WorldWideScience

Sample records for malignant glioma neuropathology

  1. Spinal metastases of malignant gliomas

    International Nuclear Information System (INIS)

    Materlik, B.; Steidle-Katic, U.; Feyerabend, T.; Richter, E.; Wauschkuhn, B.

    1998-01-01

    Purpose: Extracranial metastases of malignant gliomas are rare. We report 2 cases with spinal metastases in patients suffering from glioma. Patients and Method: Two patients (33 and 57 years old) developed spinal canal metastases of a glioblastoma multiforme and anaplastic astrocytoma Grade III respectively 25 and 9 months after surgical resection and radiotherapy. Both metastases were confirmed pathohistologically. Results: Intraspinal metastases were irradiated with a total dose of 12.6 Gy and 50 Gy. Treatment withdrawal was necessary in one patient due to reduced clinical condition. Regression of neurological symptoms was observed in the second patient. Conclusions: Spinal spread of malignant glioma should be considered during care and follow-up in glioma patients with spinal symptoms. (orig.) [de

  2. Paediatric and adult malignant glioma

    DEFF Research Database (Denmark)

    Jones, Chris; Perryman, Lara; Hargrave, Darren

    2012-01-01

    Gliomas in children differ from their adult counterparts by their distribution of histological grade, site of presentation and rate of malignant transformation. Although rare in the paediatric population, patients with high-grade gliomas have, for the most part, a comparably dismal clinical outcome...... to older patients with morphologically similar lesions. Molecular profiling data have begun to reveal the major genetic alterations underpinning these malignant tumours in children. Indeed, the accumulation of large datasets on adult high-grade glioma has revealed key biological differences between...... the adult and paediatric disease. Furthermore, subclassifications within the childhood age group can be made depending on age at diagnosis and tumour site. However, challenges remain on how to reconcile clinical data from adult patients to tailor novel treatment strategies specifically for paediatric...

  3. Extra-Neural Metastases of Malignant Gliomas: Myth or Reality?

    Energy Technology Data Exchange (ETDEWEB)

    Beauchesne, Patrick [Neuro-Oncology, CHU de NANCY, Hôpital Central, CO n°34, 54035 Nancy Cedex (France)

    2011-01-27

    Malignant gliomas account for approximately 60% of all primary brain tumors in adults. Prognosis for these patients has not significantly changed in recent years— despite debulking surgery, radiotherapy and cytotoxic chemotherapy—with a median survival of 9–12 months. Virtually no patients are cured of their illness. Malignant gliomas are usually locally invasive tumors, though extra-neural metastases can sometimes occur late in the course of the disease (median of two years). They generally appear after craniotomy although spontaneous metastases have also been reported. The incidence of these metastases from primary intra-cranial malignant gliomas is low; it is estimated at less than 2% of all cases. Extra-neural metastases from gliomas frequently occur late in the course of the disease (median of two years), and generally appear after craniotomy, but spontaneous metastases have also been reported. Malignant glioma metastases usually involve the regional lymph nodes, lungs and pleural cavity, and occasionally the bone and liver. In this review, we present three cases of extra-neural metastasis of malignant gliomas from our department, summarize the main reported cases in literature, and try to understand the mechanisms underlying these systemic metastases.

  4. Extra-Neural Metastases of Malignant Gliomas: Myth or Reality?

    International Nuclear Information System (INIS)

    Beauchesne, Patrick

    2011-01-01

    Malignant gliomas account for approximately 60% of all primary brain tumors in adults. Prognosis for these patients has not significantly changed in recent years— despite debulking surgery, radiotherapy and cytotoxic chemotherapy—with a median survival of 9–12 months. Virtually no patients are cured of their illness. Malignant gliomas are usually locally invasive tumors, though extra-neural metastases can sometimes occur late in the course of the disease (median of two years). They generally appear after craniotomy although spontaneous metastases have also been reported. The incidence of these metastases from primary intra-cranial malignant gliomas is low; it is estimated at less than 2% of all cases. Extra-neural metastases from gliomas frequently occur late in the course of the disease (median of two years), and generally appear after craniotomy, but spontaneous metastases have also been reported. Malignant glioma metastases usually involve the regional lymph nodes, lungs and pleural cavity, and occasionally the bone and liver. In this review, we present three cases of extra-neural metastasis of malignant gliomas from our department, summarize the main reported cases in literature, and try to understand the mechanisms underlying these systemic metastases

  5. Treating malignant glioma in Chinese patients: update on temozolomide

    Directory of Open Access Journals (Sweden)

    Chang L

    2014-02-01

    Full Text Available Liang Chang,1 Jun Su,1 Xiuzhi Jia,2,3 Huan Ren2,3 1Department of Neurosurgery, The Tumor Hospital of Harbin Medical University, 2Department of Immunology, Harbin Medical University, 3Key Lab Infection and Immunity, Heilongjiang Province, Harbin, People's Republic of China Abstract: Malignant glioma, ie, anaplastic astrocytoma and glioblastoma, is the most common type of primary malignant brain tumor in the People's Republic of China, and is particularly aggressive. The median survival of patients with newly diagnosed glioblastoma is only 12–14 months despite advanced therapeutic strategies. Treatment of malignant glioma consists mainly of surgical resection followed by adjuvant radiation and chemotherapy. Temozolomide (TMZ, a second-generation oral alkylating agent, is playing an increasingly important role in the treatment of malignant glioma in Chinese patients. Since the publication of a study by Stupp et al in 2005, which used a protocol of conventional fractionated irradiation with concomitant TMZ followed by standard TMZ for six cycles, many clinical studies in the People's Republic of China have demonstrated that such a treatment strategy has significantly improved efficacy with limited side effects for newly diagnosed glioblastoma after surgery as compared with strategies that do not contain TMZ. However, as a relatively new agent, the history and development of TMZ for malignant glioma is not well documented in Chinese patients. Multicenter, randomized controlled trials including appropriately sized patient populations investigating multiple aspects of TMZ therapy and related combination therapies are warranted in patients with malignant glioma. This review provides an update on the efficacy, mechanism of action, adverse reactions, and clinical role of TMZ in the treatment of malignant glioma in Chinese patients. Keywords: malignant glioma, chemotherapy, temozolomide, efficacy, side effect, People's Republic of China

  6. Antiangiogenic Therapy and Mechanisms of Tumor Resistance in Malignant Glioma

    Directory of Open Access Journals (Sweden)

    Ruman Rahman

    2010-01-01

    Full Text Available Despite advances in surgery, radiation therapy, and chemotherapeutics, patients with malignant glioma have a dismal prognosis. The formations of aberrant tumour vasculature and glioma cell invasion are major obstacles for effective treatment. Angiogenesis is a key event in the progression of malignant gliomas, a process involving endothelial cell proliferation, migration, reorganization of extracellular matrix and tube formation. Such processes are regulated by the homeostatic balance between proangiogenic and antiangiogenic factors, most notably vascular endothelial growth factors (VEGFs produced by glioma cells. Current strategies targeting VEGF-VEGF receptor signal transduction pathways, though effective in normalizing abnormal tumor vasculature, eventually result in tumor resistance whereby a highly infiltrative and invasive phenotype may be adopted. Here we review recent anti-angiogenic therapy for malignant glioma and highlight implantable devices and nano/microparticles as next-generation methods for chemotherapeutic delivery. Intrinsic and adaptive modes of glioma resistance to anti-angiogenic therapy will be discussed with particular focus on the glioma stem cell paradigm.

  7. Economics of Malignant Gliomas: A Critical Review.

    Science.gov (United States)

    Raizer, Jeffrey J; Fitzner, Karen A; Jacobs, Daniel I; Bennett, Charles L; Liebling, Dustin B; Luu, Thanh Ha; Trifilio, Steven M; Grimm, Sean A; Fisher, Matthew J; Haleem, Meraaj S; Ray, Paul S; McKoy, Judith M; DeBoer, Rebecca; Tulas, Katrina-Marie E; Deeb, Mohammed; McKoy, June M

    2015-01-01

    Approximately 18,500 persons are diagnosed with malignant glioma in the United States annually. Few studies have investigated the comprehensive economic costs. We reviewed the literature to examine costs to patients with malignant glioma and their families, payers, and society. A total of 18 fully extracted studies were included. Data were collected on direct and indirect costs, and cost estimates were converted to US dollars using the conversion rate calculated from the study's publication date, and updated to 2011 values after adjustment for inflation. A standardized data abstraction form was used. Data were extracted by one reviewer and checked by another. Before approval of effective chemotherapeutic agents for malignant gliomas, estimated total direct medical costs in the United States for surgery and radiation therapy per patient ranged from $50,600 to $92,700. The addition of temozolomide (TMZ) and bevacizumab to glioblastoma treatment regimens has resulted in increased overall costs for glioma care. Although health care costs are now less front-loaded, they have increased over the course of illness. Analysis using a willingness-to-pay threshold of $50,000 per quality-adjusted life-year suggests that the benefits of TMZ fall on the edge of acceptable therapies. Furthermore, indirect medical costs, such as productivity losses, are not trivial. With increased chemotherapy use for malignant glioma, the paradigm for treatment and associated out-of-pocket and total medical costs continue to evolve. Larger out-of-pocket costs may influence the choice of chemotherapeutic agents, the economic implications of which should be evaluated prospectively. Copyright © 2015 by American Society of Clinical Oncology.

  8. CURRENT APPROACHES TO CHEMORADIOTHERAPY FOR MALIGNANT GLIOMAS

    Directory of Open Access Journals (Sweden)

    Ye. L. Choinzonov

    2014-01-01

    Full Text Available High-grade malignant gliomas (WHO grade G III–IV account for more than 50% of all primary brain tumors. Despite aggressive treatment, survival rates are still very low with a median reported survival of no more than 1.5 years.Radiation therapy is an integral part of the combined treatment, but often does not influence lethally on resistant tumor cells. Thereby, in recent decades there has been an active search for novel approaches to the treatment of malignant gliomas (chemotherapeutic drugs, biological modifiers, local hyperthermia. Experimental data showed that the effect of high temperatures has both a direct damaging effect on tumor cells and a sensitizing effect. Significant advantages are achieved when the complex treatment of different malignant tumorsincludes local hyperthermia. However data on the treatment of patients with primary and recurrent gliomas G III–IV using local hyperthermia are scarce.The literature review is given in the article provides an overview of the existing treatment methods for brain tumors.

  9. Intraoperative neuropathology of glioma recurrence: cell detection and classification

    Science.gov (United States)

    Abas, Fazly S.; Gokozan, Hamza N.; Goksel, Behiye; Otero, Jose J.; Gurcan, Metin N.

    2016-03-01

    Intraoperative neuropathology of glioma recurrence represents significant visual challenges to pathologists as they carry significant clinical implications. For example, rendering a diagnosis of recurrent glioma can help the surgeon decide to perform more aggressive resection if surgically appropriate. In addition, the success of recent clinical trials for intraoperative administration of therapies, such as inoculation with oncolytic viruses, may suggest that refinement of the intraoperative diagnosis during neurosurgery is an emerging need for pathologists. Typically, these diagnoses require rapid/STAT processing lasting only 20-30 minutes after receipt from neurosurgery. In this relatively short time frame, only dyes, such as hematoxylin and eosin (H and E), can be implemented. The visual challenge lies in the fact that these patients have undergone chemotherapy and radiation, both of which induce cytological atypia in astrocytes, and pathologists are unable to implement helpful biomarkers in their diagnoses. Therefore, there is a need to help pathologists differentiate between astrocytes that are cytologically atypical due to treatment versus infiltrating, recurrent, neoplastic astrocytes. This study focuses on classification of neoplastic versus non-neoplastic astrocytes with the long term goal of providing a better neuropathological computer-aided consultation via classification of cells into reactive gliosis versus recurrent glioma. We present a method to detect cells in H and E stained digitized slides of intraoperative cytologic preparations. The method uses a combination of the `value' component of the HSV color space and `b*' component of the CIE L*a*b* color space to create an enhanced image that suppresses the background while revealing cells on an image. A composite image is formed based on the morphological closing of the hue-luminance combined image. Geometrical and textural features extracted from Discrete Wavelet Frames and combined to classify

  10. Adult high-grade malignant gliomas

    Directory of Open Access Journals (Sweden)

    Fable Zustovich

    2011-12-01

    Full Text Available Central nervous system (CNS malignant gliomas are relatively rare diseases. Prognosis is poor but has improved over recent years due to the improvement in the multi-disciplinary treatment: surgery, radiotherapy and chemotherapy...

  11. Tumor Metabolism of Malignant Gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Ru, Peng; Williams, Terence M.; Chakravarti, Arnab; Guo, Deliang, E-mail: deliang.guo@osumc.edu [Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center & Arthur G James Cancer Hospital, Columbus, OH 43012 (United States)

    2013-11-08

    Constitutively activated oncogenic signaling via genetic mutations such as in the EGFR/PI3K/Akt and Ras/RAF/MEK pathways has been recognized as a major driver for tumorigenesis in most cancers. Recent insights into tumor metabolism have further revealed that oncogenic signaling pathways directly promote metabolic reprogramming to upregulate biosynthesis of lipids, carbohydrates, protein, DNA and RNA, leading to enhanced growth of human tumors. Therefore, targeting cell metabolism has become a novel direction for drug development in oncology. In malignant gliomas, metabolism pathways of glucose, glutamine and lipid are significantly reprogrammed. Moreover, molecular mechanisms causing these metabolic changes are just starting to be unraveled. In this review, we will summarize recent studies revealing critical gene alterations that lead to metabolic changes in malignant gliomas, and also discuss promising therapeutic strategies via targeting the key players in metabolic regulation.

  12. Tumor Metabolism of Malignant Gliomas

    International Nuclear Information System (INIS)

    Ru, Peng; Williams, Terence M.; Chakravarti, Arnab; Guo, Deliang

    2013-01-01

    Constitutively activated oncogenic signaling via genetic mutations such as in the EGFR/PI3K/Akt and Ras/RAF/MEK pathways has been recognized as a major driver for tumorigenesis in most cancers. Recent insights into tumor metabolism have further revealed that oncogenic signaling pathways directly promote metabolic reprogramming to upregulate biosynthesis of lipids, carbohydrates, protein, DNA and RNA, leading to enhanced growth of human tumors. Therefore, targeting cell metabolism has become a novel direction for drug development in oncology. In malignant gliomas, metabolism pathways of glucose, glutamine and lipid are significantly reprogrammed. Moreover, molecular mechanisms causing these metabolic changes are just starting to be unraveled. In this review, we will summarize recent studies revealing critical gene alterations that lead to metabolic changes in malignant gliomas, and also discuss promising therapeutic strategies via targeting the key players in metabolic regulation

  13. Multimodal imaging in cerebral gliomas and its neuropathological correlation

    Energy Technology Data Exchange (ETDEWEB)

    Gempt, Jens, E-mail: jens.gempt@lrz.tum.de [Neurochirurgische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Soehngen, Eric [Abteilung für Neuroradiologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Abteilung für Neuropathologie des Instituts für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Förster, Stefan [Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Ryang, Yu-Mi [Neurochirurgische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Schlegel, Jürgen [Abteilung für Neuropathologie des Instituts für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); and others

    2014-05-15

    Introduction: Concerning the preoperative clinical diagnostic work-up of glioma patients, tumor heterogeneity challenges the oncological therapy. The current study assesses the performance of a multimodal imaging approach to differentiate between areas in malignant gliomas and to investigate the extent to which such a combinatorial imaging approach might predict the underlying histology. Methods: Prior to surgical resection, patients harboring intracranial gliomas underwent MRIs (MR-S, PWI) and {sup 18}F-FET-PETs. Intratumoral and peritumoral biopsy targets were defined, by MRI only, by FET-PET only, and by MRI and FET-PET combined, and biopsied prior to surgical resection and which then received separate histopathological examinations. Results: In total, 38 tissue samples were acquired (seven glioblastomas, one anaplastic astrocytoma, one anaplastic oligoastrocytoma, one diffuse astrocytoma, and one oligoastrocytoma) and underwent histopathological analysis. The highest mean values of Mib1 and CD31 were found in the target point “T’ defined by MRI and FET-PET combined. A significant correlation between NAA/Cr and PET tracer uptake (−0.845, p < 0.05) as well as Cho/Cr ratio and cell density (0.742, p < 0.05) and NAA/Cr ratio and MIB-1 (−0761, p < 0.05) was disclosed for this target point, though not for target points defined by MRI and FET-PET alone. Conclusion: Multimodal-imaging-guided stereotactic biopsy correlated more with histological malignancy indices, such as cell density and MIB-1 labeling, than targets that were based solely on the highest amino acid uptake or contrast enhancement on MRI. The results of our study indicate that a combined PET-MR multimodal imaging approach bears potential benefits in detecting glioma heterogeneity.

  14. Immunotherapy Approaches for Malignant Glioma From 2007 to 2009

    Science.gov (United States)

    Sampson, John H.

    2012-01-01

    Malignant glioma is a deadly disease for which there have been few therapeutic advances over the past century. Although previous treatments were largely unsuccessful, glioma may be an ideal target for immune-based therapy. Recently, translational research led to several clinical trials based on tumor immunotherapy to treat patients with malignant glioma. Here we review 17 recent glioma immunotherapy clinical trials, published over the past 3 years. Various approaches were used, including passive transfer of naked and radiolabeled antibodies, tumor antigen-specific peptide immunization, and the use of patient tumor cells with or without dendritic cells as vaccines. We compare and discuss the current state of the art of clinical immunotherapy treatment, as well as its limited successes, pitfalls, and future potential. PMID:20424975

  15. Overexpression of NIMA-related kinase 2 is associated with poor prognoses in malignant glioma.

    Science.gov (United States)

    Liu, Huajie; Liu, Bin; Hou, Xianzeng; Pang, Bo; Guo, Pengbo; Jiang, Wanli; Ding, Qian; Zhang, Rui; Xin, Tao; Guo, Hua; Xu, Shangchen; Pang, Qi

    2017-05-01

    Eleated expression of NIMA-related kinase 2 (NEK2) was frequently observed in a variety of malignant cancers, and it appears to be involved in the initiation, maintenance, progression, metastasis of cancer and is positively associated with poor prognosis. We sought to investigate NEK2 expression and its predictive roles in malignant gliomas, and study the correlation of NEK2 protein expression with proliferation, clinical parameters, overall survival and some other parameters. We investigate NEK2 protein expression in 99 samples of malignant gliomas, including 35 WHO grade II, 22 grade III, and 42 grade IV gliomas, by immunohistochemistry and western blot (n = 50). We then made correlative analysis of protein overexpression using the Kaplan-Meier method, Log rank test, and Cox proportional-hazards model analysis. NEK2 protein was overexpressed in malignant gliomas, but not in normal brain tissues. Overexpression of NEK2 correlated with malignancy, proliferation and adverse overall survival in gliomas. Moreover, chemotherapy, resection extent and WHO grade also correlate with overall survival in gliomas. However, within WHO grade II glioma subgroup, NEK2 overexpression showed no impact on overall survival. The present study firstly reveals that NEK2 protein is widely overexpressed in gliomas. NEK2 overexpression correlates significantly with malignancy (WHO grades), proliferation (Ki-67) and prognosis in malignant gliomas. NEK2 is a potential gene therapy target and prognostic indicator.

  16. Possible novel therapy for malignant gliomas with secretable trimeric TRAIL.

    Directory of Open Access Journals (Sweden)

    Moonsup Jeong

    Full Text Available Malignant gliomas are the most common primary brain tumors. Despite intensive clinical investigation and many novel therapeutic approaches, average survival for the patients with malignant gliomas is only about 1 year. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL has shown potent and cancer-selective killing activity and drawn considerable attention as a promising therapy for cancers, but concerns over delivery and toxicity have limited progress. We have developed a secretable trimeric TRAIL (stTRAIL and here evaluated the therapeutic potential of this stTRAIL-based gene therapy in brain tumors. An adenovirus (Ad-stTRAIL delivering stTRAIL was injected into intra-cranial human glioma tumors established in nude mice and tumor growth monitored using the magnetic resonance imaging (MRI. Ad-stTRAIL gene therapy showed potent tumor suppressor activity with no toxic side effects at therapeutically effective doses. When compared with 1, 3-bis(2-chloroethyl-1-nitrosourea (BCNU, a conventional therapy for malignant gliomas, Ad-stTRAIL suppressed tumor growth more potently. The combination of Ad-stTRAIL and BCNU significantly increased survival compared to the control mice or mice receiving Ad-stTRAIL alone. Our data indicate that Ad-stTRAIL, either alone or combined with BCNU, has promise as a novel therapy for malignant gliomas.

  17. Therapeutic Strategy for Targeting Aggressive Malignant Gliomas by Disrupting Their Energy Balance.

    Science.gov (United States)

    Hegazy, Ahmed M; Yamada, Daisuke; Kobayashi, Masahiko; Kohno, Susumu; Ueno, Masaya; Ali, Mohamed A E; Ohta, Kumiko; Tadokoro, Yuko; Ino, Yasushi; Todo, Tomoki; Soga, Tomoyoshi; Takahashi, Chiaki; Hirao, Atsushi

    2016-10-07

    Although abnormal metabolic regulation is a critical determinant of cancer cell behavior, it is still unclear how an altered balance between ATP production and consumption contributes to malignancy. Here we show that disruption of this energy balance efficiently suppresses aggressive malignant gliomas driven by mammalian target of rapamycin complex 1 (mTORC1) hyperactivation. In a mouse glioma model, mTORC1 hyperactivation induced by conditional Tsc1 deletion increased numbers of glioma-initiating cells (GICs) in vitro and in vivo Metabolic analysis revealed that mTORC1 hyperactivation enhanced mitochondrial biogenesis, as evidenced by elevations in oxygen consumption rate and ATP production. Inhibition of mitochondrial ATP synthetase was more effective in repressing sphere formation by Tsc1-deficient glioma cells than that by Tsc1-competent glioma cells, indicating a crucial function for mitochondrial bioenergetic capacity in GIC expansion. To translate this observation into the development of novel therapeutics targeting malignant gliomas, we screened drug libraries for small molecule compounds showing greater efficacy in inhibiting the proliferation/survival of Tsc1-deficient cells compared with controls. We identified several compounds able to preferentially inhibit mitochondrial activity, dramatically reducing ATP levels and blocking glioma sphere formation. In human patient-derived glioma cells, nigericin, which reportedly suppresses cancer stem cell properties, induced AMPK phosphorylation that was associated with mTORC1 inactivation and induction of autophagy and led to a marked decrease in sphere formation with loss of GIC marker expression. Furthermore, malignant characteristics of human glioma cells were markedly suppressed by nigericin treatment in vivo Thus, targeting mTORC1-driven processes, particularly those involved in maintaining a cancer cell's energy balance, may be an effective therapeutic strategy for glioma patients. © 2016 by The American

  18. Prognostic Marker before Treatment of Patients with Malignant Glioma

    Directory of Open Access Journals (Sweden)

    Norbert Galldiks

    2012-11-01

    Full Text Available The purpose of this positron emission tomography (PET study was to compare the prognostic value of pretreatment volume of [11C] methionine (MET uptake and semiquantitative MET uptake ratio in patients with malignant glioma. The study population comprised 40 patients with malignant glioma. Pretreatment magnetic resonance imaging (MRI and MET-PET imaging were performed before the initiation of glioma treatment in all patients. The pretreatment MET uptake ratios and volumes were assessed. To create prognostically homogeneous subgroups, patients′ pretreatment prognostic factors were stratified according to the six classes of Radiation Therapy Oncology Group recursive partitioning analysis (RTOG RPA. Univariate and multivariate analyses were performed to determine significant prognostic factors. Survival analyses identified the pretreatment volume of MET uptake and a higher RTOG RPA class as significant predictors. In contrast, pretreatment maximum areas of contrast enhancement on MRI and semiquantitative MET uptake ratios could not be identified as significant prognostic factors. The patients′ outcomes and Karnofsky Performance Scale scores were significantly correlated with pretreatment volume of MET uptake but not with semiquantitative MET uptake ratio. The data suggest that pretreatment volumetry of MET uptake but not the semiquantitative MET uptake ratio is a useful biologic prognostic marker in patients with malignant glioma.

  19. Loss of heterozygosity of TRIM3 in malignant gliomas

    International Nuclear Information System (INIS)

    Boulay, Jean-Louis; Stiefel, Urs; Taylor, Elisabeth; Dolder, Béatrice; Merlo, Adrian; Hirth, Frank

    2009-01-01

    Malignant gliomas are frequent primary brain tumors associated with poor prognosis and very limited response to conventional chemo- and radio-therapies. Besides sharing common growth features with other types of solid tumors, gliomas are highly invasive into adjacent brain tissue, which renders them particularly aggressive and their surgical resection inefficient. Therefore, insights into glioma formation are of fundamental interest in order to provide novel molecular targets for diagnostic purposes and potential anti-cancer drugs. Human Tripartite motif protein 3 (TRIM3) encodes a structural homolog of Drosophila brain tumor (brat) implicated in progenitor cell proliferation control and cancer stem cell suppression. TRIM3 is located within the loss of allelic heterozygosity (LOH) hotspot of chromosome segment 11p15.5, indicating a potential role in tumor suppression. ... Here we analyze 70 primary human gliomas of all types and grades and report somatic deletion mapping as well as single nucleotide polymorphism analysis together with quantitative real-time PCR of chromosome segment 11p15.5. Our analysis identifies LOH in 17 cases (24%) of primary human glioma which defines a common 130 kb-wide interval within the TRIM3 locus as a minimal area of loss. We further detect altered genomic dosage of TRIM3 in two glioma cases with LOH at 11p15.5, indicating homozygous deletions of TRIM3. Loss of heterozygosity of chromosome segment 11p15.5 in malignant gliomas suggests TRIM3 as a candidate brain tumor suppressor gene

  20. Anti-invasive and antiangiogenic effects of MMI-166 on malignant glioma cells

    International Nuclear Information System (INIS)

    Nakabayashi, Hiromichi; Yawata, Toshio; Shimizu, Keiji

    2010-01-01

    The constitutive overexpression of matrix metalloproteinases (MMPs) is frequently observed in malignant tumours. In particular, MMP-2 and MMP-9 have been reported to be closely associated with invasion and angiogenesis in malignant gliomas. Our study aimed to evaluate the antitumour effects of MMI-166 (Nalpha-[4-(2-Phenyl-2H- tetrazole-5-yl) phenyl sulfonyl]-D-tryptophan), a third generation MMP inhibitor, on three human glioma cell lines (T98G, U87MG, and ONS12) in vitro and in vivo. The effects of MMI-166 on the gelatinolytic activity was analysed by gelatine zymography. The anti-invasive effect of MMI-166 was analysed by an in vitro invasion assay. An in vitro angiogenesis assay was also performed. In vitro growth inhibition of glioma cells by MMI-166 was determined by the MTT assay. The effect of MMI-166 on an orthotropic implantation model using athymic mice was also evaluated. Gelatine zymography revealed that MMP-2 and MMP-9 activities were suppressed by MMI-166. The invasion of glioma cells was suppressed by MMI-166. The angiogenesis assay showed that MMI-166 had a suppressive effect on glioma cell-induced angiogenesis. However, MMI-166 did not suppress glioma cell proliferation in the MTT assay. In vivo, MMI-166 suppressed tumour growth in athymic mice implanted orthotropically with T98G cells and showed an inhibitory effect on tumour-induced angiogenesis and tumour growth. This is the first report of the effect of a third generation MMP inhibitor on malignant glioma cells. These results suggest that MMI-166 may have potentially suppressive effects on the invasion and angiogenesis of malignant gliomas

  1. Fotemustine: A Third-Generation Nitrosourea for the Treatment of Recurrent Malignant Gliomas

    International Nuclear Information System (INIS)

    Beauchesne, Patrick

    2012-01-01

    Malignant gliomas account for approximately 60% of all primary brain tumors in adults. The prognosis for patients with malignant glioma has not changed significantly in recent years. Despite debulking surgery, radiotherapy and cytotoxic chemotherapy, the median survival time is nine to 12 months, and very few, if any, patients are cured from this illness. Fotemustine is an alkylating agent characterized by the grafting of a phosphonoalanine group onto the nitrosourea radical with consequent high lipophilicity and improved diffusion through the cell membrane and the blood-brain barrier. Fotemustine has been registered for use in two indications: disseminated malignant melanoma, including cerebral metastases, and primary brain tumors. Fotemustine is currently used in Europe, particularly in France and Italy, as a salvage therapy for recurrent malignant gliomas. Myelosuppression, leucopenia and thrombocytopenia are the most frequent side effects of treatment with fotemustine. The objective response to this treatment is between 26% and 70%, and the reported median survival time is 10 months. New drug combinations containing fotemustine and angiogenesis inhibitors, such as bevacizumab, are currently under development. In this review, we describe all the combinations of fotemustine currently used in clinical practice for recurrent malignant gliomas

  2. Fotemustine: A Third-Generation Nitrosourea for the Treatment of Recurrent Malignant Gliomas

    Directory of Open Access Journals (Sweden)

    Patrick Beauchesne

    2012-02-01

    Full Text Available Malignant gliomas account for approximately 60% of all primary brain tumors in adults. The prognosis for patients with malignant glioma has not changed significantly in recent years. Despite debulking surgery, radiotherapy and cytotoxic chemotherapy, the median survival time is nine to 12 months, and very few, if any, patients are cured from this illness. Fotemustine is an alkylating agent characterized by the grafting of a phosphonoalanine group onto the nitrosourea radical with consequent high lipophilicity and improved diffusion through the cell membrane and the blood-brain barrier. Fotemustine has been registered for use in two indications: disseminated malignant melanoma, including cerebral metastases, and primary brain tumors. Fotemustine is currently used in Europe, particularly in France and Italy, as a salvage therapy for recurrent malignant gliomas. Myelosuppression, leucopenia and thrombocytopenia are the most frequent side effects of treatment with fotemustine. The objective response to this treatment is between 26% and 70%, and the reported median survival time is 10 months. New drug combinations containing fotemustine and angiogenesis inhibitors, such as bevacizumab, are currently under development. In this review, we describe all the combinations of fotemustine currently used in clinical practice for recurrent malignant gliomas.

  3. Fotemustine: A Third-Generation Nitrosourea for the Treatment of Recurrent Malignant Gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Beauchesne, Patrick [Neuro-oncology/Neurology, University Hospital of Nancy, Hôpital CENTRAL, CO N 34,54035 Nancy cedex (France)

    2012-02-01

    Malignant gliomas account for approximately 60% of all primary brain tumors in adults. The prognosis for patients with malignant glioma has not changed significantly in recent years. Despite debulking surgery, radiotherapy and cytotoxic chemotherapy, the median survival time is nine to 12 months, and very few, if any, patients are cured from this illness. Fotemustine is an alkylating agent characterized by the grafting of a phosphonoalanine group onto the nitrosourea radical with consequent high lipophilicity and improved diffusion through the cell membrane and the blood-brain barrier. Fotemustine has been registered for use in two indications: disseminated malignant melanoma, including cerebral metastases, and primary brain tumors. Fotemustine is currently used in Europe, particularly in France and Italy, as a salvage therapy for recurrent malignant gliomas. Myelosuppression, leucopenia and thrombocytopenia are the most frequent side effects of treatment with fotemustine. The objective response to this treatment is between 26% and 70%, and the reported median survival time is 10 months. New drug combinations containing fotemustine and angiogenesis inhibitors, such as bevacizumab, are currently under development. In this review, we describe all the combinations of fotemustine currently used in clinical practice for recurrent malignant gliomas.

  4. Specific Inhibition of SRC Kinase Impairs Malignant Glioma Growth In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Hanna Stedt

    2012-01-01

    Full Text Available Malignant glioma is a severe cancer with a poor prognosis. Local occurrence and rare metastases of malignant glioma make it a suitable target for gene therapy. Several studies have demonstrated the importance of Src kinase in different cancers. However, these studies have focused mainly on Src-deficient mice or pharmacological inhibitors of Src. In this study we have used Src small hairpin RNAs (shRNAs in a lentiviral backbone to mimic a long-term stable treatment and determined the role of Src in tumor tissues. Efficacy of Src shRNAs was confirmed in vitro demonstrating up to 90% target gene inhibition. In a mouse malignant glioma model, Src shRNA tumors were almost 50-fold smaller in comparison to control tumors and had significantly reduced vascularity. In a syngenic rat intracranial glioma model, Src shRNA-transduced tumors were smaller and these rats had a survival benefit over the control rats. In vivo treatment was enhanced by chemotherapy and histone deacetylase inhibition. Our results emphasise the importance of Src in tumorigenesis and demonstrate that it can be efficiently inhibited in vitro and in vivo in two independent malignant glioma models. In conclusion, Src is a potential target for RNA interference-mediated treatment of malignant glioma.

  5. Nitrosoureas in the Management of Malignant Gliomas.

    Science.gov (United States)

    Brandes, Alba A; Bartolotti, Marco; Tosoni, Alicia; Franceschi, Enrico

    2016-02-01

    Nitrosoureas represent one of the most active classes of agents in the treatment of high-grade gliomas and glioblastoma. In clinical practice, the most commonly used compounds are lomustine (either alone or in combination with procarbazine and vincristine), carmustine, and fotemustine. Given their toxicity profile and subsequent to the introduction of temozolomide in clinical practice, most of these agents were moved to the recurrent setting. This review focuses on the role of the nitrosoureas currently used in clinical practice for the treatment of malignant gliomas.

  6. The neuropathological basis to the functional role of microglia/macrophages in gliomas.

    Science.gov (United States)

    Schiffer, Davide; Mellai, Marta; Bovio, Enrica; Annovazzi, Laura

    2017-09-01

    The paper wants to be a tracking shot of the main recent acquisitions on the function and significance of microglia/macrophages in gliomas. The observations have been principally carried out on in vitro cultures and on tumor transplants in animals. Contrary to what is deduced from microglia in non-neoplastic pathologic conditions of central nervous system (CNS), most conclusions indicate that microglia acts favoring tumor proliferation through an immunosuppression induced by glioma cells. By immunohistochemistry, different microglia phenotypes are recognized in gliomas, from ramified microglia to frank macrophagic aspect. One wonders whether the functional conclusions drawn from many microglia studies, but not in conditions of human pathology, apply to all the phenotypes recognizable in them. It is difficult to verify in human pathology a prognostic significance of microglia. Only CD163-positive microglia/macrophages inversely correlate with glioma patients' survival, whereas the total number of microglia does not change with the malignancy grade.

  7. Eckol suppresses maintenance of stemness and malignancies in glioma stem-like cells

    International Nuclear Information System (INIS)

    Hyun, Kyung-Hwan; Yoon, Chang-Hwan; Kim, Rae-Kwon; Lim, Eun-Jung; An, Sungkwan; Park, Myung-Jin; Hyun, Jin-Won; Suh, Yongjoon; Kim, Min-Jung; Lee, Su-Jae

    2011-01-01

    A subpopulation of cancer cells with stem cell properties is responsible for tumor maintenance and progression, and may contribute to resistance to anticancer treatments. Thus, compounds that target cancer stem-like cells could be usefully applied to destroy cancer. In this study, we investigated the effect of Eckol, a phlorotannin compound, on stemness and malignancies in glioma stem-like cells. To determine whether Eckol targets glioma stem-like cells, we examined whether Eckol treatment could change the expression levels of glioma stem-like cell markers and self-renewal-related proteins as well as the sphere forming ability, and the sensitivity to anticancer treatments. Alterations in the malignant properties of sphere-derived cells by Eckol were also investigated by soft-agar colony forming assay, by xenograft assay in nude mice, and by cell invasion assay. Treatment of sphere-forming glioma cells with Eckol effectively decreased the sphere formation as well as the CD133 + cell population. Eckol treatment suppressed expression of the glioma stem-like cell markers and the self-renewal-related proteins without cell death. Moreover, treatment of glioma stem-like cells with Eckol significantly attenuated anchorage-independent growth on soft agar and tumor formation in xenograft mice. Importantly, Eckol treatment effectively reduced the resistance of glioma stem-like cells to ionizing radiation and temozolomide. Treatment of glioma stem-like cells with Eckol markedly blocked both phosphoinositide 3-kinase-Akt and Ras-Raf-1-Erk signaling pathways. These results indicate that the natural phlorotannin Eckol suppresses stemness and malignancies in glioma stem-like cells, and thereby makes glioma stem-like cells more sensitive to anticancer treatments, providing novel therapeutic strategies targeting specifically cancer stem-like cells.

  8. Loss of heterozygosity of TRIM3 in malignant gliomas

    Directory of Open Access Journals (Sweden)

    Dolder Béatrice

    2009-02-01

    Full Text Available Abstract Background Malignant gliomas are frequent primary brain tumors associated with poor prognosis and very limited response to conventional chemo- and radio-therapies. Besides sharing common growth features with other types of solid tumors, gliomas are highly invasive into adjacent brain tissue, which renders them particularly aggressive and their surgical resection inefficient. Therefore, insights into glioma formation are of fundamental interest in order to provide novel molecular targets for diagnostic purposes and potential anti-cancer drugs. Human Tripartite motif protein 3 (TRIM3 encodes a structural homolog of Drosophila brain tumor (brat implicated in progenitor cell proliferation control and cancer stem cell suppression. TRIM3 is located within the loss of allelic heterozygosity (LOH hotspot of chromosome segment 11p15.5, indicating a potential role in tumor suppression. ... Methods Here we analyze 70 primary human gliomas of all types and grades and report somatic deletion mapping as well as single nucleotide polymorphism analysis together with quantitative real-time PCR of chromosome segment 11p15.5. Results Our analysis identifies LOH in 17 cases (24% of primary human glioma which defines a common 130 kb-wide interval within the TRIM3 locus as a minimal area of loss. We further detect altered genomic dosage of TRIM3 in two glioma cases with LOH at 11p15.5, indicating homozygous deletions of TRIM3. Conclusion Loss of heterozygosity of chromosome segment 11p15.5 in malignant gliomas suggests TRIM3 as a candidate brain tumor suppressor gene.

  9. Daily intake of antioxidants in relation to survival among adult patients diagnosed with malignant glioma

    OpenAIRE

    DeLorenze, Gerald N; McCoy, Lucie; Tsai, Ai-Lin; Quesenberry, Charles P; Rice, Terri; Il'yasova, Dora; Wrensch, Margaret

    2010-01-01

    Abstract Background Malignant glioma is a rare cancer with poor survival. The influence of diet and antioxidant intake on glioma survival is not well understood. The current study examines the association between antioxidant intake and survival after glioma diagnosis. Methods Adult patients diagnosed with malignant glioma during 1991-1994 and 1997-2001 were enrolled in a population-based study. Diagnosis was confirmed by review of pathology specimens. A modified food-frequency questionnaire i...

  10. EG-13GENOME-WIDE METHYLATION ANALYSIS IDENTIFIES GENOMIC DNA DEMETHYLATION DURING MALIGNANT PROGRESSION OF GLIOMAS

    Science.gov (United States)

    Saito, Kuniaki; Mukasa, Akitake; Nagae, Genta; Aihara, Koki; Otani, Ryohei; Takayanagi, Shunsaku; Omata, Mayu; Tanaka, Shota; Shibahara, Junji; Takahashi, Miwako; Momose, Toshimitsu; Shimamura, Teppei; Miyano, Satoru; Narita, Yoshitaka; Ueki, Keisuke; Nishikawa, Ryo; Nagane, Motoo; Aburatani, Hiroyuki; Saito, Nobuhito

    2014-01-01

    Low-grade gliomas often undergo malignant progression, and these transformations are a leading cause of death in patients with low-grade gliomas. However, the molecular mechanisms underlying malignant tumor progression are still not well understood. Recent evidence indicates that epigenetic deregulation is an important cause of gliomagenesis; therefore, we examined the impact of epigenetic changes during malignant progression of low-grade gliomas. Specifically, we used the Illumina Infinium Human Methylation 450K BeadChip to perform genome-wide DNA methylation analysis of 120 gliomas and four normal brains. This study sample included 25 matched-pairs of initial low-grade gliomas and recurrent tumors (temporal heterogeneity) and 20 of the 25 recurring tumors recurred as malignant progressions, and one matched-pair of newly emerging malignant lesions and pre-existing lesions (spatial heterogeneity). Analyses of methylation profiles demonstrated that most low-grade gliomas in our sample (43/51; 84%) had a CpG island methylator phenotype (G-CIMP). Remarkably, approximately 50% of secondary glioblastomas that had progressed from low-grade tumors with the G-CIMP status exhibited a characteristic partial demethylation of genomic DNA during malignant progression, but other recurrent gliomas showed no apparent change in DNA methylation pattern. Interestingly, we found that most loci that were demethylated during malignant progression were located outside of CpG islands. The information of histone modifications patterns in normal human astrocytes and embryonal stem cells also showed that the ratio of active marks at the site corresponding to DNA demethylated loci in G-CIMP-demethylated tumors was significantly lower; this finding indicated that most demethylated loci in G-CIMP-demethylated tumors were likely transcriptionally inactive. A small number of the genes that were upregulated and had demethylated CpG islands were associated with cell cycle-related pathway. In

  11. Preoperative Quantitative MR Tractography Compared with Visual Tract Evaluation in Patients with Neuropathologically Confirmed Gliomas Grades II and III: A Prospective Cohort Study

    International Nuclear Information System (INIS)

    Delgado, Anna F.; Nilsson, Markus; Latini, Francesco; Mårtensson, Johanna; Zetterling, Maria; Berntsson, Shala G.; Alafuzoff, Irina; Lätt, Jimmy; Larsson, Elna-Marie

    2016-01-01

    Background and Purpose. Low-grade gliomas show infiltrative growth in white matter tracts. Diffusion tensor tractography can noninvasively assess white matter tracts. The aim was to preoperatively assess tumor growth in white matter tracts using quantitative MR tractography (3T). The hypothesis was that suspected infiltrated tracts would have altered diffusional properties in infiltrated tract segments compared to noninfiltrated tracts. Materials and Methods. Forty-eight patients with suspected low-grade glioma were included after written informed consent and underwent preoperative diffusion tensor imaging in this prospective review-board approved study. Major white matter tracts in both hemispheres were tracked, segmented, and visually assessed for tumor involvement in thirty-four patients with gliomas grade II or III (astrocytomas or oligodendrogliomas) on postoperative neuropathological evaluation. Relative fractional anisotropy (rFA) and mean diffusivity (rMD) in tract segments were calculated and compared with visual evaluation and neuropathological diagnosis. Results. Tract segment infiltration on visual evaluation was associated with a lower rFA and high rMD in a majority of evaluated tract segments (89% and 78%, resp.). Grade II and grade III gliomas had similar infiltrating behavior. Conclusion. Quantitative MR tractography corresponds to visual evaluation of suspected tract infiltration. It may be useful for an objective preoperative evaluation of tract segment involvement

  12. Plant thymidine kinase 1: a novel efficient suicide gene for malignant glioma therapy

    DEFF Research Database (Denmark)

    Khan, Z.; Knecht, Wolfgang; Willer, Mette

    2010-01-01

    The prognosis for malignant gliomas remains poor, and new treatments are urgently needed. Targeted suicide gene therapy exploits the enzymatic conversion of a prodrug, such as a nucleoside analog, into a cytotoxic compound. Although this therapeutic strategy has been considered a promising regimen...... suicide gene therapy system in combination with stem cell mediated gene delivery promises new treatment of malignant gliomas....

  13. Type I collagen gene suppresses tumor growth and invasion of malignant human glioma cells

    Directory of Open Access Journals (Sweden)

    Miyata Teruo

    2007-06-01

    Full Text Available Abstract Background Invasion is a hallmark of a malignant tumor, such as a glioma, and the progression is followed by the interaction of tumor cells with an extracellular matrix (ECM. This study examined the role of type I collagen in the invasion of the malignant human glioma cell line T98G by the introduction of the human collagen type I α1 (HCOL1A1 gene. Results The cells overexpressing HCOL1A1 were in a cluster, whereas the control cells were scattered. Overexpression of HCOL1A1 significantly suppressed the motility and invasion of the tumor cells. The glioma cell growth was markedly inhibited in vitro and in vivo by the overexpression of HCOL1A1; in particular, tumorigenicity completely regressed in nude mice. Furthermore, the HCOL1A1 gene induced apoptosis in glioma cells. Conclusion These results indicate that HCOL1A1 have a suppressive biological function in glioma progression and that the introduction of HCOL1A1 provides the basis of a novel therapeutic approach for the treatment of malignant human glioma.

  14. The effect of steroid on thallium-201 uptake by malignant gliomas

    International Nuclear Information System (INIS)

    Namba, Hiroki; Togawa, Takashi; Yui, Nobuharu; Yanagisawa, Masamichi; Kinoshita, Fujimi; Iwadate, Yasuo; Ohsato, Katsunobu; Sueyoshi, Kanji

    1996-01-01

    In order to assess the effect of steroid on thallium-201 uptake by glioma, 201 Tl single-photon emission tomography was performed before and after steroid administration in four patients with recurrent malignant glioma. After steroid administration the 201 Tl index, expressed as the ratio of 201 Tl uptake in the tumour to that in the contralateral cerebral hemisphere, was 0.77±0.11 of the value before steroid (mean±SD: P 201 Tl index has been used as a possible indicator for the differentiation of malignant gliomas from relatively benign tumours or radiation necrosis. The present results indicate that the effect of steroid has to be taken into account when semi-quantitative analysis, e.g. by means of the 201 Tl index, is used in patients with brain tumours. (orig.)

  15. Nicotine enhances proliferation, migration, and radioresistance of human malignant glioma cells through EGFR activation

    International Nuclear Information System (INIS)

    Khalil, A.A.; Jameson, M.J.; Broaddus, W.C.; Lin, P.S.; Chung, T.D.

    2013-01-01

    It has been suggested that continued tobacco use during radiation therapy contributes to maintenance of neoplastic growth despite treatment with radiation. Nicotine is a cigarette component that is an established risk factor for many diseases, neoplastic and otherwise. The hypothesis of this work is that nicotine promotes the proliferation, migration, and radioresistance of human malignant glioma cells. The effect of nicotine on cellular proliferation, migration, signaling, and radiation sensitivity were evaluated for malignant glioma U87 and GBM12 cells by use of the AlamarBlue, scratch healing, and clonogenic survival assays. Signal transduction was assessed by immunoblotting for activated EGFR, extracellular regulated kinase (ERK), and AKT. At concentrations comparable with those found in chronic smokers, nicotine induced malignant glioma cell migration, growth, colony formation, and radioresistance. Nicotine increased phosphorylation of EGFR tyr992 , AKT ser473 , and ERK. These molecular effects were reduced by pharmacological inhibitors of EGFR, PI3K, and MEK. It was therefore concluded that nicotine stimulates the malignant behavior of glioma cells in vitro by activation of the EGFR and downstream AKT and ERK pathways. (author)

  16. Postoperative follow-up CT of malignant gliomas. With special reference to intraventricular and subarachnoid dissemination

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Akira; Matsukado, Yasuhiko; Hirata, Yoshifumi; Uemura, Shozaburo

    1986-02-01

    Ten postoperative patients with intraventricular and subarachnoid dissemination of supratentorial gliomas were evaluated with a follow-up CT scan. The tumors consisted of 9 malignant gliomas and 1 astrocytoma. In 5 of the 9 malignant gliomas, the ventricles were surgically opened. In 4 of these 5 patients, a regional linear enhancement of the ventricular wall was observed in the early postoperative period. These findings were the initial findings indicative of tumor dissemination in the CSF space; a postoperative CT follow-up should be done within a few weeks after the operation, especially when the ventricles were ruptured. Subarachnoid dissemination and/or ventricular implantation could also be observed in the follow-up CT of such low-grade gliomas as optic gliomas, and there was no marked difference in the CT findings between low-grade and malignant gliomas. Concomittant progressive ventricular dilatation in early postoperative period was noted in 8 of the 10 patients with serial CT studies. It was considered that hydrocephalus was the another indication for advancing subarachnoid dissemination.

  17. Modified optimal fractionation for poor prognosis malignant gliomas: An elusive search

    International Nuclear Information System (INIS)

    Gupta, Tejpal; Dinshaw, Ketayun

    2005-01-01

    The prognosis of malignant gliomas has not changed much over the last few decades despite refinements in neurosurgical techniques, high-precision radiotherapy, and newer chemotherapeutic agents. The median survival of poor prognosis malignant gliomas (older and/or poor performance status patients) still remains in the range of 6-9 months following maximal safe resection and postoperative conventionally fractionated adjuvant radiotherapy with or without chemotherapy. However, six weeks of daily radiotherapy does seem inappropriate in relation to the short expected survival time in this subset and there is an increasing emphasis on reducing the overall treatment time and the number of hospital visits by such patients. This can be achieved either by accelerated radiotherapy or by hypofractionated radiation, both of which are equivalent to conventional fractionation in terms of palliative effect and survival, as in discussed in this review. Despite enough evidence, such alteration of fractionation has not gained widespread acceptance by the oncologic fraternity. This review has been conducted to collate the evidence that could help shift the paradigm from conventional to modified fractionation in poor prognosis malignant glioma patients

  18. Targeted therapy in the treatment of malignant gliomas

    Directory of Open Access Journals (Sweden)

    Rimas V Lukas

    2009-05-01

    Full Text Available Rimas V Lukas1, Adrienne Boire2, M Kelly Nicholas1,2 1Department of Neurology; 2Department of Medicine, University of Chicago, Chicago, IL, USAAbstract: Malignant gliomas are invasive tumors with the potential to progress through current available therapies. These tumors are characterized by a number of abnormalities in molecular signaling that play roles in tumorigenesis, spread, and survival. These pathways are being actively investigated in both the pre-clinical and clinical settings as potential targets in the treatment of malignant gliomas. We will review many of the therapies that target the cancer cell, including the epidermal growth factor receptor, mammalian target of rapamycin, histone deacetylase, and farnesyl transferase. In addition, we will discuss strategies that target the extracellular matrix in which these cells reside as well as angiogenesis, a process emerging as central to tumor development and growth. Finally, we will briefly touch on the role of neural stem cells as both potential targets as well as delivery vectors for other therapies. Interdependence between these varied pathways, both in maintaining health and in causing disease, is clear. Thus, attempts to easily classify some targeted therapies are problematic.Keywords: glioma, EGFR, mTOR, HDAC, Ras, angiogenesis

  19. Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells

    Directory of Open Access Journals (Sweden)

    Sharma Kamal

    2008-12-01

    Full Text Available Abstract Background Effective transvascular delivery of nanoparticle-based chemotherapeutics across the blood-brain tumor barrier of malignant gliomas remains a challenge. This is due to our limited understanding of nanoparticle properties in relation to the physiologic size of pores within the blood-brain tumor barrier. Polyamidoamine dendrimers are particularly small multigenerational nanoparticles with uniform sizes within each generation. Dendrimer sizes increase by only 1 to 2 nm with each successive generation. Using functionalized polyamidoamine dendrimer generations 1 through 8, we investigated how nanoparticle size influences particle accumulation within malignant glioma cells. Methods Magnetic resonance and fluorescence imaging probes were conjugated to the dendrimer terminal amines. Functionalized dendrimers were administered intravenously to rodents with orthotopically grown malignant gliomas. Transvascular transport and accumulation of the nanoparticles in brain tumor tissue was measured in vivo with dynamic contrast-enhanced magnetic resonance imaging. Localization of the nanoparticles within glioma cells was confirmed ex vivo with fluorescence imaging. Results We found that the intravenously administered functionalized dendrimers less than approximately 11.7 to 11.9 nm in diameter were able to traverse pores of the blood-brain tumor barrier of RG-2 malignant gliomas, while larger ones could not. Of the permeable functionalized dendrimer generations, those that possessed long blood half-lives could accumulate within glioma cells. Conclusion The therapeutically relevant upper limit of blood-brain tumor barrier pore size is approximately 11.7 to 11.9 nm. Therefore, effective transvascular drug delivery into malignant glioma cells can be accomplished by using nanoparticles that are smaller than 11.7 to 11.9 nm in diameter and possess long blood half-lives.

  20. Preliminary clinical trial of immunotherapy for malignant glioma.

    Science.gov (United States)

    Ingram, M; Shelden, C H; Jacques, S; Skillen, R G; Bradley, W G; Techy, G B; Freshwater, D B; Abts, R M; Rand, R W

    1987-10-01

    An immunotherapy protocol based on intracranial implantation of stimulated, autologous lymphocytes into the tumor bed following surgical debulking of malignant glioma is described. Phase I clinical trials in human patients are now in progress. Preliminary data representing the first 39 patients treated are presented briefly.

  1. Intraoperative radiation therapy for malignant glioma

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Noboru; Yamada, Hiromu; Andoh, Takashi; Hirata, Toshifumi; Nishimura, Yasuaki; Miwa, Yoshiaki; Shimizu, Kotoyuki; Yanagawa, Shigeo [Gifu Univ. (Japan). Faculty of Medicine

    1991-11-01

    Intraoperative radiation therapy (IORT) was used as part of the initial therapy for malignant glioma in 32 of 73 patients with histologically verified anaplastic astrocytoma (grade III astrocytoma) and glioblastoma multiforme. The initial treatment for all cases was subtotal or total tumor resection combined with external irradiation and chemotherapy. IORT was performed 1 week after tumor resection, with doses of 10-50 Gy (mean 26.7 Gy) in one session. Fourteen of 32 cases had IORT two times because of tumor recurrence. The IORT patients had survival rates at 24 and 36 months after initial treatment of 57.1 and 33.5% (median survival 26.2 months). The other 41 patients had 23.6 and 13.1% survivals (median survival 20.7 months), which were significantly lower (p<0.01). Tumor recurrence within the original lesion site was suspected because of clinical condition, computed tomography, and magnetic resonance imaging studies in 65.6% of the IORT group (21 cases) 12 months after initial treatment. Twenty cases of death in the IORT group, including five autopsy cases, demonstrated regional tumor recurrence with a high incidence of intraventricular tumor invasion. The authors consider IORT is beneficial for selected malignant glioma patients, including tumor recurrence, because of prolonged survival. (author).

  2. Nitrosoureas inhibit the stathmin-mediated migration and invasion of malignant glioma cells.

    Science.gov (United States)

    Liang, Xing-Jie; Choi, Yong; Sackett, Dan L; Park, John K

    2008-07-01

    Malignant gliomas are the most common primary intrinsic brain tumors and are highly lethal. The widespread migration and invasion of neoplastic cells from the initial site of tumor formation into the surrounding brain render these lesions refractory to definitive surgical treatment. Stathmin, a microtubule-destabilizing protein that mediates cell cycle progression, can also regulate directed cell movement. Nitrosoureas, traditionally viewed as DNA alkylating agents, can also covalently modify proteins such as stathmin. We therefore sought to establish a role for stathmin in malignant glioma cell motility, migration, and invasion and determine the effects of nitrosoureas on these cell movement-related processes. Scratch wound-healing recovery, Boyden chamber migration, Matrigel invasion, and organotypic slice invasion assays were performed before and after the down-regulation of cellular stathmin levels and in the absence and presence of sublethal nitrosourea ([1-(2-chloroethyl)-3-cyclohexyl-l-nitrosourea]; CCNU) concentrations. We show that decreases in stathmin expression lead to significant decreases in malignant glioma cell motility, migration, and invasion. CCNU, at a concentration of 10 micromol/L, causes similar significant decreases, even in the absence of any effects on cell viability. The direct inhibition of stathmin by CCNU is likely a contributing factor. These findings suggest that the inhibition of stathmin expression and function may be useful in limiting the spread of malignant gliomas within the brain, and that nitrosoureas may have therapeutic benefits in addition to their antiproliferative effects.

  3. Nitrosoureas Inhibit the Stathmin Mediated Migration and Invasion of Malignant Glioma Cells

    Science.gov (United States)

    Liang, Xing-Jie; Choi, Yong; Sackett, Dan L.; Park, John K.

    2008-01-01

    Malignant gliomas are the most common primary intrinsic brain tumors and are highly lethal. The widespread migration and invasion of neoplastic cells from the initial site of tumor formation into the surrounding brain render these lesions refractory to definitive surgical treatment. Stathmin, a microtubule destabilizing protein that mediates cell cycle progression, can also regulate directed cell movement. Nitrosoureas, traditionally viewed as DNA alkylating agents, can also covalently modify proteins such as stathmin. We therefore sought to establish a role for stathmin in malignant glioma cell motility, migration, and invasion and determine the effects of nitrosoureas on these cell movement related processes. Scratch-wound healing recovery, Boyden chamber migration, Matrigel invasion, and organotypic slice invasion assays were performed before and after the down regulation of cellular stathmin levels and in the absence and presence of sub-lethal nitrosourea (CCNU; [1-(2-chloroethyl)-3-cyclohexyl-l-nitrosourea]) concentrations. We demonstrate that decreases in stathmin expression lead to significant decreases in malignant glioma cell motility, migration, and invasion. CCNU, at a concentration of 10 μM, causes similar significant decreases, even in the absence of any effects on cell viability. The direct inhibition of stathmin by CCNU is likely a contributing factor. These findings suggest that the inhibition of stathmin expression and function may be useful in limiting the spread of malignant gliomas within the brain and that nitrosoureas may have therapeutic benefits in addition to their anti-proliferative effects. PMID:18593927

  4. Astroglial c-Myc overexpression predisposes mice to primary malignant gliomas

    DEFF Research Database (Denmark)

    Jensen, Niels Aagaard; Pedersen, Karen-Marie; Lihme, Frederikke

    2003-01-01

    Malignant astrocytomas are common human primary brain tumors that result from neoplastic transformation of astroglia or their progenitors. Here we show that deregulation of the c-Myc pathway in developing astroglia predisposes mice to malignant astrocytomas within 2-3 weeks of age. The genetically...... engineered murine (GEM) gliomas harbor a molecular signature resembling that of human primary glioblastoma multiforme, including up-regulation of epidermal growth factor receptor and Mdm2. The GEM gliomas seem to originate in an abnormal population of glial fibrillary acidic protein-expressing cells...... the neoplastic process, presumably by inducing the sustained growth of early astroglial cells. This is in contrast to most other transgenic studies in which c-Myc overexpression requires co-operating transgenes for rapid tumor induction....

  5. Overexpression of Transforming Acidic Coiled Coil‑Containing Protein 3 Reflects Malignant Characteristics and Poor Prognosis of Glioma

    Directory of Open Access Journals (Sweden)

    Ying Sun

    2017-03-01

    Full Text Available Gliomas are malignant primary brain tumors with poor prognosis. Recently, research was indicative of a tight connection between tumor malignancy and genetic alterations. Here, we propose an oncogenic implication of transforming acidic coiled-coil-containing protein 3 (TACC3 in gliomas. By comprehensively analyzing the Chinese glioma genome atlas (CGGA and publicly available data, we demonstrated that TACC3 were overexpressed along with glioma grade and served as an independent negative prognostic biomarker for glioma patients. Functions’ annotations and gene sets’ enrichment analysis suggested that TACC3 may participate in cell cycle, DNA repair, epithelium-mesenchymal transition and other tumor-related biological processes and molecular pathways. Patients with high TACC3 expression showed CD133+ stem cell properties, glioma plasticity and shorter overall survival time under chemo-/radio-therapy. Additionally, a TACC3 associated the miRNA-mRNA network was constructed based on in silico prediction and expression pattern, which provide a foundation for further detection of TACC3-miRNA-mRNA axis function. Collectively, our observations identify TACC3 as an oncogene of tumor malignancy, as well as a prognostic and motoring biomarker for glioma patients.

  6. Radiochemotherapy of malignant glioma in adults. Clinical experiences

    International Nuclear Information System (INIS)

    Kortmann, R.D.; Jeremic, B.; Plasswilm, L.; Bamberg, M.; Weller, M.

    2003-01-01

    Background: Standard treatment in patients with malignant glioma consists of surgery and postoperative radiotherapy. A high early recurrence rate, particularly in glioblastoma, has led to the investigation of additional chemotherapy. Material and Methods: Recent results of radiochemotherapy published in the literature were reviewed with respect to outcome in phase II and III trials. Based on these experiences, aspects of future strategies were discussed. Results: 3 decades of intensive research had, unfortunately, little impact on the overall results. While early prospective studies established adjuvant nitrosoureas, particularly BCNU, as suitable adjuvant to surgery and postoperative radiotherapy, further studies largely concentrated on combined chemotherapeutic protocols, mostly procarbazine, CCNU and vincristine (PCV), which was shown to prolong survival in anaplastic astrocytoma. The recent MRC study, however, showed no effect for adjuvant PCV in grade III and IV malignant glioma. Only in high-grade glioma with an oligodendroglial component, additional chemotherapy may be of a decisive benefit. The introduction of newer drugs such as paclitaxel, temozolomide, or gemcitabine demonstrated no decisive advantage. Different modes of application and sequencing of radiotherapy and chemotherapy are presently actively investigated, but failed to substantially improve outcome. Conclusions: Therefore, search for newer and more effective drugs continues, as well as for ''optimal'' administration and sequencing, especially from the standpoint of accompanying acute and late toxicity. Finally, recent endeavors focused on basic research such as angiogenesis, migration and invasion, or induction of cell differentiation, but these strategies are still away from broader clinical investigation. (orig.)

  7. Differentiation of malignant glioma and metastatic brain tumor by thallium-201 single photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Yasuhiro; Kuwana, Nobumasa; Noji, Masato; Tosa, Junichi [Yokohama Minami Kyosai Hospital (Japan)

    1994-09-01

    The use of superdelayed thallium-201 single photon emission computed tomography ([sup 201]Tl SPECT) for differentiating malignant gliomas from cerebral metastases was investigated in 23 patients (7 with meningioma, 6 with glioma, 7 with cerebral metastasis, 1 with each of neurinoma, abscess, and necrosis). 4 mCi of [sup 201]Tl was injected intravenously, and gamma camera scans were performed after 10 minutes and 4, 24, 72, and 96 hours (superdelayed scan). The mean thallium index of meningiomas was significantly higher than those of gliomas and cerebral metastases after 10 minutes, while the mean thallium indices of meningiomas and gliomas were significantly higher than those of cerebral metastases after 96 hours. The combination of early and superdelayed [sup 201]Tl SPECT may be useful in differentiating malignant gliomas from cerebral metastases. (author).

  8. The 1p-encoded protein stathmin and resistance of malignant gliomas to nitrosoureas.

    Science.gov (United States)

    Ngo, Teri-T B; Peng, Tien; Liang, Xing-Jie; Akeju, Oluwaseun; Pastorino, Sandra; Zhang, Wei; Kotliarov, Yuri; Zenklusen, Jean C; Fine, Howard A; Maric, Dragan; Wen, Patrick Y; De Girolami, Umberto; Black, Peter McL; Wu, Wells W; Shen, Rong-Fong; Jeffries, Neal O; Kang, Dong-Won; Park, John K

    2007-04-18

    Malignant gliomas are generally resistant to all conventional therapies. Notable exceptions are anaplastic oligodendrogliomas with loss of heterozygosity on chromosome 1p (1p+/-). Patients with 1p+/- anaplastic oligodendroglioma frequently respond to procarbazine, 1-(2-chloroethyl)-3-cyclohexyl-l-nitrosourea, and vincristine. Because the underlying biologic basis for this clinical finding is unclear, we evaluated differentially expressed 1p-encoded proteins in 1p+/- and 1p+/+ malignant glioma cell lines and then examined whether their expression was associated with outcome of patients with anaplastic oligodendroglioma. We used a comparative proteomic screen of A172 (1p+/-) and U251 (1p+/+) malignant glioma cell lines to identify differentially expressed 1p-encoded proteins, including stathmin, a microtubule-associated protein. 1p+/- and 1p+/+ anaplastic oligodendroglioma specimens from 24 patients were assessed for stathmin expression by immunohistochemistry. The relationship between stathmin expression and clinical outcome was assessed with Kaplan-Meier analyses. RNA inhibition and cDNA transfection experiments tested effects of stathmin under- and overexpression, respectively, on the in vitro and in vivo resistance of malignant glioma cells to treatment with nitrosourea. For in vivo resistance studies, 36 mice with intracranial and 16 mice with subcutaneous xenograft tumor implants were used (one tumor per mouse). Flow cytometry was used for cell cycle analysis. Immunoblotting was used to assess protein expression. All statistical tests were two-sided. Decreased stathmin expression in tumors was statistically significantly associated with loss of heterozygosity in 1p (Pnitrosourea-treated mice carrying xenograft tumors. Median survival of mice with stathmin+/- tumors was 95 days (95% CI = 68.7 to 121.3 days) and that of mice with stathmin+/+ tumors was 64 days (95% CI = 58.2 to 69.8 days) (difference = 31 days, 95% CI = 4.1 to 57.9 days; PNitrosoureas induced

  9. Spinal metastases of malignant gliomas; Spinale Metastasierung bei malignen Gliomen. Zwei Fallbeschreibungen

    Energy Technology Data Exchange (ETDEWEB)

    Materlik, B; Steidle-Katic, U; Feyerabend, T; Richter, E [Medizinische Univ. Luebeck (Germany). Klinik fuer Strahlentherapie und Nuklearmedizin; Wauschkuhn, B [Medizinische Univ. Luebeck (Germany). Klinik fuer Neurologie

    1998-09-01

    Purpose: Extracranial metastases of malignant gliomas are rare. We report 2 cases with spinal metastases in patients suffering from glioma. Patients and Method: Two patients (33 and 57 years old) developed spinal canal metastases of a glioblastoma multiforme and anaplastic astrocytoma Grade III respectively 25 and 9 months after surgical resection and radiotherapy. Both metastases were confirmed pathohistologically. Results: Intraspinal metastases were irradiated with a total dose of 12.6 Gy and 50 Gy. Treatment withdrawal was necessary in one patient due to reduced clinical condition. Regression of neurological symptoms was observed in the second patient. Conclusions: Spinal spread of malignant glioma should be considered during care and follow-up in glioma patients with spinal symptoms. (orig.) [Deutsch] Hintergrund: Maligne Gliome metastasieren aeusserst selten extrakraniell. Wir stellen zwei Faelle einer spinalen Filialisierung bei Gliompatienten vor. Patientengut und Methode: Zwei Patienten (33 und 57 Jahre alt) entwickelten 25 bzw. neun Monate nach Resektion und postoperativer Radiatio eines Glioblastoma multiforme und eines anaplastischen Astrozytoms WHO-Grad III histologisch gesicherte intraspinale Metastasen, welche durch Sensibilitaetsstoerungen der Beine symptomatisch wurden. Ergebnisse: Die intraspinalen Filiae wurden mit 12,6 Gy bzw. 50 Gy bestrahlt. Bei einem Patienten musste die Radiatio wegen zunehmender Verschlechterung des Allgemeinzustandes abgebrochen werden, bei dem zweiten Patienten besserte sich die neurologische Symptomatik. Schlussfolgerung: Bei der Betreuung von Gliompatienten sollte, insbesondere in der Nachsorge, an die Moeglichkeit der spinalen Metastasierung mit entsprechender Symptomatik gedacht werden. (orig.)

  10. Monstrous cell in malignant gliomas. In relation to radiation and chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ogashiwa, M; Takeuchi, K; Akai, K [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1981-06-01

    The pathological effects of irradiation and chemotherapy have been studied in 9 autopsy cases of malignant and low grade gliomas. The brains have been examined by means of the complete study technique. Many histological features have been related to surgery, grading of histological classification of gliomas, irradiation and chemotherapy. Following irradiation and chemotherapy, in addition to increased necrosis and vascular response, a variety of characteristic changes were observed in cell and nuclear morphology with prominent formation of monstrous cells in all of 5 malignant gliomas treated with nitrosourea. These monstrous cells had irregular and hyperchromatic multinuclei and showed cytoplasmic degeneration. These cells which had no direct relationship to vessels distributed both in the periphery of tumor or necrosis and in the white matter remote from the main tumor. These changes were more pronounced in autopsy than in biopsy. The features showed here indicate that the monstrous cells may appear due to the result of inhibition of tumor cell division at the late mitotic phase after irradiation and chemotherapy.

  11. Ultrasonography-guided cobalt-60 brachytherapy for malignant glioma

    International Nuclear Information System (INIS)

    Sakai, Noboru; Takenaka, Katsunobu; Ueda, Tatsuya

    1989-01-01

    Brachytherapy with cobalt-60 source is reported. In this method it is characterized that the source is inserted interstitially with remote control system by after-loading method via outer catheter (using tandem tube), which was established in the center of residual tumor, using ultrasonography guide with trepanation, or intraoperatively put within the dead space after tumor resection. Six cases of deep-seated and recurrent malignant glioma, were treated with this method. A total dose of 20 to 45 Gy (10 to 15 Gy/day for 2 to 3 days) was delivered to the target. Additionally conventional external irradiation was followed. The effect of cobalt-60 brachytherapy on such tumors were favorable especially for well-circumscribed glioma less than 3 cm on CT scan. (author)

  12. Effect of inhibition of the ROCK isoform on RT2 malignant glioma cells.

    Science.gov (United States)

    Inaba, Nobuharu; Ishizawa, Sho; Kimura, Masaki; Fujioka, Kouki; Watanabe, Michiko; Shibasaki, Toshiaki; Manome, Yoshinobu

    2010-09-01

    Malignant glioma is one of the most intractable diseases in the human body. Rho-kinase (ROCK) is overexpressed and has been proposed as the main cause for the refractoriness of the disease. Since efficacious treatment is required, this study investigated the effect of inhibition of ROCK isoforms. The short hairpin RNA transcription vector was transfected into the RT2 rat glioma cell line and the characteristics of the cells were investigated. The effect of nimustine hydrochloride (ACNU) anti-neoplastic agent on cells was also measured. Inhibition of ROCK isoforms did not alter cell growth. Cell cycle analysis revealed that ROCK1 down-regulation reduced the G(0) phase population and ROCK2 down-regulation reduced the G(2)/M phase population. When ROCK1-down-regulated cells were exposed to ACNU, they demonstrated susceptibility to the agent. The roles of ROCK1 and ROCK2 may be different in glioma cells. Furthermore, the combination of ROCK1 down-regulation and an anti-neoplastic agent may be useful for the therapy of malignant glioma.

  13. Radiochemotherapy of malignant glioma in adults. Clinical experiences

    Energy Technology Data Exchange (ETDEWEB)

    Kortmann, R.D.; Jeremic, B.; Plasswilm, L.; Bamberg, M. [Dept. for Radiation Oncology, Univ. of Tuebingen (Germany); Weller, M. [Dept. of Neurology, Univ. of Tuebingen (Germany)

    2003-04-01

    Background: Standard treatment in patients with malignant glioma consists of surgery and postoperative radiotherapy. A high early recurrence rate, particularly in glioblastoma, has led to the investigation of additional chemotherapy. Material and Methods: Recent results of radiochemotherapy published in the literature were reviewed with respect to outcome in phase II and III trials. Based on these experiences, aspects of future strategies were discussed. Results: 3 decades of intensive research had, unfortunately, little impact on the overall results. While early prospective studies established adjuvant nitrosoureas, particularly BCNU, as suitable adjuvant to surgery and postoperative radiotherapy, further studies largely concentrated on combined chemotherapeutic protocols, mostly procarbazine, CCNU and vincristine (PCV), which was shown to prolong survival in anaplastic astrocytoma. The recent MRC study, however, showed no effect for adjuvant PCV in grade III and IV malignant glioma. Only in high-grade glioma with an oligodendroglial component, additional chemotherapy may be of a decisive benefit. The introduction of newer drugs such as paclitaxel, temozolomide, or gemcitabine demonstrated no decisive advantage. Different modes of application and sequencing of radiotherapy and chemotherapy are presently actively investigated, but failed to substantially improve outcome. Conclusions: Therefore, search for newer and more effective drugs continues, as well as for ''optimal'' administration and sequencing, especially from the standpoint of accompanying acute and late toxicity. Finally, recent endeavors focused on basic research such as angiogenesis, migration and invasion, or induction of cell differentiation, but these strategies are still away from broader clinical investigation. (orig.)

  14. Salvage immunotherapy of malignant glioma.

    Science.gov (United States)

    Ingram, M; Jacques, S; Freshwater, D B; Techy, G B; Shelden, C H; Helsper, J T

    1987-12-01

    We present the preliminary results of a phase I trial of adoptive immunotherapy for recurrent or residual malignant glioma. The protocol is based on surgical debulking followed by implantation into the tumor bed of autologous lymphocytes that have been stimulated with phytohemagglutinin-P and then cultured in vitro in the presence of interleukin 2. Fifty-five patients with a mean Karnofsky rating of 64 were treated between February 1985 and March 1987. No significant toxicity was associated with the immunotherapy. Fifty patients had a positive initial response to therapy, nine patients had early recurrence (two to four months after treatment), and 22 patients died. We comment on major differences between the protocol described and other immunotherapy protocols.

  15. Intraoperative radiation therapy for malignant glioma

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Noboru; Yamada, Hiromu; Andoh, Takashi; Takada, Mitsuaki; Hirata, Toshifumi; Funakoshi, Takashi; Doi, Hidetaka; Yanagawa, Shigeo [Gifu Univ. (Japan). Faculty of Medicine

    1989-04-01

    Intraoperative radiation therapy (IOR) is an ideal means of exterminating residual tumor after surgical resection. In this study, the clinical results of IOR using a Scanditronix Microtron MM-22 were evaluated in 14 patients with malignant glioma, five of whom had recurrent tumors. Between July, 1985 and October, 1986, 11 patients with glioblastoma multiforme (GB) were irradiated 18 times (mean, 1.6 times/case), and three with astrocytoma (Kernohan grade III) underwent IOR once each. The target-absorbed dose at 1 to 2 cm deeper than the tumor resection surface was 15 to 50 Gy. During irradiation, a cotton bolus was placed in the dead space after over 91% of the tumor had been resected. As a rule, external irradiation therapy was also given postoperatively at a dose of 30 to 52 Gy. One patient died of pneumonia and disseminated intravascular coagulation syndrome 1 month postoperatively. The 1- and 2-year survival rates of the ramaining 13 patients were 84.6% and 61.5%, respectively; among the 10 with GB, they were 80% and 50%. Generally, the smaller the tumor size, the better the results. There were no adverse effects, despite the dose 15 to 50 Gy applied temporally to the tumor bed. IOR was especially effective against small, localized tumors, but was not always beneficial in cases of large tumors, particularly those with a contralateral focus. The improved survival rate in this series demonstrates that IOR is significantly effective in the 'induction of remission' following surgical excision of malignant gliomas. (author).

  16. 12 years' experience with intraoperative radiotherapy (IORT) of malignant gliomas

    International Nuclear Information System (INIS)

    Schueller, P.; Micke, O.; Moustakis, C.; Bruns, F.; Schuck, A.; Willich, N.; Palkovic, S.; Schroeder, J.; Wassmann, H.

    2005-01-01

    Background: Even after surgery and radiotherapy, malignant gliomas still have a poor prognosis. The authors report on their experience with IORT in 71 patients. Patients and methods: From May 1992 to February 2004, 71 patients with malignant gliomas were treated with IORT. 26 patients suffered from grade III gliomas, 45 patients from glioblastomas (GBM). IORT was carried out using a standard electron tube and 9- to 18-MeV electrons. 52/71 patients who were primarily treated received 20 Gy IORT + 60 Gy postoperative radiotherapy, 19/71 patients with recurrences only received IORT (20-25 Gy). Results: The complication rates were 1.4% for wound infections and 5.6% for hemorrhage. Median disease-specific survival amounted to 14.9 months (gliomass III) and 14.2 months (GBM). The 2-year survival rates amounted to 26.9% (gliomas III) and 6.8% (GBM; p=0.0296). Total versus subtotal resection had no significant influence on survival (p=0.0741), nor had age, sex, tumor site, performance status, size, primary versus recurrence, and radiation dose. A comparison to a conventionally treated patient group did not show a significant survival improvement. 3 months after treatment, initial symptoms had improved in 59% (hemiparesis), 50% (aphasia), 50% (hemianopsia), and 60% (convulsions). Conclusion: IORT has been shown to be feasible; perioperative complication rates were not increased. Survival was generally not improved compared to a historical control group. Recurrences achieved the same survival as primary tumors, and GBM also had a slightly increased survival, thus being possible indications for IORT. (orig.)

  17. Wavelet-domain de-noising of OCT images of human brain malignant glioma

    Science.gov (United States)

    Dolganova, I. N.; Aleksandrova, P. V.; Beshplav, S.-I. T.; Chernomyrdin, N. V.; Dubyanskaya, E. N.; Goryaynov, S. A.; Kurlov, V. N.; Reshetov, I. V.; Potapov, A. A.; Tuchin, V. V.; Zaytsev, K. I.

    2018-04-01

    We have proposed a wavelet-domain de-noising technique for imaging of human brain malignant glioma by optical coherence tomography (OCT). It implies OCT image decomposition using the direct fast wavelet transform, thresholding of the obtained wavelet spectrum and further inverse fast wavelet transform for image reconstruction. By selecting both wavelet basis and thresholding procedure, we have found an optimal wavelet filter, which application improves differentiation of the considered brain tissue classes - i.e. malignant glioma and normal/intact tissue. Namely, it allows reducing the scattering noise in the OCT images and retaining signal decrement for each tissue class. Therefore, the observed results reveals the wavelet-domain de-noising as a prospective tool for improved characterization of biological tissue using the OCT.

  18. Tumor initiating cells in malignant gliomas: biology and implications for therapy.

    Science.gov (United States)

    Hadjipanayis, Costas G; Van Meir, Erwin G

    2009-04-01

    A rare subpopulation of cells within malignant gliomas, which shares canonical properties with neural stem cells (NSCs), may be integral to glial tumor development and perpetuation. These cells, also known as tumor initiating cells (TICs), have the ability to self-renew, develop into any cell in the overall tumor population (multipotency), and proliferate. A defining property of TICs is their ability to initiate new tumors in immunocompromised mice with high efficiency. Mounting evidence suggests that TICs originate from the transformation of NSCs and their progenitors. New findings show that TICs may be more resistant to chemotherapy and radiation than the bulk of tumor cells, thereby permitting recurrent tumor formation and accounting for the failure of conventional therapies. The development of new therapeutic strategies selectively targeting TICs while sparing NSCs may provide for more effective treatment of malignant gliomas.

  19. Malignant gliomas: current perspectives in diagnosis, treatment, and early response assessment using advanced quantitative imaging methods

    Directory of Open Access Journals (Sweden)

    Ahmed R

    2014-03-01

    Full Text Available Rafay Ahmed,1 Matthew J Oborski,2 Misun Hwang,1 Frank S Lieberman,3 James M Mountz11Department of Radiology, 2Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; 3Department of Neurology and Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USAAbstract: Malignant gliomas consist of glioblastomas, anaplastic astrocytomas, anaplastic oligodendrogliomas and anaplastic oligoastrocytomas, and some less common tumors such as anaplastic ependymomas and anaplastic gangliogliomas. Malignant gliomas have high morbidity and mortality. Even with optimal treatment, median survival is only 12–15 months for glioblastomas and 2–5 years for anaplastic gliomas. However, recent advances in imaging and quantitative analysis of image data have led to earlier diagnosis of tumors and tumor response to therapy, providing oncologists with a greater time window for therapy management. In addition, improved understanding of tumor biology, genetics, and resistance mechanisms has enhanced surgical techniques, chemotherapy methods, and radiotherapy administration. After proper diagnosis and institution of appropriate therapy, there is now a vital need for quantitative methods that can sensitively detect malignant glioma response to therapy at early follow-up times, when changes in management of nonresponders can have its greatest effect. Currently, response is largely evaluated by measuring magnetic resonance contrast and size change, but this approach does not take into account the key biologic steps that precede tumor size reduction. Molecular imaging is ideally suited to measuring early response by quantifying cellular metabolism, proliferation, and apoptosis, activities altered early in treatment. We expect that successful integration of quantitative imaging biomarker assessment into the early phase of clinical trials could provide a novel approach for testing new therapies

  20. Efficacy and toxicity of postoperative temozolomide radiochemotherapy in malignant glioma

    Energy Technology Data Exchange (ETDEWEB)

    Kocher, M.; Kunze, S.; Eich, H.T.; Semrau, R.; Mueller, R.P. [Dept. of Radiation Oncology, Univ. of Cologne (Germany)

    2005-03-01

    Purpose: to evaluate the feasibility, safety and efficacy of daily temozolomide concurrent with postoperative radiotherapy in malignant glioma. Patients and methods: from 11/1999 to 03/2003, n = 81 patients aged 15-72 years (median 52 years, karnofsky score 80-100% in 83%) suffering from primary glioblastoma (n = 47), anaplastic astrocytoma (n = 6), anaplastic oligodendroglioma (n = 16), and recurrent glioma (n = 12) were treated. Patients with primary gliomas received a combination of postoperative radiotherapy (60 Gy/1.8- to 2.0-Gy fractions) and daily oral temozolomide (75 mg/m{sup 2}) at all irradiation days (30-33 doses), while recurrent tumors were treated with 45-60 Gy and temozolomide. Initially, 6/81 patients had daily temozolomide doses of 50 mg/m{sup 2}. Results: in total, 70/81 patients (86%) completed both radio- and chemotherapy. Grade 1 nausea/vomiting was seen in 28%, grade 2 in 11%, grade 3 in 1%. Antiemetics were applied in 41%. Hematologic toxicities were observed as follows: leukopenia grade 3/4 1%, lymphopenia grade 3/4 46%, thrombopenia grade 3/4 1%. Two patients under dexamethasone suffered herpes encephalitis after one and 16 doses of temozolomide (75 mg/m{sup 2}). Median survival was 15 months for glioblastoma. In oligodendroglioma patients, a 4-year survival rate of 78% was observed. Conclusion: postoperative radiochemotherapy with 30-33 daily doses of temozolomide (75 mg/m{sup 2}) is safe in patients with malignant glioma. The combined schedule is effective in oligodendroglioma patients and may prolong survival in glioblastoma. Effort should be taken to minimize corticosteroid doses, since both steroids and temozolomide lead to immunosuppression. (orig.)

  1. Survival after stereotactic biopsy of malignant gliomas

    International Nuclear Information System (INIS)

    Coffey, R.J.; Lunsford, L.D.; Taylor, F.H.

    1988-01-01

    For many patients with malignant gliomas in inaccessible or functionally important locations, stereotactic biopsy followed by radiation therapy (RT) may be a more appropriate initial treatment than craniotomy and tumor resection. We studied the long term survival in 91 consecutive patients with malignant gliomas diagnosed by stereotactic biopsy: 64 had glioblastoma multiforme (GBM) and 27 had anaplastic astrocytoma (AA). Sixty-four per cent of the GBMs and 33% of the AAs involved deep or midline cerebral structures. The treatment prescribed after biopsy, the tumor location, the histological findings, and the patient's age at presentation (for AAs) were statistically important factors determining patient survival. If adequate RT (tumor dose of 5000 to 6000 cGy) was not prescribed, the median survival was less than or equal to 11 weeks regardless of tumor histology or location. The median survival for patients with deep or midline tumors who completed RT was similar in AA (19.4 weeks) and GBM (27 weeks) cases. Histology was an important predictor of survival only for patients with adequately treated lobar tumors. The median survival in lobar GBM patients who completed RT was 46.9 weeks, and that in lobar AA patients who completed RT was 129 weeks. Cytoreductive surgery had no statistically significant effect on survival. Among the clinical factors examined, age of less than 40 years at presentation was associated with prolonged survival only in AA patients. Constellations of clinical features, tumor location, histological diagnosis, and treatment prescribed were related to survival time

  2. 17-AAG sensitized malignant glioma cells to death-receptor mediated apoptosis.

    Science.gov (United States)

    Siegelin, Markus David; Habel, Antje; Gaiser, Timo

    2009-02-01

    17-AAG is a selective HSP90-inhibitor that exhibited therapeutic activity in cancer. In this study three glioblastoma cell lines (U87, LN229 and U251) were treated with 17-AAG, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or the combination of both. Treatment with subtoxic doses of 17-AAG in combination with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces rapid apoptosis in TRAIL-resistant glioma cells, suggesting that this combined treatment may offer an attractive strategy for treating gliomas. 17-AAG treatment down-regulated survivin through proteasomal degradation. In addition, over-expression of survivin attenuated cytotoxicity induced by the combination of 17-AAG and TRAIL. In summary, survivin is a key regulator of TRAIL-17-AAG mediated cell death in malignant glioma.

  3. Surgical strategy for malignant gliomas involving pyramidal tracts guided by functional neuronavigation and 5-ALA fluorescence navigation

    International Nuclear Information System (INIS)

    Sato, Ken-ichi; Ito, Tamio; Seo, Yoshinobu; Sunohara, Tadashi; Maeda, Masana; Sasaki, Takehiko; Nakagawara, Jyoji; Nakamura, Hirohiko

    2009-01-01

    For patients with malignant glioma invading pyramidal tracts, maximal resections are difficult to accomplish while preserving their motor function. We used tractography-integrated functional neuronavigation and 5-aminolevulinic acid (5-ALA) fluorescence-guided resection for removal of malignant gliomas involving pyramidal tract. In this study, we analyzed postoperative motor function and extent of resection in a series of patients who underwent surgery in our department. Ten patients with malignant glioma invading pyramidal tracts underwent radical surgery. To preserve pyramidal tracts, we developed a functional neuronavigation-guided fence-post procedure to avoid the problem of brain shift, a disadvantage of the existing neuronavigation systems. Furthermore we have achieved precise resection of tumors using 5-ALA fluorescence navigation. Intraoperatively, tumor fluorescence was visualized using a modified operating microscope. All fluorescing tumor tissue was resected. Motor function was preserved after appropriate tumor resection in all cases. Postoperatively, improvement of motor weakness was observed in seven patients, whereas transient mild motor weakness occurred in two patients. Gross total removals were accomplished in seven patients, and subtotal removal was accomplished in one patient, and partial removal was accomplished in two patients. Combined use of tractography-integrated functional neuronavigation and 5-ALA fluorescence-guided resection contributes to maximal safe resection of malignant gliomas with pyramidal tract involvement. (author)

  4. 12 years' experience with intraoperative radiotherapy (IORT) of malignant gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Schueller, P.; Micke, O.; Moustakis, C.; Bruns, F.; Schuck, A.; Willich, N. [University Hospital Muenster (Germany). Dept. of Radiotherapy and Radiation Oncology; Palkovic, S.; Schroeder, J.; Wassmann, H. [University Hospital Muenster (Germany). Dept. of Neurosurgery

    2005-08-01

    Background: Even after surgery and radiotherapy, malignant gliomas still have a poor prognosis. The authors report on their experience with IORT in 71 patients. Patients and methods: From May 1992 to February 2004, 71 patients with malignant gliomas were treated with IORT. 26 patients suffered from grade III gliomas, 45 patients from glioblastomas (GBM). IORT was carried out using a standard electron tube and 9- to 18-MeV electrons. 52/71 patients who were primarily treated received 20 Gy IORT + 60 Gy postoperative radiotherapy, 19/71 patients with recurrences only received IORT (20-25 Gy). Results: The complication rates were 1.4% for wound infections and 5.6% for hemorrhage. Median disease-specific survival amounted to 14.9 months (gliomass III) and 14.2 months (GBM). The 2-year survival rates amounted to 26.9% (gliomas III) and 6.8% (GBM; p=0.0296). Total versus subtotal resection had no significant influence on survival (p=0.0741), nor had age, sex, tumor site, performance status, size, primary versus recurrence, and radiation dose. A comparison to a conventionally treated patient group did not show a significant survival improvement. 3 months after treatment, initial symptoms had improved in 59% (hemiparesis), 50% (aphasia), 50% (hemianopsia), and 60% (convulsions). Conclusion: IORT has been shown to be feasible; perioperative complication rates were not increased. Survival was generally not improved compared to a historical control group. Recurrences achieved the same survival as primary tumors, and GBM also had a slightly increased survival, thus being possible indications for IORT. (orig.)

  5. Accelerated hyperfractionated radiotherapy for malignant gliomas

    International Nuclear Information System (INIS)

    Buatti, John M.; Marcus, Robert B.; Mendenhall, William M.; Friedman, William A.; Bova, Francis J.

    1996-01-01

    Purpose: To evaluate accelerated hyperfractionated radiotherapy for the treatment of malignant gliomas. Methods and Materials: Between April 1985 and June 1994, 70 adult patients with pathologically confirmed malignant glioma (75% glioblastoma multiforme, 25% anaplastic astrocytoma) suitable for high-dose therapy were selected for treatment with accelerated hyperfractionated radiotherapy, 1.5 Gy twice daily to a total target dose of 60 Gy. Two patients were excluded from analysis (one patient had a fatal pulmonary embolism after 18 Gy; one patient discontinued therapy after 28.5 Gy against medical advice and without sequelae or progression). The 68 patients in the study group had a median age of 52 years and a median Karnofsky performance status of 90. Stereotactic implant ( 125 I) or stereotactic radiosurgery boosts were delivered to 16 patients (24%) in the study group. Minimum follow-up was 6 months. Results: Median survival was 13.8 months and median progression-free survival was 7.4 months. The absolute Kaplan-Meier survival rate was 16% at 2 years and 4% at 5 years. Multivariate analysis for the prognostic impact of age, gender, histology, Karnofsky performance status, symptomatology, surgical resection vs. biopsy, and boost vs nonboost therapy revealed that Karnofsky performance status ≥ 90, boost therapy, and surgical excision predicted significantly improved outcome. No severe toxicity occurred in patients treated with accelerated hyperfractionated radiotherapy alone, although 5% required steroids temporarily for edema. Progression occurred during treatment in one patient (1.5%). Conclusion: This regimen of accelerated hyperfractionated radiotherapy is well tolerated and leads to results comparable with those of standard therapy. The rate of disease progression during treatment is significantly better (p = 0.001) than is reported for patients treated with standard fractionation, with or without chemotherapy. This regimen is a reasonable starting point

  6. Safety and Efficacy of Bevacizumab With Hypofractionated Stereotactic Irradiation for Recurrent Malignant Gliomas

    International Nuclear Information System (INIS)

    Gutin, Philip H.; Iwamoto, Fabio M.; Beal, Kathryn; Mohile, Nimish A.; Karimi, Sasan; Hou, Bob L.; Lymberis, Stella; Yamada, Yoshiya; Chang, Jenghwa

    2009-01-01

    Purpose: Preclinical studies suggest that inhibition of vascular endothelial growth factor (VEGF) improves glioma response to radiotherapy. Bevacizumab, a monoclonal antibody against VEGF, has shown promise in recurrent gliomas, but the safety and efficacy of concurrent bevacizumab with brain irradiation has not been extensively studied. The objectives of this study were to determine the safety and activity of this combination in malignant gliomas. Methods and Materials: After prior treatment with standard radiation therapy patients with recurrent glioblastoma (GBM) and anaplastic gliomas (AG) received bevacizumab (10 mg/kg intravenous) every 2 weeks of 28-day cycles until tumor progression. Patients also received 30 Gy of hypofractionated stereotactic radiotherapy (HFSRT) in five fractions after the first cycle of bevacizumab. Results: Twenty-five patients (20 GBM, 5 AG; median age 56 years; median Karnofsky Performance Status 90) received a median of seven cycles of bevacizumab. One patient did not undergo HFSRT because overlap with prior radiotherapy would exceed the safe dose allowed to the optic chiasm. Three patients discontinued treatment because of Grade 3 central nervous system intratumoral hemorrhage, wound dehiscence, and bowel perforation. Other nonhematologic and hematologic toxicities were transient. No radiation necrosis was seen in these previously irradiated patients. For the GBM cohort, overall response rate was 50%, 6-month progression-free survival was 65%; median overall survival was 12.5 months, and 1-year survival was 54%. Discussion: Bevacizumab with HFSRT is safe and well tolerated. Radiographic responses, duration of disease control, and survival suggest that this regimen is active in recurrent malignant glioma.

  7. Malignant gliomas of the brain managed by radiotherapy after surgery

    Energy Technology Data Exchange (ETDEWEB)

    Fichardt, T.; Sandison, A.G. (Pretoria Univ. (South Africa). Dept. of Radiotherapy)

    The article reviews the literature and gives an account of the authors' experience during a 20-year period (1960-1980) of the value of radiotherapy after surgery in the management of 76 patients suffering from brain gliomas classified into 3 grades according to the degree of anaplasia present in the histological sections, viz. grades II, III and IV. Radiotherapy was not given to grade I malignant gliomas as they are treated by surgery only. The period is divided into 2 subperiods. The first is from 1960-1972 when part-brain, high-dose irradiation following surgery was used on 33 patients in various age groups. The second period covers whole-brain, low-dose irradiation following surgery and was used on 43 patients in various age groups.

  8. Immunotherapy for recurrent malignant glioma: an interim report on survival.

    Science.gov (United States)

    Ingram, M; Buckwalter, J G; Jacques, D B; Freshwater, D B; Abts, R M; Techy, G B; Miyagi, K; Shelden, C H; Rand, R W; English, L W

    1990-12-01

    We present interim survival data for a group of 83 adult patients with recurrent malignant glioma treated by implanting stimulated autologous lymphocytes into the tumour bed following surgical debulking. The patients were treated 6 months or more prior to data analysis. Fifty-nine patients were male and 24 female. The mean age for the entire group was 48.4 years and the mean Karnofsky rating (KR) was 67.2. Eight of the patients had grade II tumours, 33 had grade III tumours and 42 had grade IV tumours. Statistical analysis focuses on tumour grade, KR and patient age, factors that have been shown to affect survival in previous studies. Multifactorial analyses are employed to identify interrelationships among factors related to survival. Seven patients (8%) did not respond to immunotherapy, 76 (92%) had a good initial response. Twenty-five patients (30.1%) are living and 18 (22%) have shown no evidence of recurrence. Results are evaluated in the light of those obtained in trials of other experimental therapies for recurrent malignant gliomas. It is concluded that the present protocol offers a safe and comparatively effective treatment option.

  9. Treatment Resistance Mechanisms of Malignant Glioma Tumor Stem Cells

    International Nuclear Information System (INIS)

    Schmalz, Philip G.R.; Shen, Michael J.; Park, John K.

    2011-01-01

    Malignant gliomas are highly lethal because of their resistance to conventional treatments. Recent evidence suggests that a minor subpopulation of cells with stem cell properties reside within these tumors. These tumor stem cells are more resistant to radiation and chemotherapies than their counterpart differentiated tumor cells and may underlie the persistence and recurrence of tumors following treatment. The various mechanisms by which tumor stem cells avoid or repair the damaging effects of cancer therapies are discussed

  10. Profound tumor-specific Th2 bias in patients with malignant glioma

    International Nuclear Information System (INIS)

    Shimato, Shinji; Maier, Lisa M; Maier, Richard; Bruce, Jeffrey N; Anderson, Richard CE; Anderson, David E

    2012-01-01

    Vaccination against tumor-associated antigens is one promising approach to immunotherapy against malignant gliomas. While previous vaccine efforts have focused exclusively on HLA class I-restricted peptides, class II-restricted peptides are necessary to induce CD4 + helper T cells and sustain effective anti-tumor immunity. In this report we investigated the ability of five candidate peptide epitopes derived from glioma-associated antigens MAGE and IL-13 receptor α2 to detect and characterize CD4 + helper T cell responses in the peripheral blood of patients with malignant gliomas. Primary T cell responses were determined by stimulating freshly isolated PBMCs from patients with primary glioblastoma (GBM) (n = 8), recurrent GBM (n = 5), meningioma (n = 7), and healthy controls (n = 6) with each candidate peptide, as well as anti-CD3 monoclonal antibody (mAb) and an immunodominant peptide epitope derived from myelin basic protein (MBP) serving as positive and negative controls, respectively. ELISA was used to measure IFN-γ and IL-5 levels, and the ratio of IFN-γ/IL-5 was used to determine whether the response had a predominant Th1 or Th2 bias. We demonstrate that novel HLA Class-II restricted MAGE-A3 and IL-13Rα2 peptides can detect T cell responses in patients with GBMs as well as in healthy subjects. Stimulation with a variety of peptide antigens over-expressed by gliomas is associated with a profound reduction in the IFN-γ/IL-5 ratio in GBM patients relative to healthy subjects. This bias is more pronounced in patients with recurrent GBMs. Therapeutic vaccine strategies to shift tumor antigen-specific T cell response to a more immunostimulatory Th1 bias may be needed for immunotherapeutic trials to be more successful clinically

  11. Concurrent radiotherapy: fotemustine combination for newly diagnosed malignant glioma patients, a phase II study.

    Science.gov (United States)

    Beauchesne, Patrick D; Taillandier, L; Bernier, V; Carnin, C

    2009-06-01

    Fotemustine is a nitrosourea compound used for the treatment of malignant gliomas, especially in France. Recently, an EORTC-NCIC study has shown that a concomitant combination of radiotherapy plus temozolomide (an oral cytotoxic drug) improved survival in glioblastoma patients. We set out to test a concurrent combination of radiotherapy and fotemustine for newly malignant gliomas. A prospective single-center phase II study opened for accrual in September 2004. Patients over 18 years of age able to give informed consent and with histologically proven, newly diagnosed supratentorial malignant gliomas were eligible. All patients were treated by a standard cranial irradiation (conformal irradiation, tumor bulk plus a margin of 2.5 cm) and concomitant daily administration of 10 mg/m(2) of fotemustine (5 days per week, 6 weeks, 1 h 30 min before radiation therapy). Adjuvant chemotherapy, fotemustine, was administered at tumor progression as standard and classic regimen. Twenty-two patients were enrolled, 16 men and 6 women, median age 56 years (range 32-74), median Karnofsky performance status 70 (range 60-90). Histology included 16 glioblastomas, 3 anaplastic astrocytomas, 2 anaplastic oligodendrogliomas and 1 mixed glioma. Eight patients underwent surgery (three total resections). Fourteen patients had a stereotactic biopsy. The concurrent radiotherapy-fotemustine combination was well tolerated: toxicity was mild and three hematologic toxicities grade 3-4 were observed. Median survival from the initial diagnosis was 9.9 months, two patients are currently alive. Median survival was 11 months for surgery and 9 months for stereotactic biopsy. Concomitant radiotherapy-fotemustine combination is safe and well tolerated. Overall survival of over 10 months for the whole population compares favorably with other reports.

  12. Hypofractionated stereotactic radiotherapy combined with topotecan in recurrent malignant glioma

    International Nuclear Information System (INIS)

    Wurm, Reinhard E.; Kuczer, David A.; Schlenger, Lorenz; Matnjani, Gesa; Scheffler, Dirk; Cosgrove, Vivian P.; Ahlswede, Julia; Woiciechowsky, Christian; Budach, Volker

    2006-01-01

    Purpose: To assess hypofractionated stereotactic radiotherapy (H-SRT) with concurrent topotecan in patients with recurrent malignant glioma. Methods and Materials: Between February 1998 and December 2001, 25 patients with recurrent malignant glioma were treated in a phase I-II study (8 females and 17 males; median age, 45 years; range, 11-66 years; median Karnofsky performance status, 80%, range, 50-100%; median Mini Mental Standard Examination score, 25 points; range, 10-30 points). Of the 25 patients, 20% had World Health Organization Grade III and 80% World Health Organization Grade IV glioma. All patients had been treated previously by external beam radiotherapy with 54.4 Gy in 34 fractions twice daily, at least 6 h apart, within 3.5 weeks or 60 Gy in 30 fractions within 6 weeks. In addition, 84% had already received at least one chemotherapy regimen for recurrence. The median H-SRT dose at the 80% isodose was 25 Gy, and the maximal dose was 30 Gy delivered in five to six fractions on consecutive days. Topotecan (1.1 mg/m 2 /d) was given as a continuous i.v. infusion during H-SRT. Depending on the toxicity and compliance, patients received an additional 48 topotecan courses. Results: For all patients, the actuarial median progression-free survival was 10.5 months (range, 1.4-47.8 months), the median functional survival was 12.6 months (range, 1.6-49.5 months), and the median overall survival was 14.5 months (range, 3-56.4 months). Twelve percent of patients developed presumed adverse radiation effects (Radiation Therapy Oncology Group Grade 2). According to the Common Toxicity Criteria, version 2.0, no topotecan-related Grade 4 toxicity was noted. Grade 3 neutropenia was documented after 14 and Grade 3 thrombopenia after 12 courses. Conclusion: H-SRT with topotecan is feasible and well-tolerated in patients with recurrent high-grade glioma and results in similar survival compared with other repeat treatment modalities

  13. SCCRO Promotes Glioma Formation and Malignant Progression in Mice

    Directory of Open Access Journals (Sweden)

    Stephen R. Broderick

    2010-06-01

    Full Text Available Originally identified as an oncogene activated by amplification in squamous cell carcinomas, several lines of evidence now suggest that squamous cell carcinoma-related oncogene (SCCRO; aka DCUN1D1 may play a role in the pathogenesis of a wide range of human cancers including gliomas. SCCRO's oncogenic function is substantiated by its ectopic expression, resulting in transformation of cells in culture and xenograft formation in nude mice. The aim of this study was to assess the in vivo oncogenicity of SCCRO in a murine model. Ubiquitous expression of SCCRO resulted in early embryonic lethality. Because SCCRO overexpression was detected in human gliomas, its in vivo oncogenic activity was assessed in an established murine glioma model. Conditional expression of SCCRO using a replication-competent ASLV long terminal repeat with splice acceptor/nestin-(tumor virus-A tv-a model system was not sufficient to induce tumor formation in a wild-type genetic background, but tumors formed with increasing frequency and decreasing latency in facilitated background containing Ink4a deletion alone or in combination with PTEN loss. Ectopic expression of SCCRO in glial progenitor cells resulted in lower-grade gliomas in Ink4a-/- mice, whereas its expression in Ink4a-/-/PTEN-/- background produced high-grade glioblastoma-like lesions that were indistinguishable from human tumors. Expression of SCCRO with platelet-derived growth factor-beta (PDGF-β resulted in an increased proportion of mice forming glioblastoma-like tumors compared with those induced by PDGF-β alone. This work substantiates SCCRO's function as an oncogene by showing its ability to facilitate malignant transformation and carcinogenic progression in vivo and supports a role for SCCRO in the pathogenesis of gliomas and other human cancers.

  14. Gene expression-based molecular diagnostic system for malignant gliomas is superior to histological diagnosis.

    Science.gov (United States)

    Shirahata, Mitsuaki; Iwao-Koizumi, Kyoko; Saito, Sakae; Ueno, Noriko; Oda, Masashi; Hashimoto, Nobuo; Takahashi, Jun A; Kato, Kikuya

    2007-12-15

    Current morphology-based glioma classification methods do not adequately reflect the complex biology of gliomas, thus limiting their prognostic ability. In this study, we focused on anaplastic oligodendroglioma and glioblastoma, which typically follow distinct clinical courses. Our goal was to construct a clinically useful molecular diagnostic system based on gene expression profiling. The expression of 3,456 genes in 32 patients, 12 and 20 of whom had prognostically distinct anaplastic oligodendroglioma and glioblastoma, respectively, was measured by PCR array. Next to unsupervised methods, we did supervised analysis using a weighted voting algorithm to construct a diagnostic system discriminating anaplastic oligodendroglioma from glioblastoma. The diagnostic accuracy of this system was evaluated by leave-one-out cross-validation. The clinical utility was tested on a microarray-based data set of 50 malignant gliomas from a previous study. Unsupervised analysis showed divergent global gene expression patterns between the two tumor classes. A supervised binary classification model showed 100% (95% confidence interval, 89.4-100%) diagnostic accuracy by leave-one-out cross-validation using 168 diagnostic genes. Applied to a gene expression data set from a previous study, our model correlated better with outcome than histologic diagnosis, and also displayed 96.6% (28 of 29) consistency with the molecular classification scheme used for these histologically controversial gliomas in the original article. Furthermore, we observed that histologically diagnosed glioblastoma samples that shared anaplastic oligodendroglioma molecular characteristics tended to be associated with longer survival. Our molecular diagnostic system showed reproducible clinical utility and prognostic ability superior to traditional histopathologic diagnosis for malignant glioma.

  15. Malignant glioma: Should chemotherapy be overthrown by experimental treatments?

    OpenAIRE

    Hösli, P.; Sappino, A. P.; de Tribolet, N.; Dietrich, P. Y.

    2017-01-01

    Despite more than two decades of clinical research with chemotherapy, the outcome of malignant gliomas remains poor. Recent years have seen major advances in elucidation of the biology of these tumors, which in turn have led to the current development of innovative therapeutic strategies. The question confronting us at the end of the 1990s is whether we should continue to use and investigate chemotherapy or whether the time has come for experimental treatments. As a contribution to this debat...

  16. Poly(ADP-ribose) polymerase-independent potentiation of nitrosourea cytotoxicity by 3-aminobenzamide in human malignant glioma cells.

    Science.gov (United States)

    Winter, S; Weller, M

    2000-06-16

    Poly(ADP-ribose) polymerase is a zinc-finger DNA-binding protein that detects specifically DNA strand breaks generated by genotoxic agents and is thought to be involved in DNA repair. Here, we examined the effects of 3-aminobenzamide, a poly(ADP-ribose) polymerase inhibitor, on the chemosensitivity of human malignant glioma cells. 3-Aminobenzamide selectively potentiated the cytotoxicity of the nitrosoureas, nimustine, carmustine and lomustine in 10 of 12 human malignant glioma cell lines. In contrast, 3-aminobenzamide did not modulate the cytotoxic effects of doxorubicine, teniposide, vincristine, camptothecin or cytarabine. The nitrosoureas did not induce poly(ADP-ribose) polymerase activity in the glioma cells. Ectopic expression of truncated poly(ADP-ribose) polymerase containing the poly(ADP-ribose) polymerase DNA-binding domain, which acts as a dominant-negative mutant, in LN-18 or LN-229 cells did not alter the 3-aminobenzamide effect on nitrosourea-mediated cytotoxicity. Thus, 3-aminobenzamide may target another nicotinamide adenine dinucleotide (NAD)-requiring enzyme, but not poly(ADP-ribose) polymerase, when enhancing nitrosourea cytotoxicity in human malignant glioma cells. Carmustine cytotoxicity was associated with a G2/M arrest. Coexposure to carmustine and 3-aminobenzamide overcame this G2/M arrest in T98G cells, which are sensitized to carmustine by 3-aminobenzamide, but not in U251MG cells, which are refractory to 3-aminobenzamide-mediated sensitization to carmustine. Thus, 3-aminobenzamide-mediated sensitization to carmustine cytotoxicity may result from interference with the stable G2/M arrest response to carmustine in human glioma cells.

  17. Treatment results by uneven fractionated irradiation, low-dose rate telecobalt therapy as a boost, and intraoperative irradiation for malignant glioma

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Shogo; Takai, Yoshihiro; Nemoto, Kenji; Ogawa, Yoshihiro; Kakuto, Yoshihisa; Hoshi, Akihiko; Sakamoto, Kiyohiko; Kayama, Takamasa; Yoshimoto, Takashi (Tohoku Univ., Sendai (Japan). School of Medicine)

    1992-08-01

    The prognosis of malignant glioma is extremely poor. We applied conventionally fractionated irradiation combined with 1-(4-aminio-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea (ACNU), uneven fractionated irradiation with ACNU, low dose rate telecobalt therapy as a boost, and intraoperative irradiation against 110 malignant gliomas to investigate the efficacy of these methods as alternative treatments for malignant glioma. Although local tumor control by uneven fractionated irradiation was better than that by the other methods, no significant improvement was obtained in survival rates. As a result of multiple regression analysis, age and histology were major factors for survival rates, and the difference of treatment methods was not important. Both low-dose rate telecobalt therapy as a boost and intraoperative irradiation showed little advantage because of the high risk of brain necrosis associated with them. (author).

  18. P16.17 Usefulness of neuronavigator-guided fence-post method for malignant glioma resection

    Science.gov (United States)

    Murase, S.; Yamashita, K.

    2017-01-01

    Abstract For the resection of malignant glioma, it is necessary to remove the tumor as much as possible and to avoid the expression of new neurological deficit. For this purpose, we adopted neuronavigator-guided fence-post method for malignant glioma resection in 2015. In this presentation, we will introduce this method and evaluate the usefulness of this method. Method:On one or two day before the surgery, fence-post plan is laid according to the MR images on neuronavigator system(StealthStation S7, Medtronic). Usually four fence-post are planned to involve all part of enhanced lesion of the tumor. If the tumor is located close to the pyramidal tracts, MR tractography image is also integrated in the navigator system, and fence-post are planned to avoid damaging the pyramidal tracts. During the surgery, after the craniotomy each fence-post catheter is placed according to the navigator guidance before the dural incision to avoid the influence of brain shift. After the dural incision, four planes created by adjacent each fence-post catheter are resected and the tumor is removed. Result: We will present typical three cases. Two cases of glioblastoma and one case of anaplastic oligodendroglioma case are presented. In all three cases, the tumor were located in the left frontal lobe and the tumor were gross totally removed without new neurological deficit with this method. CONCLUSION: Neuronavigator-guided fence-post method is very useful for the resection of malignant glioma.

  19. A trial of ACNU and radiation therapy with sensitizing agents for malignant gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Hirokazu; Hayashi, Minoru; Satoh, Kazufumi; Ishii, Hisamasa; Nakatsugawa, Shigekazu; Ishii, Yasushi (Fukui Medical School, Yoshida, Fukui (Japan))

    1989-11-01

    Twelve cases of malignant gliomas (anaplastic astrocytoma 4, glioblatoma 8, recurrent 3, primary 9) were treated with ACNU and radiation with sensitizing agents after the surgical removal of the tumor. BUdR, Vidarabine (Ara-A), Aciclovir (ACV) were applied for sensitizing agents. BUdR was administrated intraarterially prior to radiation (380 rad, two times a week), and Ara-A and ACV intravenously during and after the radiation. Total dosage of the radiation was 50-60 Grey for each case. All recurrent and eight primary patients died. The mean survival time of the recurrent patients was 17.7 months, while that of the primary patients was 13.4 months. One of the primary patients was glioblastoma and is still surviving more than 24 months by now. The complete response (CR) rate of the primary tumor patients observed by computerized tomography (CT) scan was 5/9. We can expect the availability of this trial for malignant gliomas because of high CR rate in primary tumor cases. (author).

  20. Preoperative evaluation of malignancy of glioma by thallium-201 SPECT, proton MRS and 18F-fluorodeoxy-glucose PET

    International Nuclear Information System (INIS)

    Ito, Tamio; Nakagawara, Jyoji; Sasaki, Takehiko; Nakamura, Hirohiko; Tsukamoto, Eriko

    2005-01-01

    We studied preoperative malignancy evaluation of glioma by thallium-201 SPECT (T1-SPECT), proton MRS (MRS) and 18F-fluorodeoxy-glucose PET (FDG-PET). Twenty-seven patients with astrocytic tumors (diffuse astrocytoma (A): 8, anaplastic astrocytoma (AA): 10, glioblastoma (GB): 9) were retrospectively studied. FDG-PET was assessed as the visual metabolic grading scale (MG Scale) in 9 cases. The Tl index was expressed as the count rate of the tumor site to the count rate over the contralateral normal region in 25 cases. MRS was evaluated as the metabolite ratios of choline/creatine (Cho/Cr) and Cho/N-acetylaspartate (NAA), and as the presence of lactate and lipid metabolites in 23 cases. As the malignancy grade of the glioma rises, so too did the MG Scale of FDG-PET and Tl index (PET MG Scale (A: Grade (Gr). 1; 2 cases, Gr.2; 2 cases, AA: Gr.1; 1 case, Gr.2; 1 case, GB: Gr.2; 2 cases, Gr.3; 1 case), Tl index: A:129±0.22, AA: 1.97±0.44, GB: 342±1.38). Metabolite ratios of Cho/Cr and Cho/NAA in the high-grade gliomas were higher than those in the low-grade gliomas, however, those of GB were lower than those of AA, maybe due to difficulty in the spectroscopic voxel selection (Cho/Cr: A:1.86, AA: 2.96, GB: 2.73, Cho/NAA: A: 2.90, AA: 6.37, GB: 5.57). Both lactate and lipids presented in the high-grade glioma cases. Proliferative potential as measured by MIB-1 index mostly correlated with the Tl index significantly (p=0.0002). We were able to evaluate the malignancy grade of gliomas preoperatively by using FDG-PET, Tl-SPECT and MRS, however, we also need to understand the pitfalls of each of these examinations respectively (author)

  1. Enhancement of Temozolomide and radiation induced damage in malignant glioma cell lines by 2-deoxy-D-glucose

    International Nuclear Information System (INIS)

    Kumari, Kalyani; Shyam, Sai; Chandrasekhar Sagar, B.K.; Jagath Lal, G.; Kalia, Vijay Kumar

    2014-01-01

    Malignant Gliomas are the most common and aggressive CNS tumors. The current standard treatment includes surgery, followed by Temozolomide (TMZ)-Radiotherapy. It leads to increased survival as compared to radiotherapy alone. However hematological toxicities are also increased by the combination treatments. Therefore, it is important to carry out further preclinical studies, to develop more effective treatment for these tumors. 2-deoxy-D-Glucose (2-DG), an inhibitor of glycolytic energy metabolism, has been shown earlier to differentially inhibit growth and survival of tumor cells in vitro. It also increases tumor regression in experimental models; and has been used in a few clinical studies as radiosensitizer. In the present study, effects of combining 2-DG with TMZ on radiation induced damage were studied in established malignant glioma cell lines (U251MG and U87MG); and primary cultures derived from malignant glioma biopsies. Exponentially growing cells were exposed to drugs and radiation. Drugs were removed 4 hours later and cultures were processed further for different assays of damage. Effects on proliferation response, viability and total cellular damage (TCD; micronuclei + apoptosis) were studied after post-treatment growth for 1, 2, 4 or 6 days. Our results showed that combination of 2-DG with TMZ ± Radiation significantly inhibited tumor cell proliferation up to 6 days, at low drug concentrations in primary as well as in established cell lines. The TCD at 24 and 48 hours after Gamma irradiation was also significantly increased by the combination of drugs as compared to individual treatments. Experiments to study proliferation kinetics by flow cytometry and cell survival are in progress. These studies suggest that 2-DG significantly enhances the cytotoxic effect of TMZ + radiation without increasing toxic side effects. Therefore, combining 2-DG with TMZ+ radiation therapy could be a potential strategy to improve the therapeutic outcome for Malignant

  2. Therapy of Patients with Malignant Glioma with Targeted A-Radionuclide Therapy Using 213Bi-DOTA-[Thi8, Met (Oo)11]-Substanz P

    International Nuclear Information System (INIS)

    Forrer, F.; Mueller-Brand, J.; Cordier, D.; Merlo, A.; Morgenstern, A.; Bruchertseifer, F.; Maecke, H.R.

    2009-01-01

    The prognosis of patients with malignant glioma is very poor. New therapy options are mandatory. Substance P is the main ligand of neurokinin type 1 (NK-1) receptors, which are consistently over-expressed in malignant gliomas and surrounding tumor vessels. Administration of 90 Y-DOTA-[Thi 8 , Met (O o ) 11 ]-Substanz P was shown to be feasible and safe. However, in critically located tumors, the mean tissue range of 5 mm of 90 Y may lead to unacceptable damage of adjacent, functional critical areas of the brain. We report a phase I study with locally administered 213 Bi labeled DOTA-[Thi 8 , Met (O o ) 11 ]-Substanz P in patients with malignant glioma. By using a direct, intratumoral injection, the problem of the short physical half life of Bismuth-213 can be circumvent. To date, 5 patients with malignant glioma (2 Grade IV, 1 Grade III and 2 grade II) without previous treatment were included. One to three catheter systems were placed stereotactically into the tumor. After a diagnostic injection with 111 In-DOTA-[Thi 8 , Met (O o ) 11 ]-Substanz P and subsequent dosimetry, totally 30 to 138 mCi of 213 Bi-DOTA-[Thi8, Met (O o ) 11 ]-Substanz P was injected intratumorally performing 3 to 4 applications over 2 days. SPECT/CT was used to assess the biodistribution. Follow up was performed clinically and with morphological imaging. Targeted radiopeptide therapy using 213 Bi-DOTA-[Thi 8 , Met (O o ) 11 ]-Substanz P was very well tolerated by all patients. No additional neurological deficit was observed. Repetitive imaging is suggestive of progressive radiation-induced necrosis, which was validated by subsequent resection of the tumors. Time to progression was found to be 11 and 14 months respectively in patients with grade IV glioma. No progression is found after 18 to 23 months in patients with grade II or III glioma. We conclude that targeted loco-regional radiotherapy using 213 Bi-DOTA-[Thi 8 , Met (O o ) 11 ]-Substanz P represents an innovative and effective

  3. An autopsy case of cerebral radiation necrosis simulating recurrent malignant glioma

    Energy Technology Data Exchange (ETDEWEB)

    Shibuya, Tadashi; Kushi, Hidehiko; Miyagi, Atsushi; Miyagami, Mitsusuke; Tsubokawa, Takashi (Nihon Univ., Tokyo (Japan). School of Medicine)

    1993-01-01

    The present case was a 60-year-old man. After removal of a malignant glioma (astrocytoma grade 3), radiation therapy was performed. From 1 year and 2 months after radiation therapy, disturbance of consciousness and right hemiparesis appeared. An abnormal shadow was noted on CT scan in the region from which the tumor had been extracted. Recurrence of the tumor was thus suspected. The symptoms were not relieved by steroid therapy or ACNU chemotherapy. The disturbance of consciousness gradually became aggravated and was complicated with respiration disorder. The patient died after a total course of 3 years and 6 months from the initial treatment. The findings of CT scans suggested a polymorphological tumor mass occupying the left frontal lobe with invasion to the right hemisphere via the corpus callosum. The gross and histological findings at autopsy mainly consisted of an extensive coagulation necrosis focus. There was also extensive vascular disturbance probably ascribable to radiation damage. Extensive investigations for residual tumor cells yielded negative results. The findings of CT scans were therefore considered to reflect changes in radiation necrosis with time. In the present case, autopsy findings, clinical course and image findings resembled those of recurrent malignant glioma but no residual tumor cells at the histological level. (author).

  4. An autopsy case of cerebral radiation necrosis simulating recurrent malignant glioma

    International Nuclear Information System (INIS)

    Shibuya, Tadashi; Kushi, Hidehiko; Miyagi, Atsushi; Miyagami, Mitsusuke; Tsubokawa, Takashi

    1993-01-01

    The present case was a 60-year-old man. After removal of a malignant glioma (astrocytoma grade 3), radiation therapy was performed. From 1 year and 2 months after radiation therapy, disturbance of consciousness and right hemiparesis appeared. An abnormal shadow was noted on CT scan in the region from which the tumor had been extracted. Recurrence of the tumor was thus suspected. The symptoms were not relieved by steroid therapy or ACNU chemotherapy. The disturbance of consciousness gradually became aggravated and was complicated with respiration disorder. The patient died after a total course of 3 years and 6 months from the initial treatment. The findings of CT scans suggested a polymorphological tumor mass occupying the left frontal lobe with invasion to the right hemisphere via the corpus callosum. The gross and histological findings at autopsy mainly consisted of an extensive coagulation necrosis focus. There was also extensive vascular disturbance probably ascribable to radiation damage. Extensive investigations for residual tumor cells yielded negative results. The findings of CT scans were therefore considered to reflect changes in radiation necrosis with time. In the present case, autopsy findings, clinical course and image findings resembled those of recurrent malignant glioma but no residual tumor cells at the histological level. (author)

  5. Medical decision-making capacity in patients with malignant glioma.

    Science.gov (United States)

    Triebel, Kristen L; Martin, Roy C; Nabors, Louis B; Marson, Daniel C

    2009-12-15

    Patients with malignant glioma (MG) must make ongoing medical treatment decisions concerning a progressive disease that erodes cognition. We prospectively assessed medical decision-making capacity (MDC) in patients with MG using a standardized psychometric instrument. Participants were 22 healthy controls and 26 patients with histologically verified MG. Group performance was compared on the Capacity to Consent to Treatment Instrument (CCTI), a psychometric measure of MDC incorporating 4 standards (choice, understanding, reasoning, and appreciation), and on neuropsychological and demographic variables. Capacity outcomes (capable, marginally capable, or incapable) on the CCTI standards were identified for the MG group. Within the MG group, scores on demographic, clinical, and neuropsychological variables were correlated with scores on each CCTI standard, and significant bivariate correlates were subsequently entered into exploratory stepwise regression analyses to identify multivariate cognitive predictors of the CCTI standards. Patients with MG performed significantly below controls on consent standards of understanding and reasoning, and showed a trend on appreciation. Relative to controls, more than 50% of the patients with MG demonstrated capacity compromise (marginally capable or incapable outcomes) in MDC. In the MG group, cognitive measures of verbal acquisition/recall and, to a lesser extent, semantic fluency predicted performance on the appreciation, reasoning, and understanding standards. Karnofsky score was also associated with CCTI performance. Soon after diagnosis, patients with malignant glioma (MG) have impaired capacity to make treatment decisions relative to controls. Medical decision-making capacity (MDC) impairment in MG seems to be primarily related to the effects of short-term verbal memory deficits. Ongoing assessment of MDC in patients with MG is strongly recommended.

  6. Collaborative labeling of malignant glioma with WebMILL: a first look

    Science.gov (United States)

    Singh, Eesha; Asman, Andrew J.; Xu, Zhoubing; Chambless, Lola; Thompson, Reid; Landman, Bennett A.

    2012-02-01

    Malignant gliomas are the most common form of primary neoplasm in the central nervous system, and one of the most rapidly fatal of all human malignancies. They are treated by maximal surgical resection followed by radiation and chemotherapy. Herein, we seek to improve the methods available to quantify the extent of tumors using newly presented, collaborative labeling techniques on magnetic resonance imaging. Traditionally, labeling medical images has entailed that expert raters operate on one image at a time, which is resource intensive and not practical for very large datasets. Using many, minimally trained raters to label images has the possibility of minimizing laboratory requirements and allowing high degrees of parallelism. A successful effort also has the possibility of reducing overall cost. This potentially transformative technology presents a new set of problems, because one must pose the labeling challenge in a manner accessible to people with little or no background in labeling medical images and raters cannot be expected to read detailed instructions. Hence, a different training method has to be employed. The training must appeal to all types of learners and have the same concepts presented in multiple ways to ensure that all the subjects understand the basics of labeling. Our overall objective is to demonstrate the feasibility of studying malignant glioma morphometry through statistical analysis of the collaborative efforts of many, minimally-trained raters. This study presents preliminary results on optimization of the WebMILL framework for neoplasm labeling and investigates the initial contributions of 78 raters labeling 98 whole-brain datasets.

  7. Detection of radiation brain injury of malignant glioma by 1H-MRS

    International Nuclear Information System (INIS)

    Zhang Mao; Jin Haiguo; Sun Shuquan; Bu Mingwei; Su Qingxiu; Liu Guigang; Sun Baosheng

    2011-01-01

    Objective: Using proton magnetic resonance spectroscopy ( 1 H-MRS) method, to evaluate the difference of radiation brain injury between volumetric modulated arc therapy (VMAT) and three-dimensional conformal radiation therapy (3DCRT) in patients with postoperative glioma after radiation therapy. Methods: 24 patients with malignant glioma (WHOII-IV grade glioma) confirmed with clinical surgery were selected, among them 12 patients were treated with VMAT technique, and another 12 patients with 3DCRT technique, all received DT60-66GY/30-33F dose prescriptions. 1 H-MRS examination was performed to analyze the change of metabolites in the brain tissues of region of interest (ROI) before and after radiotherapy,and the ratios of NAA/ Cr, Cho / Cr, NAA / Cho were computed. Results: The dose distribution of VMAT group was superior to 3DCRT group, the NAA/Cr in two groups after radiation were decreased compared with before radiation, there was a statistically difference in NAA/Cr after radiation between two groups (P<0.01). The Cho / Cr and NAA / Cho in two groups were increased compared with before radiation;after radiation, only NAA/Cho had a statistical difference between two groups (P<0.01). Conclusion: VMAT technique is superior to 3DCTR to reduce radiation brain injury in patients with postoperative glioma. (authors)

  8. Osteopontin and splice variant expression level in human malignant glioma: Radiobiologic effects and prognosis after radiotherapy

    International Nuclear Information System (INIS)

    Güttler, Antje; Giebler, Maria; Cuno, Peter; Wichmann, Henri; Keßler, Jacqueline; Ostheimer, Christian; Söling, Ariane; Strauss, Christian; Illert, Jörg; Kappler, Matthias; Vordermark, Dirk; Bache, Matthias

    2013-01-01

    Background and purpose: We investigated the role of the hypoxia-associated secreted glycoprotein osteopontin (OPN) in the response of malignant glioma to radiotherapy by characterizing OPN and its splice variants in vitro and in patient material. Material and methods: The effect of siRNA knockdown of OPN splice variants on cellular and radiobiologic behavior was analyzed in U251MG cells using OpnS siRNA (inhibition of all OPN splice variants) and OpnAC siRNA (knockdown only of OPNa and OPNc). OPN and splice variant mRNA levels were quantified in archival material of 41 glioblastoma tumor samples. Plasma OPN was prospectively measured in 33 malignant glioma patients. Results: Inhibition of OPNa and OPNc (OpnAC) reduced clonogenic survival in U251MG cells but did not affect proliferation, migration or apoptosis. Knockdown of all OPN splice variants (OpnS) resulted in an even stronger inhibition of clonogenic survival, while cell proliferation and migration were reduced and rate of apoptosis was increased. Additional irradiation had additive effects with both siRNAs. Plasma OPN increased continuously in malignant glioma patients and was associated with poor survival. Conclusions: OPNb is partially able to compensate the effects of OPNa and OPNc knockdown in U251MG cells. High OPN plasma levels at the end of radiotherapy are associated with poor survival

  9. Correlation between {sup 18}F-fluoromisonidazole PET and expression of HIF-1α and VEGF in newly diagnosed and recurrent malignant gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Nobuyuki; Ogawa, Daisuke; Miyake, Keisuke; Tamiya, Takashi [Kagawa University, Department of Neurological Surgery, Faculty of Medicine, Kagawa (Japan); Lin, Wei [Kagawa University, Department of Neurological Surgery, Faculty of Medicine, Kagawa (Japan); Fourth Military Medical University, Department of Neurosurgery, Xijing Hospital, Xi' an (China); Cao, Wei-Dong [Fourth Military Medical University, Department of Neurosurgery, Xijing Hospital, Xi' an (China); Haba, Reiji [Kagawa University, Department of Diagnostic Pathology, Faculty of Medicine, Kagawa (Japan); Maeda, Yukito; Yamamoto, Yuka; Nishiyama, Yoshihiro [Kagawa University, Department of Radiology, Faculty of Medicine, Kagawa (Japan)

    2014-10-15

    Hypoxia and its consequences at the molecular level promote tumour progression and affect patient prognosis. One of the main early cellular events evoked by hypoxia is induction of hypoxia-inducible factor 1 (HIF-1) and subsequent upregulation of vascular endothelial growth factor (VEGF). In this study we sought to determine whether hypoxia detected by {sup 18}F-fluoromisonidazole (FMISO) PET accurately reflects the expression of HIF-1α and VEGF in the tumour and can be used as a biomarker of antiangiogenic treatment and as a prognostic factor in newly diagnosed and recurrent malignant gliomas. Enrolled in this study were 32 patients with newly diagnosed glioma and 16 with recurrent glioma of grade III or grade IV. All the patients had undergone FMISO PET preoperatively. The maximum tumour-to-blood FMISO activity ratio (T/B{sub max}) was used to evaluate the degree of tumour hypoxia and the hypoxic volume (HV) was calculated using a tumour-to-blood FMISO uptake ratio of ≥1.2. Immunohistochemical expressions of HIF-1α and VEGF were evaluated semiquantitatively using the immunoreactivity score (IRS, scores 0 to 12) and the correlation was examined between IRS of HIF-1α or VEGF and FMISO uptake of the tumour (SUV{sub tumour}) using navigation-based sampling. Survival was estimated using the Kaplan-Meier method in relation to the T/B{sub max} and the HV. The T/B{sub max} and the HV in grade IV gliomas were significantly higher than in grade III gliomas (P < 0.01 and P < 0.01, respectively). Moderate to strong HIF-1α and VEGF expression was observed in the majority of malignant gliomas. The IRS of HIF-1α and VEGF in the tumour were not significantly different between grade III and grade IV gliomas. The IRS of HIF-1α in the tumour did not correlate with the SUV{sub tumour} of FMISO in either newly diagnosed or recurrent glioma. There was a significant but weak correlation between the IRS of VEGF and the SUV{sub tumour} of FMISO in newly diagnosed glioma, but not

  10. Oral sodium phenylbutyrate in patients with recurrent malignant gliomas: a dose escalation and pharmacologic study.

    Science.gov (United States)

    Phuphanich, Surasak; Baker, Sharyn D; Grossman, Stuart A; Carson, Kathryn A; Gilbert, Mark R; Fisher, Joy D; Carducci, Michael A

    2005-04-01

    We determined the maximum tolerated dose (MTD), toxicity profile, pharmacokinetic parameters, and preliminary efficacy data of oral sodium phenylbutyrate (PB) in patients with recurrent malignant gliomas. Twenty-three patients with supratentorial recurrent malignant gliomas were enrolled on this dose escalation trial. Four dose levels of PB were studied: 9, 18, 27, and 36 g/day. Data were collected to assess toxicity, response, survival, and pharmacokinetics. All PB doses of 9, 18, and 27 g/day were well tolerated. At 36 g/day, two of four patients developed dose-limiting grade 3 fatigue and somnolence. At the MTD of 27 g/day, one of seven patients developed reversible grade 3 somnolence. Median survival from time of study entry was 5.4 months. One patient had a complete response for five years, and no partial responses were noted, which yielded an overall response rate of 5%. Plasma concentrations of 706, 818, 1225, and 1605 muM were achieved with doses of 9, 18, 27, and 36 g/day, respectively. The mean value for PB clearance in this patient population was 22 liters/h, which is significantly higher than the 16 liters/h reported in patients with other malignancies who were not receiving P450 enzyme-inducing anticonvulsant drugs (P = 0.038). This study defines the MTD and recommended phase 2 dose of PB at 27 g/day for heavily pretreated patients with recurrent gliomas. The pharmacology of PB appears to be affected by concomitant administration of P450-inducing anticonvulsants.

  11. 188Re-Labeled Nimotuzumab in the Locoregional Treatment of Malignant Gliomas

    International Nuclear Information System (INIS)

    Montana, R. Leyva; Barrabi, M. Zamora; Casaco, A.; Torres, L.; Perera, A.; Lopez, G.

    2009-01-01

    A new formulation of 188 Re-Nimotuzumab was developed to evaluate the biodistribution, internal radiation dosimetry and safety in the locoregional treatment of malignant gliomas. A phase I clinical trial was performed to evaluate the toxicity and clinical effect of an intracavitary administration of single dose of Nimotuzumab labeled with 188 Re. Nimotuzumab is a humanized monoclonal antibody directed against epidermal growth factor receptors. Nine patients with anaplastic astrocytoma or glioblastoma multiforme were intended to be treated with 3 mg of mAb labeled with 10 or 15 mCi of 188 Re. The radioimmunoconjugated showed a high retention in the surgical created resection cavity and the brain adjacent tissues with a mean value of 85.5% of the injected dose one hour post- administration. No patient developed human anti-mouse antibody response. This radioimmunoconjugate may be relatively safe and a promising therapeutic approach for treating high grade gliomas. (author)

  12. Efficacy of radiotherapy for malignant gliomas in elderly patients

    International Nuclear Information System (INIS)

    Villa, Salvador; Vinolas, Nuria; Verger, Eugenia; Yaya, Ricard; Martinez, Antonio; Gil, Miquel; Moreno, Victor; Caral, Luis; Graus, Francesc

    1998-01-01

    Purpose: Age above 65 years is a strong negative prognostic factor for survival in patients with malignant gliomas (MG) treated with radiotherapy (RT) and its value has been questioned. We analyzed the effect of RT on the survival of elderly patients with malignant gliomas. Methods and Materials: We examined 85 consecutive elderly patients with a histological diagnosis of MG. Age ranged from 65 to 81 years (median 70 years). Glioblastoma multiforme (GBM) was diagnosed in 64 patients (75.3%). Surgical treatment included needle biopsy in 32 patients (37.6%). Median postoperative Karnofsky Performance Status (KPS) was 60 (range: 30-100). Survival probability was estimated using Kaplan-Meier method and compared with the log-rank test. Crude and adjusted hazard ratios (HR) were calculated using Cox's regression models. Results: Median survival time for all patients was 18.1 weeks. In multivariate analysis, RT was the only independent prognostic variable for survival (HR: 9.1 [95% CI: 4.5-18.7]). Forty-two patients did not start RT mostly due to low KPS (<50). The median survival of the 43 patients who started RT was 45 weeks. In these patients, Cox multivariate analysis indicated that age was independently associated with prolonged survival (HR: 2.85 [95% CI 1.31-6.19]). Median survival of patients age 70 years and younger was 55 weeks compared with 34 weeks for patients older than 70 years. Conclusions: The overall survival for elderly patients with MG is poor. RT seems to improve survival in patients up to 70 years, but in older patients treated with RT the survival is significantly shorter

  13. Nitrosoureas Inhibit the Stathmin Mediated Migration and Invasion of Malignant Glioma Cells

    OpenAIRE

    Liang, Xing-Jie; Choi, Yong; Sackett, Dan L.; Park, John K.

    2008-01-01

    Malignant gliomas are the most common primary intrinsic brain tumors and are highly lethal. The widespread migration and invasion of neoplastic cells from the initial site of tumor formation into the surrounding brain render these lesions refractory to definitive surgical treatment. Stathmin, a microtubule destabilizing protein that mediates cell cycle progression, can also regulate directed cell movement. Nitrosoureas, traditionally viewed as DNA alkylating agents, can also covalently modify...

  14. HIF-1α inhibition by siRNA or chetomin in human malignant glioma cells: effects on hypoxic radioresistance and monitoring via CA9 expression

    Directory of Open Access Journals (Sweden)

    Bache Matthias

    2010-11-01

    Full Text Available Abstract Background Hypoxia induces activation of the HIF-1 pathway and is an essential characteristic of malignant gliomas. Hypoxia has been linked to tumor progression, therapy resistance and poor prognosis. However, little is known about the impact of HIF-1α inhibition on radioresistance of malignant glioma. Methods In this study, we investigated the effects of the inhibition of HIF-1α on cell survival and radiosensitivity in U251MG and U343MG glioma cells, using two different strategies. HIF-1α inhibition was achieved by siRNA targeting of HIF-1α or via chetomin, a disruptor of interactions between HIF-1α and p300. The inhibition of the HIF-1 pathway was monitored by quantitative real-time PCR and Western blot analyses of the expression levels of HIF-1α and CA9. CA9 expression was investigated as a potential indicator of the efficacy of HIF-1 inhibition and the resulting radiosensitivity of malignant glioma cell lines was determined by clonogenic assay after irradiation under normoxic (2-10 Gy or hypoxic (2-15 Gy conditions. Results Although siRNA and chetomin show distinct modes of action, both attenuated the hypoxia-induced radioresistance of malignant glioma cell lines U251MG (DMF10: 1.35 and 1.18 and U343MG (DMF10: 1.78 and 1.48. However, siRNA and chetomin showed diverse effects on radiosensitivity under normoxic conditions in U251MG (DMF10: 0.86 and 1.35 and U343MG (DMF10: 1.33 and 1.02 cells. Conclusions Results from this in vitro study suggest that inhibition of HIF-1α is a promising strategy to sensitize human malignant gliomas to radiotherapy and that CA9 could serve as an indicator of effective HIF-1-related radiosensitization.

  15. The ketogenic diet is an effective adjuvant to radiation therapy for the treatment of malignant glioma.

    Directory of Open Access Journals (Sweden)

    Mohammed G Abdelwahab

    Full Text Available INTRODUCTION: The ketogenic diet (KD is a high-fat, low-carbohydrate diet that alters metabolism by increasing the level of ketone bodies in the blood. KetoCal® (KC is a nutritionally complete, commercially available 4:1 (fat:carbohydrate+protein ketogenic formula that is an effective non-pharmacologic treatment for the management of refractory pediatric epilepsy. Diet-induced ketosis causes changes to brain homeostasis that have potential for the treatment of other neurological diseases such as malignant gliomas. METHODS: We used an intracranial bioluminescent mouse model of malignant glioma. Following implantation animals were maintained on standard diet (SD or KC. The mice received 2×4 Gy of whole brain radiation and tumor growth was followed by in vivo imaging. RESULTS: Animals fed KC had elevated levels of β-hydroxybutyrate (p = 0.0173 and an increased median survival of approximately 5 days relative to animals maintained on SD. KC plus radiation treatment were more than additive, and in 9 of 11 irradiated animals maintained on KC the bioluminescent signal from the tumor cells diminished below the level of detection (p<0.0001. Animals were switched to SD 101 days after implantation and no signs of tumor recurrence were seen for over 200 days. CONCLUSIONS: KC significantly enhances the anti-tumor effect of radiation. This suggests that cellular metabolic alterations induced through KC may be useful as an adjuvant to the current standard of care for the treatment of human malignant gliomas.

  16. Metabolic Profiling of IDH Mutation and Malignant Progression in Infiltrating Glioma

    Science.gov (United States)

    Jalbert, Llewellyn E.; Elkhaled, Adam; Phillips, Joanna J.; Neill, Evan; Williams, Aurelia; Crane, Jason C.; Olson, Marram P.; Molinaro, Annette M.; Berger, Mitchel S.; Kurhanewicz, John; Ronen, Sabrina M.; Chang, Susan M.; Nelson, Sarah J.

    2017-03-01

    Infiltrating low grade gliomas (LGGs) are heterogeneous in their behavior and the strategies used for clinical management are highly variable. A key factor in clinical decision-making is that patients with mutations in the isocitrate dehydrogenase 1 and 2 (IDH1/2) oncogenes are more likely to have a favorable outcome and be sensitive to treatment. Because of their relatively long overall median survival, more aggressive treatments are typically reserved for patients that have undergone malignant progression (MP) to an anaplastic glioma or secondary glioblastoma (GBM). In the current study, ex vivo metabolic profiles of image-guided tissue samples obtained from patients with newly diagnosed and recurrent LGG were investigated using proton high-resolution magic angle spinning spectroscopy (1H HR-MAS). Distinct spectral profiles were observed for lesions with IDH-mutated genotypes, between astrocytoma and oligodendroglioma histologies, as well as for tumors that had undergone MP. Levels of 2-hydroxyglutarate (2HG) were correlated with increased mitotic activity, axonal disruption, vascular neoplasia, and with several brain metabolites including the choline species, glutamate, glutathione, and GABA. The information obtained in this study may be used to develop strategies for in vivo characterization of infiltrative glioma, in order to improve disease stratification and to assist in monitoring response to therapy.

  17. MicroRNA in Human Glioma

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mengfeng, E-mail: limf@mail.sysu.edu.cn [Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080 (China); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Li, Jun [Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080 (China); Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Liu, Lei; Li, Wei [Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080 (China); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Yang, Yi [Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080 (China); Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Yuan, Jie [Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080 (China); Key Laboratory of Functional Molecules from Oceanic Microorganisms (Sun Yat-sen University), Department of Education of Guangdong Province, Guangzhou 510080 (China)

    2013-10-23

    Glioma represents a serious health problem worldwide. Despite advances in surgery, radiotherapy, chemotherapy, and targeting therapy, the disease remains one of the most lethal malignancies in humans, and new approaches to improvement of the efficacy of anti-glioma treatments are urgently needed. Thus, new therapeutic targets and tools should be developed based on a better understanding of the molecular pathogenesis of glioma. In this context, microRNAs (miRNAs), a class of small, non-coding RNAs, play a pivotal role in the development of the malignant phenotype of glioma cells, including cell survival, proliferation, differentiation, tumor angiogenesis, and stem cell generation. This review will discuss the biological functions of miRNAs in human glioma and their implications in improving clinical diagnosis, prediction of prognosis, and anti-glioma therapy.

  18. MicroRNA in Human Glioma

    International Nuclear Information System (INIS)

    Li, Mengfeng; Li, Jun; Liu, Lei; Li, Wei; Yang, Yi; Yuan, Jie

    2013-01-01

    Glioma represents a serious health problem worldwide. Despite advances in surgery, radiotherapy, chemotherapy, and targeting therapy, the disease remains one of the most lethal malignancies in humans, and new approaches to improvement of the efficacy of anti-glioma treatments are urgently needed. Thus, new therapeutic targets and tools should be developed based on a better understanding of the molecular pathogenesis of glioma. In this context, microRNAs (miRNAs), a class of small, non-coding RNAs, play a pivotal role in the development of the malignant phenotype of glioma cells, including cell survival, proliferation, differentiation, tumor angiogenesis, and stem cell generation. This review will discuss the biological functions of miRNAs in human glioma and their implications in improving clinical diagnosis, prediction of prognosis, and anti-glioma therapy

  19. Demethoxycurcumin Retards Cell Growth and Induces Apoptosis in Human Brain Malignant Glioma GBM 8401 Cells

    Directory of Open Access Journals (Sweden)

    Tzuu-Yuan Huang

    2012-01-01

    Full Text Available Demethoxycurcumin (DMC; a curcumin-related demethoxy compound has been recently shown to display antioxidant and antitumor activities. It has also produced a potent chemopreventive action against cancer. In the present study, the antiproliferation (using the MTT assay, DMC was found to have cytotoxic activities against GBM 8401 cell with IC50 values at 22.71 μM and induced apoptosis effects of DMC have been investigated in human brain malignant glioma GBM 8401 cells. We have studied the mitochondrial membrane potential (MMP, DNA fragmentation, caspase activation, and NF-κB transcriptional factor activity. By these approaches, our results indicated that DMC has produced an inhibition of cell proliferation as well as the activation of apoptosis in GBM 8401 cells. Both effects were observed to increase in proportion with the dosage of DMC treatment, and the apoptosis was induced by DMC in human brain malignant glioma GBM 8401 cells via mitochondria- and caspase-dependent pathways.

  20. Chemotherapy with ACNU and radiation therapy for malignant glioma in cerebral hemisphere of adult

    Energy Technology Data Exchange (ETDEWEB)

    Miyagami, Mitsusuke; Tsubokawa, Takashi (Nihon Univ., Tokyo (Japan). School of Medicine)

    1990-08-01

    Fifty four cases of malignant gliomas in adults localized in the cerebral hemisphere including the location of basal ganglia and corpus callosum in 26% were survived over one month and followed more than 2 years after operation for 10 years recently. Histologically they had 40 cases of glioblastoma multiform and 14 cases of anaplastic astrocytoma. All malignant gliomas were given an operation and radiation, classifying 4 groups due to chemotherapeutic methods: Group I (20 cases) was treated by intraarterial infusion of ACNU with 20% mannitol. The others were Group II (8 cases) treated by intraarterial infusion of ACNU only, Group III (13 cases) by intravenous infusion of ACNU only and Group IV (13 cases) by no chemotherapy. Post-operative survival rates in the malignant gliomas of Group I were that 1 year survival rate was in 16 out of 20 cases (80%), 2 years in 55%, and 5 years in 25%. In glioblastoma multiform, 1 year survival rate of Group I was recognized in 70% and 2 years in 36%, a little better than the other treatments. Two year survival rate of other treatments demonstrated 17% in Group II, 25% in Group III, and 11% in Group IV. CT findings of glioblastoma multiform in Group I showed no rest tumor in 4 cases and one case of CR, and 3 cases of PR in the follow up study of 10 cases with rest tumor on CT after operation. There were no permanent complications except for temporary mild neurological deficit in 7% of Group I improving within 2 to 3 days after intraarterial infusion of ACNU and 20% mannitol. It is suggested that chemotherapy of Group I by intraarterial infusion of ACNU and 20% mannitol demonstrated a little better therapeutic efficacy than the other Groups, at least within 2 years after operation. (author).

  1. Small gliomas; Metabolism and blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Masaru; Shibasaki, Takashi; Horikoshi, Satoru; Ono, Nobuo; Zama, Akira; Kakegawa, Tohru; Ishiuchi, Shogo [Gunma Univ., Maebashi (Japan). School of Medicine

    1994-02-01

    Eight patients with small gliomas (6 low-grade and 2 high-grade) localized in a single gyrus or less than 2 cm diameter were investigated using positron tomography and single photon emission computed tomography. All three tumors examined demonstrated hypermetabolism of amino acids. High-grade gliomas demonstrated hypermetabolism of glucose and high blood flow, but normal or low oxygen metabolism. High-grade gliomas also showed accumulation of [sup 201]Tl chloride and high or low accumulation of [sup 123]I-isopropyl iodoamphetamine. These indications allow preoperative diagnosis of the malignancy of small gliomas, which is important because small gliomas with high-grade malignancy need more extensive removal and adjuvant therapy. (author).

  2. Antitumor effect of a new nano-vector with miRNA-135a on malignant glioma

    Directory of Open Access Journals (Sweden)

    Liang C

    2017-12-01

    Full Text Available Chaofeng Liang,1,* Weitong Sun,2,* Haiyong He,1,* Baoyu Zhang,1 Cong Ling,1 Bocheng Wang,1 Tengchao Huang,1 Bo Hou,1 Ying Guo1 1Department of Neurosurgery, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangdong, China; 2The Pharmaceutical College of Jiamusi University, Jiamusi University, Jiamusi, China *These authors contributed equally to this work Introduction: MiR-135a is found to selectively induce apoptosis in glioma cell but not in normal neurons and glial cells. However, low transfection efficacy limits its application in vivo as other miRNAs. We prepared a new kind of nano-vector based on polyethylene glycol methyl ether (mPEG and hyper-branched polyethylenimine (hy-PEI in order to improve the miRNA delivery system into the glioma cells. Methods: The mPEG-g-PEI/miR-135a was constructed and detected by 1H NMR and FTIR analyses. Transmission electron microscope was utilized for its characteristics. Stability and release efficiency was assessed by electrophoresis. Biocompatibility was observed and analyzed through co-culture with astrocytes and malignant glioma cells (C6. Transfection rate was monitored by laser confocal microscopy and flow cytometry. The antitumor effect of mPEG-g-PEI/miR-135a to C6 was confirmed in vivo by MR scanning, pathology and survival curve. RT-PCR was used to assay transfection efficiency of mPEG-g-PEI/miR-135a in vitro and in vivo. And Western blotting was used to assess the expressions of the targeted proteins of miR-135a.Results: In this experiment, we found the optimal N/P ratio of mPEG-g-PEI/miR-135a was about 6 judged by Zeta potential, particle size and encapsulation ability. The stability of mPEG-g-PEI/miR-135a in serum and the release efficiency in acid(pH=5.0 of mPEG-g-PEI/miR-135a were simulated the environment in vivo and in tumor. The mPEG-g-PEI nano-vector was co-cultured with malignant glioma cell C6 and normal astrocytes in vitro and showed good biocompatibility

  3. Oral sodium phenylbutyrate in patients with recurrent malignant gliomas: A dose escalation and pharmacologic study1

    Science.gov (United States)

    Phuphanich, Surasak; Baker, Sharyn D.; Grossman, Stuart A.; Carson, Kathryn A.; Gilbert, Mark R.; Fisher, Joy D.; Carducci, Michael A.

    2005-01-01

    We determined the maximum tolerated dose (MTD), toxicity profile, pharmacokinetic parameters, and preliminary efficacy data of oral sodium phenylbutyrate (PB) in patients with recurrent malignant gliomas. Twenty-three patients with supratentorial recurrent malignant gliomas were enrolled on this dose escalation trial. Four dose levels of PB were studied: 9, 18, 27, and 36 g/day. Data were collected to assess toxicity, response, survival, and pharmacokinetics. All PB doses of 9, 18, and 27 g/day were well tolerated. At 36 g/day, two of four patients developed dose-limiting grade 3 fatigue and somnolence. At the MTD of 27 g/day, one of seven patients developed reversible grade 3 somnolence. Median survival from time of study entry was 5.4 months. One patient had a complete response for five years, and no partial responses were noted, which yielded an overall response rate of 5%. Plasma concentrations of 706, 818, 1225, and 1605 μM were achieved with doses of 9, 18, 27, and 36 g/day, respectively. The mean value for PB clearance in this patient population was 22 liters/h, which is significantly higher than the 16 liters/h reported in patients with other malignancies who were not receiving P450 enzyme–inducing anticonvulsant drugs (P = 0.038). This study defines the MTD and recommended phase 2 dose of PB at 27 g/day for heavily pretreated patients with recurrent gliomas. The pharmacology of PB appears to be affected by concomitant administration of P450-inducing anticonvulsants. PMID:15831235

  4. Effects of concomitant temozolomide and radiation therapies on WT1-specific T-cells in malignant glioma

    International Nuclear Information System (INIS)

    Chiba, Yasuyoshi; Hashimoto, Naoya; Tsuboi, Akihiro

    2010-01-01

    Immunotherapy targeting the Wilms' tumour 1 gene product has been proven safe and effective for treating malignant glioma in a phase II clinical study. Currently, radiation/temozolomide therapy is the standard treatment with only modest benefit. Whether combining radiation/temozolomide therapy with WT1 immunotherapy will have a negating effect on immunotherapy is still controversial because of the significant lymphocytopaenia induced by the former therapy. To address this issue, we investigated the changes in frequency and number of WT1-specific T-cells in patients with malignant gliomas. Twenty-two patients with newly diagnosed malignant glioma who received standard radiation/temozolomide therapy were recruited for the study. Blood samples were collected before treatment and on the sixth week of therapy. The frequencies and numbers of lymphocytes, CD8 + T-cells, WT1-specific T-cells, regulatory T-cells, natural killer cells and natural killer T-cells were measured and analysed using T-tests. Analysis of the frequency of T lymphocytes and its subpopulation showed an increase in regulatory T-cells, but no significant change was noted in the populations of T-cells, WT1-specific T-cells, natural killer (NK) cells and natural killer T (NKT) cells. Reductions in the total numbers of T-cells, WT1-specific T-cells, NK cells and NKT cells were mainly a consequence of the decrease in the total lymphocyte count. Radiation/temozolomide therapy did not significantly affect the frequency of WT1-specific T-cells, suggesting that the combination with WT1 immunotherapy may be possible, although further assessment in the clinical setting is warranted. (author)

  5. Capacity of ultraviolet-induced DNA repair in human glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Hiroji

    1987-04-01

    A DNA repair abnormality is likely related to an increased incidence of neoplasms in several autosomal recessive diseases such as xeroderma pigmentosum, Fanconi's anemia, Bloom's syndrome and ataxia telangiectasia. In human glioma cells, however, there are only a few reports on DNA repair. In this study, an ultraviolet (UV)-induced DNA repair was examined systematically in many human glioma cells. Two human malignant glioma cell lines (MMG-851, U-251-MG) and 7 human glioma cell strains (4, benign; 3, malignant) of short term culture, in which glial fibrillary acidic protein (GFAP) staining were positive, were used. To investigate the capacity of DNA repair, UV sensitivity was determined by colony formation; excision repair by autoradiography and Cytosine Arabinoside (Ara-C) assay; and post-replication repair by the joining rate of newly synthesized DNA. As a result, the colony-forming abilities of malignant glioma cell lines were lower than those of normal human fibroblasts, but no difference was found between two malignant glioma cell lines. The excision repair of the malignant group (2 cell lines and 3 cell strains) was apparently lower than that of the benign group (4 cell strains). In two malignant glioma cell lines, the excision repair of MMG-851 was lower than that of U-251-MG, and the post-replication repair of MMG-851 was higher than that of U-251-MG. These results were considered to correspond well with colony-forming ability. The results indicate that there are some differences in each human malignant glioma cell in its UV-induced DNA repair mechanism, and that the excision repair of the malignant glioma cells is apparently lower than that of the benign glioma cells. These findings may be useful for diagnosis and treatment.

  6. Aberrant Methylation and Reduced Expression of LHX9 in Malignant Gliomas of Childhood

    Directory of Open Access Journals (Sweden)

    Valentina Vladimirova

    2009-07-01

    Full Text Available High-grade gliomas (HGGs of childhood represent approximately 7% of pediatric brain tumors. They are highly invasive tumors and respond poorly to conventional treatments in contrast to pilocytic astrocytomas, which usually are well demarcated and frequently can be cured by surgery. The molecular events for this clinical relevant finding are only partially understood. In the current study, to identify aberrantly methylated genes that may be involved in the tumorigenesis of pediatric HGGs, we performed a microarray-based differential methylation hybridization approach and found frequent hypermethylation of the LHX9 (human Lim-homebox 9 gene encoding a transcription factor involved in brain development. Bisulfite genomic sequencing and combined bisulfite restriction analysis showed that HGGs were frequently methylated at two CpG-rich LHX9 regions in comparison to benign, nondiffuse pilocytic astrocytomas and normal brain tissues. The LHX9 hypermethylation was associated with reduced messenger RNA expression in pediatric HGG samples and corresponding cell lines. This epigenetic modification was reversible by pharmacological inhibition (5-aza-2′-deoxycytidine, and reexpression of LHX9 transcript was induced in pediatric glioma cell lines. Exogenous expression of LHX9 in glioma cell lines did not directly affect cell proliferation and apoptosis but specifically inhibited glioma cell migration and invasion in vitro, suggesting a possible implication of LHX9 in the migratory phenotype of HGGs. Our results demonstrate that the LHX9 gene is frequently silenced in pediatric malignant astrocytomas by hypermethylation and that this epigenetic alteration is involved in glioma cell migration and invasiveness.

  7. EG-03EXPRESSION OF PRMT5 CORRELATES WITH MALIGNANT GRADE IN GLIOMAS AND PLAYS A PIVOTAL ROLE IN TUMOR GROWTH

    Science.gov (United States)

    Han, Xiaosi; Li, Rong; Zhang, Wenbin; Yang, Xiuhua; Fathallah-Shaykh, Hassan; Gillespie, Yancey; Nabors, Burt

    2014-01-01

    Protein arginine methyltransferase 5 (PRMT5) catalyzes the formation of ω-NG,N′G-symmetric dimethylarginine residues on histones as well as other proteins. The modification play an important role in cell differentiation and tumor cell growth. However, the role of PRMT5 in human glioma cells has not been characterized. In this study, we assessed protein expression profiles of PRMT5 in control brain, WHO grade II astrocytomas, anaplastic astrocytomas, and glioblastoma multiforme (GBM) by immunohistochemistry. PRMT5 was low in glial cells in control brain tissues and low grade astrocytomas. Its expression increased in parallel with malignant progression, and was highly expressed in GBM. Knockdown of PRMT5 by small hairpin RNA caused alterations of p-ERK1/2 and significantly repressed the clonogenic potential and viability of glioma cells. These findings indicate that PRMT5 is a marker of malignant progression in glioma tumors and plays a pivotal role in tumor growth.

  8. Use of peri-operative anti-epileptic drugs in patients with newly diagnosed high grade malignant glioma: a single center experience.

    Science.gov (United States)

    Lwu, Shelly; Hamilton, Mark G; Forsyth, Peter A; Cairncross, J Gregory; Parney, Ian F

    2010-02-01

    An American Academy of Neurology practice parameter recommends that long-term prophylactic anti-epileptic drugs (AED) should not be routine in patients with newly diagnosed brain tumors. However, prospective multi-center North American data shows that most newly diagnosed glioma patients receive prophylactic AED. We examined our own peri-operative AED practice patterns in newly-diagnosed patients with malignant glioma to determine if we deviate from published guidelines. A retrospective chart review was performed in adult patients with newly diagnosed malignant gliomas undergoing surgery in southern Alberta between January 2003 and December 2005. Demographic information, AED use, seizure incidence, adverse effects, tumor size, and tumor location were recorded. Of 164 eligible patients, 54 (33%) presented with seizures and all received AED. Prophylactic AED were given to 44 patients (27%). Peri-operative seizures (within 1 week) occurred in two patients without (3%) and no patients with seizure prophylaxis. Adverse AED reactions and adverse effects attributable to seizures were both rare. Prophylactic AED were continued >1 week post-op in 30 patients (18%). Patients receiving prophylactic AED were more likely to have had tumors involving the temporal lobe than those who did not (50 vs. 20%; P < 0.01). Patients receiving peri-operative AED prophylaxis were common, had a trend to reduced peri-operative seizures, and had few adverse effects. However, most of these patients were maintained on prophylactic AED continued beyond the first peri-operative week, contradicting published guidelines. Increased awareness of practice guidelines may help modify AED prescription patterns in malignant glioma patients.

  9. Reliability of tumor volume estimation from MR images in patients with malignant glioma. Results from the American College of Radiology Imaging Network (ACRIN) 6662 Trial

    International Nuclear Information System (INIS)

    Ertl-Wagner, Birgit B.; Blume, Jeffrey D.; Herman, Benjamin; Peck, Donald; Udupa, Jayaram K.; Levering, Anthony; Schmalfuss, Ilona M.

    2009-01-01

    Reliable assessment of tumor growth in malignant glioma poses a common problem both clinically and when studying novel therapeutic agents. We aimed to evaluate two software-systems in their ability to estimate volume change of tumor and/or edema on magnetic resonance (MR) images of malignant gliomas. Twenty patients with malignant glioma were included from different sites. Serial post-operative MR images were assessed with two software systems representative of the two fundamental segmentation methods, single-image fuzzy analysis (3DVIEWNIX-TV) and multi-spectral-image analysis (Eigentool), and with a manual method by 16 independent readers (eight MR-certified technologists, four neuroradiology fellows, four neuroradiologists). Enhancing tumor volume and tumor volume plus edema were assessed independently by each reader. Intraclass correlation coefficients (ICCs), variance components, and prediction intervals were estimated. There were no significant differences in the average tumor volume change over time between the software systems (p > 0.05). Both software systems were much more reliable and yielded smaller prediction intervals than manual measurements. No significant differences were observed between the volume changes determined by fellows/neuroradiologists or technologists.Semi-automated software systems are reliable tools to serve as outcome parameters in clinical studies and the basis for therapeutic decision-making for malignant gliomas, whereas manual measurements are less reliable and should not be the basis for clinical or research outcome studies. (orig.)

  10. Potentiation of radiation therapy by the oncolytic adenovirus dl1520 (ONYX-015) in human malignant glioma xenografts.

    NARCIS (Netherlands)

    Geoerger, B; Grill, J; Opolon, P; Morizet, J; Aubert, G; Lecluse, Y; Beusechem-Kaptein, van V.W.; Gerritsen, W.R.; Kirn, DH; Vassal, G

    2003-01-01

    In spite of aggressive surgery, irradiation and/or chemotherapy, treatment of malignant gliomas remains a major challenge in adults and children due to high treatment failure. We have demonstrated significant cell lysis and antitumour activity of the E1B-55 kDa-gene-deleted adenovirus ONYX-015

  11. JS-K, a glutathione S-transferase-activated nitric oxide donor with antineoplastic activity in malignant gliomas.

    Science.gov (United States)

    Weyerbrock, Astrid; Osterberg, Nadja; Psarras, Nikolaos; Baumer, Brunhilde; Kogias, Evangelos; Werres, Anna; Bette, Stefanie; Saavedra, Joseph E; Keefer, Larry K; Papazoglou, Anna

    2012-02-01

    Glutathione S-transferases (GSTs) control multidrug resistance and are upregulated in many cancers, including malignant gliomas. The diazeniumdiolate JS-K generates nitric oxide (NO) on enzymatic activation by glutathione and GST, showing promising NO-based anticancer efficacy. To evaluate the role of NO-based antitumor therapy with JS-K in U87 gliomas in vitro and in vivo. U87 glioma cells and primary glioblastoma cell lines were exposed to JS-K and a variety of inhibitors to study cell death by necrosis, apoptosis, and other mechanisms. GST expression was evaluated by immunocytochemistry, polymerase chain reaction, and Western blot, and NO release from JS-K was studied with a NO assay. The growth-inhibitory effect of JS-K was studied in a U87 xenograft model in vivo. Dose-dependent inhibition of cell proliferation was observed in human U87 glioma cells and primary glioblastoma cells in vitro. Cell death was partially induced by caspase-dependent apoptosis, which could be blocked by Z-VAD-FMK and Q-VD-OPH. Inhibition of GST by sulfasalazine, cGMP inhibition by ODQ, and MEK1/2 inhibition by UO126 attenuated the antiproliferative effect of JS-K, suggesting the involvement of various intracellular death signaling pathways. Response to JS-K correlated with mRNA and protein expression of GST and the amount of NO released by the glioma cells. Growth of U87 xenografts was reduced significantly, with immunohistochemical evidence for increased necrosis and apoptosis and reduced proliferation. Our data show for the first time the potent antiproliferative effect of JS-K in gliomas in vitro and in vivo. These findings warrant further investigation of this novel NO-releasing prodrug in gliomas.

  12. Bex2 regulates cell proliferation and apoptosis in malignant glioma cells via the c-Jun NH2-terminal kinase pathway

    International Nuclear Information System (INIS)

    Zhou, Xiuping; Meng, Qingming; Xu, Xuebin; Zhi, Tongle; Shi, Qiong; Wang, Yong; Yu, Rutong

    2012-01-01

    Highlights: ► The expression levels of Bex2 markedly increased in glioma tissues. ► Bex2 over-expression promoted cell proliferation, while its down-regulation inhibited cell growth. ► Bex2 down-regulation promoted cell apoptosis via JNK/c-Jun signaling pathway. -- Abstract: The function of Bex2, a member of the Brain Expressed X-linked gene family, in glioma is controversial and its mechanism is largely unknown. We report here that Bex2 regulates cell proliferation and apoptosis in malignant glioma cells via the c-Jun NH2-terminal kinase (JNK) pathway. The expression level of Bex2 is markedly increased in glioma tissues. We observed that Bex2 over-expression promotes cell proliferation, while down-regulation of Bex2 inhibits cell growth. Furthermore, Bex2 down-regulation promotes cell apoptosis and activates the JNK pathway; these effects were abolished by administration of the JNK specific inhibitor, (SP600125). Thus, Bex2 may be an important player during the development of glioma.

  13. Phase I Pharmacokinetic Study of the VEGFR Tyrosine Kinase Inhibitor Vatalanib (PTK787) plus Imatinib and Hydroxyurea for Malignant Glioma

    Science.gov (United States)

    Reardon, David A.; Egorin, Merrill J.; Desjardins, Annick; Vredenburgh, James J.; Beumer, Jan H.; Lagattuta, Theodore F.; Gururangan, Sridharan; Herndon, James E.; Salvado, August J.; Friedman, Henry S.

    2009-01-01

    Background We determined the maximum tolerated dose (MTD) and dose-limiting toxicities (DLT) of the oral vascular endothelial growth factor receptor (VEGFR) inhibitor, vatalanib, when administered with imatinib and hydroxyurea on a continuous daily schedule among recurrent malignant glioma patients. Methods All patients received 500 mg of hydroxyurea twice daily. Imatinib was dosed at 400 mg per day for patients not taking enzyme-inducing antiepileptic drugs (EIAEDs; stratum A) and at 500 mg twice-a-day for patients taking EIAEDs (stratum B). Vatalanib was escalated from 500 mg to 1250 mg twice daily in successive cohorts, independently for each stratum. Pharmacokinetics of each drug were assessed. Results Thirty-seven recurrent patients, including 34 (92%) with glioblastoma and 3 (8%) with grade 3 malignant glioma, were enrolled. Nineteen patients (51%) were taking EIAEDs. The MTD of vatalanib for all patients was 1000 mg twice-a-day. DLTs were hematologic, gastrointestinal, renal and hepatic. No patients developed intracranial hemorrhage. Concurrent administration of imatinib and hydroxyurea did not affect vatalanib exposure, but EIAEDs decreased vatalanib and imatinib plasma exposures. Conclusion Vatalanib doses up to 1000 mg twice-a-day combined with imatinib and hydroxyurea are well tolerated. Strategies to target tumor blood vessel endothelial cells and pericytes by inhibiting VEGFR and PDGFR, respectively, are safe among recurrent malignant glioma patients and may enhance anti-angiogenesis activity. PMID:19248046

  14. A phase 1–2, prospective, double blind, randomized study of the safety and efficacy of Sulfasalazine for the treatment of progressing malignant gliomas: study protocol of [ISRCTN45828668

    International Nuclear Information System (INIS)

    Robe, Pierre A; Martin, Didier; Albert, Adelin; Deprez, Manuel; Chariot, Alain; Bours, Vincent

    2006-01-01

    The prognosis of patients suffering from WHO grade 3 and 4 astrocytic glioma remains poor despite surgery, radiation therapy and the use of current chemotherapy regimen. Indeed, the median survival of glioblastoma multiforme (WHO grade 4) patients is at best 14.6 month with only 26.5 percents of the patients still alive after 2 years and the median survival of anaplastic astrocytomas (WHO grade 3) is 19.2 month. Recent evidence suggests that the transcription factor NF-kappaB is constitutively expressed in malignant gliomas and that its inhibition by drugs like Sulfasalazine may block the growth of astrocytic tumors in vitro and in experimental models of malignant gliomas. ULg-GBM-04/1 is a prospective, randomized, double blind single-center phase 1–2 study. A total of twenty patients with progressive malignant glioma despite surgery, radiation therapy and a first line of chemotherapy will be recruited and assigned to four dosage regimen of Sulfasalazine. This medication will be taken orally t.i.d. at a daily dose of 1.5–3–4 or 6 g, continuously until complete remission, evidence of progression or drug intolerance. Primary endpoints are drug safety in the setting of malignant gliomas and tumor response as measured according to MacDonald's criteria. An interim analysis of drug safety will be conducted after the inclusion of ten patients. The complete evaluation of primary endpoints will be conducted two years after the enrolment of the last patient or after the death of the last patient should this occur prematurely. The aim of this study is to evaluate the safety and efficacy of Sulfasalazine as a treatment for recurring malignant gliomas. The safety and efficacy of this drug are analyzed as primary endpoints. Overall survival and progression-free survival are secondary endpoint

  15. Molecular Diagnostics of Gliomas Using Next Generation Sequencing of a Glioma-Tailored Gene Panel.

    Science.gov (United States)

    Zacher, Angela; Kaulich, Kerstin; Stepanow, Stefanie; Wolter, Marietta; Köhrer, Karl; Felsberg, Jörg; Malzkorn, Bastian; Reifenberger, Guido

    2017-03-01

    Current classification of gliomas is based on histological criteria according to the World Health Organization (WHO) classification of tumors of the central nervous system. Over the past years, characteristic genetic profiles have been identified in various glioma types. These can refine tumor diagnostics and provide important prognostic and predictive information. We report on the establishment and validation of gene panel next generation sequencing (NGS) for the molecular diagnostics of gliomas. We designed a glioma-tailored gene panel covering 660 amplicons derived from 20 genes frequently aberrant in different glioma types. Sensitivity and specificity of glioma gene panel NGS for detection of DNA sequence variants and copy number changes were validated by single gene analyses. NGS-based mutation detection was optimized for application on formalin-fixed paraffin-embedded tissue specimens including small stereotactic biopsy samples. NGS data obtained in a retrospective analysis of 121 gliomas allowed for their molecular classification into distinct biological groups, including (i) isocitrate dehydrogenase gene (IDH) 1 or 2 mutant astrocytic gliomas with frequent α-thalassemia/mental retardation syndrome X-linked (ATRX) and tumor protein p53 (TP53) gene mutations, (ii) IDH mutant oligodendroglial tumors with 1p/19q codeletion, telomerase reverse transcriptase (TERT) promoter mutation and frequent Drosophila homolog of capicua (CIC) gene mutation, as well as (iii) IDH wildtype glioblastomas with frequent TERT promoter mutation, phosphatase and tensin homolog (PTEN) mutation and/or epidermal growth factor receptor (EGFR) amplification. Oligoastrocytic gliomas were genetically assigned to either of these groups. Our findings implicate gene panel NGS as a promising diagnostic technique that may facilitate integrated histological and molecular glioma classification. © 2016 International Society of Neuropathology.

  16. Imaging response is highly predictive of survival of malignant glioma patients treated with standard or hyperfractionated RT and carmustine in RTOG 9006

    International Nuclear Information System (INIS)

    Curran, Walter J.; Scott, Charles B.; Yung, W.K. Alfred; Scarantino, Charles; Urtasun, Raul; Movsas, Benjamin; Jones, Christopher; Simpson, Joseph; Fischbach, A. Jennifer; Petito, Carol; Nelson, James

    1996-01-01

    Objectives: Limited information is available correlating response to initial therapy and survival outcome among malignant glioma patients. This analysis was conducted to determine the response rate of malignant glioma patients to either standard (STN) or hyperfractionated (HFX) RT and carmustine and to correlate the tumor response status with survival. Patients and Methods: From (11(90)) to (3(94)), 712 newly diagnosed malignant glioma patients were registered on RTOG 9006 and randomized between hyperfractionated RT of 72.0 Gy in 1.2 Gy twice-daily fractions and 60.0 Gy in 2.0 Gy daily fractions. All patients received 80 mg/m-2 of carmustine D 1-3 q 8 wks. As reported in the 1996 Proceedings of the Amer Soc Clin Oncol (Abstr no. 280), there was no survival benefit observed for the HFX regimen. 529 of the 686 eligible patients had pre-operative, post-operative, and post-RT contrast-enhanced MR and/or CT scans available for central review of tumor and peritumoral edema measurements. Response status was judged by applying standard response criteria to a comparison of tumor measurements on follow-up and post-operative films. Results: Of the 529 patients evaluated for imaging response, the complete and partial response rates were 14% and 20%, respectively. A significant correlation between response and survival was observed (P<0.0001). Variables which predicted for a better tumor response were anaplastic astrocytoma vs glioblastoma multiforme histology, better performance status, more extensive resection, and a more favorable Recursive Partitioning and Amalgamation class assignment (JNCI 85:704-710, 1993). Conclusion: The objective response rate for malignant glioma patients to RTOG 9006 therapy was 34%, and survival outcome is strongly correlated with tumor response status. These observations justify the testing of aggressive salvage strategies for patients without imaging evidence of response following initial therapy

  17. Genetic and epigenetic modifications of Sox2 contribute to the invasive phenotype of malignant gliomas.

    Directory of Open Access Journals (Sweden)

    Marta M Alonso

    Full Text Available We undertook this study to understand how the transcription factor Sox2 contributes to the malignant phenotype of glioblastoma multiforme (GBM, the most aggressive primary brain tumor. We initially looked for unbalanced genomic rearrangements in the Sox2 locus in 42 GBM samples and found that Sox2 was amplified in 11.5% and overexpressed in all the samples. These results prompted us to further investigate the mechanisms involved in Sox2 overexpression in GBM. We analyzed the methylation status of the Sox2 promoter because high CpG density promoters are associated with key developmental genes. The Sox2 promoter presented a CpG island that was hypomethylated in all the patient samples when compared to normal cell lines. Treatment of Sox2-negative glioma cell lines with 5-azacitidine resulted in the re-expression of Sox2 and in a change in the methylation status of the Sox2 promoter. We further confirmed these results by analyzing data from GBM cases generated by The Cancer Genome Atlas project. We observed Sox2 overexpression (86%; N = 414, Sox2 gene amplification (8.5%; N = 492, and Sox 2 promoter hypomethylation (100%; N = 258, suggesting the relevance of this factor in the malignant phenotype of GBMs. To further explore the role of Sox2, we performed in vitro analysis with brain tumor stem cells (BTSCs and established glioma cell lines. Downmodulation of Sox2 in BTSCs resulted in the loss of their self-renewal properties. Surprisingly, ectopic expression of Sox2 in established glioma cells was not sufficient to support self-renewal, suggesting that additional factors are required. Furthermore, we observed that ectopic Sox2 expression was sufficient to induce invasion and migration of glioma cells, and knockdown experiments demonstrated that Sox2 was essential for maintaining these properties. Altogether, our data underscore the importance of a pleiotropic role of Sox2 and suggest that it could be used as a therapeutic target in GBM.

  18. Postoperative radiation therapy for malignant glioma

    International Nuclear Information System (INIS)

    Teshima, Teruki; Inoue, Toshihiko; Chatani, Masashi; Hata, Kiyoshi; Taki, Takuyu; Nii, Yasuo; Nakagawa, Hidemitsu

    1987-01-01

    From December 1977 through September 1984, a total of 39 cases of malignant glioma were treated with radiation therapy (RT) postoperatively. Twenty-nine cases were classified into glioblastoma (GM) and 10 astrocytoma (AS) (low grade : 6 and anaplastic : 4) histologically. One third of cases received 50 Gy/25 FRX/5 WKS of whole brain RT. Another two thirds of cases underwent 60 Gy/30 FRX/6 WKS of whole brain or 50 Gy/25 FRX/5 WKS of whole brain + additional 20 Gy/10 FRX/2 WKS of localized field RT. Chemotherapy (BLM, MeCCNU and ACNU) was given for 34 cases. Survivals at 3 years for GM and AS were 12 % and 68 %, respectively (p < 0.01). Prognostic factors for GM were age (p < 0.02), neurologic function (RTOG) (p < 0.01), AJC-staging T-factor (p < 0.05), pre-RT LDH level (p < 0.05) and volume of residual tumor (p < 0.05). Corresponding factors for AS were histological subclassification (p < 0.05) and neurologic function (RTOG) (p < 0.05). However, RT dose and field did not impact on survival significantly. Acute adverse effects of RT were otitis media or externa (70 %) and conjunctivitis (8 %). Retinal bleeding was noted in three long-term survivors at 2 years after RT. (author)

  19. Mechanisms of chemoresistance to alkylating agents in malignant glioma.

    Science.gov (United States)

    Sarkaria, Jann N; Kitange, Gaspar J; James, C David; Plummer, Ruth; Calvert, Hilary; Weller, Michael; Wick, Wolfgang

    2008-05-15

    Intrinsic or acquired chemoresistance to alkylating agents is a major cause of treatment failure in patients with malignant brain tumors. Alkylating agents, the mainstay of treatment for brain tumors, damage the DNA and induce apoptosis, but the cytotoxic activity of these agents is dependent on DNA repair pathways. For example, O6-methylguanine DNA adducts can cause double-strand breaks, but this is dependent on a functional mismatch repair pathway. Thus, tumor cell lines deficient in mismatch repair are resistant to alkylating agents. Perhaps the most important mechanism of resistance to alkylating agents is the DNA repair enzyme O6-methylguanine methyltransferase, which can eliminate the cytotoxic O6-methylguanine DNA adduct before it causes harm. Another mechanism of resistance to alkylating agents is the base excision repair (BER) pathway. Consequently, efforts are ongoing to develop effective inhibitors of BER. Poly(ADP-ribose)polymerase plays a pivotal role in BER and is an important therapeutic target. Developing effective strategies to overcome chemoresistance requires the identification of reliable preclinical models that recapitulate human disease and which can be used to facilitate drug development. This article describes the diverse mechanisms of chemoresistance operating in malignant glioma and efforts to develop reliable preclinical models and novel pharmacologic approaches to overcome resistance to alkylating agents.

  20. Regrowth patterns of supratentorial gliomas: estimation from computed tomographic scans

    International Nuclear Information System (INIS)

    Tsuboi, K.; Yoshii, Y.; Nakagawa, K.; Maki, Y.

    1986-01-01

    To clarify the regrowth patterns of benign and malignant gliomas, we chose 27 intervals (between two operations or between an operation and autopsy) from 21 patients with pathologically verified recurrent supratentorial gliomas. Serial computed tomographic (CT) scans of these cases were analyzed to determine the doubling time (Td) calculated from the change in volume of enhanced and low density areas, the enhancement effect graded from 0 to 4 according to the Hounsfield number, and the presence of dissemination and contralateral extension. We studied 5 benign gliomas (including 1 case of radiation necrosis), 8 malignant astrocytomas, and 8 glioblastomas. The Td's of enhanced areas on CT scans of benign gliomas, malignant astrocytomas, and glioblastomas were 937 +/- 66.5 days, 65.1 +/- 29.4 days, and 48.1 +/- 20.9 days, respectively. The Td's of low density areas were 895 +/- 130.6 days, 70.8 +/- 22.2 days, and 50.5 +/- 14.7 days. There was a significant correlation between the Td's of the enhanced and low density areas (0.97). The enhancement effect increased at recurrence in 55% of the cases, with an average increase of 1.1 grades. The increase in enhancement effect at recurrence showed a tendency to become smaller as the tumor's degree of anaplasia increased. Radiotherapy was effective in significantly retarding the growth rate of malignant gliomas, whose Td's were doubled. Although the Td's of both enhanced and low density areas of benign gliomas were significantly longer than those of malignant gliomas, there was no significant difference in the Td's of enhanced areas between malignant astrocytomas and glioblastomas

  1. Imaging of adult brainstem gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, Bela, E-mail: purohitbela@yahoo.co.in; Kamli, Ali A.; Kollias, Spyros S.

    2015-04-15

    Highlights: •BSG are classified on MRI into diffuse low-grade, malignant, focal tectal and exophytic subtypes. •Their prognosis and treatment is variable and is almost similar to adult supratentorial gliomas. •This article illustrates the imaging of adult BSGs on MRI and FET-PET. •We also describe prognostic factors and the treatment options of these tumours. -- Abstract: Brainstem gliomas (BSGs) are uncommon in adults accounting for about 2% of all intracranial neoplasms. They are often phenotypically low-grade as compared to their more common paediatric counterparts. Since brainstem biopsies are rarely performed, these tumours are commonly classified according to their MR imaging characteristics into 4 subgroups: (a) diffuse intrinsic low-grade gliomas, (b) enhancing malignant gliomas, (c) focal tectal gliomas and (d) exophytic gliomas/other subtypes. The prognosis and treatment is variable for the different types and is almost similar to adult supratentorial gliomas. Radiotherapy (RT) with adjuvant chemotherapy is the standard treatment of diffuse low-grade and malignant BSGs, whereas, surgical resection is limited to the exophytic subtypes. Review of previous literature shows that the detailed imaging of adult BSGs has not received significant attention. This review illustrates in detail the imaging features of adult BSGs using conventional and advanced MR techniques like diffusion weighted imaging (DWI), diffusion tensor imaging (DTI), MR perfusion weighted imaging (PWI), MR spectroscopy (MRS), as well as {sup 18}F-fluoro-ethyl-tyrosine positron emission tomography ({sup 18}F-FET/PET). We have discussed the pertinent differences between childhood and adult BSGs, imaging mimics, prognostic factors and briefly reviewed the treatment options of these tumours.

  2. Intracellular targeting of mercaptoundecahydrododecaborate (BSH) to malignant glioma by transferrin-PEG liposomes for boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Doi, Atsushi; Miyatake, Shin-ichi; Iida, Kyouko

    2006-01-01

    Malignant glioma is one of the most difficult tumor to control with usual therapies. In our institute, we select boron neutron capture therapy (BNCT) as an adjuvant radiation therapy after surgical resection. This therapy requires the selective delivery of high concentration of 10 B to malignant tumor tissue. In this study, we focused on a tumor-targeting 10 B delivery system (BDS) for BNCT that uses transferrin-conjugated polyethylene-glycol liposome encapsulating BSH (TF-PEG liposome-BSH) and compared 10 B uptake of the tumor among BSH, PEG liposome-BSH and TF-PEG liposome-BSH. In vitro, we analyzed 10 B concentration of the cultured human U87Δ glioma cells incubated in medium containing 20 μg 10 B/ml derived from each BDS by inductively coupled plasma atomic emission spectrometry (ICP-AES). In vivo, human U87Δ glioma-bearing nude mice were administered with each BDS (35mg 10 B/kg) intravenously. We analyzed 10 B concentration of tumor, normal brain and blood by ICP-AES. The TF-PEG liposome-BSH showed higher absolute concentration more than the other BDS. Moreover, TF-PEG liposome-BSH decreased 10 B concentration in blood and normal tissue while it maintained high 10 B concentration in tumor tissue for a couple of days. This showed the TF-PEG liposome-BSH caused the selective delivery of high concentration of 10 B to malignant tumor tissue. The TF-PEG liposome-BSH is more potent BDS for BNCT to obtain absolute high 10 B concentration and good contrast between tumor and normal tissue than BSH and PEG liposome-BSH. (author)

  3. 3D-conformal radiotherapy treatment of high grade gliomas of malignancy

    International Nuclear Information System (INIS)

    Chon Rivas, Ivonne; Chi Ramirez, Daysi; Alert Silva, Jose; Roca Muchuli, Carlos; Leon Gonzalez, Roberto; Perez Penna, Lourdes

    2009-01-01

    Patients diagnosed with high grade gliomas of malignancy (A), have a high mortality rate, about 10% achieve survivals than one year due to poor local control resulting from the inability of high doses of radiation to tumor volume by dose-limiting provided by healthy peritumoral tissues and structures. 3D conformal radiotherapy (RT-3DC) achieves effective tumoricidal high doses with high precision on the tumor with minimal involvement of critical structures near the tumor target volume. From 2005 until 2008 at INOR, a total of 23 patients with histologically confirmed supratentorial gliomas location, histological subtypes of anaplastic astrocytoma (AA) in 8 patients (35%) and Glioblastoma Multiforme (GBM) in 15 patients (65%), aged between 18 and 65, Karnofski scale of 70 or more and total previous surgical resection in 10 patients (43%) or partial in 13 (57%) were included prospectively in this study. The total tumor dose of 66-70 Gy was prescribed with a daily fractionation of 1.8 Gy. All patients underwent CT images (CT) and MRI (MRI) cranial volumes were defined treatment planning according to the concepts of ICRU 50 and 62 with precise immobilization of the head by thermo deformed mask, CT 3mm cuts planning system and 3D treatment planning. Median survival was better in patients younger than 55 years, with high rates of Karnofski, histology of AA and higher percentage of surgical resection. Median survival (Kaplan-Meier method) obtained was 16 months. Survival at 1 and 2 years was 51% and 28% respectively. The RT-3DC can administer higher doses on the tumor with peritumoral healthy protection structures in selected patients with a diagnosis of AA or GBM, increasing local control and potentially overall survival without exacerbating toxicity, thus demonstrating the dose- response of malignant brain tumors. (Author)

  4. Concurrent thermochemoradiotherapy for brain high-grade glioma

    Energy Technology Data Exchange (ETDEWEB)

    Ryabova, A. I., E-mail: ranigor@mail.ru; Novikov, V. A.; Startseva, Zh. A.; Bober, E. E.; Frolova, I. G. [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); Choinzonov, E. L. [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); Siberian State Medical University, Tomsk, 634050 (Russian Federation); Gribova, O. V. [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Baranova, A. V. [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2016-08-02

    Despite the achievements in the current strategies for treatment, the prognosis in malignant glioma patients remains unsatisfactory. Hyperthermia is currently considered to be the most effective and universal modifier of radiotherapy and chemotherapy. Preliminary treatment outcomes for 28 patients with newly diagnosed (23) and recurrent (5) high-grade gliomas were presented. All the patients received multimodality treatment including surgery, thermoche-moradiotherapy followed by 4 cycles of adjuvant chemotherapy. All the patients endured thermochemoradiotherapy well. A complication, limited skin burn (II stage), was diagnosed in two cases and treated conservatively without treatment interruption. A month after thermochemoradiotherapy the results were as follows: complete regression was achieved in 4 cases, partial regression in 4 cases, stable disease in 14 cases and disease progression in 6 cases (one of them is pseudo-progression). After completing the adjuvant chemotherapy 2 more patients demonstrated complete response and 1 patient had disease progression. Introduction of local hyperthermia in multimodal therapy of malignant glioma does not impair the combined modality treatment tolerability of patients with malignant gliomas. A small number of studied patients and short follow-up time do not allow making reliable conclusions about the impact of local hyperthermia on the treatment outcomes; however, there is a tendency towards the increase in disease-free survival in the patients with newly diagnosed malignant gliomas.

  5. Angiogenesis in gliomas.

    Directory of Open Access Journals (Sweden)

    Elzbieta Czykier

    2008-02-01

    Full Text Available Brain gliomas are characterized by invasive growth and neovascularisation potential. Angiogenesis plays a major role in the progression of gliomas and its determination has a great prognostic value. The aim of the study was to assess the vascularisation of chosen brain gliomas and to estimate how it is correlated with tumour histological type, malignancy grade, location and size, and with age and sex of patients. Tumour vascularisation analysis was based on the determination of microvascular proliferation (MVP and microvessel density (MVD. Microvascular proliferation was measured with immunohistochemical methods using mouse monoclonal antibodies to detect cell proliferation antigens. The following antibodies were used Ki-67 and PCNA (DAKO. Identification of vessels was performed by CD31 antibody and anti-human von Willebrand factor (DAKO. The highest microvascular proliferation and microvascular density were observed in multiform glioblastomas and the lowest in oligodendrogliomas. Significant correlation was observed between the vascularisation and malignancy grade.

  6. Regrowth patterns of supratentorial gliomas: estimation from computed tomographic scans

    Energy Technology Data Exchange (ETDEWEB)

    Tsuboi, K.; Yoshii, Y.; Nakagawa, K.; Maki, Y.

    1986-12-01

    To clarify the regrowth patterns of benign and malignant gliomas, we chose 27 intervals (between two operations or between an operation and autopsy) from 21 patients with pathologically verified recurrent supratentorial gliomas. Serial computed tomographic (CT) scans of these cases were analyzed to determine the doubling time (Td) calculated from the change in volume of enhanced and low density areas, the enhancement effect graded from 0 to 4 according to the Hounsfield number, and the presence of dissemination and contralateral extension. We studied 5 benign gliomas (including 1 case of radiation necrosis), 8 malignant astrocytomas, and 8 glioblastomas. The Td's of enhanced areas on CT scans of benign gliomas, malignant astrocytomas, and glioblastomas were 937 +/- 66.5 days, 65.1 +/- 29.4 days, and 48.1 +/- 20.9 days, respectively. The Td's of low density areas were 895 +/- 130.6 days, 70.8 +/- 22.2 days, and 50.5 +/- 14.7 days. There was a significant correlation between the Td's of the enhanced and low density areas (0.97). The enhancement effect increased at recurrence in 55% of the cases, with an average increase of 1.1 grades. The increase in enhancement effect at recurrence showed a tendency to become smaller as the tumor's degree of anaplasia increased. Radiotherapy was effective in significantly retarding the growth rate of malignant gliomas, whose Td's were doubled. Although the Td's of both enhanced and low density areas of benign gliomas were significantly longer than those of malignant gliomas, there was no significant difference in the Td's of enhanced areas between malignant astrocytomas and glioblastomas.

  7. 188Re-loaded lipid nanocapsules as a promising radiopharmaceutical carrier for internal radiotherapy of malignant gliomas

    International Nuclear Information System (INIS)

    Allard, E.; Hindre, F.; Passirani, C.; Lemaire, L.; Benoit, J.P.; Lepareur, N.; Noiret, N.; Menei, P.

    2008-01-01

    Lipid nanocapsules (LNC) entrapping lipophilic complexes of 188 Re( 188 Re(S 3 CPh) 2 (S 2 CPh) [ 188 Re-SSS]) were investigated as a novel radiopharmaceutical carrier for internal radiation therapy of malignant gliomas. The present study was designed to evaluate the efficacy of intra-cerebral administration of 188 Re-SSS LNC by means of convection-enhanced delivery (CED) on a 9L rat brain tumour model. Female Fischer rats with 9L glioma were treated with a single injection of 188 Re-SSS LNC by CED 6days after cell implantation. Rats were put into random groups according to the dose infused: 12, 10, 8 and 3Gy in comparison with blank LNC, perrhenate solution (4Gy) and non-treated animals. The radionuclide brain retention level was evaluated by measuring 188 Re elimination in faeces and urine over 72h after the CED injection. The therapeutic effect of 188 Re-SSS LNC was assessed based on animal survival. CED of 188 Re perrhenate solution resulted in rapid drug clearance with a brain T 1/2 of 7h. In contrast, when administered in LNC, 188 Re tissue retention was greatly prolonged, with only 10% of the injected dose being eliminated at 72h. Rat median survival was significantly improved for the group treated with 8Gy 188 Re-SSS LNC compared to the control group and blank LNC-treated animals. The increase in the median survival time was about 80% compared to the control group; 33% of the animals were long-term survivors. The dose of 8Gy proved to be a very effective dose, between toxic (10-12Gy) and ineffective (3-4Gy) doses. These findings show that CED of 188 Re-loaded LNC is a safe and potent anti-tumour system for treating malignant gliomas. Our data are the first to show the in vivo efficacy of 188 Re internal radiotherapy for the treatment of brain malignancy. (orig.)

  8. Diffuse brain calcification after radiation therapy in infantile cerebral malignant glioma

    International Nuclear Information System (INIS)

    Hondo, Hiroaki; Tanaka, Ryuichi; Yamada, Nobuhisa; Takeda, Norio

    1987-01-01

    We reported a case of infantile cerebral malignant glioma, which showed extensive intracranial calcification following radiation therapy, and reviewed the literature. A 4-month-old female infant was admitted to our hospital because of vomiting, enlargement of the head and convulsive seizures. Computerized tomography (CT) scans demonstrated a heterogeneously contrast-enhanced mass in the right temporo-parieto-occipital region and marked obstructive hydrocephalus. Subsequent to ventriculo-peritoneal shunt, biopsy was performed. The surgical specimen revealed anaplastic glioma. She then underwent whole brain irradiation with 1800 rads before subtotal removal and 3000 rads postoperatively. Calcification was first identified in the right frontal region and left basal ganglia 2.5 months after radiation therapy. At the age of 14 months, CT scans demonstrated extensive intracranial calcification in the cerebral hemispheres, basal ganglias, thalami, pons and cerebellum. A biopsy specimen of the frontal lobe revealed calcospherites of various sizes within and beside the walls of small vessels, but no tumor cells were observed. Cranial radiation therapy is a standard modality for treatment of children with neoplasm in the central nervous system. Since, however this therapy possibly causes long-term complications on the developing brain, it is important to plan radiation therapy for the brain tumor carefully. (author)

  9. Phase I study of low-dose metronomic temozolomide for recurrent malignant gliomas

    International Nuclear Information System (INIS)

    Wong, Eric T.; Timmons, Joshua; Callahan, Amy; O’Loughlin, Lauren; Giarusso, Bridget; Alsop, David C.

    2016-01-01

    The treatment goal for recurrent malignant gliomas centers on disease stabilization while minimizing therapy-related side effects. Metronomic dosing of cytotoxic chemotherapy has emerged as a promising option to achieve this objective. This phase I study was performed using metronomic temozolomide (mTMZ) at 25 or 50 mg/m 2 /day continuously in 42-day cycles. Correlative studies were incorporated using arterial spin labeling MRI to assess tumor blood flow, analysis of matrix metalloproteinase-2 (MMP-2) and MMP-9 activities in the cerebrospinal fluid (CSF) as surrogates for tumor angiogenesis and invasion, as well as determination of CSF soluble interleukin-2 receptor alpha (sIL-2Rα) levels as a marker of immune modulation. Nine subjects were enrolled and toxicity consisted of primarily grade 1 or 2 hematological and gastrointestinal side effects; only one patient had a grade 3 elevated liver enzyme level that was reversible. Tumor blood flow was variable across subjects and time, with two experiencing a transient increase before a decrease to below baseline level while one exhibited a gradual drop in blood flow over time. MMP-2 activity correlated with overall survival but not with progression free survival, while MMP-9 activity did not correlate with either outcome parameters. Baseline CSF sIL-2Rα level was inversely correlated with time from initial diagnosis to first progression, suggesting that subjects with higher sIL-2Rα may have more aggressive disease. But they lived longer when treated with mTMZ, probably due to drug-related changes in T-cell constituency. mTMZ possesses efficacy against recurrent malignant gliomas by altering blood flow, slowing invasion and modulating antitumor immune function

  10. Human cytomegalovirus antigens in malignant gliomas as targets for adoptive cellular therapy

    Directory of Open Access Journals (Sweden)

    Daniel eLandi

    2014-11-01

    Full Text Available Malignant gliomas are the most common primary brain tumor in adults, with over 12,000 new cases diagnosed in the United States each year. Over the last decade, investigators have reliably identified human cytomegalovirus (HCMV proteins, nucleic acids, and virions in most high-grade gliomas, including glioblastoma (GBM. This discovery is significant because human cytomegalovirus gene products can be targeted by immune-based therapies.In this review, we describe the current level of understanding regarding the presence and role in pathogenesis of HCMV in GBM. We describe our success detecting and expanding HCMV-specific cytotoxic T lymphocytes to kill GBM cells and explain how these cells can be used as a platform for enhanced cellular therapies. We discuss alternative approaches that capitalize on HCMV infection to treat patients with HCMV-positive tumors. Adoptive cellular therapy for HCMV-positive GBM has been tried in a small number of patients with some benefit, but we reason why, to date, these approaches generally fail to generate long-term remission or cure. We conjecture how cellular therapy for GBM can be improved and describe the barriers that must be overcome to cure these patients.

  11. PET pharmacokinetic analysis to estimate boron concentration in tumor and brain as a guide to plan BNCT for malignant cerebral glioma

    International Nuclear Information System (INIS)

    Nariai, Tadashi; Ishiwata, Kiichi; Kimura, Yuichi; Inaji, Motoki; Momose, Toshiya; Yamamoto, Tetsuya; Matsumura, Akira; Ishii, Kenji; Ohno, Kikuo

    2009-01-01

    Introduction: To plan the optimal BNCT for patients with malignant cerebral glioma, estimation of the ratio of boron concentration in tumor tissue against that in the surrounding normal brain (T/N ratio of boron) is important. We report a positron emission tomography (PET) imaging method to estimate T/N ratio of tissue boron concentration based on pharmacokinetic analysis of amino acid probes. Methods: Twelve patients with cerebral malignant glioma underwent 60 min dynamic PET scanning of brain after bolus injection of 18 F-borono-phenyl-alanine (FBPA) with timed arterial blood sampling. Using kinetic parameter obtained by this scan, T/N ratio of boron concentration elicited by one-hour constant infusion of BPA, as performed in BNCT, was simulated on Runge-Kutta algorithm. 11 C-methionine (MET) PET scan, which is commonly used in worldwide PET center as brain tumor imaging tool, was also performed on the same day to compare the image characteristics of FBPA and that of MET. Result: PET glioma images obtained with FBPA and MET are almost identical in all patients by visual inspection. Estimated T/N ratio of tissue boron concentration after one-hour constant infusion of BPA, T/N ratio of FBPA on static condition, and T/N ratio of MET on static condition showed significant linear correlation between each other. Conclusion: T/N ratio of boron concentration that is obtained by constant infusion of BPA during BNCT can be estimated by FBPA PET scan. This ratio can also be estimated by MET-PET imaging. As MET-PET study is available in many clinical PET center, selection of candidates for BNCT may be possible by MET-PET images. Accurate planning of BNCT may be performed by static images of FBPA PET. Use of PET imaging with amino acid probes may contribute very much to establish an appropriate application of BNCT for patients with malignant glioma.

  12. Phase II trial of carmustine plus O(6)-benzylguanine for patients with nitrosourea-resistant recurrent or progressive malignant glioma.

    Science.gov (United States)

    Quinn, Jennifer A; Pluda, James; Dolan, M Eileen; Delaney, Shannon; Kaplan, Richard; Rich, Jeremy N; Friedman, Allan H; Reardon, David A; Sampson, John H; Colvin, O Michael; Haglund, Michael M; Pegg, Anthony E; Moschel, Robert C; McLendon, Roger E; Provenzale, James M; Gururangan, Sridharan; Tourt-Uhlig, Sandra; Herndon, James E; Bigner, Darell D; Friedman, Henry S

    2002-05-01

    We conducted a phase II trial of carmustine (BCNU) plus the O(6)-alkylguanine-DNA alkyltransferase inhibitor O(6)-benzylguanine (O(6)-BG) to define the activity and toxicity of this regimen in the treatment of adults with progressive or recurrent malignant glioma resistant to nitrosoureas. Patients were treated with O(6)-BG at an intravenous dose of 120 mg/m(2) followed 1 hour later by 40 mg/m(2) of BCNU, with cycles repeated at 6-week intervals. Eighteen patients were treated (15 with glioblastoma multiforme, two with anaplastic astrocytoma, and one with malignant glioma). None of the 18 patients demonstrated a partial or complete response. Two patients exhibited stable disease for 12 weeks before their tumors progressed. Three patients demonstrated stable disease for 6, 12, and 18 weeks before discontinuing therapy because of hematopoietic toxicity. Twelve patients experienced reversible > or = grade 3 hematopoietic toxicity. There was no difference in half-lives (0.56 +/- 0.21 hour v 0.54 +/- 0.20 hour) or area under the curve values (4.8 +/- 1.7 microg/mL/h v 5.0 +/- 1.3 microg/mL/h) of O(6)-BG for patients receiving phenytoin and those not treated with this drug. These results indicate that O(6)-BG plus BCNU at the dose schedule used in this trial is unsuccessful in producing tumor regression in patients with nitrosourea-resistant malignant glioma, although stable disease was seen in five patients for 6, 12, 12, 12, and 18 weeks. Future use of this approach will require strategies to minimize dose-limiting toxicity of BCNU such as regional delivery or hematopoietic stem-cell protection.

  13. Pembrolizumab in Treating Younger Patients With Recurrent, Progressive, or Refractory High-Grade Gliomas, Diffuse Intrinsic Pontine Gliomas, Hypermutated Brain Tumors, Ependymoma or Medulloblastoma

    Science.gov (United States)

    2018-06-18

    Constitutional Mismatch Repair Deficiency Syndrome; Lynch Syndrome; Malignant Glioma; Progressive Ependymoma; Progressive Medulloblastoma; Recurrent Brain Neoplasm; Recurrent Childhood Ependymoma; Recurrent Diffuse Intrinsic Pontine Glioma; Recurrent Medulloblastoma; Refractory Brain Neoplasm; Refractory Diffuse Intrinsic Pontine Glioma; Refractory Ependymoma; Refractory Medulloblastoma

  14. Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of patients with malignant gliomas

    Directory of Open Access Journals (Sweden)

    Torres-Trejo Alejandro

    2007-12-01

    Full Text Available Abstract Background The prognosis for malignant gliomas remains dismal. We addressed the safety, feasibility and preliminary clinical activity of the vaccinations using autologous glioma cells and interleukin (IL-4 gene transfected fibroblasts. Methods In University of Pittsburgh Cancer Institute (UPCI protocol 95-033, adult participants with recurrent glioblastoma multiforme (GBM or anaplastic astrocytoma (AA received gross total resection (GTR of the recurrent tumors, followed by two vaccinations with autologous fibroblasts retrovirally transfected with TFG-IL4-Neo-TK vector admixed with irradiated autologous glioma cells. In UPCI 99-111, adult participants with newly diagnosed GBM or AA, following GTR and radiation therapy, received two intradermal vaccinations with the TFG-IL4-Neo-TK-transfected fibroblasts admixed with type-1 dendritic cells (DC loaded with autologous tumor lysate. The participants were evaluated for occurrence of adverse events, immune response, and clinical response by radiological imaging. Results and Discussion In UPCI 95-033, only 2 of 6 participants received the vaccinations. Four other participants were withdrawn from the trial because of tumor progression prior to production of the cellular vaccine. However, both participants who received two vaccinations demonstrated encouraging immunological and clinical responses. Biopsies from the local vaccine sites from one participant displayed IL-4 dose-dependent infiltration of CD4+ as well as CD8+ T cells. Interferon (IFN-γ Enzyme-Linked Immuno-SPOT (ELISPOT assay in another human leukocyte antigen (HLA-A2+ participant demonstrated systemic T-cell responses against an HLA-A2-restricted glioma-associated antigen (GAA epitope EphA2883–891. Moreover, both participants demonstrated clinical and radiological improvement with no evidence of allergic encephalitis, although both participants eventually succumbed with the tumor recurrence. In 99-111, 5 of 6 enrolled participants

  15. Basic Principles of Creation of Topometrical Cards of Beam Therapy in the Cases of High-grade Malignant Supratentorial Gliomas

    International Nuclear Information System (INIS)

    Liepa, Z.; Platkajis, A.; Apskalne, D.

    2007-01-01

    Background. High-grade malignant supratentorial gliomas: anaplastic astrocytomas (AA), anaplastic oligodendrogliomas (AO), anaplastic oligoatrocitomas (AOA), anaplastic ependimomas (AE), glioblastomas (GB) and other less occasional forms of gliomas are approximately 1,82% of all cases of malignant tumors. Life expectancy for such patients still is very low, for several forms of tumors -12-18 months. High-grade malignant gliomas need for combined approach, and one part of such approach is beam therapy. For reaching qualitative results of beam therapy, method of topometrical planning of beam therapy is crucial, because it allow planning therapy due to anatomic features of every patient. The aim of work was comparison of basic principles of creation of 2-dimensional (2D) and 3-dimensional (3D) topometrical cards of beam therapy. Material and methods. In the process of research, analyse of creation of 2D and 3D cards for patients in period 2000-2005 were made. For creation of 2D cards pelviometer, conturometer of head (Picture 1), pictures of tests of brains in the biggest cross - section of tumor (Picture 2) were used. For creation 3D cards computertomography LightSpeed Rt, which is suitable for topometry (Picture 3), planning system of 3D reconstruction ECLIPSE (Picture 4), 3D reconstruction by data from pre - surgery and/or after - surgery tests of brain (Picture 5), and matching in format of DICOM (Picture 6) were used. In this research 214 patients with supratentorial malign gliomas were covered (Table 1,2). Results. In 98 cases 2D topometrical cards were made, which allows creating only two contrary areas of entry of beams or two areas of entry under angle (Picture 7, 8). In 55 cases in 2D topographic cards two contrary areas of entry were made and in 43 cases plan of beam therapy with areas of entry under angle were made. 3D cards anatomic features of patient as well as location of critical organs were taken into account (picture 10). In case of 3D the number of

  16. Molecular Therapeutic Targets for Glioma Angiogenesis

    Directory of Open Access Journals (Sweden)

    Shingo Takano

    2010-01-01

    Full Text Available Due to the prominent angiogenesis that occurs in malignant glioma, antiangiogenic therapy has been attempted. There have been several molecular targets that are specific to malignant gliomas, as well as more broadly in systemic cancers. In this review, I will focus on some topics related to molecular therapeutic targets for glioma angiogenesis. First, important angiogenic factors that could be considered molecular targets are VEGF, VEGF-induced proteins on endothelial cells, tissue factor, osteopontin, v3 integrin, and thymidine phosphorylase as well as endogenous inhibitors, soluble Flt1, and thrombospondin 1. Second, hypoxic areas are also decreased by metronomic CPT11 treatment as well as temozolomide. Third, glioma-derived endothelial cells that are genetically and functionally distinct from normal endothelial cells should be targeted, for example, with SDF-1 and CXCR7 chemokine. Fourth, endothelial progenitor cells (EPCs likely contribute towards glioma angiogenesis in the brain and could be useful as a drug delivery tool. Finally, blockade of delta-like 4 (Dll4 results in a nonfunctioning vasculature and could be another important target distinct from VEGF.

  17. 18F-Fluoromisonidazole positron emission tomography may differentiate glioblastoma multiforme from less malignant gliomas

    International Nuclear Information System (INIS)

    Hirata, Kenji; Shiga, Tohru; Tamaki, Nagara; Terasaka, Shunsuke; Kobayashi, Hiroyuki; Yamaguchi, Shigeru; Houkin, Kiyohiro; Hattori, Naoya; Magota, Keiichi; Tanaka, Shinya; Kuge, Yuji

    2012-01-01

    Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor and its prognosis is significantly poorer than those of less malignant gliomas. Pathologically, necrosis is one of the most important characteristics that differentiate GBM from lower grade gliomas; therefore, we hypothesized that 18 F fluoromisonidazole (FMISO), a radiotracer for hypoxia imaging, accumulates in GBM but not in lower grade gliomas. We aimed to evaluate the diagnostic value of FMISO positron emission tomography (PET) for the differential diagnosis of GBM from lower grade gliomas. This prospective study included 23 patients with pathologically confirmed gliomas. All of the patients underwent FMISO PET and 18 F-fluorodeoxyglucose (FDG) PET within a week. FMISO images were acquired 4 h after intravenous administration of 400 MBq of FMISO. Tracer uptake in the tumor was visually assessed. Lesion to normal tissue ratios and FMISO uptake volume were calculated. Of the 23 glioma patients, 14 were diagnosed as having GBM (grade IV glioma in the 2007 WHO classification), and the others were diagnosed as having non-GBM (5 grade III and 4 grade II). In visual assessment, all GBM patients showed FMISO uptake in the tumor greater than that in the surrounding brain tissues, whereas all the non-GBM patients showed FMISO uptake in the tumor equal to that in the surrounding brain tissues (p ≤ 0.001). One GBM patient was excluded from FDG PET study because of hyperglycemia. All GBM patients and three of the nine (33%) non-GBM patients showed FDG uptake greater than or equal to that in the gray matter. The sensitivity and specificity for diagnosing GBM were 100 and 100% for FMISO, and 100 and 66% for FDG, respectively. The lesion to cerebellum ratio of FMISO uptake was higher in GBM patients (2.74 ± 0.60, range 1.71-3.81) than in non-GBM patients (1.22 ± 0.06, range 1.09-1.29, p ≤ 0.001) with no overlap between the groups. The lesion to gray matter ratio of FDG was also higher in GBM

  18. The correlation between osteopontin level and radiation response of malignant gliomas at Cipto Mangunkusumo Hospital

    Directory of Open Access Journals (Sweden)

    Isnaniah Hasan

    2016-12-01

    Full Text Available Osteopontin is an endogenous molecular marker for tumor hypoxia, and hypoxia is one of the factors that determine the aggressiveness of the disease. The purpose of this study is to determine the correlation between osteopontin levels and radiation response in malignant glioma. A retrospective cohort study was conducted on 15 malignant glioma patients who underwent radiation therapy from July 2004 to May 2015 at the RSUPN Dr. Cipto Mangunkusumo Hospital. Osteopontin levels were measured from paraffin-embedded tissue using a commercial ELISA kit. Tumor volume was calculated using computed tomography (CT scan and magnetic resonance imaging (MRI images, based on three-dimensional volume measurements. Tumor response was evaluated by comparing pre- and post-radiation tumor volumes using CT scan and MRI images. The mean osteopontin level was 0.49 ± 0.45 ng/mL and the mean percentage change in tumor volume was 8.59 ± 54.22%, with a 60% enlargement in tumor volume. A progressive disease was found in 26.7% of patients. There was a weak but insignificant negative correlation (r = -0.39, p = 0.146 between the level of osteopontin and radiation response. In contrast, there was a strong but insignificant positive correlation (r = +0.68, p = 0.219 between the level of osteopontin and radiation response in the patient group that used the chemosensitizer temozolamide.

  19. Prognostic value of choline and creatine in WHO grade II gliomas

    International Nuclear Information System (INIS)

    Hattingen, Elke; Zanella, Friedhelm E.; Pilatus, Ulrich; Raab, Peter; Franz, Kea; Setzer, Matthias; Gerlach, Ruediger; Lanfermann, Heiner

    2008-01-01

    The purpose of this study was to evaluate whether proton magnetic resonance spectroscopy ( 1 H-MRS) predicts survival time, tumor progression, and malignant transformation in patients with WHO grade II gliomas. 1 H-MRS and MR imaging (MRI) were performed before surgery in 45 patients with histologically proven WHO grade II gliomas. Metabolite concentrations of choline-containing compounds (Cho) and creatine/phosphocreatine (tCr) were normalized to contralateral brain tissue. Spectroscopic data as well as the extent of tumor resection, contrast enhancement, size and histopatholocical type of the tumor, age, sex, and first neurological symptoms of the patients were analyzed for survival, tumor progression, and malignant transformation for a follow-up period of 1 to 5 years. The normalized tCr of WHO grade II gliomas was a significant predictor for tumor progression (p=0.011) and for malignant tumor transformation (p=0.016). Further, contrast enhancement of the tumor (p=0.014) at the time of diagnosis was significant for malignant tumor transformation and extent of tumor resection for the tumor progression (p=0.007). All other parameters failed to predict any of the three endpoints. Normalized values of tCr in WHO grade II gliomas may have prognostic implications for this group of gliomas. As a rule of the thumb, low-grade gliomas with decreased tCr (relative tCr values below 1.0) may show longer progression-free times and later malignant transformation than low-grade gliomas with regular or increased tCr values. (orig.)

  20. Light-controlled inhibition of malignant glioma by opsin gene transfer

    Science.gov (United States)

    Yang, F; Tu, J; Pan, J-Q; Luo, H-L; Liu, Y-H; Wan, J; Zhang, J; Wei, P-F; Jiang, T; Chen, Y-H; Wang, L-P

    2013-01-01

    Glioblastomas are aggressive cancers with low survival rates and poor prognosis because of their highly proliferative and invasive capacity. In the current study, we describe a new optogenetic strategy that selectively inhibits glioma cells through light-controlled membrane depolarization and cell death. Transfer of the engineered opsin ChETA (engineered Channelrhodopsin-2 variant) gene into primary human glioma cells or cell lines, but not normal astrocytes, unexpectedly decreased cell proliferation and increased mitochondria-dependent apoptosis, upon light stimulation. These optogenetic effects were mediated by membrane depolarization-induced reductions in cyclin expression and mitochondrial transmembrane potential. Importantly, the ChETA gene transfer and light illumination in mice significantly inhibited subcutaneous and intracranial glioma growth and increased the survival of the animals bearing the glioma. These results uncover an unexpected effect of opsin ion channels on glioma cells and offer the opportunity for the first time to treat glioma using a light-controllable optogenetic approach. PMID:24176851

  1. Randomized study of initial treatment with radiationter dot MCNU or radiationter dot MCNUter dot interferon-. beta. for malignant glioma

    Energy Technology Data Exchange (ETDEWEB)

    Kiya, Katsuzo; Uozumi, Tohru; Kurisu, Kaoru (Hiroshima Univ. (Japan). School of Medicine) (and others)

    1990-02-01

    The efficacy of radiation{center dot}MCNU (MR group) or radiation{center dot}MCNU{center dot}interferon-{beta} (IMR group) for malignant glioma was studied by a randomized trial at numerous medical facilities. MR group was irradiated with 50{approx}60 Gy and intravenously injected with 2 mg/kg of MCNU on the initial day of irradiation and 6 weeks later. IMR group was also given intravenous administration of interferon-{beta} at the dose of 2x10{sup 6}IU/m{sup 2} for 5 serial-days every eight weeks. There was no difference in background between the two groups. The response rate in MR group and IMR group was 44.4% (4/9) and 30.0% (3/10), respectively, showing no significant difference. The resected tumor volume before the start of these regimens seemed to correlate the response to the treatment in both groups. The major toxicity was myelosuppression, especially using MCNU with interferon-{beta}. These results indicated that this combined therapy is effective for malignant glioma, and should be executed further trials and follow up study. (author).

  2. Molecular markers in glioma.

    Science.gov (United States)

    Ludwig, Kirsten; Kornblum, Harley I

    2017-09-01

    Gliomas are the most malignant and aggressive form of brain tumors, and account for the majority of brain cancer related deaths. Malignant gliomas, including glioblastoma are treated with radiation and temozolomide, with only a minor benefit in survival time. A number of advances have been made in understanding glioma biology, including the discovery of cancer stem cells, termed glioma stem cells (GSC). Some of these advances include the delineation of molecular heterogeneity both between tumors from different patients as well as within tumors from the same patient. Such research highlights the importance of identifying and validating molecular markers in glioma. This review, intended as a practical resource for both clinical and basic investigators, summarizes some of the more well-known molecular markers (MGMT, 1p/19q, IDH, EGFR, p53, PI3K, Rb, and RAF), discusses how they are identified, and what, if any, clinical relevance they may have, in addition to discussing some of the specific biology for these markers. Additionally, we discuss identification methods for studying putative GSC's (CD133, CD15, A2B5, nestin, ALDH1, proteasome activity, ABC transporters, and label-retention). While much research has been done on these markers, there is still a significant amount that we do not yet understand, which may account for some conflicting reports in the literature. Furthermore, it is unlikely that the investigator will be able to utilize one single marker to prospectively identify and isolate GSC from all, or possibly, any gliomas.

  3. Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study.

    Science.gov (United States)

    Colen, Chaim B; Shen, Yimin; Ghoddoussi, Farhad; Yu, Pingyang; Francis, Todd B; Koch, Brandon J; Monterey, Michael D; Galloway, Matthew P; Sloan, Andrew E; Mathupala, Saroj P

    2011-07-01

    Glioblastoma multiforme (GBM) are the most malignant among brain tumors. They are frequently refractory to chemotherapy and radiotherapy with mean patient survival of approximately 6 months, despite surgical intervention. The highly glycolytic nature of glioblastomas describes their propensity to metabolize glucose to lactic acid at an elevated rate. To survive, GBMs efflux lactic acid to the tumor microenvironment through transmembrane transporters denoted monocarboxylate transporters (MCTs). We hypothesized that inhibition of MCT function would impair the glycolytic metabolism and affect both glioma invasiveness and survival. We examined the effect on invasiveness with α-cyano-4-hydroxy-cinnamic acid (ACCA, 4CIN, CHCA), a small-molecule inhibitor of lactate transport, through Matrigel-based and organotypic (brain) slice culture invasive assays using U87-MG and U251-MG glioma cells. We then conducted studies in immunodeficient rats by stereotaxic intracranial implantation of the glioma cells followed by programmed orthotopic application of ACCA through osmotic pumps. Effect on the implanted tumor was monitored by small-animal magnetic resonance imaging. Our assays indicated that glioma invasion was markedly impaired when lactate efflux was inhibited. Convection-enhanced delivery of inhibitor to the tumor bed caused tumor necrosis, with 50% of the animals surviving beyond the experimental end points (3 months after inhibitor exhaustion). Most importantly, control animals did not display any adverse neurologic effects during orthotopic administration of ACCA to brain through programmed delivery. These results indicate the clinical potential of targeting lactate efflux in glioma through delivery of small-molecule inhibitors of MCTs either to the tumor bed or to the postsurgical resection cavity.

  4. Metabolic Targeting of Lactate Efflux by Malignant Glioma Inhibits Invasiveness and Induces Necrosis: An In Vivo Study

    Directory of Open Access Journals (Sweden)

    Chaim B Colen

    2011-07-01

    Full Text Available Glioblastoma multiforme (GBM are the most malignant among brain tumors. They are frequently refractory to chemotherapy and radiotherapy with mean patient survival of approximately 6 months, despite surgical intervention. The highly glycolytic nature of glioblastomas describes their propensity to metabolize glucose to lactic acid at an elevated rate. To survive, GBMs efflux lactic acid to the tumor microenvironment through transmembrane transporters denoted monocarboxylate transporters (MCTs. We hypothesized that inhibition of MCT function would impair the glycolytic metabolism and affect both glioma invasiveness and survival. We examined the effect on invasiveness with α-cyano-4-hydroxy-cinnamic acid (ACCA, 4CIN, CHCA, a small-molecule inhibitor of lactate transport, through Matrigel-based and organotypic (brain slice culture invasive assays using U87-MG and U251-MG glioma cells. We then conducted studies in immunodeficient rats by stereotaxic intracranial implantation of the glioma cells followed by programmed orthotopic application of ACCA through osmotic pumps. Effect on the implanted tumor was monitored by small-animal magnetic resonance imaging. Our assays indicated that glioma invasion was markedly impaired when lactate efflux was inhibited. Convection-enhanced delivery of inhibitor to the tumor bed caused tumor necrosis, with 50% of the animals surviving beyond the experimental end points (3 months after inhibitor exhaustion. Most importantly, control animals did not display any adverse neurologic effects during orthotopic administration of ACCA to brain through programmed delivery. These results indicate the clinical potential of targeting lactate efflux in glioma through delivery of small-molecule inhibitors of MCTs either to the tumor bed or to the postsurgical resection cavity.

  5. The diagnostic accuracy of detecting malignant transformation of low-grade glioma using O-(2-[F]fluoroethyl)-l-tyrosine positron emission tomography

    DEFF Research Database (Denmark)

    Bashir, Asma; Brennum, Jannick; Broholm, Helle

    2018-01-01

    OBJECTIVE The diagnostic accuracy of O-(2-[18F]fluoroethyl)-l-tyrosine (FET) PET scanning in detecting the malignant transformation of low-grade gliomas (LGGs) is controversial. In this study, the authors retrospectively assessed the diagnostic potential of FET PET in patients with MRI-suspected ...

  6. PET pharmacokinetic analysis to estimate boron concentration in tumor and brain as a guide to plan BNCT for malignant cerebral glioma

    Energy Technology Data Exchange (ETDEWEB)

    Nariai, Tadashi [Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo (Japan)], E-mail: nariai.nsrg@tmd.ac.jp; Ishiwata, Kiichi [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1, Nakacho, Itabashi-ku, Tokyo (Japan); Kimura, Yuichi [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba (Japan); Inaji, Motoki; Momose, Toshiya [Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo (Japan); Yamamoto, Tetsuya; Matsumura, Akira [Department of Neurosurgery, University of Tsukuba, Tennodai, Tsukuba, Igaraki (Japan); Ishii, Kenji [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1, Nakacho, Itabashi-ku, Tokyo (Japan); Ohno, Kikuo [Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo (Japan)

    2009-07-15

    Introduction: To plan the optimal BNCT for patients with malignant cerebral glioma, estimation of the ratio of boron concentration in tumor tissue against that in the surrounding normal brain (T/N ratio of boron) is important. We report a positron emission tomography (PET) imaging method to estimate T/N ratio of tissue boron concentration based on pharmacokinetic analysis of amino acid probes. Methods: Twelve patients with cerebral malignant glioma underwent 60 min dynamic PET scanning of brain after bolus injection of {sup 18}F-borono-phenyl-alanine (FBPA) with timed arterial blood sampling. Using kinetic parameter obtained by this scan, T/N ratio of boron concentration elicited by one-hour constant infusion of BPA, as performed in BNCT, was simulated on Runge-Kutta algorithm. {sup 11}C-methionine (MET) PET scan, which is commonly used in worldwide PET center as brain tumor imaging tool, was also performed on the same day to compare the image characteristics of FBPA and that of MET. Result: PET glioma images obtained with FBPA and MET are almost identical in all patients by visual inspection. Estimated T/N ratio of tissue boron concentration after one-hour constant infusion of BPA, T/N ratio of FBPA on static condition, and T/N ratio of MET on static condition showed significant linear correlation between each other. Conclusion: T/N ratio of boron concentration that is obtained by constant infusion of BPA during BNCT can be estimated by FBPA PET scan. This ratio can also be estimated by MET-PET imaging. As MET-PET study is available in many clinical PET center, selection of candidates for BNCT may be possible by MET-PET images. Accurate planning of BNCT may be performed by static images of FBPA PET. Use of PET imaging with amino acid probes may contribute very much to establish an appropriate application of BNCT for patients with malignant glioma.

  7. {sup 18}F-Fluoromisonidazole positron emission tomography may differentiate glioblastoma multiforme from less malignant gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Kenji; Shiga, Tohru; Tamaki, Nagara [Hokkaido University, Department of Nuclear Medicine, Graduate School of Medicine, Sapporo, Hokkaido (Japan); Terasaka, Shunsuke; Kobayashi, Hiroyuki; Yamaguchi, Shigeru; Houkin, Kiyohiro [Graduate School of Medicine, Hokkaido University, Department of Neurosurgery, Sapporo (Japan); Hattori, Naoya [Graduate School of Medicine, Hokkaido University, Department of Molecular Imaging, Sapporo (Japan); Magota, Keiichi [Hokkaido University Hospital, Department of Radiology, Sapporo (Japan); Tanaka, Shinya [Graduate School of Medicine, Hokkaido University, Department of Cancer Pathology, Sapporo (Japan); Kuge, Yuji [Hokkaido University, Central Institute of Isotope Science, Sapporo (Japan)

    2012-05-15

    Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor and its prognosis is significantly poorer than those of less malignant gliomas. Pathologically, necrosis is one of the most important characteristics that differentiate GBM from lower grade gliomas; therefore, we hypothesized that {sup 18}F fluoromisonidazole (FMISO), a radiotracer for hypoxia imaging, accumulates in GBM but not in lower grade gliomas. We aimed to evaluate the diagnostic value of FMISO positron emission tomography (PET) for the differential diagnosis of GBM from lower grade gliomas. This prospective study included 23 patients with pathologically confirmed gliomas. All of the patients underwent FMISO PET and {sup 18}F-fluorodeoxyglucose (FDG) PET within a week. FMISO images were acquired 4 h after intravenous administration of 400 MBq of FMISO. Tracer uptake in the tumor was visually assessed. Lesion to normal tissue ratios and FMISO uptake volume were calculated. Of the 23 glioma patients, 14 were diagnosed as having GBM (grade IV glioma in the 2007 WHO classification), and the others were diagnosed as having non-GBM (5 grade III and 4 grade II). In visual assessment, all GBM patients showed FMISO uptake in the tumor greater than that in the surrounding brain tissues, whereas all the non-GBM patients showed FMISO uptake in the tumor equal to that in the surrounding brain tissues (p {<=} 0.001). One GBM patient was excluded from FDG PET study because of hyperglycemia. All GBM patients and three of the nine (33%) non-GBM patients showed FDG uptake greater than or equal to that in the gray matter. The sensitivity and specificity for diagnosing GBM were 100 and 100% for FMISO, and 100 and 66% for FDG, respectively. The lesion to cerebellum ratio of FMISO uptake was higher in GBM patients (2.74 {+-} 0.60, range 1.71-3.81) than in non-GBM patients (1.22 {+-} 0.06, range 1.09-1.29, p {<=} 0.001) with no overlap between the groups. The lesion to gray matter ratio of FDG was also

  8. Malignant gliomas treated after surgery by combination chemotherapy and delayed radiation therapy. Pt. 2

    International Nuclear Information System (INIS)

    Poisson, M.; Mashaly, R.; Pertuiset, B.F.; Metzger, J.

    1979-01-01

    34 patients operated on for malignant gliomas were successively treated by combination chemotherapy with VM 26 and CCNU and conventional radiation therapy with an average dosage of 5,800 rads, six months after surgery. The general and haematological tolerance of delayed irradiation after chemotherapy was satisfactory. Twelve patients developed neurological complications during or after irradiation. The complications were early in 10 cases, and delayed in 2. They were probably due to tumour growth in five cases, and secondary to irradiation in seven. In four of the seven cases the preradiation chemotherapy seemed to potentiate the radiation effect on the central nervous system. (author)

  9. Rotating magnetic field induced oscillation of magnetic particles for in vivo mechanical destruction of malignant glioma.

    Science.gov (United States)

    Cheng, Yu; Muroski, Megan E; Petit, Dorothée C M C; Mansell, Rhodri; Vemulkar, Tarun; Morshed, Ramin A; Han, Yu; Balyasnikova, Irina V; Horbinski, Craig M; Huang, Xinlei; Zhang, Lingjiao; Cowburn, Russell P; Lesniak, Maciej S

    2016-02-10

    Magnetic particles that can be precisely controlled under a magnetic field and transduce energy from the applied field open the way for innovative cancer treatment. Although these particles represent an area of active development for drug delivery and magnetic hyperthermia, the in vivo anti-tumor effect under a low-frequency magnetic field using magnetic particles has not yet been demonstrated. To-date, induced cancer cell death via the oscillation of nanoparticles under a low-frequency magnetic field has only been observed in vitro. In this report, we demonstrate the successful use of spin-vortex, disk-shaped permalloy magnetic particles in a low-frequency, rotating magnetic field for the in vitro and in vivo destruction of glioma cells. The internalized nanomagnets align themselves to the plane of the rotating magnetic field, creating a strong mechanical force which damages the cancer cell structure inducing programmed cell death. In vivo, the magnetic field treatment successfully reduces brain tumor size and increases the survival rate of mice bearing intracranial glioma xenografts, without adverse side effects. This study demonstrates a novel approach of controlling magnetic particles for treating malignant glioma that should be applicable to treat a wide range of cancers. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Preliminary results of interstitial [sup 192]Ir brachytherapy for malignant gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Kengo; Nakagawa, Minoru; Higashi, Hisato [Okayama Univ. (Japan). School of Medicine; and others

    1992-09-01

    Twenty-six patients with recurrent or unremovable malignant gliomas were treated by interstitial brachytherapy with iridium-192 seeds. Stereotactic implantation of the afterloading catheters using the Brown-Roberts-Wells computed tomography (CT)-guided stereotactic system was performed in 24 patients and surgical CT, magnetic resonance imaging, and clinical examination. Tumor regression was seen in 17 patients 1-3 months after implantation. Tumor progression was seen in only three patients. After interstitial brachytherapy, the most commonly observed CT finding was central low density. Median survival time was 18 months after implantation. Autopsies in five patients revealed the delayed effects of radiation injury such as typical vascular changes, microcalcification, and coagulative necrosis in the implant area and tumor recurrence at the periphery. The results suggest that brachytherapy is not curative but prolonged the median survival time by 6 months. (author).

  11. Metabolic Targeting of Lactate Efflux by Malignant Glioma Inhibits Invasiveness and Induces Necrosis: An In Vivo Study1

    Science.gov (United States)

    Colen, Chaim B; Shen, Yimin; Ghoddoussi, Farhad; Yu, Pingyang; Francis, Todd B; Koch, Brandon J; Monterey, Michael D; Galloway, Matthew P; Sloan, Andrew E; Mathupala, Saroj P

    2011-01-01

    Glioblastoma multiforme (GBM) are the most malignant among brain tumors. They are frequently refractory to chemotherapy and radiotherapy with mean patient survival of approximately 6 months, despite surgical intervention. The highly glycolytic nature of glioblastomas describes their propensity to metabolize glucose to lactic acid at an elevated rate. To survive, GBMs efflux lactic acid to the tumor microenvironment through transmembrane transporters denoted monocarboxylate transporters (MCTs). We hypothesized that inhibition of MCT function would impair the glycolytic metabolism and affect both glioma invasiveness and survival. We examined the effect on invasiveness with α-cyano-4-hydroxy-cinnamic acid (ACCA, 4CIN, CHCA), a small-molecule inhibitor of lactate transport, through Matrigel-based and organotypic (brain) slice culture invasive assays using U87-MG and U251-MG glioma cells. We then conducted studies in immunodeficient rats by stereotaxic intracranial implantation of the glioma cells followed by programmed orthotopic application of ACCA through osmotic pumps. Effect on the implanted tumor was monitored by small-animal magnetic resonance imaging. Our assays indicated that glioma invasion was markedly impaired when lactate efflux was inhibited. Convection-enhanced delivery of inhibitor to the tumor bed caused tumor necrosis, with 50% of the animals surviving beyond the experimental end points (3 months after inhibitor exhaustion). Most importantly, control animals did not display any adverse neurologic effects during orthotopic administration of ACCA to brain through programmed delivery. These results indicate the clinical potential of targeting lactate efflux in glioma through delivery of small-molecule inhibitors of MCTs either to the tumor bed or to the postsurgical resection cavity. PMID:21750656

  12. Podoplanin increases migration and angiogenesis in malignant glioma

    OpenAIRE

    Grau, Stefan J; Trillsch, Fabian; Tonn, Joerg-Christian; Goldbrunner, Roland H; Noessner, Elfriede; Nelson, Peter J; von Luettichau, Irene

    2015-01-01

    Expression of podoplanin in glial brain tumors is grade dependent. While serving as a marker for tumor progression and modulating invasion in various neoplasms, little is known about podoplanin function in gliomas. Therefore we stably transfected two human glioma cell lines (U373MG and U87MG) with expression plasmids encoding podoplanin. The efficacy of transfection was confirmed by FACS analysis, PCR and immunocytochemistry. Cells were then sorted for highly podoplanin expressing cells (U373...

  13. DELETION AND 5'CPG ISLAND METHYLATION OF p15 GENE IN BRAIN GLIOMA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To investigate the abnormality of p15 gene in brain glioma and the correlation of it with occurrence or malignant progression of brain glioma. Methods: Deletion and 5'CPG island methylation of p15 gene were detected by the methods of PCR and PCR-based methylation in 56 cases of brain glioma. Results: Out of 43 cases of high grade glioma, 14 cases were found to have homozygous deletion of p15E1, while none of the 13 cases of low grade glioma was found to have deletion of p15E1 (P<0.05). Methylation of 5'CPG Island of p15 gene was found only in four cases of glioma. Conclusion: Abnormality of p15 gene may involved in the occurrence and malignant progression of brain glioma. Homozygous deletion of gene is the major mechanism of inactivation for p15 gene in brain glioma.

  14. Synthetic, implantable polymers for local delivery of IUdR to experimental human malignant glioma

    International Nuclear Information System (INIS)

    Williams, Jeffery A.; Yuan Xuan; Dillehay, Larry E.; Shastri, Venkatram R.; Brem, Henry; Williams, Jerry R.

    1998-01-01

    Purpose: Recently, polymeric controlled delivery of chemotherapy has been shown to improve survival of patients with malignant glioma. We evaluated whether we could similarly deliver halogenated pyrimidines to experimental intracranial human malignant glioma. To address this issue we studied the in vitro release from polymers and the in vivo drug delivery of IUdR to experimental human U251 glioblastoma xenografts. Methods and Materials: In vitro: To measure release, increasing (10%, 30%, 50%) proportions of IUdR in synthetic [(poly(bis(p-carboxyphenoxy)-propane) (PCPP):sebacic acid (SA) polymer discs were serially incubated in buffered saline and the supernatant fractions were assayed. In vivo: To compare local versus systemic delivery, mice bearing flank xenografts had intratumoral or contralateral flank IUdR polymer (50% loading) treatments. Mice bearing intracranial (i.c.) xenografts had i.c. versus flank IUdR polymer treatments. Four or 8 days after implantation of polymers, mice were sacrificed and the percentage tumor cells that were labeled with IUdR was measured using quantitative microscopic immunohistochemistry. Results: In vitro: Increasing percentage loadings of IUdR resulted in higher percentages of release: 43.7 + 0.1, 70.0 + 0.2, and 90.2 + 0.2 (p < 0.001 ANOVA) for the 10%, 30%, and 50% loadings, respectively. In vivo: For the flank tumors, both the ipsilateral and contralateral IUdR polymers resulted in similarly high percentages labeling of the tumors versus time. For the ipsilateral IUdR polymers, the percentage of tumor cellular labeling after 4 days versus 8 days was 45.8 ± 7.0 versus 40.6 ± 3.9 (p = NS). For the contralateral polymer implants, the percentage of tumor cellular labeling were 43.9 ± 10.1 versus 35.9 ± 5.2 (p = NS) measured 4 days versus 8 days after implantation. For the i.c. tumors treated with extracranial IUdR polymers, the percentage of tumor cellular labeling was low: 13.9 ± 8.8 and 11.2 ± 5.7 measured 4 and 8 days

  15. Misonidazole combined with hyperfractionation in the management of malignant glioma

    International Nuclear Information System (INIS)

    Fulton, D.S.; Urtasun, R.C.; Shin, K.H.

    1984-01-01

    Multiple daily fractionated radiation therapy (MDF) may be more effective than conventionally fractionated radiation therapy (CF) in the treatment of malignant glioma. The hypoxic cell sensitizer misonidazole (MISO) could be more effective when employed with small fractions of radiation every 4 hours to take advantage of the long half-life of the drug. To evaluate MDF and MDF in combination with MISO, a randomized prospective trial was initiated. Between January 1981, and December 1982, patients with histologically verified astrocytoma with anaplastic foci or glioblastoma multiforme were randomized to CF, MDF and MDF in combination with MISO. In January 1983, the CF arm was dropped and a high dose MDF arm added. CCNU chemotherapy was given at the time of tumor progression. Median survival was 29 weeks for CF, 45 weeks for MDF and 50 weeks for MDF plus MISO. Survival was significantly improved for patients treated with MDF compared to patients treated with CF. The addition of MISO to MDF did not result in further improvement in survival. Acute toxicity was acceptable

  16. TLR9 expression in glioma tissues correlated to glioma progression and the prognosis of GBM patients

    International Nuclear Information System (INIS)

    Wang, Chao; Cao, Shouqiang; Yan, Ying; Ying, Qiao; Jiang, Tao; Xu, Ke; Wu, Anhua

    2010-01-01

    Our study aims to evaluate the expression of TLR9 in glioma tissues, examine the association between TLR9 expression, clinicopathological variables, and glioma patient outcome, we further characterized the direct effects of TLR9 agonist CpG ODN upon the proliferation and invasion of glioma cells in vitro. RT-PCR and immunofluorescence were used to determine the expression of TLR9 in glioma cell lines and clinical glioma samples. Tissue microarry and immunohistochemistry were applied to evaluated TLR9 expression in 292 newly diagnosed glioma and 13 non-neoplastic brain tissues. We further investigated the effect of CpG ODN on the proliferation and invasion of glioma cells in vitro with MTT assays and matrigel transwell assay respectively. RT-PCR showed that TLR9 expressed in all the glioma samples and glioma cell lines we examined. The tissue array analysis indicated that TLR9 expression is correlated with malignancy of glioma (p < 0.01). Multivariate Cox regression analysis revealed that TLR9 expression is an independent prognostic factor for PFS of GBM patients(P = 0.026). TLR9 agonist CpG ODN has no significant effect on glioma proliferation, but matrigel transwell analysis showed that TLR9 agonist CpG ODN can significantly enhance glioma invasion in vitro. Our data indicated that TLR9 expression increases according to the histopathological grade of glioma, and the TLR9 expression level is related to the PFS of GBM patients. In addition, our findings warrant caution in the directly injection of TLR9 agonist CpG ODN into glioma tissues for the glioma immunotherapy

  17. Preclinical studies for increasing radiation response of malignant brain tumours

    International Nuclear Information System (INIS)

    Kalia, Vijay K.; Kumari, Kalyani; Sai Shyam; George, Jennifer; Shobha, A.G.; Chandrasekhar Sagar, B.K.; Lal, Jagath

    2013-01-01

    Malignant gliomas are the most common among the CNS cancers. Standard treatment for these tumours - comprises of surgery, followed by Radiotherapy (RT). Combination of Temozolomide (TMZ) increases survival, but hematological toxicities are also increased as compared to RT alone. The median survival depends on grade and location of tumour, as well as the age of the patient. Grade IV gliomas (GSMs) are third leading cause of cancer induced death in the age group of 15 to 34 years. Therefore, it is important to carry out further preclinical studies to develop more effective treatment of malignant gliomas. The present studies were carried out on different established malignant glioma cell lines. (U373MG) as well as primary monolayer cultures derived from biopsies obtained from patients with malignant gliomas. Exponentially growing cells were exposed to TMZ, Lonidamine (LND) (in 0.1% DMSO), or 2-Deoxy-D-Glucose (2-DG, aqueous solution) - with or without 60 Co-Gamma-rays (1- 2 Gy). The drugs were removed 4 hours after irradiation and the cultures were processed further for different assays of damage. Short term (4 h) treatments with TMZ 20 μM, LND 100 μM or their combination; did not induce micronuclei formation in the unirradiated cultures of U373MG cells. However, radiation (2 Gy) induced micronuclei was significantly increased by drug treatments. In primary cultures from different tumours, TMZ (≤ 10 μM) or 2-DG (1 mM), or gamma-irradiation (1-2 Gy) induced micronuclei and/ or apoptosis. The effects, however, varied in different tumours. These data show that clinically achievable, very low concentrations of these drugs could induce cellular damage and death; and increase radiosensitivity of malignant gliomas. Therefore, adjuvants like Lonidamine and 2-DG, with non-overlapping toxicities, could optimize treatment of malignant gliomas, by reducing the side effects of radio-chemotherapy. (author)

  18. Evaluation of anti-podoplanin rat monoclonal antibody NZ-1 for targeting malignant gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Yukinari, E-mail: yukinari-k@bea.hi-ho.ne.j [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Oncology Research Center, Advanced Molecular Epidemiology Research Institute, Yamagata University Faculty of Medicine, Yamagata 990-9585 (Japan); Vaidyanathan, Ganesan [Department of Radiology, Duke University Medical Center, Durham, NC 27710 (United States); Kaneko, Mika Kato [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Oncology Research Center, Advanced Molecular Epidemiology Research Institute, Yamagata University Faculty of Medicine, Yamagata 990-9585 (Japan); Mishima, Kazuhiko [Saitama Medical University International Medical Center 1397-1 Yamane Hidaka-shi, Saitama 350-1298 (Japan); Srivastava, Nidhi; Chandramohan, Vidyalakshmi; Pegram, Charles [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Keir, Stephen T. [Department of Surgery, Duke University Medical Center, Durham, NC 27710 (United States); Kuan, C.-T.; Bigner, Darell D. [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Zalutsky, Michael R. [Department of Radiology, Duke University Medical Center, Durham, NC 27710 (United States)

    2010-10-15

    Introduction: Podoplanin/aggrus is a mucin-like sialoglycoprotein that is highly expressed in malignant gliomas. Podoplanin has been reported to be a novel marker to enrich tumor-initiating cells, which are thought to resist conventional therapies and to be responsible for cancer relapse. The purpose of this study was to determine whether an anti-podoplanin antibody is suitable to target radionuclides to malignant gliomas. Methods: The binding affinity of an anti-podoplanin antibody, NZ-1 (rat IgG{sub 2a}), was determined by surface plasmon resonance and Scatchard analysis. NZ-1 was radioiodinated with {sup 125}I using Iodogen [{sup 125}I-NZ-1(Iodogen)] or N-succinimidyl 4-guanidinomethyl 3-[{sup 131}I]iodobenzoate ([{sup 131}I]SGMIB-NZ-1), and paired-label internalization assays of NZ-1 were performed. The tissue distribution of {sup 125}I-NZ-1(Iodogen) and that of [{sup 131}I]SGMIB-NZ-1 were then compared in athymic mice bearing glioblastoma xenografts. Results: The dissociation constant (K{sub D}) of NZ-1 was determined to be 1.2x10{sup -10} M by surface plasmon resonance and 9.8x10{sup -10} M for D397MG glioblastoma cells by Scatchard analysis. Paired-label internalization assays in LN319 glioblastoma cells indicated that [{sup 131}I]SGMIB-NZ-1 resulted in higher intracellular retention of radioactivity (26.3{+-}0.8% of initially bound radioactivity at 8 h) compared to that from the {sup 125}I-NZ-1(Iodogen) (10.0{+-}0.1% of initially bound radioactivity at 8 h). Likewise, tumor uptake of [{sup 131}I]SGMIB-NZ-1 (39.9{+-}8.8 %ID/g at 24 h) in athymic mice bearing D2159MG xenografts in vivo was significantly higher than that of {sup 125}I-NZ-1(Iodogen) (29.7{+-}6.1 %ID/g at 24 h). Conclusions: The overall results suggest that an anti-podoplanin antibody NZ-1 warrants further evaluation for antibody-based therapy against glioblastoma.

  19. Evaluation of anti-podoplanin rat monoclonal antibody NZ-1 for targeting malignant gliomas

    International Nuclear Information System (INIS)

    Kato, Yukinari; Vaidyanathan, Ganesan; Kaneko, Mika Kato; Mishima, Kazuhiko; Srivastava, Nidhi; Chandramohan, Vidyalakshmi; Pegram, Charles; Keir, Stephen T.; Kuan, C.-T.; Bigner, Darell D.; Zalutsky, Michael R.

    2010-01-01

    Introduction: Podoplanin/aggrus is a mucin-like sialoglycoprotein that is highly expressed in malignant gliomas. Podoplanin has been reported to be a novel marker to enrich tumor-initiating cells, which are thought to resist conventional therapies and to be responsible for cancer relapse. The purpose of this study was to determine whether an anti-podoplanin antibody is suitable to target radionuclides to malignant gliomas. Methods: The binding affinity of an anti-podoplanin antibody, NZ-1 (rat IgG 2a ), was determined by surface plasmon resonance and Scatchard analysis. NZ-1 was radioiodinated with 125 I using Iodogen [ 125 I-NZ-1(Iodogen)] or N-succinimidyl 4-guanidinomethyl 3-[ 131 I]iodobenzoate ([ 131 I]SGMIB-NZ-1), and paired-label internalization assays of NZ-1 were performed. The tissue distribution of 125 I-NZ-1(Iodogen) and that of [ 131 I]SGMIB-NZ-1 were then compared in athymic mice bearing glioblastoma xenografts. Results: The dissociation constant (K D ) of NZ-1 was determined to be 1.2x10 -10 M by surface plasmon resonance and 9.8x10 -10 M for D397MG glioblastoma cells by Scatchard analysis. Paired-label internalization assays in LN319 glioblastoma cells indicated that [ 131 I]SGMIB-NZ-1 resulted in higher intracellular retention of radioactivity (26.3±0.8% of initially bound radioactivity at 8 h) compared to that from the 125 I-NZ-1(Iodogen) (10.0±0.1% of initially bound radioactivity at 8 h). Likewise, tumor uptake of [ 131 I]SGMIB-NZ-1 (39.9±8.8 %ID/g at 24 h) in athymic mice bearing D2159MG xenografts in vivo was significantly higher than that of 125 I-NZ-1(Iodogen) (29.7±6.1 %ID/g at 24 h). Conclusions: The overall results suggest that an anti-podoplanin antibody NZ-1 warrants further evaluation for antibody-based therapy against glioblastoma.

  20. Principles of the complex therapy of gliomas in Latvia (1993-1998)

    International Nuclear Information System (INIS)

    Apskalne, D.; Ozolins, J.; Krumina, R.; Razuks, R.; Dzelzitis, J.

    1998-01-01

    60-70 malignant gliomas of 3rd and 4th degree of anaplasia are diagnosed in Latvia every year. The basic method of treatment of malignant gliomas is their surgical evacuation using CUSA, coagulation loops, binocular operation loupes and in several stages of surgery - microscope. Detailed morphological analysis of operation material according to 7 qualitative and 1 quantitative (Ki-67 antibody detection) signs. This analysis determines in general the choice of further method of complex therapy. Most often in the cases of malignant gliomas complex fractionated radiotherapy (55-60 Gy per course, 2 Gy per procedure) and systemic chemotherapy were used. In the cases when radiotherapy is not possible because of various side reasons and PI of gliomas is less than 5% and the structure is rich in blood vessels, only chemotherapy is used. Main agent are ACNU and CeeNU. Chemotherapy is carried in 2-3 stages, 6-courses in every stage. Interval between the courses - 6 weeks, between the stages - 6 month. When the schedule is accomplished CT and MR are done. At the present time 71% of the patients after complex therapy are in the phase of remission and in 29% of cases recurrent gliomas were diagnosed. (Full text)

  1. Childhood Brain Stem Glioma Treatment (PDQ®)—Patient Version

    Science.gov (United States)

    Childhood brain stem glioma can be a benign (not cancer) or malignant (cancer) condition where abnormal cells form in the tissues of the brain stem. Get information about the symptoms, diagnosis, prognosis, and treatment of newly diagnosed and recurrent childhood brain stem glioma in this expert-reviewed summary.

  2. Safety and maximum tolerated dose of superselective intraarterial cerebral infusion of bevacizumab after osmotic blood-brain barrier disruption for recurrent malignant glioma. Clinical article.

    Science.gov (United States)

    Boockvar, John A; Tsiouris, Apostolos J; Hofstetter, Christoph P; Kovanlikaya, Ilhami; Fralin, Sherese; Kesavabhotla, Kartik; Seedial, Stephen M; Pannullo, Susan C; Schwartz, Theodore H; Stieg, Philip; Zimmerman, Robert D; Knopman, Jared; Scheff, Ronald J; Christos, Paul; Vallabhajosula, Shankar; Riina, Howard A

    2011-03-01

    The authors assessed the safety and maximum tolerated dose of superselective intraarterial cerebral infusion (SIACI) of bevacizumab after osmotic disruption of the blood-brain barrier (BBB) with mannitol in patients with recurrent malignant glioma. A total of 30 patients with recurrent malignant glioma were included in the current study. The authors report no dose-limiting toxicity from a single dose of SIACI of bevacizumab up to 15 mg/kg after osmotic BBB disruption with mannitol. Two groups of patients were studied; those without prior bevacizumab exposure (naïve patients; Group I) and those who had received previous intravenous bevacizumab (exposed patients; Group II). Radiographic changes demonstrated on MR imaging were assessed at 1 month postprocedure. In Group I patients, MR imaging at 1 month showed a median reduction in the area of tumor enhancement of 34.7%, a median reduction in the volume of tumor enhancement of 46.9%, a median MR perfusion (MRP) reduction of 32.14%, and a T2-weighted/FLAIR signal decrease in 9 (47.4%) of 19 patients. In Group II patients, MR imaging at 1 month showed a median reduction in the area of tumor enhancement of 15.2%, a median volume reduction of 8.3%, a median MRP reduction of 25.5%, and a T2-weighted FLAIR decrease in 0 (0%) of 11 patients. The authors conclude that SIACI of mannitol followed by bevacizumab (up to 15 mg/kg) for recurrent malignant glioma is safe and well tolerated. Magnetic resonance imaging shows that SIACI treatment with bevacizumab can lead to reduction in tumor area, volume, perfusion, and T2-weighted/FLAIR signal.

  3. Polifeprosan 20, 3.85% carmustine slow release wafer in malignant glioma: patient selection and perspectives on a low-burden therapy

    Directory of Open Access Journals (Sweden)

    Kleinberg L

    2016-11-01

    Full Text Available Lawrence Kleinberg Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA Abstract: Polifeprosan 20 with carmustine (GLIADEL® polymer implant wafer is a biodegradable compound containing 3.85% carmustine (BCNU, bischloroethylnitrosourea implanted in the brain at the time of planned tumor surgery, which then slowly degrades to release the BCNU chemotherapy directly into the brain thereby bypassing the blood–brain barrier. Carmustine implant wafers were demonstrated to improve survival in randomized placebo-controlled trials in patients undergoing a near total resection of newly diagnosed or recurrent malignant glioma. Based on these trials and other supporting data, carmustine wafer therapy was approved for use for newly diagnosed and recurrent malignant glioma in the United States and the European Union. Adverse events are uncommon, and as this therapy is placed at the time of surgery, it does not add to patient treatment burden. Nevertheless, this therapy appears to be underutilized. This article reviews the evidence for a favorable therapeutic ratio for the patient and the potential barriers. Consideration of these issues is important for optimal use of this therapeutic approach and may be important as this technology and other local therapies are further developed in the future. Keywords: carmustine, wafer, gliadel, glioblastoma

  4. Characterization of infectivity of knob-modified adenoviral vectors in glioma

    NARCIS (Netherlands)

    C.P.L. Paul (C. P L); M. Everts (M.); J.N. Glasgow (J.); P. Dent (P.); P.B. Fisher (P.); I.V. Ulasov (I.); M.S. Lesniak (M.); M.A. Stoff-Khalili (M.); J.C. Roth (J.); M. Preuss (Michael); C.M.F. Dirven (Clemens); M.L.M. Lamfers (Martine); T. Siegal (Tali); Z.B. Zhu (Z.); R.E. Curiel (Rafael E.)

    2008-01-01

    textabstractMalignant glioma continues to be a major target for gene therapy and virotherapy due to its aggressive growth and the current lack of effective treatment. However, these approaches have been hampered by inefficient infection of glioma cells by viral vectors, particularly vectors derived

  5. Is CD147 a New Biomarker Reflecting Histological Malignancy of Gliomas?

    Science.gov (United States)

    Kong, Xiangyi; Wang, Yu; Dai, Congxin; Ma, Wenbin; Wang, Renzhi

    2017-03-01

    CD147 belongs to immunoglobulin superfamily and can stimulate the surrounding fibroblasts to secret matrix metalloproteinases (MMPs). Studies showed that when compared with their normal counterparts, CD47 expression level increased in lung carcinoma tissue, breast cancer tissue, and bladder cancer tissue. They increase in line with a tumor's malignant progression, invasiveness, and metastasis. However, the precise implications and utility of the presence of CD147 in the WHO grading system for gliomas have rarely been reported; in addition, the signal transduction pathways regarding CD147 remain unclear and controversial. Thus, in performing a meta-analysis, it is essential to reach a reliable conclusion. The related literatures were incorporated into the present meta-analysis after careful assessment, and odds ratios (ORs) with 95 % confidence intervals (95 % CIs) were calculated. Heterogeneity evaluation was estimated. Ten studies involving 615 patients were found to be eligible, nine of which were conducted in China and the remaining one in Japan. Analysis of eight studies involving dichotomous data revealed that CD147 overexpression in glioma tissue was related to higher WHO grading (III + IV; OR, 9.900; 95 % CI, 5.943, 16.491; P = 0.000) closely, whereas analysis of three studies of continuous data type indicated that there were no statistical associations (standard mean difference, -1.894; 95 % CI, -4.081, 0.293; P = 0.090). In accordance with funnel plot, Egger test, and Begg test, there was no publication bias. Considering that the continuous data make up only a small proportion of the overall analysis, we believe that our study indicates that CD147 overexpression is potentially related to higher WHO grade. Certainly, more data compiled based on evidence-based medicine are required to further support this conclusion.

  6. The nontoxic natural compound Curcumin exerts anti-proliferative, anti-migratory, and anti-invasive properties against malignant gliomas

    International Nuclear Information System (INIS)

    Senft, Christian; Polacin, Margareth; Priester, Maike; Seifert, Volker; Kögel, Donat; Weissenberger, Jakob

    2010-01-01

    New drugs are constantly sought after to improve the survival of patients with malignant gliomas. The ideal substance would selectively target tumor cells without eliciting toxic side effects. Here, we report on the anti-proliferative, anti-migratory, and anti-invasive properties of the natural, nontoxic compound Curcumin observed in five human glioblastoma (GBM) cell lines in vitro. We used monolayer wound healing assays, modified Boyden chamber trans-well assays, and cell growth assays to quantify cell migration, invasion, and proliferation in the absence or presence of Curcumin at various concentrations. Levels of the transcription factor phospho-STAT3, a potential target of Curcumin, were determined by sandwich-ELISA. Subsequent effects on transcription of genes regulating the cell cycle were analyzed by quantitative real-time PCR. Effects on apoptosis were determined by caspase assays. Curcumin potently inhibited GBM cell proliferation as well as migration and invasion in all cell lines contingent on dose. Simultaneously, levels of the biologically active phospho-STAT3 were decreased and correlated with reduced transcription of the cell cycle regulating gene c-Myc and proliferation marking Ki-67, pointing to a potential mechanism by which Curcumin slows tumor growth. Curcumin is part of the diet of millions of people every day and is without known toxic side effects. Our data show that Curcumin bears anti-proliferative, anti-migratory, and anti-invasive properties against GBM cells in vitro. These results warrant further in vivo analyses and indicate a potential role of Curcumin in the treatment of malignant gliomas

  7. A dual function fusion protein of Herpes simplex virus type 1 thymidine kinase and firefly luciferase for noninvasive in vivo imaging of gene therapy in malignant glioma.

    Science.gov (United States)

    Söling, Ariane; Theiss, Christian; Jungmichel, Stephanie; Rainov, Nikolai G

    2004-08-04

    BACKGROUND: Suicide gene therapy employing the prodrug activating system Herpes simplex virus type 1 thymidine kinase (HSV-TK)/ ganciclovir (GCV) has proven to be effective in killing experimental brain tumors. In contrast, glioma patients treated with HSV-TK/ GCV did not show significant treatment benefit, most likely due to insufficient transgene delivery to tumor cells. Therefore, this study aimed at developing a strategy for real-time noninvasive in vivo monitoring of the activity of a therapeutic gene in brain tumor cells. METHODS: The HSV-TK gene was fused to the firefly luciferase (Luc) gene and the fusion construct HSV-TK-Luc was expressed in U87MG human malignant glioma cells. Nude mice with subcutaneous gliomas stably expressing HSV-TK-Luc were subjected to GCV treatment and tumor response to therapy was monitored in vivo by serial bioluminescence imaging. Bioluminescent signals over time were compared with tumor volumes determined by caliper. RESULTS: Transient and stable expression of the HSV-TK-Luc fusion protein in U87MG glioma cells demonstrated close correlation of both enzyme activities. Serial optical imaging of tumor bearing mice detected in all cases GCV induced death of tumor cells expressing the fusion protein and proved that bioluminescence can be reliably used for repetitive and noninvasive quantification of HSV-TK/ GCV mediated cell kill in vivo. CONCLUSION: This approach may represent a valuable tool for the in vivo evaluation of gene therapy strategies for treatment of malignant disease.

  8. GENE-07. MOLECULAR NEUROPATHOLOGY 2.0 - INCREASING DIAGNOSTIC ACCURACY IN PEDIATRIC NEUROONCOLOGY

    Science.gov (United States)

    Sturm, Dominik; Jones, David T.W.; Capper, David; Sahm, Felix; von Deimling, Andreas; Rutkoswki, Stefan; Warmuth-Metz, Monika; Bison, Brigitte; Gessi, Marco; Pietsch, Torsten; Pfister, Stefan M.

    2017-01-01

    Abstract The classification of central nervous system (CNS) tumors into clinically and biologically distinct entities and subgroups is challenging. Children and adolescents can be affected by >100 histological variants with very variable outcomes, some of which are exceedingly rare. The current WHO classification has introduced a number of novel molecular markers to aid routine neuropathological diagnostics, and DNA methylation profiling is emerging as a powerful tool to distinguish CNS tumor classes. The Molecular Neuropathology 2.0 study aims to integrate genome wide (epi-)genetic diagnostics with reference neuropathological assessment for all newly-diagnosed pediatric brain tumors in Germany. To date, >350 patients have been enrolled. A molecular diagnosis is established by epigenetic tumor classification through DNA methylation profiling and targeted panel sequencing of >130 genes to detect diagnostically and/or therapeutically useful DNA mutations, structural alterations, and fusion events. Results are aligned with the reference neuropathological diagnosis, and discrepant findings are discussed in a multi-disciplinary tumor board including reference neuroradiological evaluation. Ten FFPE sections as input material are sufficient to establish a molecular diagnosis in >95% of tumors. Alignment with reference pathology results in four broad categories: a) concordant classification (~77%), b) discrepant classification resolvable by tumor board discussion and/or additional data (~5%), c) discrepant classification without currently available options to resolve (~8%), and d) cases currently unclassifiable by molecular diagnostics (~10%). Discrepancies are enriched in certain histopathological entities, such as histological high grade gliomas with a molecularly low grade profile. Gene panel sequencing reveals predisposing germline events in ~10% of patients. Genome wide (epi-)genetic analyses add a valuable layer of information to routine neuropathological

  9. Preclinical investigation of ibrutinib, a Bruton's kinase tyrosine (Btk) inhibitor, in suppressing glioma tumorigenesis and stem cell phenotypes

    Science.gov (United States)

    Wei, Li; Su, Yu-Kai; Lin, Chien-Min; Chao, Tsu-Yi; Huang, Shang-Pen; Huynh, Thanh-Tuan; Jan, Hsun-Jin; Whang-Peng, Jacqueline; Chiou, Jeng-Fong; Wu, Alexander T.H.; Hsiao, Michael

    2016-01-01

    Standard interventions for glioma include surgery, radiation and chemotherapies but the prognosis for malignant cases such as glioblastoma multiforme remain grim. Even with targeted therapeutic agent, bevacitumab, malignant glioma often develops resistance and recurrence. Thus, developing alternative interventions (therapeutic targets, biomarkers) is urgently required. Bruton's tyrosine kinase (Btk) has been long implicated in B cell malignancies but surprisingly it has recently been shown to also play a tumorigenic role in solid tumors such as ovarian and prostate cancer. Bioinformatics data indicates that Btk is significantly higher in clinical glioma samples as compared to normal brain cells and Btk expression level is associated with stage progression. This prompts us to investigate the potential role of Btk as a therapeutic target for glioma. Here, we demonstrate Btk expression is associated with GBM tumorigenesis. Down-regulation of Btk in GBM cell lines showed a significantly reduced abilities in colony formation, migration and GBM sphere-forming potential. Mechanistically, Btk-silenced cells showed a concomitant reduction in the expression of CD133 and Akt/mTOR signaling. In parallel, Ibrutinib (a Btk inhibitor) treatment led to a similar anti-tumorigenic response. Using xenograft mouse model, tumorigenesis was significantly reduced in Btk-silenced or ibrutinib-treated mice as compared to control counterparts. Finally, our glioma tissue microarray analysis indicated a higher Btk staining in the malignant tumors than less malignant and normal brain tissues. Collectively, Btk may represent a novel therapeutic target for glioma and ibrunitib may be used as an adjuvant treatment for malignant GBM. PMID:27564106

  10. Overexpressed KDM5B is associated with the progression of glioma and promotes glioma cell growth via downregulating p21

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Bin [Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038 (China); Hu, Zhiqiang, E-mail: zhiqhutg@126.com [Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038 (China); Huang, Hui; Zhu, Guangtong; Xiao, Zhiyong [Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038 (China); Wan, Weiqing; Zhang, Peng; Jia, Wang; Zhang, Liwei [Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050 (China)

    2014-11-07

    Highlights: • KDM5B is overexpressed in glioma samples. • KDM5B stimulated proliferation of glioma cells. • Inhibition of p21contributes to KDM5B-induced proliferation. - Abstract: Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Upregulation of lysine (K)-specific demethylase 5B (KDM5B) has been reported in a variety of malignant tumors. However, the impact of KDM5B in glioma remains unclear. The objective of this study was to investigate the expression and prognostic value of KDM5B in glioma. In clinical glioma samples, we found that KDM5B expression was significantly upregulated in cancer lesions compared with normal brain tissues. Kaplan–Meier analysis showed that patients with glioma and higher KDM5B expression tend to have shorter overall survival time. By silencing or overexpressing KDM5B in glioma cells, we found that KDM5B could promote cell growth both in vitro and in vivo. Moreover, we demonstrated that KDM5B promoted glioma proliferation partly via regulation of the expression of p21. Our study provided evidence that KDM5B functions as a novel tumor oncogene in glioma and may be a potential therapeutic target for glioma management.

  11. Cord blood stem cell-mediated induction of apoptosis in glioma downregulates X-linked inhibitor of apoptosis protein (XIAP.

    Directory of Open Access Journals (Sweden)

    Venkata Ramesh Dasari

    2010-07-01

    Full Text Available XIAP (X-linked inhibitor of apoptosis protein is one of the most important members of the apoptosis inhibitor family. XIAP is upregulated in various malignancies, including human glioblastoma. It promotes invasion, metastasis, growth and survival of malignant cells. We hypothesized that downregulation of XIAP by human umbilical cord blood mesenchymal stem cells (hUCBSC in glioma cells would cause them to undergo apoptotic death.We observed the effect of hUCBSC on two malignant glioma cell lines (SNB19 and U251 and two glioma xenograft cell lines (4910 and 5310. In co-cultures of glioma cells with hUCBSC, proliferation of glioma cells was significantly inhibited. This is associated with increased cytotoxicity of glioma cells, which led to glioma cell death. Stem cells induced apoptosis in glioma cells, which was evaluated by TUNEL assay, FACS analyses and immunoblotting. The induction of apoptosis is associated with inhibition of XIAP in co-cultures of hUCBSC. Similar results were obtained by the treatment of glioma cells with shRNA to downregulate XIAP (siXIAP. Downregulation of XIAP resulted in activation of caspase-3 and caspase-9 to trigger apoptosis in glioma cells. Apoptosis is characterized by the loss of mitochondrial membrane potential and upregulation of mitochondrial apoptotic proteins Bax and Bad. Cell death of glioma cells was marked by downregulation of Akt and phospho-Akt molecules. We observed similar results under in vivo conditions in U251- and 5310-injected nude mice brains, which were treated with hUCBSC. Under in vivo conditions, Smac/DIABLO was found to be colocalized in the nucleus, showing that hUCBSC induced apoptosis is mediated by inhibition of XIAP and activation of Smac/DIABLO.Our results indicate that downregulation of XIAP by hUCBSC treatment induces apoptosis, which led to the death of the glioma cells and xenograft cells. This study demonstrates the therapeutic potential of XIAP and hUCBSC to treat malignant

  12. Induction of reactive oxygen intermediates-dependent programmed cell death in human malignant ex vivo glioma cells and inhibition of the vascular endothelial growth factor production by taurolidine.

    Science.gov (United States)

    Rodak, Roksana; Kubota, Hisashi; Ishihara, Hideyuki; Eugster, Hans-Pietro; Könü, Dilek; Möhler, Hanns; Yonekawa, Yasuhiro; Frei, Karl

    2005-06-01

    Taurolidine, a derivative of the amino acid taurin, was recently found to display a potent antineoplastic effect both in vitro and in vivo. The authors therefore initiated studies to assess the potential antineoplastic activity of taurolidine in human glioma cell lines and in ex vivo malignant cell cultures. They also studied the mechanisms that induce cell death and the impact of taurolidine on tumor-derived vascular endothelial growth factor (VEGF) production. Cytotoxicity and clonogenic assays were performed using crystal violet staining. In the cytotoxicity assay 100% of glioma cell lines (eight of eight) and 74% of ex vivo glioma cultures (14 of 19) demonstrated sensitivity to taurolidine, with a mean median effective concentration (EC50) of 51 +/- 28 microg/ml and 56 +/- 23 microg/ml, respectively. Colony formation was inhibited by taurolidine, with a mean EC50 of 7 +/- 3 microg/ml for the cell lines and a mean EC50 of 3.5 +/- 1.7 microg/ml for the ex vivo glioma cultures. On observing this high activity of taurolidine in both assays, the authors decided to evaluate its cell death mechanisms. Fragmentation of DNA, externalization of phosphatidylserine, activation of poly(adenosine diphosphate-ribose) polymerase, loss of the mitochondrial membrane potential followed by a release of apoptosis-inducing factor, and typical apoptotic features were found after taurolidine treatment. Cell death was preceded by the generation of reactive O2 intermediates, which was abrogated by N-acetylcysteine but not by benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. Moreover, taurolidine also induced suppression of VEGF production on the protein and messenger RNA level, as shown by an enzyme-linked immunosorbent assay and by reverse transcription-polymerase chain reaction. Given all these findings, taurolidine may be a promising new agent in the treatment of malignant gliomas; it displays a combination of antineoplastic and antiangiogenic activities, inducing tumor cell

  13. Patterns of diagnostic marker assessment in adult diffuse glioma

    DEFF Research Database (Denmark)

    Woehrer, Adelheid; Kristensen, Bjarne W.; Vital, Anne

    2017-01-01

    The 2016 update of the WHO classification has introduced an integrated diagnostic approach that incorporates both tumor morphology and molecular information. This conceptual change has far-reaching implications, especially for neuropathologists who are in the forefront of translating molecular...... markers to routine diagnostic use. Adult diffuse glioma is a prototypic example for a group of tumors that underwent substantial regrouping, and it represents a major workload for surgical neuropathologists. Hence, we conducted a survey among members of the European Confederation of Neuropathological...

  14. Palliative benefits of the multimodality approach in the re-treatment of recurrent malignant glioma: Two case reports

    Directory of Open Access Journals (Sweden)

    T R Arulponni

    2009-01-01

    Full Text Available Two young male patients treated seven and four years back, for malignant glioma, returned with recurrence at the same site, with a World Health Organization (WHO Performance Score of four and two. Both underwent resurgery and received postoperative reirradiation of 5040 cGy in 28 fractions and concurrent Temozolomide 75 mg/m 2 body surface area (BSA daily, and one patient received additional adjuvant Temozolomide 250 mg (150 mg/m 2 BSA. Both patients tolerated the treatment well with 16 and 14 months follow-up from the time of recurrence. They were symptom-free, with normal physical function and good mental state, and resumed their respective jobs.

  15. Efficacy of post operative adjuvant therapy with human interferon beta, MCNU and radiation (IMR) for malignant glioma: comparison among three protocols

    International Nuclear Information System (INIS)

    Hatano, N.; Wakabayashi, T.; Kajita, Y.; Mizuno, M.; Ohno, T.; Nakayashiki, N.; Takemura, A.; Yoshida, J.

    2000-01-01

    In order to develop ultimate adjuvant therapy for malignant gliomas, we analyzed 77 patients with malignant gliomas (29 anaplastic astrocytomas (AAs) and 48 glioblastoma multiformes (GMs)) treated by three protocols of IMR therapy (human interferon-beta (HuIFN-β), MCNU and radiation). In protocol 1 (n = 45 : AA = 13, GM = 32), 1 x 10 6 IU of HuIFN-β was administrated intravenously once a day for 7 days. On day 2, MCNU was administrated at a dose of 2 mg/kg b.w. intravenously and from day 3, radiation was started in five weekly fractions of 2 Gy for 6 weeks. Total dose was 60 Gy. Protocol 2 (n = 19 : AA = 11, GM = 8) was comparable with protocol 1 except HuIFN-β was administrated twice a day at a dose of 1 x 10 6 IU each. Protocol 3 (n = 13 : AA = 5, GM = 8) differed from protocol 2 only in a high dose-hyperfractionated radiation which was given twice a day at a dose of 1.5 Gy each and for a total dose of 66 Gy. Antitumor effects were evaluated by survival and response rate determined by decrease of tumor size. Significant improvement was obtained in patients with AAs by protocol 2 and 3. Response rates of patients with AAs and GMs were 46.2 % and 50 % in protocol 1, 63.6 % and 50 % in protocol 2, and 80 % and 50 % in protocol 3, respectively. One and two year survival rates in AAs were 46.4 % and 34.8 % in protocol 1, both 75 % in protocol 2, and both 100 % in protocol 3. Survival rates in GMs were not different among them. Except of radiation necrosis, which was observed in 38.5 % of the patients under protocol 3, there was no significant difference in the adverse effects among the three protocols. In the present study, the efficacy of IMR therapy for patients with malignant gliomas, especially for AAs, was confirmed. We conclude that twice a day administrations of HuIFN-β in combination with a high dose-hyperfractionated radiation provide increased efficacy in IMR therapy. (author)

  16. Hypo fractionated conformal irradiation of patients with malignant glioma

    International Nuclear Information System (INIS)

    Aboziada, M.A.; Abo-Kresha, A.E.

    2012-01-01

    Purpose: The aim of the study is to evaluate the effect of a conformal irradiation in short fractionation scheme of 49.5 Gy in 15 fractions in an overall time of 3 weeks, in terms of overall survival (OAS) and progression free survival (PFS) rates in brain glioma patients. Patients and methods: A prospective study was conducted on 54 brain glioma patients and was carried out in the Radiation Oncology Department, South Egypt Cancer Institute, Assiut University during the period from April 2006 till June 2009. Patients were treated by hypo fractionated conformal irradiation (49.5 Gy/15 fractions/3 weeks). Results: The median follow up was 23 months (range: 9-39 months). Two-year OAS and PFS rates were 68% and 60%, respectively. In univariate analysis, age > 50 years, poor performance status [Karnofasky score of >40- 50 years and glioblastoma pathology were the only independent prognostic factors that were associated with poor OAS (p = 0.003 and p = 0.004, respectively), and PFS (p = 0.027 and p = 0.011, respectively). Conclusion: Hypo fractionated conformal radiotherapy was as effective as the conventional radiotherapy, with time sparing for patients, and for radiation oncology centers. Hypo fractionated radiotherapy may be considered the radiotherapy regimen of choice in clinical practice for patients with gliomas

  17. A super gene expression system enhances the anti-glioma effects of adenovirus-mediated REIC/Dkk-3 gene therapy

    Science.gov (United States)

    Oka, Tetsuo; Kurozumi, Kazuhiko; Shimazu, Yosuke; Ichikawa, Tomotsugu; Ishida, Joji; Otani, Yoshihiro; Shimizu, Toshihiko; Tomita, Yusuke; Sakaguchi, Masakiyo; Watanabe, Masami; Nasu, Yasutomo; Kumon, Hiromi; Date, Isao

    2016-09-01

    Reduced expression in immortalized cells/Dickkopf-3 (REIC/Dkk-3) is a tumor suppressor and therapeutic gene in many human cancers. Recently, an adenovirus REIC vector with the super gene expression system (Ad-SGE-REIC) was developed to increase REIC/Dkk-3 expression and enhance therapeutic effects compared with the conventional adenoviral vector (Ad-CAG-REIC). In this study, we investigated the in vitro and in vivo effects of Ad-SGE-REIC on malignant glioma. In U87ΔEGFR and GL261 glioma cells, western blotting confirmed that robust upregulation of REIC/Dkk-3 expression occurred in Ad-SGE-REIC-transduced cells, most notably after transduction at a multiplicity of infection of 10. Cytotoxicity assays showed that Ad-SGE-REIC resulted in a time-dependent and significant reduction in the number of malignant glioma cells attaching to the bottom of culture wells. Xenograft and syngeneic mouse intracranial glioma models treated with Ad-SGE-REIC had significantly longer survival than those treated with the control vector Ad-LacZ or with Ad-CAG-REIC. This study demonstrated the anti-glioma effect of Ad-SGE-REIC, which may represent a promising strategy for the treatment of malignant glioma.

  18. Sublethal dose of irradiation enhances invasion of malignant glioma cells through p53-MMP 2 pathway in U87MG mouse brain tumor model

    International Nuclear Information System (INIS)

    Pei, Jian; Park, In-Ho; Ryu, Hyang-Hwa; Li, Song-Yuan; Li, Chun-Hao; Lim, Sa-Hoe; Wen, Min; Jang, Woo-Youl; Jung, Shin

    2015-01-01

    Glioblastoma is a highly lethal neoplasm that frequently recurs locally after radiotherapy, and most of these recurrences originate from near the irradiated target field. In the present study, we identified the effects of radiation on glioma invasion and p53, TIMP-2, and MMP-2 expression through in vitro and in vivo experiments. The U87MG (wt p53) and U251 (mt p53) human malignant glioma cell lines were prepared, and the U2OS (wt 53) and Saos2 (del p53) osteosarcoma cell lines were used as p53 positive and negative controls. The four cell lines and p53 knock-downed U87MG cells received radiation (2–6 Gy) and were analyzed for expression of p53 and TIMP-2 by Western blot, and MMP-2 activity was detected by zymography. In addition, the effects of irradiation on directional invasion of malignant glioma were evaluated by implanting nude mice with bioluminescent u87-Fluc in vivo followed by MMP-2, p53, and TIMP-2 immunohisto-chemistry and in situ zymography. MMP-2 activity and p53 expression increased in proportional to the radiation dose in cell lines with wt p53, but not in the cell lines with del or mt p53. TIMP-2 expression did not increase in U87MG cells. MMP-2 activity decreased in p53 knock-downed U87MG cells but increased in the control group. Furthermore, radiation enhanced MMP-2 activity and increased tumor margin invasiveness in vivo. Tumor cells invaded by radiation overexpressed MMP-2 and p53 and revealed high gelatinolytic activity compared with those of non-radiated tumor cells. Radiation-induced upregulation of p53 modulated MMP-2 activity, and the imbalance between MMP-2 and TIMP-2 may have an important role in glioblastoma invasion by degrading the extracellular matrix. Bioluminescent “U87-Fluc”was useful for observing tumor formation without sacrifice after implanting tumor cells in the mouse brain. These findings suggest that the radiotherapy involved field for malignant glioma needs to be reconsidered, and that future trials should investigate

  19. Molecular and Genetic Determinants of Glioma Cell Invasion

    Directory of Open Access Journals (Sweden)

    Kenta Masui

    2017-12-01

    Full Text Available A diffusely invasive nature is a major obstacle in treating a malignant brain tumor, “diffuse glioma”, which prevents neurooncologists from surgically removing the tumor cells even in combination with chemotherapy and radiation. Recently updated classification of diffuse gliomas based on distinct genetic and epigenetic features has culminated in a multilayered diagnostic approach to combine histologic phenotypes and molecular genotypes in an integrated diagnosis. However, it is still a work in progress to decipher how the genetic aberrations contribute to the aggressive nature of gliomas including their highly invasive capacity. Here we depict a set of recent discoveries involving molecular genetic determinants of the infiltrating nature of glioma cells, especially focusing on genetic mutations in receptor tyrosine kinase pathways and metabolic reprogramming downstream of common cancer mutations. The specific biology of glioma cell invasion provides an opportunity to explore the genotype-phenotype correlation in cancer and develop novel glioma-specific therapeutic strategies for this devastating disease.

  20. miR-21 Is Linked to Glioma Angiogenesis

    DEFF Research Database (Denmark)

    Hermansen, Simon Kjær; Nielsen, Boye Schnack; Aaberg-Jessen, Charlotte

    2016-01-01

    MicroRNA-21 (miR-21) is the most consistently over-expressed microRNA (miRNA) in malignant gliomas. We have previously reported that miR-21 is upregulated in glioma vessels and subsets of glioma cells. To better understand the role of miR-21 in glioma angiogenesis and to characterize miR-21......-localized with the hypoxia- and angiogenesis-associated markers HIF-1α (p=0.0020) and VEGF (p=0.0096), whereas the putative miR-21 target, PTEN, was expressed independently of miR-21. Expression of stem cell markers Oct4, Sox2 and CD133 was not associated with miR-21. In six glioblastoma cultures, miR-21 did not correlate...... with the six markers. These findings suggest that miR-21 is linked to glioma angiogenesis, that miR-21 is unlikely to regulate PTEN, and that miR-21-positive tumor cells do not possess stem cell characteristics....

  1. Counterbalancing risks and gains from extended resections in malignant glioma surgery: a supplemental analysis from the randomized 5-aminolevulinic acid glioma resection study. Clinical article.

    Science.gov (United States)

    Stummer, Walter; Tonn, Jörg-Christian; Mehdorn, Hubertus Maximilian; Nestler, Ulf; Franz, Kea; Goetz, Claudia; Bink, Andrea; Pichlmeier, Uwe

    2011-03-01

    Accumulating data suggest more aggressive surgery in patients with malignant glioma to improve outcome. However, extended surgery may increase morbidity. The randomized Phase III 5-aminolevulinic acid (ALA) study investigated 5-ALA-induced fluorescence as a tool for improving resections. An interim analysis demonstrated more frequent complete resections with longer progression-free survival (PFS). However, marginal differences were found regarding neurological deterioration and the frequency of additional therapies. Presently, the authors focus on the latter aspects in the final study population, and attempt to determine how safety might be affected by cytoreductive surgery. Patients with malignant gliomas were randomized for fluorescence-guided (ALA group) or conventional white light (WL) (WL group) microsurgery. The final intent-to-treat population consisted of 176 patients in the ALA and 173 in the WL group. Primary efficacy variables were contrast-enhancing tumor on early MR imaging and 6-month PFS. Among secondary outcome measures, the National Institutes of Health Stroke Scale (NIH-SS) score and the Karnofsky Performance Scale (KPS) score were used for assessing neurological function. More frequent complete resections and improved PFS were confirmed, with higher median residual tumor volumes in the WL group (0.5 vs 0 cm(3), p = 0.001). Patients in the ALA group had more frequent deterioration on the NIH-SS at 48 hours. Patients at risk were those with deficits unresponsive to steroids. No differences were found in the KPS score. Regarding outcome, a combined end point of risks and neurological deficits was attempted, which demonstrated results in patients in the ALA group to be superior to those in participants in the WL group. Interestingly, the cumulative incidence of repeat surgery was significantly reduced in ALA patients. When stratified by completeness of resection, patients with incomplete resections were quicker to deteriorate neurologically (p = 0

  2. A phase I dose escalation study of hypofractionated stereotactic radiotherapy as salvage therapy for persistent or recurrent malignant glioma

    International Nuclear Information System (INIS)

    Hudes, Richard S.; Corn, Benjamin W.; Werner-Wasik, Maria; Andrews, David; Rosenstock, Jeffrey; Thoron, Louisa; Downes, Beverly; Curran, Walter J.

    1999-01-01

    Purpose: A phase I dose escalation of hypofractionated stereotactic radiotherapy (H-SRT) in recurrent or persistent malignant gliomas as a means of increasing the biologically effective dose and decreasing the high rate of reoperation due to toxicity associated with single-fraction stereotactic radiosurgery (SRS) and brachytherapy. Materials and Methods: From November 1994 to September 1996, 25 lesions in 20 patients with clinical and/or imaging evidence of malignant glioma persistence or recurrence received salvage H-SRT. Nineteen patients at the time of initial diagnosis had glioblastoma multiforme (GBM) and one patient had an anaplastic astrocytoma. All of these patients with tumor persistence or recurrence had received initial fractionated radiation therapy (RT) with a mean and median dose of 60 Gy (44.0-72.0 Gy). The median time from completion of initial RT to H-SRT was 3.1 months (0.7-45.5 months). Salvage H-SRT was delivered using daily 3.0-3.5 Gy fractions (fxs). Three different total dose levels were sequentially evaluated: 24.0 Gy/3.0 Gy fxs (five lesions), 30.0 Gy/3.0 Gy fxs (10 lesions), and 35.0 Gy/3.5 Gy fxs (nine lesions). Median treated tumor volume measured 12.66 cc (0.89-47.5 cc). The median ratio of prescription volume to tumor volume was 2.8 (1.4-5.0). Toxicity was judged by RTOG criteria. Response was determined by clinical neurologic improvement, a decrease in steroid dose without clinical deterioration, and/or radiologic imaging. Results: No grade 3 toxicities were observed and no reoperation due to toxicity was required. At the time of analysis, 13 of 20 patients had died. The median survival time from the completion of H-SRT is 10.5 months with a 1-year survival rate of 20%. Neurological improvement was found in 45% of patients. Decreased steroid requirements occurred in 60% of patients. Minor imaging response was noted in 22% of patients. Using Fisher's exact test, response of any kind correlated strongly to total dose (p = 0.0056). None

  3. Contemporary management of high-grade gliomas.

    Science.gov (United States)

    Sim, Hao-Wen; Morgan, Erin R; Mason, Warren P

    2018-01-01

    High-grade gliomas, including glioblastoma, are the most common malignant brain tumors in adults. Despite intensive efforts to develop new therapies for these diseases, treatment options remain limited and prognosis is poor. Recently, there have been important advances in our understanding of the molecular basis of glioma, leading to refinements in our diagnostic and management approach. There is new evidence to guide the treatment of elderly patients. A multitude of new agents have been investigated, including targeted therapies, immunotherapeutics and tumor-treating fields. This review summarizes the key findings from this research, and presents a perspective on future opportunities to advance the field.

  4. Molecular pathology in adult gliomas: diagnostic, prognostic, and predictive markers.

    LENUS (Irish Health Repository)

    Jansen, Michael

    2010-07-01

    Over the past 10 years, there has been an increasing use of molecular markers in the assessment and management of adult malignant gliomas. Some molecular signatures are used diagnostically to help pathologists classify tumours, whereas others are used to estimate prognosis for patients. Most crucial, however, are those markers that are used to predict response to certain therapies, thereby directing clinicians to a particular treatment while avoiding other potentially deleterious therapies. Recently, large-scale genome-wide surveys have been used to identify new biomarkers that have been rapidly developed as diagnostic and prognostic tools. Given these developments, the pace of discovery of new molecular assays will quicken to facilitate personalised medicine in the setting of malignant glioma.

  5. Convection-enhanced drug delivery to the brain: therapeutic potential and neuropathological considerations.

    Science.gov (United States)

    Barua, Neil U; Gill, Steven S; Love, Seth

    2014-03-01

    Convection-enhanced delivery (CED) describes a direct method of drug delivery to the brain through intraparenchymal microcatheters. By establishing a pressure gradient at the tip of the infusion catheter in order to exploit bulk flow through the interstitial spaces of the brain, CED offers a number of advantages over conventional drug delivery methods-bypass of the blood-brain barrier, targeted distribution through large brain volumes and minimization of systemic side effects. Despite showing early promise, CED is yet to fulfill its potential as a mainstream strategy for the treatment of neurological disease. Substantial research effort has been dedicated to optimize the technology for CED and identify the parameters, which govern successful drug distribution. It seems likely that successful clinical translation of CED will depend on suitable catheter technology being used in combination with drugs with optimal physicochemical characteristics, and on neuropathological analysis in appropriate preclinical models. In this review, we consider the factors most likely to influence the success or failure of CED, and review its application to the treatment of high-grade glioma, Parkinson's disease (PD) and Alzheimer's disease (AD). © 2013 International Society of Neuropathology.

  6. SEMI–MATURE DENDRITIC CELLS AS A POTENTIAL BASIS FOR THE INDUCTION OF ANTI–TUMOR RESPONSE IN PATIENTS WITH MALIGNANT GLIOMAS

    Directory of Open Access Journals (Sweden)

    O. Yu. Leplina

    2005-01-01

    Full Text Available Abstract. The comparative analysis of phenotypical and functional features of dendritic cells (DCs, generated in presence of GM–CSF and IFNα from blood monocytes of patients with malignant gliomas (MG and healthy donors, was carried out in this research. The potential value of the DC–based immunotherapy in the induction of anti–tumor response in patients with MG was also examined. Our results show that within generated DCs of healthy donors 90 and 52% cells expressed correspondingly HLA–DR and CD86, only 17–18% cells were CD14+monocytes, whereas 38% cells exhibited the phenotype of mature CD83+ dendritic cells. The both monocyte conditioned medium (MCM, 30% v/v and Leukinferon® (250 IU of IFNα were comparably efficient as maturation–induced stimuli. Despite monocyte’s disturbances in malignant gliomas, the analogous population of DCs was efficiently generated in all examined patients with MG. However, the percentage of mature CD83+DCs was significantly decreased compared to that in healthy donors (24 vs 38%, and these data strongly suggest the delay maturation of DCs in MG. Nevertheless the patient’s DCs showed the allostimulatory activity, comparable with healthy donor’s DCs, and 52–62% cells maintained the ability for the receptor–dependent en–docytosis. Moreover, the patient’s DCs effectively presented bacterial and tumor–associated antigens (TAA. Immunotherapy with autologous DCs allowed to induce the TAA–specific immune reactions, both in skin test in vivo and in vitro, in 50% patients with MG. (Med. Immunol., 2005, vol.7, № 4, pp. 365–374

  7. Use of the functional imaging modalities, f MRI r CBV and PET FDG, alters radiation therapy 3-D treatment planning in patients with malignant gliomas

    International Nuclear Information System (INIS)

    Fitzek, M.; Pardo, F.S.; Busierre, M.; Lev, M.; Fischman, A.; Denny, N.; Hanser, B.; Rosen, B.R.; Smith, A.; Aronen, H.

    1995-01-01

    Background: Malignant gliomas present one of the most difficult challenges to definitive radiation therapy, not only with respect to local control, but also with respect to clinical functional status. While tumor target volume definitions for malignant gliomas are often based on CT and conventional MRI, the functional imaging modalities, echo planar r CBV (regional cerebral blood volume mapping) and 18F-fluorodeoxyglucose PET, are more sensitive modalities for the detection of neovascularization, perhaps one of the earliest signs of glial tumor initiation and progression. Methods: In order to address the clinical utility of functional imaging in radiation therapy 3-D treatment planning, we compared tumor target volume definitions and overall dosimetry in patients either undergoing co-registration of conventional Gadolinium-enhanced MRI, or co-registration of functional imaging modalities, prior to radiation therapy 3-D treatment planning. Fourteen patients were planned using 3-D radiation therapy treatment planning, either with or without inclusion of data on functional imaging. All patients received proton beam, as well as megavoltage x-ray radiation therapy, with the ratio of photon:proton optimized to the individual clinical case at hand. Both PET FDG and f MRI scans were obtained postoperatively pre-radiation, during radiation therapy, one month following completion of radiation therapy, and at three month follow-up intervals. Dose volume histograms were constructed in order to assess dose optimization, not only with respect to tumor, but also with respect to normal tissue tolerance (e.g., motor strip, dominant speech area, brainstem, optic nerves). Results: In 5 of 14 cases, functional imaging modalities, as compared with conventional MRI and CT, contributed additional information that was useful in radiation therapy treatment planning. In general, both fMRI rCBV and PET FDG uptake decreased during the course of radiation therapy. In 1 patient, however, fMRI r

  8. A Distinct DNA Methylation Shift in a Subset of Glioma CpG Island Methylator Phenotypes during Tumor Recurrence

    Directory of Open Access Journals (Sweden)

    Camila Ferreira de Souza

    2018-04-01

    Full Text Available Summary: Glioma diagnosis is based on histomorphology and grading; however, such classification does not have predictive clinical outcome after glioblastomas have developed. To date, no bona fide biomarkers that significantly translate into a survival benefit to glioblastoma patients have been identified. We previously reported that the IDH mutant G-CIMP-high subtype would be a predecessor to the G-CIMP-low subtype. Here, we performed a comprehensive DNA methylation longitudinal analysis of diffuse gliomas from 77 patients (200 tumors to enlighten the epigenome-based malignant transformation of initially lower-grade gliomas. Intra-subtype heterogeneity among G-CIMP-high primary tumors allowed us to identify predictive biomarkers for assessing the risk of malignant recurrence at early stages of disease. G-CIMP-low recurrence appeared in 9.5% of all gliomas, and these resembled IDH-wild-type primary glioblastoma. G-CIMP-low recurrence can be characterized by distinct epigenetic changes at candidate functional tissue enhancers with AP-1/SOX binding elements, mesenchymal stem cell-like epigenomic phenotype, and genomic instability. Molecular abnormalities of longitudinal G-CIMP offer possibilities to defy glioblastoma progression. : IDH-mutant lower-grade glioma glioblastoma often progresses to a more aggressive phenotype upon recurrence. de Souza et al. examines the intra-subtype heterogeneity of initial G-CIMP-high and use this information to identify predictive biomarkers for assessing the risk of recurrence and malignant transformation. Keywords: longitudinal gliomas, DNA methylation, IDH mutation, G-CIMP-high, intra-subtype heterogeneity, malignant transformation and recurrence, G-CIMP-low, stem cell-like glioblastoma, predictive biomarkers

  9. F11R is a novel monocyte prognostic biomarker for malignant glioma.

    Directory of Open Access Journals (Sweden)

    Winnie W Pong

    Full Text Available Brain tumors (gliomas contain large populations of infiltrating macrophages and recruited microglia, which in experimental murine glioma models promote tumor formation and progression. Among the barriers to understanding the contributions of these stromal elements to high-grade glioma (glioblastoma; GBM biology is the relative paucity of tools to characterize infiltrating macrophages and resident microglia. In this study, we leveraged multiple RNA analysis platforms to identify new monocyte markers relevant to GBM patient outcome.High-confidence lists of mouse resident microglia- and bone marrow-derived macrophage-specific transcripts were generated using converging RNA-seq and microarray technologies and validated using qRT-PCR and flow cytometry. Expression of select cell surface markers was analyzed in brain-infiltrating macrophages and resident microglia in an induced GBM mouse model, while allogeneic bone marrow transplantation was performed to trace the origins of infiltrating and resident macrophages. Glioma tissue microarrays were examined by immunohistochemistry, and the Gene Expression Omnibus (GEO database was queried to determine the prognostic value of identified microglia biomarkers in human GBM.We generated a unique catalog of differentially-expressed bone marrow-derived monocyte and resident microglia transcripts, and demonstrated that brain-infiltrating macrophages acquire F11R expression in GBM and following bone-marrow transplantation. Moreover, mononuclear cell F11R expression positively correlates with human high-grade glioma and additionally serves as a biomarker for GBM patient survival, regardless of GBM molecular subtype.These studies establish F11R as a novel monocyte prognostic marker for GBM critical for defining a subpopulation of stromal cells for future potential therapeutic intervention.

  10. Quinacrine enhances carmustine therapy of experimental rat glioma.

    Science.gov (United States)

    Reyes, S; Herrera, L A; Ostrosky, P; Sotelo, J

    2001-10-01

    The high rate of mutagenesis in malignant cells has been considered to be a primary factor in the appearance of chemotherapy-resistant cell clones in glioblastomas. Quinacrine binds strongly to deoxyribonucleic acid, preventing mutagenesis. We investigated whether quinacrine could improve carmustine therapy in C6 cell cultures and in C6 malignant gliomas implanted subcutaneously into Wistar rats. A potential chemopreventive effect of quinacrine on acquired resistance to carmustine therapy was studied in vitro and in vivo. Deoxyribonucleic acid damage was measured in cultured C6 cells by using the micronucleus test. Wistar rats with subcutaneously implanted C6 gliomas were treated with carmustine, quinacrine, or carmustine plus quinacrine, using pharmacological schemes similar to those used for human patients. The addition of quinacrine to cultured C6 cells did not modify carmustine-induced cytotoxicity; however, the deoxyribonucleic acid damage in surviving cells was minor, as indicated by the frequency of micronucleated cells. The surviving cells continued to be susceptible to a second exposure to carmustine, in contrast to non-quinacrine-treated control cells, which developed resistance to carmustine in a subsequent exposure (P < 0.05). The rate of tumor remission was higher for glioma-bearing rats treated with quinacrine plus carmustine, compared with rats treated with carmustine alone (P < 0.01). The addition of quinacrine to carmustine therapy increases the antineoplastic effect of the carmustine therapy. Our results suggest that chemical inhibition of mutagenesis in malignant glial cells during chemotherapy prevents the appearance of resistant clones.

  11. Deep RF-hyperthermia: an effective treatment of advanced gliomas

    International Nuclear Information System (INIS)

    Sahinbas, H.; Groenemeyer, D.H.W.

    2005-01-01

    Full text: Contrary to the enormous efforts, results of conventional treatments of high-grade malignant gliomas are unsatisfactory. The prognosis of that tumor type is poor, its overall median survival time (MST) less than a year. Most of the cases are inoperable or only partially resectable, and their response to the various chemotherapies and/or radiotherapy is poor. The chemo-therapies which are successful for other locations often fail due to the effective brain-blood barrier (BBB). Probably the modification of the BBB by electromagnetic fields together with the direct electromagnetic-field heating are the main factors for the success of electro-hyperthermia. Primary aim of this study was to present the therapy tolerance for patients of electro-hyperthermia (EHY) for advanced malignant gliomas and as main intention to show the increase of the median survival time (MST). Our study was performed between 2000 - 2004; for patients with inoperable, partially resected or recurrent gliomas (WHO grade III and IV) with progression after radio- and/or chemotherapy and a Karnofsky Performance Score ≤30-40 %. 105 pts were involved in this study: 38 astrocytoma pts, 56 glioblastoma pts and 12 pts with other brain malignancies. All patients were heavily and unsatisfactory pretreated. EHY was applied over 4 weeks, 3 times a week over 1 hour in average by 100 Watt, as mono- or combined therapy (chemotherapy, irradiation therapy). The set of patients as well as the frequency of EHY was well documented for future evaluations. The historic reference of the MST from the first diagnosis for gliomas grade III and IV in our institute is 11.42 months (range 1-62), which is in good agreement with the relevant literature. The median survival time (MST) in our institute with EHY increases to 44.2 m, 23.2 m and 61.0 m for astrocytoma, glioblastoma and other brain malignancies, respectively. The therapy results were controlled by MRI images. EHY is a feasible treatment for advanced

  12. Inhibition of cell growth by EGR-1 in human primary cultures from malignant glioma

    Directory of Open Access Journals (Sweden)

    Gagliardi Franco

    2004-01-01

    Full Text Available Abstract Background The aim of this work was to investigate in vitro the putative role of EGR-1 in the growth of glioma cells. EGR-1 expression was examined during the early passages in vitro of 17 primary cell lines grown from 3 grade III and from 14 grade IV malignant astrocytoma explants. The explanted tumors were genetically characterized at the p53, MDM2 and INK4a/ARF loci, and fibronectin expression and growth characteristics were examined. A recombinant adenovirus overexpressing EGR-1 was tested in the primary cell lines. Results Low levels of EGR-1 protein were found in all primary cultures examined, with lower values present in grade IV tumors and in cultures carrying wild-type copies of p53 gene. The levels of EGR-1 protein were significantly correlated to the amount of intracellular fibronectin, but only in tumors carrying wild-type copies of the p53 gene (R = 0,78, p = 0.0082. Duplication time, plating efficiency, colony formation in agarose, and contact inhibition were also altered in the p53 mutated tumor cultures compared to those carrying wild-type p53. Growth arrest was achieved in both types of tumor within 1–2 weeks following infection with a recombinant adenovirus overexpressing EGR-1 but not with the control adenovirus. Conclusions Suppression of EGR-1 is a common event in gliomas and in most cases this is achieved through down-regulation of gene expression. Expression of EGR-1 by recombinant adenovirus infection almost completely abolishes the growth of tumor cells in vitro, regardless of the mutational status of the p53 gene.

  13. Experimental radioimmunotherapy of a xenografted human glioma using [sup 131]I-labeled monoclonal antibody to epidermal growth factor receptor

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroshi; Nakazawa, Shozo [Nippon Medical School, Tokyo (Japan); Herlyn, D

    1993-09-01

    [sup 131]I-labeled F (ab')[sub 2] fragments of murine monoclonal antibodies (MAb) 425 specific to the epidermal growth factor receptor expressed on human gliomas were used in experimental human malignant glioma immunotherapy. Two injections of 150 [mu]Ci [sup 131]I-labeled 425 F(ab')[sub 2] achieved growth inhibition of U-87MG human malignant glioma xenografts in nude mice. This radiolabeled specific MAb F(ab')[sub 2] was significantly superior to radiolabeled fragments of an anti-hepatitis virus control MAb A5C3 in influencing tumor growth. However, similar treatment of established human malignant glioma xenografts did not inhibit progressive tumor growth significantly. No clear tumor inhibition was produced by unlabeled MAb 425F(ab')[sub 2]. These studies suggest that [sup 131]I-labeled MAbs have a significant antitumor effect where unmodified antibody is ineffective. Multiple doses of antibody may achieve an increase in labeled MAb concentration in tumors. (author).

  14. A new anti-glioma therapy, AG119: pre-clinical assessment in a mouse GL261 glioma model.

    Science.gov (United States)

    Towner, Rheal A; Ihnat, Michael; Saunders, Debra; Bastian, Anja; Smith, Nataliya; Pavana, Roheeth Kumar; Gangjee, Aleem

    2015-07-17

    High grade gliomas (HGGs; grades III and IV) are the most common primary brain tumors in adults, and their malignant nature ranks them fourth in incidence of cancer death. Standard treatment for glioblastomas (GBM), involving surgical resection followed by radiation and chemotherapy with temozolomide (TMZ) and the anti-angiogenic therapy bevacizumab, have not substantially improved overall survival. New therapeutic agents are desperately needed for this devastating disease. Here we study the potential therapeutic agent AG119 in a pre-clinical model for gliomas. AG119 possesses both anti-angiogenic (RTK inhibition) and antimicrotubule cytotoxic activity in a single molecule. GL261 glioma-bearing mice were either treated with AG119, anti-VEGF (vascular endothelial growth factor) antibody, anti c-Met antibody or TMZ, and compared to untreated tumor-bearing mice. Animal survival was assessed, and tumor volumes and vascular alterations were monitored with morphological magnetic resonance imaging (MRI) and perfusion-weighted imaging, respectively. Percent survival of GL261 HGG-bearing mice treated with AG119 was significantly higher (p mouse GL261 glioma model, and that AG119 is also not subject to methyl guanine transferase (MGMT) mediated resistance, as is the case with TMZ, indicating that AG119 may be potentially useful in treating resistant gliomas.

  15. Germline rearrangements in families with strong family history of glioma and malignant melanoma, colon, and breast cancer

    Science.gov (United States)

    Andersson, Ulrika; Wibom, Carl; Cederquist, Kristina; Aradottir, Steina; Borg, Åke; Armstrong, Georgina N.; Shete, Sanjay; Lau, Ching C.; Bainbridge, Matthew N.; Claus, Elizabeth B.; Barnholtz-Sloan, Jill; Lai, Rose; Il'yasova, Dora; Houlston, Richard S.; Schildkraut, Joellen; Bernstein, Jonine L.; Olson, Sara H.; Jenkins, Robert B.; Lachance, Daniel H.; Wrensch, Margaret; Davis, Faith G.; Merrell, Ryan; Johansen, Christoffer; Sadetzki, Siegal; Bondy, Melissa L.; Melin, Beatrice S.; Adatto, Phyllis; Morice, Fabian; Payen, Sam; McQuinn, Lacey; McGaha, Rebecca; Guerra, Sandra; Paith, Leslie; Roth, Katherine; Zeng, Dong; Zhang, Hui; Yung, Alfred; Aldape, Kenneth; Gilbert, Mark; Weinberger, Jeffrey; Colman, Howard; Conrad, Charles; de Groot, John; Forman, Arthur; Groves, Morris; Levin, Victor; Loghin, Monica; Puduvalli, Vinay; Sawaya, Raymond; Heimberger, Amy; Lang, Frederick; Levine, Nicholas; Tolentino, Lori; Saunders, Kate; Thach, Thu-Trang; Iacono, Donna Dello; Sloan, Andrew; Gerson, Stanton; Selman, Warren; Bambakidis, Nicholas; Hart, David; Miller, Jonathan; Hoffer, Alan; Cohen, Mark; Rogers, Lisa; Nock, Charles J; Wolinsky, Yingli; Devine, Karen; Fulop, Jordonna; Barrett, Wendi; Shimmel, Kristen; Ostrom, Quinn; Barnett, Gene; Rosenfeld, Steven; Vogelbaum, Michael; Weil, Robert; Ahluwalia, Manmeet; Peereboom, David; Staugaitis, Susan; Schilero, Cathy; Brewer, Cathy; Smolenski, Kathy; McGraw, Mary; Naska, Theresa; Rosenfeld, Steven; Ram, Zvi; Blumenthal, Deborah T.; Bokstein, Felix; Umansky, Felix; Zaaroor, Menashe; Cohen, Avi; Tzuk-Shina, Tzeela; Voldby, Bo; Laursen, René; Andersen, Claus; Brennum, Jannick; Henriksen, Matilde Bille; Marzouk, Maya; Davis, Mary Elizabeth; Boland, Eamon; Smith, Marcel; Eze, Ogechukwu; Way, Mahalia; Lada, Pat; Miedzianowski, Nancy; Frechette, Michelle; Paleologos, Nina; Byström, Gudrun; Svedberg, Eva; Huggert, Sara; Kimdal, Mikael; Sandström, Monica; Brännström, Nikolina; Hayat, Amina; Tihan, Tarik; Zheng, Shichun; Berger, Mitchel; Butowski, Nicholas; Chang, Susan; Clarke, Jennifer; Prados, Michael; Rice, Terri; Sison, Jeannette; Kivett, Valerie; Duo, Xiaoqin; Hansen, Helen; Hsuang, George; Lamela, Rosito; Ramos, Christian; Patoka, Joe; Wagenman, Katherine; Zhou, Mi; Klein, Adam; McGee, Nora; Pfefferle, Jon; Wilson, Callie; Morris, Pagan; Hughes, Mary; Britt-Williams, Marlin; Foft, Jessica; Madsen, Julia; Polony, Csaba; McCarthy, Bridget; Zahora, Candice; Villano, John; Engelhard, Herbert; Borg, Ake; Chanock, Stephen K; Collins, Peter; Elston, Robert; Kleihues, Paul; Kruchko, Carol; Petersen, Gloria; Plon, Sharon; Thompson, Patricia; Johansen, C.; Sadetzki, S.; Melin, B.; Bondy, Melissa L.; Lau, Ching C.; Scheurer, Michael E.; Armstrong, Georgina N.; Liu, Yanhong; Shete, Sanjay; Yu, Robert K.; Aldape, Kenneth D.; Gilbert, Mark R.; Weinberg, Jeffrey; Houlston, Richard S.; Hosking, Fay J.; Robertson, Lindsay; Papaemmanuil, Elli; Claus, Elizabeth B.; Claus, Elizabeth B.; Barnholtz-Sloan, Jill; Sloan, Andrew E.; Barnett, Gene; Devine, Karen; Wolinsky, Yingli; Lai, Rose; McKean-Cowdin, Roberta; Il'yasova, Dora; Schildkraut, Joellen; Sadetzki, Siegal; Yechezkel, Galit Hirsh; Bruchim, Revital Bar-Sade; Aslanov, Lili; Sadetzki, Siegal; Johansen, Christoffer; Kosteljanetz, Michael; Broholm, Helle; Bernstein, Jonine L.; Olson, Sara H.; Schubert, Erica; DeAngelis, Lisa; Jenkins, Robert B.; Yang, Ping; Rynearson, Amanda; Andersson, Ulrika; Wibom, Carl; Henriksson, Roger; Melin, Beatrice S.; Cederquist, Kristina; Aradottir, Steina; Borg, Åke; Merrell, Ryan; Lada, Patricia; Wrensch, Margaret; Wiencke, John; Wiemels, Joe; McCoy, Lucie; McCarthy, Bridget J.; Davis, Faith G.

    2014-01-01

    Background Although familial susceptibility to glioma is known, the genetic basis for this susceptibility remains unidentified in the majority of glioma-specific families. An alternative approach to identifying such genes is to examine cancer pedigrees, which include glioma as one of several cancer phenotypes, to determine whether common chromosomal modifications might account for the familial aggregation of glioma and other cancers. Methods Germline rearrangements in 146 glioma families (from the Gliogene Consortium; http://www.gliogene.org/) were examined using multiplex ligation-dependent probe amplification. These families all had at least 2 verified glioma cases and a third reported or verified glioma case in the same family or 2 glioma cases in the family with at least one family member affected with melanoma, colon, or breast cancer.The genomic areas covering TP53, CDKN2A, MLH1, and MSH2 were selected because these genes have been previously reported to be associated with cancer pedigrees known to include glioma. Results We detected a single structural rearrangement, a deletion of exons 1-6 in MSH2, in the proband of one family with 3 cases with glioma and one relative with colon cancer. Conclusions Large deletions and duplications are rare events in familial glioma cases, even in families with a strong family history of cancers that may be involved in known cancer syndromes. PMID:24723567

  16. Diffuse Gliomas for Nonneuropathologists: The New Integrated Molecular Diagnostics.

    Science.gov (United States)

    Lee, Sunhee C

    2018-05-18

    Diffuse gliomas comprise the bulk of "brain cancer" in adults. The recent update to the 4th edition of the World Health Organization's classification of tumors of the central nervous system reflects an unprecedented change in the landscape of the diagnosis and management of diffuse gliomas that will affect all those involved in the management and care of patients. Of the recently discovered gene alterations, mutations in the Krebs cycle enzymes isocitrate dehydrogenases (IDHs) 1 and 2 have fundamentally changed the way the gliomas are understood and classified. Incorporating information on a few genetic parameters (IDH, ATRX and/or p53, and chromosome 1p19q codeletion), a relatively straightforward diagnostic algorithm has been generated with robust and reproducible results that correlate with patients' survival far better than relying on conventional histology alone. Evidence also supports the conclusion that the vast majority of diffuse gliomas without IDH mutations (IDH-wild-type astrocytomas) behave like IDH-wild-type glioblastomas ("molecular GBM"). Together, these changes reflect a big shift in the practice of diagnostic neuropathology in which tumor risk stratification aligns better with molecular information than histology/grading. The purpose of this review is to provide the readers with a brief synopsis of the changes in the 2016 World Health Organization update with an emphasis on diffuse gliomas and to summarize key gene abnormalities on which these classifications are based. Practical points involved in day-to-day diagnostic workup are also discussed, along with a comparison of the various diagnostic tests, including immunohistochemistry, with an emphasis on targeted next-generation sequencing panel technology as a future universal approach.

  17. The effects of gene polymorphisms on glioma prognosis.

    Science.gov (United States)

    Cui, Ying; Li, Guolin; Yan, Mengdan; Li, Jing; Jin, Tianbo; Li, Shanqu; Mu, Shijie

    2017-11-01

    Malignant gliomas are the most common primary brain tumors. Various genetic factors play important roles in the development and prognosis of glioma. The present study focuses on the impact of MPHOSPH6, TNIP1 and several other genes (ACYP2, NAF1, TERC, TERT, OBFC1, ZNF208 and RTEL1) on telomere length and how this affects the prognosis of glioma. Forty-three polymorphisms in nine genes from 605 glioma patients were selected. The association between genotype and survival outcome was analyzed using the Kaplan-Meier method, Cox regression analysis and the log-rank test. The 1-year overall survival (OS) rates of patients younger than 40 years of age was higher compared to those in patients older than 40 years of age. The 1-year OS rate of patients who underwent total resection was higher than that of patients whose gliomas were not completely resected. The 1-year OS rates of patients undergoing chemotherapy and of patients who did not undergo chemotherapy were 39.90% and 26.80%, respectively. Univariate analyses showed that ACYP2 rs12615793 and TERT rs2853676 loci affected progression-free survival in glioma patients; both ZNF208 rs8105767 and ACYP2 rs843720 affected the OS of patients with low-grade gliomas. Multivariate analyses suggested that MPHOSPH6 rs1056629 and rs1056654, and TERT rs2853676 loci were associated with good prognoses of patients with glioma or high-grade gliomas, whereas ZNF208 rs8105767 was associated with good prognosis of patients with low-grade glioma. Age, surgical resection and chemotherapy influenced the survival rates of glioma patients. TERT, MPHOSPH6, ACYP2 and ZNF208 genes were found to affect glioma prognosis. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Clinical utility of 5-aminolevulinic acid HCl to better visualize and more completely remove gliomas

    Directory of Open Access Journals (Sweden)

    Halani SH

    2016-09-01

    Full Text Available Sameer H Halani,1 D Cory Adamson1,2 1Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA; 2Neurosurgery Section, Atlanta VA Medical Center, Decatur, GA, USA Abstract: Surgical resection is typically the first line of treatment for gliomas. However, the neurosurgeon faces a major challenge in achieving maximal resection in high-grade gliomas as these infiltrative tumors make it difficult to discern tumor margins from normal brain with conventional white-light microscopy alone. To aid in resection of these infiltrative tumors, fluorescence-guided surgery has gained much popularity in intraoperative visualization of malignant gliomas, with 5-aminolevulinic acid (5-ALA leading the way. First introduced in an article in Neurosurgery, 5-ALA has since become a safe, effective, and inexpensive method to visualize and improve resection of gliomas. This has undoubtedly led to improvements in the clinical course of patients as demonstrated by the increased overall and progression-free survival in patients with such devastating disease. This literature review aims to discuss the major studies and trials demonstrating the clinical utility of 5-ALA and its ability to aid in complete resection of malignant gliomas. Keywords: aminolevulinic acid, 5-ALA, fluorescence, glioblastoma multiforme, high-grade glioma, resection

  19. Glioma epidemiology in the central Tunisian population: 1993-2012.

    Science.gov (United States)

    Trabelsi, Saoussen; Brahim, Dorra H'mida-Ben; Ladib, Mohamed; Mama, Nadia; Harrabi, Imed; Tlili, Kalthoum; Yacoubi, Mohamed Tahar; Krifa, Hedi; Hmissa, Sihem; Saad, Ali; Mokni, Moncef

    2014-01-01

    Glioma is a heterogeneous central nervous system (CNS) tumor group that encompasses different histological subtypes with high variability in prognosis. The lesions account for almost 80% of primary malignant brain tumors. The aim of this study is to extend our understanding of the glioma epidemiology in the central Tunisian region. We analyzed 393 gliomas recorded in cancer registry of central Tunisia from 1993 to 2012. Crude incidence rates (CR) and world age-standardized rates (ASR) were estimated using annual population data size and age structure. Statistic correlations were established using Chi-square and Kaplan-Meier test. Tunisian glioma patients were identified with a mean age at diagnosis of 48 years and 1.5 sex ratio (male/female). During the 19 years period of study the highest incidence value was observed in male group between 1998 and 2002 (CR: 0.28, ASR: 0.3). Incidence results underline increasing high grade glioma occurring in the adulthood in the last period (2007-2012). Median survival was 27 months, with 1-, 2- and 5-year survival rates of 42%, 30% and 26%, respectively. Survival was greater in patients with younger age, lower tumor grade, infratentrial tumor location and undergoing a palliative treatment. This central Tunisia gliomas registry study provides important information that could improve glioma management and healthcare practice.

  20. Intraoperative Cerebral Glioma Characterization with Contrast Enhanced Ultrasound

    Directory of Open Access Journals (Sweden)

    Francesco Prada

    2014-01-01

    Full Text Available Background. Contrast enhanced ultrasound (CEUS is a dynamic and continuous modality providing real-time view of vascularization and flow distribution patterns of different organs and tumors. Nevertheless its intraoperative use for brain tumors visualization has been performed few times, and a thorough characterization of cerebral glioma had never been performed before. Aim. To perform the first characterization of cerebral glioma using CEUS and to possibly achieve an intraoperative differentiation of different gliomas. Methods. We performed CEUS in an off-label setting in 69 patients undergoing surgery for cerebral glioma. An intraoperative qualitative analysis was performed comparing iCEUS with B-mode imaging. A postprocedural semiquantitative analysis was then performed for each case, according to EFSUMB criteria. Results were related to histopathology. Results. We observed different CE patterns: LGG show a mild, dotted CE with diffuse appearance and slower, delayed arterial and venous phase. HGG have a high CE with a more nodular, nonhomogeneous appearance and fast perfusion patterns. Conclusion. Our study characterizes for the first time human brain glioma with CEUS, providing further insight regarding these tumors’ biology. CEUS is a fast, safe, dynamic, real-time, and economic tool that might be helpful during surgery in differentiating malignant and benign gliomas and refining surgical strategy.

  1. A population-based study of low-grade gliomas and mutated isocitrate dehydrogenase 1 (IDH1)

    DEFF Research Database (Denmark)

    Dahlrot, Rikke H; Kristensen, Bjarne W; Hjelmborg, Jacob

    2013-01-01

    Low-grade gliomas (LGG) have a slow growth rate, but transformations into malignant gliomas with a rapid deterioration occur in many patients. The aim of this study was to evaluate clinical prognostic factors in a population-based cohort of patients with LGG. In addition we investigated the expre...

  2. Retrospective analysis of 104 histologically proven adult brainstem gliomas: clinical symptoms, therapeutic approaches and prognostic factors

    International Nuclear Information System (INIS)

    Reithmeier, Thomas; Kuzeawu, Aanyo; Hentschel, Bettina; Loeffler, Markus; Trippel, Michael; Nikkhah, Guido

    2014-01-01

    Adult brainstem gliomas are rare primary brain tumors (<2% of gliomas). The goal of this study was to analyze clinical, prognostic and therapeutic factors in a large series of histologically proven brainstem gliomas. Between 1997 and 2007, 104 patients with a histologically proven brainstem glioma were retrospectively analyzed. Data about clinical course of disease, neuropathological findings and therapeutic approaches were analyzed. The median age at diagnosis was 41 years (range 18-89 years), median KPS before any operative procedure was 80 (range 20-100) and median survival for the whole cohort was 18.8 months. Histopathological examinations revealed 16 grade I, 31 grade II, 42 grade III and 14 grade IV gliomas. Grading was not possible in 1 patient. Therapeutic concepts differed according to the histopathology of the disease. Median overall survival for grade II tumors was 26.4 months, for grade III tumors 12.9 months and for grade IV tumors 9.8 months. On multivariate analysis the relative risk to die increased with a KPS ≤ 70 by factor 6.7, with grade III/IV gliomas by the factor 1.8 and for age ≥ 40 by the factor 1.7. External beam radiation reduced the risk to die by factor 0.4. Adult brainstem gliomas present with a wide variety of neurological symptoms and postoperative radiation remains the cornerstone of therapy with no proven benefit of adding chemotherapy. Low KPS, age ≥ 40 and higher tumor grade have a negative impact on overall survival

  3. Hodgkin's disease as unusual presentation of post-transplant lymphoproliferative disorder after autologous hematopoietic cell transplantation for malignant glioma

    Directory of Open Access Journals (Sweden)

    Scelsi Mario

    2005-08-01

    Full Text Available Abstract Background Post-transplant lymphoproliferative disorder (PTLD is a complication of solid organ and allogeneic hematopoietic stem cell transplantation (HSCT; following autologous HSCT only rare cases of PTLD have been reported. Here, a case of Hodgkin's disease (HD, as unusual presentation of PTLD after autologous HSCT for malignant glioma is described. Case presentation 60-years old man affected by cerebral anaplastic astrocytoma underwent subtotal neurosurgical excision and subsequent high-dose chemotherapy followed by autologous HSCT. During the post HSCT course, cranial irradiation and corticosteroids were administered as completion of therapeutic program. At day +105 after HSCT, the patient developed HD, nodular sclerosis type, with polymorphic HD-like skin infiltration. Conclusion The clinical and pathological findings were consistent with the diagnosis of PTLD.

  4. The neural stem cell fate determinant TLX promotes tumorigenesis and genesis of cells resembling glioma stem cells.

    Science.gov (United States)

    Park, Hyo-Jung; Kim, Jun-Kyum; Jeon, Hye-Min; Oh, Se-Yeong; Kim, Sung-Hak; Nam, Do-Hyun; Kim, Hyunggee

    2010-11-01

    A growing body of evidence indicates that deregulation of stem cell fate determinants is a hallmark of many types of malignancies. The neural stem cell fate determinant TLX plays a pivotal role in neurogenesis in the adult brain by maintaining neural stem cells. Here, we report a tumorigenic role of TLX in brain tumor initiation and progression. Increased TLX expression was observed in a number of glioma cells and glioma stem cells, and correlated with poor survival of patients with gliomas. Ectopic expression of TLX in the U87MG glioma cell line and Ink4a/Arf-deficient mouse astrocytes (Ink4a/Arf(-/-) astrocytes) induced cell proliferation with a concomitant increase in cyclin D expression, and accelerated foci formation in soft agar and tumor formation in in vivo transplantation assays. Furthermore, overexpression of TLX in Ink4a/Arf(-/-) astrocytes inhibited cell migration and invasion and promoted neurosphere formation and Nestin expression, which are hallmark characteristics of glioma stem cells, under stem cell culture conditions. Our results indicate that TLX is involved in glioma stem cell genesis and represents a potential therapeutic target for this type of malignancy.

  5. Chitosan-alginate 3D scaffolds as a mimic of the glioma tumor microenvironment.

    Science.gov (United States)

    Kievit, Forrest M; Florczyk, Stephen J; Leung, Matthew C; Veiseh, Omid; Park, James O; Disis, Mary L; Zhang, Miqin

    2010-08-01

    Despite recent advances in the understanding of its cell biology, glioma remains highly lethal. Development of effective therapies requires a cost-effective in vitro tumor model that more accurately resembles the in vivo tumor microenvironment as standard two-dimensional (2D) tissue culture conditions do so poorly. Here we report on the use of a three-dimensional (3D) chitosan-alginate (CA) scaffold to serve as an extracellular matrix that promotes the conversion of cultured cancer cells to a more malignant in vivo-like phenotype. Human U-87 MG and U-118 MG glioma cells and rat C6 glioma cells were chosen for the study. In vitro tumor cell proliferation and secretion of factors that promote tumor malignancy, including VEGF, MMP-2, fibronectin, and laminin, were assessed. The scaffolds pre-cultured with U-87 MG and C6 cells were then implanted into nude mice to evaluate tumor growth and blood vessel recruitment compared to the standard 2D cell culture and 3D Matrigel matrix xenograft controls. Our results indicate that while the behavior of C6 cells showed minimal differences due to their highly malignant and invasive nature, U-87 MG and U-118 MG cells exhibited notably higher malignancy when cultured in CA scaffolds. CA scaffolds provide a 3D microenvironment for glioma cells that is more representative of the in vivo tumor, thus can serve as a more effective platform for development and study of anticancer therapeutics. This unique CA scaffold platform may offer a valuable alternative strategy to the time-consuming and costly animal studies for a wide variety of experimental designs. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Clinical results of BNCT for malignant gliomas using BSH and BPA simultaneously

    International Nuclear Information System (INIS)

    Miyatake, Shin-ichi; Kawabata, Shinji; Kajimoto, Yoshinaga

    2006-01-01

    Since 2002 to 2006, we applied BNCT for 41 cases of malignant gliomas. We used 3 different protocols. In each protocol, we used BSH and BPA simultaneously. In protocol 1, BSH 5g/body and BPA 250 mg/kg were used for consecutive 13 cases. Median survival time (MST) of newly diagnosed 4 cases of GB was 23 months after diagnosis. 2 cases were still alive. All cases including recurrent ones showed radiographic improvement. Eight out of 12 cases showed more than 50% mass reduction on images. Major cause of death was CSF dissemination. In protocol 2, BNCT were applied for 4 patients, two times with one to 2 week-interval. MST after BNCT was 13.3 months. In protocol 3, BPA 700 mg/kg were used with 20 to 30 Gy XRT after BNCT. XRT boost was applied especially for deeper part of the tumor. In protocol 3, 6 newly diagnosed GB patients were observed more than 16 months. 3 were dead and 3 were still alive on the preparation of this abstract. MST of these 6 patients was 17.3 months after diagnosis. In each protocol, radiation necrosis was the problem for recurrent cases, while removal of the necrosis prolonged the survival and recovered the neurological deficits. (author)

  7. Pediatric glioma stem cells: biologic strategies for oncolytic HSV virotherapy

    Directory of Open Access Journals (Sweden)

    Gregory K Friedman

    2013-02-01

    Full Text Available While glioblastoma multiforme (GBM is the most common adult malignant brain tumor, GBMs in childhood represent less than 10% of pediatric malignant brain tumors and are phenotypically and molecularly distinct from adult GBMs. Similar to adult patients, outcomes for children with high-grade gliomas (HGGs remain poor. Furthermore, the significant morbidity and mortality yielded by pediatric GBM is compounded by neurotoxicity for the developing brain caused by current therapies. Poor outcomes have been attributed to a subpopulation of chemotherapy and radiotherapy resistant cells, termed ‘glioma stem cells’ (GSCs, ‘glioma progenitor cells’, or ‘glioma-initiating cells', which have the ability to initiate and maintain the tumor and to repopulate the recurring tumor after conventional therapy. Future innovative therapies for pediatric HGGs must be able to eradicate these therapy-resistant GSCs. Oncolytic herpes simplex viruses, genetically engineered to be safe for normal cells and to express diverse foreign anti-tumor therapeutic genes, have been demonstrated in preclinical studies to infect and kill GSCs and tumor cells equally while sparing normal brain cells. In this review, we discuss the unique aspects of pediatric GSCs, including markers to identify them, the microenvironment they reside in, signaling pathways that regulate them, mechanisms of cellular resistance, and approaches to target GSCs, with a focus on the promising therapeutic, genetically engineered oncolytic herpes simplex virus (HSV.

  8. Vascular Gene Expression in Nonneoplastic and Malignant Brain

    Science.gov (United States)

    Madden, Stephen L.; Cook, Brian P.; Nacht, Mariana; Weber, William D.; Callahan, Michelle R.; Jiang, Yide; Dufault, Michael R.; Zhang, Xiaoming; Zhang, Wen; Walter-Yohrling, Jennifer; Rouleau, Cecile; Akmaev, Viatcheslav R.; Wang, Clarence J.; Cao, Xiaohong; St. Martin, Thia B.; Roberts, Bruce L.; Teicher, Beverly A.; Klinger, Katherine W.; Stan, Radu-Virgil; Lucey, Brenden; Carson-Walter, Eleanor B.; Laterra, John; Walter, Kevin A.

    2004-01-01

    Malignant gliomas are uniformly lethal tumors whose morbidity is mediated in large part by the angiogenic response of the brain to the invading tumor. This profound angiogenic response leads to aggressive tumor invasion and destruction of surrounding brain tissue as well as blood-brain barrier breakdown and life-threatening cerebral edema. To investigate the molecular mechanisms governing the proliferation of abnormal microvasculature in malignant brain tumor patients, we have undertaken a cell-specific transcriptome analysis from surgically harvested nonneoplastic and tumor-associated endothelial cells. SAGE-derived endothelial cell gene expression patterns from glioma and nonneoplastic brain tissue reveal distinct gene expression patterns and consistent up-regulation of certain glioma endothelial marker genes across patient samples. We define the G-protein-coupled receptor RDC1 as a tumor endothelial marker whose expression is distinctly induced in tumor endothelial cells of both brain and peripheral vasculature. Further, we demonstrate that the glioma-induced gene, PV1, shows expression both restricted to endothelial cells and coincident with endothelial cell tube formation. As PV1 provides a framework for endothelial cell caveolar diaphragms, this protein may serve to enhance glioma-induced disruption of the blood-brain barrier and transendothelial exchange. Additional characterization of this extensive brain endothelial cell gene expression database will provide unique molecular insights into vascular gene expression. PMID:15277233

  9. Silencing Nrf2 impairs glioma cell proliferation via AMPK-activated mTOR inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Yue [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Wang, Handong, E-mail: njhdwang@hotmail.com [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Wang, Qiang [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Ding, Hui [Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical University (Guangzhou), 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Wu, Heming [Department of Neurosurgery, Nanjing Jingdu Hospital, No. 34, Biao 34, Yanggongjing Road, Nanjing 210002, Jiangsu Province (China); Pan, Hao [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China)

    2016-01-15

    Gliomas are the leading cause of death among adults with primary brain malignancies. Treatment for malignant gliomas remains limited, and targeted therapies have been incompletely explored. Nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription regulator for antioxidant and detoxification enzymes, is abundantly expressed in cancer cells. In this study, the role and mechanism of Nrf2 in cancer cell proliferation was investigated in multiple glioma cell lines. We first evaluated the expression patterns of Nrf2 in four glioma cell lines and found all four cell lines expressed Nrf2, but the highest level was observed in U251 cells. We further evaluated the biological functions of Nrf2 in U251 glioma cell proliferation by specific inhibition of Nrf2 using short hairpin RNA (shRNA). We found that Nrf2 depletion inhibited glioma cell proliferation. Nrf2 depletion also decreased colony formation in U251 cells stably expressing Nrf2 shRNA compared to scrambled control shRNA. Moreover, suppression of Nrf2 expression could lead to ATP depletion (with concomitant rise in AMP/ATP ratio) and consequently to AMPK-activated mTOR inhibition. Finally, activation of adenosine monophosphate–activated protein kinase (AMPK) by treated with phenformin, an AMPK agonist, can mimic the inhibitory effect of Nrf2 knockdown in U251 cells. In conclusion, our findings will shed light to the role and mechanism of Nrf2 in regulating glioma proliferation via ATP-depletion-induced AMPK activation and consequent mTOR inhibition, a novel insight into our understanding the role and mechanism of Nrf2 in glioma pathoetiology. To our knowledge, this is also the first report to provide a rationale for the implication of cross-linking between Nrf2 and mTOR signaling.

  10. Potential New Therapies for Pediatric Diffuse Intrinsic Pontine Glioma

    Directory of Open Access Journals (Sweden)

    Wenyong Long

    2017-07-01

    Full Text Available Diffuse intrinsic pontine glioma (DIPG is an extensively invasive malignancy with infiltration into other regions of the brainstem. Although large numbers of specific targeted therapies have been tested, no significant progress has been made in treating these high-grade gliomas. Therefore, the identification of new therapeutic approaches is of great importance for the development of more effective treatments. This article reviews the conventional therapies and new potential therapeutic approaches for DIPG, including epigenetic therapy, immunotherapy, and the combination of stem cells with nanoparticle delivery systems.

  11. Differential activation of catalase expression and activity by PPAR agonists: Implications for astrocyte protection in anti-glioma therapy☆

    Science.gov (United States)

    Khoo, Nicholas K.H.; Hebbar, Sachin; Zhao, Weiling; Moore, Steven A.; Domann, Frederick E.; Robbins, Mike E.

    2013-01-01

    Glioma survival is dismal, in part, due to an imbalance in antioxidant expression and activity. Peroxisome proliferator-activated receptor (PPAR) agonists have antineoplastic properties which present new redox-dependent targets for glioma anticancer therapies. Herein, we demonstrate that treatment of primary cultures of normal rat astrocytes with PPAR agonists increased the expression of catalase mRNA protein, and enzymatic activity. In contrast, these same agonists had no effect on catalase expression and activity in malignant rat glioma cells. The increase in steady-state catalase mRNA observed in normal rat astrocytes was due, in part, to de novo mRNA synthesis as opposed to increased catalase mRNA stability. Moreover, pioglitazone-mediated induction of catalase activity in normal rat astrocytes was completely blocked by transfection with a PPARγ-dominant negative plasmid. These data suggest that defects in PPAR-mediated signaling and gene expression may represent a block to normal catalase expression and induction in malignant glioma. The ability of PPAR agonists to differentially increase catalase expression and activity in normal astrocytes but not glioma cells suggests that these compounds might represent novel adjuvant therapeutic agents for the treatment of gliomas. PMID:24024139

  12. Concordance of patient and caregiver reports in evaluating quality of life in patients with malignant gliomas and an assessment of caregiver burden

    Science.gov (United States)

    Jacobs, Daniel I.; Kumthekar, Priya; Stell, Becky V.; Grimm, Sean A.; Rademaker, Alfred W.; Rice, Laurie; Chandler, James P.; Muro, Kenji; Marymont, MaryAnne; Helenowski, Irene B.; Wagner, Lynne I.; Raizer, Jeffrey J.

    2014-01-01

    Background Given the neurocognitive impairment experienced by many patients with malignant gliomas, caregiver reports can be critical in assessing the quality of life (QOL) of these patients. In this study, we explored whether assessment of patient QOL by the primary caregiver shows concordance with the patient's self-reported QOL, and we quantified the burden faced by caregivers. Methods QOL of 45 patients was evaluated by both the patient and primary caregiver on 3 or more separate occasions using the Functional Assessment of Cancer Therapy-Brain (FACT-Br) instrument, and concordance between the 2 reports was evaluated. Caregiver burden was measured using the Caregiver Quality of Life Index-Cancer (CQOL-C) instrument. Results Overall, good concordance was observed between the patient and caregiver FACT-Br reports (intraclass correlation coefficient = 0.74). Patient-reported FACT-Br scores were 4.75 (95% CI, 1.44–8.05) points higher than paired caregiver reports on the 200-point scale (P = .008); however, this difference did not achieve clinical significance. Caregiver burden, as measured by the CQOL-C, was significantly greater among caregivers in this study than those previously reported for caregivers of patients with lung, breast, or prostate cancer (P < .001). Conclusions Despite minor discrepancies in caregiver assessments of patient QOL relative to patient self-reports, our results suggest that the caregiver assessments can serve as adequate proxies for patient reports. Our results also illustrate the particularly heavy burden faced by caregivers of patients with malignant glioma. Further research into both of these areas is warranted. PMID:26034616

  13. Epstein–Barr Virus in Gliomas: Cause, Association, or Artifact?

    Directory of Open Access Journals (Sweden)

    Saghir Akhtar

    2018-04-01

    Full Text Available Gliomas are the most common malignant brain tumors and account for around 60% of all primary central nervous system cancers. Glioblastoma multiforme (GBM is a grade IV glioma associated with a poor outcome despite recent advances in chemotherapy. The etiology of gliomas is unknown, but neurotropic viruses including the Epstein–Barr virus (EBV that is transmitted via salivary and genital fluids have been implicated recently. EBV is a member of the gamma herpes simplex family of DNA viruses that is known to cause infectious mononucleosis (glandular fever and is strongly linked with the oncogenesis of several cancers, including B-cell lymphomas, nasopharyngeal, and gastric carcinomas. The fact that EBV is thought to be the causative agent for primary central nervous system (CNS lymphomas in immune-deficient patients has led to its investigations in other brain tumors including gliomas. Here, we provide a review of the clinical literature pertaining to EBV in gliomas and discuss the possibilities of this virus being simply associative, causative, or even an experimental artifact. We searched the PubMed/MEDLINE databases using the following key words such as: glioma(s, glioblastoma multiforme, brain tumors/cancers, EBV, and neurotropic viruses. Our literature analysis indicates conflicting results on the presence and role of EBV in gliomas. Further comprehensive studies are needed to fully implicate EBV in gliomagenesis and oncomodulation. Understanding the role of EBV and other oncoviruses in the etiology of gliomas, would likely open up new avenues for the treatment and management of these, often fatal, CNS tumors.

  14. EG-07CELL CYCLE SIGNATURE AND TUMOR PHYLOGENY ARE ENCODED IN THE EVOLUTIONARY DYNAMICS OF DNA METHYLATION IN GLIOMA

    Science.gov (United States)

    Mazor, Tali; Pankov, Aleksandr; Johnson, Brett E.; Hong, Chibo; Bell, Robert J.A.; Smirnov, Ivan V.; Reis, Gerald F.; Phillips, Joanna J.; Barnes, Michael; Bollen, Andrew W.; Taylor, Barry S.; Molinaro, Annette M.; Olshen, Adam B.; Song, Jun S.; Berger, Mitchel S.; Chang, Susan M.; Costello, Joseph F.

    2014-01-01

    The clonal evolution of tumor cell populations can be reconstructed from patterns of genetic alterations. In contrast, tumor epigenetic states, including DNA methylation, are reversible and sensitive to the tumor microenvironment, presumably precluding the use of epigenetics to discover tumor phylogeny. Here we examined the spatial and temporal dynamics of DNA methylation in a clinically and genetically characterized cohort of IDH1-mutant low-grade gliomas and their patient-matched recurrences. WHO grade II gliomas are diffuse, infiltrative tumors that frequently recur and may undergo malignant progression to a higher grade with a worse prognosis. The extent to which epigenetic alterations contribute to the evolution of low-grade gliomas, including malignant progression, is unknown. While all gliomas in the cohort exhibited the hypermethylation signature associated with IDH1 mutation, low-grade gliomas that underwent malignant progression to high-grade glioblastoma (GBM) had a unique signature of DNA hypomethylation enriched for active enhancers, as well as sites of age-related hypermethylation in the brain. Genes with promoter hypomethylation and concordant transcriptional upregulation during evolution to GBM were enriched in cell cycle function, evolving in concert with genetic alterations that deregulate the G1/S cell cycle checkpoint. Despite the plasticity of tumor epigenetic states, phyloepigenetic trees robustly recapitulated phylogenetic trees derived from somatic mutations in the same patients. These findings highlight widespread co-dependency of genetic and epigenetic events throughout the clonal evolution of initial and recurrent glioma.

  15. Evaluation glioma for C-11-methyl-L-methionine PET

    International Nuclear Information System (INIS)

    Kenji Torii; Joji Kawabe; Takehiro hayashi; Jin Kotani; Ai Oe; Etsushi Kawamura; Hirotaka Ishizu; Hiroyuki Tsushima; Mitsuhiro Hara; Susumu Shiomi; Naohiro Tsuyuguchi

    2004-01-01

    Positron emission tomography (PET) using a positron tracer allows noninvasive measurement of regional brain metabolism and has been utilized for pathophysiological evaluation of brain tumors and as a highly specific means for diagnosis of brain tumors. Like the images yielded from anatomical imaging techniques such as computer tomography (CT) and magnetic resonance imaging (MRI), PET images play an important role as functional images. In cases of glioma, the manner by which the tumor cells spread to surrounding cells varies from case to case, and the extent of their spread also varies among different cases. It is reported that glioma is difficult to detect on anatomical images. C-11-methyl-L-methionine (Met) is taken up into glioma more markedly than into intact tissue and is thus considered to provide a useful means of tumor localization. It is possible to precisely determine the scope of glioma invasion by CT, MRI or F-18 fluoro-2-deoxy-D-glucose (FDG)-PET. This information is useful in determining an optimal operative procedure, the scope of postoperative radiotherapy and an optimal chemotherapy individual cases. It is also known that the evaluation of the malignancy level of glioma is closely related to the prognosis of patients with this tumor. Although FDG-PET allows evaluation of the malignancy level of glioma, PET using methionine (Met-PET) provides the best means of localization of tumors (including determination of the extent of tumor invasion). Therefore, if a technique of evaluating the malignancy level of glioma using Met-PET is established, it will be highly useful in clinical practice. At our facility, attempts have been made to use FDG-PET and Met-PET for evaluation of the malignancy level and scope of invasion of tumors in patients suspected of having brain tumors. The present study was undertaken to evaluate the degree of accumulation of Met in glioma using Met-PET (a technique expected to allow more accurate evaluation of the extent of tumor

  16. Benefits of adjuvant chemotherapy in high-grade gliomas.

    Science.gov (United States)

    DeAngelis, Lisa M

    2003-12-01

    The current standard of care for patients with high-grade glioma is resection followed by radiotherapy. Adjuvant chemotherapy is not widely accepted because of the low sensitivity of gliomas to traditional antineoplastic agents, the poor penetration of most drugs across the blood-brain barrier, and the significant systemic toxicity associated with current agents. However, nitrosoureas and, subsequently, temozolomide (Temodar [US], Temodal [international]; Schering-Plough Corporation, Kenilworth, NJ), a novel alkylating agent, cross the blood-brain barrier and have activity against gliomas. Nitrosoureas have been studied in phase III trials in the adjuvant setting. In individual trials, chemotherapy did not increase median survival but did increase the proportion of patients surviving >/=18 months by 15%. Only with large meta-analyses did the addition of chemotherapy achieve a statistically significant improvement in median survival. Currently there is no means of identifying which patients will benefit from adjuvant chemotherapy, but nitrosoureas and temozolomide are well tolerated in most patients, justifying the administration of adjuvant chemotherapy to all newly diagnosed patients with malignant glioma.

  17. In vivo detection of c-Met expression in a rat C6 glioma model.

    Science.gov (United States)

    Towner, R A; Smith, N; Doblas, S; Tesiram, Y; Garteiser, P; Saunders, D; Cranford, R; Silasi-Mansat, R; Herlea, O; Ivanciu, L; Wu, D; Lupu, F

    2008-01-01

    The tyrosine kinase receptor, c-Met, and its substrate, the hepatocyte growth factor (HGF), are implicated in the malignant progression of glioblastomas. In vivo detection of c-Met expression may be helpful in the diagnosis of malignant tumours. The C6 rat glioma model is a widely used intracranial brain tumour model used to study gliomas experimentally. We used a magnetic resonance imaging (MRI) molecular targeting agent to specifically tag the cell surface receptor, c-Met, with an anti-c-Met antibody (Ab) linked to biotinylated Gd (gadolinium)-DTPA (diethylene triamine penta acetic acid)-albumin in rat gliomas to detect overexpression of this antigen in vivo. The anti-c-Met probe (anti-c-Met-Gd-DTPA-albumin) was administered intravenously, and as determined by an increase in MRI signal intensity and a corresponding decrease in regional T(1) relaxation values, this probe was found to detect increased expression of c-Met protein levels in C6 gliomas. In addition, specificity for the binding of the anti-c-Met contrast agent was determined by using fluorescence microscopic imaging of the biotinylated portion of the targeting agent within neoplastic and 'normal'brain tissues following in vivo administration of the anti-c-Met probe. Controls with no Ab or with a normal rat IgG attached to the contrast agent component indicated no non-specific binding to glioma tissue. This is the first successful visualization of in vivo overexpression of c-Met in gliomas.

  18. “...those left behind.” Biology and Oncology of Invasive Glioma Cells

    Directory of Open Access Journals (Sweden)

    Michael E Berens

    1999-08-01

    Full Text Available Although significant technical advances in surgical and radiation treatment for brain tumors have emerged in recent years, their impact on clinical outcome for patients has been disappointing. A fundamental source of the management challenge presented by glioma patients is the insidious propensity of the malignant cells to invade into adjacent normal brain. Invasive tumor cells escape surgical removal and geographically dodge lethal radiation exposure. Recent improved understanding of the biochemistry and molecular determinants of glioma cell invasion provide valuable insight to the underlying biological features of the disease, as well as illuminating possible new therapeutic targets. Heightened commitment to migrate and invade is accompanied by a glioma cell's reduced proliferative activity. The microenvironmental manipulations coincident to invasion and migration may also impact the glioma cell's response to cytotoxic treatments. These collateral aspects of the glioma cell invasive phenotype should be further explored and exploited as novel antiglioma therapies.

  19. Microglia immunophenotyping in gliomas

    Science.gov (United States)

    Annovazzi, Laura; Mellai, Marta; Bovio, Enrica; Mazzetti, Samanta; Pollo, Bianca; Schiffer, Davide

    2018-01-01

    Microglia, once assimilated to peripheral macrophages, in gliomas has long been discussed and currently it is hypothesized to play a pro-tumor role in tumor progression. Uncertain between M1 and M2 polarization, it exchanges signals with glioma cells to create an immunosuppressive microenvironment and stimulates cell proliferation and migration. Four antibodies are currently used for microglia/macrophage identification in tissues that exhibit different cell forms and cell localization. The aim of the present work was to describe the distribution of the different cell forms and to deduce their significance on the basis of what is known on their function from the literature. Normal resting microglia, reactive microglia, intermediate and bumpy forms and macrophage-like cells can be distinguished by Iba1, CD68, CD16 and CD163 and further categorized by CD11b, CD45, c-MAF and CD98. The number of microglia/macrophages strongly increased from normal cortex and white matter to infiltrating and solid tumors. The ramified microglia accumulated in infiltration areas of both high- and low-grade gliomas, when hypertrophy and hyperplasia occur. In solid tumors, intermediate and bumpy forms prevailed and there is a large increase of macrophage-like cells in glioblastoma. The total number of microglia cells did not vary among the three grades of malignancy, but macrophage-like cells definitely prevailed in high-grade gliomas and frequently expressed CD45 and c-MAF. CD98+ cells were present. Microglia favors tumor progression, but many aspects suggest that the phagocytosing function is maintained. CD98+ cells can be the product of fusion, but also of phagocytosis. Microglia correlated with poorer survival in glioblastoma, when considering CD163+ cells, whereas it did not change prognosis in isocitrate dehydrogenase-mutant low grade gliomas. PMID:29399160

  20. Meningiomas, dicentric chromosomes, gliomas, and telomerase activity.

    Science.gov (United States)

    Carroll, T; Maltby, E; Brock, I; Royds, J; Timperley, W; Jellinek, D

    1999-08-01

    Lack of telomere maintenance during cell replication leads to telomere erosion and loss of function. This can result in telomere associations which probably cause the dicentric chromosomes seen in some tumour cells. One mechanism of telomere maintenance in dividing cells is the action of telomerase, a ribonucleoprotein enzyme that adds TTAGGG repeats onto telomeres and compensates for their shortening during cell division. Over 90 per cent of extracranial malignant neoplasms have been found to have telomerase activity. This study sought to determine if there was a relationship between absence of telomerase activity and presence of dicentric chromosomes in meningiomas and to what extent the other main group of central nervous system tumours, the gliomas, expressed telomerase activity. Telomerase activity was measured on 25 meningiomas and 29 gliomas. Four of the meningiomas were atypical variants and 11 were positive for dicentric chromosomes. Twenty-five of 29 gliomas were glioblastoma multiforme tumours. Measures were taken to ensure absence of false positives due to primer-dimer interaction and false negatives due to protein degradation or the presence of Taq polymerase inhibitors. All 25 meningiomas and the four low-grade gliomas (WHO grade II) were telomerase activity-negative. Seven (28 per cent) of the 25 glioblastoma multiforme tumours showed telomerase activity. The absence of telomerase activity in meningiomas and the high frequency of telomere associations support the hypothesis that these tumours are benign, transformed but pre-crisis. The relatively low frequency of telomerase activity in the malignant glioblastoma multiforme suggests that most of these tumours may have other mechanisms of telomere maintenance and that the potentially therapeutic telomerase inhibitors will not be of great value in the future management of the majority of patients suffering from these tumours. Copyright 1999 John Wiley & Sons, Ltd.

  1. Therapeutic efficacy of chemotherapy with ACNU and radiation therapy for malignant glioma in the cerebral hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Miyagami, Mitsusuke; Katayama, Yoichi; Nakamura, Saburo [Nihon Univ., Tokyo (Japan). School of Medicine

    2000-10-01

    Seventy-two patients with malignant gliomas (57 with glioblastoma and 15 with anaplastic astrocytoma) in the cerebral hemisphere were studied retrospectively to evaluate the therapeutic efficacy of chemotherapy with nimustine and radiation after surgery. Survival was analyzed with the Kaplan-Meier method in 21 patients treated with radiotherapy after surgery and 51 patients treated with nimustine and radiotherapy after surgery. Histological classification age, and the extent of resection of the tumors were significantly correlated with survival. The median survival time was 8 months in patients treated with radiotherapy and 15 months in patients treated with nimustine and radiotherapy. The 2- and 5-year survival rates were 12% and 0% in patients treated with radiotherapy and 33% and 22% in patients treated with nimustine and radiotherapy. Thus, a significant difference in survival was recognized, and chemotherapy with nimustine was found to be useful as an adjuvant therapy for glioblastoma after surgery. However, survival time did not differ between intravenous and intra-arterial infusion of nimustine. (author)

  2. Dynamic stroma reorganization drives blood vessel dysmorphia during glioma growth.

    Science.gov (United States)

    Mathivet, Thomas; Bouleti, Claire; Van Woensel, Matthias; Stanchi, Fabio; Verschuere, Tina; Phng, Li-Kun; Dejaegher, Joost; Balcer, Marly; Matsumoto, Ken; Georgieva, Petya B; Belmans, Jochen; Sciot, Raf; Stockmann, Christian; Mazzone, Massimiliano; De Vleeschouwer, Steven; Gerhardt, Holger

    2017-12-01

    Glioma growth and progression are characterized by abundant development of blood vessels that are highly aberrant and poorly functional, with detrimental consequences for drug delivery efficacy. The mechanisms driving this vessel dysmorphia during tumor progression are poorly understood. Using longitudinal intravital imaging in a mouse glioma model, we identify that dynamic sprouting and functional morphogenesis of a highly branched vessel network characterize the initial tumor growth, dramatically changing to vessel expansion, leakage, and loss of branching complexity in the later stages. This vascular phenotype transition was accompanied by recruitment of predominantly pro-inflammatory M1-like macrophages in the early stages, followed by in situ repolarization to M2-like macrophages, which produced VEGF-A and relocate to perivascular areas. A similar enrichment and perivascular accumulation of M2 versus M1 macrophages correlated with vessel dilation and malignancy in human glioma samples of different WHO malignancy grade. Targeting macrophages using anti-CSF1 treatment restored normal blood vessel patterning and function. Combination treatment with chemotherapy showed survival benefit, suggesting that targeting macrophages as the key driver of blood vessel dysmorphia in glioma progression presents opportunities to improve efficacy of chemotherapeutic agents. We propose that vessel dysfunction is not simply a general feature of tumor vessel formation, but rather an emergent property resulting from a dynamic and functional reorganization of the tumor stroma and its angiogenic influences. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  3. Expression of Zonulin, c-kit, and Glial Fibrillary Acidic Protein in Human Gliomas.

    Science.gov (United States)

    Skardelly, Marco; Armbruster, Franz Paul; Meixensberger, Jürgen; Hilbig, Heidegard

    2009-08-18

    The hallmarks of human malignant gliomas are their marked invasiveness and vascularity. Because angiogenesis and tumor invasion have been associated with extracellular matrix degradation and intercellular tight junctions, the involvement of zonulin in glioma biology is in the focus. We selected for histological examination five cases of glioblastoma WHO IV (nomenclature of the World Health Organization) and one case each from astrocytoma WHO III, meningioma WHO III, and meningioma WHO I as control samples. The meningioma WHO I is regarded as benign, whereas the meningioma WHO III is recognized as the transition form of malignant tumors in humans. The visualization of a newly designed antibody against human zonulin was studied in triple-labeling studies using fluorescence immunocytochemistry and compared with the expression of c-kit and glial fibrillary acidic protein in differently developed human gliomas. We found that increasing the expression of c-kit is accompanied by an increase of zonulin expression. Both are correlated to the degree of malignancy of human brain tumors. The expression of zonulin is correlated to the degradation of the blood-brain barrier as revealed by Griffonia simplicifolia lectin. In differently graded tumors, we found differently graded involvement of blood vessels in the tumor development, explaining patients' survival.

  4. Radiation-Induced Malignant Gliomas: Is There a Role for Reirradiation?

    International Nuclear Information System (INIS)

    Paulino, Arnold C.; Mai, Wei Y.; Chintagumpala, Murali; Taher, Abida; Teh, Bin S.

    2008-01-01

    Purpose: To review the literature regarding the role of radiotherapy (RT) in the treatment of patients with radiation-induced malignant gliomas (RIMGs). Methods and Materials: A PubMed search of English-language articles dealing with RIMG was performed, yielding 52 articles with 92 patients available for review. Results: Initial tumor types treated with RT included brain tumor in 37 patients (40%), acute lymphoblastic leukemia in 33 (36%), benign disease in 11 (12%), and other in 11 (12%). Median time from RT to development of an RIMG was 8.75 years (range, 2.5-61 years). The RIMG occurred within 10 years after RT in 81% of patients with acute lymphoblastic leukemia/lymphoma, 59% of patients with brain/other, and 18% of patients with benign conditions (p = 0.002). Type of RIMG was glioblastoma in 69 (75%) and anaplastic astrocytoma in 23 (25%). One-, 2-, and 5-year overall survival rates were 29.3%, 7.3%, and 0% for patients with glioblastoma and 59.7%, 30.3%, and 20.2% for patients with anaplastic astrocytoma. For the 85 patients with data regarding treatment for RIMG, 35 underwent reirradiation to a median dose of 50 Gy (range, 30-76 Gy). For patients undergoing reirradiation, 1-, 2- and 5-year overall survival rates were 58.9%, 20.5%, and 6.8%. For those not undergoing reirradiation, they were 15.1%, 3%, and 0% (p = 0.0009). Conclusions: The RIMG appeared earlier in patients treated for leukemia and lymphoma and latest for those treated for a benign condition. Patients who underwent reirradiation for RIMG have longer survival times compared with those not receiving RT

  5. Characterization of PD-1 upregulation on tumor-infiltrating lymphocytes in human and murine gliomas and preclinical therapeutic blockade.

    Science.gov (United States)

    Dejaegher, Joost; Verschuere, Tina; Vercalsteren, Ellen; Boon, Louis; Cremer, Jonathan; Sciot, Raf; Van Gool, Stefaan W; De Vleeschouwer, Steven

    2017-11-01

    Blockade of the immune checkpoint molecule programmed-cell-death-protein-1 (PD-1) yielded promising results in several cancers. To understand the therapeutic potential in human gliomas, quantitative data describing the expression of PD-1 are essential. Moreover, due the immune-specialized region of the brain in which gliomas arise, differences between tumor-infiltrating and circulating lymphocytes should be acknowledged. In this study we have used flow cytometry to quantify PD-1 expression on tumor-infiltrating T cells of 25 freshly resected glioma cell suspensions (10 newly and 5 relapsed glioblastoma, 10 lower grade gliomas) and simultaneously isolated circulating T cells. A strong upregulation of PD-1 expression in the tumor microenvironment compared to the blood circulation was seen in all glioma patients. Additionally, circulating T cells were isolated from 15 age-matched healthy volunteers, but no differences in PD-1 expression were found compared to glioma patients. In the murine GL261 malignant glioma model, there was a similar upregulation of PD-1 on brain-infiltrating lymphocytes. Using a monoclonal PD-1 blocking antibody, we found a marked prolonged survival with 55% of mice reaching long-term survival. Analysis of brain-infiltrating cells 21 days after GL261 tumor implantation showed a shift in infiltrating lymphocyte subgroups with increased CD8+ T cells and decreased regulatory T cells. Together, our results suggest an important role of PD-1 in glioma-induced immune escape, and provide translational evidence for the use of PD-1 blocking antibodies in human malignant gliomas. © 2017 UICC.

  6. EMMPRIN is an independent negative prognostic factor for patients with astrocytic glioma.

    Directory of Open Access Journals (Sweden)

    Li Tian

    Full Text Available Extracellular matrix metalloproteinase inducer (EMMPRIN, also known as CD147, is a member of the immunoglobulin superfamily that is present on the surface of tumor cells and stimulates adjacent fibroblasts to produce matrix metalloproteinases (MMPs. It has been proved to be associated with tumor invasion and metastasis in various human malignancies. In our study, the protein expression level of EMMPRIN in 306 cases of astrocytic glioma is investigated by immunohistochemistry assay. Statistical analysis was utilized to evaluate the association of EMMPRIN with clinicopathological characteristics and prognosis of patients. It was proved that EMMPRIN protein expression was increased in glioma compared with that in normal brain tissue. Moreover, EMMPRIN immunohistochemical staining was correlated with WHO grade and Karnofsky performance score for strong positive EMMPRIN staining is more frequently detected in glioma of advanced grade or low KPS score. It is also demonstrated that EMMPRIN could be an independent negative prognostic factor in glioma for patients with glioma of strong EMMPRIN staining tend to have high risk of death. These results proved that EMMPRIN is associated with prognosis of glioma, which may also suggest the potential role of EMMPRIN in glioma management.

  7. EMMPRIN is an independent negative prognostic factor for patients with astrocytic glioma.

    Science.gov (United States)

    Tian, Li; Zhang, Yang; Chen, Yu; Cai, Min; Dong, Hailong; Xiong, Lize

    2013-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN), also known as CD147, is a member of the immunoglobulin superfamily that is present on the surface of tumor cells and stimulates adjacent fibroblasts to produce matrix metalloproteinases (MMPs). It has been proved to be associated with tumor invasion and metastasis in various human malignancies. In our study, the protein expression level of EMMPRIN in 306 cases of astrocytic glioma is investigated by immunohistochemistry assay. Statistical analysis was utilized to evaluate the association of EMMPRIN with clinicopathological characteristics and prognosis of patients. It was proved that EMMPRIN protein expression was increased in glioma compared with that in normal brain tissue. Moreover, EMMPRIN immunohistochemical staining was correlated with WHO grade and Karnofsky performance score for strong positive EMMPRIN staining is more frequently detected in glioma of advanced grade or low KPS score. It is also demonstrated that EMMPRIN could be an independent negative prognostic factor in glioma for patients with glioma of strong EMMPRIN staining tend to have high risk of death. These results proved that EMMPRIN is associated with prognosis of glioma, which may also suggest the potential role of EMMPRIN in glioma management.

  8. Clinical results of BNCT for malignant brain tumors in children

    International Nuclear Information System (INIS)

    Nakagawa, Yoshinobu; Kageji, Teruyoshi; Mizobuchi, Yoshifumi; Kumada, Hiroaki; Nakagawa, Yoshiaki

    2009-01-01

    It is very difficult to treat the patients with malignant brain tumor in children, especially under 3 years, because the conventional irradiation cannot be applied due to the damage of normal brain tissue. However, boron neutron capture therapy (BNCT) has tumor selectivity such that it can make damage only in tumor cells. We evaluated the clinical results and courses in patients with malignant glioma under 15 years. Among 183 patients with brain tumors treated by our group using BSH-based intra-operative BNCT, 23 patients were under 15 years. They included 4 patients under 3 years. There were 3 glioblastomas (GBM), 6 anaplastic astrocytomas(AAS), 7 primitive neuroectodermal tumors (PNET), 6 pontine gliomas and 1 anaplastic ependymoma. All GBM and PNET patients died due to CSF and/or CNS dissemination without local tumor regrowth. All pontine glioma patients died due to regrowth of the tumor. Four of 6 anaplastic astrocytoma and 1 anaplastic ependymoma patients alive without tumor recurrence. BNCT can be applied to malignant brain tumors in children, especially under 3 years instead of conventional radiation. Although it can achieve the local control in the primary site, it cannot prevent CSF dissemination in patients with glioblastoma.

  9. Slow neutron capture therapy for malignant glioma (boron or lithium neutron capture therapy)

    International Nuclear Information System (INIS)

    Hatanaka, Hiroshi

    1981-01-01

    In recurrent glioblastoma, the mean survival period is approx. 6 months by the routine methods of treatment, but is extended more than 3-fold by neutron capture therapy. This method and a routine method with 60 Co or an accelerator were used for comparison in the clinical treatment of 26 patients with supratentorial malignant glioma. There were no significant differences as for prognostic factors of the group treated by this method and those of the control group; No. of cases 14 and 12, the mean age 46 and 53.5 yr, and the stage (TNM) 3.14 and 2.83, respectively. As of the end of Feb. 1980, this method showed a lifeprolonging effect 3 times that of the control, the mean survival period being 67 weeks for this method and 21 for the control. Although 100% improvement was observed in about one half of the cases by this method, the control group showed improvement of only 80% at maximum. It is also possible to treat any deep portion of the brain with thermal neutrons. As a Boron compound, mercaptoundecahydrododecarborate with a low toxicity has been put into practical use for brain tumors, and as Li, the use of 6 LiCl for lung cancer is under examination. (Chiba, N.)

  10. Effect of flupirtine on the growth and viability of U373 malignant glioma cells

    International Nuclear Information System (INIS)

    Panchanathan, Elango; Ramanathan, Gnanasambandan; Lakkakula, Bhaskar Venkata Kameswara Subrahmanya

    2013-01-01

    Flupirtine is a non-opioid analgesic without antipyretic or antiphlogistic properties but with favorable tolerability in humans. This analgesic also exhibits neuroprotective activities. Furthermore, flupirtine antagonizes glutamate- and NMDA-induced intracellular levels of Ca 2+ and counteracts the effects of focal cerebral ischemia. Although flupirtine has been used to relieve pain caused by different diseases and clinical procedures, information on the safety and efficacy of flupirtine is limited. The present study was conducted to investigate the neuroprotective effects of flupirtine on U373 malignant glioma (MG) cell lines. Cell viability and cell cycle analysis was performed by MTT assay and flow cytometry, respectively. Variations in the growth of U373 MG cells in 5 mM N-methyl-D-aspartate (NMDA), 1 mM flupirtine, and combined treatment indicated the antagonistic effects of NMDA and flupirtine on MG cell lines. The variation in the percentage of gated cell population in different cell cycle phases showed significant variations after 48 h of treatment. Flupirtine has neuroprotective effect of on U373 MG cells, which limits its use in the pain management of brain tumors. This property warrants further studies using animal models and large-scale clinical trials

  11. Evaluation of the risk of liver damage from the use of 5-aminolevulinic acid for intra-operative identification and resection in patients with malignant gliomas

    DEFF Research Database (Denmark)

    Offersen, Cecilie Mørck; Skjoeth-Rasmussen, Jane

    2017-01-01

    BACKGROUND: The clinical efficacy of 5-aminolevulinic acid (5-ALA) for fluorescence-guided surgery of malignant gliomas is evident from several studies; however, as post-operative elevations of liver enzymes have been seen, there is a potential risk of liver damage upon administration. The aim...... (September 2012-September 2014) at the University Hospital of Copenhagen, Rigshospitalet, was conducted. All patients received a pre-operative dose of 20 mg/kg bodyweight 5-ALA. The pre- and post-operative enzyme levels of alanine aminotransferase, aspartate aminotransferase, gamma glutamyltransferase...

  12. NUMB does not impair growth and differentiation status of experimental gliomas

    International Nuclear Information System (INIS)

    Euskirchen, Philipp; Skaftnesmo, Kai-Ove; Huszthy, Peter C.; Brekkå, Narve; Bjerkvig, Rolf; Jacobs, Andreas H.; Miletic, Hrvoje

    2011-01-01

    The cell fate determinant NUMB orchestrates asymmetric cell division in flies and mammals and has lately been suggested to have a tumor suppressor function in breast and lung cancer. Here, we studied NUMB in the context of malignant gliomas. We used ectopic expression of NUMB in order to inhibit proliferation and induce differentiation in glioma cells by alteration of Notch, Hedgehog and p53 signaling. We found that NUMB is consistently expressed in glioma biopsies with predominance of NUMB2/4 isoforms as determined by isoform-specific real-time PCR and Western blotting. Upon lentiviral overexpression, in vitro proliferation rate and the grade of differentiation as assessed by morphology and expression of neural and glial markers remained unchanged. Orthotopic xenografts of NUMB-transduced human U87 glioma cells could be established in nude rats without impairing engraftment or causing significant changes in morphology based on magnetic resonance imaging (MRI). The previously reported alteration of Hedgehog and p53 signaling by NUMB could not be recapitulated in glioma cells. We thus show that in experimental gliomas, NUMB overexpression most likely does not exert a tumor suppressor function such as seen in epithelial cancers.

  13. Germline rearrangements in families with strong family history of glioma and malignant melanoma, colon, and breast cancer

    DEFF Research Database (Denmark)

    Andersson, Ulrika; Wibom, Carl; Cederquist, Kristina

    2014-01-01

    -dependent probe amplification. These families all had at least 2 verified glioma cases and a third reported or verified glioma case in the same family or 2 glioma cases in the family with at least one family member affected with melanoma, colon, or breast cancer.The genomic areas covering TP53, CDKN2A, MLH1...

  14. Glioma in a goat

    International Nuclear Information System (INIS)

    Marshall, C.L.; Weinstock, D.; Kramer, R.W.; Bagley, R.S.

    1995-01-01

    An adult goat was examined because of behavioral changes and circling. Results of neurologic examination, CSF analysis, hematologic evaluation, and computed tomography of the brain were suggestive of an intra-axial mass. The goat was euthanatized because of worsening neurologic condition and poor prognosis. Necropsy revealed a large mass in the right cerebral hemisphere and caudal brain herniation through the foramen magnum. The mass was diagnosed as a glioma, with oligodendrocyte differentiation. Results of immunohistochemical evaluation were compatible with a malignant, poorly differentiated tumor

  15. Anti-vascular endothelial growth factor therapy-induced glioma invasion is associated with accumulation of Tie2-expressing monocytes

    Science.gov (United States)

    Hossain, Mohammad B.; Conrad, Charles A.; Aldape, Kenneth D.; Fuller, Gregory N.; Marini, Frank C.; Alonso, Marta M.; Idoate, Miguel Angel; Gilbert, Mark R.; Fueyo, Juan; Gomez-Manzano, Candelaria

    2014-01-01

    The addition of anti-angiogenic therapy to the few treatments available to patients with malignant gliomas was based on the fact that these tumors are highly vascularized and on encouraging results from preclinical and clinical studies. However, tumors that initially respond to this therapy invariably recur with the acquisition of a highly aggressive and invasive phenotype. Although several myeloid populations have been associated to this pattern of recurrence, a specific targetable population has not been yet identified. Here, we present evidence for the accumulation of Tie2-expressing monocytes/macrophages (TEMs) at the tumor/normal brain interface of mice treated with anti-VEGF therapies in regions with heightened tumoral invasion. Furthermore, we describe the presence of TEMs in malignant glioma surgical specimens that recurred after bevacizumab treatment. Our studies showed that TEMs enhanced the invasive properties of glioma cells and secreted high levels of gelatinase enzymatic proteins. Accordingly, Tie2+MMP9+ monocytic cells were consistently detected in the invasive tumor edge upon anti-VEGF therapies. Our results suggest the presence of a specific myeloid/monocytic subpopulation that plays a pivotal role in the mechanism of escape of malignant gliomas from anti-VEGF therapies and therefore constitutes a new cellular target for combination therapies in patients selected for anti-angiogenesis treatment. PMID:24809734

  16. Stat3 Expression and Its Correlation with Proliferation and Apoptosis/Autophagy in Gliomas

    Directory of Open Access Journals (Sweden)

    Valentina Caldera

    2008-01-01

    Full Text Available Signal transducer and activator of transcription-3 (Stat3 was studied along with several steps of the PI3/Akt pathway in a series of 64 gliomas that included both malignant and low-grade tumors, using quantitative immunohistochemistry, Western blotting, and molecular biology techniques. The goal of the study was to investigate whether activated Stat3 (phospho-Stat3 levels correlated with cell proliferation, apoptosis, and autophagy. Stat3 and activated Akt (phospho-Akt expression increased with malignancy grade, but did not correlate with proliferation and survival within the category of glioblastomas. A correlation of Stat3 with Akt was found, indicating a regulation of the former by the PI3/Akt pathway, which, in turn, was in relation with EGFR amplification. Stat3 and Akt did not show any correlation with apoptosis, whereas they showed an inverse correlation with Beclin 1, a stimulator of autophagy, which was rarely positive in glioblastomas. Autophagy seems then to be inactivated in malignant gliomas.

  17. Personalized care in neuro-oncology coming of age: why we need MGMT and 1p/19q testing for malignant glioma patients in clinical practice

    Science.gov (United States)

    Weller, Michael; Stupp, Roger; Hegi, Monika E.; van den Bent, Martin; Tonn, Joerg C.; Sanson, Marc; Wick, Wolfgang; Reifenberger, Guido

    2012-01-01

    Histological subtyping and grading by malignancy are the cornerstones of the World Health Organization (WHO) classification of tumors of the central nervous system. They shall provide clinicians with guidance as to the course of disease to be expected and the choices of treatment to be made. Nonetheless, patients with histologically identical tumors may have very different outcomes, notably in patients with astrocytic and oligodendroglial gliomas of WHO grades II and III. In gliomas of adulthood, 3 molecular markers have undergone extensive studies in recent years: 1p/19q chromosomal codeletion, O6-methylguanine methyltransferase (MGMT) promoter methylation, and mutations of isocitrate dehydrogenase (IDH) 1 and 2. However, the assessment of these molecular markers has so far not been implemented in clinical routine because of the lack of therapeutic implications. In fact, these markers were considered to be prognostic irrespective of whether patients were receiving radiotherapy (RT), chemotherapy, or both (1p/19q, IDH1/2), or of limited value because testing is too complex and no chemotherapy alternative to temozolomide was available (MGMT). In 2012, this situation has changed: long-term follow-up of the Radiation Therapy Oncology Group 9402 and European Organisation for Research and Treatment of Cancer 26951 trials demonstrated an overall survival benefit from the addition to RT of chemotherapy with procarbazine/CCNU/vincristine confined to patients with anaplastic oligodendroglial tumors with (vs without) 1p/19q codeletion. Furthermore, in elderly glioblastoma patients, the NOA-08 and the Nordic trial of RT alone versus temozolomide alone demonstrated a profound impact of MGMT promoter methylation on outcome by therapy and thus established MGMT as a predictive biomarker in this patient population. These recent results call for the routine implementation of 1p/19q and MGMT testing at least in subpopulations of malignant glioma patients and represent an encouraging

  18. Photodynamic Therapy for Malignant Brain Tumors.

    Science.gov (United States)

    Akimoto, Jiro

    2016-01-01

    Photodynamic therapy (PDT) using talaporfin sodium together with a semiconductor laser was approved in Japan in October 2003 as a less invasive therapy for early-stage lung cancer. The author believes that the principle of PDT would be applicable for controlling the invading front of malignant brain tumors and verified its efficacy through experiments using glioma cell lines and glioma xenograft models. An investigator-initiated clinical study was jointly conducted with Tokyo Women's Medical University with the support of the Japan Medical Association. Patient enrollment was started in May 2009 and a total of 27 patients were enrolled by March 2012. Of 22 patients included in efficacy analysis, 13 patients with newly diagnosed glioblastoma showed progression-free survival of 12 months, progression-free survival at the site of laser irradiation of 20 months, 1-year survival of 100%, and overall survival of 24.8 months. In addition, the safety analysis of the 27 patients showed that adverse events directly related to PDT were mild. PDT was approved in Japan for health insurance coverage as a new intraoperative therapy with the indication for malignant brain tumors in September 2013. Currently, the post-marketing investigation in the accumulated patients has been conducted, and the preparation of guidelines, holding training courses, and dissemination of information on the safe implementation of PDT using web sites and videos, have been promoted. PDT is expected to be a breakthrough for the treatment of malignant glioma as a tumor cell-selective less invasive therapy for the infiltrated functional brain area.

  19. Retinoids in the treatment of glioma: a new perspective

    Directory of Open Access Journals (Sweden)

    Mawson AR

    2012-08-01

    Full Text Available Anthony R MawsonDepartment of Health Policy and Management, School of Health Sciences, College of Public Service, Jackson State University, Jackson, MS, USAAbstract: Primary brain tumors are among the top ten causes of cancer-related deaths in the US. Malignant gliomas account for approximately 70% of the 22,500 new cases of malignant primary brain tumors diagnosed in adults each year and are associated with high morbidity and mortality. Despite optimal treatment, the prognosis for patients with gliomas remains poor. The use of retinoids (vitamin A and its congeners in the treatment of certain tumors was originally based on the assumption that these conditions were associated with an underlying deficiency of vitamin A and that supplementation with pharmacological doses would correct the deficiency. Yet the results of retinoid treatment have been only modestly beneficial and usually short-lived. Studies also indicate that vitamin A excess and supplementation have pro-oxidant effects and are associated with increased risks of mortality from cancer and other diseases. The therapeutic role of vitamin A in cancer thus remains uncertain and a new perspective on the facts is needed. The modest and temporary benefits of retinoid treatment could result from a process of feedback inhibition, whereby exogenous retinoid temporarily inhibits the endogenous synthesis of these compounds. In fact, repeated and/or excessive exposure of the tissues to endogenous retinoic acid may contribute to carcinogenesis. Gliomas, in particular, may result from an imbalance in retinoid receptor expression initiated by environmental factors that increase the endogenous production of retinoic acid in glia. At the receptor level, it is proposed that this imbalance is characterized by excessive expression of retinoic acid receptor-α(RARα and reduced expression of retinoic acid receptor-β (RARβ. This suggests a potential new treatment strategy for gliomas, possibly even at a

  20. Targeting ανβ3 and ανβ5 inhibits photon-induced hypermigration of malignant glioma cells

    International Nuclear Information System (INIS)

    Rieken, Stefan; Habermehl, Daniel; Mohr, Angela; Wuerth, Lena; Lindel, Katja; Weber, Klaus; Debus, Jürgen; Combs, Stephanie E

    2011-01-01

    Sublethal photon irradiation was recently suspected to increase tumor cell motility and promote locoregional recurrence of disease. This study was set up to describe mechanisms underlying increased glioma cell migration through photon irradiation and to analyse the modifiability of photon-altered glioma cell motility by integrin inhibition. Eight μm pore size membranes were coated with vitronectin (VN), collagen I and collagen IV. U87 and Ln229 glioma cells were analysed in migration experiments with and without radiotherapy (RT), serum stimulation and addition of monoclonal antibodies directed to human integrins α ν β 3 and α ν β 5 . Quantitative FACS analysis of integrins was performed in U87 and Ln229 glioma cells following RT. Statistical analysis was performed using Student's t-test. Glioma cell migration is serum-dependent and can be increased by photon RT which leads to enhanced expression of Vn receptor integrins. Blocking of either α ν β 3 or α ν β 5 integrins by antibodies inhibits Vn-based migration of both untreated and photon-irradiated glioma cells. Peripheral glioma cells are at risk of attraction into the adjacent healthy brain by serum components leaking through the blood brain barrier (BBB). Radiation therapy is associated with upregulation of Vn receptor integrins and enhanced glioma cell migration at sublethal doses. This effect can be inhibited by specific integrin blockade. Future therapeutical benefit may be derived from pharmacological integrin inhibition in combination with photon irradiation

  1. Glucose consumption and rate constants for 18F-fluorodeoxyglucose in human gliomas

    International Nuclear Information System (INIS)

    Ishikawa, Masatsune; Kikuchi, Haruhiko; Nagata, Izumi; Yamagata, Sen; Taki, Waro; Yonekura, Yoshiharu; Nishizawa, Sadahiko; Iwasaki, Yasushi; Mukai, Takao

    1990-01-01

    To investigate the value of direct measurement of the rate constants by performing 18 F-labeled fluorodeoxyglucose (FDG) studies of glucose consumption in human gliomas in vivo, a kinetic method with 3- and 4-parameter rate constant models for FDG uptake was used to analyze data from dynamic scans obtained by positron emission tomography after injection of FDG into 14 patients with glioma. The results were compared with those obtained by the autoradiographic method using 3- and 4-parameter rate constant models. There were no significant differences in the glucose consumption calculated by the four different methods both in the gliomas and in the contralateral intact cortex. It was found that the rate constant k4 could be neglected in calculation of glucose consumption in gliomas as well as in the contralateral intact cortex. The rate constant k3, an index of hexokinase function, was higher in malignant gliomas than in benign gliomas and was close to that in the contralateral cortex. This study indicates that the 3-parameter autoradiographic method, which is the most common one used in clinical practice, is reliable for the calculation of glucose consumption in human gliomas. Furthermore, direct measurement of the regional rate constants for FDG by the kinetic method was found to be useful for evaluation of the biochemical and physiological characteristics of human gliomas in vivo. (author)

  2. Retinoids in the treatment of glioma: a new perspective.

    Science.gov (United States)

    Mawson, Anthony R

    2012-01-01

    Primary brain tumors are among the top ten causes of cancer-related deaths in the US. Malignant gliomas account for approximately 70% of the 22,500 new cases of malignant primary brain tumors diagnosed in adults each year and are associated with high morbidity and mortality. Despite optimal treatment, the prognosis for patients with gliomas remains poor. The use of retinoids (vitamin A and its congeners) in the treatment of certain tumors was originally based on the assumption that these conditions were associated with an underlying deficiency of vitamin A and that supplementation with pharmacological doses would correct the deficiency. Yet the results of retinoid treatment have been only modestly beneficial and usually short-lived. Studies also indicate that vitamin A excess and supplementation have pro-oxidant effects and are associated with increased risks of mortality from cancer and other diseases. The therapeutic role of vitamin A in cancer thus remains uncertain and a new perspective on the facts is needed. The modest and temporary benefits of retinoid treatment could result from a process of feedback inhibition, whereby exogenous retinoid temporarily inhibits the endogenous synthesis of these compounds. In fact, repeated and/or excessive exposure of the tissues to endogenous retinoic acid may contribute to carcinogenesis. Gliomas, in particular, may result from an imbalance in retinoid receptor expression initiated by environmental factors that increase the endogenous production of retinoic acid in glia. At the receptor level, it is proposed that this imbalance is characterized by excessive expression of retinoic acid receptor-α (RARα) and reduced expression of retinoic acid receptor-β (RARβ). This suggests a potential new treatment strategy for gliomas, possibly even at a late stage of the disease, ie, to combine the use of a RARα antagonist and a RARβ agonist. According to this hypothesis, the RARα antagonist would be expected to inhibit RAR

  3. Retinoids in the treatment of glioma: a new perspective

    International Nuclear Information System (INIS)

    Mawson, Anthony R

    2012-01-01

    Primary brain tumors are among the top ten causes of cancer-related deaths in the US. Malignant gliomas account for approximately 70% of the 22,500 new cases of malignant primary brain tumors diagnosed in adults each year and are associated with high morbidity and mortality. Despite optimal treatment, the prognosis for patients with gliomas remains poor. The use of retinoids (vitamin A and its congeners) in the treatment of certain tumors was originally based on the assumption that these conditions were associated with an underlying deficiency of vitamin A and that supplementation with pharmacological doses would correct the deficiency. Yet the results of retinoid treatment have been only modestly beneficial and usually short-lived. Studies also indicate that vitamin A excess and supplementation have pro-oxidant effects and are associated with increased risks of mortality from cancer and other diseases. The therapeutic role of vitamin A in cancer thus remains uncertain and a new perspective on the facts is needed. The modest and temporary benefits of retinoid treatment could result from a process of feedback inhibition, whereby exogenous retinoid temporarily inhibits the endogenous synthesis of these compounds. In fact, repeated and/or excessive exposure of the tissues to endogenous retinoic acid may contribute to carcinogenesis. Gliomas, in particular, may result from an imbalance in retinoid receptor expression initiated by environmental factors that increase the endogenous production of retinoic acid in glia. At the receptor level, it is proposed that this imbalance is characterized by excessive expression of retinoic acid receptor-α (RARα) and reduced expression of retinoic acid receptor-β (RARβ). This suggests a potential new treatment strategy for gliomas, possibly even at a late stage of the disease, ie, to combine the use of a RARα antagonist and a RARβ agonist. According to this hypothesis, the RARα antagonist would be expected to inhibit RAR

  4. EPID-28. PROGNOSTIC AND PREDICTIVE BIOMARKERS IN RECURRENT WHO GRADE 3 GLIOMA PATIENTS TREATED WITH BEVACIZUMAB AND IRINOTECAN

    DEFF Research Database (Denmark)

    Toft, Anders; Urup, Thomas; Grunnet, Kirsten

    2015-01-01

    BACKGROUND: Bevacizumab, a monoclonal antibody targeting vascular endothelial growth factor A (VEGF-A) has shown activity in the treatment of recurrent malignant glioma. Predictive markers and prognostic models are required in order to individualize treatment for grade 3 glioma patients. The prim......BACKGROUND: Bevacizumab, a monoclonal antibody targeting vascular endothelial growth factor A (VEGF-A) has shown activity in the treatment of recurrent malignant glioma. Predictive markers and prognostic models are required in order to individualize treatment for grade 3 glioma patients...... response MRI (RANO criteria). Responders had significantly prolonged OS (p ¼ 0.007) and trended toward longer PFS (p ¼ 0.067) as compared to non-responders (OS: 12.4 vs 4.3 months, PFS: 5.6 vs 3.2 months). A favorable WHO performance status (PS) and absence of necrosis were significantly more common...... in responders than nonresponders. Multivariate analysis also identified a poor PS as the only prognostic factor for PFS, while an unfavorable PS and immunohistochemical p53 accumulation were prognostic of reducedOS.CONCLUSIONS:Apoor baseline PS and the presence of necrosis were negatively associated...

  5. Clinical characteristics associated with the intracranial dissemination of gliomas.

    Science.gov (United States)

    Cai, Xu; Qin, Jun-Jie; Hao, Shu-Yu; Li, Huan; Zeng, Chun; Sun, Sheng-Jun; Yu, Lan-Bing; Gao, Zhi-Xian; Xie, Jian

    2018-03-01

    Glioma is the most common malignant tumor of the brain and the intracranial dissemination of gliomas is the late stage of the development of the tumor. However, there is little research in literature on the occurrence of intracranial dissemination of gliomas. In order to provide a reference for clinical work, we carried out this study on intracranial dissemination of glioma. A total of 629 patients with gliomas received tumor resection by the same surgeon from August 2010 to September 2015 were included in this study. The authors performed a retrospective review of the patients and the information regarding clinical features, histopathological results, molecular pathologic results and clinical outcomes was collected and analyzed. In this retrospective study, we found that the intracranial dissemination phenomenon occurred in 53 patients (8.43%). We analyzed the clinical characteristics of patients and found that the age at diagnosis (P = 0.011), WHO grade of the tumor (P dissemination. The higher grade of the tumor, the more prone to disseminate. Deletion of 1p/19q had no significant correlation with the intracranial dissemination. MMP9, Ki-67, and EGFR were highly expressed in tumor cells that caused dissemination, and the level of Ki-67 expression had significance in statistics (P 40 years), high pathological grade, invasion of the corpus callosum and high levels of Ki-67 expression were risk factors associated with the intracranial dissemination of gliomas. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. SNAI2/Slug promotes growth and invasion in human gliomas

    International Nuclear Information System (INIS)

    Yang, Hong Wei; Menon, Lata G; Black, Peter M; Carroll, Rona S; Johnson, Mark D

    2010-01-01

    Numerous factors that contribute to malignant glioma invasion have been identified, but the upstream genes coordinating this process are poorly known. To identify genes controlling glioma invasion, we used genome-wide mRNA expression profiles of primary human glioblastomas to develop an expression-based rank ordering of 30 transcription factors that have previously been implicated in the regulation of invasion and metastasis in cancer. Using this approach, we identified the oncogenic transcriptional repressor, SNAI2/Slug, among the upper tenth percentile of invasion-related transcription factors overexpressed in glioblastomas. SNAI2 mRNA expression correlated with histologic grade and invasive phenotype in primary human glioma specimens, and was induced by EGF receptor activation in human glioblastoma cells. Overexpression of SNAI2/Slug increased glioblastoma cell proliferation and invasion in vitro and promoted angiogenesis and glioblastoma growth in vivo. Importantly, knockdown of endogenous SNAI2/Slug in glioblastoma cells decreased invasion and increased survival in a mouse intracranial human glioblastoma transplantation model. This genome-scale approach has thus identified SNAI2/Slug as a regulator of growth and invasion in human gliomas

  7. Neuropathological biomarker candidates in brain tumors: key issues for translational efficiency.

    Science.gov (United States)

    Hainfellner, J A; Heinzl, H

    2010-01-01

    Brain tumors comprise a large spectrum of rare malignancies in children and adults that are often associated with severe neurological symptoms and fatal outcome. Neuropathological tumor typing provides both prognostic and predictive tissue information which is the basis for optimal postoperative patient management and therapy. Molecular biomarkers may extend and refine prognostic and predictive information in a brain tumor case, providing more individualized and optimized treatment options. In the recent past a few neuropathological brain tumor biomarkers have translated smoothly into clinical use whereas many candidates show protracted translation. We investigated the causes of protracted translation of candidate brain tumor biomarkers. Considering the research environment from personal, social and systemic perspectives we identified eight determinants of translational success: methodology, funding, statistics, organization, phases of research, cooperation, self-reflection, and scientific progeny. Smoothly translating biomarkers are associated with low degrees of translational complexity whereas biomarkers with protracted translation are associated with high degrees. Key issues for translational efficiency of neuropathological brain tumor biomarker research seem to be related to (i) the strict orientation to the mission of medical research, that is the improval of medical practice as primordial purpose of research, (ii) definition of research priorities according to clinical needs, and (iii) absorption of translational complexities by means of operatively beneficial standards. To this end, concrete actions should comprise adequate scientific education of young investigators, and shaping of integrative diagnostics and therapy research both on the local level and the level of influential international brain tumor research platforms.

  8. Postoperative modified stereotactic radiotherapy using a micro-multileaf collimator in patients with malignant glioma.

    Science.gov (United States)

    Isaka, Toshihiko; Nishiyama, Kinji; Nakagawa, Hidemitsu; Suzuki, Tsuyoshi; Wada, Kouichi

    2002-06-01

    To achieve local control of malignant glioma, we designed a postoperative stereotactic radiotherapy using a micro-multileaf collimator (micro-MLC). The purpose of this study was to clarify the feasibility of this treatment. The treatment was performed in six patients who met the following eligibility criteria: (1) supratentorial tumor, (2) residual tumor volume or = 70. The three planning target volumes (PTVs), which consisted of restricted PTV (RPTV), intermediate PTV (IPTV), and extended PTV (EPTV), defined as the residual tumor plus a 1 cm, 2 cm, and 3 cm margins, respectively, and total dose delivery of 60-68 Gy, 52-60 Gy, and 44-52 Gy to the isocenters of RPTV, IPTV, and EPTV, respectively, in 4 Gy per fraction at five fractions per week, were established. The beam arrangement and the conformal blockade with a micro-MLC for the optimal treatment plan were designed. The treatment plans showed the high dose conformation to EPTV, the appropriate dose gradients in the three PTVs with the high dose homogeneity to RPTV, and the tolerated dose to critical structures. Following the plans, treatment was performed. The clinical findings more than 12 months after the treatment supported its possible use. We conclude that this treatment is feasible at least in selected patients.

  9. Role of nuclear medicine in the treatment of malignant gliomas: the locoregional radioimmunotherapy approach

    International Nuclear Information System (INIS)

    Riva, P.; Franceschi, G.; Riva, N.; Casi, M.; Santimaria, M.; Adamo, M.

    2000-01-01

    The high-grade malignant gliomas (anaplastic astrocytomas and glioblastoma) have a very bad prognosis since the available methods of treatment (surgery, radiotherapy and chemotherapy) are unable to control the progression of the disease for long. The use of specific monoclonal antibodies labelled with a suitable isotope (iodine-131 or yttrium-90) represents an effective approach to hamper tumour regrowth. Some authors have injected the antibodies intravenously, or have tried to increase the tumour/background ratio with the avidin/ biotin system. In many cases the labelled monoclonal antibodies were injected directly into the tumoral bed after the operation. The authors' experiences concern a quite large locoregional radioimmunotherapy study which was performed by using antitenascin antibodies labelled initially with 131 I and more recently with 90 Y. The clinical results demonstrate the ability of this technique to control, for a long time, the growth of these tumours. The glioblastoma median survival was prolonged to 25 months ( 131 I group) or 31 months ( 90 Y group). The response rate (which comprises PR, CR and NED) was 47.1% (glioblastoma 131 I group) or 40% (glioblastoma 90 Y group). In many cases a significant tumour shrinking effect was radiologically demonstrated. The use of 90 Y proved more favourable in bulky lesions, and reduced the radioprotection problems. (orig.)

  10. Molecular Alterations of KIT Oncogene in Gliomas

    Directory of Open Access Journals (Sweden)

    Ana L. Gomes

    2007-01-01

    Full Text Available Gliomas are the most common and devastating primary brain tumours. Despite therapeutic advances, the majority of gliomas do not respond either to chemo or radiotherapy. KIT, a class III receptor tyrosine kinase (RTK, is frequently involved in tumourigenic processes. Currently, KIT constitutes an attractive therapeutic target. In the present study we assessed the frequency of KIT overexpression in gliomas and investigated the genetic mechanisms underlying KIT overexpression. KIT (CD117 immunohistochemistry was performed in a series of 179 gliomas of various grades. KIT activating gene mutations (exons 9, 11, 13 and 17 and gene amplification analysis, as defined by chromogenic in situ hybridization (CISH and quantitative real-time PCR (qRT-PCR were performed in CD117 positive cases. Tumour cell immunopositivity was detected in 15.6% (28/179 of cases, namely in 25% (1/4 of pilocytic astrocytomas, 25% (5/20 of diffuse astrocytomas, 20% (1/5 of anaplastic astrocytomas, 19.5% (15/77 of glioblastomas and one third (3/9 of anaplastic oligoastrocytomas. Only 5.7% (2/35 of anaplastic oligodendrogliomas showed CD117 immunoreactivity. No association was found between tumour CD117 overexpression and patient survival. In addition, we also observed CD117 overexpression in endothelial cells, which varied from 0–22.2% of cases, being more frequent in high-grade lesions. No KIT activating mutations were identified. Interestingly, CISH and/or qRT-PCR analysis revealed the presence of KIT gene amplification in 6 glioblastomas and 2 anaplastic oligoastrocytomas, corresponding to 33% (8/24 of CD117 positive cases. In conclusion, our results demonstrate that KIT gene amplification rather than gene mutation is a common genetic mechanism underlying KIT expression in subset of malignant gliomas. Further studies are warranted to determine whether glioma patients exhibiting KIT overexpression and KIT gene amplification may benefit from therapy with anti-KIT RTK

  11. Glucose consumption and rate constants for sup 18 F-fluorodeoxyglucose in human gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Masatsune; Kikuchi, Haruhiko; Nagata, Izumi; Yamagata, Sen; Taki, Waro; Yonekura, Yoshiharu; Nishizawa, Sadahiko; Iwasaki, Yasushi; Mukai, Takao [Kyoto Univ. (Japan). Faculty of Medicine

    1990-06-01

    To investigate the value of direct measurement of the rate constants by performing {sup 18}F-labeled fluorodeoxyglucose (FDG) studies of glucose consumption in human gliomas in vivo, a kinetic method with 3- and 4-parameter rate constant models for FDG uptake was used to analyze data from dynamic scans obtained by positron emission tomography after injection of FDG into 14 patients with glioma. The results were compared with those obtained by the autoradiographic method using 3- and 4-parameter rate constant models. There were no significant differences in the glucose consumption calculated by the four different methods both in the gliomas and in the contralateral intact cortex. It was found that the rate constant k4 could be neglected in calculation of glucose consumption in gliomas as well as in the contralateral intact cortex. The rate constant k3, an index of hexokinase function, was higher in malignant gliomas than in benign gliomas and was close to that in the contralateral cortex. This study indicates that the 3-parameter autoradiographic method, which is the most common one used in clinical practice, is reliable for the calculation of glucose consumption in human gliomas. Furthermore, direct measurement of the regional rate constants for FDG by the kinetic method was found to be useful for evaluation of the biochemical and physiological characteristics of human gliomas in vivo. (author).

  12. Epidermal growth factor (EGF) as a potential targeting agent for delivery of boron to malignant gliomas

    International Nuclear Information System (INIS)

    Capala, J.; Barth, R.F.; Adams, D.M.; Bailey, M.Q.; Soloway, A.H.; Carlsson, J.

    1994-01-01

    The majority of high grade gliomas express an amplified epidermal growth factor receptor (EGFR) gene, and this often is associated with an increase in cell surface receptor expression. The rapid internalization and degradation of EGF-EGFR complexes, as well as their high affinity make EGF a potential targeting agent for delivery of 10 B to tumor cells with an amplified number of EGFR. Human glioma cells can expresses as many as 10 5 -10 6 EGF receptors per cell, and if these could be saturated with boronated EGF, then > 10 8 boron atoms would be delivered per cell. Since EGF has a comparatively low molecular weight (∼ 6 kD), this has allowed us to construct relatively small bioconjugates containing ∼ 900 boron atoms per EGF molecule 3 , which also had high affinity for EGFR on tumor cells. In the present study, the feasibility of using EGF receptors as a potential target for therapy of gliomas was investigated by in vivo scintigraphic studies using 131 I- or 99m T c -labeled EGF in a rat brain tumor model. Our results indicate that intratumorally delivered boron- EGF conjugates might be useful for targeting EGFR on glioma cells if the boron containing moiety of the conjugates persisted intracellularly. Further studies are required, however, to determine if this approach can be used for BNCT of the rat glioma

  13. The immunohistochemical expression of calcitonin receptor-like receptor (CRLR) in human gliomas.

    Science.gov (United States)

    Benes, L; Kappus, C; McGregor, G P; Bertalanffy, H; Mennel, H D; Hagner, S

    2004-02-01

    Gliomas are the most common primary tumours of the central nervous system and exhibit rapid growth that is associated with neovascularisation. Adrenomedullin is an important tumour survival factor in human carcinogenesis. It has growth promoting effects on gliomas, and blockade of its actions has been experimentally shown to reduce the growth of glioma tissues and cell lines. There is some evidence that the calcitonin receptor-like receptor (CRLR) mediates the tumorigenic actions of adrenomedullin. To determine whether CRLR is expressed in human gliomas and the probable cellular targets of adrenomedullin. Biopsies from 95 human gliomas of varying grade were processed for immunohistochemical analysis using a previously developed and characterised antibody to CRLR. All tumour specimens were positive for CRLR. As previously found in normal peripheral tissues, CRLR immunostaining was particularly intense in the endothelial cells. This was evident in all the various vascular conformations that were observed, and which are typical of gliomas. In addition, clear immunostaining of tumour cells with astrocyte morphology was observed. These were preferentially localised around vessels. This study has shown for the first time that the CRLR protein is present in human glioma tissue. The expression of the receptor in endothelial cells and in astrocytic tumour cells is consistent with the evidence that its endogenous ligand, adrenomedullin, may influence glioma growth by means of both direct mitogenic and indirect angiogenic effects. CRLR may be a valuable target for effective therapeutic intervention in these malignant tumours.

  14. Imaging of Non— or Very Subtle Contrast-Enhancing Malignant Gliomas with [11C]-Methionine Positron Emission Tomography

    Directory of Open Access Journals (Sweden)

    Norbert Galldiks

    2011-11-01

    Full Text Available In patients with World Health Organization (WHO grade III glioma with a lack of or minimal (2 lesion and reached beyond it (in 10 of 12 MRIs/MET-PET scans. The present data suggest that in patients with WHO grade III glioma with minimal or a lack of contrast enhancement, MET-PET delineates metabolically active tumor tissue. These findings support the use of combined PET-MRI with radiolabeled amino acids (eg, MET for the delineating of the true extent of active tumor in the diagnosis and treatment planning of patients with gliomas.

  15. Upregulation of B23 promotes tumor cell proliferation and predicts poor prognosis in glioma

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jianguo [Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu Province (China); Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province (China); Sun, Jie; Yang, Liu; Yan, Yaohua; Shi, Wei; Shi, Jinlong; Huang, Qingfeng; Chen, Jian [Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province (China); Lan, Qing, E-mail: lanqingsj@163.com [Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu Province (China)

    2015-10-09

    B23 (also known as Nucleophosmin, NPM, numatrin or NO38) is a ubiquitously expressed phosphoprotein belonging to the nucleoplasmin family of chaperones. In this study we intended to investigate the clinical significance of B23 expression in human glioma and its biological function in glioma cells. Western blot and immunohistochemistry analysis showed that B23 was overexpressed in glioma tissues and glioma cell lines. In addition, the expression level of B23 was positively correlated with glioma pathological grade and Ki-67 expression. Kaplan–Meier analysis revealed that a higher B23 expression in patients with glioma was associated with a poorer prognosis. In vitro, after the release of glioma cell lines from serum starvation, the expression of B23 was upregulated, as well as PCNA (Proliferating Cell Nuclear Antigen) and cyclin A. In addition, knockdown of B23 by small interfering RNA transfection diminished the expression of PCNA, cyclin D1 and arrested cell growth at G1 phase. Taken together, our results implied that B23 could be a candidate prognostic biomarker as well as a potential therapeutical target of glioma. - Highlights: • B23 expression increased as the malignant degree of glioma increased, which was consistent with Ki-67 expression. • High expression of B23 could be a strong determinant of poor prognosis in glioma. • B23 may be involved in the proliferation of glioma in a cell-cycle-dependent pathway. • Knockdown of B23 expression by siRNA could affect the progression of glioma. • B23 may be a potential prognosis biomarker and a possible therapeutic target for glioma.

  16. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Cheng-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan (China); Kuan, Yu-Hsiang [Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Ou, Yen-Chuan; Li, Jian-Ri [Division of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Wu, Chih-Cheng [Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Department of Financial and Computational Mathematics, Providence University, Taichung 433, Taiwan (China); Pan, Pin-Ho [Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan (China); Chen, Wen-Ying [Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Huang, Hsuan-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Chen, Chun-Jung, E-mail: cjchen@vghtc.gov.tw [Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Center for General Education, Tunghai University, Taichung 407, Taiwan (China); Department of Nursing, HungKuang University, Taichung 433, Taiwan (China)

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.

  17. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    International Nuclear Information System (INIS)

    Chang, Cheng-Yi; Kuan, Yu-Hsiang; Ou, Yen-Chuan; Li, Jian-Ri; Wu, Chih-Cheng; Pan, Pin-Ho; Chen, Wen-Ying; Huang, Hsuan-Yi; Chen, Chun-Jung

    2014-01-01

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK

  18. MicroRNA-203 Modulates the Radiation Sensitivity of Human Malignant Glioma Cells

    International Nuclear Information System (INIS)

    Chang, Ji Hyun; Hwang, Yeo Hyun; Lee, David J.; Kim, Dan Hyo; Park, Ji Min; Wu, Hong-Gyun; Kim, In Ah

    2016-01-01

    Purpose: We investigated whether miR-203 could modulate the radiation sensitivity of glioblastoma (GBM) cells and which target gene(s) could be involved. Methods and Materials: Three human malignant glioma (MG) cell lines and normal human astrocytes were transfected with control microRNA, pre-miR-203, or antisense miR-203. Real-time PCR (RT-PCR), clonogenic assays, immunofluorescence, and invasion/migration assays were performed. To predict the target(s), bioinformatics analyses using microRNA target databases were performed. Results: Overexpression of miR-203 increased the radiation sensitivity of all 3 human MG cell lines and prolonged radiation-induced γ-H2AX foci formation. Bioinformatics analyses suggested that miR-203 could be involved in post-transcriptional control of DNA repair, PI3K/AKT, SRC, and JAK/STAT3 and the vascular signaling pathway. Western blot analysis validated the fact that miR-203 downregulated ATM, RAD51, SRC, PLD2, PI3K-AKT, JAK-STAT3, VEGF, HIF-1α, and MMP2. Overexpression of miR-203 inhibited invasion and migration potentials, downregulated SLUG and Vimentin, and upregulated Claudin-1 and ZO1. Conclusions: These data demonstrate that miR-203 potentially controls DNA damage repair via the PI3K/AKT and JAK/STAT3 pathways and may collectively contribute to the modulation of radiation sensitivity in MG cells by inhibiting DNA damage repair, prosurvival signaling, and epithelium-mesenchyme transition. Taken together, these findings demonstrate that miR-203 could be a target for overcoming the radiation resistance of GBM.

  19. MicroRNA-203 Modulates the Radiation Sensitivity of Human Malignant Glioma Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ji Hyun [Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul (Korea, Republic of); Hwang, Yeo Hyun; Lee, David J.; Kim, Dan Hyo; Park, Ji Min [Medical Science Research Institute, Seoul National University Bundang Hospital, Kyeonggido (Korea, Republic of); Wu, Hong-Gyun [Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul (Korea, Republic of); Kim, In Ah, E-mail: inah228@snu.ac.kr [Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul (Korea, Republic of); Medical Science Research Institute, Seoul National University Bundang Hospital, Kyeonggido (Korea, Republic of); Cancer Research Institute, Seoul National University, Seoul (Korea, Republic of)

    2016-02-01

    Purpose: We investigated whether miR-203 could modulate the radiation sensitivity of glioblastoma (GBM) cells and which target gene(s) could be involved. Methods and Materials: Three human malignant glioma (MG) cell lines and normal human astrocytes were transfected with control microRNA, pre-miR-203, or antisense miR-203. Real-time PCR (RT-PCR), clonogenic assays, immunofluorescence, and invasion/migration assays were performed. To predict the target(s), bioinformatics analyses using microRNA target databases were performed. Results: Overexpression of miR-203 increased the radiation sensitivity of all 3 human MG cell lines and prolonged radiation-induced γ-H2AX foci formation. Bioinformatics analyses suggested that miR-203 could be involved in post-transcriptional control of DNA repair, PI3K/AKT, SRC, and JAK/STAT3 and the vascular signaling pathway. Western blot analysis validated the fact that miR-203 downregulated ATM, RAD51, SRC, PLD2, PI3K-AKT, JAK-STAT3, VEGF, HIF-1α, and MMP2. Overexpression of miR-203 inhibited invasion and migration potentials, downregulated SLUG and Vimentin, and upregulated Claudin-1 and ZO1. Conclusions: These data demonstrate that miR-203 potentially controls DNA damage repair via the PI3K/AKT and JAK/STAT3 pathways and may collectively contribute to the modulation of radiation sensitivity in MG cells by inhibiting DNA damage repair, prosurvival signaling, and epithelium-mesenchyme transition. Taken together, these findings demonstrate that miR-203 could be a target for overcoming the radiation resistance of GBM.

  20. Towards optimizing the sequence of bevacizumab and nitrosoureas in recurrent malignant glioma.

    Science.gov (United States)

    Wiestler, Benedikt; Radbruch, Alexander; Osswald, Matthias; Combs, Stephanie E; Jungk, Christine; Winkler, Frank; Bendszus, Martin; Unterberg, Andreas; Platten, Michael; Wick, Wolfgang; Wick, Antje

    2014-03-01

    Studies on the monoclonal VEGF-A antibody bevacizumab gave raise to questions regarding the lack of an overall survival benefit, the optimal timing in the disease course and potential combination and salvage therapies. We retrospectively assessed survival, radiological progression type on bevacizumab and efficacy of salvage therapies in 42 patients with recurrent malignant gliomas who received bevacizumab and nitrosourea sequentially. 15 patients received bevacizumab followed by nitrosourea at progression and 27 patients vice versa. Time to treatment failure, defined as time from initiation of one to failure of the other treatment, was similar in both groups (9.6 vs. 9.2 months, log rank p = 0.19). Progression-free survival on nitrosoureas was comparable in both groups, while progression-free survival on bevacizumab was longer in the group receiving bevacizumab first (5.3 vs. 4.1 months, log rank p = 0.03). Survival times were similar for patients with grade III (n = 9) and grade IV (n = 33) tumors. Progression-free survival on bevacizumab for patients developing contrast-enhancing T1 progression was longer than for patients who displayed a non-enhancing T2 progression. However, post-progression survival times after bevacizumab failure were not different. Earlier treatment with bevacizumab was not associated with better outcome in this series. The fact that earlier as compared to later bevacizumab treatment does not result in a different time to treatment failure highlights the challenge for first-line or recurrence trials with bevacizumab to demonstrate an overall survival benefit if crossover of bevacizumab-naïve patients after progression occurs.

  1. Perspectives in Intraoperative Diagnostics of Human Gliomas

    Directory of Open Access Journals (Sweden)

    O. Tyurikova

    2015-01-01

    Full Text Available Amongst large a variety of oncological diseases, malignant gliomas represent one of the most severe types of tumors. They are also the most common type of the brain tumors and account for over half of the astrocytic tumors. According to different sources, the average life expectancy of patients with various glioblastomas varies between 10 and 12 months and that of patients with anaplastic astrocytic tumors between 20 and 24 months. Therefore, studies of the physiology of transformed glial cells are critical for the development of treatment methods. Modern medical approaches offer complex procedures, including the microsurgical tumor removal, radiotherapy, and chemotherapy, supplemented with photodynamic therapy and immunotherapy. The most radical of them is surgical resection, which allows removing the largest part of the tumor, reduces the intracranial hypertension, and minimizes the degree of neurological deficit. However, complete removal of the tumor remains impossible. The main limitations are insufficient visualization of glioma boundaries, due to its infiltrative growth, and the necessity to preserve healthy tissue. This review is devoted to the description of advantages and disadvantages of modern intraoperative diagnostics of human gliomas and highlights potential perspectives for development of their treatment.

  2. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy.

    Science.gov (United States)

    Maurer, Gabriele D; Brucker, Daniel P; Bähr, Oliver; Harter, Patrick N; Hattingen, Elke; Walenta, Stefan; Mueller-Klieser, Wolfgang; Steinbach, Joachim P; Rieger, Johannes

    2011-07-26

    Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic) diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells. To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model. The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2), 3-oxoacid-CoA transferase 1 (OXCT1) and acetyl-CoA acetyltransferase 1 (ACAT1) were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1α (HIF-1α) pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival. In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic agents that efficiently target non-oxidative pathways.

  3. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy

    International Nuclear Information System (INIS)

    Maurer, Gabriele D; Brucker, Daniel P; Bähr, Oliver; Harter, Patrick N; Hattingen, Elke; Walenta, Stefan; Mueller-Klieser, Wolfgang; Steinbach, Joachim P; Rieger, Johannes

    2011-01-01

    Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic) diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells. To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model. The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2), 3-oxoacid-CoA transferase 1 (OXCT1) and acetyl-CoA acetyltransferase 1 (ACAT1) were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1α (HIF-1α) pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival. In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic agents that efficiently target non-oxidative pathways

  4. A Distinct DNA Methylation Shift in a Subset of Glioma CpG Island Methylator Phenotypes during Tumor Recurrence.

    Science.gov (United States)

    de Souza, Camila Ferreira; Sabedot, Thais S; Malta, Tathiane M; Stetson, Lindsay; Morozova, Olena; Sokolov, Artem; Laird, Peter W; Wiznerowicz, Maciej; Iavarone, Antonio; Snyder, James; deCarvalho, Ana; Sanborn, Zachary; McDonald, Kerrie L; Friedman, William A; Tirapelli, Daniela; Poisson, Laila; Mikkelsen, Tom; Carlotti, Carlos G; Kalkanis, Steven; Zenklusen, Jean; Salama, Sofie R; Barnholtz-Sloan, Jill S; Noushmehr, Houtan

    2018-04-10

    Glioma diagnosis is based on histomorphology and grading; however, such classification does not have predictive clinical outcome after glioblastomas have developed. To date, no bona fide biomarkers that significantly translate into a survival benefit to glioblastoma patients have been identified. We previously reported that the IDH mutant G-CIMP-high subtype would be a predecessor to the G-CIMP-low subtype. Here, we performed a comprehensive DNA methylation longitudinal analysis of diffuse gliomas from 77 patients (200 tumors) to enlighten the epigenome-based malignant transformation of initially lower-grade gliomas. Intra-subtype heterogeneity among G-CIMP-high primary tumors allowed us to identify predictive biomarkers for assessing the risk of malignant recurrence at early stages of disease. G-CIMP-low recurrence appeared in 9.5% of all gliomas, and these resembled IDH-wild-type primary glioblastoma. G-CIMP-low recurrence can be characterized by distinct epigenetic changes at candidate functional tissue enhancers with AP-1/SOX binding elements, mesenchymal stem cell-like epigenomic phenotype, and genomic instability. Molecular abnormalities of longitudinal G-CIMP offer possibilities to defy glioblastoma progression. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. A clinical trial protocol for second line treatment of malignant brain tumors with BNCT at University of Tsukuba

    International Nuclear Information System (INIS)

    Aiyama, H.; Nakai, K.; Yamamoto, T.; Nariai, T.; Kumada, H.; Ishikawa, E.; Isobe, T.; Endo, K.; Takada, T.; Yoshida, F.; Shibata, Y.; Matsumura, A.

    2011-01-01

    We have evaluated the efficacy and safety of boron neutron capture therapy (BNCT) for recurrent glioma and malignant brain tumor using a new protocol. One of the two patients enrolled in this trial is a man with recurrent glioblastoma and the other is a woman with anaplastic meningioma. Both are still alive and no severe adverse events have been observed. Our findings suggest that NCT will be safe as a palliative therapy for malignant brain tumors. - Highlights: ► Boron neutron capture therapy (BNCT) for recurrent glioma and malignant brain tumor. ► Two cases with recurrent glioblastoma and anaplastic meningioma. ► No severe adverse events have been observed using BNCT. ► BNCT has a possibility of a safe palliative therapy for malignant brain tumors.

  6. PAR1 inhibition suppresses the self-renewal and growth of A2B5-defined glioma progenitor cells and their derived gliomas in vivo

    DEFF Research Database (Denmark)

    Auvergne, R.; Wu, C.; Connell, A.

    2016-01-01

    Glioblastoma (GBM) remains the most common and lethal intracranial tumor. In a comparison of gene expression by A2B5-defined tumor-initiating progenitor cells (TPCs) to glial progenitor cells derived from normal adult human brain, we found that the F2R gene encoding PAR1 was differentially...... overexpressed by A2B5-sorted TPCs isolated from gliomas at all stages of malignant development. In this study, we asked if PAR1 is causally associated with glioma progression. Lentiviral knockdown of PAR1 inhibited the expansion and self-renewal of human GBM-derived A2B5(+) TPCs in vitro, while pharmacological...

  7. Binding of cetuximab to the EGFRvIII deletion mutant and its biological consequences in malignant glioma cells

    International Nuclear Information System (INIS)

    Jutten, Barry; Dubois, Ludwig; Li Younan; Aerts, Hugo; Wouters, Bradly G.; Lambin, Philippe; Theys, Jan; Lammering, Guido

    2009-01-01

    Background and purpose: Despite the clinical use of cetuximab, a chimeric antibody against EGFR, little is known regarding its interaction with EGFRvIII, a frequently expressed deletion mutant of EGFR. Therefore, we investigated the interaction and the functional consequences of cetuximab treatment on glioma cells stably expressing EGFRvIII. Materials and methods: The human glioma cell line U373 genetically modified to express EGFRvIII was used to measure the binding of cetuximab and its internalization using flow cytometry and confocal microscopy. Proliferation and cell survival were analyzed by cell growth and clonogenic survival assays. Results: Cetuximab is able to bind to EGFRvIII and causes an internalization of the receptor and decreases its expression levels. Furthermore, in contrast to EGF, cetuximab was able to activate EGFRvIII which was evidenced by multiple phosphorylation sites and its downstream signaling targets. Despite this activation, the growth rate and the radiosensitivity of the EGFRvIII-expressing glioma cells were not modulated. Conclusions: Cetuximab binds to EGFRvIII and leads to the initial activation, internalization and subsequent downregulation of EGFRvIII, but it does not seem to modulate the proliferation or radiosensitivity of EGFRvIII-expressing glioma cells. Thus, approaches to treat EGFRvIII-expressing glioma cells should be evaluated more carefully.

  8. Digital stereology in neuropathology

    DEFF Research Database (Denmark)

    Kristiansen, Sarah Line Brøgger; Nyengaard, Jens Randel

    2012-01-01

    will therefore present the relevant stereological estimators for obtaining reliable quantitative structural data from brains and peripheral nerves when using digital light microscopy. It is discussed how to obtain brain and nerve fibre samples to fulfil the requirements for the estimators. A presentation......-dimensional structural knowledge. Accordingly, stereology is a science based on statistical sampling principles and geometric measures. The application of stereology to neuropathological studies allows the researcher to efficiently obtain a precise estimate of various structural quantities. This neuropathological review...

  9. Estradiol Receptors Regulate Differential Connexin 43 Expression in F98 and C6 Glioma Cell Lines.

    Directory of Open Access Journals (Sweden)

    Zahra Moinfar

    Full Text Available Glioma is the most common malignant primary brain tumour with male preponderance and poor prognosis. Glioma cells express variable amounts of connexin 43 (Cx43 and estrogen receptors (ERs. Both, Cx43 and ERs, play important roles in cell proliferation and migration. Therefore, we investigated the effects of 17-ß estradiol (E2 on Cx43 expression in two glioma cell lines with variable native expression of Cx43.F98 and C6 rat glioma cells were cultured for 24 h in the presence of 10 nM or 100 nM E2, and the E2-antagonist, Fulvestrant. An MTT assay was performed to evaluate cell viability. ERα, ERβ and Cx43 protein expressions were analysed by western blotting and Cx43 mRNA expression was analysed by real-time polymerase chain reaction. To quantify cell migration, an exclusive zone migration assay was used. Functional coupling of cells via gap junctions was examined using whole-cell patch-clamp technique.E2 reduced Cx43 expression in C6 cells, but increased Cx43 expression in F98 cultures. These effects were mediated via ERs. Moreover, E2 promoted C6 cell migration, but it did not affect F98 cell migration. The expression level of ERα was found to be high in C6, but low in F98 cells. ERβ was exclusively expressed in C6 cells. In addition, E2 treatment induced a significant decrease of ERβ in C6 cultures, while it decreased ERα expression in F98 glioma cells.These findings show that E2 differentially modulates Cx43 expression in F98 and C6 glioma cells, likely due to the differential expression of ERs in each of these cell lines. Our findings point to the molecular mechanisms that might contribute to the gender-specific differences in the malignancy of glioma and could have implications for therapeutic strategies against glioma.

  10. Critical role of the FERM domain in Pyk2 stimulated glioma cell migration

    International Nuclear Information System (INIS)

    Lipinski, Christopher A.; Tran, Nhan L.; Dooley, Andrea; Pang, Yuan-Ping; Rohl, Carole; Kloss, Jean; Yang, Zhongbo; McDonough, Wendy; Craig, David; Berens, Michael E.; Loftus, Joseph C.

    2006-01-01

    The strong tendency of malignant glioma cells to invade locally into surrounding normal brain precludes effective surgical resection, reduces the efficacy of radiotherapy, and is associated with increased resistance to chemotherapy regimens. We report that the N-terminal FERM domain of Pyk2 regulates its promigratory function. A 3-dimensional model of the Pyk2 FERM domain was generated and mutagenesis studies identified residues essential for Pyk2 promigratory function. Model-based targeted mutations within the FERM domain decreased Pyk2 phosphorylation and reduced the capacity of Pyk2 to stimulate glioma cell migration but did not significantly alter the intracellular distribution of Pyk2. Expression of autonomous Pyk2 FERM domain fragments containing analogous mutations exhibited reduced capacity to inhibit glioma cell migration and Pyk2 phosphorylation relative to expression of an autonomous wild type FERM domain fragment. These results indicate that the FERM domain plays an important role in regulating the functional competency of Pyk2 as a promigratory factor in glioma

  11. Toll-like receptor triggered dendritic cell maturation and IL-12 secretion are necessary to overcome T-cell inhibition by glioma-associated TGF-beta2.

    NARCIS (Netherlands)

    Grauer, O.M.; Poschl, P.; Lohmeier, A.; Adema, G.J.; Bogdahn, U.

    2007-01-01

    Malignant gliomas are able to secrete large amounts of immunosuppressive cytokines like transforming growth factor beta 2 (TGF-beta2) and regularly escape from immune surveillance. Many strategies have been developed to induce potent anti-glioma responses, among those the use of dendritic cells (DC)

  12. Chemo-radiotherapy for malignant brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kochi, Masato; Ushio, Yukitaka [Kumamoto Univ. (Japan). School of Medicine

    2002-05-01

    Malignant gliomas: Randomized clinical trials conducted in the USA showed that radiotherapy plus chemotherapy with nitrosoureas offered a long-term survival advantage to patients younger than 60 years old with malignant gliomas. Combination chemotherapy, such as procarbazine/CCNU/vincristine (PCV) must be tested further, and intra-arterial chemotherapy with nitrosoureas offered no survival advantage. Combination chemotherapy with PCV showed efficacy for patients with anaplastic oligodendroglioma and anaplastic oligoastrocytoma. Medulloblastoma: The addition of chemotherapy to radiotherapy improved the survival of patients with poor risk medulloblastoma, and may reduce the required craniospinal radiation dose in patients with good risk medulloblastoma. Primary CNS lymphoma (PCNSL): Combination of chemotherapy with high-dose MTX and radiotherapy improved survival of patients with PCNSL; however, the neurotoxicity produced by this treatment modality is a serious problem in older patients. Intracranial germ cell tumors: The addition of chemotherapy to radiotherapy may produce long term survival with good quality of life in patients with germinoma. Neoadjuvant therapy consisting of chemotherapy and radiotherapy followed by complete surgical excision improved survival of patients with intracranial nongerminomatous germ cell tumors. (author)

  13. Chemo-radiotherapy for malignant brain tumors

    International Nuclear Information System (INIS)

    Kochi, Masato; Ushio, Yukitaka

    2002-01-01

    Malignant gliomas: Randomized clinical trials conducted in the USA showed that radiotherapy plus chemotherapy with nitrosoureas offered a long-term survival advantage to patients younger than 60 years old with malignant gliomas. Combination chemotherapy, such as procarbazine/CCNU/vincristine (PCV) must be tested further, and intra-arterial chemotherapy with nitrosoureas offered no survival advantage. Combination chemotherapy with PCV showed efficacy for patients with anaplastic oligodendroglioma and anaplastic oligoastrocytoma. Medulloblastoma: The addition of chemotherapy to radiotherapy improved the survival of patients with poor risk medulloblastoma, and may reduce the required craniospinal radiation dose in patients with good risk medulloblastoma. Primary CNS lymphoma (PCNSL): Combination of chemotherapy with high-dose MTX and radiotherapy improved survival of patients with PCNSL; however, the neurotoxicity produced by this treatment modality is a serious problem in older patients. Intracranial germ cell tumors: The addition of chemotherapy to radiotherapy may produce long term survival with good quality of life in patients with germinoma. Neoadjuvant therapy consisting of chemotherapy and radiotherapy followed by complete surgical excision improved survival of patients with intracranial nongerminomatous germ cell tumors. (author)

  14. Arctigenin, a natural lignan compound, induces G0/G1 cell cycle arrest and apoptosis in human glioma cells

    OpenAIRE

    Maimaitili, Aisha; Shu, Zunhua; Cheng, Xiaojiang; Kaheerman, Kadeer; Sikandeer, Alifu; Li, Weimin

    2016-01-01

    The aim of the current study was to investigate the anticancer potential of arctigenin, a natural lignan compound, in malignant gliomas. The U87MG and T98G human glioma cell lines were treated with various concentrations of arctigenin for 48 h and the effects of arctigenin on the aggressive phenotypes of glioma cells were assessed. The results demonstrated that arctigenin dose-dependently inhibited the growth of U87MG and T98G cells, as determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphen...

  15. TRIM24 promotes glioma progression and enhances chemoresistance through activation of the PI3K/Akt signaling pathway.

    Science.gov (United States)

    Zhang, L-H; Yin, A-A; Cheng, J-X; Huang, H-Y; Li, X-M; Zhang, Y-Q; Han, N; Zhang, X

    2015-01-29

    The tripartite motif protein TRIM24 (tripartite motif-containing 24) has been found to play distinct roles in tumor development and progression, according to different tumor contexts. However, it remains elusive whether TRIM24 plays a role in malignant gliomas that are the most common and deadly primary brain tumors in adults. We report here that TRIM24 expression is positively correlated with glioma malignancy and is negatively associated with prognosis of patients with newly diagnosed glioblastoma, which is the most malignant form of gliomas but displays highly heterogeneous clinical outcome. The multivariate Cox regression analysis demonstrates the independent predictive value of TRIM24 expression level for overall and progression-free survival. Knockdown of TRIM24 suppresses cell proliferation, cell cycle progression, clone formation and in vivo tumor development, whereas overexpression of TRIM24 promotes cell growth. Chromatin immunoprecipitation, real-time reverse transcription-PCR and mutation analyses demonstrate that TRIM24 binds to the PIK3CA promoter via its PHD-Bromo domain to activate the transcription of PIK3CA gene, thus enhancing phosphatidylinositide 3-kinase (PI3K)/Akt signaling. The pan-PI3K inhibitor LY294002 and small interfering RNA targeting PIK3CA both abrogate the growth-promoting effect of TRIM24. Moreover, TRIM24 regulates the expression of DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT) through PI3K/Akt/nuclear factor-κB signaling transduction and enhances resistance to temozolomide, the standard chemotherapeutic agent for glioblastoma. Finally, glioblastoma patients with low TRIM24 expression benefit from chemotherapy, whereas those with high TRIM24 expression do not have such benefit. Our results suggest that TRIM24 might serve as a potential prognostic marker and therapeutic target for the management of malignant gliomas.

  16. Genome-wide comparison of paired fresh frozen and formalin-fixed paraffin-embedded gliomas by custom BAC and oligonucleotide array comparative genomic hybridization: facilitating analysis of archival gliomas

    Science.gov (United States)

    Mohapatra, Gayatry; Engler, David A.; Starbuck, Kristen D.; Kim, James C.; Bernay, Derek C.; Scangas, George A.; Rousseau, Audrey; Batchelor, Tracy T.; Betensky, Rebecca A.; Louis, David N.

    2010-01-01

    Molecular genetic analysis of cancer is rapidly evolving as a result of improvement in genomic technologies and the growing applicability of such analyses to clinical oncology. Array based comparative genomic hybridization (aCGH) is a powerful tool for detecting DNA copy number alterations (CNA), particularly in solid tumors, and has been applied to the study of malignant gliomas. In the clinical setting, however, gliomas are often sampled by small biopsies and thus formalin-fixed paraffin-embedded (FFPE) blocks are often the only tissue available for genetic analysis, especially for rare types of gliomas. Moreover, the biological basis for the marked intratumoral heterogeneity in gliomas is most readily addressed in FFPE material. Therefore, for gliomas, the ability to use DNA from FFPE tissue is essential for both clinical and research applications. In this study, we have constructed a custom bacterial artificial chromosome (BAC) array and show excellent sensitivity and specificity for detecting CNAs in a panel of paired frozen and FFPE glioma samples. Our study demonstrates a high concordance rate between CNAs detected in FFPE compared to frozen DNA. We have also developed a method of labeling DNA from FFPE tissue that allows efficient hybridization to oligonucleotide arrays. This labeling technique was applied to a panel of biphasic anaplastic oligoastrocytomas (AOA) to identify genetic changes unique to each component. Together, results from these studies suggest that BAC and oligonucleotide aCGH are sensitive tools for detecting CNAs in FFPE DNA, and can enable genome-wide analysis of rare, small and/or histologically heterogeneous gliomas. PMID:21080181

  17. Validation of DWI pre-processing procedures for reliable differentiation between human brain gliomas.

    Science.gov (United States)

    Vellmer, Sebastian; Tonoyan, Aram S; Suter, Dieter; Pronin, Igor N; Maximov, Ivan I

    2018-02-01

    Diffusion magnetic resonance imaging (dMRI) is a powerful tool in clinical applications, in particular, in oncology screening. dMRI demonstrated its benefit and efficiency in the localisation and detection of different types of human brain tumours. Clinical dMRI data suffer from multiple artefacts such as motion and eddy-current distortions, contamination by noise, outliers etc. In order to increase the image quality of the derived diffusion scalar metrics and the accuracy of the subsequent data analysis, various pre-processing approaches are actively developed and used. In the present work we assess the effect of different pre-processing procedures such as a noise correction, different smoothing algorithms and spatial interpolation of raw diffusion data, with respect to the accuracy of brain glioma differentiation. As a set of sensitive biomarkers of the glioma malignancy grades we chose the derived scalar metrics from diffusion and kurtosis tensor imaging as well as the neurite orientation dispersion and density imaging (NODDI) biophysical model. Our results show that the application of noise correction, anisotropic diffusion filtering, and cubic-order spline interpolation resulted in the highest sensitivity and specificity for glioma malignancy grading. Thus, these pre-processing steps are recommended for the statistical analysis in brain tumour studies. Copyright © 2017. Published by Elsevier GmbH.

  18. Aspartate-β-hydroxylase (ASPH: A potential therapeutic target in human malignant gliomas

    Directory of Open Access Journals (Sweden)

    Lisa-Marie Sturla

    2016-12-01

    Conclusion: This study demonstrates that increased ASPH expression could serve as a prognostic biomarker of gliomas and may assist in assigning tumor grade when biopsy specimens are scant. In addition, the findings suggest that GBM treatment strategies could be made more effective by including small molecule inhibitors of ASPH.

  19. Methylation of the miR-126 gene associated with glioma progression.

    Science.gov (United States)

    Cui, Hongwei; Mu, Yongping; Yu, Lei; Xi, Ya-guang; Matthiesen, Rune; Su, Xiulan; Sun, Wenjie

    2016-04-01

    Gliomas are the most common and the most malignant brain tumors, accouting for 45-55% of all intracranial tumors. The incidence of glioma worldwide is about 6-12 per 100,000. Recently, several studies showed that the activation of the oncogenes and the inactivation and/or loss of the tumor suppressor genes, especially for miRNA-21, let-7 and so on, are the most primary molecule event in gliomas. MicroRNAs (miRNAs) are a class of endogenously expressed small noncoding RNAs which are usually 21-23 nucleotides long. miRNAs regulate gene expression and play important roles in a variety of physiological and pathological processes, such as cell proliferation, differentiation and apoptosis. To date, Growing evidence has shown that mi RNAs are frequently dysregulated in human cancers and can act as both tumor suppressors and oncogenes. Along with the discovery of micro RNA, more and more research focusing on its relationship with glioma was carried out to investigate the biological features of glioma and to provide experimental evidence for glioma mechanism. In the present study, we aimed to verify the miRNA-126 down-regulation which showed in the results of glioma tissue miRNAs chip and discuss the miRNA-126 methylation in patients with glioma. A total of 50 samples from patients with glioma and 20 control samples from patients with cerebral trauma were included in this study. The expression levels of the miR-126 gene were detected using quantitative polymerase chain reaction (PCR), and the methylation status of miR-126 was examined using methylation-specific PCR-denaturing high-performance liquid chromatography (MSP-DHPLC). The expression level of miRNA-126 was found to be significantly higher in the control group (0.6134 ± 0.1214) than in the glioma group (0.2771 ± 0.1529; P < 0.05). The expression was also significantly elevated in low-grade gliomas (0.3117 ± 0.1474) compared with high-grade gliomas (0.1582 ± 0.1345; P < 0.05). In addition, increased methylation of

  20. A clinical trial protocol for second line treatment of malignant brain tumors with BNCT at University of Tsukuba

    Energy Technology Data Exchange (ETDEWEB)

    Aiyama, H. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Nakai, K., E-mail: knakai@Neurosurg-tsukuba.com [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Yamamoto, T. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan)] [Department of Radiation Oncology, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Nariai, T. [Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyouku (Japan); Kumada, H. [Department of Radiation Oncology, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Ishikawa, E. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Isobe, T. [Department of Radiation Oncology, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Endo, K.; Takada, T.; Yoshida, F.; Shibata, Y.; Matsumura, A. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan)

    2011-12-15

    We have evaluated the efficacy and safety of boron neutron capture therapy (BNCT) for recurrent glioma and malignant brain tumor using a new protocol. One of the two patients enrolled in this trial is a man with recurrent glioblastoma and the other is a woman with anaplastic meningioma. Both are still alive and no severe adverse events have been observed. Our findings suggest that NCT will be safe as a palliative therapy for malignant brain tumors. - Highlights: Black-Right-Pointing-Pointer Boron neutron capture therapy (BNCT) for recurrent glioma and malignant brain tumor. Black-Right-Pointing-Pointer Two cases with recurrent glioblastoma and anaplastic meningioma. Black-Right-Pointing-Pointer No severe adverse events have been observed using BNCT. Black-Right-Pointing-Pointer BNCT has a possibility of a safe palliative therapy for malignant brain tumors.

  1. Neuropathology of amyotrophic lateral sclerosis and its variants”

    Science.gov (United States)

    Saberi, Shahram; Stauffer, Jennifer E.; Schulte, Derek J.; Ravits, John

    2015-01-01

    Summary Amyotrophic lateral sclerosis (ALS) is a clinical syndrome named for its neuropathological hallmark: degeneration of motor neurons in the spinal anterior horn and motor cortex and loss of axons in the lateral columns of the spinal cord. The signature neuropathological molecular signature common to almost all sporadic ALS and most familial ALS is TDP-43 immunoreactive neuronal cytoplasmic inclusions. The neuropathological and molecular neuropathological features of ALS variants primarly lateral sclerosis and progressive muscular atrophy are less certain, but also appear to share the primary features of ALS. A number of genetic causes including mutations in SOD1, FUS, and C9orf72 comprise a disease spectrum and all demonstrate distinctive molecular and neuropathological signatures. Neuropathology will continue to play to a key role in solving the puzzle of ALS pathogenesis. PMID:26515626

  2. Concurrent Stereotactic Radiosurgery and Bevacizumab in Recurrent Malignant Gliomas: A Prospective Trial

    International Nuclear Information System (INIS)

    Cabrera, Alvin R.; Cuneo, Kyle C.; Desjardins, Annick; Sampson, John H.; McSherry, Frances; Herndon, James E.; Peters, Katherine B.; Allen, Karen; Hoang, Jenny K.; Chang, Zheng; Craciunescu, Oana; Vredenburgh, James J.; Friedman, Henry S.; Kirkpatrick, John P.

    2013-01-01

    Purpose: Virtually all patients with malignant glioma (MG) eventually recur. This study evaluates the safety of concurrent stereotactic radiosurgery (SRS) and bevacizumab (BVZ), an antiangiogenic agent, in treatment of recurrent MG. Methods and Materials: Fifteen patients with recurrent MG, treated at initial diagnosis with surgery and adjuvant radiation therapy/temozolomide and then at least 1 salvage chemotherapy regimen, were enrolled in this prospective trial. Lesions <3 cm in diameter were treated in a single fraction, whereas those 3 to 5 cm in diameter received 5 5-Gy fractions. BVZ was administered immediately before SRS and 2 weeks later. Neurocognitive testing (Mini-Mental Status Exam, Trail Making Test A/B), Functional Assessment of Cancer Therapy-Brain (FACT-Br) quality-of-life assessment, physical exam, and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) were performed immediately before SRS and 1 week and 2 months following completion of SRS. The primary endpoint was central nervous system (CNS) toxicity. Secondary endpoints included survival, quality of life, microvascular properties as measured by DCE-MRI, steroid usage, and performance status. Results: One grade 3 (severe headache) and 2 grade 2 CNS toxicities were observed. No patients experienced grade 4 to 5 toxicity or intracranial hemorrhage. Neurocognition, quality of life, and Karnofsky performance status did not change significantly with treatment. DCE-MRI results suggest a significant decline in tumor perfusion and permeability 1 week after SRS and further decline by 2 months. Conclusions: Treatment of recurrent MG with concurrent SRS and BVZ was not associated with excessive toxicity in this prospective trial. A randomized trial of concurrent SRS/BVZ versus conventional salvage therapy is needed to establish the efficacy of this approach

  3. Radiotherapy in supratentorial gliomas. A study of 821 cases

    International Nuclear Information System (INIS)

    Heesters, M.; Molenaar, W.; Go, G.K.

    2003-01-01

    Purpose: Analysis of the results of radiotherapy in a large group of cerebral gliomas with identification of prognostic factors and the outcome with respect to different decades of treatment. Patients and Methods: Two decades (1979-1999) of radiotherapy in supratentorial astrocytic and oligodendroglial tumors (n = 821) at the University Hospital Groningen were retrospectively evaluated. Prognostic factors for survival were analyzed. Two decades of radiotherapy treatment were compared with respect to radiotherapy dose and treatment-field design. Results: Glioblastoma multiforme, including gliosarcoma, was the most frequent supratentorial glioma (n = 442) with a poor survival, i.e., median survival time (MST) 7 months, especially in patients > 50 years of age and with poor performance. Patients with good performance were selected for radiotherapy with an optimum dose of 60 Gy local-field irradiation. However, in patients with poor prognosis, no radiotherapy was applied or a shorter treatment scheme was given. Anaplastic astrocytomas (n = 131) were treated in the same way as glioblastoma multiforme. Over time, a decrease in radiation dose (from 60 to 45 Gy) and from whole brain irradiation to local-field treatment was observed, following the literature. In low-grade gliomas, prognostic factors for survival were age, performance, and extent of resection. Gemistocytic astrocytoma (n = 15) had an inferior survival compared to astrocytoma (MST 46 vs. 54 months), but a superior survival compared to anaplastic astrocytoma (MST 10 months). The presence of an oligodendroglial component in a glioma implied a superior survival compared to the astrocytic gliomas. The inherent biology of the glioma is reflected by the study of recurrent tumors with progression to higher grades of malignancy in 32-40% and by the histology of recurrent oligodendroglial tumors. In comparing two decades of radiotherapy in gliomas, no differences in survival were observed despite the technological

  4. Radiotherapy in supratentorial gliomas. A study of 821 cases

    Energy Technology Data Exchange (ETDEWEB)

    Heesters, M. [Dept. of Radiotherapy, Groningen Univ. Hospital (Netherlands); Molenaar, W. [Dept. of Pathology, Groningen Univ. Hospital (Netherlands); Go, G.K. [Dept. of Neurosurgery, Groningen Univ. Hospital (Netherlands)

    2003-09-01

    Purpose: Analysis of the results of radiotherapy in a large group of cerebral gliomas with identification of prognostic factors and the outcome with respect to different decades of treatment. Patients and Methods: Two decades (1979-1999) of radiotherapy in supratentorial astrocytic and oligodendroglial tumors (n = 821) at the University Hospital Groningen were retrospectively evaluated. Prognostic factors for survival were analyzed. Two decades of radiotherapy treatment were compared with respect to radiotherapy dose and treatment-field design. Results: Glioblastoma multiforme, including gliosarcoma, was the most frequent supratentorial glioma (n = 442) with a poor survival, i.e., median survival time (MST) 7 months, especially in patients > 50 years of age and with poor performance. Patients with good performance were selected for radiotherapy with an optimum dose of 60 Gy local-field irradiation. However, in patients with poor prognosis, no radiotherapy was applied or a shorter treatment scheme was given. Anaplastic astrocytomas (n = 131) were treated in the same way as glioblastoma multiforme. Over time, a decrease in radiation dose (from 60 to 45 Gy) and from whole brain irradiation to local-field treatment was observed, following the literature. In low-grade gliomas, prognostic factors for survival were age, performance, and extent of resection. Gemistocytic astrocytoma (n = 15) had an inferior survival compared to astrocytoma (MST 46 vs. 54 months), but a superior survival compared to anaplastic astrocytoma (MST 10 months). The presence of an oligodendroglial component in a glioma implied a superior survival compared to the astrocytic gliomas. The inherent biology of the glioma is reflected by the study of recurrent tumors with progression to higher grades of malignancy in 32-40% and by the histology of recurrent oligodendroglial tumors. In comparing two decades of radiotherapy in gliomas, no differences in survival were observed despite the technological

  5. Evaluation of epidermal growth factor receptor (EGFR) by chromogenic in situ hybridization (CISH) and immunohistochemistry (IHC) in archival gliomas using bright-field microscopy.

    Science.gov (United States)

    Marquez, Abbey; Wu, Rina; Zhao, Jianxin; Tao, Jianhua; Shi, Zuorong

    2004-03-01

    Overexpression of EGFR secondary to EGFR gene amplification is a common feature in primary malignant gliomas. To correctly assess EGFR protein and gene level as possible prognostic and predictive markers in gliomas, straightforward assays, which can be used routinely in the pathology laboratory to evaluate EGFR status, becomes critical. EGFR gene amplification and chromosome 7 aneuploidy was detected in 34 formalin-fixed, paraffin-embedded benign and malignant gliomas by chromogenic in situ hybridization (CISH) using digoxigenin-labeled EGFR and biotin-labeled chromosome 7 centromeric probes. The results were evaluated by bright-field microscopy under a 40x objective lens. EGFR protein level was detected by immunohistochemistry (IHC) using monoclonal antibody 31G7. Five cases, 3 astrocytoma grade III (33%) and 2 glioblastoma multiforme (GBM) (33%), had EGFR amplification displayed as diaminobenzidine-stained multiple dots suggesting the pattern of double-minute chromosomes. Chromosome 7 polysomy was found in 68% gliomas, 100% GBM, 67% astrocytoma grade III, 42% astrocytoma grade II, 50% astrocytoma grade I, 100% ependymoma, and the 1 case of mixed glioma III. High expression of EGFR protein was present in 62% gliomas and displayed membrane and cytoplasmic staining. All tumors with EGFR gene amplification showed EGFR high expression. High expression of EGFR without gene amplification was observed in all grades of gliomas. Simultaneous detection of EGFR gene copies or chromosome 7 centromere signals along with tissue morphology allows us to compare CISH results easily with IHC results. Our results show that CISH is an objective, practical, and accurate assay to screen for EGFR gene status in gliomas.

  6. Interactions between glioma and pregnancy: insight from a 52-case multicenter series.

    Science.gov (United States)

    Peeters, Sophie; Pagès, Mélanie; Gauchotte, Guillaume; Miquel, Catherine; Cartalat-Carel, Stéphanie; Guillamo, Jean-Sébastien; Capelle, Laurent; Delattre, Jean-Yves; Beauchesne, Patrick; Debouverie, Marc; Fontaine, Denys; Jouanneau, Emmanuel; Stecken, Jean; Menei, Philippe; De Witte, Olivier; Colin, Philippe; Frappaz, Didier; Lesimple, Thierry; Bauchet, Luc; Lopes, Manuel; Bozec, Laurence; Moyal, Elisabeth; Deroulers, Christophe; Varlet, Pascale; Zanello, Marc; Chretien, Fabrice; Oppenheim, Catherine; Duffau, Hugues; Taillandier, Luc; Pallud, Johan

    2018-01-01

    OBJECTIVE The goal of this study was to provide insight into the influence of gliomas on gestational outcomes, the impact of pregnancy on gliomas, and the identification of patients at risk. METHODS In this multiinstitutional retrospective study, the authors identified 52 pregnancies in 50 women diagnosed with a glioma. RESULTS For gliomas known prior to pregnancy (n = 24), we found the following: 1) An increase in the quantified imaging growth rates occurred during pregnancy in 87% of cases. 2) Clinical deterioration occurred in 38% of cases, with seizures alone resolving after delivery in 57.2% of cases. 3) Oncological treatments were immediately performed after delivery in 25% of cases. For gliomas diagnosed during pregnancy (n = 28), we demonstrated the following: 1) The tumor was discovered during the second and third trimesters in 29% and 54% of cases, respectively, with seizures being the presenting symptom in 68% of cases. 2) The quantified imaging growth rates did not significantly decrease after delivery and before oncological treatment. 3) Clinical deterioration resolved after delivery in 21.4% of cases. 4) Oncological treatments were immediately performed after delivery in 70% of cases. Gliomas with a high grade of malignancy, negative immunoexpression of alpha-internexin, or positive immunoexpression for p53 were more likely to be associated with tumor progression during pregnancy. Deliveries were all uneventful (cesarean section in 54.5% of cases and vaginal delivery in 45.5%), and the infants were developmentally normal. CONCLUSIONS When a woman harboring a glioma envisions a pregnancy, or when a glioma is discovered in a pregnant patient, the authors suggest informing her and her partner that pregnancy may impact the evolution of the glioma clinically and radiologically. They strongly advise a multidisciplinary approach to management. ■ CLASSIFICATION OF EVIDENCE Type of question: association; study design: case series; evidence: Class IV.

  7. Combinatorial therapy with adenoviral-mediated PTEN and a PI3K inhibitor suppresses malignant glioma cell growth in vitro and in vivo by regulating the PI3K/AKT signaling pathway.

    Science.gov (United States)

    Nan, Yang; Guo, Liyun; Song, Yunpeng; Wang, Le; Yu, Kai; Huang, Qiang; Zhong, Yue

    2017-08-01

    Glioblastoma is a highly invasive and challenging tumor of the central nervous system. The mutation/deletion of the tumor suppressor phosphatase and tensin homolog (PTEN) gene is the main genetic change identified in glioblastomas. PTEN plays a critical role in tumorigenesis and has been shown to be an important therapeutic target. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 is commonly used to inhibit glioma cell growth via regulation of the PI3K/AKT signaling pathway. In this study, we examined the growth inhibitory effects of a combinatorial therapy of adenoviral-mediated PTEN (Ad-PTEN) and LY294002 on LN229 and U251 glioma cells in vitro and on tumor xenografts in vivo. In vitro, LN229 and U251 glioma cells were treated by combinatorial therapy with Ad-PTEN and LY294002. The growth ability was determined by MTT assay. The cell cycle distribution was analyzed by flow cytometry. Cell invasive ability was analyzed by transwell invasion assay and cell apoptosis analysis via FITC-Annexin V analysis. In vivo, U251 subcutaneous glioblastoma xenograft was used to assay anti-tumor effect of combinatorial therapy with Ad-PTEN and LY294002 by mean volume of tumors, immunohistochemistry and TUNEL method. The combinatorial treatment clearly suppressed cell proliferation, arrested the cell cycle, reduced cell invasion and promoted cell apoptosis compared with the Ad-PTEN or LY294002 treatment alone. The treatment worked by inhibiting the PI3K/AKT pathway. In addition, the growth of U251 glioma xenografts treated with the combination of Ad-PTEN and LY294002 was significantly inhibited compared with those treated with Ad-PTEN or LY294002 alone. Our data indicated that the combination of Ad-PTEN and LY294002 effectively suppressed the malignant growth of human glioma cells in vitro and in tumor xenografts, suggesting a promising new approach for glioma gene therapy that warrants further investigation.

  8. 111Indium (DTPA-octreotide) scintigraphy in patients with cerebral gliomas

    International Nuclear Information System (INIS)

    Luyken, C.; Hildebrandt, G.; Klug, N.; Scheidhauer, K.; Schicha, H.; Krisch, B.

    1994-01-01

    Somatostatin receptors (SR) have been identified in vitro in normal brain tissue, in neuro-endocrine tumours and in cerebral gliomas WHO grade 1 or 2 by autoradiography or using somatostatin-gold conjugates. In vivo, SR detection has become possible by scintigraphy applying the somatostatin analogue octreotide, radio-labelled with 111 indium. It was supposed that expression of SR in cerebral gliomas corresponds to low grade tumour malignancy and that, in vivo, somatostatin receptor scintigraphy (SRS) could refine and improve the WHO grading system for cerebral gliomas. Nineteen patients with cerebral gliomas (grade 2: n=8, grade 3: n=3, grade 4: n=8) were examined with 111 In (DTPA-octreotide) to evaluate, whether SRS could improve the pre-operative estimation of tumour biology and the postoperative management. The results of SRS were related with the histological findings and with the in vitro demonstration of somatostatin-binding sites on cultured tumour cells incubated with a somatostatin-gold conjugate. In vivo, none of the patients with glioma grade 2 showed enhanced tracer uptake in the SRS, whereas in vitro SR were detected in cultured tumour tissue in 5 out of 5 cases. Every patient with glioma grade 3 or 4 demonstrated a high focal uptake of 111 In (DTPA-octreotide), as shown by SRS. Three patients with glioma grade 4, additionally examined with 99mTc-DTPA, showed an increased tracer uptake within the tumour area when compared with results of SRS. In vitro, SR were detected on tumour cell surface in 5 out of 6 tissue samples from patients with gliomas grade 3 or 4. One patient harbouring a cerebral abscess with a high focal tracer uptake in the SRS but with absence of somatostatin-binding sites in vitro. We conclude, that in glioma patients enhanced tracer uptake in receptor scintigraphy with 111 In (DTPA-octreotide) does not depend on the presence of SR in tumour but on the dysfunction of the blood-brain barrier. Thus, SRS dose not improve the

  9. Transcriptional differences between normal and glioma-derived glial progenitor cells identify a core set of dysregulated genes.

    Science.gov (United States)

    Auvergne, Romane M; Sim, Fraser J; Wang, Su; Chandler-Militello, Devin; Burch, Jaclyn; Al Fanek, Yazan; Davis, Danielle; Benraiss, Abdellatif; Walter, Kevin; Achanta, Pragathi; Johnson, Mahlon; Quinones-Hinojosa, Alfredo; Natesan, Sridaran; Ford, Heide L; Goldman, Steven A

    2013-06-27

    Glial progenitor cells (GPCs) are a potential source of malignant gliomas. We used A2B5-based sorting to extract tumorigenic GPCs from human gliomas spanning World Health Organization grades II-IV. Messenger RNA profiling identified a cohort of genes that distinguished A2B5+ glioma tumor progenitor cells (TPCs) from A2B5+ GPCs isolated from normal white matter. A core set of genes and pathways was substantially dysregulated in A2B5+ TPCs, which included the transcription factor SIX1 and its principal cofactors, EYA1 and DACH2. Small hairpin RNAi silencing of SIX1 inhibited the expansion of glioma TPCs in vitro and in vivo, suggesting a critical and unrecognized role of the SIX1-EYA1-DACH2 system in glioma genesis or progression. By comparing the expression patterns of glioma TPCs with those of normal GPCs, we have identified a discrete set of pathways by which glial tumorigenesis may be better understood and more specifically targeted. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Resistance to Two Heterologous Neurotropic Oncolytic Viruses, Semliki Forest Virus and Vaccinia Virus, in Experimental Glioma

    Science.gov (United States)

    Le Boeuf, Fabrice; Lemay, Chantal; De Silva, Naomi; Diallo, Jean-Simon; Cox, Julie; Becker, Michelle; Choi, Youngmin; Ananth, Abhirami; Sellers, Clara; Breton, Sophie; Roy, Dominic; Falls, Theresa; Brun, Jan; Hemminki, Akseli; Hinkkanen, Ari; Bell, John C.

    2013-01-01

    Attenuated Semliki Forest virus (SFV) may be suitable for targeting malignant glioma due to its natural neurotropism, but its replication in brain tumor cells may be restricted by innate antiviral defenses. We attempted to facilitate SFV replication in glioma cells by combining it with vaccinia virus, which is capable of antagonizing such defenses. Surprisingly, we found parenchymal mouse brain tumors to be refractory to both viruses. Also, vaccinia virus appears to be sensitive to SFV-induced antiviral interference. PMID:23221568

  11. Sustained Angiopoietin-2 Expression Disrupts Vessel Formation and Inhibits Glioma Growth

    Directory of Open Access Journals (Sweden)

    Ok-Hee Lee

    2006-05-01

    Full Text Available Systematic analyses of the expression of angiogenic regulators in cancer models should yield useful information for the development of novel therapies for malignant gliomas. In this study, we analyzed tumor growth, vascularization, and angiopoietin-2 (Ang2 expression during the development of U-87 MG xenografts. We found that tumoral angiogenesis in this model follows a multistage process characterized by avascular, prolific peripheral angiogenesis, and late vascular phases. On day 4, we observed an area of central necrosis, a peripheral ring of Ang2-positive glioma cells, and reactive Ang2-positive vascular structures in the tumor/brain interface. When the tumor had developed a vascular network, Ang2 was expressed only in peripheral vascular structures. Because Ang2 expression was downmodulated in the late stages of development, probably to maintain a stable tumoral vasculature, we next studied whether sustained Ang2 expression might impair vascular development and, ultimately, tumor growth. Ang2 prevented the formation of capillary-like structures and impaired angiogenesis in a chorioallantoic membrane chicken model. Finally, we tested the effect of sustained Ang2 expression on U-87 MG xenograff development. Ang2 significantly prolonged the survival of intracranial U-87 MG tumor-bearing animals. Examination of Ang2treated xenograffs revealed areas of tumor necrosis and vascular damage. We therefore conclude that deregulated Ang2 expression during gliomagenesis hindered successful angiogenesis and that therapies that sustain Ang2 expression might be effective against malignant gliomas.

  12. Expression and prognostic value of EGR1 and EGR3 in gliomas

    DEFF Research Database (Denmark)

    Møldrup Knudsen, Arnon

    Introduction Gliomas are the most frequent primary brain tumors. For the most malignant glioma – the glioblastoma - the median survival is below 15 months. Since only few prognostic biomarkers are of benefit in daily practice, new markers are urgently needed. EGR1 and EGR3 are transcription factors...... involved in the regulation of cell-cycle, but they have also been associated with the migration of cancer cells. Studies have shown prognostic potential of EGR1 and EGR3 in breast-, gastric-, colorectal-, and prostate cancer. The purpose of this study was to investigate the expression and potential....... Cox proportional hazards regression showed that a high EGR1 fraction remained a significant prognostic variable when adjusted for confounders, both in all gliomas as one group (P=0.048) and glioblastomas exclusively (P=0.011). The combination of EGR1 high/EGR3 low in glioblastomas also remained...

  13. Capillary electrophoresis - Mass spectrometry metabolomics analysis revealed enrichment of hypotaurine in rat glioma tissues.

    Science.gov (United States)

    Gao, Peng; Ji, Min; Fang, Xueyan; Liu, Yingyang; Yu, Zhigang; Cao, Yunfeng; Sun, Aijun; Zhao, Liang; Zhang, Yong

    2017-11-15

    Glioma is one of the most lethal brain malignancies with unknown etiologies. Many metabolomics analysis aiming at diverse kinds of samples had been performed. Due to the varied adopted analytical platforms, the reported disease-related metabolites were not consistent across different studies. Comparable metabolomics results are more likely to be acquired by analyzing the same sample types with identical analytical platform. For tumor researches, tissue samples metabolomics analysis own the unique advantage that it can gain more direct insight into disease-specific pathological molecules. In this light, a previous reported capillary electrophoresis - mass spectrometry human tissues metabolomics analysis method was employed to profile the metabolome of rat C6 cell implantation gliomas and the corresponding precancerous tissues. It was found that 9 metabolites increased in the glioma tissues. Of them, hypotaurine was the only metabolite that enriched in the malignant tissues as what had been reported in the relevant human tissues metabolomics analysis. Furthermore, hypotaurine was also proved to inhibit α-ketoglutarate-dependent dioxygenases (2-KDDs) through immunocytochemistry staining and in vitro enzymatic activity assays by using C6 cell cultures. This study reinforced the previous conclusion that hypotaurine acted as a competitive inhibitor of 2-KDDs and proved the value of metabolomics in oncology studies. Copyright © 2017. Published by Elsevier Inc.

  14. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy

    Directory of Open Access Journals (Sweden)

    Mueller-Klieser Wolfgang

    2011-07-01

    Full Text Available Abstract Background Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells. Methods To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model. Results The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2, 3-oxoacid-CoA transferase 1 (OXCT1 and acetyl-CoA acetyltransferase 1 (ACAT1 were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1α (HIF-1α pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival. Conclusion In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic

  15. TRIM8 downregulation in glioma affects cell proliferation and it is associated with patients survival

    International Nuclear Information System (INIS)

    Micale, Lucia; Fusco, Carmela; Fontana, Andrea; Barbano, Raffaela; Augello, Bartolomeo; De Nittis, Pasquelena; Copetti, Massimiliano; Pellico, Maria Teresa; Mandriani, Barbara; Cocciadiferro, Dario; Parrella, Paola; Fazio, Vito Michele; Dimitri, Lucia Maria Cecilia; D’Angelo, Vincenzo; Novielli, Chiara; Larizza, Lidia; Daga, Antonio; Merla, Giuseppe

    2015-01-01

    Human gliomas are a heterogeneous group of primary malignant brain tumors whose molecular pathogenesis is not yet solved. In this regard, a major research effort has been directed at identifying novel specific glioma-associated genes. Here, we investigated the effect of TRIM8 gene in glioma. TRIM8 transcriptional level was profiled in our own glioma cases collection by qPCR and confirmed in the independent TCGA glioma cohort. The association between TRIM8 expression and Overall Survival and Progression-free Survival in TCGA cohort was determined by using uni-multivariable Cox regression analysis. The effect of TRIM8 on patient glioma cell proliferation was evaluated by performing MTT and clonogenic assays. The mechanisms causing the reduction of TRIM8 expression were explored by using qPCR and in vitro assays. We showed that TRIM8 expression correlates with unfavorable clinical outcome in glioma patients. We found that a restored TRIM8 expression induced a significant reduction of clonogenic potential in U87MG and patient’s glioblastoma cells. Finally we provide experimental evidences showing that miR-17 directly targets the 3′ UTR of TRIM8 and post-transcriptionally represses the expression of TRIM8. Our study provides evidences that TRIM8 may participate in the carcinogenesis and progression of glioma and that the transcriptional repression of TRIM8 might have potential value for predicting poor prognosis in glioma patients. The online version of this article (doi:10.1186/s12885-015-1449-9) contains supplementary material, which is available to authorized users

  16. [A correlation between diffusion kurtosis imaging and the proliferative activity of brain glioma].

    Science.gov (United States)

    Tonoyan, A S; Pronin, I N; Pitshelauri, D I; Shishkina, L V; Fadeeva, L M; Pogosbekyan, E L; Zakharova, N E; Shults, E I; Khachanova, N V; Kornienko, V N; Potapov, A A

    2015-01-01

    The aim of the study was to assess the capabilities of diffusion kurtosis imaging (DKI) in diagnosis of the glioma proliferative activity and to evaluate a relationship between the glioma proliferative activity index and diffusion parameters of the contralateral normal appearing white matter (CNAWM). The study included 47 patients with newly diagnosed brain gliomas (23 low grade, 13 grade III, and 11 grade IV gliomas). We determined a relationship between absolute and normalized parameters of the diffusion tensor (mean (MD), axial (AD), and radial (RD) diffusivities; fractional (FA) and relative (RA) anisotropies) and diffusion kurtosis (mean (MK), axial (AK), and radial (RK) kurtosis; kurtosis anisotropy (KA)) and the proliferative activity index in the most malignant glioma parts (pAK, and RK) and anisotropy (KA, FA, RA) values increased, and diffusivity (MD, AD, RD) values decreased as the glioma proliferative activity index increased. A strong correlation between the proliferative activity index and absolute RK (r=0,71; p=0.000001) and normalized values of MK (r=0.8; p=0.000001), AK (r=0.71; p=0.000001), RK (r=0.81; p=0.000001), and RD (r=-0.71; p=0.000001) was found. A weak, but statistically significant correlation between the glioma proliferative activity index and diffusion values RK (r=-0.36; p=0.014), KA (r=-0.39; p=0.007), RD (r=0.35; p=0.017), FA (r=-0.42; p=0.003), and RA (r=-0.41; p=0.004) of CNAWM was found. DKI has good capabilities to detect immunohistochemical changes in gliomas. DKI demonstrated a high sensitivity in detection of microstructural changes in the contralateral normal appearing white matter in patients with brain gliomas.

  17. Daunorubicin and doxorubicin but not BCNU have deleterious effects on organotypic multicellular spheroids of gliomas

    NARCIS (Netherlands)

    Kaaijk, P.; Troost, D.; de Boer, O. J.; van Amstel, P.; Bakker, P. J.; Leenstra, S.; Bosch, D. A.

    1996-01-01

    In the present study organotypic multicellular spheroids (OMS) were used to study the effects of chemotherapeutic agents on malignant gliomas. Compared with the frequently used cell line models, OMS have several advantages with respect to the preservation of the cellular heterogeneity and the

  18. Astroblastoma: beside being a tumor entity, an occasional phenotype of astrocytic gliomas?

    Directory of Open Access Journals (Sweden)

    Mellai M

    2015-02-01

    Full Text Available Marta Mellai,1 Angela Piazzi,1 Cristina Casalone,2 Silvia Grifoni,2 Antonio Melcarne,3 Laura Annovazzi,1 Paola Cassoni,4 Tetyana Denysenko,1 Maria Consuelo Valentini,5 Angelina Cistaro,6,7 Davide Schiffer1 1Neuro-Bio-Oncology Center, Policlinico di Monza Foundation/Consorzio di Neuroscienze, University of Pavia, Vercelli, Italy; 2Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy; 3Department of Neurosurgery, CTO Hospital/Città della Salute e della Scienza, Turin, Italy; 4Department of Medical Sciences, University of Turin, Turin, Italy; 5Department of Neuroradiology, CTO Hospital/Città della Salute e della Scienza, Turin, Italy; 6Positron Emission Tomography Center IRMET S.p.A, Euromedic Inc., Turin, Italy; 7Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy Abstract: The diagnosis of astroblastoma is based on a typical histological aspect with perivascular distribution of cells sending cytoplasmic extensions to the vessels and vascular hyalinization. These criteria are useful for standardizing the identification of the tumor, but, in spite of this, there are discrepancies in the literature concerning the age distribution and the benign or malignant nature of the tumor. Three cases are discussed in this study: Case 1 was a typical high-grade astroblastoma; Case 2 was an oligodendroglioma at the first intervention and an oligoastrocytoma at the second intervention with typical perivascular arrangements in the astrocytic component; Case 3 was a gemistocytic glioma with malignant features and typical perivascular arrangements. Genetic analysis showed genetic alterations that are typical of gliomas of all malignancy grades. Using the neurosphere assay, neurospheres and adherent cells were found to have developed in Case 1, while adherent cells only developed in Case 2, in line with the stemness potential of the tumors. The cases are discussed in relation to their

  19. Autopsy consent, brain collection, and standardized neuropathologic assessment of ADNI participants: the essential role of the neuropathology core.

    Science.gov (United States)

    Cairns, Nigel J; Taylor-Reinwald, Lisa; Morris, John C

    2010-05-01

    Our objectives are to facilitate autopsy consent, brain collection, and perform standardized neuropathologic assessments of all Alzheimer's Disease Neuroimaging Initiative (ADNI) participants who come to autopsy at the 58 ADNI sites in the USA and Canada. Building on the expertise and resources of the existing Alzheimer's Disease Research Center (ADRC) at Washington University School of Medicine, St. Louis, MO, a Neuropathology Core (NPC) to serve ADNI was established with one new highly motivated research coordinator. The ADNI-NPC coordinator provides training materials and protocols to assist clinicians at ADNI sites in obtaining voluntary consent for brain autopsy in ADNI participants. Secondly, the ADNI-NPC maintains a central laboratory to provide uniform neuropathologic assessments using the operational criteria for the classification of AD and other pathologies defined by the National Alzheimer Coordinating Center (NACC). Thirdly, the ADNI-NPC maintains a state-of-the-art brain bank of ADNI-derived brain tissue to promote biomarker and multi-disciplinary clinicopathologic studies. During the initial year of funding of the ADNI Neuropathology Core, there was notable improvement in the autopsy rate to 44.4%. In the most recent year of funding (September 1(st), 2008 to August 31(st) 2009), our autopsy rate improved to 71.5%. Although the overall numbers to date are small, these data demonstrate that the Neuropathology Core has established the administrative organization with the participating sites to harvest brains from ADNI participants who come to autopsy. Within two years of operation, the Neuropathology Core has: (1) implemented a protocol to solicit permission for brain autopsy in ADNI participants at all 58 sites who die and (2) to send appropriate brain tissue from the decedents to the Neuropathology Core for a standardized, uniform, and state-of-the-art neuropathologic assessment. The benefit to ADNI of the implementation of the NPC is very clear

  20. Antitumor Activity of Rat Mesenchymal Stem Cells during Direct or Indirect Co-Culturing with C6 Glioma Cells.

    Science.gov (United States)

    Gabashvili, A N; Baklaushev, V P; Grinenko, N F; Mel'nikov, P A; Cherepanov, S A; Levinsky, A B; Chehonin, V P

    2016-02-01

    The tumor-suppressive effect of rat mesenchymal stem cells against low-differentiated rat C6 glioma cells during their direct and indirect co-culturing and during culturing of C6 glioma cells in the medium conditioned by mesenchymal stem cells was studied in an in vitro experiment. The most pronounced antitumor activity of mesenchymal stem cells was observed during direct co-culturing with C6 glioma cells. The number of live C6 glioma cells during indirect co-culturing and during culturing in conditioned medium was slightly higher than during direct co-culturing, but significantly differed from the control (C6 glioma cells cultured in medium conditioned by C6 glioma cells). The cytotoxic effect of medium conditioned by mesenchymal stem cells was not related to medium depletion by glioma cells during their growth. The medium conditioned by other "non-stem" cells (rat astrocytes and fibroblasts) produced no tumor-suppressive effect. Rat mesenchymal stem cells, similar to rat C6 glioma cells express connexin 43, the main astroglial gap junction protein. During co-culturing, mesenchymal stem cells and glioma C6 cells formed functionally active gap junctions. Gap junction blockade with connexon inhibitor carbenoxolone attenuated the antitumor effect observed during direct co-culturing of C6 glioma cells and mesenchymal stem cells to the level produced by conditioned medium. Cell-cell signaling mediated by gap junctions can be a mechanism of the tumor-suppressive effect of mesenchymal stem cells against C6 glioma cells. This phenomenon can be used for the development of new methods of cell therapy for high-grade malignant gliomas.

  1. Methylation of the ATM promoter in glioma cells alters ionizing radiation sensitivity

    International Nuclear Information System (INIS)

    Roy, Kanaklata; Wang, Lilin; Makrigiorgos, G. Mike; Price, Brendan D.

    2006-01-01

    Glioblastomas are among the malignancies most resistant to radiation therapy. In contrast, cells lacking the ATM protein are highly sensitive to ionizing radiation. The relationship between ATM protein expression and radiosensitivity in 3 glioma cell lines was examined. T98G cells exhibited normal levels of ATM protein, whereas U118 and U87 cells had significantly lower levels of ATM and increased (>2-fold) sensitivity to ionizing radiation compared to T98G cells. The ATM promoter was methylated in U87 cells. Demethylation by azacytidine treatment increased ATM protein levels in the U87 cells and decreased their radiosensitivity. In contrast, the ATM promoter in U118 cells was not methylated. Further, expression of exogenous ATM did not significantly alter the radiosensitivity of U118 cells. ATM expression is therefore heterogeneous in the glioma cells examined. In conclusion, methylation of the ATM promoter may account for the variable radiosensitivity and heterogeneous ATM expression in a fraction of glioma cells

  2. Isocitrate dehydrogenase 1 and 2 genes mutations and MGMT methylation in gliomas

    Directory of Open Access Journals (Sweden)

    D. V. Tabakov

    2017-01-01

    Full Text Available Gliomas are the most common brain tumors. It is difficult to detect them at early stages of disease and there is a few available therapies providing significant improvement in survival. Mutations of isocitrate dehydrogenase 1 and 2 genes (IDH1 and IDH2 play significant role in gliomogenesis, diagnostics and selection of patient therapy. We tested the distribution of IDH1 and IDH2 mutations in gliomas of different histological types and grades of malignancy by DNA melting analysis using our protocol with a sensitivity of 5 %. The results of this assay were confirmed by conventional Sanger sequencing. IDH1/2 mutations were detected in 74 % of lower grade gliomas (II and III, World Health Organization and in 14 % of glioblastomas (IV, World Health Organization. Mutation rate in gliomas with oligodendroglioma component were significantly higher then in other glioma types (р = 0.014. The IDH1 mutations was the most common (79 % of general mutation number. IDH1/2 mutations can induce aberrant gene methylation. Detection of methylation rate of the gene encoding for O6-methylguanine-DNA-methyltransferase (MGMT, predictive biomarker for treatment of gliomas with the alkylating agents, has demonstrated a partial association with IDH1/2 mutations. In 73 % of IDH1/2-mutant tumors MGMT promoter methylation were observed. At the same time IDH1/2 mutations were not revealed in 67 % tumors with MGMT promoter methylation. These results indicate existence of another mechanism of MGMT methylation in gliomas. Our data strong support for necessity of both markers testing when patient therapy is selected.

  3. Tumor Restrictive Suicide Gene Therapy for Glioma Controlled by the FOS Promoter.

    Directory of Open Access Journals (Sweden)

    Jianqing Pan

    Full Text Available Effective suicide gene delivery and expression are crucial to achieving successful effects in gene therapy. An ideal tumor-specific promoter expresses therapeutic genes in tumor cells with minimal normal tissue expression. We compared the activity of the FOS (FBJ murine osteosarcoma viral oncogene homolog promoter with five alternative tumor-specific promoters in glioma cells and non-malignant astrocytes. The FOS promoter caused significantly higher transcriptional activity in glioma cell lines than all alternative promoters with the exception of CMV. The FOS promoter showed 13.9%, 32.4%, and 70.8% of the transcriptional activity of CMV in three glioma cell lines (U87, U251, and U373. Importantly, however, the FOS promoter showed only 1.6% of the transcriptional activity of CMV in normal astrocytes. We also tested the biologic activity of recombinant adenovirus containing the suicide gene herpes simplex virus thymidine kinase (HSV-tk driven by the FOS promoter, including selective killing efficacy in vitro and tumor inhibition rate in vivo. Adenoviral-mediated delivery of the HSV-tk gene controlled by the FOS promoter conferred a cytotoxic effect on human glioma cells in vitro and in vivo. This study suggests that use of the FOS-tk adenovirus system is a promising strategy for glioma-specific gene therapy but still much left for improvement.

  4. Low dose ionizing radiation responses and knockdown of ATM kinase activity in glioma stem cells

    International Nuclear Information System (INIS)

    Lim, Y.C.; Roberts, T.; Day, B.; Kozlov, S.; Walker, D.; Lavin, M.; Harding, A.

    2009-01-01

    Genesis of new cells in the mammalian brain has previously been regarded as a negligible event; an assumption that long limited our understanding in the development of neoplasias. The recent discovery of perpetual lineages derived from neural stem cells has resulted in a new approach to studying the cellular behaviour of potential cancer stem cells in the brain. Glioblastoma multiforme (GBM), the most aggressive and lethal brain tumour is derived from a group of cancerous stem cells known as glioma stem cells. GBM cells are impervious to conventional therapies such as surgical resection and ionizing radiation because of their pluripotent and radioresistant properties. Thus in our study, we aim to investigate whether a combination of chemo- and radio- therapies is an effective treatment for glioma stem cells. The study utilizes a specific kinase inhibitor (ATMi) of the ATM (Ataxia-telangiectasia mutated) protein which is an essential protein in DNA-damage responses. In the presence of both low dose radiation and ATMi, glioma stem cells have rapid onset of cell death and reduction in growth. Since DNA damage can be inherited through cell division, accumulated DNA breaks in later generations may also lead to cell death. The limitation of conventional radiation therapy is that administration of fractionated (low) doses to reduce any potential harm to the surrounding healthy cells in the brain outweighs the benefits of high radiation doses to induce actual arrest in the propagation of malignant cells. Our study demonstrates a benefit in using low dose radiation combined with chemotherapy resulting in a reduction in malignancy of glioma stem cells. (author)

  5. Molecular subtypes of glioblastoma are relevant to lower grade glioma.

    Directory of Open Access Journals (Sweden)

    Xiaowei Guan

    Full Text Available Gliomas are the most common primary malignant brain tumors in adults with great heterogeneity in histopathology and clinical course. The intent was to evaluate the relevance of known glioblastoma (GBM expression and methylation based subtypes to grade II and III gliomas (ie. lower grade gliomas.Gene expression array, single nucleotide polymorphism (SNP array and clinical data were obtained for 228 GBMs and 176 grade II/II gliomas (GII/III from the publically available Rembrandt dataset. Two additional datasets with IDH1 mutation status were utilized as validation datasets (one publicly available dataset and one newly generated dataset from MD Anderson. Unsupervised clustering was performed and compared to gene expression subtypes assigned using the Verhaak et al 840-gene classifier. The glioma-CpG Island Methylator Phenotype (G-CIMP was assigned using prediction models by Fine et al.Unsupervised clustering by gene expression aligned with the Verhaak 840-gene subtype group assignments. GII/IIIs were preferentially assigned to the proneural subtype with IDH1 mutation and G-CIMP. GBMs were evenly distributed among the four subtypes. Proneural, IDH1 mutant, G-CIMP GII/III s had significantly better survival than other molecular subtypes. Only 6% of GBMs were proneural and had either IDH1 mutation or G-CIMP but these tumors had significantly better survival than other GBMs. Copy number changes in chromosomes 1p and 19q were associated with GII/IIIs, while these changes in CDKN2A, PTEN and EGFR were more commonly associated with GBMs.GBM gene-expression and methylation based subtypes are relevant for GII/III s and associate with overall survival differences. A better understanding of the association between these subtypes and GII/IIIs could further knowledge regarding prognosis and mechanisms of glioma progression.

  6. Senescence from glioma stem cell differentiation promotes tumor growth

    International Nuclear Information System (INIS)

    Ouchi, Rie; Okabe, Sachiko; Migita, Toshiro; Nakano, Ichiro; Seimiya, Hiroyuki

    2016-01-01

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs' role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such as IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. - Highlights: • Non-stem glioma cells (NSGCs) lose telomerase and eventually become senescent. • Senescent NSGCs secrete pro-angiogenic proteins, such as VEGFs, IL-6, and IL-8. • Senescent NSGCs enhance the growth of brain microvascular endothelial cells. • Senescent NSGCs enhance the tumorigenic potential of glioma stem cells in vivo.

  7. Senescence from glioma stem cell differentiation promotes tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Ouchi, Rie [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Okabe, Sachiko; Migita, Toshiro [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Nakano, Ichiro [Department of Neurosurgery, Comprehensive Cancer Center, University of Alabama at Birmingham, 1824 6th Avenue South, Birmingham, AL 35233 (United States); Seimiya, Hiroyuki, E-mail: hseimiya@jfcr.or.jp [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan)

    2016-02-05

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs' role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such as IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. - Highlights: • Non-stem glioma cells (NSGCs) lose telomerase and eventually become senescent. • Senescent NSGCs secrete pro-angiogenic proteins, such as VEGFs, IL-6, and IL-8. • Senescent NSGCs enhance the growth of brain microvascular endothelial cells. • Senescent NSGCs enhance the tumorigenic potential of glioma stem cells in vivo.

  8. Feasibility of a novel positive feedback effect of 131I-promoted Bac-Egr1-hNIS expression in malignant glioma via baculovirus

    International Nuclear Information System (INIS)

    Guo Rui; Tian Lipeng; Han Bing; Xu Haoping; Zhang Miao; Li Biao

    2011-01-01

    Purpose: As intracellular iodine is released rapidly, increased expression of sodium/iodide symporter (NIS) is required for effective radioiodine treatment of tumor. As Egr1 promoter is activated by 131 I and may promote human NIS (hNIS) expression, hNIS also induces 131 I uptake and activates Egr1, so the existence of a positive feedback effect of 131 I-promoted Egr1-hNIS expression is possible. Our purpose was to investigate the possible existence of this positive feedback effect through a series of in vitro pioneer studies. Method: Recombinant baculovirus (Bac-Egr1-hNIS) encoding the hNIS gene under the control of a radiation-inducible Egrl promoter was constructed. To test 131 I-promoted hNIS expression, human malignant glioma U87 cells were transfected with Bac-Egr1-hNIS, stimulated with or without 131 I; the expression of hNIS protein was detected by immunofluorescence and flow cytometry test. In addition, the uptake and efflux of 131 I were determined after the incubation of Bac-Egr1-hNIS-transfected U87 cells with or without 131 I. Results: Immunocytochemical staining and flow cytometry test showed a higher hNIS protein expression in Bac-Egr1-hNIS-transfected U87 cells with 131 I stimulation than in cells without stimulation. Bac-Egr1-hNIS-transfected U87 cells accumulated up to about 4.05 times of 131 I after 131 I stimulation. The amount of 131 I uptake in both groups showed a baculovirus dose-dependent manner. However, rapid efflux of radioactivity was observed in both groups, with 50% lost during the first 2 min after the 131 I-containing medium had been replaced by a nonradioactive medium. Conclusion: Our results indicated that an improved transgene expression of 131 I-stimulated hNIS in U87 cells using a baculovirus vector containing the Egr1 promoter is possible, and the increased expression of hNIS is responsible for a higher 131 I uptake. It might provide a reference for the existence of a positive feedback effect in 131 I-promoted Bac-Egr1-h

  9. Boronophenylalanine uptake in C6 glioma model is dramatically increased by L-DOPA preloading

    Energy Technology Data Exchange (ETDEWEB)

    Capuani, S. [CNR-INFM SOFT, Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome (Italy); Enrico Fermi Center, Compendio Viminale, Rome (Italy)], E-mail: silvia.capuani@roma1.infn.it; Gili, T. [CNR-INFM SOFT, Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome (Italy); Enrico Fermi Center, Compendio Viminale, Rome (Italy); Bozzali, M. [Neuroimaging Laboratory, Santa Lucia Foundation, Via Ardeatina 306, Rome (Italy); Russo, S. [Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London (United Kingdom); Porcari, P. [CNR-INFM SOFT, Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome (Italy); Cametti, C. [CNR-INFM SOFT, Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome (Italy); Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome (Italy); Muolo, M. [Department of Biological Science, University ' Rome III' , Viale G. Marconi 446, Rome (Italy); D' Amore, E. [Serv. Qual./Sicurezza Sperim. Anim., Istituto Superiore di Sanita, Rome (Italy); Maraviglia, B. [Enrico Fermi Center, Compendio Viminale, Rome (Italy); Neuroimaging Laboratory, Santa Lucia Foundation, Via Ardeatina 306, Rome (Italy); Lazzarino, G. [Laboratory of Biochemistry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, Catania (Italy); Pastore, F.S. [Department of Neuroscience, Institute of Neurosurgery, University ' Tor Vergata' , Via Montpellier 1, Rome (Italy)

    2009-07-15

    One of the main limitations for BNCT effectiveness is the insufficient intake of {sup 10}B nuclei within tumour cells. This work was aimed at investigating the use of L-DOPA as enhancer for boronophenylalanine (BPA) uptake in the C6 glioma model. The investigation was first performed in vitro, and then extended in vivo to the animal model. BPA accumulation in C6 glioma cells was assessed, using radiowave dielectric spectroscopy (RDS), with and without L-DOPA preloading. C6 glioma cells were also implanted in the brain of 25 rats, randomly assigned to two experimental branches: (1) intra-carotid BPA infusion; (2) intra-carotid BPA infusion after pre-treatment with L-DOPA, administrated 24 h before BPA infusion. All animals were sacrificed, and assessment of BPA concentrations in tumour tissue, normal brain, and blood samples was performed using high performance liquid chromatography (HPLC). L-DOPA preloading induced a massive increase of BPA concentration either in vitro on C6 glioma cells or in vivo in the animal model tumour. Moreover, no significant difference was found in the normal brain and blood samples between the two animal groups. This study suggests the potential use of L-DOPA as enhancer for BPA accumulation in malignant gliomas eligible for BNCT.

  10. Boronophenylalanine uptake in C6 glioma model is dramatically increased by L-DOPA preloading

    International Nuclear Information System (INIS)

    Capuani, S.; Gili, T.; Bozzali, M.; Russo, S.; Porcari, P.; Cametti, C.; Muolo, M.; D'Amore, E.; Maraviglia, B.; Lazzarino, G.; Pastore, F.S.

    2009-01-01

    One of the main limitations for BNCT effectiveness is the insufficient intake of 10 B nuclei within tumour cells. This work was aimed at investigating the use of L-DOPA as enhancer for boronophenylalanine (BPA) uptake in the C6 glioma model. The investigation was first performed in vitro, and then extended in vivo to the animal model. BPA accumulation in C6 glioma cells was assessed, using radiowave dielectric spectroscopy (RDS), with and without L-DOPA preloading. C6 glioma cells were also implanted in the brain of 25 rats, randomly assigned to two experimental branches: (1) intra-carotid BPA infusion; (2) intra-carotid BPA infusion after pre-treatment with L-DOPA, administrated 24 h before BPA infusion. All animals were sacrificed, and assessment of BPA concentrations in tumour tissue, normal brain, and blood samples was performed using high performance liquid chromatography (HPLC). L-DOPA preloading induced a massive increase of BPA concentration either in vitro on C6 glioma cells or in vivo in the animal model tumour. Moreover, no significant difference was found in the normal brain and blood samples between the two animal groups. This study suggests the potential use of L-DOPA as enhancer for BPA accumulation in malignant gliomas eligible for BNCT.

  11. Physiologic upper limit of pore size in the blood-tumor barrier of malignant solid tumors

    Directory of Open Access Journals (Sweden)

    Griffiths Gary L

    2009-06-01

    Full Text Available Abstract Background The existence of large pores in the blood-tumor barrier (BTB of malignant solid tumor microvasculature makes the blood-tumor barrier more permeable to macromolecules than the endothelial barrier of most normal tissue microvasculature. The BTB of malignant solid tumors growing outside the brain, in peripheral tissues, is more permeable than that of similar tumors growing inside the brain. This has been previously attributed to the larger anatomic sizes of the pores within the BTB of peripheral tumors. Since in the physiological state in vivo a fibrous glycocalyx layer coats the pores of the BTB, it is possible that the effective physiologic pore size in the BTB of brain tumors and peripheral tumors is similar. If this were the case, then the higher permeability of the BTB of peripheral tumor would be attributable to the presence of a greater number of pores in the BTB of peripheral tumors. In this study, we probed in vivo the upper limit of pore size in the BTB of rodent malignant gliomas grown inside the brain, the orthotopic site, as well as outside the brain in temporalis skeletal muscle, the ectopic site. Methods Generation 5 (G5 through generation 8 (G8 polyamidoamine dendrimers were labeled with gadolinium (Gd-diethyltriaminepentaacetic acid, an anionic MRI contrast agent. The respective Gd-dendrimer generations were visualized in vitro by scanning transmission electron microscopy. Following intravenous infusion of the respective Gd-dendrimer generations (Gd-G5, N = 6; Gd-G6, N = 6; Gd-G7, N = 5; Gd-G8, N = 5 the blood and tumor tissue pharmacokinetics of the Gd-dendrimer generations were visualized in vivo over 600 to 700 minutes by dynamic contrast-enhanced MRI. One additional animal was imaged in each Gd-dendrimer generation group for 175 minutes under continuous anesthesia for the creation of voxel-by-voxel Gd concentration maps. Results The estimated diameters of Gd-G7 dendrimers were 11 ± 1 nm and those of Gd-G8

  12. Neuropathological diagnostic accuracy.

    NARCIS (Netherlands)

    Murphy, M.; Loosemore, A.; Ferrer, I.; Wesseling, P.; Wilkins, P.R.; Bell, B.A.

    2002-01-01

    This study investigated variations in neuropathological diagnosis when histopathological slides are evaluated with access to all information pertinent to a case, compared with evaluation of H & E stained slides with only limited clinical information. The aim of the study is to evaluate the role of

  13. TGF-b and a specific TGF-b inhibitor regulate pericentrin B and MYH9 in glioma cell lines

    Directory of Open Access Journals (Sweden)

    Óscar Álzate

    2006-01-01

    Full Text Available Malignant gliomas are heterogeneous, highly invasive vascular tumours. The multifunctional cytokine, transforming growth factor-beta (TGF-P, is expressed by grade III/IV gliomas and promotes tumour angiogenesis, invasión and immune escape. It has been shown previously that a small TGF-P receptor type I (TGF-(3-RI molecule inhibitor (SB-431542 blocks TGF-(3-mediated signal transduction, induction of angiogenic factor expression and cellular motility. As glioma cell lines display differential sensitivity to TGF-P, it was expected that they would also be differentially impacted by disruption of TGF-P signalling. Differential in gel expression (DIGE analysis and mass spectrometry was used in this work for determining protein regulation effects of both TGF-P and SB-431542 on human glioma cell lines. It was found that pericentrin B and non muscle myosin were differentially expressed in fragments which likely resulted from protease activation by the tumour growth mechanism. These results suggest that both pericentrin B and non-muscle myosin might be potential glioma biomarkers. Key words: DIGE, proteomics, glioma, TGF-P, mass spectrometry, non muscle myosin, pericentrin B.

  14. Comparative Genomic Hybridization of Human Malignant Gliomas Reveals Multiple Amplification Sites and Nonrandom Chromosomal Gains and Losses

    Science.gov (United States)

    Schròck, Evelin; Thiel, Gundula; Lozanova, Tanka; du Manoir, Stanislas; Meffert, Marie-Christine; Jauch, Anna; Speicher, Michael R.; Nürnberg, Peter; Vogel, Siegfried; Janisch, Werner; Donis-Keller, Helen; Ried, Thomas; Witkowski, Regine; Cremer, Thomas

    1994-01-01

    Nine human malignant gliomas (2 astrocytomas grade III and 7 glioblastomas) were analyzed using comparative genomic hybridization (CGH). In addition to the amplification of the EGFR gene at 7p12 in 4 of 9 cases, six new amplification sites were mapped to 1q32, 4q12, 7q21.1, 7q21.2-3, 12p, and 22q12. Nonrandom chromosomal gains and losses were identified with overrepresentation of chromosome 7 and underrepresentation of chromosome 10 as the most frequent events (1 of 2 astrocytomas, 7 of 7 glioblastomas). Gain of a part or the whole chromosome 19 and losses of chromosome bands 9pter-23 and 22q13 were detected each in five cases. Loss of chromosome band 17p13 and gain of chromosome 20 were revealed each in three cases. The validity of the CGH data was confirmed using interphase cytogenetics with YAC clones, chromosome painting in tumor metaphase spreads, and DNA fingerprinting. A comparison of CGH data with the results of chromosome banding analyses indicates that metaphase spreads accessible in primary tumor cell cultures may not represent the clones predominant in the tumor tissue ImagesFigure 1Figure 4Figure 6 PMID:8203461

  15. Needs and preferences among patients with high-grade glioma and their caregivers - A longitudinal mixed methods study

    DEFF Research Database (Denmark)

    Piil, K; Jakobsen, J; Christensen, K B

    2018-01-01

    Previous reports on the patient perspective of daily life during a 1-year high-grade glioma (HGG) trajectory from the time of diagnosis are sparse. The aim of this longitudinal mixed methods study is to identify the specific needs and preferences for rehabilitation and supportive care and how...... it links with physical activity, psychological measures and health quality longitudinally over the first year after diagnosis among patients with HGG and their caregivers by integrating qualitative and quantitative findings. Using a longitudinal mixed methods design, patients with malignant glioma (n = 30...

  16. ACE I/D sequence variants but not MTHFR C677T, is strongly linked to malignant glioma risk and its variant DD genotype may act as a promising predictive biomarker for overall survival of glioma patients.

    Science.gov (United States)

    Pandith, Arshad A; Qasim, Iqbal; Zahoor, Wani; Shah, Parveen; Bhat, Abdul R

    2018-01-10

    ACE I/D and MTHFR C677T gene polymorphisms can be seen as candidate genes for glioma on the basis of their biological functions and their involvement in different cancers. The aim of this study was to analyze potential association and overall survival between MTHFR C677T and ACE I/D polymorphism in glioma patients in our population. We tested genotype distribution of 112 glioma patients against 141 cancer-free controls from the same region. Kaplan-Meier survival analysis was performed to evaluate overall survival of patients for both genes. No significant differences were found among MTHFR C677T wild type C and variant genotypes CT/TT with glioma patients. In ACE, the distribution of variant ID and DD was found to be significantly higher in glioma cases as compared to controls (pACE DD genotypes were highly presented in glioma cases 26.8% versus 10.6% in controls (pACE DD genotypes had the least estimated overall survival of 13.4months in comparison to 21. 7 and 17.6months for ACE II and I/D genotypes respectively. We conclude ACE I/D polymorphism plays a vital role in predisposition of higher risk for glioma. We also suggest that ACE DD genotypes may act as an important predictive biomarker for overall survival of glioma patients. Copyright © 2017. Published by Elsevier B.V.

  17. Epidemiology of glioma

    DEFF Research Database (Denmark)

    Rasmussen, Birthe Krogh; Hansen, Steinbjorn; Laursen, Rene J.

    2017-01-01

    in 15%. The overall male:female ratio was 3:2 and the mean age at onset was 60 years. Data for WHO grade I, II, III and IV glioma showed several important differences regarding age and sex distribution and symptomatology at presentation. The mean age increased with the grade of glioma and males...... duration, and headache rates for glioma grade I-IV showed decreasing survival with increasing grade. Glioma grade I-IV showed...

  18. Xenograft transplantation of human malignant astrocytoma cells into immunodeficient rats: an experimental model of glioblastoma.

    Science.gov (United States)

    Miura, Flávio Key; Alves, Maria Jose Ferreira; Rocha, Mussya Cisotto; da Silva, Roseli; Oba-Shinjo, Sueli Mieko; Marie, Suely Kazue Nagahashi

    2010-03-01

    Astrocytic gliomas are the most common intracranial central nervous system neoplasias, accounting for about 60% of all primary central nervous system tumors. Despite advances in the treatment of gliomas, no effective therapeutic approach is yet available; hence, the search for a more realistic model to generate more effective therapies is essential. To develop an experimental malignant astrocytoma model with the characteristics of the human tumor. Primary cells from subcutaneous xenograft tumors produced with malignant astrocytoma U87MG cells were inoculated intracerebrally by stereotaxis into immunosuppressed (athymic) Rowett rats. All four injected animals developed non-infiltrative tumors, although other glioblastoma characteristics, such as necrosis, pseudopalisading cells and intense mitotic activity, were observed. A malignant astrocytoma intracerebral xenograft model with poorly invasive behavior was achieved in athymic Rowett rats. Tumor invasiveness in an experimental animal model may depend on a combination of several factors, including the cell line used to induce tumor formation, the rat strains and the status of the animal's immune system.

  19. Dynamic 18F-FET PET in newly diagnosed astrocytic low-grade glioma identifies high-risk patients.

    Science.gov (United States)

    Jansen, Nathalie L; Suchorska, Bogdana; Wenter, Vera; Eigenbrod, Sabina; Schmid-Tannwald, Christine; Zwergal, Andreas; Niyazi, Maximilian; Drexler, Mark; Bartenstein, Peter; Schnell, Oliver; Tonn, Jörg-Christian; Thon, Niklas; Kreth, Friedrich-Wilhelm; la Fougère, Christian

    2014-02-01

    Because the clinical course of low-grade gliomas in the individual adult patient varies considerably and is unpredictable, we investigated the prognostic value of dynamic (18)F-fluorethyltyrosine ((18)F-FET) PET in the early diagnosis of astrocytic low-grade glioma (World Health Organization grade II). Fifty-nine patients with newly diagnosed low-grade glioma and dynamic (18)F-FET PET before histopathologic assessment were retrospectively investigated. (18)F-FET PET analysis comprised a qualitative visual classification of lesions; assessment of the semiquantitative parameters maximal, mean, and total standardized uptake value as ratio to background and biologic tumor volume; and dynamic analysis of intratumoral (18)F-FET uptake over time (increasing vs. decreasing time-activity curves). The correlation between PET parameters and progression-free survival, overall survival, and time to malignant transformation was investigated. (18)F-FET uptake greater than the background level was found in 34 of 59 tumors. Dynamic (18)F-FET uptake analysis was available for 30 of these 34 patients. Increasing and decreasing time-activity curves were found in 18 and 12 patients, respectively. Neither the qualitative factor presence or absence of (18)F-FET uptake nor any of the semiquantitative uptake parameters significantly influenced clinical outcome. In contrast, decreasing time-activity curves in the kinetic analysis were highly prognostic for shorter progression-free survival and time to malignant transformation (P dynamic (18)F-FET PET constitute an unfavorable prognostic factor in astrocytic low-grade glioma and, by identifying high-risk patients, may ease treatment decisions.

  20. L-DOPA Preloading Increases the Uptake of Borophenylalanine in C6 Glioma Rat Model: A New Strategy to Improve BNCT Efficacy

    International Nuclear Information System (INIS)

    Capuani, Silvia; Gili, Tommaso; Bozzali, Marco; Russo, Salvatore; Porcari, Paola; Cametti, Cesare; D'Amore, Emanuela; Colasanti, Marco; Venturini, Giorgio; Maraviglia, Bruno; Lazzarino, Giuseppe; Pastore, Francesco S.

    2008-01-01

    Purpose: Boron neutron capture therapy (BNCT) is a radiotherapeutic modality based on 10 B(n,α) 7 Li reaction, for the treatment of malignant gliomas. One of the main limitations for BNCT effectiveness is the insufficient intake of 10 B nuclei in the tumor cells. This work was aimed at investigating the use of L-DOPA as a putative enhancer for 10 B-drug 4-dihydroxy-borylphenylalanine (BPA) uptake in the C6-glioma model. The investigation was first performed in vitro and then extended to the animal model. Methods and Materials: BPA accumulation in C6-glioma cells was assessed using radiowave dielectric spectroscopy, with and without L-DOPA preloading. Two L-DOPA incubation times (2 and 4 hours) were investigated, and the corresponding effects on BPA accumulation were quantified. C6-glioma cells were also implanted in the brain of 32 rats, and tumor growth was monitored by magnetic resonance imaging. Rats were assigned to two experimental branches: (1) BPA administration; (2) BPA administration after pretreatment with L-DOPA. All animals were sacrificed, and assessments of BPA concentrations in tumor tissue, normal brain, and blood samples were performed using high-performance liquid chromatography. Results: L-DOPA preloading induced a massive increase of BPA concentration in C6-glioma cells only after a 4-hour incubation. In the animal model, L-DOPA pretreatment produced a significantly higher accumulation of BPA in tumor tissue but not in normal brain and blood samples. Conclusions: This study suggests the potential use of L-DOPA as enhancer for BPA accumulation in malignant gliomas eligible for BNCT. L-DOPA preloading effect is discussed in terms of membrane transport mechanisms

  1. A new anti-glioma therapy, AG119: pre-clinical assessment in a mouse GL261 glioma model

    International Nuclear Information System (INIS)

    Towner, Rheal A.; Ihnat, Michael; Saunders, Debra; Bastian, Anja; Smith, Nataliya; Pavana, Roheeth Kumar; Gangjee, Aleem

    2015-01-01

    High grade gliomas (HGGs; grades III and IV) are the most common primary brain tumors in adults, and their malignant nature ranks them fourth in incidence of cancer death. Standard treatment for glioblastomas (GBM), involving surgical resection followed by radiation and chemotherapy with temozolomide (TMZ) and the anti-angiogenic therapy bevacizumab, have not substantially improved overall survival. New therapeutic agents are desperately needed for this devastating disease. Here we study the potential therapeutic agent AG119 in a pre-clinical model for gliomas. AG119 possesses both anti-angiogenic (RTK inhibition) and antimicrotubule cytotoxic activity in a single molecule. GL261 glioma-bearing mice were either treated with AG119, anti-VEGF (vascular endothelial growth factor) antibody, anti c-Met antibody or TMZ, and compared to untreated tumor-bearing mice. Animal survival was assessed, and tumor volumes and vascular alterations were monitored with morphological magnetic resonance imaging (MRI) and perfusion-weighted imaging, respectively. Percent survival of GL261 HGG-bearing mice treated with AG119 was significantly higher (p < 0.001) compared to untreated tumors. Tumor volumes (21–31 days following intracerebral implantation of GL261 cells) were found to be significantly lower for AG119 (p < 0.001), anti-VEGF (p < 0.05) and anti-c-Met (p < 0.001) antibody treatments, and TMZ-treated (p < 0.05) mice, compared to untreated controls. Perfusion data indicated that both AG119 and TMZ were able to reduce the effect of decreasing perfusion rates significantly (p < 0.05 for both), when compared to untreated tumors. It was also found that IC 50 values for AG119 were much lower than those for TMZ in T98G and U251 cells. These data support further exploration of the anticancer activity AG119 in HGG, as this compound was able to increase animal survival and decrease tumor volumes in a mouse GL261 glioma model, and that AG119 is also not subject to methyl guanine

  2. A Genetically Modified Adenoviral Vector with a Phage Display-Derived Peptide Incorporated into Fiber Fibritin Chimera Prolongs Survival in Experimental Glioma.

    Science.gov (United States)

    Kim, Julius W; Kane, J Robert; Young, Jacob S; Chang, Alan L; Kanojia, Deepak; Morshed, Ramin A; Miska, Jason; Ahmed, Atique U; Balyasnikova, Irina V; Han, Yu; Zhang, Lingjiao; Curiel, David T; Lesniak, Maciej S

    2015-09-01

    The dismal clinical context of advanced-grade glioma demands the development of novel therapeutic strategies with direct patient impact. Adenovirus-mediated virotherapy represents a potentially effective approach for glioma therapy. In this research, we generated a novel glioma-specific adenovirus by instituting more advanced genetic modifications that can maximize the efficiency and safety of therapeutic adenoviral vectors. In this regard, a glioma-specific targeted fiber was developed through the incorporation of previously published glioma-specific, phage-panned peptide (VWT peptide) on a fiber fibritin-based chimeric fiber, designated as "GliomaFF." We showed that the entry of this virus was highly restricted to glioma cells, supporting the specificity imparted by the phage-panned peptide. In addition, the stability of the targeting moiety presented by fiber fibritin structure permitted greatly enhanced infectivity. Furthermore, the replication of this virus was restricted in glioma cells by controlling expression of the E1 gene under the activity of the tumor-specific survivin promoter. Using this approach, we were able to explore the combinatorial efficacy of various adenoviral modifications that could amplify the specificity, infectivity, and exclusive replication of this therapeutic adenovirus in glioma. Finally, virotherapy with this modified virus resulted in up to 70% extended survival in an in vivo murine glioma model. These data demonstrate that this novel adenoviral vector is a safe and efficient treatment for this difficult malignancy.

  3. Immune-Checkpoint Blockade and Active Immunotherapy for Glioma

    International Nuclear Information System (INIS)

    Ahn, Brian J.; Pollack, Ian F.; Okada, Hideho

    2013-01-01

    Cancer immunotherapy has made tremendous progress, including promising results in patients with malignant gliomas. Nonetheless, the immunological microenvironment of the brain and tumors arising therein is still believed to be suboptimal for sufficient antitumor immune responses for a variety of reasons, including the operation of “immune-checkpoint” mechanisms. While these mechanisms prevent autoimmunity in physiological conditions, malignant tumors, including brain tumors, actively employ these mechanisms to evade from immunological attacks. Development of agents designed to unblock these checkpoint steps is currently one of the most active areas of cancer research. In this review, we summarize recent progresses in the field of brain tumor immunology with particular foci in the area of immune-checkpoint mechanisms and development of active immunotherapy strategies. In the last decade, a number of specific monoclonal antibodies designed to block immune-checkpoint mechanisms have been developed and show efficacy in other cancers, such as melanoma. On the other hand, active immunotherapy approaches, such as vaccines, have shown encouraging outcomes. We believe that development of effective immunotherapy approaches should ultimately integrate those checkpoint-blockade agents to enhance the efficacy of therapeutic approaches. With these agents available, it is going to be quite an exciting time in the field. The eventual success of immunotherapies for brain tumors will be dependent upon not only an in-depth understanding of immunology behind the brain and brain tumors, but also collaboration and teamwork for the development of novel trials that address multiple layers of immunological challenges in gliomas

  4. Immune-Checkpoint Blockade and Active Immunotherapy for Glioma

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Brian J. [Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Pollack, Ian F. [Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Okada, Hideho, E-mail: okadah@upmc.edu [Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States)

    2013-11-01

    Cancer immunotherapy has made tremendous progress, including promising results in patients with malignant gliomas. Nonetheless, the immunological microenvironment of the brain and tumors arising therein is still believed to be suboptimal for sufficient antitumor immune responses for a variety of reasons, including the operation of “immune-checkpoint” mechanisms. While these mechanisms prevent autoimmunity in physiological conditions, malignant tumors, including brain tumors, actively employ these mechanisms to evade from immunological attacks. Development of agents designed to unblock these checkpoint steps is currently one of the most active areas of cancer research. In this review, we summarize recent progresses in the field of brain tumor immunology with particular foci in the area of immune-checkpoint mechanisms and development of active immunotherapy strategies. In the last decade, a number of specific monoclonal antibodies designed to block immune-checkpoint mechanisms have been developed and show efficacy in other cancers, such as melanoma. On the other hand, active immunotherapy approaches, such as vaccines, have shown encouraging outcomes. We believe that development of effective immunotherapy approaches should ultimately integrate those checkpoint-blockade agents to enhance the efficacy of therapeutic approaches. With these agents available, it is going to be quite an exciting time in the field. The eventual success of immunotherapies for brain tumors will be dependent upon not only an in-depth understanding of immunology behind the brain and brain tumors, but also collaboration and teamwork for the development of novel trials that address multiple layers of immunological challenges in gliomas.

  5. Monitoring Oxygen Levels in Orthotopic Human Glioma Xenograft Following Carbogen Inhalation and Chemotherapy by Implantable Resonator Based Oximetry

    Science.gov (United States)

    Hou, Huagang; Nemani, Venkata Krishnamurthy; Du, Gaixin; Montano, Ryan; Song, Rui; Gimi, Barjor; Swartz, Harold M.; Eastman, Alan; Khan, Nadeem

    2014-01-01

    Hypoxia is a critical hallmark of glioma, and significantly compromises treatment efficacy. Unfortunately, techniques for monitoring glioma pO2 to facilitate translational research are lacking. Furthermore, poor prognoses of patients with malignant glioma, in particular glioblastoma multiforme, warrant effective strategies that can inhibit hypoxia and improve treatment outcome. EPR oximetry using implantable resonators was implemented for monitoring pO2 in normal cerebral tissue and U251 glioma in mice. Breathing carbogen (95% O2 + 5% CO2) was tested for hyperoxia in the normal brain and glioma xenografts. A new strategy to inhibit glioma growth by rationally combining gemcitabine and MK-8776, a cell cycle checkpoint inhibitor, was also investigated. The mean pO2 of left and right hemisphere were approximately 56 – 69 mmHg in the normal cerebral tissue of mice. The mean baseline pO2 of U251 glioma on the first and fifth day of measurement was 21.9 ± 3.7 and 14.1 ± 2.4 mmHg, respectively. The mean brain pO2 including glioma increased by at least 100% on carbogen inhalation, although the response varied between the animals over days. Treatment with gemcitabine + MK-8776 significantly increased pO2 and inhibited glioma growth assessed by MRI. In conclusion, EPR oximetry with implantable resonators can be used to monitor the efficacy of carbogen inhalation and chemotherapy on orthotopic glioma in mice. The increase in glioma pO2 of mice breathing carbogen can be used to improve treatment outcome. The treatment with gemcitabine + MK-8776 is a promising strategy that warrants further investigation. PMID:25111969

  6. Monitoring oxygen levels in orthotopic human glioma xenograft following carbogen inhalation and chemotherapy by implantable resonator-based oximetry.

    Science.gov (United States)

    Hou, Huagang; Krishnamurthy Nemani, Venkata; Du, Gaixin; Montano, Ryan; Song, Rui; Gimi, Barjor; Swartz, Harold M; Eastman, Alan; Khan, Nadeem

    2015-04-01

    Hypoxia is a critical hallmark of glioma, and significantly compromises treatment efficacy. Unfortunately, techniques for monitoring glioma pO2 to facilitate translational research are lacking. Furthermore, poor prognosis of patients with malignant glioma, in particular glioblastoma multiforme, warrant effective strategies that can inhibit hypoxia and improve treatment outcome. EPR oximetry using implantable resonators was implemented for monitoring pO2 in normal cerebral tissue and U251 glioma in mice. Breathing carbogen (95% O2 + 5% CO2 ) was tested for hyperoxia in the normal brain and glioma xenografts. A new strategy to inhibit glioma growth by rationally combining gemcitabine and MK-8776, a cell cycle checkpoint inhibitor, was also investigated. The mean pO2 of left and right hemisphere were ∼56-69 mmHg in the normal cerebral tissue of mice. The mean baseline pO2 of U251 glioma on the first and fifth day of measurement was 21.9 ± 3.7 and 14.1 ± 2.4 mmHg, respectively. The mean brain pO2 including glioma increased by at least 100% on carbogen inhalation, although the response varied between the animals over days. Treatment with gemcitabine + MK-8776 significantly increased pO2 and inhibited glioma growth assessed by MRI. In conclusion, EPR oximetry with implantable resonators can be used to monitor the efficacy of carbogen inhalation and chemotherapy on orthotopic glioma in mice. The increase in glioma pO2 of mice breathing carbogen can be used to improve treatment outcome. The treatment with gemcitabine + MK-8776 is a promising strategy that warrants further investigation. © 2014 UICC.

  7. Dosimetric comparison of the related parameters between simultaneous integrated boost intensity-modulated radiotherapy and sequential boost conformal radiotherapy for postoperative malignant glioma of the brain

    International Nuclear Information System (INIS)

    Shao Qian; Lu Jie; Li Jianbin; Sun Tao; Bai Tong; Liu Tonghai; Yin Yong

    2011-01-01

    Objective: To compare the dosimetric of different parameter of simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) with sequential boost conformal radiotherapy (SB-CRT) for postoperative malignant glioma of the brain. Methods: Ten patients with malignant glioma of brain were selected to study. Each patient was simulated all by CT and MRI, and the imagings of CT and MRI were all sent to Pinnacle 3 planning system. The fusion technology with MR-CT imaging was used on Pinnacle 3 planning system. The target volume was delineated and defined based on MRI. The postoperative residual lesion and resection cavity were defined as gross tumor volume (GTV) and expanded GTV some scope was defined as clinical target volume (CTV). The margins of GTV expanded 10 mm and 25 mm were defined as CTV1 and CTV2 respectively. CTV1 and CTV2 all enlarged 5 mm were defined as PTV1 and PTV2 respectively. The plans of simultaneous integrated boost intensity-modulated radiotherapy and sequential boost conformal radiotherapy were respectively designed for each patient using Pinnacle 3 planning system and the dosimetric of different parameter was compared. The prescribe dose of SIB-IMRT was PTV1: 62.5 Gy/25 f, PTV2: 50.0 Gy/25 f; and SB-CRT was PTV1: 66.0 Gy/33 f, PTV2: 50.0 Gy/25 f. The dosimetries of different parameters of SIB-IMRT and SB-CRT were compared by using Paired-Samples T Test. Results: The maximum and mean dose of PTV1, PTV2, and brainstem were of significant difference (P 0.05). Conclusion: The SIB-IMRT plan is better than the SB-CRT plan. The CI and HI of SIB-IMRT are superior to SB-CRT. At the same time, it can preserve the important organs such as brainstem and reduce the mean dose of whole brain. On the other hand it can shorten the total period of therapy time. (authors)

  8. Glutamate/glutamine metabolism coupling between astrocytes and glioma cells: neuroprotection and inhibition of glioma growth.

    Science.gov (United States)

    Yao, Pei-Sen; Kang, De-Zhi; Lin, Ru-Ying; Ye, Bing; Wang, Wei; Ye, Zu-Cheng

    2014-07-18

    Glioma glutamate release has been shown to promote the growth of glioma cells and induce neuronal injuries from epilepsy to neuronal death. However, potential counteractions from normal astrocytes against glioma glutamate release have not been fully evaluated. In this study, we investigated the glutamate/glutamine cycling between glioma cells and astrocytes and their impact on neuronal function. Co-cultures of glioma cells with astrocytes (CGA) in direct contact were established under different mix ratio of astrocyte/glioma. Culture medium conditioned in these CGAs were sampled for HPLC measurement, for neuronal ratiometric calcium imaging, and for neuronal survival assay. We found: (1) High levels of glutaminase expression in glioma cells, but not in astrocytes, glutaminase enables glioma cells to release large amount of glutamate in the presence of glutamine. (2) Glutamate levels in CGAs were directly determined by the astrocyte/glioma ratios, indicating a balance between glioma glutamate release and astrocyte glutamate uptake. (3) Culture media from CGAs of higher glioma/astrocyte ratios induced stronger neuronal Ca(2+) response and more severe neuronal death. (4) Co-culturing with astrocytes significantly reduced the growth rate of glioma cells. These results indicate that normal astrocytes in the brain play pivotal roles in glioma growth inhibition and in reducing neuronal injuries from glioma glutamate release. However, as tumor growth, the protective role of astrocytes gradually succumb to glioma cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Phase II study of imatinib mesylate and hydroxyurea for recurrent grade III malignant gliomas.

    Science.gov (United States)

    Desjardins, Annick; Quinn, Jennifer A; Vredenburgh, James J; Sathornsumetee, Sith; Friedman, Allan H; Herndon, James E; McLendon, Roger E; Provenzale, James M; Rich, Jeremy N; Sampson, John H; Gururangan, Sridharan; Dowell, Jeannette M; Salvado, August; Friedman, Henry S; Reardon, David A

    2007-05-01

    Recent reports demonstrate the activity of imatinib mesylate, an ATP-mimetic, tyrosine kinase inhibitor, plus hydroxyurea, a ribonucleotide reductase inhibitor, in patients with recurrent glioblastoma multiforme. We performed the current phase 2 study to evaluate this regimen among patients with recurrent WHO grade III malignant glioma (MG). Patients with grade III MG at any recurrence, received imatinib mesylate plus hydroxyurea (500 mg twice a day) orally on a continuous, daily schedule. The imatinib mesylate dose was 500 mg twice a day for patients on enzyme inducing anti-epileptic drugs (EIAEDs) and 400 mg once a day for those not on EIAEDs. Clinical assessments were performed monthly and radiographic assessments were obtained at least every 2 months. The primary endpoint was 6-month progression-free survival (PFS) rate. Thirty-nine patients were enrolled. All patients had progressive disease after prior radiotherapy and at least temozolomide-based chemotherapy. The median number of episodes of prior progression was 2 (range, 1-7) and the median number of prior treatment regimens was 3 (range, 1-8). With a median follow-up of 82.9 weeks, 24% of patients were progression-free at 6 months. The radiographic response rate was 10%, while 33% achieved stable disease. Among patients who achieved at least stable disease at first evaluation, the 6-month and 12-month PFS rates were 53% and 29%, respectively. The most common grade 3 or greater toxicities were hematologic and complicated less than 4% of administered courses. Imatinib mesylate plus hydroxyurea, is well tolerated and associated with anti-tumor activity in some patients with recurrent grade 3 MG.

  10. Effect of brain- and tumor-derived connective tissue growth factor on glioma invasion.

    Science.gov (United States)

    Edwards, Lincoln A; Woolard, Kevin; Son, Myung Jin; Li, Aiguo; Lee, Jeongwu; Ene, Chibawanye; Mantey, Samuel A; Maric, Dragan; Song, Hua; Belova, Galina; Jensen, Robert T; Zhang, Wei; Fine, Howard A

    2011-08-03

    Tumor cell invasion is the principal cause of treatment failure and death among patients with malignant gliomas. Connective tissue growth factor (CTGF) has been previously implicated in cancer metastasis and invasion in various tumors. We explored the mechanism of CTGF-mediated glioma cell infiltration and examined potential therapeutic targets. Highly infiltrative patient-derived glioma tumor-initiating or tumor stem cells (TIC/TSCs) were harvested and used to explore a CTGF-induced signal transduction pathway via luciferase reporter assays, chromatin immunoprecipitation (ChIP), real-time polymerase chain reaction, and immunoblotting. Treatment of TIC/TSCs with small-molecule inhibitors targeting integrin β1 (ITGB1) and the tyrosine kinase receptor type A (TrkA), and short hairpin RNAs targeting CTGF directly were used to reduce the levels of key protein components of CTGF-induced cancer infiltration. TIC/TSC infiltration was examined in real-time cell migration and invasion assays in vitro and by immunohistochemistry and in situ hybridization in TIC/TSC orthotopic xenograft mouse models (n = 30; six mice per group). All statistical tests were two-sided. Treatment of TIC/TSCs with CTGF resulted in CTGF binding to ITGB1-TrkA receptor complexes and nuclear factor kappa B (NF-κB) transcriptional activation as measured by luciferase reporter assays (mean relative luciferase activity, untreated vs CTGF(200 ng/mL): 0.53 vs 1.87, difference = 1.34, 95% confidence interval [CI] = 0.69 to 2, P < .001). NF-κB activation resulted in binding of ZEB-1 to the E-cadherin promoter as demonstrated by ChIP analysis with subsequent E-cadherin suppression (fold increase in ZEB-1 binding to the E-cadherin promoter region: untreated + ZEB-1 antibody vs CTGF(200 ng/mL) + ZEB-1 antibody: 1.5 vs 6.4, difference = 4.9, 95% CI = 4.8 to 5.0, P < .001). Immunohistochemistry and in situ hybridization revealed that TrkA is selectively expressed in the most infiltrative glioma cells in situ

  11. MicroRNA-mediated down-regulation of NKG2D ligands contributes to glioma immune escape.

    Science.gov (United States)

    Codo, Paula; Weller, Michael; Meister, Gunter; Szabo, Emese; Steinle, Alexander; Wolter, Marietta; Reifenberger, Guido; Roth, Patrick

    2014-09-15

    Malignant gliomas are intrinsic brain tumors with a dismal prognosis. They are well-adapted to hypoxic conditions and poorly immunogenic. NKG2D is one of the major activating receptors of natural killer (NK) cells and binds to several ligands (NKG2DL). Here we evaluated the impact of miRNA on the expression of NKG2DL in glioma cells including stem-like glioma cells. Three of the candidate miRNA predicted to target NKG2DL were expressed in various glioma cell lines as well as in glioblastomas in vivo: miR-20a, miR-93 and miR-106b. LNA inhibitor-mediated miRNA silencing up-regulated cell surface NKG2DL expression, which translated into increased susceptibility to NK cell-mediated lysis. This effect was reversed by neutralizing NKG2D antibodies, confirming that enhanced lysis upon miRNA silencing was mediated through the NKG2D system. Hypoxia, a hallmark of glioblastomas in vivo, down-regulated the expression of NKG2DL on glioma cells, associated with reduced susceptibility to NK cell-mediated lysis. This process, however, was not mediated through any of the examined miRNA. Accordingly, both hypoxia and the expression of miRNA targeting NKG2DL may contribute to the immune evasion of glioma cells at the level of the NKG2D recognition pathway. Targeting miRNA may therefore represent a novel approach to increase the immunogenicity of glioblastoma.

  12. [Wernicke-Korsakoff syndrome: malignant tumour as triggering factor].

    Science.gov (United States)

    Guisado, J; Carbonell, C; Donaire, L; De Miguel, J; Vaz, F

    2001-01-01

    Gastrectomy, alcoholism and malignant tumour are three predisponing risk factors for the development of Wernicke-Korsakoff syndrome. We described the clinical case of a patient with history of alcoholism that developed Wernicke-Korsakoff syndrome 30 years after undergoing gastrectomy. This patient had, in the last year, a diagnostic for prostatic adenocarcinoma and changes in dietary habits. We presented the clinical and neuropathological features of the Wernicke-Korsakoff syndrome. As well as some aspects in the treatment and prognosis.

  13. Reirradiation and lomustine in patients with relapsed high-grade gliomas

    International Nuclear Information System (INIS)

    Arcicasa, Mauro; Roncadin, Mario; Bidoli, Ettore; Dedkov, Anatolyi; Gigante, Marco; Trovo, Mauro G.

    1999-01-01

    Purpose: The aim of this study was to evaluate the toxicity, response, and survival of patients with relapsed high-grade gliomas after radiation therapy (RT) combined with lomustine (CCNU). Methods and Materials: Thirty-one patients with relapsed gliomas at least 6 months after completion of RT were reirradiated. Twenty-four patients had a pathological diagnosis of high-grade gliomas, whereas 7 had a radiological diagnosis of relapsed malignant gliomas. The study focused on patients with high-grade relapsed gliomas. A total dose of 34.5 Gy was delivered in 23 fractions over 4.5 weeks. Oral administration of CCNU (130 mg/m 2 ) was begun at the same time as RT, and was repeated every 6 weeks until disease progression, or up to 12 courses. Results: Twelve of 24 patients had surgery before RT plus CCNU treatment. Median interval between RT courses was 14 months (range 6-73). All patients received a complete course of RT, and 22 of 24 patients received at least one course of CCNU. Objective responses were seen in 14 evaluable patients: 3 with partial response, 5 with stable disease, and 6 with progressive disease. Duration of partial response was 20, 9, and 8 months. Median time to progression and overall survival from the onset of retreatment were 8.4 months (range 1-22) and 13.7 months (range 1-63+), respectively. One case of G4 thrombocytopenia was observed. Five patients had G1 or G2 leucopenia and 3 patients had G3 leucopenia. Moderate nausea and vomiting were reported in 4 patients. One patient, after one course of CCNU, refused further chemotherapy. No significant difference in survival from relapse was found between patients who underwent surgery before RT plus CCNU and those who received only RT plus CCNU (p = 0.74). Conclusion: Overall, the acute toxicity was moderate, and patient compliance was good. Reirradiation of high-grade glioma was associated with modest subjective and objective response rates. It is remarkable that median overall survival from relapse

  14. Local injection of the 90Y-labelled peptidic vector DOTATOC to control gliomas of WHO grades II and III: an extended pilot study

    International Nuclear Information System (INIS)

    Schumacher, T.; Mueller-Brand, J.; Hofer, S.; Wasner, M.; Zimmerer, S.; Gratzl, O.; Merlo, A.; Eichhorn, K.; Freitag, P.; Probst, A.; Reubi, J.-C.; Maecke, H.R.

    2002-01-01

    We have previously presented preliminary observations on targeting somatostatin receptor-positive malignant gliomas of all grades by local injection of the radiolabelled peptidic vector 90 Y-DOTATOC. We now report on our more thorough clinical experience with this novel compound, focussing on low-grade and anaplastic gliomas. Small peptidic vectors have the potential to target invisible infiltrative disease within normal surrounding brain tissue, thereby opening a window of opportunity for early intervention. Five progressive gliomas of WHO grades II and III and five extensively debulked low-grade gliomas were treated with varying fractions of 90 Y-DOTATOC. The vectors were locally injected into the resection cavity or into solid tumour. The activity per single injection ranged from 555 to 1,875 MBq, and the cumulative activity from 555 to 7,030 MBq, according to tumour volumes and eloquence of the affected brain area, yielding dose estimates from 76±15 to 312±62 Gy. Response was assessed by the clinical status, by steroid dependence and, every 4-6 months, by magnetic resonance imaging and fluorine-18 fluorodeoxyglucose positron emission tomography. In the five progressive gliomas, lasting responses were obtained for at least 13-45 months without the need for steroids. Radiopeptide brachytherapy had been the only modality applied to counter tumour progression. Interestingly, we observed the slow transformation of a solid, primarily inoperable anaplastic astrocytoma into a resectable multi-cystic lesion 2 years after radiopeptide brachytherapy. Based on these observations, we also assessed the feasibility of local radiotherapy following extensive debulking, which was well tolerated. Targeted beta-particle irradiation based on diffusible small peptidic vectors appears to be a promising modality for the treatment of malignant gliomas. (orig.)

  15. Aberrant Signaling Pathways in Glioma

    International Nuclear Information System (INIS)

    Nakada, Mitsutoshi; Kita, Daisuke; Watanabe, Takuya; Hayashi, Yutaka; Teng, Lei; Pyko, Ilya V.; Hamada, Jun-Ichiro

    2011-01-01

    Glioblastoma multiforme (GBM), a WHO grade IV malignant glioma, is the most common and lethal primary brain tumor in adults; few treatments are available. Median survival rates range from 12–15 months. The biological characteristics of this tumor are exemplified by prominent proliferation, active invasiveness, and rich angiogenesis. This is mainly due to highly deregulated signaling pathways in the tumor. Studies of these signaling pathways have greatly increased our understanding of the biology and clinical behavior of GBM. An integrated view of signal transduction will provide a more useful approach in designing novel therapies for this devastating disease. In this review, we summarize the current understanding of GBM signaling pathways with a focus on potential molecular targets for anti-signaling molecular therapies

  16. Innate immune functions of microglia isolated from human glioma patients

    Directory of Open Access Journals (Sweden)

    Grimm Elizabeth

    2006-03-01

    Full Text Available Abstract Background Innate immunity is considered the first line of host defense and microglia presumably play a critical role in mediating potent innate immune responses to traumatic and infectious challenges in the human brain. Fundamental impairments of the adaptive immune system in glioma patients have been investigated; however, it is unknown whether microglia are capable of innate immunity and subsequent adaptive anti-tumor immune responses within the immunosuppressive tumor micro-environment of human glioma patients. We therefore undertook a novel characterization of the innate immune phenotype and function of freshly isolated human glioma-infiltrating microglia (GIM. Methods GIM were isolated by sequential Percoll purification from patient tumors immediately after surgical resection. Flow cytometry, phagocytosis and tumor cytotoxicity assays were used to analyze the phenotype and function of these cells. Results GIM expressed significant levels of Toll-like receptors (TLRs, however they do not secrete any of the cytokines (IL-1β, IL-6, TNF-α critical in developing effective innate immune responses. Similar to innate macrophage functions, GIM can mediate phagocytosis and non-MHC restricted cytotoxicity. However, they were statistically less able to mediate tumor cytotoxicity compared to microglia isolated from normal brain. In addition, the expression of Fas ligand (FasL was low to absent, indicating that apoptosis of the incoming lymphocyte population may not be a predominant mode of immunosuppression by microglia. Conclusion We show for the first time that despite the immunosuppressive environment of human gliomas, GIM are capable of innate immune responses such as phagocytosis, cytotoxicity and TLR expression but yet are not competent in secreting key cytokines. Further understanding of these innate immune functions could play a critical role in understanding and developing effective immunotherapies to malignant human gliomas.

  17. MiR-26b Mimic Inhibits Glioma Proliferation In Vitro and In Vivo Suppressing COX-2 Expression.

    Science.gov (United States)

    Chen, Zheng-Gang; Zheng, Chuan-Yi; Cai, Wang-Qing; Li, Da-Wei; Ye, Fu-Yue; Zhou, Jian; Wu, Ran; Yang, Kun

    2017-08-11

    Glioma is the most common malignant tumor of the nervous system. Studies have shown the microRNA (miR)-26b/cyclooxygenase (COX)-2 axis in the development and progression in many tumor cells. Our study aims to investigate the effect and mechanism of miR-26b/COX-2 axis in glioma. Decreased expression of miR-26b with increased level of COX-2 was found in glioma tissues compared with matched normal tissues. A strong negative correlation was observed between the level of miR-26b and COX-2 in 30 glioma tissues. The miR-26b was then overexpressed by transfecting miR-26b mimic into U-373 cells. The invasive cell number and wounld closing rate were reduced in U-373 cells transfected with miR-26b mimic. Besides, COX2 siRNA enhanced the effect of miR-26b mimic in suppressing the expression of p-ERK1 and p-JNK. Finally, the in vivo experiment revealed that miR-26b mimic transfection strongly reduced the tumor growth, tumor volume and the expression of matrix metalloproteinase (MMP)-2, MMP-9). Taken together, our research indicated a miR-26b/COX-2/ERK/JNK axis in regulating the motility of glioma in vitro and in vivo, providing a new sight for treatment of glioma.

  18. Validation and predictive power of radiation therapy oncology group (RTOG) recursive partitioning analysis classes for malignant glioma patients: a report using RTOG 90-06

    International Nuclear Information System (INIS)

    Scott, Charles B.; Scarantino, Charles; Urtasun, Raul; Movsas, Benjamin; Jones, Christopher U.; Simpson, Joseph R.; Fischbach, A. Jennifer; Curran, Walter J.

    1996-01-01

    Background/Purpose: The recursive partitioning analysis (RPA) classes for malignant glioma patients were previously established by Curran et al. (JNCI 85:704-10, 1993) using data on over 1500 patients from the Radiation Therapy Oncology Group (RTOG). The current analysis was to validate the RPA classes on a new dataset (RTOG 90-06) and determine the predictive power of the RPA classes. Patients and Methods: There are six RPA classes for malignant glioma patients that comprise distinct groups of patients with significantly different survival outcome. RTOG 90-06 is a randomized phase III study of 712 patients accrued from 1990 to 1994. The minimum potential follow-up is 18 months. The treatment arms were combined for the purpose of this analysis. There were 84, 13, 105, 240, 150, and 23 patients in the six RPA classes from RTOG 90-06. Results: The median survival times (MST) and two-year survivals for the six RPA classes in RTOG 90-06 are compared to those published by Curran et al. (JNCI 1993). The RPA classes appear in descending order in the following table. The MST and 2-year survivals for the RTOG RPA classes were within 95% confidence intervals of the 90-06 estimates for classes I, III, IV, and V. The RPA classes explained 43% of the variation (squared error loss). By comparison, a model containing only histology explains only 13% of the variation. The RPA classes are statistically distinct with all comparisons exceeding 0.0001, except those involving class II. Conclusion: The validity of the model is verified by the reliability of the RPA classes to define distinct groups with respect to survival. Further evidence is given by prediction of MST and 2-year survival for all classes except class II. The RPA classes explained a good portion of the variation in the data. RPA class II did not perform well which may be an artifact of the small sample size or an indication that this class is not distinct. The validation of the RPA classes attests to their usefulness as

  19. Evolution of DNA repair defects during malignant progression of low-grade gliomas after temozolomide treatment

    NARCIS (Netherlands)

    van Thuijl, Hinke F.; Mazor, Tali; Johnson, Brett E.; Fouse, Shaun D.; Aihara, Koki; Hong, Chibo; Malmström, Annika; Hallbeck, Martin; Heimans, Jan J.; Kloezeman, Jenneke J.; Stenmark-Askmalm, Marie; Lamfers, Martine L. M.; Saito, Nobuhito; Aburatani, Hiroyuki; Mukasa, Akitake; Berger, Mitchell S.; Söderkvist, Peter; Taylor, Barry S.; Molinaro, Annette M.; Wesseling, Pieter; Reijneveld, Jaap C.; Chang, Susan M.; Ylstra, Bauke; Costello, Joseph F.

    2015-01-01

    Temozolomide (TMZ) increases the overall survival of patients with glioblastoma (GBM), but its role in the clinical management of diffuse low-grade gliomas (LGG) is still being defined. DNA hypermethylation of the O (6) -methylguanine-DNA methyltransferase (MGMT) promoter is associated with an

  20. Evolution of radiotherapy and chemotherapy practice in malignant gliomas

    Directory of Open Access Journals (Sweden)

    Anusheel Munshi

    2013-01-01

    Full Text Available Malignant astrocytomas of the brain carry a poor prognosis. This article traces the evolution of radiotherapy and chemotherapy practice including the development of concurrent chemo-radiation schedules in the context of these tumors.

  1. Intermittent induction of HIF-1α produces lasting effects on malignant progression independent of its continued expression.

    Directory of Open Access Journals (Sweden)

    Hyunsung Choi

    Full Text Available Dysregulation of hypoxia-inducible transcription factors HIF-1α and HIF-2α correlates with poor prognosis in human cancers; yet, divergent and sometimes opposing activities of these factors in cancer biology have been observed. Adding to this complexity is that HIF-1α apparently possesses tumor-suppressing activities, as indicated by the loss-of-function mutations or even homozygous deletion of HIF1A in certain human cancers. As a step towards understanding this complexity, we employed 8-week intermittent induction of a stable HIF-1α variant, HIF1α(PP, in various cancer cell lines and examined the effects on malignant progression in xenografts of immunocompromised mice in comparison to those of HIF2α(PP. Although 8-week treatment led to eventual loss of HIF1α(PP expression, treated osteosarcoma U-2 OS cells acquired tumorigenicity in the subcutaneous tissue. Furthermore, the prior treatment resulted in widespread invasion of malignant glioma U-87 MG cells in the mouse brain and sustained growth of U-118 MG glioma cells. The lasting effects of HIF-1α on malignant progression are specific because neither HIF2α(PP nor β-galactosidase yielded similar effects. By contrast, transient expression of HIF1α(PP in U-87 MG cells or constitutive expression of HIF1α(PP but not HIF2α(PP in a patient-derived glioma sphere culture inhibited tumor growth and spread. Our results indicate that intermittent induction of HIF-1α produces lasting effects on malignant progression even at its own expense.

  2. EEG controls for detecting the recurrence of supratentorial gliomas

    International Nuclear Information System (INIS)

    Leblhuber, F.; Olschowski, A.; Deisenhammer, E.; Hammer, B.; Knauer, W.

    1984-01-01

    The purpose of this study was to find out the value of postoperative EEG controls in the early detection of recurrence of supratentorial gliomas (the majority being astrocytomas, stage II to IV). 29 cases with verified tumour recurrence were examined and in all but one the EEG showed a reactivation of the focus in accordance with the development of the glioma. At least one of the following parameters had to be established: 1. a further spreading of the focal changes, 2. a reduction in frequency, 3. an increase in amplitudes and 4. focal depression and amplitudes. At least 3 postoperative EEG controls were made in each case. The duration of tumour treatment was 3 to 59 months. In 3 cases temporary focus activation was found without evidence of tumour recurrence; in one of these cases the activation was preceded by an epileptic seizure. Epileptic seizures, thus, seem to have a focus activating effect. Focus activation as a result of radiotherapy or cytostatic treatment was not observed. On the basis of our findings it appears that regularly conducted postoperative EEG controls seem to be highly suited as a non-invasive and economical method for the early detection of recurrence of this type of tumour. In the case of malignant types of gliomas involving rapid growth EEG controls should be made monthly. (Author)

  3. Genome-wide comparison of paired fresh frozen and formalin-fixed paraffin-embedded gliomas by custom BAC and oligonucleotide array comparative genomic hybridization: facilitating analysis of archival gliomas.

    Science.gov (United States)

    Mohapatra, Gayatry; Engler, David A; Starbuck, Kristen D; Kim, James C; Bernay, Derek C; Scangas, George A; Rousseau, Audrey; Batchelor, Tracy T; Betensky, Rebecca A; Louis, David N

    2011-04-01

    Array comparative genomic hybridization (aCGH) is a powerful tool for detecting DNA copy number alterations (CNA). Because diffuse malignant gliomas are often sampled by small biopsies, formalin-fixed paraffin-embedded (FFPE) blocks are often the only tissue available for genetic analysis; FFPE tissues are also needed to study the intratumoral heterogeneity that characterizes these neoplasms. In this paper, we present a combination of evaluations and technical advances that provide strong support for the ready use of oligonucleotide aCGH on FFPE diffuse gliomas. We first compared aCGH using bacterial artificial chromosome (BAC) arrays in 45 paired frozen and FFPE gliomas, and demonstrate a high concordance rate between FFPE and frozen DNA in an individual clone-level analysis of sensitivity and specificity, assuring that under certain array conditions, frozen and FFPE DNA can perform nearly identically. However, because oligonucleotide arrays offer advantages to BAC arrays in genomic coverage and practical availability, we next developed a method of labeling DNA from FFPE tissue that allows efficient hybridization to oligonucleotide arrays. To demonstrate utility in FFPE tissues, we applied this approach to biphasic anaplastic oligoastrocytomas and demonstrate CNA differences between DNA obtained from the two components. Therefore, BAC and oligonucleotide aCGH can be sensitive and specific tools for detecting CNAs in FFPE DNA, and novel labeling techniques enable the routine use of oligonucleotide arrays for FFPE DNA. In combination, these advances should facilitate genome-wide analysis of rare, small and/or histologically heterogeneous gliomas from FFPE tissues.

  4. Evolution of DNA repair defects during malignant progression of low-grade gliomas after temozolomide treatment

    NARCIS (Netherlands)

    van Thuijl, Hinke F.; Mazor, Tali; Johnson, Brett E.; Fouse, Shaun D.; Aihara, Koki; Hong, Chibo; Malmström, Annika; Hallbeck, Martin; Heimans, Jan J.; Kloezeman, Jenneke J.; Stenmark-Askmalm, Marie; Lamfers, Martine L M; Saito, Nobuhito; Aburatani, Hiroyuki; Mukasa, Akitake; Berger, Mitchell S.; Söderkvist, Peter; Taylor, Barry S.; Molinaro, Annette M.; Wesseling, Pieter; Reijneveld, Jaap C.; Chang, Susan M.; Ylstra, Bauke; Costello, Joseph F.

    2015-01-01

    Temozolomide (TMZ) increases the overall survival of patients with glioblastoma (GBM), but its role in the clinical management of diffuse low-grade gliomas (LGG) is still being defined. DNA hypermethylation of the O6-methylguanine-DNA methyltransferase (MGMT) promoter is associated with an improved

  5. Pain processing in dementia and its relation to neuropathology

    NARCIS (Netherlands)

    Scherder, E.J.A.; Sergeant, J.A.; Swaab, D.F.

    2003-01-01

    Most clinical studies of pain in dementia have focused on assessment procedures that are sensitive to pain in "demented" or "cognitively impaired" elderly patients. The neuropathology of dementia has not played a major part in pain assessment. In this review, the neuropathological effects of

  6. Treatment of Malignant Gliomas in Elderly Patients: A Concise Overview of the Literature

    Directory of Open Access Journals (Sweden)

    Patrizia Farina

    2014-01-01

    Full Text Available Gliomas are the most frequent primary brain tumors and the incidence data has increased in the elderly population. Unfortunately, prospective studies on this population are few and so the right treatment is unknown. In the elderly patients no standard treatment has been established and therefore the optimal treatment should be individualized. We performed a review analyzing the prognostic and predictive factors, the clinical studies, and the correct management of this population.

  7. Physiological oxygen concentration alters glioma cell malignancy and responsiveness to photodynamic therapy in vitro.

    Science.gov (United States)

    Albert, Ina; Hefti, Martin; Luginbuehl, Vera

    2014-11-01

    The partial pressure of oxygen (pO2) in brain tumors ranges from 5 to 15%. Nevertheless, the majority of in vitro experiments with glioblastoma multiforme (GBM) cell lines are carried out under an atmospheric pO2 of 19 to 21%. Recently, 5-aminolevulinic acid (5-ALA), a precursor of protoporphyrin IX (PpIX), has been introduced to neurosurgery to allow for photodynamic diagnosis and photodynamic therapy (PDT) in high-grade gliomas. Here, we investigate whether low pO2 affects GBM cell physiology, PpIX accumulation, or PDT efficacy. GBM cell lines (U-87 MG and U-251 MG) were cultured under atmospheric (pO2  =  19%) and physiological (pO2  =  9%) oxygen concentrations. PpIX accumulation and localization were investigated, and cell survival and cell death were observed following in vitro PDT. A physiological pO2 of 9% stimulated GBM cell migration, increased hypoxia-inducible factor (HIF)-1 alpha levels, and elevated resistance to camptothecin in U-87 MG cells compared to cultivation at a pO2 of 19%. This oxygen reduction did not alter 5-ALA-induced intracellular PpIX accumulation. However, physiological pO2 changed the responsiveness of U-87 MG but not of U-251 MG cells to in vitro PDT. Around 20% more irradiation light was required to kill U-87 MG cells at physiological pO2, resulting in reduced lactate dehydrogenase (LDH) release (one- to two-fold) and inhibition of caspase 3 activation. Reduction of oxygen concentration from atmospheric to a more physiological level can influence the malignant behavior and survival of GBM cell lines after in vitro PDT. Therefore, precise oxygen concentration control should be considered when designing and performing experiments with GBM cells.

  8. "Boomerang Neuropathology" of Late-Onset Alzheimer's Disease is Shrouded in Harmful "BDDS": Breathing, Diet, Drinking, and Sleep During Aging.

    Science.gov (United States)

    Daulatzai, Mak Adam

    2015-07-01

    Brain damage begins years before substantial neurodegeneration and Alzheimer's dementia. Crucial fundamental activities of life are breathing, eating, drinking, and sleeping. When these pivotal functions are maligned over a prolonged period, they impart escalating dyshomeostasis. The latter may lead to disastrous consequences including cognitive dysfunction and Alzheimer's disease (AD). The current theme here is that multiple pathophysiological derangements are promoted over a prolonged period by the very fundamental activities of life-when "rendered unhealthy." They may converge on several regulating/modulating factors (e.g., mitochondrial energy production, oxidative stress, innate immunity, and vascular function) and promote insidious neuropathology that culminates in cognitive decline in the aged. This is of course associated with the accumulation of amyloid beta and phosphorylated tau in the brain. Epidemiological, biomarker, and neuroimaging studies have provided significant copious evidence on the presence of indolent prodromal AD neuropathology many years prior to symptomatic onset. Progressive oxidative damage to specific gene promoters may result in gene silencing. A mechanistic link may possibly exist between epigenomic state, DNA damage, and chronically unhealthy/dysfunctional body systems. This paper, therefore, addresses and delineates the deleterious pathophysiological impact triggered by dysfunctional breathing, harmful diet, excess of alcohol consumption, and sleep deprivation; indeed, their impact may alter epigenetic state. It is mandatory, therefore, to abrogate cognitive decline and attenuate AD pathology through adoption of a healthy lifestyle, in conjunction with combination therapy with known moderators of cognitive decline. This strategy may thwart multiple concurrent and synergistic pathologies, including epigenetic dysfunction. A multi-factorial therapeutic intervention is required to overcome wide ranging neuropathology and multi

  9. Non-thermal irreversible electroporation (N-TIRE) and adjuvant fractionated radiotherapeutic multimodal therapy for intracranial malignant glioma in a canine patient.

    Science.gov (United States)

    Garcia, P A; Pancotto, T; Rossmeisl, J H; Henao-Guerrero, N; Gustafson, N R; Daniel, G B; Robertson, J L; Ellis, T L; Davalos, R V

    2011-02-01

    Non-thermal irreversible electroporation (N-TIRE) has shown promise as an ablative therapy for a variety of soft-tissue neoplasms. Here we describe the therapeutic planning aspects and first clinical application of N-TIRE for the treatment of an inoperable, spontaneous malignant intracranial glioma in a canine patient. The N-TIRE ablation was performed safely, effectively reduced the tumor volume and associated intracranial hypertension, and provided sufficient improvement in neurological function of the patient to safely undergo adjunctive fractionated radiotherapy (RT) according to current standards of care. Complete remission was achieved based on serial magnetic resonance imaging examinations of the brain, although progressive radiation encephalopathy resulted in the death of the dog 149 days after N-TIRE therapy. The length of survival of this patient was comparable to dogs with intracranial tumors treated via standard excisional surgery and adjunctive fractionated external beam RT. Our results illustrate the potential benefits of N-TIRE for in vivo ablation of undesirable brain tissue, especially when traditional methods of cytoreductive surgery are not possible or ideal, and highlight the potential radiosensitizing effects of N-TIRE on the brain.

  10. Roles of sphingosine-1-phosphate (S1P) receptors in malignant behavior of glioma cells. Differential effects of S1P2 on cell migration and invasiveness

    International Nuclear Information System (INIS)

    Young, Nicholas; Van Brocklyn, James R.

    2007-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive lipid that signals through a family of five G-protein-coupled receptors, termed S1P 1-5 . S1P stimulates growth and invasiveness of glioma cells, and high expression levels of the enzyme that forms S1P, sphingosine kinase-1, correlate with short survival of glioma patients. In this study we examined the mechanism of S1P stimulation of glioma cell proliferation and invasion by either overexpressing or knocking down, by RNA interference, S1P receptor expression in glioma cell lines. S1P 1 , S1P 2 and S1P 3 all contribute positively to S1P-stimulated glioma cell proliferation, with S1P 1 being the major contributor. Stimulation of glioma cell proliferation by these receptors correlated with activation of ERK MAP kinase. S1P 5 blocks glioma cell proliferation, and inhibits ERK activation. S1P 1 and S1P 3 enhance glioma cell migration and invasion. S1P 2 inhibits migration through Rho activation, Rho kinase signaling and stress fiber formation, but unexpectedly, enhances glioma cell invasiveness by stimulating cell adhesion. S1P 2 also potently enhances expression of the matricellular protein CCN1/Cyr61, which has been implicated in tumor cell adhesion, and invasion as well as tumor angiogenesis. A neutralizing antibody to CCN1 blocked S1P 2 -stimulated glioma invasion. Thus, while S1P 2 decreases glioma cell motility, it may enhance invasion through induction of proteins that modulate glioma cell interaction with the extracellular matrix

  11. LncRNA TUG1 acts as a tumor suppressor in human glioma by promoting cell apoptosis.

    Science.gov (United States)

    Li, Jun; Zhang, Meng; An, Gang; Ma, Qingfang

    2016-03-01

    Previous studies have revealed multiple functional roles of long non-coding RNA taurine upregulated gene 1 in different types of malignant tumors, except for human glioma. Here, it was designed to study the potential function of taurine upregulated gene 1 in glioma pathogenesis focusing on its regulation on cell apoptosis. The expression of taurine upregulated gene 1 in glioma tissues was detected by quantitative RT-PCR and compared with that in adjacent normal tissues. Further correlation analysis was conducted to show the relationship between taurine upregulated gene 1 expression and different clinicopathologic parameters. Functional studies were performed to investigate the influence of taurine upregulated gene 1 on apoptosis and cell proliferation by using Annexin V/PI staining and cell counting kit-8 assays, respectively. And, caspase activation and Bcl-2 expression were analyzed to explore taurine upregulated gene 1-induced mechanism. taurine upregulated gene 1 expression was significantly inhibited in glioma and showed significant correlation with WHO Grade, tumor size and overall survival. Further experiments revealed that the dysregulation of taurine upregulated gene 1 affected the apoptosis and cell proliferation of glioma cells. Moreover, taurine upregulated gene 1 could induce the activation of caspase-3 and-9, with inhibited expression of Bcl-2, implying the mechanism in taurine upregulated gene 1-induced apoptosis. taurine upregulated gene 1 promoted cell apoptosis of glioma cells by activating caspase-3 and -9-mediated intrinsic pathways and inhibiting Bcl-2-mediated anti-apoptotic pathways, acting as a tumor suppressor in human glioma. This study provided new insights for the function of taurine upregulated gene 1 in cancer biology, and suggested a potent application of taurine upregulated gene 1 overexpression for glioma therapy. © 2016 by the Society for Experimental Biology and Medicine.

  12. Amino acid study of cerebral gliomas using positron emission tomography; Analysis of ( sup 11 C-methyl)-L-methionine uptake index

    Energy Technology Data Exchange (ETDEWEB)

    Mineura, Katsuyoshi; Sasajima, Toshio; Suda, Yoshitaka; Kowada, Masayoshi [Akita Univ. (Japan). School of Medicine; Shishido, Fumio; Uemura, Kazuo

    1990-12-01

    Sixteen patients with gliomas (7 low grade, 9 high grade) were examined using positron emission tomography (PET) with intravenous administration of 22.2 MBq/kg (0.6 mCi/Kg) of ({sup 11}C-methyl)-L-methionine (C-11 Met). The tracer uptake in regions of interest was calculated on PET images taken 45 minutes after injection; the uptake index was represented as a percentage of the total count in the arterial blood summed over 45 minutes. C-11 Met uptake indices in the tumors ranged from 0.020 to 0.041% with a mean of 0.032% for the low-grade gliomas and from 0.013 to 0.044% with a mean of 0.036% for the high-grade gliomas. These indices significantly increased as compared with those in the contralateral gray matter (0.008-0.032% with a mean of 0.023%; p<0.01 vs low-grade gliomas, p<0.001 vs high-grade gliomas). In the low-grade gliomas, C-11 Met PET images clearly depicted the existence and even the extent of the tumors, although x-ray computed tomography (CT) did not always distinguish tumoral lesions. In the high-grade gliomas, the areas of tracer accumulation regionally extended to peritumoral low density on CT scans, where malignant tumor cell infiltration was proved by operative and follow-up CT findings. C-11 Met may be a useful radiopharmaceutical for differential diagnosis of gliomas, and the accuracy of tumor localization will give us a better rationale in therapeutic strategies for surgery and radiation therapy of gliomas. (author).

  13. Immunohistochemical detection and correlation between MHC antigen and cell-mediated immune system in recurrent glioma by APAAP method.

    Science.gov (United States)

    Miyagi, K; Ingram, M; Techy, G B; Jacques, D B; Freshwater, D B; Sheldon, H

    1990-09-01

    As part of an on-going clinical trial of immunotherapy for recurrent malignant gliomas, using alkaline phosphatase-anti-alkaline phosphatase method with monoclonal antibodies, we investigated the correlation between expression of the major histocompatibility complex (MHC) and the subpopulation of tumor-infiltrating lymphocytes (TILs) in 38 glioma specimens (20 grade IV, 11 grade III, and 7 grade II) from 33 patients. Thirty specimens (78.9%) were positive to class I MHC antigen and 20 (52.6%) were positive to class II MHC antigen. The correlations between class I MHC antigen expression and the number of infiltrating T8 (p less than 0.01), and also between class II MHC antigen expression and the number of infiltrating T4 (p less than 0.05) were significant. We conclude that TILs are the result of immunoreaction (host-defense mechanism). 31.6% of specimens had perivascular infiltration of T cells. The main infiltrating lymphocyte subset in moderate to marked perivascular cuffing was T4. Our results may indicate that lack of MHC antigen on the glioma cell surface has a share in the poor immunogenicity in glioma-bearing patients. In addition, considering the effector/target ratio, the number of infiltrating lymphocytes against glioma cells was too small, so the immunological intervention seems to be essential in glioma therapy. Previous radiation therapy and chemotherapy, including steroid therapy, did not influence lymphocyte and macrophage infiltration.

  14. Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas

    DEFF Research Database (Denmark)

    Bartkova, J; Hamerlik, P; Stockhausen, Marie

    2010-01-01

    brain and grade II astrocytomas, despite the degree of DDR activation was higher in grade II tumors. Markers indicative of ongoing DNA replication stress (Chk1 activation, Rad17 phosphorylation, replication protein A foci and single-stranded DNA) were present in GBM cells under high- or low...... and indicate that replication stress, rather than oxidative stress, fuels the DNA damage signalling in early stages of astrocytoma development.......Malignant gliomas, the deadliest of brain neoplasms, show rampant genetic instability and resistance to genotoxic therapies, implicating potentially aberrant DNA damage response (DDR) in glioma pathogenesis and treatment failure. Here, we report on gross, aberrant constitutive activation of DNA...

  15. Long Non-coding RNA LINC00339 Stimulates Glioma Vasculogenic Mimicry Formation by Regulating the miR-539-5p/TWIST1/MMPs Axis

    Directory of Open Access Journals (Sweden)

    Junqing Guo

    2018-03-01

    Full Text Available Glioma is recognized as a highly angiogenic malignant brain tumor. Vasculogenic mimicry (VM greatly restricts the therapeutic effect of anti-angiogenic tumor therapy for glioma patients. However, the molecular mechanisms of VM formation in glioma remain unclear. Here, we demonstrated that LINC00339 was upregulated in glioma tissue as well as in glioma cell lines. The expression of LINC00339 in glioma tissues was positively correlated with glioma VM formation. Knockdown of LINC00339 inhibited glioma cell proliferation, migration, invasion, and tube formation, meanwhile downregulating the expression of VM-related molecular MMP-2 and MMP-14. Furthermore, knockdown of LINC00339 significantly increased the expression of miR-539-5p. Both bioinformatics and luciferase reporter assay revealed that LINC00339 regulated the above effects via binding to miR-539-5p. Besides, overexpression of miR-539-5p resulted in decreased expression of TWIST1, a transcription factor known to play an oncogenic role in glioma and identified as a direct target of miR-539-5p. TWIST1 upregulated the promoter activities of MMP-2 and MMP-14. The in vivo study showed that nude mice carrying tumors with knockdown of LINC00339 and overexpression of miR-539-5p exhibited the smallest tumor volume through inhibiting VM formation. In conclusion, LINC00339 may be used as a novel therapeutic target for VM formation in glioma.

  16. Genetic Alterations in Glioma

    International Nuclear Information System (INIS)

    Bralten, Linda B. C.; French, Pim J.

    2011-01-01

    Gliomas are the most common type of primary brain tumor and have a dismal prognosis. Understanding the genetic alterations that drive glioma formation and progression may help improve patient prognosis by identification of novel treatment targets. Recently, two major studies have performed in-depth mutation analysis of glioblastomas (the most common and aggressive subtype of glioma). This systematic approach revealed three major pathways that are affected in glioblastomas: The receptor tyrosine kinase signaling pathway, the TP53 pathway and the pRB pathway. Apart from frequent mutations in the IDH1/2 gene, much less is known about the causal genetic changes of grade II and III (anaplastic) gliomas. Exceptions include TP53 mutations and fusion genes involving the BRAF gene in astrocytic and pilocytic glioma subtypes, respectively. In this review, we provide an update on all common events involved in the initiation and/or progression across the different subtypes of glioma and provide future directions for research into the genetic changes

  17. KIAA1549-BRAF fusions and IDH mutations can coexist in diffuse gliomas of adults.

    Science.gov (United States)

    Badiali, Manuela; Gleize, Vincent; Paris, Sophie; Moi, Loredana; Elhouadani, Selma; Arcella, Antonietta; Morace, Roberta; Antonelli, Manila; Buttarelli, Francesca Romana; Figarella-Branger, Dominique; Kim, Young-Ho; Ohgaki, Hiroko; Mokhtari, Karima; Sanson, Marc; Giangaspero, Felice

    2012-11-01

    KIAA1549-BRAF fusion gene and isocitrate dehydrogenase (IDH) mutations are considered two mutually exclusive genetic events in pilocytic astrocytomas and diffuse gliomas, respectively. We investigated the presence of the KIAA1549-BRAF fusion gene in conjunction with IDH mutations and 1p/19q loss in 185 adult diffuse gliomas. Moreover BRAF(v600E) mutation was also screened. The KIAA1549-BRAF fusion gene was evaluated by reverse-transcription polymerase chain reaction (RT-PCR) and sequencing. We found IDH mutations in 125 out 175 cases (71.4%). There were KIAA1549-BRAF fusion gene in 17 out of 180 (9.4%) cases and BRAF(v600E) in 2 out of 133 (1.5%) cases. In 11 of these 17 cases, both IDH mutations and the KIAA1549-BRAF fusion were present, as independent molecular events. Moreover, 6 of 17 cases showed co-presence of 1p/19q loss, IDH mutations and KIAA1549-BRAF fusion. Among the 17 cases with KIAA1549-BRAF fusion gene 15 (88.2%) were oligodendroglial neoplasms. Similarly, the two cases with BRAF(v600E) mutation were both oligodendroglioma and one had IDH mutations and 1p/19q co-deletion. Our results suggest that in a small fraction of diffuse gliomas, KIAA1549-BRAF fusion gene and BRAF(v600E) mutation may be responsible for deregulation of the Ras-RAF-ERK signaling pathway. Such alterations are more frequent in oligodendroglial neoplasm and may be co-present with IDH mutations and 1p/19q loss. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.

  18. Metabolically stable bradykinin B2 receptor agonists enhance transvascular drug delivery into malignant brain tumors by increasing drug half-life

    Directory of Open Access Journals (Sweden)

    Glen Daniel

    2009-05-01

    Full Text Available Abstract Background The intravenous co-infusion of labradimil, a metabolically stable bradykinin B2 receptor agonist, has been shown to temporarily enhance the transvascular delivery of small chemotherapy drugs, such as carboplatin, across the blood-brain tumor barrier. It has been thought that the primary mechanism by which labradimil does so is by acting selectively on tumor microvasculature to increase the local transvascular flow rate across the blood-brain tumor barrier. This mechanism of action does not explain why, in the clinical setting, carboplatin dosing based on patient renal function over-estimates the carboplatin dose required for target carboplatin exposure. In this study we investigated the systemic actions of labradimil, as well as other bradykinin B2 receptor agonists with a range of metabolic stabilities, in context of the local actions of the respective B2 receptor agonists on the blood-brain tumor barrier of rodent malignant gliomas. Methods Using dynamic contrast-enhanced MRI, the pharmacokinetics of gadolinium-diethyltriaminepentaacetic acid (Gd-DTPA, a small MRI contrast agent, were imaged in rodents bearing orthotopic RG-2 malignant gliomas. Baseline blood and brain tumor tissue pharmacokinetics were imaged with the 1st bolus of Gd-DTPA over the first hour, and then re-imaged with a 2nd bolus of Gd-DTPA over the second hour, during which normal saline or a bradykinin B2 receptor agonist was infused intravenously for 15 minutes. Changes in mean arterial blood pressure were recorded. Imaging data was analyzed using both qualitative and quantitative methods. Results The decrease in systemic blood pressure correlated with the known metabolic stability of the bradykinin B2 receptor agonist infused. Metabolically stable bradykinin B2 agonists, methionine-lysine-bradykinin and labradimil, had differential effects on the transvascular flow rate of Gd-DTPA across the blood-brain tumor barrier. Both methionine

  19. Improved histopathological evaluation of gliomas using tissue fragments obtained by ultrasonic aspiration

    DEFF Research Database (Denmark)

    Neckelmann, K; Kristensen, B W; Schrøder, H D

    2004-01-01

    included in the biopsy removed for peroperative frozen section investigation. When the slides with Sonocut tissue fragments were analyzed, the probability of making the most malignant diagnosis increased from 81.3% - 99.1%, when slides from 1 - 5 paraffin blocks were analyzed, respectively. When subgroups...... of small, medium and big tumors were analyzed, it was found that only 2 paraffin blocks from small tumors need to be prepared to reach 98.3% probability of making the most malignant diagnosis, whereas 5 paraffin blocks from big tumors need to be prepared to reach a 96.8% probability. In conclusion......, the study shows that a limited amount of Sonocut ultrasonic tissue fragments improve the diagnostic evaluation of gliomas. These tissue fragments therefore must not be discarded. Only few paraffin blocks need to be prepared to reach close to 100% probability of making the most malignant diagnosis, reducing...

  20. The combination of novel targeted molecular agents and radiation in the treatment of pediatric gliomas

    Directory of Open Access Journals (Sweden)

    Tina eDasgupta

    2013-05-01

    Full Text Available Brain tumors are the most common solid pediatric malignancy. For high-grade, recurrent or refractory pediatric brain tumors, radiation therapy (XRT is an integral treatment modality. In the era of personalized cancer therapy, molecularly targeted agents have been designed to inhibit pathways critical to tumorigenesis. Our evolving knowledge of genetic aberrations in low-grade gliomas is being exploited with targeted inhibitors. These agents are also being combined with XRT to increase their efficacy. In this review, we discuss novel agents targeting three different pathways in low-grade gliomas, and their potential combination with XRT. B-Raf is a kinase in the Ras/Raf/MAPK kinase pathway, which is integral to cellular division, survival and metabolism. In low-grade pediatric gliomas, point mutations in BRAF (BRAF V600E or a BRAF fusion mutation (KIAA1549:BRAF causes overactivation of the MEK/MAPK pathway. Pre-clinical data shows cooperation between XRT and tagrgeted inhibitors of BRAF V600E, and MEK and mTOR inhibitors in the gliomas with the BRAF fusion. A second important signaling cascade in pediatric glioma pathogenesis is the PI3 kinase (PI3K/mTOR pathway. Dual PI3K/mTOR inhibitors are poised to enter studies of pediatric tumors. Finally, many brain tumors express potent stimulators of angiogenesis. Several inhibitors of immunomodulators are currently being evaluated in in clinical trials for the treatment of recurrent or refractory pediatric central nervous system (CNS tumors. In summary, combinations of these targeted inhibitors with radiation are currently under investigation in both translational bench research and early clinical trials. We summarize the molecular rationale for, and the pre-clinical data supporting the combinations of these targeted agents with other anti-cancer agents and XRT in pediatric gliomas. Parallels are drawn to adult gliomas, and the molecular mechanisms underlying the efficacy of these agents is discussed

  1. PCI-24781 down-regulates EZH2 expression and then promotes glioma apoptosis by suppressing the PIK3K/Akt/mTOR pathway.

    Science.gov (United States)

    Zhang, Wei; Lv, Shengqing; Liu, Jun; Zang, Zhenle; Yin, Junyi; An, Ning; Yang, Hui; Song, Yechun

    2014-10-01

    PCI-24781 is a novel histone deacetylase inhibitor that inhibits tumor proliferation and promotes cell apoptosis. However, it is unclear whether PCI-24781 inhibits Enhancer of Zeste 2 (EZH2) expression in malignant gliomas. In this work, three glioma cell lines were incubated with various concentrations of PCI-24781 (0, 0.25, 0.5, 1, 2.5 and 5 μM) and analyzed for cell proliferation by the MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay and colony formation, and cell cycle and apoptosis were assessed by flow cytometry. The expression of EZH2 and apoptosis-related proteins was assessed by western blotting. Malignant glioma cells were also transfected with EZH2 siRNA to examine how PCI-24781 suppresses tumor cells. EZH2 was highly expressed in the three glioma cell lines. Incubation with PCI-24781 reduced cell proliferation and increased cell apoptosis by down-regulating EZH2 in a concentration-dependent manner. These effects were simulated by EZH2 siRNA. In addition, PCI-24781 or EZH2 siRNA accelerated cell apoptosis by down-regulating the expression of AKT, mTOR, p70 ribosomal protein S6 kinase (p70s6k), glycogen synthase kinase 3A and B (GSK3a/b) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1). These data suggest that PCI-24781 may be a promising therapeutic agent for treating gliomas by down-regulating EZH2 which promotes cell apoptosis by suppressing the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of the rapamycin (mTOR) pathway.

  2. Involvement of the kynurenine pathway in human glioma pathophysiology.

    Directory of Open Access Journals (Sweden)

    Seray Adams

    Full Text Available The kynurenine pathway (KP is the principal route of L-tryptophan (TRP catabolism leading to the production of kynurenine (KYN, the neuroprotectants, kynurenic acid (KYNA and picolinic acid (PIC, the excitotoxin, quinolinic acid (QUIN and the essential pyridine nucleotide, nicotinamide adenine dinucleotide (NAD(+. The enzymes indoleamine 2,3-dioxygenase-1 (IDO-1, indoleamine 2,3-dioxygenase-2 (IDO-2 and tryptophan 2,3-dioxygenase (TDO-2 initiate the first step of the KP. IDO-1 and TDO-2 induction in tumors are crucial mechanisms implicated to play pivotal roles in suppressing anti-tumor immunity. Here, we report the first comprehensive characterisation of the KP in 1 cultured human glioma cells and 2 plasma from patients with glioblastoma (GBM. Our data revealed that interferon-gamma (IFN-γ stimulation significantly potentiated the expression of the KP enzymes, IDO-1 IDO-2, kynureninase (KYNU, kynurenine hydroxylase (KMO and significantly down-regulated 2-amino-3-carboxymuconate semialdehyde decarboxylase (ACMSD and kynurenine aminotransferase-I (KAT-I expression in cultured human glioma cells. This significantly increased KP activity but significantly lowered the KYNA/KYN neuroprotective ratio in human cultured glioma cells. KP activation (KYN/TRP was significantly higher, whereas the concentrations of the neuroreactive KP metabolites TRP, KYNA, QUIN and PIC and the KYNA/KYN ratio were significantly lower in GBM patient plasma (n = 18 compared to controls. These results provide further evidence for the involvement of the KP in glioma pathophysiology and highlight a potential role of KP products as novel and highly attractive therapeutic targets to evaluate for the treatment of brain tumors, aimed at restoring anti-tumor immunity and reducing the capacity for malignant cells to produce NAD(+, which is necessary for energy production and DNA repair.

  3. Differential Signature of the Centrosomal MARK4 Isoforms in Glioma

    Directory of Open Access Journals (Sweden)

    Ivana Magnani

    2011-01-01

    Full Text Available Background: MAP/microtubule affinity-regulating kinase 4 (MARK4 is a serine-threonine kinase expressed in two spliced isoforms, MARK4L and MARK4S, of which MARK4L is a candidate for a role in neoplastic transformation. Methods: We performed mutation analysis to identify sequence alterations possibly affecting MARK4 expression. We then investigated the MARK4L and MARK4S expression profile in 21 glioma cell lines and 36 tissues of different malignancy grades, glioblastoma-derived cancer stem cells (GBM CSCs and mouse neural stem cells (NSCs by real-time PCR, immunoblotting and immunohistochemistry. We also analyzed the sub-cellular localisation of MARK4 isoforms in glioma and normal cell lines by immunofluorescence. Results: Mutation analysis rules out sequence variations as the cause of the altered MARK4 expression in glioma. Expression profiling confirms that MARK4L is the predominant isoform, whereas MARK4S levels are significantly decreased in comparison and show an inverse correlation with tumour grade. A high MARK4L/MARK4S ratio also characterizes undifferentiated cells, such as GBM CSCs and NSCs. Accordingly, only MARK4L is expressed in brain neurogenic regions. Moreover, while both MARK4 isoforms are localised to the centrosome and midbody in glioma and normal cells, the L isoform exhibits an additional nucleolar localisation in tumour cells. Conclusions: The observed switch towards MARK4L suggests that the balance between the MARK4 isoforms is carefully guarded during neural differentiation but may be subverted in gliomagenesis. Moreover, the MARK4L nucleolar localisation in tumour cells features this MARK4 isoform as a nucleolus-associated tumour marker.

  4. Products of cells from gliomas: VIII. Multiple-well immunoperoxidase assay of immunoreactivity of primary hybridoma supernatants with human glioma and brain tissue and cultured glioma cells.

    Science.gov (United States)

    McKeever, P E; Wahl, R L; Shakui, P; Jackson, G A; Letica, L H; Liebert, M; Taren, J A; Beierwaltes, W H; Hoff, J T

    1990-06-01

    To test the feasibility of primary screening of hybridoma supernatants against human glioma tissue, over 5000 combinations of hybridoma supernatants with glioma tissue, cultured glioma cells, and normal central neural tissue were screened with a new multiple-well (M-well) screening system. This is an immunoperoxidase assay system with visual endpoints for screening 20-30 hybridoma supernatants per single microscope slide. There were extensive differences between specificities to tissue and to cultured glioma cells when both were screened with M-wells and when cultured cells were screened with standard semi-automated fluorescence. Primary M-well screening with glioma tissue detected seven hybridoma supernatants that specifically identified parenchymal cells of glioma tissue and that were not detected with cultured cells. Immunoreactivities of individual supernatants for vascular components (nine supernatants), necrosis (five supernatants), and nuclei (three supernatants) were detected. Other supernatants bound multiple sites on glioma tissue and/or subpopulations of neurons and glia of normal tissue. The results show that primary screening with glioma tissue detects a number of different specificities of hybridoma supernatants to gliomas not detected by conventional screening with cultured cells. These are potentially applicable to diagnosis and therapy.

  5. The neuropathology of hereditary congenital facial palsy vs Mobius syndrome.

    NARCIS (Netherlands)

    Verzijl, H.T.F.M.; Zwaag, B. van der; Lammens, M.M.Y.; Donkelaar, H.J. ten; Padberg, G.W.A.M.

    2005-01-01

    OBJECTIVE: To characterize the neuropathology of hereditary congenital facial palsy. METHODS: The authors compared brainstem pathology of three members of one family with autosomal dominant congenital facial palsy to that in three age-matched controls. The neuropathologic findings of the familial

  6. CXCR7 is induced by hypoxia and mediates glioma cell migration towards SDF-1α

    International Nuclear Information System (INIS)

    Esencay, Mine; Sarfraz, Yasmeen; Zagzag, David

    2013-01-01

    Glioblastomas, the most common and malignant brain tumors of the central nervous system, exhibit high invasive capacity, which hinders effective therapy. Therefore, intense efforts aimed at improved therapeutics are ongoing to delineate the molecular mechanisms governing glioma cell migration and invasion. In order to perform the studies, we employed optimal cell culture methods and hypoxic conditions, lentivirus-mediated knockdown of protein expression, Western Blot analysis, migration assays and immunoprecipitation. We determined statistical significance by unpaired t-test. In this report, we show that U87MG, LN229 and LN308 glioma cells express CXCR7 and that exposure to hypoxia upregulates CXCR7 protein expression in these cell lines. CXCR7-expressing U87MG, LN229 and LN308 glioma cells migrated towards stromal-derived factor (SDF)-1α/CXCL12 in hypoxic conditions in the Boyden chamber assays. While shRNA-mediated knockdown of CXCR7 expression did not affect the migration of any of the three cell lines in normoxic conditions, we observed a reduction in the migration of LN229 and LN308, but not U87MG, glioma cells towards SDF-1α in hypoxic conditions. In addition, knockdown of CXCR7 expression in LN229 and LN308 glioma cells decreased levels of SDF-1α-induced phosphorylation of ERK1/2 and Akt. Inhibiting CXCR4 in LN229 and LN308 glioma cells that were knocked down for CXCR7 did not further reduce migration towards SDF-1α in hypoxic conditions and did not affect the levels of phosphorylated ERK1/2 and Akt. Analysis of immunoprecipitated CXCR4 from LN229 and LN308 glioma cells revealed co-precipitated CXCR7. Taken together, our findings indicate that both CXCR4 and CXCR7 mediate glioma cell migration towards SDF-1α in hypoxic conditions and support the development of therapeutic agents targeting these receptors

  7. QL-09TRAJECTORY OF QUALITY OF LIFE AT END OF LIFE IN MALIGNANT GLIOMA: SUPPORT FOR THE TERMINAL DROP THEORY

    Science.gov (United States)

    Farace, Elana; Sheehan, Jonas

    2014-01-01

    Very little is known about quality of life (QOL) at end-of-life (EOL) in malignant brain tumor patients, which limits clinicians ability to best to help patients at this stage. The QOL trajectory at EOL has commonly been hypothesized to be "terminal decline," a linear relationship to time before death with a relatively gradual decline. Alternately, QOL at EOL could be hypothesized to be analogous to the "terminal drop" theory of cognitive aging, wherein the patient QOL has a curvilinear relationship to time before death; a relatively flat curve with a rapid decline a short time before death. 89 patients with malignant glioma were enrolled in this NCI funded study of QOL and neurocognition. Patients completed the EORTC-QLQ-C30 at three month intervals until death. Mean length of follow-up was 224 days (median 155 days). Mean age of patients was 52 years (range 18-80). The gender ratio was 49% men and 51% women. One patient was Latino (so 97% Non-Hispanic), 69 participants were Caucasian, one was African American, and one was Native American. The mean educational level was 13 years (range 8-20). Twenty-eight patients had glioblastoma (grade IV), nine had a grade III oligodendroglioma, and six had a grade III oligoastrocytoma. Data were plotted over time to determine if the shape of the curve resembles terminal decline or terminal drop. Interestingly, as can be seen from the graph, Global QOL slightly improved over time. Growth Curve Analysis confirms this finding. Results of this study may supporting the terminal drop theory but may also illustrate response shift, a conundrum for QOL researchers in which patients' perspective changes and thus they report improved QOL. Longer follow-up is necessary to delineate this pattern. A better understanding of QOL at EOL will improve medical and psychosocial palliative care.

  8. Characterization of the gamma-aminobutyric acid receptor system in human brain gliomas

    International Nuclear Information System (INIS)

    Frattola, L.; Ferrarese, C.; Canal, N.; Gaini, S.M.; Galluso, R.; Piolti, R.; Trabucchi, M.

    1985-01-01

    The properties of [ 3 H]-gamma-aminobutyric acid [( 3 H]GABA) binding were studied in biopsied specimens from normal human brain and from 18 cases of human brain gliomas, made up of 6 astrocytomas, 6 glioblastomas, 3 oligodendrogliomas, and 3 medulloblastomas. In fresh membranes obtained from normal gray and white matter one population of Na+-dependent GABA receptors was observed, while in the frozen Triton X-100-treated membranes two distinct populations of Na+-independent binding sites were detected. Specific GABA binding sites in brain gliomas were shown only in frozen Triton X-100-treated membranes. As in normal tissue, these receptors are Na+-independent and bind [ 3 H]GABA with two distinct affinity components. The biochemical profiles of [ 3 H]GABA binding to membranes obtained from different tumors of glial origin are quite similar and cannot be related to the degree of malignancy of the neoplasia

  9. Contemporary management of low--grade glioma: a paradigm shift in neuro-oncology.

    Science.gov (United States)

    Hayhurst, Caroline

    2017-06-01

    Supratentorial diffuse intrinsic low-grade gliomas represent a distinct but heterogenous group of tumours, with the propensity to grow and to differentiate into malignant tumours. They have been historically viewed in the 'benign' spectrum of intrinsic brain tumours, so a watch-and-wait policy was often adopted. With recent advances in our understanding of the natural history of these tumours, combined with advances in surgical technique, an aggressive approach is now recommended. Increasing quality evidence of the impact of tumour resection and multicentre trials of adjuvant radiotherapy and chemotherapy have led to a new algorithm for low-grade glioma management. This review aims to outline the emerging evidence that has shifted neuro-oncology practice. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Cell Type-Specific Contributions to the TSC Neuropathology

    Science.gov (United States)

    2017-08-01

    AWARD NUMBER: W81XWH-16-1-0415 TITLE: Cell Type-Specific Contributions to the TSC Neuropathology PRINCIPAL INVESTIGATOR: Gabriella D’Arcangelo...AND SUBTITLE Cell Type-Specific Contributions to the TSC Neuropathology 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-16-1-0415 5c. PROGRAM...how heterozygous and homozygous Tsc2 mutations affect the development of mutant excitatory neurons as well as other surrounding brain cells , in vivo

  11. Preoperative evaluation of brain lesion with 201TI brain SPECT: is it useful to differentiate benign and malignant lesions?

    International Nuclear Information System (INIS)

    Sohn, Hyung Sun; Kim, Euy Neyng; Kim, Sung Hoon; Chung, Yong An; Chung, Soo Kyo; Hong, Yong Gil; Lee, Youn Soo

    2000-01-01

    Thallium-201 ( 201 TI) brain SPECT, which can represent cellular activity of brain lesions, may provide more useful information in differentiating between benign and malignant brain lesions more so than CT or MRI, that merely represents anatomic changes or breakdown of blood brain barrier. We used 201 TI brain SPECT prospectively to evaluate the utility of 201 TI-indices as an indicator of benign or malignant lesions. We studied 28 patients. There were 13 cases of benign lesions (3: nonspecific benign lesion, 3: meningioma, 2: low grade glioma, 1: tuberculoma, central neurocytoma, hemangioblastoma, radiation necrosis, and choroid plexus papilloma) and 15 cases of malignant lesions (6: glioblastoma multiforme, 5: anaplastic glioma, 2: medulloblastoma, 1: metastasis and lymphoma). In all patients, CT and/or MRI were obtained and then 201 TI brain SPECT was obtained with measuring mean 201 TI index and peak 201 TI index. An unpaired t-test was performed to compare the 201 TI-indices and pathologic diagnoses to evaluate the utility of 201 TI-indices as an indicator of benign or malignant lesions. There were no statistically significant difference in 201 TI-indices between benign and malignant brain lesions (P>0.05). These results demonstrated that we could not use 201 TI indices on brain SPECT alone as an indicator of benign or malignant brain lesions

  12. Molecular Neuropathology of TDP-43 Proteinopathies

    Directory of Open Access Journals (Sweden)

    Manuela Neumann

    2009-01-01

    Full Text Available The identification of TDP-43 as the major component of the pathologic inclusions in most forms of sporadic and familial frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U and amyotrophic lateral sclerosis (ALS resolved a long-standing enigma concerning the nature of the ubiquitinated disease protein under these conditions. Anti-TDP-43 immunohistochemistry and the recent development of novel tools, such as phosphorylation-specific TDP-43 antibodies, have increased our knowledge about the spectrum of pathological changes associated with FTLD-U and ALS and moreover, facilitated the neuropathological routine diagnosis of these conditions. This review summarizes the recent advances in our understanding on the molecular neuropathology and pathobiology of TDP-43 in FTLD and ALS.

  13. Monensin, a polyether ionophore antibiotic, overcomes TRAIL resistance in glioma cells via endoplasmic reticulum stress, DR5 upregulation and c-FLIP downregulation.

    Science.gov (United States)

    Yoon, Mi Jin; Kang, You Jung; Kim, In Young; Kim, Eun Hee; Lee, Ju Ahn; Lim, Jun Hee; Kwon, Taeg Kyu; Choi, Kyeong Sook

    2013-08-01

    Tumor necrosis factor-related apoptosis-induced ligand (TRAIL) is preferentially cytotoxic to cancer cells over normal cells. However, many cancer cells, including malignant glioma cells, tend to be resistant to TRAIL. Monensin (a polyether ionophore antibiotic that is widely used in veterinary medicine) and salinomycin (a compound that is structurally related to monensin and shows cancer stem cell-inhibiting activity) are currently recognized as anticancer drug candidates. In this study, we show that monensin effectively sensitizes various glioma cells, but not normal astrocytes, to TRAIL-mediated apoptosis; this occurs at least partly via monensin-induced endoplasmic reticulum (ER) stress, CHOP-mediated DR5 upregulation and proteasome-mediated downregulation of c-FLIP. Interestingly, other polyether antibiotics, such as salinomycin, nigericin, narasin and lasalocid A, also stimulated TRAIL-mediated apoptosis in glioma cells via ER stress, CHOP-mediated DR5 upregulation and c-FLIP downregulation. Taken together, these results suggest that combined treatment of glioma cells with TRAIL and polyether ionophore antibiotics may offer an effective therapeutic strategy.

  14. A novel synergetic targeting strategy for glioma therapy employing borneol combination with angiopep-2-modified, DOX-loaded PAMAM dendrimer.

    Science.gov (United States)

    Han, Shunping; Zheng, Hongyue; Lu, Yanping; Sun, Yue; Huang, Anhao; Fei, Weidong; Shi, Xiaowei; Xu, Xiuling; Li, Jingjing; Li, Fanzhu

    2018-01-01

    Glioma is the most common primary malignant brain tumour and the effect of chemotherapy is hampered by low permeability across the blood-brain-barrier (BBB). Borneol is a time-honoured 'Guide' drug in traditional Chinese medicine and has been proved to be capable of promoting free drugs into the brain efficiently, but there are still risks that free drugs, especially anti-glioma drugs, may be disassembled and metabolised before penetrating the BBB and caused the whole brain distribution. The purpose of this paper was to investigate whether borneol intervention could facilitate the BBB penetration and assist glioma treatment by combining with doxorubicin (DOX) loaded PAMAM dendrimers drug delivery system modified with Angiopep-2 (a ligand of the low-density lipoprotein receptor-related protein, which overexpress both in the BBB and gliomas). The results demonstrated that Angiopep-2 modification could actually enhance the affinity between the dendrimers and the targeting cells and finally increase the cell uptake and boost the anti-tumour ability. Borneol physical combination could further enhance the anti-tumour efficiency of this targeting drug delivery system (TDDS) after penetrating BBB. Compared with free DOX solution, this TDDS illustrated obviously sustained and pH-dependent drug release. This suggested that this synergetic strategy provided a promising way for glioma therapy.

  15. Validation and predictive power of Radiation Therapy Oncology Group (RTOG) recursive partitioning analysis classes for malignant glioma patients: A report using RTOG 90-06

    International Nuclear Information System (INIS)

    Scott, Charles B.; Scarantino, Charles; Urtasun, Raul; Movsas, Benjamin; Jones, Christopher U.; Simpson, Joseph R.; Fischbach, A. Jennifer; Curran, Walter J.

    1998-01-01

    Purpose: The recursive partitioning analysis (RPA) classes for malignant glioma patients were previously established using data on over 1500 patients entered on Radiation Therapy Oncology Group (RTOG) clinical trials. The purpose of the current analysis was to validate the RPA classes with a new dataset (RTOG 90-06), determine the predictive power of the RPA classes, and establish the usefulness of the database norms for the RPA classes. Patients and Methods: There are six RPA classes for malignant glioma patients that comprise distinct groups of patients with significantly different survival outcome. RTOG 90-06 is a randomized Phase III study of 712 patients accrued from 1990 to 1994. The minimum potential follow-up is 18 months. The treatment arms were combined for the purpose of this analysis. There were 84, 13, 105, 240, 150, and 23 patients in the RPA Classes I-VI from RTOG 90-06, respectively. Results: The median survival times (MST) and 2-year survival rates for the six RPA classes in RTOG 90-06 are compared to those previously published. The MST and 2-year survival rates for the RTOG RPA classes were within 95% confidence intervals of the 90-06 estimates for Classes I, III, IV, and V. The RPA classes explained 43% of the variation (squared error loss). By comparison, a Cox model explains 30% of the variation. The RPA classes within RTOG 90-06 are statistically distinct with all comparisons exceeding 0.0001, except those involving Class II. A survival analysis from a prior RTOG study indicated that 72.0 Gy had superior outcome to literature controls; analysis of this data by RPA classes indicates the survival results were not superior to the RTOG database norms. Conclusion: The validity of the model is verified by the reliability of the RPA classes to define distinct groups with respect to survival. Further evidence is given by prediction of MST and 2-year survival for all classes except Class II. The RPA classes explained a good portion of the variation in

  16. Outcome of secondary high-grade glioma in children previously treated for a malignant condition: A study of the Canadian Pediatric Brain Tumour Consortium

    International Nuclear Information System (INIS)

    Carret, Anne-Sophie; Tabori, Uri; Crooks, Bruce; Hukin, Juliette; Odame, Isaac; Johnston, Donna L.; Keene, Daniel L.; Freeman, Carolyn; Bouffet, Eric

    2006-01-01

    Background and purpose: Reports of secondary high-grade glioma (HGG) in survivors of childhood cancer are scarce. The aim of this study was to review the pattern of diagnosis, the treatment, and outcome of secondary pediatric HGG. Patients and methods: We performed a multi-center retrospective study among the 17 paediatric institutions participating in the Canadian Pediatric Brain Tumour Consortium (CPBTC). Results: We report on 18 patients (14 males, 4 females) treated in childhood for a primary cancer, who subsequently developed a HGG as a second malignancy. All patients had previously received radiation therapy +/- chemotherapy for either acute lymphoblastic leukaemia (n = 9) or solid tumour (n = 9). All HGG occurred within the previous radiation fields. At the last follow-up, 17 patients have died and the median survival time is 9.75 months. Conclusion: Although aggressive treatment seems to provide sustained remissions in some patients, the optimal management is still to be defined. Further documentation of such cases is necessary in order to better understand the pathogenesis, the natural history and the prevention of these tumours

  17. Effect of lymphokine-activated killer cells with or without radiation therapy against malignant brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Kunio; Kamezaki, Takao; Shibata, Yasushi; Tsunoda, Takashi; Meguro, Kotoo; Nose, Tadao [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine

    1995-01-01

    The use of autologous lymphokine-activated killer (LAK) cells to treat malignant brain tumors was evaluated in 10 patients, one with metastatic malignant melanoma and nine with malignant glioma. LAK cells were obtained by culturing autologous peripheral blood lymphocytes with human recombinant interleukin-2 (rIL-2) for 7-28 days. All patients underwent surgery to remove as much tumor as possible and an Ommaya reservoir was implaced in the tumor cavity. Two of the 10 patients had received radiotherapy elsewhere, so were treated with LAK cells alone. Eight patients were treated with a combination of LAK cells and radiotherapy, using 1.8-2.0 Gy fractions given five times a week with a total dosage between 54 and 65 Gy. LAK cells and rIL-2 were injected to the tumor cavity via the Ommaya reservoir once a week for inpatients and once a month for outpatients. The duration of the LAK therapy ranged from 3 to 23 months (mean 13.7 mos). Neuroimaging evaluation revealed two complete responses, three partial responses, four no changes, and one progressive disease. In one patient with pontine glioma, the Karnofsky performance score was raised from 20 to 60. There were no side effects after the injection of LAK cells and rIL-2. The results suggest low-dose LAK therapy is a useful and safe treatment modality for malignant brain tumors. (author).

  18. Identification of Histological Correlates of Overall Survival in Lower Grade Gliomas Using a Bag-of-words Paradigm: A Preliminary Analysis Based on Hematoxylin & Eosin Stained Slides from the Lower Grade Glioma Cohort of The Cancer Genome Atlas.

    Science.gov (United States)

    Powell, Reid Trenton; Olar, Adriana; Narang, Shivali; Rao, Ganesh; Sulman, Erik; Fuller, Gregory N; Rao, Arvind

    2017-01-01

    Glioma, the most common primary brain neoplasm, describes a heterogeneous tumor of multiple histologic subtypes and cellular origins. At clinical presentation, gliomas are graded according to the World Health Organization guidelines (WHO), which reflect the malignant characteristics of the tumor based on histopathological and molecular features. Lower grade diffuse gliomas (LGGs) (WHO Grade II-III) have fewer malignant characteristics than high-grade gliomas (WHO Grade IV), and a better clinical prognosis, however, accurate discrimination of overall survival (OS) remains a challenge. In this study, we aimed to identify tissue-derived image features using a machine learning approach to predict OS in a mixed histology and grade cohort of lower grade glioma patients. To achieve this aim, we used H and E stained slides from the public LGG cohort of The Cancer Genome Atlas (TCGA) to create a machine learned dictionary of "image-derived visual words" associated with OS. We then evaluated the combined efficacy of using these visual words in predicting short versus long OS by training a generalized machine learning model. Finally, we mapped these predictive visual words back to molecular signaling cascades to infer potential drivers of the machine learned survival-associated phenotypes. We analyzed digitized histological sections downloaded from the LGG cohort of TCGA using a bag-of-words approach. This method identified a diverse set of histological patterns that were further correlated with OS, histology, and molecular signaling activity using Cox regression, analysis of variance, and Spearman correlation, respectively. A support vector machine (SVM) model was constructed to discriminate patients into short and long OS groups dichotomized at 24-month. This method identified disease-relevant phenotypes associated with OS, some of which are correlated with disease-associated molecular pathways. From these image-derived phenotypes, a generalized SVM model which could

  19. Identification of histological correlates of overall survival in lower grade gliomas using a bag-of-words paradigm: A preliminary analysis based on hematoxylin & eosin stained slides from the lower grade glioma cohort of the cancer genome Atlas

    Directory of Open Access Journals (Sweden)

    Reid Trenton Powell

    2017-01-01

    Full Text Available Background: Glioma, the most common primary brain neoplasm, describes a heterogeneous tumor of multiple histologic subtypes and cellular origins. At clinical presentation, gliomas are graded according to the World Health Organization guidelines (WHO, which reflect the malignant characteristics of the tumor based on histopathological and molecular features. Lower grade diffuse gliomas (LGGs (WHO Grade II–III have fewer malignant characteristics than high-grade gliomas (WHO Grade IV, and a better clinical prognosis, however, accurate discrimination of overall survival (OS remains a challenge. In this study, we aimed to identify tissue-derived image features using a machine learning approach to predict OS in a mixed histology and grade cohort of lower grade glioma patients. To achieve this aim, we used H and E stained slides from the public LGG cohort of The Cancer Genome Atlas (TCGA to create a machine learned dictionary of “image-derived visual words” associated with OS. We then evaluated the combined efficacy of using these visual words in predicting short versus long OS by training a generalized machine learning model. Finally, we mapped these predictive visual words back to molecular signaling cascades to infer potential drivers of the machine learned survival-associated phenotypes. Methods: We analyzed digitized histological sections downloaded from the LGG cohort of TCGA using a bag-of-words approach. This method identified a diverse set of histological patterns that were further correlated with OS, histology, and molecular signaling activity using Cox regression, analysis of variance, and Spearman correlation, respectively. A support vector machine (SVM model was constructed to discriminate patients into short and long OS groups dichotomized at 24-month. Results: This method identified disease-relevant phenotypes associated with OS, some of which are correlated with disease-associated molecular pathways. From these image

  20. The Role of Bcl-2 Family Proteins in Therapy Responses of Malignant Astrocytic Gliomas: Bcl2L12 and Beyond

    Directory of Open Access Journals (Sweden)

    Fotini M. Kouri

    2012-01-01

    Full Text Available Glioblastoma (GBM is a highly aggressive and lethal brain cancer with a median survival of less than two years after diagnosis. Hallmarks of GBM tumors include soaring proliferative indices, high levels of angiogenesis, diffuse invasion into normal brain parenchyma, resistance toward therapy-induced apoptosis, and pseudopallisading necrosis. Despite the recent advances in neurosurgery, radiation therapy, and the development of targeted chemotherapeutic regimes, GBM remains one of the deadliest types of cancer. Particularly, the alkylating agent temozolomide (TMZ in combination with radiation therapy prolonged patient survival only marginally, and clinical studies assessing efficacies of targeted therapies, foremost ATP mimetics inhibiting the activity of receptor tyrosine kinases (RTKs, revealed only few initial responders; tumor recurrence is nearly universal, and salvage therapies to combat such progression remain ineffective. Consequently, myriad preclinical and clinical studies began to define the molecular mechanisms underlying therapy resistance of GBM tumors, and pointed to the Bcl-2 protein family, in particular the atypical member Bcl2-Like 12 (Bcl2L12, as important regulators of therapy-induced cell death. This review will discuss the multi-faceted modi operandi of Bcl-2 family proteins, describe their roles in therapy resistance of malignant glioma, and outline current and future drug development efforts to therapeutically target Bcl-2 proteins.

  1. The future of neuropathology in childhood.

    Science.gov (United States)

    Rorke, L B

    2000-11-01

    The current state of knowledge of pediatric neuropathology is based upon a rich historical heritage dating back many centuries and representing the genius of many people, although, relatively speaking, little specific attention was paid to the unique issues relating to infants and children. Aside from descriptions of morphological features of disease (including tumors), advances in understanding basic pathogenetic mechanisms have flowered only in the recent past. Most exciting has been the progress in molecular biology and genetics, which has yielded a phenomenal bank of information in a short time, uncovering details of genes involved in development of the nervous system and specifically associated with various types of tumors. The future of pediatric neuropathology requires partnership with molecular geneticists whose studies hold promise of defining morphology.

  2. Effect of selenium on malignant tumor cells of brain.

    Science.gov (United States)

    Zhu, Z; Kimura, M; Itokawa, Y; Nakatsu, S; Oda, Y; Kikuchi, H

    1995-07-01

    Some reports have demonstrated that selenium can inhibit tumorigenesis in some tissues of animal. However, little is known about the inhibitory effect on malignant tumor cells of brain. The purpose of our study was to determine the biological effect of selenium on growth of rat glioma and human glioblastoma cell lines. Cell lines C6 and A172 were obtained from Japanese Cancer Research Resources Bank, Tokyo, Japan (JCRB). Cells were cultured in Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% fetal calf serum at 37 degrees C in a humidified atmosphere of air and 5% CO2. Antiproliferative effects of selenium were evaluated using growth rate assay quantifying cell number by MTT assay. An antiproliferative effect of selenium was found in two cell lines, which was more effective on human A172 glioblastoma and less effective on rat C6 glioma.

  3. Known glioma risk loci are associated with glioma with a family history of brain tumours

    DEFF Research Database (Denmark)

    Melin, Beatrice; Dahlin, Anna M; Andersson, Ulrika

    2013-01-01

    significantly associated with glioma risk, rs6010620 (ORtrend for the minor (A) allele, 0.39; 95% CI: 0.25-0.61; Bonferroni adjusted ptrend , 1.7 × 10(-4) ). In conclusion, as previously shown for glioma regardless of family history of brain tumours, rs6010620 (RTEL1) was associated with an increased risk...... family history of brain tumours, defined as having at least one first- or second-degree relative with a history of brain tumour, are associated with known glioma risk loci. One thousand four hundred and thirty-one glioma cases and 2,868 cancer-free controls were identified from four case-control studies...... and two prospective cohorts from USA, Sweden and Denmark and genotyped for seven SNPs previously reported to be associated with glioma risk in case-control designed studies. Odds ratios were calculated by unconditional logistic regression. In analyses including glioma cases with a family history of brain...

  4. MicroRNA-145 is downregulated in glial tumors and regulates glioma cell migration by targeting connective tissue growth factor.

    Science.gov (United States)

    Lee, Hae Kyung; Bier, Ariel; Cazacu, Simona; Finniss, Susan; Xiang, Cunli; Twito, Hodaya; Poisson, Laila M; Mikkelsen, Tom; Slavin, Shimon; Jacoby, Elad; Yalon, Michal; Toren, Amos; Rempel, Sandra A; Brodie, Chaya

    2013-01-01

    Glioblastomas (GBM), the most common and aggressive type of malignant glioma, are characterized by increased invasion into the surrounding brain tissues. Despite intensive therapeutic strategies, the median survival of GBM patients has remained dismal over the last decades. In this study we examined the expression of miR-145 in glial tumors and its function in glioma cells. Using TCGA analysis and real-time PCR we found that the expression of miR-145/143 cluster was downregulated in astrocytic tumors compared to normal brain specimens and in glioma cells and glioma stem cells (GSCs) compared to normal astrocytes and neural stem cells. Moreover, the low expression of both miR-145 and miR-143 in GBM was correlated with poor patient prognosis. Transfection of glioma cells with miR-145 mimic or transduction with a lentivirus vector expressing pre-miR 145 significantly decreased the migration and invasion of glioma cells. We identified connective tissue growth factor (CTGF) as a novel target of miR-145 in glioma cells; transfection of the cells with this miRNA decreased the expression of CTGF as determined by Western blot analysis and the expression of its 3'-UTR fused to luciferase. Overexpression of a CTGF plasmid lacking the 3'-UTR and administration of recombinant CTGF protein abrogated the inhibitory effect of miR-145 on glioma cell migration. Similarly, we found that silencing of CTGF decreased the migration of glioma cells. CTGF silencing also decreased the expression of SPARC, phospho-FAK and FAK and overexpression of SPARC abrogated the inhibitory effect of CTGF silencing on cell migration. These results demonstrate that miR-145 is downregulated in glial tumors and its low expression in GBM predicts poor patient prognosis. In addition miR-145 regulates glioma cell migration by targeting CTGF which downregulates SPARC expression. Therefore, miR-145 is an attractive therapeutic target for anti-invasive treatment of astrocytic tumors.

  5. MicroRNA-145 is downregulated in glial tumors and regulates glioma cell migration by targeting connective tissue growth factor.

    Directory of Open Access Journals (Sweden)

    Hae Kyung Lee

    Full Text Available Glioblastomas (GBM, the most common and aggressive type of malignant glioma, are characterized by increased invasion into the surrounding brain tissues. Despite intensive therapeutic strategies, the median survival of GBM patients has remained dismal over the last decades. In this study we examined the expression of miR-145 in glial tumors and its function in glioma cells. Using TCGA analysis and real-time PCR we found that the expression of miR-145/143 cluster was downregulated in astrocytic tumors compared to normal brain specimens and in glioma cells and glioma stem cells (GSCs compared to normal astrocytes and neural stem cells. Moreover, the low expression of both miR-145 and miR-143 in GBM was correlated with poor patient prognosis. Transfection of glioma cells with miR-145 mimic or transduction with a lentivirus vector expressing pre-miR 145 significantly decreased the migration and invasion of glioma cells. We identified connective tissue growth factor (CTGF as a novel target of miR-145 in glioma cells; transfection of the cells with this miRNA decreased the expression of CTGF as determined by Western blot analysis and the expression of its 3'-UTR fused to luciferase. Overexpression of a CTGF plasmid lacking the 3'-UTR and administration of recombinant CTGF protein abrogated the inhibitory effect of miR-145 on glioma cell migration. Similarly, we found that silencing of CTGF decreased the migration of glioma cells. CTGF silencing also decreased the expression of SPARC, phospho-FAK and FAK and overexpression of SPARC abrogated the inhibitory effect of CTGF silencing on cell migration. These results demonstrate that miR-145 is downregulated in glial tumors and its low expression in GBM predicts poor patient prognosis. In addition miR-145 regulates glioma cell migration by targeting CTGF which downregulates SPARC expression. Therefore, miR-145 is an attractive therapeutic target for anti-invasive treatment of astrocytic tumors.

  6. Neuropathological Alterations in Alzheimer Disease

    Science.gov (United States)

    Serrano-Pozo, Alberto; Frosch, Matthew P.; Masliah, Eliezer; Hyman, Bradley T.

    2011-01-01

    The neuropathological hallmarks of Alzheimer disease (AD) include “positive” lesions such as amyloid plaques and cerebral amyloid angiopathy, neurofibrillary tangles, and glial responses, and “negative” lesions such as neuronal and synaptic loss. Despite their inherently cross-sectional nature, postmortem studies have enabled the staging of the progression of both amyloid and tangle pathologies, and, consequently, the development of diagnostic criteria that are now used worldwide. In addition, clinicopathological correlation studies have been crucial to generate hypotheses about the pathophysiology of the disease, by establishing that there is a continuum between “normal” aging and AD dementia, and that the amyloid plaque build-up occurs primarily before the onset of cognitive deficits, while neurofibrillary tangles, neuron loss, and particularly synaptic loss, parallel the progression of cognitive decline. Importantly, these cross-sectional neuropathological data have been largely validated by longitudinal in vivo studies using modern imaging biomarkers such as amyloid PET and volumetric MRI. PMID:22229116

  7. TCGA_LowerGradeGliomas

    Science.gov (United States)

    TCGA researchers analyzed nearly 300 cases of diffuse low- and intermediate-grade gliomas, which together comprise lower-grade gliomas. LGGs occur mainly in adults and include astrocytomas, oligodendrogliomas and oligoastrocytomas.

  8. A longitudinal, qualitative and quantitative exploration of daily life and need for rehabilitation among patients with high-grade gliomas and their caregivers

    DEFF Research Database (Denmark)

    Piil, K; Jarden, Mary Ellen; Jakobsen, J

    2013-01-01

    High-grade gliomas (HGGs) are the most malignant type of brain tumours. The 5-year survival is 10% and a significant part of the ongoing research aims to increase survival through surgical and oncological treatments. Accordingly, there is an increasing need for investigating the HGG trajectory...

  9. Mesenchymal stem cells derived from adipose tissue vs bone marrow: in vitro comparison of their tropism towards gliomas.

    Directory of Open Access Journals (Sweden)

    Courtney Pendleton

    Full Text Available INTRODUCTION: Glioblastoma is the most common primary malignant brain tumor, and is refractory to surgical resection, radiation, and chemotherapy. Human mesenchymal stem cells (hMSC may be harvested from bone marrow (BMSC and adipose (AMSC tissue. These cells are a promising avenue of investigation for the delivery of adjuvant therapies. Despite extensive research into putative mechanisms for the tumor tropism of MSCs, there remains no direct comparison of the efficacy and specificity of AMSC and BMSC tropism towards glioma. METHODS: Under an IRB-approved protocol, intraoperative human Adipose MSCs (hAMSCs were established and characterized for cell surface markers of mesenchymal stem cell origin in conjunction with the potential for tri-lineage differentiation (adipogenic, chondrogenic, and osteogenic. Validated experimental hAMSCs were compared to commercially derived hBMSCs (Lonza and hAMSCs (Invitrogen for growth responsiveness and glioma tropism in response to glioma conditioned media obtained from primary glioma neurosphere cultures. RESULTS: Commercial and primary culture AMSCs and commercial BMSCs demonstrated no statistically significant difference in their migration towards glioma conditioned media in vitro. There was statistically significant difference in the proliferation rate of both commercial AMSCs and BMSCs as compared to primary culture AMSCs, suggesting primary cultures have a slower growth rate than commercially available cell lines. CONCLUSIONS: Adipose- and bone marrow-derived mesenchymal stem cells have similar in vitro glioma tropism. Given the well-documented ability to harvest larger numbers of AMSCs under local anesthesia, adipose tissue may provide a more efficient source of MSCs for research and clinical applications, while minimizing patient morbidity during cell harvesting.

  10. Arctigenin, a natural lignan compound, induces G0/G1 cell cycle arrest and apoptosis in human glioma cells.

    Science.gov (United States)

    Maimaitili, Aisha; Shu, Zunhua; Cheng, Xiaojiang; Kaheerman, Kadeer; Sikandeer, Alifu; Li, Weimin

    2017-02-01

    The aim of the current study was to investigate the anticancer potential of arctigenin, a natural lignan compound, in malignant gliomas. The U87MG and T98G human glioma cell lines were treated with various concentrations of arctigenin for 48 h and the effects of arctigenin on the aggressive phenotypes of glioma cells were assessed. The results demonstrated that arctigenin dose-dependently inhibited the growth of U87MG and T98G cells, as determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and bromodeoxyuridine incorporation assays. Arctigenin exposure also induced a 60-75% reduction in colony formation compared with vehicle-treated control cells. However, arctigenin was not observed to affect the invasiveness of glioma cells. Arctigenin significantly increased the proportion of cells in the G 0 /G 1 phase and reduced the number of cells in the S phase, as compared with the control group (Parctigenin increased the expression levels of p21, retinoblastoma and p53 proteins, and significantly decreased the expression levels of cyclin D1 and cyclin-dependent kinase 4 proteins. Additionally, arctigenin was able to induce apoptosis in glioma cells, coupled with increased expression levels of cleaved caspase-3 and the pro-apoptotic BCL2-associated X protein. Furthermore, arctigenin-induced apoptosis was significantly suppressed by the pretreatment of cells with Z-DEVD-FMK, a caspase-3 inhibitor. In conclusion, the results suggest that arctigenin is able to inhibit cell proliferation and may induce apoptosis and cell cycle arrest at the G 0 /G 1 phase in glioma cells. These results warrant further investigation of the anticancer effects of arctigenin in animal models of gliomas.

  11. Glioma-related seizures in relation to histopathological subtypes: a report from the glioma international case-control study.

    Science.gov (United States)

    Berntsson, Shala G; Merrell, Ryan T; Amirian, E Susan; Armstrong, Georgina N; Lachance, Daniel; Smits, Anja; Zhou, Renke; Jacobs, Daniel I; Wrensch, Margaret R; Olson, Sara H; Il'yasova, Dora; Claus, Elizabeth B; Barnholtz-Sloan, Jill S; Schildkraut, Joellen; Sadetzki, Siegal; Johansen, Christoffer; Houlston, Richard S; Jenkins, Robert B; Bernstein, Jonine L; Lai, Rose; Shete, Sanjay; Amos, Christopher I; Bondy, Melissa L; Melin, Beatrice S

    2018-04-23

    The purpose of this study was to evaluate the distribution of glioma-related seizures and seizure control at the time of tumor diagnosis with respect to tumor histologic subtypes, tumor treatment and patient characteristics, and to compare seizure history preceding tumor diagnosis (or study enrollment) between glioma patients and healthy controls. The Glioma International Case Control study (GICC) risk factor questionnaire collected information on demographics, past medical/medication history, and occupational history. Cases from eight centers were also asked detailed questions on seizures in relation to glioma diagnosis; cases (n = 4533) and controls (n = 4171) were also asked about seizures less than 2 years from diagnosis and previous seizure history more than 2 years prior to tumor diagnosis, including childhood seizures. Low-grade gliomas (LGGs), particularly oligodendrogliomas/oligoastrocytomas, had the highest proportion of glioma-related seizures. Patients with low-grade astrocytoma demonstrated the most medically refractory seizures. A total of 83% of patients were using only one antiepileptic drug (AED), which was levetiracetam in 71% of cases. Gross total resection was strongly associated with reduced seizure frequency (p related seizures were most common in low-grade gliomas. Gross total resection was associated with lower seizure frequency. Additionally, having a history of childhood seizures is not a risk factor ***for developing glioma-related seizures or glioma.

  12. Glioma cells on the run – the migratory transcriptome of 10 human glioma cell lines

    Directory of Open Access Journals (Sweden)

    Holz David

    2008-01-01

    Full Text Available Abstract Background Glioblastoma multiforme (GBM is the most common primary intracranial tumor and despite recent advances in treatment regimens, prognosis for affected patients remains poor. Active cell migration and invasion of GBM cells ultimately lead to ubiquitous tumor recurrence and patient death. To further understand the genetic mechanisms underlying the ability of glioma cells to migrate, we compared the matched transcriptional profiles of migratory and stationary populations of human glioma cells. Using a monolayer radial migration assay, motile and stationary cell populations from seven human long term glioma cell lines and three primary GBM cultures were isolated and prepared for expression analysis. Results Gene expression signatures of stationary and migratory populations across all cell lines were identified using a pattern recognition approach that integrates a priori knowledge with expression data. Principal component analysis (PCA revealed two discriminating patterns between migrating and stationary glioma cells: i global down-regulation and ii global up-regulation profiles that were used in a proband-based rule function implemented in GABRIEL to find subsets of genes having similar expression patterns. Genes with up-regulation pattern in migrating glioma cells were found to be overexpressed in 75% of human GBM biopsy specimens compared to normal brain. A 22 gene signature capable of classifying glioma cultures based on their migration rate was developed. Fidelity of this discovery algorithm was assessed by validation of the invasion candidate gene, connective tissue growth factor (CTGF. siRNA mediated knockdown yielded reduced in vitro migration and ex vivo invasion; immunohistochemistry on glioma invasion tissue microarray confirmed up-regulation of CTGF in invasive glioma cells. Conclusion Gene expression profiling of migratory glioma cells induced to disperse in vitro affords discovery of genomic signatures; selected

  13. Growth inhibition and chemosensitization of exogenous nitric oxide released from NONOates in glioma cells in vitro.

    Science.gov (United States)

    Weyerbrock, Astrid; Baumer, Brunhilde; Papazoglou, Anna

    2009-01-01

    Exogenous nitric oxide (NO) from NO donors has cytotoxic, chemosensitizing, and radiosensitizing effects, and increases vascular permeability and blood flow in tumors. Yet little is known about whether these cytotoxic and chemosensitizing effects can be observed in glioma cells at doses that alter tumor physiological characteristics in vivo and whether these effects are tumor selective. The effect of NO released from proline NONOate, diethylamine NONOate, spermine NONOate, and sodium nitrite on cell proliferation, apoptosis, and chemosensitivity to carboplatin of cultured glioma cells was studied in C6, U87 glioma cells, human glioblastoma cells, and human astrocytes and fibroblasts. Although proline NONOate failed to induce cell death, the other NO donors induced growth arrest when present in high concentrations (10(-2) M) in all cell lines. Chemosensitization was observed after concomitant incubation with spermine NONOate and carboplatin in C6 and human glioblastoma cells. There is strong evidence that cell death occurs primarily by necrosis and to a lesser degree by apoptosis. The NO doses, which altered tumor physiology in vivo, were not cytotoxic, indicating that NO alters vascular permeability and cell viability in vivo by different mechanisms. The authors found that NO-generating agents at high concentrations are potent growth inhibitors and might also be useful as chemosensitizers in glioma cells. These data corroborate the theory that the use of NOgenerating agents may play a role in the multimodal treatment of malignant gliomas but that the NO release must be targeted more specifically to tumor cells to improve selectivity and efficacy.

  14. Frequent Nek1 overexpression in human gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jun [School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai (China); Neurosurgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Cai, Yu, E-mail: aihaozuqiu22@163.com [School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai (China); Neurosurgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Liu, Pin [Med-X Research Institute, Shanghai Jiao Tong University, Shanghai (China); Zhao, Weiguo [Neurosurgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China)

    2016-08-05

    Never in mitosis A (NIMA)-related kinase 1 (Nek1) regulates cell cycle progression to mitosis. Its expression and potential functions in human gliomas have not been studied. Here, our immunohistochemistry (IHC) assay and Western blot assay results showed that Nek1 expression was significantly upregulated in fresh and paraffin-embedded human glioma tissues. Its level in normal brain tissues was low. Nek1 overexpression in human gliomas was correlated with the proliferation marker (Ki-67), tumor grade, Karnofsky performance scale (KPS) and more importantly, patients’ poor survival. Further studies showed that Nek1 expression level was also increased in multiple human glioma cell lines (U251-MG, U87-MG, U118, H4 and U373). Significantly, siRNA-mediated knockdown of Nek1 inhibited glioma cell (U87-MG/U251-MG) growth. Nek1 siRNA also sensitized U87-MG/U251-MG cells to temozolomide (TMZ), causing a profound apoptosis induction and growth inhibition. The current study indicates Nek1 might be a novel and valuable oncotarget of glioma, it is important for glioma cell growth and TMZ-resistance. - Highlights: • Nek1 is upregulated in multiple human glioma tissues and cell lines. • Nek1 overexpression correlates with glioma grades and patients’ KPS score. • Nek1 overexpression correlates with patients’ poor overall survival. • siRNA knockdown of Nek1 inhibits glioma cell growth. • siRNA knockdown of Nek1 sensitizes human glioma cells to temozolomide.

  15. Frequent Nek1 overexpression in human gliomas

    International Nuclear Information System (INIS)

    Zhu, Jun; Cai, Yu; Liu, Pin; Zhao, Weiguo

    2016-01-01

    Never in mitosis A (NIMA)-related kinase 1 (Nek1) regulates cell cycle progression to mitosis. Its expression and potential functions in human gliomas have not been studied. Here, our immunohistochemistry (IHC) assay and Western blot assay results showed that Nek1 expression was significantly upregulated in fresh and paraffin-embedded human glioma tissues. Its level in normal brain tissues was low. Nek1 overexpression in human gliomas was correlated with the proliferation marker (Ki-67), tumor grade, Karnofsky performance scale (KPS) and more importantly, patients’ poor survival. Further studies showed that Nek1 expression level was also increased in multiple human glioma cell lines (U251-MG, U87-MG, U118, H4 and U373). Significantly, siRNA-mediated knockdown of Nek1 inhibited glioma cell (U87-MG/U251-MG) growth. Nek1 siRNA also sensitized U87-MG/U251-MG cells to temozolomide (TMZ), causing a profound apoptosis induction and growth inhibition. The current study indicates Nek1 might be a novel and valuable oncotarget of glioma, it is important for glioma cell growth and TMZ-resistance. - Highlights: • Nek1 is upregulated in multiple human glioma tissues and cell lines. • Nek1 overexpression correlates with glioma grades and patients’ KPS score. • Nek1 overexpression correlates with patients’ poor overall survival. • siRNA knockdown of Nek1 inhibits glioma cell growth. • siRNA knockdown of Nek1 sensitizes human glioma cells to temozolomide.

  16. External Beam Radiotherapy of Recurrent Glioma: Radiation Tolerance of the Human Brain

    Energy Technology Data Exchange (ETDEWEB)

    Sminia, Peter, E-mail: p.sminia@vumc.nl [Department of Radiation Oncology, Radiobiology Section, VU University Medical Center, De Boelelaan 1117, P.O. Box 7057, Amsterdam (Netherlands); Mayer, Ramona [EBG MedAustron GmbH., Viktor Kaplan-Strasse 2, A-2700, Wiener Neustadt (Austria)

    2012-04-05

    Malignant gliomas relapse in close proximity to the resection site, which is the postoperatively irradiated volume. Studies on re-irradiation of glioma were examined regarding radiation-induced late adverse effects (i.e., brain tissue necrosis), to obtain information on the tolerance dose and treatment volume of normal human brain tissue. The studies were analyzed using the linear-quadratic model to express the re-irradiation tolerance in cumulative equivalent total doses when applied in 2 Gy fractions (EQD2{sub cumulative}). Analysis shows that the EQD2{sub cumulative} increases from conventional re-irradiation series to fractionated stereotactic radiotherapy (FSRT) to LINAC-based stereotactic radiosurgery (SRS). The mean time interval between primary radiotherapy and the re-irradiation course was shortened from 30 months for conventional re-irradiation to 17 and 10 months for FSRT and SRS, respectively. Following conventional re-irradiation, radiation-induced normal brain tissue necrosis occurred beyond an EQD2{sub cumulative} around 100 Gy. With increasing conformality of therapy, the smaller the treatment volume is, the higher the radiation dose that can be tolerated. Despite the dose escalation, no increase in late normal tissue toxicity was reported. On basis of our analysis, the use of particle therapy in the treatment of recurrent gliomas, because of the optimized physical dose distribution in the tumour and surrounding healthy brain tissue, should be considered for future clinical trials.

  17. External Beam Radiotherapy of Recurrent Glioma: Radiation Tolerance of the Human Brain

    Directory of Open Access Journals (Sweden)

    Peter Sminia

    2012-04-01

    Full Text Available Malignant gliomas relapse in close proximity to the resection site, which is the postoperatively irradiated volume. Studies on re-irradiation of glioma were examined regarding radiation-induced late adverse effects (i.e., brain tissue necrosis, to obtain information on the tolerance dose and treatment volume of normal human brain tissue. The studies were analyzed using the linear-quadratic model to express the re-irradiation tolerance in cumulative equivalent total doses when applied in 2 Gy fractions (EQD2cumulative. Analysis shows that the EQD2cumulative increases from conventional re-irradiation series to fractionated stereotactic radiotherapy (FSRT to LINAC-based stereotactic radiosurgery (SRS. The mean time interval between primary radiotherapy and the re-irradiation course was shortened from 30 months for conventional re-irradiation to 17 and 10 months for FSRT and SRS, respectively. Following conventional re-irradiation, radiation-induced normal brain tissue necrosis occurred beyond an EQD2cumulative around 100 Gy. With increasing conformality of therapy, the smaller the treatment volume is, the higher the radiation dose that can be tolerated. Despite the dose escalation, no increase in late normal tissue toxicity was reported. On basis of our analysis, the use of particle therapy in the treatment of recurrent gliomas, because of the optimized physical dose distribution in the tumour and surrounding healthy brain tissue, should be considered for future clinical trials.

  18. Machine learning methods for the classification of gliomas: Initial results using features extracted from MR spectroscopy.

    Science.gov (United States)

    Ranjith, G; Parvathy, R; Vikas, V; Chandrasekharan, Kesavadas; Nair, Suresh

    2015-04-01

    With the advent of new imaging modalities, radiologists are faced with handling increasing volumes of data for diagnosis and treatment planning. The use of automated and intelligent systems is becoming essential in such a scenario. Machine learning, a branch of artificial intelligence, is increasingly being used in medical image analysis applications such as image segmentation, registration and computer-aided diagnosis and detection. Histopathological analysis is currently the gold standard for classification of brain tumors. The use of machine learning algorithms along with extraction of relevant features from magnetic resonance imaging (MRI) holds promise of replacing conventional invasive methods of tumor classification. The aim of the study is to classify gliomas into benign and malignant types using MRI data. Retrospective data from 28 patients who were diagnosed with glioma were used for the analysis. WHO Grade II (low-grade astrocytoma) was classified as benign while Grade III (anaplastic astrocytoma) and Grade IV (glioblastoma multiforme) were classified as malignant. Features were extracted from MR spectroscopy. The classification was done using four machine learning algorithms: multilayer perceptrons, support vector machine, random forest and locally weighted learning. Three of the four machine learning algorithms gave an area under ROC curve in excess of 0.80. Random forest gave the best performance in terms of AUC (0.911) while sensitivity was best for locally weighted learning (86.1%). The performance of different machine learning algorithms in the classification of gliomas is promising. An even better performance may be expected by integrating features extracted from other MR sequences. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  19. Neuropathological diagnoses and clinical correlates in older adults in Brazil: A cross-sectional study.

    Directory of Open Access Journals (Sweden)

    Claudia K Suemoto

    2017-03-01

    Full Text Available Clinicopathological studies are important in determining the brain lesions underlying dementia. Although almost 60% of individuals with dementia live in developing countries, few clinicopathological studies focus on these individuals. We investigated the frequency of neurodegenerative and vascular-related neuropathological lesions in 1,092 Brazilian admixed older adults, their correlation with cognitive and neuropsychiatric symptoms, and the accuracy of dementia subtype diagnosis.In this cross-sectional study, we describe clinical and neuropathological variables related to cognitive impairment in 1,092 participants (mean age = 74 y, 49% male, 69% white, and mean education = 4 y. Cognitive function was investigated using the Clinical Dementia Rating (CDR and the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE; neuropsychiatric symptoms were evaluated using the Neuropsychiatric Inventory (NPI. Associations between neuropathological lesions and cognitive impairment were investigated using ordinal logistic regression. We developed a neuropathological comorbidity (NPC score and compared it to CDR, IQCODE, and NPI scores. We also described and compared the frequency of neuropathological diagnosis to clinical diagnosis of dementia subtype. Forty-four percent of the sample met criteria for neuropathological diagnosis. Among these participants, 50% had neuropathological diagnoses of Alzheimer disease (AD, and 35% of vascular dementia (VaD. Neurofibrillary tangles (NFTs, hippocampal sclerosis, lacunar infarcts, hyaline atherosclerosis, siderocalcinosis, and Lewy body disease were independently associated with cognitive impairment. Higher NPC scores were associated with worse scores in the CDR sum of boxes (β = 1.33, 95% CI 1.20-1.46, IQCODE (β = 0.14, 95% CI 0.13-0.16, and NPI (β = 1.74, 95% CI = 1.33-2.16. Compared to neuropathological diagnoses, clinical diagnosis had high sensitivity to AD and high specificity to dementia with

  20. Extracellular miRNA-21 as a novel biomarker in glioma: evidence from meta-analysis, clinical validation and experimental investigations

    Science.gov (United States)

    Liu, Tian; Wang, Zhixin; Tai, Minghui; Meng, Fandi; Zhang, Jingyao; Wan, Yong; Mao, Ping; Dong, Xiaoqun; Liu, Chang; Niu, Wenquan; Dong, Shunbin

    2016-01-01

    Evidence is accumulating highlighting the importance of extracellular miRNA as a novel biomarker for diagnosing various kinds of malignancies. MiR-21 is one of the most studied miRNAs and is over-expressed in cancer tissues. To explore the clinical implications and secretory mechanisms of extracellular miR-21, we firstly meta-analyzed the diagnostic efficiency of extracellular miR-21 in different cancer types. Eighty-one studies based on 59 articles were finally included. In our study, extracellular miR-21 was observed to exhibit an outstanding diagnostic accuracy in detecting brain cancer (area under the summary receiver operating characteristic curve or AUC = 0.94), and this accuracy was more obvious in glioma diagnosis (AUC = 0.95). Our validation study (n = 45) further confirmed the diagnostic and prognostic role of miR-21 in cerebrospinal fluid (CSF) for glioma. These findings inspired us to explore the biological function of miR-21. We next conducted mechanistic investigations to explain the secretory mechanisms of extracellular miR-21 in glioma. TGF-β/Smad3 signaling was identified to participate in mediating the release of miR-21 from glioma cells. Further targeting TGF-β/Smad3 signaling using galunisertib, an inhibitor of the TGF-β type I receptor kinase, can attenuate the secretion of miR-21 from glioma cells. Taken together, CSF-based miR-21 might serve as a potential biomarker for diagnosing brain cancer, especially for patients with glioma. Moreover, extracellular levels of miR-21 were affected by exogenous TGF-β activity and galunisertib treatment. PMID:27166186

  1. High epiregulin expression in human U87 glioma cells relies on IRE1α and promotes autocrine growth through EGF receptor

    International Nuclear Information System (INIS)

    Auf, Gregor; Vajkoczy, Peter; Seno, Masaharu; Bikfalvi, Andreas; Minchenko, Dmitri; Minchenko, Oleksandr; Moenner, Michel; Jabouille, Arnaud; Delugin, Maylis; Guérit, Sylvaine; Pineau, Raphael; North, Sophie; Platonova, Natalia; Maitre, Marlène; Favereaux, Alexandre

    2013-01-01

    Epidermal growth factor (EGF) receptors contribute to the development of malignant glioma. Here we considered the possible implication of the EGFR ligand epiregulin (EREG) in glioma development in relation to the activity of the unfolded protein response (UPR) sensor IRE1α. We also examined EREG status in several glioblastoma cell lines and in malignant glioma. Expression and biological properties of EREG were analyzed in human glioma cells in vitro and in human tumor xenografts with regard to the presence of ErbB proteins and to the blockade of IRE1α. Inactivation of IRE1α was achieved by using either the dominant-negative strategy or siRNA-mediated knockdown. EREG was secreted in high amounts by U87 cells, which also expressed its cognate EGF receptor (ErbB1). A stimulatory autocrine loop mediated by EREG was evidenced by the decrease in cell proliferation using specific blocking antibodies directed against either ErbB1 (cetuximab) or EREG itself. In comparison, anti-ErbB2 antibodies (trastuzumab) had no significant effect. Inhibition of IRE1α dramatically reduced EREG expression both in cell culture and in human xenograft tumor models. The high-expression rate of EREG in U87 cells was therefore linked to IRE1α, although being modestly affected by chemical inducers of the endoplasmic reticulum stress. In addition, IRE1-mediated production of EREG did not depend on IRE1 RNase domain, as neither the selective dominant-negative invalidation of the RNase activity (IRE1 kinase active) nor the siRNA-mediated knockdown of XBP1 had significant effect on EREG expression. Finally, chemical inhibition of c-Jun N-terminal kinases (JNK) using the SP600125 compound reduced the ability of cells to express EREG, demonstrating a link between the growth factor production and JNK activation under the dependence of IRE1α. EREG may contribute to glioma progression under the control of IRE1α, as exemplified here by the autocrine proliferation loop mediated in U87 cells by the

  2. Berberine enhances inhibition of glioma tumor cell migration and invasiveness mediated by arsenic trioxide

    International Nuclear Information System (INIS)

    Lin, Tseng-Hsi; Kuo, Hsing-Chun; Chou, Fen-Pi; Lu, Fung-Jou

    2008-01-01

    significantly reduced. Upon co-treatment of glioma cells with As 2 O 3 and berberine, cancer cell metastasis can be significantly inhibited, most likely by blocking the PKC-mediated signaling pathway involved in cancer cell migration. This study is potentially interesting for the development of novel chemotherapeutic approaches in the treatment of malignant gliomas and cancer development in general

  3. Neurocognitive training in patients with high-grade glioma: a pilot study.

    Science.gov (United States)

    Hassler, Marco Ronald; Elandt, Katarzyna; Preusser, Matthias; Lehrner, Johann; Binder, Petra; Dieckmann, Karin; Rottenfusser, Andrea; Marosi, Christine

    2010-03-01

    Although their neurocognitive performance is one of the major concerns of patients with high-grade gliomas (HGG) and although neurocognitive deficits have been described to be associated with negative outcome, neurocognitive rehabilitation is usually not integrated into the routine care of patients with malignant gliomas. In this pilot trial, a weekly group training session for attention, verbal, and memory skills was offered to patients with HGG with pre and post-training evaluation. Eleven patients, six with glioblastoma multiforme and five with WHO grade III gliomas, median age 50 years, with a Karnofsky performance score of 80-100 participated in ten group training sessions of 90 min. For evaluation at baseline and after the training by a neuropsychologist not involved in care or training of the patients, Trail Making Tests A and B (TMTA and TMTB), Hopkins Verbal Learning Test (HVLT), and the Controlled Oral Word Association Test (COWA) were used. Comparison of mean group differences between baseline and at post-training evaluation after 12 weeks revealed improvement across all neurocognitive variables. The patients showed a great diversity in their performances, with worsening, improvement, and stabilization. However, a significant group difference was detected only for the HVLT (score 19.6 +/- 8.9 at baseline, 23.6 +/- 8.8 after 12 weeks, P = 0.04). This pilot study shows that neurocognitive training in patients with HGG is feasible as group training with weekly sessions and might be able to induce improvements in attention and memory skills.

  4. Healthy ageing in the Nun Study: definition and neuropathologic correlates.

    Science.gov (United States)

    Tyas, Suzanne L; Snowdon, David A; Desrosiers, Mark F; Riley, Kathryn P; Markesbery, William R

    2007-11-01

    Although the concept of healthy ageing has stimulated considerable interest, no generally accepted definition has been developed nor has its biological basis been determined. To develop a definition of healthy ageing and investigate its association with longevity and neuropathology. Analyses were based on cognitive, physical, and post-mortem assessments from 1991 to 1998 in the Nun Study, a longitudinal study of ageing in participants 75+ years at baseline. We defined three mutually exclusive levels of healthy ageing (excellent, very good, and good) based on measures of global cognitive function, short-term memory, basic and instrumental activities of daily living, and self-rated function. Mortality analyses were based on 636 participants; neuropathologic analyses were restricted to 221 who had died and were autopsied. Only 11% of those meeting criteria for the excellent level of healthy ageing at baseline subsequently died, compared with 24% for the very good, 39% for the good, and 60% for the remaining participants. Survival curves showed significantly greater longevity with higher levels of healthy ageing. The risk of not attaining healthy ageing, adjusted for age, increased two-fold in participants with brain infarcts alone, six-fold in those with Alzheimer neuropathology alone, and more than thirteen-fold in those with both brain infarcts and Alzheimer neuropathology. The biological validity of our definition of healthy ageing is supported by its strong association with mortality and longevity. Avoiding Alzheimer and stroke neuropathology is critical to the maintenance of healthy ageing, and the presence of both pathologies dramatically decreases the likelihood of healthy ageing.

  5. Efficacy of NGR peptide-modified PEGylated quantum dots for crossing the blood-brain barrier and targeted fluorescence imaging of glioma and tumor vasculature.

    Science.gov (United States)

    Huang, Ning; Cheng, Si; Zhang, Xiang; Tian, Qi; Pi, Jiangli; Tang, Jun; Huang, Qing; Wang, Feng; Chen, Jin; Xie, Zongyi; Xu, Zhongye; Chen, Weifu; Zheng, Huzhi; Cheng, Yuan

    2017-01-01

    Delivery of imaging agents to brain glioma is challenging because the blood-brain barrier (BBB) functions as a physiological checkpoint guarding the central nervous system from circulating large molecules. Moreover, the ability of existing probes to target glioma has been insufficient and needs to be improved. In present study, PEG-based long circulation, CdSe/ZnS quantum dots (QDs)-based nanoscale and fluorescence, asparagines-glycine-arginine peptides (NGR)-based specific CD13 recognition were integrated to design and synthesize a novel nanoprobe by conjugating biotinylated NGR peptides to avidin-PEG-coated QDs. Our data showed that the NGR-PEG-QDs were nanoscale with less than 100 nm and were stable in various pH (4.0~8.0). These nanomaterials with non-toxic concentrations could cross the BBB and target CD13-overexpressing glioma and tumor vasculature in vitro and in vivo, contributing to fluorescence imaging of this brain malignancy. These achievements allowed groundbreaking technological advances in targeted fluorescence imaging for the diagnosis and surgical removal of glioma, facilitating potential transformation toward clinical nanomedicine. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The Glioma International Case-Control Study

    DEFF Research Database (Denmark)

    Amirian, E. Susan; Armstrong, Georgina N; Zhou, Renke

    2016-01-01

    Decades of research have established only a few etiological factors for glioma, which is a rare and highly fatal brain cancer. Common methodological challenges among glioma studies include small sample sizes, heterogeneity of tumor subtypes, and retrospective exposure assessment. Here, we briefly...... describe the Glioma International Case-Control (GICC) Study (recruitment, 2010-2013), a study being conducted by the Genetic Epidemiology of Glioma International Consortium that integrates data from multiple data collection sites, uses a common protocol and questionnaire, and includes biospecimen...

  7. Novel therapies for high-grade gliomas: A vision for future

    Directory of Open Access Journals (Sweden)

    Vivek Tandon

    2012-01-01

    Full Text Available The treatment for high-grade glioma remains an enigma. The standard treatment using surgery, radiation therapy and chemotherapy for such highly malignant lesions has only yielded modest results, in terms of survival and improving the quality of life of patients. Less than 10% of such patients survive beyond two years. All conventional therapies have failed to increase the survival beyond this extent. There has been a growing interest in the molecular approaches for the treatment of high-grade gliomas which include gene therapy, oncolytic virotherapy, and immunotherapy. These new therapies are in preclinical and investigational stages. They may not substitute the conventional therapies; they may not be the ultimate elixir for this deadly disease. However, in the coming years, they are likely to have synergistic and complimentary roles alongside conventional therapies. Through this paper, we have attempted to highlight the rationale behind gene therapy which can be used for cytotoxic approaches, immunomodulation strategy, and targeted toxin delivery in the tumor cell. We have reviewed current available literature and through this paper focus on reporting such therapeutic options, their potential usage, benefits and limitations.

  8. The impact of dietary isoflavonoids on malignant brain tumors

    International Nuclear Information System (INIS)

    Sehm, Tina; Fan, Zheng; Weiss, Ruth; Schwarz, Marc; Engelhorn, Tobias; Hore, Nirjhar; Doerfler, Arnd; Buchfelder, Michael; Eyüpoglu, IIker Y; Savaskan, Nic E

    2014-01-01

    Poor prognosis and limited therapeutic options render malignant brain tumors one of the most devastating diseases in clinical medicine. Current treatment strategies attempt to expand the therapeutic repertoire through the use of multimodal treatment regimens. It is here that dietary fibers have been recently recognized as a supportive natural therapy in augmenting the body's response to tumor growth. Here, we investigated the impact of isoflavonoids on primary brain tumor cells. First, we treated glioma cell lines and primary astrocytes with various isoflavonoids and phytoestrogens. Cell viability in a dose-dependent manner was measured for biochanin A (BCA), genistein (GST), and secoisolariciresinol diglucoside (SDG). Dose–response action for the different isoflavonoids showed that BCA is highly effective on glioma cells and nontoxic for normal differentiated brain tissues. We further investigated BCA in ex vivo and in vivo experimentations. Organotypic brain slice cultures were performed and treated with BCA. For in vivo experiments, BCA was intraperitoneal injected in tumor-implanted Fisher rats. Tumor size and edema were measured and quantified by magnetic resonance imaging (MRI) scans. In vascular organotypic glioma brain slice cultures (VOGIM) we found that BCA operates antiangiogenic and neuroprotective. In vivo MRI scans demonstrated that administered BCA as a monotherapy was effective in reducing significantly tumor-induced brain edema and showed a trend for prolonged survival. Our results revealed that dietary isoflavonoids, in particular BCA, execute toxicity toward glioma cells, antiangiogenic, and coevally neuroprotective properties, and therefore augment the range of state-of-the-art multimodal treatment approach

  9. Neuronavigator-guided glioma surgery.

    Science.gov (United States)

    Du, Guhong; Zhou, Liangfu; Mao, Ying

    2003-10-01

    To evaluate the effectiveness of neuronavigator-guided surgery for the resection of gliomas. A total of 80 patients with gliomas underwent surgical treatment under the StealthStation neuronavigator to estimate the extent of the tumors. In 27 cases, the measurements of brain shifts at the dura, cortical surface and lesion margin were recorded during the operations. A technique termed "micro-catheter fence post" was used in superficial gliomas to compensate for brain shift. Mean fiducial error and predicted accuracy in the 80 cases were 2.03 mm +/- 0.89 mm and 2.43 mm +/- 0.99 mm, respectively. The shifts at the dura, cortical surface and lesion margin were 3.44 mm +/- 2.39 mm, 7.58 mm +/- 3.75 mm, and 6.55 mm +/- 3.19 mm, respectively. Although neuronavigation revealed residual tumors, operations were discontinued in 5 cases of deep-seated gliomas. In the other 75 cases, total tumor removals were achieved in 62 (82.7%), and subtotal removals were achieved in 13 (17.3%). Post-operation, neurological symptoms were improved or unchanged in 68 cases (85.0%), and worsened in 12 (15.0%). No deaths occurred during the operations and post-operations. Intraoperative brain shifts mainly contribute to the fail of spatial accuracy during neuronavigator-guided glioma surgery. The "micro-catheter fence post" technique used for glioma surgery is shown to be useful for compensating for intraoperative brain shifts. This technique, thus, contributes to an increase in total tumor removal and a decrease in surgical complications.

  10. Clinical outcomes of gamma knife radiosurgery in the salvage treatment of patients with recurrent high-grade glioma.

    Science.gov (United States)

    Elaimy, Ameer L; Mackay, Alexander R; Lamoreaux, Wayne T; Demakas, John J; Fairbanks, Robert K; Cooke, Barton S; Lamm, Andrew F; Lee, Christopher M

    2013-12-01

    Previously published randomized evidence did not report a survival advantage for patients diagnosed with grade IV glioma who were treated with stereotactic radiosurgery followed by external beam radiation therapy and chemotherapy when compared to patients treated with external beam radiation therapy and chemotherapy alone. In recent years, gamma knife radiosurgery has become increasingly popular as a salvage treatment modality for patients diagnosed with recurrent high-grade glioma. The purpose of this article is to review the efficacy of gamma knife radiosurgery for patients who suffer from this malignancy. Retrospective, prospective, and randomized clinical studies published between the years 2000 and 2012 analyzing gamma knife radiosurgery for patients with high-grade glioma were reviewed. After assessing patient age, Karnofsky performance status, tumor histology, and extent of resection, gamma knife radiosurgery is a viable, minimally invasive treatment option for patients diagnosed with recurrent high-grade glioma. The available prospective and retrospective evidence suggests that gamma knife radiosurgery provides patients with a high local tumor control rate and a median survival after tumor recurrence ranging from 13 to 26 months. Gamma knife radiosurgery followed by chemotherapy for recurrent high-grade glioma may provide select patients with increased levels of survival. However, further investigation into this matter is needed due to the limited number of published reports. Additional clinical research is also needed to analyze the efficacy and radiation-related toxicities of fractionated gamma knife radiosurgery due to its potential to limit treatment-associated morbidity. Gamma knife radiosurgery is a safe and effective treatment option for select patients diagnosed with recurrent high-grade glioma. Although treatment outcomes have improved, further evidence in the form of phase III randomized trials is needed to assess the durability of treating

  11. Relation of genomic variants for Alzheimer disease dementia to common neuropathologies.

    Science.gov (United States)

    Farfel, Jose M; Yu, Lei; Buchman, Aron S; Schneider, Julie A; De Jager, Philip L; Bennett, David A

    2016-08-02

    To investigate the associations of previously reported Alzheimer disease (AD) dementia genomic variants with common neuropathologies. This is a postmortem study including 1,017 autopsied participants from 2 clinicopathologic cohorts. Analyses focused on 22 genomic variants associated with AD dementia in large-scale case-control genome-wide association study (GWAS) meta-analyses. The neuropathologic traits of interest were a pathologic diagnosis of AD according to NIA-Reagan criteria, macroscopic and microscopic infarcts, Lewy bodies (LB), and hippocampal sclerosis. For each variant, multiple logistic regression was used to investigate its association with neuropathologic traits, adjusting for age, sex, and subpopulation structure. We also conducted power analyses to estimate the sample sizes required to detect genome-wide significance (p dementia variants are not likely to be detected for association with pathologic AD with a sample size in excess of the largest GWAS meta-analyses of AD dementia. Many recently discovered genomic variants for AD dementia are not associated with the pathology of AD. Some genomic variants for AD dementia appear to be associated with other common neuropathologies. © 2016 American Academy of Neurology.

  12. Effective conversion of irinotecan to SN-38 after intratumoral drug delivery to an intracranial murine glioma model in vivo. Laboratory investigation.

    Science.gov (United States)

    Wang, Weijun; Ghandi, Alex; Liebes, Leonard; Louie, Stan G; Hofman, Florence M; Schönthal, Axel H; Chen, Thomas C

    2011-03-01

    Irinotecan (CPT-11), a topoisomerase I inhibitor, is a cytotoxic agent with activity against malignant gliomas and other tumors. After systemic delivery, CPT-11 is converted to its active metabolite, SN-38, which displays significantly higher cytotoxic potency. However, the achievement of therapeutically effective plasma levels of CPT-11 and SN-38 is seriously complicated by variables that affect drug metabolism in the liver. Thus the capacity of CPT-11 to be converted to the active SN38 intratumorally in gliomas was addressed. For in vitro studies, 2 glioma cell lines, U87 and U251, were tested to determine the cytotoxic effects of CPT-11 and SN-38 in a dose-dependent manner. In vivo studies were performed by implanting U87 intracranially into athymic/nude mice. For a period of 2 weeks, SN-38, CPT-11, or vehicle was administered intratumorally by means of an osmotic minipump. One series of experiments measured the presence of SN-38 or CPT-11 in the tumor and surrounding brain tissues after 2 weeks' exposure to the drug. In a second series of experiments, after 2 weeks' exposure to the drug, the animals were maintained, in the absence of drug, until death. The survival curves were then calculated. The results show that the animals that had CPT-11 delivered intratumorally by the minipump expressed SN-38 in vivo. Furthermore, both CPT-11 and SN-38 accumulated at higher levels in tumor tissues compared with uninvolved brain. Intratumoral delivery of CPT-11 or SN-38 extended the average survival time of tumor-bearing animals from 22 days to 46 and 65 days, respectively. These results demonstrate that intratumorally administered CPT-11 can be effectively converted to SN-38 and this method of drug delivery is effective in extending the survival time of animals bearing malignant gliomas.

  13. Implications of Rho GTPase signaling in glioma cell invasion and tumor progression

    Directory of Open Access Journals (Sweden)

    Shannon Patricia Fortin Ensign

    2013-10-01

    Full Text Available Glioblastoma (GB is the most malignant of primary adult brain tumors, characterized by a highly locally-invasive cell population, as well as abundant proliferative cells, neoangiogenesis, and necrosis. Clinical intervention with chemotherapy or radiation may either promote or establish an environment for manifestation of invasive behavior. Understanding the molecular drivers of invasion in the context of glioma progression may be insightful in directing new treatments for patients with GB. Here, we review current knowledge on Rho family GTPases, their aberrant regulation in GB, and their effect on GB cell invasion and tumor progression. Rho GTPases are modulators of cell migration through effects on actin cytoskeleton rearrangement; in non-neoplastic tissue, expression and activation of Rho GTPases are normally under tight regulation. In GB, Rho GTPases are deregulated, often via hyperactivity or overexpression of their activators, Rho GEFs. Downstream effectors of Rho GTPases have been shown to promote invasiveness and, importantly, glioma cell survival. The study of aberrant Rho GTPase signaling in GB is thus an important investigation of cell invasion as well as treatment resistance and disease progression.

  14. Convection enhanced delivery of panobinostat (LBH589-loaded pluronic nano-micelles prolongs survival in the F98 rat glioma model

    Directory of Open Access Journals (Sweden)

    Singleton WG

    2017-02-01

    Full Text Available WG Singleton,1,2 AM Collins,3 AS Bienemann,1 CL Killick-Cole,1 HR Haynes,4 DJ Asby,1 CP Butts,5 MJ Wyatt,1 NU Barua,1,2 SS Gill1,2 1Functional Neurosurgery Research Group, School of Clinical Sciences, University of Bristol, 2Department of Neurosurgery, North Bristol NHS Trust, 3Bristol Centre for Functional Nanomaterials, School of Physics, HH Wills Physics Laboratory, 4Brain Tumour Research Group, School of Clinical Sciences, 5School of Chemistry, University of Bristol, Bristol, UKBackground: The pan-histone deacetylase inhibitor panobinostat is a potential therapy for malignant glioma, but it is water insoluble and does not cross the blood–brain barrier when administered systemically. In this article, we describe the in vitro and in vivo efficacy of a novel water-soluble nano-micellar formulation of panobinostat designed for administration by convection enhanced delivery (CED.Materials and methods: The in vitro efficacy of panobinostat-loaded nano-micelles against rat F98, human U87-MG and M059K glioma cells and against patient-derived glioma stem cells was measured using a cell viability assay. Nano-micelle distribution in rat brain was analyzed following acute CED using rhodamine-labeled nano-micelles, and toxicity was assayed using immunofluorescent microscopy and synaptophysin enzyme-linked immunosorbent assay. We compared the survival of the bioluminescent syngenic F98/Fischer344 rat glioblastoma model treated by acute CED of panobinostat-loaded nano-micelles with that of untreated and vehicle-only-treated controls.Results: Nano-micellar panobinostat is cytotoxic to rat and human glioma cells in vitro in a dose-dependent manner following short-time exposure to drug. Fluorescent rhodamine-labelled nano-micelles distribute with a volume of infusion/volume of distribution (Vi/Vd ratio of four and five respectively after administration by CED. Administration was not associated with any toxicity when compared to controls. CED of

  15. Ischemic perinatal brain damage. Neuropathologic and CT correlations

    Energy Technology Data Exchange (ETDEWEB)

    Crisi, G; Mauri, C; Canossi, G; Della Giustina, E

    1986-01-01

    The term ''hypoxic-ischemic encephalopathy'' covers a large part of neonatal neuropathology including the various forms of intracerebral haemorrhage. In the present work the term is confined to ischemic brain edema and actual infarction, be it diffuse or focal. Eighteen newborns with CT evidence of ischemic brain lesions and infarctual necrosis were selected. Emphasis is placed on current data on neuropathology of ischemic brain edema and its CT appearance. Particular entities such as periventricular leukomalacia and multicystic encephalopathy are discussed. Relationship between CT and temporal profile of cerebral damage is emphasized in order to predict the structural sequelae and the longterm prognosis. 31 refs.

  16. Distinction between glioma progression and post-radiation change by combined physiologic MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Matsusue, Eiji [University of Washington, Department of Radiology, Seattle, WA (United States); Tottori University, Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Yonago, Tottori (Japan); Fink, James R.; Maravilla, Kenneth R. [University of Washington, Department of Radiology, Seattle, WA (United States); Rockhill, Jason K. [University of Washington, Department of Radiation Oncology, Seattle, WA (United States); Ogawa, Toshihide [Tottori University, Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Yonago, Tottori (Japan)

    2010-04-15

    Magnetic resonance (MR) diffusion-weighted imaging (DWI), dynamic susceptibility contrast-enhanced perfusion imaging (DSC), and MR spectroscopy (MRS) techniques provide specific physiologic information that may distinguish malignant glioma progression from post-radiation change, yet no single technique is completely reliable. We propose a simple, multiparametric scoring system to improve diagnostic accuracy beyond that of each technique alone. Fifteen subjects with lesions suspicious for glioma progression following radiation therapy who had also undergone 3-tesla DWI, DSC, and MRS studies of the lesion were retrospectively reviewed. Minimum apparent diffusion coefficient (ADC) ratio, maximum regional cerebral blood volume (rCBV) ratio, and maximum MRS choline/creatine (Cho/Cr) and choline/N-acetyl-aspartate (Cho/NAA) metabolic peak-height ratios were quantified within each lesion. Each parameter (ADC ratio, rCBV ratio, and combined Cho/Cr and Cho/NAA ratios) was scored as either glioma progression (one point) or radiation change (zero point) based upon thresholds derived from our own data. For each lesion, the combined parameters yielded a multiparametric score (0 to 3) for prediction of tumor progression or post-radiation change. Optimum thresholds for ADC ratio (1.30), rCBV ratio (2.10), and either combined Cho/Cr (1.29) and Cho/NAA (1.06) yielded diagnostic accuracies of 86.7%, 86.7%, and 84.6%, respectively (p < 0.05). A combined multiparametric score threshold of 2 improved diagnostic accuracy to 93.3% (p < 0.05). In this small series combining 3-T DWI, DSC, and MRS diagnostic results using a simple, multiparametric scoring system has potential to improve overall diagnostic accuracy in distinguishing glioma progression from post-radiation change beyond that of each technique alone. (orig.)

  17. Radiotherapy using bleomycin, ACNU, and vincristine for malignant brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Ryuichi; Murakami, Naoto; Suzuki, Yasuo; Takeda, Norio; Arai, Hiroyuki; Konno, Kimikazu; Tanimura, Ken-ichi

    1984-08-01

    Radiotherapy combined with bleomycin, ACNU, and vincristine was performed on 106 patients with malignant brain tumors. The treatment protocol was based on the concept of combination chemotherapy or chemoradiotherapy and synchronized chemoradiotherapy. For the purpose of synchronized chemoradiotherapy, bleomycin, ACNU, and vincristine were used as G/sub 2/M cell cycle phase accumulator, and radiation and bleomycin were used as agents to which G/sub 2/M or G/sub 2/ phase cells are sensitive. The short-term results of the chemoradiotherapy were evaluated by measuring tumor regression by computerized tomography (CT) in 80 patients with evaluable CT lesions. The response rate was 67% (6/9) for astrocytoma, 29% (7/24) for anaplastic glioma, 67% (4/6) for pontine glioma, 100%(5/5) for malignant lymphoma, 100% (8/8) for germ cell tumors and 65% (15/23) for metastatic tumors. A control study was performed using radiation alone on another 18 patients with metastatic tumors, and the response rate was 50% (9/18). Among the 106 patients treated with chemoradiotherapy, the major side effects observed were as follows: leukopenia in 33 patients (31%), thrombocytopenia in 14 (13%), paralytic ileus in 2 (2%), peripheral neuropathy in 2 (2%), and lung fibrosis in 1 (1%). Contrary to expectation, low-grade astrocytomas responded much better to the chemoradiotherapy than high-grade astrocytomas.

  18. Continuous 28 day iododeoxyuridine (IUdR) infusion and hyperfractionated accelerated radiotherapy (hart) for malignant glioma: a phase I clinical and thymidine replacement study

    International Nuclear Information System (INIS)

    Schulz, C.A.; Mehta, M.P.; Robins, H.I.; Badie, B.; Arzoomanian, R.; Simon, K.; Alberti, D.; Feierabend, C.; Kunugi, K.A.; Wilding, G.; Kinsella, T.J.

    1997-01-01

    Objectives: Based on preclinical studies demonstrating a direct correlation between duration of IUdR infusion and percent cells labeled as well as amount thymidine replaced by IUdR, we conducted a Phase I trial to: (1) investigate the maximum tolerated dose (MTD) and systemic toxicities of a continuous 28 day IUdR infusion; (2) analyze percent IUdR-thymidine replacement in peripheral granulocytes as a surrogate marker for IUdR incorporation into tumor cells; (3) measure steady state serum IUdR levels; and (4) assess the feasibility of continuous IUdR infusion and HART in the management of malignant glioma. Materials and Methods: Patients (pts.) were required to have a KPS ≥60% and biopsy proven malignant glioma. Pts. received 100 (level 1: 4 pts.), 200 (level 2: 3 pts.), 300 (level 3: 3 pts.), 400 (level 4: 6 pts.) or 500 (level 5:2 pts.) mg/m2/day IUdR by continuous infusion for 28 days. HART started 7 days after IUdR initiation. Total dose was 70 Gy [1.2 Gy BID x 25 days with a 10 Gy. (2.0 x 5 days - q Saturday) boost. Weekly assays were performed for % IUdR incorporation (thymidine replacement) and serum IUdR levels using standard HPLC methods. Standard Phase I toxicity methodology was used. Results: Between June 1994 and December 1996, 18 pts. with a mean age of 52 years were enrolled (16 glioblastoma multiforme and 2 anaplastic astrocytoma). All pts. completed XRT. Two pts. did not complete IUdR, one due to grade 4 IUdR-related toxicities and one due to rapid disease progression. Dose modification occurred in one pt.; drug withheld due to grade 3 AST (SGOT) elevation with re-initiation of drug at the next lowest level. There were no grade ≥3 XRT toxicities. Grade ≥ 3 IUdR toxicities, dose level at which they occurred, number of patients affected and duration of toxicity are presented in Table 1. Thymidine replacement peaks at 3 weeks and increases with dose (Figure 1). Data on steady state plasma IUdR levels will also be presented. Conclusions: Our

  19. Cognitive impairments in patients with low grade gliomas and high grade gliomas

    Directory of Open Access Journals (Sweden)

    Eliane C. Miotto

    2011-08-01

    Full Text Available OBJECTIVE: The relationship between brain tumors and cognitive deficits is well established in the literature. However, studies investigating the cognitive status in low and high-grade gliomas patients are scarce, particularly in patients with average or lower educational level. This study aimed at investigating the cognitive functioning in a sample of patients with low and high-grade gliomas before surgical intervention. METHOD: The low-grade (G1, n=19 and high-grade glioma (G2, n=8 patients underwent a detailed neuropsychological assessment of memory, executive functions, visuo-perceptive and visuo-spatial abilities, intellectual level and language. RESULTS: There was a significant impairment on verbal and visual episodic memory, executive functions including mental flexibility, nominal and categorical verbal fluency and speed of information processing in G2. G1 showed only specific deficits on verbal and visual memory recall, mental flexibility and processing speed. CONCLUSION: These findings demonstrated different levels of impairments in the executive and memory domains in patients with low and high grade gliomas.

  20. Improving Seroreactivity-Based Detection of Glioma

    Directory of Open Access Journals (Sweden)

    Nicole Ludwig

    2009-12-01

    Full Text Available Seroreactivity profiling emerges as valuable technique for minimal invasive cancer detection. Recently, we provided first evidence for the applicability of serum profiling of glioma using a limited number of immunogenic antigens. Here, we screened 57 glioma and 60 healthy sera for autoantibodies against 1827 Escherichia coli expressed clones, including 509 in-frame peptide sequences. By a linear support vector machine approach, we calculated mean specificity, sensitivity, and accuracy of 100 repetitive classifications. We were able to differentiate glioma sera from sera of the healthy controls with a specificity of 90.28%, a sensitivity of 87.31% and an accuracy of 88.84%. We were also able to differentiate World Health Organization grade IV glioma sera from healthy sera with a specificity of 98.45%, a sensitivity of 80.93%, and an accuracy of 92.88%. To rank the antigens according to their information content, we computed the area under the receiver operator characteristic curve value for each clone. Altogether, we found 46 immunogenic clones including 16 in-frame clones that were informative for the classification of glioma sera versus healthy sera. For the separation of glioblastoma versus healthy sera, we found 91 informative clones including 26 in-frame clones. The best-suited in-frame clone for the classification glioma sera versus healthy sera corresponded to the vimentin gene (VIM that was previously associated with glioma. In the future, autoantibody signatures in glioma not only may prove useful for diagnosis but also offer the prospect for a personalized immune-based therapy.

  1. Detection of histological anaplasia in gliomas with oligodendroglial components using positron emission tomography with (18)F-FDG and (11)C-methionine: report of two cases.

    Science.gov (United States)

    Yamaguchi, Shigeru; Kobayashi, Hiroyuki; Hirata, Kenji; Shiga, Tohru; Tanaka, Shinya; Murata, Junichi; Terasaka, Shunsuke

    2011-01-01

    Gliomas are regionally heterogeneous tumors. Positron emission tomography (PET) with (18)F-fluorodeoxyglucose (FDG) and (11)C-methionine (MET) evaluates the heterogeneity of histological malignancy within the tumor. We present two patients with oligodendrocytic tumors that showed discrepancies in the highest uptake areas with these two tracers. PET studies with MET and FDG were performed on the same day, 2 weeks before surgery. In both cases, biopsy specimens were separately obtained from the highest MET and FDG uptake areas guided by intraoperative neuronavigation. Histological examinations demonstrated that the specimens from the highest MET uptake area revealed low-grade oligoastrocytoma or oligodendroglioma, whereas histological anaplasias were contained in the specimens from the highest FDG uptake area. With gliomas with oligodendroglial components, the MET uptake ratio does not always correspond to histological anaplasia, which can be detected only by FDG PET. Sole application of MET PET for preoperative evaluation may lead to misunderstanding of histological heterogeneity in gliomas, especially those with oligodendroglial components. FDG and MET tracers play complementary roles in preoperative evaluation of gliomas.

  2. Characterization of glioma stem cells through multiple stem cell markers and their specific sensitization to double-strand break-inducing agents by pharmacological inhibition of ataxia telangiectasia mutated protein.

    Science.gov (United States)

    Raso, Alessandro; Vecchio, Donatella; Cappelli, Enrico; Ropolo, Monica; Poggi, Alessandro; Nozza, Paolo; Biassoni, Roberto; Mascelli, Samantha; Capra, Valeria; Kalfas, Fotios; Severi, Paolo; Frosina, Guido

    2012-09-01

    Previous studies have shown that tumor-driving glioma stem cells (GSC) may promote radio-resistance by constitutive activation of the DNA damage response started by the ataxia telangiectasia mutated (ATM) protein. We have investigated whether GSC may be specifically sensitized to ionizing radiation by inhibiting the DNA damage response. Two grade IV glioma cell lines (BORRU and DR177) were characterized for a number of immunocytochemical, karyotypic, proliferative and differentiative parameters. In particular, the expression of a panel of nine stem cell markers was quantified by reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometry. Overall, BORRU and DR177 displayed pronounced and poor stem phenotypes, respectively. In order to improve the therapeutic efficacy of radiation on GSC, the cells were preincubated with a nontoxic concentration of the ATM inhibitors KU-55933 and KU-60019 and then irradiated. BORRU cells were sensitized to radiation and radio-mimetic chemicals by ATM inhibitors whereas DR177 were protected under the same conditions. No sensitization was observed after cell differentiation or to drugs unable to induce double-strand breaks (DSB), indicating that ATM inhibitors specifically sensitize glioma cells possessing stem phenotype to DSB-inducing agents. In conclusion, pharmacological inhibition of ATM may specifically sensitize GSC to DSB-inducing agents while sparing nonstem cells. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.

  3. The relationship between Cho/NAA and glioma metabolism: implementation for margin delineation of cerebral gliomas.

    Science.gov (United States)

    Guo, Jun; Yao, Chengjun; Chen, Hong; Zhuang, Dongxiao; Tang, Weijun; Ren, Guang; Wang, Yin; Wu, Jinsong; Huang, Fengping; Zhou, Liangfu

    2012-08-01

    The marginal delineation of gliomas cannot be defined by conventional imaging due to their infiltrative growth pattern. Here we investigate the relationship between changes in glioma metabolism by proton magnetic resonance spectroscopic imaging ((1)H-MRSI) and histopathological findings in order to determine an optimal threshold value of choline/N-acetyl-aspartate (Cho/NAA) that can be used to define the extent of glioma spread. Eighteen patients with different grades of glioma were examined using (1)H-MRSI. Needle biopsies were performed under the guidance of neuronavigation prior to craniotomy. Intraoperative magnetic resonance imaging (MRI) was performed to evaluate the accuracy of sampling. Haematoxylin and eosin, and immunohistochemical staining with IDH1, MIB-1, p53, CD34 and glial fibrillary acidic protein (GFAP) antibodies were performed on all samples. Logistic regression analysis was used to determine the relationship between Cho/NAA and MIB-1, p53, CD34, and the degree of tumour infiltration. The clinical threshold ratio distinguishing tumour tissue in high-grade (grades III and IV) glioma (HGG) and low-grade (grade II) glioma (LGG) was calculated. In HGG, higher Cho/NAA ratios were associated with a greater probability of higher MIB-1 counts, stronger CD34 expression, and tumour infiltration. Ratio threshold values of 0.5, 1.0, 1.5 and 2.0 appeared to predict the specimens containing the tumour with respective probabilities of 0.38, 0.60, 0.79, 0.90 in HGG and 0.16, 0.39, 0.67, 0.87 in LGG. HGG and LGG exhibit different spectroscopic patterns. Using (1)H-MRSI to guide the extent of resection has the potential to improve the clinical outcome of glioma surgery.

  4. Evaluation of Mobile Phone and Cordless Phone Use and Glioma Risk Using the Bradford Hill Viewpoints from 1965 on Association or Causation

    Directory of Open Access Journals (Sweden)

    Michael Carlberg

    2017-01-01

    Full Text Available Objective. Bradford Hill’s viewpoints from 1965 on association or causation were used on glioma risk and use of mobile or cordless phones. Methods. All nine viewpoints were evaluated based on epidemiology and laboratory studies. Results. Strength: meta-analysis of case-control studies gave odds ratio (OR = 1.90, 95% confidence interval (CI = 1.31–2.76 with highest cumulative exposure. Consistency: the risk increased with latency, meta-analysis gave in the 10+ years’ latency group OR = 1.62, 95% CI = 1.20–2.19. Specificity: increased risk for glioma was in the temporal lobe. Using meningioma cases as comparison group still increased the risk. Temporality: highest risk was in the 20+ years’ latency group, OR = 2.01, 95% CI =1.41–2.88, for wireless phones. Biological gradient: cumulative use of wireless phones increased the risk. Plausibility: animal studies showed an increased incidence of glioma and malignant schwannoma in rats exposed to radiofrequency (RF radiation. There is increased production of reactive oxygen species (ROS from RF radiation. Coherence: there is a change in the natural history of glioma and increasing incidence. Experiment: antioxidants reduced ROS production from RF radiation. Analogy: there is an increased risk in subjects exposed to extremely low-frequency electromagnetic fields. Conclusion. RF radiation should be regarded as a human carcinogen causing glioma.

  5. Photodynamic therapy: a review of applications in neurooncology and neuropathology

    Science.gov (United States)

    Uzdensky, Anatoly B.; Berezhnaya, Elena; Kovaleva, Vera; Neginskaya, Marya; Rudkovskii, Mikhail; Sharifulina, Svetlana

    2015-06-01

    Photodynamic therapy (PDT) effect is a promising adjuvant modality for diagnosis and treatment of brain cancer. It is of importance that the bright fluorescence of most photosensitizers provides visualization of brain tumors. This is successfully used for fluorescence-guided tumor resection according to the principle "to see and to treat." Non-oncologic application of PDT effect for induction of photothrombotic infarct of the brain tissue is a well-controlled and reproducible stroke model, in which a local brain lesion is produced in the predetermined brain area. Since normal neurons and glial cells may also be damaged by PDT and this can lead to unwanted neurological consequences, PDT effects on normal neurons and glial cells should be comprehensively studied. We overviewed the current literature data on the PDT effect on a range of signaling and epigenetic proteins that control various cell functions, survival, necrosis, and apoptosis. We hypothesize that using cell-specific inhibitors or activators of some signaling proteins, one can selectively protect normal neurons and glia, and simultaneously exacerbate photodynamic damage of malignant gliomas.

  6. Serum endocan levels before and after surgery on low-grade gliomas.

    Science.gov (United States)

    Tanriverdi, Taner; Kemerdere, Rahsan; Inal, Berrin B; Yuksel, Odhan; Emre, Humeyra O; Ahmedov, Merdin; Baran, Oguz; Ates, Seda

    2017-01-01

    Endocan has been shown to be a marker for several cancers and may show degree of malignancy. The aim of this study is to assess serum levels of endocan before and after surgery on low-grade gliomas (LGGs). Endocan was assayed by commercially available enzyme-linked immunosorbent assay (ELISA) kits in a total of 19 patients and 12 controls. Serial serum samples were obtained before and after surgery (1 st day, 1 st week, and 1 st month of surgery). Control samples were collected from cord blood during cesarean section. The results were compared with control brain tissues. Controls showed significantly lower serum endocan levels compared to before and after surgery ( P < 0.05). There is a trend of increase in mean serum levels from before surgery and during the very early period after surgery (during first week); however, in the first month, mean serum levels became lower. Endocan, a vital molecule for angiogenesis, is highly expressed before and after surgery in LGGs, but long-term data is needed. Furthermore, future studies should include high-grade gliomas to discuss whether endocan is associated with recurrence and response to treatment.

  7. Hypothalamic glioma masquerading as craniopharyngioma

    Directory of Open Access Journals (Sweden)

    Sameer Vyas

    2013-01-01

    Full Text Available Hypothalamic glioma account for 10-15% of supratentorial tumors in children. They usually present earlier (first 5 years of age than craniopharyngioma. Hypothalamic glioma poses a diagnostic dilemma with craniopharyngioma and other hypothalamic region tumors, when they present with atypical clinical or imaging patterns. Neuroimaging modalities especially MRI plays a very important role in scrutinizing the lesions in the hypothalamic region. We report a case of a hypothalamic glioma masquerading as a craniopharyngioma on imaging along with brief review of both the tumors.

  8. Use of statins and risk of glioma

    DEFF Research Database (Denmark)

    Gaist, David; Andersen, L; Hallas, Jesper

    2013-01-01

    Laboratory studies and a single case-control study have suggested a protective effect of statins on the risk of glioma. We wished to investigate the influence of statin use on the risk of glioma in a population-based setting.......Laboratory studies and a single case-control study have suggested a protective effect of statins on the risk of glioma. We wished to investigate the influence of statin use on the risk of glioma in a population-based setting....

  9. Approaching a Scientific Consensus on the Association between Allergies and Glioma Risk: A Report from the Glioma International Case-Control Study.

    Science.gov (United States)

    Amirian, E Susan; Zhou, Renke; Wrensch, Margaret R; Olson, Sara H; Scheurer, Michael E; Il'yasova, Dora; Lachance, Daniel; Armstrong, Georgina N; McCoy, Lucie S; Lau, Ching C; Claus, Elizabeth B; Barnholtz-Sloan, Jill S; Schildkraut, Joellen; Ali-Osman, Francis; Sadetzki, Siegal; Johansen, Christoffer; Houlston, Richard S; Jenkins, Robert B; Bernstein, Jonine L; Merrell, Ryan T; Davis, Faith G; Lai, Rose; Shete, Sanjay; Amos, Christopher I; Melin, Beatrice S; Bondy, Melissa L

    2016-02-01

    Several previous studies have found inverse associations between glioma susceptibility and a history of allergies or other atopic conditions. Some evidence indicates that respiratory allergies are likely to be particularly relevant with regard to glioma risk. Using data from the Glioma International Case-Control Study (GICC), we examined the effects of respiratory allergies and other atopic conditions on glioma risk. The GICC contains detailed information on history of atopic conditions for 4,533 cases and 4,171 controls, recruited from 14 study sites across five countries. Using two-stage random-effects restricted maximum likelihood modeling to calculate meta-analysis ORs, we examined the associations between glioma and allergy status, respiratory allergy status, asthma, and eczema. Having a history of respiratory allergies was associated with an approximately 30% lower glioma risk, compared with not having respiratory allergies (mOR, 0.72; 95% confidence interval, 0.58-0.90). This association was similar when restricting to high-grade glioma cases. Asthma and eczema were also significantly protective against glioma. A substantial amount of data on the inverse association between atopic conditions and glioma has accumulated, and findings from the GICC study further strengthen the existing evidence that the relationship between atopy and glioma is unlikely to be coincidental. As the literature approaches a consensus on the impact of allergies in glioma risk, future research can begin to shift focus to what the underlying biologic mechanism behind this association may be, which could, in turn, yield new opportunities for immunotherapy or cancer prevention. ©2016 American Association for Cancer Research.

  10. TGF-b y un inhibidor específico de TGF-b regulan pericentrina B y MYH9 en células de glioma TGF-b and a specific TGF-b inhibitor regulate pericentrin B and MYH9 in glioma cell lines

    Directory of Open Access Journals (Sweden)

    Rich Jeremy N.

    2006-07-01

    Full Text Available Malignant gliomas are heterogeneous, highly invasive vascular tumours. The multifunctional cytokine, transforming growth factor-beta (TGF-P, is expressed by grade III/IV gliomas and promotes tumour angiogenesis, invasión and immune escape. It has been shown previously that a small TGF-P receptor type I (TGF-(3-RI molecule inhibitor (SB-431542 blocks TGF-(3-mediated signal transduction, induction of angiogenic factor expression and cellular motility. As glioma cell lines display differential sensitivity to TGF-P, it was expected that they would also be differentially impacted by disruption of TGF-P signalling. Differential in gel expression (DIGE analysis and mass spectrometry was used in this work for determining protein regulation effects of both TGF-P and SB-431542 on human glioma cell lines. It was found that pericentrin B and non muscle myosin were differentially expressed in fragments which likely resulted from protease activation by the tumour growth mechanism. These results suggest that both pericentrin B and non-muscle myosin might be potential glioma biomarkers. Key words: DIGE, proteomics, glioma, TGF-P, mass spectrometry, non muscle myosin, pericentrin B.Los gliomas malignos son tumores vasculares heterogéneos altamente invasivos. El factor de transformación de creci­miento P (TGF-P es una citoquina multifuncional que es expresada por gliomas de grado III /IV y promueve angiogenesis de tumores, invasión y escape inmunológico. Recientemente se demostró que una pequeña molécula inhibidora (SB-431542 del receptor de TGF-P tipo I (TGF-P-RI, bloquea la señal de transducción mediada por TGF-P, la inducción del factor angiogénico de expresión y la movilidad celular. Ya que las líneas celulares de gliomas mues­tran sensitividad diferencial a TGF-P, se esperaba que también mostrarían impacto diferencial por el bloqueo de la señal de TGF-p. En el presente trabajo se usó un análisis diferencial en gel (DIGE, por sus

  11. Known glioma risk loci are associated with glioma with a family history of brain tumours -- a case-control gene association study.

    Science.gov (United States)

    Melin, Beatrice; Dahlin, Anna M; Andersson, Ulrika; Wang, Zhaoming; Henriksson, Roger; Hallmans, Göran; Bondy, Melissa L; Johansen, Christoffer; Feychting, Maria; Ahlbom, Anders; Kitahara, Cari M; Wang, Sophia S; Ruder, Avima M; Carreón, Tania; Butler, Mary Ann; Inskip, Peter D; Purdue, Mark; Hsing, Ann W; Mechanic, Leah; Gillanders, Elizabeth; Yeager, Meredith; Linet, Martha; Chanock, Stephen J; Hartge, Patricia; Rajaraman, Preetha

    2013-05-15

    Familial cancer can be used to leverage genetic association studies. Recent genome-wide association studies have reported independent associations between seven single nucleotide polymorphisms (SNPs) and risk of glioma. The aim of this study was to investigate whether glioma cases with a positive family history of brain tumours, defined as having at least one first- or second-degree relative with a history of brain tumour, are associated with known glioma risk loci. One thousand four hundred and thirty-one glioma cases and 2,868 cancer-free controls were identified from four case-control studies and two prospective cohorts from USA, Sweden and Denmark and genotyped for seven SNPs previously reported to be associated with glioma risk in case-control designed studies. Odds ratios were calculated by unconditional logistic regression. In analyses including glioma cases with a family history of brain tumours (n = 104) and control subjects free of glioma at baseline, three of seven SNPs were associated with glioma risk: rs2736100 (5p15.33, TERT), rs4977756 (9p21.3, CDKN2A-CDKN2B) and rs6010620 (20q13.33, RTEL1). After Bonferroni correction for multiple comparisons, only one marker was statistically significantly associated with glioma risk, rs6010620 (ORtrend for the minor (A) allele, 0.39; 95% CI: 0.25-0.61; Bonferroni adjusted ptrend , 1.7 × 10(-4) ). In conclusion, as previously shown for glioma regardless of family history of brain tumours, rs6010620 (RTEL1) was associated with an increased risk of glioma when restricting to cases with family history of brain tumours. These findings require confirmation in further studies with a larger number of glioma cases with a family history of brain tumours. Copyright © 2012 UICC.

  12. Two unusual cases of brain metastases from lung primary malignant melanoma

    International Nuclear Information System (INIS)

    Rodríguez, A.; Mañana, G.; Panuncio, A.; Rodríguez, R.; Roldán, G.; Sosa, A.

    2004-01-01

    Start with two cases of brain metastases from lung melanoma are presented who were diagnosed in the Neuropathology Laboratory of the Department of Anatomy Pathology, Institute of Neurology, Hospital de Clinicas, Montevideo, emphasizing the pathological diagnostic criteria and their evolution clinic. Both patients presented at the time of the initial consultation injuries amelánica respectively pigmented single brain. In both cases ruled by the morphology and the use of complementary techniques metastasis carcinoma. The main differential diagnosis of these lesions is whether is a primitive brain tumor, pigmented or not, or of a secondary tumor melanin: metastatic malignant melanoma. In both cases the patients had been studied one being in an unresectable lung injury, and in the other showed a single pulmonary nodule was resected in its entirety. the pulmonary lesions were for malignant melanoma, one with ample pigment and the other for the most part amelánico, with few areas retained pigment. He studied dermatologist, discarded the presence of a cutaneous malignant melanoma primitive. Other locations were also excluded

  13. The Microenvironment in Gliomas: Phenotypic Expressions

    Directory of Open Access Journals (Sweden)

    Davide Schiffer

    2015-12-01

    Full Text Available The microenvironment of malignant gliomas is described according to its definition in the literature. Beside tumor cells, a series of stromal cells (microglia/macrophages, pericytes, fibroblasts, endothelial cells, normal and reactive astrocytes represents the cell component, whereas a complex network of molecular signaling represents the functional component. Its most evident expressions are perivascular and perinecrotic niches that are believed to be the site of tumor stem cells or progenitors in the tumor. Phenotypically, both niches are not easily recognizable; here, they are described together with a critical revision of their concept. As for perinecrotic niches, an alternative interpretation is given about their origin that regards the tumor stem cells as the residue of those that populated hyperproliferating areas in which necroses develop. This is based on the concept that the stem-like is a status and not a cell type, depending on the microenvironment that regulates a conversion of tumor non-stem cells and tumor stem cells through a cell reprogramming.

  14. Facing Contrast-Enhancing Gliomas: Perfusion MRI in Grade III and Grade IV Gliomas according to Tumor Area

    Directory of Open Access Journals (Sweden)

    Anna Luisa Di Stefano

    2014-01-01

    Full Text Available Tumoral neoangiogenesis characterizes high grade gliomas. Relative Cerebral Blood Volume (rCBV, calculated with Dynamic Susceptibility Contrast (DSC Perfusion-Weighted Imaging (PWI, allows for the estimation of vascular density over the tumor bed. The aim of the study was to characterize putative tumoral neoangiogenesis via the study of maximal rCBV with a Region of Interest (ROI approach in three tumor areas—the contrast-enhancing area, the nonenhancing tumor, and the high perfusion area on CBV map—in patients affected by contrast-enhancing glioma (grades III and IV. Twenty-one patients were included: 15 were affected by grade IV and 6 by grade III glioma. Maximal rCBV values for each patient were averaged according to glioma grade. Although rCBV from contrast-enhancement and from nonenhancing tumor areas was higher in grade IV glioma than in grade III (5.58 and 2.68; 3.01 and 2.2, resp., the differences were not significant. Instead, rCBV recorded in the high perfusion area on CBV map, independently of tumor compartment, was significantly higher in grade IV glioma than in grade III (7.51 versus 3.78, P=0.036. In conclusion, neoangiogenesis encompasses different tumor compartments and CBV maps appear capable of best characterizing the degree of neovascularization. Facing contrast-enhancing brain tumors, areas of high perfusion on CBV maps should be considered as the reference areas to be targeted for glioma grading.

  15. Optical-sectioning microscopy of protoporphyrin IX fluorescence in human gliomas: standardization and quantitative comparison with histology

    Science.gov (United States)

    Wei, Linpeng; Chen, Ye; Yin, Chengbo; Borwege, Sabine; Sanai, Nader; Liu, Jonathan T. C.

    2017-04-01

    Systemic delivery of 5-aminolevulinic acid leads to enhanced fluorescence image contrast in many tumors due to the increased accumulation of protoporphyrin IX (PpIX), a fluorescent porphyrin that is associated with tumor burden and proliferation. The value of PpIX-guided resection of malignant gliomas has been demonstrated in prospective randomized clinical studies in which a twofold greater extent of resection and improved progression-free survival have been observed. In low-grade gliomas and at the diffuse infiltrative margins of all gliomas, PpIX fluorescence is often too weak to be detected with current low-resolution surgical microscopes that are used in operating rooms. However, it has been demonstrated that high-resolution optical-sectioning microscopes are capable of detecting the sparse and punctate accumulations of PpIX that are undetectable via conventional low-power surgical fluorescence microscopes. To standardize the performance of high-resolution optical-sectioning devices for future clinical use, we have developed an imaging phantom and methods to ensure that the imaging of PpIX-expressing brain tissues can be performed reproducibly. Ex vivo imaging studies with a dual-axis confocal microscope demonstrate that these methods enable the acquisition of images from unsectioned human brain tissues that quantitatively and consistently correlate with images of histologically processed tissue sections.

  16. Concordant association validates MGMT methylation and protein expression as favorable prognostic factors in glioma patients on alkylating chemotherapy (Temozolomide).

    Science.gov (United States)

    Pandith, Arshad A; Qasim, Iqbal; Zahoor, Wani; Shah, Parveen; Bhat, Abdul R; Sanadhya, Dheera; Shah, Zafar A; Naikoo, Niyaz A

    2018-04-30

    O 6 -methylguanine-DNA methyltransferase (MGMT) promoter methylation and its subsequent loss of protein expression has been identified to have a variable impact on clinical outcome of glioma patients indicated for chemotherapy with alkylating agents (Temozolomide). This study investigated methylation status of MGMT gene along with in situ protein expression in malignant glioma patients of different histological types to evaluate the associated clinical outcome vis-a-vis use of alkylating drugs and radiotherapy. Sixty three cases of glioma were evaluated for MGMT promoter methylation by methylation-specific PCR (MS-PCR) and protein expression by immunostaining (IHC). Methylation status of MGMT and loss of protein expression showed a very high concordant association with better survival and progression free survival (PFS) (p < 0.0001). Multivariate Cox regression analysis showed both MGMT methylation and loss of protein as significant independent prognostic factors in glioma patients with respect to lower Hazard Ratio (HR) for better OS and PFS) [p < 0.05]. Interestingly concordant MGMT methylation and lack of protein showed better response in TMZ therapy treated patient subgroups with HR of 2.02 and 0.76 (p < 0.05). We found the merits of prognostication of MGMT parameters, methylation as well as loss of its protein as predictive factors for favorable outcome in terms of better survival for TMZ therapy.

  17. Nasal Glioma: Case report

    Directory of Open Access Journals (Sweden)

    Ozgur Surmelioglu

    2011-02-01

    Full Text Available Nasal gliomas are rare, benign, congenital tumors that are thought to be result of abnormality in embryonic development. Three types of clinical presentations have been recognized; extranasal, intranasal and combined. Clinically, these masses are non-pulsatile, gray or purple lesions that obstruct the nasal cavity and cause deformity extranasaly. Histologically, they are made up of astrocytic cells, fibrous and vascular connective tissue that is covered with nasal respiratory mucosa. Treatment of the nasal glioma requires a multidisciplinary approach including an radiologist, neurosurgeon and otorhinolaryngologist. Radiological investigation should be performed to describe intracranial extension. In this case, a 2 years old boy with nasal mass that was diagnosed as nasal glioma is reported. . [Cukurova Med J 2011; 36(1.000: 34-36

  18. Nasal Glioma: Case report

    Directory of Open Access Journals (Sweden)

    Ozgur Surmelioglu

    2011-03-01

    Full Text Available Nasal gliomas are rare, benign, congenital tumors that are thought to be result of abnormality in embryonic development. Three types of clinical presentations have been recognized; extranasal, intranasal and combined. Clinically, these masses are non-pulsatile, gray or purple lesions that obstruct the nasal cavity and cause deformity extranasaly. Histologically, they are made up of astrocytic cells, fibrous and vascular connective tissue that is covered with nasal respiratory mucosa. Treatment of the nasal glioma requires a multidisciplinary approach including an radiologist, neurosurgeon and otorhinolaryngologist. Radiological investigation should be performed to describe intracranial extension. In this case, a 2 years old boy with nasal mass that was diagnosed as nasal glioma is reported. . [Cukurova Med J 2011; 36(1: 34-36

  19. Human gliomas contain morphine

    DEFF Research Database (Denmark)

    Olsen, Peter; Rasmussen, Mads; Zhu, Wei

    2005-01-01

    BACKGROUND: Morphine has been found in cancer cell lines originating from human and animal cells. Thus, it became important to demonstrate whether or not actual tumours contain this opiate alkaloid. MATERIAL/METHODS: Human glioma tissues were biochemically treated to isolate and separate endogeno...... of the solutions used in the study nor was it present as a residual material in blank HPLC runs. CONCLUSIONS: Morphine is present in human gliomas, suggesting that it may exert an action that effects tumour physiology/pathology.......BACKGROUND: Morphine has been found in cancer cell lines originating from human and animal cells. Thus, it became important to demonstrate whether or not actual tumours contain this opiate alkaloid. MATERIAL/METHODS: Human glioma tissues were biochemically treated to isolate and separate endogenous...

  20. Differentiating Primary CNS Lymphoma from Malignant Glioma using 123I-IMP SPECT and Arterial Spin labeling

    International Nuclear Information System (INIS)

    Ito, Tamio; Sato, Kenichi; Ozaki, Yoshimaru; Asanome, Taku; Nakamura, Hirohiko; Ono, Hidetoshi

    2016-01-01

    Using conventional CT or MRI methods, the differentiation of primary central nervous system lymphoma (PCNSL) and malignant glioma (MG) is difficult because of overlapping imaging characteristics. Pretreatment differentiation between PCNSL and MG is essential for therapeutic decision making because post operative adjuvant therapy is extremely different. We examined the utility of N-isopropyl-p-[ 123 I]iodoamphetamine SPECT (IMP SPECT) and arterial spin labeling (ASL) in differentiating PCNSL from MG. Twenty PCNSL and ten MG patients underwent IMP SPECT and ASL. Early SPECT image (E) was initiated 20 min after intravenous injection of 222 MBq 123 I-IMP, and delayed image (D) and ultrade-layed image (UD) were initiated 3 h and 24 h, respectively, after the injection. SPECT images were visually analyzed with a color-grading scale (low, iso, and high), and the tumor-to-normal activity ratio (T/N) was calculated for all three images. The pulsed ASL was performed using a 3-T system. We set regions of interest in the tumor and symmetrically in the contralateral white matter on the cerebral blood flow (CBF) map and estimated tumor blood flow (TBF)/CBF ratio (TBF/CBF). 1) IMP SPECT: (1) Visual image analysis of PCNSL cases showed high accumulation of 123 I-IMP up-take on D and UD, whereas most MG cases showed low accumulation. (2) T/Ns of PCNSL were significantly higher than those of MG on D and UD (E: 1.13 vs. 0.95, p>0.05; D: 1.23 vs. 0.86, p<0.01; UD: 1.40 vs. 0.86, p<0.01). 2) ASL: TBF/CBFs of MG were higher than those of PCNSL, particularly in glioblastoma patients [1.84 vs. 6.22 (III; 1.51, IV; 8.58)]. IMP SPECT and ASL are helpful tools for differentiating primary CNS lymphoma from MG. Using these examinations, we could perform adjuvant therapy without biopsy in deep-seated tumors. (author)

  1. Updating neuropathology and neuropharmacology of monoaminergic systems.

    Science.gov (United States)

    Ramsay, Rona R; De Deurwaerdère, Philippe; Di Giovanni, Giuseppe

    2016-07-01

    This article is part of a themed section on Updating Neuropathology and Neuropharmacology of Monoaminergic Systems. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.13/issuetoc. © 2016 The British Pharmacological Society.

  2. The value of intraoperative ultrasonography during the resection of relapsed irradiated malignant gliomas in the brain

    Energy Technology Data Exchange (ETDEWEB)

    Mursch, Kay; Mursch, Julianne Behnke [Dept. of Neurosurgery, Zentralklinik, Bad Berka (Germany); Scholz, Martin [Dept. of Neurosurgery, Klinikum Duisburg, Duisburg (Germany); Brueck, Wolfgang [Dept. of Neuropathology, Georg August Universitaet, Goettingen (Germany)

    2017-01-15

    The aim of this study was to investigate whether intraoperative ultrasonography (IOUS) helped the surgeon navigate towards the tumor as seen in preoperative magnetic resonance imaging and whether IOUS was able to distinguish between tumor margins and the surrounding tissue. Twenty-five patients suffering from high-grade gliomas who were previously treated by surgery and radiotherapy were included. Intraoperatively, two histopathologic samples were obtained a sample of unequivocal tumor tissue (according to anatomical landmarks and the surgeon's visual and tactile impressions) and a small tissue sample obtained using a navigated needle when the surgeon decided to stop the resection. This specimen was considered to be a boundary specimen, where no tumor tissue was apparent. The decision to take the second sample was not influenced by IOUS. The effect of IOUS was analyzed semi-quantitatively. All 25 samples of unequivocal tumor tissue were histopathologically classified as tumor tissue and were hyperechoic on IOUS. Of the boundary specimens, eight were hypoechoic. Only one harbored tumor tissue (P=0.150). Seventeen boundaries were moderately hyperechoic, and these samples contained all possible histological results (i.e., tumor, infiltration, or no tumor). During surgery performed on relapsed, irradiated, high-grade gliomas, IOUS provided a reliable method of navigating towards the core of the tumor. At borders, it did not reliably distinguish between remnants or tumor-free tissue, but hypoechoic areas seldom contained tumor tissue.

  3. The value of intraoperative ultrasonography during the resection of relapsed irradiated malignant gliomas in the brain

    International Nuclear Information System (INIS)

    Mursch, Kay; Mursch, Julianne Behnke; Scholz, Martin; Brueck, Wolfgang

    2017-01-01

    The aim of this study was to investigate whether intraoperative ultrasonography (IOUS) helped the surgeon navigate towards the tumor as seen in preoperative magnetic resonance imaging and whether IOUS was able to distinguish between tumor margins and the surrounding tissue. Twenty-five patients suffering from high-grade gliomas who were previously treated by surgery and radiotherapy were included. Intraoperatively, two histopathologic samples were obtained a sample of unequivocal tumor tissue (according to anatomical landmarks and the surgeon's visual and tactile impressions) and a small tissue sample obtained using a navigated needle when the surgeon decided to stop the resection. This specimen was considered to be a boundary specimen, where no tumor tissue was apparent. The decision to take the second sample was not influenced by IOUS. The effect of IOUS was analyzed semi-quantitatively. All 25 samples of unequivocal tumor tissue were histopathologically classified as tumor tissue and were hyperechoic on IOUS. Of the boundary specimens, eight were hypoechoic. Only one harbored tumor tissue (P=0.150). Seventeen boundaries were moderately hyperechoic, and these samples contained all possible histological results (i.e., tumor, infiltration, or no tumor). During surgery performed on relapsed, irradiated, high-grade gliomas, IOUS provided a reliable method of navigating towards the core of the tumor. At borders, it did not reliably distinguish between remnants or tumor-free tissue, but hypoechoic areas seldom contained tumor tissue

  4. Basic and clinical study of boron neutron capture therapy for malignant brain tumor

    International Nuclear Information System (INIS)

    Nose, Tadao; Matsumura, Akira; Nakai, Kei; Nakagawa, Kunio; Yoshii, Yoshihiko; Shibata, Yasushi; Yamamoto, Tetsuya; Hayakawa, Yoshinori; Yamada, Takashi

    1998-01-01

    Rat malignant cells (9L glioma cell) were exposed to neutron radiation after culturing with boron compounds; BSH and STA-BX909, and cell growing ability after the exposure was determined by colony forming assay. The effects of in vivo radiation were examined by measuring neutron flux levels in rat brain and skin aiming to use neutron radiation in clinical study. STA-BX909 was found to show a dose-dependent cell toxicity, which was higher than that of BSH. The radiation induced G2/M block in 9L-glioma cells and their cell cycles recovered thereafter in low-dose radiated cells, but high-dose radiated cells became aneuploidy. Furthermore, boron neutron capture therapy (BNCT) was applied in two patients, 41-year old woman with glioma grade 3 recurred and 45-year old man with glioblastoma multiforme. The former died from systemic deterioration due to ileus, but BNCT was made only one time although conventional radiotherapy is carried out for a relatively long period. Therefore, BNCT was thought to be beneficial from an aspect of 'quality of life' and the effects to repress a recurrence of cancer also seemed larger than the conventional one. (M.N.)

  5. Basic and clinical study of boron neutron capture therapy for malignant brain tumor

    Energy Technology Data Exchange (ETDEWEB)

    Nose, Tadao; Matsumura, Akira; Nakai, Kei; Nakagawa, Kunio; Yoshii, Yoshihiko [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine; Shibata, Yasushi; Yamamoto, Tetsuya; Hayakawa, Yoshinori; Yamada, Takashi

    1998-01-01

    Rat malignant cells (9L glioma cell) were exposed to neutron radiation after culturing with boron compounds; BSH and STA-BX909, and cell growing ability after the exposure was determined by colony forming assay. The effects of in vivo radiation were examined by measuring neutron flux levels in rat brain and skin aiming to use neutron radiation in clinical study. STA-BX909 was found to show a dose-dependent cell toxicity, which was higher than that of BSH. The radiation induced G2/M block in 9L-glioma cells and their cell cycles recovered thereafter in low-dose radiated cells, but high-dose radiated cells became aneuploidy. Furthermore, boron neutron capture therapy (BNCT) was applied in two patients, 41-year old woman with glioma grade 3 recurred and 45-year old man with glioblastoma multiforme. The former died from systemic deterioration due to ileus, but BNCT was made only one time although conventional radiotherapy is carried out for a relatively long period. Therefore, BNCT was thought to be beneficial from an aspect of `quality of life` and the effects to repress a recurrence of cancer also seemed larger than the conventional one. (M.N.)

  6. Radiation plus adjuvant CCNU (1-[2-chloroethyl]-3-cyclohexyl-1-nitrosourea) vs CCNU, hydroxyurea and vincristine in the treatment of malignant glioma

    International Nuclear Information System (INIS)

    Costanza, M.; Buechler, M.; Munzenreider, J.

    1979-01-01

    Following maximal surgery, 25 patients with malignant glioma were randomized to receive either radiation therapy and CCNU or radiation therapy and CCNU, hydroxyurea, and vincristine. Radiation therapy included 4000 rad to whole brain followed by 1500 rad to the primary. Chemotherapy was either: CCNU alone 130 mg/m 2 PO every 6 weeks or triple drug chemotherapy given in 6 week cycles of CCNU 90 mg/m 2 PO (one dose), vincristine 1 mg/m 2 IV (one dose), and hydroxyurea 1.5 gm/m 2 PO every 3 days x 7 doses. Thirteen patients received CCNU alone. Of these, 8 are dead, 2 are alive with progressive disease and 3 are alive with stable disease at 10, 22, and 23 months. Median survival is 10 months. Twelve patients received CCNU, vincristine and hydroxyurea. Of these, 8 are dead, 1 is alive with progressive disease and 3 are stable. Median survival is 9.5 months +. Toxicity included nausea, which was common, leukopenia < 3000 in 7 patients and thrombocytopenia in 9 patients. There were no episodes of bleeding or infection attributable to chemotherapy. Although toxicity was tolerable, no additional benefit could be demonstrated for triple agent chemotherapy with CCNU, vincristine and hydroxyurea compared to CCNU alone. Median survival for both groups was similar at 42 to 44 weeks

  7. Cortical and Subcortical Structural Plasticity Associated with the Glioma Volumes in Patients with Cerebral Gliomas Revealed by Surface-Based Morphometry

    Directory of Open Access Journals (Sweden)

    Jinping Xu

    2017-06-01

    Full Text Available Postlesional plasticity has been identified in patients with cerebral gliomas by inducing a large functional reshaping of brain networks. Although numerous non-invasive functional neuroimaging methods have extensively investigated the mechanisms of this functional redistribution in patients with cerebral gliomas, little effort has been made to investigate the structural plasticity of cortical and subcortical structures associated with the glioma volume. In this study, we aimed to investigate whether the contralateral cortical and subcortical structures are able to actively reorganize by themselves in these patients. The compensation mechanism following contralateral cortical and subcortical structural plasticity is considered. We adopted the surface-based morphometry to investigate the difference of cortical and subcortical gray matter (GM volumes in a cohort of 14 healthy controls and 13 patients with left-hemisphere cerebral gliomas [including 1 patients with World Health Organization (WHO I, 8 WHO II, and 4 WHO III]. The glioma volume ranges from 5.1633 to 208.165 cm2. Compared to healthy controls, we found significantly increased GM volume of the right cuneus and the left thalamus, as well as a trend toward enlargement in the right globus pallidus in patients with cerebral gliomas. Moreover, the GM volumes of these regions were positively correlated with the glioma volumes of the patients. These results provide evidence of cortical and subcortical enlargement, suggesting the usefulness of surface-based morphometry to investigate the structural plasticity. Moreover, the structural plasticity might be acted as the compensation mechanism to better fulfill its functions in patients with cerebral gliomas as the gliomas get larger.

  8. Automated Grading of Gliomas using Deep Learning in Digital Pathology Images: A modular approach with ensemble of convolutional neural networks.

    Science.gov (United States)

    Ertosun, Mehmet Günhan; Rubin, Daniel L

    2015-01-01

    Brain glioma is the most common primary malignant brain tumors in adults with different pathologic subtypes: Lower Grade Glioma (LGG) Grade II, Lower Grade Glioma (LGG) Grade III, and Glioblastoma Multiforme (GBM) Grade IV. The survival and treatment options are highly dependent of this glioma grade. We propose a deep learning-based, modular classification pipeline for automated grading of gliomas using digital pathology images. Whole tissue digitized images of pathology slides obtained from The Cancer Genome Atlas (TCGA) were used to train our deep learning modules. Our modular pipeline provides diagnostic quality statistics, such as precision, sensitivity and specificity, of the individual deep learning modules, and (1) facilitates training given the limited data in this domain, (2) enables exploration of different deep learning structures for each module, (3) leads to developing less complex modules that are simpler to analyze, and (4) provides flexibility, permitting use of single modules within the framework or use of other modeling or machine learning applications, such as probabilistic graphical models or support vector machines. Our modular approach helps us meet the requirements of minimum accuracy levels that are demanded by the context of different decision points within a multi-class classification scheme. Convolutional Neural Networks are trained for each module for each sub-task with more than 90% classification accuracies on validation data set, and achieved classification accuracy of 96% for the task of GBM vs LGG classification, 71% for further identifying the grade of LGG into Grade II or Grade III on independent data set coming from new patients from the multi-institutional repository.

  9. Use of tricyclic antidepressants and risk of glioma

    DEFF Research Database (Denmark)

    Pottegård, Anton; García Rodríguez, Luis Alberto; Rasmussen, Lotte

    2016-01-01

    glioma (cases) in Denmark between 2000 and 2012 and matched these 1 : 20 to population controls. Conditional logistic regression was used to estimate adjusted odds ratios (ORs) for glioma associated with long-term (⩾3 years) use of TCAs. Similar analyses were performed for selective serotonin reuptake...... inhibitors (SSRIs). RESULTS: We identified 3767 glioma cases and 75 340 population controls. Long-term use of TCAs was inversely associated with risk of glioma (OR 0.72, 95% CI: 0.41-1.25). Long-term SSRI use was not associated with glioma risk (OR 0.93, 95% CI: 0.75-1.16). CONCLUSIONS: Our study indicated...

  10. Long-term culture of organotypic multicellular glioma spheroids: a good culture model for studying gliomas

    NARCIS (Netherlands)

    Kaaijk, P.; Troost, D.; Das, P. K.; Leenstra, S.; Bosch, D. A.

    1995-01-01

    Gliomas, as well as other solid tumours, contain tumour stroma composed of connective tissue, macrophages, capillaries and other non-cellular constituents. Therefore, a homogeneous culture of tumour cells alone, as is often used as a culture model for gliomas, is not ideal to study all aspects of

  11. Neuropathologic comorbidity and cognitive impairment in the Nun and Honolulu-Asia Aging Studies.

    Science.gov (United States)

    White, Lon R; Edland, Steven D; Hemmy, Laura S; Montine, Kathleen S; Zarow, Chris; Sonnen, Joshua A; Uyehara-Lock, Jane H; Gelber, Rebecca P; Ross, G Webster; Petrovitch, Helen; Masaki, Kamal H; Lim, Kelvin O; Launer, Lenore J; Montine, Thomas J

    2016-03-15

    To examine frequencies and relationships of 5 common neuropathologic abnormalities identified at autopsy with late-life cognitive impairment and dementia in 2 different autopsy panels. The Nun Study (NS) and the Honolulu-Asia Aging Study (HAAS) are population-based investigations of brain aging that included repeated cognitive assessments and comprehensive brain autopsies. The neuropathologic abnormalities assessed were Alzheimer disease (AD) neuropathologic changes, neocortical Lewy bodies (LBs), hippocampal sclerosis, microinfarcts, and low brain weight. Associations with screening tests for cognitive impairment were examined. Neuropathologic abnormalities occurred at levels ranging from 9.7% to 43%, and were independently associated with cognitive impairment in both studies. Neocortical LBs and AD changes were more frequent among the predominantly Caucasian NS women, while microinfarcts were more common in the Japanese American HAAS men. Comorbidity was usual and very strongly associated with cognitive impairment. Apparent cognitive resilience (no cognitive impairment despite Braak stage V) was strongly associated with minimal or no comorbid abnormalities, with fewer neocortical AD lesions, and weakly with longer interval between final testing and autopsy. Total burden of comorbid neuropathologic abnormalities, rather than any single lesion type, was the most relevant determinant of cognitive impairment in both cohorts, often despite clinical diagnosis of only AD. These findings emphasize challenges to dementia pathogenesis and intervention research and to accurate diagnoses during life. © 2016 American Academy of Neurology.

  12. Frontotemporal dementia with severe thalamic involvement : a clinical and neuropathological study

    Directory of Open Access Journals (Sweden)

    Radanovic Márcia

    2003-01-01

    Full Text Available Frontotemporal dementia (FTD is the third-leading cause of cortical dementia after Alzheimer's disease and Lewy body dementia, and is characterized by a dementia where behavioral disturbances are prominent and appear early in the course of the disease. We report the case of a 58 year-old man affected by dementia with behavioral disturbances, in addition to rigid-hypokinetic and a lower motor neuron syndrome that were present at later stages of the illness. Neuroimaging studies showed frontotemporal atrophy. Neuropathological studies revealed intense thalamic neuronal loss and astrocytic gliosis, as well as moderate frontotemporal neuronal loss, astrocytosis and spongiform degeneration. Thalamic degeneration has previously been described among the wide group of neuropathological features of FTD. The aim of the present study is to show the clinical and neuropathological aspects of thalamic degeneration in FTD, along with its role in behavioral disturbances, a common finding in this condition.

  13. A Phase II single-arm trial of palonosetron for the prevention of acute and delayed chemotherapy-induced nausea and vomiting in malignant glioma patients receiving multidose irinotecan in combination with bevacizumab

    Directory of Open Access Journals (Sweden)

    Affronti ML

    2016-12-01

    Full Text Available Mary Lou Affronti,1–3 Sarah Woodring,1,2 Katherine B Peters,1,4 James E Herndon II,5 Frances McSherry,5 Patrick N Healy,5 Annick Desjardins,1,4 James J Vredenburgh,6 Henry S Friedman1,2 1The Preston Robert Tisch Brain Tumor Center at Duke, South Hospital, Duke University Medical Center, 2Department of Neurosurgery, Duke University Health System, 3Duke University School of Nursing, 4Department of Neurology, 5Department of Biostatistics and Bioinformatics, Duke University Health System, Durham, NC, 6Saint Francis Cancer Center, Hartford, CT, USA Purpose: Given that the prognosis of recurrent malignant glioma (MG remains poor, improving quality of life (QoL through symptom management is important. Meta-analyses establishing antiemetic guidelines have demonstrated the superiority of palonosetron (PAL over older 5-hydroxytryptamine 3-receptor antagonists in chemotherapy-induced nausea and vomiting (CINV prevention, but excluded patients with gliomas. Irinotecan plus bevacizumab is a treatment frequently used in MG, but is associated with low (55% CINV complete response (CR; no emesis or use of rescue antiemetic with commonly prescribed ondansetron. A single-arm Phase II trial was conducted in MG patients to determine the efficacy of intravenous PAL (0.25 mg and dexamethasone (DEX; 10 mg received in conjunction with biweekly irinotecan–bevacizumab treatment. The primary end point was the proportion of subjects achieving acute CINV CR (no emesis or antiemetic ≤24 hours postchemotherapy. Secondary end points included delayed CINV CR (days 2–5, overall CINV CR (days 1–5, and QoL, fatigue, and toxicity.Materials and methods: A two-stage design of 160 patients was planned to differentiate between CINV CR of 55% and 65% after each dose of PAL–DEX. Validated surveys assessed fatigue and QoL.Results: A total of 63 patients were enrolled, after which enrollment was terminated due to slow accrual; 52 patients were evaluable for the primary outcome

  14. A report on radiation-induced gliomas

    International Nuclear Information System (INIS)

    Salvati, M.; Artico, M.; Caruso, R.; Rocchi, G.; Orlando, E.R.; Nucci, F.

    1991-01-01

    Radiation-induced gliomas are uncommon, with only 73 cases on record to date. The disease that most frequently occasioned radiation therapy has been acute lymphoblastic leukemia (ALL). Three more cases are added here, two after irradiation for ALL and one after irradiation for tinea capitis. In a review of the relevant literature, the authors stress the possibility that the ALL-glioma and the retinoblastoma-glioma links point to syndromes in their own right that may occur without radiation therapy.56 references

  15. A Multicenter Phase I/II Study of the BCNU Implant (Gliadel ® Wafer) for Japanese Patients with Malignant Gliomas

    Science.gov (United States)

    AOKI, Tomokazu; NISHIKAWA, Ryo; SUGIYAMA, Kazuhiko; NONOGUCHI, Naosuke; KAWABATA, Noriyuki; MISHIMA, Kazuhiko; ADACHI, Jun-ichi; KURISU, Kaoru; YAMASAKI, Fumiyuki; TOMINAGA, Teiji; KUMABE, Toshihiro; UEKI, Keisuke; HIGUCHI, Fumi; YAMAMOTO, Tetsuya; ISHIKAWA, Eiichi; TAKESHIMA, Hideo; YAMASHITA, Shinji; ARITA, Kazunori; HIRANO, Hirofumi; YAMADA, Shinobu; MATSUTANI, Masao

    2014-01-01

    Carmustine (BCNU) implants (Gliadel® Wafer, Eisai Inc., New Jersey, USA) for the treatment of malignant gliomas (MGs) were shown to enhance overall survival in comparison to placebo in controlled clinical trials in the United States and Europe. A prospective, multicenter phase I/II study involving Japanese patients with MGs was performed to evaluate the efficacy, safety, and pharmacokinetics of BCNU implants. The study enrolled 16 patients with newly diagnosed MGs and 8 patients with recurrent MGs. After the insertion of BCNU implants (8 sheets maximum, 61.6 mg BCNU) into the removal cavity, various chemotherapies (including temozolomide) and radiotherapies were applied. After placement, overall and progression-free survival rates and whole blood BCNU levels were evaluated. In patients with newly diagnosed MGs, the overall survival rates at 12 months and 24 months were 100.0% and 68.8%, and the progression-free survival rate at 12 months was 62.5%. In patients with recurrent MGs, the progression-free survival rate at 6 months was 37.5%. There were no grade 4 or higher adverse events noted due to BCNU implants, and grade 3 events were observed in 5 of 24 patients (20.8%). Whole blood BCNU levels reached a peak of 19.4 ng/mL approximately 3 hours after insertion, which was lower than 1/600 of the peak BCNU level recorded after intravenous injections. These levels decreased to less than the detection limit (2.00 ng/mL) after 24 hours. The results of this study involving Japanese patients are comparable to those of previous studies in the United States and Europe. PMID:24739422

  16. Increased betulinic acid induced cytotoxicity and radiosensitivity in glioma cells under hypoxic conditions

    International Nuclear Information System (INIS)

    Bache, Matthias; Taubert, Helge; Vordermark, Dirk; Zschornak, Martin P; Passin, Sarina; Keßler, Jacqueline; Wichmann, Henri; Kappler, Matthias; Paschke, Reinhard; Kaluđerović, Goran N; Kommera, Harish

    2011-01-01

    Betulinic acid (BA) is a novel antineoplastic agent under evaluation for tumor therapy. Because of the selective cytotoxic effects of BA in tumor cells (including gliomas), the combination of this agent with conservative therapies (such as radiotherapy and chemotherapy) may be useful. Previously, the combination of BA with irradiation under hypoxic conditions had never been studied. In this study, the effects of 3 to 30 μM BA on cytotoxicity, migration, the protein expression of PARP, survivin and HIF-1α, as well as radiosensitivity under normoxic and hypoxic conditions were analyzed in the human malignant glioma cell lines U251MG and U343MG. Cytotoxicity and radiosensitivity were analyzed with clonogenic survival assays, migration was analyzed with Boyden chamber assays (or scratch assays) and protein expression was examined with Western blot analyses. Under normoxic conditions, a half maximal inhibitory concentration (IC 50 ) of 23 μM was observed in U251MG cells and 24 μM was observed in U343MG cells. Under hypoxic conditions, 10 μM or 15 μM of BA showed a significantly increased cytotoxicity in U251MG cells (p = 0.004 and p = 0.01, respectively) and U343MG cells (p < 0.05 and p = 0.01, respectively). The combination of BA with radiotherapy resulted in an additive effect in the U343MG cell line under normoxic and hypoxic conditions. Weak radiation enhancement was observed in U251MG cell line after treatment with BA under normoxic conditions. Furthermore, under hypoxic conditions, the incubation with BA resulted in increased radiation enhancement. The enhancement factor, at an irradiation dose of 15 Gy after treatment with 10 or 15 μM BA, was 2.20 (p = 0.02) and 4.50 (p = 0.03), respectively. Incubation with BA led to decreased cell migration, cleavage of PARP and decreased expression levels of survivin in both cell lines. Additionally, BA treatment resulted in a reduction of HIF-1α protein under hypoxic conditions. Our results suggest that BA is capable

  17. The Art of Intraoperative Glioma Identification

    Directory of Open Access Journals (Sweden)

    Zoe Z Zhang

    2015-07-01

    Full Text Available A major dilemma in brain tumor surgery is the identification of tumor boundaries to maximize tumor excision and minimize postoperative neurological damage. Gliomas, especially low-grade tumors, and normal brain have a similar color and texture which poses a challenge to the neurosurgeon. Advances in glioma resection techniques combine the experience of the neurosurgeon and various advanced technologies. Intraoperative methods to delineate gliomas from normal tissue consist of 1 image-based navigation, 2 intraoperative sampling, 3 electrophysiological monitoring, and 4 enhanced visual tumor demarcation. The advantages and disadvantages of each technique are discussed. A combination of these methods is becoming widely accepted in routine glioma surgery. Gross total resection in conjunction with radiation, chemotherapy, or immune/gene therapy may increase the rates of cure in this devastating disease.

  18. Glioma Association and Balancing Selection of ZFPM2.

    Directory of Open Access Journals (Sweden)

    Shui-Ying Tsang

    Full Text Available ZFPM2, encoding a zinc finger protein and abundantly expressed in the brain, uterus and smooth muscles, plays important roles in cardiac and gonadal development. Abnormal expression of ZFPM2 in ovarian tumors and neuroblastoma has been reported but hitherto its genetic association with cancer and effects on gliomas have not been studied. In the present study, the hexamer insertion-deletion polymorphism rs71305152, located within a large haplotype block spanning intron 1 to intron 3 of ZFPM2, was genotyped in Chinese cohorts of glioma (n = 350, non-glioma cancer (n = 354 and healthy control (n = 463 by direct sequencing and length polymorphism in gel electrophoresis, and ZFPM2 expression in glioma tissues (n = 69 of different grades was quantified by real-time RT-PCR. Moreover, potential natural selection pressure acting on the gene was investigated. Disease-association analysis showed that the overall genotype of rs71305152 was significantly associated with gliomas (P = 0.016, and the heterozygous genotype compared to the combined homozygous genotypes was less frequent in gliomas than in controls (P = 0.005 or non-glioma cancers (P = 0.020. ZFPM2 mRNA expression was negatively correlated with the grades of gliomas (P = 0.002, with higher expression levels in the low-grade gliomas. In the astrocytoma subtype, higher ZFPM2 expression was also correlated with the rs71305152 heterozygous genotype (P = 0.028. In addition, summary statistics tests gave highly positive values, demonstrating that the gene is under the influence of balancing selection. These findings suggest that ZFPM2 is a glioma susceptibility gene, its genotype and expression showing associations with incidence and severity, respectively. Moreover, the balancing selection acting on ZFPM2 may be related to the important roles it has to play in multiple organ development or associated disease etiology.

  19. FasL and FADD delivery by a glioma-specific and cell cycle-dependent HSV-1 amplicon virus enhanced apoptosis in primary human brain tumors

    Directory of Open Access Journals (Sweden)

    Lam Paula Y

    2010-10-01

    Full Text Available Abstract Background Glioblastoma multiforme is the most malignant cancer of the brain and is notoriously difficult to treat due to the highly proliferative and infiltrative nature of the cells. Herein, we explored the combination treatment of pre-established human glioma xenograft using multiple therapeutic genes whereby the gene expression is regulated by both cell-type and cell cycle-dependent transcriptional regulatory mechanism conferred by recombinant HSV-1 amplicon vectors. Results We demonstrated for the first time that Ki67-positive proliferating primary human glioma cells cultured from biopsy samples were effectively induced into cell death by the dual-specific function of the pG8-FasL amplicon vectors. These vectors were relatively stable and exhibited minimal cytotoxicity in vivo. Intracranial implantation of pre-transduced glioma cells resulted in better survival outcome when compared with viral vectors inoculated one week post-implantation of tumor cells, indicating that therapeutic efficacy is dependent on the viral spread and mode of viral vectors administration. We further showed that pG8-FasL amplicon vectors are functional in the presence of commonly used treatment regimens for human brain cancer. In fact, the combined therapies of pG8-FasL and pG8-FADD in the presence of temozolomide significantly improved the survival of mice bearing intracranial high-grade gliomas. Conclusion Taken together, our results showed that the glioma-specific and cell cycle-dependent HSV-1 amplicon vector is potentially useful as an adjuvant therapy to complement the current gene therapy strategy for gliomas.

  20. Current status of cerebral glioma surgery in China.

    Science.gov (United States)

    Wu, Jin-song; Zhang, Jie; Zhuang, Dong-xiao; Yao, Cheng-jun; Qiu, Tian-ming; Lu, Jun-feng; Zhu, Feng-ping; Mao, Ying; Zhou, Liang-fu

    2011-09-01

    The treatment of gliomas is highly individualized. Surgery for gliomas is essentially for histological diagnosis, to alleviate mass effect, and most importantly, to favor longer survival expectancy. During the past two decades, many surgical techniques and adjuvants have been applied to glioma surgery in China, which lead to a rapid development in the field of cerebral glioma surgery. This article broadly and critically reviewed the existing studies on cerebral glioma surgery and to portrait the current status of glioma surgery in China. A literature search was conducted covering major innovative surgical techniques and adjuvants for glioma surgery in China. The following databases were searched: the Pubmed (January 1995 to date); China Knowledge Resource Integrated Database (January 1995 to date) and VIP Database for Chinese Technical Periodicals (January 1995 to date). A selection criterion was established to exclude duplicates and irrelevant studies. The outcome measures were extracted from included studies. A total of 3307 articles were initially searched. After excluded by abstracts and full texts, 69 studies conducted in the mainland of China were included and went through further analysis. The philosophy of surgical strategies for cerebral gliomas in China is undergoing tremendous change. Nowadays Chinese neurosurgeons pay more attention to the postoperative neurofunctional status of the patients. The aim of the glioma surgery is not only the more extensive tumor resection but also the maximal safety of intervention. The well balance of longer overall survival and higher quality of life should be judged with respect to each individual patient.

  1. Early effects of boron neutron capture therapy on rat glioma models

    International Nuclear Information System (INIS)

    Nakagawa, N.; Akai, F.; Fukawa, N.; Taneda, M.; Ono, K.; Suzuki, M.

    2006-01-01

    Early effects of boron neutron capture therapy on malignant gliomas are characterized by reduction of the enhanced area regression of the peritumoral edema radiologically. The aim of this study is to investigate the early histological changes of tumors and inflammatory cells after BNCT in the rat brain. The rats were treated with BNCT using boronophenyialanine (BPA) 7 days after implantation of C6 glioma cells. The tumors were assessed their sizes and configurations with magnetic resonance imaging, then killed 4 days after BNCT. The mean tumor volumes were 39mm 3 in BNCT-treated group, and 138 mm 3 in the control group. In the histological examination, tumors of the BNCT group showed less pleomorphic appearance with atypical nuclei and mitotic figures, compared with the control group. Necrosis and edematous changes in the neuropile were negligible. There existed remnant tumors adjacent to the lateral ventricle. The reactions of the inflammatory cells were examined with ED-1 of macrophage marker. ED-1 positive cells and their processes were reduced in the marginal area of tumor in the BNCT group. BNCT reduce the tumor progression by suppression of the proliferation. Inhibition of the activated macrophages may reduce peritumoral edema in early phase. (author)

  2. The value of intraoperative ultrasonography during the resection of relapsed irradiated malignant gliomas in the brain

    Directory of Open Access Journals (Sweden)

    Kay Mursch

    2017-01-01

    Full Text Available Purpose The aim of this study was to investigate whether intraoperative ultrasonography (IOUS helped the surgeon navigate towards the tumor as seen in preoperative magnetic resonance imaging and whether IOUS was able to distinguish between tumor margins and the surrounding tissue. Methods Twenty-five patients suffering from high-grade gliomas who were previously treated by surgery and radiotherapy were included. Intraoperatively, two histopathologic samples were obtained a sample of unequivocal tumor tissue (according to anatomical landmarks and the surgeon’s visual and tactile impressions and a small tissue sample obtained using a navigated needle when the surgeon decided to stop the resection. This specimen was considered to be a boundary specimen, where no tumor tissue was apparent. The decision to take the second sample was not influenced by IOUS. The effect of IOUS was analyzed semi-quantitatively. Results All 25 samples of unequivocal tumor tissue were histopathologically classified as tumor tissue and were hyperechoic on IOUS. Of the boundary specimens, eight were hypoechoic. Only one harbored tumor tissue (P=0.150. Seventeen boundaries were moderately hyperechoic, and these samples contained all possible histological results (i.e., tumor, infiltration, or no tumor. Conclusion During surgery performed on relapsed, irradiated, high-grade gliomas, IOUS provided a reliable method of navigating towards the core of the tumor. At borders, it did not reliably distinguish between remnants or tumor-free tissue, but hypoechoic areas seldom contained tumor tissue.

  3. Tricyclic Neovibsanin Scaffold Inhibits Glioma by Targeting Glioma ...

    African Journals Online (AJOL)

    Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. ... median survival time of mice bearing glioma to 34 days compared to 22 days in untreated mice. .... CX22 microscope (Olympus Corp, Inc, Tokyo,.

  4. NEUROGATE: a new MR-compatible device for realizing minimally invasive treatment of intracerebral tumors.

    Science.gov (United States)

    Vitzthum, Hans Ekkehart; Winkler, Dirk; Strauss, Gero; Lindner, Dirk; Krupp, Wolfgang; Schneider, Jens Peter; Schober, Ralf; Meixensberger, Jürgen

    2004-01-01

    The authors report on the handling and the practicability of a newly developed MR-compatible device, the NEUROGATE (Daum GmbH, Germany), which allows precise planning, simulation and control of stereotactic biopsy in patients with suspect intracranial lesions, and which allows minimally invasive maneuvers to be performed in a comfortable way. Twenty-eight patients were examined stereotactically in the Signa SP interventional 0.5 Tesla MRI (General Electric Medical Systems, USA), including 15 patients with malignant intracerebral tumors and poor general medical conditions (8 gliomas, 7 metastases) who were treated by laser-induced interstitial thermotherapy (LITT) after definite intraoperative neuropathological diagnosis. As a special stereotactic holding device, the NEUROGATE was favored as a reliable tool for stereotaxy and minimally invasive procedures.

  5. Rare ADAR and RNASEH2B variants and a type I interferon signature in glioma and prostate carcinoma risk and tumorigenesis.

    Science.gov (United States)

    Beyer, Ulrike; Brand, Frank; Martens, Helge; Weder, Julia; Christians, Arne; Elyan, Natalie; Hentschel, Bettina; Westphal, Manfred; Schackert, Gabriele; Pietsch, Torsten; Hong, Bujung; Krauss, Joachim K; Samii, Amir; Raab, Peter; Das, Anibh; Dumitru, Claudia A; Sandalcioglu, I Erol; Hakenberg, Oliver W; Erbersdobler, Andreas; Lehmann, Ulrich; Reifenberger, Guido; Weller, Michael; Reijns, Martin A M; Preller, Matthias; Wiese, Bettina; Hartmann, Christian; Weber, Ruthild G

    2017-12-01

    In search of novel germline alterations predisposing to tumors, in particular to gliomas, we studied a family with two brothers affected by anaplastic gliomas, and their father and paternal great-uncle diagnosed with prostate carcinoma. In this family, whole-exome sequencing yielded rare, simultaneously heterozygous variants in the Aicardi-Goutières syndrome (AGS) genes ADAR and RNASEH2B co-segregating with the tumor phenotype. AGS is a genetically induced inflammatory disease particularly of the brain, which has not been associated with a consistently increased cancer risk to date. By targeted sequencing, we identified novel ADAR and RNASEH2B variants, and a 3- to 17-fold frequency increase of the AGS mutations ADAR,c.577C>G;p.(P193A) and RNASEH2B,c.529G>A;p.(A177T) in the germline of familial glioma patients as well as in test and validation cohorts of glioblastomas and prostate carcinomas versus ethnicity-matched controls, whereby rare RNASEH2B variants were significantly more frequent in familial glioma patients. Tumors with ADAR or RNASEH2B variants recapitulated features of AGS, such as calcification and increased type I interferon expression. Patients carrying ADAR or RNASEH2B variants showed upregulation of interferon-stimulated gene (ISG) transcripts in peripheral blood as seen in AGS. An increased ISG expression was also induced by ADAR and RNASEH2B variants in tumor cells and was blocked by the JAK inhibitor Ruxolitinib. Our data implicate rare variants in the AGS genes ADAR and RNASEH2B and a type I interferon signature in glioma and prostate carcinoma risk and tumorigenesis, consistent with a genetic basis underlying inflammation-driven malignant transformation in glioma and prostate carcinoma development.

  6. Hippocampal volume as an index of Alzheimer neuropathology: findings from the Nun Study.

    Science.gov (United States)

    Gosche, K M; Mortimer, J A; Smith, C D; Markesbery, W R; Snowdon, D A

    2002-05-28

    To determine whether hippocampal volume is a sensitive and specific indicator of Alzheimer neuropathology, regardless of the presence or absence of cognitive and memory impairment. Postmortem MRI scans were obtained for the first 56 participants of the Nun Study who were scanned. The area under receiver operating characteristic curves, sensitivity, specificity, and positive and negative predictive values were used to assess the diagnostic accuracy of hippocampal volume in predicting fulfillment of Alzheimer neuropathologic criteria and differences in Braak staging. Hippocampal volume predicted fulfillment of neuropathologic criteria for AD for all 56 participants (p < 0.001): 24 sisters who were demented (p = 0.036); 32 sisters who remained nondemented (p < 0.001), 8 sisters who remained nondemented but had memory impairment (p < 0.001), and 24 sisters who were intact with regard to memory and cognition at the final examination prior to death (p = 0.003). In individuals who remained nondemented, hippocampal volume was a better indicator of AD neuropathology than a delayed memory measure. Among nondemented sisters, Braak stages III and VI were distinguishable from Braak stages II or lower (p = 0.001). Among cognitively intact individuals, those in Braak stage II could be distinguished from those in stage I or less (p = 0.025). Volumetric measures of the hippocampus may be useful in identifying nondemented individuals who satisfy neuropathologic criteria for AD as well as pathologic stages of AD that may be present decades before initial clinical expression.

  7. Predominant antitumor effects by fully human anti-TRAIL-receptor2 (DR5) monoclonal antibodies in human glioma cells in vitro and in vivo

    Science.gov (United States)

    Nagane, Motoo; Shimizu, Saki; Mori, Eiji; Kataoka, Shiro; Shiokawa, Yoshiaki

    2010-01-01

    Tumor necrosis factor–related apoptosis-inducing ligand (TRAIL/Apo2 L) preferentially induces apoptosis in human tumor cells through its cognate death receptors DR4 or DR5, thereby being investigated as a potential agent for cancer therapy. Here, we applied fully human anti-human TRAIL receptor monoclonal antibodies (mAbs) to specifically target one of death receptors for TRAIL in human glioma cells, which could also reduce potential TRAIL-induced toxicity in humans. Twelve human glioma cell lines treated with several fully human anti-human TRAIL receptor mAbs were sensitive to only anti-DR5 mAbs, whereas they were totally insensitive to anti-DR4 mAb. Treatment with anti-DR5 mAbs exerted rapid cytotoxicity and lead to apoptosis induction. The cellular sensitivity was closely associated with cell-surface expression of DR5. Expression of c-FLIPL, Akt, and Cyclin D1 significantly correlated with sensitivity to anti-DR5 mAbs. Primary cultures of glioma cells were also relatively resistant to anti-DR5 mAbs, exhibiting both lower DR5 and higher c-FLIPL expression. Downregulation of c-FLIPL expression resulted in the sensitization of human glioma cells to anti-DR5 mAbs, whereas overexpression of c-FLIPL conferred resistance to anti-DR5 mAb. Treatment of tumor-burden nude mice with the direct agonist anti-DR5 mAb KMTR2 significantly suppressed growth of subcutaneous glioma xenografts leading to complete regression. Similarly, treatment of nude mice bearing intracerebral glioma xenografts with KMTR2 significantly elongated lifespan without tumor recurrence. These results suggest that DR5 is the predominant TRAIL receptor mediating apoptotic signals in human glioma cells, and sensitivity to anti-DR5 mAbs was determined at least in part by the expression level of c-FLIPL and Akt. Specific targeting of death receptor pathway through DR5 using fully human mAbs might provide a novel therapeutic strategy for intractable malignant gliomas. PMID:20511188

  8. Genome-wide association meta-analysis of neuropathologic features of Alzheimer's disease and related dementias.

    Directory of Open Access Journals (Sweden)

    Gary W Beecham

    2014-09-01

    Full Text Available Alzheimer's disease (AD and related dementias are a major public health challenge and present a therapeutic imperative for which we need additional insight into molecular pathogenesis. We performed a genome-wide association study and analysis of known genetic risk loci for AD dementia using neuropathologic data from 4,914 brain autopsies. Neuropathologic data were used to define clinico-pathologic AD dementia or controls, assess core neuropathologic features of AD (neuritic plaques, NPs; neurofibrillary tangles, NFTs, and evaluate commonly co-morbid neuropathologic changes: cerebral amyloid angiopathy (CAA, Lewy body disease (LBD, hippocampal sclerosis of the elderly (HS, and vascular brain injury (VBI. Genome-wide significance was observed for clinico-pathologic AD dementia, NPs, NFTs, CAA, and LBD with a number of variants in and around the apolipoprotein E gene (APOE. GalNAc transferase 7 (GALNT7, ATP-Binding Cassette, Sub-Family G (WHITE, Member 1 (ABCG1, and an intergenic region on chromosome 9 were associated with NP score; and Potassium Large Conductance Calcium-Activated Channel, Subfamily M, Beta Member 2 (KCNMB2 was strongly associated with HS. Twelve of the 21 non-APOE genetic risk loci for clinically-defined AD dementia were confirmed in our clinico-pathologic sample: CR1, BIN1, CLU, MS4A6A, PICALM, ABCA7, CD33, PTK2B, SORL1, MEF2C, ZCWPW1, and CASS4 with 9 of these 12 loci showing larger odds ratio in the clinico-pathologic sample. Correlation of effect sizes for risk of AD dementia with effect size for NFTs or NPs showed positive correlation, while those for risk of VBI showed a moderate negative correlation. The other co-morbid neuropathologic features showed only nominal association with the known AD loci. Our results discovered new genetic associations with specific neuropathologic features and aligned known genetic risk for AD dementia with specific neuropathologic changes in the largest brain autopsy study of AD and related

  9. Stem cells and the origin of gliomas: A historical reappraisal with molecular advancements

    Directory of Open Access Journals (Sweden)

    Michael L Levy

    2009-01-01

    Full Text Available Michael L Levy1, Allen L Ho1,2, Samuel Hughes3, Jayant Menon1, Rahul Jandial41Division of Neurosurgery, University of California, San Diego, La Jolla, California, USA; 2Del E Webb Neurosciences, Aging and Stem Cell Research Center, The Burnham Institute for Medical Research, La Jolla, California, USA; 3Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, USA; 4Division of Neurosurgery, Department of Surgery, City of Hope Cancer Center, Duarte, CA, USAAbstract: The biology of both normal and tumor development clearly possesses overlapping and parallel features. Oncogenes and tumor suppressors are relevant not only in tumor biology, but also in physiological developmental regulators of growth and differentiation. Conversely, genes identified as regulators of developmental biology are relevant to tumor biology. This is particularly relevant in the context of brain tumors, where recent evidence is mounting that the origin of brain tumors, specifically gliomas, may represent dysfunctional developmental neurobiology. Neural stem cells are increasingly being investigated as the cell type that originally undergoes malignant transformation – the cell of origin – and the evidence for this is discussed.Keywords: stem cells, gliomas, neural stem cells, brain tumors, cancer stem cells

  10. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas.

    Science.gov (United States)

    Brat, Daniel J; Verhaak, Roel G W; Aldape, Kenneth D; Yung, W K Alfred; Salama, Sofie R; Cooper, Lee A D; Rheinbay, Esther; Miller, C Ryan; Vitucci, Mark; Morozova, Olena; Robertson, A Gordon; Noushmehr, Houtan; Laird, Peter W; Cherniack, Andrew D; Akbani, Rehan; Huse, Jason T; Ciriello, Giovanni; Poisson, Laila M; Barnholtz-Sloan, Jill S; Berger, Mitchel S; Brennan, Cameron; Colen, Rivka R; Colman, Howard; Flanders, Adam E; Giannini, Caterina; Grifford, Mia; Iavarone, Antonio; Jain, Rajan; Joseph, Isaac; Kim, Jaegil; Kasaian, Katayoon; Mikkelsen, Tom; Murray, Bradley A; O'Neill, Brian Patrick; Pachter, Lior; Parsons, Donald W; Sougnez, Carrie; Sulman, Erik P; Vandenberg, Scott R; Van Meir, Erwin G; von Deimling, Andreas; Zhang, Hailei; Crain, Daniel; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Penny, Robert; Shelton, Troy; Sherman, Mark; Yena, Peggy; Black, Aaron; Bowen, Jay; Dicostanzo, Katie; Gastier-Foster, Julie; Leraas, Kristen M; Lichtenberg, Tara M; Pierson, Christopher R; Ramirez, Nilsa C; Taylor, Cynthia; Weaver, Stephanie; Wise, Lisa; Zmuda, Erik; Davidsen, Tanja; Demchok, John A; Eley, Greg; Ferguson, Martin L; Hutter, Carolyn M; Mills Shaw, Kenna R; Ozenberger, Bradley A; Sheth, Margi; Sofia, Heidi J; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean Claude; Ayala, Brenda; Baboud, Julien; Chudamani, Sudha; Jensen, Mark A; Liu, Jia; Pihl, Todd; Raman, Rohini; Wan, Yunhu; Wu, Ye; Ally, Adrian; Auman, J Todd; Balasundaram, Miruna; Balu, Saianand; Baylin, Stephen B; Beroukhim, Rameen; Bootwalla, Moiz S; Bowlby, Reanne; Bristow, Christopher A; Brooks, Denise; Butterfield, Yaron; Carlsen, Rebecca; Carter, Scott; Chin, Lynda; Chu, Andy; Chuah, Eric; Cibulskis, Kristian; Clarke, Amanda; Coetzee, Simon G; Dhalla, Noreen; Fennell, Tim; Fisher, Sheila; Gabriel, Stacey; Getz, Gad; Gibbs, Richard; Guin, Ranabir; Hadjipanayis, Angela; Hayes, D Neil; Hinoue, Toshinori; Hoadley, Katherine; Holt, Robert A; Hoyle, Alan P; Jefferys, Stuart R; Jones, Steven; Jones, Corbin D; Kucherlapati, Raju; Lai, Phillip H; Lander, Eric; Lee, Semin; Lichtenstein, Lee; Ma, Yussanne; Maglinte, Dennis T; Mahadeshwar, Harshad S; Marra, Marco A; Mayo, Michael; Meng, Shaowu; Meyerson, Matthew L; Mieczkowski, Piotr A; Moore, Richard A; Mose, Lisle E; Mungall, Andrew J; Pantazi, Angeliki; Parfenov, Michael; Park, Peter J; Parker, Joel S; Perou, Charles M; Protopopov, Alexei; Ren, Xiaojia; Roach, Jeffrey; Sabedot, Thaís S; Schein, Jacqueline; Schumacher, Steven E; Seidman, Jonathan G; Seth, Sahil; Shen, Hui; Simons, Janae V; Sipahimalani, Payal; Soloway, Matthew G; Song, Xingzhi; Sun, Huandong; Tabak, Barbara; Tam, Angela; Tan, Donghui; Tang, Jiabin; Thiessen, Nina; Triche, Timothy; Van Den Berg, David J; Veluvolu, Umadevi; Waring, Scot; Weisenberger, Daniel J; Wilkerson, Matthew D; Wong, Tina; Wu, Junyuan; Xi, Liu; Xu, Andrew W; Yang, Lixing; Zack, Travis I; Zhang, Jianhua; Aksoy, B Arman; Arachchi, Harindra; Benz, Chris; Bernard, Brady; Carlin, Daniel; Cho, Juok; DiCara, Daniel; Frazer, Scott; Fuller, Gregory N; Gao, JianJiong; Gehlenborg, Nils; Haussler, David; Heiman, David I; Iype, Lisa; Jacobsen, Anders; Ju, Zhenlin; Katzman, Sol; Kim, Hoon; Knijnenburg, Theo; Kreisberg, Richard Bailey; Lawrence, Michael S; Lee, William; Leinonen, Kalle; Lin, Pei; Ling, Shiyun; Liu, Wenbin; Liu, Yingchun; Liu, Yuexin; Lu, Yiling; Mills, Gordon; Ng, Sam; Noble, Michael S; Paull, Evan; Rao, Arvind; Reynolds, Sheila; Saksena, Gordon; Sanborn, Zack; Sander, Chris; Schultz, Nikolaus; Senbabaoglu, Yasin; Shen, Ronglai; Shmulevich, Ilya; Sinha, Rileen; Stuart, Josh; Sumer, S Onur; Sun, Yichao; Tasman, Natalie; Taylor, Barry S; Voet, Doug; Weinhold, Nils; Weinstein, John N; Yang, Da; Yoshihara, Kosuke; Zheng, Siyuan; Zhang, Wei; Zou, Lihua; Abel, Ty; Sadeghi, Sara; Cohen, Mark L; Eschbacher, Jenny; Hattab, Eyas M; Raghunathan, Aditya; Schniederjan, Matthew J; Aziz, Dina; Barnett, Gene; Barrett, Wendi; Bigner, Darell D; Boice, Lori; Brewer, Cathy; Calatozzolo, Chiara; Campos, Benito; Carlotti, Carlos Gilberto; Chan, Timothy A; Cuppini, Lucia; Curley, Erin; Cuzzubbo, Stefania; Devine, Karen; DiMeco, Francesco; Duell, Rebecca; Elder, J Bradley; Fehrenbach, Ashley; Finocchiaro, Gaetano; Friedman, William; Fulop, Jordonna; Gardner, Johanna; Hermes, Beth; Herold-Mende, Christel; Jungk, Christine; Kendler, Ady; Lehman, Norman L; Lipp, Eric; Liu, Ouida; Mandt, Randy; McGraw, Mary; Mclendon, Roger; McPherson, Christopher; Neder, Luciano; Nguyen, Phuong; Noss, Ardene; Nunziata, Raffaele; Ostrom, Quinn T; Palmer, Cheryl; Perin, Alessandro; Pollo, Bianca; Potapov, Alexander; Potapova, Olga; Rathmell, W Kimryn; Rotin, Daniil; Scarpace, Lisa; Schilero, Cathy; Senecal, Kelly; Shimmel, Kristen; Shurkhay, Vsevolod; Sifri, Suzanne; Singh, Rosy; Sloan, Andrew E; Smolenski, Kathy; Staugaitis, Susan M; Steele, Ruth; Thorne, Leigh; Tirapelli, Daniela P C; Unterberg, Andreas; Vallurupalli, Mahitha; Wang, Yun; Warnick, Ronald; Williams, Felicia; Wolinsky, Yingli; Bell, Sue; Rosenberg, Mara; Stewart, Chip; Huang, Franklin; Grimsby, Jonna L; Radenbaugh, Amie J; Zhang, Jianan

    2015-06-25

    Diffuse low-grade and intermediate-grade gliomas (which together make up the lower-grade gliomas, World Health Organization grades II and III) have highly variable clinical behavior that is not adequately predicted on the basis of histologic class. Some are indolent; others quickly progress to glioblastoma. The uncertainty is compounded by interobserver variability in histologic diagnosis. Mutations in IDH, TP53, and ATRX and codeletion of chromosome arms 1p and 19q (1p/19q codeletion) have been implicated as clinically relevant markers of lower-grade gliomas. We performed genomewide analyses of 293 lower-grade gliomas from adults, incorporating exome sequence, DNA copy number, DNA methylation, messenger RNA expression, microRNA expression, and targeted protein expression. These data were integrated and tested for correlation with clinical outcomes. Unsupervised clustering of mutations and data from RNA, DNA-copy-number, and DNA-methylation platforms uncovered concordant classification of three robust, nonoverlapping, prognostically significant subtypes of lower-grade glioma that were captured more accurately by IDH, 1p/19q, and TP53 status than by histologic class. Patients who had lower-grade gliomas with an IDH mutation and 1p/19q codeletion had the most favorable clinical outcomes. Their gliomas harbored mutations in CIC, FUBP1, NOTCH1, and the TERT promoter. Nearly all lower-grade gliomas with IDH mutations and no 1p/19q codeletion had mutations in TP53 (94%) and ATRX inactivation (86%). The large majority of lower-grade gliomas without an IDH mutation had genomic aberrations and clinical behavior strikingly similar to those found in primary glioblastoma. The integration of genomewide data from multiple platforms delineated three molecular classes of lower-grade gliomas that were more concordant with IDH, 1p/19q, and TP53 status than with histologic class. Lower-grade gliomas with an IDH mutation either had 1p/19q codeletion or carried a TP53 mutation. Most

  11. Neuroradiology of the normal and pathological anatomy of the rat brain. Pt. 2. Microangiographic investigations of the vascularisation of transplanted malignant brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, M; Weisser, G; Voigt, K; Mennel, H D

    1980-11-01

    70 BD-IX rats, in which chemically induced mixed gliomas have been transplanted intracerebrally, were investigated by microangiography. The pattern and the degree of tumor vascularisation of all animals was correlated with the histological findings. Dependent on the type of the tumor different localisations of tumor growth could be found: G XII-gliomas preferred the juxta-ventricular region and subarachnoid space whereas GL 2.2-gliomas mainly grew as solid intracerebral space occupying lesions. Microangiograms of all tumor stages from the 14th to 42nd day after transplantation revealed a typical vascular pattern consisting of lacunar glomerulose and netlike vessels. Further, necrosis, bleedings into the tumor, and irregularities of the capillary network could be demonstrated. The volume, age and vascularisation of the tumors are correlated and the results are discussed with regard to the principles of tumor growth and malignancy.

  12. C-MET overexpression and amplification in gliomas.

    Science.gov (United States)

    Kwak, Yoonjin; Kim, Seong-Ik; Park, Chul-Kee; Paek, Sun Ha; Lee, Soon-Tae; Park, Sung-Hye

    2015-01-01

    We investigated c-Met overexpression and MET gene amplification in gliomas to determine their incidence and prognostic significance. c-Met immunohistochemistry and MET gene fluorescence in situ hybridization were carried out on tissue microarrays from 250 patients with gliomas (137 grade IV GBMs and 113 grade II and III diffuse gliomas). Clinicopathological features of these cases were reviewed. c-Met overexpression and MET gene amplification were detected in 13.1% and 5.1% of the GBMs, respectively. All the MET-amplified cases showed c-Met overexpression, but MET amplification was not always concordant with c-Met overexpression. None of grade II and III gliomas demonstrated c-Met overexpression or MET gene amplification. Mean survival of the GBM patients with MET amplification was not significantly different from patients without MET amplification (P=0.155). However, GBM patients with c-Met overexpression survived longer than patients without c-Met overexpression (P=0.035). Although MET amplification was not related to poor GBM prognosis, it is partially associated with the aggressiveness of gliomas, as MET amplification was found only in grade IV, not in grade II and III gliomas. We suggest that MET inhibitor therapy may be beneficial in about 5% GBMs, which was the incidence of MET gene amplification found in the patients included in this study.

  13. CD147 and glioma: a meta-analysis.

    Science.gov (United States)

    Li, Hui; Xi, Zhouhuan; Dai, Xuejiao; Wu, Wenyue; Li, Yanwen; Liu, Yanting; Zhang, Hanwen

    2017-08-01

    Gliomas are the most common primary brain tumors. This meta-analysis aimed to systematically evaluate the relationship between CD147 expression in tissues and the clinicopathological features of patients with glioma. We searched PubMed (1966-2016), EMBASE (1980-2016), Cochrane Library (1996-2016), Web of Science (1945-2016), China National Knowledge Infrastructure (1982-2016), and Wan Fang databases (1988-2016). Quality assessment of the literature was performed using the Newcastle-Ottawa Scale, with Revman 5.3 and Stata 14.0 for analysis. In total, 1806 glioma patients from 19 studies were included, and patients with CD147 overexpression had poorer overall survival [hazard ratio (HR) = 2.211, P CD147 expression when comparing glioma tissues versus non-cancerous brain tissues (OR 20.42; 95% CI 13.94-29.91; P CD147 expression did not differ based on patient's age (young vs. old, P = 0.89) or gender (female vs. male, P = 0.57). CD147 expression may be a potential prognostic biomarker for poorer overall and relapse-free survival, and may affect the 5-year survival rate in glioma patients. CD147 expression is also closely correlated with poor clinical characteristics in glioma patients.

  14. Palbociclib in Treating Patients With Relapsed or Refractory Rb Positive Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With Activating Alterations in Cell Cycle Genes (A Pediatric MATCH Treatment Trial)

    Science.gov (United States)

    2018-05-15

    Advanced Malignant Solid Neoplasm; RB1 Positive; Recurrent Childhood Ependymoma; Recurrent Ewing Sarcoma; Recurrent Glioma; Recurrent Hepatoblastoma; Recurrent Kidney Wilms Tumor; Recurrent Langerhans Cell Histiocytosis; Recurrent Malignant Germ Cell Tumor; Recurrent Malignant Glioma; Recurrent Medulloblastoma; Recurrent Neuroblastoma; Recurrent Non-Hodgkin Lymphoma; Recurrent Osteosarcoma; Recurrent Peripheral Primitive Neuroectodermal Tumor; Recurrent Rhabdoid Tumor; Recurrent Rhabdomyosarcoma; Recurrent Soft Tissue Sarcoma; Refractory Ependymoma; Refractory Ewing Sarcoma; Refractory Glioma; Refractory Hepatoblastoma; Refractory Langerhans Cell Histiocytosis; Refractory Malignant Germ Cell Tumor; Refractory Malignant Glioma; Refractory Medulloblastoma; Refractory Neuroblastoma; Refractory Non-Hodgkin Lymphoma; Refractory Osteosarcoma; Refractory Peripheral Primitive Neuroectodermal Tumor; Refractory Rhabdoid Tumor; Refractory Rhabdomyosarcoma; Refractory Soft Tissue Sarcoma

  15. CD4+ and Perivascular Foxp3+ T Cells in Glioma Correlate with Angiogenesis and Tumor Progression

    Directory of Open Access Journals (Sweden)

    Luyan Mu

    2017-11-01

    + TILs associate with tumor angiogenesis and tumor progression in glioma patients. Our results suggest that combining antiangiogenic agents with immunotherapeutic approaches may help improve the antitumor efficacy for patients with malignant gliomas.

  16. African ancestry protects against Alzheimer's disease-related neuropathology.

    Science.gov (United States)

    Schlesinger, D; Grinberg, L T; Alba, J G; Naslavsky, M S; Licinio, L; Farfel, J M; Suemoto, C K; de Lucena Ferretti, R E; Leite, R E P; de Andrade, M P; dos Santos, A C F; Brentani, H; Pasqualucci, C A; Nitrini, R; Jacob-Filho, W; Zatz, M

    2013-01-01

    Previous studies in dementia epidemiology have reported higher Alzheimer's disease rates in African-Americans when compared with White Americans. To determine whether genetically determined African ancestry is associated with neuropathological changes commonly associated with dementia, we analyzed a population-based brain bank in the highly admixed city of São Paulo, Brazil. African ancestry was estimated through the use of previously described ancestry-informative markers. Risk of presence of neuritic plaques, neurofibrillary tangles, small vessel disease, brain infarcts and Lewy bodies in subjects with significant African ancestry versus those without was determined. Results were adjusted for multiple environmental risk factors, demographic variables and apolipoprotein E genotype. African ancestry was inversely correlated with neuritic plaques (P=0.03). Subjects with significant African ancestry (n=112, 55.4%) showed lower prevalence of neuritic plaques in the univariate analysis (odds ratio (OR) 0.72, 95% confidence interval (CI) 0.55-0.95, P=0.01) and when adjusted for age, sex, APOE genotype and environmental risk factors (OR 0.43, 95% CI 0.21-0.89, P=0.02). There were no significant differences for the presence of other neuropathological alterations. We show for the first time, using genetically determined ancestry, that African ancestry may be highly protective of Alzheimer's disease neuropathology, functioning through either genetic variants or unknown environmental factors. Epidemiological studies correlating African-American race/ethnicity with increased Alzheimer's disease rates should not be interpreted as surrogates of genetic ancestry or considered to represent African-derived populations from the developing nations such as Brazil.

  17. The progress of radiosensitive genes of human brain glioma

    International Nuclear Information System (INIS)

    Wang Xi; Liu Qiang

    2008-01-01

    Human gliomas are one of the most aggressive tumors in brain which grow infiltrativly. Surgery is the mainstay of treatment. But as the tumor could not be entirely cut off, it is easy to relapse. Radiotherapy plays an important role for patients with gliomas after surgery. The efficacy of radiotherapy is associated with radio sensitivity of human gliomas. This paper makes a summary of current situation and progress for radiosensitive genes of human brain gliomas. (authors)

  18. Terahertz reflectometry imaging for low and high grade gliomas

    Science.gov (United States)

    Ji, Young Bin; Oh, Seung Jae; Kang, Seok-Gu; Heo, Jung; Kim, Sang-Hoon; Choi, Yuna; Song, Seungri; Son, Hye Young; Kim, Se Hoon; Lee, Ji Hyun; Haam, Seung Joo; Huh, Yong Min; Chang, Jong Hee; Joo, Chulmin; Suh, Jin-Suck

    2016-01-01

    Gross total resection (GTR) of glioma is critical for improving the survival rate of glioma patients. One of the greatest challenges for achieving GTR is the difficulty in discriminating low grade tumor or peritumor regions that have an intact blood brain barrier (BBB) from normal brain tissues and delineating glioma margins during surgery. Here we present a highly sensitive, label-free terahertz reflectometry imaging (TRI) that overcomes current key limitations for intraoperative detection of World Health Organization (WHO) grade II (low grade), and grade III and IV (high grade) gliomas. We demonstrate that TRI provides tumor discrimination and delineation of tumor margins in brain tissues with high sensitivity on the basis of Hematoxylin and eosin (H&E) stained image. TRI may help neurosurgeons to remove gliomas completely by providing visualization of tumor margins in WHO grade II, III, and IV gliomas without contrast agents, and hence, improve patient outcomes. PMID:27782153

  19. Selective uptake of boronophenylalanine by glioma stem/progenitor cells

    International Nuclear Information System (INIS)

    Sun, Ting; Zhou, Youxin; Xie, Xueshun; Chen, Guilin; Li, Bin; Wei, Yongxin; Chen, Jinming; Huang, Qiang; Du, Ziwei

    2012-01-01

    The success of boron neutron capture therapy (BNCT) depends on the amount of boron in cells and the tumor/blood and tumor/(normal tissue) boron concentration ratios. For the first time, measurements of boron uptake in both stem/progenitor and differentiated glioma cells were performed along with measurements of boron biodistribution in suitable animal models. In glioma stem/progenitor cells, the selective accumulation of boronophenylalanine (BPA) was lower, and retention of boron after BPA removal was longer than in differentiated glioma cells in vitro. However, boron biodistribution was not statistically significantly different in mice with xenografts. - Highlights: ► Uptake of BPA was analyzed in stem/progenitor and differentiated glioma cells. ► Selective accumulation of BPA was lower in glioma stem/progenitor cells. ► Retention of boron after BPA removal was longer in glioma stem/progenitor cells. ► Boron biodistribution was not statistically different in mice with xenografts.

  20. Delayed recall, hippocampal volume and Alzheimer neuropathology: findings from the Nun Study.

    Science.gov (United States)

    Mortimer, J A; Gosche, K M; Riley, K P; Markesbery, W R; Snowdon, D A

    2004-02-10

    To examine the associations of hippocampal volume and the severity of neurofibrillary lesions determined at autopsy with delayed verbal recall performance evaluated an average of 1 year prior to death. Hippocampal volumes were computed using postmortem brain MRI from the first 56 scanned participants of the Nun Study. Quantitative neuropathologic studies included lesion counts, Braak staging, and determination of whether neuropathologic criteria for Alzheimer disease (AD) were met. Multiple regression was used to assess the association of hippocampal volume and neuropathologic lesions with the number of words (out of 10) recalled on the Consortium to Establish a Registry for Alzheimer's Disease Delayed Word Recall Test administered an average of 1 year prior to death. When entered separately, hippocampal volume, Braak stage, and the mean neurofibrillary tangle counts in the CA-1 region of the hippocampus and the subiculum were strongly associated with the number of words recalled after a delay, adjusting for age and education. When hippocampal volume was entered together with each neuropathologic index, only hippocampal volume retained a significant association with the delayed recall measure. The association between hippocampal volume and the number of words recalled was present in both demented and nondemented individuals as well as in those with and without substantial AD neurofibrillary pathology. The association of neurofibrillary tangles with delayed verbal recall may reflect associated hippocampal atrophy.

  1. Audit of practice in sudden unexpected death in epilepsy (SUDEP) post mortems and neuropathological findings.

    Science.gov (United States)

    Thom, Maria; Michalak, Zuzanna; Wright, Gabriella; Dawson, Timothy; Hilton, David; Joshi, Abhijit; Diehl, Beate; Koepp, Matthias; Lhatoo, Samden; Sander, Josemir W; Sisodiya, Sanjay M

    2016-08-01

    Sudden unexpected death in epilepsy (SUDEP) is one of the leading causes of death in people with epilepsy. For classification of definite SUDEP, a post mortem (PM), including anatomical and toxicological examination, is mandatory to exclude other causes of death. We audited PM practice as well as the value of brain examination in SUDEP. We reviewed 145 PM reports in SUDEP cases from four UK neuropathology centres. Data were extracted for clinical epilepsy details, circumstances of death and neuropathological findings. Macroscopic brain abnormalities were identified in 52% of cases. Mild brain swelling was present in 28%, and microscopic pathologies relevant to cause or effect of seizures were seen in 89%. Examination based on whole fixed brains (76.6% of all PMs), and systematic regional sampling was associated with higher detection rates of underlying pathology (P detection of relevant pathology. Availability of full clinical epilepsy-related information at the time of PM could potentially further improve detection through targeted tissue sampling. Apart from confirmation of SUDEP, complete neuropathological examination contributes to evaluation of risk factors as well as helping to direct future research into underlying causes. © 2015 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd on behalf of British Neuropathological Society.

  2. Nitric oxide donors attenuate clongenic potential in rat C6 glioma cells treated with alkylating chemotherapeutic agents.

    Science.gov (United States)

    Yang, Jir-Jei; Yin, Jiu-Haw; Yang, Ding-I

    2007-05-11

    1,3-Bis(2-chloroethyl)-1-nitrosourea (BCNU) kills tumor cells via multiple actions including alkylation and carbamoylation. Previously, we have reported that formation of S-nitrosoglutathione (GSNO) in glioma cells overexpressing inducible nitric oxide synthase (iNOS) contributed to nitric oxide (NO)-dependent carbamoylating chemoresistance against BCNU. To further characterize the effects of NO on alkylating cytotoxicity, colony formation assay was applied to evaluate the effects of various NO donors on rat C6 glioma cells challenged with alkylating agents. We demonstrate that NO donors including GSNO, diethylamine NONOate (DEA/NO), and sodium nitroprusside (SNP) substantially reduced the extent of colony formation in glioma cells treated with alkylating agents, namely methyl methanesulfonate (MMS), N-methyl-N-nitrosourea (MNU), and N-ethyl-N-nitrosourea (ENU). Without alkylating agents these NO-releasing agents alone had no effects on clongenic potential of rat C6 glioma cells. Among these three NO donors used, the effectiveness in potentiating alkylating cytotoxicity is in the order of "GSNO>DEA/NO>SNP" when applied at the same dosages. GSNO also exerted similar synergistic actions reducing the extents of colony formation when co-administrated with 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-hydrazine (compound #1), another alkylating agent that mimics the chloroethylating action of BCNU. Together with our previous findings, we propose that NO donors may be used as adjunct chemotherapy with alkylating agents for such malignant brain tumors as glioblastoma multiforme (GBM). In contrast, production of NO as a result of iNOS induction, such as that occurring after surgical resection of brain tumors, may compromise the efficacy of carbamoylating chemotherapy.

  3. Increased catalase activity by all-trans retinoic acid and its effect on radiosensitivity in rat glioma cells

    International Nuclear Information System (INIS)

    Jin, Hua; Jeon, Ha Yeun; Park, Woo Yoon; Kim, Won Dong; Ahn, Hee Yul; Yu, Jae Ran

    2005-01-01

    It has been reported that all-trans retinoic acid (ATRA) can inhibit glioma growing in vitro. However, clinical trials with ATRA alone in gliomas revealed modest results. ATRA has been shown to increase radiosensitivity in other tumor types, so combining radiation and ATRA would be one of alternatives to increase therapeutic efficacy in malignant gliomas. Thus, we intended to know the role of catalase, which is induced by ATRA, for radiosensitivity. If radiation-reduced reactive oxygen species (ROS) is removed by catalase, the effect of radiation will be reduced. A rat glioma cell line (36B10) was used for this study. The change of catalase activity and radiosensitivity by ATRA, with or without 3-amino-1, 2, 4-triazole (ATZ), a chemical inhibitor of catalase were measured. Catalase activity was measured by the decomposition of H 2 O 2 spectrophotometrically. Radiosensitivity was measured with clonogenic assay. Also ROS was measured using a 2, 7-dichlorofluores-cein diacetate spectrophotometrically. When 36B10 cells were exposed to 10, 25 and 50 μ M of ATRA for 48 h, the expression of catalase activity were increased with increasing concentration and incubation time of ATRA. Catalase activity was decreased with increasing the concentration of AT (1, 10 mM) dose-dependently. ROS was increased with ATRA and it was augmented with the combination of ATRA and radiation. ATZ decreased ROS production and increased cell survival in combination of ATRA and radiation despite the reduction of catalase. The increase of ROS is one of the reasons for the increased radiosensitivity in combination with ATRA. The catalase that is induced by ATRA doesn't decrease ROS production and radiosensitivity

  4. Patient-specific metrics of invasiveness reveal significant prognostic benefit of resection in a predictable subset of gliomas.

    Directory of Open Access Journals (Sweden)

    Anne L Baldock

    Full Text Available Malignant gliomas are incurable, primary brain neoplasms noted for their potential to extensively invade brain parenchyma. Current methods of clinical imaging do not elucidate the full extent of brain invasion, making it difficult to predict which, if any, patients are likely to benefit from gross total resection. Our goal was to apply a mathematical modeling approach to estimate the overall tumor invasiveness on a patient-by-patient basis and determine whether gross total resection would improve survival in patients with relatively less invasive gliomas.In 243 patients presenting with contrast-enhancing gliomas, estimates of the relative invasiveness of each patient's tumor, in terms of the ratio of net proliferation rate of the glioma cells to their net dispersal rate, were derived by applying a patient-specific mathematical model to routine pretreatment MR imaging. The effect of varying degrees of extent of resection on overall survival was assessed for cohorts of patients grouped by tumor invasiveness.We demonstrate that patients with more diffuse tumors showed no survival benefit (P = 0.532 from gross total resection over subtotal/biopsy, while those with nodular (less diffuse tumors showed a significant benefit (P = 0.00142 with a striking median survival benefit of over eight months compared to sub-totally resected tumors in the same cohort (an 80% improvement in survival time for GTR only seen for nodular tumors.These results suggest that our patient-specific, model-based estimates of tumor invasiveness have clinical utility in surgical decision making. Quantification of relative invasiveness assessed from routinely obtained pre-operative imaging provides a practical predictor of the benefit of gross total resection.

  5. Activation of glioma cells generates immune tolerant NKT cells.

    Science.gov (United States)

    Tang, Bo; Wu, Wei; Wei, Xiaowei; Li, Yang; Ren, Gang; Fan, Wenhai

    2014-12-12

    Therapeutic outcomes of glioma are currently not encouraging. Tumor tolerance plays an important role in the pathogenesis of glioma. It is reported that micro RNAs (miR) are associated with tumor development. This study aims to investigate the role of miR-92a in the development of tolerant natural killer T (NKT) cells. In this study, U87 cells (a human glioma cell line) and primary glioma cells were prepared. The assessment of miR-92a was performed by real time RT-PCR. The expression of interleukin (IL)-10 and IL-6 in NKT cells was evaluated by flow cytometry. Results showed that abundant IL-6(+) IL-10(+) NKT cells were detected in glioma tissue. Cultures of glioma cells and NKT cells induced the expression of IL-6 and IL-10 in NKT cells. Glioma cells expressed miR-92a; the latter played a critical role in the induction of IL-6 and IL-10 expression in NKT cells. The expression of the antitumor molecules, including perforin, Fas ligand, and interferon-γ, was significantly attenuated compared with control NKT cells. The IL-6(+) IL-10(+) NKT cells showed less capability in the induction of apoptosis in glioma cells, but showed the immune suppressor functions on CD8(+) T cell activities. We conclude that glioma-derived miR-92a induces IL-6(+) IL-10(+) NKT cells; this fraction of NKT cells can suppress cytotoxic CD8(+) T cells. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Autophagy involved in resveratrol increased radiosensitivity in glioma stem cells

    International Nuclear Information System (INIS)

    Long Linmei; Zhang Qingqing; Yang Neng; Ji Wenjun; Song Yunzhen; Zhao Jianghu; Liang Zhongqin

    2012-01-01

    Objective: To investigate the effect of Resveratrol combined with X-ray on radiosensitivity in glioma stem cells. Methods: The proliferation inhibition of glioma stem cells induced by X-rays and Resveratrol was assessed with MTT assay. The activation of proapoptotic effect was characterized by Hoechst 33258 stain. MDC stain and Western blot analysis were used to analyze the autophagy mechanism in X-rays-induced death of glioma stem cells. Results: MTT assay indicated that X-rays and Resveratrol decreased the viability of glioma stem cells (P<0.05); we found the proliferative inhibition of glioma stem cells was declined when we used 3-MA to inhibit autophagy(P<0.05). When the cells were treated by the Resveratrol and x-rays, their spherical shape were changed. Apoptosis was induced in glioma stem cells by combined X-rays and Resveratrol as detected by Hoechst 33258 staining. In addition, autophagy was induced in glioma stem cells in the combined treatment group as detected by MDC staining. Western blotting showed that Bcl-2 expression was decreased. in the combined treatment group (P<0.01), and the LC3-Ⅱ expression was increased in the combined treatment group (P<0.01). Conclusion: Resveratrol can increased the radiation sensitivity of glioma stem cells, the apoptosis and autophagy was induced in the glioma stem cells in the combined treatment X-rays and Resveratrol. Our results suggest that autophagy plays an essential role in the regulation of radiosensitization of glioma stem cells. (authors)

  7. Honokiol induces autophagic cell death in malignant glioma through reactive oxygen species-mediated regulation of the p53/PI3K/Akt/mTOR signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chien-Ju [Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan (China); Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan (China); Chen, Ta-Liang [Anesthetics and Toxicology Research Center, Taipei Medical University Hospital, Taipei, Taiwan (China); Department of Anesthesiology, Taipei Medical University Hospital, Taipei, Taiwan (China); Tseng, Yuan-Yun [Department of Neurosurgery, Shuang-Ho Hospital, Taipei Medical University, Taipei, Taiwan (China); Wu, Gong-Jhe [Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan (China); Hsieh, Ming-Hui [Anesthetics and Toxicology Research Center, Taipei Medical University Hospital, Taipei, Taiwan (China); Department of Anesthesiology, Taipei Medical University Hospital, Taipei, Taiwan (China); Lin, Yung-Wei [Brain Disease Research Center, Taipei Medical University Wan-Fang Hospital, Taipei, Taiwan (China); Chen, Ruei-Ming, E-mail: rmchen@tmu.edu.tw [Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan (China); Anesthetics and Toxicology Research Center, Taipei Medical University Hospital, Taipei, Taiwan (China); Brain Disease Research Center, Taipei Medical University Wan-Fang Hospital, Taipei, Taiwan (China); Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan (China)

    2016-08-01

    Honokiol, an active constituent extracted from the bark of Magnolia officinalis, possesses anticancer effects. Apoptosis is classified as type I programmed cell death, while autophagy is type II programmed cell death. We previously proved that honokiol induces cell cycle arrest and apoptosis of U87 MG glioma cells. Subsequently in this study, we evaluated the effect of honokiol on autophagy of glioma cells and examined the molecular mechanisms. Administration of honokiol to mice with an intracranial glioma increased expressions of cleaved caspase 3 and light chain 3 (LC3)-II. Exposure of U87 MG cells to honokiol also induced autophagy in concentration- and time-dependent manners. Results from the addition of 3-methyladenine, an autophagy inhibitor, and rapamycin, an autophagy inducer confirmed that honokiol-induced autophagy contributed to cell death. Honokiol decreased protein levels of PI3K, phosphorylated (p)-Akt, and p-mammalian target of rapamycin (mTOR) in vitro and in vivo. Pretreatment with a p53 inhibitor or transfection with p53 small interfering (si)RNA suppressed honokiol-induced autophagy by reversing downregulation of p-Akt and p-mTOR expressions. In addition, honokiol caused generation of reactive oxygen species (ROS), which was suppressed by the antioxidant, vitamin C. Vitamin C also inhibited honokiol-induced autophagic and apoptotic cell death. Concurrently, honokiol-induced alterations in levels of p-p53, p53, p-Akt, and p-mTOR were attenuated following vitamin C administration. Taken together, our data indicated that honokiol induced ROS-mediated autophagic cell death through regulating the p53/PI3K/Akt/mTOR signaling pathway. - Highlights: • Exposure of mice with intracranial gliomas to honokiol induces cell apoptosis and autophagy. • Honokiol triggers autophagy of human glioma cells via the PISK/AKT/mTOR signaling pathway. • P53 induces autophagy via regulating the AKT/mTOR pathway in honokiol-treated glioma cells. • ROS participates

  8. An immuno-wall microdevice exhibits rapid and sensitive detection of IDH1-R132H mutation specific to grade II and III gliomas

    Science.gov (United States)

    Yamamichi, Akane; Kasama, Toshihiro; Ohka, Fumiharu; Suzuki, Hiromichi; Kato, Akira; Motomura, Kazuya; Hirano, Masaki; Ranjit, Melissa; Chalise, Lushun; Kurimoto, Michihiro; Kondo, Goro; Aoki, Kosuke; Kaji, Noritada; Tokeshi, Manabu; Matsubara, Toshio; Senga, Takeshi; Kaneko, Mika K.; Suzuki, Hidenori; Hara, Masahito; Wakabayashi, Toshihiko; Baba, Yoshinobu; Kato, Yukinari; Natsume, Atsushi

    2016-01-01

    World Health Organization grade II and III gliomas most frequently occur in the central nervous system (CNS) in adults. Gliomas are not circumscribed; tumor edges are irregular and consist of tumor cells, normal brain tissue, and hyperplastic reactive glial cells. Therefore, the tumors are not fully resectable, resulting in recurrence, malignant progression, and eventual death. Approximately 69-80% of grade II and III gliomas harbor mutations in the isocitrate dehydrogenase 1 gene (IDH1), of which 83-90% are found to be the IDH1-R132H mutation. Detection of the IDH1-R132H mutation should help in the differential diagnosis of grade II and III gliomas from other types of CNS tumors and help determine the boundary between the tumor and normal brain tissue. In this study, we established a highly sensitive antibody-based device, referred to as the immuno-wall, to detect the IDH1-R132H mutation in gliomas. The immuno-wall causes an immunoreaction in microchannels fabricated using a photo-polymerizing polymer. This microdevice enables the analysis of the IDH1 status with a small sample within 15 min with substantially high sensitivity. Our results suggested that 10% content of the IDH1-R132H mutation in a sample of 0.33 μl volume, with 500 ng protein, or from 500 cells is theoretically sufficient for the analysis. The immuno-wall device will enable the rapid and highly sensitive detection of the IDH1-R132H mutation in routine clinical practice.

  9. Childhood Brain Stem Glioma Treatment (PDQ®)—Health Professional Version

    Science.gov (United States)

    Childhood brain stem glioma presents as a diffuse intrinsic pontine glioma (DIPG; a fast-growing tumor that is difficult to treat and has a poor prognosis) or a focal glioma (grows more slowly, is easier to treat, and has a better prognosis). Learn about the diagnosis, cellular classification, staging, treatment, and clinical trials for pediatric brain stem glioma in this expert-reviewed summary.

  10. Neuropathologies of the self: clinical and anatomical features.

    Science.gov (United States)

    Feinberg, Todd E

    2011-03-01

    The neuropathologies of the self (NPS) are disorders of the self and identity that occur in association with neuropathology and include perturbations of the bodily, relational, and narrative self. Right, especially medial-frontal and orbitofrontal lesions, are associated with these conditions. The ego disequilibrium theory proposes this brain pathology causes a disturbance of ego boundaries and functions and the emergence of developmentally immature styles of thought, ego functioning, and psychological defenses including denial, projection, splitting, and fantasy that the NPS patient has in common with the child. I hypothesize that during brain development between approximately ages 3 and 7 immature defensive functions and fantasies tend to be replaced by mature defenses and the inhibition of fantasy a process that depends upon maturational processes within the right hemisphere. I propose a four-tiered model of the NPS that emphasizes a multifactorial approach and includes both negative and positive, bottom up and top down, and neuropsychological and psychological factors. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Low intensity ultrasound promotes the sensitivity of rat brain glioma to Doxorubicin by down-regulating the expressions of p-glucoprotein and multidrug resistance protein 1 in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    Full Text Available The overall prognosis for malignant glioma is extremely poor, and treatment options are limited in part because of multidrug resistant proteins. Our previous findings suggest low intensity ultrasound (LIUS can induce apoptosis of glioma cells. Given this finding, we were interested in determining if LIUS could help treat glioma by inhibiting multidrug resistant proteins, and if so, which pathways are involved. In this study, the toxicity sensitivity and multidrug resistance proteins of glioma induced by LIUS were investigated using CCK-8, immunohistochemistry, immunofluorency, and RT-PCR in tissue samples and cultured cells. LIUS inhibited increase of C6 cells in an intensity- and time-dependent manner. The toxicity sensitivity of C6 cells increased significantly after LIUS sonication (intensity of 142.0 mW/cm(2 or Doxorubicin (DOX at different concentration, particularly by the combination of LIUS sonication and DOX. The expressions of P-gp and MRP1 decreased significantly post-sonication at intensity of 142.0 mW/cm(2 both in vitro and in vivo. The expressions of p110 delta (PI3K, NF-κB-p65, Akt/PKB, and p-Akt/PKB were downregulated by LIUS sonication and DOX treatment separately or in combination at the same parameters in rat glioma. These results indicate that LIUS could increase the toxicity sensitivity of glioma by down-regulating the expressions of P-gp and MRP1, which might be mediated by the PI3K/Akt/NF-κB pathway.

  12. miRNA-21 is developmentally regulated in mouse brain and is co-expressed with SOX2 in glioma

    International Nuclear Information System (INIS)

    Põlajeva, Jelena; Swartling, Fredrik J; Jiang, Yiwen; Singh, Umashankar; Pietras, Kristian; Uhrbom, Lene; Westermark, Bengt; Roswall, Pernilla

    2012-01-01

    MicroRNAs (miRNAs) and their role during tumor development have been studied in great detail during the last decade, albeit their expression pattern and regulation during normal development are however not so well established. Previous studies have shown that miRNAs are differentially expressed in solid human tumors. Platelet-derived growth factor (PDGF) signaling is known to be involved in normal development of the brain as well as in malignant primary brain tumors, gliomas, but the complete mechanism is still lacking. We decided to investigate the expression of the oncogenic miR-21 during normal mouse development and glioma, focusing on PDGF signaling as a potential regulator of miR-21. We generated mouse glioma using the RCAS/tv-a system for driving PDGF-BB expression in a cell-specific manner. Expression of miR-21 in mouse cell cultures and mouse brain were assessed using Northern blot analysis and in situ hybridization. Immunohistochemistry and Western blot analysis were used to investigate SOX2 expression. LNA-modified siRNA was used for irreversible depletion of miR-21. For inhibition of PDGF signaling Gleevec (imatinib mesylate), Rapamycin and U0126, as well as siRNA were used. Statistical significance was calculated using double-sided unpaired Student´s t-test. We identified miR-21 to be highly expressed during embryonic and newborn brain development followed by a gradual decrease until undetectable at postnatal day 7 (P7), this pattern correlated with SOX2 expression. Furthermore, miR-21 and SOX2 showed up-regulation and overlapping expression pattern in RCAS/tv-a generated mouse brain tumor specimens. Upon irreversible depletion of miR-21 the expression of SOX2 was strongly diminished in both mouse primary glioma cultures and human glioma cell lines. Interestingly, in normal fibroblasts the expression of miR-21 was induced by PDGF-BB, and inhibition of PDGF signaling in mouse glioma primary cultures resulted in suppression of miR-21 suggesting that mi

  13. In vitro drug response and efflux transporters associated with drug resistance in pediatric high grade glioma and diffuse intrinsic pontine glioma.

    Directory of Open Access Journals (Sweden)

    Susanna J E Veringa

    Full Text Available Pediatric high-grade gliomas (pHGG, including diffuse intrinsic pontine gliomas (DIPG, are the leading cause of cancer-related death in children. While it is clear that surgery (if possible, and radiotherapy are beneficial for treatment, the role of chemotherapy for these tumors is still unclear. Therefore, we performed an in vitro drug screen on primary glioma cells, including three DIPG cultures, to determine drug sensitivity of these tumours, without the possible confounding effect of insufficient drug delivery. This screen revealed a high in vitro cytotoxicity for melphalan, doxorubicine, mitoxantrone, and BCNU, and for the novel, targeted agents vandetanib and bortezomib in pHGG and DIPG cells. We subsequently determined the expression of the drug efflux transporters P-gp, BCRP1, and MRP1 in glioma cultures and their corresponding tumor tissues. Results indicate the presence of P-gp, MRP1 and BCRP1 in the tumor vasculature, and expression of MRP1 in the glioma cells themselves. Our results show that pediatric glioma and DIPG tumors per se are not resistant to chemotherapy. Treatment failure observed in clinical trials, may rather be contributed to the presence of drug efflux transporters that constitute a first line of drug resistance located at the blood-brain barrier or other resistance mechanism. As such, we suggest that alternative ways of drug delivery may offer new possibilities for the treatment of pediatric high-grade glioma patients, and DIPG in particular.

  14. The global DNA methylation surrogate LINE-1 methylation is correlated with MGMT promoter methylation and is a better prognostic factor for glioma.

    Directory of Open Access Journals (Sweden)

    Fumiharu Ohka

    Full Text Available Gliomas are the most frequently occurring primary brain tumor in the central nervous system of adults. Glioblastoma multiformes (GBMs, WHO grade 4 have a dismal prognosis despite the use of the alkylating agent, temozolomide (TMZ, and even low grade gliomas (LGGs, WHO grade 2 eventually transform to malignant secondary GBMs. Although GBM patients benefit from promoter hypermethylation of the O(6-methylguanine-DNA methyltransferase (MGMT that is the main determinant of resistance to TMZ, recent studies suggested that MGMT promoter methylation is of prognostic as well as predictive significance for the efficacy of TMZ. Glioma-CpG island methylator phenotype (G-CIMP in the global genome was shown to be a significant predictor of improved survival in patients with GBM. Collectively, we hypothesized that MGMT promoter methylation might reflect global DNA methylation. Additionally in LGGs, the significance of MGMT promoter methylation is still undetermined. In the current study, we aimed to determine the correlation between clinical, genetic, and epigenetic profiles including LINE-1 and different cancer-related genes and the clinical outcome in newly diagnosed 57 LGG and 54 GBM patients. Here, we demonstrated that (1 IDH1/2 mutation is closely correlated with MGMT promoter methylation and 1p/19q codeletion in LGGs, (2 LINE-1 methylation levels in primary and secondary GBMs are lower than those in LGGs and normal brain tissues, (3 LINE-1 methylation is proportional to MGMT promoter methylation in gliomas, and (4 higher LINE-1 methylation is a favorable prognostic factor in primary GBMs, even compared to MGMT promoter methylation. As a global DNA methylation marker, LINE-1 may be a promising marker in gliomas.

  15. Novel drugs in pediatric gliomas

    OpenAIRE

    Zhang, Dongli; Liu, Xiaoming; Fan, Conghai; Chen, Jiao

    2017-01-01

    Astrocytomas (gliomas) are the most common primary brain tumors among adults and second most frequent neoplasm among children. New ideas and novel approaches are being explored world over with aim to devise better management strategeies for this deadly pathological state. We searched the electronic database PubMed for pre-clinical as well as clinical controlled trials reporting importance of various therapeutic drugs against gliomas. It was observed clearly that this approach of using therape...

  16. Histone deacetylase inhibitor, 2-propylpentanoic acid, increases the chemosensitivity and radiosensitivity of human glioma cell lines in vitro

    Institute of Scientific and Technical Information of China (English)

    SHAO Cui-jie; WU Ming-wei; CHEN Fu-rong; LI Cong; XIA Yun-fei; CHEN Zhong-ping

    2012-01-01

    Background Treatment for malignant glioma generally consists of cytoreductive surgery followed by radiotherapy and chemotherapy.In this study,we intended to investigate the effects of 2-propylpentanoic acid (VPA),a histone deacetylase inhibitor,on chemosensitivity and radiosensitivity in human glioma cell lines.Methods Human glioma cell lines,T98-G,and SF295,were treated with temozolomide (TMZ) or irradiation (IR),with or without VPA (1.0 mmol/L).Then,cytotoxicity and clonogenic survival assay was performed.Cell cycle stage,apoptosis,and autophagy were also detected using flow cytometry and dansyl monocadaverin (MDC) incorporation assay.One-way analysis of variance (ANOVA) and t-test were used to analyze the differences among variant groups.Results Mild cytotoxicity of VPA was revealed in both cell lines,T98-G and SF295,with the 50% inhibiting concentration (IC50) value of (3.85±0.58) mmol/L and (2.15±0.38) mmol/L,respectively; while the IC50 value of TMZ was (0.20±0.09) mmol/L for T98-G and (0.08±0.02) mmol/L for SF295.Moreover,if combined with VPA (1.0 mmol/L) for 96hours,the sensitivity of glioma cells to TMZ was significant increased (P <0.05).The surviving fractions at 2 Gy (SF2) of T98-G and SF295 cells exposed to IR alone were 0.52 and 0.58.However,when VPA was combined with IR,the SF2 of T98-G and SF295 dropped to 0.39 (P=0.047) and 0.49 (P=-0.049),respectively.Treatment with VPA plus TMZ or IR also resulted in a significant decrease in the proportion of cells in the G2 phase and increased apoptotic rates as well as autophagy in T98-G and SF295 cell lines (P <0.01).Conclusion VPA may enhance the activities of TMZ and IR on glioma cells possibly through cell cycle block and promote autophagy,and thus could be a potential sensitizer of glioma treatment.

  17. Mechanisms of Glioma Formation: Iterative Perivascular Glioma Growth and Invasion Leads to Tumor Progression, VEGF-Independent Vascularization, and Resistance to Antiangiogenic Therapy

    Directory of Open Access Journals (Sweden)

    Gregory J. Baker

    2014-07-01

    Full Text Available As glioma cells infiltrate the brain they become associated with various microanatomic brain structures such as blood vessels, white matter tracts, and brain parenchyma. How these distinct invasion patterns coordinate tumor growth and influence clinical outcomes remain poorly understood. We have investigated how perivascular growth affects glioma growth patterning and response to antiangiogenic therapy within the highly vascularized brain. Orthotopically implanted rodent and human glioma cells are shown to commonly invade and proliferate within brain perivascular space. This form of brain tumor growth and invasion is also shown to characterize de novo generated endogenous mouse brain tumors, biopsies of primary human glioblastoma (GBM, and peripheral cancer metastasis to the human brain. Perivascularly invading brain tumors become vascularized by normal brain microvessels as individual glioma cells use perivascular space as a conduit for tumor invasion. Agent-based computational modeling recapitulated biological perivascular glioma growth without the need for neoangiogenesis. We tested the requirement for neoangiogenesis in perivascular glioma by treating animals with angiogenesis inhibitors bevacizumab and DC101. These inhibitors induced the expected vessel normalization, yet failed to reduce tumor growth or improve survival of mice bearing orthotopic or endogenous gliomas while exacerbating brain tumor invasion. Our results provide compelling experimental evidence in support of the recently described failure of clinically used antiangiogenics to extend the overall survival of human GBM patients.

  18. Interleukin-13 conjugated quantum dots for identification of glioma initiating cells and their extracellular vesicles.

    Science.gov (United States)

    Madhankumar, A B; Mrowczynski, Oliver D; Patel, Suhag R; Weston, Cody L; Zacharia, Brad E; Glantz, Michael J; Siedlecki, Christopher A; Xu, Li-Chong; Connor, James R

    2017-08-01

    Cadmium selenide (CdSe) based quantum dots modified with polyethylene glycol and chemically linked to interleukin-13 (IL13) were prepared with the aim of identifying the high affinity receptor (IL13Rα2) which is expressed in glioma stem cells and exosomes secreted by these cancer stem cells. IL13 conjugated quantum dots (IL13QD) were thoroughly characterized for their physicochemical properties including particle size and surface morphology. Furthermore, the specific binding of the IL13QD to glioma cells and to glioma stem cells (GSC) was verified using a competitive binding study. The exosomes were isolated from the GSC conditioned medium and the expression of IL13Rα2 in the GSC and exosomes was verified. The binding property of IL13QD to the tumor associated exosomes was initially confirmed by transmission electron microscopy. The force of attraction between the quantum dots and U251 glioma cells and the exosomes was investigated by atomic force microscopy, which indicated a higher force of binding interaction between the IL13QD and IL13Rα2 expressing glioma cells and exosomes secreted by glioma stem cells. Flow cytometry of the IL13QD and exosomes from the culture media and cerebrospinal fluid (CSF) of patients with glioma tumors indicated a distinctly populated complex pattern different from that of non-targeted quantum dots and bovine serum albumin (BSA) conjugated quantum dots confirming specific binding potential of the IL13QD to the tumor associated exosomes. The results of this study demonstrate that IL13QD can serve as an ex vivo marker for glioma stem cells and exosomes that can inform diagnosis and prognosis of patients harboring malignant disease. Functionalized quantum dots are flexible semiconductor nanomaterials which have an immense application in biomedical research. In particular, when they are functionalized with biomolecules like proteins or antibodies, they have the specialized ability to detect the expression of receptors and antigens in

  19. A Novel Candidate Molecule in Pathological Grading Of Gliomas: ELABELA.

    Science.gov (United States)

    Artas, Gokhan; Ozturk, Sait; Kuloglu, Tuncay; Dagli, Adile Ferda; Gonen, Murat; Artas, Hakan; Aydin, Suleyman; Erol, Fatih Serhat

    2018-04-06

    This study aimed to investigate the possible role of ELABELA (ELA) in the histopathological grading of gliomas. We retrospectively assessed pathological specimens of patients who underwent surgery for intracranial space-occupying lesions. Only primary glioma specimens were included in this study. We enrolled 11 patients histologically diagnosed with low-grade glioma and 22 patients with high-grade glioma. The ELA antibody was applied to 4-6-µm-thick sections obtained from paraffin blocks. Histoscores were calculated using the distribution and intensity of staining immunoreactivity. An independent sample t-test was used for two-point inter-group assessments, whereas one-way analysis of variance was used for the other assessments. P 0.05 was considered statistically significant. The histoscores of the control brain, low-grade glioma, and high-grade glioma tissues were found to be 0.08, 0.37, and 0.92, respectively. The difference in ELA immunoreactivity between the control brain tissue and glioma tissue was statistically significant (p 0.05). In addition, a statistically significant increase was observed in ELA immunoreactivity in high-grade glioma tissues compared with that in low-grade glioma tissues (p 0.05). ELA has an angiogenetic role in the progression of glial tumors. ELA, which is an endogenous ligand of the apelin receptor, activates the apelinergic system and causes the progression of glial tumors. Further studies with a large number of patients are necessary to investigate the angiogenetic role of ELA in glial tumors.

  20. Fighting fire with fire: the revival of thermotherapy for gliomas.

    Science.gov (United States)

    Lee Titsworth, William; Murad, Greg J A; Hoh, Brian L; Rahman, Maryam

    2014-02-01

    In 1891, an orthopedic surgeon in New York noted the disappearance of an inoperable sarcoma in a patient after a febrile illness. This observation resulted in experiments assessing the utility of heat therapy or thermotherapy for the treatment of cancer. While it initially fell from favor, thermotherapy has recently made a resurgence, sparking investigations into its anticancer properties. This therapy is especially attractive for glioblastoma multiforme (GBM) which is difficult to target due to the blood-brain barrier and recalcitrant to treatment. Here we briefly review the history of thermotherapy and then more methodically present the current literature as it relates to central nervous system malignancies. Recent developments show that heat is preferentially cytotoxic to tumor cells and induces cellular pathways which result in apoptotic and non-apoptotic death. Techniques to induce hyperthermia include regional hyperthermia by water bath, focused ultrasound, radiofrequency microwaves, laser-induced interstitial thermotherapy, and magnetic energy. The recent revival of these therapeutic approaches and their preliminary outcomes in the treatment of GBM is reviewed. From bacterial toxins to infusion of magnetic nanoparticles, hyperthermia has the potential to be an effective and easy-to-execute adjuvant therapy for GBM. Hyperthermia for GBM is a promising therapy as part of a growing armamentarium for malignant glioma treatment.