group was −0.01±4.54. Conclusion For patients with recurrent malignant gliomas, dendritic cell immunotherapy treatment does not have a significantly different effect when compared with bevacizumab and irinotecan in terms of survival gain (P=0.535) and does not improve weighted survival gain (P=0.620). PMID:27877052

  20. Daily intake of antioxidants in relation to survival among adult patients diagnosed with malignant glioma

    Directory of Open Access Journals (Sweden)

    Il'yasova Dora

    2010-05-01

    Full Text Available Abstract Background Malignant glioma is a rare cancer with poor survival. The influence of diet and antioxidant intake on glioma survival is not well understood. The current study examines the association between antioxidant intake and survival after glioma diagnosis. Methods Adult patients diagnosed with malignant glioma during 1991-1994 and 1997-2001 were enrolled in a population-based study. Diagnosis was confirmed by review of pathology specimens. A modified food-frequency questionnaire interview was completed by each glioma patient or a designated proxy. Intake of each food item was converted to grams consumed/day. From this nutrient database, 16 antioxidants, calcium, a total antioxidant index and 3 macronutrients were available for survival analysis. Cox regression estimated mortality hazard ratios associated with each nutrient and the antioxidant index adjusting for potential confounders. Nutrient values were categorized into tertiles. Models were stratified by histology (Grades II, III, and IV and conducted for all (including proxy subjects and for a subset of self-reported subjects. Results Geometric mean values for 11 fat-soluble and 6 water-soluble individual antioxidants, antioxidant index and 3 macronutrients were virtually the same when comparing all cases (n = 748 to self-reported cases only (n = 450. For patients diagnosed with Grade II and Grade III histology, moderate (915.8-2118.3 mcg intake of fat-soluble lycopene was associated with poorer survival when compared to low intake (0.0-914.8 mcg, for self-reported cases only. High intake of vitamin E and moderate/high intake of secoisolariciresinol among Grade III patients indicated greater survival for all cases. In Grade IV patients, moderate/high intake of cryptoxanthin and high intake of secoisolariciresinol were associated with poorer survival among all cases. Among Grade II patients, moderate intake of water-soluble folate was associated with greater survival for all cases

  1. Improving the extent of malignant glioma resection by dual intraoperative visualization approach.

    Directory of Open Access Journals (Sweden)

    Ilker Y Eyüpoglu

    Full Text Available Despite continuing debates around cytoreductive surgery in malignant gliomas, there is broad consensus that increased extent of tumor reduction improves overall survival. However, maximization of the extent of tumor resection is hampered by difficulty in intraoperative discrimination between normal and pathological tissue. In this context, two established methods for tumor visualization, fluorescence guided surgery with 5-ALA and intraoperative MRI (iMRI with integrated functional neuronavigation were investigated as a dual intraoperative visualization (DIV approach. Thirty seven patients presumably suffering from malignant gliomas (WHO grade III or IV according to radiological appearance were included. Twenty-one experimental sequences showing complete resection according to the 5-ALA technique were confirmed by iMRI. Fourteen sequences showing complete resection according to the 5-ALA technique could not be confirmed by iMRI, which detected residual tumor. Further analysis revealed that these sequences could be classified as functional grade II tumors (adjacent to eloquent brain areas. The combination of fluorescence guided resection and intraoperative evaluation by high field MRI significantly increased the extent of tumor resection in this subgroup of malignant gliomas located adjacent to eloquent areas from 61.7% to 100%; 5-ALA alone proved to be insufficient in attaining gross total resection without the danger of incurring postoperative neurological deterioration. Furthermore, in the case of functional grade III gliomas, iMRI in combination with functional neuronavigation was significantly superior to the 5-ALA resection technique. The extent of resection could be increased from 57.1% to 71.2% without incurring postoperative neurological deficits.

  2. Modifications of the fiber in adenovirus vectors increase tropism for malignant glioma models.

    Science.gov (United States)

    Staba, M J; Wickham, T J; Kovesdi, I; Hallahan, D E

    2000-01-01

    Recombinant adenovirus (Ad) vectors provide a means of local, therapeutic gene delivery to a wide range of neoplasms. Ad-mediated gene therapy trials in malignant glioma models have been limited by the need for high viral titers and multiple dosages. In an attempt to improve Ad vector gene transfer, we studied human (U87, D54) and rodent (GL261, C6) malignant glioma cell lines transfected with various doses of unmodified Ad vectors (AdZ), Ad vectors that contain an alteration of the fiber-coat protein and that direct virus binding to heparan sulfate receptors (AdZ.F(pK7)), and Ad vectors with modifications of the fiber-coat protein that direct virus binding to alpha1, integrin cellular receptors (AdZ.F(RGD)). AdZ.F(pK7) increased the frequency of cells expressing the reporter gene, beta-galactosidase, and improved transduction by 2- to 20-fold compared with AdZ in U87, D54, and GL261 cells. In U87, D54, GL261, and C6 tumors, AdZ.F(pK7) increased gene transfer by 10- to 100-fold compared with AdZ. AdZ.F(RGD) increased gene expression in C6 xenografts compared with AdZ, but had reduced transduction compared with the C6 xenografts of AdZ in all other glioma tumors. These findings suggest that the increased tropisms resulting from alterations of the Ad vector fiber-coat protein as in AdZ.F(pK7) and AdZ.F(RGD) offer a feasible approach to improving in vitro and in vivo transduction efficiencies in certain malignant glioma cell lines.

  3. Gliomas

    OpenAIRE

    Berger, M.; Weller, M.

    2016-01-01

    Key Features •Synthesizes widely dispersed information on the management of gliomas into one comprehensive resource •Chapters written by international authors who are preeminent researchers in the field •Fully explores the therapeutic options for patient care, from chemotherapy to radiotherapy to personalized approaches Description Researchers’ knowledge of gliomas continues to advance rapidly at both the basic and translational levels, and Gliomas provides a thorough overview ...

  4. Overexpression of Transforming Acidic Coiled Coil‑Containing Protein 3 Reflects Malignant Characteristics and Poor Prognosis of Glioma

    Directory of Open Access Journals (Sweden)

    Ying Sun

    2017-03-01

    Full Text Available Gliomas are malignant primary brain tumors with poor prognosis. Recently, research was indicative of a tight connection between tumor malignancy and genetic alterations. Here, we propose an oncogenic implication of transforming acidic coiled-coil-containing protein 3 (TACC3 in gliomas. By comprehensively analyzing the Chinese glioma genome atlas (CGGA and publicly available data, we demonstrated that TACC3 were overexpressed along with glioma grade and served as an independent negative prognostic biomarker for glioma patients. Functions’ annotations and gene sets’ enrichment analysis suggested that TACC3 may participate in cell cycle, DNA repair, epithelium-mesenchymal transition and other tumor-related biological processes and molecular pathways. Patients with high TACC3 expression showed CD133+ stem cell properties, glioma plasticity and shorter overall survival time under chemo-/radio-therapy. Additionally, a TACC3 associated the miRNA-mRNA network was constructed based on in silico prediction and expression pattern, which provide a foundation for further detection of TACC3-miRNA-mRNA axis function. Collectively, our observations identify TACC3 as an oncogene of tumor malignancy, as well as a prognostic and motoring biomarker for glioma patients.

  5. Safety and Efficacy of Stereotactic Radiosurgery and Adjuvant Bevacizumab in Patients With Recurrent Malignant Gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Cuneo, Kyle C. [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Vredenburgh, James J.; Sampson, John H.; Reardon, David A.; Desjardins, Annick; Peters, Katherine B.; Friedman, Henry S. [Department of Surgery, Duke University Medical Center, Durham, NC (United States); Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC (United States); Willett, Christopher G. [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Kirkpatrick, John P., E-mail: john.kirkpatrick@duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC (United States)

    2012-04-01

    Purpose: Patients with recurrent malignant gliomas treated with stereotactic radiosurgery (SRS) and multiagent systemic therapies were reviewed to determine the effects of patient- and treatment-related factors on survival and toxicity. Methods and Materials: A retrospective analysis was performed on patients with recurrent malignant gliomas treated with salvage SRS from September 2002 to March 2010. All patients had experienced progression after treatment with temozolomide and radiotherapy. Salvage SRS was typically administered only after multiple postchemoradiation salvage systemic therapies had failed. Results: 63 patients were treated with SRS for recurrent high-grade glioma; 49 patients had World Health Organization (WHO) Grade 4 disease. Median follow-up was 31 months from primary diagnosis and 7 months from SRS. Median overall survival from primary diagnosis was 41 months for all patients. Median progression-free survival (PFS) and overall survival from SRS (OS-SRS) were 6 and 10 months for all patients, respectively. The 1-year OS-SRS for patients with Grade 4 glioma who received adjuvant (concurrent with or after SRS) bevacizumab was 50% vs. 22% for patients not receiving adjuvant bevacizumab (p = 0.005). Median PFS for patients with a WHO Grade 4 glioma who received adjuvant bevacizumab was 5.2 months vs. 2.1 months for patients who did not receive adjuvant bevacizumab (p = 0.014). Karnofsky performance status (KPS) and age were not significantly different between treatment groups. Treatment-related Grade 3/4 toxicity for patients receiving and not receiving adjuvant BVZ was 10% and 14%, respectively (p = 0.58).On multivariate analysis, the relative risk of death and progression with adjuvant bevacizumab was 0.37 (confidence interval [CI] 0.17-0.82) and 0.45 (CI 0.21-0.97). KPS >70 and age <50 years were significantly associated with improved survival. Conclusions: The combination of salvage radiosurgery and bevacizumab to treat recurrent malignant

  6. Temozolomide reverses doxorubicin resistance by inhibiting P-glycoprotein in malignant glioma cells.

    Science.gov (United States)

    Zhang, Rong; Saito, Ryuta; Shibahara, Ichiyo; Sugiyama, Shinichiro; Kanamori, Masayuki; Sonoda, Yukihiko; Tominaga, Teiji

    2016-01-01

    Temozolomide is a standard chemotherapy agent for malignant gliomas, but the efficacy is still not satisfactory. Therefore, combination chemotherapy using temozolomide with other anti-tumor compounds is now under investigation. Here we studied the mechanism of the synergistic anti-tumor effect achieved by temozolomide and doxorubicin, and elucidated the inhibitory effect of temozolomide on P-glycoprotein (P-gp). Temozolomide significantly enhanced sensitivity to P-gp substrate in glioma cells, particularly in P-gp-overexpressed cells. Synergetic effects, as determined by isobologram analysis, were observed by combining temozolomide and doxorubicin. Subsequently, flow cytometry was utilized to assess the intracellular retention of doxorubicin in cells treated with doxorubicin with or without temozolomide. Temozolomide significantly increased the accumulation of doxorubicin in these cells. The P-gp adenosine triphosphatase (ATPase) assay showed that temozolomide inhibited the ATPase activity of P-gp. In addition, temozolomide combined with doxorubicin significantly prolonged the survival of 9L intracranial allografted glioma-bearing rats compared to single agent treatment. Collectively, our findings suggest that temozolomide can reverse doxorubicin resistance by directly affecting P-gp transport activity. Combination chemotherapy using temozolomide with other agents may be effective against gliomas in clinical applications.

  7. Concurrent Chemotherapy of Malignant Glioma in Rats by Using Multidrug-Loaded Biodegradable Nanofibrous Membranes

    Science.gov (United States)

    Tseng, Yuan-Yun; Huang, Yin-Chen; Yang, Tao-Chieh; Yang, Shun-Tai; Liu, Shou-Cheng; Chang, Tzu-Min; Kau, Yi-Chuan; Liu, Shih-Jung

    2016-07-01

    Glioblastoma multiforme has a poor prognosis and is highly chemoresistant. In this study, we implanted biodegradable 1,3-bis[2-chloroethyl]-1-nitroso-urea-, irinotecan-, and cisplatin-eluting poly[(d,l)-lactide-co-glycolide] (BIC/PLGA) and virgin nanofibrous membranes on the brain surface of C6 glioma-bearing rats in concurrent and virgin groups, respectively. The concentrations of all applied drugs were significantly higher in the brain than in the blood for more than 8 weeks in all studied rats. Tumor growth was more rapid in the vehicle-treated group, and tumor volumes were significantly higher in the vehicle-treated group. Moreover, the average survival time was significantly shorter in the vehicle-treated group (P = 0.026), and the BIC/PLGA nanofibrous membranes significantly reduced the risk of mortality (P < 0.001). Furthermore, the results suggested that the BIC/PLGA nanofibers reduced the malignancy of C6 glioma. The experimental findings indicate that the multianticancer drug (i.e., BIC)-eluting PLGA nanofibers are favorable candidates for treating malignant glioma.

  8. Radiation promotes malignant progression of glioma cells through HIF-1alpha stabilization.

    Science.gov (United States)

    Kim, Young-Heon; Yoo, Ki-Chun; Cui, Yan-Hong; Uddin, Nizam; Lim, Eun-Jung; Kim, Min-Jung; Nam, Seon-Young; Kim, In-Gyu; Suh, Yongjoon; Lee, Su-Jae

    2014-11-01

    Given its contribution to malignant phenotypes of cancer, tumor hypoxia has been considered as a potential therapeutic problem. In the stressful microenvironment condition, hypoxia inducible factor 1 (HIF1) is well known to mediate the transcriptional adaptation of cells to hypoxia and acts as a central player for the process of hypoxia-driven malignant cancer progression. Here, we found that irradiation causes the HIF1α protein to stabilize, even in normoxia condition through activation of p38 MAPK, thereby promoting angiogenesis in tumor microenvironment and infiltrative property of glioma cells. Notably, irradiation reduced hydroxylation of HIF1α through destabilization of prolyl hydroxylases (PHD)-2. Moreover, radiation also decreased the half-life of protein von Hippel-Lindau (pVHL), which is a specific E3 ligase for HIF1α. Of note, inhibition of p38 MAPK attenuated radiation-induced stabilization of HIF1α through destabilization of PHD-2 and pVHL. In agreement with these results, targeting of either p38 MAPK, HIF1α, pVHL or PHD-2 effectively mitigated the radiation-induced tube formation of human brain-derived micro-vessel endothelial cells (HB-MEC) and infiltration of glioma cells. Taken together, our findings suggest that targeting HIF1α in combination with ionizing radiation might increase the efficacy of radiotherapy for glioma treatment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Aptamer modification improves the adenoviral transduction of malignant glioma cells.

    Science.gov (United States)

    Chen, Hao; Zheng, Xiaojing; Di, BingYan; Wang, Dongyang; Zhang, Yaling; Xia, Haibin; Mao, Qinwen

    2013-12-01

    Adenovirus has shown increasing promise in the gene-viral therapy for glioblastoma, a treatment strategy that relies on the delivery of viruses or transgenes into tumor cells. However, targeting of adenovirus to human glioblastoma remains a challenge due to the low expression level of coxsackie and adenovirus receptor (CAR) in glioma cells. Aptamers are small and highly structured single-stranded oligonucleotides that bind at high affinity to a target molecule, and are good candidates for targeted imaging and therapy. In this study, to construct an aptamer-modified Ad5, we first genetically modified the HVR5 of Ad hexon by biotin acceptor peptide (BAP), which would be metabolically biotinylated during production in HEK293 cells, and then attached the biotin labeled aptamer to the modified Ad through avidin–biotin binding. The aptamers used in this study includes AS1411 and GBI-10. The former is a DNA aptamer that can bind to nucleolin, a nuclear matrix protein found on the surface of cancer cells. The latter is a DNA aptamer that can recognize the extracellular matrix protein tenascin-C on the surface of human glioblastoma cells. To examine if aptamer-modification of the hexon protein could improve the adenoviral transduction efficiency, a glioblastoma cell line, U251, was transduced with aptamer-modified Ads. The transduction efficiency of AS1411- or GBI-10-modified Ad was approximately 4.1-fold or 5.2-fold higher than that of the control. The data indicated that aptamer modified adenovirus would be a useful tool for cancer gene therapy.

  10. 12 years' experience with intraoperative radiotherapy (IORT) of malignant gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Schueller, P.; Micke, O.; Moustakis, C.; Bruns, F.; Schuck, A.; Willich, N. [University Hospital Muenster (Germany). Dept. of Radiotherapy and Radiation Oncology; Palkovic, S.; Schroeder, J.; Wassmann, H. [University Hospital Muenster (Germany). Dept. of Neurosurgery

    2005-08-01

    Background: Even after surgery and radiotherapy, malignant gliomas still have a poor prognosis. The authors report on their experience with IORT in 71 patients. Patients and methods: From May 1992 to February 2004, 71 patients with malignant gliomas were treated with IORT. 26 patients suffered from grade III gliomas, 45 patients from glioblastomas (GBM). IORT was carried out using a standard electron tube and 9- to 18-MeV electrons. 52/71 patients who were primarily treated received 20 Gy IORT + 60 Gy postoperative radiotherapy, 19/71 patients with recurrences only received IORT (20-25 Gy). Results: The complication rates were 1.4% for wound infections and 5.6% for hemorrhage. Median disease-specific survival amounted to 14.9 months (gliomass III) and 14.2 months (GBM). The 2-year survival rates amounted to 26.9% (gliomas III) and 6.8% (GBM; p=0.0296). Total versus subtotal resection had no significant influence on survival (p=0.0741), nor had age, sex, tumor site, performance status, size, primary versus recurrence, and radiation dose. A comparison to a conventionally treated patient group did not show a significant survival improvement. 3 months after treatment, initial symptoms had improved in 59% (hemiparesis), 50% (aphasia), 50% (hemianopsia), and 60% (convulsions). Conclusion: IORT has been shown to be feasible; perioperative complication rates were not increased. Survival was generally not improved compared to a historical control group. Recurrences achieved the same survival as primary tumors, and GBM also had a slightly increased survival, thus being possible indications for IORT. (orig.)

  11. Profound tumor-specific Th2 bias in patients with malignant glioma

    Directory of Open Access Journals (Sweden)

    Shimato Shinji

    2012-11-01

    Full Text Available Abstract Background Vaccination against tumor-associated antigens is one promising approach to immunotherapy against malignant gliomas. While previous vaccine efforts have focused exclusively on HLA class I-restricted peptides, class II-restricted peptides are necessary to induce CD4+ helper T cells and sustain effective anti-tumor immunity. In this report we investigated the ability of five candidate peptide epitopes derived from glioma-associated antigens MAGE and IL-13 receptor α2 to detect and characterize CD4+ helper T cell responses in the peripheral blood of patients with malignant gliomas. Methods Primary T cell responses were determined by stimulating freshly isolated PBMCs from patients with primary glioblastoma (GBM (n = 8, recurrent GBM (n = 5, meningioma (n = 7, and healthy controls (n = 6 with each candidate peptide, as well as anti-CD3 monoclonal antibody (mAb and an immunodominant peptide epitope derived from myelin basic protein (MBP serving as positive and negative controls, respectively. ELISA was used to measure IFN-γ and IL-5 levels, and the ratio of IFN-γ/IL-5 was used to determine whether the response had a predominant Th1 or Th2 bias. Results We demonstrate that novel HLA Class-II restricted MAGE-A3 and IL-13Rα2 peptides can detect T cell responses in patients with GBMs as well as in healthy subjects. Stimulation with a variety of peptide antigens over-expressed by gliomas is associated with a profound reduction in the IFN-γ/IL-5 ratio in GBM patients relative to healthy subjects. This bias is more pronounced in patients with recurrent GBMs. Conclusions Therapeutic vaccine strategies to shift tumor antigen-specific T cell response to a more immunostimulatory Th1 bias may be needed for immunotherapeutic trials to be more successful clinically.

  12. Delivery of local therapeutics to the brain: working toward advancing treatment for malignant gliomas.

    Science.gov (United States)

    Chaichana, Kaisorn L; Pinheiro, Leon; Brem, Henry

    2015-03-01

    Malignant gliomas, including glioblastoma and anaplastic astrocytomas, are characterized by their propensity to invade surrounding brain parenchyma, making curative resection difficult. These tumors typically recur within two centimeters of the resection cavity even after gross total removal. As a result, there has been an emphasis on developing therapeutics aimed at achieving local disease control. In this review, we will summarize the current developments in the delivery of local therapeutics, namely direct injection, convection-enhanced delivery and implantation of drug-loaded polymers, as well as the application of these therapeutics in future methods including microchip drug delivery and local gene therapy.

  13. Rotating magnetic field induced oscillation of magnetic particles for in vivo mechanical destruction of malignant glioma.

    Science.gov (United States)

    Cheng, Yu; Muroski, Megan E; Petit, Dorothée C M C; Mansell, Rhodri; Vemulkar, Tarun; Morshed, Ramin A; Han, Yu; Balyasnikova, Irina V; Horbinski, Craig M; Huang, Xinlei; Zhang, Lingjiao; Cowburn, Russell P; Lesniak, Maciej S

    2016-02-10

    Magnetic particles that can be precisely controlled under a magnetic field and transduce energy from the applied field open the way for innovative cancer treatment. Although these particles represent an area of active development for drug delivery and magnetic hyperthermia, the in vivo anti-tumor effect under a low-frequency magnetic field using magnetic particles has not yet been demonstrated. To-date, induced cancer cell death via the oscillation of nanoparticles under a low-frequency magnetic field has only been observed in vitro. In this report, we demonstrate the successful use of spin-vortex, disk-shaped permalloy magnetic particles in a low-frequency, rotating magnetic field for the in vitro and in vivo destruction of glioma cells. The internalized nanomagnets align themselves to the plane of the rotating magnetic field, creating a strong mechanical force which damages the cancer cell structure inducing programmed cell death. In vivo, the magnetic field treatment successfully reduces brain tumor size and increases the survival rate of mice bearing intracranial glioma xenografts, without adverse side effects. This study demonstrates a novel approach of controlling magnetic particles for treating malignant glioma that should be applicable to treat a wide range of cancers.

  14. EGFR tyrosine kinase inhibition radiosensitizes and induces apoptosis in malignant glioma and childhood ependymoma xenografts.

    Science.gov (United States)

    Geoerger, Birgit; Gaspar, Nathalie; Opolon, Paule; Morizet, Jackie; Devanz, Pauline; Lecluse, Yann; Valent, Alexander; Lacroix, Ludovic; Grill, Jacques; Vassal, Gilles

    2008-07-01

    Malignant gliomas and childhood ependymomas have a high rate of treatment failure. Epidermal growth factor receptor (EGFR) activation has been implicated in the tumorigenesis and radioresistance of many cancers, including brain tumors. Therefore, combining EGFR targeting with irradiation is a potentially attractive therapeutic option. We evaluated the tyrosine kinase inhibitor gefitinib for its antitumor activity and potential to radio-sensitize in vivo in two xenograft models: an EGFR amplified glioma and an EGFR expressing ependymoma, both derived from primary tumors. When administered at 100 mg/kg for 5 consecutive days, gefitinib-induced partial tumor regression in all treated EGFR amplified IGRG88 glioma xenografts. The addition of 1 Gy of irradiation prior to gefitinib administration resulted in 5 complete and 4 partial regressions for the 9 treated tumors as well as a significant tumor growth delay of 33 days for the combined treatment compared to 19 days for each therapy alone, suggesting additive antitumor activity. Tumor regression was associated with inhibition of AKT and MAPK pathways by gefitinib. In contrast, the ependymoma IGREP83 was sensitive to irradiation, but remained resistant to gefitinib. Combined treatment was associated with inhibition of radiation-induced MAPK phosphorylation and significant induction of apoptotic cell death though radiation-induced AKT phosphorylation was maintained. Depending on the scheduling of both therapies, a trend towards superior antitumor activity was observed with combined treatment. Thus, EGFR targeting through tyrosine kinase inhibition appears to be a promising new approach in the treatment of EGFR-driven glioma, particularly in combination with radiation therapy. (c) 2008 Wiley-Liss, Inc.

  15. Angiocentric glioma transformed into anaplastic ependymoma: Review of the evidence for malignant potential.

    Science.gov (United States)

    McCracken, James A; Gonzales, Michael F; Phal, Pramit M; Drummond, Katharine J

    2016-12-01

    Angiocentric glioma (AG) is a low grade glioma, that was first described in 2002. Since this description, 83 patients with AG have been described, including ours. AG typically presents in childhood with medically refractory seizures that are cured with gross surgical resection. Whilst the natural history is that of a benign tumour, there have been reports of recurrence, transformation, and malignant features that suggest that AG is potentially malignant. We add to the literature a case of a 16-year-old girl who presented in May 2011 with a 3-month history of complex partial seizures, with MRI showing a T2-weighted hyperintense lesion in the left insula and inferior frontal lobe. This was confirmed on biopsy as AG and was followed with surveillance imaging. In April 2012, she presented with disease progression and underwent a left temporal lobectomy, with histology showing both AG and grade II astrocytoma. Adjuvant radiotherapy of 50 Gray in 28 fractions was administered. A small area of contrast enhancement appeared in the left parietal lobe in December 2012, which progressed over subsequent months. In June 2013, she underwent a near total excision, with histology showing anaplastic ependymoma. She received six cycles of adjuvant temozolamide. Despite this, the tumour continued to progress, with her seizure control deteriorating, and the development of a right hemiparesis. The patient died in January 2014, aged 19years. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Toxicity profile of temozolomide in the treatment of 300 malignant glioma patients in Korea.

    Science.gov (United States)

    Bae, So Hyun; Park, Min-Jung; Lee, Min Mi; Kim, Tae Min; Lee, Se-Hoon; Cho, Sung Yun; Kim, Young-Hoon; Kim, Yu Jung; Park, Chul-Kee; Kim, Chae-Yong

    2014-07-01

    This study evaluated the toxicity profiles of temozolomide in the treatment of malignant glioma as either concurrent or adjuvant chemotherapy. We retrospectively reviewed the medical records of 300 malignant glioma patients treated with temozolomide in two medical institutions in Korea between 2004 and 2010. Two hundred nine patients experienced a total of 618 toxicities during temozolomide therapy. A total of 84.8% of the 618 toxicities were Common Terminology Criteria for Adverse Events (CTCAE) grade 1 or 2, while 15.2% were grade 3 or 4. Among the hematologic toxicities, thrombocytopenia (13.7%), anemia (11.0%), and AST/ALT increases (7.0%) were common. Among the non-hematologic toxicities, nausea (44.3%), vomiting (37.0%), and anorexia (14.3%) were the three most common toxicities. There was no mortality due to temozolomide. Although temozolomide showed many types of toxicities, the majority of the toxicities were tolerable and of lower grade. Gastrointestinal troubles are the most common toxicities in Korean patients treated with temozolomide.

  17. The correlation between osteopontin level and radiation response of malignant gliomas at Cipto Mangunkusumo Hospital

    Directory of Open Access Journals (Sweden)

    Isnaniah Hasan

    2016-12-01

    Full Text Available Osteopontin is an endogenous molecular marker for tumor hypoxia, and hypoxia is one of the factors that determine the aggressiveness of the disease. The purpose of this study is to determine the correlation between osteopontin levels and radiation response in malignant glioma. A retrospective cohort study was conducted on 15 malignant glioma patients who underwent radiation therapy from July 2004 to May 2015 at the RSUPN Dr. Cipto Mangunkusumo Hospital. Osteopontin levels were measured from paraffin-embedded tissue using a commercial ELISA kit. Tumor volume was calculated using computed tomography (CT scan and magnetic resonance imaging (MRI images, based on three-dimensional volume measurements. Tumor response was evaluated by comparing pre- and post-radiation tumor volumes using CT scan and MRI images. The mean osteopontin level was 0.49 ± 0.45 ng/mL and the mean percentage change in tumor volume was 8.59 ± 54.22%, with a 60% enlargement in tumor volume. A progressive disease was found in 26.7% of patients. There was a weak but insignificant negative correlation (r = -0.39, p = 0.146 between the level of osteopontin and radiation response. In contrast, there was a strong but insignificant positive correlation (r = +0.68, p = 0.219 between the level of osteopontin and radiation response in the patient group that used the chemosensitizer temozolamide.

  18. Bryostatin-1 causes radiosensitization of BMG-1 malignant glioma cells through differential activation of protein kinase-Cδ not evident in the non-malignant AA8 fibroblasts.

    Science.gov (United States)

    Dagur, Raghubendra Singh; Hambarde, Shashank; Chandna, Sudhir

    2015-03-01

    Bryostatin-1 (bryo-1), a non-phorbol ester, is known to sensitize mammalian cells against certain chemotherapeutic drugs. We assessed its ability to modify radiation response of mammalian cells using Chinese hamster fibroblasts AA8 cells and human malignant glioma BMG-1 cells. In the malignant glioma BMG-1 cell line, bryo-1 pre-treatment significantly enhanced radiation-induced growth inhibition and cytogenetic damage, and further reduced the clonogenic cell survival as compared to cells irradiated at the clinically relevant dose of 2 Gy. PKCδ expression increased significantly when bryo-1 pre-treated BMG-1 glioma cells were irradiated at 2 Gy and induced prolonged ERK-1/2 activation associated with p21 overexpression. Silencing PKCδ resulted in inhibition of bryo-1-induced radiosensitization. In contrast, bryo-1 failed to alter radiosensitivity (cell survival; growth inhibition; cytogenetic damage) or activate ERK1/2 pathway in the AA8 fibroblasts despite PKCδ phosphorylation at its regulatory (Y155) domain, indicating alternate mechanisms in these non-malignant cells as compared to the glioma cells. This study suggests that bryo-1 may effectively enhance the radiosensitivity of malignant cells and warrants further in-depth investigations to evaluate its radiosensitizing potential in various cell types.

  19. {sup 18}F-Fluoromisonidazole positron emission tomography may differentiate glioblastoma multiforme from less malignant gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Kenji; Shiga, Tohru; Tamaki, Nagara [Hokkaido University, Department of Nuclear Medicine, Graduate School of Medicine, Sapporo, Hokkaido (Japan); Terasaka, Shunsuke; Kobayashi, Hiroyuki; Yamaguchi, Shigeru; Houkin, Kiyohiro [Graduate School of Medicine, Hokkaido University, Department of Neurosurgery, Sapporo (Japan); Hattori, Naoya [Graduate School of Medicine, Hokkaido University, Department of Molecular Imaging, Sapporo (Japan); Magota, Keiichi [Hokkaido University Hospital, Department of Radiology, Sapporo (Japan); Tanaka, Shinya [Graduate School of Medicine, Hokkaido University, Department of Cancer Pathology, Sapporo (Japan); Kuge, Yuji [Hokkaido University, Central Institute of Isotope Science, Sapporo (Japan)

    2012-05-15

    Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor and its prognosis is significantly poorer than those of less malignant gliomas. Pathologically, necrosis is one of the most important characteristics that differentiate GBM from lower grade gliomas; therefore, we hypothesized that {sup 18}F fluoromisonidazole (FMISO), a radiotracer for hypoxia imaging, accumulates in GBM but not in lower grade gliomas. We aimed to evaluate the diagnostic value of FMISO positron emission tomography (PET) for the differential diagnosis of GBM from lower grade gliomas. This prospective study included 23 patients with pathologically confirmed gliomas. All of the patients underwent FMISO PET and {sup 18}F-fluorodeoxyglucose (FDG) PET within a week. FMISO images were acquired 4 h after intravenous administration of 400 MBq of FMISO. Tracer uptake in the tumor was visually assessed. Lesion to normal tissue ratios and FMISO uptake volume were calculated. Of the 23 glioma patients, 14 were diagnosed as having GBM (grade IV glioma in the 2007 WHO classification), and the others were diagnosed as having non-GBM (5 grade III and 4 grade II). In visual assessment, all GBM patients showed FMISO uptake in the tumor greater than that in the surrounding brain tissues, whereas all the non-GBM patients showed FMISO uptake in the tumor equal to that in the surrounding brain tissues (p {<=} 0.001). One GBM patient was excluded from FDG PET study because of hyperglycemia. All GBM patients and three of the nine (33%) non-GBM patients showed FDG uptake greater than or equal to that in the gray matter. The sensitivity and specificity for diagnosing GBM were 100 and 100% for FMISO, and 100 and 66% for FDG, respectively. The lesion to cerebellum ratio of FMISO uptake was higher in GBM patients (2.74 {+-} 0.60, range 1.71-3.81) than in non-GBM patients (1.22 {+-} 0.06, range 1.09-1.29, p {<=} 0.001) with no overlap between the groups. The lesion to gray matter ratio of FDG was also

  20. Candidate genes for the progression of malignant gliomas identified by microarray analysis.

    Science.gov (United States)

    Bozinov, Oliver; Köhler, Sylvia; Samans, Birgit; Benes, Ludwig; Miller, Dorothea; Ritter, Markus; Sure, Ulrich; Bertalanffy, Helmut

    2008-01-01

    Malignant astrocytomas of World Health Organization (WHO) grade III or IV have a reduced median survival time, and possible pathways have been described for the progression of anaplastic astrocytomas and glioblastomas, but the molecular basis of malignant astrocytoma progression is still poorly understood. Microarray analysis provides the chance to accelerate studies by comparison of the expression of thousands of genes in these tumours and consequently identify targeting genes. We compared the transcriptional profile of 4,608 genes in tumours of 15 patients including 6 anaplastic astrocytomas (WHO grade III) and 9 glioblastomas (WHO grade IV) using microarray analysis. The microarray data were corroborated by real-time reverse transcription-polymerase chain reaction analysis of two selected genes. We identified 166 gene alterations with a fold change of 2 and higher whose mRNA levels differed (absolute value of the t statistic of 1.96) between the two malignant glioma groups. Further analyses confirmed same transcription directions for Olig2 and IL-13Ralpha2 in anaplastic astrocytomas as compared to glioblastomas. Microarray analyses with a close binary question reveal numerous interesting candidate genes, which need further histochemical testing after selection for confirmation. IL-13Ralpha2 and Olig2 have been identified and confirmed to be interesting candidate genes whose differential expression likely plays a role in malignant progression of astrocytomas.

  1. Genetic and Epigenetic Modifications of Sox2 Contribute to the Invasive Phenotype of Malignant Gliomas

    Science.gov (United States)

    Alonso, Marta M.; Diez-Valle, Ricardo; Manterola, Lorea; Rubio, Angel; Liu, Dan; Cortes-Santiago, Nahir; Urquiza, Leire; Jauregi, Patricia; de Munain, Adolfo Lopez; Sampron, Nicolás; Aramburu, Ander; Tejada-Solís, Sonia; Vicente, Carmen; Odero, María D.; Bandrés, Eva; García-Foncillas, Jesús; Idoate, Miguel A.; Lang, Frederick F.; Fueyo, Juan; Gomez-Manzano, Candelaria

    2011-01-01

    We undertook this study to understand how the transcription factor Sox2 contributes to the malignant phenotype of glioblastoma multiforme (GBM), the most aggressive primary brain tumor. We initially looked for unbalanced genomic rearrangements in the Sox2 locus in 42 GBM samples and found that Sox2 was amplified in 11.5% and overexpressed in all the samples. These results prompted us to further investigate the mechanisms involved in Sox2 overexpression in GBM. We analyzed the methylation status of the Sox2 promoter because high CpG density promoters are associated with key developmental genes. The Sox2 promoter presented a CpG island that was hypomethylated in all the patient samples when compared to normal cell lines. Treatment of Sox2-negative glioma cell lines with 5-azacitidine resulted in the re-expression of Sox2 and in a change in the methylation status of the Sox2 promoter. We further confirmed these results by analyzing data from GBM cases generated by The Cancer Genome Atlas project. We observed Sox2 overexpression (86%; N = 414), Sox2 gene amplification (8.5%; N = 492), and Sox 2 promoter hypomethylation (100%; N = 258), suggesting the relevance of this factor in the malignant phenotype of GBMs. To further explore the role of Sox2, we performed in vitro analysis with brain tumor stem cells (BTSCs) and established glioma cell lines. Downmodulation of Sox2 in BTSCs resulted in the loss of their self-renewal properties. Surprisingly, ectopic expression of Sox2 in established glioma cells was not sufficient to support self-renewal, suggesting that additional factors are required. Furthermore, we observed that ectopic Sox2 expression was sufficient to induce invasion and migration of glioma cells, and knockdown experiments demonstrated that Sox2 was essential for maintaining these properties. Altogether, our data underscore the importance of a pleiotropic role of Sox2 and suggest that it could be used as a therapeutic target in GBM. PMID:22069467

  2. Genetic and epigenetic modifications of Sox2 contribute to the invasive phenotype of malignant gliomas.

    Directory of Open Access Journals (Sweden)

    Marta M Alonso

    Full Text Available We undertook this study to understand how the transcription factor Sox2 contributes to the malignant phenotype of glioblastoma multiforme (GBM, the most aggressive primary brain tumor. We initially looked for unbalanced genomic rearrangements in the Sox2 locus in 42 GBM samples and found that Sox2 was amplified in 11.5% and overexpressed in all the samples. These results prompted us to further investigate the mechanisms involved in Sox2 overexpression in GBM. We analyzed the methylation status of the Sox2 promoter because high CpG density promoters are associated with key developmental genes. The Sox2 promoter presented a CpG island that was hypomethylated in all the patient samples when compared to normal cell lines. Treatment of Sox2-negative glioma cell lines with 5-azacitidine resulted in the re-expression of Sox2 and in a change in the methylation status of the Sox2 promoter. We further confirmed these results by analyzing data from GBM cases generated by The Cancer Genome Atlas project. We observed Sox2 overexpression (86%; N = 414, Sox2 gene amplification (8.5%; N = 492, and Sox 2 promoter hypomethylation (100%; N = 258, suggesting the relevance of this factor in the malignant phenotype of GBMs. To further explore the role of Sox2, we performed in vitro analysis with brain tumor stem cells (BTSCs and established glioma cell lines. Downmodulation of Sox2 in BTSCs resulted in the loss of their self-renewal properties. Surprisingly, ectopic expression of Sox2 in established glioma cells was not sufficient to support self-renewal, suggesting that additional factors are required. Furthermore, we observed that ectopic Sox2 expression was sufficient to induce invasion and migration of glioma cells, and knockdown experiments demonstrated that Sox2 was essential for maintaining these properties. Altogether, our data underscore the importance of a pleiotropic role of Sox2 and suggest that it could be used as a therapeutic target in GBM.

  3. Karakteristik Penderita Dispepsia Rawat Inap Di RSUP.H. Adam Malik Medan Tahun 2001-2004

    OpenAIRE

    Sianturi, Chandra D.

    2012-01-01

    Dispepsia sering ditemukan di masyarakat dengan angka morbiditas yang tinggi. Dispepsia merupakan kumpulan keluhan/gejala klinis, rasa tidak nyaman di daerah abdomen bagian atas. Untuk mengetahui distribusi proporsi penderita dispepsia rawat inap di RSUP.H.Adam Malik Medan tahun 2001-2004 dilakukan penelitian bersifat deskriptif dengan desain case series, yang menggunakan data sekunder dengan populasi 484 penderita dan sampel yang diambil dari catatan rekam medik selama tahun 2001-2004 seb...

  4. Application of mesenchymal stem cells as a vehicle to deliver replication-competent adenovirus for treating malignant glioma

    Institute of Scientific and Technical Information of China (English)

    Cui Hai; Yong-Min Jin; Wen-Biao Jin; Zhe-Zhu Han; Mei-Nv Cui; Xue-Zhe Piao; Xiong-Hu Shen; Song-Nan Zhang; Hong-Hua Sun

    2012-01-01

    Although gene therapy was regarded as a promising approach for glioma treatment,its therapeutic efficacy was often disappointing because of the lack of efficient drug delivery systems.Mesenchymal stem cells (MSCs) have been reported to have a tropism for brain tumors and thus could be used as delivery vehicles for glioma therapy.Therefore,in this study,we attempted to treat glioma by using MSCs as a vehicle for delivering replication-competent adenovirus.We firstly compared the infectivity of type 3,type 5,and type 35 fiber-modified adenoviruses in MSCs.We also determined suitable adenovirus titer in vitro and then used this titer to analyze the ability of MSCs to deliver replication-competent adenovirus into glioma in vivo.Our results indicated that type 35 fiber-modified adenovirus showed higher infectivity than did naked type 3 or type 5 fiber-modified adenovirus.MSCs carrying replication-competent adenovirus significantly inhibited tumor growth in vivo compared with other control groups.In conclusion,MSCs are an effective vehicle that can successfully transport replication-competent adenovirus into glioma,making it a potential therapeutic strategy for treating malignant glioma.

  5. Human cytomegalovirus antigens in malignant gliomas as targets for adoptive cellular therapy

    Directory of Open Access Journals (Sweden)

    Daniel eLandi

    2014-11-01

    Full Text Available Malignant gliomas are the most common primary brain tumor in adults, with over 12,000 new cases diagnosed in the United States each year. Over the last decade, investigators have reliably identified human cytomegalovirus (HCMV proteins, nucleic acids, and virions in most high-grade gliomas, including glioblastoma (GBM. This discovery is significant because human cytomegalovirus gene products can be targeted by immune-based therapies.In this review, we describe the current level of understanding regarding the presence and role in pathogenesis of HCMV in GBM. We describe our success detecting and expanding HCMV-specific cytotoxic T lymphocytes to kill GBM cells and explain how these cells can be used as a platform for enhanced cellular therapies. We discuss alternative approaches that capitalize on HCMV infection to treat patients with HCMV-positive tumors. Adoptive cellular therapy for HCMV-positive GBM has been tried in a small number of patients with some benefit, but we reason why, to date, these approaches generally fail to generate long-term remission or cure. We conjecture how cellular therapy for GBM can be improved and describe the barriers that must be overcome to cure these patients.

  6. Diffuse brain calcification after radiation therapy in infantile cerebral malignant glioma. Case report

    Energy Technology Data Exchange (ETDEWEB)

    Hondo, Hiroaki; Tanaka, Ryuichi; Yamada, Nobuhisa; Takeda, Norio

    1987-10-01

    We reported a case of infantile cerebral malignant glioma, which showed extensive intracranial calcification following radiation therapy, and reviewed the literature. A 4-month-old female infant was admitted to our hospital because of vomiting, enlargement of the head and convulsive seizures. Computerized tomography (CT) scans demonstrated a heterogeneously contrast-enhanced mass in the right temporo-parieto-occipital region and marked obstructive hydrocephalus. Subsequent to ventriculo-peritoneal shunt, biopsy was performed. The surgical specimen revealed anaplastic glioma. She then underwent whole brain irradiation with 1800 rads before subtotal removal and 3000 rads postoperatively. Calcification was first identified in the right frontal region and left basal ganglia 2.5 months after radiation therapy. At the age of 14 months, CT scans demonstrated extensive intracranial calcification in the cerebral hemispheres, basal ganglias, thalami, pons and cerebellum. A biopsy specimen of the frontal lobe revealed calcospherites of various sizes within and beside the walls of small vessels, but no tumor cells were observed. Cranial radiation therapy is a standard modality for treatment of children with neoplasm in the central nervous system. Since, however this therapy possibly causes long-term complications on the developing brain, it is important to plan radiation therapy for the brain tumor carefully.

  7. MicroRNA-93 promotes the malignant phenotypes of human glioma cells and induces their chemoresistance to temozolomide

    Science.gov (United States)

    Chen, Rui; Liu, Huan; Cheng, Quan; Jiang, Bing; Peng, Renjun; Zou, Qin; Yang, Wenren; Yang, Xiaosheng; Wu, Xiaobing; Chen, Zigui

    2016-01-01

    ABSTRACT MicroRNAs (miRNAs), a class of small non-coding RNAs, can induce mRNA degradation or repress translation by binding to the 3′-untranslated region (UTR) of its target mRNA. Recently, some specific miRNAs, e.g. miR-93, have been found to be involved in pathological processes by targeting some oncogenes or tumor suppressors in glioma. However, the regulatory mechanism of miR-93 in the biological behaviors and chemoresistance of glioma cells remains unclear. In the present study, in situ hybridization and real-time RT-PCR data indicated that miR-93 was significantly upregulated in glioma patients (n=43) compared with normal brain tissues (n=8). Moreover, the upregulated miR-93 level was significantly associated with the advanced malignancy. We also found that upregulation of miR-93 promoted the proliferation, migration and invasion of glioma cells, and that miR-93 was involved in the regulation of cell cycle progression by mediating the protein levels of P21, P27, P53 and Cyclin D1. P21 was further identified as a direct target of miR-93. Knockdown of P21 attenuated the suppressive effects of miR-93 inhibition on cell cycle progression and colony formation. In addition, inhibition of miR-93 enhanced the chemosensitization of glioma cells to temozolomide (TMZ). Based on these above data, our study demonstrates that miR-93, upregulated in glioma, promotes the proliferation, cell cycle progression, migration and invasion of human glioma cells and suppresses their chemosensitivity to TMZ. Therefore, miR-93 may become a promising diagnostic marker and therapeutic target for glioma. PMID:27185265

  8. Decreasing expression of the interleukin-13 receptor IL-13Ralpha2 in treated recurrent malignant gliomas.

    Science.gov (United States)

    Bozinov, Oliver; Kalk, Jens-Martin; Krayenbühl, Niklaus; Woernle, Christoph Michael; Sure, Ulrich; Bertalanffy, Helmut

    2010-01-01

    The IL-13Ralpha2 gene encodes for a 65 kDa protein that forms one of the subunits of the interleukin-13 (IL-13) receptor. This gene is highly expressed in various types of human tumors including malignant gliomas. The expression level of IL-13Ralpha2 was examined in a total of 45 tissue samples of anaplastic astrocytomas (AAs) World Health Organization (WHO) grade III, glioblastomas (GBMs) WHO grade IV, and first-recurrent glioblastomas (frGBMs) after treatment with radiation and chemotherapy. IL-13Ralpha2 expression was detected by semiquantitative reverse transcription real-time polymerase chain reaction (PCR) using ABI PRISM 7700 and Qiagen QuantiTect SYBR Green PCR kits. The expression level of IL-13Ralpha2 (15 fold) was significantly reduced in frGBMs compared to the primary GBMs (p = 0.014), and significantly reduced by more than 15 fold (p = 0.003) in all untreated malignant astrocytomas (AAs and GBMs) compared with treated frGBMs. Expression of IL-13Ralpha2 seems to be lower in frGBMs compared to GBMs. The promising antitumor effect of IL-13 cytotoxin could be greatly reduced in frGBM or only achievable with higher amounts of cytotoxin, due to the significantly lower expression of the cytotoxin's target structure.

  9. Dexamethasone inhibits the HSV-tk/ ganciclovir bystander effect in malignant glioma cells

    Directory of Open Access Journals (Sweden)

    Jolois Olivier

    2005-04-01

    Full Text Available Abstract Background HSV-tk/ ganciclovir (GCV gene therapy has been extensively studied in the setting of brain tumors and largely relies on the bystander effect. Large studies have however failed to demonstrate any significant benefit of this strategy in the treatment of human brain tumors. Since dexamethasone is a frequently used symptomatic treatment for malignant gliomas, its interaction with the bystander effect and the overall efficacy of HSV-TK gene therapy ought to be assessed. Methods Stable clones of TK-expressing U87, C6 and LN18 cells were generated and their bystander effect on wild type cells was assessed. The effects of dexamethasone on cell proliferation and sensitivity to ganciclovir were assessed with a thymidine incorporation assay and a MTT test. Gap junction mediated intercellular communication was assessed with microinjections and FACS analysis of calcein transfer. The effect of dexamethasone treatment on the sensitivity of TK-expressing to FAS-dependent apoptosis in the presence or absence of ganciclovir was assessed with an MTT test. Western blot was used to evidence the effect of dexamethasone on the expression of Cx43, CD95, CIAP2 and BclXL. Results Dexamethasone significantly reduced the bystander effect in TK-expressing C6, LN18 and U87 cells. This inhibition results from a reduction of the gap junction mediated intercellular communication of these cells (GJIC, from an inhibition of their growth and thymidine incorporation and from a modulation of the apoptotic cascade. Conclusion The overall efficacy of HSV-TK gene therapy is adversely affected by dexamethasone co-treatment in vitro. Future HSV-tk/ GCV gene therapy clinical protocols for gliomas should address this interference of corticosteroid treatment.

  10. Evaluation of anti-podoplanin rat monoclonal antibody NZ-1 for targeting malignant gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Yukinari, E-mail: yukinari-k@bea.hi-ho.ne.j [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Oncology Research Center, Advanced Molecular Epidemiology Research Institute, Yamagata University Faculty of Medicine, Yamagata 990-9585 (Japan); Vaidyanathan, Ganesan [Department of Radiology, Duke University Medical Center, Durham, NC 27710 (United States); Kaneko, Mika Kato [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Oncology Research Center, Advanced Molecular Epidemiology Research Institute, Yamagata University Faculty of Medicine, Yamagata 990-9585 (Japan); Mishima, Kazuhiko [Saitama Medical University International Medical Center 1397-1 Yamane Hidaka-shi, Saitama 350-1298 (Japan); Srivastava, Nidhi; Chandramohan, Vidyalakshmi; Pegram, Charles [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Keir, Stephen T. [Department of Surgery, Duke University Medical Center, Durham, NC 27710 (United States); Kuan, C.-T.; Bigner, Darell D. [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Zalutsky, Michael R. [Department of Radiology, Duke University Medical Center, Durham, NC 27710 (United States)

    2010-10-15

    Introduction: Podoplanin/aggrus is a mucin-like sialoglycoprotein that is highly expressed in malignant gliomas. Podoplanin has been reported to be a novel marker to enrich tumor-initiating cells, which are thought to resist conventional therapies and to be responsible for cancer relapse. The purpose of this study was to determine whether an anti-podoplanin antibody is suitable to target radionuclides to malignant gliomas. Methods: The binding affinity of an anti-podoplanin antibody, NZ-1 (rat IgG{sub 2a}), was determined by surface plasmon resonance and Scatchard analysis. NZ-1 was radioiodinated with {sup 125}I using Iodogen [{sup 125}I-NZ-1(Iodogen)] or N-succinimidyl 4-guanidinomethyl 3-[{sup 131}I]iodobenzoate ([{sup 131}I]SGMIB-NZ-1), and paired-label internalization assays of NZ-1 were performed. The tissue distribution of {sup 125}I-NZ-1(Iodogen) and that of [{sup 131}I]SGMIB-NZ-1 were then compared in athymic mice bearing glioblastoma xenografts. Results: The dissociation constant (K{sub D}) of NZ-1 was determined to be 1.2x10{sup -10} M by surface plasmon resonance and 9.8x10{sup -10} M for D397MG glioblastoma cells by Scatchard analysis. Paired-label internalization assays in LN319 glioblastoma cells indicated that [{sup 131}I]SGMIB-NZ-1 resulted in higher intracellular retention of radioactivity (26.3{+-}0.8% of initially bound radioactivity at 8 h) compared to that from the {sup 125}I-NZ-1(Iodogen) (10.0{+-}0.1% of initially bound radioactivity at 8 h). Likewise, tumor uptake of [{sup 131}I]SGMIB-NZ-1 (39.9{+-}8.8 %ID/g at 24 h) in athymic mice bearing D2159MG xenografts in vivo was significantly higher than that of {sup 125}I-NZ-1(Iodogen) (29.7{+-}6.1 %ID/g at 24 h). Conclusions: The overall results suggest that an anti-podoplanin antibody NZ-1 warrants further evaluation for antibody-based therapy against glioblastoma.

  11. Photodynamic diagnosis and related optical techniques for the management of malignant glioma

    Science.gov (United States)

    Sroka, R.; Stepp, H.; Beyer, W.; Markwardt, N.; Rühm, A.

    2017-04-01

    Malignant gliomas are a devastating brain tumor disease with very poor prognosis. Stereotactic biopsy sampling is routinely used in larger neurosurgical centers to confirm the diagnosis of a suspected brain tumor. This procedure is associated with risk of blood vessel rupture as well as false-negative results. Recent investigations suggest a potential of light-based techniques to improve both therapy and diagnosis of GBM. Optical guidance can be utilized to improve the biopsy sampling procedure in terms of safety, reliability, and efficacy. Recording of optical signals (transmission, remission, fluorescence) can be potentially integrated into a biopsy needle for providing optical detection of tumor tissue and blood vessel recognition during the biopsy sampling. Optical signals can also be used for monitoring purposes during photodynamic therapy. Here, fluorescence signals recorded before the treatment indicate the presence and accumulation level of photosensitizer, while photobleaching of the photosensitizer fluorescence during the treatment can be used as a measure of the effectiveness of the therapy. Finally, transmitted light can reveal problematic tissue-optical conditions as well as changes of the optical properties of the treated tissue, which may be relevant with regard to treatment prognosis and strategy. Different optical concepts for interstitial PDT monitoring and optical tissue property assessment are presented.

  12. Postoperative radiation therapy for malignant glioma. Results of conventional radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Teshima, T.; Inoue, T.; Chatani, M.; Hata, K.; Taki, T.; Nii, Y.; Nakagawa, H.

    1987-02-01

    From December 1977 through September 1984, a total of 39 cases of malignant glioma were treated with radiation therapy (RT) postoperatively. Twenty-nine cases were classified into glioblastoma (GM) and 10 astrocytoma (AS) (low grade : 6 and anaplastic : 4) histologically. One third of cases received 50 Gy/25 FRX/5 WKS of whole brain RT. Another two thirds of cases underwent 60 Gy/30 FRX/6 WKS of whole brain or 50 Gy/25 FRX/5 WKS of whole brain + additional 20 Gy/10 FRX/2 WKS of localized field RT. Chemotherapy (BLM, MeCCNU and ACNU) was given for 34 cases. Survivals at 3 years for GM and AS were 12 % and 68 %, respectively. Prognostic factors for GM were age, neurologic function (RTOG), AJC-staging T-factor, pre-RT LDH level and volume of residual tumor. Corresponding factors for AS were histological subclassification and neurologic function (RTOG). However, RT dose and field did not impact on survival significantly. Acute adverse effects of RT were otitis media or externa (70 %) and conjunctivitis (8 %). Retinal bleeding was noted in three long-term survivors at 2 years after RT.

  13. Use of {sup 11}C-methionine PET to monitor the effects of temozolomide chemotherapy in malignant gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Galldiks, Norbert; Kracht, Lutz W.; Burghaus, Lothar; Thomas, Anne; Jacobs, Andreas H.; Heiss, Wolf-Dieter; Herholz, Karl [University of Manchester, Wolfson Molecular Imaging Centre, Manchester (United Kingdom)

    2006-05-15

    The purpose of this study was to monitor the metabolic effects of temozolomide (TMZ) chemotherapy in malignant gliomas by means of repeated positron emission tomography (PET) with [{sup 11}C]methionine (MET). Fifteen patients with histologically proven malignant glioma were treated by TMZ chemotherapy. MET-PET studies were performed before and after the third cycle of TMZ chemotherapy in all patients, and in 12 patients also after the sixth cycle. Gadolinium-enhanced MRI studies were performed in 12 patients before the first and after the sixth cycle. Clinical status was assessed by the modified Rankin scale. Long-term outcome was assessed by calculating the time to progression (TTP) in months. Decline in MET uptake during therapy corresponded to a stable clinical status. The median TTP was significantly longer in patients with decline in MET uptake than in those with increasing MET uptake (23 vs 3.5 months; p=0.01, log rank test). There was no significant correlation between change in MET uptake and change in contrast enhancement during treatment for all patients. The present data demonstrate that clinical stability, which is often achieved under TMZ chemotherapy of malignant glioma, corresponds to a decline in or stability of tumour amino acid metabolism. Tumour responses can already be demonstrated with MET-PET after three cycles of chemotherapy, and absence of progression at that time indicates a high probability of further stability during the next three cycles. A reduction in MET uptake during TMZ treatment predicts a favourable clinical outcome. Molecular imaging of amino acid uptake by MET-PET offers a new method of measurement of the biological activity of recurrent glioma. (orig.)

  14. Light-controlled inhibition of malignant glioma by opsin gene transfer

    Science.gov (United States)

    Yang, F; Tu, J; Pan, J-Q; Luo, H-L; Liu, Y-H; Wan, J; Zhang, J; Wei, P-F; Jiang, T; Chen, Y-H; Wang, L-P

    2013-01-01

    Glioblastomas are aggressive cancers with low survival rates and poor prognosis because of their highly proliferative and invasive capacity. In the current study, we describe a new optogenetic strategy that selectively inhibits glioma cells through light-controlled membrane depolarization and cell death. Transfer of the engineered opsin ChETA (engineered Channelrhodopsin-2 variant) gene into primary human glioma cells or cell lines, but not normal astrocytes, unexpectedly decreased cell proliferation and increased mitochondria-dependent apoptosis, upon light stimulation. These optogenetic effects were mediated by membrane depolarization-induced reductions in cyclin expression and mitochondrial transmembrane potential. Importantly, the ChETA gene transfer and light illumination in mice significantly inhibited subcutaneous and intracranial glioma growth and increased the survival of the animals bearing the glioma. These results uncover an unexpected effect of opsin ion channels on glioma cells and offer the opportunity for the first time to treat glioma using a light-controllable optogenetic approach. PMID:24176851

  15. Sulfasalazine unveils a contact-independent HSV-TK/ganciclovir gene therapy bystander effect in malignant gliomas.

    Science.gov (United States)

    Robe, Pierre A; Nguyen-Khac, Minh-Tuan; Lambert, Frederic; Lechanteur, Chantal; Jolois, Olivier; Ernst-Gengoux, Patricia; Rogister, Bernard; Bours, Vincent

    2007-01-01

    The efficacy of HSV-TK/ganciclovir-based gene therapy on malignant gliomas largely relies on the amplitude of the bystander effect. In these experiments, the anti-inflammatory drug Sulfasalazine increased the HSV-TK/ganciclovir bystander effect in C6, 9L and LN18 cells but not in U87 glioma cells. Using bi-compartmental culture devices and conditioned medium transfer experiments, we showed that in C6, 9L and LN18 cells but not in U87 cells, Sulfasalazine also unveiled a new, contact-independent mechanism of HSV-TK/ganciclovir bystander effect. Upon treatment with ganciclovir, human LN18-TK but not U87-TK cells synthetized and released TNF-alpha in the culture medium. Sulfasalazine sensitized glioma cells to the toxic effect of TNF-alpha and enhanced its secretion in LN18-TK cells in response to GCV treatment. The caspase-8 inhibitor Z-IETD-FMK and a blocking antibody to TNF-alpha both inhibited the contact-independent bystander effect in LN18 cells. Taken together, these results suggest that TNF-alpha mediates the contact-independent bystander effect in LN18 cells. The treatment with GCV and/or Sulfasalazine of tumor xenografts consisting of a mix of 98% C6 and 2% C6-TK cells shows that Sulfasalazine is also a potent adjunct to the in vivo treatment of gliomas.

  16. Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study.

    Science.gov (United States)

    Colen, Chaim B; Shen, Yimin; Ghoddoussi, Farhad; Yu, Pingyang; Francis, Todd B; Koch, Brandon J; Monterey, Michael D; Galloway, Matthew P; Sloan, Andrew E; Mathupala, Saroj P

    2011-07-01

    Glioblastoma multiforme (GBM) are the most malignant among brain tumors. They are frequently refractory to chemotherapy and radiotherapy with mean patient survival of approximately 6 months, despite surgical intervention. The highly glycolytic nature of glioblastomas describes their propensity to metabolize glucose to lactic acid at an elevated rate. To survive, GBMs efflux lactic acid to the tumor microenvironment through transmembrane transporters denoted monocarboxylate transporters (MCTs). We hypothesized that inhibition of MCT function would impair the glycolytic metabolism and affect both glioma invasiveness and survival. We examined the effect on invasiveness with α-cyano-4-hydroxy-cinnamic acid (ACCA, 4CIN, CHCA), a small-molecule inhibitor of lactate transport, through Matrigel-based and organotypic (brain) slice culture invasive assays using U87-MG and U251-MG glioma cells. We then conducted studies in immunodeficient rats by stereotaxic intracranial implantation of the glioma cells followed by programmed orthotopic application of ACCA through osmotic pumps. Effect on the implanted tumor was monitored by small-animal magnetic resonance imaging. Our assays indicated that glioma invasion was markedly impaired when lactate efflux was inhibited. Convection-enhanced delivery of inhibitor to the tumor bed caused tumor necrosis, with 50% of the animals surviving beyond the experimental end points (3 months after inhibitor exhaustion). Most importantly, control animals did not display any adverse neurologic effects during orthotopic administration of ACCA to brain through programmed delivery. These results indicate the clinical potential of targeting lactate efflux in glioma through delivery of small-molecule inhibitors of MCTs either to the tumor bed or to the postsurgical resection cavity.

  17. Metabolic Targeting of Lactate Efflux by Malignant Glioma Inhibits Invasiveness and Induces Necrosis: An In Vivo Study

    Directory of Open Access Journals (Sweden)

    Chaim B Colen

    2011-07-01

    Full Text Available Glioblastoma multiforme (GBM are the most malignant among brain tumors. They are frequently refractory to chemotherapy and radiotherapy with mean patient survival of approximately 6 months, despite surgical intervention. The highly glycolytic nature of glioblastomas describes their propensity to metabolize glucose to lactic acid at an elevated rate. To survive, GBMs efflux lactic acid to the tumor microenvironment through transmembrane transporters denoted monocarboxylate transporters (MCTs. We hypothesized that inhibition of MCT function would impair the glycolytic metabolism and affect both glioma invasiveness and survival. We examined the effect on invasiveness with α-cyano-4-hydroxy-cinnamic acid (ACCA, 4CIN, CHCA, a small-molecule inhibitor of lactate transport, through Matrigel-based and organotypic (brain slice culture invasive assays using U87-MG and U251-MG glioma cells. We then conducted studies in immunodeficient rats by stereotaxic intracranial implantation of the glioma cells followed by programmed orthotopic application of ACCA through osmotic pumps. Effect on the implanted tumor was monitored by small-animal magnetic resonance imaging. Our assays indicated that glioma invasion was markedly impaired when lactate efflux was inhibited. Convection-enhanced delivery of inhibitor to the tumor bed caused tumor necrosis, with 50% of the animals surviving beyond the experimental end points (3 months after inhibitor exhaustion. Most importantly, control animals did not display any adverse neurologic effects during orthotopic administration of ACCA to brain through programmed delivery. These results indicate the clinical potential of targeting lactate efflux in glioma through delivery of small-molecule inhibitors of MCTs either to the tumor bed or to the postsurgical resection cavity.

  18. Metabolic Targeting of Lactate Efflux by Malignant Glioma Inhibits Invasiveness and Induces Necrosis: An In Vivo Study1

    Science.gov (United States)

    Colen, Chaim B; Shen, Yimin; Ghoddoussi, Farhad; Yu, Pingyang; Francis, Todd B; Koch, Brandon J; Monterey, Michael D; Galloway, Matthew P; Sloan, Andrew E; Mathupala, Saroj P

    2011-01-01

    Glioblastoma multiforme (GBM) are the most malignant among brain tumors. They are frequently refractory to chemotherapy and radiotherapy with mean patient survival of approximately 6 months, despite surgical intervention. The highly glycolytic nature of glioblastomas describes their propensity to metabolize glucose to lactic acid at an elevated rate. To survive, GBMs efflux lactic acid to the tumor microenvironment through transmembrane transporters denoted monocarboxylate transporters (MCTs). We hypothesized that inhibition of MCT function would impair the glycolytic metabolism and affect both glioma invasiveness and survival. We examined the effect on invasiveness with α-cyano-4-hydroxy-cinnamic acid (ACCA, 4CIN, CHCA), a small-molecule inhibitor of lactate transport, through Matrigel-based and organotypic (brain) slice culture invasive assays using U87-MG and U251-MG glioma cells. We then conducted studies in immunodeficient rats by stereotaxic intracranial implantation of the glioma cells followed by programmed orthotopic application of ACCA through osmotic pumps. Effect on the implanted tumor was monitored by small-animal magnetic resonance imaging. Our assays indicated that glioma invasion was markedly impaired when lactate efflux was inhibited. Convection-enhanced delivery of inhibitor to the tumor bed caused tumor necrosis, with 50% of the animals surviving beyond the experimental end points (3 months after inhibitor exhaustion). Most importantly, control animals did not display any adverse neurologic effects during orthotopic administration of ACCA to brain through programmed delivery. These results indicate the clinical potential of targeting lactate efflux in glioma through delivery of small-molecule inhibitors of MCTs either to the tumor bed or to the postsurgical resection cavity. PMID:21750656

  19. Telomerase reverse transcriptase promoter-driven expression of iodine pump genes for targeted radioiodine therapy of malignant glioma cells

    Institute of Scientific and Technical Information of China (English)

    Jian Tan; Wei Li; Peng Wang

    2011-01-01

    Radioiodine is a routine therapy for differentiated thyroid cancers. Non-thyroid cancers can intake radioiodine after transfection of the human sodium iodide symporter (hNIS) gene. The human telomerase reverse transcriptase (hTERT) promoter, an excellent tumor-specific promoter, has potential value for targeted gene therapy of glioma. We used the hTERT promoter to drive the expression of the hNIS and human thyroid peroxidase (hTPO) gene as a primary step for testing the effects of radioiodine therapy on malignant glioma. The U87 and U251 cells were co-transfected with two adenoviral vectors, in which the hNIS gene had been coupled to the hTERT promoter and the hTPO gene had been coupled to the CMV promoter, respectively. Then, we performed Western blot, 135l intake and efflux assays, and clonogenic assay with cancer cells. We also did 99mTc tumor imaging of nude mice models. After co-transfection with Ad-hTERT-hNIS and Ad-CMV-hTPO, glioma cells showed the 125l intake almost 1.5 times higher than cells transfected with Ad-hTERT-hNIS alone. Western blots revealed bands of approximately 70 kDa and 110 kDa, consistent with the hNIS and hTPO proteins. In clonogenic assay, approximately 90% of co transfected cells were killed, compared to 50% of control cells after incubated with 37 MBq of 131I. These results demonstrated that radioiodine therapy was effective in treating malignant glioma cell lines following induction of tumor-specific iodide intake by the hTERT promoter-directed hNIS expression in vitro. Co transfected hNIS and hTPO genes can result in increased intake and longer retention of radioiodine. Nude mice harboring xenografts transfected with Ad-hTERT-NIS can take 99mTc scans.

  20. Downregulation of miR-544 in tissue, but not in serum, is a novel biomarker of malignant transformation in glioma.

    Science.gov (United States)

    Ma, Ruimin; Zhang, Guojun; Wang, Huimin; Lv, Hong; Fang, Fang; Kang, Xixiong

    2012-12-01

    Low-grade glioma is predisposed to progress to anaplastic astrocytoma and eventually secondary glioblastoma. The malignant transformation may involve the accumulation of multiple genetic alterations. The purpose of this study was to explore the role of miR-544 in glioma progression and discuss whether it may be a novel biomarker of malignant transformation. The expression of miR-544 was measured in a series of 198 glioma samples (63 low-grade glioma, 44 anaplastic astrocytoma and 91 glioblastoma tumors) using microarrays. Quantitative real-time reverse transcription PCR (qRT-PCR) was used to validate the expression levels of miR-544 in tissue and serum samples in an independent validated cohort (25 low-grade glioma, 21 anaplastic astrocytoma and 20 glioblastoma tumors). A Pearson correlation analysis was performed to examine the correlation between miR-544 levels of tissue and serum samples. Microarrays revealed that the expression levels of miR-544 decreased significantly in anaplastic gliomas (PmiR-544 exhibited a progression-associated downregulation in glioma tumors. The levels of miR-544 in serum samples tended to be lower in anaplastic and glioblastoma patients compared with low-grade gliomas, but with no significant difference. The Pearson correlation analysis revealed a weakly positive correlation between tissue and serum levels of miR-544. These data support a significant role for miR-544 aberration in the malignant transformation of glioma. The downregulation of miR-544 in tissue may be used as a novel biomarker.

  1. Concurrent Stereotactic Radiosurgery and Bevacizumab in Recurrent Malignant Gliomas: A Prospective Trial

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, Alvin R. [Department of Radiation Oncology, Duke University, Durham, North Carolina (United States); Cuneo, Kyle C. [Department of Radiation Oncology, Duke University, Durham, North Carolina (United States); Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Desjardins, Annick [Department of Surgery, Duke University, Durham, North Carolina (United States); Sampson, John H. [Department of Radiation Oncology, Duke University, Durham, North Carolina (United States); Department of Surgery, Duke University, Durham, North Carolina (United States); McSherry, Frances; Herndon, James E. [Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina (United States); Peters, Katherine B. [Department of Surgery, Duke University, Durham, North Carolina (United States); Allen, Karen [Department of Radiation Oncology, Duke University, Durham, North Carolina (United States); Hoang, Jenny K. [Department of Radiology, Duke University, Durham, North Carolina (United States); Chang, Zheng; Craciunescu, Oana [Department of Radiation Oncology, Duke University, Durham, North Carolina (United States); Vredenburgh, James J.; Friedman, Henry S. [Department of Surgery, Duke University, Durham, North Carolina (United States); Kirkpatrick, John P., E-mail: john.kirkpatrick@dm.duke.edu [Department of Radiation Oncology, Duke University, Durham, North Carolina (United States); Department of Surgery, Duke University, Durham, North Carolina (United States)

    2013-08-01

    Purpose: Virtually all patients with malignant glioma (MG) eventually recur. This study evaluates the safety of concurrent stereotactic radiosurgery (SRS) and bevacizumab (BVZ), an antiangiogenic agent, in treatment of recurrent MG. Methods and Materials: Fifteen patients with recurrent MG, treated at initial diagnosis with surgery and adjuvant radiation therapy/temozolomide and then at least 1 salvage chemotherapy regimen, were enrolled in this prospective trial. Lesions <3 cm in diameter were treated in a single fraction, whereas those 3 to 5 cm in diameter received 5 5-Gy fractions. BVZ was administered immediately before SRS and 2 weeks later. Neurocognitive testing (Mini-Mental Status Exam, Trail Making Test A/B), Functional Assessment of Cancer Therapy-Brain (FACT-Br) quality-of-life assessment, physical exam, and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) were performed immediately before SRS and 1 week and 2 months following completion of SRS. The primary endpoint was central nervous system (CNS) toxicity. Secondary endpoints included survival, quality of life, microvascular properties as measured by DCE-MRI, steroid usage, and performance status. Results: One grade 3 (severe headache) and 2 grade 2 CNS toxicities were observed. No patients experienced grade 4 to 5 toxicity or intracranial hemorrhage. Neurocognition, quality of life, and Karnofsky performance status did not change significantly with treatment. DCE-MRI results suggest a significant decline in tumor perfusion and permeability 1 week after SRS and further decline by 2 months. Conclusions: Treatment of recurrent MG with concurrent SRS and BVZ was not associated with excessive toxicity in this prospective trial. A randomized trial of concurrent SRS/BVZ versus conventional salvage therapy is needed to establish the efficacy of this approach.

  2. A peptide-mediated targeting gene delivery system for malignant glioma cells

    Directory of Open Access Journals (Sweden)

    Wang C

    2013-09-01

    Full Text Available Chuanwei Wang,1,2,* Liping Ning,3,* Hongwei Wang,1,2,* Zaijun Lu,4 Xingang Li,1,2 Xiaoyong Fan,5 Xuping Wang,6 Yuguang Liu1,2 1Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, People's Republic of China; 2Brain Science Research Institute of Shandong University, Jinan, People's Republic of China; 3Department of Rehabilitation, Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China; 4School of Chemistry and Chemical Engineering of Shandong University, Jinan, People's Republic of China; 5Department of Neurosurgery, Shandong Qianfoshan Hospital Affiliated to Shandong University, Jinan, People's Republic of China; 6Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, People's Republic of China *These authors contributed equally to this work Abstract: Glioblastoma multiforme (GBM is the most common and malignant glioma. Although there has been considerable progress in treatment strategies, the prognosis of many patients with GBM remains poor. In this work, polyethylenimine (PEI and the VTWTPQAWFQWV (VTW peptide were modified and synthesized into GBM-targeting nanoparticles. The transfection efficiency of U-87 (human glioblastoma cells was evaluated using fluorescence microscopy and flow cytometry. Cell internalization was investigated to verify the nanoparticle delivery into the cytoplasm. Results showed that the methods of polymer conjugation and the amount of VTW peptide were important factors to polymer synthesis and transfection. The PEI-VTW20 nanoparticles increased the transfection efficiency significantly. This report describes the use of VTW peptide-based PEI nanoparticles for intracellular gene delivery in a GBM cell-specific manner. Keywords: glioblastoma, polyethylenimine, nanoparticles, drug-delivery systems, gene transfer techniques

  3. Sustained elevation of Snail promotes glial-mesenchymal transition after irradiation in malignant glioma

    Science.gov (United States)

    Mahabir, Roshan; Tanino, Mishie; Elmansuri, Aiman; Wang, Lei; Kimura, Taichi; Itoh, Tamio; Ohba, Yusuke; Nishihara, Hiroshi; Shirato, Hiroki; Tsuda, Masumi; Tanaka, Shinya

    2014-01-01

    Background Ionizing irradiation is an effective treatment for malignant glioma (MG); however, a higher rate of recurrence with more aggressive phenotypes is a vital issue. Although epithelial-mesenchymal transition (EMT) is involved in irradiation-induced cancer progression, the role for such phenotypic transition in MG remains unknown. Methods To investigate the mechanism of irradiation-dependent tumor progression in MG, we performed immunohistochemistry (IHC) and qRT-PCR using primary and recurrent MG specimens, MG cell lines, and primary culture cells of MG. siRNA technique was used for MG cell lines. Results In 22 cases of clinically recurrent MG, the expression of the mesenchymal markers vimentin and CD44 was found to be increased by IHC. In paired identical MG of 7 patients, the expression of collagen, MMPs, and YKL-40 were also elevated in the recurrent MGs, suggesting the The Cancer Genome Atlas-based mesenchymal subtype. Among EMT regulators, sustained elevation of Snail was observed in MG cells at 21 days after irradiation. Cells exhibited an upregulation of migration, invasion, numbers of focal adhesion, and MMP-2 production, and all of these mesenchymal features were abrogated by Snail knockdown. Intriguingly, phosphorylation of ERK1/2 and GSK-3β were increased after irradiation in a Snail-dependent manner, and TGF-β was elevated in both fibroblasts and macrophages but not in MG cells after irradiation. It was noteworthy that irradiated cells also expressed stemness features such as SOX2 expression and tumor-forming potential in vivo. Conclusions We here propose a novel concept of glial-mesenchymal transition after irradiation in which the sustained Snail expression plays an essential role. PMID:24357458

  4. The Clinical Significance of Ependymal Enhancement at Presentation in Patients with Malignant Glioma

    Science.gov (United States)

    Kaidar-Person, Orit; Darawshe, Firas; Tzuk-Shina, Tzahala; Eran, Ayelet

    2015-01-01

    Introduction The current study evaluated the rate of ependymal enhancement and whether its presence influences survival of patients with malignant glioma (GBM). Methods A retrospective review of all patients who were treated in our institution from 2005 to 2011 was conducted. Data extracted from the medical records included age, date of diagnosis, co-morbidities, treatment regimen, and time of death. Magnetic resonance images (MRI) were evaluated for the presence of ependymal enhancement and its extent, and the correlation to survival was investigated. Results Between 2005 and 2011, 230 patients were treated for GBM. Eighty-nine patients were excluded from the study due to insufficient data, leaving 141 patients for analysis. Median age at diagnosis was 60 years. Sixty-seven (40.6%) patients had evidence of ependymal enhancement on MRI (group A), and 70 (42.4%) patients did not have evidence of enhancement. The assessment of ependymal enhancement was inconclusive due to mass effect and ventricular compression that precluded accurate assessment for 28 (17%) patients (group C). Median survival was 14 months for group A (range, 12–16 months), 15.9 months for group B (range, 14.28–17.65 months), and 11.7 months for group C (range, 6.47–16.92 months) (P>0.05). A multivariate analysis to predict survival indicated that male gender (P=0.039), hypertension (P=0.012), and biopsy only compared to complete gross tumor resection (P=0.001) were significant for poor survival. Conclusions Pretreatment ependymal enhancement on MRI was not found to be associated with poorer survival. These results might be due to better treatments options compared to prior reports. PMID:26886770

  5. The Clinical Significance of Ependymal Enhancement at Presentation in Patients with Malignant Glioma

    Directory of Open Access Journals (Sweden)

    Orit Kaidar-Person

    2015-10-01

    Full Text Available Introduction. The current study evaluated the rate of ependymal enhancement and whether its presence influences survival of patients with malignant glioma (GBM. Methods. A retrospective review of all patients who were treated in our institution from 2005 to 2011 was conducted. Data extracted from the medical records included age, date of diagnosis, co-morbidities, treatment regimen, and time of death. Magnetic resonance images (MRI were evaluated for the presence of ependymal enhancement and its extent, and the correlation to survival was investigated. Results. Between 2005 and 2011, 230 patients were treated for GBM. Eighty-nine patients were excluded from the study due to insufficient data, leaving 141 patients for analysis. Median age at diagnosis was 60 years. Sixty-seven (40.6% patients had evidence of ependymal enhancement on MRI (group A, and 70 (42.4% patients did not have evidence of enhancement. The assessment of ependymal enhancement was inconclusive due to mass effect and ventricular compression that precluded accurate assessment for 28 (17% patients (group C. Median survival was 14 months for group A (range, 12–16 months, 15.9 months for group B (range, 14.28–17.65 months, and 11.7 months for group C (range, 6.47–16.92 months (P>0.05. A multivariate analysis to predict survival indicated that male gender (P=0.039, hypertension (P=0.012, and biopsy only compared to complete gross tumor resection (P=0.001 were significant for poor survival. Conclusions. Pretreatment ependymal enhancement on MRI was not found to be associated with poorer survival. These results might be due to better treatments options compared to prior reports.

  6. Enhanced anti-tumor effect of zoledronic acid combined with temozolomide against human malignant glioma cell expressing O6-methylguanine DNA methyltransferase.

    Directory of Open Access Journals (Sweden)

    Junya Fukai

    Full Text Available Temozolomide (TMZ, a DNA methylating agent, is widely used in the adjuvant treatment of malignant gliomas. O6-methylguanine-DNA methyltranferase (MGMT, a DNA repair enzyme, is frequently discussed as the main factor that limits the efficacy of TMZ. Zoledronic acid (ZOL, which is clinically applied to treat cancer-induced bone diseases, appears to possess direct anti-tumor activity through apoptosis induction by inhibiting mevalonate pathway and prenylation of intracellular small G proteins. In this study, we evaluated whether ZOL can be effectively used as an adjuvant to TMZ in human malignant glioma cells that express MGMT. Malignant glioma cell lines, in which the expression of MGMT was detected, did not exhibit growth inhibition by TMZ even at a longer exposure. However, combination experiment of TMZ plus ZOL revealed that a supra-additive effect resulted in a significant decrease in cell growth. In combined TMZ/ZOL treatment, an increased apoptotic rate was apparent and significant activation of caspase-3 and cleavage of poly-(ADP-ribose polymerase were observed compared with each single drug exposure. There were decreased amounts of Ras-GTP, MAPK and Akt phosphorylation and MGMT expression in the ZOL-treated cells. Subcutanous xenograft models showed significant decrease of tumor growth with combined TMZ/ZOL treatment. These results suggest that ZOL efficaciously inhibits activity of Ras in malignant glioma cells and potentiates TMZ-mediated cytotoxicity, inducing growth inhibition and apoptosis of malignant glioma cells that express MGMT and resistant to TMZ. Based on this work, combination of TMZ with ZOL might be a potential therapy in malignant gliomas that receive less therapeutic effects of TMZ due to cell resistance.

  7. Further Tests of Abortion and Crime: A Response to Donohue and Levitt (2001,2004, 2006)

    OpenAIRE

    2006-01-01

    The association between legalized abortion and crime remains a contentious finding with major implications for social policy. In this paper, I replicate analyses of Donohue and Levitt (2001, 2004, 2006) in which they regress age-specific arrests and homicides on cohort-specific abortion rates. I find that the coefficient on the abortion rate in a regression of age-specific homicide or arrest rates has either the wrong sign or is small in magnitude and statistically insignificant when adjusted...

  8. Local delivery of rapamycin: a toxicity and efficacy study in an experimental malignant glioma model in rats.

    Science.gov (United States)

    Tyler, Betty; Wadsworth, Scott; Recinos, Violette; Mehta, Vivek; Vellimana, Ananth; Li, Khan; Rosenblatt, Joel; Do, Hiep; Gallia, Gary L; Siu, I-Mei; Wicks, Robert T; Rudek, Michelle A; Zhao, Ming; Brem, Henry

    2011-07-01

    Rapamycin, an anti-proliferative agent, is effective in the treatment of renal cell carcinoma and recurrent breast cancers. We proposed that this potent mammalian target of rapamycin inhibitor may be useful for the treatment of gliomas as well. We examined the cytotoxicity of rapamycin against a rodent glioma cell line, determined the toxicity of rapamycin when delivered intracranially, and investigated the efficacy of local delivery of rapamycin for the treatment of experimental malignant glioma in vivo. We also examined the dose-dependent efficacy of rapamycin and the effect when locally delivered rapamycin was combined with radiation therapy. Rapamycin was cytotoxic to 9L cells, causing 34% growth inhibition at a concentration of 0.01 µg/mL. No in vivo toxicity was observed when rapamycin was incorporated into biodegradable caprolactone-glycolide (35:65) polymer beads at 0.3%, 3%, and 30% loading doses and implanted intracranially. Three separate efficacy studies were performed to test the reproducibility of the effect of the rapamycin beads as well as the validity of this treatment approach. Animals treated with the highest dose of rapamycin beads tested (30%) consistently demonstrated significantly longer survival durations than the control and placebo groups. All dose-escalating rapamycin bead treatment groups (0.3%, 3% and 30%), treated both concurrently with tumor and in a delayed manner after tumor placement, experienced a significant increase in survival, compared with controls. Radiation therapy in addition to the simultaneous treatment with 30% rapamycin beads led to significantly longer survival duration than either therapy alone. These results suggest that the local delivery of rapamycin for the treatment of gliomas should be further investigated.

  9. HIF-1α inhibition by siRNA or chetomin in human malignant glioma cells: effects on hypoxic radioresistance and monitoring via CA9 expression

    Directory of Open Access Journals (Sweden)

    Bache Matthias

    2010-11-01

    Full Text Available Abstract Background Hypoxia induces activation of the HIF-1 pathway and is an essential characteristic of malignant gliomas. Hypoxia has been linked to tumor progression, therapy resistance and poor prognosis. However, little is known about the impact of HIF-1α inhibition on radioresistance of malignant glioma. Methods In this study, we investigated the effects of the inhibition of HIF-1α on cell survival and radiosensitivity in U251MG and U343MG glioma cells, using two different strategies. HIF-1α inhibition was achieved by siRNA targeting of HIF-1α or via chetomin, a disruptor of interactions between HIF-1α and p300. The inhibition of the HIF-1 pathway was monitored by quantitative real-time PCR and Western blot analyses of the expression levels of HIF-1α and CA9. CA9 expression was investigated as a potential indicator of the efficacy of HIF-1 inhibition and the resulting radiosensitivity of malignant glioma cell lines was determined by clonogenic assay after irradiation under normoxic (2-10 Gy or hypoxic (2-15 Gy conditions. Results Although siRNA and chetomin show distinct modes of action, both attenuated the hypoxia-induced radioresistance of malignant glioma cell lines U251MG (DMF10: 1.35 and 1.18 and U343MG (DMF10: 1.78 and 1.48. However, siRNA and chetomin showed diverse effects on radiosensitivity under normoxic conditions in U251MG (DMF10: 0.86 and 1.35 and U343MG (DMF10: 1.33 and 1.02 cells. Conclusions Results from this in vitro study suggest that inhibition of HIF-1α is a promising strategy to sensitize human malignant gliomas to radiotherapy and that CA9 could serve as an indicator of effective HIF-1-related radiosensitization.

  10. Epidermal growth factor (EGF) as a potential targeting agent for delivery of boron to malignant gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Capala, J.; Barth, R.F.; Adams, D.M.; Bailey, M.Q.; Soloway, A.H. [Ohio State Univ., Columbus, OH (United States); Carlsson, J. [Uppsala Univ. (Sweden). Dept. of Radiation Sciences

    1994-12-31

    The majority of high grade gliomas express an amplified epidermal growth factor receptor (EGFR) gene, and this often is associated with an increase in cell surface receptor expression. The rapid internalization and degradation of EGF-EGFR complexes, as well as their high affinity make EGF a potential targeting agent for delivery of {sup 10}B to tumor cells with an amplified number of EGFR. Human glioma cells can expresses as many as 10{sup 5} {minus}10{sup 6} EGF receptors per cell, and if these could be saturated with boronated EGF, then > 10{sup 8} boron atoms would be delivered per cell. Since EGF has a comparatively low molecular weight ({approximately} 6 kD), this has allowed us to construct relatively small bioconjugates containing {approximately} 900 boron atoms per EGF molecule{sup 3}, which also had high affinity for EGFR on tumor cells. In the present study, the feasibility of using EGF receptors as a potential target for therapy of gliomas was investigated by in vivo scintigraphic studies using {sup 131}I{minus} or {sup 99m}{Tc}-labeled EGF in a rat brain tumor model. Our results indicate that intratumorally delivered boron- EGF conjugates might be useful for targeting EGFR on glioma cells if the boron containing moiety of the conjugates persisted intracellularly. Further studies are required, however, to determine if this approach can be used for BNCT of the rat glioma.

  11. Hawaii Coral Reef Assessment and Monitoring Program (CRAMP): Benthic Data from Rapid Assessment Transects 2001-2004 (NODC Accession 0002464)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of CRAMP Rapid Assessment Transect surveys taken in 2001-2004 and includes quantitative estimates of substrate type and species. The types and...

  12. Evaluation of the risk of liver damage from the use of 5-aminolevulinic acid for intra-operative identification and resection in patients with malignant gliomas

    DEFF Research Database (Denmark)

    Offersen, Cecilie Mørck; Skjoeth-Rasmussen, Jane

    2017-01-01

    BACKGROUND: The clinical efficacy of 5-aminolevulinic acid (5-ALA) for fluorescence-guided surgery of malignant gliomas is evident from several studies; however, as post-operative elevations of liver enzymes have been seen, there is a potential risk of liver damage upon administration. The aim of...

  13. Evolution of DNA repair defects during malignant progression of low-grade gliomas after temozolomide treatment

    NARCIS (Netherlands)

    Thuijl, H.F. van; Mazor, T.; Johnson, B.E.; Fouse, S.D.; Aihara, K.; Hong, C.; Malmstrom, A.; Hallbeck, M.; Heimans, J.J.; Kloezeman, J.J.; Stenmark-Askmalm, M.; Lamfers, M.L.; Saito, N.; Aburatani, H.; Mukasa, A.; Berger, M.S.; Soderkvist, P.; Taylor, B.S.; Molinaro, A.M.; Wesseling, P.; Reijneveld, J.C.; Chang, S.M.; Ylstra, B.; Costello, J. F.

    2015-01-01

    Temozolomide (TMZ) increases the overall survival of patients with glioblastoma (GBM), but its role in the clinical management of diffuse low-grade gliomas (LGG) is still being defined. DNA hypermethylation of the O (6) -methylguanine-DNA methyltransferase (MGMT) promoter is associated with an impro

  14. Multiparametric 3T MR approach to the assessment of cerebral gliomas: tumor extent and malignancy

    Energy Technology Data Exchange (ETDEWEB)

    Di Costanzo, Alfonso [University of Molise, Department of Health Sciences, Campobasso (Italy); Scarabino, Tommaso; Giannatempo, Giuseppe M.; Popolizio, Teresa [Scientific Institute ' ' Casa Sollievo della Sofferenza' ' , Department of Neuroradiology, Foggia (Italy); Trojsi, Francesca; Catapano, Domenico; Bonavita, Simona; Tedeschi, Giocchino [2. University of Naples, Department of Neurological Sciences, Naples (Italy); Maggialetti, Nicola [University of Bari, Faculty of Medicine, Bari (Italy); Tosetti, Michela [Scientific Institute ' ' Stella Maris' ' , Department of Magnetic Resonance, Pisa (Italy); Salvolini, Ugo [Azienda Ospedaliera Universitaria ' ' Umberto I' ' , Department of Neuroradiology, Ancona (Italy); D' Angelo, Vincenzo A. [Scientific Institute ' ' Casa Sollievo della Sofferenza' ' , Department of Neurosurgery, Foggia (Italy)

    2006-09-15

    Contrast-enhanced MR imaging is the method of choice for routine assessment of brain tumors, but it has limited sensitivity and specificity. We verified if the addition of metabolic, diffusion and hemodynamic information improved the definition of glioma extent and grade. Thirty-one patients with cerebral gliomas (21 high- and 10 low-grade) underwent conventional MR imaging, proton MR spectroscopic imaging ({sup 1}H-MRSI), diffusion weighted imaging (DWI) and perfusion weighted imaging (PWI) at 3 Tesla, before undergoing surgery and histological confirmation. Normalized metabolite signals, including choline (Cho), N-acetylaspartate (NAA), creatine and lactate/lipids, were obtained by {sup 1}H-MRSI; apparent diffusion coefficient (ADC) by DWI; and relative cerebral blood volume (rCBV) by PWI. Perienhancing areas with abnormal MR signal showed 3 multiparametric patterns: ''tumor'', with abnormal Cho/NAA ratio, lower ADC and higher rCBV; ''edema'', with normal Cho/NAA ratio, higher ADC and lower rCBV; and ''tumor/edema'', with abnormal Cho/NAA ratio and intermediate ADC and rCBV. Perienhancing areas with normal MR signal showed 2 multiparametric patterns: ''infiltrated'', with high Cho and/or abnormal Cho/NAA ratio; and ''normal'', with normal spectra. Stepwise discriminant analysis showed that the better classification accuracy of perienhancing areas was achieved when regarding all MR variables, while {sup 1}H-MRSI variables and rCBV better differentiated high- from low-grade gliomas. Multiparametric MR assessment of gliomas, based on {sup 1}H-MRSI, PWI and DWI, discriminates infiltrating tumor from surrounding vasogenic edema or normal tissues, and high- from low-grade gliomas. This approach may provide useful information for guiding stereotactic biopsies, surgical resection and radiation treatment. (orig.)

  15. F11R is a novel monocyte prognostic biomarker for malignant glioma.

    Directory of Open Access Journals (Sweden)

    Winnie W Pong

    Full Text Available OBJECTIVE: Brain tumors (gliomas contain large populations of infiltrating macrophages and recruited microglia, which in experimental murine glioma models promote tumor formation and progression. Among the barriers to understanding the contributions of these stromal elements to high-grade glioma (glioblastoma; GBM biology is the relative paucity of tools to characterize infiltrating macrophages and resident microglia. In this study, we leveraged multiple RNA analysis platforms to identify new monocyte markers relevant to GBM patient outcome. METHODS: High-confidence lists of mouse resident microglia- and bone marrow-derived macrophage-specific transcripts were generated using converging RNA-seq and microarray technologies and validated using qRT-PCR and flow cytometry. Expression of select cell surface markers was analyzed in brain-infiltrating macrophages and resident microglia in an induced GBM mouse model, while allogeneic bone marrow transplantation was performed to trace the origins of infiltrating and resident macrophages. Glioma tissue microarrays were examined by immunohistochemistry, and the Gene Expression Omnibus (GEO database was queried to determine the prognostic value of identified microglia biomarkers in human GBM. RESULTS: We generated a unique catalog of differentially-expressed bone marrow-derived monocyte and resident microglia transcripts, and demonstrated that brain-infiltrating macrophages acquire F11R expression in GBM and following bone-marrow transplantation. Moreover, mononuclear cell F11R expression positively correlates with human high-grade glioma and additionally serves as a biomarker for GBM patient survival, regardless of GBM molecular subtype. SIGNIFICANCE: These studies establish F11R as a novel monocyte prognostic marker for GBM critical for defining a subpopulation of stromal cells for future potential therapeutic intervention.

  16. Correlation between {sup 18}F-fluoromisonidazole PET and expression of HIF-1α and VEGF in newly diagnosed and recurrent malignant gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Nobuyuki; Ogawa, Daisuke; Miyake, Keisuke; Tamiya, Takashi [Kagawa University, Department of Neurological Surgery, Faculty of Medicine, Kagawa (Japan); Lin, Wei [Kagawa University, Department of Neurological Surgery, Faculty of Medicine, Kagawa (Japan); Fourth Military Medical University, Department of Neurosurgery, Xijing Hospital, Xi' an (China); Cao, Wei-Dong [Fourth Military Medical University, Department of Neurosurgery, Xijing Hospital, Xi' an (China); Haba, Reiji [Kagawa University, Department of Diagnostic Pathology, Faculty of Medicine, Kagawa (Japan); Maeda, Yukito; Yamamoto, Yuka; Nishiyama, Yoshihiro [Kagawa University, Department of Radiology, Faculty of Medicine, Kagawa (Japan)

    2014-10-15

    Hypoxia and its consequences at the molecular level promote tumour progression and affect patient prognosis. One of the main early cellular events evoked by hypoxia is induction of hypoxia-inducible factor 1 (HIF-1) and subsequent upregulation of vascular endothelial growth factor (VEGF). In this study we sought to determine whether hypoxia detected by {sup 18}F-fluoromisonidazole (FMISO) PET accurately reflects the expression of HIF-1α and VEGF in the tumour and can be used as a biomarker of antiangiogenic treatment and as a prognostic factor in newly diagnosed and recurrent malignant gliomas. Enrolled in this study were 32 patients with newly diagnosed glioma and 16 with recurrent glioma of grade III or grade IV. All the patients had undergone FMISO PET preoperatively. The maximum tumour-to-blood FMISO activity ratio (T/B{sub max}) was used to evaluate the degree of tumour hypoxia and the hypoxic volume (HV) was calculated using a tumour-to-blood FMISO uptake ratio of ≥1.2. Immunohistochemical expressions of HIF-1α and VEGF were evaluated semiquantitatively using the immunoreactivity score (IRS, scores 0 to 12) and the correlation was examined between IRS of HIF-1α or VEGF and FMISO uptake of the tumour (SUV{sub tumour}) using navigation-based sampling. Survival was estimated using the Kaplan-Meier method in relation to the T/B{sub max} and the HV. The T/B{sub max} and the HV in grade IV gliomas were significantly higher than in grade III gliomas (P < 0.01 and P < 0.01, respectively). Moderate to strong HIF-1α and VEGF expression was observed in the majority of malignant gliomas. The IRS of HIF-1α and VEGF in the tumour were not significantly different between grade III and grade IV gliomas. The IRS of HIF-1α in the tumour did not correlate with the SUV{sub tumour} of FMISO in either newly diagnosed or recurrent glioma. There was a significant but weak correlation between the IRS of VEGF and the SUV{sub tumour} of FMISO in newly diagnosed glioma, but not

  17. DNA Methylation, Histone Modifications, and Signal Transduction Pathways: A Close Relationship in Malignant Gliomas Pathophysiology

    Directory of Open Access Journals (Sweden)

    Raúl Alelú-Paz

    2012-01-01

    Full Text Available Gliomas are the most common type of primary brain tumor. Although tremendous progress has been achieved in the recent years in the diagnosis and treatment, its molecular etiology remains unknown. In this regard, epigenetics represents a new approach to study the mechanisms that control gene expression and function without changing the sequence of the genome. In the present paper we describe the main findings about the alterations of cell signaling pathways in the most aggressive glioma in the adult population, namely, glioblastoma, in which epigenetic mechanisms and the emerging role of cancer stem cell play a crucial function in the development of new biomarkers for its detection and prognosis and the corresponding development of new pharmacological strategies.

  18. Differential Effects of Cold Atmospheric Plasma in the Treatment of Malignant Glioma.

    Directory of Open Access Journals (Sweden)

    Alan Siu

    Full Text Available Cold atmospheric plasma (CAP has recently been shown to selectively target cancer cells with minimal effects on normal cells. We systematically assessed the effects of CAP in the treatment of glioblastoma.Three glioma cell lines, normal astrocytes, and endothelial cell lines were treated with CAP. The effects of CAP were then characterized for viability, cytotoxicity/apoptosis, and cell cycle effects. Statistical significance was determined with student's t-test.CAP treatment decreases viability of glioma cells in a dose dependent manner, with the ID50 between 90-120 seconds for all glioma cell lines. Treatment with CAP for more than 120 seconds resulted in viability less than 35% at 24-hours posttreatment, with a steady decline to less than 20% at 72-hours. In contrast, the effect of CAP on the viability of NHA and HUVEC was minimal, and importantly not significant at 90 to 120 seconds, with up to 85% of the cells remained viable at 72-hours post-treatment. CAP treatment produces both cytotoxic and apoptotic effects with some variability between cell lines. CAP treatment resulted in a G2/M-phase cell cycle pause in all three cell lines.This preliminary study determined a multi-focal effect of CAP on glioma cells in vitro, which was not observed in the non-tumor cell lines. The decreased viability depended on the treatment duration and cell line, but overall was explained by the induction of cytotoxicity, apoptosis, and G2/M pause. Future studies will aim at further characterization with more complex pre-clinical models.

  19. Myxoma Virus Infection Promotes NK Lysis of Malignant Gliomas In Vitro and In Vivo

    OpenAIRE

    Henry Ogbomo; Zemp, Franz J.; Xueqing Lun; Jiqing Zhang; Danuta Stack; Rahman, Masmudur M.; Grant McFadden; Mody, Christopher H.; Forsyth, Peter A

    2013-01-01

    Myxoma virus (MYXV) is a well-established oncolytic agent against different types of tumors. MYXV is also known for its immunomodulatory properties in down-regulating major histocompatibility complex (MHC) I surface expression (via the M153R gene product, a viral E3-ubiquitin ligase) and suppressing T cell killing of infected target cells. MHC I down-regulation, however, favors NK cell activation. Brain tumors including gliomas are characterized by high MHC I expression with impaired NK activ...

  20. Treatment of Malignant Gliomas in Elderly Patients: A Concise Overview of the Literature

    Directory of Open Access Journals (Sweden)

    Patrizia Farina

    2014-01-01

    Full Text Available Gliomas are the most frequent primary brain tumors and the incidence data has increased in the elderly population. Unfortunately, prospective studies on this population are few and so the right treatment is unknown. In the elderly patients no standard treatment has been established and therefore the optimal treatment should be individualized. We performed a review analyzing the prognostic and predictive factors, the clinical studies, and the correct management of this population.

  1. The in vitro effects of tricyclic drugs and dexamethasone on cellular respiration of malignant glioma.

    Science.gov (United States)

    Higgins, S C; Pilkington, G J

    2010-02-01

    In this investigation the effects of tricyclic drugs on cellular respiration were studied using the anaplastic astrocytoma cell line IPSB-18 by use of a Clark-type oxygen electrode which measured changes in cellular respiration rate (oxygen consumption), in a dose-response assay. The drugs investigated were clomipramine, norclomipramine, amitriptyline and doxepin. In addition, the combined effects of dexamethasone and clomipramine on cellular respiration were investigated. It was established that at lower concentrations (0.14 mM-0.5 mM) amitriptyline was the most potent inhibitor of cellular respiration. Previous studies have indicated that inhibition of cellular respiration is considered an indicator of apoptosis. Overall, it appeared that clomipramine and its metabolite norclomipramine were the most potent inhibitors of cellular respiration in glioma cells over the concentration range 0.5-0.9 mM. Dexamethasone was able to induce inhibition of cellular respiration both alone in glioma cells, and in combination with clomipramine, where it had an additive or synergistic effect, thereby increasing cell death. The extensive research currently ongoing and previously reported regarding the use of clomipramine as a potential antineoplastic agent aimed at targeting the mitochondria of gliomas is promising.

  2. EPIDEMIOLOGÍA DEL DENGUE EN PALMIRA VALLE, COLOMBIA 2001-2004 Dengue in Palmira-Vallle(Colombia2001-2004. An epidemiological

    Directory of Open Access Journals (Sweden)

    Jorge Martín Rodríguez

    2006-06-01

    Full Text Available Antecedentes. El dengue es una enfermedad viral, de zonas tropicales y subtropicales, transmitida por mosquitos. Su amplia gama de manifestaciones clínicas, se ha agrupado en tres formas específicas con diversos niveles de gravedad: dengue clásico, dengue hemorrágico y síndrome de choque por dengue. Objetivo. Describir y generar posibles explicaciones acerca del comportamiento del dengue en sus formas clásica y hemorrágica observadas en el municipio de Palmira, Valle del Cauca, entre 2001- 2004. Material y métodos. Estudio descriptivo con los registros del sistema de vigilancia en salud pública, de Palmira, provenientes de la recolección diaria en las instituciones prestadoras de de salud y de su consolidación semanal en la dirección local de salud. Resultados. Se observó una reducción del 88.2 por ciento en los registros de dengue clásico en 2001-2004, mayor en el grupo de 15-44 años por una descenso del 92.2 por ciento; en el grupo de 5-14 la disminución fue del 89.8 por ciento y en las personas de 45-59 años fue del 88.2 por ciento. La notificación de casos probables de dengue clásico y hemorrágico se vio afectada, por déficit, pues el personal médico de las instituciones de salud, no utiliza los criterios estandarizados de diagnóstico para estas enfermedades. Conclusión. Es necesario implementar capacitaciones periódicas para los profesionales de salud en el diagnóstico del dengue en sus formas clásicas y hemorrágicas y mantener los procesos de vigilancia entomológica y participación social para el control y prevención de esta enfermedad.Background. Dengue is a viral disease of tropical and subtropical zones transmitted by bites. Dengue produces many manifestations, and it is classified in: classic, hemorrhagic and shock dengue syndrome with differences in its severity. Objective. To describe and to generate possible explanations about the behavior of dengue in its classic and hemorrhagic varieties observed in

  3. Molecular Study on Differentiation-Associated Genes Involved in Both Malignant Progression of Glioma and Differentiation of Human Fetal Neural Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Jun Dong; Yinyan Wu; Qiang Huang; Fei Wang; Aidong Wang; Qing Lan

    2006-01-01

    OBJECTIVE It is unclear whether differentiation disturbances or deregulation of neural stem cells (NSCs) are the early key steps for gliomagenesis and tumor development. Furthermore, relevant molecular changes and gene-regulation pathways are unknown. This study focused on screening and validating differentiation-associated genes from both human NSCs and glioma cells with malignant progression, for the purpose of offering an experimental basis for the cellular origin of gilomas and molecular pathology of gliomagenesis.METHODS The differential-gene expression profiles of malignant progression of gliomas were established, then the differentiation related genes were screened out with a bioinformatics analysis. Expression levels of these genes was further analyzed in cultured human fetal NSCs undergoing differentiation processes with a semi-quantitative RT-PCR assay.RESULTS Eight genes were screened out from the gene-expression profiling of which the expression levels were associated with the differentiation processes of NSCs, namely CXCR4, TN-C, GLT1, IL1-RI, EGFR8, CDC2, Ndr3 and MAPKK4. Three of them, ie., GLT1, CDC2 and MAPKK4, were further analyzed, showing that expression levels decreased with the differentiation processes of NSCs, and increased with the malignant progression of ganglioglioma.CONCLUSION Three differentiation associated genes were found negatively associated with NSCs differentiation and positively associated with malignant progression of gliomas, suggesting that differentiation disturbances of neural stem ceils may be involved in oncogenesis, and that further studies on their roles in gliomagenesis should be conducted.

  4. A phase I trial of erlotinib in patients with nonprogressive glioblastoma multiforme postradiation therapy, and recurrent malignant gliomas and meningiomas†

    Science.gov (United States)

    Raizer, Jeffrey J.; Abrey, Lauren E.; Lassman, Andrew B.; Chang, Susan M.; Lamborn, Kathleen R.; Kuhn, John G.; Yung, W.K. Alfred; Gilbert, Mark R.; Aldape, Kenneth D.; Wen, Patrick Y.; Fine, Howard A.; Mehta, Minesh; DeAngelis, Lisa M.; Lieberman, Frank; Cloughesy, Timothy F.; Robins, H. Ian; Dancey, Janet; Prados, Michael D.

    2010-01-01

    The objective of this phase I study was to determine the maximal tolerated dose (MTD) of erlotinib in patients with recurrent malignant gliomas (MGs) or recurrent meningiomas on enzyme-inducing antiepileptic drugs (EIAEDs). Dose escalation was by a standard 3 × 3 design. The initial starting dose of erlotinib was 150 mg daily. If no dose-limiting toxicity (DLT) was observed, then dose escalation occurs as follows: 200 mg/day, 275 mg/day, and then increased in 125 mg increments until the MTD was reached. The MTD was defined as the dose where ≤1 of 6 patients experienced a DLT and the dose above had 2 or more DLTs. The MTD was 650 mg/day; the observed DLTs were grade 3 rash in 2 patients at 775 mg/day. Pharmacokinetic analysis showed a significant influence of EIAEDs on the metabolism of erlotinib when compared with our phase II data published separately. Primary toxicities were rash and diarrhea. The MTD of erlotinib in patients receiving EIAEDs is substantially higher than the standard dose of 150 mg. This has important implications for further development of this drug in the treatment of MG as well as the optimal management of patients with other malignancies such as NSCLC who are on enzyme-inducing drugs. PMID:20150371

  5. GAS5 suppresses malignancy of human glioma stem cells via a miR-196a-5p/FOXO1 feedback loop.

    Science.gov (United States)

    Zhao, Xihe; Liu, Yunhui; Zheng, Jian; Liu, Xiaobai; Chen, Jiajia; Liu, Libo; Wang, Ping; Xue, Yixue

    2017-10-01

    Glioma stem cells (GSCs) make up highly tumorigenic subpopulations within gliomas, and aberrant expression of GSC genes is a major underlying cause of glioma pathogenesis and treatment failure. The present study characterized the expression and function of long non-coding RNA growth arrest specific 5 (GAS5) in GSCs in order to elucidate the molecular mechanisms by which GAS5 contributes to glioma pathogenesis. We demonstrate that GAS5 suppresses GSC malignancy by binding to miR-196a-5p. miR-196a-5p, an onco-miRNA, stimulates GSC proliferation, migration, and invasion, in addition to reducing levels of apoptosis. miR-196a-5p specifically downregulates the expression of forkhead box protein O1 (FOXO1) by targeting its 3' untranslated region (3'-UTR). FOXO1 upregulates expression of phosphotyrosine interaction domain containing 1 (PID1), thereby inhibiting GSC tumorigenicity and growth. FOXO1 also upregulates migration and invasion inhibitory protein (MIIP), resulting in attenuation of migration and invasion activities. Interestingly, we also show that FOXO1 promotes GAS5 transcription, thus forminga positive feedback loop. These data provide insights into potential new pathways for GSC molecular therapy and suggest that GAS5 may be an efficacious target for glioma treatments. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The value of intraoperative ultrasonography during the resection of relapsed irradiated malignant gliomas in the brain

    Energy Technology Data Exchange (ETDEWEB)

    Mursch, Kay; Mursch, Julianne Behnke [Dept. of Neurosurgery, Zentralklinik, Bad Berka (Germany); Scholz, Martin [Dept. of Neurosurgery, Klinikum Duisburg, Duisburg (Germany); Brueck, Wolfgang [Dept. of Neuropathology, Georg August Universitaet, Goettingen (Germany)

    2017-01-15

    The aim of this study was to investigate whether intraoperative ultrasonography (IOUS) helped the surgeon navigate towards the tumor as seen in preoperative magnetic resonance imaging and whether IOUS was able to distinguish between tumor margins and the surrounding tissue. Twenty-five patients suffering from high-grade gliomas who were previously treated by surgery and radiotherapy were included. Intraoperatively, two histopathologic samples were obtained a sample of unequivocal tumor tissue (according to anatomical landmarks and the surgeon's visual and tactile impressions) and a small tissue sample obtained using a navigated needle when the surgeon decided to stop the resection. This specimen was considered to be a boundary specimen, where no tumor tissue was apparent. The decision to take the second sample was not influenced by IOUS. The effect of IOUS was analyzed semi-quantitatively. All 25 samples of unequivocal tumor tissue were histopathologically classified as tumor tissue and were hyperechoic on IOUS. Of the boundary specimens, eight were hypoechoic. Only one harbored tumor tissue (P=0.150). Seventeen boundaries were moderately hyperechoic, and these samples contained all possible histological results (i.e., tumor, infiltration, or no tumor). During surgery performed on relapsed, irradiated, high-grade gliomas, IOUS provided a reliable method of navigating towards the core of the tumor. At borders, it did not reliably distinguish between remnants or tumor-free tissue, but hypoechoic areas seldom contained tumor tissue.

  7. Therapeutic vaccination against malignant gliomas based on allorecognition and syngeneic tumour antigens: proof of principle in two strains of rat

    NARCIS (Netherlands)

    Stathopoulos, A.; Samuelson, C.; Milbouw, G.; Hermanne, J.P.; Schijns, V.E.J.C.; Chen, T.C.

    2008-01-01

    In the present study we investigated whether allogeneic glioma cells can be utilized to evoke prophylactic or therapeutic immune-mediated elimination of syngeneic glioma in two rat strains. Fisher 344 and Sprague–Dawley (SD) rats were injected with two syngeneic glioma cell lines, 9L and C6, respect

  8. A phase II trial of erlotinib in patients with recurrent malignant gliomas and nonprogressive glioblastoma multiforme postradiation therapy†

    Science.gov (United States)

    Raizer, Jeffrey J.; Abrey, Lauren E.; Lassman, Andrew B.; Chang, Susan M.; Lamborn, Kathleen R.; Kuhn, John G.; Yung, W.K. Alfred; Gilbert, Mark R.; Aldape, Kenneth A.; Wen, Patrick Y.; Fine, Howard A.; Mehta, Minesh; DeAngelis, Lisa M.; Lieberman, Frank; Cloughesy, Timothy F.; Robins, H. Ian; Dancey, Janet; Prados, Michael D.

    2010-01-01

    Patients with (a) recurrent malignant glioma (MG): glioblastoma (GBM) or recurrent anaplastic glioma (AG), and (b) nonprogressive (NP) GBM following radiation therapy (RT) were eligible. Primary objective for recurrent MG was progression-free survival at 6 months (PFS-6) and overall survival at 12 months for NP GBM post-RT. Secondary objectives for recurrent MGs were response, survival, assessment of toxicity, and pharmacokinetics (PKs). Treatment with enzyme-inducing antiepileptic drugs was not allowed. Patients received 150 mg/day erlotinib. Patients requiring surgery were treated 7 days prior to tumor removal for PK analysis and effects of erlotinib on epidermal growth factor receptor (EGFR) and intracellular signaling pathways. Ninety-six patients were evaluable (53 recurrent MG and 43 NP GBM); 5 patients were not evaluable for response. PFS-6 in recurrent GBM was 3% with a median PFS of 2 months; PFS-6 in recurrent AG was 27% with a median PFS of 2 months. Twelve-month survival was 57% in NP GBMs post-RT. Primary toxicity was dermatologic. The tissue-to-plasma ratio normalized to nanograms per gram dry weight for erlotinib and OSI-420 ranged from 25% to 44% and 30% to 59%, respectively, for pretreated surgical patients. No effect on EGFR or intratumoral signaling was seen. Patients with NP GBM post-RT who developed rash in cycle 1 had improved survival (P < .001). Single-agent activity of erlotinib is minimal for recurrent MGs and marginally beneficial following RT for NP GBM patients. Development of rash in cycle 1 correlates with survival in patients with NP GBM after RT. PMID:20150372

  9. Germline rearrangements in families with strong family history of glioma and malignant melanoma, colon, and breast cancer

    Science.gov (United States)

    Andersson, Ulrika; Wibom, Carl; Cederquist, Kristina; Aradottir, Steina; Borg, Åke; Armstrong, Georgina N.; Shete, Sanjay; Lau, Ching C.; Bainbridge, Matthew N.; Claus, Elizabeth B.; Barnholtz-Sloan, Jill; Lai, Rose; Il'yasova, Dora; Houlston, Richard S.; Schildkraut, Joellen; Bernstein, Jonine L.; Olson, Sara H.; Jenkins, Robert B.; Lachance, Daniel H.; Wrensch, Margaret; Davis, Faith G.; Merrell, Ryan; Johansen, Christoffer; Sadetzki, Siegal; Bondy, Melissa L.; Melin, Beatrice S.; Adatto, Phyllis; Morice, Fabian; Payen, Sam; McQuinn, Lacey; McGaha, Rebecca; Guerra, Sandra; Paith, Leslie; Roth, Katherine; Zeng, Dong; Zhang, Hui; Yung, Alfred; Aldape, Kenneth; Gilbert, Mark; Weinberger, Jeffrey; Colman, Howard; Conrad, Charles; de Groot, John; Forman, Arthur; Groves, Morris; Levin, Victor; Loghin, Monica; Puduvalli, Vinay; Sawaya, Raymond; Heimberger, Amy; Lang, Frederick; Levine, Nicholas; Tolentino, Lori; Saunders, Kate; Thach, Thu-Trang; Iacono, Donna Dello; Sloan, Andrew; Gerson, Stanton; Selman, Warren; Bambakidis, Nicholas; Hart, David; Miller, Jonathan; Hoffer, Alan; Cohen, Mark; Rogers, Lisa; Nock, Charles J; Wolinsky, Yingli; Devine, Karen; Fulop, Jordonna; Barrett, Wendi; Shimmel, Kristen; Ostrom, Quinn; Barnett, Gene; Rosenfeld, Steven; Vogelbaum, Michael; Weil, Robert; Ahluwalia, Manmeet; Peereboom, David; Staugaitis, Susan; Schilero, Cathy; Brewer, Cathy; Smolenski, Kathy; McGraw, Mary; Naska, Theresa; Rosenfeld, Steven; Ram, Zvi; Blumenthal, Deborah T.; Bokstein, Felix; Umansky, Felix; Zaaroor, Menashe; Cohen, Avi; Tzuk-Shina, Tzeela; Voldby, Bo; Laursen, René; Andersen, Claus; Brennum, Jannick; Henriksen, Matilde Bille; Marzouk, Maya; Davis, Mary Elizabeth; Boland, Eamon; Smith, Marcel; Eze, Ogechukwu; Way, Mahalia; Lada, Pat; Miedzianowski, Nancy; Frechette, Michelle; Paleologos, Nina; Byström, Gudrun; Svedberg, Eva; Huggert, Sara; Kimdal, Mikael; Sandström, Monica; Brännström, Nikolina; Hayat, Amina; Tihan, Tarik; Zheng, Shichun; Berger, Mitchel; Butowski, Nicholas; Chang, Susan; Clarke, Jennifer; Prados, Michael; Rice, Terri; Sison, Jeannette; Kivett, Valerie; Duo, Xiaoqin; Hansen, Helen; Hsuang, George; Lamela, Rosito; Ramos, Christian; Patoka, Joe; Wagenman, Katherine; Zhou, Mi; Klein, Adam; McGee, Nora; Pfefferle, Jon; Wilson, Callie; Morris, Pagan; Hughes, Mary; Britt-Williams, Marlin; Foft, Jessica; Madsen, Julia; Polony, Csaba; McCarthy, Bridget; Zahora, Candice; Villano, John; Engelhard, Herbert; Borg, Ake; Chanock, Stephen K; Collins, Peter; Elston, Robert; Kleihues, Paul; Kruchko, Carol; Petersen, Gloria; Plon, Sharon; Thompson, Patricia; Johansen, C.; Sadetzki, S.; Melin, B.; Bondy, Melissa L.; Lau, Ching C.; Scheurer, Michael E.; Armstrong, Georgina N.; Liu, Yanhong; Shete, Sanjay; Yu, Robert K.; Aldape, Kenneth D.; Gilbert, Mark R.; Weinberg, Jeffrey; Houlston, Richard S.; Hosking, Fay J.; Robertson, Lindsay; Papaemmanuil, Elli; Claus, Elizabeth B.; Claus, Elizabeth B.; Barnholtz-Sloan, Jill; Sloan, Andrew E.; Barnett, Gene; Devine, Karen; Wolinsky, Yingli; Lai, Rose; McKean-Cowdin, Roberta; Il'yasova, Dora; Schildkraut, Joellen; Sadetzki, Siegal; Yechezkel, Galit Hirsh; Bruchim, Revital Bar-Sade; Aslanov, Lili; Sadetzki, Siegal; Johansen, Christoffer; Kosteljanetz, Michael; Broholm, Helle; Bernstein, Jonine L.; Olson, Sara H.; Schubert, Erica; DeAngelis, Lisa; Jenkins, Robert B.; Yang, Ping; Rynearson, Amanda; Andersson, Ulrika; Wibom, Carl; Henriksson, Roger; Melin, Beatrice S.; Cederquist, Kristina; Aradottir, Steina; Borg, Åke; Merrell, Ryan; Lada, Patricia; Wrensch, Margaret; Wiencke, John; Wiemels, Joe; McCoy, Lucie; McCarthy, Bridget J.; Davis, Faith G.

    2014-01-01

    Background Although familial susceptibility to glioma is known, the genetic basis for this susceptibility remains unidentified in the majority of glioma-specific families. An alternative approach to identifying such genes is to examine cancer pedigrees, which include glioma as one of several cancer phenotypes, to determine whether common chromosomal modifications might account for the familial aggregation of glioma and other cancers. Methods Germline rearrangements in 146 glioma families (from the Gliogene Consortium; http://www.gliogene.org/) were examined using multiplex ligation-dependent probe amplification. These families all had at least 2 verified glioma cases and a third reported or verified glioma case in the same family or 2 glioma cases in the family with at least one family member affected with melanoma, colon, or breast cancer.The genomic areas covering TP53, CDKN2A, MLH1, and MSH2 were selected because these genes have been previously reported to be associated with cancer pedigrees known to include glioma. Results We detected a single structural rearrangement, a deletion of exons 1-6 in MSH2, in the proband of one family with 3 cases with glioma and one relative with colon cancer. Conclusions Large deletions and duplications are rare events in familial glioma cases, even in families with a strong family history of cancers that may be involved in known cancer syndromes. PMID:24723567

  10. Optic glioma

    Science.gov (United States)

    Glioma - optic; Optic nerve glioma; Juvenile pilocytic astrocytoma; Brain cancer - optic glioma ... Optic gliomas are rare. The cause of optic gliomas is unknown. Most optic gliomas are slow-growing ...

  11. Neurosphere and adherent culture conditions are equivalent for malignant glioma stem cell lines.

    Science.gov (United States)

    Rahman, Maryam; Reyner, Karina; Deleyrolle, Loic; Millette, Sebastien; Azari, Hassan; Day, Bryan W; Stringer, Brett W; Boyd, Andrew W; Johns, Terrance G; Blot, Vincent; Duggal, Rohit; Reynolds, Brent A

    2015-03-01

    Certain limitations of the neurosphere assay (NSA) have resulted in a search for alternative culture techniques for brain tumor-initiating cells (TICs). Recently, reports have described growing glioblastoma (GBM) TICs as a monolayer using laminin. We performed a side-by-side analysis of the NSA and laminin (adherent) culture conditions to compare the growth and expansion of GBM TICs. GBM cells were grown using the NSA and adherent culture conditions. Comparisons were made using growth in culture, apoptosis assays, protein expression, limiting dilution clonal frequency assay, genetic affymetrix analysis, and tumorigenicity in vivo. In vitro expansion curves for the NSA and adherent culture conditions were virtually identical (P=0.24) and the clonogenic frequencies (5.2% for NSA vs. 5.0% for laminin, P=0.9) were similar as well. Likewise, markers of differentiation (glial fibrillary acidic protein and beta tubulin III) and proliferation (Ki67 and MCM2) revealed no statistical difference between the sphere and attachment methods. Several different methods were used to determine the numbers of dead or dying cells (trypan blue, DiIC, caspase-3, and annexin V) with none of the assays noting a meaningful variance between the two methods. In addition, genetic expression analysis with microarrays revealed no significant differences between the two groups. Finally, glioma cells derived from both methods of expansion formed large invasive tumors exhibiting GBM features when implanted in immune-compromised animals. A detailed functional, protein and genetic characterization of human GBM cells cultured in serum-free defined conditions demonstrated no statistically meaningful differences when grown using sphere (NSA) or adherent conditions. Hence, both methods are functionally equivalent and remain suitable options for expanding primary high-grade gliomas in tissue culture.

  12. Evaluation of serial changes on computed tomography and magnetic resonance imaging after implantation of carmustine wafers in patients with malignant gliomas for differential diagnosis of tumor recurrence.

    Science.gov (United States)

    Ohue, Shiro; Kohno, Shohei; Inoue, Akihiro; Yamashita, Daisuke; Suehiro, Satoshi; Seno, Toshimoto; Kumon, Yoshiaki; Kikuchi, Keiichi; Ohnishi, Takanori

    2016-01-01

    Carmustine wafers are approved for localized treatment of malignant glioma. In this study, overall changes in computed tomography (CT) and magnetic resonance (MR) images of malignant glioma patients treated with carmustine wafer implantation were evaluated. The subjects were 25 patients undergoing craniotomy for malignant glioma resection and carmustine wafer implantation. Changes in the appearance of wafers, the resection cavity, and the adjacent parenchyma on CT and MR imaging were evaluated retrospectively. On CT, the wafers changed from an initially high-dense to an iso-dense appearance. All MR studies showed a low-intense wafer within 2 days. The wafers changed to a high- or iso-intense appearance on fluid attenuated inversion recovery and T1-weighted imaging, whereas they changed to an iso- to low-intense appearance on T2-weighted imaging. Gas in the cavity increased gradually after surgery, achieved a peak at 1 week postoperatively, and then disappeared in 1-3 months. Increased volume of the resection cavity was observed in 48% of patients. Regarding changes in the adjacent parenchyma, obvious contrast enhancement at the wall of the resection cavity was seen in 91% of cases at 1 month, but this disappeared gradually. Edema around the resection cavity was increased in 7 patients (28%), of whom only two experienced symptoms due to edema. We conclude that these radiological changes after carmustine wafer implantation should be carefully followed up, because these changes can easily be mistaken for infectious disease or recurrent tumors.

  13. Early Detection of Malignant Transformation in Resected WHO II Low-Grade Glioma Using Diffusion Tensor-Derived Quantitative Measures

    Science.gov (United States)

    Freitag, Martin T.; Maier-Hein, Klaus H.; Binczyk, Francisczek; Laun, Frederik B.; Weber, Christian; Bonekamp, David; Tarnawski, Rafal; Bobek-Billewicz, Barbara; Polanska, Joanna; Majchrzak, Henryk; Stieltjes, Bram

    2016-01-01

    Objective Here, we retrospectively investigate the value of voxel-wisely plotted diffusion tensor-derived (DTI) axial, radial and mean diffusivity for the early detection of malignant transformation (MT) in WHO II glioma compared to contrast-enhanced images. Materials and Methods Forty-seven patients underwent brain magnetic resonance imaging follow-up between 2006–2014 after gross-tumor resection of intra-axial WHO II glioma. Axial/Mean/Radial diffusivity maps (AD/MD/RD) were generated from DTI data. ADmin/MDmin/RDmin values were quantified within tumor regions-of-interest generated by two independent readers including tumor contrast-to-noise (CNR). Sensitivity/specificity and area-under-the-curve (AUC) were calculated using receiver-operating-characteristic analysis. Inter-reader agreement was assessed (Cohen’s kappa). Results Eighteen patients demonstrated malignant transformation (MT) confirmed in 8/18 by histopathology and in 10/18 through imaging follow-up. Twelve of 18 patients (66.6%) with MT showed diffusion restriction timely coincidental with contrast-enhancement (CE). In the remaining six patients (33.3%), the diffusion restriction preceded the CE. The mean gain in detection time using DTI was (0.8±0.5 years, p = 0.028). Compared to MDmin and RDmin, ROC-analysis showed best diagnostic value for ADmin (sensitivity/specificity 94.94%/89.7%, AUC 0.96; p<0.0001) to detect MT. CNR was highest for AD (1.83±0.14), compared to MD (1.31±0.19; p<0.003) and RD (0.90±0.23; p<0.0001). Cohen’s Kappa was 0.77 for ADmin, 0.71 for MDmin and 0.65 for RDmin (p<0.0001, respectively). Conclusion MT is detectable at the same time point or earlier compared to T1w-CE by diffusion restriction in diffusion-tensor-derived maps. AD demonstrated highest sensitivity/specificity/tumor-contrast compared to radial or mean diffusivity (= apparent diffusion coefficient) to detect MT. PMID:27741525

  14. Radiation injury of boron neutron capture therapy using mixed epithermal- and thermal neutron beams in patients with malignant glioma

    Energy Technology Data Exchange (ETDEWEB)

    Kageji, T. E-mail: kageji@clin.med.tokushima-u.ac.jp; Nagahiro, S.; Mizobuchi, Y.; Toi, H.; Nakagawa, Y.; Kumada, H

    2004-11-01

    The purpose of this study was to clarify the radiation injury in acute or delayed stage after boron neutron capture therapy (BNCT) using mixed epithermal- and thermal neutron beams in patients with malignant glioma. Eighteen patients with malignant glioma underwent mixed epithermal- and thermal neutron beam and sodium borocaptate between 1998 and 2004. The radiation dose (i.e. physical dose of boron n-alpha reaction) in the protocol used between 1998 and 2000 (Protocol A, n=8) prescribed a maximum tumor volume dose of 15 Gy. In 2001, a new dose-escalated protocol was introduced (Protocol B, n=4); it prescribes a minimum tumor volume dose of 18 Gy or, alternatively, a minimum target volume dose of 15 Gy. Since 2002, the radiation dose was reduced to 80-90% dose of Protocol B because of acute radiation injury. A new Protocol was applied to 6 glioblastoma patients (Protocol C, n=6). The average values of the maximum vascular dose of brain surface in Protocol A, B and C were 11.4{+-}4.2 Gy, 15.7{+-}1.2 and 13.9{+-}3.6 Gy, respectively. Acute radiation injury such as a generalized convulsion within 1 week after BNCT was recognized in three patients of Protocol B. Delayed radiation injury such as a neurological deterioration appeared 3-6 months after BNCT, and it was recognized in 1 patient in Protocol A, 5 patients in Protocol B. According to acute radiation injury, the maximum vascular dose was 15.8{+-}1.3 Gy in positive and was 12.6{+-}4.3 Gy in negative. There was no significant difference between them. According to the delayed radiation injury, the maximum vascular dose was 13.8{+-}3.8 Gy in positive and was 13.6{+-}4.9 Gy in negative. There was no significant difference between them. The dose escalation is limited because most patients in Protocol B suffered from acute radiation injury. We conclude that the maximum vascular dose does not exceed over 12 Gy to avoid the delayed radiation injury, especially, it should be limited under 10 Gy in the case that tumor

  15. Induction of reactive oxygen intermediates-dependent programmed cell death in human malignant ex vivo glioma cells and inhibition of the vascular endothelial growth factor production by taurolidine.

    Science.gov (United States)

    Rodak, Roksana; Kubota, Hisashi; Ishihara, Hideyuki; Eugster, Hans-Pietro; Könü, Dilek; Möhler, Hanns; Yonekawa, Yasuhiro; Frei, Karl

    2005-06-01

    Taurolidine, a derivative of the amino acid taurin, was recently found to display a potent antineoplastic effect both in vitro and in vivo. The authors therefore initiated studies to assess the potential antineoplastic activity of taurolidine in human glioma cell lines and in ex vivo malignant cell cultures. They also studied the mechanisms that induce cell death and the impact of taurolidine on tumor-derived vascular endothelial growth factor (VEGF) production. Cytotoxicity and clonogenic assays were performed using crystal violet staining. In the cytotoxicity assay 100% of glioma cell lines (eight of eight) and 74% of ex vivo glioma cultures (14 of 19) demonstrated sensitivity to taurolidine, with a mean median effective concentration (EC50) of 51 +/- 28 microg/ml and 56 +/- 23 microg/ml, respectively. Colony formation was inhibited by taurolidine, with a mean EC50 of 7 +/- 3 microg/ml for the cell lines and a mean EC50 of 3.5 +/- 1.7 microg/ml for the ex vivo glioma cultures. On observing this high activity of taurolidine in both assays, the authors decided to evaluate its cell death mechanisms. Fragmentation of DNA, externalization of phosphatidylserine, activation of poly(adenosine diphosphate-ribose) polymerase, loss of the mitochondrial membrane potential followed by a release of apoptosis-inducing factor, and typical apoptotic features were found after taurolidine treatment. Cell death was preceded by the generation of reactive O2 intermediates, which was abrogated by N-acetylcysteine but not by benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. Moreover, taurolidine also induced suppression of VEGF production on the protein and messenger RNA level, as shown by an enzyme-linked immunosorbent assay and by reverse transcription-polymerase chain reaction. Given all these findings, taurolidine may be a promising new agent in the treatment of malignant gliomas; it displays a combination of antineoplastic and antiangiogenic activities, inducing tumor cell

  16. Trends of Maternal Health Services Implementation in Indonesia (Data Analysis Susenas 2001, 2004 and 2007

    Directory of Open Access Journals (Sweden)

    Ika Dharmayanti

    2015-03-01

    Full Text Available ABSTRAKLatar Belakang:Status kesehatan ibu dan anak di Indonesia sampai saat ini masih harus menjadi perhatian karena angka kematian ibu dan angka kematian bayi yang masih tinggi. Rendahnya kesadaran masyarakat akan pelayanan kesehatan oleh tenaga kesehatan yang terampil merupakan faktor yang perlu diperhatikan dalam menangani persoalan tersebut. Penelitian ini bertujuan untuk mengetahui trend pemanfaatan tenaga kesehatan penolong kelahiran di Indonesia tahun 2001–2007. Metode: Analisis menggunakan data Survey Sosial Ekonomi Nasional (Susenas Kor tahun 2001, 2004 dan 2007. Disain penelitian menggunakan disain Cross Sectional. Ruang lingkup wilayah penelitian meliputi seluruh provinsi di Indonesia. Hasil:penelitian menunjukkan bahwa dalam kurun waktu tujuh tahun (2001–2007, pola pemanfaatan penolong kelahiran di Indonesia menunjukkan kecenderungan penggunaan tenaga kesehatan (dokter dan bidan sebagai penolong kelahiran Hasil analisis bivariat pada faktor kepulauan, pendidikan ibu, usia ibu, kepemilikan jaminan pembiayaan/asuransi kesehatan, dan sosial ekonomi terhadap klasifikasi desa/kota ikut berperan dalam pemilihan tenaga persalinan. Saran:mengupayakan kerja sama lintas sektor untuk meningkatkan taraf hidup masyarakat serta perbaikan akses pelayanan kesehatan di perdesaan akan sangat bermanfaat bagi masyarakat.Kata kunci: penolong kelahiran, dokter, bidan, dukun bayiABSTRACTBackground:The health status of mothers and children in Indonesia is still need special attention of concern because maternal and infant mortality rates are still high. The low public awareness of health services by trained health worker is a factor to consider in addressing these issues. This study aims to determine the trends in the use of maternal health services in Indonesia in 2001–2007. Methods:This analysis used National Socio-Economic Survey (NSES Core 2001, 2004 and 2007. The design of NSES was descriptive cross sectional cover all provinces in Indonesia as

  17. The Role of Bcl-2 Family Proteins in Therapy Responses of Malignant Astrocytic Gliomas: Bcl2L12 and Beyond

    Directory of Open Access Journals (Sweden)

    Fotini M. Kouri

    2012-01-01

    Full Text Available Glioblastoma (GBM is a highly aggressive and lethal brain cancer with a median survival of less than two years after diagnosis. Hallmarks of GBM tumors include soaring proliferative indices, high levels of angiogenesis, diffuse invasion into normal brain parenchyma, resistance toward therapy-induced apoptosis, and pseudopallisading necrosis. Despite the recent advances in neurosurgery, radiation therapy, and the development of targeted chemotherapeutic regimes, GBM remains one of the deadliest types of cancer. Particularly, the alkylating agent temozolomide (TMZ in combination with radiation therapy prolonged patient survival only marginally, and clinical studies assessing efficacies of targeted therapies, foremost ATP mimetics inhibiting the activity of receptor tyrosine kinases (RTKs, revealed only few initial responders; tumor recurrence is nearly universal, and salvage therapies to combat such progression remain ineffective. Consequently, myriad preclinical and clinical studies began to define the molecular mechanisms underlying therapy resistance of GBM tumors, and pointed to the Bcl-2 protein family, in particular the atypical member Bcl2-Like 12 (Bcl2L12, as important regulators of therapy-induced cell death. This review will discuss the multi-faceted modi operandi of Bcl-2 family proteins, describe their roles in therapy resistance of malignant glioma, and outline current and future drug development efforts to therapeutically target Bcl-2 proteins.

  18. PET pharmacokinetic analysis to estimate boron concentration in tumor and brain as a guide to plan BNCT for malignant cerebral glioma

    Energy Technology Data Exchange (ETDEWEB)

    Nariai, Tadashi [Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo (Japan)], E-mail: nariai.nsrg@tmd.ac.jp; Ishiwata, Kiichi [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1, Nakacho, Itabashi-ku, Tokyo (Japan); Kimura, Yuichi [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba (Japan); Inaji, Motoki; Momose, Toshiya [Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo (Japan); Yamamoto, Tetsuya; Matsumura, Akira [Department of Neurosurgery, University of Tsukuba, Tennodai, Tsukuba, Igaraki (Japan); Ishii, Kenji [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1, Nakacho, Itabashi-ku, Tokyo (Japan); Ohno, Kikuo [Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo (Japan)

    2009-07-15

    Introduction: To plan the optimal BNCT for patients with malignant cerebral glioma, estimation of the ratio of boron concentration in tumor tissue against that in the surrounding normal brain (T/N ratio of boron) is important. We report a positron emission tomography (PET) imaging method to estimate T/N ratio of tissue boron concentration based on pharmacokinetic analysis of amino acid probes. Methods: Twelve patients with cerebral malignant glioma underwent 60 min dynamic PET scanning of brain after bolus injection of {sup 18}F-borono-phenyl-alanine (FBPA) with timed arterial blood sampling. Using kinetic parameter obtained by this scan, T/N ratio of boron concentration elicited by one-hour constant infusion of BPA, as performed in BNCT, was simulated on Runge-Kutta algorithm. {sup 11}C-methionine (MET) PET scan, which is commonly used in worldwide PET center as brain tumor imaging tool, was also performed on the same day to compare the image characteristics of FBPA and that of MET. Result: PET glioma images obtained with FBPA and MET are almost identical in all patients by visual inspection. Estimated T/N ratio of tissue boron concentration after one-hour constant infusion of BPA, T/N ratio of FBPA on static condition, and T/N ratio of MET on static condition showed significant linear correlation between each other. Conclusion: T/N ratio of boron concentration that is obtained by constant infusion of BPA during BNCT can be estimated by FBPA PET scan. This ratio can also be estimated by MET-PET imaging. As MET-PET study is available in many clinical PET center, selection of candidates for BNCT may be possible by MET-PET images. Accurate planning of BNCT may be performed by static images of FBPA PET. Use of PET imaging with amino acid probes may contribute very much to establish an appropriate application of BNCT for patients with malignant glioma.

  19. Characterizing the Fish Passage Environment at The Dalles Dam Spillway: 2001-2004

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, Marshall C.; Carlson, Thomas J.; Serkowski, John A.; Cook, Chris B.; Duncan, Joanne P.; Perkins, William A.

    2007-10-10

    The spill environment at The Dalles Dam in 2001-2004 was characterized using a field-deployed autonomous sensor (the so-called Sensor Fish), computational fluid dynamics (CFD) modeling, and Lagrangian particle tracking. The sensor fish has a self-contained capability to digitally the record pressure and triaxial accelerations it was exposed to following its release into the spillway. After recovery downstream of the tailrace, the data stored in the memory of the sensor are downloaded and stored for analysis. The spillway, stilling basin, and tailrace hydrodynamics were simulated using an unsteady, free-surface, three-dimensional CFD code that solved the Reynolds-averaged Navier-Stokes equations in conjunction with a two-equation turbulence model. The results from the CFD simulations were then used in a Lagrangian particle tracking model that included the effects of mass, drag, and buoyancy in the particle equation of motion. A random walk method was used to simulate the effects of small-scale turbulence on the particle motion. Several operational and structural conditions were evaluated using the Sensor Fish, CFD, and particle tracking. Quantifying events such as strike and stilling basin retention time characterized exposure conditions in the spill environment.

  20. PME-1 protects extracellular signal-regulated kinase pathway activity from protein phosphatase 2A-mediated inactivation in human malignant glioma.

    Science.gov (United States)

    Puustinen, Pietri; Junttila, Melissa R; Vanhatupa, Sari; Sablina, Anna A; Hector, Melissa E; Teittinen, Kaisa; Raheem, Olayinka; Ketola, Kirsi; Lin, Shujun; Kast, Juergen; Haapasalo, Hannu; Hahn, William C; Westermarck, Jukka

    2009-04-01

    Extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase pathway activity is regulated by the antagonist function of activating kinases and inactivating protein phosphatases. Sustained ERK pathway activity is commonly observed in human malignancies; however, the mechanisms by which the pathway is protected from phosphatase-mediated inactivation in the tumor tissue remain obscure. Here, we show that methylesterase PME-1-mediated inhibition of the protein phosphatase 2A promotes basal ERK pathway activity and is required for efficient growth factor response. Mechanistically, PME-1 is shown to support ERK pathway signaling upstream of Raf, but downstream of growth factor receptors and protein kinase C. In malignant gliomas, PME-1 expression levels correlate with both ERK activity and cell proliferation in vivo. Moreover, PME-1 expression significantly correlates with disease progression in human astrocytic gliomas (n=222). Together, these observations identify PME-1 expression as one mechanism by which ERK pathway activity is maintained in cancer cells and suggest an important functional role for PME-1 in the disease progression of human astrocytic gliomas.

  1. Relationship between radiation dose and microbleed formation in patients with malignant glioma.

    Science.gov (United States)

    Wahl, Michael; Anwar, Mekhail; Hess, Christopher P; Chang, Susan M; Lupo, Janine M

    2017-08-10

    Cranial irradiation is associated with long-term cognitive changes. Cerebral microbleeds (CMBs) have been identified on susceptibility-weighted MRI (SWI) in patients who have received prior cranial radiation, and serve as radiographic markers for microvascular injury thought to contribute to late cognitive decline. The relationship between CMB formation and radiation dose has not previously been quantified. SWI was performed on 13 patients with stable WHO grade III-IV gliomas between 2 and 4 years after chemoradiotherapy to 60 Gy. The median age at the time of treatment was 41 years (range 25 - 74 years). CMBs were identified as discrete foci of susceptibility on SWI that did not correspond to vessels. CMB density for low (45 Gy) dose regions was computed. Twelve of 13 patients exhibited CMBs. The number of CMBs was significantly higher for late (>3 years from treatment) compared to early (CMBs; late median 27 CMBs; p = 0.001), and there were proportionally more CMBs at lower doses for late scans (p = 0.006). 88% of all CMBs were observed in regions receiving at least 30 Gy, but the CMB density within medium and high dose regions was not significantly different (p = 0.33 and p = 0.9, respectively, for early and late time points). CMBs predominantly form in regions receiving at least 30 Gy, but form in lower dose regions with longer follow-up. We do not observe a clear dose-response relationship at doses above 30 Gy. These findings provide important information to assess the risk of late microvascular sequelae from cranial irradiation.

  2. Glioma stem cells are more aggressive in recurrent tumors with malignant progression than in the primary tumor, and both can be maintained long-term in vitro

    Directory of Open Access Journals (Sweden)

    Diao Yi

    2008-10-01

    Full Text Available Abstract Background Despite the advances made during decades of research, the mechanisms by which glioma is initiated and established remain elusive. The discovery of glioma stem cells (GSCs may help to elucidate the processes of gliomagenesis with respect to their phenotype, differentiation and tumorigenic capacity during initiation and progression. Research on GSCs is still in its infancy, so no definitive conclusions about their role can yet be drawn. To understand the biology of GSCs fully, it is highly desirable to establish permanent and biologically stable GSC lines. Methods In the current study, GSCs were isolated from surgical specimens of primary and recurrent glioma in a patient whose malignancy had progressed during the previous six months. The GSCs were cryopreserved and resuscitated periodically during long-term maintenance to establish glioma stem/progenitor cell (GSPC lines, which were characterized by immunofluorescence, flow cytometry and transmission electronic microscopy. The primary and recurrent GSPC lines were also compared in terms of in vivo tumorigenicity and invasiveness. Molecular genetic differences between the two lines were identified by array-based comparative genomic hybridization and further validated by real-time PCR. Results Two GSPC lines, SU-1 (primary and SU-2 (recurrent, were maintained in vitro for more than 44 months and 38 months respectively. Generally, the potentials for proliferation, self-renewal and multi-differentiation remained relatively stable even after a prolonged series of alternating episodes of cryopreservation and resuscitation. Intracranial transplantation of SU-1 cells produced relatively less invasive tumor mass in athymic nude mice, while SU-2 cells led to much more diffuse and aggressive lesions strikingly recapitulated their original tumors. Neither SU-1 nor SU-2 cells reached the terminal differentiation stage under conditions that would induce terminal differentiation in neural

  3. Dendritic cell-based immunotherapy for malignant glioma%恶性神经胶质瘤的树突细胞免疫疗法

    Institute of Scientific and Technical Information of China (English)

    顾金海; 李刚

    2008-01-01

    The immunotherapy for malignant glioma faces unique difficult, due to some anatomical and immunological charac teristics including the existence of blood brain barrier, the absence of lymphatic tissues and dendritic cells (DCs) in the central nervous system (CNS) parenchyma, and the presence of an immunosuppressive microenvironment. Therefore, immunotherapeutic approaches will not be beneficial unless the compromised immune status in malignant glioma patients is overcome. DC based immunotherapy, vaccinating cancer patients with DCs pulsed with various tumor antigens, is one of the most promising immunotherapeutic approaches for treatment of malignant glioma because it seems able to overcome, at least partially, the immunosuppressive state associated with primary malignancies. The preparation of DCs, choice of antigen, and route and schedule of administration are improving and optimizing with rapid development of molecular biology and gene engineering technology. DC vaccination in humans, after a number of pre-clinical models and clinical trials, would increase the clinica lbenefits for malignant glioma immunotherapy.%中枢神经系统存在血脑屏障且缺乏淋巴组织和树突细胞,加之肿瘤周围建立的免疫抑制微环境,都使神经系统恶性胶质瘤的免疫治疗面临许多特殊的困难.以树突细胞为基础的免疫治疗是指树突细胞肿瘤疫苗的接种治疗,它可以部分或全部改善胶质瘤患者神经系统的免疫状况,因此可以成为有效的治疗方法.随着分子生物学和基因工程技术的发展,树突细胞肿瘤疫苗的制备、优化和应用技术得到了很大提高,为其未来临床应用奠定了良好的基础.

  4. Malignant transformation of low grade gliomas into glioblastoma a series of 10 cases and review of the literature

    Directory of Open Access Journals (Sweden)

    D. Rotariu1, S. Gaivas1, Z. Faiyad1, D. Haba2, B. Iliescu1, I. Poeata1

    2010-11-01

    Full Text Available Background: Diffuse infiltrative low-gradegliomas (LGG of the cerebral hemispheresin the adult are tumors with distinctclinical, histological and molecularcharacteristics. WHO (World HealthOrganization classification recognizesgrade II astrocytomas, oligodendrogliomasand oligoastrocytomas. Conventional MRIis used for differential diagnosis, guidingsurgery, planning radiotherapy andmonitoring treatment response.Advanced imaging techniques areincreasing the diagnostic accuracy. Lowgradegliomas have been documented toundergo transformation into high-gradegliomas, and the time interval of thistransformation has been reported togenerally occur within 5 years in about 50%of patients diagnosed with low-gradegliomas.Methods: We have reviewed all adultpatients operated on for hemisphericglioblastoma at N Oblu Hospital in Iasibetween 2006 and 2009 and in particularthose patients with secondary glioblastoma.Results: from the total 110 cases ofglioblastoma, ten of them were secondaryto malignant transformation of anpreviously operated low grade glioma. Ofthe 10 patients with secondaryglioblastoma, the initial histology was: gr IIastocytoma in 6 cases, oligoastocytoma in 2cases and in oligodendroglioma in 2 cases.The mean patient age was 46.1± 0.9 yearsand the most frequent symptom wasrepresented by seizures 70%, the mean timefrom the first symptom to diagnosis was11,2 months. 40% of the cases had subtotalresection and 60% had total resection(defined by the surgeon at the time ofoperation. 5 patients received radiotherapypostoperatively, 2 received both radio andchemotherapy and 3 had no adjuvanttreatment. In our series the median time tomalignant transformation was 32,5 months.Conclusions: Younger age, normalneurological examination andoligodendroglial histology are favorableprognostic factors, total/near total resectioncan improve seizure control, progressionfreeand overall survival, mean whilereducing the risk of malignanttransformation. Early post

  5. Phase IB Study of Gene-Mediated Cytotoxic Immunotherapy Adjuvant to Up-Front Surgery and Intensive Timing Radiation for Malignant Glioma

    Science.gov (United States)

    Chiocca, E. Antonio; Aguilar, Laura K.; Bell, Susan D.; Kaur, Balveen; Hardcastle, Jayson; Cavaliere, Robert; McGregor, John; Lo, Simon; Ray-Chaudhuri, Abhik; Chakravarti, Arnab; Grecula, John; Newton, Herbert; Harris, Kimbra S.; Grossman, Robert G.; Trask, Todd W.; Baskin, David S.; Monterroso, Carissa; Manzanera, Andrea G.; Aguilar-Cordova, Estuardo; New, Pamela Z.

    2011-01-01

    Purpose Despite aggressive therapies, median survival for malignant gliomas is less than 15 months. Patients with unmethylated O6-methylguanine–DNA methyltransferase (MGMT) fare worse, presumably because of temozolomide resistance. AdV-tk, an adenoviral vector containing the herpes simplex virus thymidine kinase gene, plus prodrug synergizes with surgery and chemoradiotherapy, kills tumor cells, has not shown MGMT dependency, and elicits an antitumor vaccine effect. Patients and Methods Patients with newly diagnosed malignant glioma received AdV-tk at 3 × 1010, 1 × 1011, or 3 × 1011 vector particles (vp) via tumor bed injection at time of surgery followed by 14 days of valacyclovir. Radiation was initiated within 9 days after AdV-tk injection to overlap with AdV-tk activity. Temozolomide was administered after completing valacyclovir treatment. Results Accrual began December 2005 and was completed in 13 months. Thirteen patients were enrolled and 12 completed therapy, three at dose levels 1 and 2 and six at dose level 3. There were no dose-limiting or significant added toxicities. One patient withdrew before completing prodrug because of an unrelated surgical complication. Survival at 2 years was 33% and at 3 years was 25%. Patient-reported quality of life assessed with the Functional Assessment of Cancer Therapy-Brain (FACT-Br) was stable or improved after treatment. A significant CD3+ T-cell infiltrate was found in four of four tumors analyzed after treatment. Three patients with MGMT unmethylated glioblastoma multiforme survived 6.5, 8.7, and 46.4 months. Conclusion AdV-tk plus valacyclovir can be safely delivered with surgery and accelerated radiation in newly diagnosed malignant gliomas. Temozolomide did not prevent immune responses. Although not powered for efficacy, the survival and MGMT independence trends are encouraging. A phase II trial is ongoing. PMID:21844505

  6. Avian comparisons between Kingman and Kenilworth Marshes: Final report 2001-2004

    Science.gov (United States)

    Paul, M.; Krafft, C.; Hammerschlag, D.

    2006-01-01

    In 2001 avi-fauna was added as a parameter to be monitored as an indicator of the status and relative success of the two reconstructed freshwater tidal wetlands residing in the Anacostia River estuary in Washington, D.C. at that time. They were Kenilworth Marsh which was reconstructed in 1993 and Kingman Marsh seven years later in 2000. Other studies were already underway looking at vegetation, seeds, soils and contaminants. Even though these new wetlands were relatively small, together about 70 acres, it was felt this might be sufficient area to sustain and attract birds to the habitat. Birds have been used elsewhere as wetland indicators and we hoped they could prove useful here especially in terms of numbers and species richness. The study was conducted for almost four years (2001-2004) and was designed to ascertain if the recently reconstructed Kingman Marsh evolved similarly with respect to the avi fauna as Kenilworth which had the seven year head start. Twelve observation points were established, six at each marsh, which were to be used weekly so as to alternate the high and low tidal regimes and the observation start times. Additional notations were recorded for species while walking between observation points. The course of the study became interrupted with the incursion of resident Canada geese particularly upon the Kingman Marsh site. Goose herbivory coupled with lowered sediment elevations reduced vegetation cover at Kingman Marsh to less than one-third its intended scope while Kenilworth was barely affected. The result was actually much less impact on the bird populations than on the vegetation. In fact the additional mudflat area at Kingman may have actually helped attract some birds. Together 177 species were identified at the marshes comprising 14 taxonomic orders and 16 families, 137 species at Kingman and 164 at Kenilworth. However, Kingman actually attracted more birds than Kenilworth, whether or not Canada Geese were included. At both wetlands

  7. Correlations of polymorphisms in matrix metalloproteinase-1, -2, and -7 promoters to susceptibility to malignant gliomas

    Science.gov (United States)

    Kawal, Priyanka; Chandra, Anil; Rajkumar; Dhole, Tapan N.; Ojha, Balkrishna

    2016-01-01

    Background: Oligodendrogliomas are infiltrative astrocytic tumors. They constitute about 1-5% of intracranial tumors. These have been graded into benign and malignant grades. The single nucleotide polymorphisms (SNPs) in the promoter regions of MMP genes may influence tumor development and progression. This study was done to explore the correlations of the promoter SNPs in MMP-1, MMP-2 and MMP-7 genes susceptibility in development and progression of oligodendrogliomas. Objectives: We aimed to investigate the association of MMP1 (−1607A > G), MMP-2 (−1306 C/T) and MMP-7(−181A > G) gene polymorphism in oligodendrogliomas (grade I, II, III). Materials and Methods: In the present case control study, we enrolled a total of 30 cases of oligodendrogliomas (grade I to III) confirmed by histopathology and 30 healthy cases as control. Polymorphism for MMP-1 gene (−1607A > G), MMP-2 (−1306 C/T), MMP-7(−181A > G) were genotyped by restriction fragment length polymorphism. Results: Frequencies of MMP-1 (−1607A > G) genotypes and 2G alleles were significantly associated with the cases of oligodendrogliomas (30%) in relation to healthy controls (13%). [OR = 6.89; P = 0.02; 95%CI= (1.33-35.62)] and [OR = 2.66; P =0.01; 95% CI= (1.26-5.64)]. A significant association of MMP-2 (−1306C/T) polymorphism with oligodendroglioma (P = 0.54) was not found, suggesting that MMP-2 (−1306C/T) polymorphism is not associated with increased oligodendroglioma susceptibility. Frequencies of MMP-7(−181A > G) genotypes and 2G alleles were significantly associated with the cases of oligodendrogliomas (33.33%) in relation to healthy controls (13.33%). [OR = 5.65; P = 0.02; 95%CI= (1.26-25.36)] and [OR = 2.49; P =0.01; 95% CI= (1.17-5.27)]. Conclusions: MMP-1 (−1607 A > G), MMP-7(−181A > G) genotypes and 2G alleles were significantly associated with oligodendroglioma (grade I, II, III), but MMP-2 (−1306C/T) polymorphism is not associated with increased oligodendroglioma

  8. Personalized care in neuro-oncology coming of age: why we need MGMT and 1p/19q testing for malignant glioma patients in clinical practice

    Science.gov (United States)

    Weller, Michael; Stupp, Roger; Hegi, Monika E.; van den Bent, Martin; Tonn, Joerg C.; Sanson, Marc; Wick, Wolfgang; Reifenberger, Guido

    2012-01-01

    Histological subtyping and grading by malignancy are the cornerstones of the World Health Organization (WHO) classification of tumors of the central nervous system. They shall provide clinicians with guidance as to the course of disease to be expected and the choices of treatment to be made. Nonetheless, patients with histologically identical tumors may have very different outcomes, notably in patients with astrocytic and oligodendroglial gliomas of WHO grades II and III. In gliomas of adulthood, 3 molecular markers have undergone extensive studies in recent years: 1p/19q chromosomal codeletion, O6-methylguanine methyltransferase (MGMT) promoter methylation, and mutations of isocitrate dehydrogenase (IDH) 1 and 2. However, the assessment of these molecular markers has so far not been implemented in clinical routine because of the lack of therapeutic implications. In fact, these markers were considered to be prognostic irrespective of whether patients were receiving radiotherapy (RT), chemotherapy, or both (1p/19q, IDH1/2), or of limited value because testing is too complex and no chemotherapy alternative to temozolomide was available (MGMT). In 2012, this situation has changed: long-term follow-up of the Radiation Therapy Oncology Group 9402 and European Organisation for Research and Treatment of Cancer 26951 trials demonstrated an overall survival benefit from the addition to RT of chemotherapy with procarbazine/CCNU/vincristine confined to patients with anaplastic oligodendroglial tumors with (vs without) 1p/19q codeletion. Furthermore, in elderly glioblastoma patients, the NOA-08 and the Nordic trial of RT alone versus temozolomide alone demonstrated a profound impact of MGMT promoter methylation on outcome by therapy and thus established MGMT as a predictive biomarker in this patient population. These recent results call for the routine implementation of 1p/19q and MGMT testing at least in subpopulations of malignant glioma patients and represent an encouraging

  9. Dendritic Cell Based Vaccines that Utilize Myeloid Rather than Plasmacytoid Cells Offer a Superior Survival Advantage in Malignant Glioma

    Science.gov (United States)

    Dey, Mahua; Chang, Alan L.; Miska, Jason; Wainwright, Derek A.; Ahmed, Atique U.; Balyasnikova, Irina V.; Pytel, Peter; Han, Yu; Tobias, Alex; Zhang, Lingjiao; Qiao, Jian; Lesniak, Maciej S.

    2015-01-01

    Dendritic cells (DC) are professional antigen presenting cells (APC) that are traditionally divided into two distinct subsets: myeloid DC (mDCs) and plasmacytoid DC (pDCs). pDCs are known for their ability to secrete large amount of IFN-α. Apart from IFN-α production, pDCs can also process antigen and induce T-cell immunity or tolerance. In several solid tumors, pDCs have been shown to play a critical role in promoting tumor immunosuppression. We investigated the role of pDCs in the process of glioma progression in the syngeneic murine model of glioma. We show that glioma-infiltrating pDCs are the major APC in glioma and are deficient in IFN-α secretion (p < 0.05). pDC depletion leads to increased survival of the mice bearing intracranial tumor by decreasing the number of regulatory T-cells (Treg) and by decreasing the suppressive capabilities of Tregs. We subsequently compared the ability of mDCs and pDCs to generate effective anti-glioma immunity in a GL261-OVA mouse model of glioma. Our data suggest that mature pDCs and mDCs isolated from naïve mice can be effectively activated and loaded with SIINFEKL antigen in vitro. Upon intra-dermal injection in the hind leg, a fraction of both types of DCs migrate to the brain and lymph nodes.. Compared to mice vaccinated with pDC or control mice, mice vaccinated with mDCs generated a robust Th1 type immune response, characterized by high frequency of CD4+Tbet+ T-cells and CD8+Siinfekel+ T-cells. This robust anti-tumor T-cell response resulted in tumor eradication and long-term survival in 60% of the animals (p<0.001). PMID:26026061

  10. Malignant gliomas; Gliomes cerebraux

    Energy Technology Data Exchange (ETDEWEB)

    Haberer, S.; Assouline, A.; Mazeron, J.J. [Service d' oncologie radiotherapique, centre des tumeurs, groupe hospitalier Pitie-Salpetriere, 75 - Paris (France)

    2010-07-01

    Glial tumors represent 2000 to 3000 new cases per year in France and 75% of them are of high grade. Recent understanding of the molecular biology of these tumors revealed the importance of 1p19q co-deletion and mgMT promoter methylation. Radiotherapy also recently evolved with the progress in medical imaging which allows a better definition of the target volumes. Even modest, therapeutic progress is based on chemoradiotherapy with temozolomide and on the development of non-coplanar conformational radiotherapy. Knowledge and precise evaluation of potential late effects of our treatments is necessary due to actual improvement of survival with chemoradiotherapy in glioblastoma. (authors)

  11. Low c-Met expression levels are prognostic for and predict the benefits of temozolomide chemotherapy in malignant gliomas

    Science.gov (United States)

    Li, Ming-Yang; Yang, Pei; Liu, Yan-Wei; Zhang, Chuan-Bao; Wang, Kuan-Yu; Wang, Yin-Yan; Yao, Kun; Zhang, Wei; Qiu, Xiao-Guang; Li, Wen-Bin; Peng, Xiao-Xia; Wang, Yong-Zhi; Jiang, Tao

    2016-01-01

    Aberrant c-Met has been implicated in the development of many cancers. The objective of this study was to identify an unfavorable prognostic marker that might guide decisions regarding clinical treatment strategies for high-grade gliomas. C-Met expression was measured using immunohistochemistry in 783 gliomas, and we further analyzed c-Met mRNA levels using the Agilent Whole Genome mRNA Microarray in 286 frozen samples. In vitro, we performed cell migration and invasion assays. Cell sensitivity to temozolomide (TMZ) chemotherapy was determined using MTT assays. Both mRNA and protein levels of c-Met were significantly associated with tumor grade progression and inversely correlated with overall and progression-free survival in high-grade gliomas (all P < 0.0001). These findings were nearly consistent at the mRNA level across 3 independent cohorts. Multivariable analysis indicated that c-Met was an independent prognostic marker after adjusting for age, preoperative Karnofsky Performance Status (KPS) score, the extent of resection, radiotherapy, TMZ chemotherapy, and O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status. Further analysis in vitro revealed that downregulating the expression of c-Met dramatically inhibited cell migration and invasion capacities, enhanced sensitivity to TMZ chemotherapy in H4 and U87 glioma cells. Our results suggest that c-Met may serve as a potential predictive maker for clinical decision making. PMID:26879272

  12. Dendritic Cell-Based Vaccines that Utilize Myeloid Rather than Plasmacytoid Cells Offer a Superior Survival Advantage in Malignant Glioma.

    Science.gov (United States)

    Dey, Mahua; Chang, Alan L; Miska, Jason; Wainwright, Derek A; Ahmed, Atique U; Balyasnikova, Irina V; Pytel, Peter; Han, Yu; Tobias, Alex; Zhang, Lingjiao; Qiao, Jian; Lesniak, Maciej S

    2015-07-01

    Dendritic cells (DCs) are professional APCs that are traditionally divided into two distinct subsets, myeloid DC (mDCs) and plasmacytoid DC (pDCs). pDCs are known for their ability to secrete large amounts of IFN-α. Apart from IFN-α production, pDCs can also process Ag and induce T cell immunity or tolerance. In several solid tumors, pDCs have been shown to play a critical role in promoting tumor immunosuppression. We investigated the role of pDCs in the process of glioma progression in the syngeneic murine model of glioma. We show that glioma-infiltrating pDCs are the major APC in glioma and are deficient in IFN-α secretion (p < 0.05). pDC depletion leads to increased survival of the mice bearing intracranial tumor by decreasing the number of regulatory T cells (Tregs) and by decreasing the suppressive capabilities of Tregs. We subsequently compared the ability of mDCs and pDCs to generate effective antiglioma immunity in a GL261-OVA mouse model of glioma. Our data suggest that mature pDCs and mDCs isolated from naive mice can be effectively activated and loaded with SIINFEKL Ag in vitro. Upon intradermal injection in the hindleg, a fraction of both types of DCs migrate to the brain and lymph nodes. Compared to mice vaccinated with pDC or control mice, mice vaccinated with mDCs generate a robust Th1 type immune response, characterized by high frequency of CD4(+)T-bet(+) T cells and CD8(+)SIINFEKEL(+) T cells. This robust antitumor T cell response results in tumor eradication and long-term survival in 60% of the animals (p < 0.001).

  13. Expression of 58-kD Microspherule Protein (MSP58 is Highly Correlated with PET Imaging of Tumor Malignancy and Cell Proliferation in Glioma Patients

    Directory of Open Access Journals (Sweden)

    Wei Lin

    2016-02-01

    Full Text Available Background/Aims: The nucleolar 58-kDa microspherule protein (MSP58 has important transcriptional regulation functions and plays a crucial role in the tumorigenesis and progression of cancers. 3'-deoxy-3'-[18F]fluorothymidine (FLT has emerged as a promising positron emission tomography (PET tracer for evaluating tumor malignancy and cell proliferation. Methods: In the present study, the expression of MSP58 was evaluated by immunohistochemistry and the corresponding PET image was examined using FLT-PET in 55 patients with various grades of gliomas. Results: The immunoreactivity score (IRS of MSP58 increased with tumor grade with grade IV gliomas exhibiting the highest expression and showed a highly significant positive correlation with the Ki-67 index (r = 0.65, P r = 0.61, P r = 0.59, P Conclusion: These results indicate that MSP58 plays an important role in cell proliferation and will be one of the potential candidates of molecular therapy targeting proliferation. FLT-PET might be used as an early measure of treatment response in the proliferation-targeted therapy.

  14. Comparison of 2 monoclonal antibodies for immunohistochemical detection of BRAF V600E mutation in malignant melanoma, pulmonary carcinoma, gastrointestinal carcinoma, thyroid carcinoma, and gliomas.

    Science.gov (United States)

    Routhier, Caitlin Ann; Mochel, Mark C; Lynch, Kerry; Dias-Santagata, Dora; Louis, David N; Hoang, Mai P

    2013-11-01

    BRAF mutation is seen in a variety of human neoplasms including cutaneous malignant melanoma, papillary thyroid carcinoma, colorectal carcinoma, non-small cell lung carcinoma, pleomorphic xanthoastrocytoma, and others. Currently, there are 2 commercially available monoclonal antibodies for the detection of BRAF V600E mutation; however, a full and practical comparison of their performance in various tumor types on an automated staining platform has not been done. We investigated their sensitivity and specificity in detecting the BRAF V600E mutation in a series of 152 tumors including 31 malignant melanomas, 25 lung carcinomas, 32 gastrointestinal carcinomas, 23 thyroid carcinomas, 35 gliomas, and 6 other malignancies. In this series, the concordance rate between immunohistochemistry (IHC) and mutational analyses was 97% (148/152) for VE1 and 88% (131/149) for anti-B-Raf. The sensitivity and specificity were 98% (60/61) and 97% (88/91) for monoclonal VE1 and 95% (58/61) and 83% (73/88) for anti-B-Raf, respectively. There were 4 cases with discordant IHC and mutational results for monoclonal VE1 in contrast to 18 cases for anti-B-Raf. Our studies showed that IHC with monoclonal VE1 has a better performance compared with anti-B-Raf in an automated staining platform and confirmed that clone VE1 provides excellent sensitivity and specificity for detecting the BRAF V600E mutation in a variety of tumor types in a clinical setting.

  15. Prognostic significance of stem cell marker CD133 determined by promoter methylation but not by immunohistochemical expression in malignant gliomas.

    Science.gov (United States)

    Wu, Xing; Wu, Fenlang; Xu, Dongwen; Zhang, Tao

    2016-04-01

    CD133 has played a pivotal role in the identification and isolation of brain tumor stem cells. The correlation between CD133 expression in tumor tissues with patients survival is still controversial. CD133 expression is determinated by methylation status of the promoter region 1-3. Aberrant methylation of CD133 was observed in glioblastoma. To date, a direct link between CD133 methylation and patient outcome has not been established.To address this question, we studied CD133 expression and promoter methylation in a series of 170 gliomas of various grade and histology, and investigated the correlation of CD133 expression and promoter methylation with patient outcome.We detected five CD133 promoter methylation patterns in 170 glioma samples: methylation only (M+, U-), unmethylation only (M-, U+), both methylation and unmethylation equally (M+, U+), high methylation and low unmethylation (M+, Ul), and low methylation and high unmethylation (Ml, U+). By multivariate survival analysis, we found CD133 promoter methylation status was significant (P promoter methylation status was observed (Kw = -0.165).CD133 promoter methylation status in glioma is closely correlated with patient survival, which suggest CD133 promoter methylaiton pattern is a promising tool for diagnostic purposes.

  16. Tumor resection cavity administered iodine-131-labeled antitenascin 81C6 radioimmunotherapy in patients with malignant glioma: neuropathology aspects

    Energy Technology Data Exchange (ETDEWEB)

    McLendon, Roger E. [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States)]. E-mail: mclen001@mc.duke.edu; Akabani, Gamal [Department of Radiology, Duke University Medical Center, Durham, NC 27710 (United States); Friedman, Henry S. [Department of Pediatrics, Duke University Medical Center, Durham, NC 27710 (United States); Reardon, David A. [Department of Medicine, Duke University Medical Center, Durham, NC 27710 (United States); Cleveland, Linda [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Cokgor, Ilkcan [Department of Pediatrics, Duke University Medical Center, Durham, NC 27710 (United States); Herndon, James E. [Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710 (United States); Wikstrand, Carol [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Boulton, Susan T. [Department of Surgery, Duke University Medical Center, Durham, NC 27710 (United States); Friedman, Allan H. [Department of Surgery, Duke University Medical Center, Durham, NC 27710 (United States); Bigner, Darell D. [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Zalutsky, Michael R. [Department of Radiology, Duke University Medical Center, Durham, NC 27710 (United States)

    2007-05-15

    Introduction: The neurohistological findings in patients treated with targeted {beta} emitters such as {sup 131}I are poorly described. We report a histopathologic analysis from patients treated with combined external beam therapy and a brachytherapy consisting of a {sup 131}I-labeled monoclonal antibody (mAb) injected into surgically created resection cavities during brain tumor resections. Methods: Directed tissue samples of the cavity walls were obtained because of suspected tumor recurrence from 28 patients. Samples and clinical follow-up were evaluated on all patients (Group A) based on total radiation dose received and a subset of these (n=18; Group B, proximal therapy subset) who had received external beam therapy within {<=}3 months of mAb therapy and undergoing 26 biopsies over 37 months. Histologic outcomes were 'proliferative glioma,' 'quiescent glioma' and negative for neoplasm. Statistical analysis was used to assess the casual relation between total absorbed dose ({sup 131}I-mAb+external beam) and histologic diagnosis. Results: The lesions observed after {sup 131}I-mAb therapy were qualitatively similar to those reported for other types of radiation therapy; however, the high localized dose rate and absorbed doses produced by the short range of {sup 131}I {beta} particles seem to have resulted in an earlier necrotic reaction in the tumor bed. Among all 28 (Group A) patients, median survival from tissue analysis after mAb therapy depended on histopathology and total radiation absorbed dose. Median survival for patients with tissue classified as proliferative glioma, quiescent glioma and negative for neoplasm were 3.5, 15 and 27.5 months, respectively. Without categorization, total dose was a significant predictor of survival (P<.002) where patients with higher doses had better prognoses. For example, median survival in patients receiving a total radiation dose greater than 86 Gy was 19 months compared with 7 months for those

  17. Polifeprosan 20, 3.85% carmustine slow-release wafer in malignant glioma: evidence for role in era of standard adjuvant temozolomide

    Directory of Open Access Journals (Sweden)

    Kleinberg L

    2012-10-01

    Full Text Available Lawrence KleinbergDepartment of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Oncology Center Johns Hopkins University, Baltimore, MD, USAAbstract: The Polifeprosan 20 with carmustine (BCNU, bis-chloroethylnitrosourea, Gliadel® polymer implant wafer is a biodegradable compound containing 3.85% carmustine which slowly degrades to release carmustine and protects it from exposure to water with resultant hydrolysis until the time of release. The carmustine implant wafer was demonstrated to improve survival in blinded placebo-controlled trials in selected patients with newly diagnosed or recurrent malignant glioma, with little increased risk of adverse events. Based on these trials and other supporting data, US and European regulatory authorities granted approval for its use in recurrent and newly diagnosed malignant glioma, and it remains the only approved local treatment. The preclinical and clinical data suggest that it is optimally utilized primarily in the proportion of patients who may have total or near total removal of gross tumor. The aim of this work was to review the evidence for the use of carmustine implants in the management of malignant astrocytoma (World Health Organization grades III and IV, including newly diagnosed and recurrent disease, especially in the setting of a standard of care that has changed since the randomized trials were completed. Therapy has evolved such that patients now generally receive temozolomide chemotherapy during and after radiotherapy treatment. For patients undergoing repeat resection for malignant glioma, a randomized, blinded, placebo-controlled trial demonstrated a median survival for 110 patients who received carmustine polymers of 31 weeks compared with 23 weeks for 122 patients who only received placebo polymers. The benefit achieved statistical significance only on analysis adjusting for prognostic factors rather than for the randomized groups as a whole (hazard ratio = 0.67, P

  18. Prolongation of life in rats with malignant glioma by intranasal siRNA/drug codelivery to the brain with cell-penetrating peptide-modified micelles.

    Science.gov (United States)

    Kanazawa, Takanori; Morisaki, Kazuki; Suzuki, Shohei; Takashima, Yuuki

    2014-05-01

    New therapeutic strategies are required to develop candidate drugs and ensure efficient delivery of these drugs to the brain and the central nervous system (CNS). Small interfering RNA (siRNA)-based therapies have been investigated as potential novel approaches for the treatment of brain disorders. Previously, we showed that Tat, a cell-penetrating peptide derived from HIV-Tat, and the modified block copolymers (MPEG-PCL-Tat) can form stable complexes with siRNA or can be loaded with an anticancer drug and efficiently deliver the drugs to the brain tissue via intranasal delivery. In this study, to develop a novel, efficient, and safe therapeutic strategy for managing brain disorders, we used MPEG-PCL-Tat micelles with a nose-to-brain delivery system to investigate its therapeutic effects on a rat model of malignant glioma using siRNA with a Raf-1 (siRaf-1)/camptothecin (CPT) codelivery system. MPEG-PCL-Tat and CPT-loaded MPEG-PCL-Tat can form a stable complex with siRNA with a particle size from 60 to 200 nm and a positive charge at N/P ratios up to 5. Additionally, MPEG-PCL-Tat/siRaf-1 and CPT-loaded MPEG-PCL-Tat/siRaf-1 have fostered cell death in rat glioma cells after the high cellular uptake of siRaf-1/drug by the MPEG-PCL-Tat carrier. Furthermore, compared to the unloaded MPEG-PCL-Tat/siRaf-1 complex, a CPT-loaded MPEG-PCL-Tat/siRaf-1 complex achieved the high therapeutic effect because of the additive effects of CPT and siRaf-1. These results indicate that drug/siRNA codelivery using MPEG-PCL-Tat nanomicelles with nose-to-brain delivery is an excellent therapeutic approach for brain and CNS diseases.

  19. Phase II study of 6-thioguanine, procarbazine, dibromodulcitol, lomustine, and vincristine chemotherapy with radiotherapy for treating malignant glioma in children.

    OpenAIRE

    Levin, V A; Lamborn, K.; Wara, W.; R. Davis; Edwards, M.; Rabbitt, J.; Malec, M.; Prados, M D

    2000-01-01

    We conducted a single-arm phase II study to evaluate the efficacy and safety of radiotherapy combined with 6-thioguanine, procarbazine, dibromodulcitol, lomustine, and vincristine (TPDCV) chemotherapy for treating malignant astrocytoma in children and anaplastic ependymoma in patients of all ages. Between 1984 and 1992, 42 patients who had malignant astrocytomas (glioblastomas multiforme, anaplastic astrocytomas, or mixed anaplastic oligoastrocytomas) were treated with TPDCV chemotherapy and ...

  20. ET-46ONCOLYTIC VIRAL THERAPY FOR MALIGNANT GLIOMAS USING MYXOMA VIRUS DELETED FOR ANTI-APOPTOTIC M11L GENE

    Science.gov (United States)

    Pisklakova, Alexandra; McKenzie, Brienne; Kenchappa, Rajappa; McFadden, Grant; Forsyth, Peter

    2014-01-01

    Brain Tumour Initiating Cells (BTICs) are stem-like cells hypothesized to mediate recurrence in high-grade gliomas. Myxoma virus (MyxV) is a promising oncolytic virus, which is highly effective in conventional long term resistant glioma cell lines and less effective in BTICs. We hypothesized that one possible factor limiting efficacy in BTICs is that cell death following infection with MyxV is inhibited by virally encoded anti-apoptotic proteins, such as the Bcl-2 structural homologue, M011L. To test this we evaluated and compared the efficacy of wtMYXV versus the viral construct MyxV-M011L-KO (in which the anti-apoptotic protein M11L has been deleted) in BTICs. We found that WT-MyxV does not induce significant level of apoptosis in infected BTICs, but that MyxV-M011L-KO induces dramatically more apoptosisas shown by caspase activation, PARP cleavage, and Cytochrome C release from the mitochondria M11L from the WT-MyxV localized to the mitochondrial membrane and prevented the association of Bax with the mitochondrial membrane. Finally, silencing of Bax using specific siRNAs significantly blocked the induction of apoptosis and cell death that occurs after infection with mutant MyxV-M011L-KO virus. Therefore MyxV-M011L-KO, which is has the anti-apoptotic virally derived gene M11L, dramatically improves the oncolytic efficacy in BTICs and this is dependent on the presence of the pro-apoptotic host protein, Bax. This is the first demonstration, that the MyxV mutant, genetically modified to promote apoptosis in tumor initiating cells, is significantly more efficacious than the wildtype virus. Strategies, such as this one, that promotes apoptosis in tumor initiating cells might be particularly effective.

  1. Cardiac glycosides suppress the maintenance of stemness and malignancy via inhibiting HIF-1α in human glioma stem cells

    Science.gov (United States)

    Lee, Dae-Hee; Oh, Sang Cheul; Giles, Amber J.; Jung, Jinkyu; Gilbert, Mark R.; Park, Deric M.

    2017-01-01

    Tissue hypoxia contributes to solid tumor pathogenesis by activating a series of adaptive programs. We previously showed that hypoxia promotes the preferential expansion and maintenance of CD133 positive human glioma stem cells (GSC) in a hypoxia inducible factor 1 alpha (HIF-1α)-dependent mechanism. Here, we examined the activity of digitoxin (DT), a cardiac glycoside and a putative inhibitor of HIF-1α, on human GSC in vitro and in vivo. During hypoxic conditions (1% O2), we observed the effect of DT on the intracellular level of HIF-1α and the extracellular level of vascular endothelial growth factor (VEGF) in human GSC. We found that DT at clinically achievable concentrations, suppressed HIF-1α accumulation during hypoxic conditions in human GSC and established glioma cell lines. DT treatment also significantly attenuated hypoxia-induced expression of VEGF, a downstream target of HIF-1α. Exposure to DT also reduced hypoxia-induced activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. Furthermore, DT potently inhibited neurosphere formation, and decreased CD133 expression even at concentrations that were not overtly cytotoxic. Lastly, treatment with DT reduced GSC engraftment in an in vivo xenograft model of glioblastoma. Intraperitoneal injections of DT significantly inhibited the growth of established glioblastoma xenografts, and suppressed expression of HIF-1α and carbonic anhydrase (CA9), a surrogate marker of hypoxia. Taken together, these results suggest that DT at clinically achievable concentration functions as an inhibitor of HIF-1α, worthy of further investigations in the therapy of glioblastoma. PMID:28410215

  2. Feasibility of a novel positive feedback effect of {sup 131}I-promoted Bac-Egr1-hNIS expression in malignant glioma via baculovirus

    Energy Technology Data Exchange (ETDEWEB)

    Guo Rui [Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 (China); Tian Lipeng [Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 (China); Han Bing [Department of Endocrine, The 9th Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 (China); Xu Haoping; Zhang Miao [Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 (China); Li Biao, E-mail: lb10363@rjh.com.c [Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 (China)

    2011-05-15

    Purpose: As intracellular iodine is released rapidly, increased expression of sodium/iodide symporter (NIS) is required for effective radioiodine treatment of tumor. As Egr1 promoter is activated by {sup 131}I and may promote human NIS (hNIS) expression, hNIS also induces {sup 131}I uptake and activates Egr1, so the existence of a positive feedback effect of {sup 131}I-promoted Egr1-hNIS expression is possible. Our purpose was to investigate the possible existence of this positive feedback effect through a series of in vitro pioneer studies. Method: Recombinant baculovirus (Bac-Egr1-hNIS) encoding the hNIS gene under the control of a radiation-inducible Egrl promoter was constructed. To test {sup 131}I-promoted hNIS expression, human malignant glioma U87 cells were transfected with Bac-Egr1-hNIS, stimulated with or without {sup 131}I; the expression of hNIS protein was detected by immunofluorescence and flow cytometry test. In addition, the uptake and efflux of {sup 131}I were determined after the incubation of Bac-Egr1-hNIS-transfected U87 cells with or without {sup 131}I. Results: Immunocytochemical staining and flow cytometry test showed a higher hNIS protein expression in Bac-Egr1-hNIS-transfected U87 cells with {sup 131}I stimulation than in cells without stimulation. Bac-Egr1-hNIS-transfected U87 cells accumulated up to about 4.05 times of {sup 131}I after {sup 131}I stimulation. The amount of {sup 131}I uptake in both groups showed a baculovirus dose-dependent manner. However, rapid efflux of radioactivity was observed in both groups, with 50% lost during the first 2 min after the {sup 131}I-containing medium had been replaced by a nonradioactive medium. Conclusion: Our results indicated that an improved transgene expression of {sup 131}I-stimulated hNIS in U87 cells using a baculovirus vector containing the Egr1 promoter is possible, and the increased expression of hNIS is responsible for a higher {sup 131}I uptake. It might provide a reference for the

  3. Dosimetric comparison between intensity-modulated radiotherapy and RapidArc with single arc and dual arc for malignant glioma involving the parietal lobe.

    Science.gov (United States)

    Yuan, Jun; Lei, Mingjun; Yang, Zhen; Fu, Jun; Huo, Lei; Hong, Jidong

    2016-07-01

    The aim of the present study was to evaluate the difference in treatment plan quality, monitor units (MUs) per fraction and dosimetric parameters between IMRT (intensity-modulated radiotherapy) and RapidArc with single arc (RA1) and dual arc (RA2) for malignant glioma involving the parietal lobe. Treatment plans for IMRT and RA1 and RA2 were prepared for 10 patients with malignant gliomas involving the parietal lobe. The Wilcoxon matched-pair signed-rank test was used to compare the plan quality, monitor units and dosimetric parameters between IMRT and RA1 and RA2 through dose-volume histograms. Dnear-max (D2%) to the left lens, right lens and left optical nerve in RA1 were less compared with those in IMRT; D2% to the right lens and right optic nerve in RA2 were less compared with those in IMRT. D2% to the optic chiasma in RA2 was small compared with that in RA1. The median dose (D50%) to the right lens and right optic nerve in RA1 and RA2 was less compared with the identical parameters in IMRT, and D50% to the brain stem in RA2 was less compared with that in RA1. The volume receiving at least 45 Gy (V45) or V50 in normal brain tissue (whole brain minus the planning target volume 2; B-P) in RA1 was less compared with that in IMRT. V30, V35, V40, V45, or V50 in B-P in RA2 was less compared with that in IMRT. The MUs per fraction in RA1 and RA2 were significantly less compared with those in IMRT. All differences with a P-value<0.05 were considered to be significantly different. In conclusion, RA1 and RA2 markedly reduced the MUs per fraction, and spared partial organs at risk and B-P compared with IMRT.

  4. HIV-associated TB in An Giang Province, Vietnam, 2001-2004: epidemiology and TB treatment outcomes.

    Directory of Open Access Journals (Sweden)

    Trinh Thanh Thuy

    Full Text Available BACKGROUND: Mortality is high in HIV-infected TB patients, but few studies from Southeast Asia have documented the benefits of interventions, such as co-trimoxazole (CTX, in reducing mortality during TB treatment. To help guide policy in Vietnam, we studied the epidemiology of HIV-associated TB in one province and examined factors associated with outcomes, including the impact of CTX use. METHODOLOGY/PRINCIPAL FINDINGS: We retrospectively abstracted data for all HIV-infected persons diagnosed with TB from 2001-2004 in An Giang, a province in southern Vietnam in which TB patients receive HIV counseling and testing. We used standard WHO definitions to classify TB treatment outcomes. We conducted multivariate analysis to identify risk factors for the composite outcome of death, default, or treatment failure during TB treatment. From 2001-2004, 637 HIV-infected TB patients were diagnosed in An Giang. Of these, 501 (79% were male, 321 (50% were aged 25-34 years, and the most common self-reported HIV risk factor was sex with a commercial sex worker in 221 (35%. TB was classified as smear-positive in 531 (83%. During TB treatment, 167 (26% patients died, 9 (1% defaulted, and 6 (1% failed treatment. Of 454 patients who took CTX, 116 (26% had an unsuccessful outcome compared with 33 (70% of 47 patients who did not take CTX (relative risk, 0.4; 95% confidence interval [CI], 0.3-0.5. Adjusting for male sex, rural residence, TB smear status and disease location, and the occurrence of adverse events during TB treatment in multivariate analysis, the benefit of CTX persisted (adjusted odds ratio for unsuccessful outcome 0.1; CI, 0.1-0.3. CONCLUSIONS/SIGNIFICANCE: In An Giang, Vietnam, HIV-associated TB was associated with poor TB treatment outcomes. Outcomes were significantly better in those taking CTX. This finding suggests that Vietnam should consider applying WHO recommendations to prescribe CTX to all HIV-infected TB patients.

  5. Overweight and obesity in children and adolescents from Serbia in the period 2001-2004 and 2011-2014.

    Science.gov (United States)

    Rakić, Rada; Pavlica, Tatjana; Jovičić, Dubravka

    In recent years an increasing prevalence in overweight and obesity of children and adolescents has been recorded worldwide. Childhood obesity is a risk factor for adulthood obesity. The aim of the study is to examine the prevalence of overweight and obesity in children and adolescents aged 7-19 in a 10-year long period in Serbia. Cross sectional investigation was conducted in the periods 2001-2004 and 2011-2014. The first investigation included 8965 individuals, 4344 schoolboys and 4621 schoolgirls aged 7-19, while the second investigation included 2507 schoolboys and 3083 schoolgirls. The body mass index (BMI kg m(-2)) was obtained from the recorded height and weight and the assessment of overweight and obesity was based on IOTF reference values. In the first period investigation overweight prevalence was detected in 18% of subjects (21.1% in boys and 15.1% in girls) and obesity prevalence in 5.5% of subjects (6.7% in boys and 4.4% in girls). In the second investigation the overweight and obesity prevalence was observed in 17.4% and 4.5% of subjects, respectively (20.6% in boys and 14.8% in girls; 5.3% in boys and 3.9% in girls). The results indicate that in the ten-year period there has been no increase in the number of overweight and obese children and adolescents in Serbia.

  6. Alpha-Naphthylisothiocyanate triggering G2/M phase arrest and apoptosis in human brain malignant glioma U87MG cells via mitochondrial pathway

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2015-03-01

    Full Text Available Cancer protective effect of cruciferous vegetables is partly attributed to organic isothiocyanates (ITC with an –N = C = S functional group. Elucidation of the mechanism by which ITCs impart protection against cancer has been the topic of intense research in the past few decades. In this study, we demonstrate that ANIT significantly decreased proliferation and viability of human brain malignant glioma U87MG cells in a dose-dependent manner. The cell cycle analysis showed that ANIT induced significantly G2/M arrest and sub-G1 phase (apoptotic population in U87MG cells. CDK1 activity assay and Western blot analysis showed that there observed marked reduction in the CDK1/cyclin B activity and protein levels. Pretreatment with specific inhibitors of caspase-3 (Z-DEVE-FMK and -9(Z-LEHD-FMK significantly reduced caspase-3 and -9 activity in U87MG cells. Western blot analysis and colorimetric assays also displayed that ANIT caused a time-dependent increase in cytosolic cytochrome c, pro-caspase-9, Apaf-1, AIF, Endo G and the stimulated caspase-9 and -3 activity.

  7. Activation of a pro-survival pathway IL-6/JAK2/STAT3 contributes to glial fibrillary acidic protein induction during the cholera toxin-induced differentiation of C6 malignant glioma cells.

    Science.gov (United States)

    Shu, Minfeng; Zhou, Yuxi; Zhu, Wenbo; Wu, Sihan; Zheng, Xiaoke; Yan, Guangmei

    2011-06-01

    Differentiation-inducing therapy has been proposed to be a novel potential approach to treat malignant gliomas. Glial fibrillary acidic protein (GFAP) is a well-known specific astrocyte biomarker and acts as a tumor suppressor gene (TSG) in glioma pathogenesis. Previously we reported that a traditional biotoxin cholera toxin could induce malignant glioma cell differentiation characterized by morphologic changes and dramatic GFAP expression. However, the molecular mechanisms underlying GFAP induction are still largely unknown. Here we demonstrate that an oncogenic pathway interleukin-6/janus kinase-2/signal transducer and activator of transcription 3 (IL-6/JAK2/STAT3) cascade mediates the cholera toxin-induced GFAP expression. Cholera toxin dramatically stimulated GFAP expression at the transcriptional level in C6 glioma cells. Meanwhile, phosphorylation of STAT3 and JAK2 was highly induced in a time-dependent manner after cholera toxin incubation, whereas no changes of STAT3 and JAK2 were observed. Furthermore, the IL-6 gene was quickly induced by cholera toxin and subsequent IL-6 protein secretion was stimulated. Importantly, exogenous recombinant rat IL-6 can also induce phosphorylation of STAT3 concomitant with GFAP expression while JAK2 specific inhibitor AG490 could effectively block both cholera toxin- and IL-6-induced GFAP expression. Given that the methylation of the STAT3 binding element can suppress GFAP expression, we detected the methylation status of the critical recognition sequence of STAT3 in the promoter of GFAP gene (-1518 ∼ -1510) and found that it was unmethylated in C6 glioma cells. In addition, neither DNA methyltransferase1 (DNMT1) inhibitor 5-Aza-2'-deoxycytidine (5-AZa-CdR) nor silencing DNMT1 can stimulate GFAP expression, indicating that the loss of GFAP expression in C6 cells is not caused by its promoter hypermethylation. Taken together, our findings suggest that activation of a pro-survival IL-6/JAK2/STAT3 cascade contributes to

  8. Fluorine F 18 Fluorodopa-Labeled PET Scan in Planning Surgery and Radiation Therapy in Treating Patients With Newly Diagnosed High- or Low-Grade Malignant Glioma

    Science.gov (United States)

    2016-10-10

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Diffuse Astrocytoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Myxopapillary Ependymoma; Adult Oligodendroglioma; Adult Pilocytic Astrocytoma; Adult Pineal Gland Astrocytoma; Adult Subependymal Giant Cell Astrocytoma; Adult Subependymoma

  9. Multiple Gliomas

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Multiple gliomas are well-recognized but uncommon tumors. The incidence of multiple gliomas according to some reports ranges from 0.5% to 20% of all gliomas diagnosed. Multiple gliomas can be divided into two categories. One is by location of the lesions (multifocal and multicentric). The second type is by the time of the lesions occur (synchronous and metachronous). The lesions generally show hypo, or isodensity on CT; a hypo- or isointense signal on T1-weighted images, and a hyperintense signal on T2-weighted images. Glioblastoma is the most frequent histotype. The prognosis of multiple gliomas remains unfavorable. The treatment of multiple gliomas includes surgery, radiotherapy and chemotherapy. Distinction between multicentric and multifocal gliomas is difficult. This report reviews in detail the aspects of multiple gliomas mentioned above.

  10. Predictors of favorable results in pulmonary tuberculosis treatment (Recife, Pernambuco, Brazil, 2001-2004 Factores predictivos al resultado favorable del tratamiento de la tuberculosis pulmonar (Recife-Pernambuco, Brasil, 2001-2004 Fatores preditivos ao resultado favorável de tratamento da tuberculose pulmonar (Recife-Pernambuco, Brasil, 2001-2004

    Directory of Open Access Journals (Sweden)

    Cinthia Midori Sassaki

    2010-06-01

    Full Text Available Based on data available in the Information System for Notifiable Diseases, predictive factors of favorable results were identified in the treatment of pulmonary tuberculosis, diagnosed between 2001 and 2004 and living in Recife-PE, Brazil. Uni- and multivariate logistic regression methods were used. In multivariate analysis, the following factors remained: Age (years, 0 to 9 (OR=4.27; p=0.001 and 10 to 19 (OR=1.78; p=0.011, greater chance of cure than over 60; Education (years, 8 to 11 (OR=1.52; p=0.049, greater chance of cure than no education; Type of entry, new cases (OR=3.31; pConsiderando datos disponibles en el Sistema de Información de Enfermedades de Notificación, fueron identificados y analizados factores predictivos al resultado favorable del tratamiento de los casos de tuberculosis pulmonar, diagnosticados entre 2001-2004, correspondientes a residentes en Recife-PE (Brasil. Fueron utilizados métodos estadísticos univariado y multivariado de regresión logística. En el multivariado se consideraron: edad (años, 0 a 9 (OR= 4,27; p=0,001 y 10 a 19 (OR=1,78; p=0,011, mayor chance de cura que más de 60; escolaridad (años, 8 a 11 (OR=1,52; p=0,049, mayor chance de cura que ninguna escolaridad; tipo de entrada, casos nuevos (OR=3,31; pPartindo de dados disponíveis no Sistema de Informação de Agravos de Notificação, identificaram-se e analisaram-se fatores preditivos ao resultado favorável de tratamento dos casos de tuberculose pulmonar, diagnosticados no período de 2001-2004, residentes em Recife-PE. Utilizaram-se métodos estatísticos uni e multivariado de regressão logística. No multivariado permaneceram: Idade (anos, 0 a 9 (OR=4,27; p=0,001 e 10 a 19 (OR=1,78; p=0,011, maior chance de cura que mais de 60; Escolaridade (anos, 8 a 11 (OR=1,52; p=0,049, maior chance de cura que nenhuma escolaridade; Tipo de entrada, casos novos (OR=3,31; p<0,001 e recidiva (OR=3,32; p<0,001, maiores chances de cura que reingresso p

  11. Convection-enhanced delivery of Ls-TPT enables an effective, continuous, low-dose chemotherapy against malignant glioma xenograft model1

    Science.gov (United States)

    Saito, Ryuta; Krauze, Michal T.; Noble, Charles O.; Drummond, Daryl C.; Kirpotin, Dmitri B.; Berger, Mitchel S.; Park, John W.; Bankiewicz, Krystof S.

    2006-01-01

    Treatment of malignant gliomas represents one of the most formidable challenges in oncology. The combination of surgery, radiation, and chemotherapy yields median survivals of less than one year. Here we demonstrate the use of a minimally invasive surgical technique, convection-enhanced delivery (CED), for local administration of a novel nanoparticle liposome containing topotecan. CED of this liposomal topotecan (Ls-TPT) resulted in extended brain tissue retention (t½ = 1.5 days), whereas free topotecan was rapidly cleared (t½ = 0.1 days) after CED. The favorable pharmacokinetic profile of extended topotecan release for about seven days, along with biodistribution featuring perivascular accumulation of the nanoparticles, provided, in addition to the known topoisomerase I inhibition, an effective antiangiogenic therapy. In the rat intracranial U87MG tumor model, vascular targeting of Ls-TPT with CED was associated with reductions in laminin expression and vascular density compared to free topotecan or control treatments. A single CED treatment on day 7 showed that free topotecan conferred no survival benefit versus control. However, Ls-TPT produced a significant (P = 0.0002) survival benefit, with six of seven complete cures. Larger U87MG tumors, where CED of Ls-TPT on day 12 resulted in one of six cures, indicated the necessity to cover the entire tumor with the infused therapeutic agent. CED of Ls-TPT was also efficacious in the intracranial U251MG tumor model (P = 0.0005 versus control). We conclude that the combination of a novel nanoparticle Ls-TPT and CED administration was very effective in treating experimental brain tumors. PMID:16723630

  12. MicroRNA in Human Glioma

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mengfeng, E-mail: limf@mail.sysu.edu.cn [Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080 (China); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Li, Jun [Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080 (China); Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Liu, Lei; Li, Wei [Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080 (China); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Yang, Yi [Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080 (China); Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Yuan, Jie [Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080 (China); Key Laboratory of Functional Molecules from Oceanic Microorganisms (Sun Yat-sen University), Department of Education of Guangdong Province, Guangzhou 510080 (China)

    2013-10-23

    Glioma represents a serious health problem worldwide. Despite advances in surgery, radiotherapy, chemotherapy, and targeting therapy, the disease remains one of the most lethal malignancies in humans, and new approaches to improvement of the efficacy of anti-glioma treatments are urgently needed. Thus, new therapeutic targets and tools should be developed based on a better understanding of the molecular pathogenesis of glioma. In this context, microRNAs (miRNAs), a class of small, non-coding RNAs, play a pivotal role in the development of the malignant phenotype of glioma cells, including cell survival, proliferation, differentiation, tumor angiogenesis, and stem cell generation. This review will discuss the biological functions of miRNAs in human glioma and their implications in improving clinical diagnosis, prediction of prognosis, and anti-glioma therapy.

  13. Knockdown of Long Non-Coding RNA KCNQ1OT1 Restrained Glioma Cells’ Malignancy by Activating miR-370/CCNE2 Axis

    Science.gov (United States)

    Gong, Wei; Zheng, Jian; Liu, Xiaobai; Liu, Yunhui; Guo, Junqing; Gao, Yana; Tao, Wei; Chen, Jiajia; Li, Zhiqing; Ma, Jun; Xue, Yixue

    2017-01-01

    Accumulating evidence has highlighted the potential role of long non-coding RNAs (lncRNAs) as biomarkers and therapeutic targets in solid tumors. Here, we elucidated the function and possible molecular mechanisms of lncRNA KCNQ1OT1 in human glioma U87 and U251 cells. Quantitative Real-Time polymerase chain reaction (qRT-PCR) demonstrated that KCNQ1OT1 expression was up-regulated in glioma tissues and cells. Knockdown of KCNQ1OT1 exerted tumor-suppressive function in glioma cells. Moreover, a binding region was confirmed between KCNQ1OT1 and miR-370 by dual-luciferase assays. qRT-PCR showed that miR-370 was down-regulated in human glioma tissue and cells. In addition, restoration of miR-370 exerted tumor-suppressive function via inhibiting cell proliferation, migration and invasion, while promoting the apoptosis of human glioma cells. Knockdown of KCNQ1OT1 decreased the expression level of Cyclin E2 (CCNE2) by binding to miR-370. Further, miR-370 bound to CCNE2 3′UTR region and decreased the expression of CCNE2. These results provided a comprehensive analysis of KCNQ1OT1-miR-370-CCNE2 axis in human glioma cells and might provide a novel strategy for glioma treatment.

  14. Involvement of FOS-mediated miR-181b/miR-21 signalling in the progression of malignant gliomas.

    Science.gov (United States)

    Tao, Tao; Wang, Yingyi; Luo, Hui; Yao, Lei; Wang, Lin; Wang, Jiajia; Yan, Wei; Zhang, Junxia; Wang, Huibo; Shi, Yan; Yin, Yu; Jiang, Tao; Kang, Chunsheng; Liu, Ning; You, Yongping

    2013-09-01

    Recently, a group of microRNAs (miRNAs) were shown to be dysregulated in gliomas, and involved in glioma development. However, the effect of miRNA-miRNA functional networks on gliomas is poorly understood. In this study, we identified that FBJ murine osteosarcoma viral oncogene homolog (FOS)-mediated miR-181b/miR-21 signalling was critical for glioma progression. Using microarrays and quantitative RT-PCR (qRT-PCR), we found increased FOS in high grade gliomas. FOS depletion (via FOS-shRNA), inhibited invasion and promoted apoptosis in glioma cells. Using microarrays, combined with Pearson correlation analysis, we found FOS positively correlated with miR-21 expression. Reduction of FOS inhibited miR-21 expression by binding to the miR-21 promoter using luciferase reporter assays. Introduction of miR-21 abrogated FOS knockdown-induced cell invasion and apoptosis. Moreover, bioinformatics and luciferase reporter assays showed that miR-181b modulated FOS expression by directly targeting the binding site within the 3'UTR. Expression of FOS with a FOS cDNA lacking 3'UTR overrided miR-181b-induced miR-21 expression and cell function. Finally, immunohistochemistry (IHC) and in situ hybridisation (ISH) analysis revealed a significant correlation in miR-181b, FOS and miR-21 expression in nude mouse tumour xenograft and human glioma tissues. To our knowledge, it is the first time to demonstrate that miR-181b/FOS/miR-21 signalling plays a critical role in the progression of gliomas, providing important clues for understanding the key roles of transcription factor mediated miRNA-miRNA functional network in the regulation of gliomas.

  15. Prediction of malignancy degree in brain glioma using selective neural networks ensemble%基于聚类算法的选择性神经网络集成在大脑胶质瘤诊断中的应用

    Institute of Scientific and Technical Information of China (English)

    刘天羽; 李国正; 吴耿锋

    2006-01-01

    A clustering algorithm based selective neural networks ensemble (CLUSEN) is proposed to predict the degree of malignancy in brain glioma.Since the degree prediction of malignancy is critical before brain surgery, many learning methods are used like rule induction algorithm, single neural networks, support vector machines, etc.Ensemble learning methods can improve the generalization of single learning machine, and are becoming popular in the machine learning and medical data processing communities.The procedure of CLUSEN can efficiently remove redundancy learning individuals and help improve the diversity of ensemble methods.CLUSEN is used to predict the degree of malignancy in brain glioma.Experimental results on a set of brain glioma data show that, compared to support vector machines, rule induction and single neural networks, the classification accuracy of CLUSEN is higher.

  16. Gene Therapy for Gliomas

    OpenAIRE

    Nanda, Dharminderkoemar

    2008-01-01

    textabstractThe overall median survival in glioblastoma multiforme (GBM) patients is less than one year and fewer than 5% of patients survive more than 5 years. The current standard of care for GBM patients involves neurosurgical resection of the tumor followed by radiotherapy with concomitant and adjuvant temozolomide chemotherapy. After initial treatment, all malignant gliomas eventually recur, mostly within a 2-3 cm margin of the original tumor on CT/MRI. The poor prognosis warrants resear...

  17. Metales pesados en tejido muscular del bagre Ariopsis felis en el sur del golfo de México (2001-2004)

    OpenAIRE

    Vázquez, Felipe; Florville-Alejandre,Tomás R; Herrera,Miguel; Díaz de León,Luz María

    2008-01-01

    Se analizó el contenido de metales pesados en tejido muscular del bagre, Ariopsis felis en el sur del golfo de México durante el período 2001-2004. La investigación fue efectuada buscando establecer un marco de referencia ambiental para este organismo. La concentración metálica siguió el orden: Hg < Co < Pb < Ni < V < Cr. Fue observado un decremento en contenido de cobalto y vanadio, incremento en contenido de níquel, mercurio y cromo, y ausencia de estos comportamientos para contenido de plo...

  18. CDKN2A (p16) mRNA decreased expression is a marker of poor prognosis in malignant high-grade glioma.

    Science.gov (United States)

    Sibin, M K; Bhat, Dhananjaya I; Narasingarao, K V L; Lavanya, Ch; Chetan, G K

    2015-09-01

    Human high-grade glioma is heterogeneous in nature based on pathological and genetic profiling. Various tumour suppressor gene alterations are considered as prognostic markers in high-grade glioma. Gene expression of CDKN2A (p16) is used in various cancers as a prognostic biomarker along with methylation and deletion status of this gene. Expression levels of p16 mRNA were not studied as a biomarker in gliomas before. In this study, we have performed mRNA quantification analysis on 48 high-grade glioma tissues and checked for a possible prognostic role. The decreased expression of p16 mRNA in majority of the tumour tissues (57.1 %) was observed when compared to control tissues (P = 0.02). mRNA expression level was correlated with clinical variables also. p16 deletion status and BMI1 mRNA expression were also considered for comparison. p16 mRNA was negatively correlated with the BMI1 mRNA (P = p16 deletion. p16 mRNA expression, midline shift in MRI and tumour type were able to predict patient survival in overall survival (OS) and progression-free survival (PFS). p16 mRNA could independently predict prognosis of OS (P = 0.0146) and PFS (P = 0.0305) in multivariate analysis. We have shown that p16 mRNA expression can act as an independent prognostic biomarker in high-grade glioma.

  19. Combination of lentivirus-mediated silencing of PPM1D and temozolomide chemotherapy eradicates malignant glioma through cell apoptosis and cell cycle arrest

    Science.gov (United States)

    Wang, Peng; Ye, Jing-An; Hou, Chong-Xian; Zhou, Dong; Zhan, Sheng-Quan

    2016-01-01

    Temozolomide (TMZ) is approved for use as first-line treatment for glioblastoma multiforme (GBM). However, GBM shows chemoresistance shortly after the initiation of treatment. In order to detect whether silencing of human protein phosphatase 1D magnesium dependent (PPM1D) gene could increase the effects of TMZ in glioma cells, glioma cells U87-MG were infected with lentiviral shRNA vector targeting PPM1D silencing. After PPM1D silencing was established, cells were treated with TMZ. The multiple functions of human glioma cells after PPM1D silencing and TMZ chemotherapy were detected by flow cytometry and MTT assay. Significantly differentially expressed genes were distinguished by microarray-based gene expression profiling and analyzed by gene pathway enrichment analysis and ontology assessment. Western blotting was used to establish the protein expression of the core genes. PPM1D gene silencing improves TMZ induced cell proliferation and induces cell apoptosis and cell cycle arrest. When PPM1D gene silencing combined with TMZ was performed in glioma cells, 367 genes were upregulated and 444 genes were downregulated compared with negative control. The most significant differential expression pathway was pathway in cancer and IGFR1R, PIK3R1, MAPK8 and EP300 are core genes in the network. Western blotting showed that MAPK8 and PIK3R1 protein expression levels were upregulated and RB1 protein expression was decreased. It was consistent with that detected in gene expression profiling. In conclusion, PPM1D gene silencing combined with TMZ eradicates glioma cells through cell apoptosis and cell cycle arrest. PIK3R1/AKT pathway plays a role in the multiple functions of glioma cells after PPM1D silencing and TMZ chemotherapy. PMID:27633132

  20. Qualidade do emprego na agricultura brasileira no período 2001-2004 e suas diferenciações por culturas

    Directory of Open Access Journals (Sweden)

    Otavio Valentim Balsadi

    2007-06-01

    Full Text Available A partir dos microdados da Pesquisa Nacional por Amostra de Domicílios (PNAD, o presente estudo analisou a qualidade do emprego na agricultura brasileira como um todo e, também, em seis culturas (arroz, café, cana-de-açúcar, mandioca, milho e soja no período 2001-2004. Para a análise, foi construído um Índice de Qualidade de Emprego (IQE, composto por quatro dimensões: nível educacional dos empregados; grau de formalidade do emprego; rendimento recebido no trabalho principal; e auxílios recebidos pelos empregados. O IQE foi calculado para os empregados permanentes e para os empregados temporários, levando-se em consideração o local de moradia dos mesmos (urbano ou rural.Based on the Nacional Households Survey (PNAD, this paper analyzed the employment quality in the Brazilian agriculture and six main crops (rice, coffee, sugarcane, manioc, corn and soybean in the 2001-2004 period. An Employment Quality Index (EQI was created for this analysis, based on four dimensions: level of education; degree of job formalization; main job income; and employee benefits. The EQI was calculated for the permanent and temporary workers, considering the local of the households (urban and rural.

  1. Imaging of adult brainstem gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, Bela, E-mail: purohitbela@yahoo.co.in; Kamli, Ali A.; Kollias, Spyros S.

    2015-04-15

    Highlights: •BSG are classified on MRI into diffuse low-grade, malignant, focal tectal and exophytic subtypes. •Their prognosis and treatment is variable and is almost similar to adult supratentorial gliomas. •This article illustrates the imaging of adult BSGs on MRI and FET-PET. •We also describe prognostic factors and the treatment options of these tumours. -- Abstract: Brainstem gliomas (BSGs) are uncommon in adults accounting for about 2% of all intracranial neoplasms. They are often phenotypically low-grade as compared to their more common paediatric counterparts. Since brainstem biopsies are rarely performed, these tumours are commonly classified according to their MR imaging characteristics into 4 subgroups: (a) diffuse intrinsic low-grade gliomas, (b) enhancing malignant gliomas, (c) focal tectal gliomas and (d) exophytic gliomas/other subtypes. The prognosis and treatment is variable for the different types and is almost similar to adult supratentorial gliomas. Radiotherapy (RT) with adjuvant chemotherapy is the standard treatment of diffuse low-grade and malignant BSGs, whereas, surgical resection is limited to the exophytic subtypes. Review of previous literature shows that the detailed imaging of adult BSGs has not received significant attention. This review illustrates in detail the imaging features of adult BSGs using conventional and advanced MR techniques like diffusion weighted imaging (DWI), diffusion tensor imaging (DTI), MR perfusion weighted imaging (PWI), MR spectroscopy (MRS), as well as {sup 18}F-fluoro-ethyl-tyrosine positron emission tomography ({sup 18}F-FET/PET). We have discussed the pertinent differences between childhood and adult BSGs, imaging mimics, prognostic factors and briefly reviewed the treatment options of these tumours.

  2. Photon and proton therapy planning comparison for malignant glioma based on CT, FDG-PET, DTI-MRI and fiber tracking

    DEFF Research Database (Denmark)

    Munck af Rosenschöld, Per; Engelholm, Silke; Ohlhues, Lars;

    2011-01-01

    The purpose of this study was to compare treatment plans generated using fixed beam Intensity Modulated photon Radiation Therapy (IMRT), inversely optimized arc therapy (RapidArc(R), RA) with spot-scanned Intensity Modulated Proton Therapy (IMPT) for high-grade glioma patients. Plans were compared...

  3. 替莫唑胺与放疗联合治疗恶性胶质瘤的临床分析%Clinical Study on Temozolomide Combined With Radiotherapy in Treatment of Malignant Glioma

    Institute of Scientific and Technical Information of China (English)

    杨立春

    2016-01-01

    目的:探究恶性胶质瘤患者采用替莫唑胺和放疗联合治疗的方法及效果。方法选取2014年8月~2015年8月收入的35例恶性胶质瘤术后患者进行治疗,随机分组,实验组20例患者给予放疗和替莫唑胺的综合治疗,对照组15例患者仅采用放疗干预,观察患者的治疗效果和安全性。结果实验组治疗总有效率为80.0%,对照组治疗总有效率为60.0%。实验组疗效具有统计学意义(P <0.05),两组患者在不良反应的发生率上没有差异(P >0.05)。结论恶性胶质瘤患者采用替莫唑胺和放疗联合治疗,效果更加显著,提高生存率,减少不良反应,改善身体舒适度和生活质量。%Objective To make an investigation on temozolomide combined with radiotherapy treatment method and its effect in treatment of malignant glioma. Methods Chose 35 patients of malignant glioma who were given postoperative treatment in hospital from August 2014 to August 2015 and separated them into two groups at random,20 patients in study group were given temozolomide combined with radiotherapy treatment,while another 15 patients in control group were given radiotherapy only,and then observed treatment effects and safety between two groups. Results Patients’treatment efficacy in study group was 80.0%,while treatment efficacy in control group was 60.0%. Thus,treatment efficacy was much higher in study group compared to that in control group(P 0.05). Conclusion Temozolomide combined with radiotherapy is effective in treatment of malignant glioma,it is conducive to increasing patients’survival rate,reducing side-effect incidence,promoting their physical comfort and improving patients’quality of life.

  4. 替莫唑胺联合放疗治疗恶性脑胶质瘤的临床观察%clinical observation on temozolomide combined with radiotherapy for brain malignant gliomas produced

    Institute of Scientific and Technical Information of China (English)

    陈伟; 毕迎惠; 王勐

    2014-01-01

    目的:分析替莫唑胺联合放疗在恶性脑胶质瘤产生的临床效果。方法:随机选取我院收治的恶性脑胶质瘤患者40例分为2组,每组20例;对照组进行单纯放疗,观察组在对照组的基础上添加替莫唑胺化疗。分析2组患者的临床效果比较。结果:观察组中7例完全缓解,10例部分缓解,2例病变稳定,仅有1例病变进展,高达95%的总有效率。对照组中5例完全缓解,8例部分缓解,3例病变稳定,4例病变进展,有80%的总有效率。观察组优于对照组, p<0.05,则其差异具有统计学意义。结论:采用替莫唑胺联合放疗治疗恶性脑胶质瘤具有良好的临床疗效,不良反应低,有效率高,操作简便等,能够提高患者生存质量,值得在临床上应用推广。%Objective:To analyze the clinical effect of Temozolomide Combined with radiotherapy for brain malignant gliomas produced . Methods:40 patients with malignant gliomas were randomly selected from our hospital patients , divided into two groups , 20 patients in each group;the control group only radiotherapy , observation group were based on the addition of temozolomide chemotherapy for brain malignant gliomas.To compare the clinical effect of two groups were analyzed .Results:The observation group of 7 cases were complete remission , 10 cases partial remission , 2 cases stable disease , and only 1 cases progression disease , the total effective up to 95%.Control group:5 cases were complete remission , 8 cases partial remission , 3 cases stable disease , 4 cases progression disease , the total effective 80%.The obser-vation group than in the control group , p<0.05, the difference has statistical significance .Conclusion:The use of Temozolomide Com-bined with radiotherapy for brain malignant gliomas might have good clinical curative effect treatment , low adverse reaction , high efficiency , simple operation, could improve the quality of life of

  5. [Controversy on treatments for gliomas].

    Science.gov (United States)

    Nomura, K

    1998-09-01

    Gliomas are representative primary malignant brain tumors, and with such tumors it is difficult to define the advanced stage. If the advanced stage indicates no curability by surgery alone, most gliomas would belong to this criterion because of their poor prognosis without any completely effective treatment. In this sense, no one could show a standard therapy to treat these unfortunate patients, for example, patients with glioblastoma, they could permit only 1 year survived even they had any applicable treatments to the lesions, these days. Treatment for low-grade gliomas has been most controversial for a long time, and no standard treatments have been determined so far. In this paper, as the treatment of low-grade gliomas it was intended to report what must be done for this patient and the present results of opinion survey for the treatment of gliomas which was done to professors of 80 institutes, from schools of medicine at all universities and medical colleges in Japan. For high-grade gliomas, some effectiveness of radiation therapy was disclosed as well as chemotherapy from recent papers. Gene therapy was also discussed briefly, its present status and future.

  6. Photon and proton therapy planning comparison for malignant glioma based on CT, FDG-PET, DTI-MRI and fiber tracking

    DEFF Research Database (Denmark)

    Munck af Rosenschöld, Per; Engelholm, Silke; Ohlhues, Lars;

    2011-01-01

    The purpose of this study was to compare treatment plans generated using fixed beam Intensity Modulated photon Radiation Therapy (IMRT), inversely optimized arc therapy (RapidArc(R), RA) with spot-scanned Intensity Modulated Proton Therapy (IMPT) for high-grade glioma patients. Plans were compared...... with respect to target coverage and sparing of organs at risk (OARs), with special attention to the possibility of hippocampus sparing....

  7. 脑胶质瘤恶性进展关键 miRNA 表达的研究%The expression study of the key miRNAs involved in the malignant progression of gliomas

    Institute of Scientific and Technical Information of China (English)

    马瑞敏; 康熙雄; 杨春娇; 赵晖; 张国军

    2016-01-01

    Objective To identify the key miRNAs involved in the malignant progression of gliomas . Methods Comprehensive miRNAs profiling was performed in 198 glioma tissues with different pathological grade u‐sing miRNA array .Quantitative real‐time reverse transcription PCR(qRT‐PCR) was used to validate the expression levels of the key miRNAs ,which expressed differentially in glioma tissues with different pathological grade .The MTT assay ,cell cycle assay and colony formation assay were performed to investigate the effect of key miRNAs on the proliferation of tumor cells .Results Compared to grade Ⅱ gliomas miR‐374a ,miR‐590‐3p ,miR‐374b ,miR‐29c , miR‐153 were upregulated ,and let‐7c ,miR‐544 ,let‐7a ,miR‐132 ,miR‐7d were downregulated in grade Ⅲ gliomas .The expression levels of miR‐374a and miR‐544 were validated by qRT‐PCR and the results were consistent with the re‐sults of array .The H4 cells transfected with miR‐374a mimics showed increased cell proliferation rates ,and the num‐ber of colony formation was increased .The H4 cells transfected with miR‐544 mimics showed decreased cell prolifera‐tion rates ,and the number of colony formation was decreased .GBMs demonstrated a significant increase in miR‐196b transcript levels compared to the mean expression levels observed in grade grade Ⅱ and Ⅲ gliomas .The glioma cells transfected with miR‐196b mimics showed increased cell proliferation rates and could increase the fraction of S‐phase proportion of cell cycle .Conclusion MiR‐374a ,miR‐544 and miR‐196b ,which expressed differentially in glioma tis‐sues with different pathological grade ,may push the malignant progression of gliomas by influencing cell prolifera‐tion .%目的:寻找影响胶质瘤恶性进展的关键微小RNA(miRNA)。方法使用miRNA表达谱芯片检测198例不同级别胶质瘤组织标本miRNA的表达情况,挑选代表性差异表达miRNA ,采用荧光定量PCR方

  8. 不同级别恶性脑胶质瘤中N-乙酰氨基半乳糖转移酶-14的表达差异%Expression differences of N-acetyl amino galactosyl transferase-14 in the different levels of malignant glioma and the correlation of malignant degree with glial tumors

    Institute of Scientific and Technical Information of China (English)

    扈玉华; 吴建梁; 刘兵; 田红伟

    2014-01-01

    Objective To explore the expression differences of N-acetyl amino galactosyl transferase-14 (GalNAc-T14) in normal brain tissue and different levels of malignant gliomas and to observe the relationship between the expression of GalNAc-T14 with the differentiation and malignant degree of gliomas.Methods By real-time quantitative polymerase chain reaction detecting system (QPCR) and immunohistochemical staining methods,the expression of GalNAc-T14 was detected in 11 cases of Ⅱ grade glioma tissue samples,14 cases of Ⅲ grade glioma tissue specimens,9 cases of Ⅳ grade glioma tissue samples and 16 specimens of normal brain tissue.Results The average optical density values of GalNAc-T14 in normal brain tissue specimens and the specimens of Ⅱ,Ⅲ and Ⅳ grade glioma cells were 0.956 4 ±0.079 1,0.525 6 ±0.064 7,0.298 9 ±0.080 8,and0.151 4 ±0.062 4 respectively by QPCR.Single factor analysis of variance (One-way ANOVA) and LSD,SNK-t analysis comparison showed the expression of GalNAc-T14 in human gliomas was significantly different from that in the normal brain tissue (P < 0.05).The same significance was also found between grade Ⅱ and grade Ⅲ or grade Ⅳ (P < 0.05).Immunohistochemical staining method revealed that the positive rate of the GalNAc-T14 expression was 68.7% in normal brain tissue specimens and 63.6%,42.9% and 33.3% in glioma tissues of grade Ⅱ,Ⅲ and Ⅳ,and there was significant difference between glioma group and normal brain tissue groups (P < 0.05).Different levels of brain glioma cells showed no obvious consistency.Conclusion The expression of GalNAc-T14 was significantly reduced in malignant glioma cells,and was closely related with disease progression.%目的 探讨N-乙酰氨基半乳糖转移酶-14 (GalNAc-T14)在不同级别恶性胶质瘤中的表达差异及其与胶质瘤恶性程度的关系.方法 采用实时荧光定量核酸扩增检测系统(QPCR)方法和免疫组织化学染色方法检测16

  9. Metales pesados en tejido muscular del bagre Ariopsis felis en el sur del golfo de México (2001-2004) Heavy metals in muscular tissue of the catfish, Ariopsis felis, in the southern Gulfof México (2001-2004)

    OpenAIRE

    Felipe Vázquez; Tomás R Florville-Alejandre; Miguel Herrera; Luz María Díaz de León

    2008-01-01

    Se analizó el contenido de metales pesados en tejido muscular del bagre, Ariopsis felis en el sur del golfo de México durante el período 2001-2004. La investigación fue efectuada buscando establecer un marco de referencia ambiental para este organismo. La concentración metálica siguió el orden: Hg < Co < Pb < Ni < V < Cr. Fue observado un decremento en contenido de cobalto y vanadio, incremento en contenido de níquel, mercurio y cromo, y ausencia de estos comportamientos para contenido de plo...

  10. Microarray Analysis in a Cell Death Resistant Glioma Cell Line to Identify Signaling Pathways and Novel Genes Controlling Resistance and Malignancy

    Directory of Open Access Journals (Sweden)

    Janina Seznec

    2011-06-01

    Full Text Available Glioblastoma multiforme (GBM is a lethal type of cancer mainly resistant to radio- and chemotherapy. Since the tumor suppressor p53 functions as a transcription factor regulating the expression of genes involved in growth inhibition, DNA repair and apoptosis, we previously assessed whether specific differences in the modulation of gene expression are responsible for the anti-tumor properties of a dominant positive p53, chimeric tumor suppressor (CTS-1. CTS-1 is based on the sequence of p53 and designed to resist various mechanisms of inactivation which limit the activity of p53. To identify CTS-1-regulated cell death-inducing genes, we generated a CTS-1-resistant glioma cell line (229R. We used Affymetrix whole-genome microarray expression analysis to analyze alterations in gene expression and identified a variety of CTS-1 regulated genes involved in cancer-linked processes. 313 genes were differentially expressed in Adeno-CTS-1 (Ad-CTS-1-infected and 700 genes in uninfected 229R cells compared to matching parental cells. Ingenuity Pathway Analysis (IPA determined a variety of differentially expressed genes in Ad-CTS-1-infected cells that were members of the intracellular networks with central tumor-involved players such as nuclear factor kappa B (NF-κB, protein kinase B (PKB/AKT or transforming growth factor beta (TGF-β. Differentially regulated genes include secreted factors as well as intracellular proteins and transcription factors regulating not only cell death, but also processes such as tumor cell motility and immunity. This work gives an overview of the pathways differentially regulated in the resistant versus parental glioma cells and might be helpful to identify candidate genes which could serve as targets to develop novel glioma specific therapy strategies.

  11. Microarray Analysis in a Cell Death Resistant Glioma Cell Line to Identify Signaling Pathways and Novel Genes Controlling Resistance and Malignancy

    Energy Technology Data Exchange (ETDEWEB)

    Seznec, Janina; Naumann, Ulrike, E-mail: ulrike.naumann@uni-tuebingen.de [Laboratory of Molecular Neuro-Oncology, Department of General Neurology, Hertie-Institute for Clinical Brain Research and Center Neurology, University of Tuebingen, Otfried-Mueller-Str. 27, Tuebingen 72076 (Germany)

    2011-06-27

    Glioblastoma multiforme (GBM) is a lethal type of cancer mainly resistant to radio- and chemotherapy. Since the tumor suppressor p53 functions as a transcription factor regulating the expression of genes involved in growth inhibition, DNA repair and apoptosis, we previously assessed whether specific differences in the modulation of gene expression are responsible for the anti-tumor properties of a dominant positive p53, chimeric tumor suppressor (CTS)-1. CTS-1 is based on the sequence of p53 and designed to resist various mechanisms of inactivation which limit the activity of p53. To identify CTS-1-regulated cell death-inducing genes, we generated a CTS-1-resistant glioma cell line (229R). We used Affymetrix whole-genome microarray expression analysis to analyze alterations in gene expression and identified a variety of CTS-1 regulated genes involved in cancer-linked processes. 313 genes were differentially expressed in Adeno-CTS-1 (Ad-CTS-1)-infected and 700 genes in uninfected 229R cells compared to matching parental cells. Ingenuity Pathway Analysis (IPA) determined a variety of differentially expressed genes in Ad-CTS-1-infected cells that were members of the intracellular networks with central tumor-involved players such as nuclear factor kappa B (NF-κB), protein kinase B (PKB/AKT) or transforming growth factor beta (TGF-β). Differentially regulated genes include secreted factors as well as intracellular proteins and transcription factors regulating not only cell death, but also processes such as tumor cell motility and immunity. This work gives an overview of the pathways differentially regulated in the resistant versus parental glioma cells and might be helpful to identify candidate genes which could serve as targets to develop novel glioma specific therapy strategies.

  12. CDK4 amplification is an alternative mechanism to p16 gene homozygous deletion in glioma cell lines

    National Research Council Canada - National Science Library

    He, J; Allen, J R; Collins, V P; Allalunis-Turner, M J; Godbout, R; Day, 3rd, R S; James, C D

    1994-01-01

    ... those established from malignant gliomas. Here we have examined 32 glioma cell lines for amplification-associated overexpression of the CDK4 gene as an alternative mechanism for abrogating the growth-regulatory effects of p16...

  13. A phase I/II trial of the histone deacetylase inhibitor romidepsin for adults with recurrent malignant glioma: North American Brain Tumor Consortium Study 03-03.

    Science.gov (United States)

    Iwamoto, Fabio M; Lamborn, Kathleen R; Kuhn, John G; Wen, Patrick Y; Yung, W K Alfred; Gilbert, Mark R; Chang, Susan M; Lieberman, Frank S; Prados, Michael D; Fine, Howard A

    2011-05-01

    Romidepsin, a potent histone deacetylase inhibitor, has shown activity in preclinical glioma models. The primary objectives of this trial were to determine the pharmacokinetics of romidepsin in patients with recurrent glioma on enzyme-inducing antiepileptic drugs (EIAEDs) and to evaluate the antitumor efficacy of romidepsin in patients with recurrent glioblastoma who were not receiving EIAEDs. Two dose cohorts were studied in the phase I component of the trial (13.3 and 17.7 mg/m(2)/d). Patients in the phase II component were treated with intravenous romidepsin at a dosage of 13.3 mg/m(2)/day on days 1, 8, and 15 of each 28-day cycle. Eight patients were treated on the phase I component. A similar romidepsin pharmacokinetic profile was demonstrated between patients receiving EIAEDs to those not receving EIAEDs. Thirty-five patients with glioblastoma were accrued to the phase II component. There was no objective radiographic response. The median progression-free survival (PFS) was 8 weeks and only 1 patient had a PFS time ≥6 months (PFS6 = 3%). To date, 34 patients (97%) have died, with a median survival duration of 34 weeks. Despite in vitro studies showing that romidepsin is primarily metabolized by CYP3A4, no decrease in exposure to romidepsin was seen in patients receiving potent CYP3A4 inducers. Romidepsin, at its standard dose and schedule, was ineffective for patients with recurrent glioblastomas. ClinicalTrials.gov identifier: NCT00085540.

  14. Water-quality characteristics, including sodium-adsorption ratios, for four sites in the Powder River drainage basin, Wyoming and Montana, water years 2001-2004

    Science.gov (United States)

    Clark, Melanie L.; Mason, Jon P.

    2006-01-01

    The U.S. Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, monitors streams throughout the Powder River structural basin in Wyoming and parts of Montana for potential effects of coalbed natural gas development. Specific conductance and sodium-adsorption ratios may be larger in coalbed waters than in stream waters that may receive the discharge waters. Therefore, continuous water-quality instruments for specific conductance were installed and discrete water-quality samples were collected to characterize water quality during water years 2001-2004 at four sites in the Powder River drainage basin: Powder River at Sussex, Wyoming; Crazy Woman Creek near Arvada, Wyoming; Clear Creek near Arvada, Wyoming; and Powder River at Moorhead, Montana. During water years 2001-2004, the median specific conductance of 2,270 microsiemens per centimeter at 25 degrees Celsius (?S/cm) in discrete samples from the Powder River at Sussex, Wyoming, was larger than the median specific conductance of 1,930 ?S/cm in discrete samples collected downstream from the Powder River at Moorhead, Montana. The median specific conductance was smallest in discrete samples from Clear Creek (1,180 ?S/cm), which has a dilution effect on the specific conductance for the Powder River at Moorhead, Montana. The daily mean specific conductance from continuous water-quality instruments during the irrigation season showed the same spatial pattern as specific conductance values for the discrete samples. Dissolved sodium, sodium-adsorption ratios, and dissolved solids generally showed the same spatial pattern as specific conductance. The largest median sodium concentration (274 milligrams per liter) and the largest range of sodium-adsorption ratios (3.7 to 21) were measured in discrete samples from the Powder River at Sussex, Wyoming. Median concentrations of sodium and sodium-adsorption ratios were substantially smaller in Crazy Woman Creek and Clear Creek, which tend to

  15. Inducement of mitosis delay by cucurbitacin E, a novel tetracyclic triterpene from climbing stem of Cucumis melo L., through GADD45γ in human brain malignant glioma (GBM) 8401 cells.

    Science.gov (United States)

    Hsu, Y-C; Chen, M-J; Huang, T-Y

    2014-02-27

    Cucurbitacin E (CuE) is a natural compound previously shown to have anti-feedant, antioxidant and antitumor activities as well as a potent chemo-preventive action against cancer. The present study investigates its anti-proliferative property using MTT assay; CuE demonstrated cytotoxic activity against malignant glioma GBM 8401 cells and induced cell cycle G2/M arrest in these cells. CuE-treated cells accumulated in metaphase (CuE 2.5-10 μM) as determined using MPM-2 by flow cytometry. We attempted to characterize the molecular pathways responsible for cytotoxic effects of CuE in GBM 8401 cells. We studied the genome-wide gene expression profile on microarrays and molecular networks by using pathway analysis tools of bioinformatics. The CuE reduced the expression of 558 genes and elevated the levels of 1354 genes, suggesting an existence of the common pathways involved in induction of G2/M arrest. We identified the RB (GADD45β and GADD45γ) and the p53 (GADD45α) signaling pathways as the common pathways, serving as key molecules that regulate cell cycle. Results indicate that CuE produced G2/M arrest as well as the upregulation of GADD45 γ and binding with CDC2. Both effects increased proportionally with the dose of CuE, suggesting that the CuE-induced mitosis delay is regulated by GADD45γ overexpression. Our findings suggest that, in addition to the known effects on cancer prevention, CuE may have antitumor activity in glioma therapy.

  16. Isocitrate dehydrogenase mutations in gliomas.

    Science.gov (United States)

    Waitkus, Matthew S; Diplas, Bill H; Yan, Hai

    2016-01-01

    Over the last decade, extraordinary progress has been made in elucidating the underlying genetic causes of gliomas. In 2008, our understanding of glioma genetics was revolutionized when mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) were identified in the vast majority of progressive gliomas and secondary glioblastomas (GBMs). IDH enzymes normally catalyze the decarboxylation of isocitrate to generate α-ketoglutarate (αKG), but recurrent mutations at Arg(132) of IDH1 and Arg(172) of IDH2 confer a neomorphic enzyme activity that catalyzes reduction of αKG into the putative oncometabolite D-2-hydroxyglutate (D2HG). D2HG inhibits αKG-dependent dioxygenases and is thought to create a cellular state permissive to malignant transformation by altering cellular epigenetics and blocking normal differentiation processes. Herein, we discuss the relevant literature on mechanistic studies of IDH1/2 mutations in gliomas, and we review the potential impact of IDH1/2 mutations on molecular classification and glioma therapy.

  17. 替莫唑胺治疗复发性恶性脑胶质瘤疗效%Efficacy of temozolomide in treating recurrent malignant glioma

    Institute of Scientific and Technical Information of China (English)

    武新虎; 朱锡旭; 沈泽天; 李兵; 沈君姝; 高淑萍

    2012-01-01

    Objective To evaluate the efficacy and adverse effects of temozolomide in the treatment of recurrent glioma. Methods Thirty-eight patients with recurrent glioma were treated with temozolomide in a dose of 100-200 mg/m2 once a day for 5 days. A treatment cycle was 28 days and each patient received at least two cycles of treatment. The efficacy was evaluated by MRI examination after chemotherapy. Results Median follow-up time was 8. 5 months. The partial response rate was 21. 05%(8/38) .stable disease rate was 34. 24%(13/38). The median time for disease progression-free survival was 5.4 months. Seventeen (44. 74 %) patients were progression-free survival more than 6 months. One-year survival rate was 23. 68%. There were no severe temozolomide-related toxicities. The major adverse effects of temozolomide were nausea, vomiting, baldness, acratia and bone marrow depression. Conclusion Treating recurrent gliomas with temozolomide is effective and safe with less adverse effects.%目的 评价替莫唑胺治疗复发性脑恶性胶质瘤的疗效及安全性.方法 38例复发的恶性胶质瘤患者给予单药替莫唑胺100-200 mg/m2,连续口服5d,28 d为一周期.所有患者至少接受两个疗程治疗.替莫唑胺化疗后以头颅MRI判断疗效,并记录相关治疗反应.结果 中位随访时间8.5个月.8例患者的肿瘤明显缩小,PR率为21.05%;13例患者肿瘤稳定,SD率为34.24%.中位无进展牛存期为5.4个月;17例(44.74%)患者无进展生存期超过6个月;1年生存率23.68%(9/38).替莫唑胺主要不良反应为恶心、呕吐、乏力和骨髓抑制等.结论 口服替莫唑胺对恶性复发性胶质瘤患者安全有效.

  18. Magnetic paclitaxel nanoparticles inhibit glioma growth and improve the survival of rats bearing glioma xenografts.

    Science.gov (United States)

    Zhao, Ming; Liang, Chao; Li, Anmin; Chang, Jin; Wang, Hanjie; Yan, Runmin; Zhang, Jiajing; Tai, Junli

    2010-06-01

    Paclitaxel has fared poorly in clinical trials against brain glioma. We hypothesized that superparamagnetic nanocarriers may enhance its bioactivities by delivering it into the brain. The magnetic paclitaxel nanoparticles (MPNPs) were fabricated and their cytotoxicity against glioma was tested both in vitro and in glioma-bearing rats. MPNPs exhibited superparamagnetism and produced an extended release of paclitaxel over 15 days in vitro. They were easily internalized into glioma cells and exerted remarkable toxicity, as free paclitaxel did. Furthermore, after intravenous injection of MPNPs to glioma-bearing rats and magnetic targeting with a 0.5 T magnet, drug content increased for 6- to 14-fold in implanted glioma and 4.6- to 12.1-fold in the normal brain compared to free paclitaxel. The survival of glioma-bearing rats was significantly prolonged after magnetic targeting therapy with MPNPs. MPNPs efficiently delivered paclitaxel into brain glioma by magnetic targeting and enhance its antitumor activity. They are promising for local chemotherapy for malignant glioma.

  19. DELETION AND 5'CPG ISLAND METHYLATION OF p15 GENE IN BRAIN GLIOMA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To investigate the abnormality of p15 gene in brain glioma and the correlation of it with occurrence or malignant progression of brain glioma. Methods: Deletion and 5'CPG island methylation of p15 gene were detected by the methods of PCR and PCR-based methylation in 56 cases of brain glioma. Results: Out of 43 cases of high grade glioma, 14 cases were found to have homozygous deletion of p15E1, while none of the 13 cases of low grade glioma was found to have deletion of p15E1 (P<0.05). Methylation of 5'CPG Island of p15 gene was found only in four cases of glioma. Conclusion: Abnormality of p15 gene may involved in the occurrence and malignant progression of brain glioma. Homozygous deletion of gene is the major mechanism of inactivation for p15 gene in brain glioma.

  20. Surgical and therapeutic strategy of recurrent malignant gliomas in intractable location%复发难治部位恶性胶质瘤的手术及治疗策略

    Institute of Scientific and Technical Information of China (English)

    陆云涛; 漆松涛; 欧阳辉; 李宏; 刘亚伟; 宋烨; 李志勇; 俞磊

    2012-01-01

    研究背景复发恶性胶质瘤由于肿瘤浸润而侵犯重要神经或脑深层结构,进一步增加再次手术和治疗的难度.因此,如何制定合理的治疗策略,在最大限度切除肿瘤的同时保证患者基本生存质量,是目前争论的热点.本文旨在探讨复发恶性胶质瘤的合理治疗方式和最佳手术策略.方法 对4 例典型复发恶性胶质瘤患者术前影像、术中操作、术后并发症,以及远期随访结果进行综合评价,阐述对其治疗策略.结果 其中2 例术后MRI 检查显示复发肿瘤位于T2WI 少量水肿残余部位;1 例根据T2WI 所示于术中行水肿带扩大切除,术后近期出现感觉性失语和右侧肢体乏力,经改善脑循环、高压氧,辅助针灸及物理康复训练症状明显改善;1 例脑干胶质瘤采取激光刀精确"雕刻式"手术切除,术后未出现明显神经功能障碍表现,恢复良好.4 例患者术后均接受替莫唑胺(200 mg/kg,5 d/28 d)化疗,平均随访(14.00 ± 12.50)个月.结论 对于明显复发的恶性胶质瘤患者,再次手术仍是延长生存时间的关键,扩大切除T2WI 所示水肿带能减少肿瘤复发机会.在保持患者术后基本生存质量(Karnofsky 生活质量评分> 70 分)基础上,应采用病灶扩大全切除;而针对毗邻脑功能区的肿瘤病灶,则应采取精确"雕刻式"切除,尽量减少肿瘤细胞残留.%Objective Recurrent malignant gliomas often violate important neurological function parts or deep brain structures due to tumor invasion, further increasing the difficulty of reoperation and treatment. Therefore, how to develop a reasonable treatment strategy, maximize the removal of the tumor, and ensure a basic quality of life of the patient, is nowadays hotly debated by scholars from various countries. This article aims to explore the reasonable treatment and optimal surgical strategy of recurrent malignant gliomas. Methods Four cases of recurrent malignant glioma were collceted. A

  1. Comparison of the clinical effect between temozolomide and nimustine in the treatment of malignant gliomas%替莫唑胺与尼莫司汀在脑恶性胶质瘤化疗中的疗效对比研究

    Institute of Scientific and Technical Information of China (English)

    王耀伍; 尹春丽; 张宏义; 杨郁野; 廖珩; 张坤; 崔守章

    2011-01-01

    OBJECTIVE To assess and compare the clinical effects of temozolomide and nimustine in the treatment of malignant glio-mas (WHO III, IV). METHODS 120 malignant gliomas cases were divided into temozolomide group and nimustine group randomly, with at least 4 periods of treatment The effective ratio, progression-free survival time, overall survival time and adverse reactions were observed RESULTS Comparing with nimustine,the temozolomide has better clinical effect,longer survival time and less adverse reactions. CONCLUSION Temozolomide is better than nimustine in the treatment of malignant gliomas.%目的:观察对比替莫唑胺与尼莫司汀在恶性胶质瘤(WHOⅢ,Ⅳ)的疗效.方法:120例恶性胶质瘤患者随机分为替莫唑胺治疗组及尼莫司汀对照组,治疗至少4个疗程,观察有效率、无进展生存时间、总生存时间及不良反应.结果:替莫唑胺较尼莫司汀有更高的有效率,生存时间长,不良反应较小.结论:替莫唑胺治疗恶性胶质瘤比尼莫司汀更有优势.

  2. Photon and proton therapy planning comparison for malignant glioma based on CT, FDG-PET, DTI-MRI and fiber tracking

    Energy Technology Data Exchange (ETDEWEB)

    Munck af Rosenschoeld, Per; Engelholm, Silke; Ohlhues, Lars; Vogelius, Ivan; Engelholm, Svend Aage (Radiation Medicine Research Center, Dept. of Radiation Oncology, Rigshospitalet, Copenhagen (Denmark)), e-mail: per.munck@rh.regionh.dk; Law, Ian (Dept. of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen (Denmark))

    2011-08-15

    Purpose. The purpose of this study was to compare treatment plans generated using fixed beam Intensity Modulated photon Radiation Therapy (IMRT), inversely optimized arc therapy (RapidArc(R), RA) with spot-scanned Intensity Modulated Proton Therapy (IMPT) for high-grade glioma patients. Plans were compared with respect to target coverage and sparing of organs at risk (OARs), with special attention to the possibility of hippocampus sparing. Method. Fifteen consecutive patients diagnosed with grade III and IV glioma were selected for this study. The target and OARs were delineated based on computed tomography (CT), FDG-positron emission tomography (PET) and T1-, T2-weighted, and Diffusion Tensor Imaging (DTI) magnetic resonance imaging (MRI) and fiber-tracking. In this study, a 6 MV photon beam on a linear accelerator with a multileaf collimator (MLC) with 2.5 mm leaves and a spot-scanning proton therapy machine were used. Two RA fields, using both a coplanar (clinical standard) and a non-coplanar, setup was compared to the IMRT and IMPT techniques. Three and three to four non-coplanar fields where used in the spot-scanned IMPT and IMRT plans, respectively. The same set of planning dose-volume optimizer objective values were used for the four techniques. The highest planning priority was given to the brainstem (maximum 54 Gy) followed by the PTV (prescription 60 Gy); the hippocampi, eyes, inner ears, brain and chiasm were given lower priority. Doses were recorded for the plans to targets and OARs and compared to our clinical standard technique using the Wilcoxon signed rank test. Result. The PTV coverage was significantly more conform for IMPT than the coplanar RA technique, while RA plans tended to be more conform than the IMRT plans, as measured by the standard deviation of the PTV dose. In the cases where the tumor was confined in one cerebral hemisphere (eight patients), the non-coplanar RA and IMPT techniques yielded borderline significantly lower doses to the

  3. Diffusion -weighted imaging in the differential diagnosis of malignant glioma with single brain metastases%恶性胶质瘤与单发脑转移瘤的扩散加权成像鉴别诊断研究

    Institute of Scientific and Technical Information of China (English)

    邱妮妮; 张丽君; 周昊; 胡兴荣

    2015-01-01

    Objective:To investigate the diffusion -weighted imaging of malignant gliomas and solitary brain me-tastasis to identify the role.Methods:To retrospectively analyze the data of 40 patients with malignant gliomas diag-nosed with solitary brain metastases,in different b value diffusion -weighted imaging scans.Results:In 40 patients, including 25 patients with malignant glioma,solitary brain metastasis 15 tumor patients,the tumor area signal values and ADC values of the two groups were statistically significant different in tumor periphery(P <0.05).Best b value different signal value,cut -off point was 5 000s/mm2 ,226.4 ×10 -3 mm2 /s.Sensitivity was 86.7%,specificity 56%, positive predictive value 54.2% and a negative predictive value 87.5%.ADC value differences optimal b value,cut-off point was 1 000s/mm2 ,1.40 ×10 -3 mm2 /s.Sensitivity was 100% and specificity 88%,positive predictive value 79%,negative predictive value 100%.Conclusion:With the change of b value,diffusion -weighted imaging of malig-nant gliomas and solitary brain metastasis to identify the role has changed,to the best b ADC value and cut -off point for the 1 000s/mm2 ,1.40 ×10 -3 mm2 /s when the identification of the role was the best,with a sensitivity of 100%and specificity 88%,positive predictive value 79%,negative predictive value 100%.%目的:探讨扩散加权成像对恶性胶质瘤与单发脑转移瘤的鉴别作用。方法:回顾自2006年6月份以来,入我院治疗的确诊为恶性胶质瘤与单发脑转移瘤的患者,在不同的 b 值下应用扩散加权成像进行扫描,获取瘤体及瘤周和正常侧组织的信号值及 ADC 值,评价不同 b 值下,扩散加权成像对恶性胶质瘤与单发脑转移瘤的鉴别作用。结果:共纳入患者40例,其中恶性胶质瘤患者25例,单发脑转移瘤患者15例。通过对照发现,两组患者的瘤体区域信号值及瘤周 ADC 值差异有统计学意义(P <0.05

  4. "Suicide" Gen Therapy for Malignant Central Nervous System Tumors

    NARCIS (Netherlands)

    A.J.P.E. Vincent (Arnoud)

    1998-01-01

    textabstractDespite development in surgical techniques, chemotherapy and radiotherapy, most malignancies of the central nervous system are still devastating tumors with a poor prognosis. For example, median survival of patients with malignant gliomas (astrocytoma, oligodendroglioma or mixed rype) is

  5. Microglia-glioma cross-talk: a two way approach to new strategies against glioma.

    Science.gov (United States)

    Arcuri, Cataldo; Fioretti, Bernard; Bianchi, Roberta; Mecca, Carmen; Tubaro, Claudia; Beccari, Tommaso; Franciolini, Fabio; Giambanco, Ileana; Donato, Rosario

    2017-01-01

    Glioblastoma (GBM) is the most malignant and aggressive among primary brain tumors, characterized by very low life expectancy. In vivo, glioma and glioblastoma in particular contain large numbers of immune cells (myeloid cells) such as microglia and tumour-infiltrating macrophages (or glioma associated macrophages). These glioma-infiltrating myeloid cells comprise up to 30% of total tumor mass and have been suggested to play several roles in glioma progression including proliferation, survival, motility and immunosuppression. Although tumor microglia and macrophages can acquire proinflammatory (M1) phenotype being capable of releasing proinflammatory cytokines, phagocytosing and presenting antigens, their effector immune function in gliomas appears to be suppressed by the acquisition of an anti-inflammatory (M2) phenotype. In the present work we review the microglia-glioma interactions to highlight the close relationship between the two cell types and the factors that can influence their properties (chemokines, cytokines, S100B protein). A future therapeutic possibility might be to simultaneously targeting, for example with nanomedicine, glioma cells and microglia to push the microglia towards an antitumor phenotype (M1) and/or prevent glioma cells from "conditioning" by microglia.

  6. Slit2/Robo1 signaling in glioma migration and invasion.

    Science.gov (United States)

    Xu, Yun; Li, Wen-Liang; Fu, Li; Gu, Feng; Ma, Yong-Jie

    2010-12-01

    Slit2/Robo1 is a conserved ligand-receptor system, which greatly affects the distribution, migration, axon guidance and branching of neuron cells. Slit2 and its transmembrane receptor Robo1 have different distribution patterns in gliomas. The expression of Slit2 is at very low levels in pilocytic astrocytoma, fibrillary astrocytoma and glioblastoma, while Robo1 is highly expressed in different grades of gliomas at both mRNA and protein levels. Acquisition of insidious invasiveness by malignant glioma cells involves multiple genetic alterations in signaling pathways. Although the specific mechanisms of tumor-suppressive effect of Slit2/Robo1 have not been elucidated, it has been proved that Slit2/Robo1 signaling inhibits glioma cell migration and invasion by inactivation of Cdc42-GTP. With the research development on the molecular mechanisms of Slit2/Robo1 signaling in glioma invasion and migration, Slit2/Robo1 signaling may become a potential target for glioma prevention and treatment.

  7. PRG3 induces Ras-dependent oncogenic cooperation in gliomas

    Science.gov (United States)

    Yakubov, Eduard; Chen, Daishi; Broggini, Thomas; Sehm, Tina; Majernik, Gökce Hatipoglu; Hock, Stefan W.; Schwarz, Marc; Engelhorn, Tobias; Doerfler, Arnd; Buchfelder, Michael; Eyupoglu, Ilker Y.; Savaskan, Nicolai E.

    2016-01-01

    Malignant gliomas are one of the most devastating cancers in humans. One characteristic hallmark of malignant gliomas is their cellular heterogeneity with frequent genetic lesions and disturbed gene expression levels conferring selective growth advantage. Here, we report on the neuronal-associated growth promoting gene PRG3 executing oncogenic cooperation in gliomas. We have identified perturbed PRG3 levels in human malignant brain tumors displaying either elevated or down-regulated PRG3 levels compared to non-transformed specimens. Further, imbalanced PRG3 levels in gliomas foster Ras-driven oncogenic amplification with increased proliferation and cell migration although angiogenesis was unaffected. Hence, PRG3 interacts with RasGEF1 (RasGRF1/CDC25), undergoes Ras-induced challenges, whereas deletion of the C-terminal domain of PRG3 (PRG3ΔCT) inhibits Ras. Moreover PRG3 silencing makes gliomas resistant to Ras inhibition. In vivo disequilibrated PRG3 gliomas show aggravated proliferation, invasion, and deteriorate clinical outcome. Thus, our data show that the interference with PRG3 homeostasis amplifies oncogenic properties and foster the malignancy potential in gliomas. PMID:27058420

  8. 恶性脑胶质瘤同步放化疗中替莫唑胺化疗的不良反应及对策%Temozolomide adverse events and coping strategies in malignant glioma patients with concurrent chemoradiotherapy

    Institute of Scientific and Technical Information of China (English)

    康勋; 李珊; 谢铮铮; 赵艳杰; 姜妮; 周蕾; 李文斌

    2012-01-01

    目的 替莫唑胺是一种新型烷化剂,因其口服给药、生物利用度好、良好的血脑屏障通透性以及突出的治疗效果,已成为恶性脑胶质瘤治疗的常规用药.本文旨在通过对替莫唑胺的不良反应的研究,以期最大限度地减轻药物的不良反应,提高患者的生存质量.方法 根据2009年美国卫生与公共服务部制定的药物常见不良事件评价标准第四版(CTCAE-V4.0),观察使用替莫唑胺联合放射治疗的同步放化疗和化学治疗患者所出现的化疗不良反应,并采取积极的防治措施进行处理.结果 本组95例接受替莫唑胺联合同步放化治疗的患者中,严格依据CTCAE-V4.0评价原则,得出结果如下:有20例患者出现胃肠道不良反应,其中1级的有12例,2级有8例.发生1级中性粒细胞减少的为6例,2级的为3例;1级血小板减少者3例,2级的为1例.发生脱发者为53例,1级的有41例,2级有12例.发生皮疹、斑丘疹共7例,1级的为6例,2级的为1例.所有上诉不良反应较轻,标准均为1-2级,无3、4、5级不良反应发生.在给予对症、停药处理后均能明显缓解.结论 替莫唑胺是目前胶质瘤治疗的常用药物,通过对替莫唑胺联合放射治疗过程中的不良反应,显示其不良反应较轻微,且给予对症处理后均能明显缓解.因此,在对恶性脑胶质瘤患者使用同步放射治疗化学治疗中,替莫唑胺的应用是安全的.%Objective Radiotherapy has been of key importance to the treatment of malignant gliomas fox decades, and the ability to focus the beam and tailor it to the irregular contours of brain tumors and minimize the dose to nearby critical structures with intensity modulated or image-guided techniques has improved greatly. Temozolomide, an alkylating agent given in simple oral route of administration, is used in conjunction with and after radiotherapy. This study aimed to evaluate the toxic effects of temozolomide when used incombination

  9. Irradiation of the potential cancer stem cell niches in the adult brain improves progression-free survival of patients with malignant glioma

    Science.gov (United States)

    2010-01-01

    Background Glioblastoma is the most common brain tumor in adults. The mechanisms leading to glioblastoma are not well understood but animal studies support that inactivation of tumor suppressor genes in neural stem cells (NSC) is required and sufficient to induce glial cancers. This suggests that the NSC niches in the brain may harbor cancer stem cells (CSCs), Thus providing novel therapy targets. We hypothesize that higher radiation doses to these NSC niches improve patient survival by eradicating CSCs. Methods 55 adult patients with Grade 3 or Grade 4 glial cancer treated with radiotherapy at UCLA between February of 2003 and May of 2009 were included in this retrospective study. Using radiation planning software and patient radiological records, the SVZ and SGL were reconstructed for each of these patients and dosimetry data for these structures was calculated. Results Using Kaplan-Meier analysis we show that patients whose bilateral subventricular zone (SVZ) received greater than the median SVZ dose (= 43 Gy) had a significant improvement in progression-free survival if compared to patients who received less than the median dose (15.0 vs 7.2 months PFS; P = 0.028). Furthermore, a mean dose >43 Gy to the bilateral SVZ yielded a hazard ratio of 0.73 (P = 0.019). Importantly, similarly analyzing total prescription dose failed to illustrate a statistically significant impact. Conclusions Our study leads us to hypothesize that in glioma targeted radiotherapy of the stem cell niches in the adult brain could yield significant benefits over radiotherapy of the primary tumor mass alone and that damage caused by smaller fractions of radiation maybe less efficiently detected by the DNA repair mechanisms in CSCs. PMID:20663133

  10. Overexpressed KDM5B is associated with the progression of glioma and promotes glioma cell growth via downregulating p21

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Bin [Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038 (China); Hu, Zhiqiang, E-mail: zhiqhutg@126.com [Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038 (China); Huang, Hui; Zhu, Guangtong; Xiao, Zhiyong [Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038 (China); Wan, Weiqing; Zhang, Peng; Jia, Wang; Zhang, Liwei [Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050 (China)

    2014-11-07

    Highlights: • KDM5B is overexpressed in glioma samples. • KDM5B stimulated proliferation of glioma cells. • Inhibition of p21contributes to KDM5B-induced proliferation. - Abstract: Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Upregulation of lysine (K)-specific demethylase 5B (KDM5B) has been reported in a variety of malignant tumors. However, the impact of KDM5B in glioma remains unclear. The objective of this study was to investigate the expression and prognostic value of KDM5B in glioma. In clinical glioma samples, we found that KDM5B expression was significantly upregulated in cancer lesions compared with normal brain tissues. Kaplan–Meier analysis showed that patients with glioma and higher KDM5B expression tend to have shorter overall survival time. By silencing or overexpressing KDM5B in glioma cells, we found that KDM5B could promote cell growth both in vitro and in vivo. Moreover, we demonstrated that KDM5B promoted glioma proliferation partly via regulation of the expression of p21. Our study provided evidence that KDM5B functions as a novel tumor oncogene in glioma and may be a potential therapeutic target for glioma management.

  11. Activity and safety of bevacizumab plus temozolomide for recurrent malignant gliomas%贝伐单抗联合替莫唑胺治疗复发恶性脑胶质瘤的疗效及安全分析

    Institute of Scientific and Technical Information of China (English)

    赵倩茹; 樊锐太; 顾浩; 王鑫; 张恒; 高未华

    2016-01-01

    目的:探讨贝伐单抗联合替莫唑胺治疗复发恶性脑胶质瘤的临床疗效和安全性。方法选择既往接受过Stupp标准方案治疗的复发恶性脑胶质瘤患者共25例,均予以贝发珠单抗( BEV,10 mG/KG,静脉滴注,每2周1次)联合替莫唑胺( TMZ,200 mG/m2,口服,连用5 d,28 d为1个周期)治疗,观察其临床疗效、不良反应。结果25例患者中有8例(32%)部分缓解,13例(52%)稳定,4例(16%)进展,疾病控制率为84%,6个月PFS率及中位PFS分别为44%和5个月,中位OS为8个月。主要不良反应包括胃肠道反应、骨髓抑制、高血压,Ⅲ~Ⅳ级不良反应发生率为20%,无治疗相关性死亡。结论贝伐单抗联合替莫唑胺治疗复发恶性脑胶质瘤疗效确切,安全性高,可作为复发恶性脑胶质瘤化疗的优先选择方案。%Objective TO investiGate tHe activity and safety Of bevacizumab cOmbined WitH temO-zOLOmide cOmbinatiOn in tHe treatment Of recurrent maLiGnant GLiOmas. Methods A tOtaL Of 25 recurrent maLiGnant GLiOmas patients WHO Were previOusLy treated WitH temOzOLOmide pLus radiOtHerapy Were enrOLLed in tHis study,aLL patients Were treated WitH bevacizumab( BEV,10 mG/KG,q2W)pLus temOzOLOmide ( TMZ,200 mG/m2 ,5 d/28 d),tHe cLinicaL curative effects and cOmpLicatiOns Were Observed after tHera-py. Results EiGHt patients(32%)Had partiaL respOnse,tHirtHeen patients(52%)Had stabLe diseases, and fOur patients( 16%)Had prOGressive diseases. THe disease cOntrOL rate Was 84%. THe siX mOntH PFS rate and median PFS Were determined as 44% and 5 mOntHs respectiveLy. Mediam OS Was 8 mOntHs. THe majOr tOcXities Were GastrOintestinaL reactiOn,myeLOsuppressiOn and HypertensiOn,tHe Occurrence rate Of Grade III~IV tOXicity Was 20%,tHere Was nO treatment-reLated deatH. Conclusions Bevacizumab cOm-bined WitH temOzOLOmide Has GOOd curative effect and HiGH safety in tHe treatment Of recurrent maLiGnant GLi-Omas,WHicH can be used

  12. Immunohistochemical evaluation of tissue factor, fibrin/fibrinogen and D-dimers in canine gliomas.

    Science.gov (United States)

    de la Fuente, Cristian; Pumarola, Martí; Blasco, Ester; Fernández, Francisco; Viu, Judit; Añor, Sònia

    2014-06-01

    In human gliomas, tissue factor (TF) is overexpressed, associated with the grade of malignancy and influences tumour biology. Intra-tumoural fibrin/fibrinogen deposition and activation of the fibrinolytic system also play a role in tumour cell proliferation and angiogenesis. The first aim of the present study was to investigate TF expression and the presence of fibrin/fibrinogen and D-dimers in canine glioma biopsies, graded according to the World Health Organization (WHO) classification of tumours of the central nervous system. The second aim was to investigate the occurrence of intravascular thrombosis (IVT) in canine gliomas, as a potential histological marker of glioma type or grade of malignancy. An immunohistochemical study using antibodies against TF, fibrin/fibrinogen and D-dimers was performed with 24 glioma samples, including 15 oligodendrogliomas, 6 astrocytomas and 3 mixed gliomas. Immunohistochemical data were statistically analysed to determine whether there was any relationship between glioma type and grade of malignancy. All gliomas were moderate to strongly positive for TF and the staining score was significantly higher (P = 0.04) in high-grade (III or IV) than in low-grade (II) gliomas. Intra-tumoural fibrin/fibrinogen deposition was detected in all tumour biopsies assessed, and D-dimers were detected in 17/24 gliomas. IVT was a frequent finding, but was not linked to a specific glioma type or malignancy grade. TF expression, fibrin/fibrinogen deposition, extravascular fibrinolytic system activation and IVT occur in canine gliomas. Canine glioma might be a suitable model for studying coagulation and fibrinolysis as potential therapeutic targets for human gliomas.

  13. Revista Contabilidade & Finanças - USP: uma comparação entre os períodos 1989/2001 e 2001/2004

    Directory of Open Access Journals (Sweden)

    Alexandre César Batista da Silva

    2005-12-01

    Full Text Available O objetivo deste trabalho é destacar a importância da Revista Contabilidade & Finanças - USP no meio acadêmico nacional e observar as transformações ocorridas no periódico desde a pesquisa realizada por Martins (2002. A metodologia utilizada para tal foi o método dedutivo-analítico, descritivo, com abordagem qualitativa-quantitativa. Conclui-se que a Revista sofreu consideráveis mudanças no período 2001/2004, em que os resultados alcançados demonstram que houve uma evolução significativa principalmente com relação ao tipo de pesquisa utilizada para elaboração dos artigos, que era expressivamente bibliográfica e passou a ser em grande parte fruto de trabalhos empírico-teóricos. Outro aspecto relevante é o aumento na diversidade de autores e instituições que têm trabalhos publicados, antes grande maioria dos escritores eram de São Paulo e faziam parte ou tinham ligação com o Departamento de Contabilidade e Atuária da FEA - USP e no período em análise há participações dos vários Estados brasileiros e também de outros países.This article aims to highlight the importance of the Journal of Accounting & Finance - USP in the Brazilian academic area and point out the changes this publication has gone through since the study by Martins (2002. We used a deductive-analytical and descriptive method from a quali-quantitative approach. Considerable changes were made between 2001 and 2004, resulting in a meaningful evolution in terms of research types used to elaborate the articles, which were mostly empiric-theoretical. Another essential fact is the increased diversity of authors and institutions represented in the Journal, proceeding not only from different Brazilian states but also from other countries.

  14. IL-13Ra2- and glioma stem cell-pulsed dendritic cells induce glioma cell death in vitro

    Institute of Scientific and Technical Information of China (English)

    Ying Wang; Ruifan Xie; Hongquan Niu; Ting Lei

    2016-01-01

    Objective Gliomas are the most common malignant tumors in the central nervous system. Despite mul-tiple therapies including surgery, chemotherapy, and radiotherapy, the prognosis of patients remains poor. Immunotherapy is an alternative method of treating glioma, and the use of dendritic cel vaccines is one of the promising treatment options. However, there is no specific tumor cel antigen that can trigger dendritic cel s (DCs). IL-13Ra2 is a specific antigen expressed in glioma cel s; in the current study, we have at-tempted to explore whether IL-13Ra2 could be the antigen that triggers DCs and to envisage its application as potential therapy for glioma. Methods The expression of IL-13Ra2 was detected in U251 glioma cel lines and primary glioma tissues using dif erent methods. DCs from human blood were isolated and pulsed with recombinant IL-13Ra2, fol-lowing which the cytotoxicity of these DCs on glioma cel s was detected and analyzed. Results About 55.9% human glioma tissue cel s expressed IL-13Ra2, while normal brain tissue cel s did not show any expression. DC vaccines loaded with IL-13Ra2, glioma cel antigen, and brain tumor stem cel (BTSC) antigen could significantly stimulate the proliferation of T lymphocytes and induce cel death in the glioma tissue. Compared to other groups, DC vaccines loaded with BTSC antigen showed the strongest ability to activate cytotoxic T lymphocytes (CTLs), while the glioma cel antigen group showed no significant dif erence. Conclusion IL-13Ra2, which is expressed in gliomas and by glioma stem cel s, as wel as IL-13Ra2 could prove to be potential antigens for DC vaccine-based immunotherapy.

  15. Affinity-matured recombinant immunotoxin targeting gangliosides 3'-isoLM1 and 3',6'-isoLD1 on malignant gliomas.

    Science.gov (United States)

    Piao, Hailan; Kuan, Chien-Tsun; Chandramohan, Vidya; Keir, Stephen T; Pegram, Charles N; Bao, Xuhui; Månsson, Jan-Eric; Pastan, Ira H; Bigner, Darell D

    2013-01-01

    About 60 percent of glioblastomas highly express the gangliosides 3'-isoLM1 and 3',6'-isoLD1 on the cell surface, providing ideal targets for brain tumor immunotherapy. A novel recombinant immunotoxin, DmAb14m-(scFv)-PE38KDEL (DmAb14m-IT), specific for the gangliosides 3'-isoLM1 and 3',6'-isoLD1, was constructed with improved affinity and increased cytotoxicity for immunotherapeutic targeting of glioblastoma. We isolated an scFv parental clone from a previously established murine hybridoma, DmAb14, that is specific to both 3'-isoLM1 and 3',6'-isoLD1. We then performed in vitro affinity maturation by CDR hotspot random mutagenesis. The binding affinity and specificity of affinity-matured DmAb14m-IT were measured by surface-plasmon resonance, flow cytometry, and immunohistochemical analysis. In vitro cytotoxicity of DmAb14m-IT was measured by protein synthesis inhibition and cell death assays in human cell lines expressing gangliosides 3'-isoLM1 and 3',6'-isoLD1 (D54MG and D336MG) and xenograft-derived cells (D2224MG). As a result, the KD of DmAb14m-IT for gangliosides 3'-isoLM1 and 3',6'-isoLD1 was 2.6 × 10(-9)M. Also, DmAb14m-IT showed a significantly higher internalization rate in cells expressing 3'-isoLM1 and 3',6'-isoLD1. The DmAb14m-IT IC 50 was 80 ng/mL (1194 pM) on the D54MG cell line, 5 ng/ml (75 pM) on the D336MG cell line, and 0.5 ng/ml (7.5 pM) on the D2224MG xenograft-derived cells. There was no cytotoxicity on ganglioside-negative HEK293 cells. Immunohistochemical analysis confirmed the specific apparent affinity of DmAb14m-IT with 3'-isoLM1 and 3',6'-isoLD1. In conclusion, DmAb14m-IT showed specific binding affinity, a significantly high internalization rate, and selective cytotoxicity on glioma cell lines and xenograft-derived cells expressing 3'-isoLM1 and 3',6'-isoLD1, thereby displaying robust therapeutic potential for testing the antitumor efficacy of DmAb14m-IT at the preclinical level and eventually in the clinical setting.

  16. Response assessment of bevacizumab in patients with recurrent malignant glioma using [{sup 18}F]Fluoroethyl-l-tyrosine PET in comparison to MRI

    Energy Technology Data Exchange (ETDEWEB)

    Galldiks, Norbert; Fink, Gereon R. [Institute of Neuroscience and Medicine (INM-3,-4,-5), Forschungszentrum Juelich, Juelich (Germany); University of Cologne, Department of Neurology, Cologne (Germany); Rapp, Marion; Sabel, Michael [University of Duesseldorf, Department of Neurosurgery, Duesseldorf (Germany); Stoffels, Gabriele; Shah, Nadim J.; Coenen, Heinz H.; Langen, Karl-Josef [Institute of Neuroscience and Medicine (INM-3,-4,-5), Forschungszentrum Juelich, Juelich (Germany); Juelich-Aachen Research Alliance (JARA) - Section JARA-Brain, Aachen (Germany)

    2013-01-15

    To investigate prospectively the potential of O-(2-[{sup 18}F]fluoroethyl)-l-tyrosine ({sup 18}F-FET) PET in comparison to MRI for the assessment of the response of patients with recurrent high-grade glioma (rHGG) to antiangiogenic treatment. Ten patients with rHGG were treated biweekly with bevacizumab/irinotecan (BEV/IR). MR images and dynamic {sup 18}F-FET PET scans were obtained at baseline and at follow-up after the start of treatment (median 4.9 weeks). Using MRI treatment response was evaluated according to RANO (Response Assessment in Neuro-Oncology) criteria. For {sup 18}F-FET PET evaluation, a reduction >45 % of the metabolically active tumour volume was considered as a treatment response, with the metabolically active tumour being defined as a tumour-to-brain ratio (TBR) of {>=}1.6. The results of the treatment assessments were related to progression-free survival (PFS) and overall survival (OS). For further evaluation of PET data, maximum and mean TBR were calculated using region-of-interest analysis at baseline and at follow-up. Additionally, {sup 18}F-FET uptake kinetic studies were performed at baseline and at follow-up in all patients. Time-activity curves were generated and the times to peak (TTP) uptake (in minutes from the beginning of the dynamic acquisition to the maximum uptake) were calculated. At follow-up, MRI showed a complete response according to RANO criteria in one of the ten patients (10 %), a partial response in five patients (50 %), and stable disease in four patients (40 %). Thus, MRI did not detect tumour progression. In contrast, {sup 18}F-FET PET revealed six metabolic responders (60 %) and four nonresponders (40 %). In the univariate survival analyses, a response detected by {sup 18}F-FET PET predicted a significantly longer PFS (median PFS, 9 vs. 3 months; P = 0.001) and OS (median OS 23.0 months vs. 3.5 months; P = 0.001). Furthermore, in four patients (40 %), diagnosis according to RANO criteria and by {sup 18}F-FET PET was

  17. Molecular Therapeutic Targets for Glioma Angiogenesis

    Directory of Open Access Journals (Sweden)

    Shingo Takano

    2010-01-01

    Full Text Available Due to the prominent angiogenesis that occurs in malignant glioma, antiangiogenic therapy has been attempted. There have been several molecular targets that are specific to malignant gliomas, as well as more broadly in systemic cancers. In this review, I will focus on some topics related to molecular therapeutic targets for glioma angiogenesis. First, important angiogenic factors that could be considered molecular targets are VEGF, VEGF-induced proteins on endothelial cells, tissue factor, osteopontin, v3 integrin, and thymidine phosphorylase as well as endogenous inhibitors, soluble Flt1, and thrombospondin 1. Second, hypoxic areas are also decreased by metronomic CPT11 treatment as well as temozolomide. Third, glioma-derived endothelial cells that are genetically and functionally distinct from normal endothelial cells should be targeted, for example, with SDF-1 and CXCR7 chemokine. Fourth, endothelial progenitor cells (EPCs likely contribute towards glioma angiogenesis in the brain and could be useful as a drug delivery tool. Finally, blockade of delta-like 4 (Dll4 results in a nonfunctioning vasculature and could be another important target distinct from VEGF.

  18. Targeted Radiolabeled Compounds in Glioma Therapy.

    Science.gov (United States)

    Cordier, Dominik; Krolicki, Leszek; Morgenstern, Alfred; Merlo, Adrian

    2016-05-01

    Malignant gliomas of World Health Organization (WHO) grades II-IV represent the largest entity within the group of intrinsic brain tumors and are graded according to their pathophysiological features with survival times between more than 10 years (WHO II) and only several months (WHO IV). Gliomas arise from astrocytic or oligodendrocytic precursor cells and exhibit an infiltrative growth pattern lacking a clearly identifiable tumor border. The development of effective treatment strategies of the invasive tumor cell front represents the main challenge in glioma therapy. The therapeutic standard consists of surgical resection and, depending on the extent of resection and WHO grade, adjuvant external beam radiotherapy or systemic chemotherapy. Within the last decades, there has been no major improvement of the prognosis of patients with glioma. The consistent overexpression of neurokinin type 1 receptors in gliomas WHO grades II-IV has been used to develop a therapeutic substance P-based targeting system. A substance P-analogue conjugated to the DOTA or DOTAGA chelator has been labeled with different alpha-particle or beta-particle emitting radionuclides for targeted glioma therapy. The radiopharmaceutical has been locally injected into the tumors or the resection cavity. In several clinical studies, the methodology has been examined in adjuvant and neoadjuvant clinical settings. Although no large controlled series have so far been generated, the results of radiolabeled substance P-based targeted glioma therapy compare favorably with standard therapy. Recently, labeling with the alpha particle emitting Bi-213 has been found to be promising due to the high linear energy transfer and the very short tissue range of 0.08 mm. Further development needs to focus on the improvement of the stability of the compound and the application by dedicated catheter systems to improve the intratumoral distribution of the radiopharmaceutical within the prognostically critical

  19. Using bioluminescence imaging in glioma research.

    Science.gov (United States)

    Luwor, Rodney B; Stylli, Stanley S; Kaye, Andrew H

    2015-05-01

    Glioblastoma multiforme (GBM) is the most common malignant brain tumour and has the worst prognosis. Over the last decade, the use of bioluminescence imaging technology has rapidly become widespread to further understand the mechanisms that drive GBM development and progression. Pre-clinical evaluation and optimisation of therapeutic efficacy in GBM research has also utilised this simple non-invasive technology. Here we summarise recent advances made in glioma biology and therapeutic intervention using bioluminescence imaging. This review also describes the current knowledge regarding the use of luciferase-based reporters in examining the role of specific cancer signalling cascades that promote glioma progression.

  20. Expression of metastasis-associated protein 3 in human brain glioma related to tumor prognosis.

    Science.gov (United States)

    Shan, Shouqin; Hui, Guangyan; Hou, Fanggao; Shi, Hua; Zhou, Guoqing; Yan, Han; Wang, Lu; Liu, Jinfeng

    2015-10-01

    Glioma represents a disparate group of tumors characterized by high invasion ability, and therefore it is of clinical significance to identify molecular markers and therapeutic targets for better clinical management. Previously, metastasis-associated protein family (MTA) is considered to promote tumor cell invasion and metastasis of human malignancies. Recently, the newly identified MTA3 has been shown to play conflicting roles in human malignancies, while the expression pattern and potential clinical significance of MTA3 in human glioma have not been addressed yet. In the present study, we investigated the protein expression of MTA3 by immunohistochemistry assay and analyzed its association with glioma prognosis in 186 cases of patients. Results showed that MTA3 expression was decreased in glioma compared with that in normal brain (P human glioma and negatively associated with prognosis of patients, suggesting that MTA3 may play a tumor suppressor role in glioma.

  1. Metales pesados en tejido muscular del bagre Ariopsis felis en el sur del golfo de México (2001-2004 Heavy metals in muscular tissue of the catfish, Ariopsis felis, in the southern Gulfof México (2001-2004

    Directory of Open Access Journals (Sweden)

    Felipe Vázquez

    2008-01-01

    Full Text Available Se analizó el contenido de metales pesados en tejido muscular del bagre, Ariopsis felis en el sur del golfo de México durante el período 2001-2004. La investigación fue efectuada buscando establecer un marco de referencia ambiental para este organismo. La concentración metálica siguió el orden: Hg We analyzed the heavy metal content in the muscular tissue of the catfish, Ariopsis felis, in the southern Gulf of México between 2001 and 2004. The research was done in order to establish an environmental frame of reference for this organism. The metal concentration was as follows: Hg < Co < Pb < Ni < V < Cr. Cobalt and vanadium contents were found to decrease and those of nickel, mercury, and chromium to ulerease; however, neither of these trends was observed for the lead content. One-way analyses of variance con-firm significant temporal variation only for cobalt, mercury, lead, and vanadium. Significant linear correlation coefficients (p ≤ 0.05 were found for Co-V, Cr-Ni, Cr-Pb, Co-Hg, Ni-V, and V-Pb. The first three associa-tions showed positive correlations, whereas the remaining ones had negative correlations. A factor analysis grouped the studied metals depending on their origins. The metal levels found in the muscular tissue of A. felis from the southern Gulf of México were lower than those set by national and international regulations.

  2. Progress of temozolomide in the treatment of recurrent high-grade gliomas

    Directory of Open Access Journals (Sweden)

    LI Jin-duo

    2013-12-01

    Full Text Available High-grade gliomas are central nervous system malignancies which are difficult to treat. Surgery, temozolomide combined with radiotherapy postoperatively and adjuvant chemotherapy with temozolomide have been established as the standard treatment options for high-grade gliomas. Nevertheless, the prognosis of patients with high-grade gliomas remains poor. At present, there is no standard therapy for recurrent or relapsed high-grade gliomas. Temozolomide is still an effective drug for the treatment of recurrent high-grade gliomas. According to the characteristics of patients, there have been many kinds of temozolomide administration and other treatments in combination. Individual therapy were paid more attention, so that the patients with high-grade gliomas recurrence could get greater survival benefit. This paper aims to introduce the progress of temozolomide in the treatment of recurrent high-grade gliomas in recent years.

  3. MGMT testing-the challenges for biomarker-based glioma treatment

    OpenAIRE

    Wick, W; Weller, M; Van Den Bent, M.; Sanson, M; Weiler, M.; von Deimling, A.; Plass, C; Hegi, M.; Platten, M.; Reifenberger, G.

    2014-01-01

    Many patients with malignant gliomas do not respond to alkylating agent chemotherapy. Alkylator resistance of glioma cells is mainly mediated by the DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT). Epigenetic silencing of the MGMT gene by promoter methylation in glioma cells compromises this DNA repair mechanism and increases chemosensitivity. MGMT promoter methylation is, therefore, a strong prognostic biomarker in paediatric and adult patients with glioblastoma treated wit...

  4. Conditioned medium from neural stem cells inhibits glioma cell growth.

    Science.gov (United States)

    Li, Z; Zhong, Q; Liu, H; Liu, P; Wu, J; Ma, D; Chen, X; Yang, X

    2016-10-31

    Malignant glioma is one of the most common brain tumors in the central nervous system. Although the significant progress has been made in recent years, the mortality is still high and 5-year survival rate is still very low. One of the leading causes to the high mortality for glioma patients is metastasis and invasion. An efficient method to control the tumor metastasis is a promising way to treat the glioma. Previous reports indicated that neural stem cells (NSCs) were served as a delivery vector to the anti-glioma therapy. Here, we used the conditioned medium from rat NSCs (NSC-CM) to culture the human glioblastoma cell lines. We found that NSC-CM could inhibit the glioma cell growth, invasion and migration in vitro and attenuate the tumor growth in vivo. Furthermore, this anti-glioma effect was mediated by the inactivation of mitogen activated protein kinase (MAPK) pathway. Above all, this study provided the direct evidence to put forward a simple and efficient method in the inhibition of glioma cells/tumor growth, potentially advancing the anti-glioma therapy.

  5. A role for ion channels in perivascular glioma invasion.

    Science.gov (United States)

    Thompson, Emily G; Sontheimer, Harald

    2016-10-01

    Malignant gliomas are devastating tumors, frequently killing those diagnosed in little over a year. The profuse infiltration of glioma cells into healthy tissue surrounding the main tumor mass is one of the major obstacles limiting the improvement of patient survival. Migration along the abluminal side of blood vessels is one of the salient features of glioma cell invasion. Invading glioma cells are attracted to the vascular network, in part by the neuropeptide bradykinin, where glioma cells actively modify the gliovascular interface and undergo volumetric alterations to navigate the confined space. Critical to these volume modifications is a proposed hydrodynamic model that involves the flux of ions in and out of the cell, followed by osmotically obligated water. Ion and water channels expressed by the glioma cell are essential in this model of invasion and make opportune therapeutic targets. Lastly, there is growing evidence that vascular-associated glioma cells are able to control the vascular tone, presumably to free up space for invasion and growth. The unique mechanisms that enable perivascular glioma invasion may offer critical targets for therapeutic intervention in this devastating disease. Indeed, a chloride channel-blocking peptide has already been successfully tested in human clinical trials.

  6. Immunotherapeutic targeting of shared melanoma-associated antigens in a murine glioma model.

    Science.gov (United States)

    Prins, Robert M; Odesa, Sylvia K; Liau, Linda M

    2003-12-01

    Immune-based treatments for central nervous system gliomas have traditionally lagged behind those of more immunogenic tumors such as melanoma. The relative paucity of defined glioma-associated antigens that can be targeted by the immune system may partially account for this situation. Antigens present on melanomas have been extensively characterized, both in humans and in murine preclinical models. Melanocytes and astrocytes are both derived embryologically from the neural ectoderm. Their neoplastic counterparts, malignant melanomas and gliomas, have been shown in humans to share common antigens at the RNA level. However, little is known concerning whether gliomas can be targeted by immune-based strategies that prime T cells to epitopes from melanoma-associated antigens (MAAs). In this study, we provide evidence that two common murine glioma cell lines (GL26 and GL261) express the melanoma antigens gp100 and tyrosinase-related protein 2 (TRP-2). To understand the immunogenicity of murine gliomas to CD8(+) T cells, we examined the ability of a MAA-specific CTL cell line to lyse the glioma cells, as well as the in vivo expansion of MAA-specific CD8(+) T cells in animals harboring gliomas. Both glioma cell lines were lysed by a human gp100-specific CTL cell line in vitro. Mice harboring s.c. GL26 gliomas possessed TRP-2-specific CD8(+) T cells, providing further evidence that these gliomas express the protein products in the context of MHC class I. Furthermore, MAA peptide-pulsed dendritic cells could prime T cells that specifically recognize GL26 glioma cells in vitro. Lastly, mice that were prevaccinated with human gp100 and TRP-2 peptide-pulsed dendritic cells had significantly extended survival when challenged with tumor cells in the brain, resulting in >50% long-term survival. These results suggest that shared MAAs on gliomas can be targeted immunotherapeutically, pointing the way to a new potential treatment option for patients with malignant gliomas.

  7. Genetic characterization of adult infratentorial gliomas.

    Science.gov (United States)

    Miwa, Tomoru; Hirose, Yuichi; Sasaki, Hikaru; Ikeda, Eiji; Yoshida, Kazunari; Kawase, Takeshi

    2009-02-01

    Adult infratentorial gliomas are rare and have not been well studied. We therefore conducted genetic analysis of those tumors to see if there was any characteristic that could be relevant in clinical management and understanding of tumorigenesis. Nineteen adult infratentorial gliomas were analyzed for chromosomal aberration by comparative genomic hybridization, and for expression of p53 and epidermal growth factor receptor (EGFR) by immunohistochemistry. The most frequent chromosomal aberration was the gain of 7p, and five of the seven cerebellar or fourth ventricle malignant gliomas had that aberration. However, the gain of 7q, the characteristic abnormality of supratentorial astrocytomas commonly associated with the gaining of 7p, was observed only in 1 of 11 adult infratentorial astrocytic tumors. Combined losses of 1p and 19q, the genetic hallmark of oligodendroglioma, were not observed. Results of immunohistochemistry of p53 and EGFR were comparable to those reported in supratentorial gliomas. Our findings might suggest the presence of distinct tumorigenic pathway in adult infratentorial gliomas.

  8. Suppression of Glioma-Cell Survival by Antisense and Dominant-Negative AKT2 RNA

    Institute of Scientific and Technical Information of China (English)

    Peiyu Pu; Chunsheng Kang; Jie Li; Guangxiu Wang

    2005-01-01

    OBJECTIVE Overexpression of growth factors and their receptors such as PDGF, FGF, VEGF, IGF, EGF, TGFα etc. Play a critical role in the development and progression of malignant gliomas. AKT, one of the most potent downstream signaling effectors of these growth factor receptors is usually overactivated in malignant gliomas. The present study was undertaken to investigate the effects of antisense and dominant negative AKT2 RNA on the survival of glioma cells with overexpression of AKT2.METHODS Antisense and dominant negative AKT2 constructs (AS-AKT2,DN-AKT2) were transfected into human glioblastoma cell line TJ905 with overexpression of AKT2. Using Western blotting, MTT assay, Ki67 labeling index (Ki67 LI), flow cytometry and the TUNEL method, the expression of AKT2 and GFAP, the proliferation rate and apoptosis of glioma cells transfected with AS-AKT2 or DN-AKT2 were compared to those characteristics of parental and glioma cells transfected with an empty vector.RESULTS Cell proliferation was inhibited in glioma cells transfected with ASAKT2 and DN-AKT2 RNA, while GFAP expression and apoptosis were markedly increased in those cells.CONCLUSION AKT is an important mediator in the growth signaling pathway of malignant gliomas and is a potential promising therapeutic target for malignant gliomas.

  9. Radiosensitizing potential of the selective cyclooygenase-2 (COX-2) inhibitor meloxicam on human glioma cells

    NARCIS (Netherlands)

    Bijnsdorp, Irene; Berg, van den Jaap; Kuipers, Gitta; Wedekind, Laurine; Slotman, Ben; Rijn, van Johannes; Lafleur, M.; Sminia, Peter

    2007-01-01

    The COX-2 protein is frequently overexpressed in human malignant gliomas. This expression has been associated with their aggressive growth characteristics and poor prognosis for patients. Targeting the COX-2 pathway might improve glioma therapy. In this study, the effects of the selective COX-2 in

  10. Concurrent thermochemoradiotherapy for brain high-grade glioma

    Energy Technology Data Exchange (ETDEWEB)

    Ryabova, A. I., E-mail: ranigor@mail.ru; Novikov, V. A.; Startseva, Zh. A.; Bober, E. E.; Frolova, I. G. [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); Choinzonov, E. L. [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); Siberian State Medical University, Tomsk, 634050 (Russian Federation); Gribova, O. V. [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Baranova, A. V. [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2016-08-02

    Despite the achievements in the current strategies for treatment, the prognosis in malignant glioma patients remains unsatisfactory. Hyperthermia is currently considered to be the most effective and universal modifier of radiotherapy and chemotherapy. Preliminary treatment outcomes for 28 patients with newly diagnosed (23) and recurrent (5) high-grade gliomas were presented. All the patients received multimodality treatment including surgery, thermoche-moradiotherapy followed by 4 cycles of adjuvant chemotherapy. All the patients endured thermochemoradiotherapy well. A complication, limited skin burn (II stage), was diagnosed in two cases and treated conservatively without treatment interruption. A month after thermochemoradiotherapy the results were as follows: complete regression was achieved in 4 cases, partial regression in 4 cases, stable disease in 14 cases and disease progression in 6 cases (one of them is pseudo-progression). After completing the adjuvant chemotherapy 2 more patients demonstrated complete response and 1 patient had disease progression. Introduction of local hyperthermia in multimodal therapy of malignant glioma does not impair the combined modality treatment tolerability of patients with malignant gliomas. A small number of studied patients and short follow-up time do not allow making reliable conclusions about the impact of local hyperthermia on the treatment outcomes; however, there is a tendency towards the increase in disease-free survival in the patients with newly diagnosed malignant gliomas.

  11. Concurrent thermochemoradiotherapy for brain high-grade glioma

    Science.gov (United States)

    Ryabova, A. I.; Novikov, V. A.; Choinzonov, E. L.; Gribova, O. V.; Startseva, Zh. A.; Bober, E. E.; Frolova, I. G.; Baranova, A. V.

    2016-08-01

    Despite the achievements in the current strategies for treatment, the prognosis in malignant glioma patients remains unsatisfactory. Hyperthermia is currently considered to be the most effective and universal modifier of radiotherapy and chemotherapy. Preliminary treatment outcomes for 28 patients with newly diagnosed (23) and recurrent (5) high-grade gliomas were presented. All the patients received multimodality treatment including surgery, thermoche-moradiotherapy followed by 4 cycles of adjuvant chemotherapy. All the patients endured thermochemoradiotherapy well. A complication, limited skin burn (II stage), was diagnosed in two cases and treated conservatively without treatment interruption. A month after thermochemoradiotherapy the results were as follows: complete regression was achieved in 4 cases, partial regression in 4 cases, stable disease in 14 cases and disease progression in 6 cases (one of them is pseudo-progression). After completing the adjuvant chemotherapy 2 more patients demonstrated complete response and 1 patient had disease progression. Introduction of local hyperthermia in multimodal therapy of malignant glioma does not impair the combined modality treatment tolerability of patients with malignant gliomas. A small number of studied patients and short follow-up time do not allow making reliable conclusions about the impact of local hyperthermia on the treatment outcomes; however, there is a tendency towards the increase in disease-free survival in the patients with newly diagnosed malignant gliomas.

  12. Activity of lysosomal exoglycosidases in human gliomas.

    Science.gov (United States)

    Wielgat, P; Walczuk, U; Szajda, S; Bień, M; Zimnoch, L; Mariak, Z; Zwierz, K

    2006-12-01

    There is a lot of data suggesting that modifications of cell glycoconjugates may be important in progression of cancer. In the present work we studied activities of lysosomal exoglycosidases: beta-hexosaminidase and its isoenzymes A and B, beta-galactosidase and alpha-mannosidase, in human gliomas. Enzyme activity was determined spectrophotometrically based on the release of p-nitrophenol from p-nitrophenyl-derivative of appropriate sugars. The activities of the exoglycosidases tested were significantly higher in malignant glial tumors than in control tissue (normal brain tissue) and non-glial tumors. The highest activities of exoglycosidases were observed in high-grade gliomas, and a positive correlation of enzyme activities and degree of malignancy was noted. Our results suggest that lysosomal exoglycosidases may participate in the progression and dynamical development of glial tumors.

  13. Selective Targeting to Glioma with Nucleic Acid Aptamers.

    Directory of Open Access Journals (Sweden)

    Shraddha Aptekar

    Full Text Available Malignant glioma is characterised by a rapid growth rate and high capacity for invasive infiltration to surrounding brain tissue; hence, diagnosis and treatment is difficult and patient survival is poor. Aptamers contribute a promising and unique technology for the in vitro imaging of live cells and tissues, with a potentially bright future in clinical diagnostics and therapeutics for malignant glioma. The binding selectivity, uptake capacity and binding target of two DNA aptamers, SA43 and SA44, were investigated in glioma cells and patient tissues. The binding assay showed that SA43 and SA44 bound with strong affinity (Kd, 21.56 ± 4.60 nM and Kd, 21.11 ± 3.30 nM respectively to the target U87MG cells. Quantitative analysis by flow cytometry showed that the aptamers were able to actively internalise in U87MG and 1321N1 glioma cells compared to the non-cancerous and non-glioma cell types. Confocal microscopy confirmed staining in the cytoplasm, and co-localisation studies with endoplasmic reticulum, Golgi apparatus and lysosomal markers suggested internalisation and compartmentalisation within the endomembrane system. Both aptamers selectively bound to Ku 70 and Ku 80 DNA repair proteins as determined by aptoprecipitation (AP followed by mass spectrometry analysis and confirmation by Western blot. In addition, aptohistochemical (AHC staining on paraffin embedded, formalin fixed patient tissues revealed that the binding selectivity was significantly higher for SA43 aptamer in glioma tissues (grade I, II, III and IV compared to the non-cancerous tissues, whereas SA44 did not show selectivity towards glioma tissues. The results indicate that SA43 aptamer can differentiate between glioma and non-cancerous cells and tissues and therefore, shows promise for histological diagnosis of glioma.

  14. Review: on TRAIL for malignant glioma therapy?

    Science.gov (United States)

    Kuijlen, J M A; Bremer, E; Mooij, J J A; den Dunnen, W F A; Helfrich, W

    2010-04-01

    Glioblastoma (GBM) is a devastating cancer with a median survival of around 15 months. Significant advances in treatment have not been achieved yet, even with a host of new therapeutics under investigation. Therefore, the quest for a cure for GBM remains as intense as ever. Of particular interest for GBM therapy is the selective induction of apoptosis using the pro-apoptotic tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). TRAIL signals apoptosis via its two agonistic receptors TRAIL-R1 and TRAIL-R2. TRAIL is normally present as homotrimeric transmembrane protein, but can also be processed into a soluble trimeric form (sTRAIL). Recombinant sTRAIL has strong tumouricidal activity towards GBM cells, with no or minimal toxicity towards normal human cells. Unfortunately, GBM is a very heterogeneous tumour, with multiple genetically aberrant clones within one tumour. Consequently, any single agent therapy is likely to be not effective enough. However, the anti-GBM activity of TRAIL can be synergistically enhanced by a variety of conventional and novel targeted therapies, making TRAIL an ideal candidate for combinatorial strategies. Here we will, after briefly detailing the biology of TRAIL/TRAIL receptor signalling, focus on the promises and pitfalls of recombinant TRAIL as a therapeutic agent alone and in combinatorial therapeutic approaches for GBM.

  15. Review : On TRAIL for malignant glioma therapy?

    NARCIS (Netherlands)

    Kuijlen, J. M. A.; Bremer, E.; Mooij, J. J. A.; den Dunnen, W. F. A.; Helfrich, W.

    2010-01-01

    Glioblastoma (GBM) is a devastating cancer with a median survival of around 15 months. Significant advances in treatment have not been achieved yet, even with a host of new therapeutics under investigation. Therefore, the quest for a cure for GBM remains as intense as ever. Of particular interest fo

  16. Epidemiology of gliomas.

    Science.gov (United States)

    Ostrom, Quinn T; Gittleman, Haley; Stetson, Lindsay; Virk, Selene M; Barnholtz-Sloan, Jill S

    2015-01-01

    Gliomas are the most common type of primary intracranial tumors. Some glioma subtypes cause significant mortality and morbidity that are disproportionate to their relatively rare incidence. A very small proportion of glioma cases can be attributed to inherited genetic disorders. Many potential risk factors for glioma have been studied to date, but few provide explanation for the number of brain tumors identified. The most significant of these factors includes increased risk due to exposure to ionizing radiation, and decreased risk with history of allergy or atopic disease. The potential effect of exposure to cellular phones has been studied extensively, but the results remain inconclusive. Recent genomic analyses, using the genome-wide association study (GWAS) design, have identified several inherited risk variants that are associated with increased glioma risk. The following chapter provides an overview of the current state of research in the epidemiology of intracranial glioma.

  17. Slit2 inhibits glioma cell invasion in the brain by suppression of Cdc42 activity.

    Science.gov (United States)

    Yiin, Jia-Jean; Hu, Bo; Jarzynka, Michael J; Feng, Haizhong; Liu, Kui-Wei; Wu, Jane Y; Ma, Hsin-I; Cheng, Shi-Yuan

    2009-12-01

    Acquisition of insidious invasiveness by malignant glioma cells involves multiple genetic alterations in signaling pathways. Slit2, a chemorepulsive factor, controls cell migration of neuronal and glial cells during development and inhibits chemotaxic migration of various types of cells in vitro. However, the role of Slit2 in vitro remains controversial, and the biological significance of Slit2 expression in cancer cell invasion in vivo has not yet been determined. In the present study, we characterized the effects of Slit2 expression on the migration and invasion of invasive glioma cells in vitro and in vivo. By reverse transcriptase polymerase chain reaction (PCR) analyses, Slit2 was found to be expressed at lower levels in primary glioma specimens and invasive glioma cells compared with normal human brain cells and astrocytes. Ectopic expression of Slit2 or treatment with recombinant Slit2 on glioma cells attenuates cell migration and invasion through inhibition of Cdc42 activity in vitro. Cellular depletion of Robo1, a cognate receptor for Slit2, prevented Slit2 inhibition of Cdc42 activity and glioma cell migration. In vivo, expression of Slit2 by invasive SNB19 glioma cells markedly inhibited glioma cell infiltration into the brain of mice. Moreover, impediment of glioma cell invasion by Slit2 did not affect the expression of N-cadherin and beta-catenin in glioma cells. These results provide the first evidence demonstrating that Slit2-Robo1 inhibits glioma invasion through attenuating Cdc42 activity in vitro and in the brain. Understanding the mechanisms of Slit2-Robo1 inhibition of glioma cell invasion will foster new treatments for malignant gliomas.

  18. Clinical significance of vasculogenic mimicry in human gliomas.

    Science.gov (United States)

    Liu, Xiao-mei; Zhang, Qing-ping; Mu, Yong-gao; Zhang, Xiang-hen; Sai, Ke; Pang, Jesse Chung-Sean; Ng, Ho-Keung; Chen, Zhong-ping

    2011-11-01

    Vasculogenic mimicry (VM) is known as non-endothelial tumor cell-lined microvascular channels in aggressive tumors. We have previously found the presence of VM in high-grade gliomas. In this study, we aimed to identify VM patterns in gliomas and to explore their clinical significance. Tumor samples as well as their detailed clinical/prognostic data were collected from 101 patients. Vasculogenic mimicry in the glioma samples was determined by dual staining for endothelial marker CD34 and periodic acid-Schiff (PAS). Tumor samples were also immunohistochemically stained for Ki-67, VEGF, COX-2 and MMP-9. The association between VM and the clinical characteristics of the patients were analyzed. A Kaplan-Meier survival analysis and log-rank tests were performed to compare survival times of the patients. Vasculogenic mimicry was present in 13 out of 101 samples. The higher grade gliomas had a higher incidence of VM than that of lower grade gliomas (P = 0.006). Vasculogenic mimicry channels were associated with the expression of COX-2 and MMP-9 (P age and preoperative epilepsy of the patients, or expression of Ki-67 and VEGF. However, patients with VM-positive gliomas survived a shorter period of time than those with VM negative gliomas (P = 0.027). Interestingly, in high-grade gliomas, the level of microvascular density was lower in VM positive tumors than those VM negative tumors (P = 0.039). Our results suggest that VM channels in gliomas correlate with increasing malignancy and higher aggressiveness, and may provide a complementation to the tumor's blood supply, especially in less vascularized regions, which may aid in the identification of glioma patients with a poorer prognosis.

  19. Adhesion molecules and the extracellular matrix as drug targets for glioma.

    Science.gov (United States)

    Shimizu, Toshihiko; Kurozumi, Kazuhiko; Ishida, Joji; Ichikawa, Tomotsugu; Date, Isao

    2016-04-01

    The formation of tumor vasculature and cell invasion along white matter tracts have pivotal roles in the development and progression of glioma. A better understanding of the mechanisms of angiogenesis and invasion in glioma will aid the development of novel therapeutic strategies. The processes of angiogenesis and invasion cause the production of an array of adhesion molecules and extracellular matrix (ECM) components. This review focuses on the role of adhesion molecules and the ECM in malignant glioma. The results of clinical trials using drugs targeted against adhesion molecules and the ECM for glioma are also discussed.

  20. Three-dimensional Conformal Radiotherapy with Temozolomide in the Treatment of Postoperative Malignant Gliomas%恶性胶质瘤术后采用三维适形放疗联合替莫唑胺化疗临床观察

    Institute of Scientific and Technical Information of China (English)

    牛华涛; 梁振; 王佳; 袁红平; 罗林; 左频

    2011-01-01

    目的 观察术后三维适形放疗加替莫唑胺同步和辅助化疗治疗恶性脑胶质瘤的近期疗效和不良反应.方法 收集2008年1月至2010年6月收治的23例恶性脑胶质瘤切除术后患者,行三维适形放疗2.0 Gy/(次·d),5 d/周,总剂量60~ 70 Gv,替莫唑胺同步化疗6周+辅助化疗5疗程.结果 23例患者有效率为82.6%,6个月无疾病进展生存率为73.9% (17/23),1a无疾病进展生存率52.2% (12/23),1a生存率为69.6%(15/23);患者对治疗的耐受性良好,常见的不良反应为恶心、呕吐.结论 恶性脑胶质瘤术后三维适形放疗联合替莫唑胺化疗近期疗效较好,且患者对治疗的耐受性较好,是目前较好的治疗方案.%Objective To observe the clinical efficacy and side effects of three-dimensional conformal radiotherapy concomitant with temozolomide in the treatment of postoperative malignant gliomas in Chinese patients. Methods Twenty-three malignant glioma patients previously treated with resection of the tumor received three-dimensional conformal radiotherapy with concomitant and adjuvant temozolomide chemothreapy. Results The overall response rate was 82.6%. The progression-free survival was 73.9% (17/23) at 6 months and 52.2% (12/23) at 1 year respectively. The one- year survival rate was 69.6% (15/23 ). All patients could well tolerate this treatment scheme. The main side effects were nausea and vomit. Conclusions Three dimensional conformal radiotherapy concomitant with temozolomide in the treatment of postoperative malignant gliomas demonstrates good tolerance and short-term efficacy.

  1. Molecular Alterations of KIT Oncogene in Gliomas

    Directory of Open Access Journals (Sweden)

    Ana L. Gomes

    2007-01-01

    Full Text Available Gliomas are the most common and devastating primary brain tumours. Despite therapeutic advances, the majority of gliomas do not respond either to chemo or radiotherapy. KIT, a class III receptor tyrosine kinase (RTK, is frequently involved in tumourigenic processes. Currently, KIT constitutes an attractive therapeutic target. In the present study we assessed the frequency of KIT overexpression in gliomas and investigated the genetic mechanisms underlying KIT overexpression. KIT (CD117 immunohistochemistry was performed in a series of 179 gliomas of various grades. KIT activating gene mutations (exons 9, 11, 13 and 17 and gene amplification analysis, as defined by chromogenic in situ hybridization (CISH and quantitative real-time PCR (qRT-PCR were performed in CD117 positive cases. Tumour cell immunopositivity was detected in 15.6% (28/179 of cases, namely in 25% (1/4 of pilocytic astrocytomas, 25% (5/20 of diffuse astrocytomas, 20% (1/5 of anaplastic astrocytomas, 19.5% (15/77 of glioblastomas and one third (3/9 of anaplastic oligoastrocytomas. Only 5.7% (2/35 of anaplastic oligodendrogliomas showed CD117 immunoreactivity. No association was found between tumour CD117 overexpression and patient survival. In addition, we also observed CD117 overexpression in endothelial cells, which varied from 0–22.2% of cases, being more frequent in high-grade lesions. No KIT activating mutations were identified. Interestingly, CISH and/or qRT-PCR analysis revealed the presence of KIT gene amplification in 6 glioblastomas and 2 anaplastic oligoastrocytomas, corresponding to 33% (8/24 of CD117 positive cases. In conclusion, our results demonstrate that KIT gene amplification rather than gene mutation is a common genetic mechanism underlying KIT expression in subset of malignant gliomas. Further studies are warranted to determine whether glioma patients exhibiting KIT overexpression and KIT gene amplification may benefit from therapy with anti-KIT RTK

  2. Glioma epidemiology in the central Tunisian population: 1993-2012.

    Science.gov (United States)

    Trabelsi, Saoussen; Brahim, Dorra H'mida-Ben; Ladib, Mohamed; Mama, Nadia; Harrabi, Imed; Tlili, Kalthoum; Yacoubi, Mohamed Tahar; Krifa, Hedi; Hmissa, Sihem; Saad, Ali; Mokni, Moncef

    2014-01-01

    Glioma is a heterogeneous central nervous system (CNS) tumor group that encompasses different histological subtypes with high variability in prognosis. The lesions account for almost 80% of primary malignant brain tumors. The aim of this study is to extend our understanding of the glioma epidemiology in the central Tunisian region. We analyzed 393 gliomas recorded in cancer registry of central Tunisia from 1993 to 2012. Crude incidence rates (CR) and world age-standardized rates (ASR) were estimated using annual population data size and age structure. Statistic correlations were established using Chi-square and Kaplan-Meier test. Tunisian glioma patients were identified with a mean age at diagnosis of 48 years and 1.5 sex ratio (male/female). During the 19 years period of study the highest incidence value was observed in male group between 1998 and 2002 (CR: 0.28, ASR: 0.3). Incidence results underline increasing high grade glioma occurring in the adulthood in the last period (2007-2012). Median survival was 27 months, with 1-, 2- and 5-year survival rates of 42%, 30% and 26%, respectively. Survival was greater in patients with younger age, lower tumor grade, infratentrial tumor location and undergoing a palliative treatment. This central Tunisia gliomas registry study provides important information that could improve glioma management and healthcare practice.

  3. Alpinetin targets glioma stem cells by suppressing Notch pathway.

    Science.gov (United States)

    Wang, Jianpeng; Yan, Zhiyong; Liu, Xia; Che, Shusheng; Wang, Chao; Yao, Weicheng

    2016-07-01

    Glioma is among the most common human malignancies with poor prognosis. Glioma stem cells (GSCs) are the culprit of glioma, suggesting that GSCs are potential therapeutic targets. Notch signaling pathway plays a pivotal role for the function of GSCs, implying that suppression of Notch pathway may be an effective strategy for GSC-targeting therapy. In this study, we found that alpinetin, a natural compound, can suppress the proliferation and invasiveness of GSCs and induce apoptosis in GSCs. Immunoblot analysis and luciferase assay revealed that Notch signaling was suppressed by alpinetin. Furthermore, restoration of Notch signaling activity rescued the effect of alpinetin on GSC's function. The anti-tumor activity of alpinetin was further confirmed in an animal model. Collectively, targeting of GSC by alpinetin is an effective strategy for glioma therapy.

  4. The functional role of Notch signaling in human gliomas

    DEFF Research Database (Denmark)

    Stockhausen, Marie-Thérése; Kristoffersen, Karina; Poulsen, Hans Skovgaard

    2010-01-01

    have been referred to as brain cancer stem cells (bCSC), as they share similarities to normal neural stem cells in the brain. The Notch signaling pathway is involved in cell fate decisions throughout normal development and in stem cell proliferation and maintenance. The role of Notch in cancer is now......Gliomas are among the most devastating adult tumors for which there is currently no cure. The tumors are derived from brain glial tissue and comprise several diverse tumor forms and grades. Recent reports highlight the importance of cancer-initiating cells in the malignancy of gliomas. These cells...... firmly established, and recent data implicate a role for Notch signaling also in gliomas and bCSC. In this review, we explore the role of the Notch signaling pathway in gliomas with emphasis on its role in normal brain development and its interplay with pathways and processes that are characteristic...

  5. Natural killer cells eradicate galectin-1-deficient glioma in the absence of adaptive immunity.

    Science.gov (United States)

    Baker, Gregory J; Chockley, Peter; Yadav, Viveka Nand; Doherty, Robert; Ritt, Michael; Sivaramakrishnan, Sivaraj; Castro, Maria G; Lowenstein, Pedro R

    2014-09-15

    Natural killer (NK) cells safeguard against early tumor formation by destroying transformed target cells in a process referred to as NK immune surveillance. However, the immune escape mechanisms used by malignant brain tumors to subvert this innate type of immune surveillance remain unclear. Here we show that malignant glioma cells suppress NK immune surveillance by overexpressing the β-galactoside-binding lectin galectin-1. Conversely, galectin-1-deficient glioma cells could be eradicated by host NK cells before the initiation of an antitumor T-cell response. In vitro experiments demonstrated that galectin-1-deficient GL26-Cit glioma cells are ∼3-fold more sensitive to NK-mediated tumor lysis than galectin-1-expressing cells. Our findings suggest that galectin-1 suppression in human glioma could improve patient survival by restoring NK immune surveillance that can eradicate glioma cells. Cancer Res; 74(18); 5079-90. ©2014 AACR. ©2014 American Association for Cancer Research.

  6. Increased expression of the 58-kD microspherule protein (MSP58) is correlated with poor prognosis in glioma patients.

    Science.gov (United States)

    Lin, Wei; Li, Xiao-Ming; Zhang, Jing; Huang, Yi; Wang, Jiang; Zhang, Jian; Jiang, Xiao-Fan; Fei, Zhou

    2013-12-01

    The pathological grading system for human gliomas is usually used to evaluate the prognosis of glioma patients. However, some glioma patients with similar grades have obvious discrepancies in survival. It is therefore necessary to identify some new certain tumor biomarkers that are more suitable for the prognostic assessment of gliomas than the grading system. The 58-kD microspherule protein (MSP58) is an evolutionarily conserved nuclear protein and plays an important role in the regulation of cell proliferation and malignant transformation. However, whether MSP58 can be used as a biomarker to evaluate the malignancy and the prognosis of glioma patients is unknown. In the present study, we performed immunohistochemical analysis to evaluate MSP58 protein expression in 158 specimens of human gliomas and 34 normal control brain tissues. Compared with the control tissues, MSP58 expression was not only significantly higher in the glioma tissues (P < 0.05), but also increased with the increasing pathological grade (P < 0.001). Furthermore, the Kaplan-Meier analysis showed that high expression of MSP58 could predict poor survival in glioma patients (P < 0.001). In the multivariate analysis, high expression of MSP58 was also an independent unfavorable prognostic factor for the overall survival in glioma patients (P < 0.001, hazard ratio, 8.177, 95% CI 2.571-26.008). In conclusion, the increased expression of MSP58 is correlated with a higher malignant grade and poor prognosis in glioma patients. MSP58 is valuable both as an indicator of the malignancy of gliomas and as a prognostic factor for the clinical outcome of glioma patients.

  7. Upregulation of B23 promotes tumor cell proliferation and predicts poor prognosis in glioma

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jianguo [Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu Province (China); Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province (China); Sun, Jie; Yang, Liu; Yan, Yaohua; Shi, Wei; Shi, Jinlong; Huang, Qingfeng; Chen, Jian [Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province (China); Lan, Qing, E-mail: lanqingsj@163.com [Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu Province (China)

    2015-10-09

    B23 (also known as Nucleophosmin, NPM, numatrin or NO38) is a ubiquitously expressed phosphoprotein belonging to the nucleoplasmin family of chaperones. In this study we intended to investigate the clinical significance of B23 expression in human glioma and its biological function in glioma cells. Western blot and immunohistochemistry analysis showed that B23 was overexpressed in glioma tissues and glioma cell lines. In addition, the expression level of B23 was positively correlated with glioma pathological grade and Ki-67 expression. Kaplan–Meier analysis revealed that a higher B23 expression in patients with glioma was associated with a poorer prognosis. In vitro, after the release of glioma cell lines from serum starvation, the expression of B23 was upregulated, as well as PCNA (Proliferating Cell Nuclear Antigen) and cyclin A. In addition, knockdown of B23 by small interfering RNA transfection diminished the expression of PCNA, cyclin D1 and arrested cell growth at G1 phase. Taken together, our results implied that B23 could be a candidate prognostic biomarker as well as a potential therapeutical target of glioma. - Highlights: • B23 expression increased as the malignant degree of glioma increased, which was consistent with Ki-67 expression. • High expression of B23 could be a strong determinant of poor prognosis in glioma. • B23 may be involved in the proliferation of glioma in a cell-cycle-dependent pathway. • Knockdown of B23 expression by siRNA could affect the progression of glioma. • B23 may be a potential prognosis biomarker and a possible therapeutic target for glioma.

  8. Genetic Alterations in Glioma

    Energy Technology Data Exchange (ETDEWEB)

    Bralten, Linda B. C.; French, Pim J., E-mail: p.french@erasmusmc.nl [Department of Neurology, Erasmus University Medical Center, Erasmus University Rotterdam, Dr Molewaterplein 50, 3000 CA, Rotterdam (Netherlands)

    2011-03-07

    Gliomas are the most common type of primary brain tumor and have a dismal prognosis. Understanding the genetic alterations that drive glioma formation and progression may help improve patient prognosis by identification of novel treatment targets. Recently, two major studies have performed in-depth mutation analysis of glioblastomas (the most common and aggressive subtype of glioma). This systematic approach revealed three major pathways that are affected in glioblastomas: The receptor tyrosine kinase signaling pathway, the TP53 pathway and the pRB pathway. Apart from frequent mutations in the IDH1/2 gene, much less is known about the causal genetic changes of grade II and III (anaplastic) gliomas. Exceptions include TP53 mutations and fusion genes involving the BRAF gene in astrocytic and pilocytic glioma subtypes, respectively. In this review, we provide an update on all common events involved in the initiation and/or progression across the different subtypes of glioma and provide future directions for research into the genetic changes.

  9. Gadobutrol Versus Gadopentetate Dimeglumine or Gadobenate Dimeglumine Before DCE-MRI in Diagnosing Patients With Multiple Sclerosis, Grade II-IV Glioma, or Brain Metastases

    Science.gov (United States)

    2016-11-15

    Adult Anaplastic (Malignant) Meningioma; Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Choroid Plexus Neoplasm; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade II Meningioma; Adult Medulloblastoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pineal Gland Astrocytoma; Adult Pineoblastoma; Adult Primary Melanocytic Lesion of Meninges; Adult Supratentorial Primitive Neuroectodermal Tumor; Malignant Adult Intracranial Hemangiopericytoma; Metastatic Malignant Neoplasm in the Brain; Multiple Sclerosis; Recurrent Adult Brain Neoplasm

  10. In vitro enhancement of dendritic cell-mediated anti-glioma immune response by graphene oxide

    Science.gov (United States)

    Wang, Wei; Li, Zhongjun; Duan, Jinhong; Wang, Chen; Fang, Ying; Yang, Xian-Da

    2014-06-01

    Malignant glioma has extremely poor prognosis despite combination treatments with surgery, radiation, and chemotherapy. Dendritic cell (DC)-based immunotherapy may potentially serve as an adjuvant treatment of glioma, but its efficacy generally needs further improvement. Here we explored whether graphene oxide (GO) nanosheets could modulate the DC-mediated anti-glioma immune response in vitro, using the T98G human glioma cell line as the study model. Pulsing DCs with a glioma peptide antigen (Ag) generated a limited anti-glioma response compared to un-pulsed DCs. Pulsing DCs with GO alone failed to produce obvious immune modulation effects. However, stimulating DCs with a mixture of GO and Ag (GO-Ag) significantly enhanced the anti-glioma immune reaction ( p < 0.05). The secretion of interferon gamma (IFN-γ) by the lymphocytes was also markedly boosted by GO-Ag. Additionally, the anti-glioma immune response induced by GO-Ag appeared to be target-specific. Furthermore, at the concentration used in this study, GO exhibited a negligible effect on the viability of the DCs. These results suggested that GO might have potential utility for boosting a DC-mediated anti-glioma immune response.

  11. Mechanism of SEMA3B gene silencing and clinical significance in glioma.

    Science.gov (United States)

    Pang, C H; Du, W; Long, J; Song, L J

    2016-03-18

    The aim of the current study was to explore mechanisms of SEMA3B gene expression and its clinical significance in glioma, and provide a theoretical foundation for investigating individualized treatment in glioma. Paraffin-embedded tissues from 43 patients with a confirmed clinical diagnosis of glioma following neurosurgery at the First Affiliated Hospital of Zhengzhou University from December 2013 to April 2014 were selected randomly. An additional three normal brain tissues were obtained following encephalic decompression excision due to acute craniocerebral injury in the same period, which were used as the control group. Immunohistochemical staining for vascular endothelial growth factor was performed on the glioma tissues from the 43 patients. Genomic DNA was extracted for bisulfate conversion and sequencing. SEMA3B was fully expressed in the three normal brain tissues, and incompletely expressed in the 43 glioma tissues, with a lack of expression in 48.8% (21/43) of samples. Moreover, 58% of high-grade gliomas (grade III and IV) lacked SEMA3B expression, which was significantly more than those that lacked expression (20%) in low-grade gliomas (grade I and II), indicating that, as the clinical pathological grade increased, SEMA3B expression decreased. The occurrence and development of malignant tumors is a product of multiple genes and other factors. Here, we provide theoretical basis for glioma development and prognosis involving DNA-methylation driven silencing of SEMA3B, and thus, SEMA3B is a potential target for directed treatments against glioma.

  12. Contrast-enhanced MR magnetization transfer technique. Improved tumor contrast, delineation, and visibility of malignant gliomas and brain metastases in radiochirurgical treatment planning; Kontrastmittelunterstuetzte MR ``Magnetization-transfer-Technik``. Verbesserter Tumorkontrast, Abgrenzbarkeit und Sichtbarkeit von intrakraniellen malignen Gliomen und Metastasen zur Tumorerkennung fuer die Radiochirurgie

    Energy Technology Data Exchange (ETDEWEB)

    Hawighorst, H.; Schreiber, W.; Knopp, M.V.; Brix, G.; Essig, M.; Kaick, G. van [Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany). Abt. Radiologische Diagnostik und Therapie; Debus, J.; Engenhart-Cabillic, R. [Radiologische Universitaetsklinik, Heidelberg (Germany). Abt. Strahlentherapie

    1997-12-01

    Patients and Methods: Thirty-two patients (mean age 47 years) with histologically proven or suspected high grade glioma (n=12) or metastatic brain lesions (n=20) were prospectively examined by MR imaging. After the administration of gadolinium dimeglumine (0.1 mmol/kg body weight) the lesions were imaged with T1-weighted MT-fast low angle shot (FLASH) pulse sequence and with a conventional T1-weighted SE sequence without MT saturation. Results: The mean CNR of enhancing lesions on T1-weighted MT-FLASH was 15{+-}5 compared to 11{+-}4 on SE images, representing a significant (p<.01) improvement. The mean tumor diameter of malignant gliomas was significantly (p<.01) larger measured on T1-weighted MT-FLASH images compared to those obtained from T1-weighted SE images and were comparable for metastatic lesions. Lesion conspicuity and delineation were improved in 50% of patients with high grade gliomas and in 35% of patients with brain metastases. Lesion conspicuity and delineation were improved in 50% of patients with high grade gliomas and in 35% of patients with brain metastases. Lesion conspicuity was markedly improved in the posterior fossa. Additional contrast enhancing lesions were detected in 10% of patients with metastases on MT-FLASH images. Conclusions: It is concluded that contrast-enhanced MT-FLASH images may improve lesion detection and delineation in the planning process of radiosurgery in patients with intracranial high grade gliomas or metastases or even alter the treatment approach. (orig./MG) [Deutsch] Patientengut und Methode: 32 Patienten (mittleres Alter 47 Jahre) mit hoehergradigen Gliomen (n=12) und Hirnmetastasen (n=20) unterschiedlicher Grunderkrankungen wurden prospektiv im Rahmen einer radiochirurgischen MR-Bestrahlungsplanung untersucht. Nach einem standardisierten Untersuchungsprotokoll wurden nach Kontrastmittelapplikation einer Standarddosis Gd-DTPA (0,1 mmol/kg Koerpergewicht) T1-gewichtete SE- und MT-FLASH-Sequenzen analysiert. Die Bilder

  13. 胶质瘤化疗后周围神经病变西酞普兰联合弥可保治疗的临床疗效和安全性探讨%The clinical efficacy and safety of citalopram and mecobalamin in the treatment of the peripheral neuropathy which is caused after the oxaliplatin chemotherapy in malignant glioma

    Institute of Scientific and Technical Information of China (English)

    建平; 李卫峰; 姚净; 龚晴勇

    2013-01-01

    目的:探讨西酞普兰联合弥可保治疗恶性胶质瘤奥沙利铂化疗后引起周围神经病变的临床疗效和安全性。方法:选取2009-2012年来我院恶性胶质瘤奥沙利铂化疗后引起周围神经病变的患者68例,通过计算机随机分组的方式将其随机分为实验组和对照组,每组均为34例,两组患者均给予相同的基础对症治疗,在此基础上实验组给予西酞普兰联合弥可保治疗,对照组患者给予维生素 B12治疗,观察两组患者的总体治疗有效情况及神经传导速度、不良情况发生情况。结果:实验组患者的总体治疗有效率显著高于对照组(P<0.05),实验组患者的神经传导速度也要显著快于对照组(P<0.05),两组均无显著不良反应发生。结论:西酞普兰联合弥可保治疗恶性胶质瘤奥沙利铂化疗后引起周围神经病变临床疗效显著,安全性高。%Objectives:Obeserve the clinical efficacy and safety of citalopram and mecobalamin in the treatment of the peripheral neuropathy which is caused after the oxaliplatin chemotherapy in malignant glioma. Methods:Choose 68 cases of the peripheral neuropathy disease patients who are caused after the oxaliplatin chemotherapy in malignant glioma at our hospital form 2009 to 2012, random grouping by computer, it can be divided into the experimental group and control group, each group was 34 cases,both of two groups of patients were given the same basic symptomatic treatment,meanwhile the experimental group were treated by citalopram and mecobalamin, and control group were treated with vitamin B12 therapy, observed the overal effective treatment and nerve conduction velocity,the occurrence of adverse events of two groups of patients. Results:the overal treatment efficiency of the experimental group of patients was significantly higher than the control group (P < 0.05), the nerve conduction velocity of the experimental group of patients was also

  14. Clinical curative effect analysis of 109 cases of patients with brain malignant gliomas treated with operation combined with postoperative radiotherapy%109例脑恶性胶质瘤患者术后联合放射治疗的临床疗效分析

    Institute of Scientific and Technical Information of China (English)

    刘梁; 戈伟; 罗顺祥; 唐甜; 丁万军

    2012-01-01

    目的 观察脑胶质瘤患者术后进一步联合三维适形放疗等综合治疗方式的疗效和安全性.方法 回顾性分析我院109例术后联合放射治疗等多种治疗方式的脑恶性胶质细胞瘤患者的病历资料,对近期疗效和不良反应进行评价,随访时间12~36个月,中位随访时间13个月,计算患者1~3年生存率.结果 109例脑恶性胶质细胞瘤患者均按计划完成治疗,1个月后返院MRI复查结果提示:完全缓解(CR)75例,部分缓解(PR)14例,稳定(SD)13例,疾病进展(PD)7例,客观有效率(RR)为81.6%,疾病探制率(DCR)为93.6%.中位无疾病进展时间(TTP)为14个月,放化疗过程主要毒性表现在脑组织水肿、消化道和骨髓造血功能的抑制等方面.34例患者经MRI检查证实发生放射性脑水肿,发生几率为31.2%.结论 精确的肿瘤切除术后及时的放疗对控制术后残留病灶,完全阻断肿瘤生长根源有重要意义,如能同时接受正规的化疗以及特异性的靶向药物治疗,可收到较好的效果,是目前首选的综合治疗方式.%Objective To observe the efficacy and safety of comprehensive therapy with operation combined with three-dimensional conformal radiotherapy in treating brain malignant gliomas patients. Methods The medical records of 109 cases of brain malignant gliomas, who were treated with combining therapy with operation combined with postoperative radiotherapy were analyzed retrospectively to evaluate their short-term effects and adverse reaction. All the patients were followed up for 12-36 months to calculate their one to three years survival rate, and the median follow-up time was 13 months. Results All the 109 cases of brain malignant gliomas patients were accomplished the therapy on schedule, the MRI review results after a month indicate: CR in 75 cases, PR in 14 cases, SD in 13 cases, PI) in 7 cases. RR accounts for 81.6%, DCR accounts for 93.6%. The median TTP was 14 months. The toxic actions of

  15. MicroRNA-544 inhibits glioma proliferation, invasion and migration but induces cell apoptosis by targeting PARK7.

    Science.gov (United States)

    Jin, Shiguang; Dai, Yan; Li, Cheng; Fang, Xiao; Han, Huijing; Wang, Daxin

    2016-01-01

    Glioma is a common type of primary brain tumor. The survival rate in people with malignant gliomas is extremely low associated with the lack of effective treatment. Here, we firstly observed that miR-544 expression is downregulated in glioma tissues and its overexpression in glioma cell line dramatically reduces cell proliferation, migration and invasion. In addition, we found that the tumor growth in nude mouse was as well inhibited by miR-544 overexpressed in glioma cell. Our further investigation showed that the inhibitor role of miR-544 in tumor development was related to the downregulated expression of Park7 gene which has been demonstrated as a functional downstream target of miR-544. Thus, our discovery suggested that miR-544 might used as a therapeutic reagent for the treatment of glioma in the future.

  16. Perfusion MRI as the predictive/prognostic and pharmacodynamic biomarkers in recurrent malignant glioma treated with bevacizumab: a systematic review and a time-to-event meta-analysis.

    Science.gov (United States)

    Choi, Sang Hyun; Jung, Seung Chai; Kim, Kyung Won; Lee, Ja Youn; Choi, Yoonseok; Park, Seong Ho; Kim, Ho Sung

    2016-06-01

    This study aims to evaluate the value of perfusion MRI as a predictive/prognostic biomarker and a pharmacodynamic biomarker in patients with recurrent glioma treated with a bevacizumab-based regimen. We identified thirteen literature reports that investigated dynamic susceptibility-contrast (DSC) MRI or dynamic contrast-enhanced (DCE) MRI for predicting the patient outcome and analyzing the anti-angiogenic effect of bevacizumab by performing a systematic search of MEDLINE and EMBASE. The relative cerebral volume (rCBV) of DSC-MRI is currently the most common perfusion MRI parameter used as a predictive/prognostic biomarker. Pooled hazard ratios between responders and non-responders, as determined by rCBV, were 0.46 (95 % CI 0.28-0.76) for progression-free survival from five articles with a total 226 patients and 0.47 (95 % CI 0.29-0.76) for overall survival from six articles with a total 247 patients, and thus indicating that rCBV is helpful for predicting disease progression and the eventual outcome after treatment. Regarding the pharmacodynamic value of perfusion MRI parameters derived from either DSC-MRI or DCE-MRI, most perfusion MRI parameters (rCBV, Ktrans, CBVmax, Kpsmax, fpv, Ve and Kep) demonstrated a consistent decrease on the follow-up MRI after treatment, indicating that perfusion MRI may be helpful for evaluating the anti-angiogenic effect of a bevacizumab-based treatment regimen. However, the lack of standardization of imaging acquisition and analysis techniques for various perfusion MRI parameters needs to be resolved in the future. Despite these unsolved issues, the current evidence favoring the use of perfusion MRI as a predictive/prognostic or pharmacodynamic biomarker should be considered in patients with glioma treated using a bevacizumab-based regimen.

  17. Glioma-initiating cells and molecular pathology: implications for therapy.

    Science.gov (United States)

    Natsume, Atsushi; Kinjo, Sayano; Yuki, Kanako; Kato, Takenori; Ohno, Masasuke; Motomura, Kazuya; Iwami, Kenichiro; Wakabayashi, Toshihiko

    2011-02-01

    There is now compelling evidence that gliomas harbor a small population of cells, termed glioma-initiating cells (GICs), characterized by their ability to undergo self-renewal and initiate tumorigenesis. The development of therapeutic strategies targeted toward GIC signaling may improve the treatment of malignant gliomas. The characterization of GICs provides a clue to elucidating histological heterogeneity and treatment failure. The role of the stem cell marker CD133 in the initiation and progression of brain tumors is still uncertain. Here, we review some of the signaling mechanisms involved in GIC biology, such as phosphatase and tensin homolog (PTEN), sonic hedgehog, Notch, and WNT signaling pathways, maternal embryonic leucine-zipper kinase (MELK), BMI1, and Janus kinase signal transducer and activator of transcription (JAK-STAT) signaling. In addition, we discuss the role of microRNAs in GICs by focusing on microRNA-21 regulation by type I interferon.

  18. Boldine: a potential new antiproliferative drug against glioma cell lines.

    Science.gov (United States)

    Gerhardt, Daniéli; Horn, Ana Paula; Gaelzer, Mariana Maier; Frozza, Rudimar Luiz; Delgado-Cañedo, Andrés; Pelegrini, Alessandra Luiza; Henriques, Amélia T; Lenz, Guido; Salbego, Christianne

    2009-12-01

    Malignant gliomas are the most common and devastating primary tumors of the central nervous system. Currently no efficient treatment is available. This study evaluated the effect and underlying mechanisms of boldine, an aporphine alkaloid of Peumus boldus, on glioma proliferation and cell death. Boldine decreased the cell number of U138-MG, U87-MG and C6 glioma lines at concentrations of 80, 250 and 500 muM. We observed that cell death caused by boldine was cell-type specific and dose-dependent. Exposure to boldine for 24 h did not activate key mediators of apoptosis. However, it induced alterations in the cell cycle suggesting a G(2)/M arrest in U138-MG cells. Boldine had no toxic effect on non-tumor cells when used at the same concentrations as those used on tumor cells. Based on these results, we speculate that boldine may be a promising compound for evaluation as an anti-cancer agent.

  19. Silver nanoparticles: a novel radiation sensitizer for glioma?

    Science.gov (United States)

    Liu, Peidang; Huang, Zhihai; Chen, Zhongwen; Xu, Ruizhi; Wu, Hao; Zang, Fengchao; Wang, Cailian; Gu, Ning

    2013-11-01

    Malignant gliomas are the most common primary intracranial tumors with a dismal prognosis. Previous investigations by our group demonstrated the radiosensitizing effect of silver nanoparticles (AgNPs) on glioma cells in vitro. The goal of the present study was to evaluate the efficacy of intratumoral administration of AgNPs in combination with a single dose of ionizing radiation at clinically relevant MV energies for the treatment of C6 glioma-bearing rats. AgNPs (10 or 20 μg/10 μl) were stereotactically administered on day 8 after tumor implantation. One day after AgNP injection, rats bearing glioma received 10 Gy radiation. The mean survival times were 100.5 and 98 days, the corresponding percent increase in life spans was 513.2% and 497.7%, and the cure rates were 41.7 and 38.5% at 200 days for the 10 and 20 μg AgNPs and radiation combination groups, respectively. In contrast, the mean survival times for irradiated controls, 10 and 20 μg AgNPs alone, and untreated controls were 24.5, 16.1, 19.4, and 16.4 days, respectively. Furthermore, a cooperative antiproliferative and proapoptotic effect was obtained when gliomas were treated with AgNPs followed by radiotherapy. Our results showed the therapeutic efficacy of AgNPs in combination with radiotherapy without apparent systemic toxicity, suggesting the clinical potential of AgNPs in improving the outcome of malignant glioma radiotherapy.Malignant gliomas are the most common primary intracranial tumors with a dismal prognosis. Previous investigations by our group demonstrated the radiosensitizing effect of silver nanoparticles (AgNPs) on glioma cells in vitro. The goal of the present study was to evaluate the efficacy of intratumoral administration of AgNPs in combination with a single dose of ionizing radiation at clinically relevant MV energies for the treatment of C6 glioma-bearing rats. AgNPs (10 or 20 μg/10 μl) were stereotactically administered on day 8 after tumor implantation. One day after Ag

  20. Clinical Neuropathology practice news 2-2014: ATRX, a new candidate biomarker in gliomas.

    Science.gov (United States)

    Haberler, Christine; Wöhrer, Adelheid

    2014-01-01

    Genome-wide molecular approaches have substantially elucidated molecular alterations and pathways involved in the oncogenesis of brain tumors. In gliomas, several molecular biomarkers including IDH mutation, 1p/19q co-deletion, and MGMT promotor methylation status have been introduced into neuropathological practice. Recently, mutations of the ATRX gene have been found in various subtypes and grades of gliomas and were shown to refine the prognosis of malignant gliomas in combination with IDH and 1p/19q status. Mutations of ATRX are associated with loss of nuclear ATRX protein expression, detectable by a commercially available antibody, thus turning ATRX into a promising prognostic candidate biomarker in the routine neuropathological setting.

  1. Carboxyl terminus of Hsp70-interacting protein (CHIP) contributes to human glioma oncogenesis.

    Science.gov (United States)

    Xu, Tao; Zhou, Quan; Zhou, Jingxu; Huang, Yan; Yan, Yong; Li, Weiqing; Wang, Chunlin; Hu, Guohan; Lu, Yicheng; Chen, Juxiang

    2011-05-01

    Malignant glioma is the most common adult primary brain tumor, and the mechanism of its oncogenesis is poorly understood. Growing evidence has shown that E3 ubiquitin ligases can promote tumorgenesis of glioma. CHIP is an E3 ubiquitin ligase that can induce ubiquitylation and degradation of many tumor-related proteins, and it has been reported to act as an upstream regulator in breast cancer; however, its role in human gliomas has not been evaluated yet. In this study, the expression of CHIP in glioma tissues was studied using immunohistochemistry. CHIP expression in glioma cells was studied by real-time RT-PCR, western blot and double immunofluorescence staining. The role of CHIP in glioma oncogenesis was investigated by lentivirus-mediated RNA interference (RNAi) and overexpression in vitro and in vivo. We showed CHIP expression in glioma samples was related to tumor grades, with stronger staining in high-grade gliomas than in low-grade gliomas. Knocking down of CHIP suppressed proliferation, colony formation of U251 and U87 glioma cells, while overexpression of CHIP resulted in enhanced proliferation and colony formation in vitro. In a nude mouse xenograft model, intratumoral injection of CHIP RNAi lentivirus significantly delayed tumor growth. In contrast, overexpression of CHIP resulted in enhanced tumor growth in vivo. After CHIP RNAi, both survivin mRNA and protein were decreased, while CHIP overexpression induced increased mRNA and protein levels of survivin. This is the first study demonstrating CHIP contributes to oncogenesis of glioma. © 2011 Japanese Cancer Association.

  2. Angiogenic Signalling Pathways Altered in Gliomas: Selection Mechanisms for More Aggressive Neoplastic Subpopulations with Invasive Phenotype

    Directory of Open Access Journals (Sweden)

    Susana Bulnes

    2012-01-01

    Full Text Available The angiogenesis process is a key event for glioma survival, malignancy and growth. The start of angiogenesis is mediated by a cascade of intratumoural events: alteration of the microvasculature network; a hypoxic microenvironment; adaptation of neoplastic cells and synthesis of pro-angiogenic factors. Due to a chaotic blood flow, a consequence of an aberrant microvasculature, tissue hypoxia phenomena are induced. Hypoxia inducible factor 1 is a major regulator in glioma invasiveness and angiogenesis. Clones of neoplastic cells with stem cell characteristics are selected by HIF-1. These cells, called “glioma stem cells” induce the synthesis of vascular endothelial growth factor. This factor is a pivotal mediator of angiogenesis. To elucidate the role of these angiogenic mediators during glioma growth, we have used a rat endogenous glioma model. Gliomas induced by prenatal ENU administration allowed us to study angiogenic events from early to advanced tumour stages. Events such as microvascular aberrations, hypoxia, GSC selection and VEGF synthesis may be studied in depth. Our data showed that for the treatment of gliomas, developing anti-angiogenic therapies could be aimed at GSCs, HIF-1 or VEGF. The ENU-glioma model can be considered to be a useful option to check novel designs of these treatment strategies.

  3. Angiogenic Signalling Pathways Altered in Gliomas: Selection Mechanisms for More Aggressive Neoplastic Subpopulations with Invasive Phenotype

    Science.gov (United States)

    Bulnes, Susana; Bengoetxea, Harkaitz; Ortuzar, Naiara; Argandoña, Enrike G.; Garcia-Blanco, Álvaro; Rico-Barrio, Irantzu; Lafuente, José V.

    2012-01-01

    The angiogenesis process is a key event for glioma survival, malignancy and growth. The start of angiogenesis is mediated by a cascade of intratumoural events: alteration of the microvasculature network; a hypoxic microenvironment; adaptation of neoplastic cells and synthesis of pro-angiogenic factors. Due to a chaotic blood flow, a consequence of an aberrant microvasculature, tissue hypoxia phenomena are induced. Hypoxia inducible factor 1 is a major regulator in glioma invasiveness and angiogenesis. Clones of neoplastic cells with stem cell characteristics are selected by HIF-1. These cells, called “glioma stem cells” induce the synthesis of vascular endothelial growth factor. This factor is a pivotal mediator of angiogenesis. To elucidate the role of these angiogenic mediators during glioma growth, we have used a rat endogenous glioma model. Gliomas induced by prenatal ENU administration allowed us to study angiogenic events from early to advanced tumour stages. Events such as microvascular aberrations, hypoxia, GSC selection and VEGF synthesis may be studied in depth. Our data showed that for the treatment of gliomas, developing anti-angiogenic therapies could be aimed at GSCs, HIF-1 or VEGF. The ENU-glioma model can be considered to be a useful option to check novel designs of these treatment strategies. PMID:22852079

  4. Transferrin modified PEG-PLA-resveratrol conjugates: in vitro and in vivo studies for glioma.

    Science.gov (United States)

    Guo, Wanhua; Li, Aimei; Jia, Zhijun; Yuan, Yi; Dai, Haifeng; Li, Hongxiu

    2013-10-15

    Glioblastoma is one of the most malignant brain tumors with a poor prognosis. In this study, we examined the effects of transferrin (Tf)-modified poly ethyleneglycol-poly lactic acid (PEG-PLA) nanoparticles conjugated with resveratrol (Tf-PEG-PLA-RSV) to glioma therapy in vitro and in vivo. The cell viability of Tf-PEG-PLA-RSV on C6 and U87 glioma cells was determined by the MTT assay. In vivo biodistribution and antitumor activity were investigated in Brain glioma bearing rat model of C6 glioma by i.p. administration of RSV-polymer conjugates. We found that the average diameter of each Tf-PEG-PLA-RSV is around 150 nm with 32 molecules of Tf on surface. In vitro cytotoxicity of PEG-PLA-RSV against C6 and U87 cells was higher than that of free RSV, and further the modification of Tf enhanced the cytotoxicity of the RSV-polymer conjugates as a result of the increased cellular uptake of the RSV-modified conjugates by glioma cells. In comparison with free RSV, RSV conjugates could significantly decrease tumor volume and accumulate in brain tumor, which resulted in prolonging the survival of C6 glioma-bearing rats. These results suggest that Tf-NP-RSV had a potential of therapeutic effect to glioma both in vitro and in vivo and might be a potential candidate for targeted therapy of glioma and worthy of further investigation.

  5. The epidemiology of glioma in adults: a "state of the science" review.

    Science.gov (United States)

    Ostrom, Quinn T; Bauchet, Luc; Davis, Faith G; Deltour, Isabelle; Fisher, James L; Langer, Chelsea Eastman; Pekmezci, Melike; Schwartzbaum, Judith A; Turner, Michelle C; Walsh, Kyle M; Wrensch, Margaret R; Barnholtz-Sloan, Jill S

    2014-07-01

    Gliomas are the most common primary intracranial tumor, representing 81% of malignant brain tumors. Although relatively rare, they cause significant mortality and morbidity. Glioblastoma, the most common glioma histology (∼45% of all gliomas), has a 5-year relative survival of ∼5%. A small portion of these tumors are caused by Mendelian disorders, including neurofibromatosis, tuberous sclerosis, and Li-Fraumeni syndrome. Genomic analyses of glioma have also produced new evidence about risk and prognosis. Recently discovered biomarkers that indicate improved survival include O⁶-methylguanine-DNA methyltransferase methylation, isocitrate dehydrogenase mutation, and a glioma cytosine-phosphate-guanine island methylator phenotype. Genome-wide association studies have identified heritable risk alleles within 7 genes that are associated with increased risk of glioma. Many risk factors have been examined as potential contributors to glioma risk. Most significantly, these include an increase in risk by exposure to ionizing radiation and a decrease in risk by history of allergies or atopic disease(s). The potential influence of occupational exposures and cellular phones has also been examined, with inconclusive results. We provide a “state of the science” review of current research into causes and risk factors for gliomas in adults.

  6. Effect of Monoamine Oxidase Inhibitor on the Differentiation of Malignant Glioma Cell%单胺氧化酶抑制剂诱导胶质瘤细胞的体外分化

    Institute of Scientific and Technical Information of China (English)

    邵根宝; 薄丹丹; 韩晓娟; 贺清华; 张严; 桑建荣

    2012-01-01

    To investigate the effect of monoamine oxidase inhibitor tranylcypromine (TCP) on the differentiation of human U251 glioma cells, we treated U251 cells with TCP and/or 100 nmol/L histone deacetylase inhibitor trychos-tatin A (TSA). The differentiation of U251 cells was observed with inverted microscopy. The cell proliferation and cell cycle distribution were determined by MTT assay and flow cytometry. respectively. Apoptosis was observed by Hoechst 33258 staining. The levels of differentiation-related genes were assessed by real-time PCR and Western blotting. TCP-induced differentiation was characterized by typical morphological changes, inhibition of cellular proliferation, accumulation of cells in the Gl phase of the cell cycle, decreased expression of the pluripotency transcription factors Oct4 and Sox2, and increased expression of glial fibrillary acid protein (GFAP). The combination of TCP and TSA treatment also triggered an over-expression of GFAP. These findings suggest that TCP may induce differentiation of U251 glioma cells, and the differentiation process may be promoted by histone deacetylase inhibitor TSA,%为研究单胺氧化酶抑制剂(TCP)对体外培养的入脑胶质瘤U251细胞的诱导分化作用,以不同浓度TCP单独或与100 nmol/L组蛋白去乙酰化酶抑制剂(TSA)联合处理U251细胞,采用倒置显微镜观察细胞形态学变化;噻唑蓝( MTT)比色法检测细胞增殖变化;流式细胞仪检测细胞周期变化;Hoechst 33258染色显示细胞凋亡;Real-time PCR和Western印迹法检测分化相关基因mRNA和蛋白表达水平的改变.结果表明:TCP可诱导细胞突起增多且变细长,抑制细胞增殖,阻滞细胞周期于G1期,抑制全能性转录因子Oct4和Sox2的表达,上调分化标志基因胶质纤维酸性蛋白(GFAP)的表达,TCP联合TSA也诱导了GFAP的高表达.这些结果提示:TCP可诱导胶质瘤U251细胞分化,TSA对TCP诱导细胞分化有协同作用.

  7. Cannabinoids as potential new therapy for the treatment of gliomas.

    Science.gov (United States)

    Parolaro, Daniela; Massi, Paola

    2008-01-01

    Gliomas constitute the most frequent and malignant primary brain tumors. Current standard therapeutic strategies (surgery, radiotherapy and chemotherapeutics, e.g., temozolomide, carmustin or carboplatin) for their treatment are only palliative and survival diagnosis is normally 6-12 months. The development of new therapeutic strategies for the management of gliomas is therefore essential. Interestingly, cannabinoids have been shown to exert antiproliferative effects on a wide spectrum of cells in culture. Of interest, cannabinoids have displayed a great potency in reducing glioma tumor growth either in vitro or in animal experimental models, curbing the growth of xenografts generated by subcutaneous or intratecal injection of glioma cells in immune-deficient mice. Moreover, cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of nontransformed counterparts. A pilot clinical trial on patients with glioblastoma multiforme demonstrated their good safety profile together and remarkable antitumor effects, and may set the basis for further studies aimed at better evaluating the potential anticancer activity of cannabinoids.

  8. Pediatric glioma stem cells: biologic strategies for oncolytic HSV virotherapy

    Directory of Open Access Journals (Sweden)

    Gregory K Friedman

    2013-02-01

    Full Text Available While glioblastoma multiforme (GBM is the most common adult malignant brain tumor, GBMs in childhood represent less than 10% of pediatric malignant brain tumors and are phenotypically and molecularly distinct from adult GBMs. Similar to adult patients, outcomes for children with high-grade gliomas (HGGs remain poor. Furthermore, the significant morbidity and mortality yielded by pediatric GBM is compounded by neurotoxicity for the developing brain caused by current therapies. Poor outcomes have been attributed to a subpopulation of chemotherapy and radiotherapy resistant cells, termed ‘glioma stem cells’ (GSCs, ‘glioma progenitor cells’, or ‘glioma-initiating cells', which have the ability to initiate and maintain the tumor and to repopulate the recurring tumor after conventional therapy. Future innovative therapies for pediatric HGGs must be able to eradicate these therapy-resistant GSCs. Oncolytic herpes simplex viruses, genetically engineered to be safe for normal cells and to express diverse foreign anti-tumor therapeutic genes, have been demonstrated in preclinical studies to infect and kill GSCs and tumor cells equally while sparing normal brain cells. In this review, we discuss the unique aspects of pediatric GSCs, including markers to identify them, the microenvironment they reside in, signaling pathways that regulate them, mechanisms of cellular resistance, and approaches to target GSCs, with a focus on the promising therapeutic, genetically engineered oncolytic herpes simplex virus (HSV.

  9. Golgi Phosphoprotein 3 Inhibits the Apoptosis of Human Glioma Cells in Part by Downregulating N-myc Downstream Regulated Gene 1

    Science.gov (United States)

    Li, Xin; Li, Mengyou; Tian, Xiuli; Li, QingZhe; Lu, Qingyang; Yan, Jinqiang; Jia, Qingbin; Zhang, Lianqun; Li, Xueyuan; Li, Xingang

    2016-01-01

    Background Golgi phosphoprotein 3 (GOLPH3) has been reported to be involved in the development of several human cancers. Our previous study showed that GOLPH3 expression in glioma tissues was related to the severity of the malignancy of the cancer. However, the mechanism by which GOLPH3 affects cell apoptosis is largely unknown. The present study was designed to explore the possible mechanism of GOLPH3 in cell apoptosis. Material/Methods To analyze the biological role of GOLPH3 in glioma cells, we used GOLPH3 small interference RNA in apoptosis of glioma cells. The apoptosis of glioma cells was detected by flow cytometry. The expression level of GOLPH3 and NDRG1 protein was determined by Western blot analyses and immunohistochemical staining, respectively, to evaluate their association with glioma. Tumor tissues were collected from patients with glioma. Normal cerebral tissues were acquired from cerebral trauma patients undergoing internal decompression surgery. Results We confirm that the decrease of GOLPH3 that promotes the apoptosis of glioma cells may be regulated by the activation of NDRG1 and cleaved capcase 3. There was a inverse association between GOLPH3 and NDRG1 in glioma samples. Conclusions Our findings indicate that GOLPH3 and NDRG1 both play an important role in glioma etiology. Either GOLPH3 or NDRG1 might be a potential candidate for malignant glioma therapy. PMID:27698340

  10. Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice.

    Science.gov (United States)

    Friedmann-Morvinski, Dinorah; Bushong, Eric A; Ke, Eugene; Soda, Yasushi; Marumoto, Tomotoshi; Singer, Oded; Ellisman, Mark H; Verma, Inder M

    2012-11-23

    Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary brain tumor in humans. Here we show that gliomas can originate from differentiated cells in the central nervous system (CNS), including cortical neurons. Transduction by oncogenic lentiviral vectors of neural stem cells (NSCs), astrocytes, or even mature neurons in the brains of mice can give rise to malignant gliomas. All the tumors, irrespective of the site of lentiviral vector injection (the initiating population), shared common features of high expression of stem or progenitor markers and low expression of differentiation markers. Microarray analysis revealed that tumors of astrocytic and neuronal origin match the mesenchymal GBM subtype. We propose that most differentiated cells in the CNS upon defined genetic alterations undergo dedifferentiation to generate a NSC or progenitor state to initiate and maintain the tumor progression, as well as to give rise to the heterogeneous populations observed in malignant gliomas.

  11. Topoisomerase I inhibitors, shikonin and topotecan, inhibit growth and induce apoptosis of glioma cells and glioma stem cells.

    Directory of Open Access Journals (Sweden)

    Feng-Lei Zhang

    Full Text Available Gliomas, the most malignant form of brain tumors, contain a small subpopulation of glioma stem cells (GSCs that are implicated in therapeutic resistance and tumor recurrence. Topoisomerase I inhibitors, shikonin and topotecan, play a crucial role in anti-cancer therapies. After isolated and identified the GSCs from glioma cells successfully, U251, U87, GSCs-U251 and GSCs-U87 cells were administrated with various concentrations of shikonin or topotecan at different time points to seek for the optimal administration concentration and time point. The cell viability, cell cycle and apoptosis were detected using cell counting kit-8 and flow cytometer to observe the inhibitory effects on glioma cells and GSCs. We demonstrated that shikonin and topotecan obviously inhibited proliferation of not only human glioma cells but also GSCs in a dose- and time-dependent manner. According to the IC50 values at 24 h, 2 μmol/L of shikonin and 3 μmol/L of topotecan were selected as the optimal administration concentration. In addition, shikonin and topotecan induced cell cycle arrest in G0/G1 and S phases and promoted apoptosis. The down-regulation of Bcl-2 expression with the activation of caspase 9/3-dependent pathway was involved in the apoptosis process. Therefore, the above results showed that topoisomerase I inhibitors, shikonin and topotecan, inhibited growth and induced apoptosis of GSCs as well as glioma cells, which suggested that they might be the potential anticancer agents targeting gliomas to provide a novel therapeutic strategy.

  12. Molecular Profiling of Gliomas

    NARCIS (Netherlands)

    A.M. Gravendeel (Lonneke)

    2012-01-01

    textabstractGliomas are the most common type of primary brain tumors in adults with an incidence rate of 5.27 per 100.000 patients every year 1-2. In 1926, Bailey and Cushing suggested a classification model based on distinct histological morphologies 3, which forms the basis of the currently used W

  13. Molecular pathology in adult gliomas: diagnostic, prognostic, and predictive markers.

    LENUS (Irish Health Repository)

    Jansen, Michael

    2010-07-01

    Over the past 10 years, there has been an increasing use of molecular markers in the assessment and management of adult malignant gliomas. Some molecular signatures are used diagnostically to help pathologists classify tumours, whereas others are used to estimate prognosis for patients. Most crucial, however, are those markers that are used to predict response to certain therapies, thereby directing clinicians to a particular treatment while avoiding other potentially deleterious therapies. Recently, large-scale genome-wide surveys have been used to identify new biomarkers that have been rapidly developed as diagnostic and prognostic tools. Given these developments, the pace of discovery of new molecular assays will quicken to facilitate personalised medicine in the setting of malignant glioma.

  14. High levels of WNT-5A in human glioma correlate with increased presence of tumor-associated microglia/monocytes.

    Science.gov (United States)

    Dijksterhuis, Jacomijn P; Arthofer, Elisa; Marinescu, Voichita D; Nelander, Sven; Uhlén, Mathias; Pontén, Frederik; Mulder, Jan; Schulte, Gunnar

    2015-12-10

    Malignant gliomas are among the most severe types of cancer, and the most common primary brain tumors. Treatment options are limited and the prognosis is poor. WNT-5A, a member of the WNT family of lipoglycoproteins, plays a role in oncogenesis and tumor progression in various cancers, whereas the role of WNT-5A in glioma remains obscure. Based on the role of WNT-5A as an oncogene, its potential to regulate microglia cells and the glioma-promoting capacities of microglia cells, we hypothesize that WNT-5A has a role in regulation of immune functions in glioma. We investigated WNT-5A expression by in silico analysis of the cancer genome atlas (TCGA) transcript profiling of human glioblastoma samples and immunohistochemistry experiments of human glioma tissue microarrays (TMA). Our results reveal higher WNT-5A protein levels and mRNA expression in a subgroup of gliomas (WNT-5A(high)) compared to non-malignant control brain tissue. Furthermore, we show a significant correlation between WNT-5A in the tumor and presence of major histocompatibility complex Class II-positive microglia/monocytes. Our data pinpoint a positive correlation between WNT-5A and a proinflammatory signature in glioma. We identify increased presence of microglia/monocytes as an important aspect in the inflammatory transformation suggesting a novel role for WNT-5A in human glioma.

  15. Correlation between promoter methylation of O(6)-methylguanine-DNA-methyltransferase gene in malignant brain gliomas and clinical prognosis of these patients%恶性脑胶质瘤MGMT基因启动子甲基化状态与患者临床预后的相关性

    Institute of Scientific and Technical Information of China (English)

    罗敏捷; 张旺明; 王军; 郑伟新; 姜晓丹; 柯以铨

    2012-01-01

    Objective To study the correlations between O (6) -methylguanine-DNA-methyltransferase (MGMT) gene promoter methylation status in malignant glioma tissues and both MGMT protein expression and survival prognosis in these patients, and evaluate the significance of MGMT gene methylation status analyzing with methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) method in chemotherapy of brain glioma.Methods Thirty-nine patients with gliomas confirmed by pathology (WHO grade Ⅲ and grade Ⅳ)were collected in our study; the patient's overall survival (OS) after chemotherapy was tracked.MGMT protein expression of glioma tissues was detected by immunohistochemical staining,and MGMT promoter methylation status was detected by MS-MLPA method. Results Statistical difference of OS time was noted between patients with MGMT-negative and patients with MGMT-positive/-weak-positive (P=0.003).The prognosis in patients with positive MGMT protein expression was obviously poorer than that in patients with negative expression. In the groups of MGMT promoter un-methylation, mild hypermethylation, moderate hypermethylation and extensive hypermethylation, significant statistical difference of OS time was noted between each 2 groups (P<0.05); the higher degree of methylation,the better prognosis. Statistical correlation was noted between MGMT protein expression and promoter methylation status (r=0.697,P=0.000); the higher degree ofmethylation,the lower protein exression of MGMT. Conclusion Both MGMT protein expression and promoter methylation status can be regarded as prognostic indicator of OS in patients with malignant glioma accepted alkylating agent chemotherapy; MS-MLPA is a reliable method to detect MGMT gene promoter methylation status.%目的 探讨恶性脑胶质瘤组织O6-甲基鸟嘌呤-DNA-甲基转移酶(MGMT)基因启动子甲基化状态及MGMT蛋白表达与患者生存预后的关系,评价MS-MLPA技术检测MGMT基因启动子甲基化状

  16. MicroRNA-181b inhibits cellular proliferation and invasion of glioma cells via targeting Sal-like protein 4.

    Science.gov (United States)

    Zhou, Yu; Peng, Yong; Liu, Min; Jiang, Yugang

    2016-11-17

    MicroRNAs (miRs), a class of 18-25 nucleotides in length non-coding RNAs, are able to suppress gene expression by targeting complementary regions of mRNAs and inhibiting protein translation Recently, miR-181b was found to playa suppressive role in glioma, but the regulatory mechanism of miR-181b in the malignant phenotypes of glioma cells remains largely unclear. Here we found that miR-181b was significantly downregulated in glioma tissues when compared with normal brain tissues, and decreased miR-181b levels were significantly associated with high pathology grade and poor prognosis of patients with glioma. Moreover, miR-181b was also downregulated in glioma cell lines (U87, SHG44, U373, and U251) compared to normal astrocytes. Overexpression of miR-181b significantly decreased the proliferation, migration, and invasion of glioma U251 cells. Sal-like protein 4 (SALL4) was identified as a novel target gene of miR-181b in U251 cells. The expression of SALL4 was significantly upregulated in glioma tissues and cell lines, and an inverse correlation was observed between the miR-181b and SALL4 expression levels in glioma. Further investigation showed that the protein expression of SALL4 was negatively regulated by miR-181b in U251 cells. Knockdown of SALL4 significantly inhibited the proliferation, migration and invasion of U251 cells, while overexpression of SALL4 effectively reversed the suppressive effects of miR-181b on these malignant phenotypes of U251 cells. In conclusion, our study demonstrates that miR-181b has suppressive effects on the malignant phenotypes of glioma cells, partly at least, via directly targeting SALL4. Therefore, the miR-181b/SALL4 axis may become a potential therapeutic target for glioma.

  17. Suppression of autophagy augments the radiosensitizing effects of STAT3 inhibition on human glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Xiaopeng; Du, Jie; Hua, Song; Zhang, Haowen; Gu, Cheng; Wang, Jie; Yang, Lei; Huang, Jianfeng; Yu, Jiahua, E-mail: yujiahua@suda.edu.cn; Liu, Fenju, E-mail: fangsh@suda.edu.cn

    2015-01-15

    Radiotherapy is an essential component of the standard therapy for newly diagnosed glioblastoma. To increase the radiosensitivity of glioma cells is a feasible solution to improve the therapeutic effects. It has been suggested that inhibition of signal transducer and activator of transcription 3 (STAT3) can radiosensitize glioma cells, probably via the activation of mitochondrial apoptotic pathway. In this study, human malignant glioma cells, U251 and A172, were treated with an STAT3 inhibitor, WP1066, or a short hairpin RNA plasmid targeting STAT3 to suppress the activation of STAT3 signaling. The radiosensitizing effects of STAT3 inhibition were confirmed in glioma cells. Intriguingly, combination of ionizing radiation exposure and STAT3 inhibition triggered a pronounced increase of autophagy flux. To explore the role of autophagy, glioma cells were treated with 3-methyladenine or siRNA for autophagy-related gene 5, and it was demonstrated that inhibition of autophagy further strengthened the radiosensitizing effects of STAT3 inhibition. Accordingly, more apoptotic cells were induced by the dual inhibition of autophagy and STAT3 signaling. In conclusion, our data revealed a protective role of autophagy in the radiosensitizing effects of STAT3 inhibition, and inhibition of both autophagy and STAT3 might be a potential therapeutic strategy to increase the radiosensitivity of glioma cells. - Highlights: • Inactivation of STAT3 signaling radiosensitizes malignant glioma cells. • STAT3 inhibition triggers a significant increase of autophagy flux induced by ionizing radiation in glioma cells. • Suppression of autophagy further strengthens the radiosensitizing effects of STAT3 inhibition in glioma cells. • Dual inhibition of autophagy and STAT3 induce massive apoptotic cells upon exposure to ionizing radiation.

  18. Association of BCL2-938C>A genetic polymorphism with glioma risk in Chinese Han population.

    Science.gov (United States)

    Li, Wei; Qian, Chunfa; Wang, Linxiong; Teng, Hong; Zhang, Li

    2014-03-01

    Glioma is the most common type of primary brain malignancy in adults. The anti-apoptotic protein B-cell lymphoma 2 (BCL2) has been implicated in the pathogenesis of glioma. This study aimed to evaluate the potential association between BCL2-938C>A genetic polymorphism and glioma susceptibility. This case-control study was conducted in Chinese Han populations consisting of 248 glioma cases and 252 cancer-free controls. The BCL2-938C>A genetic polymorphism was detected by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and verified using DNA sequencing methods. Our data suggested that the genotype/allele of BCL2-938C>A polymorphism were statistically associated with the increased risk of glioma where the risk of glioma for genotype AA or allele A is significantly higher than wild genotype CC (odds ratio (OR) = 2.23, 95% confidence interval (CI) 1.21-4.10, p = 0.009) or allele C (OR = 1.39, 95% CI 1.06-1.82, p = 0.016), respectively. In addition, the BCL2-938AA genotype was significantly more common in patients with glioblastoma and in patients with grade IV glioma. Our findings indicate that the BCL2-938C>A polymorphism is associated with the susceptibility to glioma in Chinese Han populations and might be used as molecular markers for evaluating glioma risk.

  19. Salinomycin inhibits the tumor growth of glioma stem cells by selectively suppressing glioma-initiating cells.

    Science.gov (United States)

    Chen, Tunan; Yi, Liang; Li, Fei; Hu, Rong; Hu, Shengli; Yin, Yi; Lan, Chuan; Li, Zhao; Fu, Chuhua; Cao, Liu; Chen, Zhi; Xian, Jishu; Feng, Hua

    2015-04-01

    Glioma‑initiating cells are a small population of cells that have the ability to undergo self‑renewal and initiate tumorigenesis. In the present study, the potential role of salinomycin, a polyether antibiotic, on the suppression of glioma cell growth was investigated. GL261 glioma cells were maintained in a stem‑cell‑like status [GL261 neurospheres (GL261‑NS)] or induced for differentiation [GL261 adherent cells (GL261‑AC)]. It was demonstrated that salinomycin significantly reduced the cell viability of GL261‑NS and GL261‑AC cells in a dose‑dependent manner, with a more substantial inhibition of GL261‑NS proliferation (Psalinomycin on cell growth was more effective than that of 1‑(4‑amino‑2‑methyl‑5‑pyrimid l)‑methyl‑3‑(2‑chloroethyl)‑3‑nitrosourea hydrochloride and vincristine (PSalinomycin depleted GL261‑NS from tumorspheres and induced cell apoptosis. In addition, salinomycin prolonged the median survival time of glioma‑bearing mice (Psalinomycin may preferentially inhibit glioma‑initiated cell growth by inducing apoptosis, suggesting that salinomycin may provide a valuable therapeutic strategy for the treatment of malignant glioma.

  20. Glioma-Associated Antigen HEATR1 Induces Functional Cytotoxic T Lymphocytes in Patients with Glioma

    Directory of Open Access Journals (Sweden)

    Zhe Bao Wu

    2014-01-01

    Full Text Available A2B5+ glioblastoma (GBM cells have glioma stem-like cell (GSC properties that are crucial to chemotherapy resistance and GBM relapse. T-cell-based antigens derived from A2B5+ GBM cells provide important information for immunotherapy. Here, we show that HEAT repeat containing 1 (HEATR1 expression in GBM tissues was significantly higher than that in control brain tissues. Furthermore, HEATR1 expression in A2B5+ U87 cells was higher than that in A2B5−U87 cells (P=0.016. Six peptides of HEATR1 presented by HLA-A*02 were selected for testing of their ability to induce T-cell responses in patients with GBM. When peripheral blood mononuclear cells from healthy donors (n=6 and patients with glioma (n=33 were stimulated with the peptide mixture, eight patients with malignant gliomas had positive reactivity with a significantly increased number of responding T-cells. The peptides HEATR1682–690, HEATR11126–1134, and HEATR1757–765 had high affinity for binding to HLA-A*02:01 and a strong capacity to induce CTL response. CTLs against HEATR1 peptides were capable of recognizing and lysing GBM cells and GSCs. These data are the first to demonstrate that HEATR1 could induce specific CTL responses targeting both GBM cells and GSCs, implicating that HEATR1 peptide-based immunotherapy could be a novel promising strategy for treating patients with GBM.

  1. Clinical utility of 5-aminolevulinic acid HCl to better visualize and more completely remove gliomas

    Directory of Open Access Journals (Sweden)

    Halani SH

    2016-09-01

    Full Text Available Sameer H Halani,1 D Cory Adamson1,2 1Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA; 2Neurosurgery Section, Atlanta VA Medical Center, Decatur, GA, USA Abstract: Surgical resection is typically the first line of treatment for gliomas. However, the neurosurgeon faces a major challenge in achieving maximal resection in high-grade gliomas as these infiltrative tumors make it difficult to discern tumor margins from normal brain with conventional white-light microscopy alone. To aid in resection of these infiltrative tumors, fluorescence-guided surgery has gained much popularity in intraoperative visualization of malignant gliomas, with 5-aminolevulinic acid (5-ALA leading the way. First introduced in an article in Neurosurgery, 5-ALA has since become a safe, effective, and inexpensive method to visualize and improve resection of gliomas. This has undoubtedly led to improvements in the clinical course of patients as demonstrated by the increased overall and progression-free survival in patients with such devastating disease. This literature review aims to discuss the major studies and trials demonstrating the clinical utility of 5-ALA and its ability to aid in complete resection of malignant gliomas. Keywords: aminolevulinic acid, 5-ALA, fluorescence, glioblastoma multiforme, high-grade glioma, resection

  2. The histone deacetylase SIRT6 suppresses the expression of the RNA-binding protein PCBP2 in glioma

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xin; Hao, Bin; Liu, Ying; Dai, Dongwei; Han, Guosheng; Li, Yanan; Wu, Xi; Zhou, Xiaoping; Yue, Zhijian; Wang, Laixing; Cao, Yiqun, E-mail: yiquancao@sohu.com; Liu, Jianmin, E-mail: jianminliuchh@163.com

    2014-03-28

    Highlights: • PCBP2 expression is over-expressed in human glioma tissues and cell lines. • SIRT6 is decreased in glioma and correlated with PCBP2. • SIRT6 inhibits PCBP2 expression by deacetylating H3K9. • SIRT6 inhibits glioma growth in vitro and in vivo. - Abstract: More than 80% of tumors that occur in the brain are malignant gliomas. The prognosis of glioma patients is still poor, which makes glioma an urgent subject of cancer research. Previous evidence and our present data show that PCBP2 is over-expressed in human glioma tissues and predicts poor outcome. However, the mechanism by which PCBP2 is regulated in glioma remains elusive. We find that SIRT6, one of the NAD{sup +}-dependent class III deacetylase SIRTUINs, is down-regulated in human glioma tissues and that the level of SIRT6 is negatively correlated with PCBP2 level while H3K9ac enrichment on the promoter of PCBP2 is positively correlated with PCBP2 expression. Furthermore, we identify PCBP2 as a target of SIRT6. We demonstrate that PCBP2 expression is inhibited by SIRT6, which depends upon deacetylating H3K9ac. Finally, our results reveal that SIRT6 inhibits glioma cell proliferation and colony formation in vitro and glioma cell growth in vivo in a PCBP2 dependent manner. In summary, our findings implicate that SIRT6 inhibits PCBP2 expression through deacetylating H3K9ac and SIRT6 acts as a tumor suppressor in human glioma.

  3. Human gliomas contain morphine

    DEFF Research Database (Denmark)

    Olsen, Peter; Rasmussen, Mads; Zhu, Wei

    2005-01-01

    morphine via high pressure liquid chromatography (HPLC). The HPLC peak corresponding to an authentic morphine standard had its morphine level determined via radioimmune assay. The identity of this material was established by Q-TOF-MS analysis. RESULTS: Each glioma exhibited an endogenous morphine presence....... Tumor extractions demonstrated a molecular mass of 286.14 da, identical to authentic morphine. Subsequent fragmentation analysis of this molecule revealed fragment masses of 129.01 da, 183.09 da and 201.07 da, corresponding to authentic morphine fragments. This material was not found in any......BACKGROUND: Morphine has been found in cancer cell lines originating from human and animal cells. Thus, it became important to demonstrate whether or not actual tumours contain this opiate alkaloid. MATERIAL/METHODS: Human glioma tissues were biochemically treated to isolate and separate endogenous...

  4. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Cheng-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan (China); Kuan, Yu-Hsiang [Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Ou, Yen-Chuan; Li, Jian-Ri [Division of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Wu, Chih-Cheng [Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Department of Financial and Computational Mathematics, Providence University, Taichung 433, Taiwan (China); Pan, Pin-Ho [Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan (China); Chen, Wen-Ying [Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Huang, Hsuan-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Chen, Chun-Jung, E-mail: cjchen@vghtc.gov.tw [Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Center for General Education, Tunghai University, Taichung 407, Taiwan (China); Department of Nursing, HungKuang University, Taichung 433, Taiwan (China)

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.

  5. Molecular subtypes of glioblastoma are relevant to lower grade glioma.

    Directory of Open Access Journals (Sweden)

    Xiaowei Guan

    Full Text Available Gliomas are the most common primary malignant brain tumors in adults with great heterogeneity in histopathology and clinical course. The intent was to evaluate the relevance of known glioblastoma (GBM expression and methylation based subtypes to grade II and III gliomas (ie. lower grade gliomas.Gene expression array, single nucleotide polymorphism (SNP array and clinical data were obtained for 228 GBMs and 176 grade II/II gliomas (GII/III from the publically available Rembrandt dataset. Two additional datasets with IDH1 mutation status were utilized as validation datasets (one publicly available dataset and one newly generated dataset from MD Anderson. Unsupervised clustering was performed and compared to gene expression subtypes assigned using the Verhaak et al 840-gene classifier. The glioma-CpG Island Methylator Phenotype (G-CIMP was assigned using prediction models by Fine et al.Unsupervised clustering by gene expression aligned with the Verhaak 840-gene subtype group assignments. GII/IIIs were preferentially assigned to the proneural subtype with IDH1 mutation and G-CIMP. GBMs were evenly distributed among the four subtypes. Proneural, IDH1 mutant, G-CIMP GII/III s had significantly better survival than other molecular subtypes. Only 6% of GBMs were proneural and had either IDH1 mutation or G-CIMP but these tumors had significantly better survival than other GBMs. Copy number changes in chromosomes 1p and 19q were associated with GII/IIIs, while these changes in CDKN2A, PTEN and EGFR were more commonly associated with GBMs.GBM gene-expression and methylation based subtypes are relevant for GII/III s and associate with overall survival differences. A better understanding of the association between these subtypes and GII/IIIs could further knowledge regarding prognosis and mechanisms of glioma progression.

  6. Inhibition of elongation factor-2 kinase augments the antitumor activity of Temozolomide against glioma.

    Directory of Open Access Journals (Sweden)

    Xiao-Yuan Liu

    Full Text Available BACKGROUND: Glioblastoma multiforme (GBM, the most common form of brain cancer with an average survival of less than 12 months, is a highly aggressive and fatal disease characterized by survival of glioma cells following initial treatment, invasion through the brain parenchyma and destruction of normal brain tissues, and ultimately resistance to current treatments. Temozolomide (TMZ is commonly used chemotherapy for treatment of primary and recurrent high-grade gliomas. Nevertheless, the therapeutic outcome of TMZ is often unsatisfactory. In this study, we sought to determine whether eEF-2 kinase affected the sensitivity of glioma cells to treatment with TMZ. METHODOLOGY/PRINCIPAL FINDINGS: Using RNA interference approach, a small molecule inhibitor of eEF-2 kinase, and in vitro and in vivo glioma models, we observed that inhibition of eEF-2 kinase could enhance sensitivity of glioma cells to TMZ, and that this sensitizing effect was associated with blockade of autophagy and augmentation of apoptosis caused by TMZ. CONCLUSIONS/SIGNIFICANCE: These findings demonstrated that targeting eEF-2 kinase can enhance the anti-glioma activity of TMZ, and inhibitors of this kinase may be exploited as chemo-sensitizers for TMZ in treatment of malignant glioma.

  7. EMMPRIN is an independent negative prognostic factor for patients with astrocytic glioma.

    Directory of Open Access Journals (Sweden)

    Li Tian

    Full Text Available Extracellular matrix metalloproteinase inducer (EMMPRIN, also known as CD147, is a member of the immunoglobulin superfamily that is present on the surface of tumor cells and stimulates adjacent fibroblasts to produce matrix metalloproteinases (MMPs. It has been proved to be associated with tumor invasion and metastasis in various human malignancies. In our study, the protein expression level of EMMPRIN in 306 cases of astrocytic glioma is investigated by immunohistochemistry assay. Statistical analysis was utilized to evaluate the association of EMMPRIN with clinicopathological characteristics and prognosis of patients. It was proved that EMMPRIN protein expression was increased in glioma compared with that in normal brain tissue. Moreover, EMMPRIN immunohistochemical staining was correlated with WHO grade and Karnofsky performance score for strong positive EMMPRIN staining is more frequently detected in glioma of advanced grade or low KPS score. It is also demonstrated that EMMPRIN could be an independent negative prognostic factor in glioma for patients with glioma of strong EMMPRIN staining tend to have high risk of death. These results proved that EMMPRIN is associated with prognosis of glioma, which may also suggest the potential role of EMMPRIN in glioma management.

  8. Direct Cranial Nerve Involvement by Gliomas: Case series and review of the literature

    Science.gov (United States)

    Mabray, Marc C.; Glastonbury, Christine M.; Mamlouk, Mark D.; Punch, Gregory E.; Solomon, David A.; Cha, Soonmee

    2017-01-01

    Malignant gliomas are characterized by infiltrative growth of tumor cells, including along white matter tracts. This may result in clinical cranial neuropathy due to direct involvement of a cranial nerve rather than by leptomeningeal spread along cranial nerves. Gliomas directly involving cranial nerves III-XII are rare with only eleven cases reported in the literature prior to 2014, including eight with imaging. We present eight additional cases demonstrating direct infiltration of a cranial nerve by glioma. Asymmetric cisternal nerve expansion as compared to the contralateral nerve was noted with a mean length of involvement of 9.4 mm. Based on our case series, the key imaging feature to recognize direct cranial nerve involvement by a glioma is the detection of an intra-axial mass in the pons or midbrain that is directly associated with expansion, signal abnormality, and/or enhancement of the adjacent cranial nerve(s). PMID:25857757

  9. A drosophila model for EGFR-Ras and PI3K-dependent human glioma.

    Directory of Open Access Journals (Sweden)

    Renee D Read

    2009-02-01

    Full Text Available Gliomas, the most common malignant tumors of the nervous system, frequently harbor mutations that activate the epidermal growth factor receptor (EGFR and phosphatidylinositol-3 kinase (PI3K signaling pathways. To investigate the genetic basis of this disease, we developed a glioma model in Drosophila. We found that constitutive coactivation of EGFR-Ras and PI3K pathways in Drosophila glia and glial precursors gives rise to neoplastic, invasive glial cells that create transplantable tumor-like growths, mimicking human glioma. Our model represents a robust organotypic and cell-type-specific Drosophila cancer model in which malignant cells are created by mutations in signature genes and pathways thought to be driving forces in a homologous human cancer. Genetic analyses demonstrated that EGFR and PI3K initiate malignant neoplastic transformation via a combinatorial genetic network composed primarily of other pathways commonly mutated or activated in human glioma, including the Tor, Myc, G1 Cyclins-Cdks, and Rb-E2F pathways. This network acts synergistically to coordinately stimulate cell cycle entry and progression, protein translation, and inappropriate cellular growth and migration. In particular, we found that the fly orthologs of CyclinE, Cdc25, and Myc are key rate-limiting genes required for glial neoplasia. Moreover, orthologs of Sin1, Rictor, and Cdk4 are genes required only for abnormal neoplastic glial proliferation but not for glial development. These and other genes within this network may represent important therapeutic targets in human glioma.

  10. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy

    Directory of Open Access Journals (Sweden)

    Mueller-Klieser Wolfgang

    2011-07-01

    Full Text Available Abstract Background Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells. Methods To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model. Results The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2, 3-oxoacid-CoA transferase 1 (OXCT1 and acetyl-CoA acetyltransferase 1 (ACAT1 were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1α (HIF-1α pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival. Conclusion In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic

  11. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy

    Science.gov (United States)

    2011-01-01

    Background Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic) diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells. Methods To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model. Results The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2), 3-oxoacid-CoA transferase 1 (OXCT1) and acetyl-CoA acetyltransferase 1 (ACAT1) were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1α (HIF-1α) pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival. Conclusion In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic agents that efficiently

  12. Estradiol Receptors Regulate Differential Connexin 43 Expression in F98 and C6 Glioma Cell Lines.

    Directory of Open Access Journals (Sweden)

    Zahra Moinfar

    Full Text Available Glioma is the most common malignant primary brain tumour with male preponderance and poor prognosis. Glioma cells express variable amounts of connexin 43 (Cx43 and estrogen receptors (ERs. Both, Cx43 and ERs, play important roles in cell proliferation and migration. Therefore, we investigated the effects of 17-ß estradiol (E2 on Cx43 expression in two glioma cell lines with variable native expression of Cx43.F98 and C6 rat glioma cells were cultured for 24 h in the presence of 10 nM or 100 nM E2, and the E2-antagonist, Fulvestrant. An MTT assay was performed to evaluate cell viability. ERα, ERβ and Cx43 protein expressions were analysed by western blotting and Cx43 mRNA expression was analysed by real-time polymerase chain reaction. To quantify cell migration, an exclusive zone migration assay was used. Functional coupling of cells via gap junctions was examined using whole-cell patch-clamp technique.E2 reduced Cx43 expression in C6 cells, but increased Cx43 expression in F98 cultures. These effects were mediated via ERs. Moreover, E2 promoted C6 cell migration, but it did not affect F98 cell migration. The expression level of ERα was found to be high in C6, but low in F98 cells. ERβ was exclusively expressed in C6 cells. In addition, E2 treatment induced a significant decrease of ERβ in C6 cultures, while it decreased ERα expression in F98 glioma cells.These findings show that E2 differentially modulates Cx43 expression in F98 and C6 glioma cells, likely due to the differential expression of ERs in each of these cell lines. Our findings point to the molecular mechanisms that might contribute to the gender-specific differences in the malignancy of glioma and could have implications for therapeutic strategies against glioma.

  13. Silencing Nrf2 impairs glioma cell proliferation via AMPK-activated mTOR inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Yue [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Wang, Handong, E-mail: njhdwang@hotmail.com [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Wang, Qiang [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Ding, Hui [Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical University (Guangzhou), 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Wu, Heming [Department of Neurosurgery, Nanjing Jingdu Hospital, No. 34, Biao 34, Yanggongjing Road, Nanjing 210002, Jiangsu Province (China); Pan, Hao [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China)

    2016-01-15

    Gliomas are the leading cause of death among adults with primary brain malignancies. Treatment for malignant gliomas remains limited, and targeted therapies have been incompletely explored. Nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription regulator for antioxidant and detoxification enzymes, is abundantly expressed in cancer cells. In this study, the role and mechanism of Nrf2 in cancer cell proliferation was investigated in multiple glioma cell lines. We first evaluated the expression patterns of Nrf2 in four glioma cell lines and found all four cell lines expressed Nrf2, but the highest level was observed in U251 cells. We further evaluated the biological functions of Nrf2 in U251 glioma cell proliferation by specific inhibition of Nrf2 using short hairpin RNA (shRNA). We found that Nrf2 depletion inhibited glioma cell proliferation. Nrf2 depletion also decreased colony formation in U251 cells stably expressing Nrf2 shRNA compared to scrambled control shRNA. Moreover, suppression of Nrf2 expression could lead to ATP depletion (with concomitant rise in AMP/ATP ratio) and consequently to AMPK-activated mTOR inhibition. Finally, activation of adenosine monophosphate–activated protein kinase (AMPK) by treated with phenformin, an AMPK agonist, can mimic the inhibitory effect of Nrf2 knockdown in U251 cells. In conclusion, our findings will shed light to the role and mechanism of Nrf2 in regulating glioma proliferation via ATP-depletion-induced AMPK activation and consequent mTOR inhibition, a novel insight into our understanding the role and mechanism of Nrf2 in glioma pathoetiology. To our knowledge, this is also the first report to provide a rationale for the implication of cross-linking between Nrf2 and mTOR signaling.

  14. Senescence from glioma stem cell differentiation promotes tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Ouchi, Rie [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Okabe, Sachiko; Migita, Toshiro [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Nakano, Ichiro [Department of Neurosurgery, Comprehensive Cancer Center, University of Alabama at Birmingham, 1824 6th Avenue South, Birmingham, AL 35233 (United States); Seimiya, Hiroyuki, E-mail: hseimiya@jfcr.or.jp [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan)

    2016-02-05

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs' role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such as IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. - Highlights: • Non-stem glioma cells (NSGCs) lose telomerase and eventually become senescent. • Senescent NSGCs secrete pro-angiogenic proteins, such as VEGFs, IL-6, and IL-8. • Senescent NSGCs enhance the growth of brain microvascular endothelial cells. • Senescent NSGCs enhance the tumorigenic potential of glioma stem cells in vivo.

  15. Notch Signaling Enhances Nestin Expression in Gliomas

    Directory of Open Access Journals (Sweden)

    Alan H. Shih

    2006-12-01

    Full Text Available Recent findings suggest that Notch signaling is active in brain tumors and stem cells, and that stem cells or cells with progenitor characteristics contribute to brain tumor formation. These stem cells are marked by expression of several markers, including nestin, an intermediate filament protein. We have studied how the Notch signaling pathway affects nestin expression in brain tumors. We find that Notch receptors and ligands are expressed in vitro and in human samples of glioblastomas, the highest grade of malignant gliomas. In culture, Notch activity activates the nestin promoter. Activation of the Notch pathway also occurs in a glioblastoma multiforme mouse model induced by Kras, with translational regulation playing a role in Notch expression. Combined activation of Notch and Kras in wild-type nestin-expressing cells leads to their expansion within the subventricular zone and retention of proliferation and nestin expression. However, activation of Notch alone is unable to induce this cellular expansion. These data suggest that Notch may have a contributing role in the stem-like character of glioma cells.

  16. Expression and significance of P53 protein and MDM-2 protein in human gliomas

    Institute of Scientific and Technical Information of China (English)

    WANG An-liu; LIU Zhao-xia; LI Guang; ZHANG Li-wei

    2011-01-01

    Background P53 is one of the most studied tumor suppressors in the cancer research, and over 50% of human tumors carry P53 mutations. MDM-2 is amplified and/or overexpressed in a variety of human tumors of diverse tissue origin. The aim of this study was to examine the expression of P53 protein and MDM-2 protein in gliomas, and to investigate the relationship between the expression of the two proteins and the histopathological grades of glioma. The relationship between MDM-2 protein expression and P53 protein expression was also analyzed.Methods The expression of P53 protein and MDM-2 protein was immunohistochemically detected using monoclonal antibodies in 242 paraffin embedded tissues, including 30 normal brain tissues from patients with craniocerebral injury and 212 tissues from patients with primary glioma (grade Ⅰ-Ⅱ group: 5 cases of grade Ⅰ, 119 cases of grade Ⅱ; and grade Ⅲ-Ⅳ group: 53 cases of grade Ⅲ, and 35 cases of grade Ⅳ).Results The P53 positive rate was significantly higher in the glioma groups than in the control group (P <0.0001). The P53 positive rate was significantly higher in glioma tissues of grade Ⅲ-V than in glioma tissues of grade Ⅰ-Ⅱ group (P=0.001). The MDM-2 positive rate was significantly higher in glioma groups than in the control group (P <0.0001).There was no significant difference in the MDM-2 positive rate between the two glioma groups (P=0.936). The expression of P53 protein was not related to expression of MDM-2 protein (P=0.069)Conclusions Overexpression of P53 protein might be related to the occurrence and progression of glioma.Overexpression of MDM-2 protein may play an important role in glioma tumorigenesis, but may not be involved in glioma progression. The overexpression of MDM-2 protein was an early event in malignant transformation of glioma. MDM-2 may be a key player in glioma in its own right.

  17. Mature brain-derived neurotrophic factor and its receptor TrkB are upregulated in human glioma tissues.

    Science.gov (United States)

    Xiong, Jing; Zhou, L I; Lim, Yoon; Yang, Miao; Zhu, Yu-Hong; Li, Zhi-Wei; Fu, Deng-Li; Zhou, Xin-Fu

    2015-07-01

    There are two forms of brain-derived neurotrophic factor (BDNF), precursor of BDNF (proBDNF) and mature BDNF, which each exert opposing effects through two different transmembrane receptor signaling systems, consisting of p75 neurotrophin receptor (p75NTR) and tyrosine receptor kinase B (TrkB). Previous studies have demonstrated that proBDNF promotes cell death and inhibits the growth and migration of C6 glioma cells through p75NTR in vitro, while mature BDNF has opposite effects on C6 glioma cells. It is hypothesized that mature BDNF is essential in the development of malignancy in gliomas. However, histological data obtained in previous studies were unable distinguish mature BDNF from proBDNF due to the lack of specific antibodies. The present study investigated the expression of mature BDNF using a specific sheep monoclonal anti-mature BDNF antibody in 42 human glioma tissues of different grades and 10 control tissues. The correlation between mature BDNF and TrkB was analyzed. Mature BDNF expression was significantly increased in high-grade gliomas, and was positively correlated with the malignancy of the tumor and TrkB receptor expression. The present data have demonstrated that increased levels of mature BDNF contribute markedly to the development of malignancy of human gliomas through the primary BDNF receptor TrkB.

  18. Upregulation of miR-183 expression and its clinical significance in human brain glioma.

    Science.gov (United States)

    Ye, Zhennan; Zhang, Zihuan; Wu, Lingyun; Liu, Cegang; Chen, Qiang; Liu, Jingpeng; Wang, Xiaoliang; Zhuang, Zong; Li, Wei; Xu, Shanshui; Hang, Chunhua

    2016-08-01

    Glioma is the most common type of primary malignant tumor in the central nervous system (CNS) with a high incidence and a high mortality rate, as well as an extremely low 5-year survival rate. As a class of small non-coding RNAs, microRNAs (miRNAs) may be closely involved in carcinogenesis and might also be connected with glioma diagnosis and prognosis. In this study, we aimed at investigating the expression level of microRNA-183 (miR-183) in 105 cases of glioma tissues of four World Health Organization (WHO) grades and 10 cases of normal brain tissues and its potential predictive and prognostic values in glioma. We found that the expression levels of miR-183 were significantly higher in glioma tissues than that in normal brain tissues, and also higher in high-grade gliomas (WHO grade III and IV) compared with low-grade gliomas (WHO grade I and II). The miR-183 expression level was classified as low or high according to the median value. High expression of miR-183 was found to significantly correlate with larger tumor size, higher WHO grade, and worse Karnofsky performance score (KPS). Kaplan-Meier survival analysis showed that patients with high miR-183 expression had worse overall survival (OS) and progression-free survival (PFS) than patients with low miR-183 expression. Moreover, univariate and multivariate analyses indicated that miR-183 expression level was an independent prognostic parameter of a patient's OS and PFS. In conclusion, our study indicated that miR-183 was upregulated in glioma, and that it may be used as a potential biomarker of poor prognosis in patients with glioma.

  19. Down-regulation of neogenin accelerated glioma progression through promoter Methylation and its overexpression in SHG-44 Induced Apoptosis.

    Directory of Open Access Journals (Sweden)

    Xinmin Wu

    Full Text Available BACKGROUND: Dependence receptors have been proved to act as tumor suppressors in tumorigenesis. Neogenin, a DCC homologue, well known for its fundamental role in axon guidance and cellular differentiation, is also a dependence receptor functioning to control apoptosis. However, loss of neogenin has been reported in several kinds of cancers, but its role in glioma remains to be further investigated. METHODOLOGY/PRINCIPAL FINDINGS: Western blot analysis showed that neogenin level was lower in glioma tissues than in their matching surrounding non-neoplastic tissues (n = 13, p<0.01. By immunohistochemical analysis of 69 primary and 16 paired initial and recurrent glioma sections, we found that the loss of neogenin did not only correlate negatively with glioma malignancy (n = 69, p<0.01, but also glioma recurrence (n = 16, p<0.05. Kaplan-Meier plot and Cox proportional hazards modelling showed that over-expressive neogenin could prolong the tumor latency (n = 69, p<0.001, 1187.6 ± 162.6 days versus 687.4 ± 254.2 days and restrain high-grade glioma development (n = 69, p<0.01, HR: 0.264, 95% CI: 0.102 to 0.687. By Methylation specific polymerase chain reaction (MSP, we reported that neogenin promoter was methylated in 31.0% (9/29 gliomas, but absent in 3 kinds of glioma cell lines. Interestingly, the prevalence of methylation in high-grade gliomas was higher than low-grade gliomas and non-neoplastic brain tissues (n = 33, p<0.05 and overall methylation rate increased as glioma malignancy advanced. Furthermore, when cells were over-expressed by neogenin, the apoptotic rate in SHG-44 was increased to 39.7% compared with 8.1% in the blank control (p<0.01 and 9.3% in the negative control (p<0.01. CONCLUSIONS/SIGNIFICANCE: These observations recapitulated the proposed role of neogenin as a tumor suppressor in gliomas and we suggest its down-regulation owing to promoter methylation is a selective advantage for glioma genesis, progression and recurrence

  20. Management and outcome of high-grade multicentric gliomas: a contemporary single-institution series and review of the literature.

    Science.gov (United States)

    di Russo, Paolo; Perrini, Paolo; Pasqualetti, Francesco; Meola, Antonio; Vannozzi, Riccardo

    2013-12-01

    Multicentric malignant gliomas are well-separated tumours in different lobes or hemispheres, without anatomical continuity between lesions. The purpose of this study was to explore the clinical features, the pathology and the outcome according to the management strategies in a consecutive series of patients treated at a single institution. In addition, an analysis of the existing literature is presented. For the institutional analysis, a retrospective review of all patients who underwent treatment for multicentric gliomas in the last 7 years was performed. For the analysis of the literature, a MEDLINE search with no date limitations was accomplished for surgical treatment of multicentric malignant gliomas. Two hundred and thirty-nine patients with glioma were treated in our department. Eighteen patients (7.5 %) with a mean age of 64 years (age range, 37-78 years) presented multicentric malignant gliomas. Thirteen patients (72 %) underwent surgical resection of at least one lesion that was followed by adjuvant treatment in all but one case. Five patients (28 %) underwent stereotactic biopsy and thereafter received chemotherapy. A survival advantage was associated with resection of at least one lesion followed by adjuvant treatment (median overall survival 12 months) compared with 4 months for stereotactic biopsy followed by chemotherapy. Similar results were obtained from the review of the literature. Resection of at least one lesion seems to play a significant role in the management of selected patients with multicentric malignant gliomas. Multi-institutional studies on larger series are warranted to define how aggressively the patients with malignant multicentric gliomas should be treated.

  1. Association of Telomerase Reverse Transcriptase Promoter Mutations with the Prognosis of Glioma Patients: a Meta-Analysis.

    Science.gov (United States)

    Wang, Xiaogang; Li, Xiaoming; Xu, Feng; Zhang, Youqian; Liu, Hongwei; Tao, Yingqun

    2016-05-01

    Previous studies have found that telomerase reverse transcriptase (TERT) has vital roles in the development of malignant diseases including glioma. The occurrence of TERT promoter mutations in gliomas is frequent. So far, several studies on the association between TERT promoter mutations and prognosis of gliomas had been published, but the conclusion was still not uncertain. The aim of the present meta-analysis was to assess the association between TERT promoter mutations and survival of glioma patients by pooling data from published studies. PubMed, Embase, and Web of Science were searched for articles on the association between TERT promoter mutations and survival of glioma patients until June 30, 2015. Hazard ratios (HR) and the 95% confidence intervals (CIs) were utilized to analyze the prognosis of glioma patients with TERT promoter mutations. Heterogeneity of included studies was assessed using Cochrane's Q test and I (2) method. Eleven studies with a total of 3,444 glioma patients were finally included into the meta-analysis. Nine studies reported the HRs adjusting for other confounding factors. Meta-analysis of total 11 studies suggested that TERT promoter mutations were significantly associated with worse prognosis of patients with gliomas (HR = 2.07, 95% CI = 1.58-2.71, P promoter mutations were independently associated with worse prognosis of patients with gliomas (HR = 2.28, 95% CI = 1.72-3.01, P promoter mutation is a promising biomarker for predicting worse prognosis for patients with gliomas. More prospective well-designed cohort studies are needed to further validate its prognostic role in gliomas.

  2. Therapeutic vaccines for malignant brain tumors

    Directory of Open Access Journals (Sweden)

    Michael P Gustafson

    2008-12-01

    Full Text Available Michael P Gustafson1, Keith L Knutson2, Allan B Dietz11Division of Transfusion Medicine; 2Department of Immunology, Mayo Clinic, Rochester, MN, USAAbstract: Malignant gliomas are the most common and aggressive form of brain tumors. Current therapy consists of surgical resection, followed by radiation therapy and concomitant chemotherapy. Despite these treatments, the prognosis for patients is poor. As such, investigative therapies including tumor vaccines have targeted this devastating condition. Recent clinical trials involving immunotherapy, specifically dendritic cell (DC based vaccines, have shown promising results. Overall, these vaccines are well tolerated with few documented side effects. In many patients receiving vaccines, tumor progression was delayed and the median overall survival of these patients was prolonged. Despite these encouraging results, several factors have limited the efficacy of DC vaccines. Here we discuss the potential of DC vaccines as adjuvant therapy and current obstacles of generating highly pure and potent DC vaccines in the context of malignant glioma. Taken together, the results from earlier clinical studies justify additional clinical trials aimed at improving the efficacy of DC vaccines.Keywords: malignant glioma, glioblastoma multiforme, vaccine, immunotherapy, dendritic cells

  3. Tricyclic Neovibsanin Scaffold Inhibits Glioma by Targeting Glioma ...

    African Journals Online (AJOL)

    formation capacity and induction of apoptosis in glioma cells. Methods: ... present in plants and possess polyfunctional structures ... the ethics and review committee for the animal studies at .... adhered and started to differentiate forming U138.

  4. 恶性脑胶质瘤放疗患者生存质量及家属感受的随访研究%A fllow up study about quality of slife after radiotherapy for malignant cerebral glioma and the views of relatives

    Institute of Scientific and Technical Information of China (English)

    谢万福; 李传坤; 徐高峰; 白晓斌

    2011-01-01

    Objective:To explore the views of bereaved relatives about quality of survival after radiotherapy for malignant cerebal glioma.Methods : Fifty six patients with cerebral glioma were treated at the Fist Affiliated Hospital of of Xi'an Jiaotong University from 2006 to 2009.All patients were followed up and their survival data and the views to life quality of bereaved relatives were analiyzed retrospectively.Results: Relatives described quality of life as "good or acceptable" when patients carried on some normal activities or enjoyed social relationships.They described restricted and dependent states, contact deterioration , or loss of social interaction as " poor or acceptable" quality of life.Length of time lived in such states also appeared important.Relatives/views of good or acceptable quality of life were independently related to low initial cognitive or personality change or low distress in the patients after diagnosis ,and to their subsequent survival free from physical disability for at least one month.Satisfaction with radiotherapy was related to low initial distress , some degree of surgical resection , and overall length of survival longer than six months.Condusion: Carefully exploring the views of bereaved relaiives can bring a useful perspective to difficult treatment decisions.Their values support including disability and distress in quality of life measures.%目的:研究已故恶性脑胶质瘤放疗患者的家属对其生存质量的感受.方法:选择西安交大第一附属医院2006年至2009年治疗的56例脑胶质瘤患者.对所有患者进行随访,对他们的生存数据及去世后家属对生存质量的看法进行回顾性分析.结果:对可参加正常活动或参与社交的患者,其生存质量称为"良好或可接受";对生活受限或不能自理,健康状况每况愈下,或丧失社交能力者,生存质量称为"差或不接受".这种状态下生存期限也显现出其重要性.家属认为其生存质量好或是可以

  5. Preclinical investigation of ibrutinib, a Bruton's kinase tyrosine (Btk) inhibitor, in suppressing glioma tumorigenesis and stem cell phenotypes.

    Science.gov (United States)

    Wei, Li; Su, Yu-Kai; Lin, Chien-Min; Chao, Tsu-Yi; Huang, Shang-Pen; Huynh, Thanh-Tuan; Jan, Hsun-Jin; Whang-Peng, Jacqueline; Chiou, Jeng-Fong; Wu, Alexander T H; Hsiao, Michael

    2016-10-25

    Standard interventions for glioma include surgery, radiation and chemotherapies but the prognosis for malignant cases such as glioblastoma multiforme remain grim. Even with targeted therapeutic agent, bevacitumab, malignant glioma often develops resistance and recurrence. Thus, developing alternative interventions (therapeutic targets, biomarkers) is urgently required. Bruton's tyrosine kinase (Btk) has been long implicated in B cell malignancies but surprisingly it has recently been shown to also play a tumorigenic role in solid tumors such as ovarian and prostate cancer. Bioinformatics data indicates that Btk is significantly higher in clinical glioma samples as compared to normal brain cells and Btk expression level is associated with stage progression. This prompts us to investigate the potential role of Btk as a therapeutic target for glioma. Here, we demonstrate Btk expression is associated with GBM tumorigenesis. Down-regulation of Btk in GBM cell lines showed a significantly reduced abilities in colony formation, migration and GBM sphere-forming potential. Mechanistically, Btk-silenced cells showed a concomitant reduction in the expression of CD133 and Akt/mTOR signaling. In parallel, Ibrutinib (a Btk inhibitor) treatment led to a similar anti-tumorigenic response. Using xenograft mouse model, tumorigenesis was significantly reduced in Btk-silenced or ibrutinib-treated mice as compared to control counterparts. Finally, our glioma tissue microarray analysis indicated a higher Btk staining in the malignant tumors than less malignant and normal brain tissues. Collectively, Btk may represent a novel therapeutic target for glioma and ibrunitib may be used as an adjuvant treatment for malignant GBM.

  6. Long non-coding RNA ENST00462717 suppresses the proliferation, survival, and migration by inhibiting MDM2/MAPK pathway in glioma.

    Science.gov (United States)

    Wang, Aiqin; Meng, Mingzhu; Zhao, Xiuhe; Kong, Lina

    2017-04-01

    Gliomas are the most common and aggressive primary malignant tumor in the central nervous system, and requires new biomarkers and therapeutic methods. Long noncoding RNAs (lncRNAs) are important factors in numerous human diseases, including cancer. But studies on lncRNAs and gliomas are limited. In this study, we investigated the expression patterns of lncRNAs in 3 pairs of glioma samples and adjacent non-tumor tissues via microarray and selected the most down-regulated lnc00462717 to further verify its roles in glioma. We observed that decreased lnc00462717 expression was associated with the malignant status in glioma. In vitro experiment demonstrated that lnc00462717 overexpression suppressed glioma cell proliferation, survival and migration while knockdown of lnc00462717 had an opposite result. Moreover, we identified MDM2 as a direct target of lnc00462717 and lnc00462717 played a role by partially regulating the MDM2/MAPK pathway. In conclusion, lnc00462717 may function in suppressing glioma cell proliferation, survival, migration and may potentially serve as a novel biomarker and therapeutic target for glioma.

  7. Innate immune functions of microglia isolated from human glioma patients

    Directory of Open Access Journals (Sweden)

    Grimm Elizabeth

    2006-03-01

    Full Text Available Abstract Background Innate immunity is considered the first line of host defense and microglia presumably play a critical role in mediating potent innate immune responses to traumatic and infectious challenges in the human brain. Fundamental impairments of the adaptive immune system in glioma patients have been investigated; however, it is unknown whether microglia are capable of innate immunity and subsequent adaptive anti-tumor immune responses within the immunosuppressive tumor micro-environment of human glioma patients. We therefore undertook a novel characterization of the innate immune phenotype and function of freshly isolated human glioma-infiltrating microglia (GIM. Methods GIM were isolated by sequential Percoll purification from patient tumors immediately after surgical resection. Flow cytometry, phagocytosis and tumor cytotoxicity assays were used to analyze the phenotype and function of these cells. Results GIM expressed significant levels of Toll-like receptors (TLRs, however they do not secrete any of the cytokines (IL-1β, IL-6, TNF-α critical in developing effective innate immune responses. Similar to innate macrophage functions, GIM can mediate phagocytosis and non-MHC restricted cytotoxicity. However, they were statistically less able to mediate tumor cytotoxicity compared to microglia isolated from normal brain. In addition, the expression of Fas ligand (FasL was low to absent, indicating that apoptosis of the incoming lymphocyte population may not be a predominant mode of immunosuppression by microglia. Conclusion We show for the first time that despite the immunosuppressive environment of human gliomas, GIM are capable of innate immune responses such as phagocytosis, cytotoxicity and TLR expression but yet are not competent in secreting key cytokines. Further understanding of these innate immune functions could play a critical role in understanding and developing effective immunotherapies to malignant human gliomas.

  8. Influences of surface coatings and components of FePt nanoparticles on the suppression of glioma cell proliferation

    Directory of Open Access Journals (Sweden)

    Sun H

    2012-07-01

    Full Text Available Haiming Sun,1,* Xiaohui Chen,2,* Dan Chen,1 Mingyan Dong,1 Xinning Fu,1 Qian Li,1 Xi Liu,1 Qingzhi Wu,1 Tong Qiu,1 Tao Wan,1 Shipu Li11State Key Laboratory of Advanced Technology for Materials Synthesis and Processing and Biomedical Materials and Engineering Center, Wuhan University of Technology, Wuhan, China; 2Department of Prosthetics, School of Stomatology, Wuhan University, Wuhan, China*Both authors contributed equally to this workAbstract: Malignant gliomas are primary brain tumors with high rates of morbidity and mortality; they are the fourth most common cause of cancer death. Novel diagnostic and therapeutic techniques based on nanomaterials provide promising options in the treatment of malignant gliomas. In order to evaluate the potential of FePt nanoparticles (NPs for malignant glioma therapy, FePt NPs with different surface coatings and components were tunably synthesized using oleic acid/oleylamine (OA/OA and cysteines (Cys as the capping agents, respectively. The samples were characterized using X-ray diffraction, transmission electron microscopy (TEM, X-ray photon spectroscopy, Fourier transform infrared spectroscopy, atomic absorption spectrum, and zeta potential. The influence of the surface coatings and components of the FePt NPs on the proliferation of glioma cells was assessed through MTT assay and TEM observation using three typical glioma cell lines (glioma U251 cells, astrocytoma U87 cells, and neuroglioma H4 cells as in vitro models. The results showed that the proliferation of glioma cells was significantly suppressed by lipophilic FePt-OA/OA NPs in a time- and/or dose-dependent manner, while no or low cytotoxic effects were detected in the case of hydrophilic FePt-Cys NPs. The IC50 value of FePt-OA/OA NPs on the three glioma cell lines was approximately 5–10 µg mL-1 after 24 hours’ incubation. Although the cellular uptake of FePt NPs was confirmed regardless of the surface coatings and components of the FePt NPs

  9. ABCG1 maintains high-grade glioma survival in vitro and in vivo.

    Science.gov (United States)

    Chen, Yi-Hsien; Cimino, Patrick J; Luo, Jingqin; Dahiya, Sonika; Gutmann, David H

    2016-04-26

    The overall survival for adults with malignant glioma (glioblastoma) remains poor despite advances in radiation and chemotherapy. One of the mechanisms by which cancer cells develop relative resistance to treatment is through de-regulation of endoplasmic reticulum (ER) homeostasis. We have recently shown that ABCG1, an ATP-binding cassette transporter, maintains ER homeostasis and suppresses ER stress-induced apoptosis in low-grade glioma. Herein, we demonstrate that ABCG1 expression is increased in human adult glioblastoma, where it correlates with poor survival in individuals with the mesenchymal subtype. Leveraging a mouse model of mesenchymal glioblastoma (NPcis), shRNA-mediated Abcg1 knockdown (KD) increased CHOP ER stress protein expression and resulted in greater NPcis glioma cell death in vitro. Moreover, Abcg1 KD reduced NPcis glioma growth and increased mouse survival in vivo. Collectively, these results demonstrate that ABCG1 is critical for malignant glioma cell survival, and might serve as a future therapeutic target for these deadly brain cancers.

  10. Decitabine Treatment of Glioma-Initiating Cells Enhances Immune Recognition and Killing

    Science.gov (United States)

    Riccadonna, Cristina; Yacoub Maroun, Céline; Vuillefroy de Silly, Romain; Boehler, Margaux; Calvo Tardón, Marta; Jueliger, Simone; Taverna, Pietro; Barba, Leticia; Marinari, Eliana; Pellegatta, Serena; Bassoy, Esen Yonca; Martinvalet, Denis; Dietrich, Pierre-Yves; Walker, Paul R.

    2016-01-01

    Malignant gliomas are aggressive brain tumours with very poor prognosis. The majority of glioma cells are differentiated (glioma-differentiated cells: GDCs), whereas the smaller population (glioma-initiating cells, GICs) is undifferentiated and resistant to conventional therapies. Therefore, to better target this pool of heterogeneous cells, a combination of diverse therapeutic approaches is envisaged. Here we investigated whether the immunosensitising properties of the hypomethylating agent decitabine can be extended to GICs. Using the murine GL261 cell line, we demonstrate that decitabine augments the expression of the death receptor FAS both on GDCs and GICs. Interestingly, it had a higher impact on GICs and correlated with an enhanced sensitivity to FASL-mediated cell death. Moreover, the expression of other critical molecules involved in cognate recognition by cytotoxic T lymphocytes, MHCI and ICAM-1, was upregulated by decitabine treatment. Consequently, T-cell mediated killing of both GDCs and GICs was enhanced, as was T cell proliferation after reactivation. Overall, although GICs are described to resist classical therapies, our study shows that hypomethylating agents have the potential to enhance glioma cell recognition and subsequent destruction by immune cells, regardless of their differentiation status. These results support the development of combinatorial treatment modalities including epigenetic modulation together with immunotherapy in order to treat heterogenous malignancies such as glioblastoma. PMID:27579489

  11. Multimodal imaging in cerebral gliomas and its neuropathological correlation

    Energy Technology Data Exchange (ETDEWEB)

    Gempt, Jens, E-mail: jens.gempt@lrz.tum.de [Neurochirurgische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Soehngen, Eric [Abteilung für Neuroradiologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Abteilung für Neuropathologie des Instituts für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Förster, Stefan [Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Ryang, Yu-Mi [Neurochirurgische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Schlegel, Jürgen [Abteilung für Neuropathologie des Instituts für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); and others

    2014-05-15

    Introduction: Concerning the preoperative clinical diagnostic work-up of glioma patients, tumor heterogeneity challenges the oncological therapy. The current study assesses the performance of a multimodal imaging approach to differentiate between areas in malignant gliomas and to investigate the extent to which such a combinatorial imaging approach might predict the underlying histology. Methods: Prior to surgical resection, patients harboring intracranial gliomas underwent MRIs (MR-S, PWI) and {sup 18}F-FET-PETs. Intratumoral and peritumoral biopsy targets were defined, by MRI only, by FET-PET only, and by MRI and FET-PET combined, and biopsied prior to surgical resection and which then received separate histopathological examinations. Results: In total, 38 tissue samples were acquired (seven glioblastomas, one anaplastic astrocytoma, one anaplastic oligoastrocytoma, one diffuse astrocytoma, and one oligoastrocytoma) and underwent histopathological analysis. The highest mean values of Mib1 and CD31 were found in the target point “T’ defined by MRI and FET-PET combined. A significant correlation between NAA/Cr and PET tracer uptake (−0.845, p < 0.05) as well as Cho/Cr ratio and cell density (0.742, p < 0.05) and NAA/Cr ratio and MIB-1 (−0761, p < 0.05) was disclosed for this target point, though not for target points defined by MRI and FET-PET alone. Conclusion: Multimodal-imaging-guided stereotactic biopsy correlated more with histological malignancy indices, such as cell density and MIB-1 labeling, than targets that were based solely on the highest amino acid uptake or contrast enhancement on MRI. The results of our study indicate that a combined PET-MR multimodal imaging approach bears potential benefits in detecting glioma heterogeneity.

  12. Indicação e intermediação de interesses: uma análise da conexão eleitoral na cidade do Rio de Janeiro, 2001-2004

    Directory of Open Access Journals (Sweden)

    Paulo M. d'Avila Filho

    2014-03-01

    Full Text Available Neste trabalho, os autores analisam a relação entre a sociedade e o poder público a partir do Poder Legislativo, tomando como objeto de estudo as indicações feitas pelos vereadores da Câmara Municipal do Rio de Janeiro aos órgãos da Prefeitura deste município nesse período. O objetivo é analisar a dinâmica político-eleitoral a partir das estratégias adotadas pelos vereadores para se reelegerem ou se elegerem para outro cargo público. A hipótese da pesquisa é que os legisladores municipais utilizam as indicações para intermediar a relação entre os eleitores e o Poder Executivo e, desta forma, construir sua conexão eleitoral. Os dados utilizados na pesquisa são secundários e qualitativos, constituindo uma base em Access (Microsoft proveniente do Banco de indicações dos vereadores do Rio de Janeiro (Câmara Municipal do Rio de Janeiro, 2004. Seu conteúdo constitui-se de características das indicações produzidas pelos vereadores no período 2001-2004, tais como o ano de emissão e a zona de destino na cidade. A base, transportada para o Excel, foi depurada e nela cada indicação foi categorizada conforme a sua destinação a um serviço de investimento, de manutenção ou imaterial. As tabelas de frequências simples e de contingência foram geradas no pacote SPSS. Os dados característicos das indicações foram associados e identificaram-se padrões de emissão de ordens temporal, de categoria e de região de destinação. As indicações disponíveis são a totalidade daquelas emitidas pela Câmara do Rio no período mencionado. Constituem, ao mesmo tempo, uma população analisada em um período definido e uma grande amostra do processo histórico amplo e dinâmico de geração de indicações. Submetidos à análise descritiva e ao testeχ² de aderência, os dados confirmam parcialmente a hipótese da pesquisa. Em primeiro lugar, eles sugerem que os vereadores tendem a usar as indicações de modo que o bem ou

  13. GENE EXPRESSION PROFILING OF GANGLIOGLIOMA MALIGNANT PROGRESSION BY cDNA ARRAY

    Institute of Scientific and Technical Information of China (English)

    ZHANG Quan-bin; HUANG Qiang; DONG Jun; WANG Ai-dong; SUN Ji-yong; LAN Qing; HU Geng-xi

    2005-01-01

    Objective: To establish gene expression profiles associated with malignant progression of ganglioglioma. Methods: The primary and two recurrent glioma specimens were collected intraoperatively from the same patient who experienced tumor transformation into anaplastic astrocytoma and glioblastoma multiform for the first and second recurrence respectively. Gene expression was assayed through cDNA array and bioinformatics analysis. Results: A total of 197 differentially expressed genes with differential ratio value more than 3 compared with normal brain tissue were obtained. Among 109 functionally denned genes, those associated with development ranked the first by frequency, followed by genes associated with metabolism, differentiation, signal transduction and so on. As a result of cluster analysis among 368 genes, eleven genes were up regulated with malignant progression, while six genes were down regulated. Conclusion: Gene expression profiles associated with malignant progression of glioma were successfully established, which provides a powerful tool for research on molecular mechanisms of malignant progression of gliomas.

  14. Retinoids in the treatment of glioma: a new perspective

    Directory of Open Access Journals (Sweden)

    Mawson AR

    2012-08-01

    Full Text Available Anthony R MawsonDepartment of Health Policy and Management, School of Health Sciences, College of Public Service, Jackson State University, Jackson, MS, USAAbstract: Primary brain tumors are among the top ten causes of cancer-related deaths in the US. Malignant gliomas account for approximately 70% of the 22,500 new cases of malignant primary brain tumors diagnosed in adults each year and are associated with high morbidity and mortality. Despite optimal treatment, the prognosis for patients with gliomas remains poor. The use of retinoids (vitamin A and its congeners in the treatment of certain tumors was originally based on the assumption that these conditions were associated with an underlying deficiency of vitamin A and that supplementation with pharmacological doses would correct the deficiency. Yet the results of retinoid treatment have been only modestly beneficial and usually short-lived. Studies also indicate that vitamin A excess and supplementation have pro-oxidant effects and are associated with increased risks of mortality from cancer and other diseases. The therapeutic role of vitamin A in cancer thus remains uncertain and a new perspective on the facts is needed. The modest and temporary benefits of retinoid treatment could result from a process of feedback inhibition, whereby exogenous retinoid temporarily inhibits the endogenous synthesis of these compounds. In fact, repeated and/or excessive exposure of the tissues to endogenous retinoic acid may contribute to carcinogenesis. Gliomas, in particular, may result from an imbalance in retinoid receptor expression initiated by environmental factors that increase the endogenous production of retinoic acid in glia. At the receptor level, it is proposed that this imbalance is characterized by excessive expression of retinoic acid receptor-α(RARα and reduced expression of retinoic acid receptor-β (RARβ. This suggests a potential new treatment strategy for gliomas, possibly even at a

  15. Do steroid hormones play a role in the etiology of glioma?

    Science.gov (United States)

    Kabat, Geoffrey C; Etgen, Anne M; Rohan, Thomas E

    2010-10-01

    Gliomas are the most common type of primary malignant brain tumor and have a very poor prognosis. Little is known, however, about the etiology of these tumors. Evidence from a number of sources suggests that endogenous steroid hormones may play a role in the development of gliomas. First, the descriptive epidemiology of glioma suggests a relative protection of females compared with males, particularly during the premenopausal years. Second, some gliomas and glioblastomas express estrogen receptors (ER), especially ERβ, as well as aromatase, the enzyme responsible for the conversion of testosterone to estradiol, and possibly other steroid hormone receptors. Third, experimental studies indicate that glioblastomas transplanted into animals grow at a slower rate in females compared with males. Finally, experimental studies show that estradiol, 2-methoxyestradiol, and a number of selective estrogen receptor modulators inhibit proliferation of gliomas and induce cell death. These hormonal agonists and antagonists may act either through classical steroid hormone receptors or independently of such receptors. In view of these findings, further clinical, experimental, and epidemiologic studies are needed to elucidate the role of steroid hormone agonists and antagonists in the development and proliferation of glioma. If hormonal pathways are involved in gliomagenesis, this could eventually lead to the design of preventive strategies. ©2010 AACR.

  16. Human Cytomegalovirus DNA Quantification and Gene Expression in Gliomas of Different Grades

    Science.gov (United States)

    Medeiros, Raphael Salles Scortegagna; Guerra, Juliana Mariotti; Kimura, Lidia Midori; Shirata, Neuza Kazumi; Nonogaki, Suely; dos Santos, Claudia Januário; Carlan Silva, Maria Cristina

    2016-01-01

    Gliomas are the most common type of primary brain tumors. The most aggressive type, Glioblastoma multiforme (GBM), is one of the deadliest human diseases, with an average survival at diagnosis of about 1 year. Previous evidence suggests a link between human cytomegalovirus (HCMV) and gliomas. HCMV has been shown to be present in these tumors and several viral proteins can have oncogenic properties in glioma cells. Here we have investigated the presence of HCMV DNA, RNA and proteins in fifty-two gliomas of different grades of malignancy. The UL83 viral region, the early beta 2.7 RNA and viral protein were detected in 73%, 36% and 57% by qPCR, ISH and IHC, respectively. Positivity of the viral targets and viral load was independent of tumor type or grade suggesting no correlation between viral presence and tumor progression. Our results demonstrate high prevalence of the virus in gliomas from Brazilian patients, contributing to a better understanding of the association between HCMV infection and gliomas worldwide and supporting further investigations of the virus oncomodulatory properties. PMID:27458810

  17. Glioma Revisited: From Neurogenesis and Cancer Stem Cells to the Epigenetic Regulation of the Niche

    Science.gov (United States)

    de Almeida Sassi, Felipe; Lunardi Brunetto, Algemir; Schwartsmann, Gilberto; Roesler, Rafael; Abujamra, Ana Lucia

    2012-01-01

    Gliomas are the most incident brain tumor in adults. This malignancy has very low survival rates, even when combining radio- and chemotherapy. Among the gliomas, glioblastoma multiforme (GBM) is the most common and aggressive type, and patients frequently relapse or become refractory to conventional therapies. The fact that such an aggressive tumor can arise in such a carefully orchestrated organ, where cellular proliferation is barely needed to maintain its function, is a question that has intrigued scientists until very recently, when the discovery of the existence of proliferative cells in the brain overcame such challenges. Even so, the precise origin of gliomas still remains elusive. Thanks to new advents in molecular biology, researchers have been able to depict the first steps of glioma formation and to accumulate knowledge about how neural stem cells and its progenitors become gliomas. Indeed, GBM are composed of a very heterogeneous population of cells, which exhibit a plethora of tumorigenic properties, supporting the presence of cancer stem cells (CSCs) in these tumors. This paper provides a comprehensive analysis of how gliomas initiate and progress, taking into account the role of epigenetic modulation in the crosstalk of cancer cells with their environment. PMID:22973309

  18. Migration capacity of human umbilical cord mesenchymal stem cells towards glioma in vivo*

    Institute of Scientific and Technical Information of China (English)

    Cungang Fan; Dongliang Wang; Qingjun Zhang; Jingru Zhou

    2013-01-01

    High-grade glioma is the most common malignant primary brain tumor in adults. The poor prognosis of glioma, combined with a resistance to currently available treatments, necessitates the ment of more effective tumor-selective therapies. Stem cel-based therapies are emerging as novel cel-based delivery vehicle for therapeutic agents. In the present study, we successful y isolated human umbilical cord mesenchymal stem cel s by explant culture. The human umbilical cord senchymal stem cel s were adherent to plastic surfaces, expressed specific surface phenotypes of mesenchymal stem cel s as demonstrated by flow cytometry, and possessed multi-differentiation potentials in permissive induction media in vitro. Furthermore, human umbilical cord mesenchymal stem cel s demonstrated excel ent glioma-specific targeting capacity in established rat glioma models after intratumoral injection or contralateral ventricular administration in vivo. The excellent glioma-specific targeting ability and extensive intratumoral distribution of human umbilical cord mesenchymal stem cel s indicate that they may serve as a novel cel ular vehicle for delivering the-rapeutic molecules in glioma therapy.

  19. Expression of elongation factor-2 kinase contributes to anoikis resistance and invasion of human glioma cells

    Institute of Scientific and Technical Information of China (English)

    Li ZHANG; Yi ZHANG; Xiao-yuan LIU; Zheng-hong QIN; Jin-ming YANG

    2011-01-01

    Aim: To determine whether elongation factor-2 kinase (eEF-2 kinase) contributes to the malignant phenotype of glioblastoma multiforme by promoting the migration and invasion of glioma cells. The mechanism involved was also explored.Methods: Human glioma cell lines T98G and LN-229 were used. The expression of eEF-2 kinase was silenced using siRNA, and the invasive potential of tumor cells was assessed using a wound-healing assay and a Matrigel invasion assay. Apoptosis was determined using propidium iodide (PI) staining and Western blot analysis of cleaved caspase-3.Results: Silencing the expression of eEF-2 kinase by siRNA significantly suppressed both the migration and invasion of human glioma cells. Silencing eEF-2 kinase expression also sensitized glioma cells to anoikis, thereby decreasing tumor cell viability in the absence of attachment. Treatment of tumor cells with the caspase inhibitor z-VAD-fmk down-regulated Bim accumulation and abolished glioma cell sensitivity to anoikis.Conclusion: The results suggest that the expression of eEF-2 kinase contributes to migration and invasion of human glioma cells by protecting them from anoikis. eEF-2 kinase expression may serve as a prognostic marker and a novel target for cancer therapy.

  20. The Wnt secretion protein Evi/Gpr177 promotes glioma tumourigenesis.

    Science.gov (United States)

    Augustin, Iris; Goidts, Violaine; Bongers, Angelika; Kerr, Grainne; Vollert, Gordon; Radlwimmer, Bernhard; Hartmann, Christian; Herold-Mende, Christel; Reifenberger, Guido; von Deimling, Andreas; Boutros, Michael

    2012-01-01

    Malignant astrocytomas are highly aggressive brain tumours with poor prognosis. While a number of structural genomic changes and dysregulation of signalling pathways in gliomas have been described, the identification of biomarkers and druggable targets remains an important task for novel diagnostic and therapeutic approaches. Here, we show that the Wnt-specific secretory protein Evi (also known as GPR177/Wntless/Sprinter) is overexpressed in astrocytic gliomas. Evi/Wls is a core Wnt signalling component and a specific regulator of pan-Wnt protein secretion, affecting both canonical and non-canonical signalling. We demonstrate that its depletion in glioma and glioma-derived stem-like cells led to decreased cell proliferation and apoptosis. Furthermore, Evi/Wls silencing in glioma cells reduced cell migration and the capacity to form tumours in vivo. We further show that Evi/Wls overexpression is sufficient to promote downstream Wnt signalling. Taken together, our study identifies Evi/Wls as an essential regulator of glioma tumourigenesis, identifying a pathway-specific protein trafficking factor as an oncogene and offering novel therapeutic options to interfere with the aberrant regulation of growth factors at the site of production.

  1. The role of myosin II in glioma invasion: A mathematical model

    Science.gov (United States)

    Lee, Wanho; Lim, Sookkyung; Kim, Yangjin

    2017-01-01

    Gliomas are malignant tumors that are commonly observed in primary brain cancer. Glioma cells migrate through a dense network of normal cells in microenvironment and spread long distances within brain. In this paper we present a two-dimensional multiscale model in which a glioma cell is surrounded by normal cells and its migration is controlled by cell-mechanical components in the microenvironment via the regulation of myosin II in response to chemoattractants. Our simulation results show that the myosin II plays a key role in the deformation of the cell nucleus as the glioma cell passes through the narrow intercellular space smaller than its nuclear diameter. We also demonstrate that the coordination of biochemical and mechanical components within the cell enables a glioma cell to take the mode of amoeboid migration. This study sheds lights on the understanding of glioma infiltration through the narrow intercellular spaces and may provide a potential approach for the development of anti-invasion strategies via the injection of chemoattractants for localization. PMID:28166231

  2. NUMB does not impair growth and differentiation status of experimental gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Euskirchen, Philipp, E-mail: philipp.euskirchen@charite.de [Department of Biomedicine, University of Bergen (Norway); Laboratory for Gene Therapy and Molecular Imaging, Max-Planck-Institute for Neurological Research, Cologne (Germany); Skaftnesmo, Kai-Ove; Huszthy, Peter C.; Brekka, Narve [Department of Biomedicine, University of Bergen (Norway); Bjerkvig, Rolf [Department of Biomedicine, University of Bergen (Norway); NorLux Neuro-Oncology Laboratory, Centre de Public de la Sante, Luxembourg (Luxembourg); Jacobs, Andreas H. [Laboratory for Gene Therapy and Molecular Imaging, Max-Planck-Institute for Neurological Research, Cologne (Germany); European Institute for Molecular Imaging, Muenster (Germany); Miletic, Hrvoje [Department of Biomedicine, University of Bergen (Norway); Department of Pathology, Haukeland University Hospital, Bergen (Norway)

    2011-12-10

    The cell fate determinant NUMB orchestrates asymmetric cell division in flies and mammals and has lately been suggested to have a tumor suppressor function in breast and lung cancer. Here, we studied NUMB in the context of malignant gliomas. We used ectopic expression of NUMB in order to inhibit proliferation and induce differentiation in glioma cells by alteration of Notch, Hedgehog and p53 signaling. We found that NUMB is consistently expressed in glioma biopsies with predominance of NUMB2/4 isoforms as determined by isoform-specific real-time PCR and Western blotting. Upon lentiviral overexpression, in vitro proliferation rate and the grade of differentiation as assessed by morphology and expression of neural and glial markers remained unchanged. Orthotopic xenografts of NUMB-transduced human U87 glioma cells could be established in nude rats without impairing engraftment or causing significant changes in morphology based on magnetic resonance imaging (MRI). The previously reported alteration of Hedgehog and p53 signaling by NUMB could not be recapitulated in glioma cells. We thus show that in experimental gliomas, NUMB overexpression most likely does not exert a tumor suppressor function such as seen in epithelial cancers.

  3. Identification of proteins involved in neural progenitor cell targeting of gliomas

    Directory of Open Access Journals (Sweden)

    Honeth Gabriella

    2009-06-01

    Full Text Available Abstract Background Glioblastoma are highly aggressive tumors with an average survival time of 12 months with currently available treatment. We have previously shown that specific embryonic neural progenitor cells (NPC have the potential to target glioma growth in the CNS of rats. The neural progenitor cell treatment can cure approximately 40% of the animals with malignant gliomas with no trace of a tumor burden 6 months after finishing the experiment. Furthermore, the NPCs have been shown to respond to signals from the tumor environment resulting in specific migration towards the tumor. Based on these results we wanted to investigate what factors could influence the growth and progression of gliomas in our rodent model. Methods Using microarrays we screened for candidate genes involved in the functional mechanism of tumor inhibition by comparing glioma cell lines to neural progenitor cells with or without anti-tumor activity. The expression of candidate genes was confirmed at RNA level by quantitative RT-PCR and at the protein level by Western blots and immunocytochemistry. Moreover, we have developed in vitro assays to mimic the antitumor effect seen in vivo. Results We identified several targets involved in glioma growth and migration, specifically CXCL1, CD81, TPT1, Gas6 and AXL proteins. We further showed that follistatin secretion from the NPC has the potential to decrease tumor proliferation. In vitro co-cultures of NPC and tumor cells resulted in the inhibition of tumor growth. The addition of antibodies against proteins selected by gene and protein expression analysis either increased or decreased the proliferation rate of the glioma cell lines in vitro. Conclusion These results suggest that these identified factors might be useful starting points for performing future experiments directed towards a potential therapy against malignant gliomas.

  4. Fractal analysis: fractal dimension and lacunarity from MR images for differentiating the grades of glioma.

    Science.gov (United States)

    Smitha, K A; Gupta, A K; Jayasree, R S

    2015-09-07

    Glioma, the heterogeneous tumors originating from glial cells, generally exhibit varied grades and are difficult to differentiate using conventional MR imaging techniques. When this differentiation is crucial in the disease prognosis and treatment, even the advanced MR imaging techniques fail to provide a higher discriminative power for the differentiation of malignant tumor from benign ones. A powerful image processing technique applied to the imaging techniques is expected to provide a better differentiation. The present study focuses on the fractal analysis of fluid attenuation inversion recovery MR images, for the differentiation of glioma. For this, we have considered the most important parameters of fractal analysis, fractal dimension and lacunarity. While fractal analysis assesses the malignancy and complexity of a fractal object, lacunarity gives an indication on the empty space and the degree of inhomogeneity in the fractal objects. Box counting method with the preprocessing steps namely binarization, dilation and outlining was used to obtain the fractal dimension and lacunarity in glioma. Statistical analysis such as one-way analysis of variance and receiver operating characteristic (ROC) curve analysis helped to compare the mean and to find discriminative sensitivity of the results. It was found that the lacunarity of low and high grade gliomas vary significantly. ROC curve analysis between low and high grade glioma for fractal dimension and lacunarity yielded 70.3% sensitivity and 66.7% specificity and 70.3% sensitivity and 88.9% specificity, respectively. The study observes that fractal dimension and lacunarity increases with an increase in the grade of glioma and lacunarity is helpful in identifying most malignant grades.

  5. Inhibition of autophagy induced by quercetin at a late stage enhances cytotoxic effects on glioma cells.

    Science.gov (United States)

    Bi, Yunke; Shen, Chen; Li, Chenguang; Liu, Yaohua; Gao, Dandan; Shi, Chen; Peng, Fei; Liu, Zhendong; Zhao, Boxian; Zheng, Zhixing; Wang, Xiaoxiong; Hou, Xu; Liu, Huailei; Wu, Jianing; Zou, Huichao; Wang, Kaikai; Zhong, Chen; Zhang, Jiakang; Shi, Changbin; Zhao, Shiguang

    2016-03-01

    Glioma is the most common primary brain tumor in the central nervous system (CNS) with high morbidity and mortality in adults. Although standardized comprehensive therapy has been adapted, the prognosis of glioma patients is still frustrating and thus novel therapeutic strategies are urgently in need. Quercetin (Quer), an important flavonoid compound found in many herbs, is shown to be effective in some tumor models including glioma. Recently, it is reported that adequate regulation of autophagy can strengthen cytotoxic effect of anticancer drugs. However, it is not yet fully clear how we should modulate autophagy to achieve a satisfactory therapeutic effect. 3-Methyladenine (3-MA) and Beclin1 short hairpin RNA (shRNA) were used to inhibit the early stage of autophage while chloroquine (CQ) to inhibit the late stage. MTT assay was implemented to determine cell viability. Transmission electron microscopy, western blot, and immunohistochemistry were adopted to evaluate autophagy. Western blot, flow cytometry, and immunohistochemistry were used to detect apoptosis. C6 glioma xenograft models were established to assess the therapeutic effect (the body weight change, the median survival time, and tumor volume) in vivo. Quercetin can inhibit cell viability and induce autophagy of U87 and U251 glioma cells in a dose-dependent manner. Inhibition of early-stage autophagy by 3-MA or shRNA against Beclin1 attenuated the quercetin-induced cytotoxicity. In contrast, suppression of autophagy at a late stage by CQ enhanced the anti-glioma efficiency of quercetin. Therapeutic effect of quercetin for malignant glioma can be strengthened by inhibition of autophagy at a late stage, not initial stage, which may provide a novel opportunity for glioma therapy.

  6. Expression and prognostic value of the WEE1 kinase in gliomas.

    Science.gov (United States)

    Music, Darija; Dahlrot, Rikke Hedegaard; Hermansen, Simon Kjær; Hjelmborg, Jacob; de Stricker, Karin; Hansen, Steinbjørn; Kristensen, Bjarne Winther

    2016-04-01

    High-grade gliomas have an aggressive clinical course and new clinical biomarkers and therapeutic targets are highly needed. WEE1 is a regulator of the G2 checkpoint in glioblastoma (GBM) cells. Inhibition of this kinase has, in experimental glioma studies, been suggested to enhance sensitivity to irradiation and temozolomide. However, expression level and prognostic potential of WEE1 protein in gliomas remain uninvestigated. In this study, glioma samples from 235 patients across all four WHO grades were analyzed by immunohistochemistry. Using image analysis, we calculated the area fraction of WEE1 positive nuclei. We found that WEE1 protein was localized in tumor cell nuclei and expressed in all glioma types and grades. Although WEE1 protein levels are higher in GBMs (mean 24.5%) relative to grade III (mean 14,0%, p < 0.05) and grade II (mean 6.8%, p < 0.001) gliomas, high WEE1 protein was associated with better survival in GBMs (p = 0.002). This was confirmed in multivariate analysis (HR 0.60, p = 0.003) even when adjusted for MGMT status (HR 0.60, p = 0.005). In conclusion, we report a nuclear expression of WEE1 protein in all glioma grades and types. The WEE1 positive nuclear area was correlated with malignancy grade but it was inversely associated with prognosis in GBM. Although WEE1 is a frequently occurring protein and has been proposed as a novel target in GBM, the role of WEE1 in glioma patient survival appears to be connected to the MGMT status and is more complex than previously anticipated.

  7. Malignant mesothelioma

    Directory of Open Access Journals (Sweden)

    Suzanne Alkul

    2016-04-01

    Full Text Available Seventy percent of patients with malignant mesothelioma have had exposure to asbestos fibers. Other patients without this exposure have had chronic pleural inflammation or received radiation to the thorax. Occasionally patients present with no obvious exposure history relevant to the development of malignant mesothelioma. This diagnosis needs to be in the differential diagnosis of all patients with unexplained pleural disease.

  8. Early presentation of de novo high grade glioma with epileptic seizures: electroclinical and neuroimaging findings.

    Science.gov (United States)

    Rossi, Rosario; Figus, Andrea; Corraine, Simona

    2010-10-01

    We report the clinical, EEG and neuroradiologic findings from three adult patients who developed new-onset seizure disorders as early clinical manifestations of de novo high grade glioma. The malignancies could not be recognised at the time of the first epileptic seizure because of minimal non-specific brain abnormalities, which showed no signs of necrosis or significant contrast enhancement on computed tomography and magnetic resonance imaging. Focal EEG abnormalities were recorded in all cases and appeared consistent with the neuroradiologic findings. The patients regained normal neurological status after the first seizure but rapidly developed space-occupying necrotic lesions. Two patients underwent surgery and received histological diagnoses of the tumours. Another patient was finally diagnosed with a malignant glioma based on the neuroradiologic picture and rapid progression of the cerebral lesion. It should be noted that in adult patients, new-onset epileptic seizures might reveal the presence of malignant gliomas at a very early stage in the tumour formation process. This report indicates that typical anatomoradiologic features of de novo high grade glioma, such as necrosis and rim-contrast enhancement, could be absent at the time of the first epileptic seizure but become clear within a short period after clinical presentation.

  9. Interleukin 13 Mutants of Enhanced Avidity Toward the Glioma-Associated Receptor, IL13Rα2

    OpenAIRE

    MadhanKumar, A.B.; Akiva Mintz; Waldemar Debinski

    2004-01-01

    Interleukin 13 (IL13) binds a receptor that is highly overexpressed in malignant gliomas, IL13Rα2. IL13 protein is composed of four helices: α-helix A, B, C, and D, and we found a new “hot spot” in α-helix D that is crucial for the binding of IL13 to IL13Rα2. Lys105 plus Lys-106 and Arg-109 represent this hot spot. In the current study, we have made substitutions at these three positions in IL13. We examined both neutralization of an IL13-based cytotoxin's glioma cell killing and direct recep...

  10. Interleukin 13 Mutants of Enhanced Avidity Toward the Glioma-Associated Receptor, IL13Rα21

    OpenAIRE

    MadhanKumar, A.B.; Mintz, Akiva; Debinski, Waldemar

    2004-01-01

    Interleukin 13 (IL13) binds a receptor that is highly overexpressed in malignant gliomas, IL13Rα2. IL13 protein is composed of four helices: α-helix A, B, C, and D, and we found a new “hot spot” in α-helix D that is crucial for the binding of IL13 to IL13Rα2. Lys-105 plus Lys-106 and Arg-109 represent this hot spot. In the current study, we have made substitutions at these three positions in IL13. We examined both neutralization of an IL13-based cytotoxin's glioma cell killing and direct rece...

  11. Pleural malignancies.

    Science.gov (United States)

    Friedberg, Joseph S; Cengel, Keith A

    2010-07-01

    Pleural malignancies, primary or metastatic, portend a grim prognosis. In addition to the serious oncologic implications of a pleural malignancy, these tumors can be highly symptomatic. A malignant pleural effusion can cause dyspnea, secondary to lung compression, or even tension physiology from a hydrothorax under pressure. The need to palliate these effusions is a seemingly straightforward clinical scenario, but with nuances that can result in disastrous complications for the patient if not attended to appropriately. Solid pleural malignancies can cause great pain from chest wall invasion or can cause a myriad of morbid symptoms because of the invasion of thoracic structures, such as the heart, lungs, or esophagus. This article reviews pleural malignancies, the purely palliative treatments, and the treatments that are performed with definitive (curative) intent.

  12. Methylation of the miR-126 gene associated with glioma progression.

    Science.gov (United States)

    Cui, Hongwei; Mu, Yongping; Yu, Lei; Xi, Ya-guang; Matthiesen, Rune; Su, Xiulan; Sun, Wenjie

    2016-04-01

    Gliomas are the most common and the most malignant brain tumors, accouting for 45-55% of all intracranial tumors. The incidence of glioma worldwide is about 6-12 per 100,000. Recently, several studies showed that the activation of the oncogenes and the inactivation and/or loss of the tumor suppressor genes, especially for miRNA-21, let-7 and so on, are the most primary molecule event in gliomas. MicroRNAs (miRNAs) are a class of endogenously expressed small noncoding RNAs which are usually 21-23 nucleotides long. miRNAs regulate gene expression and play important roles in a variety of physiological and pathological processes, such as cell proliferation, differentiation and apoptosis. To date, Growing evidence has shown that mi RNAs are frequently dysregulated in human cancers and can act as both tumor suppressors and oncogenes. Along with the discovery of micro RNA, more and more research focusing on its relationship with glioma was carried out to investigate the biological features of glioma and to provide experimental evidence for glioma mechanism. In the present study, we aimed to verify the miRNA-126 down-regulation which showed in the results of glioma tissue miRNAs chip and discuss the miRNA-126 methylation in patients with glioma. A total of 50 samples from patients with glioma and 20 control samples from patients with cerebral trauma were included in this study. The expression levels of the miR-126 gene were detected using quantitative polymerase chain reaction (PCR), and the methylation status of miR-126 was examined using methylation-specific PCR-denaturing high-performance liquid chromatography (MSP-DHPLC). The expression level of miRNA-126 was found to be significantly higher in the control group (0.6134 ± 0.1214) than in the glioma group (0.2771 ± 0.1529; P < 0.05). The expression was also significantly elevated in low-grade gliomas (0.3117 ± 0.1474) compared with high-grade gliomas (0.1582 ± 0.1345; P < 0.05). In addition, increased methylation of

  13. Notch Promotes Radioresistance of Glioma Stem Cells

    OpenAIRE

    Wang, Jialiang; Wakeman, Timothy P.; Latha, Justin D.; Hjelmeland, Anita B.; Wang, Xiao-Fan; White, Rebekah R.; Rich, Jeremy N.; Sullenger, Bruce A.

    2010-01-01

    Radiotherapy represents the most effective nonsurgical treatments for gliomas. Yet, gliomas are highly radioresistant and recurrence is nearly universal. Results from our laboratory and other groups suggest that cancer stem cells contribute to radioresistance in gliomas and breast cancers. The Notch pathway is critically implicated in stem cell fate determination and cancer. In this study, we showed that inhibition of Notch pathway with gamma-secretase inhibitors (GSIs) rendered the glioma st...

  14. Use of statins and risk of glioma

    DEFF Research Database (Denmark)

    Gaist, David; Andersen, L; Hallas, Jesper;

    2013-01-01

    Laboratory studies and a single case-control study have suggested a protective effect of statins on the risk of glioma. We wished to investigate the influence of statin use on the risk of glioma in a population-based setting.......Laboratory studies and a single case-control study have suggested a protective effect of statins on the risk of glioma. We wished to investigate the influence of statin use on the risk of glioma in a population-based setting....

  15. The combination of novel targeted molecular agents and radiation in the treatment of pediatric gliomas.

    Science.gov (United States)

    Dasgupta, Tina; Haas-Kogan, Daphne A

    2013-01-01

    Brain tumors are the most common solid pediatric malignancy. For high-grade, recurrent, or refractory pediatric brain tumors, radiation therapy (XRT) is an integral treatment modality. In the era of personalized cancer therapy, molecularly targeted agents have been designed to inhibit pathways critical to tumorigenesis. Our evolving knowledge of genetic aberrations in pediatric gliomas is being exploited with the use of specific targeted inhibitors. These agents are additionally being combined with XRT to increase the efficacy and duration of local control. In this review, we discuss novel agents targeting three different pathways in gliomas, and their potential combination with XRT. BRAF is a serine/threonine kinase in the RAS/RAF/MAPK kinase pathway, which is integral to cellular division, survival, and metabolism. Two-thirds of pilocytic astrocytomas, a low-grade pediatric glioma, contain a translocation within the BRAF gene called KIAA1549:BRAF that causes an overactivation of the MEK/MAPK signaling cascade. In vitro and in vivo data support the use of MEK or mammalian target of rapamycin (mTOR) inhibitors in low-grade gliomas expressing this translocation. Additionally, 15-20% of high-grade pediatric gliomas express BRAF V600E, an activating mutation of the BRAF gene. Pre-clinical in vivo and in vitro data in BRAF V600E gliomas demonstrate dramatic cooperation between XRT and small molecule inhibitors of BRAF V600E. Another major signaling cascade that plays a role in pediatric glioma pathogenesis is the PI3-kinase (PI3K)/mTOR pathway, known to be upregulated in the majority of high- and low-grade pediatric gliomas. Dual PI3K/mTOR inhibitors are in clinical trials for adult high-grade gliomas and are poised to enter studies of pediatric tumors. Finally, many brain tumors express potent stimulators of angiogenesis that render them refractory to treatment. An analog of thalidomide, CC-5103 increases the secretion of critical cytokines of the tumor

  16. A METHODOLOGICAL APPROACH TO THE CHARACTERIZATION OF BRAIN GLIOMAS, BY MEANS OF SEMI-AUTOMATIC MORPHOMETRIC ANALYSIS

    Directory of Open Access Journals (Sweden)

    Artur Dawid Surowka

    2014-05-01

    Full Text Available The aims of this paper were to present a reliable morphometric procedure for glioma analysis for preliminary prognosis and to develop a semi-automatic procedure that is easy to use. The data presented are important to the extent that they verify the reliability of the results by showing that they are consistent with the findings from more complicated automatic analytical tools. The objects for analysis were digital images of haematoxylin-eosin stained glioma samples. The overall analysis consisted of digital image analysis and the determination of morphometric parameters. Interestingly, an increase in the mean values of aspect ratio with increasing malignancy grade was found. Moreover, the morphometric parameters in relation to the histological origin of gliomas were examined and it was found that, the cellular nuclei of glioblastoma multiforme reveal the biggest mean values of aspect ratio compared with other gliomas.

  17. Rehabilitation of patients with glioma.

    Science.gov (United States)

    Vargo, Mary; Henriksson, Roger; Salander, Pär

    2016-01-01

    Disabling sequelae occur in a majority of patients diagnosed with brain tumor, including glioma, such as cognitive deficits, weakness, and visual perceptual changes. Often, multiple impairments are present concurrently. Healthcare staff must be aware of the "biographic disruption" the patient with glioma has experienced. While prognostic considerations factor into rehabilitation goals and expectations, regardless of prognosis the treatment team must offer cohesive support, facilitating hope, function, and quality of life. Awareness of family and caregiver concerns plays an important role in the overall care. Inpatient rehabilitation, especially after surgical resection, has been shown to result in functional improvement and homegoing rates on a par with individuals with other neurologic conditions, such as stroke or traumatic brain injury. Community integration comprises a significant element of life satisfaction, as has been shown in childhood glioma survivors. Employment is often affected by the glioma diagnosis, but may be ameliorated, when appropriate, by addressing modifiable factors such as depression, fatigue, or sleep disturbance, or by workplace accommodations. Further research is needed into many facets of rehabilitation in the setting of glioma, including establishing better care models for consistently identifying and addressing functional limitations in this population, measuring outcomes of various levels of rehabilitation care, identifying optimal physical activity strategies, delineating the long-term effects of rehabilitation interventions, and exploring impact of rehabilitation interventions on caregiver burden. The effective elements of cognitive rehabilitation, including transition of cognitive strategies to everyday living, need to be better defined.

  18. Malignant hyperthermia

    Science.gov (United States)

    ... you need surgery, tell both your surgeon and anesthesiologist before surgery if: You know that you or ... IN. Malignant hyperthermia and muscle-related disorders. In: Miller RD, ed. Miller's Anesthesia . 8th ed. Philadelphia, PA: ...

  19. Daily Life Experiences of Patients With a High-Grade Glioma and Their Caregivers

    DEFF Research Database (Denmark)

    Piil, Karin; Juhler, Marianne; Jakobsen, Johannes;

    2015-01-01

    BACKGROUND: There is a lack of knowledge regarding the breadth of needs for rehabilitation and supportive care across the disease and treatment trajectory for patients with a high-grade glioma (HGG) and their caregivers. OBJECTIVE: The aim of this study was to elucidate the experiences and needs ...... for rehabilitation programs that target the cognitive ability of the patients to participate actively.......BACKGROUND: There is a lack of knowledge regarding the breadth of needs for rehabilitation and supportive care across the disease and treatment trajectory for patients with a high-grade glioma (HGG) and their caregivers. OBJECTIVE: The aim of this study was to elucidate the experiences and needs...... for rehabilitation and supportive care in patients with HGG and their caregivers. METHODS: Patients with malignant glioma (N = 30) and their caregivers (N = 33) were interviewed five times during the first year of the HGG trajectory. A thematic analysis of interviews at five time points revealed five main themes...

  20. Sensitivity to cisplatin in primary cell lines derived from human glioma correlates with levels of EGR-1 expression

    Directory of Open Access Journals (Sweden)

    Ponti Donatella

    2011-03-01

    Full Text Available Abstract Background Less than 30% of malignant gliomas respond to adjuvant chemotherapy. Here, we have asked whether variations in the constitutive expression of early-growth response factor 1 (EGR-1 predicted acute cytotoxicity and clonogenic cell death in vitro, induced by six different chemotherapics. Materials and methods Cytotoxicity assays were performed on cells derived from fresh tumor explants of 18 human cases of malignant glioma. In addition to EGR-1, tumor cultures were investigated for genetic alterations and the expression of cancer regulating factors, related to the p53 pathway. Results We found that sensitivity to cisplatin correlates significantly with levels of EGR-1 expression in tumors with wild-type p53/INK4a/p16 status. Conclusion Increased knowledge of the mechanisms regulating EGR-1 expression in wild-type p53/INK4a/p16 cases of glioma may help in the design of new chemotherapeutic strategies for these tumors.

  1. The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma

    NARCIS (Netherlands)

    Bhat, Krishna P. L.; Salazar, Katrina L.; Balasubramaniyan, Veerakumar; Wani, Khalida; Heathcock, Lindsey; Hollingsworth, Faith; James, Johanna D.; Gumin, Joy; Diefes, Kristin L.; Kim, Se Hoon; Turski, Alice; Azodi, Yasaman; Yang, Yuhui; Doucette, Tiffany; Colman, Howard; Sulman, Erik P.; Lang, Frederick F.; Rao, Ganesh; Copray, Sjef; Vaillant, Brian D.; Aldape, Kenneth D.

    2011-01-01

    Recent molecular classification of glioblastoma (GBM) has shown that patients with a mesenchymal (MES) gene expression signature exhibit poor overall survival and treatment resistance. Using regulatory network analysis of available expression microarray data sets of GBM, including The Cancer Genome

  2. The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma

    NARCIS (Netherlands)

    Bhat, Krishna P. L.; Salazar, Katrina L.; Balasubramaniyan, Veerakumar; Wani, Khalida; Heathcock, Lindsey; Hollingsworth, Faith; James, Johanna D.; Gumin, Joy; Diefes, Kristin L.; Kim, Se Hoon; Turski, Alice; Azodi, Yasaman; Yang, Yuhui; Doucette, Tiffany; Colman, Howard; Sulman, Erik P.; Lang, Frederick F.; Rao, Ganesh; Copray, Sjef; Vaillant, Brian D.; Aldape, Kenneth D.

    2011-01-01

    Recent molecular classification of glioblastoma (GBM) has shown that patients with a mesenchymal (MES) gene expression signature exhibit poor overall survival and treatment resistance. Using regulatory network analysis of available expression microarray data sets of GBM, including The Cancer Genome

  3. Immunotherapy of malignant gliomas using autologous and alllogeneic tissue cells

    NARCIS (Netherlands)

    Hofman, F.M.; Stathopoulos, A.; Kruse, C.A.; Chen, T.C.; Schijns, V.E.J.C.

    2010-01-01

    Immunotherapy of brain tumors is rapidly emerging as a potential clinical option [1-3]. The quality and magnitude of immune responses evoked by the new generation anti-tumor vaccines is in general highly dependent on the source or choice of peptide antigens, and as well, a suitable immunopotentiator

  4. miR-92a-3p Exerts Various Effects in Glioma and Glioma Stem-Like Cells Specifically Targeting CDH1/β-Catenin and Notch-1/Akt Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Hang Song

    2016-10-01

    Full Text Available MicroRNAs (miRNAs are implicated in the regulation of tumor progression and stemness of cancer stem-like cells. Recently, miR-92a-3p was reported to be up-regulated in human glioma samples. Nevertheless, the precise role of miR-92a-3p in glioma cells and glioma stem-like cells (GSCs has not been fully elucidated. It is necessary to clarify the function of miR-92a-3p in glioma and GSCs to develop novel therapeutic approaches for glioma patients. In the present study, we applied methyl-thiazolyl-tetrazolium (MTT assay and Transwell assay to measure the proliferation rate and metastatic potential of glioma cells. Meanwhile, the self-renewal ability of GSCs was detected by tumor sphere formation assay. The results revealed that down-regulation of miR-92a-3p suppressed the glioma cell malignancy in vitro. Moreover, knockdown of miR-92a-3p led to a reduction of tumorgenesis in vivo. Interestingly, we also observed that up-regulation of miR-92a-3p could inhibit the stemness of GSCs. Subsequent mechanistic investigation indicated that cadherin 1 (CDH1/β-catenin signaling and Notch-1/Akt signaling were the downstream pathways of miR-92a-3p in glioma cells and GSCs, respectively. These results suggest that miR-92a-3p plays different roles in glioma cells and GSCs through regulating different signaling pathways.

  5. Cholesteryl esters in human malignant neoplasms.

    Science.gov (United States)

    Tosi, M R; Bottura, G; Lucchi, P; Reggiani, A; Trinchero, A; Tugnoli, V

    2003-01-01

    Cholesteryl esters (CholE) were detected in human malignant neoplasms by means of in vitro nuclear magnetic resonance spectroscopy. Spectroscopic analysis of the total lipid extracts obtained from cerebral tumors revealed appreciable amount of esterified cholesterol in high grade gliomas such as glioblastomas and anaplastic oligodendrogliomas, characterized by prominent neovascularity. The finding that no CholE were detected in the healthy brain and in low grade and benign tumors supports a possible correlation between this class of lipids and histological vascular proliferation. Compared with high grade gliomas, renal cell carcinomas show higher levels of CholE, absent in the healthy renal parenchyma and in benign oncocytomas. In nefro-carcinomas, cytoplasmic lipid inclusions and prominent vascularization contribute to the increased levels of CholE present mainly as oleate. CholE are discussed as potential biochemical markers of cancer and as a target for new therapeutic strategies.

  6. Frequent Nek1 overexpression in human gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jun [School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai (China); Neurosurgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Cai, Yu, E-mail: aihaozuqiu22@163.com [School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai (China); Neurosurgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Liu, Pin [Med-X Research Institute, Shanghai Jiao Tong University, Shanghai (China); Zhao, Weiguo [Neurosurgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China)

    2016-08-05

    Never in mitosis A (NIMA)-related kinase 1 (Nek1) regulates cell cycle progression to mitosis. Its expression and potential functions in human gliomas have not been studied. Here, our immunohistochemistry (IHC) assay and Western blot assay results showed that Nek1 expression was significantly upregulated in fresh and paraffin-embedded human glioma tissues. Its level in normal brain tissues was low. Nek1 overexpression in human gliomas was correlated with the proliferation marker (Ki-67), tumor grade, Karnofsky performance scale (KPS) and more importantly, patients’ poor survival. Further studies showed that Nek1 expression level was also increased in multiple human glioma cell lines (U251-MG, U87-MG, U118, H4 and U373). Significantly, siRNA-mediated knockdown of Nek1 inhibited glioma cell (U87-MG/U251-MG) growth. Nek1 siRNA also sensitized U87-MG/U251-MG cells to temozolomide (TMZ), causing a profound apoptosis induction and growth inhibition. The current study indicates Nek1 might be a novel and valuable oncotarget of glioma, it is important for glioma cell growth and TMZ-resistance. - Highlights: • Nek1 is upregulated in multiple human glioma tissues and cell lines. • Nek1 overexpression correlates with glioma grades and patients’ KPS score. • Nek1 overexpression correlates with patients’ poor overall survival. • siRNA knockdown of Nek1 inhibits glioma cell growth. • siRNA knockdown of Nek1 sensitizes human glioma cells to temozolomide.

  7. Neuronavigator-guided glioma surgery

    Institute of Scientific and Technical Information of China (English)

    杜固宏; 周良辅; 毛颖

    2003-01-01

    Objective To evaluate the effectiveness of neuronavigator-guided surgery for the resection of gliomas. Methods A total of 80 patients with gliomas underwent surgical treatment under the StealthStation neuronavigator to estimate the extent of the tumors. In 27 cases, the measurements of brain shifts at the dura, cortical surface and lesion margin were recorded during the operations. A technique termed "micro-catheter fence post" was used in superficial gliomas to compensate for brain shift.Results Mean fiducial error and predicted accuracy in the 80 cases were 2.03 mm±0.89 mm and 2.43 mm±0.99 mm, respectively. The shifts at the dura, cortical surface and lesion margin were 3.44 mm±2.39 mm, 7.58 mm±3.75 mm, and 6.55 mm±3.19 mm, respectively. Although neuronavigation revealed residual tumors, operations were discontinued in 5 cases of deep-seated gliomas. In the other 75 cases, total tumor removals were achieved in 62 (82.7%), and subtotal removals were achieved in 13 (17.3%). Post-operation, neurological symptoms were improved or unchanged in 68 cases (85.0%), and worsened in 12 (15.0%). No deaths occurred during the operations and post-operations. Conclusions Intraoperative brain shifts mainly contribute to the fail of spatial accuracy during neuronavigator-guided glioma surgery. The "micro-catheter fence post" technique used for glioma surgery is shown to be useful for compensating for intraoperative brain shifts. This technique, thus, contributes to an increase in total tumor removal and a decrease in surgical complications.

  8. A super gene expression system enhances the anti-glioma effects of adenovirus-mediated REIC/Dkk-3 gene therapy

    Science.gov (United States)

    Oka, Tetsuo; Kurozumi, Kazuhiko; Shimazu, Yosuke; Ichikawa, Tomotsugu; Ishida, Joji; Otani, Yoshihiro; Shimizu, Toshihiko; Tomita, Yusuke; Sakaguchi, Masakiyo; Watanabe, Masami; Nasu, Yasutomo; Kumon, Hiromi; Date, Isao

    2016-09-01

    Reduced expression in immortalized cells/Dickkopf-3 (REIC/Dkk-3) is a tumor suppressor and therapeutic gene in many human cancers. Recently, an adenovirus REIC vector with the super gene expression system (Ad-SGE-REIC) was developed to increase REIC/Dkk-3 expression and enhance therapeutic effects compared with the conventional adenoviral vector (Ad-CAG-REIC). In this study, we investigated the in vitro and in vivo effects of Ad-SGE-REIC on malignant glioma. In U87ΔEGFR and GL261 glioma cells, western blotting confirmed that robust upregulation of REIC/Dkk-3 expression occurred in Ad-SGE-REIC-transduced cells, most notably after transduction at a multiplicity of infection of 10. Cytotoxicity assays showed that Ad-SGE-REIC resulted in a time-dependent and significant reduction in the number of malignant glioma cells attaching to the bottom of culture wells. Xenograft and syngeneic mouse intracranial glioma models treated with Ad-SGE-REIC had significantly longer survival than those treated with the control vector Ad-LacZ or with Ad-CAG-REIC. This study demonstrated the anti-glioma effect of Ad-SGE-REIC, which may represent a promising strategy for the treatment of malignant glioma.

  9. Involvement of the kynurenine pathway in human glioma pathophysiology.

    Directory of Open Access Journals (Sweden)

    Seray Adams

    Full Text Available The kynurenine pathway (KP is the principal route of L-tryptophan (TRP catabolism leading to the production of kynurenine (KYN, the neuroprotectants, kynurenic acid (KYNA and picolinic acid (PIC, the excitotoxin, quinolinic acid (QUIN and the essential pyridine nucleotide, nicotinamide adenine dinucleotide (NAD(+. The enzymes indoleamine 2,3-dioxygenase-1 (IDO-1, indoleamine 2,3-dioxygenase-2 (IDO-2 and tryptophan 2,3-dioxygenase (TDO-2 initiate the first step of the KP. IDO-1 and TDO-2 induction in tumors are crucial mechanisms implicated to play pivotal roles in suppressing anti-tumor immunity. Here, we report the first comprehensive characterisation of the KP in 1 cultured human glioma cells and 2 plasma from patients with glioblastoma (GBM. Our data revealed that interferon-gamma (IFN-γ stimulation significantly potentiated the expression of the KP enzymes, IDO-1 IDO-2, kynureninase (KYNU, kynurenine hydroxylase (KMO and significantly down-regulated 2-amino-3-carboxymuconate semialdehyde decarboxylase (ACMSD and kynurenine aminotransferase-I (KAT-I expression in cultured human glioma cells. This significantly increased KP activity but significantly lowered the KYNA/KYN neuroprotective ratio in human cultured glioma cells. KP activation (KYN/TRP was significantly higher, whereas the concentrations of the neuroreactive KP metabolites TRP, KYNA, QUIN and PIC and the KYNA/KYN ratio were significantly lower in GBM patient plasma (n = 18 compared to controls. These results provide further evidence for the involvement of the KP in glioma pathophysiology and highlight a potential role of KP products as novel and highly attractive therapeutic targets to evaluate for the treatment of brain tumors, aimed at restoring anti-tumor immunity and reducing the capacity for malignant cells to produce NAD(+, which is necessary for energy production and DNA repair.

  10. Pediatric gliomas as neurodevelopmental disorders.

    Science.gov (United States)

    Baker, Suzanne J; Ellison, David W; Gutmann, David H

    2016-06-01

    Brain tumors represent the most common solid tumor of childhood, with gliomas comprising the largest fraction of these cancers. Several features distinguish them from their adult counterparts, including their natural history, causative genetic mutations, and brain locations. These unique properties suggest that the cellular and molecular etiologies that underlie their development and maintenance might be different from those that govern adult gliomagenesis and growth. In this review, we discuss the genetic basis for pediatric low-grade and high-grade glioma in the context of developmental neurobiology, and highlight the differences between histologically-similar tumors arising in children and adults.

  11. T11TS inhibits Angiopoietin-1/Tie-2 signaling, EGFR activation and Raf/MEK/ERK pathway in brain endothelial cells restraining angiogenesis in glioma model.

    Science.gov (United States)

    Bhattacharya, Debanjan; Chaudhuri, Suhnrita; Singh, Manoj Kumar; Chaudhuri, Swapna

    2015-06-01

    Malignant gliomas represent one of the most aggressive and hypervascular primary brain tumors. Angiopoietin-1, the peptide growth factor activates endothelial Tie-2 receptor promoting vessel maturation and vascular stabilization steps of angiogenesis in glioma. Epidermal growth factor receptor (EGFR) and Tie-2 receptor on endothelial cells once activated transmits signals through downstream Raf/MEK/ERK pathway promoting endothelial cell proliferation and migration which are essential for angiogenesis induction. The in vivo effect of sheep erythrocyte membrane glycopeptide T11-target structure (T11TS) on angiopoietin-1/Tie-2 axis, EGFR signaling and Raf/MEK/ERK pathway in glioma associated endothelial cells has not been investigated previously. The present study performed with rodent glioma model aims to investigate the effect of T11TS treatment on angiopoietin-1/Tie-2 signaling, EGFR activity and Raf/MEK/ERK pathway in glioma associated endothelial cells within glioma milieu. T11TS administration in rodent glioma model inhibited angiopoietin-1 expression and attenuated Tie-2 expression and activation in glioma associated brain endothelial cells. T11TS treatment also downregulated total and phosphorylated EGFR expression in glioma associated endothelial cells. Additionally T11TS treatment inhibited Raf-1 expression, MEK-1 and ERK-1/2 expression and phosphorylation in glioma associated brain endothelial cells. Thus T11TS therapy remarkably inhibits endothelial angiopoietin-1/Tie-2 signaling associated with vessel maturation and simultaneously antagonizes endothelial cell proliferation signaling by blocking EGFR activation and components of Raf/MEK/ERK pathway. Collectively, the findings demonstrate a multi-targeted anti-angiogenic activity of T11TS which augments the potential for clinical translation of T11TS as an effective angiogenesis inhibitor for glioma treatment.

  12. Diagnosis of glioma by multivoxel 1H-MRSI

    Institute of Scientific and Technical Information of China (English)

    QUAN Hong; LIU Yue; BAO Shanglian; LI Shaowu; XIE Yaoqin; MIAO Binghe; WANG Huiliang

    2004-01-01

    Glioma is one of the most malignant tumors due to its special construction of the glia cells and its character of infiltration. The usual procedure of the treatment is the surgical resection followed by radiotherapy with or without chemotherapy. This combined treatment needs the precise information on the extent of the tumor's infiltration and tumor grading, and then the determination can be made as to when, where and what kind of treatment should be used. Functional imaging modalities display advantages in defining the heterogeneous characters and histological grade. This paper describes how the ratios of Cho/NAA and Lac/NAA measured by magnetic resonance spectroscopy imaging (MRSI) could be used to define the cancer cell distribution in tissues, tumor burden and malignancy, and the results are proved to be consistent with the histological observation.

  13. The combination of novel targeted molecular agents and radiation in the treatment of pediatric gliomas

    Directory of Open Access Journals (Sweden)

    Tina eDasgupta

    2013-05-01

    Full Text Available Brain tumors are the most common solid pediatric malignancy. For high-grade, recurrent or refractory pediatric brain tumors, radiation therapy (XRT is an integral treatment modality. In the era of personalized cancer therapy, molecularly targeted agents have been designed to inhibit pathways critical to tumorigenesis. Our evolving knowledge of genetic aberrations in low-grade gliomas is being exploited with targeted inhibitors. These agents are also being combined with XRT to increase their efficacy. In this review, we discuss novel agents targeting three different pathways in low-grade gliomas, and their potential combination with XRT. B-Raf is a kinase in the Ras/Raf/MAPK kinase pathway, which is integral to cellular division, survival and metabolism. In low-grade pediatric gliomas, point mutations in BRAF (BRAF V600E or a BRAF fusion mutation (KIAA1549:BRAF causes overactivation of the MEK/MAPK pathway. Pre-clinical data shows cooperation between XRT and tagrgeted inhibitors of BRAF V600E, and MEK and mTOR inhibitors in the gliomas with the BRAF fusion. A second important signaling cascade in pediatric glioma pathogenesis is the PI3 kinase (PI3K/mTOR pathway. Dual PI3K/mTOR inhibitors are poised to enter studies of pediatric tumors. Finally, many brain tumors express potent stimulators of angiogenesis. Several inhibitors of immunomodulators are currently being evaluated in in clinical trials for the treatment of recurrent or refractory pediatric central nervous system (CNS tumors. In summary, combinations of these targeted inhibitors with radiation are currently under investigation in both translational bench research and early clinical trials. We summarize the molecular rationale for, and the pre-clinical data supporting the combinations of these targeted agents with other anti-cancer agents and XRT in pediatric gliomas. Parallels are drawn to adult gliomas, and the molecular mechanisms underlying the efficacy of these agents is discussed

  14. RETRACTED: Downregulation of miR-204 expression correlates with poor clinical outcome of glioma patients.

    Science.gov (United States)

    Ye, Zhen-Nan; Liu, Jing-Peng; Wu, Ling-Yun; Zhang, Xiang-Sheng; Zhuang, Zong; Chen, Qiang; Lu, Yue; Liu, Ce-Gang; Zhang, Zi-Huan; Zhang, Hua-Sheng; Hou, Wen-Zhong; Hang, Chun-Hua

    2017-05-01

    Glioma is the most common type of malignant neoplasm in the central nervous system, with high incidence and mortality rate. MicroRNAs, as a class of small noncoding RNAs, play an important role in carcinogenesis and correlate with glioma diagnosis and prognosis. In this study, we investigated the microRNA-204 (miR-204) concentration in glioma tissues and its relation to the expression of ezrin and bcl-2 mRNA, as well as its potential predictive and prognostic values in glioma. The concentrations of miR-204 were significantly lower in glioma tissues than in nontumor brain tissues and also were lower in high-grade than in low-grade gliomas (World Health Organization grades III and IV versus grades I and II). The miR-204 concentration was inversely correlated with the ezrin and bcl-2 concentrations. The miR-204 concentration was classified as high or low according to the median value, and low miR-204 correlated with higher World Health Organization grade, larger tumor, and worse Karnofsky performance score. Kaplan-Meier survival analysis demonstrated that patients with low miR-204 expression had shorter progression-free survival and overall survival than patients with high miR-204 expression. In addition, univariate and multivariate analyses showed that miR-204 expression was an independent prognostic feature of overall survival and progression-free survival. In conclusion, our study indicates that miR-204 is downregulated in glioma and may be a biomarker of poor prognosis in patients with this cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. TRIM28 as an independent prognostic marker plays critical roles in glioma progression.

    Science.gov (United States)

    Qi, Zeng-Xin; Cai, Jia-Jun; Chen, Ling-Chao; Yue, Qi; Gong, Yan; Yao, Yu; Mao, Ying

    2016-01-01

    Tripartite motif (TRIM) proteins are involved in tumorigenesis. Here, we examined the expression, biological function, and clinical significance of tripartite motif containing 28 (TRIM28) in glioma, a locally aggressive brain tumor. First, TRIM28 expression was significantly higher in glioma (n = 138) than in non-glioma controls (n = 6). TRIM28 expression was positively correlated with tumor malignancy, and associated with poor overall survival (OS) and progression-free survival (PFS). Notably, TRIM28 expression was negatively correlated with p21 expression in patients with glioblastoma multiforme (GBM). A multivariate analysis that included relevant measures indicated that high TRIM28 expression is an independent prognostic factor for poor OS and PFS in GBM patients. In experiments with cultured glioma cells, down-regulating TRIM28 with shRNA increased p21 expression, and induced cell cycle arrest at the G1 phase. In a xenograft model, down-regulating TRIM28 suppressed tumor growth. These results indicate that over-expression of TRIM28 is associated with poor outcome in glioma patients.

  16. Tumor Restrictive Suicide Gene Therapy for Glioma Controlled by the FOS Promoter.

    Directory of Open Access Journals (Sweden)

    Jianqing Pan

    Full Text Available Effective suicide gene delivery and expression are crucial to achieving successful effects in gene therapy. An ideal tumor-specific promoter expresses therapeutic genes in tumor cells with minimal normal tissue expression. We compared the activity of the FOS (FBJ murine osteosarcoma viral oncogene homolog promoter with five alternative tumor-specific promoters in glioma cells and non-malignant astrocytes. The FOS promoter caused significantly higher transcriptional activity in glioma cell lines than all alternative promoters with the exception of CMV. The FOS promoter showed 13.9%, 32.4%, and 70.8% of the transcriptional activity of CMV in three glioma cell lines (U87, U251, and U373. Importantly, however, the FOS promoter showed only 1.6% of the transcriptional activity of CMV in normal astrocytes. We also tested the biologic activity of recombinant adenovirus containing the suicide gene herpes simplex virus thymidine kinase (HSV-tk driven by the FOS promoter, including selective killing efficacy in vitro and tumor inhibition rate in vivo. Adenoviral-mediated delivery of the HSV-tk gene controlled by the FOS promoter conferred a cytotoxic effect on human glioma cells in vitro and in vivo. This study suggests that use of the FOS-tk adenovirus system is a promising strategy for glioma-specific gene therapy but still much left for improvement.

  17. Interferon-α/β enhances temozolomide activity against MGMT-positive glioma stem-like cells.

    Science.gov (United States)

    Shen, Dong; Guo, Cheng-Cheng; Wang, Jing; Qiu, Zhi-Kun; Sai, Ke; Yang, Qun-Ying; Chen, Yin-Sheng; Chen, Fu-Rong; Wang, Jie; Panasci, Lawrence; Chen, Zhong-Ping

    2015-11-01

    Glioma is one of the most common primary tumors of the central nervous system in adults. Glioblastoma (GBM) is the most lethal type of glioma, whose 5-year survival is 9.8% at best. Glioma stem-like cells (GSCs) play an important role in recurrence and treatment resistance. MGMT is a DNA repair protein that removes DNA adducts and therefore attenuates treatment efficiency. It has been reported that interferon-α/β (IFN-α/β) downregulates the level of MGMT and sensitizes glioma cells to temozolomide. In the present study, we assessed whether IFN-α/β is able to sensitize GSCs to temozolomide by modulating MGMT expression. Upon the treatment of IFN-α/β, the efficacy of temozolomide against MGMT‑positive GSCs was markedly enhanced by combination treatment with IFN-α/β when compared with the temozolomide single agent group, and MGMT expression was markedly decreased at the same time. Further mechanistic study showed that IFN-α/β suppressed the NF-κB activity, which further mediated the sensitization of MGMT‑positive GSCs to temozolomide. Our data therefore demonstrated that the application of IFN-α/β is a promising agent with which to enhance temozolomide efficiency and reduce drug resistance, and our findings shed light on improving clinical outcomes and prolonging the survival of patients with malignant gliomas.

  18. Characterization and Comparison of Cancer Stem Cells in Human and Canine Glioma Cell Lines

    Directory of Open Access Journals (Sweden)

    Thomas Clements

    2012-01-01

    Full Text Available Gliomas are among the most common and malignantforms of primary brain tumors that occur naturally inhumans. They represent about 33% of brain tumorsand 80% of malignant brain tumors. Gliomas alsospontaneously arise in specific breeds in the canine family.Canine gliomas are histologically similar to human gliomaand have similar presentation and response to treatmentin the clinic. A comparison of canine and human gliomascould prove to be invaluable, because the acceptedrodent model has limitations when testing therapies andidentifying targets. Our goal is to obtain global proteinexpression and metabolic profiles of different classificationand grades of human and canine glioma, in order toidentify and compare the tumor survival strategies in bothsystems. Toward this end, we harvested and cultured cellsfrom a naturally occurring grade-3 oligodendrogliomatumor that was isolated from a canine patient at the PurdueUniversity Veterinary Teaching Hospital. Similar to cellsfrom human glioma, these cells formed neurosphereswhen cultured in serum free media in the presence of FGFand EGF. The cells were also sensitive to plating densityand oxygen concentrations.This work was supported by the National Institutes ofHealth, National Cancer Institute R25CA128770 CancerPrevention Internship Program administered by theOncological Sciences Center and the Discovery LearningResearch Center at Purdue University. This work wasalso supported by Showalter Research Foundation and aCollege of Technology Seed Grant.

  19. Antisense oligonucleotides as innovative therapeutic strategy in the treatment of high-grade gliomas.

    Science.gov (United States)

    Caruso, Gerardo; Caffo, Mariella; Raudino, Giuseppe; Alafaci, Concetta; Salpietro, Francesco M; Tomasello, Francesco

    2010-01-01

    Despite the intensive recent research in cancer therapy, the prognosis in patients affected by high-grade gliomas is still very unfavorable. The efficacy of classical anti-cancer strategies is seriously limited by lack of specific therapies against malignant cells. The extracellular matrix plays a pivotal role in processes such as differentiation, apoptosis, and migration in both the normal and the pathologic nervous system. Glial tumors seem to be able to create a favorable environment for the invasion of glioma cells in cerebral parenchyma when they combine with the extracellular matrix via cell surface receptors. Glioma cells synthesize matrix proteins, such as tenascin, laminin, fibronectin that facilitate the tumor cell's motility. New treatments have shown to hit the acting molecules in the tumor growth and to increase the efficacy and minimize the toxicity. Antisense oligonucleotides are synthetic stretches of DNA which hybridize with specific mRNA strands. The specificity of hybridization makes antisense method an interesting strategy to selectively modulate the expression of genes involved in tumorigenesis. In this review we will focus on the mechanisms of action of antisense oligonucleotides and report clinical and experimental studies on the treatment of high-grade gliomas. We will also report the patents of preclinical and/or clinical studies that adopt the antisense oligonucleotide therapy list in cerebral gliomas.

  20. Platelet-derived growth factor receptor alpha in glioma: a bad seed

    Institute of Scientific and Technical Information of China (English)

    Kun-Wei Liu; Bo Hu; Shi-Yuan Cheng

    2011-01-01

    Recent collaborative,large-scale genomic profiling of the most common and aggressive brain tumor glioblastoma multiforme(GBM) has significantly advanced our understanding of this disease.The gene encoding platelet-derived growth factor receptor alpha (PDGFRα) was identified as the third of the top 11 amplified genes in clinical GBM specimens.The important roles of PDGFRα signaling during normal brain development also implicate the possible pathologic consequences of PDGFRα over-activation in glioma.Although the initial clinical trials using PDGFR kinase inhibitors have been predominantly disappointing,diagnostic and treatment modalities involving genomic profiling and personalized medicine are expected to improve the therapy targeting PDGFRα signaling.In this review,we discuss the roles of PDGFRα signaling during development of the normal central nervous system (CNS) and in pathologic conditions such as malignant glioma.We further compare various animal models of PDGF-induced gliomagenesis and their potential as a novel platform of pre-clinical drug testing.We then summarize our recent publication and how these findings will likely impact treatments for gliomas driven by PDGFRα overexpression.A better understanding of PDGFRα signaling in glioma and their microenvironment,through the use of human or mouse models,is necessary to design a more effective therapeutic strategy against gliomas harboring the aberrant PDGFRα signaling.

  1. Boronophenylalanine uptake in C6 glioma model is dramatically increased by L-DOPA preloading

    Energy Technology Data Exchange (ETDEWEB)

    Capuani, S. [CNR-INFM SOFT, Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome (Italy); Enrico Fermi Center, Compendio Viminale, Rome (Italy)], E-mail: silvia.capuani@roma1.infn.it; Gili, T. [CNR-INFM SOFT, Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome (Italy); Enrico Fermi Center, Compendio Viminale, Rome (Italy); Bozzali, M. [Neuroimaging Laboratory, Santa Lucia Foundation, Via Ardeatina 306, Rome (Italy); Russo, S. [Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London (United Kingdom); Porcari, P. [CNR-INFM SOFT, Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome (Italy); Cametti, C. [CNR-INFM SOFT, Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome (Italy); Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome (Italy); Muolo, M. [Department of Biological Science, University ' Rome III' , Viale G. Marconi 446, Rome (Italy); D' Amore, E. [Serv. Qual./Sicurezza Sperim. Anim., Istituto Superiore di Sanita, Rome (Italy); Maraviglia, B. [Enrico Fermi Center, Compendio Viminale, Rome (Italy); Neuroimaging Laboratory, Santa Lucia Foundation, Via Ardeatina 306, Rome (Italy); Lazzarino, G. [Laboratory of Biochemistry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, Catania (Italy); Pastore, F.S. [Department of Neuroscience, Institute of Neurosurgery, University ' Tor Vergata' , Via Montpellier 1, Rome (Italy)

    2009-07-15

    One of the main limitations for BNCT effectiveness is the insufficient intake of {sup 10}B nuclei within tumour cells. This work was aimed at investigating the use of L-DOPA as enhancer for boronophenylalanine (BPA) uptake in the C6 glioma model. The investigation was first performed in vitro, and then extended in vivo to the animal model. BPA accumulation in C6 glioma cells was assessed, using radiowave dielectric spectroscopy (RDS), with and without L-DOPA preloading. C6 glioma cells were also implanted in the brain of 25 rats, randomly assigned to two experimental branches: (1) intra-carotid BPA infusion; (2) intra-carotid BPA infusion after pre-treatment with L-DOPA, administrated 24 h before BPA infusion. All animals were sacrificed, and assessment of BPA concentrations in tumour tissue, normal brain, and blood samples was performed using high performance liquid chromatography (HPLC). L-DOPA preloading induced a massive increase of BPA concentration either in vitro on C6 glioma cells or in vivo in the animal model tumour. Moreover, no significant difference was found in the normal brain and blood samples between the two animal groups. This study suggests the potential use of L-DOPA as enhancer for BPA accumulation in malignant gliomas eligible for BNCT.

  2. Nestin+cells forming spheroids aggregates resembling tumorspheres in experimental ENU-induced gliomas.

    Science.gov (United States)

    García-Blanco, Alvaro; Bulnes, Susana; Pomposo, Iñigo; Carrasco, Alex; Lafuente, José Vicente

    2016-12-01

    Nestin+cells from spheroid aggregates display typical histopathological features compatible with cell stemness. Nestin and CD133+cells found in glioblastomas, distributed frequently around aberrant vessels, are considered as potential cancer stem cells. They are possible targets for antitumoral therapy because they lead the tumorigenesis, invasiveness and angiogenesis. However, little is known about their role and presence in low-grade gliomas. The aim of this work is to localize and characterize the distribution of these cells inside tumors during the development of experimental endogenous glioma. For this study, a single dose of Ethyl-nitrosourea was injected into pregnant rats. Double immunofluorescences were performed in order to identify stem-like and differentiated cells. Low-grade gliomas display Nestin+cells distributed throughout the tumor. More malignant gliomas show, in addition to that, a perivascular location with some Nestin+cells co-expressing CD133 or VEGF, and the intratumoral spheroid aggregates of Nestin/CD133+cells. These structures are encapsulated by well-differentiated VEGF/GFAP+cells. Spheroid aggregates increase in size in the most malignant stages. Spheroid aggregates have morphological and phenotypic similarities to in vitro neurospheres and could be an in vivo analogue of them. These arrangements could be a reservoir of undifferentiated cells formed to escape adverse microenvironments.

  3. MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators.

    Science.gov (United States)

    Gabriely, Galina; Wurdinger, Thomas; Kesari, Santosh; Esau, Christine C; Burchard, Julja; Linsley, Peter S; Krichevsky, Anna M

    2008-09-01

    Substantial data indicate that microRNA 21 (miR-21) is significantly elevated in glioblastoma (GBM) and in many other tumors of various origins. This microRNA has been implicated in various aspects of carcinogenesis, including cellular proliferation, apoptosis, and migration. We demonstrate that miR-21 regulates multiple genes associated with glioma cell apoptosis, migration, and invasiveness, including the RECK and TIMP3 genes, which are suppressors of malignancy and inhibitors of matrix metalloproteinases (MMPs). Specific inhibition of miR-21 with antisense oligonucleotides leads to elevated levels of RECK and TIMP3 and therefore reduces MMP activities in vitro and in a human model of gliomas in nude mice. Moreover, downregulation of miR-21 in glioma cells leads to decreases of their migratory and invasion abilities. Our data suggest that miR-21 contributes to glioma malignancy by downregulation of MMP inhibitors, which leads to activation of MMPs, thus promoting invasiveness of cancer cells. Our results also indicate that inhibition of a single oncomir, like miR-21, with specific antisense molecules can provide a novel therapeutic approach for "physiological" modulation of multiple proteins whose expression is deregulated in cancer.

  4. Immune-Checkpoint Blockade and Active Immunotherapy for Glioma

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Brian J. [Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Pollack, Ian F. [Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Okada, Hideho, E-mail: okadah@upmc.edu [Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States)

    2013-11-01

    Cancer immunotherapy has made tremendous progress, including promising results in patients with malignant gliomas. Nonetheless, the immunological microenvironment of the brain and tumors arising therein is still believed to be suboptimal for sufficient antitumor immune responses for a variety of reasons, including the operation of “immune-checkpoint” mechanisms. While these mechanisms prevent autoimmunity in physiological conditions, malignant tumors, including brain tumors, actively employ these mechanisms to evade from immunological attacks. Development of agents designed to unblock these checkpoint steps is currently one of the most active areas of cancer research. In this review, we summarize recent progresses in the field of brain tumor immunology with particular foci in the area of immune-checkpoint mechanisms and development of active immunotherapy strategies. In the last decade, a number of specific monoclonal antibodies designed to block immune-checkpoint mechanisms have been developed and show efficacy in other cancers, such as melanoma. On the other hand, active immunotherapy approaches, such as vaccines, have shown encouraging outcomes. We believe that development of effective immunotherapy approaches should ultimately integrate those checkpoint-blockade agents to enhance the efficacy of therapeutic approaches. With these agents available, it is going to be quite an exciting time in the field. The eventual success of immunotherapies for brain tumors will be dependent upon not only an in-depth understanding of immunology behind the brain and brain tumors, but also collaboration and teamwork for the development of novel trials that address multiple layers of immunological challenges in gliomas.

  5. Immune-Checkpoint Blockade and Active Immunotherapy for Glioma

    Directory of Open Access Journals (Sweden)

    Brian J. Ahn

    2013-11-01

    Full Text Available Cancer immunotherapy has made tremendous progress, including promising results in patients with malignant gliomas. Nonetheless, the immunological microenvironment of the brain and tumors arising therein is still believed to be suboptimal for sufficient antitumor immune responses for a variety of reasons, including the operation of “immune-checkpoint” mechanisms. While these mechanisms prevent autoimmunity in physiological conditions, malignant tumors, including brain tumors, actively employ these mechanisms to evade from immunological attacks. Development of agents designed to unblock these checkpoint steps is currently one of the most active areas of cancer research. In this review, we summarize recent progresses in the field of brain tumor immunology with particular foci in the area of immune-checkpoint mechanisms and development of active immunotherapy strategies. In the last decade, a number of specific monoclonal antibodies designed to block immune-checkpoint mechanisms have been developed and show efficacy in other cancers, such as melanoma. On the other hand, active immunotherapy approaches, such as vaccines, have shown encouraging outcomes. We believe that development of effective immunotherapy approaches should ultimately integrate those checkpoint-blockade agents to enhance the efficacy of therapeutic approaches. With these agents available, it is going to be quite an exciting time in the field. The eventual success of immunotherapies for brain tumors will be dependent upon not only an in-depth understanding of immunology behind the brain and brain tumors, but also collaboration and teamwork for the development of novel trials that address multiple layers of immunological challenges in gliomas.

  6. Malignant Catatonia

    Directory of Open Access Journals (Sweden)

    Ayca Ozkul

    2010-12-01

    Full Text Available Catatonia is a syndrome characterized by mutism, immobility, negativism, stereotypy, mannerisms, echophenomena, perseveration and passive obedience. The underlying causes can be psychiatric or may be associated with general medical status or neurological diseases. Additionally catatonia has two subtypes as malignant and nonmalignant catatonia. Main symptoms of malignant catatonia are hyperthermia and autonomic symptoms such as tachycardia, tachypnea and hyperhidrosis. It is important to make the diagnosis as early as possible for an appropriate medical treatment. Clinicians should be aware of the fatal outcome of the disease.

  7. Malignant hyperthermia

    Directory of Open Access Journals (Sweden)

    Michael P Phy

    2016-01-01

    Full Text Available Malignant hyperthermia is a rare metabolic crisis triggered by volatile anesthetics and/or succinylcholine. It is important to remember that hyperthermia is not always present and may even present late in the course. Early recognition of the most common signs and symptoms is critical to diagnosis and treatment. Malignant hyperthermia was associated with a high mortality rate, but this has decreased with the use of dantrolene.  Although this is frequently reported in the anesthesia and surgical literature, it is important that critical care units that use succinylcholine as part of their intubation sequence be prepared to identify and treat this serious syndrome.

  8. Malignant glaucoma

    Directory of Open Access Journals (Sweden)

    Sebastião Cronemberger

    2012-10-01

    Full Text Available The aim of this review is to discuss current knowledge about pathophysiology and clinical, therapeutic and prophylactic approaches for malignant glaucoma. This type of glaucoma can occur after different surgical procedures. It can also occur in aphakic, phakic and pseudophakic eyes and develop spontaneously in individuals with no ocular surgical history, or associated with topical miotics. Currently, the ultrasound biomicroscopy has provided many interesting and useful findings for diagnosis and monitoring the treatment of malignant glaucoma. It occurs more often in short eyes in which pre operative measurements of the anterior chamber depth and axial length are extremely important for its prophylaxis and diagnosis.

  9. EPID-28. PROGNOSTIC AND PREDICTIVE BIOMARKERS IN RECURRENT WHO GRADE 3 GLIOMA PATIENTS TREATED WITH BEVACIZUMAB AND IRINOTECAN

    DEFF Research Database (Denmark)

    Toft, Anders; Urup, Thomas; Grunnet, Kirsten

    2016-01-01

    BACKGROUND: Bevacizumab, a monoclonal antibody targeting vascular endothelial growth factor A (VEGF-A) has shown activity in the treatment of recurrent malignant glioma. Predictive markers and prognostic models are required in order to individualize treatment for grade 3 glioma patients. The prim......BACKGROUND: Bevacizumab, a monoclonal antibody targeting vascular endothelial growth factor A (VEGF-A) has shown activity in the treatment of recurrent malignant glioma. Predictive markers and prognostic models are required in order to individualize treatment for grade 3 glioma patients....... The primary endpoint of this study was to identify predictive biomarkers associated with response to bevacizumab therapy. The secondary endpoint was to identify prognostic factors associated with progression-free survival (PFS) and overall survival (OS). METHODS: A total of 62 consecutive, recurrent grade 3...... glioma patients were administered bevacizumab and irinotecan between December 2005 andNovember 2014 according to a previously published clinical protocol.Awide range of clinical, histopathological and molecular factors were screened for significant correlation (p , 0.05) with response and survival...

  10. EPID-28. PROGNOSTIC AND PREDICTIVE BIOMARKERS IN RECURRENT WHO GRADE 3 GLIOMA PATIENTS TREATED WITH BEVACIZUMAB AND IRINOTECAN

    DEFF Research Database (Denmark)

    Toft, Anders; Urup, Thomas; Grunnet, Kirsten

    2015-01-01

    BACKGROUND: Bevacizumab, a monoclonal antibody targeting vascular endothelial growth factor A (VEGF-A) has shown activity in the treatment of recurrent malignant glioma. Predictive markers and prognostic models are required in order to individualize treatment for grade 3 glioma patients. The prim......BACKGROUND: Bevacizumab, a monoclonal antibody targeting vascular endothelial growth factor A (VEGF-A) has shown activity in the treatment of recurrent malignant glioma. Predictive markers and prognostic models are required in order to individualize treatment for grade 3 glioma patients....... The primary endpoint of this study was to identify predictive biomarkers associated with response to bevacizumab therapy. The secondary endpoint was to identify prognostic factors associated with progression-free survival (PFS) and overall survival (OS). METHODS: A total of 62 consecutive, recurrent grade 3...... glioma patients were administered bevacizumab and irinotecan between December 2005 andNovember 2014 according to a previously published clinical protocol.Awide range of clinical, histopathological and molecular factors were screened for significant correlation (p , 0.05) with response and survival...

  11. FRK inhibits migration and invasion of human glioma cells by promoting N-cadherin/β-catenin complex formation.

    Science.gov (United States)

    Shi, Qiong; Song, Xu; Wang, Jun; Gu, Jia; Zhang, Weijian; Hu, Jinxia; Zhou, Xiuping; Yu, Rutong

    2015-01-01

    Fyn-related kinase (FRK), a member of Src-related tyrosine kinases, is recently reported to function as a potent tumor suppressor in several cancer types. Our previous study has also shown that FRK over-expression inhibited the migration and invasion of glioma cells. However, the mechanism of FRK effect on glioma cell migration and invasion, a feature of human malignant gliomas, is still not clear. In this study, we found that FRK over-expression increased the protein level of N-cadherin, but not E-cadherin. Meanwhile, FRK over-expression promoted β-catenin translocation to the plasma membrane, where it formed complex with N-cadherin, while decreased β-catenin level in the nuclear fraction. In addition, down-regulation of N-cadherin by siRNA promoted the migration and invasion of glioma U251 and U87 cells and abolished the inhibitory effect of FRK on glioma cell migration and invasion. In summary, these results indicate that FRK inhibits migration and invasion of human glioma cells by promoting N-cadherin/β-catenin complex formation.

  12. Transcriptional Differences between Normal and Glioma-Derived Glial Progenitor Cells Identify a Core Set of Dysregulated Genes

    Directory of Open Access Journals (Sweden)

    Romane M. Auvergne

    2013-06-01

    Full Text Available Glial progenitor cells (GPCs are a potential source of malignant gliomas. We used A2B5-based sorting to extract tumorigenic GPCs from human gliomas spanning World Health Organization grades II–IV. Messenger RNA profiling identified a cohort of genes that distinguished A2B5+ glioma tumor progenitor cells (TPCs from A2B5+ GPCs isolated from normal white matter. A core set of genes and pathways was substantially dysregulated in A2B5+ TPCs, which included the transcription factor SIX1 and its principal cofactors, EYA1 and DACH2. Small hairpin RNAi silencing of SIX1 inhibited the expansion of glioma TPCs in vitro and in vivo, suggesting a critical and unrecognized role of the SIX1-EYA1-DACH2 system in glioma genesis or progression. By comparing the expression patterns of glioma TPCs with those of normal GPCs, we have identified a discrete set of pathways by which glial tumorigenesis may be better understood and more specifically targeted.

  13. Natural killer cells require monocytic Gr-1(+)/CD11b(+) myeloid cells to eradicate orthotopically engrafted glioma cells.

    Science.gov (United States)

    Baker, Gregory J; Chockley, Peter; Zamler, Daniel; Castro, Maria G; Lowenstein, Pedro R

    2016-06-01

    Malignant gliomas are resistant to natural killer (NK) cell immune surveillance. However, the mechanisms used by these cancers to suppress antitumor NK cell activity remain poorly understood. We have recently reported on a novel mechanism of innate immune evasion characterized by the overexpression of the carbohydrate-binding protein galectin-1 by both mouse and rat malignant glioma. Here, we investigate the cytokine profile of galectin-1-deficient GL26 cells and describe the process by which these tumors are targeted by the early innate immune system in RAG1(-/-) and C57BL/6J mice. Our data reveal that galectin-1 knockdown in GL26 cells heightens their inflammatory status leading to the rapid recruitment of Gr-1(+)/CD11b(+) myeloid cells and NK1.1(+) NK cells into the brain tumor microenvironment, culminating in tumor clearance. We show that immunodepletion of Gr-1(+) myeloid cells in RAG1(-/-) mice permits the growth of galectin-1-deficient glioma despite the presence of NK cells, thus demonstrating an essential role for myeloid cells in the clearance of galectin-1-deficient glioma. Further characterization of tumor-infiltrating Gr-1(+)/CD11b(+) cells reveals that these cells also express CCR2 and Ly-6C, markers consistent with inflammatory monocytes. Our results demonstrate that Gr-1(+)/CD11b(+) myeloid cells, often referred to as myeloid-derived suppressor cells (MDSCs), are required for antitumor NK cell activity against galectin-1-deficient GL26 glioma. We conclude that glioma-derived galectin-1 represents an important factor in dictating the phenotypic behavior of monocytic Gr-1(+)/CD11b(+) myeloid cells. Galectin-1 suppression may be a valuable treatment approach for clinical glioma by promoting their innate immune-mediated recognition and clearance through the concerted effort of innate myeloid and lymphoid cell lineages.

  14. Valproic Acid Downregulates the Expression of MGMT and Sensitizes Temozolomide-Resistant Glioma Cells

    Directory of Open Access Journals (Sweden)

    Chung Heon Ryu

    2012-01-01

    Full Text Available Temozolomide (TMZ has become a key therapeutic agent in patients with malignant gliomas; however, its survival benefit remains unsatisfactory. Valproic acid (VPA has emerged as an anticancer drug via inhibition of histone deacetylases (HDACs, but the therapeutic advantages of a combination with VPA and TMZ remain poorly understood. The main aim of the present study was to determine whether an antitumor effect could be potentiated by a combination of VPA and TMZ, especially in TMZ-resistant cell lines. A combination of VPA and TMZ had a significantly enhanced antitumor effect in TMZ-resistant malignant glioma cells (T98 and U138. This enhanced antitumor effect correlated with VPA-mediated reduced O6-methylguanine-DNA methyltransferase (MGMT expression, which plays an important role in cellular resistance to alkylating agents. In vitro, the combination of these drugs enhanced the apoptotic and autophagic cell death, as well as suppressed the migratory activities in TMZ-resistant cell lines. Furthermore, in vivo efficacy experiment showed that treatment of combination of VPA and TMZ significantly inhibited tumor growth compared with the monotherapy groups of mice. These results suggest that the clinical efficacy of TMZ chemotherapy in TMZ-resistant malignant glioma may be improved by combination with VPA.

  15. The Glioma International Case-Control Study

    DEFF Research Database (Denmark)

    Amirian, E. Susan; Armstrong, Georgina N; Zhou, Renke

    2016-01-01

    Decades of research have established only a few etiological factors for glioma, which is a rare and highly fatal brain cancer. Common methodological challenges among glioma studies include small sample sizes, heterogeneity of tumor subtypes, and retrospective exposure assessment. Here, we briefly...... describe the Glioma International Case-Control (GICC) Study (recruitment, 2010-2013), a study being conducted by the Genetic Epidemiology of Glioma International Consortium that integrates data from multiple data collection sites, uses a common protocol and questionnaire, and includes biospecimen...

  16. Transcriptional network analysis reveals that AT1 and AT2 angiotensin II receptors are both involved in the regulation of genes essential for glioma progression.

    Science.gov (United States)

    Azevedo, Hátylas; Fujita, André; Bando, Silvia Yumi; Iamashita, Priscila; Moreira-Filho, Carlos Alberto

    2014-01-01

    Gliomas are aggressive primary brain tumors with high infiltrative potential. The expression of Angiotensin II (Ang II) receptors has been associated with poor prognosis in human astrocytomas, the most common type of glioma. In this study, we investigated the role of Angiotensin II in glioma malignancy through transcriptional profiling and network analysis of cultured C6 rat glioma cells exposed to Ang II and to inhibitors of its membrane receptor subtypes. C6 cells were treated with Ang II and specific antagonists of AT1 and AT2 receptors. Total RNA was isolated after three and six hours of Ang II treatment and analyzed by oligonucleotide microarray technology. Gene expression data was evaluated through transcriptional network modeling to identify how differentially expressed (DE) genes are connected to each other. Moreover, other genes co-expressing with the DE genes were considered in these analyses in order to support the identification of enriched functions and pathways. A hub-based network analysis showed that the most connected nodes in Ang II-related networks exert functions associated with cell proliferation, migration and invasion, key aspects for glioma progression. The subsequent functional enrichment analysis of these central genes highlighted their participation in signaling pathways that are frequently deregulated in gliomas such as ErbB, MAPK and p53. Noteworthy, either AT1 or AT2 inhibitions were able to down-regulate different sets of hub genes involved in protumoral functions, suggesting that both Ang II receptors could be therapeutic targets for intervention in glioma. Taken together, our results point out multiple actions of Ang II in glioma pathogenesis and reveal the participation of both Ang II receptors in the regulation of genes relevant for glioma progression. This study is the first one to provide systems-level molecular data for better understanding the protumoral effects of Ang II in the proliferative and infiltrative behavior of

  17. Transcriptional network analysis reveals that AT1 and AT2 angiotensin II receptors are both involved in the regulation of genes essential for glioma progression.

    Directory of Open Access Journals (Sweden)

    Hátylas Azevedo

    Full Text Available Gliomas are aggressive primary brain tumors with high infiltrative potential. The expression of Angiotensin II (Ang II receptors has been associated with poor prognosis in human astrocytomas, the most common type of glioma. In this study, we investigated the role of Angiotensin II in glioma malignancy through transcriptional profiling and network analysis of cultured C6 rat glioma cells exposed to Ang II and to inhibitors of its membrane receptor subtypes. C6 cells were treated with Ang II and specific antagonists of AT1 and AT2 receptors. Total RNA was isolated after three and six hours of Ang II treatment and analyzed by oligonucleotide microarray technology. Gene expression data was evaluated through transcriptional network modeling to identify how differentially expressed (DE genes are connected to each other. Moreover, other genes co-expressing with the DE genes were considered in these analyses in order to support the identification of enriched functions and pathways. A hub-based network analysis showed that the most connected nodes in Ang II-related networks exert functions associated with cell proliferation, migration and invasion, key aspects for glioma progression. The subsequent functional enrichment analysis of these central genes highlighted their participation in signaling pathways that are frequently deregulated in gliomas such as ErbB, MAPK and p53. Noteworthy, either AT1 or AT2 inhibitions were able to down-regulate different sets of hub genes involved in protumoral functions, suggesting that both Ang II receptors could be therapeutic targets for intervention in glioma. Taken together, our results point out multiple actions of Ang II in glioma pathogenesis and reveal the participation of both Ang II receptors in the regulation of genes relevant for glioma progression. This study is the first one to provide systems-level molecular data for better understanding the protumoral effects of Ang II in the proliferative and infiltrative

  18. FGFR3, as a receptor tyrosine kinase, is associated with differentiated biological functions and improved survival of glioma patients.

    Science.gov (United States)

    Wang, Zheng; Zhang, Chuanbao; Sun, Lihua; Liang, Jingshan; Liu, Xing; Li, Guanzhang; Yao, Kun; Zhang, Wei; Jiang, Tao

    2016-12-20

    Activation of receptor tyrosine kinases is common in Malignancies. FGFR3 fusion with TACC3 has been reported to have transforming effects in primary glioblastoma and display oncogenic activity in vitro and in vivo. We set out to investigate the role of FGFR3 in glioma through transcriptomic analysis. FGFR3 increased in Classical subtype and Neural subtype consistently in CGGA and TCGA cohort. Similar patterns of FGFR3 distribution through subtypes were observed in CGGA and TCGA samples. Gene ontology analysis was performed with genes that were significantly correlated with FGFR3 expression. We found that positively associated biological processes of FGFR3 were focused on differentiated cellular functions and neuronal activities, while negatively correlated biological processes focused on mitosis and cell cycle phase. Clinical investigation showed that higher FGFR3 expression predicted improved survival for glioma patients, especially in Proneural subtype. Moreover, FGFR3 showed very limited relevance with other receptor tyrosine kinases in glioma at transcriptome level. FGFR3 expression data of glioma was obtained from Chinese Glioma Genome Atlas (CGGA) and TCGA (The Cancer Genome Atlas). In total, RNA sequencing data of 325 glioma samples and mRNA microarray data of 301 samples from CGGA dataset were enrolled into this study. To consolidate the findings that we have revealed in CGGA dataset, RNA-seq data of 672 glioma samples from TCGA dataset were used as a validation cohort. R language was used as the main tool to perform statistical analysis and graphical work. FGFR3 expression increased in classical and neural subtypes and was associated with differentiated cellular functions. FGFR3 showed very limited correlation with other common receptor tyrosine kinases, and predicted improved survival for glioma patients.

  19. Expression and Distribution Characteristics of Human Ortholog of Mammalian Enabled (hMena) in Glioma

    Institute of Scientific and Technical Information of China (English)

    Xue-tao Dong; Xue-jun Yang; Hua-min Wang; Wei Wang; Lj Yu; Bin Zhang; Sheng-ping Yu; Hao-lang Ming

    2011-01-01

    Objective:To investigate the utility of hMena,a family of enabled/vasodilator-stimulated phosphoprotein (Ena/VASP),we sought to characterize the expression profile and distribution characteristics of hMena in a large panel of glioma samples and determine whether hMena expression levels might correlate with the pathological grade of glioma.Methods:Sixty-five specimens of glioma with different pathological grades and five control brain tissues were collected.in 6 of the 21 glioblastoma patients,multi-specimens were obtained respectively from the main tumor mass,the junction zone between the tumor and the normal tissue,and adjacent brain tissue 1.5 cm away from the tumor boundary under assistance of neuronavigation system during the operation.Immunohistochemistry was used to detect the expression and distribution characteristics of hMena.hMena expression was analyzed by Western blot in 20 specimens.Results:The hMena expression was negative in control brain tissue but positive in different grades of glioma.The expression rate of hMena was positively correlated with the increasing grade of the World Health Orgnization (WHO) classification (rs=0.682,P=0.000).hMena was located in cytoplasm.Positive cells only distributed around the vessels within the tumor mass in low grade glioma,while in high grade glioma,these cells were able to be detected not only in the tumor but also in the boundary zone and adjacent brain parenchyma.In the tumor mass,hMena expressed highly and diffusedly.In the junction zone,hMena positive cells formed radiolitic pattern around the vessels.In adjacent brain parenchyma,single positive cell was scattered.hMena expression was markedly elevated in Grade Ⅲ and Ⅳ glioma compared with Grade Ⅱ and Ⅰ.Conclusion:Our data suggested that the expression of hMena is closely related to malignant grade of glioma.hMena can label the migrating cells,and indicate the migrating path of glioma cells from the tumor to adjacent tissue along with the vascular

  20. Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas

    DEFF Research Database (Denmark)

    Bartkova, J; Hamerlik, P; Stockhausen, Marie

    2010-01-01

    brain and grade II astrocytomas, despite the degree of DDR activation was higher in grade II tumors. Markers indicative of ongoing DNA replication stress (Chk1 activation, Rad17 phosphorylation, replication protein A foci and single-stranded DNA) were present in GBM cells under high- or low...... and indicate that replication stress, rather than oxidative stress, fuels the DNA damage signalling in early stages of astrocytoma development.......Malignant gliomas, the deadliest of brain neoplasms, show rampant genetic instability and resistance to genotoxic therapies, implicating potentially aberrant DNA damage response (DDR) in glioma pathogenesis and treatment failure. Here, we report on gross, aberrant constitutive activation of DNA...

  1. Rad51 and BRCA2--New molecular targets for sensitizing glioma cells to alkylating anticancer drugs.

    Directory of Open Access Journals (Sweden)

    Steve Quiros

    Full Text Available First line chemotherapeutics for brain tumors (malignant gliomas are alkylating agents such as temozolomide and nimustine. Despite growing knowledge of how these agents work, patients suffering from this malignancy still face a dismal prognosis. Alkylating agents target DNA, forming the killing lesion O(6-alkylguanine, which is converted into DNA double-strand breaks (DSBs that trigger apoptosis. Here we assessed whether inhibiting repair of DSBs by homologous recombination (HR or non-homologous end joining (NHEJ is a reasonable strategy for sensitizing glioma cells to alkylating agents. For down-regulation of HR in glioma cells, we used an interference RNA (iRNA approach targeting Rad51 and BRCA2, and for NHEJ we employed the DNA-PK inhibitor NU7026. We also assessed whether inhibition of poly(ADPribosyltransferase (PARP by olaparib would enhance the killing effect. The data show that knockdown of Rad51 or BRCA2 greatly sensitizes cells to DSBs and the induction of cell death following temozolomide and nimustine (ACNU. It did not sensitize to ionizing radiation (IR. The expression of O(6-methylguanine-DNA methyltransferase (MGMT abolished all these effects, indicating that O(6-alkylguanine induced by these drugs is the primary lesion responsible for the formation of DSBs and increased sensitivity of glioma cells following knockdown of Rad51 and BRCA2. Inhibition of DNA-PK only slightly sensitized to temozolomide whereas a significant effect was observed with IR. A triple strategy including siRNA and the PARP inhibitor olaparib further improved the killing effect of temozolomide. The data provides evidence that down-regulation of Rad51 or BRCA2 is a reasonable strategy for sensitizing glioma cells to killing by O(6-alkylating anti-cancer drugs. The data also provide proof of principle that a triple strategy involving down-regulation of HR, PARP inhibition and MGMT depletion may greatly enhance the therapeutic effect of temozolomide.

  2. The pathobiology of glioma tumors.

    Science.gov (United States)

    Gladson, Candece L; Prayson, Richard A; Liu, Wei Michael

    2010-01-01

    The ongoing characterization of the genetic and epigenetic alterations in the gliomas has already improved the classification of these heterogeneous tumors and enabled the development of rodent models for analysis of the molecular pathways underlying their proliferative and invasive behavior. Effective application of the targeted therapies that are now in development will depend on pathologists' ability to provide accurate information regarding the genetic alterations and the expression of key receptors and ligands in the tumors. Here we review the mechanisms that have been implicated in the pathogenesis of the gliomas and provide examples of the cooperative nature of the pathways involved, which may influence the initial therapeutic response and the potential for development of resistance.

  3. The Pathobiology of Glioma Tumors

    OpenAIRE

    Gladson, Candece L.; Prayson, Richard A.; LIU Wei

    2010-01-01

    The ongoing characterization of the genetic and epigenetic alterations in the gliomas has already improved the classification of these heterogeneous tumors and enabled the development of rodent models for analysis of the molecular pathways underlying their proliferative and invasive behavior. Effective application of the targeted therapies that are now in development will depend on pathologists’ ability to provide accurate information regarding the genetic alterations and the expression of ke...

  4. Temozolomide-induced modification of the CXC chemokine network in experimental gliomas.

    Science.gov (United States)

    Bruyère, Céline; Mijatovic, Tatjana; Lonez, Caroline; Spiegl-Kreinecker, Sabine; Berger, Walter; Kast, Richard E; Ruysschaert, Jean-Marie; Kiss, Robert; Lefranc, Florence

    2011-05-01

    CXCL chemokines display important roles in glioblastoma (GBM) biology, including cell proliferation, death and migration features. While temozolomide (TMZ) represents the standard chemotherapeutic used to treat GBM patients, its role in CXCL networking in GBMs remains unexplored. The effects of short-term and long-term in vitro treatment with temozolomide on CXCL chemokine expression were characterized in human malignant glioma cell lines. U373 and T98G astroglioma and Hs683 oligodendroglioma cells were cultured for months in the presence of increasing concentrations of TMZ (up to 1 mM), and their whole genome profiles were analyzed along with a complete mapping of all CXCL chemokines and their respective receptor mRNAs. The study was extended to an additional established cell line and four primocultures. The in vitro results were compared with a clinical series of 156 human gliomas and 23 normal brain tissue samples. The expression and secretion of CXCL2, CXCL3 and CXCL8 following different TMZ treatments were determined in Hs683, U373 and T98G glioma cells. The long-term TMZ-treated astroglioma cells, but not the Hs683 oligodendroglioma cells, developed in vivo a certain level of resistance to TMZ, which correlated with the up- regulation of CXCL2, CXCL3 and CXCL8 expression in the U373 and T98G astroglioma cells. The transient down-regulation of CXCL2 in Hs683 glioma cells using siRNA markedly impaired their proliferation rate. In conclusion, TMZ affects the expression and secretion of CXCL2 (and, to a lesser extent, CXCL3 and CXCL8) in glioma cells, and CXCL2 directly impacts glioma cell biology.

  5. Evidence-based adjuvant therapy for gliomas: Current concepts and newer developments

    Directory of Open Access Journals (Sweden)

    M K Khan

    2009-01-01

    Full Text Available The incidence of gliomas is increasing worldwide, including India. Of the 18,820 new cases of primary central nervous system (CNS tumors diagnosed annually in the United States, gliomas account for over 60% with 30-40% of them being glioblastoma multiforme (GBM, 10% being anaplastic astrocytoma (AA, and 10% being low grade gliomas (LGGs. This is in contrast to one study from West Bengal, India, in which only 7.9% of the brain tumors were GBMs, while 46.8% were astrocytomas. Of all adult primary CNS tumors, GBM is the most common and the most malignant with about 7,000 to 8,000 new cases annually in the United States. Given poor outcomes, a number of treatment approaches have been investigated. Common to these approaches is the use of adjuvant radiation therapy, even as surgery alone, with or without chemotherapy, may be the mainstay for some lower grade and low-risk gliomas. Today, treatment typically involves external beam radiation, with concurrent and adjuvant chemotherapy for more aggressive histologies. Although gliomas are relatively uncommon, active research is ongoing. Results of landmark trials along with some of the recently published trials are presented. These trials and management strategies as well as evolving concepts are found by reviewing over 200 articles in the National Library Medical (NLM database, PubMed, more than 60 of which are refrenced. Specifically, the database is searched using the following keywords, with various combinations: glioma, low-grade, anaplastic, astrocytoma, oligodendroglioma, oligoastrocytoma, glioblastoma multiforme, chemotherapy, radiation, new concepts, phase III, MGMT, CDX-110 (Celldex, temozolomide, 1p/19q deletion, and bevacizumab.

  6. TGF-β-induced hCG-β regulates redox homeostasis in glioma cells.

    Science.gov (United States)

    Ahmad, Fahim; Ghosh, Sadashib; Sinha, Sanchari; Joshi, Shanker Datt; Mehta, Veer Singh; Sen, Ellora

    2015-01-01

    Transforming growth factor (TGF-β) is associated with the progression of glioblastoma multiforme (GBM)-the most malignant of brain tumors. Since there is a structural homology between TGF-β and human chorionic gonadotropin (hCG) and as both TGF-β and hCG-β are known regulators of oxidative stress and survival responses in a variety of tumors, the role of TGF-β in the regulation of hCG-β and its consequences on redox modulation of glioblastoma cells was investigated. A heightened hCG-β level was observed in GBM tumors. TGF-β treatment increased hCG-β expression in glioma cell lines, and this heightened hCG-β was found to regulate redox homeostasis in TGF-β-treated glioma cells, as siRNA-mediated knockdown of hCG-β (i) elevated reactive oxygen species (ROS) generation, (ii) decreased thioredoxin Trx1 expression and thioredoxin reductase (TrxR) activity, and (iii) abrogated expression of TP53-induced glycolysis and apoptosis regulator (TIGAR). Silencing of hCG-β abrogated Smad2/3 levels, suggesting the existence of TGF-β-hCG-β cross-talk in glioma cells. siRNA-mediated inhibition of elevated TIGAR levels in TGF-β-treated glioma cells was accompanied by an increase in ROS levels. As a farnesyltransferase inhibitor, Manumycin is known to induce glioma cell apoptosis in a ROS-dependent manner, and we investigated whether Manumycin could induce apoptosis in TGF-β-treated cells with elevated hCG-β exhibiting ROS-scavenging property. Manumycin-induced apoptosis in TGF-β-treated cells was accompanied by elevated ROS levels and decreased expression of hCG-β, Trx1, Smad2/3, and TIGAR. These findings indicate the existence of a previously unknown TGF-β-hCG-β link that regulates redox homeostasis in glioma cells.

  7. Impact of epidemiological characteristics of supratentorial gliomas in adults brought about by the 2016 world health organization classification of tumors of the central nervous system.

    Science.gov (United States)

    Jiang, Haihui; Cui, Yong; Wang, Junmei; Lin, Song

    2016-11-24

    The latest World Health Organization (WHO) classification of tumors of the central nervous system (CNS) integrates both histological and molecular features in the definition of diagnostic entities. This new approach enrolls novel entities of gliomas. In this study, we aimed to reveal the epidemiological characteristics, including age at diagnosis, gender ratio, tumor distribution and survival, of these new entities. We retrospectively reclassified 1210 glioma samples according to the 2016 CNS WHO diagnostic criteria. In our cohort, glioblastoma multiforme (GBM) with wildtype isocitrate dehydrogenase (IDH) was the most common malignant tumor in the brain. Almost all gliomas were more prevalent in males, especially in the cluster of WHO grade III gliomas and IDH-wildtype GBM. Age at diagnosis was directly proportional to tumor grade. With respect to the distribution by histology, we found that gliomas concurrent with IDH-mutant and 1p/19q-codeleted or with single IDH-mutant were mainly distributed in frontal lobe, while those with IDH-wildtype were dominant in temporal lobe. Lesions located in insular lobe were more likely to be IDH-mutant astrocytoma. In summary, our results elucidated the epidemiological characteristics as well as the regional constituents of these new gliomas entities, which could bring insights into tumorigenesis and personalized treatment of Chinese glioma population.

  8. Cannabinoid receptor CB1 regulates STAT3 activity and its expression dictates the responsiveness to SR141716 treatment in human glioma patients' cells.

    Science.gov (United States)

    Ciaglia, Elena; Torelli, Giovanni; Pisanti, Simona; Picardi, Paola; D'Alessandro, Alba; Laezza, Chiara; Malfitano, Anna Maria; Fiore, Donatella; Pagano Zottola, Antonio Christian; Proto, Maria Chiara; Catapano, Giuseppe; Gazzerro, Patrizia; Bifulco, Maurizio

    2015-06-20

    Herein we show that a majority of human brain tumor samples and cell lines over-expressed cannabinoid receptor CB1 as compared to normal human astrocytes (NHA), while uniformly expressed low levels of CB2. This finding prompted us to investigate the therapeutic exploitation of CB1 inactivation by SR141716 treatment, with regard to its direct and indirect cell-mediated effects against gliomas. Functional studies, using U251MG glioma cells and primary tumor cell lines derived from glioma patients expressing different levels of CB1, highlighted SR141716 efficacy in inducing apoptosis via G1 phase stasis and block of TGF-β1 secretion through a mechanism that involves STAT3 inhibition. According to the multivariate role of STAT3 in the immune escape too, interestingly SR141716 lead also to the functional and selective expression of MICA/B on the surface of responsive malignant glioma cells, but not on NHA. This makes SR141716 treated-glioma cells potent targets for allogeneic NK cell-mediated recognition through a NKG2D restricted mechanism, thus priming them for NK cell antitumor reactivity. These results indicate that CB1 and STAT3 participate in a new oncogenic network in the complex biology of glioma and their expression levels in patients dictate the efficacy of the CB1 antagonist SR141716 in multimodal glioma destruction.

  9. The analysis to the latest changes in NCCN Guidelines of Central Nervous System Cancers about low-grade gliomas and glioblastoma

    Institute of Scientific and Technical Information of China (English)

    Tianyu Wang; Xiong Xiao; Nan Ji

    2016-01-01

    Gliomas are the most common primary tumors of the central nervous system,around 70 % of the malignant brain tumors are gliomas.In the NCCN Guideline Ver.1 2015,the assessment before systemic treatment,treatment principles and prognosis factors of gliomas has significantly changed based on the researches up to date,we try to analyze the reason and the effect of these changes.The most important change is the reintroduction of PCV chemotherapy in systemic treatment,which narrows the gap of prognosis between WHO Ⅱ and Ⅲ gliomas.Other changes including the assessment before systemic treatment,usage of RT and the promotion of evidence level about the Tumor Treating Fields.

  10. Clinical results of BNCT for malignant brain tumors in children

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Yoshinobu [Department of Neurosurgery, Kagawa National Children' s Hospital, Kagawa 765-8501 (Japan)], E-mail: ynakagawa0517@yahoo.co.jp; Kageji, Teruyoshi; Mizobuchi, Yoshifumi [Department of Neurosurgery, University of Tokushima, Tokushima 770-8503 (Japan); Kumada, Hiroaki [Department of Research Reactor, Japan Atomic Energy Research Institute, Ibaragi 319-1195 (Japan); Nakagawa, Yoshiaki [Department of Medical Informatics, Post Graduated School, Kyoto University, Kyoto (Japan)

    2009-07-15

    It is very difficult to treat the patients with malignant brain tumor in children, especially under 3 years, because the conventional irradiation cannot be applied due to the damage of normal brain tissue. However, boron neutron capture therapy (BNCT) has tumor selectivity such that it can make damage only in tumor cells. We evaluated the clinical results and courses in patients with malignant glioma under 15 years. Among 183 patients with brain tumors treated by our group using BSH-based intra-operative BNCT, 23 patients were under 15 years. They included 4 patients under 3 years. There were 3 glioblastomas (GBM), 6 anaplastic astrocytomas(AAS), 7 primitive neuroectodermal tumors (PNET), 6 pontine gliomas and 1 anaplastic ependymoma. All GBM and PNET patients died due to CSF and/or CNS dissemination without local tumor regrowth. All pontine glioma patients died due to regrowth of the tumor. Four of 6 anaplastic astrocytoma and 1 anaplastic ependymoma patients alive without tumor recurrence. BNCT can be applied to malignant brain tumors in children, especially under 3 years instead of conventional radiation. Although it can achieve the local control in the primary site, it cannot prevent CSF dissemination in patients with glioblastoma.

  11. Chromosomal patterns in human malignant astrocytomas.

    Science.gov (United States)

    Rey, J A; Bello, M J; de Campos, J M; Kusak, M E; Ramos, C; Benitez, J

    1987-12-01

    Cytogenetic analysis by direct and/or in vitro preparations was performed on 34 malignant astrocytomas. Thirty tumors showed near-diploid chromosome numbers, whereas, tritetraploid chromosome complements were present in four tumors. The most frequent chromosomal changes implied numerical deviations by a gain of chromosomes #7, #19, and #20, and by losses of #10, #22, and Y. Structural rearrangements were present in stem- or side lines of 24 tumors. Although no common chromosomal rearrangement seems to exist among those tumors, chromosomes #1, #6, #7, and #9 were predominantly involved. Polysomy and structural rearrangements of chromosome #7 could be related to the overexpression of epidermal growth factor gene, previously observed in some malignant gliomas.

  12. Current treatment of low grade gliomas

    NARCIS (Netherlands)

    M.J. van den Bent (Martin); T.A.B. Snijders (Tom); J.E.C. Bromberg (Jacolien)

    2012-01-01

    textabstractLow grade gliomas affect predominantly young adults, and have a relatively favorable prognosis compared to grade III and grade IV gliomas. The challenge for an optimal management of these patients is to find the balance between an optimal survival and the preservation of neurological fun

  13. Irradiation and Bevacizumab in High-Grade Glioma Retreatment Settings

    Energy Technology Data Exchange (ETDEWEB)

    Niyazi, Maximilian; Ganswindt, Ute; Schwarz, Silke Birgit [Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich (Germany); Kreth, Friedrich-Wilhelm; Tonn, Joerg-Christian [Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich (Germany); Geisler, Julia; Fougere, Christian la [Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, Munich (Germany); Ertl, Lorenz; Linn, Jennifer [Department of Neuroradiology, Ludwig-Maximilians-University Munich, Munich (Germany); Siefert, Axel [Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich (Germany); Belka, Claus, E-mail: claus.belka@med.uni-muenchen.de [Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich (Germany)

    2012-01-01

    Purpose: Reirradiation is a treatment option for recurrent high-grade glioma with proven but limited effectiveness. Therapies directed against vascular endothelial growth factor have been shown to exert certain efficacy in combination with chemotherapy and have been safely tested in combination with radiotherapy in a small cohort of patients. To study the feasibility of reirradiation combined with bevacizumab treatment, the toxicity and treatment outcomes of this approach were analyzed retrospectively. Patients and Methods: After previous treatment with standard radiotherapy (with or without temozolomide) patients with recurrent malignant glioma received bevacizumab (10 mg/kg intravenous) on Day 1 and Day 15 during radiotherapy. Maintenance therapy was selected based on individual considerations, and mainly bevacizumab-containing regimens were chosen. Patients received 36 Gy in 18 fractions. Results: The data of the medical charts of the 30 patients were analyzed retrospectively. All were irradiated in a single institution and received either bevacizumab (n = 20), no additional substance (n = 7), or temozolomide (n = 3). Reirradiation was tolerated well, regardless of the added drug. In 1 patient treated with bevacizumab, a wound dehiscence occurred. Overall survival was significantly better in patients receiving bevacizumab (p = 0.03, log-rank test). In a multivariate proportional hazards Cox model, bevacizumab, Karnovsky performance status, and World Health Organization grade at relapse turned out to be the most important predictors for overall survival. Conclusion: Reirradiation with bevacizumab is a feasible and effective treatment for patients with recurrent high-grade gliomas. A randomized trial is warranted to finally answer the question whether bevacizumab adds substantial benefit to a radiotherapeutic retreatment setting.

  14. Synthesis and evaluation of boron compounds for neutron capture therapy of malignant brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Soloway, A.H.

    1991-01-01

    Current progress on this research includes the synthesis of chemical structures for malignant brain tumors. These structures include boron-containing derivatives of lipophilic anticonvulsants and CNS depressants; carboranyl precursors of nucleic acids and related structures; and carboranyl amino acids. Cellular uptake and persistence studies have also been carried out with F98 rat glioma cells. 1 fig., 1 tab.

  15. Network Plasticity and Intraoperative Mapping for Personalized Multimodal Management of Diffuse Low-Grade Gliomas

    Science.gov (United States)

    Ghinda, Cristina Diana; Duffau, Hugues

    2017-01-01

    Gliomas are the most frequent primary brain tumors and include a variety of different histological tumor types and malignancy grades. Recent achievements in terms of molecular and imaging fields have created an unprecedented opportunity to perform a comprehensive interdisciplinary assessment of the glioma pathophysiology, with direct implications in terms of the medical and surgical treatment strategies available for patients. The current paradigm shift considers glioma management in a comprehensive perspective that takes into account the intricate connectivity of the cerebral networks. This allowed significant improvement in the outcome of patients with lesions previously considered inoperable. The current review summarizes the current theoretical framework integrating the adult human brain plasticity and functional reorganization within a dynamic individualized treatment strategy for patients affected by diffuse low-grade gliomas. The concept of neuro-oncology as a brain network surgery has major implications in terms of the clinical management and ensuing outcomes, as indexed by the increased survival and quality of life of patients managed using such an approach.

  16. Survival with concurrent temozolomide and radiotherapy in pediatric brainstem glioma with relation to the tumor volume

    Directory of Open Access Journals (Sweden)

    Shachi Jain Taran

    2015-01-01

    Full Text Available Background: Brainstem gliomas account for approximately 25% of all posterior fossa tumors. In pediatric age group, it constitutes about 10% of all brain tumors. Brainstem glioma is an aggressive and lethal type of malignancy with poor outcome despite all treatments. Aim: We studied the incidence and treatment outcome in pediatric patients with brainstem glioma depending on their tumor volume presenting in our institution in last 5 years. Brain tumors comprised 2.95% of all cancers and brainstem gliomas were 8% of all brain tumors. Materials and Methods: Nine pediatric patients were included in this analysis, who were treated with localized external radiotherapy 54–59.4 Gy along with temozolomide 75 mg/m2 during the whole course of radiotherapy. Results: The median survival in all these patients was 20 months and the overall 2 years survival is 44.4% (4/9. The median survival of patients with primary disease volume <40cc is 26 months whereas when the volume is more than 40cc the median survival is 13.5 months as calculated by Chi-square test. Conclusion: As this study includes a small number of patients with unknown histology and treated on the basis of magnetic resonance imaging findings, no definite opinion can be given as some patients may have a low-grade tumor. More studies are required to establish the relation of size of the tumor with survival.

  17. Imaging bone morphogenetic protein 7 induced cell cycle arrest in experimental gliomas.

    Science.gov (United States)

    Klose, Anke; Waerzeggers, Yannic; Monfared, Parisa; Vukicevic, Slobodan; Kaijzel, Eric L; Winkeler, Alexandra; Wickenhauser, Claudia; Löwik, Clemens W G M; Jacobs, Andreas H

    2011-03-01

    Bone morphogenetic protein 7 (BMP-7) belongs to the superfamily of transforming growth factor β-like cytokines, which can act either as tumor suppressors or as tumor promoters depending on cell type and differentiation. Our investigations focused on analyzing the effects of BMP-7 during glioma cell proliferation in vitro and in vivo. BMP-7 treatment decreased the proliferation of Gli36ΔEGFR-LITG glioma cells up to 50%through a cell cycle arrest in the G(1) phase but not by induction of apoptosis. This effect was mediated by the modulation of the expression and phosphorylation of cyclin-dependent kinase 2, cyclin-dependent kinase inhibitor p21, and downstream retinoblastoma protein. Furthermore, in vivo optical imaging of luciferase activity of Gli36ΔEGFR-LITG cells implanted intracranially into nude mice in the presence or absence of BMP-7 treatment corroborated the antiproliferative effects of this cytokine. This report clearly underlines the tumor-suppressive role of BMP-7 in glioma-derived cells. Taken together, our results indicate that manipulating the BMP/transforming growth factor β signaling cascade may serve as a new strategy for imaging-guided molecular-targeted therapy of malignant gliomas.

  18. Imaging Bone Morphogenetic Protein 7 Induced Cell Cycle Arrest in Experimental Gliomas

    Directory of Open Access Journals (Sweden)

    Anke Klose

    2011-03-01

    Full Text Available Bone morphogenetic protein 7 (BMP-7 belongs to the superfamily of transforming growth factor β-like cytokines, which can act either as tumor suppressors or as tumor promoters depending on cell type and differentiation. Our investigations focused on analyzing the effects of BMP-7 during glioma cell proliferation in vitro and in vivo. BMP-7 treatment decreased the proliferation of Gli36ΔEGFR-LITG glioma cells up to 50%through a cell cycle arrest in the G1 phase but not by induction of apoptosis. This effect was mediated by the modulation of the expression and phosphorylation of cyclin-dependent kinase 2, cyclin-dependent kinase inhibitor p21, and downstream retinoblastoma protein. Furthermore, in vivo optical imaging of luciferase activity of Gli36ΔEGFR-LITG cells implanted intracranially into nude mice in the presence or absence of BMP-7 treatment corroborated the antiproliferative effects of this cytokine. This report clearly underlines the tumor-suppressive role of BMP-7 in glioma-derived cells. Taken together, our results indicate that manipulating the BMP/transforming growth factor β signaling cascade may serve as a new strategy for imaging-guided molecular-targeted therapy of malignant gliomas.

  19. PP2A Inhibitor PME-1 Drives Kinase Inhibitor Resistance in Glioma Cells.

    Science.gov (United States)

    Kaur, Amanpreet; Denisova, Oxana V; Qiao, Xi; Jumppanen, Mikael; Peuhu, Emilia; Ahmed, Shafiq U; Raheem, Olayinka; Haapasalo, Hannu; Eriksson, John; Chalmers, Anthony J; Laakkonen, Pirjo; Westermarck, Jukka

    2016-12-01

    Glioblastoma multiforme lacks effective therapy options. Although deregulated kinase pathways are drivers of malignant progression in glioblastoma multiforme, glioma cells exhibit intrinsic resistance toward many kinase inhibitors, and the molecular basis of this resistance remains poorly understood. Here, we show that overexpression of the protein phosphatase 2A (PP2A) inhibitor protein PME-1 drives resistance of glioma cells to various multikinase inhibitors. The PME-1-elicited resistance was dependent on specific PP2A complexes and was mediated by a decrease in cytoplasmic HDAC4 activity. Importantly, both PME-1 and HDAC4 associated with human glioma progression, supporting clinical relevance of the identified mechanism. Synthetic lethality induced by both PME-1 and HDAC4 inhibition was dependent on the coexpression of proapoptotic protein BAD. Thus, PME-1-mediated PP2A inhibition is a novel mechanistic explanation for multikinase inhibitor resistance in glioma cells. Clinically, these results may inform patient stratification strategies for future clinical trials with selected kinase inhibitors in glioblastoma multiforme. Cancer Res; 76(23); 7001-11. ©2016 AACR.

  20. Effect of a computer-aided diagnosis system on radiologists' performance in grading gliomas with MRI

    Science.gov (United States)

    Hsieh, Kevin Li-Chun; Tsai, Ruei-Je; Teng, Yu-Chuan

    2017-01-01

    The effects of a computer-aided diagnosis (CAD) system based on quantitative intensity features with magnetic resonance (MR) imaging (MRI) were evaluated by examining radiologists' performance in grading gliomas. The acquired MRI database included 71 lower-grade gliomas and 34 glioblastomas. Quantitative image features were extracted from the tumor area and combined in a CAD system to generate a prediction model. The effect of the CAD system was evaluated in a two-stage procedure. First, a radiologist performed a conventional reading. A sequential second reading was determined with a malignancy estimation by the CAD system. Each MR image was regularly read by one radiologist out of a group of three radiologists. The CAD system achieved an accuracy of 87% (91/105), a sensitivity of 79% (27/34), a specificity of 90% (64/71), and an area under the receiver operating characteristic curve (Az) of 0.89. In the evaluation, the radiologists’ Az values significantly improved from 0.81, 0.87, and 0.84 to 0.90, 0.90, and 0.88 with p = 0.0011, 0.0076, and 0.0167, respectively. Based on the MR image features, the proposed CAD system not only performed well in distinguishing glioblastomas from lower-grade gliomas but also provided suggestions about glioma grading to reinforce radiologists’ confidence rating. PMID:28158235

  1. Mouse Low-Grade Gliomas Contain Cancer Stem Cells with Unique Molecular and Functional Properties

    Directory of Open Access Journals (Sweden)

    Yi-Hsien Chen

    2015-03-01

    Full Text Available The availability of adult malignant glioma stem cells (GSCs has provided unprecedented opportunities to identify the mechanisms underlying treatment resistance. Unfortunately, there is a lack of comparable reagents for the study of pediatric low-grade glioma (LGG. Leveraging a neurofibromatosis 1 (Nf1 genetically engineered mouse LGG model, we report the isolation of CD133+ multi-potent low-grade glioma stem cells (LG-GSCs, which generate glioma-like lesions histologically similar to the parent tumor following injection into immunocompetent hosts. In addition, we demonstrate that these LG-GSCs harbor selective resistance to currently employed conventional and biologically targeted anti-cancer agents, which reflect the acquisition of new targetable signaling pathway abnormalities. Using transcriptomic analysis to identify additional molecular properties, we discovered that mouse and human LG-GSCs harbor high levels of Abcg1 expression critical for protecting against ER-stress-induced mouse LG-GSC apoptosis. Collectively, these findings establish that LGG cancer stem cells have unique molecular and functional properties relevant to brain cancer treatment.

  2. Mutations of the p16 gene in gliomas.

    Science.gov (United States)

    Kyritsis, A P; Zhang, B; Zhang, W; Xiao, M; Takeshima, H; Bondy, M L; Cunningham, J E; Levin, V A; Bruner, J

    1996-01-04

    In the present study we investigated the frequency of p16 gene exon 2 mutations in 35 malignant gliomas, using either direct sequencing of the PCR products or cloning into the pCRII vector and sequencing of the cloned PCR products. No mutations were detected during direct sequencing of the PCR products. However, after sequencing of individual clones, we found multiple mutations in 5 tumors involving codons 73(GCC to ACC, Ala to Thr), 76 (GCC to GTC, Ala to Val), 85(GCT to ACT, Ala to Thr), 98(CAC to TAC, His to Tyr), 102 (GCG to GTG, Ala to Val), 106 (GTG to ATG, Val to Met), 107 (CGC to TGC, Arg to Cys), 127 (GCA to GTA, Ala to Val), 128 (CGG to TGG, Arg to Trp) and 136 (GGC to GAC, Gly to Asp). Mutations were found only in glioblastomas and were either C to T or G to A transitions. Each mutation was detected in a small percentage of tumor cells (1.3-22%) using individual colony sequencing and southern hybridization with mutant oligonucleotides, consistent with the heterogenous cell population of glioblastomas. The presence of p16 gene mutations only in glioblastomas suggests that they are late events in glioma development.

  3. The ubiquitin-proteasome system in glioma cell cycle control

    Directory of Open Access Journals (Sweden)

    Vlachostergios Panagiotis J

    2012-07-01

    Full Text Available Abstract A major determinant of cell fate is regulation of cell cycle. Tight regulation of this process is lost during the course of development and progression of various tumors. The ubiquitin-proteasome system (UPS constitutes a universal protein degradation pathway, essential for the consistent recycling of a plethora of proteins with distinct structural and functional roles within the cell, including cell cycle regulation. High grade tumors, such as glioblastomas have an inherent potential of escaping cell cycle control mechanisms and are often refractory to conventional treatment. Here, we review the association of UPS with several UPS-targeted proteins and pathways involved in regulation of the cell cycle in malignant gliomas, and discuss the potential role of UPS inhibitors in reinstitution of cell cycle control.

  4. The Ketogenic Diet Alters the Hypoxic Response and Affects Expression of Proteins Associated with Angiogenesis, Invasive Potential and Vascular Permeability in a Mouse Glioma Model.

    Directory of Open Access Journals (Sweden)

    Eric C Woolf

    Full Text Available The successful treatment of malignant gliomas remains a challenge despite the current standard of care, which consists of surgery, radiation and temozolomide. Advances in the survival of brain cancer patients require the design of new therapeutic approaches that take advantage of common phenotypes such as the altered metabolism found in cancer cells. It has therefore been postulated that the high-fat, low-carbohydrate, adequate protein ketogenic diet (KD may be useful in the treatment of brain tumors. We have demonstrated that the KD enhances survival and potentiates standard therapy in a mouse model of malignant glioma, yet the mechanisms are not fully understood.To explore the effects of the KD on various aspects of tumor growth and progression, we used the immunocompetent, syngeneic GL261-Luc2 mouse model of malignant glioma.Tumors from animals maintained on KD showed reduced expression of the hypoxia marker carbonic anhydrase 9, hypoxia inducible factor 1-alpha, and decreased activation of nuclear factor kappa B. Additionally, tumors from animals maintained on KD had reduced tumor microvasculature and decreased expression of vascular endothelial growth factor receptor 2, matrix metalloproteinase-2 and vimentin. Peritumoral edema was significantly reduced in animals fed the KD and protein analyses showed altered expression of zona occludens-1 and aquaporin-4.The KD directly or indirectly alters the expression of several proteins involved in malignant progression and may be a useful tool for the treatment of gliomas.

  5. A longitudinal, qualitative and quantitative exploration of daily life and need for rehabilitation among patients with high-grade gliomas and their caregivers

    DEFF Research Database (Denmark)

    Piil, K; Jarden, Mary Ellen; Jakobsen, J

    2013-01-01

    High-grade gliomas (HGGs) are the most malignant type of brain tumours. The 5-year survival is 10% and a significant part of the ongoing research aims to increase survival through surgical and oncological treatments. Accordingly, there is an increasing need for investigating the HGG trajectory in...

  6. Mannose phosphate isomerase regulates fibroblast growth factor receptor family signaling and glioma radiosensitivity.

    Directory of Open Access Journals (Sweden)

    Aurélie Cazet

    Full Text Available Asparagine-linked glycosylation is an endoplasmic reticulum co- and post-translational modification that enables the transit and function of receptor tyrosine kinase (RTK glycoproteins. To gain insight into the regulatory role of glycosylation enzymes on RTK function, we investigated shRNA and siRNA knockdown of mannose phosphate isomerase (MPI, an enzyme required for mature glycan precursor biosynthesis. Loss of MPI activity reduced phosphorylation of FGFR family receptors in U-251 and SKMG-3 malignant glioma cell lines and also resulted in significant decreases in FRS2, Akt, and MAPK signaling. However, MPI knockdown did not affect ligand-induced activation or signaling of EGFR or MET RTKs, suggesting that FGFRs are more susceptible to MPI inhibition. The reductions in FGFR signaling were not caused by loss of FGF ligands or receptors, but instead were caused by interference with receptor dimerization. Investigations into the cellular consequences of MPI knockdown showed that cellular programs driven by FGFR signaling, and integral to the clinical progression of malignant glioma, were impaired. In addition to a blockade of cellular migration, MPI knockdown also significantly reduced glioma cell clonogenic survival following ionizing radiation. Therefore our results suggest that targeted inhibition of enzymes required for cell surface receptor glycosylation can be manipulated to produce discrete and limited consequences for critical client glycoproteins expressed by tumor cells. Furthermore, this work identifies MPI as a potential enzymatic target for disrupting cell surface receptor-dependent survival signaling and as a novel approach for therapeutic radiosensitization.

  7. Restoration of sensitivity in chemo-resistant glioma cells by cold atmospheric plasma.

    Science.gov (United States)

    Köritzer, Julia; Boxhammer, Veronika; Schäfer, Andrea; Shimizu, Tetsuji; Klämpfl, Tobias G; Li, Yang-Fang; Welz, Christian; Schwenk-Zieger, Sabina; Morfill, Gregor E; Zimmermann, Julia L; Schlegel, Jürgen

    2013-01-01

    Glioblastoma (GBM) is the most common and aggressive brain tumor in adults. Despite multimodal treatments including surgery, chemotherapy and radiotherapy the prognosis remains poor and relapse occurs regularly. The alkylating agent temozolomide (TMZ) has been shown to improve the overall survival in patients with malignant gliomas, especially in tumors with methylated promoter of the O6-methylguanine-DNA-methyltransferase (MGMT) gene. However, intrinsic and acquired resistance towards TMZ makes it crucial to find new therapeutic strategies aimed at improving the prognosis of patients suffering from malignant gliomas. Cold atmospheric plasma is a new auspicious candidate in cancer treatment. In the present study we demonstrate the anti-cancer properties of different dosages of cold atmospheric plasma (CAP) both in TMZ-sensitive and TMZ-resistant cells by proliferation assay, immunoblotting, cell cycle analysis, and clonogenicity assay. Importantly, CAP treatment restored the responsiveness of resistant glioma cells towards TMZ therapy. Concomitant treatment with CAP and TMZ led to inhibition of cell growth and cell cycle arrest, thus CAP might be a promising candidate for combination therapy especially for patients suffering from GBMs showing an unfavorable MGMT status and TMZ resistance.

  8. Restoration of sensitivity in chemo-resistant glioma cells by cold atmospheric plasma.

    Directory of Open Access Journals (Sweden)

    Julia Köritzer

    Full Text Available Glioblastoma (GBM is the most common and aggressive brain tumor in adults. Despite multimodal treatments including surgery, chemotherapy and radiotherapy the prognosis remains poor and relapse occurs regularly. The alkylating agent temozolomide (TMZ has been shown to improve the overall survival in patients with malignant gliomas, especially in tumors with methylated promoter of the O6-methylguanine-DNA-methyltransferase (MGMT gene. However, intrinsic and acquired resistance towards TMZ makes it crucial to find new therapeutic strategies aimed at improving the prognosis of patients suffering from malignant gliomas. Cold atmospheric plasma is a new auspicious candidate in cancer treatment. In the present study we demonstrate the anti-cancer properties of different dosages of cold atmospheric plasma (CAP both in TMZ-sensitive and TMZ-resistant cells by proliferation assay, immunoblotting, cell cycle analysis, and clonogenicity assay. Importantly, CAP treatment restored the responsiveness of resistant glioma cells towards TMZ therapy. Concomitant treatment with CAP and TMZ led to inhibition of cell growth and cell cycle arrest, thus CAP might be a promising candidate for combination therapy especially for patients suffering from GBMs showing an unfavorable MGMT status and TMZ resistance.

  9. Sustained Angiopoietin-2 Expression Disrupts Vessel Formation and Inhibits Glioma Growth

    Directory of Open Access Journals (Sweden)

    Ok-Hee Lee

    2006-05-01

    Full Text Available Systematic analyses of the expression of angiogenic regulators in cancer models should yield useful information for the development of novel therapies for malignant gliomas. In this study, we analyzed tumor growth, vascularization, and angiopoietin-2 (Ang2 expression during the development of U-87 MG xenografts. We found that tumoral angiogenesis in this model follows a multistage process characterized by avascular, prolific peripheral angiogenesis, and late vascular phases. On day 4, we observed an area of central necrosis, a peripheral ring of Ang2-positive glioma cells, and reactive Ang2-positive vascular structures in the tumor/brain interface. When the tumor had developed a vascular network, Ang2 was expressed only in peripheral vascular structures. Because Ang2 expression was downmodulated in the late stages of development, probably to maintain a stable tumoral vasculature, we next studied whether sustained Ang2 expression might impair vascular development and, ultimately, tumor growth. Ang2 prevented the formation of capillary-like structures and impaired angiogenesis in a chorioallantoic membrane chicken model. Finally, we tested the effect of sustained Ang2 expression on U-87 MG xenograff development. Ang2 significantly prolonged the survival of intracranial U-87 MG tumor-bearing animals. Examination of Ang2treated xenograffs revealed areas of tumor necrosis and vascular damage. We therefore conclude that deregulated Ang2 expression during gliomagenesis hindered successful angiogenesis and that therapies that sustain Ang2 expression might be effective against malignant gliomas.

  10. Survival analysis of patients with high-grade gliomas based on data mining of imaging variables.

    Science.gov (United States)

    Zacharaki, E I; Morita, N; Bhatt, P; O'Rourke, D M; Melhem, E R; Davatzikos, C

    2012-06-01

    The prediction of prognosis in HGGs is poor in the majority of patients. Our aim was to test whether multivariate prediction models constructed by machine-learning methods provide a more accurate predictor of prognosis in HGGs than histopathologic classification. The prediction of survival was based on DTI and rCBV measurements as an adjunct to conventional imaging. The relationship of survival to 55 variables, including clinical parameters (age, sex), categoric or continuous tumor descriptors (eg, tumor location, extent of resection, multifocality, edema), and imaging characteristics in ROIs, was analyzed in a multivariate fashion by using data-mining techniques. A variable selection method was applied to identify the overall most important variables. The analysis was performed on 74 HGGs (18 anaplastic gliomas WHO grades III/IV and 56 GBMs or gliosarcomas WHO grades IV/IV). Five variables were identified as the most significant, including the extent of resection, mass effect, volume of enhancing tumor, maximum B0 intensity, and mean trace intensity in the nonenhancing/edematous region. These variables were used to construct a prediction model based on a J48 classification tree. The average classification accuracy, assessed by cross-validation, was 85.1%. Kaplan-Meier survival curves showed that the constructed prediction model classified malignant gliomas in a manner that better correlates with clinical outcome than standard histopathology. Prediction models based on data-mining algorithms can provide a more accurate predictor of prognosis in malignant gliomas than histopathologic classification alone.

  11. Arctigenin, a natural lignan compound, induces G0/G1 cell cycle arrest and apoptosis in human glioma cells.

    Science.gov (United States)

    Maimaitili, Aisha; Shu, Zunhua; Cheng, Xiaojiang; Kaheerman, Kadeer; Sikandeer, Alifu; Li, Weimin

    2017-02-01

    The aim of the current study was to investigate the anticancer potential of arctigenin, a natural lignan compound, in malignant gliomas. The U87MG and T98G human glioma cell lines were treated with various concentrations of arctigenin for 48 h and the effects of arctigenin on the aggressive phenotypes of glioma cells were assessed. The results demonstrated that arctigenin dose-dependently inhibited the growth of U87MG and T98G cells, as determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and bromodeoxyuridine incorporation assays. Arctigenin exposure also induced a 60-75% reduction in colony formation compared with vehicle-treated control cells. However, arctigenin was not observed to affect the invasiveness of glioma cells. Arctigenin significantly increased the proportion of cells in the G0/G1 phase and reduced the number of cells in the S phase, as compared with the control group (Parctigenin increased the expression levels of p21, retinoblastoma and p53 proteins, and significantly decreased the expression levels of cyclin D1 and cyclin-dependent kinase 4 proteins. Additionally, arctigenin was able to induce apoptosis in glioma cells, coupled with increased expression levels of cleaved caspase-3 and the pro-apoptotic BCL2-associated X protein. Furthermore, arctigenin-induced apoptosis was significantly suppressed by the pretreatment of cells with Z-DEVD-FMK, a caspase-3 inhibitor. In conclusion, the results suggest that arctigenin is able to inhibit cell proliferation and may induce apoptosis and cell cycle arrest at the G0/G1 phase in glioma cells. These results warrant further investigation of the anticancer effects of arctigenin in animal models of gliomas.

  12. Rangely Oil Field Perch Survey, 2001-2004

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Data are the results of raptor perch surveys conducted monthly from August 2001 - July 2004 along a standardized survey route in the Rangely Oil Field (ROF),...

  13. Vestas 2001-2004 - en årasaganalyse

    OpenAIRE

    2006-01-01

    Projektet omhandler en intern og en ekstern analyse af Vestas Windsystems A/S, med henblik på at finde årsager til deres dårlige økonomiske resultat. Projektet er tværfagligt og indeholder fagdisciplinerne økonomi og sociologi, herunder organisation. Vi har i vores projekt valgt at lave en analyse af Vestas organisationsstruktur/kultur, for at analysere dennes påvirkning på Vestas, efterfølgende lavede vi en regnskabsanalyse, for at belyse hvor Vestas klare sig økonomisk dårligt. Vi fortager ...

  14. The human glia maturation factor-gamma gene: genomic structure and mutation analysis in gliomas with chromosome 19q loss.

    Science.gov (United States)

    Peters, N; Smith, J S; Tachibana, I; Lee, H K; Pohl, U; Portier, B P; Louis, D N; Jenkins, R B

    1999-09-01

    Human glia maturation factor-gamma (hGMF-gamma) is a recently identified gene that may be involved in glial differentiation, neural regeneration, and inhibition of tumor cell proliferation. The gene maps to the long arm of chromosome 19 at band q13.2, a region that is frequently deleted in human malignant gliomas and is thus suspected to harbor a glioma tumor suppressor gene. Given the putative role of hGMF-gamma in cell differentiation and proliferation and its localization to chromosome 19q13, this gene is an interesting candidate for the chromosome 19q glioma tumor suppressor gene. To evaluate this possibility, we determined the genomic structure of human hGMF-gamma and performed mutation screening in a series of 41 gliomas with and without allelic loss of chromosome 19q. Mutations were not detected, which suggests that hGMF-gamma is not the chromosome 19q glioma suppressor gene. However, the elucidation of the genomic structure of hGMF-gamma may prove useful in future investigations of hGMF-gamma in the normal adult and developing human nervous system.

  15. Alteration of the Cyclin D1/p16-pRB Pathway, Cellular Proliferation and Apoptosis i