WorldWideScience

Sample records for male voxel model

  1. Development of realistic high-resolution whole-body voxel models of Japanese adult males and females of average height and weight, and application of models to radio-frequency electromagnetic-field dosimetry

    International Nuclear Information System (INIS)

    Nagaoka, Tomoaki; Watanabe, Soichi; Sakurai, Kiyoko; Kunieda, Etsuo; Watanabe, Satoshi; Taki, Masao; Yamanaka, Yukio

    2004-01-01

    With advances in computer performance, the use of high-resolution voxel models of the entire human body has become more frequent in numerical dosimetries of electromagnetic waves. Using magnetic resonance imaging, we have developed realistic high-resolution whole-body voxel models for Japanese adult males and females of average height and weight. The developed models consist of cubic voxels of 2 mm on each side; the models are segmented into 51 anatomic regions. The adult female model is the first of its kind in the world and both are the first Asian voxel models (representing average Japanese) that enable numerical evaluation of electromagnetic dosimetry at high frequencies of up to 3 GHz. In this paper, we will also describe the basic SAR characteristics of the developed models for the VHF/UHF bands, calculated using the finite-difference time-domain method

  2. Voxel-based models representing the male and female ICRP reference adult - the skeleton

    International Nuclear Information System (INIS)

    Zankl, M.; Eckerman, K.F.; Bolch, W.E.

    2007-01-01

    For the forthcoming update of organ dose conversion coefficients, the International Commission on Radiological Protection (ICRP) will use voxel-based computational phantoms due to their improved anatomical realism compared with the class of mathematical or stylized phantoms used previously. According to the ICRP philosophy, these phantoms should be representative of the male and female reference adults with respect to their external dimensions, their organ topology and their organ masses. To meet these requirements, reference models of an adult male and adult female have been constructed at the GSF, based on existing voxel models segmented from tomographic images of two individuals whose body height and weight closely resemble the ICRP Publication 89 reference values. The skeleton is a highly complex structure of the body, composed of cortical bone, trabecular bone, red and yellow bone marrow and endosteum ('bone surfaces' in their older terminology). The skeleton of the reference phantoms consists of 19 individually segmented bones and bone groups. Sub-division of these bones into the above-mentioned constituents would be necessary in order to allow a direct calculation of dose to red bone marrow and endosteum. However, the dimensions of the trabeculae, the cavities containing bone marrow and the endosteum layer lining these cavities are clearly smaller than the resolution of a normal CT scan and, thus, these volumes could not be segmented in the tomographic images. As an attempt to represent the gross spatial distribution of these regions as realistically as possible at the given voxel resolution, 48 individual organ identification numbers were assigned to various parts of the skeleton: every segmented bone was subdivided into an outer shell of cortical bone and a spongious core; in the shafts of the long bones, a medullary cavity was additionally segmented. Using the data from ICRP Publication 89 on elemental tissue composition, from ICRU Report 46 on material

  3. HDRK-Man: a whole-body voxel model based on high-resolution color slice images of a Korean adult male cadaver

    International Nuclear Information System (INIS)

    Kim, Chan Hyeong; Jeong, Jong Hwi; Choi, Sang Hyoun; Lee, Choonsik; Chung, Min Suk

    2008-01-01

    A Korean voxel model, named 'High-Definition Reference Korean-Man (HDRK-Man)', was constructed using high-resolution color photographic images that were obtained by serially sectioning the cadaver of a 33-year-old Korean adult male. The body height and weight, the skeletal mass and the dimensions of the individual organs and tissues were adjusted to the reference Korean data. The resulting model was then implemented into a Monte Carlo particle transport code, MCNPX, to calculate the dose conversion coefficients for the internal organs and tissues. The calculated values, overall, were reasonable in comparison with the values from other adult voxel models. HDRK-Man showed higher dose conversion coefficients than other models, due to the facts that HDRK-Man has a smaller torso and that the arms of HDRK-Man are shifted backward. The developed model is believed to adequately represent average Korean radiation workers and thus can be used for more accurate calculation of dose conversion coefficients for Korean radiation workers in the future

  4. HDRK-Man: a whole-body voxel model based on high-resolution color slice images of a Korean adult male cadaver

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Hyeong; Jeong, Jong Hwi [Department of Nuclear Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Choi, Sang Hyoun [Department of radiation oncology, Inha University, 7-206, 3-ga, Shinheumg-dong, Jung-gu, Incheon, 400-711 (Korea, Republic of); Lee, Choonsik [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Chung, Min Suk [Department of Anatomy, Ajou University School of Medicine, San 5 Wonchon-dong, Yeongtong-gu, Suwon 443-749 (Korea, Republic of)], E-mail: chkim@hanyang.ac.kr

    2008-08-07

    A Korean voxel model, named 'High-Definition Reference Korean-Man (HDRK-Man)', was constructed using high-resolution color photographic images that were obtained by serially sectioning the cadaver of a 33-year-old Korean adult male. The body height and weight, the skeletal mass and the dimensions of the individual organs and tissues were adjusted to the reference Korean data. The resulting model was then implemented into a Monte Carlo particle transport code, MCNPX, to calculate the dose conversion coefficients for the internal organs and tissues. The calculated values, overall, were reasonable in comparison with the values from other adult voxel models. HDRK-Man showed higher dose conversion coefficients than other models, due to the facts that HDRK-Man has a smaller torso and that the arms of HDRK-Man are shifted backward. The developed model is believed to adequately represent average Korean radiation workers and thus can be used for more accurate calculation of dose conversion coefficients for Korean radiation workers in the future.

  5. A software tool for modification of human voxel models used for application in radiation protection

    International Nuclear Information System (INIS)

    Becker, Janine; Zankl, Maria; Petoussi-Henss, Nina

    2007-01-01

    This note describes a new software tool called 'VolumeChange' that was developed to modify the masses and location of organs of virtual human voxel models. A voxel model is a three-dimensional representation of the human body in the form of an array of identification numbers that are arranged in slices, rows and columns. Each entry in this array represents a voxel; organs are represented by those voxels having the same identification number. With this tool, two human voxel models were adjusted to fit the reference organ masses of a male and a female adult, as defined by the International Commission on Radiological Protection (ICRP). The alteration of an already existing voxel model is a complicated process, leading to many problems that have to be solved. To solve those intricacies in an easy way, a new software tool was developed and is presented here. If the organs are modified, no bit of tissue, i.e. voxel, may vanish nor should an extra one appear. That means that organs cannot be modified without considering the neighbouring tissue. Thus, the principle of organ modification is based on the reassignment of voxels from one organ/tissue to another; actually deleting and adding voxels is only possible at the external surface, i.e. skin. In the software tool described here, the modifications are done by semi-automatic routines but including human control. Because of the complexity of the matter, a skilled person has to validate that the applied changes to organs are anatomically reasonable. A graphical user interface was designed to fulfil the purpose of a comfortable working process, and an adequate graphical display of the modified voxel model was developed. Single organs, organ complexes and even whole limbs can be edited with respect to volume, shape and location. (note)

  6. Computational voxel phantom, associated to anthropometric and anthropomorphic real phantom for dosimetry in human male pelvis radiotherapy

    International Nuclear Information System (INIS)

    Silva, Cleuza Helena Teixeira; Campos, Tarcisio Passos Ribeiro de

    2005-01-01

    This paper addresses a computational model of voxels through MCNP5 Code and the experimental development of an anthropometric and anthropomorphic phantom for dosimetry in human male pelvis brachytherapy focusing prostatic tumors. For elaboration of the computational model of the human male pelvis, anatomical section images from the Visible Man Project were applied. Such selected and digital images were associated to a numeric representation, one for each section. Such computational representation of the anatomical sections was transformed into a bi-dimensional mesh of equivalent tissue. The group of bidimensional meshes was concatenated forming the three-dimensional model of voxels to be used by the MCNP5 code. In association to the anatomical information, data from the density and chemical composition of the basic elements, representatives of the organs and involved tissues, were setup in a material database for the MCNP-5. The model will be applied for dosimetric evaluations in situations of irradiation of the human masculine pelvis. Such 3D model of voxel is associated to the code of transport of particles MCNP5, allowing future simulations. It was also developed the construction of human masculine pelvis phantom, based on anthropometric and anthropomorphic dates and in the use of representative equivalent tissues of the skin, fatty, muscular and glandular tissue, as well as the bony structure.This part of work was developed in stages, being built the bony cast first, later the muscular structures and internal organs. They were then jointly mounted and inserted in the skin cast. The representative component of the fatty tissue was incorporate and accomplished the final retouchings in the skin. The final result represents the development of two important essential tools for elaboration of computational and experimental dosimetry. Thus, it is possible its use in calibrations of pre-existent protocols in radiotherapy, as well as for tests of new protocols, besides

  7. A visual LISP program for voxelizing AutoCAD solid models

    Science.gov (United States)

    Marschallinger, Robert; Jandrisevits, Carmen; Zobl, Fritz

    2015-01-01

    AutoCAD solid models are increasingly recognized in geological and geotechnical 3D modeling. In order to bridge the currently existing gap between AutoCAD solid models and the grid modeling realm, a Visual LISP program is presented that converts AutoCAD solid models into voxel arrays. Acad2Vox voxelizer works on a 3D-model that is made up of arbitrary non-overlapping 3D-solids. After definition of the target voxel array geometry, 3D-solids are scanned at grid positions and properties are streamed to an ASCII output file. Acad2Vox has a novel voxelization strategy that combines a hierarchical reduction of sampling dimensionality with an innovative use of AutoCAD-specific methods for a fast and memory-saving operation. Acad2Vox provides georeferenced, voxelized analogs of 3D design data that can act as regions-of-interest in later geostatistical modeling and simulation. The Supplement includes sample geological solid models with instructions for practical work with Acad2Vox.

  8. Development of Japanese voxel models and their application to organ dose calculation

    International Nuclear Information System (INIS)

    Sato, Kaoru; Endo, Akira; Saito, Kimiaki

    2007-01-01

    Three Japanese voxel (volume pixel) phantoms in supine and upright postures, which are consisted of about 1 mm 3 size voxels, have been developed on the basis of computed tomography (CT) images of healthy Japanese adult male and female volunteers. Their body structures are reproduced more realistically in comparison with most existing voxel phantoms. Organ doses due to internal or external exposures were calculated using the developed phantoms. In estimation of radiation dose from radionuclides incorporated into body, specific absorbed fractions (SAFs) for low energy photon were significantly influenced by the changes in postures. In estimation of organ doses due to external exposures, the doses of some organs of the developed phantom were calculated and were compared with those of a previous Japanese voxel phantom (voxel size: 0.98x0.98x10 mm 3 ) and the reference values of ICRP Publication 74. (author)

  9. Voxel inversion of airborne electromagnetic data for improved model integration

    Science.gov (United States)

    Fiandaca, Gianluca; Auken, Esben; Kirkegaard, Casper; Vest Christiansen, Anders

    2014-05-01

    Inversion of electromagnetic data has migrated from single site interpretations to inversions including entire surveys using spatial constraints to obtain geologically reasonable results. Though, the model space is usually linked to the actual observation points. For airborne electromagnetic (AEM) surveys the spatial discretization of the model space reflects the flight lines. On the contrary, geological and groundwater models most often refer to a regular voxel grid, not correlated to the geophysical model space, and the geophysical information has to be relocated for integration in (hydro)geological models. We have developed a new geophysical inversion algorithm working directly in a voxel grid disconnected from the actual measuring points, which then allows for informing directly geological/hydrogeological models. The new voxel model space defines the soil properties (like resistivity) on a set of nodes, and the distribution of the soil properties is computed everywhere by means of an interpolation function (e.g. inverse distance or kriging). Given this definition of the voxel model space, the 1D forward responses of the AEM data are computed as follows: 1) a 1D model subdivision, in terms of model thicknesses, is defined for each 1D data set, creating "virtual" layers. 2) the "virtual" 1D models at the sounding positions are finalized by interpolating the soil properties (the resistivity) in the center of the "virtual" layers. 3) the forward response is computed in 1D for each "virtual" model. We tested the new inversion scheme on an AEM survey carried out with the SkyTEM system close to Odder, in Denmark. The survey comprises 106054 dual mode AEM soundings, and covers an area of approximately 13 km X 16 km. The voxel inversion was carried out on a structured grid of 260 X 325 X 29 xyz nodes (50 m xy spacing), for a total of 2450500 inversion parameters. A classical spatially constrained inversion (SCI) was carried out on the same data set, using 106054

  10. Computational voxel phantom, associated to anthropometric and anthropomorphic real phantom for dosimetry in human male pelvis radiotherapy; Fantoma computacional de voxel, associado a fantoma real antropomorfico antropometrico, para dosimetria em radioterapia de pelve masculina

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cleuza Helena Teixeira; Campos, Tarcisio Passos Ribeiro de [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Programa de Pos-graduacao em Ciencias e Tecnicas Nucleares]. E-mail: campos@nuclear.ufmg.br

    2005-07-01

    This paper addresses a computational model of voxels through MCNP5 Code and the experimental development of an anthropometric and anthropomorphic phantom for dosimetry in human male pelvis brachytherapy focusing prostatic tumors. For elaboration of the computational model of the human male pelvis, anatomical section images from the Visible Man Project were applied. Such selected and digital images were associated to a numeric representation, one for each section. Such computational representation of the anatomical sections was transformed into a bi-dimensional mesh of equivalent tissue. The group of bidimensional meshes was concatenated forming the three-dimensional model of voxels to be used by the MCNP5 code. In association to the anatomical information, data from the density and chemical composition of the basic elements, representatives of the organs and involved tissues, were setup in a material database for the MCNP-5. The model will be applied for dosimetric evaluations in situations of irradiation of the human masculine pelvis. Such 3D model of voxel is associated to the code of transport of particles MCNP5, allowing future simulations. It was also developed the construction of human masculine pelvis phantom, based on anthropometric and anthropomorphic dates and in the use of representative equivalent tissues of the skin, fatty, muscular and glandular tissue, as well as the bony structure.This part of work was developed in stages, being built the bony cast first, later the muscular structures and internal organs. They were then jointly mounted and inserted in the skin cast. The representative component of the fatty tissue was incorporate and accomplished the final retouchings in the skin. The final result represents the development of two important essential tools for elaboration of computational and experimental dosimetry. Thus, it is possible its use in calibrations of pre-existent protocols in radiotherapy, as well as for tests of new protocols, besides

  11. MicroCT-Based Skeletal Models for Use in Tomographic Voxel Phantoms for Radiological Protection

    International Nuclear Information System (INIS)

    Bolch, Wesley

    2010-01-01

    The University of Florida (UF) proposes to develop two high-resolution image-based skeletal dosimetry models for direct use by ICRP Committee 2's Task Group on Dose Calculation in their forthcoming Reference Voxel Male (RVM) and Reference Voxel Female (RVF) whole-body dosimetry phantoms. These two phantoms are CT-based, and thus do not have the image resolution to delineate and perform radiation transport modeling of the individual marrow cavities and bone trabeculae throughout their skeletal structures. Furthermore, new and innovative 3D microimaging techniques will now be required for the skeletal tissues following Committee 2's revision of the target tissues of relevance for radiogenic bone cancer induction. This target tissue had been defined in ICRP Publication 30 as a 10-(micro)m cell layer on all bone surfaces of trabecular and cortical bone. The revised target tissue is now a 50-(micro)m layer within the marrow cavities of trabecular bone only and is exclusive of the marrow adipocytes. Clearly, this new definition requires the use of 3D microimages of the trabecular architecture not available from past 2D optical studies of the adult skeleton. With our recent acquisition of two relatively young cadavers (males of age 18-years and 40-years), we will develop a series of reference skeletal models that can be directly applied to (1) the new ICRP reference voxel man and female phantoms developed for the ICRP, and (2) pediatric phantoms developed to target the ICRP reference children. Dosimetry data to be developed will include absorbed fractions for internal beta and alpha-particle sources, as well as photon and neutron fluence-to-dose response functions for direct use in external dosimetry studies of the ICRP reference workers and members of the general public

  12. MicroCT-Based Skeletal Models for Use in Tomographic Voxel Phantoms for Radiological Protection

    Energy Technology Data Exchange (ETDEWEB)

    Bolch, Wesley [Univ. of Florida, Gainesville, FL (United States)

    2010-03-30

    The University of Florida (UF) proposes to develop two high-resolution image-based skeletal dosimetry models for direct use by ICRP Committee 2’s Task Group on Dose Calculation in their forthcoming Reference Voxel Male (RVM) and Reference Voxel Female (RVF) whole-body dosimetry phantoms. These two phantoms are CT-based, and thus do not have the image resolution to delineate and perform radiation transport modeling of the individual marrow cavities and bone trabeculae throughout their skeletal structures. Furthermore, new and innovative 3D microimaging techniques will now be required for the skeletal tissues following Committee 2’s revision of the target tissues of relevance for radiogenic bone cancer induction. This target tissue had been defined in ICRP Publication 30 as a 10-μm cell layer on all bone surfaces of trabecular and cortical bone. The revised target tissue is now a 50-μm layer within the marrow cavities of trabecular bone only and is exclusive of the marrow adipocytes. Clearly, this new definition requires the use of 3D microimages of the trabecular architecture not available from past 2D optical studies of the adult skeleton. With our recent acquisition of two relatively young cadavers (males of age 18-years and 40-years), we will develop a series of reference skeletal models that can be directly applied to (1) the new ICRP reference voxel man and female phantoms developed for the ICRP, and (2) pediatric phantoms developed to target the ICRP reference children. Dosimetry data to be developed will include absorbed fractions for internal beta and alpha-particle sources, as well as photon and neutron fluence-to-dose response functions for direct use in external dosimetry studies of the ICRP reference workers and members of the general public

  13. Hybrid computational phantoms of the male and female newborn patient: NURBS-based whole-body models

    International Nuclear Information System (INIS)

    Lee, Choonsik; Lodwick, Daniel; Hasenauer, Deanna; Williams, Jonathan L; Lee, Choonik; Bolch, Wesley E

    2007-01-01

    phantom is performed in three steps: polygonization of the voxel phantom, organ modeling via NURBS surfaces and phantom voxelization. Two 3D graphic tools, 3D-DOCTOR(TM) and Rhinoceros(TM), were utilized to polygonize the newborn voxel phantom and generate NURBS surfaces, while an in-house MATLAB(TM) code was used to voxelize the resulting NURBS model into a final computational phantom ready for use in Monte Carlo radiation transport calculations. A total of 126 anatomical organ and tissue models, including 38 skeletal sites and 31 cartilage sites, were described within the hybrid phantom using either NURBS or polygon surfaces. A male hybrid newborn phantom was constructed following the development of the female phantom through the replacement of female-specific organs with male-specific organs. The outer body contour and internal anatomy of the NURBS-based phantoms were adjusted to match anthropometric and reference newborn data reported by the International Commission on Radiological Protection in their Publication 89. The voxelization process was designed to accurately convert NURBS models to a voxel phantom with minimum volumetric change. A sensitivity study was additionally performed to better understand how the meshing tolerance and voxel resolution would affect volumetric changes between the hybrid-NURBS and hybrid-voxel phantoms. The male and female hybrid-NURBS phantoms were constructed in a manner so that all internal organs approached their ICRP reference masses to within 1%, with the exception of the skin (-6.5% relative error) and brain (-15.4% relative error). Both hybrid-voxel phantoms were constructed with an isotropic voxel resolution of 0.663 mm-equivalent to the ICRP 89 reference thickness of the newborn skin (dermis and epidermis). Hybrid-NURBS phantoms used to create their voxel counterpart retain the non-uniform scalability of stylized phantoms, while maintaining the anatomic realism of segmented voxel phantoms with respect to organ shape, depth and

  14. VoxelStats: A MATLAB Package for Multi-Modal Voxel-Wise Brain Image Analysis.

    Science.gov (United States)

    Mathotaarachchi, Sulantha; Wang, Seqian; Shin, Monica; Pascoal, Tharick A; Benedet, Andrea L; Kang, Min Su; Beaudry, Thomas; Fonov, Vladimir S; Gauthier, Serge; Labbe, Aurélie; Rosa-Neto, Pedro

    2016-01-01

    In healthy individuals, behavioral outcomes are highly associated with the variability on brain regional structure or neurochemical phenotypes. Similarly, in the context of neurodegenerative conditions, neuroimaging reveals that cognitive decline is linked to the magnitude of atrophy, neurochemical declines, or concentrations of abnormal protein aggregates across brain regions. However, modeling the effects of multiple regional abnormalities as determinants of cognitive decline at the voxel level remains largely unexplored by multimodal imaging research, given the high computational cost of estimating regression models for every single voxel from various imaging modalities. VoxelStats is a voxel-wise computational framework to overcome these computational limitations and to perform statistical operations on multiple scalar variables and imaging modalities at the voxel level. VoxelStats package has been developed in Matlab(®) and supports imaging formats such as Nifti-1, ANALYZE, and MINC v2. Prebuilt functions in VoxelStats enable the user to perform voxel-wise general and generalized linear models and mixed effect models with multiple volumetric covariates. Importantly, VoxelStats can recognize scalar values or image volumes as response variables and can accommodate volumetric statistical covariates as well as their interaction effects with other variables. Furthermore, this package includes built-in functionality to perform voxel-wise receiver operating characteristic analysis and paired and unpaired group contrast analysis. Validation of VoxelStats was conducted by comparing the linear regression functionality with existing toolboxes such as glim_image and RMINC. The validation results were identical to existing methods and the additional functionality was demonstrated by generating feature case assessments (t-statistics, odds ratio, and true positive rate maps). In summary, VoxelStats expands the current methods for multimodal imaging analysis by allowing the

  15. Construction of a voxel model from CT images with density derived from CT numbers

    International Nuclear Information System (INIS)

    Cheng Mengyun; Zeng Qin; Cao Ruifen; Li Gui; Zheng Huaqing; Huang Shanqing; Song Gang; Wu Yican

    2010-01-01

    The voxel models representing human anatomy have been developed to calculate dose distribution in human body, while the density is the most important physical property of voxel model. Traditionally, when creating the Monte Carlo input files, the average tissue parameters recommended in ICRP report were used to assign each voxel in the existing voxel models. However, as each tissue consists of many voxels in which voxels are different in their densities, the method of assigning average tissue parameters doesn't take account of the voxel's discrepancy, and can't represent human anatomy faithfully. To represent human anatomy more faithfully, a method was implemented to assign each voxel, the density of which was derived from CT number. In order to compare with the traditional method, we have constructed two models from a same cadaver specimen date set. A CT-based pelvic voxel model called Pelvis-CT model, was constructed, the densities of which were derived from the CT numbers. A color photograph-based pelvic voxel model called Pelvis-Photo model, was also constructed, the densities of which were taken from ICRP Publication. The CT images and color photographs were obtained from the same female cadaver specimen. The Pelvis-CT and Pelvis-Photo models were ported into Monte Carlo code MCNP to calculate the conversion coefficients from kerma free-in-air to absorbed dose for external monoenergetic photon beams with energies of 0.1, 1 and 10 MeV under anterior-posterior (AP) geometries. The results were compared with those of given in ICRP74. Differences of up to 50% were observed between conversion coefficients of Pelvis-CT and Pelvis-Photo models, moreover the discrepancies decreased for the photon beams with higher energies. The overall trend of conversion coefficients of the Pelvis-CT model were agreed well with that of ICRP74 data. (author)

  16. A Corner-Point-Grid-Based Voxelization Method for Complex Geological Structure Model with Folds

    Science.gov (United States)

    Chen, Qiyu; Mariethoz, Gregoire; Liu, Gang

    2017-04-01

    3D voxelization is the foundation of geological property modeling, and is also an effective approach to realize the 3D visualization of the heterogeneous attributes in geological structures. The corner-point grid is a representative data model among all voxel models, and is a structured grid type that is widely applied at present. When carrying out subdivision for complex geological structure model with folds, we should fully consider its structural morphology and bedding features to make the generated voxels keep its original morphology. And on the basis of which, they can depict the detailed bedding features and the spatial heterogeneity of the internal attributes. In order to solve the shortage of the existing technologies, this work puts forward a corner-point-grid-based voxelization method for complex geological structure model with folds. We have realized the fast conversion from the 3D geological structure model to the fine voxel model according to the rule of isocline in Ramsay's fold classification. In addition, the voxel model conforms to the spatial features of folds, pinch-out and other complex geological structures, and the voxels of the laminas inside a fold accords with the result of geological sedimentation and tectonic movement. This will provide a carrier and model foundation for the subsequent attribute assignment as well as the quantitative analysis and evaluation based on the spatial voxels. Ultimately, we use examples and the contrastive analysis between the examples and the Ramsay's description of isoclines to discuss the effectiveness and advantages of the method proposed in this work when dealing with the voxelization of 3D geologic structural model with folds based on corner-point grids.

  17. Construction of a voxel model from CT images with density derived from CT numbers

    International Nuclear Information System (INIS)

    Cheng Mengyun; Zeng Qin; Cao Ruifen; Li Gui; Zheng Huaqing; Huang Shanqing; Song Gang; Wu Yican

    2011-01-01

    The voxel models representing human anatomy have been developed to calculate dose distribution in human body, while the density and elemental composition are the most important physical properties of voxel model. Usually, when creating the Monte Carlo input files, the average tissue densities recommended in ICRP Publication were used to assign each voxel in the existing voxel models. As each tissue consists of many voxels with different densities, the conventional method of average tissue densities failed to take account of the voxel's discrepancy, and therefore could not represent human anatomy faithfully. To represent human anatomy more faithfully, a method was implemented to assign each voxel, the densities of which were derived from CT number. In order to compare with the traditional method, we constructed two models from the cadaver specimen dataset. A CT-based pelvic voxel model called Pelvis-CT model was constructed, the densities of which were derived from the CT numbers. A color photograph-based pelvic voxel model called Pelvis-Photo model was also constructed, the densities of which were taken from ICRP Publication. The CT images and the color photographs were obtained from the same female cadaver specimen. The Pelvis-CT and Pelvis-Photo models were both ported into Monte Carlo code MCNP to calculate the conversion coefficients from kerma free-in-air to absorbed dose for external monoenergetic photon beams with energies of 0.1, 1 and 10 MeV under anterior-posterior (AP) geometry. The results were compared with those of given in ICRP Publication 74. Differences of up to 50% were observed between conversion coefficients of Pelvis-CT and Pelvis- Photo models, moreover the discrepancies decreased for the photon beams with higher energies. The overall trend of conversion coefficients of the Pelvis-CT model agreed well with that of ICRP Publication 74 data. (author)

  18. Construction of average adult Japanese voxel phantoms for dose assessment

    International Nuclear Information System (INIS)

    Sato, Kaoru; Takahashi, Fumiaki; Satoh, Daiki; Endo, Akira

    2011-12-01

    The International Commission on Radiological Protection (ICRP) adopted the adult reference voxel phantoms based on the physiological and anatomical reference data of Caucasian on October, 2007. The organs and tissues of these phantoms were segmented on the basis of ICRP Publication 103. In future, the dose coefficients for internal dose and dose conversion coefficients for external dose calculated using the adult reference voxel phantoms will be widely used for the radiation protection fields. On the other hand, the body sizes and organ masses of adult Japanese are generally smaller than those of adult Caucasian. In addition, there are some cases that the anatomical characteristics such as body sizes, organ masses and postures of subjects influence the organ doses in dose assessment for medical treatments and radiation accident. Therefore, it was needed to use human phantoms with average anatomical characteristics of Japanese. The authors constructed the averaged adult Japanese male and female voxel phantoms by modifying the previously developed high-resolution adult male (JM) and female (JF) voxel phantoms. It has been modified in the following three aspects: (1) The heights and weights were agreed with the Japanese averages; (2) The masses of organs and tissues were adjusted to the Japanese averages within 10%; (3) The organs and tissues, which were newly added for evaluation of the effective dose in ICRP Publication 103, were modeled. In this study, the organ masses, distances between organs, specific absorbed fractions (SAFs) and dose conversion coefficients of these phantoms were compared with those evaluated using the ICRP adult reference voxel phantoms. This report provides valuable information on the anatomical and dosimetric characteristics of the averaged adult Japanese male and female voxel phantoms developed as reference phantoms of adult Japanese. (author)

  19. Organ dose conversion coefficients for voxel models of the reference male and female from idealized photon exposures

    Science.gov (United States)

    Schlattl, H.; Zankl, M.; Petoussi-Henss, N.

    2007-04-01

    A new series of organ equivalent dose conversion coefficients for whole body external photon exposure is presented for a standardized couple of human voxel models, called Rex and Regina. Irradiations from broad parallel beams in antero-posterior, postero-anterior, left- and right-side lateral directions as well as from a 360° rotational source have been performed numerically by the Monte Carlo transport code EGSnrc. Dose conversion coefficients from an isotropically distributed source were computed, too. The voxel models Rex and Regina originating from real patient CT data comply in body and organ dimensions with the currently valid reference values given by the International Commission on Radiological Protection (ICRP) for the average Caucasian man and woman, respectively. While the equivalent dose conversion coefficients of many organs are in quite good agreement with the reference values of ICRP Publication 74, for some organs and certain geometries the discrepancies amount to 30% or more. Differences between the sexes are of the same order with mostly higher dose conversion coefficients in the smaller female model. However, much smaller deviations from the ICRP values are observed for the resulting effective dose conversion coefficients. With the still valid definition for the effective dose (ICRP Publication 60), the greatest change appears in lateral exposures with a decrease in the new models of at most 9%. However, when the modified definition of the effective dose as suggested by an ICRP draft is applied, the largest deviation from the current reference values is obtained in postero-anterior geometry with a reduction of the effective dose conversion coefficient by at most 12%.

  20. Organ dose conversion coefficients for voxel models of the reference male and female from idealized photon exposures

    International Nuclear Information System (INIS)

    Schlattl, H; Zankl, M; Petoussi-Henss, N

    2007-01-01

    A new series of organ equivalent dose conversion coefficients for whole body external photon exposure is presented for a standardized couple of human voxel models, called Rex and Regina. Irradiations from broad parallel beams in antero-posterior, postero-anterior, left- and right-side lateral directions as well as from a 360 deg. rotational source have been performed numerically by the Monte Carlo transport code EGSnrc. Dose conversion coefficients from an isotropically distributed source were computed, too. The voxel models Rex and Regina originating from real patient CT data comply in body and organ dimensions with the currently valid reference values given by the International Commission on Radiological Protection (ICRP) for the average Caucasian man and woman, respectively. While the equivalent dose conversion coefficients of many organs are in quite good agreement with the reference values of ICRP Publication 74, for some organs and certain geometries the discrepancies amount to 30% or more. Differences between the sexes are of the same order with mostly higher dose conversion coefficients in the smaller female model. However, much smaller deviations from the ICRP values are observed for the resulting effective dose conversion coefficients. With the still valid definition for the effective dose (ICRP Publication 60), the greatest change appears in lateral exposures with a decrease in the new models of at most 9%. However, when the modified definition of the effective dose as suggested by an ICRP draft is applied, the largest deviation from the current reference values is obtained in postero-anterior geometry with a reduction of the effective dose conversion coefficient by at most 12%

  1. Multi-resolution voxel phantom modeling: a high-resolution eye model for computational dosimetry.

    Science.gov (United States)

    Caracappa, Peter F; Rhodes, Ashley; Fiedler, Derek

    2014-09-21

    Voxel models of the human body are commonly used for simulating radiation dose with a Monte Carlo radiation transport code. Due to memory limitations, the voxel resolution of these computational phantoms is typically too large to accurately represent the dimensions of small features such as the eye. Recently reduced recommended dose limits to the lens of the eye, which is a radiosensitive tissue with a significant concern for cataract formation, has lent increased importance to understanding the dose to this tissue. A high-resolution eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and combined with an existing set of whole-body models to form a multi-resolution voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole-body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.

  2. A voxel-based finite element model for the prediction of bladder deformation

    Energy Technology Data Exchange (ETDEWEB)

    Xiangfei, Chai; Herk, Marcel van; Hulshof, Maarten C. C. M.; Bel, Arjan [Radiation Oncology Department, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam (Netherlands); Radiation Oncology Department, Netherlands Cancer Institute, 1066 CX Amsterdam (Netherlands); Radiation Oncology Department, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam (Netherlands)

    2012-01-15

    Purpose: A finite element (FE) bladder model was previously developed to predict bladder deformation caused by bladder filling change. However, two factors prevent a wide application of FE models: (1) the labor required to construct a FE model with high quality mesh and (2) long computation time needed to construct the FE model and solve the FE equations. In this work, we address these issues by constructing a low-resolution voxel-based FE bladder model directly from the binary segmentation images and compare the accuracy and computational efficiency of the voxel-based model used to simulate bladder deformation with those of a classical FE model with a tetrahedral mesh. Methods: For ten healthy volunteers, a series of MRI scans of the pelvic region was recorded at regular intervals of 10 min over 1 h. For this series of scans, the bladder volume gradually increased while rectal volume remained constant. All pelvic structures were defined from a reference image for each volunteer, including bladder wall, small bowel, prostate (male), uterus (female), rectum, pelvic bone, spine, and the rest of the body. Four separate FE models were constructed from these structures: one with a tetrahedral mesh (used in previous study), one with a uniform hexahedral mesh, one with a nonuniform hexahedral mesh, and one with a low-resolution nonuniform hexahedral mesh. Appropriate material properties were assigned to all structures and uniform pressure was applied to the inner bladder wall to simulate bladder deformation from urine inflow. Performance of the hexahedral meshes was evaluated against the performance of the standard tetrahedral mesh by comparing the accuracy of bladder shape prediction and computational efficiency. Results: FE model with a hexahedral mesh can be quickly and automatically constructed. No substantial differences were observed between the simulation results of the tetrahedral mesh and hexahedral meshes (<1% difference in mean dice similarity coefficient to

  3. A voxel-based finite element model for the prediction of bladder deformation

    International Nuclear Information System (INIS)

    Chai Xiangfei; Herk, Marcel van; Hulshof, Maarten C. C. M.; Bel, Arjan

    2012-01-01

    Purpose: A finite element (FE) bladder model was previously developed to predict bladder deformation caused by bladder filling change. However, two factors prevent a wide application of FE models: (1) the labor required to construct a FE model with high quality mesh and (2) long computation time needed to construct the FE model and solve the FE equations. In this work, we address these issues by constructing a low-resolution voxel-based FE bladder model directly from the binary segmentation images and compare the accuracy and computational efficiency of the voxel-based model used to simulate bladder deformation with those of a classical FE model with a tetrahedral mesh. Methods: For ten healthy volunteers, a series of MRI scans of the pelvic region was recorded at regular intervals of 10 min over 1 h. For this series of scans, the bladder volume gradually increased while rectal volume remained constant. All pelvic structures were defined from a reference image for each volunteer, including bladder wall, small bowel, prostate (male), uterus (female), rectum, pelvic bone, spine, and the rest of the body. Four separate FE models were constructed from these structures: one with a tetrahedral mesh (used in previous study), one with a uniform hexahedral mesh, one with a nonuniform hexahedral mesh, and one with a low-resolution nonuniform hexahedral mesh. Appropriate material properties were assigned to all structures and uniform pressure was applied to the inner bladder wall to simulate bladder deformation from urine inflow. Performance of the hexahedral meshes was evaluated against the performance of the standard tetrahedral mesh by comparing the accuracy of bladder shape prediction and computational efficiency. Results: FE model with a hexahedral mesh can be quickly and automatically constructed. No substantial differences were observed between the simulation results of the tetrahedral mesh and hexahedral meshes (<1% difference in mean dice similarity coefficient to

  4. Creation of voxel-based models for paediatric dosimetry from automatic segmentation methods

    International Nuclear Information System (INIS)

    Acosta, O.; Li, R.; Ourselin, S.; Caon, M.

    2006-01-01

    Full text: The first computational models representing human anatomy were mathematical phantoms, but still far from accurate representations of human body. These models have been used with radiation transport codes (Monte Carlo) to estimate organ doses from radiological procedures. Although new medical imaging techniques have recently allowed the construction of voxel-based models based on the real anatomy, few children models from individual CT or MRI data have been reported [1,3]. For pediatric dosimetry purposes, a large range of voxel models by ages is required since scaling the anatomy from existing models is not sufficiently accurate. The small number of models available arises from the small number of CT or MRI data sets of children available and the long amount of time required to segment the data sets. The existing models have been constructed by manual segmentation slice by slice and using simple thresholding techniques. In medical image segmentation, considerable difficulties appear when applying classical techniques like thresholding or simple edge detection. Until now, any evidence of more accurate or near-automatic methods used in construction of child voxel models exists. We aim to construct a range of pediatric voxel models, integrating automatic or semi-automatic 3D segmentation techniques. In this paper we present the first stage of this work using pediatric CT data.

  5. New format for storage of voxel phantom, and exposure computer model EGS4/MAX to EGSnrc/MASH update

    International Nuclear Information System (INIS)

    Leal Neto, Viriato; Vieira, Jose W.; Lima, Fernando R.A.; Lima, Lindeval F.

    2011-01-01

    In order to estimate the dosage absorbed by those subjected to ionizing radiation, it is necessary to perform simulations using the exposure computational model (ECM). Such models are consists essentially of an anthropomorphic phantom and a Monte Carlo code (MC). The conjunction of a voxel phantom of the MC code is a complex process and often results in solving a specific problem. This is partly due to the way the phantom voxel is stored on a computer. It is usually required a substantial amount of space to store a static representation of the human body and also a significant amount of memory for reading and processing a given simulation. This paper presents a new way to store data concerning the geometry irradiated (similar to the technique of repeated structures used in the geometry of MCNP code), reducing by 52% the disk space required for storage when compared to the previous format applied by Grupo de Dosimetria Numerica (GDN/CNPq). On the other hand, research in numerical dosimetry leads to a constant improvement on the resolution of voxel phantoms leading thus to a new requirement, namely, to develop new estimates of dose. Therefore, this work also performs an update of the MAX (Male Adult voXel)/EGS4 ECM for the MASH (Adult MaleMeSH)/EGSnrc ECM and presents instances of dosimetric evaluations using the new ECM. Besides the update of the phantom and the MC code, the algorithm of the source used has also been improved in contrast to previous publications. (author)

  6. Chord-based versus voxel-based methods of electron transport in the skeletal tissues

    International Nuclear Information System (INIS)

    Shah, Amish P.; Jokisch, Derek W.; Rajon, Didier A.; Watchman, Christopher J.; Patton, Phillip W.; Bolch, Wesley E.

    2005-01-01

    Anatomic models needed for internal dose assessment have traditionally been developed using mathematical surface equations to define organ boundaries, shapes, and their positions within the body. Many researchers, however, are now advocating the use of tomographic models created from segmented patient computed tomography (CT) or magnetic resonance (MR) scans. In the skeleton, however, the tissue structures of the bone trabeculae, marrow cavities, and endosteal layer are exceedingly small and of complex shape, and thus do not lend themselves easily to either stylistic representations or in-vivo CT imaging. Historically, the problem of modeling the skeletal tissues has been addressed through the development of chord-based methods of radiation particle transport, as given by studies at the University of Leeds (Leeds, UK) using a 44-year male subject. We have proposed an alternative approach to skeletal dosimetry in which excised sections of marrow-intact cadaver spongiosa are imaged directly via microCT scanning. The cadaver selected for initial investigation of this technique was a 66-year male subject of nominal body mass index (22.7 kg m -2 ). The objectives of the present study were to compare chord-based versus voxel-based methods of skeletal dosimetry using data from the UF 66-year male subject. Good agreement between chord-based and voxel-based transport was noted for marrow irradiation by either bone surface or bone volume sources up to 500-1000 keV (depending upon the skeletal site). In contrast, chord-based models of electron transport yielded consistently lower values of the self-absorbed fraction to marrow tissues than seen under voxel-based transport at energies above 100 keV, a feature directly attributed to the inability of chord-based models to account for nonlinear electron trajectories. Significant differences were also noted in the dosimetry of the endosteal layer (for all source tissues), with chord-based transport predicting a higher fraction of

  7. An eye model for computational dosimetry using a multi-scale voxel phantom

    International Nuclear Information System (INIS)

    Caracappa, P.F.; Rhodes, A.; Fiedler, D.

    2013-01-01

    The lens of the eye is a radiosensitive tissue with cataract formation being the major concern. Recently reduced recommended dose limits to the lens of the eye have made understanding the dose to this tissue of increased importance. Due to memory limitations, the voxel resolution of computational phantoms used for radiation dose calculations is too large to accurately represent the dimensions of the eye. A revised eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and is then transformed into a high-resolution voxel model. This eye model is combined with an existing set of whole body models to form a multi-scale voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole body model are developed. When the Lattice Overlay method, the simpler of the two to define, is utilized, the computational penalty in terms of speed is noticeable and the figure of merit for the eye dose tally decreases by as much as a factor of two. When the Voxel Substitution method is applied, the penalty in speed is nearly trivial and the impact on the tally figure of merit is comparatively smaller. The origin of this difference in the code behavior may warrant further investigation

  8. Quality control of geological voxel models using experts' gaze

    NARCIS (Netherlands)

    Maanen, P.P. van; Busschers, F.S.; Brouwer, A.M.; Meulen, M.J. van der; Erp, J.B.F. van

    2015-01-01

    Due to an expected increase in geological voxel model data-flow and user demands, the development of improved quality control for such models is crucial. This study explores the potential of a new type of quality control that improves the detection of errors by just using gaze behavior of 12

  9. Quality Control of Geological Voxel Models using Experts' Gaze

    NARCIS (Netherlands)

    van Maanen, Peter-Paul; Busschers, Freek S.; Brouwer, Anne-Marie; van der Meulendijk, Michiel J.; van Erp, Johannes Bernardus Fransiscus

    Due to an expected increase in geological voxel model data-flow and user demands, the development of improved quality control for such models is crucial. This study explores the potential of a new type of quality control that improves the detection of errors by just using gaze behavior of 12

  10. Optimization of digital chest radiography using computer modeling and voxels phantoms

    International Nuclear Information System (INIS)

    Correa, S.C.A.; Souza, E.M.; Silva, A.X.; Lopes, R.T.

    2009-01-01

    The purpose of this work is to use the Monte Carlo code MCNPX and the Female Adult voxel (FAX) and Male Adult voxel (MAX) phantoms to investigate how the dose and image quality in digital chest radiography vary with tube voltage (70-150 kV), anti-scatter methods (grid and air gap) and gender of the patient. The effective dose was calculated by ICRP60 and image quality was quantified by calculating the signal-difference-to-noise ratio for pathological details (calcifications) positioned at different locations in the anatomy. Calculated quantities were normalized to a fixed value of air kerma (5 μGy) at the automatic exposure control chambers. The results obtained in this work show that the air gap technique and lower tube voltages provide an increase in the digital image quality. Furthermore, this study has also shown that the detection of pathological details vary with the gender of the patient. (author)

  11. Multi Voxel Descriptor for 3D Texture Retrieval

    Directory of Open Access Journals (Sweden)

    Hero Yudo Martono

    2016-08-01

    Full Text Available In this paper, we present a new feature descriptors  which exploit voxels for 3D textured retrieval system when models vary either by geometric shape or texture or both. First, we perform pose normalisation to modify arbitrary 3D models  in order to have same orientation. We then map the structure of 3D models into voxels. This purposes to make all the 3D models have the same dimensions. Through this voxels, we can capture information from a number of ways.  First, we build biner voxel histogram and color voxel histogram.  Second, we compute distance from centre voxel into other voxels and generate histogram. Then we also compute fourier transform in spectral space.  For capturing texture feature, we apply voxel tetra pattern. Finally, we merge all features by linear combination. For experiment, we use standard evaluation measures such as Nearest Neighbor (NN, First Tier (FT, Second Tier (ST, Average Dynamic Recall (ADR. Dataset in SHREC 2014  and its evaluation program is used to verify the proposed method. Experiment result show that the proposed method  is more accurate when compared with some methods of state-of-the-art.

  12. Micromechanical analysis of nanocomposites using 3D voxel based material model

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon

    2012-01-01

    A computational study on the effect of nanocomposite structures on the elastic properties is carried out with the use of the 3D voxel based model of materials and the combined Voigt–Reuss method. A hierarchical voxel based model of a material reinforced by an array of exfoliated and intercalated...... nanoclay platelets surrounded by interphase layers is developed. With this model, the elastic properties of the interphase layer are estimated using the inverse analysis. The effects of aspect ratio, intercalation and orientation of nanoparticles on the elastic properties of the nanocomposites are analyzed....... For modeling the damage in nanocomposites with intercalated structures, “four phase” model is suggested, in which the strength of “intrastack interphase” is lower than that of “outer” interphase around the nanoplatelets. Analyzing the effect of nanoreinforcement in the matrix on the failure probability...

  13. Evaluation of absorbed doses in voxel-based and simplified models for small animals

    International Nuclear Information System (INIS)

    Mohammadi, A.; Kinase, S.; Saito, K.

    2008-01-01

    Internal dosimetry in non-human biota is desirable from the viewpoint of radiation protection of the environment. The International Commission on Radiological Protection (ICRP) proposed Reference Animals and Plants using simplified models, such as ellipsoids and spheres and calculated absorbed fractions (AFs) for whole bodies. In this study, photon and electron AFs in whole bodies of voxel-based rat and frog models have been calculated and compared with AFs in the reference models. It was found that the voxel-based and the reference frog (or rat) models can be consistent for the whole-body AFs within a discrepancy of 25 %, as the source was uniformly distributed in the whole body. The specific absorbed fractions (SAFs) and S values were also evaluated in whole bodies and all organs of the voxel-based frog and rat models as the source was distributed in the whole body or skeleton. The results demonstrated that the whole-body SAFs reflect SAFs of all individual organs as the source was uniformly distributed per mass within the whole body by about 30 % uncertainties with exceptions for body contour (up to -40 %) for both electrons and photons due to enhanced radiation leakages, and for the skeleton for photons only (up to +185 %) due to differences in the mass attenuation coefficients. For nuclides such as 90 Y and 90 Sr, which were concentrated in the skeleton, there were large differences between S values in the whole body and those in individual organs, however the whole-body S values for the reference models with the whole body as the source were remarkably similar to those for the voxel-based models with the skeleton as the source, within about 4 and 0.3 %, respectively. It can be stated that whole-body SAFs or S values in simplified models without internal organs are not sufficient for accurate internal dosimetry because they do not reflect SAFs or S values of all individual organs as the source was not distributed uniformly in whole body. Thus, voxel

  14. Organ dose conversion coefficients based on a voxel mouse model and MCNP code for external photon irradiation.

    Science.gov (United States)

    Zhang, Xiaomin; Xie, Xiangdong; Cheng, Jie; Ning, Jing; Yuan, Yong; Pan, Jie; Yang, Guoshan

    2012-01-01

    A set of conversion coefficients from kerma free-in-air to the organ absorbed dose for external photon beams from 10 keV to 10 MeV are presented based on a newly developed voxel mouse model, for the purpose of radiation effect evaluation. The voxel mouse model was developed from colour images of successive cryosections of a normal nude male mouse, in which 14 organs or tissues were segmented manually and filled with different colours, while each colour was tagged by a specific ID number for implementation of mouse model in Monte Carlo N-particle code (MCNP). Monte Carlo simulation with MCNP was carried out to obtain organ dose conversion coefficients for 22 external monoenergetic photon beams between 10 keV and 10 MeV under five different irradiation geometries conditions (left lateral, right lateral, dorsal-ventral, ventral-dorsal, and isotropic). Organ dose conversion coefficients were presented in tables and compared with the published data based on a rat model to investigate the effect of body size and weight on the organ dose. The calculated and comparison results show that the organ dose conversion coefficients varying the photon energy exhibits similar trend for most organs except for the bone and skin, and the organ dose is sensitive to body size and weight at a photon energy approximately <0.1 MeV.

  15. Construction of anthropomorphic hybrid, dual-lattice voxel models for optimizing image quality and dose in radiography

    Science.gov (United States)

    Petoussi-Henss, Nina; Becker, Janine; Greiter, Matthias; Schlattl, Helmut; Zankl, Maria; Hoeschen, Christoph

    2014-03-01

    In radiography there is generally a conflict between the best image quality and the lowest possible patient dose. A proven method of dosimetry is the simulation of radiation transport in virtual human models (i.e. phantoms). However, while the resolution of these voxel models is adequate for most dosimetric purposes, they cannot provide the required organ fine structures necessary for the assessment of the imaging quality. The aim of this work is to develop hybrid/dual-lattice voxel models (called also phantoms) as well as simulation methods by which patient dose and image quality for typical radiographic procedures can be determined. The results will provide a basis to investigate by means of simulations the relationships between patient dose and image quality for various imaging parameters and develop methods for their optimization. A hybrid model, based on NURBS (Non Linear Uniform Rational B-Spline) and PM (Polygon Mesh) surfaces, was constructed from an existing voxel model of a female patient. The organs of the hybrid model can be then scaled and deformed in a non-uniform way i.e. organ by organ; they can be, thus, adapted to patient characteristics without losing their anatomical realism. Furthermore, the left lobe of the lung was substituted by a high resolution lung voxel model, resulting in a dual-lattice geometry model. "Dual lattice" means in this context the combination of voxel models with different resolution. Monte Carlo simulations of radiographic imaging were performed with the code EGS4nrc, modified such as to perform dual lattice transport. Results are presented for a thorax examination.

  16. Development of a voxel phantom specific for simulation of eye brachytherapy; Desenvolvimeto de um fantoma de voxel especifico para simulacao de braquiterapia ocular

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Marcilio S.; Lima, Fernando R.A., E-mail: msilveira.fisica@gmail.com, E-mail: falima@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Vieira, Jose W., E-mail: jose-wilson59@live.com [lnstituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFPE), Recife, PE (Brazil)

    2013-11-01

    The ophthalmic brachytherapy involves inserting a plate with seeds of radioactive material in the patient's eye for the treatment of tumors. The radiation dose to be taken by the patient is prescribed by physicians and time of application of the material is calculated from calibration curves supplied by the manufacturers of the plates. To estimate the dose absorbed by the patient, in a series of diagnostic tests, it is necessary to perform simulations using a computational model of exposure. These models are composed primarily by a anthropomorphic phantom, and a Monte Carlo code. The coupling of a phantom voxel whole body to a Monte Carlo code is a complex process because the computer model simulations with exposure takes time, knowledge of the code used and various adjustments to be implemented. The problem is aggravated even more complex when you want to radiate one region of the body. In this work we developed a phantom, specifically the region containing the eyeball, from MASH (Male Adult voxel). This model was coupled to the Monte Carlo code EGSnrc (Electron Gamma Shower) together with an algorithm simulator source of I-125 , considering only its effect of higher energy range.

  17. Voxel-Based LIDAR Analysis and Applications

    Science.gov (United States)

    Hagstrom, Shea T.

    One of the greatest recent changes in the field of remote sensing is the addition of high-quality Light Detection and Ranging (LIDAR) instruments. In particular, the past few decades have been greatly beneficial to these systems because of increases in data collection speed and accuracy, as well as a reduction in the costs of components. These improvements allow modern airborne instruments to resolve sub-meter details, making them ideal for a wide variety of applications. Because LIDAR uses active illumination to capture 3D information, its output is fundamentally different from other modalities. Despite this difference, LIDAR datasets are often processed using methods appropriate for 2D images and that do not take advantage of its primary virtue of 3-dimensional data. It is this problem we explore by using volumetric voxel modeling. Voxel-based analysis has been used in many applications, especially medical imaging, but rarely in traditional remote sensing. In part this is because the memory requirements are substantial when handling large areas, but with modern computing and storage this is no longer a significant impediment. Our reason for using voxels to model scenes from LIDAR data is that there are several advantages over standard triangle-based models, including better handling of overlapping surfaces and complex shapes. We show how incorporating system position information from early in the LIDAR point cloud generation process allows radiometrically-correct transmission and other novel voxel properties to be recovered. This voxelization technique is validated on simulated data using the Digital Imaging and Remote Sensing Image Generation (DIRSIG) software, a first-principles based ray-tracer developed at the Rochester Institute of Technology. Voxel-based modeling of LIDAR can be useful on its own, but we believe its primary advantage is when applied to problems where simpler surface-based 3D models conflict with the requirement of realistic geometry. To

  18. A voxel-based approach to gray matter asymmetries.

    Science.gov (United States)

    Luders, E; Gaser, C; Jancke, L; Schlaug, G

    2004-06-01

    Voxel-based morphometry (VBM) was used to analyze gray matter (GM) asymmetries in a large sample (n = 60) of male and female professional musicians with and without absolute pitch (AP). We chose to examine these particular groups because previous studies using traditional region-of-interest (ROI) analyses have shown differences in hemispheric asymmetry related to AP and gender. Voxel-based methods may have advantages over traditional ROI-based methods since the analysis can be performed across the whole brain with minimal user bias. After determining that the VBM method was sufficiently sensitive for the detection of differences in GM asymmetries between groups, we found that male AP musicians were more leftward lateralized in the anterior region of the planum temporale (PT) than male non-AP musicians. This confirmed the results of previous studies using ROI-based methods that showed an association between PT asymmetry and the AP phenotype. We further observed that male non-AP musicians revealed an increased leftward GM asymmetry in the postcentral gyrus compared to female non-AP musicians, again corroborating results of a previously published study using ROI-based methods. By analyzing hemispheric GM differences across our entire sample, we were able to partially confirm findings of previous studies using traditional morphometric techniques, as well as more recent, voxel-based analyses. In addition, we found some unusually pronounced GM asymmetries in our musician sample not previously detected in subjects unselected for musical training. Since we were able to validate gender- and AP-related brain asymmetries previously described using traditional ROI-based morphometric techniques, the results of our analyses support the use of VBM for examinations of GM asymmetries.

  19. Automating the segmentation of medical images for the production of voxel tomographic computational models

    International Nuclear Information System (INIS)

    Caon, M.

    2001-01-01

    Radiation dosimetry for the diagnostic medical imaging procedures performed on humans requires anatomically accurate, computational models. These may be constructed from medical images as voxel-based tomographic models. However, they are time consuming to produce and as a consequence, there are few available. This paper discusses the emergence of semi-automatic segmentation techniques and describes an application (iRAD) written in Microsoft Visual Basic that allows the bitmap of a medical image to be segmented interactively and semi-automatically while displayed in Microsoft Excel. iRAD will decrease the time required to construct voxel models. Copyright (2001) Australasian College of Physical Scientists and Engineers in Medicine

  20. A voxel visualization and analysis system based on AutoCAD

    Science.gov (United States)

    Marschallinger, Robert

    1996-05-01

    A collection of AutoLISP programs is presented which enable the visualization and analysis of voxel models by AutoCAD rel. 12/rel. 13. The programs serve as an interactive, graphical front end for manipulating the results of three-dimensional modeling software producing block estimation data. ASCII data files describing geometry and attributes per estimation block are imported and stored as a voxel array. Each voxel may contain multiple attributes, therefore different parameters may be incorporated in one voxel array. Voxel classification is implemented on a layer basis providing flexible treatment of voxel classes such as recoloring, peeling, or volumetry. A versatile clipping tool enables slicing voxel arrays according to combinations of three perpendicular clipping planes. The programs feature an up-to-date, graphical user interface for user-friendly operation by non AutoCAD specialists.

  1. Voxel anthropomorphic phantoms: review of models used for ionising radiation dosimetry

    International Nuclear Information System (INIS)

    Lemosquet, A.; Carlan, L. de; Clairand, I.

    2003-01-01

    Computational anthropomorphic phantoms have been used since the 1970's for dosimetric calculations. Realistic geometries are required for this operation, resulting in the development of ever more accurate phantoms. Voxel phantoms, consisting of a set of small-volume elements, appeared towards the end of the 1980's, and significantly improved on the original mathematical models. Voxel phantoms are models of the human body, obtained using computed tomography (CT) or magnetic resonance images (MRI). These phantoms are an extremely accurate representation of the human anatomy. This article provides a review of the literature available on the development of these phantoms and their applications in ionising radiation dosimetry. The bibliographical study has shown that there is a wide range of phantoms, covering various characteristics of the general population in terms of sex, age or morphology, and that they are used in applications relating to all aspects of ionising radiation. (author)

  2. Development of prostate voxel models for brachytherapy treatment

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Adriano M.; Reis, Lucas P.; Grynberg, Suely E., E-mail: amsantos@cdtn.b [Center for Development of Nuclear Technology (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The tools developed recently in the areas of computer graphics and animation movies to computer games allow the creation of new voxel anthropomorphic phantoms with better resolution and thus, more anatomical details. These phantoms can be used in nuclear applications, especially in radiation protection for estimating doses in cases of occupational or accidental radioactive incidents, and in medical and biological applications. For dose estimates, the phantoms are coupled to a Monte Carlo code, which will be responsible for the transport of radiation in this environment. This study aimed to develop a computational tool to estimate the isodose curves in the prostate after brachytherapy seed implants. For this, we have created a model called FANTPROST in the shape of a 48 mm side cube, with a standard prostate inserted in the center of this cube with different distributions of brachytherapy seeds in this volume. The prostate, according to this model, was obtained from the phantom voxels MASH2 developed by Numerical Dosimetry Group, Department of Nuclear Energy - Federal University of Pernambuco. The modeling of the seeds, added to FANTPROST, was done through the use of geometric information of Iodine-125 Amersham 6711 commercial seed. The simulations were performed by the code MCNP5 for spatial distributions containing different amounts of seeds within the FANTPROST. The obtained curves allowed an estimation of the behavior of the maximum dose that decreases with distance, showing that this tool can be used for a more accurate analysis of the effects produced by the presence of such seeds in the prostate and its vicinity. (author)

  3. Construction of Korean adult voxel phantoms for radiation dosimetry and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choon Sik

    2002-08-15

    Although contribution of the MIRD-type mathematical anthropomorphic phantoms to computational radiation dosimetry, especially in determining the effective dose to the exposed personnel, is very significant, there remain some questions on possible deviation in the resulting dosimetric quantities from the true values. This is particularly the case for those organ or tissues having complicated geometry difficult to model with simple geometrical body elements. As an alternative approach to resolve the problem, there have been efforts to use voxel phantoms, which can very precisely describe both the external shape and the internal organs by virtue of fast advances in medical imaging technology as well as in computing power. In this study, Korean adult male and female voxel phantoms were constructed by processing whole-body MR images of healthy volunteers who belong to middle group of Korean in height and weight. Organs and tissues on tomographic images were manually segmented and indexed using the graphic software PL-400 . Due to limited resolution of the raw MR images, voxels of rather large size, 2 mmx2 mmx8 mm for the woman and 2mmx2mmx10mm for the man, were used. The resulting male and female voxel phantoms were named KRMAN and KRWOMAN, respectively. To assess utility of the voxel phatoms, calculations were carried out with the Monte Carlo code MCNP4B for two illustrative problems. A program VOXELMAKER1.0 was developed to convert the voxel phantom data into MCNP geometry input format. In the first example, organ equivalent doses and effective doses were evaluated for phantoms in broad parallel photon fields of different energies and directions and were compared to corresponding values given in ICRP 74 which were derived with the MIRD-type phantoms. No significant deviations between MIRD and voxel phantoms were found in the effective doses. Significant differences up to around factor of 2, however, were observed in organ equivalent doses for some organs including

  4. The SENSE-Isomorphism Theoretical Image Voxel Estimation (SENSE-ITIVE) Model for Reconstruction and Observing Statistical Properties of Reconstruction Operators

    Science.gov (United States)

    Bruce, Iain P.; Karaman, M. Muge; Rowe, Daniel B.

    2012-01-01

    The acquisition of sub-sampled data from an array of receiver coils has become a common means of reducing data acquisition time in MRI. Of the various techniques used in parallel MRI, SENSitivity Encoding (SENSE) is one of the most common, making use of a complex-valued weighted least squares estimation to unfold the aliased images. It was recently shown in Bruce et al. [Magn. Reson. Imag. 29(2011):1267–1287] that when the SENSE model is represented in terms of a real-valued isomorphism, it assumes a skew-symmetric covariance between receiver coils, as well as an identity covariance structure between voxels. In this manuscript, we show that not only is the skew-symmetric coil covariance unlike that of real data, but the estimated covariance structure between voxels over a time series of experimental data is not an identity matrix. As such, a new model, entitled SENSE-ITIVE, is described with both revised coil and voxel covariance structures. Both the SENSE and SENSE-ITIVE models are represented in terms of real-valued isomorphisms, allowing for a statistical analysis of reconstructed voxel means, variances, and correlations resulting from the use of different coil and voxel covariance structures used in the reconstruction processes to be conducted. It is shown through both theoretical and experimental illustrations that the miss-specification of the coil and voxel covariance structures in the SENSE model results in a lower standard deviation in each voxel of the reconstructed images, and thus an artificial increase in SNR, compared to the standard deviation and SNR of the SENSE-ITIVE model where both the coil and voxel covariances are appropriately accounted for. It is also shown that there are differences in the correlations induced by the reconstruction operations of both models, and consequently there are differences in the correlations estimated throughout the course of reconstructed time series. These differences in correlations could result in meaningful

  5. Efficiency factors for Phoswich based lung monitor using ICRP Voxel phantoms

    International Nuclear Information System (INIS)

    Manohari, M.; Mathiyarasu, R.; Rajagopal, V.; Jose, M.T.; Venkatraman, B.

    2016-01-01

    The actinide contamination in lungs is measured either using array of HPGe detector or Phoswich based lung monitors. This paper discusses the results obtained during numerical calibration of Phoswich based lung counting system using ICRP VOXEL phantoms. The results are also compared with measured efficiency values obtained using LLNL phantom. The efficiency factors of 241 Am present in the lungs for phoswich detector was simulated using ICRP male voxel phantom and compared with experimentally observed values using LLNL Phantom. The observed deviation is 12%. The efficiency of the same for female subjects was estimated using ICRP female voxel phantom for both supine and posterior geometries

  6. Synthetic digital radiographs using exposure computer models of Voxels / EGS4 Phantoms

    International Nuclear Information System (INIS)

    Kenned, Roberto; Vieira, Jose W.; Lima, Fernando R.A.; Loureiro, Eduardo

    2008-01-01

    The objective of this work is to produce synthetic digital radiographs from synthetic phantoms with the use of a Computational Model of Exposition (MCE). The literature explains a model consisted on a phantom, a Monte Carlo code and an algorithm of a radioactive source. In this work it was used the FAX phantom (Female Adult voXel), besides the EGS4 system code Eletron Shower-range version 4) and an external source, similar to that used in diagnostic radiology. The implementation of MCE creates files with information on external energy deposited in the voxels of fantoma used, here called EnergiaPorVoxel.dat. These files along with the targeted phantom (fax.sgi) worked as data entry for the DIP software (Digital Imaging Processing) to build the synthetic phantoms based on energy and the effective dose. This way you can save each slice that is the stack of pictures of these phantoms synthetics, which have been called synthetic digital radiography. Using this, it is possible to use techniques of emphasis in space to increase the contrast or elineate contours between organs and tissues. The practical use of these images is not only to allow a planning of examinations performed in clinics and hospitals and reducing unnecessary exposure to patients by error of radiographic techniques. (author)

  7. Assessment of body doses from photon exposures using human voxel models

    International Nuclear Information System (INIS)

    Zankl, M.; Fill, U.; Petoussi-Henss, N.; Regulla, D.

    2000-01-01

    For the scope of risk assessment in protection against ionising radiation (occupational, environmental and medical) it is necessary to determine the radiation dose to specific body organs and tissues. For this purpose, a series of models of the human body were designed in the past, together with computer codes simulating the radiation transport and energy deposition in the body. Most of the computational body models in use are so-called mathematical models; the most famous is the MIRD-5 phantom developed at Oak Ridge National Laboratory. In the 1980s, a new generation of human body models was introduced at GSF, constructed from whole body CT data. Due to being constructed from image data of real persons, these 'voxel models' offer an improved realism of external and internal shape of the body and its organs, compared to MIRD-type models. Comparison of dose calculations involving voxel models with respective dose calculations for MIRD-type models revealed that the deviation of the individual anatomy from that described in the MIRD-type models indeed introduces significant deviations of the calculated organ doses. Specific absorbed fractions of energy released in a source organ due to incorporated activity which are absorbed in target organs may differ by more than an order of magnitude between different body models; for external photon irradiation, the discrepancies are more moderate. (author)

  8. Setup of HDRK-Man voxel model in Geant4 Monte Carlo code

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jong Hwi; Cho, Sung Koo; Kim, Chan Hyeong [Hanyang Univ., Seoul (Korea, Republic of); Choi, Sang Hyoun [Inha Univ., Incheon (Korea, Republic of); Cho, Kun Woo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2008-10-15

    Many different voxel models, developed using tomographic images of human body, are used in various fields including both ionizing and non-ionizing radiation fields. Recently a high-quality voxel model/ named HDRK-Man, was constructed at Hanyang University and used to calculate the dose conversion coefficients (DCC) values for external photon and neutron beams using the MCNPX Monte Carlo code. The objective of the present study is to set up the HDRK-Man model in Geant4 in order to use it in more advanced calculations such as 4-D Monte Carlo simulations and space dosimetry studies involving very high energy particles. To that end, the HDRK-Man was ported to Geant4 and used to calculate the DCC values for external photon beams. The calculated values were then compared with the results of the MCNPX code. In addition, a computational Linux cluster was built to improve the computing speed in Geant4.

  9. Development of a voxel phantom specific for simulation of eye brachytherapy

    International Nuclear Information System (INIS)

    Santos, Marcilio S.; Lima, Fernando R.A.

    2013-01-01

    The ophthalmic brachytherapy involves inserting a plate with seeds of radioactive material in the patient's eye for the treatment of tumors. The radiation dose to be taken by the patient is prescribed by physicians and time of application of the material is calculated from calibration curves supplied by the manufacturers of the plates. To estimate the dose absorbed by the patient, in a series of diagnostic tests, it is necessary to perform simulations using a computational model of exposure. These models are composed primarily by a anthropomorphic phantom, and a Monte Carlo code. The coupling of a phantom voxel whole body to a Monte Carlo code is a complex process because the computer model simulations with exposure takes time, knowledge of the code used and various adjustments to be implemented. The problem is aggravated even more complex when you want to radiate one region of the body. In this work we developed a phantom, specifically the region containing the eyeball, from MASH (Male Adult voxel). This model was coupled to the Monte Carlo code EGSnrc (Electron Gamma Shower) together with an algorithm simulator source of I-125 , considering only its effect of higher energy range

  10. Voxel2MCNP: a framework for modeling, simulation and evaluation of radiation transport scenarios for Monte Carlo codes

    International Nuclear Information System (INIS)

    Pölz, Stefan; Laubersheimer, Sven; Eberhardt, Jakob S; Harrendorf, Marco A; Keck, Thomas; Benzler, Andreas; Breustedt, Bastian

    2013-01-01

    The basic idea of Voxel2MCNP is to provide a framework supporting users in modeling radiation transport scenarios using voxel phantoms and other geometric models, generating corresponding input for the Monte Carlo code MCNPX, and evaluating simulation output. Applications at Karlsruhe Institute of Technology are primarily whole and partial body counter calibration and calculation of dose conversion coefficients. A new generic data model describing data related to radiation transport, including phantom and detector geometries and their properties, sources, tallies and materials, has been developed. It is modular and generally independent of the targeted Monte Carlo code. The data model has been implemented as an XML-based file format to facilitate data exchange, and integrated with Voxel2MCNP to provide a common interface for modeling, visualization, and evaluation of data. Also, extensions to allow compatibility with several file formats, such as ENSDF for nuclear structure properties and radioactive decay data, SimpleGeo for solid geometry modeling, ImageJ for voxel lattices, and MCNPX’s MCTAL for simulation results have been added. The framework is presented and discussed in this paper and example workflows for body counter calibration and calculation of dose conversion coefficients is given to illustrate its application. (paper)

  11. Development and tests of a mouse voxel model dor MCNPX based on Digimouse images

    Energy Technology Data Exchange (ETDEWEB)

    Melo M, B.; Ferreira F, C. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Pte. Antonio Carlos No. 6627, Belo Horizonte 31270-901, Minas Gerais (Brazil); Garcia de A, I.; Machado T, B.; Passos Ribeiro de C, T., E-mail: bmm@cdtn.br [Universidade Federal de Minas Gerais, Departamento de Engenharia Nuclear, Pte. Antonio Carlos 6627, Belo Horizonte 31270-901, Minas Gerais (Brazil)

    2015-10-15

    Mice have been widely used in experimental protocols involving ionizing radiation. Biological effects (Be) induced by radiation can compromise studies results. Good estimates of mouse whole body and organs absorbed dose could provide valuable information to researchers. The aim of this study was to create and test a new voxel phantom for mice dosimetry from -Digimouse- project images. Micro CT images from Digimouse project were used in this work. Corel PHOTOPAINT software was utilized in segmentation process. The three-dimensional (3-D) model assembly and its voxel size manipulation were performed by Image J. SISCODES was used to adapt the model to run in MCNPX Monte Carlo code. The resulting model was called DM{sub B}RA. The volume and mass of segmented organs were compared with data available in literature. For the preliminary tests the heart was considered the source organ. Photons of diverse energies were simulated and Saf values obtained through F6:p and + F6 MCNPX tallies. The results were compared with reference data. 3-D picturing of absorbed doses patterns and relative errors distribution were generated by a C++ -in house- made program and visualized through Amide software. The organ masses of DM{sub B}RA correlated well with two models that were based on same set of images. However some organs, like eyes and adrenals, skeleton and brain showed large discrepancies. Segmentation of an identical image set by different persons and/or methods can result significant organ masses variations. We believe that the main causes of these differences were: i) operator dependent subjectivity in the definition of organ limits during the segmentation processes; and i i) distinct voxel dimensions between evaluated models. Lack of reference data for mice models construction and dosimetry was detected. Comparison with other models originated from different mice strains also demonstrated that the anatomical and size variability can be significant. Use of + F6 tally for mouse

  12. Development and tests of a mouse voxel model dor MCNPX based on Digimouse images

    International Nuclear Information System (INIS)

    Melo M, B.; Ferreira F, C.; Garcia de A, I.; Machado T, B.; Passos Ribeiro de C, T.

    2015-10-01

    Mice have been widely used in experimental protocols involving ionizing radiation. Biological effects (Be) induced by radiation can compromise studies results. Good estimates of mouse whole body and organs absorbed dose could provide valuable information to researchers. The aim of this study was to create and test a new voxel phantom for mice dosimetry from -Digimouse- project images. Micro CT images from Digimouse project were used in this work. Corel PHOTOPAINT software was utilized in segmentation process. The three-dimensional (3-D) model assembly and its voxel size manipulation were performed by Image J. SISCODES was used to adapt the model to run in MCNPX Monte Carlo code. The resulting model was called DM B RA. The volume and mass of segmented organs were compared with data available in literature. For the preliminary tests the heart was considered the source organ. Photons of diverse energies were simulated and Saf values obtained through F6:p and + F6 MCNPX tallies. The results were compared with reference data. 3-D picturing of absorbed doses patterns and relative errors distribution were generated by a C++ -in house- made program and visualized through Amide software. The organ masses of DM B RA correlated well with two models that were based on same set of images. However some organs, like eyes and adrenals, skeleton and brain showed large discrepancies. Segmentation of an identical image set by different persons and/or methods can result significant organ masses variations. We believe that the main causes of these differences were: i) operator dependent subjectivity in the definition of organ limits during the segmentation processes; and i i) distinct voxel dimensions between evaluated models. Lack of reference data for mice models construction and dosimetry was detected. Comparison with other models originated from different mice strains also demonstrated that the anatomical and size variability can be significant. Use of + F6 tally for mouse phantoms

  13. Surface mesh to voxel data registration for patient-specific anatomical modeling

    Science.gov (United States)

    de Oliveira, Júlia E. E.; Giessler, Paul; Keszei, András.; Herrler, Andreas; Deserno, Thomas M.

    2016-03-01

    Virtual Physiological Human (VPH) models are frequently used for training, planning, and performing medical procedures. The Regional Anaesthesia Simulator and Assistant (RASimAs) project has the goal of increasing the application and effectiveness of regional anesthesia (RA) by combining a simulator of ultrasound-guided and electrical nerve-stimulated RA procedures and a subject-specific assistance system through an integration of image processing, physiological models, subject-specific data, and virtual reality. Individualized models enrich the virtual training tools for learning and improving regional anaesthesia (RA) skills. Therefore, we suggest patient-specific VPH models that are composed by registering the general mesh-based models with patient voxel data-based recordings. Specifically, the pelvis region has been focused for the support of the femoral nerve block. The processing pipeline is composed of different freely available toolboxes such as MatLab, the open Simulation framework (SOFA), and MeshLab. The approach of Gilles is applied for mesh-to-voxel registration. Personalized VPH models include anatomical as well as mechanical properties of the tissues. Two commercial VPH models (Zygote and Anatomium) were used together with 34 MRI data sets. Results are presented for the skin surface and pelvic bones. Future work will extend the registration procedure to cope with all model tissue (i.e., skin, muscle, bone, vessel, nerve, fascia) in a one-step procedure and extrapolating the personalized models to body regions actually being out of the captured field of view.

  14. Light regimes in Populus plantations using the Voxel-based Light Interception Model

    NARCIS (Netherlands)

    Van der Zande, D.; Dieussart, K.; Stuckens, J.; Verstraeten, W.W.; Coppin, P.

    2011-01-01

    Three-dimensional light interception by three uniform Populus canopies was studied using the Voxel-based Light Interception Model (VLIM) in combination with ground-based Light Detection and Ranging (LiDAR) measurements. As the VLIM was developed and validated in a virtual environment to ensure

  15. Cerebral asymmetry in patients with schizophrenia: a voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) study.

    Science.gov (United States)

    Takao, Hidemasa; Abe, Osamu; Yamasue, Hidenori; Aoki, Shigeki; Kasai, Kiyoto; Ohtomo, Kuni

    2010-01-01

    To evaluate the differences in gray- and white-matter asymmetry between schizophrenia patients and normal subjects. Forty-eight right-handed patients with chronic schizophrenia (24 males and 24 females) and 48 right-handed age- and sex-matched healthy controls (24 males and 24 females) were included in this study. The effects of diagnosis on gray-matter volume asymmetry and white-matter fractional anisotropy (FA) asymmetry were evaluated with use of voxel-based morphometry (VBM) and voxel-based analysis of FA maps derived from diffusion tensor imaging (DTI), respectively. The mean gray- and white-matter volumes were significantly smaller in the schizophrenia group than in the control group. The voxel-based morphometry (VBM) showed no significant effect of diagnosis on gray-matter volume asymmetry. The voxel-based analysis of DTI also showed no significant effect of diagnosis on white-matter FA asymmetry. Our results of voxel-based analyses showed no significant differences in either gray-matter volume asymmetry or white-matter FA asymmetry between schizophrenia patients and normal subjects. (c) 2009 Wiley-Liss, Inc.

  16. Dose estimation of patients in CT examinations using EGS4 Monte-Carlo simulation of voxel phantom

    International Nuclear Information System (INIS)

    Akahane, K.; Kai, M.; Kusama, T.; Saito, K.

    2002-01-01

    A voxel phantom based on CT images of one Japanese male have developed in Japan Atomic Energy Research Institute. Dose calculations of patients in X-ray CT examinations were performed using the voxel phantom and EGS4 Monte-Carlo simulation code. The organ doses of the patients were estimated

  17. Dose estimation of patients in CT examinations using EGS4 Monte-Carlo simulation of voxel phantom

    Energy Technology Data Exchange (ETDEWEB)

    Akahane, K.; Kai, M.; Kusama, T. [Oita Univ., of Nursing and Health Sciences, Oita-Ken (Japan); Saito, K. [JAERI, Ibaraki-ken (Japan)

    2002-07-01

    A voxel phantom based on CT images of one Japanese male have developed in Japan Atomic Energy Research Institute. Dose calculations of patients in X-ray CT examinations were performed using the voxel phantom and EGS4 Monte-Carlo simulation code. The organ doses of the patients were estimated.

  18. Advances in constructing regional geological voxel models, illustrated by their application in aggregate resource assessments

    NARCIS (Netherlands)

    Maljers, D.; Stafleu, J.; Meulen, M.J. van der; Dambrink, R.M.

    2015-01-01

    Aggregate resource assessments, derived from three subsequent generations of voxel models, were compared in a qualitative way to illustrate and discuss modelling progress. We compared the models in terms of both methodology and usability. All three models were produced by the Geological Survey of

  19. Vessel-guided airway segmentation based on voxel classification

    DEFF Research Database (Denmark)

    Lo, Pechin Chien Pau; Sporring, Jon; Ashraf, Haseem

    2008-01-01

    This paper presents a method for improving airway tree segmentation using vessel orientation information. We use the fact that an airway branch is always accompanied by an artery, with both structures having similar orientations. This work is based on a  voxel classification airway segmentation...... method proposed previously. The probability of a voxel belonging to the airway, from the voxel classification method, is augmented with an orientation similarity measure as a criterion for region growing. The orientation similarity measure of a voxel indicates how similar is the orientation...... of the surroundings of a voxel, estimated based on a tube model, is to that of a neighboring vessel. The proposed method is tested on 20 CT images from different subjects selected randomly from a lung cancer screening study. Length of the airway branches from the results of the proposed method are significantly...

  20. A voxel-based multiscale model to simulate the radiation response of hypoxic tumors.

    Science.gov (United States)

    Espinoza, I; Peschke, P; Karger, C P

    2015-01-01

    In radiotherapy, it is important to predict the response of tumors to irradiation prior to the treatment. This is especially important for hypoxic tumors, which are known to be highly radioresistant. Mathematical modeling based on the dose distribution, biological parameters, and medical images may help to improve this prediction and to optimize the treatment plan. A voxel-based multiscale tumor response model for simulating the radiation response of hypoxic tumors was developed. It considers viable and dead tumor cells, capillary and normal cells, as well as the most relevant biological processes such as (i) proliferation of tumor cells, (ii) hypoxia-induced angiogenesis, (iii) spatial exchange of cells leading to tumor growth, (iv) oxygen-dependent cell survival after irradiation, (v) resorption of dead cells, and (vi) spatial exchange of cells leading to tumor shrinkage. Oxygenation is described on a microscopic scale using a previously published tumor oxygenation model, which calculates the oxygen distribution for each voxel using the vascular fraction as the most important input parameter. To demonstrate the capabilities of the model, the dependence of the oxygen distribution on tumor growth and radiation-induced shrinkage is investigated. In addition, the impact of three different reoxygenation processes is compared and tumor control probability (TCP) curves for a squamous cells carcinoma of the head and neck (HNSSC) are simulated under normoxic and hypoxic conditions. The model describes the spatiotemporal behavior of the tumor on three different scales: (i) on the macroscopic scale, it describes tumor growth and shrinkage during radiation treatment, (ii) on a mesoscopic scale, it provides the cell density and vascular fraction for each voxel, and (iii) on the microscopic scale, the oxygen distribution may be obtained in terms of oxygen histograms. With increasing tumor size, the simulated tumors develop a hypoxic core. Within the model, tumor shrinkage was

  1. A voxel-based multiscale model to simulate the radiation response of hypoxic tumors

    International Nuclear Information System (INIS)

    Espinoza, I.; Peschke, P.; Karger, C. P.

    2015-01-01

    Purpose: In radiotherapy, it is important to predict the response of tumors to irradiation prior to the treatment. This is especially important for hypoxic tumors, which are known to be highly radioresistant. Mathematical modeling based on the dose distribution, biological parameters, and medical images may help to improve this prediction and to optimize the treatment plan. Methods: A voxel-based multiscale tumor response model for simulating the radiation response of hypoxic tumors was developed. It considers viable and dead tumor cells, capillary and normal cells, as well as the most relevant biological processes such as (i) proliferation of tumor cells, (ii) hypoxia-induced angiogenesis, (iii) spatial exchange of cells leading to tumor growth, (iv) oxygen-dependent cell survival after irradiation, (v) resorption of dead cells, and (vi) spatial exchange of cells leading to tumor shrinkage. Oxygenation is described on a microscopic scale using a previously published tumor oxygenation model, which calculates the oxygen distribution for each voxel using the vascular fraction as the most important input parameter. To demonstrate the capabilities of the model, the dependence of the oxygen distribution on tumor growth and radiation-induced shrinkage is investigated. In addition, the impact of three different reoxygenation processes is compared and tumor control probability (TCP) curves for a squamous cells carcinoma of the head and neck (HNSSC) are simulated under normoxic and hypoxic conditions. Results: The model describes the spatiotemporal behavior of the tumor on three different scales: (i) on the macroscopic scale, it describes tumor growth and shrinkage during radiation treatment, (ii) on a mesoscopic scale, it provides the cell density and vascular fraction for each voxel, and (iii) on the microscopic scale, the oxygen distribution may be obtained in terms of oxygen histograms. With increasing tumor size, the simulated tumors develop a hypoxic core. Within the

  2. Construction tool and suitability of voxel phantom for skin dosimetry

    International Nuclear Information System (INIS)

    Antunes, Paula C.G.; Siqueira, Paulo T.D.; Fonseca, Gabriel P.; Yoriyaz, Helio

    2011-01-01

    This paper describes a new software tool called 'SkinVop' which was developed to enable accurate voxel phantom skin dosimetry. A voxel phantom is a model used to describe human anatomy in a realistic way in radiation transport codes. This model is a three-dimensional representation of the human body in the form of an array of identification numbers that are arranged in a 3D matrix. Each entry in this array represents a voxel (volume element) directly associated to the units of picture resolution (pixel) of medical images. Currently, these voxel phantoms, in association with the transport code MCNP (Monte Carlo N-Particle), have provided subsidies to the planning systems used on the hospital routine, once they afford accurate and personalized estimative of dose distribution. However, these assessments are limited to geometric representations of organs and tissues in the voxel phantom, which do not discriminates some thin body structure, such as the skin. In this context, to enable accurate dosimetric skin dose assessment by the MCNP code, it was developed this new software tool that discriminates this region with thickness and localization in the voxel phantoms similar to the real. This methodology consists in manipulating the skin volume elements by segmenting and subdividing them in different thicknesses. A graphical user interface was designed to fulfill display the modified voxel model. This methodology is extremely useful once the skin dose is inaccurately assessed of current hospital system planning, justified justly by its small thickness. (author)

  3. Construction tool and suitability of voxel phantom for skin dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Paula C.G.; Siqueira, Paulo T.D.; Fonseca, Gabriel P.; Yoriyaz, Helio, E-mail: ptsiquei@ipen.b, E-mail: hyoriyaz@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This paper describes a new software tool called 'SkinVop' which was developed to enable accurate voxel phantom skin dosimetry. A voxel phantom is a model used to describe human anatomy in a realistic way in radiation transport codes. This model is a three-dimensional representation of the human body in the form of an array of identification numbers that are arranged in a 3D matrix. Each entry in this array represents a voxel (volume element) directly associated to the units of picture resolution (pixel) of medical images. Currently, these voxel phantoms, in association with the transport code MCNP (Monte Carlo N-Particle), have provided subsidies to the planning systems used on the hospital routine, once they afford accurate and personalized estimative of dose distribution. However, these assessments are limited to geometric representations of organs and tissues in the voxel phantom, which do not discriminates some thin body structure, such as the skin. In this context, to enable accurate dosimetric skin dose assessment by the MCNP code, it was developed this new software tool that discriminates this region with thickness and localization in the voxel phantoms similar to the real. This methodology consists in manipulating the skin volume elements by segmenting and subdividing them in different thicknesses. A graphical user interface was designed to fulfill display the modified voxel model. This methodology is extremely useful once the skin dose is inaccurately assessed of current hospital system planning, justified justly by its small thickness. (author)

  4. William, a voxel model of child anatomy from tomographic images for Monte Carlo dosimetry calculations

    International Nuclear Information System (INIS)

    Caon, M.

    2010-01-01

    Full text: Medical imaging provides two-dimensional pictures of the human internal anatomy from which may be constructed a three-dimensional model of organs and tissues suitable for calculation of dose from radiation. Diagnostic CT provides the greatest exposure to radiation per examination and the frequency of CT examination is high. Esti mates of dose from diagnostic radiography are still determined from data derived from geometric models (rather than anatomical models), models scaled from adult bodies (rather than bodies of children) and CT scanner hardware that is no longer used. The aim of anatomical modelling is to produce a mathematical representation of internal anatomy that has organs of realistic size, shape and positioning. The organs and tissues are represented by a great many cuboidal volumes (voxels). The conversion of medical images to voxels is called segmentation and on completion every pixel in an image is assigned to a tissue or organ. Segmentation is time consuming. An image processing pack age is used to identify organ boundaries in each image. Thirty to forty tomographic voxel models of anatomy have been reported in the literature. Each model is of an individual, or a composite from several individuals. Images of children are particularly scarce. So there remains a need for more paediatric anatomical models. I am working on segmenting ''William'' who is 368 PET-CT images from head to toe of a seven year old boy. William will be used for Monte Carlo dose calculations of dose from CT examination using a simulated modern CT scanner.

  5. Interactive voxel graphics in virtual reality

    Science.gov (United States)

    Brody, Bill; Chappell, Glenn G.; Hartman, Chris

    2002-06-01

    Interactive voxel graphics in virtual reality poses significant research challenges in terms of interface, file I/O, and real-time algorithms. Voxel graphics is not so new, as it is the focus of a good deal of scientific visualization. Interactive voxel creation and manipulation is a more innovative concept. Scientists are understandably reluctant to manipulate data. They collect or model data. A scientific analogy to interactive graphics is the generation of initial conditions for some model. It is used as a method to test those models. We, however, are in the business of creating new data in the form of graphical imagery. In our endeavor, science is a tool and not an end. Nevertheless, there is a whole class of interactions and associated data generation scenarios that are natural to our way of working and that are also appropriate to scientific inquiry. Annotation by sketching or painting to point to and distinguish interesting and important information is very significant for science as well as art. Annotation in 3D is difficult without a good 3D interface. Interactive graphics in virtual reality is an appropriate approach to this problem.

  6. Monitoring of human brain functions in risk decision-making task by diffuse optical tomography using voxel-wise general linear model

    Science.gov (United States)

    Lin, Zi-Jing; Li, Lin; Cazzell, Marry; Liu, Hanli

    2013-03-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive imaging technique which measures the hemodynamic changes that reflect the brain activity. Diffuse optical tomography (DOT), a variant of fNIRS with multi-channel NIRS measurements, has demonstrated capability of three dimensional (3D) reconstructions of hemodynamic changes due to the brain activity. Conventional method of DOT image analysis to define the brain activation is based upon the paired t-test between two different states, such as resting-state versus task-state. However, it has limitation because the selection of activation and post-activation period is relatively subjective. General linear model (GLM) based analysis can overcome this limitation. In this study, we combine the 3D DOT image reconstruction with GLM-based analysis (i.e., voxel-wise GLM analysis) to investigate the brain activity that is associated with the risk-decision making process. Risk decision-making is an important cognitive process and thus is an essential topic in the field of neuroscience. The balloon analogue risk task (BART) is a valid experimental model and has been commonly used in behavioral measures to assess human risk taking action and tendency while facing risks. We have utilized the BART paradigm with a blocked design to investigate brain activations in the prefrontal and frontal cortical areas during decision-making. Voxel-wise GLM analysis was performed on 18human participants (10 males and 8females).In this work, we wish to demonstrate the feasibility of using voxel-wise GLM analysis to image and study cognitive functions in response to risk decision making by DOT. Results have shown significant changes in the dorsal lateral prefrontal cortex (DLPFC) during the active choice mode and a different hemodynamic pattern between genders, which are in good agreements with published literatures in functional magnetic resonance imaging (fMRI) and fNIRS studies.

  7. Rotating and translating anthropomorphic head voxel models to establish an horizontal Frankfort plane for dental CBCT Monte Carlo simulations: a dose comparison study

    Science.gov (United States)

    Stratis, A.; Zhang, G.; Jacobs, R.; Bogaerts, R.; Bosmans, H.

    2016-12-01

    In order to carry out Monte Carlo (MC) dosimetry studies, voxel phantoms, modeling human anatomy, and organ-based segmentation of CT image data sets are applied to simulation frameworks. The resulting voxel phantoms preserve patient CT acquisition geometry; in the case of head voxel models built upon head CT images, the head support with which CT scanners are equipped introduces an inclination to the head, and hence to the head voxel model. In dental cone beam CT (CBCT) imaging, patients are always positioned in such a way that the Frankfort line is horizontal, implying that there is no head inclination. The orientation of the head is important, as it influences the distance of critical radiosensitive organs like the thyroid and the esophagus from the x-ray tube. This work aims to propose a procedure to adjust head voxel phantom orientation, and to investigate the impact of head inclination on organ doses in dental CBCT MC dosimetry studies. The female adult ICRP, and three in-house-built paediatric voxel phantoms were in this study. An EGSnrc MC framework was employed to simulate two commonly used protocols; a Morita Accuitomo 170 dental CBCT scanner (FOVs: 60  ×  60 mm2 and 80  ×  80 mm2, standard resolution), and a 3D Teeth protocol (FOV: 100  ×  90 mm2) in a Planmeca Promax 3D MAX scanner. Result analysis revealed large absorbed organ dose differences in radiosensitive organs between the original and the geometrically corrected voxel models of this study, ranging from  -45.6% to 39.3%. Therefore, accurate dental CBCT MC dose calculations require geometrical adjustments to be applied to head voxel models.

  8. Predicting drought propagation within peat layers using a three dimensionally explicit voxel based model

    Science.gov (United States)

    Condro, A. A.; Pawitan, H.; Risdiyanto, I.

    2018-05-01

    Peatlands are very vulnerable to widespread fires during dry seasons, due to availability of aboveground fuel biomass on the surface and belowground fuel biomass on the sub-surface. Hence, understanding drought propagation occurring within peat layers is crucial with regards to disaster mitigation activities on peatlands. Using a three dimensionally explicit voxel-based model of peatland hydrology, this study predicted drought propagation time lags into sub-surface peat layers after drought events occurrence on the surface of about 1 month during La-Nina and 2.5 months during El-Nino. The study was carried out on a high-conservation-value area of oil palm plantation in West Kalimantan. Validity of the model was evaluated and its applicability for disaster mitigation was discussed. The animations of simulated voxels are available at: goo.gl/HDRMYN (El-Nino 2015 episode) and goo.gl/g1sXPl (La-Nina 2016 episode). The model is available at: goo.gl/RiuMQz.

  9. Regional gray matter abnormalities in patients with schizophrenia determined with optimized voxel-based morphometry

    Science.gov (United States)

    Guo, XiaoJuan; Yao, Li; Jin, Zhen; Chen, Kewei

    2006-03-01

    This study examined regional gray matter abnormalities across the whole brain in 19 patients with schizophrenia (12 males and 7 females), comparing with 11 normal volunteers (7 males and 4 females). The customized brain templates were created in order to improve spatial normalization and segmentation. Then automated preprocessing of magnetic resonance imaging (MRI) data was conducted using optimized voxel-based morphometry (VBM). The statistical voxel based analysis was implemented in terms of two-sample t-test model. Compared with normal controls, regional gray matter concentration in patients with schizophrenia was significantly reduced in the bilateral superior temporal gyrus, bilateral middle frontal and inferior frontal gyrus, right insula, precentral and parahippocampal areas, left thalamus and hypothalamus as well as, however, significant increases in gray matter concentration were not observed across the whole brain in the patients. This study confirms and extends some earlier findings on gray matter abnormalities in schizophrenic patients. Previous behavior and fMRI researches on schizophrenia have suggested that cognitive capacity decreased and self-conscious weakened in schizophrenic patients. These regional gray matter abnormalities determined through structural MRI with optimized VBM may be potential anatomic underpinnings of schizophrenia.

  10. A new algorithm for finite element simulation of wedge osteotomies in voxel models with application to the tibia

    Directory of Open Access Journals (Sweden)

    Thomas Pressel

    2010-01-01

    Full Text Available Thomas Pressel1, Markus D Schofer1, Jörg Meiforth2, Markus Lengsfeld1, Jan Schmitt11Department of Orthopaedics and Rheumatology, University Hospital Marburg, Marburg, Germany; 2St. Vincentius Kliniken, Klinik für Orthopädie, Karlsruhe, GermanyAbstract: Wedge osteotomies are used to correct bone deformities or change the forces acting on bones and joints in the human body. Finite element models can be employed to simulate the effect of such operations on the bone or adjacent joints. The automatic generation of voxel models derived from computed tomography data is a common procedure, but the major drawback of the method lies in irregular model surfaces. Therefore, the concept of hybrid models combining voxel and tetrahedron meshes was developed. We present an algorithm to simulate wedge osteotomies in voxel models by adding tetrahedron to brick elements. Applicability of the procedure was tested by performing a parametric study using a tibia model created from computed tomography scans taken in vivo applying individually calculated force conditions. The osteotomy angle largely affected maximum stresses: at 2.5 degrees valgus, the stresses at the medial and lateral tibial plateau were equivalent, while increasing valgus angles reduced medial stresses. The algorithm described here is an improvement of former mesh generation procedures and allows a better representation of the geometry at the osteotomy level. The algorithm can be used for all wedge osteotomies and is not limited to the tibia.Keywords: finite element/osteotomy/voxel/pre-operative planning, simulation, mesh algorithm

  11. AUTOMATED VOXEL MODEL FROM POINT CLOUDS FOR STRUCTURAL ANALYSIS OF CULTURAL HERITAGE

    Directory of Open Access Journals (Sweden)

    G. Bitelli

    2016-06-01

    Full Text Available In the context of cultural heritage, an accurate and comprehensive digital survey of a historical building is today essential in order to measure its geometry in detail for documentation or restoration purposes, for supporting special studies regarding materials and constructive characteristics, and finally for structural analysis. Some proven geomatic techniques, such as photogrammetry and terrestrial laser scanning, are increasingly used to survey buildings with different complexity and dimensions; one typical product is in form of point clouds. We developed a semi-automatic procedure to convert point clouds, acquired from laserscan or digital photogrammetry, to a filled volume model of the whole structure. The filled volume model, in a voxel format, can be useful for further analysis and also for the generation of a Finite Element Model (FEM of the surveyed building. In this paper a new approach is presented with the aim to decrease operator intervention in the workflow and obtain a better description of the structure. In order to achieve this result a voxel model with variable resolution is produced. Different parameters are compared and different steps of the procedure are tested and validated in the case study of the North tower of the San Felice sul Panaro Fortress, a monumental historical building located in San Felice sul Panaro (Modena, Italy that was hit by an earthquake in 2012.

  12. A multicriteria framework with voxel-dependent parameters for radiotherapy treatment plan optimization

    International Nuclear Information System (INIS)

    Zarepisheh, Masoud; Uribe-Sanchez, Andres F.; Li, Nan; Jia, Xun; Jiang, Steve B.

    2014-01-01

    Purpose: To establish a new mathematical framework for radiotherapy treatment optimization with voxel-dependent optimization parameters. Methods: In the treatment plan optimization problem for radiotherapy, a clinically acceptable plan is usually generated by an optimization process with weighting factors or reference doses adjusted for a set of the objective functions associated to the organs. Recent discoveries indicate that adjusting parameters associated with each voxel may lead to better plan quality. However, it is still unclear regarding the mathematical reasons behind it. Furthermore, questions about the objective function selection and parameter adjustment to assure Pareto optimality as well as the relationship between the optimal solutions obtained from the organ-based and voxel-based models remain unanswered. To answer these questions, the authors establish in this work a new mathematical framework equipped with two theorems. Results: The new framework clarifies the different consequences of adjusting organ-dependent and voxel-dependent parameters for the treatment plan optimization of radiation therapy, as well as the impact of using different objective functions on plan qualities and Pareto surfaces. The main discoveries are threefold: (1) While in the organ-based model the selection of the objective function has an impact on the quality of the optimized plans, this is no longer an issue for the voxel-based model since the Pareto surface is independent of the objective function selection and the entire Pareto surface could be generated as long as the objective function satisfies certain mathematical conditions; (2) All Pareto solutions generated by the organ-based model with different objective functions are parts of a unique Pareto surface generated by the voxel-based model with any appropriate objective function; (3) A much larger Pareto surface is explored by adjusting voxel-dependent parameters than by adjusting organ-dependent parameters, possibly

  13. Study on the Construction of a High-definition Whole-body Voxel Model based on Cadaver's Color Photographic Anatomical Slice Images and Monte Carlo Dose Calculations

    International Nuclear Information System (INIS)

    Choi, Sang Hyoun

    2007-08-01

    Ajou University School of Medicine made the serially sectioned anatomical images from the Visible Korean Human (VKH) Project in Korea. The VKH images, which are the high-resolution color photographic images, show the organs and tissues in the human body very clearly at 0.2 mm intervals. In this study, we constructed a high-quality voxel model (VKH-Man) with a total of 30 organs and tissues by manual and automatic segmentation method using the serially sectioned anatomical image data from the Visible Korean Human (VKH) project in Korea. The height and weight of VKH-Man voxel model is 164 cm and 57.6 kg, respectively, and the voxel resolution is 1.875 x 1.875 x 2 mm 3 . However, this voxel phantom can be used to calculate the organ and tissue doses of only one person. Therefore, in this study, we adjusted the voxel phantom to the 'Reference Korean' data to construct the voxel phantom that represents the radiation workers in Korea. The height and weight of the voxel model (HDRK-Man) that is finally developed are 171 cm and 68 kg, respectively, and the voxel resolution is 1.981 x 1.981 x 2.0854 mm 3 . VKH-Man and HDRK-Man voxel model were implemented in a Monte Carlo particle transport simulation code for calculation of the organ and tissue doses in various irradiation geometries. The calculated values were compared with each other to see the effect of the adjustment and also compared with other computational models (KTMAN-2, ICRP-74 and VIP-Man). According to the results, the adjustment of the voxel model was found hardly affect the dose calculations and most of the organ and tissue equivalent doses showed some differences among the models. These results shows that the difference in figure, and organ topology affects the organ doses more than the organ size. The calculated values of the effective dose from VKH-Man and HDRK-Man according to the ICRP-60 and upcoming ICRP recommendation were compared. For the other radiation geometries (AP, LLAT, RLAT) except for PA

  14. DTI analysis methods : Voxel-based analysis

    NARCIS (Netherlands)

    Van Hecke, Wim; Leemans, Alexander; Emsell, Louise

    2016-01-01

    Voxel-based analysis (VBA) of diffusion tensor imaging (DTI) data permits the investigation of voxel-wise differences or changes in DTI metrics in every voxel of a brain dataset. It is applied primarily in the exploratory analysis of hypothesized group-level alterations in DTI parameters, as it does

  15. Absorbed dose evaluation based on a computational voxel model incorporating distinct cerebral structures

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Samia de Freitas; Trindade, Bruno; Campos, Tarcisio P.R. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)]. E-mail: samiabrandao@gmail.com; bmtrindade@yahoo.com; campos@nuclear.ufmg.br

    2007-07-01

    Brain tumors are quite difficult to treat due to the collateral radiation damages produced on the patients. Despite of the improvements in the therapeutics protocols for this kind of tumor, involving surgery and radiotherapy, the failure rate is still extremely high. This fact occurs because tumors can not often be totally removed by surgery since it may produce some type of deficit in the cerebral functions. Radiotherapy is applied after the surgery, and both are palliative treatments. During radiotherapy the brain does not absorb the radiation dose in homogeneous way, because the various density and chemical composition of tissues involved. With the intention of evaluating better the harmful effects caused by radiotherapy it was developed an elaborated cerebral voxel model to be used in computational simulation of the irradiation protocols of brain tumors. This paper presents some structures function of the central nervous system and a detailed cerebral voxel model, created in the SISCODES program, considering meninges, cortex, gray matter, white matter, corpus callosum, limbic system, ventricles, hypophysis, cerebellum, brain stem and spinal cord. The irradiation protocol simulation was running in the MCNP5 code. The model was irradiated with photons beam whose spectrum simulates a linear accelerator of 6 MV. The dosimetric results were exported to SISCODES, which generated the isodose curves for the protocol. The percentage isodose curves in the brain are present in this paper. (author)

  16. Development of pregnant female, hybrid voxel-mathematical models and their application to the dosimetry of applied magnetic and electric fields at 50 Hz

    International Nuclear Information System (INIS)

    Dimbylow, Peter

    2006-01-01

    This paper describes the development of 2 mm resolution hybrid voxel-mathematical models of the pregnant female. Mathematical models of the developing foetus at 8-, 13-, 26- and 38-weeks of gestation were converted into voxels and combined with the adult female model, NAOMI. This set of models was used to calculate induced current densities and electric fields in the foetus from applied 50 Hz magnetic and electric fields. The influence of foetal tissue conductivities was investigated and implications for electromagnetic field guidelines discussed

  17. Lithological, grain-size and architectural trends in the holocene Rhine-Meuse delta-insights from 3D voxel models

    NARCIS (Netherlands)

    Stafleu, J.; Busschers, F.S.

    2014-01-01

    TNO Geological Survey of the Netherlands systematically produces 3D voxel models for answering subsurface related questions. The unique combination of vast amounts of borehole data and the voxelbased approach makes the models valuable new sources for exploring the Quaternary fluvial record. The

  18. Voxel-based model construction from colored tomographic images

    International Nuclear Information System (INIS)

    Loureiro, Eduardo Cesar de Miranda

    2002-07-01

    This work presents a new approach in the construction of voxel-based phantoms that was implemented to simplify the segmentation process of organs and tissues reducing the time used in this procedure. The segmentation process is performed by painting tomographic images and attributing a different color for each organ or tissue. A voxel-based head and neck phantom was built using this new approach. The way as the data are stored allows an increasing in the performance of the radiation transport code. The program that calculates the radiation transport also works with image files. This capability allows image reconstruction showing isodose areas, under several points of view, increasing the information to the user. Virtual X-ray photographs can also be obtained allowing that studies could be accomplished looking for the radiographic techniques optimization assessing, at the same time, the doses in organs and tissues. The accuracy of the program here presented, called MCvoxEL, that implements this new approach, was tested by comparison to results from two modern and well-supported Monte Carlo codes. Dose conversion factors for parallel X-ray exposure were also calculated. (author)

  19. Lattice Boltzmann heat transfer model for permeable voxels

    Science.gov (United States)

    Pereira, Gerald G.; Wu, Bisheng; Ahmed, Shakil

    2017-12-01

    We develop a gray-scale lattice Boltzmann (LB) model to study fluid flow combined with heat transfer for flow through porous media where voxels may be partially solid (or void). Heat transfer in rocks may lead to deformation, which in turn can modulate the fluid flow and so has significant contribution to rock permeability. The LB temperature field is compared to a finite difference solution of the continuum partial differential equations for fluid flow in a channel. Excellent quantitative agreement is found for both Poiseuille channel flow and Brinkman flow. The LB model is then applied to sample porous media such as packed beds and also more realistic sandstone rock sample, and both the convective and diffusive regimes are recovered when varying the thermal diffusivity. It is found that while the rock permeability can be comparatively small (order milli-Darcy), the temperature field can show significant variation depending on the thermal convection of the fluid. This LB method has significant advantages over other numerical methods such as finite and boundary element methods in dealing with coupled fluid flow and heat transfer in rocks which have irregular and nonsmooth pore spaces.

  20. Alderson-Rando phantom 'voxelization' for use in numerical dosimetry

    International Nuclear Information System (INIS)

    Santos, A.M.; Vieira, J.W.

    2008-01-01

    This paper presents the methodology used for creating a voxel phantom from the tomographic physical Alderson-Rando phantom images (HR) and to develop a computer model formed by exposure of the resulting phantom 'voxelization' of AR coupled to the Monte Carlo code EGS4 plus algorithms to simulate radioactive sources in internal dosimetry

  1. Assessment of uncertainties in the lung activity measurement of low-energy photon emitters using Monte Carlo simulation of ICRP male thorax voxel phantom.

    Science.gov (United States)

    Nadar, M Y; Akar, D K; Rao, D D; Kulkarni, M S; Pradeepkumar, K S

    2015-12-01

    Assessment of intake due to long-lived actinides by inhalation pathway is carried out by lung monitoring of the radiation workers inside totally shielded steel room using sensitive detection systems such as Phoswich and an array of HPGe detectors. In this paper, uncertainties in the lung activity estimation due to positional errors, chest wall thickness (CWT) and detector background variation are evaluated. First, calibration factors (CFs) of Phoswich and an array of three HPGe detectors are estimated by incorporating ICRP male thorax voxel phantom and detectors in Monte Carlo code 'FLUKA'. CFs are estimated for the uniform source distribution in lungs of the phantom for various photon energies. The variation in the CFs for positional errors of ±0.5, 1 and 1.5 cm in horizontal and vertical direction along the chest are studied. The positional errors are also evaluated by resizing the voxel phantom. Combined uncertainties are estimated at different energies using the uncertainties due to CWT, detector positioning, detector background variation of an uncontaminated adult person and counting statistics in the form of scattering factors (SFs). SFs are found to decrease with increase in energy. With HPGe array, highest SF of 1.84 is found at 18 keV. It reduces to 1.36 at 238 keV. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. FDTD calculations of SAR for child voxel models in different postures between 10 MHz and 3 GHz.

    Science.gov (United States)

    Findlay, R P; Lee, A-K; Dimbylow, P J

    2009-08-01

    Calculations of specific energy absorption rate (SAR) have been performed on the rescaled NORMAN 7-y-old voxel model and the Electronics and Telecommunications Research Institute (ETRI) child 7-y-old voxel model in the standing arms down, arms up and sitting postures. These calculations were for plane-wave exposure under isolated and grounded conditions between 10 MHz and 3 GHz. It was found that there was little difference at each resonant frequency between the whole-body averaged SAR values calculated for the NORMAN and ETRI 7-y-old models for each of the postures studied. However, when compared with the arms down posture, raising the arms increased the SAR by up to 25%. Electric field values required to produce the International Commission on Non-Ionizing Radiation Protection and Institute of Electrical and Electronic Engineers public basic restriction were calculated, and compared with reference levels for the different child models and postures. These showed that, under certain worst-case exposure conditions, the reference levels may not be conservative.

  3. The Relevance Voxel Machine (RVoxM): A Self-Tuning Bayesian Model for Informative Image-Based Prediction

    DEFF Research Database (Denmark)

    Sabuncu, Mert R.; Van Leemput, Koen

    2012-01-01

    This paper presents the relevance voxel machine (RVoxM), a dedicated Bayesian model for making predictions based on medical imaging data. In contrast to the generic machine learning algorithms that have often been used for this purpose, the method is designed to utilize a small number of spatially...

  4. WE-D-BRE-06: Quantification of Dose-Response for High Grade Esophagtis Patients Using a Novel Voxel-To-Voxel Method

    International Nuclear Information System (INIS)

    Niedzielski, J; Martel, M; Tucker, S; Gomez, D; Court, L; Yang, J; Briere, T

    2014-01-01

    Purpose: Radiation induces an inflammatory response in the esophagus, discernible on CT studies. This work objectively quantifies the voxel esophageal radiation-response for patients with acute esophagitis. This knowledge is an important first-step towards predicting the effect of complex dose distributions on patient esophagitis symptoms. Methods: A previously validated voxel-based methodology of quantifying radiation esophagitis severity was used to identify the voxel dose-response for 18 NSCLC patients with severe esophagitis (CTCAE grading criteria, grade2 or higher). The response is quantified as percent voxel volume change for a given dose. During treatment (6–8 weeks), patients had weekly 4DCT studies and esophagitis scoring. Planning CT esophageal contours were deformed to each weekly CT using a demons DIR algorithm. An algorithm using the Jacobian Map from the DIR of the planning CT to all weekly CTs was used to quantify voxel-volume change, along with corresponding delivered voxel dose, to the planning voxel. Dose for each voxel for each time-point was calculated on each previous weekly CT image, and accumulated using DIR. Thus, for each voxel, the volume-change and delivered dose was calculated for each time-point. The data was binned according to when the volume-change first increased by a threshold volume (10%–100%, in 10% increments), and the average delivered dose calculated for each bin. Results: The average dose resulting in a voxel volume increase of 10–100% was 21.6 to 45.9Gy, respectively. The mean population dose to give a 50% volume increase was 36.3±4.4Gy, (range:29.8 to 43.5Gy). The average week of 50% response was 4.1 (range:4.9 to 2.8 weeks). All 18 patients showed similar dose to first response curves, showing a common trend in the initial inflammatoryresponse. Conclusion: We extracted the dose-response curve of the esophagus on a voxel-to-voxel level. This may be useful for estimating the esophagus response (and patient symptoms

  5. SU-E-CAMPUS-I-02: Estimation of the Dosimetric Error Caused by the Voxelization of Hybrid Computational Phantoms Using Triangle Mesh-Based Monte Carlo Transport

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C [Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD (United States); Badal, A [U.S. Food ' Drug Administration (CDRH/OSEL), Silver Spring, MD (United States)

    2014-06-15

    Purpose: Computational voxel phantom provides realistic anatomy but the voxel structure may result in dosimetric error compared to real anatomy composed of perfect surface. We analyzed the dosimetric error caused from the voxel structure in hybrid computational phantoms by comparing the voxel-based doses at different resolutions with triangle mesh-based doses. Methods: We incorporated the existing adult male UF/NCI hybrid phantom in mesh format into a Monte Carlo transport code, penMesh that supports triangle meshes. We calculated energy deposition to selected organs of interest for parallel photon beams with three mono energies (0.1, 1, and 10 MeV) in antero-posterior geometry. We also calculated organ energy deposition using three voxel phantoms with different voxel resolutions (1, 5, and 10 mm) using MCNPX2.7. Results: Comparison of organ energy deposition between the two methods showed that agreement overall improved for higher voxel resolution, but for many organs the differences were small. Difference in the energy deposition for 1 MeV, for example, decreased from 11.5% to 1.7% in muscle but only from 0.6% to 0.3% in liver as voxel resolution increased from 10 mm to 1 mm. The differences were smaller at higher energies. The number of photon histories processed per second in voxels were 6.4×10{sup 4}, 3.3×10{sup 4}, and 1.3×10{sup 4}, for 10, 5, and 1 mm resolutions at 10 MeV, respectively, while meshes ran at 4.0×10{sup 4} histories/sec. Conclusion: The combination of hybrid mesh phantom and penMesh was proved to be accurate and of similar speed compared to the voxel phantom and MCNPX. The lowest voxel resolution caused a maximum dosimetric error of 12.6% at 0.1 MeV and 6.8% at 10 MeV but the error was insignificant in some organs. We will apply the tool to calculate dose to very thin layer tissues (e.g., radiosensitive layer in gastro intestines) which cannot be modeled by voxel phantoms.

  6. Construction of Korean female voxel phantom and its application to dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choon Ik

    2001-08-15

    A Korean female voxel phantom was constructed to overcome the limitations of anatomical description of the existing MRD-type mathematical anthropomorphic phantom and the example dose calculations were carried out for the radiation protection by using it. This whole body voxel phantom was based on the MRIs of the Korean adult female who falls into the reference Korean female group. The cross sectional human pictures from VHP of NLM was adopted for the modification and compensation of the missing MRIs of Korean adult female that include legs below upper thighs. From the gastrointestinal and respiratory organ which make obscure organ edges because of their continuing motion, the general anatomical knowledge were applied for the segmentation process. The Korean female whole body voxel phantom named in HYWOMAN is composed of 1,392,400 voxels that have width x length x height of 4mm x 4mm x 8mm for each with the total of 20 organs identified. With MDNP4B code the tissue equivalent doses were calculated for the four different energies of 0.4, 0.8, 2 and 8 MeV broad parallel gamma beam in AP, PA, LLAT and RLAT directions. The tissue equivalent doses were compared with those of ORNL adult female phantom under the same irradiation conditions. Despite of the small organ differences there could be found the considerable differences in tissue equivalent doses for some organs including thyroid, esophagus, kidneys and spleen. The cause of these discrepancies were proved to be the position of the organs in the phantom and the consequent shielding effects. With the methodology of this study, Korean reference male and female age-grouped voxel phantoms can be constructed and consequently the dosimetry system for typical Korean people is to be established.

  7. Construction of Korean female voxel phantom and its application to dosimetry

    International Nuclear Information System (INIS)

    Lee, Choon Ik

    2001-08-01

    A Korean female voxel phantom was constructed to overcome the limitations of anatomical description of the existing MRD-type mathematical anthropomorphic phantom and the example dose calculations were carried out for the radiation protection by using it. This whole body voxel phantom was based on the MRIs of the Korean adult female who falls into the reference Korean female group. The cross sectional human pictures from VHP of NLM was adopted for the modification and compensation of the missing MRIs of Korean adult female that include legs below upper thighs. From the gastrointestinal and respiratory organ which make obscure organ edges because of their continuing motion, the general anatomical knowledge were applied for the segmentation process. The Korean female whole body voxel phantom named in HYWOMAN is composed of 1,392,400 voxels that have width x length x height of 4mm x 4mm x 8mm for each with the total of 20 organs identified. With MDNP4B code the tissue equivalent doses were calculated for the four different energies of 0.4, 0.8, 2 and 8 MeV broad parallel gamma beam in AP, PA, LLAT and RLAT directions. The tissue equivalent doses were compared with those of ORNL adult female phantom under the same irradiation conditions. Despite of the small organ differences there could be found the considerable differences in tissue equivalent doses for some organs including thyroid, esophagus, kidneys and spleen. The cause of these discrepancies were proved to be the position of the organs in the phantom and the consequent shielding effects. With the methodology of this study, Korean reference male and female age-grouped voxel phantoms can be constructed and consequently the dosimetry system for typical Korean people is to be established

  8. Reconstruction of voxel phantoms for skin dosimetry

    International Nuclear Information System (INIS)

    Antunes, Paula Cristina Guimaraes

    2010-01-01

    Radiotherapy is a therapeutic modality that utilizes ionizing radiation for the destruction of neoplastic human cells. One of the requirements for this treatment methodology success lays on the appropriate use of planning systems, which performs, among other information, the patient's dose distribution estimate. Nowadays, transport codes have been providing huge subsidies to these planning systems, once it enables specific and accurate patient organ and tissue dosimetry. The model utilized by these codes to describe the human anatomy in a realistic way is known as voxel phantoms, which are represented by discrete volume elements (voxels) directly associated to tomographic data. Nowadays, voxel phantoms doable of being inserted and processed by the transport code MCNP (Monte Carlo N-Particle) presents a 3-4 mm image resolution; however, such resolution limits some thin body structure discrimination, such as skin. In this context, this work proposes a calculus routine that discriminates this region with thickness and localization in the voxel phantoms similar to the real, leading to an accurate dosimetric skin dose assessment by the MCNP code. Moreover, this methodology consists in manipulating the voxel phantoms volume elements by segmenting and subdividing it in different skin thickness. In addition to validate the skin dose calculated data, a set of experimental evaluations with thermoluminescent dosimeters were performed in an anthropomorphic phantom. Due to significant differences observed on the dose distribution of several skin representations, it was found that is important to discriminate the skin thickness similar to the real. The presented methodology is useful to obtain an accurate skin dosimetric evaluation for several radiotherapy procedures, with particular interest on the electron beam radiotherapy, in which highlights the whole body irradiation therapy (TSET), a procedure under implementation at the Hospital das Clinicas da Faculdade de Medicina da

  9. REKONSTRUKSI OBYEK TIGA DIMENSI DARI GAMBAR DUA DIMENSI MENGGUNAKAN METODE GENERALIZED VOXEL COLORING–LAYERED DEPTH IMAGE

    Directory of Open Access Journals (Sweden)

    Rudy Adipranata

    2008-01-01

    Full Text Available The objective of this research is to develop software which capable to reconstruct 3D object from 2D images as references using Generalized Voxel Coloring - Layered Depth Image method (GVC-LDI. This method reconstruct 3D object using LDI link list as help to find voxels which correspond to the objects based on color. To find the voxels, we calculate the color standard deviation of the pixels which is projected from the object. If the standard deviation is smaller than the threshold, the voxel evaluated as a part of the object. The process repeated for each voxel until it gets all of the voxels which shape the object. The voxels can be drawn to screen to get the photorealistic 3D object that represent the 2D images. In this research, we also compare the result of GVC-LDI and Generalized Voxel Coloring – Image Buffer (GVC-IB which is one of the GVC variant also. Future development of the software is automatic 3D modeling application and real time 3D animation application. Abstract in Bahasa Indonesia : Pada penelitian ini dikembangkan sebuah perangkat lunak untuk merekonstruksi obyek tiga dimensi dari kumpulan gambar dua dimensi dengan menggunakan metode generalized voxel coloring– layered depth image (GVC-LDI. Metode GVC-LDI ini melakukan rekonstruksi dengan bantuan link list LDI guna mencari voxel-voxel yang merupakan bagian dari obyek tiga dimensi berdasarkan warna. Guna penentuan voxel tersebut dilakukan perhitungan dari pixel-pixel yang merupakan proyeksi dari sebuah voxel. Perhitungan dilakukan dengan menggunakan standar deviasi warna untuk menentukan apakah pixel-pixel yang bersesuaian mewakili lokasi obyek yang sama. Apabila standar deviasi warna lebih kecil dari threshold maka dapat dikatakan bahwa voxel tersebut termasuk bagian obyek. Proses ini dilakukan secara berulang untuk semua voxel hingga didapatkan voxel-voxel yang merupakan bagian dari obyek. Voxel tersebut kemudian digambar pada layar monitor sehingga diperoleh hasil berupa

  10. Intra-voxel heterogeneity influences the dose prescription for dose-painting with radiotherapy: a modelling study

    NARCIS (Netherlands)

    Petit, S.F.; Dekker, A.L.A.J.; Seigneuric, R.; Murrer, L.H.P.; Riel, van N.A.W.; Nordsmark, M.; Overgaard, J.; Lambin, Ph.; Wouters, B.G.

    2009-01-01

    The purpose of this study was to increase the potential of dose redistribution by incorporating estimates of oxygen heterogeneity within imaging voxels for optimal dose determination. Cellular oxygen tension (pO2) distributions were estimated for imaging-size-based voxels by solving oxygen

  11. Construction of Korean male tomographic model segmented from PET-CT data

    International Nuclear Information System (INIS)

    Lee, Choon Sik; Park, Sang Kyun; Lee, Jai Ki

    2004-01-01

    Tomographic human models provide currently the most realistic representation of human anatomy for radiation dosimetry calculation. Most of the models have been constructed by using computed tomographic (CT) or magnetic resonance (MR) images obtained from a single individual. Each scan has its inherent advantages and disadvantages. CT scan gives a considerable radiation dose to a subject, and MR scan takes too long time to get clear images of an immobile subject. An emerging source of medical images for the construction of tomographic models is PET-CT, which is performed when looking for cancer. In this study, a tomographic model of Korean adult male was developed by processing whole-body CT images of a PET-CT-scanned healthy volunteer. The 343 slices of the CT images were semi-automatically segmented layer by layer using a graphic software and screen digitizer. The 3rd Korean tomographic model, named KRMAN-2, consisting of 300x150x344 voxels of a size of 2x2x5mm 3 , was constructed. Examples of application to Monte Carlo radiation dosimetry calculation in idealized whole-body irradiations were given and discussed

  12. Proportion-corrected scaled voxel models for Japanese children and their application to the numerical dosimetry of specific absorption rate for frequencies from 30 MHz to 3 GHz

    International Nuclear Information System (INIS)

    Nagaoka, Tomoaki; Watanabe, Soichi; Kunieda, Etsuo

    2008-01-01

    The development of high-resolution anatomical voxel models of children is difficult given, inter alia, the ethical limitations on subjecting children to medical imaging. We instead used an existing voxel model of a Japanese adult and three-dimensional deformation to develop three voxel models that match the average body proportions of Japanese children at 3, 5 and 7 years old. The adult model was deformed to match the proportions of a child by using the measured dimensions of various body parts of children at 3, 5 and 7 years old and a free-form deformation technique. The three developed models represent average-size Japanese children of the respective ages. They consist of cubic voxels (2 mm on each side) and are segmented into 51 tissues and organs. We calculated the whole-body-averaged specific absorption rates (WBA-SARs) and tissue-averaged SARs for the child models for exposures to plane waves from 30 MHz to 3 GHz; these results were then compared with those for scaled down adult models. We also determined the incident electric-field strength required to produce the exposure equivalent to the ICNIRP basic restriction for general public exposure, i.e., a WBA-SAR of 0.08 W kg -1 .

  13. FDTD calculations of specific energy absorption rate in a seated voxel model of the human body from 10 MHz to 3 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, R P; Dimbylow, P J [Health Protection Agency, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom)

    2006-05-07

    Finite-difference time-domain (FDTD) calculations have been performed to investigate the frequency dependence of the specific energy absorption rate (SAR) in a seated voxel model of the human body. The seated model was derived from NORMAN (NORmalized MAN), an anatomically realistic voxel phantom in the standing posture with arms to the side. Exposure conditions included both vertically and horizontally polarized plane wave electric fields between 10 MHz and 3 GHz. The resolution of the voxel model was 4 mm for frequencies up to 360 MHz and 2 mm for calculations in the higher frequency range. The reduction in voxel size permitted the calculation of SAR at these higher frequencies using the FDTD method. SAR values have been calculated for the seated adult phantom and scaled versions representing 10-, 5- and 1-year-old children under isolated and grounded conditions. These scaled models do not exactly reproduce the dimensions and anatomy of children, but represent good geometric information for a seated child. Results show that, when the field is vertically polarized, the sitting position causes a second, smaller resonance condition not seen in resonance curves for the phantom in the standing posture. This occurs at {approx}130 MHz for the adult model when grounded. Partial-body SAR calculations indicate that the upper and lower regions of the body have their own resonant frequency at {approx}120 MHz and {approx}160 MHz, respectively, when the grounded adult model is orientated in the sitting position. These combine to produce this second resonance peak in the whole-body averaged SAR values calculated. Two resonance peaks also occur for the sitting posture when the incident electric field is horizontally polarized. For the adult model, the peaks in the whole-body averaged SAR occur at {approx}180 and {approx}600 MHz. These peaks are due to resonance in the arms and feet, respectively. Layer absorption plots and colour images of SAR in individual voxels show the

  14. FDTD calculations of specific energy absorption rate in a seated voxel model of the human body from 10 MHz to 3 GHz

    International Nuclear Information System (INIS)

    Findlay, R P; Dimbylow, P J

    2006-01-01

    Finite-difference time-domain (FDTD) calculations have been performed to investigate the frequency dependence of the specific energy absorption rate (SAR) in a seated voxel model of the human body. The seated model was derived from NORMAN (NORmalized MAN), an anatomically realistic voxel phantom in the standing posture with arms to the side. Exposure conditions included both vertically and horizontally polarized plane wave electric fields between 10 MHz and 3 GHz. The resolution of the voxel model was 4 mm for frequencies up to 360 MHz and 2 mm for calculations in the higher frequency range. The reduction in voxel size permitted the calculation of SAR at these higher frequencies using the FDTD method. SAR values have been calculated for the seated adult phantom and scaled versions representing 10-, 5- and 1-year-old children under isolated and grounded conditions. These scaled models do not exactly reproduce the dimensions and anatomy of children, but represent good geometric information for a seated child. Results show that, when the field is vertically polarized, the sitting position causes a second, smaller resonance condition not seen in resonance curves for the phantom in the standing posture. This occurs at ∼130 MHz for the adult model when grounded. Partial-body SAR calculations indicate that the upper and lower regions of the body have their own resonant frequency at ∼120 MHz and ∼160 MHz, respectively, when the grounded adult model is orientated in the sitting position. These combine to produce this second resonance peak in the whole-body averaged SAR values calculated. Two resonance peaks also occur for the sitting posture when the incident electric field is horizontally polarized. For the adult model, the peaks in the whole-body averaged SAR occur at ∼180 and ∼600 MHz. These peaks are due to resonance in the arms and feet, respectively. Layer absorption plots and colour images of SAR in individual voxels show the specific regions in which the

  15. Development of the voxel computational phantoms of pediatric patients and their application to organ dose assessment

    Science.gov (United States)

    Lee, Choonik

    A series of realistic voxel computational phantoms of pediatric patients were developed and then used for the radiation risk assessment for various exposure scenarios. The high-resolution computed tomographic images of live patients were utilized for the development of the five voxel phantoms of pediatric patients, 9-month male, 4-year female, 8-year female, 11-year male, and 14-year male. The phantoms were first developed as head and torso phantoms and then extended into whole body phantoms by utilizing computed tomographic images of a healthy adult volunteer. The whole body phantom series was modified to have the same anthropometrics with the most recent reference data reported by the international commission on radiological protection. The phantoms, named as the University of Florida series B, are the first complete set of the pediatric voxel phantoms having reference organ masses and total heights. As part of the dosimetry study, the investigation on skeletal tissue dosimetry methods was performed for better understanding of the radiation dose to the active bone marrow and bone endosteum. All of the currently available methodologies were inter-compared and benchmarked with the paired-image radiation transport model. The dosimetric characteristics of the phantoms were investigated by using Monte Carlo simulation of the broad parallel beams of external phantom in anterior-posterior, posterior-anterior, left lateral, right lateral, rotational, and isotropic angles. Organ dose conversion coefficients were calculated for extensive photon energies and compared with the conventional stylized pediatric phantoms of Oak Ridge National Laboratory. The multi-slice helical computed tomography exams were simulated using Monte Carlo simulation code for various exams protocols, head, chest, abdomen, pelvis, and chest-abdomen-pelvis studies. Results have found realistic estimates of the effective doses for frequently used protocols in pediatric radiology. The results were very

  16. Laser-induced forward transfer (LIFT) of congruent voxels

    Energy Technology Data Exchange (ETDEWEB)

    Piqué, Alberto, E-mail: pique@nrl.navy.mil [Materials Science and Technology Division, Code 6364, Naval Research Laboratory, Washington, DC 20375 (United States); Kim, Heungsoo; Auyeung, Raymond C.Y.; Beniam, Iyoel [Materials Science and Technology Division, Code 6364, Naval Research Laboratory, Washington, DC 20375 (United States); Breckenfeld, Eric [National Research Council Fellow at the Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-06-30

    Highlights: • Laser-induced forward transfer (LIFT) is demonstrated with high viscosity Ag nanopaste. • Under the right conditions (viscosity and fluence) the transfer of congruent voxels was achieved. • For viscosities under 100 Pa s, congruent voxel transfer of silver nano-suspensions is only possible under a very narrow range of conditions. • For viscosities over 100 Pa s, congruent voxel transfer of silver nano-pastes works over a wider range of fluences, donor substrate thickness, gap distances and voxel areas. • The laser transfer of congruent voxels can be used for printing electronic patterns in particular interconnects. - Abstract: Laser-induced forward transfer (LIFT) of functional materials offers unique advantages and capabilities for the rapid prototyping of electronic, optical and sensor elements. The use of LIFT for printing high viscosity metallic nano-inks and nano-pastes can be optimized for the transfer of voxels congruent with the shape of the laser pulse, forming thin film-like structures non-lithographically. These processes are capable of printing patterns with excellent lateral resolution and thickness uniformity typically found in 3-dimensional stacked assemblies, MEMS-like structures and free-standing interconnects. However, in order to achieve congruent voxel transfer with LIFT, the particle size and viscosity of the ink or paste suspensions must be adjusted to minimize variations due to wetting and drying effects. When LIFT is carried out with high-viscosity nano-suspensions, the printed voxel size and shape become controllable parameters, allowing the printing of thin-film like structures whose shape is determined by the spatial distribution of the laser pulse. The result is a new level of parallelization beyond current serial direct-write processes whereby the geometry of each printed voxel can be optimized according to the pattern design. This work shows how LIFT of congruent voxels can be applied to the fabrication of 2D

  17. Laser-induced forward transfer (LIFT) of congruent voxels

    International Nuclear Information System (INIS)

    Piqué, Alberto; Kim, Heungsoo; Auyeung, Raymond C.Y.; Beniam, Iyoel; Breckenfeld, Eric

    2016-01-01

    Highlights: • Laser-induced forward transfer (LIFT) is demonstrated with high viscosity Ag nanopaste. • Under the right conditions (viscosity and fluence) the transfer of congruent voxels was achieved. • For viscosities under 100 Pa s, congruent voxel transfer of silver nano-suspensions is only possible under a very narrow range of conditions. • For viscosities over 100 Pa s, congruent voxel transfer of silver nano-pastes works over a wider range of fluences, donor substrate thickness, gap distances and voxel areas. • The laser transfer of congruent voxels can be used for printing electronic patterns in particular interconnects. - Abstract: Laser-induced forward transfer (LIFT) of functional materials offers unique advantages and capabilities for the rapid prototyping of electronic, optical and sensor elements. The use of LIFT for printing high viscosity metallic nano-inks and nano-pastes can be optimized for the transfer of voxels congruent with the shape of the laser pulse, forming thin film-like structures non-lithographically. These processes are capable of printing patterns with excellent lateral resolution and thickness uniformity typically found in 3-dimensional stacked assemblies, MEMS-like structures and free-standing interconnects. However, in order to achieve congruent voxel transfer with LIFT, the particle size and viscosity of the ink or paste suspensions must be adjusted to minimize variations due to wetting and drying effects. When LIFT is carried out with high-viscosity nano-suspensions, the printed voxel size and shape become controllable parameters, allowing the printing of thin-film like structures whose shape is determined by the spatial distribution of the laser pulse. The result is a new level of parallelization beyond current serial direct-write processes whereby the geometry of each printed voxel can be optimized according to the pattern design. This work shows how LIFT of congruent voxels can be applied to the fabrication of 2D

  18. The impact of voxel size-based inaccuracies on the mechanical behavior of thin bone structures.

    Science.gov (United States)

    Maloul, Asmaa; Fialkov, Jeffrey; Whyne, Cari

    2011-03-01

    Computed tomography (CT)-based measures of skeletal geometry and material properties have been widely used to develop finite element (FE) models of bony structures. However, in the case of thin bone structures, the ability to develop FE models with accurate geometry derived from clinical CT data presents a challenge due to the thinness of the bone and the limited resolution of the imaging devices. The purpose of this study was to quantify the impact of voxel size on the thickness and intensity values of thin bone structure measurements and to assess the effect of voxel size on strains through FE modeling. Cortical bone thickness and material properties in five thin bone specimens were quantified at voxel sizes ranging from 16.4 to 488 μm. The measurements derived from large voxel size scans showed large increases in cortical thickness (61.9-252.2%) and large decreases in scan intensity (12.9-49.5%). Maximum principal strains from FE models generated using scans at 488 μm were decreased as compared to strains generated at 16.4 μm voxel size (8.6-64.2%). A higher level of significance was found in comparing intensity (p = 0.0001) vs. thickness (p = 0.005) to strain measurements. These findings have implications in developing methods to generate accurate FE models to predict the biomechanical behavior of thin bone structures.

  19. White matter abnormalities in young males with antisocial personality disorder Evidence from voxel-based morphometry-diffeomorphic anatomical registration using exponentiated lie algebra analysis

    Institute of Scientific and Technical Information of China (English)

    Daxing Wu; Ying Zhao; Jian Liao; Huifang Yin; Wei Wang

    2011-01-01

    Voxel-based morphometry-diffeomorphic anatomical registration using exponentiated lie algebra analysis was used to investigate the structural characteristics of white matter in young males with antisocial personality disorder (APD) and healthy controls without APD. The results revealed that APD subjects, relative to healthy subjects, exhibited increased white matter volume in the bilateral prefrontal lobe, right insula, precentral gyrus, bilateral superior temporal gyrus, right postcentral gyrus, right inferior parietal lobule, right precuneus, right middle occipital lobe, right parahippocampal gyrus and bilateral cingulate, and decreased volume in the middle temporal cortex and right cerebellum. The white matter volume in the medial frontal gyrus was significantly correlated with antisocial type scores on the Personality Diagnostic Questionnaire in APD subjects. These experimental findings indicate that white matter abnormalities in several brain areas may contribute to antisocial behaviors in APD subjects.

  20. TH-A-9A-01: Active Optical Flow Model: Predicting Voxel-Level Dose Prediction in Spine SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J; Wu, Q.J.; Yin, F; Kirkpatrick, J; Cabrera, A [Duke University Medical Center, Durham, NC (United States); Ge, Y [University of North Carolina at Charlotte, Charlotte, NC (United States)

    2014-06-15

    Purpose: To predict voxel-level dose distribution and enable effective evaluation of cord dose sparing in spine SBRT. Methods: We present an active optical flow model (AOFM) to statistically describe cord dose variations and train a predictive model to represent correlations between AOFM and PTV contours. Thirty clinically accepted spine SBRT plans are evenly divided into training and testing datasets. The development of predictive model consists of 1) collecting a sequence of dose maps including PTV and OAR (spinal cord) as well as a set of associated PTV contours adjacent to OAR from the training dataset, 2) classifying data into five groups based on PTV's locations relative to OAR, two “Top”s, “Left”, “Right”, and “Bottom”, 3) randomly selecting a dose map as the reference in each group and applying rigid registration and optical flow deformation to match all other maps to the reference, 4) building AOFM by importing optical flow vectors and dose values into the principal component analysis (PCA), 5) applying another PCA to features of PTV and OAR contours to generate an active shape model (ASM), and 6) computing a linear regression model of correlations between AOFM and ASM.When predicting dose distribution of a new case in the testing dataset, the PTV is first assigned to a group based on its contour characteristics. Contour features are then transformed into ASM's principal coordinates of the selected group. Finally, voxel-level dose distribution is determined by mapping from the ASM space to the AOFM space using the predictive model. Results: The DVHs predicted by the AOFM-based model and those in clinical plans are comparable in training and testing datasets. At 2% volume the dose difference between predicted and clinical plans is 4.2±4.4% and 3.3±3.5% in the training and testing datasets, respectively. Conclusion: The AOFM is effective in predicting voxel-level dose distribution for spine SBRT. Partially supported by NIH

  1. TH-A-9A-01: Active Optical Flow Model: Predicting Voxel-Level Dose Prediction in Spine SBRT

    International Nuclear Information System (INIS)

    Liu, J; Wu, Q.J.; Yin, F; Kirkpatrick, J; Cabrera, A; Ge, Y

    2014-01-01

    Purpose: To predict voxel-level dose distribution and enable effective evaluation of cord dose sparing in spine SBRT. Methods: We present an active optical flow model (AOFM) to statistically describe cord dose variations and train a predictive model to represent correlations between AOFM and PTV contours. Thirty clinically accepted spine SBRT plans are evenly divided into training and testing datasets. The development of predictive model consists of 1) collecting a sequence of dose maps including PTV and OAR (spinal cord) as well as a set of associated PTV contours adjacent to OAR from the training dataset, 2) classifying data into five groups based on PTV's locations relative to OAR, two “Top”s, “Left”, “Right”, and “Bottom”, 3) randomly selecting a dose map as the reference in each group and applying rigid registration and optical flow deformation to match all other maps to the reference, 4) building AOFM by importing optical flow vectors and dose values into the principal component analysis (PCA), 5) applying another PCA to features of PTV and OAR contours to generate an active shape model (ASM), and 6) computing a linear regression model of correlations between AOFM and ASM.When predicting dose distribution of a new case in the testing dataset, the PTV is first assigned to a group based on its contour characteristics. Contour features are then transformed into ASM's principal coordinates of the selected group. Finally, voxel-level dose distribution is determined by mapping from the ASM space to the AOFM space using the predictive model. Results: The DVHs predicted by the AOFM-based model and those in clinical plans are comparable in training and testing datasets. At 2% volume the dose difference between predicted and clinical plans is 4.2±4.4% and 3.3±3.5% in the training and testing datasets, respectively. Conclusion: The AOFM is effective in predicting voxel-level dose distribution for spine SBRT. Partially supported by NIH

  2. From Particles and Point Clouds to Voxel Models: High Resolution Modeling of Dynamic Landscapes in Open Source GIS

    Science.gov (United States)

    Mitasova, H.; Hardin, E. J.; Kratochvilova, A.; Landa, M.

    2012-12-01

    Multitemporal data acquired by modern mapping technologies provide unique insights into processes driving land surface dynamics. These high resolution data also offer an opportunity to improve the theoretical foundations and accuracy of process-based simulations of evolving landforms. We discuss development of new generation of visualization and analytics tools for GRASS GIS designed for 3D multitemporal data from repeated lidar surveys and from landscape process simulations. We focus on data and simulation methods that are based on point sampling of continuous fields and lead to representation of evolving surfaces as series of raster map layers or voxel models. For multitemporal lidar data we present workflows that combine open source point cloud processing tools with GRASS GIS and custom python scripts to model and analyze dynamics of coastal topography (Figure 1) and we outline development of coastal analysis toolbox. The simulations focus on particle sampling method for solving continuity equations and its application for geospatial modeling of landscape processes. In addition to water and sediment transport models, already implemented in GIS, the new capabilities under development combine OpenFOAM for wind shear stress simulation with a new module for aeolian sand transport and dune evolution simulations. Comparison of observed dynamics with the results of simulations is supported by a new, integrated 2D and 3D visualization interface that provides highly interactive and intuitive access to the redesigned and enhanced visualization tools. Several case studies will be used to illustrate the presented methods and tools and demonstrate the power of workflows built with FOSS and highlight their interoperability.Figure 1. Isosurfaces representing evolution of shoreline and a z=4.5m contour between the years 1997-2011at Cape Hatteras, NC extracted from a voxel model derived from series of lidar-based DEMs.

  3. Whole-body voxel phantoms of paediatric patients—UF Series B

    Science.gov (United States)

    Lee, Choonik; Lee, Choonsik; Williams, Jonathan L.; Bolch, Wesley E.

    2006-09-01

    Following the previous development of the head and torso voxel phantoms of paediatric patients for use in medical radiation protection (UF Series A), a set of whole-body voxel phantoms of paediatric patients (9-month male, 4-year female, 8-year female, 11-year male and 14-year male) has been developed through the attachment of arms and legs from segmented CT images of a healthy Korean adult (UF Series B). Even though partial-body phantoms (head-torso) may be used in a variety of medical dose reconstruction studies where the extremities are out-of-field or receive only very low levels of scatter radiation, whole-body phantoms play important roles in general radiation protection and in nuclear medicine dosimetry. Inclusion of the arms and legs is critical for dosimetry studies of paediatric patients due to the presence of active bone marrow within the extremities of children. While the UF Series A phantoms preserved the body dimensions and organ masses as seen in the original patients who were scanned, comprehensive adjustments were made for the Series B phantoms to better match International Commission on Radiological Protection (ICRP) age-interpolated reference body masses, body heights, sitting heights and internal organ masses. The CT images of arms and legs of a Korean adult were digitally rescaled and attached to each phantom of the UF series. After completion, the resolutions of the phantoms for the 9-month, 4-year, 8-year, 11-year and 14-year were set at 0.86 mm × 0.86 mm × 3.0 mm, 0.90 mm × 0.90 mm × 5.0 mm, 1.16 mm × 1.16 mm × 6.0 mm, 0.94 mm × 0.94 mm × 6.00 mm and 1.18 mm × 1.18 mm × 6.72 mm, respectively.

  4. Calculation of conversion coefficients for effective dose by using voxel phantoms with defined genus for radiodiagnostic common examinations

    International Nuclear Information System (INIS)

    Lima, F.R.A.; Kramer, R.; Khoury, H.J.; Vieira, J.W.; Loureiro, E.C.M.; Hoff, G.

    2004-01-01

    Patient exposure from radiological examinations is usually quantified in terms of average absorbed dose or equivalent dose to certain radiosensitive organs of the human body. As these quantities cannot be measured in vivo, it is common practice to use physical or computational exposure models, which simulate the exposure to the patient in order to determine not only the quantities of interest (absorbed or equivalent dose), but also at the same time measurable quantities for the exposure conditions given. The ratio between a quantity of interest and a measurable quantity is called a conversion coefficient (CC), which is a function of the source and field parameters (tube voltage, filtration, field size, field position, focus-to-skin distance, etc.), the anatomical properties of the phantom, the elemental composition of relevant body tissues, and the radiation transport method applied. As the effective dose represents a sum over 23 risk-weighted organ and tissue equivalent doses, its determination practically implies the measurement or calculation of a complete distribution of equivalent doses throughout the human body. This task can be resolved most efficiently by means of computational exposure models, which consist of a virtual representation of the human body, also called phantom, connected to a Monte Carlo radiation transport computer code. The recently introduced MAX (Male Adult voXel) and FAXht (Female Adult voXel) head+trunk phantoms have been chosen for this task. With respect to their anatomical properties these phantoms correspond fairly well to the data recommended by the ICRP for the Reference Adult Male and Female. (author)

  5. Voxel-by-voxel analysis of ECD-brain SPECT can separate penumbra from irreversibly damaged tissue at the acute phase of stroke

    International Nuclear Information System (INIS)

    Darcourt, J.; Migneco, O.; David, O.; Bussiere, F.; Mahagne, M.H.; Dunac, A.; Baron, J.C.

    2002-01-01

    Aim. At the acute phase of ischemic stroke, the target of treatment is still salvageable hypoperfused cerebral tissue; so called penumbra. We tested the possibility of separating on early ECD brain SPECT penumbral voxels (P) from irreversibly damaged damaged tissue (IDT). We used ECD which is not only a perfusion tracer but also a metabolic marker. Materials and methods. We prospectively studied 18 patients who underwent ECD-SPECT within the 12 hours following a first-ever acute middle cerebral artery stroke. Neurological evaluation was performed using the Orgogozo's scale at admission and 3 months later in order to calculate and evolution index (IE%) (Martinez-Vila et al.). SPECT data were obtained using a triple head camera equipped with fan beam collimators one hour after injection of 1000 MBq of 99mTc-ECD. On reconstructed images gray matter voxels were automatically segmented. Contralateral healthy hemisphere was used as reference leading to the identification of 3 cortical voxel types: normal (N-SPECT) above 80%; penumbra (P-SPECT) between 80% and 40% and IDT (IDT-SPECT) below 40%. 10 patients also underwent a T2 weighted 3D MRI study at 3 months. Cortical voxels with hypersignal served as reference for IDT (IDT-MRI) the others were considered normal (N-MRI). SPECT and MRI data were co-registered. Therefore each voxel belonged to one of 6 categories (3 SPECT x 2 MRI). Results. (1) The SPECT thresholds were validated on the MRI subgroup. 99% of the N-SPECT voxels were normal on late MRI. 84% of IDT-SPECT voxels corresponded to IDT-MRI. 89% of P-SPECT voxels were normal on late MRI and 11% corresponded to IDT on late MRI. Other categories of voxels (N-SPECT IDT-MRI and IDT-SPECT N-MRI) represented less than 5%. (2) Percentages of each voxel SPECT type was correlated with the EI% on the entire population (Spearman test). P-SPECT extent correlated with EI% improvement (p<0.001) and IDT-SPECT with EI% worsening (p<0.001). Conclusion. Analysis of ECD cortical

  6. Reconstruction of segmented human voxel phantoms for skin dosimetry

    International Nuclear Information System (INIS)

    Antunes, Paula C.G.; Siqueira, Paulo de Tarso D.; Yoriyaz, Helio; Fonseca, Gabriel P.; Reis, Gabriela; Furnari, Laura

    2009-01-01

    High-resolution medical images along with methods that simulate the interaction of radiation with matter, as the Monte Carlo radiation transport codes, have been widely used in medical physics procedures. These images provide the construction of realistic anatomical models, which after being coupled to these codes, may drive to better assessments of dose distributions on the patient. These anatomical models constructed from medical images are known as voxel phantoms (voxel - volume element of an image). Present day regular images are unsuitable to correctly perform skin dose distribution evaluations. This inability is due to improper skin discrimination in most of the current medical images, once its thickness stands below the resolution of the pixels that form the image. This paper proposes the voxel phantom reconstruction by subdividing and segmenting the elements that form the phantom. It is done in order to better discriminate the skin by assigning it more adequate thickness and actual location, allowing a better dosimetric evaluation of the skin. This task is an important issue in many radiotherapy procedures. Particular interest lays in Total Skin Irradiation (TSI) with electron beams, where skin dose evaluation stands as the treatment key point of the whole body irradiation. This radiotherapy procedure is under implementation at the Hospital das Clinicas da Universidade de Sao Paulo (HC-USP). (author)

  7. Chinese reference human voxel phantoms for radiation protection: development, application and recent progress

    International Nuclear Information System (INIS)

    Pan Yuxi; Qiu Rui; Ren Li; Zhu Huanjun; Li Junli; Liu Liye

    2014-01-01

    This paper presents the work of constructing Chinese reference human voxel phantoms, taking Chinese reference adult female voxel model for example. In this study, a site-specific skeleton structure was built, some radiation sensitive organs were supplemented. Organ sub-segmentation was taken into account. The constructed phantoms include almost all radiation sensitive organs required by ICRP new recommendation. Masses of the organs are almost consistent with the Chinese reference data within 5%. The Chinese reference human phantoms have been applied both in internal dosimetry and external dosimetry. The results provide fundamental data for Chinese radiation dosimetry. In addition, the newly established detailed breast model and micro-bone model were introduced. (authors)

  8. Voxel inversion of airborne EM data

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca G.; Auken, Esben; Christiansen, Anders Vest C A.V.C.

    2013-01-01

    We present a geophysical inversion algorithm working directly in a voxel grid disconnected from the actual measuring points, which allows for straightforward integration of different data types in joint inversion, for informing geological/hydrogeological models directly and for easier incorporation...... of prior information. Inversion of geophysical data usually refers to a model space being linked to the actual observation points. For airborne surveys the spatial discretization of the model space reflects the flight lines. Often airborne surveys are carried out in areas where other ground......-based geophysical data are available. The model space of geophysical inversions is usually referred to the positions of the measurements, and ground-based model positions do not generally coincide with the airborne model positions. Consequently, a model space based on the measuring points is not well suited...

  9. Voxel effects within digital images of trabecular bone and their consequences on chord-length distribution measurements

    International Nuclear Information System (INIS)

    Rajon, D.A.; Shah, A.P.; Watchman, C.J.; Bolch, W.E.; Jokisch, D.W.; Patton, P.W.

    2002-01-01

    Chord-length distributions through the trabecular regions of the skeleton have been investigated since the early 1960s. These distributions have become important features for bone marrow dosimetry; as such, current models rely on the accuracy of their measurements. Recent techniques utilize nuclear magnetic resonance (NMR) microscopy to acquire 3D images of trabecular bone that are then used to measure 3D chord-length distributions by Monte Carlo methods. Previous studies have shown that two voxel effects largely affect the acquisition of these distributions within digital images. One is particularly pertinent as it dramatically changes the shape of the distribution and reduces its mean. An attempt was made to reduce this undesirable effect and good results were obtained for a single-sphere model using minimum acceptable chord (MAC) methods (Jokisch et al 2001 Med. Phys. 28 1493-504). The goal of the present work is to extend the study of these methods to more general models in order to better quantify their consequences. First, a mathematical model of a trabecular bone sample was used to test the usefulness of the MAC methods. The results showed that these methods were not efficient for this simulated bone model. These methods were further tested on a single voxelized sphere over a large range of voxel sizes. The results showed that the MAC methods are voxel-size dependent and overestimate the mean chord length for typical resolutions used with NMR microscopy. The study further suggests that bone and marrow chord-length distributions currently utilized in skeletal dosimetry models are most likely affected by voxel effects that yield values of mean chord length lower than their true values. (author)

  10. Prediction of plasma-induced damage distribution during silicon nitride etching using advanced three-dimensional voxel model

    Energy Technology Data Exchange (ETDEWEB)

    Kuboi, Nobuyuki, E-mail: Nobuyuki.Kuboi@jp.sony.com; Tatsumi, Tetsuya; Kinoshita, Takashi; Shigetoshi, Takushi; Fukasawa, Masanaga; Komachi, Jun; Ansai, Hisahiro [Device and Material Research Group, RDS Platform, Sony Corporation, 4-14-1 Asahi-cho, Atsugi, Kanagawa 243-0014 (Japan)

    2015-11-15

    The authors modeled SiN film etching with hydrofluorocarbon (CH{sub x}F{sub y}/Ar/O{sub 2}) plasma considering physical (ion bombardment) and chemical reactions in detail, including the reactivity of radicals (C, F, O, N, and H), the area ratio of Si dangling bonds, the outflux of N and H, the dependence of the H/N ratio on the polymer layer, and generation of by-products (HCN, C{sub 2}N{sub 2}, NH, HF, OH, and CH, in addition to CO, CF{sub 2}, SiF{sub 2}, and SiF{sub 4}) as ion assistance process parameters for the first time. The model was consistent with the measured C-F polymer layer thickness, etch rate, and selectivity dependence on process variation for SiN, SiO{sub 2}, and Si film etching. To analyze the three-dimensional (3D) damage distribution affected by the etched profile, the authors developed an advanced 3D voxel model that can predict the time-evolution of the etched profile and damage distribution. The model includes some new concepts for gas transportation in the pattern using a fluid model and the property of voxels called “smart voxels,” which contain details of the history of the etching situation. Using this 3D model, the authors demonstrated metal–oxide–semiconductor field-effect transistor SiN side-wall etching that consisted of the main-etch step with CF{sub 4}/Ar/O{sub 2} plasma and an over-etch step with CH{sub 3}F/Ar/O{sub 2} plasma under the assumption of a realistic process and pattern size. A large amount of Si damage induced by irradiated hydrogen occurred in the source/drain region, a Si recess depth of 5 nm was generated, and the dislocated Si was distributed in a 10 nm deeper region than the Si recess, which was consistent with experimental data for a capacitively coupled plasma. An especially large amount of Si damage was also found at the bottom edge region of the metal–oxide–semiconductor field-effect transistors. Furthermore, our simulation results for bulk fin-type field-effect transistor side-wall etching

  11. FASH and MASH: female and male adult human phantoms based on polygon mesh surfaces: I. Development of the anatomy

    Science.gov (United States)

    Cassola, V. F.; de Melo Lima, V. J.; Kramer, R.; Khoury, H. J.

    2010-01-01

    Among computational models, voxel phantoms based on computer tomographic (CT), nuclear magnetic resonance (NMR) or colour photographic images of patients, volunteers or cadavers have become popular in recent years. Although being true to nature representations of scanned individuals, voxel phantoms have limitations, especially when walled organs have to be segmented or when volumes of organs or body tissues, like adipose, have to be changed. Additionally, the scanning of patients or volunteers is usually made in supine position, which causes a shift of internal organs towards the ribcage, a compression of the lungs and a reduction of the sagittal diameter especially in the abdominal region compared to the regular anatomy of a person in the upright position, which in turn can influence organ and tissue absorbed or equivalent dose estimates. This study applies tools developed recently in the areas of computer graphics and animated films to the creation and modelling of 3D human organs, tissues, skeletons and bodies based on polygon mesh surfaces. Female and male adult human phantoms, called FASH (Female Adult meSH) and MASH (Male Adult meSH), have been designed using software, such as MakeHuman, Blender, Binvox and ImageJ, based on anatomical atlases, observing at the same time organ masses recommended by the International Commission on Radiological Protection for the male and female reference adult in report no 89. 113 organs, bones and tissues have been modelled in the FASH and the MASH phantoms representing locations for adults in standing posture. Most organ and tissue masses of the voxelized versions agree with corresponding data from ICRP89 within a margin of 2.6%. Comparison with the mesh-based male RPI_AM and female RPI_AF phantoms shows differences with respect to the material used, to the software and concepts applied, and to the anatomies created.

  12. FASH and MASH: female and male adult human phantoms based on polygon mesh surfaces: I. Development of the anatomy

    International Nuclear Information System (INIS)

    Cassola, V F; Kramer, R; Khoury, H J; De Melo Lima, V J

    2010-01-01

    Among computational models, voxel phantoms based on computer tomographic (CT), nuclear magnetic resonance (NMR) or colour photographic images of patients, volunteers or cadavers have become popular in recent years. Although being true to nature representations of scanned individuals, voxel phantoms have limitations, especially when walled organs have to be segmented or when volumes of organs or body tissues, like adipose, have to be changed. Additionally, the scanning of patients or volunteers is usually made in supine position, which causes a shift of internal organs towards the ribcage, a compression of the lungs and a reduction of the sagittal diameter especially in the abdominal region compared to the regular anatomy of a person in the upright position, which in turn can influence organ and tissue absorbed or equivalent dose estimates. This study applies tools developed recently in the areas of computer graphics and animated films to the creation and modelling of 3D human organs, tissues, skeletons and bodies based on polygon mesh surfaces. Female and male adult human phantoms, called FASH (Female Adult meSH) and MASH (Male Adult meSH), have been designed using software, such as MakeHuman, Blender, Binvox and ImageJ, based on anatomical atlases, observing at the same time organ masses recommended by the International Commission on Radiological Protection for the male and female reference adult in report no 89. 113 organs, bones and tissues have been modelled in the FASH and the MASH phantoms representing locations for adults in standing posture. Most organ and tissue masses of the voxelized versions agree with corresponding data from ICRP89 within a margin of 2.6%. Comparison with the mesh-based male RPI A M and female RPI A F phantoms shows differences with respect to the material used, to the software and concepts applied, and to the anatomies created.

  13. Voxel-by-voxel analysis of brain SPECT perfusion in Fibromyalgia

    International Nuclear Information System (INIS)

    Guedj, Eric; Taieb, David; Cammilleri, Serge; Lussato, David; Laforte, Catherine de; Niboyet, Jean; Mundler, Olivier

    2007-01-01

    We evaluated brain perfusion SPECT at rest, without noxious stiumuli, in a homogeneous group of hyperalgesic FM patients. We performed a voxel-based analysis in comparison to a control group, matched for age and gender. Under such conditions, we made the assumption that significant cerebral perfusion abnormalities could be demonstrated, evidencing altered cerebral processing associated with spontaneous pain in FM patients. The secondary objective was to study the reversibility and the prognostic value of such possible perfusion abnormalities under specific treatment. Eighteen hyperalgesic FM women (mean age 48 yr; range 25-63 yr; ACR criteria) and 10 healthy women matched for age were enrolled in the study. A voxel-by-voxel group analysis was performed using SPM2 (p<0.05, corrected for multiple comparisons). All brain SPECT were performed before any change was made in therapy in the pain care unit. A second SPECT was performed a month later after specific treatment by Ketamine. Compared to control subjects, we observed individual brain SPECT abnormalities in FM patients, confirmed by SPM2 analysis with hyperperfusion of the somatosensory cortex and hypoperfusion of the frontal, cingulate, medial temporal and cerebellar cortices. We also found that a medial frontal and anterior cingulate hypoperfusions were highly predictive (PPV=83%; NPV=91%) of non-response on Ketamine, and that only responders showed significant modification of brain perfusion, after treatment. In the present study performed without noxious stimuli in hyperalgesic FM patients, we found significant hyperperfusion in regions of the brain known to be involved in sensory dimension of pain processing and significant hypoperfusion in areas assumed to be associated with the affective dimension. As current pharmacological and non-pharmacological therapies act differently on both components of pain, we hypothesize that SPECT could be a valuable and readily available tool to guide individual therapeutic

  14. Voxel-by-voxel analysis of brain SPECT perfusion in Fibromyalgia

    Energy Technology Data Exchange (ETDEWEB)

    Guedj, Eric [Service Central de Biophysique et de Medecine Nucleaire, AP-HM Timone, Marseille (France)]. E-mail: eric.guedj@ap-hm.fr; Taieb, David [Service Central de Biophysique et de Medecine Nucleaire, AP-HM Timone, Marseille (France); Cammilleri, Serge [Service Central de Biophysique et de Medecine Nucleaire, AP-HM Timone, Marseille (France); Lussato, David [Service Central de Biophysique et de Medecine Nucleaire, AP-HM Timone, Marseille (France); Laforte, Catherine de [Service Central de Biophysique et de Medecine Nucleaire, AP-HM Timone, Marseille (France); Niboyet, Jean [Unite d' Etude et de Traitement de la Douleur, Clinique La Phoceanne, Marseille (France); Mundler, Olivier [Service Central de Biophysique et de Medecine Nucleaire, AP-HM Timone, Marseille (France)

    2007-02-01

    We evaluated brain perfusion SPECT at rest, without noxious stiumuli, in a homogeneous group of hyperalgesic FM patients. We performed a voxel-based analysis in comparison to a control group, matched for age and gender. Under such conditions, we made the assumption that significant cerebral perfusion abnormalities could be demonstrated, evidencing altered cerebral processing associated with spontaneous pain in FM patients. The secondary objective was to study the reversibility and the prognostic value of such possible perfusion abnormalities under specific treatment. Eighteen hyperalgesic FM women (mean age 48 yr; range 25-63 yr; ACR criteria) and 10 healthy women matched for age were enrolled in the study. A voxel-by-voxel group analysis was performed using SPM2 (p<0.05, corrected for multiple comparisons). All brain SPECT were performed before any change was made in therapy in the pain care unit. A second SPECT was performed a month later after specific treatment by Ketamine. Compared to control subjects, we observed individual brain SPECT abnormalities in FM patients, confirmed by SPM2 analysis with hyperperfusion of the somatosensory cortex and hypoperfusion of the frontal, cingulate, medial temporal and cerebellar cortices. We also found that a medial frontal and anterior cingulate hypoperfusions were highly predictive (PPV=83%; NPV=91%) of non-response on Ketamine, and that only responders showed significant modification of brain perfusion, after treatment. In the present study performed without noxious stimuli in hyperalgesic FM patients, we found significant hyperperfusion in regions of the brain known to be involved in sensory dimension of pain processing and significant hypoperfusion in areas assumed to be associated with the affective dimension. As current pharmacological and non-pharmacological therapies act differently on both components of pain, we hypothesize that SPECT could be a valuable and readily available tool to guide individual therapeutic

  15. A computer-simulation study on the effects of MRI voxel dimensions on carotid plaque lipid-core and fibrous cap segmentation and stress modeling.

    Directory of Open Access Journals (Sweden)

    Harm A Nieuwstadt

    Full Text Available The benefits of a decreased slice thickness and/or in-plane voxel size in carotid MRI for atherosclerotic plaque component quantification accuracy and biomechanical peak cap stress analysis have not yet been investigated in detail because of practical limitations.In order to provide a methodology that allows such an investigation in detail, numerical simulations of a T1-weighted, contrast-enhanced, 2D MRI sequence were employed. Both the slice thickness (2 mm, 1 mm, and 0.5 mm and the in plane acquired voxel size (0.62x0.62 mm2 and 0.31x0.31 mm2 were varied. This virtual MRI approach was applied to 8 histology-based 3D patient carotid atherosclerotic plaque models.A decreased slice thickness did not result in major improvements in lumen, vessel wall, and lipid-rich necrotic core size measurements. At 0.62x0.62 mm2 in-plane, only a 0.5 mm slice thickness resulted in improved minimum fibrous cap thickness measurements (a 2-3 fold reduction in measurement error and only marginally improved peak cap stress computations. Acquiring voxels of 0.31x0.31 mm2 in-plane, however, led to either similar or significantly larger improvements in plaque component quantification and computed peak cap stress.This study provides evidence that for currently-used 2D carotid MRI protocols, a decreased slice thickness might not be more beneficial for plaque measurement accuracy than a decreased in-plane voxel size. The MRI simulations performed indicate that not a reduced slice thickness (i.e. more isotropic imaging, but the acquisition of anisotropic voxels with a relatively smaller in-plane voxel size could improve carotid plaque quantification and computed peak cap stress accuracy.

  16. New hybrid voxelized/analytical primitive in Monte Carlo simulations for medical applications

    International Nuclear Information System (INIS)

    Bert, Julien; Lemaréchal, Yannick; Visvikis, Dimitris

    2016-01-01

    Monte Carlo simulations (MCS) applied in particle physics play a key role in medical imaging and particle therapy. In such simulations, particles are transported through voxelized phantoms derived from predominantly patient CT images. However, such voxelized object representation limits the incorporation of fine elements, such as artificial implants from CAD modeling or anatomical and functional details extracted from other imaging modalities. In this work we propose a new hYbrid Voxelized/ANalytical primitive (YVAN) that combines both voxelized and analytical object descriptions within the same MCS, without the need to simultaneously run two parallel simulations, which is the current gold standard methodology. Given that YVAN is simply a new primitive object, it does not require any modifications on the underlying MC navigation code. The new proposed primitive was assessed through a first simple MCS. Results from the YVAN primitive were compared against an MCS using a pure analytical geometry and the layer mass geometry concept. A perfect agreement was found between these simulations, leading to the conclusion that the new hybrid primitive is able to accurately and efficiently handle phantoms defined by a mixture of voxelized and analytical objects. In addition, two application-based evaluation studies in coronary angiography and intra-operative radiotherapy showed that the use of YVAN was 6.5% and 12.2% faster than the layered mass geometry method, respectively, without any associated loss of accuracy. However, the simplification advantages and differences in computational time improvements obtained with YVAN depend on the relative proportion of the analytical and voxelized structures used in the simulation as well as the size and number of triangles used in the description of the analytical object meshes. (paper)

  17. New hybrid voxelized/analytical primitive in Monte Carlo simulations for medical applications.

    Science.gov (United States)

    Bert, Julien; Lemaréchal, Yannick; Visvikis, Dimitris

    2016-05-07

    Monte Carlo simulations (MCS) applied in particle physics play a key role in medical imaging and particle therapy. In such simulations, particles are transported through voxelized phantoms derived from predominantly patient CT images. However, such voxelized object representation limits the incorporation of fine elements, such as artificial implants from CAD modeling or anatomical and functional details extracted from other imaging modalities. In this work we propose a new hYbrid Voxelized/ANalytical primitive (YVAN) that combines both voxelized and analytical object descriptions within the same MCS, without the need to simultaneously run two parallel simulations, which is the current gold standard methodology. Given that YVAN is simply a new primitive object, it does not require any modifications on the underlying MC navigation code. The new proposed primitive was assessed through a first simple MCS. Results from the YVAN primitive were compared against an MCS using a pure analytical geometry and the layer mass geometry concept. A perfect agreement was found between these simulations, leading to the conclusion that the new hybrid primitive is able to accurately and efficiently handle phantoms defined by a mixture of voxelized and analytical objects. In addition, two application-based evaluation studies in coronary angiography and intra-operative radiotherapy showed that the use of YVAN was 6.5% and 12.2% faster than the layered mass geometry method, respectively, without any associated loss of accuracy. However, the simplification advantages and differences in computational time improvements obtained with YVAN depend on the relative proportion of the analytical and voxelized structures used in the simulation as well as the size and number of triangles used in the description of the analytical object meshes.

  18. a Voxel-Based Filtering Algorithm for Mobile LIDAR Data

    Science.gov (United States)

    Qin, H.; Guan, G.; Yu, Y.; Zhong, L.

    2018-04-01

    This paper presents a stepwise voxel-based filtering algorithm for mobile LiDAR data. In the first step, to improve computational efficiency, mobile LiDAR points, in xy-plane, are first partitioned into a set of two-dimensional (2-D) blocks with a given block size, in each of which all laser points are further organized into an octree partition structure with a set of three-dimensional (3-D) voxels. Then, a voxel-based upward growing processing is performed to roughly separate terrain from non-terrain points with global and local terrain thresholds. In the second step, the extracted terrain points are refined by computing voxel curvatures. This voxel-based filtering algorithm is comprehensively discussed in the analyses of parameter sensitivity and overall performance. An experimental study performed on multiple point cloud samples, collected by different commercial mobile LiDAR systems, showed that the proposed algorithm provides a promising solution to terrain point extraction from mobile point clouds.

  19. Effect of phantom voxelization in CT simulations

    International Nuclear Information System (INIS)

    Goertzen, Andrew L.; Beekman, Freek J.; Cherry, Simon R.

    2002-01-01

    In computer simulations of x-ray CT systems one can either use continuous geometrical descriptions for phantoms or a voxelized representation. The voxelized approach allows arbitrary phantoms to be defined without being confined to geometrical shapes. The disadvantage of the voxelized approach is that inherent errors are introduced due to the phantom voxelization. To study effects of phantom discretization, analytical CT simulations were run for a fan-beam geometry with phantom voxel sizes ranging from 0.0625 to 2 times the reconstructed pixel size and noise levels corresponding to 10 3 -10 7 photons per detector pixel prior to attenuation. The number of rays traced per detector element was varied from 1 to 16. Differences in the filtered backprojection images caused by changing the phantom matrix sizes and number of rays traced were assessed by calculating the difference between reconstructions based on the finest matrix and coarser matrix simulations. In noise free simulations, all phantom matrix sizes produced a measurable difference in comparison with the finest phantom matrix used. When even a small amount of noise was added to the projection data, the differences due to the phantom discretization were masked by the noise, and in all cases there was almost no improvement by using a phantom matrix that was more than twice as fine as the reconstruction matrix. No substantial improvement was achieved by tracing more than 4 rays per detector pixel

  20. Development of a computational system for radiotherapic planning with the IMRT technique applied to the MCNP computer code with 3D graphic interface for voxel models

    International Nuclear Information System (INIS)

    Fonseca, Telma Cristina Ferreira

    2009-01-01

    The Intensity Modulated Radiation Therapy - IMRT is an advanced treatment technique used worldwide in oncology medicine branch. On this master proposal was developed a software package for simulating the IMRT protocol, namely SOFT-RT which attachment the research group 'Nucleo de Radiacoes Ionizantes' - NRI at UFMG. The computational system SOFT-RT allows producing the absorbed dose simulation of the radiotherapic treatment through a three-dimensional voxel model of the patient. The SISCODES code, from NRI, research group, helps in producing the voxel model of the interest region from a set of CT or MRI digitalized images. The SOFT-RT allows also the rotation and translation of the model about the coordinate system axis for better visualization of the model and the beam. The SOFT-RT collects and exports the necessary parameters to MCNP code which will carry out the nuclear radiation transport towards the tumor and adjacent healthy tissues for each orientation and position of the beam planning. Through three-dimensional visualization of voxel model of a patient, it is possible to focus on a tumoral region preserving the whole tissues around them. It takes in account where exactly the radiation beam passes through, which tissues are affected and how much dose is applied in both tissues. The Out-module from SOFT-RT imports the results and express the dose response superimposing dose and voxel model in gray scale in a three-dimensional graphic representation. The present master thesis presents the new computational system of radiotherapic treatment - SOFT-RT code which has been developed using the robust and multi-platform C ++ programming language with the OpenGL graphics packages. The Linux operational system was adopted with the goal of running it in an open source platform and free access. Preliminary simulation results for a cerebral tumor case will be reported as well as some dosimetric evaluations. (author)

  1. Accuracy and reproducibility of voxel based superimposition of cone beam computed tomography models on the anterior cranial base and the zygomatic arches.

    Science.gov (United States)

    Nada, Rania M; Maal, Thomas J J; Breuning, K Hero; Bergé, Stefaan J; Mostafa, Yehya A; Kuijpers-Jagtman, Anne Marie

    2011-02-09

    Superimposition of serial Cone Beam Computed Tomography (CBCT) scans has become a valuable tool for three dimensional (3D) assessment of treatment effects and stability. Voxel based image registration is a newly developed semi-automated technique for superimposition and comparison of two CBCT scans. The accuracy and reproducibility of CBCT superimposition on the anterior cranial base or the zygomatic arches using voxel based image registration was tested in this study. 16 pairs of 3D CBCT models were constructed from pre and post treatment CBCT scans of 16 adult dysgnathic patients. Each pair was registered on the anterior cranial base three times and on the left zygomatic arch twice. Following each superimposition, the mean absolute distances between the 2 models were calculated at 4 regions: anterior cranial base, forehead, left and right zygomatic arches. The mean distances between the models ranged from 0.2 to 0.37 mm (SD 0.08-0.16) for the anterior cranial base registration and from 0.2 to 0.45 mm (SD 0.09-0.27) for the zygomatic arch registration. The mean differences between the two registration zones ranged between 0.12 to 0.19 mm at the 4 regions. Voxel based image registration on both zones could be considered as an accurate and a reproducible method for CBCT superimposition. The left zygomatic arch could be used as a stable structure for the superimposition of smaller field of view CBCT scans where the anterior cranial base is not visible.

  2. Finding significantly connected voxels based on histograms of connection strengths

    DEFF Research Database (Denmark)

    Kasenburg, Niklas; Pedersen, Morten Vester; Darkner, Sune

    2016-01-01

    We explore a new approach for structural connectivity based segmentations of subcortical brain regions. Connectivity based segmentations are usually based on fibre connections from a seed region to predefined target regions. We present a method for finding significantly connected voxels based...... on the distribution of connection strengths. Paths from seed voxels to all voxels in a target region are obtained from a shortest-path tractography. For each seed voxel we approximate the distribution with a histogram of path scores. We hypothesise that the majority of estimated connections are false-positives...... and that their connection strength is distributed differently from true-positive connections. Therefore, an empirical null-distribution is defined for each target region as the average normalized histogram over all voxels in the seed region. Single histograms are then tested against the corresponding null...

  3. Sparse and Adaptive Diffusion Dictionary (SADD) for recovering intra-voxel white matter structure.

    Science.gov (United States)

    Aranda, Ramon; Ramirez-Manzanares, Alonso; Rivera, Mariano

    2015-12-01

    On the analysis of the Diffusion-Weighted Magnetic Resonance Images, multi-compartment models overcome the limitations of the well-known Diffusion Tensor model for fitting in vivo brain axonal orientations at voxels with fiber crossings, branching, kissing or bifurcations. Some successful multi-compartment methods are based on diffusion dictionaries. The diffusion dictionary-based methods assume that the observed Magnetic Resonance signal at each voxel is a linear combination of the fixed dictionary elements (dictionary atoms). The atoms are fixed along different orientations and diffusivity profiles. In this work, we present a sparse and adaptive diffusion dictionary method based on the Diffusion Basis Functions Model to estimate in vivo brain axonal fiber populations. Our proposal overcomes the following limitations of the diffusion dictionary-based methods: the limited angular resolution and the fixed shapes for the atom set. We propose to iteratively re-estimate the orientations and the diffusivity profile of the atoms independently at each voxel by using a simplified and easier-to-solve mathematical approach. As a result, we improve the fitting of the Diffusion-Weighted Magnetic Resonance signal. The advantages with respect to the former Diffusion Basis Functions method are demonstrated on the synthetic data-set used on the 2012 HARDI Reconstruction Challenge and in vivo human data. We demonstrate that improvements obtained in the intra-voxel fiber structure estimations benefit brain research allowing to obtain better tractography estimations. Hence, these improvements result in an accurate computation of the brain connectivity patterns. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Comparison of NMR simulations of porous media derived from analytical and voxelized representations.

    Science.gov (United States)

    Jin, Guodong; Torres-Verdín, Carlos; Toumelin, Emmanuel

    2009-10-01

    We develop and compare two formulations of the random-walk method, grain-based and voxel-based, to simulate the nuclear-magnetic-resonance (NMR) response of fluids contained in various models of porous media. The grain-based approach uses a spherical grain pack as input, where the solid surface is analytically defined without an approximation. In the voxel-based approach, the input is a computer-tomography or computer-generated image of reconstructed porous media. Implementation of the two approaches is largely the same, except for the representation of porous media. For comparison, both approaches are applied to various analytical and digitized models of porous media: isolated spherical pore, simple cubic packing of spheres, and random packings of monodisperse and polydisperse spheres. We find that spin magnetization decays much faster in the digitized models than in their analytical counterparts. The difference in decay rate relates to the overestimation of surface area due to the discretization of the sample; it cannot be eliminated even if the voxel size decreases. However, once considering the effect of surface-area increase in the simulation of surface relaxation, good quantitative agreement is found between the two approaches. Different grain or pore shapes entail different rates of increase of surface area, whereupon we emphasize that the value of the "surface-area-corrected" coefficient may not be universal. Using an example of X-ray-CT image of Fontainebleau rock sample, we show that voxel size has a significant effect on the calculated surface area and, therefore, on the numerically simulated magnetization response.

  5. A radioactive seed implant on a rabbit's liver following a voxel model representation for dosimetric proposals

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Tarcisio P.R.; Andrade, Joao Paulo Lopes de; Costa, Igor Temponi; Teixeira, Cleuza H. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Programa de Pos-graduacao em Ciencias e Tecnicas Nucleares]. E-mail: campos@nuclear.ufmg

    2005-07-01

    Animal models have been used in experimentation with ionizing radiation. The evaluation of the energy absorbed per unit tissue mass in vivo transported by nuclear particles is a task to be performed before experimentation. Stochastic or deterministic methodology can be applied, however the dosimetric protocols applied in radiotherapy center cannot be applied directly due to the inherent small geometry and chemical composition of the animal distinct from human. The present article addresses a method in development that will predict the dose distribution into the rabbit thorax based on the solution of the transport phenomena in a voxel model. The model will be applied to simulate a seed implant experiment on a rabbit. Herein, the construction of the three-dimensional voxel model anthropomorphic -anthropometrics to the rabbit is presented. The model is assembling from a set of computer tomography of the rabbit. The computational phantom of the thorax starts at the digitalisation of the CT images, tissue definition, and color image representation of each tissue and organ. The chemical composition and mass density of each tissue is evaluated as similar date presented by ICRU-44. To treat the images, a code namely SISCODES, developed in house, was used. The in vivo experiment that will be simulated is also described. That is a implant of five seeds of 1.6x2 mm performed in a rabbit's liver. The perspective of this work is the application of the model in dosimetric studies predicting the dose distribution around the seed's implanted in vivo experiments. (author)

  6. Dose conversion coefficients calculated using a series of adult Japanese voxel phantoms against external photon exposure

    International Nuclear Information System (INIS)

    Sato, Kaoru; Endo, Akira; Saito, Kimiaki

    2008-10-01

    This report presents a complete set of conversion coefficients of organ doses and effective doses calculated for external photon exposure using five Japanese adult voxel phantoms developed at the Japan Atomic Energy Agency (JAEA). At the JAEA, high-resolution Japanese voxel phantoms have been developed to clarify the variation of organ doses due to the anatomical characteristics of Japanese, and three male phantoms (JM, JM2 and Otoko) and two female phantoms (JF and Onago) have been constructed up to now. The conversion coefficients of organ doses and effective doses for the five voxel phantoms have been calculated for six kinds of idealized irradiation geometries from monoenergetic photons ranging from 0.01 to 10 MeV using EGS4, a Monte Carlo code for the simulation of coupled electron-photon transport. The dose conversion coefficients are given as absorbed dose and effective dose per unit air-kerma free-in-air, and are presented in tables and figures. The calculated dose conversion coefficients are compared with those of voxel phantoms based on the Caucasian and the recommended values in ICRP74 in order to discuss (1) variation of organ dose due to the body size and individual anatomy, such as position and shape of organs, and (2) effect of posture on organ doses. The present report provides valuable data to study the influence of the body characteristics of Japanese upon the organ doses and to discuss developing reference Japanese and Asian phantoms. (author)

  7. White matter impairments in autism, evidence from voxel-based morphometry and diffusion tensor imaging.

    Science.gov (United States)

    Ke, Xiaoyan; Tang, Tianyu; Hong, Shanshan; Hang, Yueyue; Zou, Bing; Li, Huiguo; Zhou, Zhenyu; Ruan, Zongcai; Lu, Zuhong; Tao, Guotai; Liu, Yijun

    2009-04-10

    This study explored white matter abnormalities in a group of Chinese children with high functioning autism (HFA). Twelve male children with HFA and ten matched typically developing children underwent diffusion tensor imaging (DTI) as well three-dimensional T1-weighted MRI for voxel-based morphometry (VBM). We found a significant decrease of the white matter density in the right frontal lobe, left parietal lobe and right anterior cingulate and a significant increase in the right frontal lobe, left parietal lobe and left cingulate gyrus in the HFA group compared with the control group. The HFA group also had decreased FA in the frontal lobe and left temporal lobe. By combining DT-MRI FA and MRI volumetric analyses based on the VBM model, the results showed consistent white matter abnormalities in a group of Chinese children with HFA.

  8. Whole-body voxel-based personalized dosimetry: Multiple voxel S-value approach for heterogeneous media with non-uniform activity distributions.

    Science.gov (United States)

    Lee, Min Sun; Kim, Joong Hyun; Paeng, Jin Chul; Kang, Keon Wook; Jeong, Jae Min; Lee, Dong Soo; Lee, Jae Sung

    2017-12-14

    Personalized dosimetry with high accuracy is becoming more important because of the growing interests in personalized medicine and targeted radionuclide therapy. Voxel-based dosimetry using dose point kernel or voxel S-value (VSV) convolution is available. However, these approaches do not consider medium heterogeneity. Here, we propose a new method for whole-body voxel-based personalized dosimetry for heterogeneous media with non-uniform activity distributions, which is referred to as the multiple VSV approach. Methods: The multiple numbers (N) of VSVs for media with different densities covering the whole-body density ranges were used instead of using only a single VSV for water. The VSVs were pre-calculated using GATE Monte Carlo simulation; those were convoluted with the time-integrated activity to generate density-specific dose maps. Computed tomography-based segmentation was conducted to generate binary maps for each density region. The final dose map was acquired by the summation of N segmented density-specific dose maps. We tested several sets of VSVs with different densities: N = 1 (single water VSV), 4, 6, 8, 10, and 20. To validate the proposed method, phantom and patient studies were conducted and compared with direct Monte Carlo, which was considered the ground truth. Finally, patient dosimetry (10 subjects) was conducted using the multiple VSV approach and compared with the single VSV and organ-based dosimetry approaches. Errors at the voxel- and organ-levels were reported for eight organs. Results: In the phantom and patient studies, the multiple VSV approach showed significant improvements regarding voxel-level errors, especially for the lung and bone regions. As N increased, voxel-level errors decreased, although some overestimations were observed at lung boundaries. In the case of multiple VSVs ( N = 8), we achieved voxel-level errors of 2.06%. In the dosimetry study, our proposed method showed much improved results compared to the single VSV and

  9. Computer-assisted segmentation of CT images by statistical region merging for the production of voxel models of anatomy for CT dosimetry

    Czech Academy of Sciences Publication Activity Database

    Caon, M.; Sedlář, Jiří; Bajger, M.; Lee, G.

    2014-01-01

    Roč. 37, č. 2 (2014), s. 393-403 ISSN 0158-9938 Institutional support: RVO:67985556 Keywords : Voxel model * Image segmentation * Statistical region merging * CT dosimetry Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.882, year: 2014 http://library.utia.cas.cz/separaty/2014/ZOI/sedlar-0428537.pdf

  10. Laser-induced forward transfer (LIFT) of congruent voxels

    Science.gov (United States)

    Piqué, Alberto; Kim, Heungsoo; Auyeung, Raymond C. Y.; Beniam, Iyoel; Breckenfeld, Eric

    2016-06-01

    Laser-induced forward transfer (LIFT) of functional materials offers unique advantages and capabilities for the rapid prototyping of electronic, optical and sensor elements. The use of LIFT for printing high viscosity metallic nano-inks and nano-pastes can be optimized for the transfer of voxels congruent with the shape of the laser pulse, forming thin film-like structures non-lithographically. These processes are capable of printing patterns with excellent lateral resolution and thickness uniformity typically found in 3-dimensional stacked assemblies, MEMS-like structures and free-standing interconnects. However, in order to achieve congruent voxel transfer with LIFT, the particle size and viscosity of the ink or paste suspensions must be adjusted to minimize variations due to wetting and drying effects. When LIFT is carried out with high-viscosity nano-suspensions, the printed voxel size and shape become controllable parameters, allowing the printing of thin-film like structures whose shape is determined by the spatial distribution of the laser pulse. The result is a new level of parallelization beyond current serial direct-write processes whereby the geometry of each printed voxel can be optimized according to the pattern design. This work shows how LIFT of congruent voxels can be applied to the fabrication of 2D and 3D microstructures by adjusting the viscosity of the nano-suspension and laser transfer parameters.

  11. Voxel-based Monte Carlo simulation of X-ray imaging and spectroscopy experiments

    International Nuclear Information System (INIS)

    Bottigli, U.; Brunetti, A.; Golosio, B.; Oliva, P.; Stumbo, S.; Vincze, L.; Randaccio, P.; Bleuet, P.; Simionovici, A.; Somogyi, A.

    2004-01-01

    A Monte Carlo code for the simulation of X-ray imaging and spectroscopy experiments in heterogeneous samples is presented. The energy spectrum, polarization and profile of the incident beam can be defined so that X-ray tube systems as well as synchrotron sources can be simulated. The sample is modeled as a 3D regular grid. The chemical composition and density is given at each point of the grid. Photoelectric absorption, fluorescent emission, elastic and inelastic scattering are included in the simulation. The core of the simulation is a fast routine for the calculation of the path lengths of the photon trajectory intersections with the grid voxels. The voxel representation is particularly useful for samples that cannot be well described by a small set of polyhedra. This is the case of most naturally occurring samples. In such cases, voxel-based simulations are much less expensive in terms of computational cost than simulations on a polygonal representation. The efficient scheme used for calculating the path lengths in the voxels and the use of variance reduction techniques make the code suitable for the detailed simulation of complex experiments on generic samples in a relatively short time. Examples of applications to X-ray imaging and spectroscopy experiments are discussed

  12. Voxel-based Monte Carlo simulation of X-ray imaging and spectroscopy experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bottigli, U. [Istituto di Matematica e Fisica dell' Universita di Sassari, via Vienna 2, 07100, Sassari (Italy); Sezione INFN di Cagliari (Italy); Brunetti, A. [Istituto di Matematica e Fisica dell' Universita di Sassari, via Vienna 2, 07100, Sassari (Italy); Golosio, B. [Istituto di Matematica e Fisica dell' Universita di Sassari, via Vienna 2, 07100, Sassari (Italy) and Sezione INFN di Cagliari (Italy)]. E-mail: golosio@uniss.it; Oliva, P. [Istituto di Matematica e Fisica dell' Universita di Sassari, via Vienna 2, 07100, Sassari (Italy); Stumbo, S. [Istituto di Matematica e Fisica dell' Universita di Sassari, via Vienna 2, 07100, Sassari (Italy); Vincze, L. [Department of Chemistry, University of Antwerp (Belgium); Randaccio, P. [Dipartimento di Fisica dell' Universita di Cagliari and Sezione INFN di Cagliari (Italy); Bleuet, P. [European Synchrotron Radiation Facility, Grenoble (France); Simionovici, A. [European Synchrotron Radiation Facility, Grenoble (France); Somogyi, A. [European Synchrotron Radiation Facility, Grenoble (France)

    2004-10-08

    A Monte Carlo code for the simulation of X-ray imaging and spectroscopy experiments in heterogeneous samples is presented. The energy spectrum, polarization and profile of the incident beam can be defined so that X-ray tube systems as well as synchrotron sources can be simulated. The sample is modeled as a 3D regular grid. The chemical composition and density is given at each point of the grid. Photoelectric absorption, fluorescent emission, elastic and inelastic scattering are included in the simulation. The core of the simulation is a fast routine for the calculation of the path lengths of the photon trajectory intersections with the grid voxels. The voxel representation is particularly useful for samples that cannot be well described by a small set of polyhedra. This is the case of most naturally occurring samples. In such cases, voxel-based simulations are much less expensive in terms of computational cost than simulations on a polygonal representation. The efficient scheme used for calculating the path lengths in the voxels and the use of variance reduction techniques make the code suitable for the detailed simulation of complex experiments on generic samples in a relatively short time. Examples of applications to X-ray imaging and spectroscopy experiments are discussed.

  13. Accuracy and reproducibility of voxel based superimposition of cone beam computed tomography models on the anterior cranial base and the zygomatic arches.

    Directory of Open Access Journals (Sweden)

    Rania M Nada

    Full Text Available Superimposition of serial Cone Beam Computed Tomography (CBCT scans has become a valuable tool for three dimensional (3D assessment of treatment effects and stability. Voxel based image registration is a newly developed semi-automated technique for superimposition and comparison of two CBCT scans. The accuracy and reproducibility of CBCT superimposition on the anterior cranial base or the zygomatic arches using voxel based image registration was tested in this study. 16 pairs of 3D CBCT models were constructed from pre and post treatment CBCT scans of 16 adult dysgnathic patients. Each pair was registered on the anterior cranial base three times and on the left zygomatic arch twice. Following each superimposition, the mean absolute distances between the 2 models were calculated at 4 regions: anterior cranial base, forehead, left and right zygomatic arches. The mean distances between the models ranged from 0.2 to 0.37 mm (SD 0.08-0.16 for the anterior cranial base registration and from 0.2 to 0.45 mm (SD 0.09-0.27 for the zygomatic arch registration. The mean differences between the two registration zones ranged between 0.12 to 0.19 mm at the 4 regions. Voxel based image registration on both zones could be considered as an accurate and a reproducible method for CBCT superimposition. The left zygomatic arch could be used as a stable structure for the superimposition of smaller field of view CBCT scans where the anterior cranial base is not visible.

  14. What do differences between multi-voxel and univariate analysis mean? How subject-, voxel-, and trial-level variance impact fMRI analysis.

    Science.gov (United States)

    Davis, Tyler; LaRocque, Karen F; Mumford, Jeanette A; Norman, Kenneth A; Wagner, Anthony D; Poldrack, Russell A

    2014-08-15

    Multi-voxel pattern analysis (MVPA) has led to major changes in how fMRI data are analyzed and interpreted. Many studies now report both MVPA results and results from standard univariate voxel-wise analysis, often with the goal of drawing different conclusions from each. Because MVPA results can be sensitive to latent multidimensional representations and processes whereas univariate voxel-wise analysis cannot, one conclusion that is often drawn when MVPA and univariate results differ is that the activation patterns underlying MVPA results contain a multidimensional code. In the current study, we conducted simulations to formally test this assumption. Our findings reveal that MVPA tests are sensitive to the magnitude of voxel-level variability in the effect of a condition within subjects, even when the same linear relationship is coded in all voxels. We also find that MVPA is insensitive to subject-level variability in mean activation across an ROI, which is the primary variance component of interest in many standard univariate tests. Together, these results illustrate that differences between MVPA and univariate tests do not afford conclusions about the nature or dimensionality of the neural code. Instead, targeted tests of the informational content and/or dimensionality of activation patterns are critical for drawing strong conclusions about the representational codes that are indicated by significant MVPA results. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. The creation of voxel phantoms for the purpose of environmental dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Caffrey, E.; Higley, K. [Oregon State University (United States)

    2014-07-01

    Basic geometric shapes have long been used as the standard for calculating radiation dose rates in non-human biota (NHB). Regulation standards have seen a shift recently, towards protection of NHB as its own endpoint. As such, there has been a growing interest in improving the calculations for NHB dose rates. To address calls for additional data, the development of voxelized models for the International Commission on Radiological Protection's (ICRP) twelve reference animal and plants (RAP) has been undertaken. Voxel models of a crab (Metacarcinus magister), flatfish (Pleuronectiformes), trout (Oncorhynchus mykiss), worm (Lumbricina), honey bee (Apis), frog (Anura), and rat, (Rattus) have been created to date. The purpose of this submission is to describe the processes of creating these voxel phantoms from radiological imaging data (i.e., Computed Tomography (CT), Magnetic Resonance Imaging (MRI), etc.). CT/MRI images of the organism are obtained and uploaded into a software package capable of segmenting the images (3D Doctor was used for the crab, flatfish, trout, worm, and honey bee). On each image slice, individual organs and other relevant anatomical features (e.g. bones or other structural tissues) are identified and segmented. Once segmentation is complete, a boundary file that describes the positioning of the organs and tissues in lattice geometry format is exported into software called Voxelizer, created by the Human Monitoring Laboratory of Canada. This software writes the boundary file geometry into an input file for Monte Carlo N-Particle (MCNP) based simulations. The user can then add appropriate materials, densities, and a desired source term. These simulations yield absorbed fraction (AF) values that are used in subsequent dose calculations with environmental concentration data. AFs are now available for the crab, flatfish, trout, worm, and honey bee at twelve photon and nine electron energies, consistent with ICRP AFs for human dosimetry

  16. A generalization of voxel-wise procedures for highdimensional statistical inference using ridge regression

    DEFF Research Database (Denmark)

    Sjöstrand, Karl; Cardenas, Valerie A.; Larsen, Rasmus

    2008-01-01

    regression to address this issue, allowing for a gradual introduction of correlation information into the model. We make the connections between ridge regression and voxel-wise procedures explicit and discuss relations to other statistical methods. Results are given on an in-vivo data set of deformation......Whole-brain morphometry denotes a group of methods with the aim of relating clinical and cognitive measurements to regions of the brain. Typically, such methods require the statistical analysis of a data set with many variables (voxels and exogenous variables) paired with few observations (subjects...

  17. SU-F-BRB-10: A Statistical Voxel Based Normal Organ Dose Prediction Model for Coplanar and Non-Coplanar Prostate Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Tran, A; Yu, V; Nguyen, D; Woods, K; Low, D; Sheng, K [UCLA, Los Angeles, CA (United States)

    2015-06-15

    Purpose: Knowledge learned from previous plans can be used to guide future treatment planning. Existing knowledge-based treatment planning methods study the correlation between organ geometry and dose volume histogram (DVH), which is a lossy representation of the complete dose distribution. A statistical voxel dose learning (SVDL) model was developed that includes the complete dose volume information. Its accuracy of predicting volumetric-modulated arc therapy (VMAT) and non-coplanar 4π radiotherapy was quantified. SVDL provided more isotropic dose gradients and may improve knowledge-based planning. Methods: 12 prostate SBRT patients originally treated using two full-arc VMAT techniques were re-planned with 4π using 20 intensity-modulated non-coplanar fields to a prescription dose of 40 Gy. The bladder and rectum voxels were binned based on their distances to the PTV. The dose distribution in each bin was resampled by convolving to a Gaussian kernel, resulting in 1000 data points in each bin that predicted the statistical dose information of a voxel with unknown dose in a new patient without triaging information that may be collectively important to a particular patient. We used this method to predict the DVHs, mean and max doses in a leave-one-out cross validation (LOOCV) test and compared its performance against lossy estimators including mean, median, mode, Poisson and Rayleigh of the voxelized dose distributions. Results: SVDL predicted the bladder and rectum doses more accurately than other estimators, giving mean percentile errors ranging from 13.35–19.46%, 4.81–19.47%, 22.49–28.69%, 23.35–30.5%, 21.05–53.93% for predicting mean, max dose, V20, V35, and V40 respectively, to OARs in both planning techniques. The prediction errors were generally lower for 4π than VMAT. Conclusion: By employing all dose volume information in the SVDL model, the OAR doses were more accurately predicted. 4π plans are better suited for knowledge-based planning than

  18. Voxel-based statistical analysis of cerebral glucose metabolism in the rat cortical deafness model by 3D reconstruction of brain from autoradiographic images

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Park, Kwang Suk [Seoul National University College of Medicine, Department of Nuclear Medicine, 28 Yungun-Dong, Chongno-Ku, Seoul (Korea); Seoul National University College of Medicine, Department of Biomedical Engineering, Seoul (Korea); Ahn, Soon-Hyun; Oh, Seung Ha; Kim, Chong Sun; Chung, June-Key; Lee, Myung Chul [Seoul National University College of Medicine, Department of Otolaryngology, Head and Neck Surgery, Seoul (Korea); Lee, Dong Soo; Jeong, Jae Min [Seoul National University College of Medicine, Department of Nuclear Medicine, 28 Yungun-Dong, Chongno-Ku, Seoul (Korea)

    2005-06-01

    Animal models of cortical deafness are essential for investigation of the cerebral glucose metabolism in congenital or prelingual deafness. Autoradiographic imaging is mainly used to assess the cerebral glucose metabolism in rodents. In this study, procedures for the 3D voxel-based statistical analysis of autoradiographic data were established to enable investigations of the within-modal and cross-modal plasticity through entire areas of the brain of sensory-deprived animals without lumping together heterogeneous subregions within each brain structure into a large region of interest. Thirteen 2-[1-{sup 14}C]-deoxy-D-glucose autoradiographic images were acquired from six deaf and seven age-matched normal rats (age 6-10 weeks). The deafness was induced by surgical ablation. For the 3D voxel-based statistical analysis, brain slices were extracted semiautomatically from the autoradiographic images, which contained the coronal sections of the brain, and were stacked into 3D volume data. Using principal axes matching and mutual information maximization algorithms, the adjacent coronal sections were co-registered using a rigid body transformation, and all sections were realigned to the first section. A study-specific template was composed and the realigned images were spatially normalized onto the template. Following count normalization, voxel-wise t tests were performed to reveal the areas with significant differences in cerebral glucose metabolism between the deaf and the control rats. Continuous and clear edges were detected in each image after registration between the coronal sections, and the internal and external landmarks extracted from the spatially normalized images were well matched, demonstrating the reliability of the spatial processing procedures. Voxel-wise t tests showed that the glucose metabolism in the bilateral auditory cortices of the deaf rats was significantly (P<0.001) lower than that in the controls. There was no significantly reduced metabolism in

  19. Voxel-based statistical analysis of cerebral glucose metabolism in the rat cortical deafness model by 3D reconstruction of brain from autoradiographic images

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Park, Kwang Suk; Ahn, Soon-Hyun; Oh, Seung Ha; Kim, Chong Sun; Chung, June-Key; Lee, Myung Chul; Lee, Dong Soo; Jeong, Jae Min

    2005-01-01

    Animal models of cortical deafness are essential for investigation of the cerebral glucose metabolism in congenital or prelingual deafness. Autoradiographic imaging is mainly used to assess the cerebral glucose metabolism in rodents. In this study, procedures for the 3D voxel-based statistical analysis of autoradiographic data were established to enable investigations of the within-modal and cross-modal plasticity through entire areas of the brain of sensory-deprived animals without lumping together heterogeneous subregions within each brain structure into a large region of interest. Thirteen 2-[1- 14 C]-deoxy-D-glucose autoradiographic images were acquired from six deaf and seven age-matched normal rats (age 6-10 weeks). The deafness was induced by surgical ablation. For the 3D voxel-based statistical analysis, brain slices were extracted semiautomatically from the autoradiographic images, which contained the coronal sections of the brain, and were stacked into 3D volume data. Using principal axes matching and mutual information maximization algorithms, the adjacent coronal sections were co-registered using a rigid body transformation, and all sections were realigned to the first section. A study-specific template was composed and the realigned images were spatially normalized onto the template. Following count normalization, voxel-wise t tests were performed to reveal the areas with significant differences in cerebral glucose metabolism between the deaf and the control rats. Continuous and clear edges were detected in each image after registration between the coronal sections, and the internal and external landmarks extracted from the spatially normalized images were well matched, demonstrating the reliability of the spatial processing procedures. Voxel-wise t tests showed that the glucose metabolism in the bilateral auditory cortices of the deaf rats was significantly (P<0.001) lower than that in the controls. There was no significantly reduced metabolism in any

  20. Voxel-wise prostate cell density prediction using multiparametric magnetic resonance imaging and machine learning.

    Science.gov (United States)

    Sun, Yu; Reynolds, Hayley M; Wraith, Darren; Williams, Scott; Finnegan, Mary E; Mitchell, Catherine; Murphy, Declan; Haworth, Annette

    2018-04-26

    There are currently no methods to estimate cell density in the prostate. This study aimed to develop predictive models to estimate prostate cell density from multiparametric magnetic resonance imaging (mpMRI) data at a voxel level using machine learning techniques. In vivo mpMRI data were collected from 30 patients before radical prostatectomy. Sequences included T2-weighted imaging, diffusion-weighted imaging and dynamic contrast-enhanced imaging. Ground truth cell density maps were computed from histology and co-registered with mpMRI. Feature extraction and selection were performed on mpMRI data. Final models were fitted using three regression algorithms including multivariate adaptive regression spline (MARS), polynomial regression (PR) and generalised additive model (GAM). Model parameters were optimised using leave-one-out cross-validation on the training data and model performance was evaluated on test data using root mean square error (RMSE) measurements. Predictive models to estimate voxel-wise prostate cell density were successfully trained and tested using the three algorithms. The best model (GAM) achieved a RMSE of 1.06 (± 0.06) × 10 3 cells/mm 2 and a relative deviation of 13.3 ± 0.8%. Prostate cell density can be quantitatively estimated non-invasively from mpMRI data using high-quality co-registered data at a voxel level. These cell density predictions could be used for tissue classification, treatment response evaluation and personalised radiotherapy.

  1. Hybrid computational phantoms of the 15-year male and female adolescent: Applications to CT organ dosimetry for patients of variable morphometry

    International Nuclear Information System (INIS)

    Lee, Choonsik; Lodwick, Daniel; Williams, Jonathan L.; Bolch, Wesley E.

    2008-01-01

    Currently, two classes of the computational phantoms have been developed for dosimetry calculation: (1) stylized (or mathematical) and (2) voxel (or tomographic) phantoms describing human anatomy through mathematical surface equations and three-dimensional labeled voxel matrices, respectively. Mathematical surface equations in stylized phantoms provide flexibility in phantom design and alteration, but the resulting anatomical description is, in many cases, not very realistic. Voxel phantoms display far better anatomical realism, but they are limited in terms of their ability to alter organ shape, position, and depth, as well as body posture. A new class of computational phantoms - called hybrid phantoms - takes advantage of the best features of stylized and voxel phantoms - flexibility and anatomical realism, respectively. In the current study, hybrid computational phantoms representing reference 15-year male and female body anatomy and anthropometry are presented. For the male phantom, organ contours were extracted from the University of Florida (UF) 14-year series B male voxel phantom, while for the female phantom, original computed tomography (CT) data from two 14-year female patients were used. Polygon mesh models for the major organs and tissues were reconstructed for nonuniform rational B-spline (NURBS) surface modeling. The resulting NURBS/polygon mesh models representing body contour and internal anatomy were matched to anthropometric data and reference organ mass data provided by the Centers for Disease Control and Prevention (CDC) and the International Commission on Radiation Protection (ICRP), respectively. Finally, two hybrid 15-year male and female phantoms were completed where a total of eight anthropometric data categories were matched to standard values within 4% and organ masses matched to ICRP data within 1% with the exception of total skin. To highlight the flexibility of the hybrid phantoms, 10th and 90th weight percentile 15-year male and

  2. Two-tensor streamline tractography through white matter intra-voxel fiber crossings

    DEFF Research Database (Denmark)

    Qazi, Arish Asif; Kindlmann, G; O'Donnell, L

    2008-01-01

    An inherent drawback of the traditional diffusion tensor model is its limited ability to provide detailed information about multidirectional fiber architecture within a voxel. This leads to erroneous fiber tractography results in locations where fiber bundles cross each other. In this paper, we p...

  3. Nighttime Foreground Pedestrian Detection Based on Three-Dimensional Voxel Surface Model

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-10-01

    Full Text Available Pedestrian detection is among the most frequently-used preprocessing tasks in many surveillance application fields, from low-level people counting to high-level scene understanding. Even though many approaches perform well in the daytime with sufficient illumination, pedestrian detection at night is still a critical and challenging problem for video surveillance systems. To respond to this need, in this paper, we provide an affordable solution with a near-infrared stereo network camera, as well as a novel three-dimensional foreground pedestrian detection model. Specifically, instead of using an expensive thermal camera, we build a near-infrared stereo vision system with two calibrated network cameras and near-infrared lamps. The core of the system is a novel voxel surface model, which is able to estimate the dynamic changes of three-dimensional geometric information of the surveillance scene and to segment and locate foreground pedestrians in real time. A free update policy for unknown points is designed for model updating, and the extracted shadow of the pedestrian is adopted to remove foreground false alarms. To evaluate the performance of the proposed model, the system is deployed in several nighttime surveillance scenes. Experimental results demonstrate that our method is capable of nighttime pedestrian segmentation and detection in real time under heavy occlusion. In addition, the qualitative and quantitative comparison results show that our work outperforms classical background subtraction approaches and a recent RGB-D method, as well as achieving comparable performance with the state-of-the-art deep learning pedestrian detection method even with a much lower hardware cost.

  4. Nighttime Foreground Pedestrian Detection Based on Three-Dimensional Voxel Surface Model.

    Science.gov (United States)

    Li, Jing; Zhang, Fangbing; Wei, Lisong; Yang, Tao; Lu, Zhaoyang

    2017-10-16

    Pedestrian detection is among the most frequently-used preprocessing tasks in many surveillance application fields, from low-level people counting to high-level scene understanding. Even though many approaches perform well in the daytime with sufficient illumination, pedestrian detection at night is still a critical and challenging problem for video surveillance systems. To respond to this need, in this paper, we provide an affordable solution with a near-infrared stereo network camera, as well as a novel three-dimensional foreground pedestrian detection model. Specifically, instead of using an expensive thermal camera, we build a near-infrared stereo vision system with two calibrated network cameras and near-infrared lamps. The core of the system is a novel voxel surface model, which is able to estimate the dynamic changes of three-dimensional geometric information of the surveillance scene and to segment and locate foreground pedestrians in real time. A free update policy for unknown points is designed for model updating, and the extracted shadow of the pedestrian is adopted to remove foreground false alarms. To evaluate the performance of the proposed model, the system is deployed in several nighttime surveillance scenes. Experimental results demonstrate that our method is capable of nighttime pedestrian segmentation and detection in real time under heavy occlusion. In addition, the qualitative and quantitative comparison results show that our work outperforms classical background subtraction approaches and a recent RGB-D method, as well as achieving comparable performance with the state-of-the-art deep learning pedestrian detection method even with a much lower hardware cost.

  5. Development of the Reference Korean Female Voxel Phantom

    International Nuclear Information System (INIS)

    Ham, Bo Kyoung; Cho, Kun Woo; Yeom, Yoen Soo; Jeong, Jong Hwi; Kim, Chan Hyeong; Han, Min Cheol

    2012-01-01

    The objective of this study is for development of the reference Korean female phantom, HDRK-Woman. The phantom was constructed by adjusting a Korean woman voxel phantom to the Reference Korean data. The Korean woman phantom had been developed based on the high-resolution color slice images obtained from an adult Korean female cadaver. There were a total of 39 organs including the 27 organs specified in ICRP 103 for effective dose calculation. The voxel resolution of the phantom was 1.967 X 1.967 X X 2.0619 mm 3 and the voxel array size is 261 X 109 X 825 in the x, y and z directions. Then, the voxel resolution was changed to 2.0351 X 2.0351 X 2.0747 mm 3 for adjustment of the height and total bone mass of the phantom to the Reference Korean data. Finally, the internal organs and tissue were adjusted using in-house software program developed for 3D volume adjustment of the organs and tissue. The effective dose values of HDRK phantoms were calculated for broad parallel photon beams using MCNPX Monte Carlo code and compared with those of ICRP phantoms.

  6. Development of the Reference Korean Female Voxel Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Bo Kyoung; Cho, Kun Woo [University of Science and Technology, Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Yeom, Yoen Soo; Jeong, Jong Hwi; Kim, Chan Hyeong; Han, Min Cheol [Hanyang University, Seoul (Korea, Republic of)

    2012-03-15

    The objective of this study is for development of the reference Korean female phantom, HDRK-Woman. The phantom was constructed by adjusting a Korean woman voxel phantom to the Reference Korean data. The Korean woman phantom had been developed based on the high-resolution color slice images obtained from an adult Korean female cadaver. There were a total of 39 organs including the 27 organs specified in ICRP 103 for effective dose calculation. The voxel resolution of the phantom was 1.967 X 1.967 X X 2.0619 mm{sup 3} and the voxel array size is 261 X 109 X 825 in the x, y and z directions. Then, the voxel resolution was changed to 2.0351 X 2.0351 X 2.0747 mm{sup 3} for adjustment of the height and total bone mass of the phantom to the Reference Korean data. Finally, the internal organs and tissue were adjusted using in-house software program developed for 3D volume adjustment of the organs and tissue. The effective dose values of HDRK phantoms were calculated for broad parallel photon beams using MCNPX Monte Carlo code and compared with those of ICRP phantoms.

  7. Construction of voxel head phantom and application to BNCT dose calculation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choon Sik; Lee, Choon Ik; Lee, Jai Ki [Hanyang Univ., Seoul (Korea, Republic of)

    2001-06-15

    Voxel head phantom for overcoming the limitation of mathematical phantom in depicting anatomical details was constructed and example dose calculation for BNCT was performed. The repeated structure algorithm of the general purpose Monte Carlo code, MCNP4B was applied for voxel Monte Carlo calculation. Simple binary voxel phantom and combinatorial geometry phantom composed of two materials were constructed for validating the voxel Monte Carlo calculation system. The tomographic images of VHP man provided by NLM(National Library of Medicine) were segmented and indexed to construct voxel head phantom. Comparison od doses for broad parallel gamma and neutron beams in AP and PA directions showed decrease of brain dose due to the attenuation of neutron in eye balls in case of voxel head phantom. The spherical tumor volume with diameter, 5cm was defined in the center of brain for BNCT dose calculation in which accurate 3 dimensional dose calculation is essential. As a result of BNCT dose calculation for downward neutron beam of 10keV and 40keV, the tumor dose is about doubled when boron concentration ratio between the tumor to the normal tissue is 30{mu}g/g to 3 {mu}g/g. This study established the voxel Monte Carlo calculation system and suggested the feasibility of precise dose calculation in therapeutic radiology.

  8. Absorbed fractions in a voxel-based phantom calculated with the MCNP-4B code.

    Science.gov (United States)

    Yoriyaz, H; dos Santos, A; Stabin, M G; Cabezas, R

    2000-07-01

    A new approach for calculating internal dose estimates was developed through the use of a more realistic computational model of the human body. The present technique shows the capability to build a patient-specific phantom with tomography data (a voxel-based phantom) for the simulation of radiation transport and energy deposition using Monte Carlo methods such as in the MCNP-4B code. MCNP-4B absorbed fractions for photons in the mathematical phantom of Snyder et al. agreed well with reference values. Results obtained through radiation transport simulation in the voxel-based phantom, in general, agreed well with reference values. Considerable discrepancies, however, were found in some cases due to two major causes: differences in the organ masses between the phantoms and the occurrence of organ overlap in the voxel-based phantom, which is not considered in the mathematical phantom.

  9. Effect of micro-computed tomography voxel size and segmentation method on trabecular bone microstructure measures in mice

    Directory of Open Access Journals (Sweden)

    Blaine A. Christiansen

    2016-12-01

    Full Text Available Micro-computed tomography (μCT is currently the gold standard for determining trabecular bone microstructure in small animal models. Numerous parameters associated with scanning and evaluation of μCT scans can strongly affect morphologic results obtained from bone samples. However, the effect of these parameters on specific trabecular bone outcomes is not well understood. This study investigated the effect of μCT scanning with nominal voxel sizes between 6–30 μm on trabecular bone outcomes quantified in mouse vertebral body trabecular bone. Additionally, two methods for determining a global segmentation threshold were compared: based on qualitative assessment of 2D images, or based on quantitative assessment of image histograms. It was found that nominal voxel size had a strong effect on several commonly reported trabecular bone parameters, in particular connectivity density, trabecular thickness, and bone tissue mineral density. Additionally, the two segmentation methods provided similar trabecular bone outcomes for scans with small nominal voxel sizes, but considerably different outcomes for scans with larger voxel sizes. The Qualitatively Selected segmentation method more consistently estimated trabecular bone volume fraction (BV/TV and trabecular thickness across different voxel sizes, but the Histogram segmentation method more consistently estimated trabecular number, trabecular separation, and structure model index. Altogether, these results suggest that high-resolution scans be used whenever possible to provide the most accurate estimation of trabecular bone microstructure, and that the limitations of accurately determining trabecular bone outcomes should be considered when selecting scan parameters and making conclusions about inter-group variance or between-group differences in studies of trabecular bone microstructure in small animals. Keywords: Trabecular bone, Microstructure, Micro-computed tomography, Voxel size, Resolution

  10. Development of a computational system for radiotherapic planning with the IMRT technique applied to the MCNP computer code with 3D graphic interface for voxel models; Desenvolvimento de um sistema computacional para o planejamento radioterapico com a tecnica IMRT aplicado ao codigo MCNP com interface grafica 3D para modelos de voxel

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, Telma Cristina Ferreira

    2009-07-01

    The Intensity Modulated Radiation Therapy - IMRT is an advanced treatment technique used worldwide in oncology medicine branch. On this master proposal was developed a software package for simulating the IMRT protocol, namely SOFT-RT which attachment the research group 'Nucleo de Radiacoes Ionizantes' - NRI at UFMG. The computational system SOFT-RT allows producing the absorbed dose simulation of the radiotherapic treatment through a three-dimensional voxel model of the patient. The SISCODES code, from NRI, research group, helps in producing the voxel model of the interest region from a set of CT or MRI digitalized images. The SOFT-RT allows also the rotation and translation of the model about the coordinate system axis for better visualization of the model and the beam. The SOFT-RT collects and exports the necessary parameters to MCNP code which will carry out the nuclear radiation transport towards the tumor and adjacent healthy tissues for each orientation and position of the beam planning. Through three-dimensional visualization of voxel model of a patient, it is possible to focus on a tumoral region preserving the whole tissues around them. It takes in account where exactly the radiation beam passes through, which tissues are affected and how much dose is applied in both tissues. The Out-module from SOFT-RT imports the results and express the dose response superimposing dose and voxel model in gray scale in a three-dimensional graphic representation. The present master thesis presents the new computational system of radiotherapic treatment - SOFT-RT code which has been developed using the robust and multi-platform C{sup ++} programming language with the OpenGL graphics packages. The Linux operational system was adopted with the goal of running it in an open source platform and free access. Preliminary simulation results for a cerebral tumor case will be reported as well as some dosimetric evaluations. (author)

  11. Development of a computational system for radiotherapic planning with the IMRT technique applied to the MCNP computer code with 3D graphic interface for voxel models; Desenvolvimento de um sistema computacional para o planejamento radioterapico com a tecnica IMRT aplicado ao codigo MCNP com interface grafica 3D para modelos de voxel

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, Telma Cristina Ferreira

    2009-07-01

    The Intensity Modulated Radiation Therapy - IMRT is an advanced treatment technique used worldwide in oncology medicine branch. On this master proposal was developed a software package for simulating the IMRT protocol, namely SOFT-RT which attachment the research group 'Nucleo de Radiacoes Ionizantes' - NRI at UFMG. The computational system SOFT-RT allows producing the absorbed dose simulation of the radiotherapic treatment through a three-dimensional voxel model of the patient. The SISCODES code, from NRI, research group, helps in producing the voxel model of the interest region from a set of CT or MRI digitalized images. The SOFT-RT allows also the rotation and translation of the model about the coordinate system axis for better visualization of the model and the beam. The SOFT-RT collects and exports the necessary parameters to MCNP code which will carry out the nuclear radiation transport towards the tumor and adjacent healthy tissues for each orientation and position of the beam planning. Through three-dimensional visualization of voxel model of a patient, it is possible to focus on a tumoral region preserving the whole tissues around them. It takes in account where exactly the radiation beam passes through, which tissues are affected and how much dose is applied in both tissues. The Out-module from SOFT-RT imports the results and express the dose response superimposing dose and voxel model in gray scale in a three-dimensional graphic representation. The present master thesis presents the new computational system of radiotherapic treatment - SOFT-RT code which has been developed using the robust and multi-platform C{sup ++} programming language with the OpenGL graphics packages. The Linux operational system was adopted with the goal of running it in an open source platform and free access. Preliminary simulation results for a cerebral tumor case will be reported as well as some dosimetric evaluations. (author)

  12. Voxel-based morphometry and voxel-based diffusion tensor analysis in amyotrophic lateral sclerosis

    International Nuclear Information System (INIS)

    Chen Zhiye; Ma Lin; Lou Xin; Wang Yan

    2010-01-01

    Objective: To evaluate gray matter volume, white matter volume and FA value changes in amyatrophic lateral sclerosis (ALS) patients by voxel-based morphometry (VBM) and voxel-based diffusion tensor analysis (VBDTA). Methods: Thirty-nine definite or probable ALS patients diagnosed by El Escorial standard and 39 healthy controls were recruited and underwent conventional MR scans and the neuropsychological evaluation. The 3D FSPGR T 1 WI and DTI data were collected on GE Medical 3.0 T MRI system. The 3DT 1 structural images were normalized, segmented and smoothed, and then VBM analysis was performed. DTI data were acquired from 76 healthy controls, and FA map template was made. FA maps generated from the DTI data of ALS patients and healthy controls were normalized to the FA map template for voxel-based analysis. ANCOVA was applied, controlling with age and total intracranial volume for VBM and age for VBDDTA. A statistical threshold of P<0.01 (uncorrected) and cluster level of more than continuous 20 voxels determined significance. Results: Statistical results showed no significant difference in the global volumes of gray matter and white matter, total intracranial volumes and gray matter fraction between ALS patients and healthy controls, but the white matter fraction of ALS patients (0.29 ± 0.02) was significantly less than that of healthy controls (0.30 ± 0.02) statistically (P=0.003). There was significant reduction of gray matter volumes in bilateral superior frontal gyri and precentral gyri, right middle frontal gyrus, right middle and inferior temporal gyrus, left superior occipital gyrus and cuneus and left insula in ALS patients when compared with healthy controls; and the regional reduction of white matter volumes in ALS patients mainly located in genu of corpus callosum, bilateral medial frontal gyri, paracentral lobule and insula, right superior and middle frontal gyrus and left postcentral gyrus. VBDTA showed decrease in FA values in bilateral

  13. Efficient simulation of voxelized phantom in GATE with embedded SimSET multiple photon history generator

    Science.gov (United States)

    Lin, Hsin-Hon; Chuang, Keh-Shih; Lin, Yi-Hsing; Ni, Yu-Ching; Wu, Jay; Jan, Meei-Ling

    2014-10-01

    GEANT4 Application for Tomographic Emission (GATE) is a powerful Monte Carlo simulator that combines the advantages of the general-purpose GEANT4 simulation code and the specific software tool implementations dedicated to emission tomography. However, the detailed physical modelling of GEANT4 is highly computationally demanding, especially when tracking particles through voxelized phantoms. To circumvent the relatively slow simulation of voxelized phantoms in GATE, another efficient Monte Carlo code can be used to simulate photon interactions and transport inside a voxelized phantom. The simulation system for emission tomography (SimSET), a dedicated Monte Carlo code for PET/SPECT systems, is well-known for its efficiency in simulation of voxel-based objects. An efficient Monte Carlo workflow integrating GATE and SimSET for simulating pinhole SPECT has been proposed to improve voxelized phantom simulation. Although the workflow achieves a desirable increase in speed, it sacrifices the ability to simulate decaying radioactive sources such as non-pure positron emitters or multiple emission isotopes with complex decay schemes and lacks the modelling of time-dependent processes due to the inherent limitations of the SimSET photon history generator (PHG). Moreover, a large volume of disk storage is needed to store the huge temporal photon history file produced by SimSET that must be transported to GATE. In this work, we developed a multiple photon emission history generator (MPHG) based on SimSET/PHG to support a majority of the medically important positron emitters. We incorporated the new generator codes inside GATE to improve the simulation efficiency of voxelized phantoms in GATE, while eliminating the need for the temporal photon history file. The validation of this new code based on a MicroPET R4 system was conducted for 124I and 18F with mouse-like and rat-like phantoms. Comparison of GATE/MPHG with GATE/GEANT4 indicated there is a slight difference in energy

  14. Monte Carlo study of voxel S factor dependence on tissue density and atomic composition

    Energy Technology Data Exchange (ETDEWEB)

    Amato, Ernesto, E-mail: eamato@unime.it [University of Messina, Department of Biomedical Sciences and of Morphologic and Functional Imaging, Section of Radiological Sciences, via Consolare Valeria, 1, I-98125 Messina (Italy); Italiano, Antonio [INFN – Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Messina (Italy); Baldari, Sergio [University of Messina, Department of Biomedical Sciences and of Morphologic and Functional Imaging, Section of Radiological Sciences, via Consolare Valeria, 1, I-98125 Messina (Italy)

    2013-11-21

    Voxel dosimetry is a common approach to the internal dosimetry of non-uniform activity distributions in nuclear medicine therapies with radiopharmaceuticals and in the estimation of the radiation hazard due to internal contamination of radionuclides. Aim of the present work is to extend our analytical approach for the calculation of voxel S factors to materials different from the soft tissue. We used a Monte Carlo simulation in GEANT4 of a voxelized region of each material in which the source of monoenergetic electrons or photons was uniformly distributed within the central voxel, and the energy deposition was scored over the surrounding 11×11×11 voxels. Voxel S factors were obtained for the following standard ICRP materials: Adipose tissue, Bone cortical, Brain, Lung, Muscle skeletal and Tissue soft with 1 g cm{sup −3} density. Moreover, we considered the standard ICRU materials: Bone compact and Muscle striated. Voxel S factors were represented as a function of the “normalized radius”, defined as the ratio between the source–target voxel distance and the voxel side. We found that voxel S factors and related analytical fit functions are mainly affected by the tissue density, while the material composition gives only a slight contribution to the difference between data series, which is negligible for practical purposes. Our results can help in broadening the dosimetric three-dimensional approach based on voxel S factors to other tissues where diagnostic and therapeutic radionuclides can be taken up and radiation can propagate.

  15. Monte Carlo study of voxel S factor dependence on tissue density and atomic composition

    International Nuclear Information System (INIS)

    Amato, Ernesto; Italiano, Antonio; Baldari, Sergio

    2013-01-01

    Voxel dosimetry is a common approach to the internal dosimetry of non-uniform activity distributions in nuclear medicine therapies with radiopharmaceuticals and in the estimation of the radiation hazard due to internal contamination of radionuclides. Aim of the present work is to extend our analytical approach for the calculation of voxel S factors to materials different from the soft tissue. We used a Monte Carlo simulation in GEANT4 of a voxelized region of each material in which the source of monoenergetic electrons or photons was uniformly distributed within the central voxel, and the energy deposition was scored over the surrounding 11×11×11 voxels. Voxel S factors were obtained for the following standard ICRP materials: Adipose tissue, Bone cortical, Brain, Lung, Muscle skeletal and Tissue soft with 1 g cm −3 density. Moreover, we considered the standard ICRU materials: Bone compact and Muscle striated. Voxel S factors were represented as a function of the “normalized radius”, defined as the ratio between the source–target voxel distance and the voxel side. We found that voxel S factors and related analytical fit functions are mainly affected by the tissue density, while the material composition gives only a slight contribution to the difference between data series, which is negligible for practical purposes. Our results can help in broadening the dosimetric three-dimensional approach based on voxel S factors to other tissues where diagnostic and therapeutic radionuclides can be taken up and radiation can propagate

  16. Micro-CT Pore Scale Study Of Flow In Porous Media: Effect Of Voxel Resolution

    Science.gov (United States)

    Shah, S.; Gray, F.; Crawshaw, J.; Boek, E.

    2014-12-01

    In the last few years, pore scale studies have become the key to understanding the complex fluid flow processes in the fields of groundwater remediation, hydrocarbon recovery and environmental issues related to carbon storage and capture. A pore scale study is often comprised of two key procedures: 3D pore scale imaging and numerical modelling techniques. The essence of a pore scale study is to test the physics implemented in a model of complicated fluid flow processes at one scale (microscopic) and then apply the model to solve the problems associated with water resources and oil recovery at other scales (macroscopic and field). However, the process of up-scaling from the pore scale to the macroscopic scale has encountered many challenges due to both pore scale imaging and modelling techniques. Due to the technical limitations in the imaging method, there is always a compromise between the spatial (voxel) resolution and the physical volume of the sample (field of view, FOV) to be scanned by the imaging methods, specifically X-ray micro-CT (XMT) in our case In this study, a careful analysis was done to understand the effect of voxel size, using XMT to image the 3D pore space of a variety of porous media from sandstones to carbonates scanned at different voxel resolution (4.5 μm, 6.2 μm, 8.3 μm and 10.2 μm) but keeping the scanned FOV constant for all the samples. We systematically segment the micro-CT images into three phases, the macro-pore phase, an intermediate phase (unresolved micro-pores + grains) and the grain phase and then study the effect of voxel size on the structure of the macro-pore and the intermediate phases and the fluid flow properties using lattice-Boltzmann (LB) and pore network (PN) modelling methods. We have also applied a numerical coarsening algorithm (up-scale method) to reduce the computational power and time required to accurately predict the flow properties using the LB and PN method.

  17. Verification of the VEF photon beam model for dose calculations by the voxel-Monte-Carlo-algorithm

    International Nuclear Information System (INIS)

    Kriesen, S.; Fippel, M.

    2005-01-01

    The VEF linac head model (VEF, virtual energy fluence) was developed at the University of Tuebingen to determine the primary fluence for calculations of dose distributions in patients by the Voxel-Monte-Carlo-Algorithm (XVMC). This analytical model can be fitted to any therapy accelerator head by measuring only a few basic dose data; therefore, time-consuming Monte-Carlo simulations of the linac head become unnecessary. The aim of the present study was the verification of the VEF model by means of water-phantom measurements, as well as the comparison of this system with a common analytical linac head model of a commercial planning system (TMS, formerly HELAX or MDS Nordion, respectively). The results show that both the VEF and the TMS models can very well simulate the primary fluence. However, the VEF model proved superior in the simulations of scattered radiation and in the calculations of strongly irregular MLC fields. Thus, an accurate and clinically practicable tool for the determination of the primary fluence for Monte-Carlo-Simulations with photons was established, especially for the use in IMRT planning. (orig.)

  18. [Verification of the VEF photon beam model for dose calculations by the Voxel-Monte-Carlo-Algorithm].

    Science.gov (United States)

    Kriesen, Stephan; Fippel, Matthias

    2005-01-01

    The VEF linac head model (VEF, virtual energy fluence) was developed at the University of Tübingen to determine the primary fluence for calculations of dose distributions in patients by the Voxel-Monte-Carlo-Algorithm (XVMC). This analytical model can be fitted to any therapy accelerator head by measuring only a few basic dose data; therefore, time-consuming Monte-Carlo simulations of the linac head become unnecessary. The aim of the present study was the verification of the VEF model by means of water-phantom measurements, as well as the comparison of this system with a common analytical linac head model of a commercial planning system (TMS, formerly HELAX or MDS Nordion, respectively). The results show that both the VEF and the TMS models can very well simulate the primary fluence. However, the VEF model proved superior in the simulations of scattered radiation and in the calculations of strongly irregular MLC fields. Thus, an accurate and clinically practicable tool for the determination of the primary fluence for Monte-Carlo-Simulations with photons was established, especially for the use in IMRT planning.

  19. Fast voxel and polygon ray-tracing algorithms in intensity modulated radiation therapy treatment planning

    International Nuclear Information System (INIS)

    Fox, Christopher; Romeijn, H. Edwin; Dempsey, James F.

    2006-01-01

    We present work on combining three algorithms to improve ray-tracing efficiency in radiation therapy dose computation. The three algorithms include: An improved point-in-polygon algorithm, incremental voxel ray tracing algorithm, and stereographic projection of beamlets for voxel truncation. The point-in-polygon and incremental voxel ray-tracing algorithms have been used in computer graphics and nuclear medicine applications while the stereographic projection algorithm was developed by our group. These algorithms demonstrate significant improvements over the current standard algorithms in peer reviewed literature, i.e., the polygon and voxel ray-tracing algorithms of Siddon for voxel classification (point-in-polygon testing) and dose computation, respectively, and radius testing for voxel truncation. The presented polygon ray-tracing technique was tested on 10 intensity modulated radiation therapy (IMRT) treatment planning cases that required the classification of between 0.58 and 2.0 million voxels on a 2.5 mm isotropic dose grid into 1-4 targets and 5-14 structures represented as extruded polygons (a.k.a. Siddon prisms). Incremental voxel ray tracing and voxel truncation employing virtual stereographic projection was tested on the same IMRT treatment planning cases where voxel dose was required for 230-2400 beamlets using a finite-size pencil-beam algorithm. Between a 100 and 360 fold cpu time improvement over Siddon's method was observed for the polygon ray-tracing algorithm to perform classification of voxels for target and structure membership. Between a 2.6 and 3.1 fold reduction in cpu time over current algorithms was found for the implementation of incremental ray tracing. Additionally, voxel truncation via stereographic projection was observed to be 11-25 times faster than the radial-testing beamlet extent approach and was further improved 1.7-2.0 fold through point-classification using the method of translation over the cross product technique

  20. Segmentation Based Classification of 3D Urban Point Clouds: A Super-Voxel Based Approach with Evaluation

    Directory of Open Access Journals (Sweden)

    Laurent Trassoudaine

    2013-03-01

    Full Text Available Segmentation and classification of urban range data into different object classes have several challenges due to certain properties of the data, such as density variation, inconsistencies due to missing data and the large data size that require heavy computation and large memory. A method to classify urban scenes based on a super-voxel segmentation of sparse 3D data obtained from LiDAR sensors is presented. The 3D point cloud is first segmented into voxels, which are then characterized by several attributes transforming them into super-voxels. These are joined together by using a link-chain method rather than the usual region growing algorithm to create objects. These objects are then classified using geometrical models and local descriptors. In order to evaluate the results, a new metric that combines both segmentation and classification results simultaneously is presented. The effects of voxel size and incorporation of RGB color and laser reflectance intensity on the classification results are also discussed. The method is evaluated on standard data sets using different metrics to demonstrate its efficacy.

  1. On the evolution of cured voxel in bulk photopolymerization upon focused Gaussian laser exposure

    International Nuclear Information System (INIS)

    Bhole, Kiran; Gandhi, Prasanna; Kundu, T.

    2014-01-01

    Unconstrained depth photopolymerization is emerging as a promising technique for fabrication of several polymer microstructures such as self propagating waveguides, 3D freeform structures by bulk lithography, and polymer nanoparticles by flash exposure. Experimental observations reveal governing physics beyond Beer Lambert's law and scattering effects. This paper seeks to model unconstrained depth photopolymerization using classical nonlinear Schrödinger equation coupled with transient diffusion phenomenon. The beam propagation part of the proposed model considers scattering effects induced due to spatial variation of the refractive index as a function of the beam intensity. The critical curing energy model is used to further predict profile of polymerized voxel. Profiles of photopolymerized voxel simulated using proposed model are compared with the corresponding experimental results for several cases of exposure dose and duration. The comparison shows close match leading to conclusion that the experimentally observed deviation from Beer Lambert's law is indeed due to combined effect of diffusion of photoinitiator and scattering of light because of change in the refractive index.

  2. Abnormal Intrinsic Functional Hubs in Severe Male Obstructive Sleep Apnea: Evidence from a Voxel-Wise Degree Centrality Analysis.

    Science.gov (United States)

    Li, Haijun; Li, Lan; Shao, Yi; Gong, Honghan; Zhang, Wei; Zeng, Xianjun; Ye, Chenglong; Nie, Si; Chen, Liting; Peng, Dechang

    2016-01-01

    Obstructive sleep apnea (OSA) has been associated with changes in brain structure and regional function in certain brain areas. However, the functional features of network organization in the whole brain remain largely uncertain. The purpose of this study was to identify the OSA-related spatial centrality distribution of the whole brain functional network and to investigate the potential altered intrinsic functional hubs. Forty male patients with newly confirmed severe OSA on polysomnography, and well-matched good sleepers, participated in this study. All participants underwent a resting-state functional MRI scan and clinical and cognitive evaluation. Voxel-wise degree centrality (DC) was measured across the whole brain, and group difference in DC was compared. The relationship between the abnormal DC value and clinical variables was assessed using a linear correlation analysis. Remarkably similar spatial distributions of the functional hubs (high DC) were found in both groups. However, OSA patients exhibited a pattern of significantly reduced regional DC in the left middle occipital gyrus, posterior cingulate cortex, left superior frontal gyrus, and bilateral inferior parietal lobule, and DC was increased in the right orbital frontal cortex, bilateral cerebellum posterior lobes, and bilateral lentiform nucleus, including the putamen, extending to the hippocampus, and the inferior temporal gyrus, which overlapped with the functional hubs. Furthermore, a linear correlation analysis revealed that the DC value in the posterior cingulate cortex and left superior frontal gyrus were positively correlated with Montreal cognitive assessment scores, The DC value in the left middle occipital gyrus and bilateral inferior parietal lobule were negatively correlated with apnea-hypopnea index and arousal index in OSA patients. Our findings suggest that OSA patients exhibited specific abnormal intrinsic functional hubs including relatively reduced and increased DC. This expands

  3. High performance cone-beam spiral backprojection with voxel-specific weighting

    International Nuclear Information System (INIS)

    Steckmann, Sven; Knaup, Michael; Kachelriess, Marc

    2009-01-01

    Cone-beam spiral backprojection is computationally highly demanding. At first sight, the backprojection requirements are similar to those of cone-beam backprojection from circular scans such as it is performed in the widely used Feldkamp algorithm. However, there is an additional complication: the illumination of each voxel, i.e. the range of angles the voxel is seen by the x-ray cone, is a complex function of the voxel position. In general, one needs to multiply a voxel-specific weight w(x, y, z, α) prior to adding a projection from angle α to a voxel at position x, y, z. Often, the weight function has no analytically closed form and must be numerically determined. Storage of the weights is prohibitive since the amount of memory required equals the number of voxels per spiral rotation times the number of projections a voxel receives contributions and therefore is in the order of up to 10 12 floating point values for typical spiral scans. We propose a new algorithm that combines the spiral symmetry with the ability of today's 64 bit operating systems to store large amounts of precomputed weights, even above the 4 GB limit. Our trick is to backproject into slices that are rotated in the same manner as the spiral trajectory rotates. Using the spiral symmetry in this way allows one to exploit data-level paralellism and thereby to achieve a very high level of vectorization. An additional postprocessing step rotates these slices back to normal images. Our new backprojection algorithm achieves up to 17 giga voxel updates per second on our systems that are equipped with four standard Intel X7460 hexa core CPUs (Intel Xeon 7300 platform, 2.66 GHz, Intel Corporation). This equals the reconstruction of 344 images per second assuming that each slice consists of 512 x 512 pixels and receives contributions from 512 projections. Thereby, it is an order of magnitude faster than a highly optimized code that does not make use of the spiral symmetry. In its present version, the

  4. High performance cone-beam spiral backprojection with voxel-specific weighting

    Science.gov (United States)

    Steckmann, Sven; Knaup, Michael; Kachelrieß, Marc

    2009-06-01

    Cone-beam spiral backprojection is computationally highly demanding. At first sight, the backprojection requirements are similar to those of cone-beam backprojection from circular scans such as it is performed in the widely used Feldkamp algorithm. However, there is an additional complication: the illumination of each voxel, i.e. the range of angles the voxel is seen by the x-ray cone, is a complex function of the voxel position. In general, one needs to multiply a voxel-specific weight w(x, y, z, α) prior to adding a projection from angle α to a voxel at position x, y, z. Often, the weight function has no analytically closed form and must be numerically determined. Storage of the weights is prohibitive since the amount of memory required equals the number of voxels per spiral rotation times the number of projections a voxel receives contributions and therefore is in the order of up to 1012 floating point values for typical spiral scans. We propose a new algorithm that combines the spiral symmetry with the ability of today's 64 bit operating systems to store large amounts of precomputed weights, even above the 4 GB limit. Our trick is to backproject into slices that are rotated in the same manner as the spiral trajectory rotates. Using the spiral symmetry in this way allows one to exploit data-level paralellism and thereby to achieve a very high level of vectorization. An additional postprocessing step rotates these slices back to normal images. Our new backprojection algorithm achieves up to 17 giga voxel updates per second on our systems that are equipped with four standard Intel X7460 hexa core CPUs (Intel Xeon 7300 platform, 2.66 GHz, Intel Corporation). This equals the reconstruction of 344 images per second assuming that each slice consists of 512 × 512 pixels and receives contributions from 512 projections. Thereby, it is an order of magnitude faster than a highly optimized code that does not make use of the spiral symmetry. In its present version, the

  5. Strategies for improving the Voxel-based statistical analysis for animal PET studies: assessment of cerebral glucose metabolism in cat deafness model

    International Nuclear Information System (INIS)

    Kim, Jin Su; Lee, Jae Sung; Park, Min Hyun; Kang, Hye Jin; Im, Ki Chun; Moon, Dae Hyuk; Lim, Sang Moo; Oh, Seung Ha; Lee, Dong Soo

    2007-01-01

    In imaging studies of the human brain, voxel-based statistical analysis method was widely used, since these methods were originally developed for the analysis of the human brain data, they are not optimal for the animal brain data. The aim of this study is to optimize the procedures for the 3D voxel-based statistical analysis of cat FDG PET brain images. A microPET Focus 120 scanner was used. Eight cats underwent FDG PET scans twice before and after inducing the deafness. Only the brain and adjacent regions were extracted from each data set by manual masking. Individual PET image at normal and deaf state was realigned to each other to remove the confounding effects by the different spatial normalization parameters on the results of statistical analyses. Distance between the sampling points on the reference image and kernel size of Gaussian filter applied to the images before estimating the realignment parameters were adjusted to 0.5 mm and 2 mm. Both data was then spatial normalized onto study-specific cat brain template. Spatially normalized PET data were smoothed and voxel-based paired t-test was performed. Cerebral glucose metabolism decreased significantly after the loss of hearing capability in parietal lobes, postcentral gyri, STG, MTG, lTG, and IC at both hemisphere and left SC (FDR corrected P < 0.05, k=50). Cerebral glucose metabolism in deaf cats was found to be significantly higher than in controls in the right cingulate (FDR corrected P < 0.05, k=50). The ROI analysis also showed significant reduction of glucose metabolism in the same areas as in the SPM analysis, except for some regions (P < 0.05). Method for the voxel-based analysis of cat brain PET data was optimized for analysis of cat brain PET. This result was also confirmed by ROI analysis. The results obtained demonstrated the high localization accuracy and specificity of the developed method, and were found to be useful for examining cerebral glucose metabolism in a cat cortical deafness model

  6. Strategies for improving the Voxel-based statistical analysis for animal PET studies: assessment of cerebral glucose metabolism in cat deafness model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Su; Lee, Jae Sung; Park, Min Hyun; Kang, Hye Jin; Im, Ki Chun; Moon, Dae Hyuk; Lim, Sang Moo; Oh, Seung Ha; Lee, Dong Soo [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    In imaging studies of the human brain, voxel-based statistical analysis method was widely used, since these methods were originally developed for the analysis of the human brain data, they are not optimal for the animal brain data. The aim of this study is to optimize the procedures for the 3D voxel-based statistical analysis of cat FDG PET brain images. A microPET Focus 120 scanner was used. Eight cats underwent FDG PET scans twice before and after inducing the deafness. Only the brain and adjacent regions were extracted from each data set by manual masking. Individual PET image at normal and deaf state was realigned to each other to remove the confounding effects by the different spatial normalization parameters on the results of statistical analyses. Distance between the sampling points on the reference image and kernel size of Gaussian filter applied to the images before estimating the realignment parameters were adjusted to 0.5 mm and 2 mm. Both data was then spatial normalized onto study-specific cat brain template. Spatially normalized PET data were smoothed and voxel-based paired t-test was performed. Cerebral glucose metabolism decreased significantly after the loss of hearing capability in parietal lobes, postcentral gyri, STG, MTG, lTG, and IC at both hemisphere and left SC (FDR corrected P < 0.05, k=50). Cerebral glucose metabolism in deaf cats was found to be significantly higher than in controls in the right cingulate (FDR corrected P < 0.05, k=50). The ROI analysis also showed significant reduction of glucose metabolism in the same areas as in the SPM analysis, except for some regions (P < 0.05). Method for the voxel-based analysis of cat brain PET data was optimized for analysis of cat brain PET. This result was also confirmed by ROI analysis. The results obtained demonstrated the high localization accuracy and specificity of the developed method, and were found to be useful for examining cerebral glucose metabolism in a cat cortical deafness model.

  7. Computation of a voxelized anthropomorphic phantom from Computer Tomography slices and 3D dose distribution calculation utilizing the MCNP5 Code

    International Nuclear Information System (INIS)

    Abella, V.; Miro, R.; Juste, B.; Verdu, G.

    2008-01-01

    Full text: The purpose of this work is to obtain the voxelization of a series of tomography slices in order to provide a voxelized human phantom throughout a MatLab algorithm, and the consequent simulation of the irradiation of such phantom with the photon beam generated in a Theratron 780 (MDS Nordion) 60 Co radiotherapy unit, using the Monte Carlo transport code MCNP (Monte Carlo N-Particle), version 5. The project provides as results dose mapping calculations inside the voxelized anthropomorphic phantom. Prior works have validated the cobalt therapy model utilizing a simple heterogeneous water cube-shaped phantom. The reference phantom model utilized in this work is the Zubal phantom, which consists of a group of pre-segmented CT slices of a human body. The CT slices are to be input into the Matlab program which computes the voxelization by means of two-dimensional pixel and material identification on each slice, and three-dimensional interpolation, in order to depict the phantom geometry via small cubic cells. Each slice is divided in squares with the size of the desired voxelization, and then the program searches for the pixel intensity with a predefined material at each square, making a subsequent three-dimensional interpolation. At the end of this process, the program produces a voxelized phantom in which each voxel defines the mixture of the different materials that compose it. In the case of the Zubal phantom, the voxels result in pure organ materials due to the fact that the phantom is presegmented. The output of this code follows the MCNP input deck format and is integrated in a full input model including the 60 Co radiotherapy unit. Dose rates are calculated using the MCNP5 tool FMESH, superimposed mesh tally. This feature allows to tally particles on an independent mesh over the problem geometry, and to obtain the length estimation of the particle flux, in units of particles/cm 2 (tally F4). Furthermore, the particle flux is transformed into dose by

  8. Reasons between effective doses for tomographic and mathematical models due to external exposition by photons

    International Nuclear Information System (INIS)

    Kramer, R.; Khoury, H.J.; Yoriyaz, H.; Lima, F.R.A.; Loureiro, E.C.M.

    2005-01-01

    The development of Monte Carlo codes and new and sophisticated tomographic human models, or based on voxel, motivated the ICRP to propose a revision of the traditional exposition models, which have been used to calculate doses on organs and tissues using mathematical phantoms MIRD-type 5. This article presents calculations made with tomographic phantoms MAX (Male Adult voXel) and FAX (Female Adult voXel), recently developed and also, for comparison, with ADAM and Eve mathematician phantoms. All models were coupled to the EGS4 and MCNP4 codes for full body external irradiation by photons. It were simulated expositions AP, PA and rotational for energies varying between 10 keV and 10 MeV. The effective calculated doses were compared separately to evaluate: the replacement of the Monte Carlo code; the composition of the tissues and the replacement of tomographic phantoms by mathematical ones. Effective doses calculated results indicate that for external exposures by photons to introduce models based on voxels can cause a reduction of about 10% to the energies considered in this study

  9. An image-based skeletal dosimetry model for the ICRP reference adult male-internal electron sources

    International Nuclear Information System (INIS)

    Hough, Matthew; Johnson, Perry; Bolch, Wesley; Rajon, Didier; Jokisch, Derek; Lee, Choonsik

    2011-01-01

    -averaged values of absorbed fraction in the present model are noted to be very compatible with those weighted by the skeletal tissue distributions found in the ICRP Publication 110 adult male and female voxel phantoms, but are in many cases incompatible with values used in current and widely implemented internal dosimetry software.

  10. An image-based skeletal dosimetry model for the ICRP reference adult male-internal electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Hough, Matthew; Johnson, Perry; Bolch, Wesley [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL (United States); Rajon, Didier [Department of Neurosurgery, University of Florida, Gainesville, FL (United States); Jokisch, Derek [Department of Physics and Astronomy, Francis Marion University, Florence, SC (United States); Lee, Choonsik, E-mail: wbolch@ufl.edu [Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD (United States)

    2011-04-21

    -averaged values of absorbed fraction in the present model are noted to be very compatible with those weighted by the skeletal tissue distributions found in the ICRP Publication 110 adult male and female voxel phantoms, but are in many cases incompatible with values used in current and widely implemented internal dosimetry software.

  11. Coarse Point Cloud Registration by Egi Matching of Voxel Clusters

    Science.gov (United States)

    Wang, Jinhu; Lindenbergh, Roderik; Shen, Yueqian; Menenti, Massimo

    2016-06-01

    Laser scanning samples the surface geometry of objects efficiently and records versatile information as point clouds. However, often more scans are required to fully cover a scene. Therefore, a registration step is required that transforms the different scans into a common coordinate system. The registration of point clouds is usually conducted in two steps, i.e. coarse registration followed by fine registration. In this study an automatic marker-free coarse registration method for pair-wise scans is presented. First the two input point clouds are re-sampled as voxels and dimensionality features of the voxels are determined by principal component analysis (PCA). Then voxel cells with the same dimensionality are clustered. Next, the Extended Gaussian Image (EGI) descriptor of those voxel clusters are constructed using significant eigenvectors of each voxel in the cluster. Correspondences between clusters in source and target data are obtained according to the similarity between their EGI descriptors. The random sampling consensus (RANSAC) algorithm is employed to remove outlying correspondences until a coarse alignment is obtained. If necessary, a fine registration is performed in a final step. This new method is illustrated on scan data sampling two indoor scenarios. The results of the tests are evaluated by computing the point to point distance between the two input point clouds. The presented two tests resulted in mean distances of 7.6 mm and 9.5 mm respectively, which are adequate for fine registration.

  12. Development of modified voxel phantoms for the numerical dosimetric reconstruction of radiological accidents involving external sources: implementation in SESAME tool.

    Science.gov (United States)

    Courageot, Estelle; Sayah, Rima; Huet, Christelle

    2010-05-07

    Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. When the dose distribution is evaluated with a numerical anthropomorphic model, the posture and morphology of the victim have to be reproduced as realistically as possible. Several years ago, IRSN developed a specific software application, called the simulation of external source accident with medical images (SESAME), for the dosimetric reconstruction of radiological accidents by numerical simulation. This tool combines voxel geometry and the MCNP(X) Monte Carlo computer code for radiation-material interaction. This note presents a new functionality in this software that enables the modelling of a victim's posture and morphology based on non-uniform rational B-spline (NURBS) surfaces. The procedure for constructing the modified voxel phantoms is described, along with a numerical validation of this new functionality using a voxel phantom of the RANDO tissue-equivalent physical model.

  13. On the evolution of cured voxel in bulk photopolymerization upon focused Gaussian laser exposure

    Energy Technology Data Exchange (ETDEWEB)

    Bhole, Kiran, E-mail: kirandipali@gmail.com; Gandhi, Prasanna [Suman Mashruwala Advance Microengineering Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076 (India); Kundu, T. [Department of Physics, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076 (India)

    2014-07-28

    Unconstrained depth photopolymerization is emerging as a promising technique for fabrication of several polymer microstructures such as self propagating waveguides, 3D freeform structures by bulk lithography, and polymer nanoparticles by flash exposure. Experimental observations reveal governing physics beyond Beer Lambert's law and scattering effects. This paper seeks to model unconstrained depth photopolymerization using classical nonlinear Schrödinger equation coupled with transient diffusion phenomenon. The beam propagation part of the proposed model considers scattering effects induced due to spatial variation of the refractive index as a function of the beam intensity. The critical curing energy model is used to further predict profile of polymerized voxel. Profiles of photopolymerized voxel simulated using proposed model are compared with the corresponding experimental results for several cases of exposure dose and duration. The comparison shows close match leading to conclusion that the experimentally observed deviation from Beer Lambert's law is indeed due to combined effect of diffusion of photoinitiator and scattering of light because of change in the refractive index.

  14. Preparing a voxel-simulator of Alderson Rando physical phantom

    International Nuclear Information System (INIS)

    Boia, Leonardo S.; Martins, Maximiano C.; Silva, Ademir X.; Salmon Junior, Helio A.; Soares, Alessandro F.N.S.

    2011-01-01

    There are, nowadays, sorts of anthropomorphycal phantoms which are used for simulation of radiation transport by the matter and also the deposition of energy in such radiation in human tissues and organs, because an in-vitro dosimetry becomes very either complicated or even impossible in some cases. In the present work we prepared a computational phantom in voxels based on computational tomography of Rando-Alderson. This phantom is one of the most known human body simulators on the scope of ionizing radiation dosimetry, and it is used for radioprotection issues and dosimetry from radiotherapy and brachytherapy treatments as well. The preparation of a voxel simulator starts with the image acquisition by a tomograph found at COI/RJ (Clinicas Oncologicas Integradas). The images were generated with 1mm cuts and collected for analysis. After that step the images were processed in SAPDI (Sistema Automatizado de Processamento Digital de Imagem) in order to amplify the images regions intending to facilitate the task in their segmentation. SAPDI is based on parameters described by Hounsfield scale. After that, it has begun discretization of elements in IDs voxels using Scan2MCNP software - which converts images to a sequential text file containing the voxels' IDs ready to be introduced into MCNPX input; however, this set can be turned to a voxel's IDs matrix and used in other Monte Carlo codes, such as Geant4, PENELOPE and EGSnrc. Finished this step, the simulator is able to simulate with accurate geometry the physical phantom. It's possible to study a large number of cases by computational techniques of geometry's insertions of tumors and TLDs, which makes this simulator a research material useful for a lot of subjects. (author)

  15. Preparing a voxel-simulator of Alderson Rando physical phantom

    Energy Technology Data Exchange (ETDEWEB)

    Boia, Leonardo S.; Martins, Maximiano C.; Silva, Ademir X., E-mail: lboia@con.ufrj.br, E-mail: ademir@con.ufrj.br [Programa de Engenharia Nuclear (PEN/COPPE/UFRJ). Universidade Federal do Rio de Janeiro, RJ (Brazil); Salmon Junior, Helio A., E-mail: heliosalmon@coinet.com.br [COI - Clinicas Oncologicas Integradas, MD.X Barra Medical Center, Rio de Janeiro, RJ (Brazil); Soares, Alessandro F.N.S., E-mail: afacure@cnen.gov.br [Comissao Nacional de Engenharia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    There are, nowadays, sorts of anthropomorphycal phantoms which are used for simulation of radiation transport by the matter and also the deposition of energy in such radiation in human tissues and organs, because an in-vitro dosimetry becomes very either complicated or even impossible in some cases. In the present work we prepared a computational phantom in voxels based on computational tomography of Rando-Alderson. This phantom is one of the most known human body simulators on the scope of ionizing radiation dosimetry, and it is used for radioprotection issues and dosimetry from radiotherapy and brachytherapy treatments as well. The preparation of a voxel simulator starts with the image acquisition by a tomograph found at COI/RJ (Clinicas Oncologicas Integradas). The images were generated with 1mm cuts and collected for analysis. After that step the images were processed in SAPDI (Sistema Automatizado de Processamento Digital de Imagem) in order to amplify the images regions intending to facilitate the task in their segmentation. SAPDI is based on parameters described by Hounsfield scale. After that, it has begun discretization of elements in IDs voxels using Scan2MCNP software - which converts images to a sequential text file containing the voxels' IDs ready to be introduced into MCNPX input; however, this set can be turned to a voxel's IDs matrix and used in other Monte Carlo codes, such as Geant4, PENELOPE and EGSnrc. Finished this step, the simulator is able to simulate with accurate geometry the physical phantom. It's possible to study a large number of cases by computational techniques of geometry's insertions of tumors and TLDs, which makes this simulator a research material useful for a lot of subjects. (author)

  16. VOXEL-BASED APPROACH FOR ESTIMATING URBAN TREE VOLUME FROM TERRESTRIAL LASER SCANNING DATA

    Directory of Open Access Journals (Sweden)

    C. Vonderach

    2012-07-01

    Full Text Available The importance of single trees and the determination of related parameters has been recognized in recent years, e.g. for forest inventories or management. For urban areas an increasing interest in the data acquisition of trees can be observed concerning aspects like urban climate, CO2 balance, and environmental protection. Urban trees differ significantly from natural systems with regard to the site conditions (e.g. technogenic soils, contaminants, lower groundwater level, regular disturbance, climate (increased temperature, reduced humidity and species composition and arrangement (habitus and health status and therefore allometric relations cannot be transferred from natural sites to urban areas. To overcome this problem an extended approach was developed for a fast and non-destructive extraction of branch volume, DBH (diameter at breast height and height of single trees from point clouds of terrestrial laser scanning (TLS. For data acquisition, the trees were scanned with highest scan resolution from several (up to five positions located around the tree. The resulting point clouds (20 to 60 million points are analysed with an algorithm based on voxel (volume elements structure, leading to an appropriate data reduction. In a first step, two kinds of noise reduction are carried out: the elimination of isolated voxels as well as voxels with marginal point density. To obtain correct volume estimates, the voxels inside the stem and branches (interior voxels where voxels contain no laser points must be regarded. For this filling process, an easy and robust approach was developed based on a layer-wise (horizontal layers of the voxel structure intersection of four orthogonal viewing directions. However, this procedure also generates several erroneous "phantom" voxels, which have to be eliminated. For this purpose the previous approach was extended by a special region growing algorithm. In a final step the volume is determined layer-wise based on the

  17. Using Edge Voxel Information to Improve Motion Regression for rs-fMRI Connectivity Studies.

    Science.gov (United States)

    Patriat, Rémi; Molloy, Erin K; Birn, Rasmus M

    2015-11-01

    Recent fMRI studies have outlined the critical impact of in-scanner head motion, particularly on estimates of functional connectivity. Common strategies to reduce the influence of motion include realignment as well as the inclusion of nuisance regressors, such as the 6 realignment parameters, their first derivatives, time-shifted versions of the realignment parameters, and the squared parameters. However, these regressors have limited success at noise reduction. We hypothesized that using nuisance regressors consisting of the principal components (PCs) of edge voxel time series would be better able to capture slice-specific and nonlinear signal changes, thus explaining more variance, improving data quality (i.e., lower DVARS and temporal SNR), and reducing the effect of motion on default-mode network connectivity. Functional MRI data from 22 healthy adult subjects were preprocessed using typical motion regression approaches as well as nuisance regression derived from edge voxel time courses. Results were evaluated in the presence and absence of both global signal regression and motion censoring. Nuisance regressors derived from signal intensity time courses at the edge of the brain significantly improved motion correction compared to using only the realignment parameters and their derivatives. Of the models tested, only the edge voxel regression models were able to eliminate significant differences in default-mode network connectivity between high- and low-motion subjects regardless of the use of global signal regression or censoring.

  18. Absence of gender effect on children with attention-deficit/hyperactivity disorder as assessed by optimized voxel-based morphometry.

    Science.gov (United States)

    Yang, Pinchen; Wang, Pei-Ning; Chuang, Kai-Hsiang; Jong, Yuh-Jyh; Chao, Tzu-Cheng; Wu, Ming-Ting

    2008-12-30

    Brain abnormalities, as determined by structural magnetic resonance imaging (MRI), have been reported in patients with attention-deficit hyperactivity disorder (ADHD); however, female subjects have been underrepresented in previous reports. In this study, we used optimized voxel-based morphometry to compare the total and regional gray matter volumes between groups of 7- to 17-year-old ADHD and healthy children (total 114 subjects). Fifty-seven children with ADHD (n=57, 35 males and 22 females) and healthy children (n=57) received MRI scans. Segmented brain MRI images were normalized into standardized stereotactic space, modulated to allow volumetric analysis, smoothed and compared at the voxel level with statistical parametric mapping. Global volumetric comparisons between groups revealed that the total brain volumes of ADHD children were smaller than those of the control children. As for the regional brain analysis, the brain volumes of ADHD children were found to be bilaterally smaller in the following regions as compared with normal control values: the caudate nucleus and the cerebellum. There were two clusters of regional decrease in the female brain, left posterior cingulum and right precuneus, as compared with the male brain. Brain regions showing the interaction effect of diagnosis and gender were negligible. These results were consistent with the hypothesized dysfunctional systems in ADHD, and they also suggested that neuroanatomical abnormalities in ADHD were not influenced by gender.

  19. Application of average adult Japanese voxel phantoms to evaluation of photon specific absorbed fractions

    International Nuclear Information System (INIS)

    Sato, Kaoru; Manabe, Kentaro; Endo, Akira

    2012-01-01

    Average adult Japanese male (JM-103) and female (JF-103) voxel (volume pixel) phantoms newly constructed at the Japan Atomic Energy Agency (JAEA) have average characteristics of body sizes and organ masses in adult Japanese. In JM-103 and JF-103, several organs and tissues were newly modeled for dose assessments based on tissue weighting factors of the 2007 Recommendations of the International Commission on Radiological Protection(ICRP). In this study, SAFs for thyroid, stomach, lungs and lymphatic nodes of JM-103 and JF-103 phantoms were calculated, and were compared with those of other adult Japanese phantoms based on individual medical images. In most cases, differences in SAFs between JM-103, JF-103 and other phantoms were about several tens percent, and was mainly attributed to mass differences of organs, tissues and contents. Therefore, it was concluded that SAFs of JM-103 and JF-103 represent those of average adult Japanese and that the two phantoms are applied to dose assessment for average adult Japanese on the basis of the 2007 Recommendations. (author)

  20. Combining voxel-based morphometry and diffusion tensor imaging to detect age-related brain changes.

    Science.gov (United States)

    Lehmbeck, Jan T; Brassen, Stefanie; Weber-Fahr, Wolfgang; Braus, Dieter F

    2006-04-03

    The present study combined optimized voxel-based morphometry and diffusion tensor imaging to detect age-related brain changes. We compared grey matter density maps (grey matter voxel-based morphometry) and white matter fractional anisotropy maps (diffusion tensor imaging-voxel-based morphometry) between two groups of 17 younger and 17 older women. Older women exhibited reduced white matter fractional anisotropy as well as decreased grey matter density most prominently in the frontal, limbic, parietal and temporal lobes. A discriminant analysis identified four frontal and limbic grey and white matter areas that separated the two groups most effectively. We conclude that grey matter voxel-based morphometry and diffusion tensor imaging voxel-based morphometry are well suited for the detection of age-related changes and their combination provides high accuracy when detecting the neural correlates of aging.

  1. Comparison of internal dose estimates obtained using organ-level, voxel S value, and Monte Carlo techniques

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, Joshua, E-mail: grimes.joshua@mayo.edu [Department of Physics and Astronomy, University of British Columbia, Vancouver V5Z 1L8 (Canada); Celler, Anna [Department of Radiology, University of British Columbia, Vancouver V5Z 1L8 (Canada)

    2014-09-15

    Purpose: The authors’ objective was to compare internal dose estimates obtained using the Organ Level Dose Assessment with Exponential Modeling (OLINDA/EXM) software, the voxel S value technique, and Monte Carlo simulation. Monte Carlo dose estimates were used as the reference standard to assess the impact of patient-specific anatomy on the final dose estimate. Methods: Six patients injected with{sup 99m}Tc-hydrazinonicotinamide-Tyr{sup 3}-octreotide were included in this study. A hybrid planar/SPECT imaging protocol was used to estimate {sup 99m}Tc time-integrated activity coefficients (TIACs) for kidneys, liver, spleen, and tumors. Additionally, TIACs were predicted for {sup 131}I, {sup 177}Lu, and {sup 90}Y assuming the same biological half-lives as the {sup 99m}Tc labeled tracer. The TIACs were used as input for OLINDA/EXM for organ-level dose calculation and voxel level dosimetry was performed using the voxel S value method and Monte Carlo simulation. Dose estimates for {sup 99m}Tc, {sup 131}I, {sup 177}Lu, and {sup 90}Y distributions were evaluated by comparing (i) organ-level S values corresponding to each method, (ii) total tumor and organ doses, (iii) differences in right and left kidney doses, and (iv) voxelized dose distributions calculated by Monte Carlo and the voxel S value technique. Results: The S values for all investigated radionuclides used by OLINDA/EXM and the corresponding patient-specific S values calculated by Monte Carlo agreed within 2.3% on average for self-irradiation, and differed by as much as 105% for cross-organ irradiation. Total organ doses calculated by OLINDA/EXM and the voxel S value technique agreed with Monte Carlo results within approximately ±7%. Differences between right and left kidney doses determined by Monte Carlo were as high as 73%. Comparison of the Monte Carlo and voxel S value dose distributions showed that each method produced similar dose volume histograms with a minimum dose covering 90% of the volume (D90

  2. Automated voxelization of 3D atom probe data through kernel density estimation

    International Nuclear Information System (INIS)

    Srinivasan, Srikant; Kaluskar, Kaustubh; Dumpala, Santoshrupa; Broderick, Scott; Rajan, Krishna

    2015-01-01

    Identifying nanoscale chemical features from atom probe tomography (APT) data routinely involves adjustment of voxel size as an input parameter, through visual supervision, making the final outcome user dependent, reliant on heuristic knowledge and potentially prone to error. This work utilizes Kernel density estimators to select an optimal voxel size in an unsupervised manner to perform feature selection, in particular targeting resolution of interfacial features and chemistries. The capability of this approach is demonstrated through analysis of the γ / γ’ interface in a Ni–Al–Cr superalloy. - Highlights: • Develop approach for standardizing aspects of atom probe reconstruction. • Use Kernel density estimators to select optimal voxel sizes in an unsupervised manner. • Perform interfacial analysis of Ni–Al–Cr superalloy, using new automated approach. • Optimize voxel size to preserve the feature of interest and minimizing loss / noise.

  3. NOTE: Development of modified voxel phantoms for the numerical dosimetric reconstruction of radiological accidents involving external sources: implementation in SESAME tool

    Science.gov (United States)

    Courageot, Estelle; Sayah, Rima; Huet, Christelle

    2010-05-01

    Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. When the dose distribution is evaluated with a numerical anthropomorphic model, the posture and morphology of the victim have to be reproduced as realistically as possible. Several years ago, IRSN developed a specific software application, called the simulation of external source accident with medical images (SESAME), for the dosimetric reconstruction of radiological accidents by numerical simulation. This tool combines voxel geometry and the MCNP(X) Monte Carlo computer code for radiation-material interaction. This note presents a new functionality in this software that enables the modelling of a victim's posture and morphology based on non-uniform rational B-spline (NURBS) surfaces. The procedure for constructing the modified voxel phantoms is described, along with a numerical validation of this new functionality using a voxel phantom of the RANDO tissue-equivalent physical model.

  4. EXPERIMENTAL MODEL OF THE PRIMARY MALE HYPOGONADISM

    Directory of Open Access Journals (Sweden)

    P. A. Kulikova

    2014-01-01

    Full Text Available Background: Development of the new methods of treatment of primary male hypogonadism is an urgent medical problem. Its solution requires a suitable experimental model of the disease. Aim: The creation of new experimental model of primary male hypogonadism. Materials and methods: The study was conducted on the male Wistar rats, hypogonadism was modeled by temporary ligation of the distal part of the spermatic cord. Results: It was shown that three-day ligation of the spermatic cord led to persistent disturbance of the testosterone-producing and reproductive functions. These manifestations were reversible at shorter duration of the exposure. Conclusion: The created model of primary male hypogonadism is characterized by the persistent testosterone-producing and reproductive functions disturbance, technical availability, non-toxicity to the other organs and systems. Availability of the model provides new opportunities for the development of approaches to treating diseases of the reproductive organs in men.

  5. A voxel-based technique to estimate the volume of trees from terrestrial laser scanner data

    Science.gov (United States)

    Bienert, A.; Hess, C.; Maas, H.-G.; von Oheimb, G.

    2014-06-01

    The precise determination of the volume of standing trees is very important for ecological and economical considerations in forestry. If terrestrial laser scanner data are available, a simple approach for volume determination is given by allocating points into a voxel structure and subsequently counting the filled voxels. Generally, this method will overestimate the volume. The paper presents an improved algorithm to estimate the wood volume of trees using a voxel-based method which will correct for the overestimation. After voxel space transformation, each voxel which contains points is reduced to the volume of its surrounding bounding box. In a next step, occluded (inner stem) voxels are identified by a neighbourhood analysis sweeping in the X and Y direction of each filled voxel. Finally, the wood volume of the tree is composed by the sum of the bounding box volumes of the outer voxels and the volume of all occluded inner voxels. Scan data sets from several young Norway maple trees (Acer platanoides) were used to analyse the algorithm. Therefore, the scanned trees as well as their representing point clouds were separated in different components (stem, branches) to make a meaningful comparison. Two reference measurements were performed for validation: A direct wood volume measurement by placing the tree components into a water tank, and a frustum calculation of small trunk segments by measuring the radii along the trunk. Overall, the results show slightly underestimated volumes (-0.3% for a probe of 13 trees) with a RMSE of 11.6% for the individual tree volume calculated with the new approach.

  6. Quantitative myocardial perfusion PET parametric imaging at the voxel-level

    International Nuclear Information System (INIS)

    Mohy-ud-Din, Hassan; Rahmim, Arman; Lodge, Martin A

    2015-01-01

    Quantitative myocardial perfusion (MP) PET has the potential to enhance detection of early stages of atherosclerosis or microvascular dysfunction, characterization of flow-limiting effects of coronary artery disease (CAD), and identification of balanced reduction of flow due to multivessel stenosis. We aim to enable quantitative MP-PET at the individual voxel level, which has the potential to allow enhanced visualization and quantification of myocardial blood flow (MBF) and flow reserve (MFR) as computed from uptake parametric images. This framework is especially challenging for the 82 Rb radiotracer. The short half-life enables fast serial imaging and high patient throughput; yet, the acquired dynamic PET images suffer from high noise-levels introducing large variability in uptake parametric images and, therefore, in the estimates of MBF and MFR. Robust estimation requires substantial post-smoothing of noisy data, degrading valuable functional information of physiological and pathological importance. We present a feasible and robust approach to generate parametric images at the voxel-level that substantially reduces noise without significant loss of spatial resolution. The proposed methodology, denoted physiological clustering, makes use of the functional similarity of voxels to penalize deviation of voxel kinetics from physiological partners. The results were validated using extensive simulations (with transmural and non-transmural perfusion defects) and clinical studies. Compared to post-smoothing, physiological clustering depicted enhanced quantitative noise versus bias performance as well as superior recovery of perfusion defects (as quantified by CNR) with minimal increase in bias. Overall, parametric images obtained from the proposed methodology were robust in the presence of high-noise levels as manifested in the voxel time-activity-curves. (paper)

  7. Voxel-based measurement sensitivity of spatially resolved near-infrared spectroscopy in layered tissues.

    Science.gov (United States)

    Niwayama, Masatsugu

    2018-03-01

    We quantitatively investigated the measurement sensitivity of spatially resolved spectroscopy (SRS) across six tissue models: cerebral tissue, a small animal brain, the forehead of a fetus, an adult brain, forearm muscle, and thigh muscle. The optical path length in the voxel of the model was analyzed using Monte Carlo simulations. It was found that the measurement sensitivity can be represented as the product of the change in the absorption coefficient and the difference in optical path length in two states with different source-detector distances. The results clarified the sensitivity ratio between the surface layer and the deep layer at each source-detector distance for each model and identified changes in the deep measurement area when one of the detectors was close to the light source. A comparison was made with the results from continuous-wave spectroscopy. The study also identified measurement challenges that arise when the surface layer is inhomogeneous. Findings on the measurement sensitivity of SRS at each voxel and in each layer can support the correct interpretation of measured values when near-infrared oximetry or functional near-infrared spectroscopy is used to investigate different tissue structures. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  8. Automatic calibration method of voxel size for cone-beam 3D-CT scanning system

    International Nuclear Information System (INIS)

    Yang Min; Wang Xiaolong; Wei Dongbo; Liu Yipeng; Meng Fanyong; Li Xingdong; Liu Wenli

    2014-01-01

    For a cone-beam three-dimensional computed tomography (3D-CT) scanning system, voxel size is an important indicator to guarantee the accuracy of data analysis and feature measurement based on 3D-CT images. Meanwhile, the voxel size changes with the movement of the rotary stage along X-ray direction. In order to realize the automatic calibration of the voxel size, a new and easily-implemented method is proposed. According to this method, several projections of a spherical phantom are captured at different imaging positions and the corresponding voxel size values are calculated by non-linear least-square fitting. Through these interpolation values, a linear equation is obtained that reflects the relationship between the voxel size and the rotary stage translation distance from its nominal zero position. Finally, the linear equation is imported into the calibration module of the 3D-CT scanning system. When the rotary stage is moving along X-ray direction, the accurate value of the voxel size is dynamically exported. The experimental results prove that this method meets the requirements of the actual CT scanning system, and has virtues of easy implementation and high accuracy. (authors)

  9. A new registration method with voxel-matching technique for temporal subtraction images

    Science.gov (United States)

    Itai, Yoshinori; Kim, Hyoungseop; Ishikawa, Seiji; Katsuragawa, Shigehiko; Doi, Kunio

    2008-03-01

    A temporal subtraction image, which is obtained by subtraction of a previous image from a current one, can be used for enhancing interval changes on medical images by removing most of normal structures. One of the important problems in temporal subtraction is that subtraction images commonly include artifacts created by slight differences in the size, shape, and/or location of anatomical structures. In this paper, we developed a new registration method with voxel-matching technique for substantially removing the subtraction artifacts on the temporal subtraction image obtained from multiple-detector computed tomography (MDCT). With this technique, the voxel value in a warped (or non-warped) previous image is replaced by a voxel value within a kernel, such as a small cube centered at a given location, which would be closest (identical or nearly equal) to the voxel value in the corresponding location in the current image. Our new method was examined on 16 clinical cases with MDCT images. Preliminary results indicated that interval changes on the subtraction images were enhanced considerably, with a substantial reduction of misregistration artifacts. The temporal subtraction images obtained by use of the voxel-matching technique would be very useful for radiologists in the detection of interval changes on MDCT images.

  10. Comparative study of SVM methods combined with voxel selection for object category classification on fMRI data.

    Science.gov (United States)

    Song, Sutao; Zhan, Zhichao; Long, Zhiying; Zhang, Jiacai; Yao, Li

    2011-02-16

    Support vector machine (SVM) has been widely used as accurate and reliable method to decipher brain patterns from functional MRI (fMRI) data. Previous studies have not found a clear benefit for non-linear (polynomial kernel) SVM versus linear one. Here, a more effective non-linear SVM using radial basis function (RBF) kernel is compared with linear SVM. Different from traditional studies which focused either merely on the evaluation of different types of SVM or the voxel selection methods, we aimed to investigate the overall performance of linear and RBF SVM for fMRI classification together with voxel selection schemes on classification accuracy and time-consuming. Six different voxel selection methods were employed to decide which voxels of fMRI data would be included in SVM classifiers with linear and RBF kernels in classifying 4-category objects. Then the overall performances of voxel selection and classification methods were compared. Results showed that: (1) Voxel selection had an important impact on the classification accuracy of the classifiers: in a relative low dimensional feature space, RBF SVM outperformed linear SVM significantly; in a relative high dimensional space, linear SVM performed better than its counterpart; (2) Considering the classification accuracy and time-consuming holistically, linear SVM with relative more voxels as features and RBF SVM with small set of voxels (after PCA) could achieve the better accuracy and cost shorter time. The present work provides the first empirical result of linear and RBF SVM in classification of fMRI data, combined with voxel selection methods. Based on the findings, if only classification accuracy was concerned, RBF SVM with appropriate small voxels and linear SVM with relative more voxels were two suggested solutions; if users concerned more about the computational time, RBF SVM with relative small set of voxels when part of the principal components were kept as features was a better choice.

  11. Voxel-Based Neighborhood for Spatial Shape Pattern Classification of Lidar Point Clouds with Supervised Learning

    Directory of Open Access Journals (Sweden)

    Victoria Plaza-Leiva

    2017-03-01

    Full Text Available Improving the effectiveness of spatial shape features classification from 3D lidar data is very relevant because it is largely used as a fundamental step towards higher level scene understanding challenges of autonomous vehicles and terrestrial robots. In this sense, computing neighborhood for points in dense scans becomes a costly process for both training and classification. This paper proposes a new general framework for implementing and comparing different supervised learning classifiers with a simple voxel-based neighborhood computation where points in each non-overlapping voxel in a regular grid are assigned to the same class by considering features within a support region defined by the voxel itself. The contribution provides offline training and online classification procedures as well as five alternative feature vector definitions based on principal component analysis for scatter, tubular and planar shapes. Moreover, the feasibility of this approach is evaluated by implementing a neural network (NN method previously proposed by the authors as well as three other supervised learning classifiers found in scene processing methods: support vector machines (SVM, Gaussian processes (GP, and Gaussian mixture models (GMM. A comparative performance analysis is presented using real point clouds from both natural and urban environments and two different 3D rangefinders (a tilting Hokuyo UTM-30LX and a Riegl. Classification performance metrics and processing time measurements confirm the benefits of the NN classifier and the feasibility of voxel-based neighborhood.

  12. Voxel-Based Neighborhood for Spatial Shape Pattern Classification of Lidar Point Clouds with Supervised Learning.

    Science.gov (United States)

    Plaza-Leiva, Victoria; Gomez-Ruiz, Jose Antonio; Mandow, Anthony; García-Cerezo, Alfonso

    2017-03-15

    Improving the effectiveness of spatial shape features classification from 3D lidar data is very relevant because it is largely used as a fundamental step towards higher level scene understanding challenges of autonomous vehicles and terrestrial robots. In this sense, computing neighborhood for points in dense scans becomes a costly process for both training and classification. This paper proposes a new general framework for implementing and comparing different supervised learning classifiers with a simple voxel-based neighborhood computation where points in each non-overlapping voxel in a regular grid are assigned to the same class by considering features within a support region defined by the voxel itself. The contribution provides offline training and online classification procedures as well as five alternative feature vector definitions based on principal component analysis for scatter, tubular and planar shapes. Moreover, the feasibility of this approach is evaluated by implementing a neural network (NN) method previously proposed by the authors as well as three other supervised learning classifiers found in scene processing methods: support vector machines (SVM), Gaussian processes (GP), and Gaussian mixture models (GMM). A comparative performance analysis is presented using real point clouds from both natural and urban environments and two different 3D rangefinders (a tilting Hokuyo UTM-30LX and a Riegl). Classification performance metrics and processing time measurements confirm the benefits of the NN classifier and the feasibility of voxel-based neighborhood.

  13. Empirical Bayesian estimation in graphical analysis: a voxel-based approach for the determination of the volume of distribution in PET studies

    Energy Technology Data Exchange (ETDEWEB)

    Zanderigo, Francesca [Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY (United States)], E-mail: francesca.zanderigo@gmail.com; Ogden, R. Todd [Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY (United States); Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY (United States); Bertoldo, Alessandra; Cobelli, Claudio [Department of Information Engineering, University of Padova, Padova (Italy); Mann, J. John; Parsey, Ramin V. [Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY (United States); Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY (United States)

    2010-05-15

    Introduction: Total volume of distribution (V{sub T}) determined by graphical analysis (GA) of PET data suffers from a noise-dependent bias. Likelihood estimation in GA (LEGA) eliminates this bias at the region of interest (ROI) level, but at voxel noise levels, the variance of estimators is high, yielding noisy images. We hypothesized that incorporating LEGA V{sub T} estimation in a Bayesian framework would shrink estimators towards prior means, reducing variability and producing meaningful and useful voxel images. Methods: Empirical Bayesian estimation in GA (EBEGA) determines prior distributions using a two-step k-means clustering of voxel activity. Results obtained on eight [{sup 11}C]-DASB studies are compared with estimators computed by ROI-based LEGA. Results: EBEGA reproduces the results obtained by ROI LEGA while providing low-variability V{sub T} images. Correlation coefficients between average EBEGA V{sub T} and corresponding ROI LEGA V{sub T} range from 0.963 to 0.994. Conclusions: EBEGA is a fully automatic and general approach that can be applied to voxel-level V{sub T} image creation and to any modeling strategy to reduce voxel-level estimation variability without prefiltering of the PET data.

  14. Implementation of Japanese male and female tomographic phantoms to multi-particle Monte Carlo code for ionizing radiation dosimetry

    International Nuclear Information System (INIS)

    Lee, Choonsik; Nagaoka, Tomoaki; Lee, Jai-Ki

    2006-01-01

    Japanese male and female tomographic phantoms, which have been developed for radio-frequency electromagnetic-field dosimetry, were implemented into multi-particle Monte Carlo transport code to evaluate realistic dose distribution in human body exposed to radiation field. Japanese tomographic phantoms, which were developed from the whole body magnetic resonance images of Japanese average adult male and female, were processed as follows to be implemented into general purpose multi-particle Monte Carlo code, MCNPX2.5. Original array size of Japanese male and female phantoms, 320 x 160 x 866 voxels and 320 x 160 x 804 voxels, respectively, were reduced into 320 x 160 x 433 voxels and 320 x 160 x 402 voxels due to the limitation of memory use in MCNPX2.5. The 3D voxel array of the phantoms were processed by using the built-in repeated structure algorithm, where the human anatomy was described by the repeated lattice of tiny cube containing the information of material composition and organ index number. Original phantom data were converted into ASCII file, which can be directly ported into the lattice card of MCNPX2.5 input deck by using in-house code. A total of 30 material compositions obtained from International Commission on Radiation Units and Measurement (ICRU) report 46 were assigned to 54 and 55 organs and tissues in the male and female phantoms, respectively, and imported into the material card of MCNPX2.5 along with the corresponding cross section data. Illustrative calculation of absorbed doses for 26 internal organs and effective dose were performed for idealized broad parallel photon and neutron beams in anterior-posterior irradiation geometry, which is typical for workers at nuclear power plant. The results were compared with the data from other Japanese and Caucasian tomographic phantom, and International Commission on Radiological Protection (ICRP) report 74. The further investigation of the difference in organ dose and effective dose among tomographic

  15. Quantifying Standing Dead Tree Volume and Structural Loss with Voxelized Terrestrial Lidar Data

    Science.gov (United States)

    Popescu, S. C.; Putman, E.

    2017-12-01

    Standing dead trees (SDTs) are an important forest component and impact a variety of ecosystem processes, yet the carbon pool dynamics of SDTs are poorly constrained in terrestrial carbon cycling models. The ability to model wood decay and carbon cycling in relation to detectable changes in tree structure and volume over time would greatly improve such models. The overall objective of this study was to provide automated aboveground volume estimates of SDTs and automated procedures to detect, quantify, and characterize structural losses over time with terrestrial lidar data. The specific objectives of this study were: 1) develop an automated SDT volume estimation algorithm providing accurate volume estimates for trees scanned in dense forests; 2) develop an automated change detection methodology to accurately detect and quantify SDT structural loss between subsequent terrestrial lidar observations; and 3) characterize the structural loss rates of pine and oak SDTs in southeastern Texas. A voxel-based volume estimation algorithm, "TreeVolX", was developed and incorporates several methods designed to robustly process point clouds of varying quality levels. The algorithm operates on horizontal voxel slices by segmenting the slice into distinct branch or stem sections then applying an adaptive contour interpolation and interior filling process to create solid reconstructed tree models (RTMs). TreeVolX estimated large and small branch volume with an RMSE of 7.3% and 13.8%, respectively. A voxel-based change detection methodology was developed to accurately detect and quantify structural losses and incorporated several methods to mitigate the challenges presented by shifting tree and branch positions as SDT decay progresses. The volume and structural loss of 29 SDTs, composed of Pinus taeda and Quercus stellata, were successfully estimated using multitemporal terrestrial lidar observations over elapsed times ranging from 71 - 753 days. Pine and oak structural loss rates

  16. WE-FG-202-09: Voxel-Level Analysis of Adverse Treatment Response in Pediatric Patients Treated for Ependymoma with Passive Scattering Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, C [The University of Texas MD Anderson Cancer Center, Houston, TX (United States); The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX (United States); Mirkovic, D; Titt, U; Grosshans, D; Mohan, R [The University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: We identified patients treated for ependymoma with passive scattering proton therapy who subsequently developed treatment-related imaging changes on MRI. We sought to determine if there is any spatial correlation between imaged response, dose, and LET. Methods: A group of 14 patients treated for ependymoma were identified as having post-treatment MR imaging changes observable as T2-FLAIR hyperintensity with or without enhancement on T1 post-contrast sequences. MR images were registered with treatment planning CT images and regions of treatment-related change contoured by a practicing radiation oncologist. The contoured regions were identified as response with voxels represented as 1 while voxels within the brain outside of the response region were represented as 0. An in-house Monte Carlo system was used to recalculate treatment plans to obtain dose and LET information. Voxels were binned according to LET values in 0.3 keV µm{sup −1} bins. Dose and corresponding response value (0 or 1) for each voxel for a given LET bin were then plotted and fit with the Lyman-Kutcher-Burman dose response model to determine TD{sub 50} and m parameters for each LET value. Response parameters from all patients were then collated, and linear fits of the data were performed. Results: The response parameters TD50 and m both show trends with LET. Outliers were observed due to low numbers of response voxels in some cases. TD{sub 50} values decreased with LET while m increased with LET. The former result would indicate that for higher LET values, the dose is more effective, which is consistent with relative biological effectiveness (RBE) models for proton therapy. Conclusion: A novel method of voxel-level analysis of image biomarker-based adverse patient treatment response in proton therapy according to dose and LET has been presented. Fitted TD{sub 50} values show a decreasing trend with LET supporting the typical models of proton RBE. Funding provided by NIH Program Project

  17. Application of Electron Dose Kernels to account for heterogeneities in voxelized phantoms

    International Nuclear Information System (INIS)

    Al-Basheer, A. K.; Sjoden, G. E.; Ghita, M.; Bolch, W.

    2009-01-01

    In this paper, we present work on the application of the Electron Dose Kernel discrete ordinates method (EDK-S N ) to compute doses and account for material heterogeneities using high energy external photon beam irradiations in voxelized human phantoms. EDKs are pre-computed using photon pencil 'beamlets' that lead to dose delivery in tissue using highly converged Monte Carlo. Coupling the EDKs to accumulate dose scaled by integral photon fluences computed using S N methods in dose driving voxels (DDVs) allows for the full charged particle physics computed dose to be accumulated throughout the voxelized phantom, and is the basis of the EDK-S N method, which is fully parallelized. For material heterogeneities, a density scaling correction factor is required to yield good agreement. In a fully voxelized phantom, all doses were in agreement with those determined by independent Monte Carlo computations. We are continuing to expand upon the development of this robust approach for rapid and accurate determination of whole body and out of field organ doses due to high energy x-ray beams. (authors)

  18. Creation of a voxel phantom of the ICRP reference crab.

    Science.gov (United States)

    Caffrey, E A; Higley, K A

    2013-06-01

    The International Commission on Radiological Protection (ICRP) has modeled twelve reference animal and plant (RAP) species using simple geometric shapes in Monte-Carlo (MCNP) based simulations. The focus has now shifted to creating voxel phantoms of each RAP in order to estimate doses to biota with a higher degree of confidence. This paper describes the creation of a voxel model of a Dungeness crab from CT images with shell, gills, gonads, hepatopancreas, and heart identified and segmented. Absorbed fractions were tabulated for each organ as a source and target at twelve photon and nine electron energies: 0.01, 0.015, 0.02, 0.03, 0.05, 0.1, 0.2, 0.5, 1.0, 1.5, 2.0, and 4.0 MeV for photons and 0.1, 0.2, 0.4, 0.5, 0.7, 1.0, 1.5, 2.0 and 4.0 MeV for electrons. AFs whose error exceeded 5% are marked with an underline in the data tables; AFs whose error was higher than 10% were excluded, and are shown in the tabulated data as a dashed line. A representative sample of the data is shown in Figs. 3-8; the entire data set is available as an electronic appendix. The results are consistent with previous small organism studies (Kinase, 2008; Stabin et al., 2006), and suggest that AF values are highly dependent on source organ location and mass. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Stimulus-related independent component and voxel-wise analysis of human brain activity during free viewing of a feature film.

    Science.gov (United States)

    Lahnakoski, Juha M; Salmi, Juha; Jääskeläinen, Iiro P; Lampinen, Jouko; Glerean, Enrico; Tikka, Pia; Sams, Mikko

    2012-01-01

    Understanding how the brain processes stimuli in a rich natural environment is a fundamental goal of neuroscience. Here, we showed a feature film to 10 healthy volunteers during functional magnetic resonance imaging (fMRI) of hemodynamic brain activity. We then annotated auditory and visual features of the motion picture to inform analysis of the hemodynamic data. The annotations were fitted to both voxel-wise data and brain network time courses extracted by independent component analysis (ICA). Auditory annotations correlated with two independent components (IC) disclosing two functional networks, one responding to variety of auditory stimulation and another responding preferentially to speech but parts of the network also responding to non-verbal communication. Visual feature annotations correlated with four ICs delineating visual areas according to their sensitivity to different visual stimulus features. In comparison, a separate voxel-wise general linear model based analysis disclosed brain areas preferentially responding to sound energy, speech, music, visual contrast edges, body motion and hand motion which largely overlapped the results revealed by ICA. Differences between the results of IC- and voxel-based analyses demonstrate that thorough analysis of voxel time courses is important for understanding the activity of specific sub-areas of the functional networks, while ICA is a valuable tool for revealing novel information about functional connectivity which need not be explained by the predefined model. Our results encourage the use of naturalistic stimuli and tasks in cognitive neuroimaging to study how the brain processes stimuli in rich natural environments.

  20. Applicability of dose conversion coefficients of ICRP 74 to Asian adult males: Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Lee, Choonsik; Lee, Choonik; Lee, Jai-Ki

    2007-01-01

    International Commission on Radiological Protection (ICRP) reported comprehensive dose conversion coefficients for adult population, which is exposed to external photon sources in the Publication 74. However, those quantities were calculated from so-called stylized (or mathematical) phantoms composed of simplified mathematical surface equations so that the discrepancy between the phantoms and real human anatomy has been investigated by several authors using Caucasian-based voxel phantoms. To address anatomical and racial limitations of the stylized phantoms, several Asian-based voxel phantoms have been developed by Korean and Japanese investigators, independently. In the current study, photon dose conversion coefficients of ICRP 74 were compared with those from a total of five Asian-based male voxel phantoms, whose body dimensions were almost identical. Those of representative radio-sensitive organs (testes, red bone marrow, colon, lungs, and stomach), and effective dose conversion coefficients were obtained for comparison. Even though organ doses for testes, colon and lungs, and effective doses from ICRP 74 agreed well with those from Asian voxel phantoms within 10%, absorbed doses for red bone marrow and stomach showed significant discrepancies up to 30% which was mainly attributed to difference of phantom description between stylized and voxel phantoms. This study showed that the ICRP 74 dosimetry data, which have been reported to be unrealistic compared to those from Caucasian-based voxel phantoms, are also not appropriate for Asian population

  1. Modification of male adult simulator posture of ICRP 110 reference

    International Nuclear Information System (INIS)

    Galeano, Diego C.; Souza, Divanizia N.; Santos, Willian S.; Carvalho Junior, Alberico B.

    2014-01-01

    Voxel simulators are usually constructed based on computed tomography and magnetic resonance, so the supine position (lying) is the most used. This may result in a overestimated or underestimated the radiation dose, depending on the exposure scenario adopted. Thus, the objective was to change the attitude of the male adult simulator reference ICRP 110, AM (Adult Male), to a sitting posture. For change of posture were possible, it was necessary increasing the number of slices that comprise AM simulator by reducing the height of the voxel of 8.0 mm to 2.0 mm, thus making each voxel approximately cubic. A subroutine was created in Visual Monte Carlo software (VMC) to rotate the thigh region of the simulator and position it between the region of the leg and trunk. The ScionImage software was used to rebuild and soften the contours of the knee and hip of the simulator in a sitting posture, and 3D visualization of the simulator was used VolView software. The AM simulator in the seated position has the same anatomical features of the simulator in the standing posture. Using the MCNPX code [ref] was carried out the conversion coefficients for calculating the AP irradiation geometry (anteroposterior) comparing the AM simulator standing and sitting in order to evaluate the difference scattering and absorption of radiation by the two simulators. The result shows a difference up to 100% in the fluency conversion coefficients in nearby organs located in the pelvic region and in organs with distribution in the whole body (such as skin, muscle, lymph nodes and skeletal)

  2. [Voxel-Based Morphometry in Autism Spectrum Disorder].

    Science.gov (United States)

    Yamasue, Hidenori

    2017-05-01

    Autism spectrum disorder shows deficits in social communication and interaction including nonverbal communicative behaviors (e.g., eye contact, gestures, voice prosody, and facial expressions) and restricted and repetitive behaviors as its core symptoms. These core symptoms are emerged as an atypical behavioral development in toddlers with the disorder. Atypical neural development is considered to be a neural underpinning of such behaviorally atypical development. A number of studies using voxel-based morphometry have already been conducted to compare regional brain volumes between individuals with autism spectrum disorder and those with typical development. Furthermore, more than ten papers employing meta-analyses of the comparisons using voxel based morphometry between individuals with autism spectrum disorder and those with typical development have already been published. The current review paper adds some brief discussions about potential factors contributing to the inconsistency observed in the previous findings such as difficulty in controlling the confounding effects of different developmental phases among study participants.

  3. Octree indexing of DICOM images for voxel number reduction and improvement of Monte Carlo simulation computing efficiency

    International Nuclear Information System (INIS)

    Hubert-Tremblay, Vincent; Archambault, Louis; Tubic, Dragan; Roy, Rene; Beaulieu, Luc

    2006-01-01

    The purpose of the present study is to introduce a compression algorithm for the CT (computed tomography) data used in Monte Carlo simulations. Performing simulations on the CT data implies large computational costs as well as large memory requirements since the number of voxels in such data reaches typically into hundreds of millions voxels. CT data, however, contain homogeneous regions which could be regrouped to form larger voxels without affecting the simulation's accuracy. Based on this property we propose a compression algorithm based on octrees: in homogeneous regions the algorithm replaces groups of voxels with a smaller number of larger voxels. This reduces the number of voxels while keeping the critical high-density gradient area. Results obtained using the present algorithm on both phantom and clinical data show that compression rates up to 75% are possible without losing the dosimetric accuracy of the simulation

  4. Medical images of patients in voxel structures in high resolution for Monte Carlo simulation

    International Nuclear Information System (INIS)

    Boia, Leonardo S.; Menezes, Artur F.; Silva, Ademir X.

    2011-01-01

    This work aims to present a computational process of conversion of tomographic and MRI medical images from patients in voxel structures to an input file, which will be manipulated in Monte Carlo Simulation code for tumor's radiotherapic treatments. The problem's scenario inherent to the patient is simulated by such process, using the volume element (voxel) as a unit of computational tracing. The head's voxel structure geometry has voxels with volumetric dimensions around 1 mm 3 and a population of millions, which helps - in that way, for a realistic simulation and a decrease in image's digital process techniques for adjustments and equalizations. With such additional data from the code, a more critical analysis can be developed in order to determine the volume of the tumor, and the protection, beside the patients' medical images were borrowed by Clinicas Oncologicas Integradas (COI/RJ), joined to the previous performed planning. In order to execute this computational process, SAPDI computational system is used in a digital image process for optimization of data, conversion program Scan2MCNP, which manipulates, processes, and converts the medical images into voxel structures to input files and the graphic visualizer Moritz for the verification of image's geometry placing. (author)

  5. Aging effects on cerebral asymmetry: a voxel-based morphometry and diffusion tensor imaging study.

    Science.gov (United States)

    Takao, Hidemasa; Abe, Osamu; Yamasue, Hidenori; Aoki, Shigeki; Kasai, Kiyoto; Sasaki, Hiroki; Ohtomo, Kuni

    2010-01-01

    The hemispheres of the human brain are functionally and structurally asymmetric. The purpose of this study was to evaluate the effects of aging on gray and white matter asymmetry. Two hundred twenty-six right-handed normal volunteers aged 21-71 years were included in this study. The effects of aging on gray matter volume asymmetry and white matter fractional anisotropy asymmetry were evaluated with use of voxel-based morphometry and voxel-based analysis of fractional anisotropy maps derived from diffusion tensor imaging (DTI), respectively. The voxel-based morphometry showed no significant correlation between age and gray matter volume asymmetry. The voxel-based analysis of DTI also showed no significant correlation between age and white matter fractional anisotropy asymmetry. Our results showed no significant effects of aging on either gray matter volume asymmetry or white matter fractional anisotropy asymmetry.

  6. Stimulus-Related Independent Component and Voxel-Wise Analysis of Human Brain Activity during Free Viewing of a Feature Film

    Science.gov (United States)

    Lahnakoski, Juha M.; Salmi, Juha; Jääskeläinen, Iiro P.; Lampinen, Jouko; Glerean, Enrico; Tikka, Pia; Sams, Mikko

    2012-01-01

    Understanding how the brain processes stimuli in a rich natural environment is a fundamental goal of neuroscience. Here, we showed a feature film to 10 healthy volunteers during functional magnetic resonance imaging (fMRI) of hemodynamic brain activity. We then annotated auditory and visual features of the motion picture to inform analysis of the hemodynamic data. The annotations were fitted to both voxel-wise data and brain network time courses extracted by independent component analysis (ICA). Auditory annotations correlated with two independent components (IC) disclosing two functional networks, one responding to variety of auditory stimulation and another responding preferentially to speech but parts of the network also responding to non-verbal communication. Visual feature annotations correlated with four ICs delineating visual areas according to their sensitivity to different visual stimulus features. In comparison, a separate voxel-wise general linear model based analysis disclosed brain areas preferentially responding to sound energy, speech, music, visual contrast edges, body motion and hand motion which largely overlapped the results revealed by ICA. Differences between the results of IC- and voxel-based analyses demonstrate that thorough analysis of voxel time courses is important for understanding the activity of specific sub-areas of the functional networks, while ICA is a valuable tool for revealing novel information about functional connectivity which need not be explained by the predefined model. Our results encourage the use of naturalistic stimuli and tasks in cognitive neuroimaging to study how the brain processes stimuli in rich natural environments. PMID:22496909

  7. Stimulus-related independent component and voxel-wise analysis of human brain activity during free viewing of a feature film.

    Directory of Open Access Journals (Sweden)

    Juha M Lahnakoski

    Full Text Available Understanding how the brain processes stimuli in a rich natural environment is a fundamental goal of neuroscience. Here, we showed a feature film to 10 healthy volunteers during functional magnetic resonance imaging (fMRI of hemodynamic brain activity. We then annotated auditory and visual features of the motion picture to inform analysis of the hemodynamic data. The annotations were fitted to both voxel-wise data and brain network time courses extracted by independent component analysis (ICA. Auditory annotations correlated with two independent components (IC disclosing two functional networks, one responding to variety of auditory stimulation and another responding preferentially to speech but parts of the network also responding to non-verbal communication. Visual feature annotations correlated with four ICs delineating visual areas according to their sensitivity to different visual stimulus features. In comparison, a separate voxel-wise general linear model based analysis disclosed brain areas preferentially responding to sound energy, speech, music, visual contrast edges, body motion and hand motion which largely overlapped the results revealed by ICA. Differences between the results of IC- and voxel-based analyses demonstrate that thorough analysis of voxel time courses is important for understanding the activity of specific sub-areas of the functional networks, while ICA is a valuable tool for revealing novel information about functional connectivity which need not be explained by the predefined model. Our results encourage the use of naturalistic stimuli and tasks in cognitive neuroimaging to study how the brain processes stimuli in rich natural environments.

  8. Voxel-based statistical analysis of cerebral blood flow using Tc-99m ECD brain SPECT in patients with traumatic brain injury: group and individual analyses.

    Science.gov (United States)

    Shin, Yong Beom; Kim, Seong-Jang; Kim, In-Ju; Kim, Yong-Ki; Kim, Dong-Soo; Park, Jae Heung; Yeom, Seok-Ran

    2006-06-01

    Statistical parametric mapping (SPM) was applied to brain perfusion single photon emission computed tomography (SPECT) images in patients with traumatic brain injury (TBI) to investigate regional cerebral abnormalities compared to age-matched normal controls. Thirteen patients with TBI underwent brain perfusion SPECT were included in this study (10 males, three females, mean age 39.8 +/- 18.2, range 21 - 74). SPM2 software implemented in MATLAB 5.3 was used for spatial pre-processing and analysis and to determine the quantitative differences between TBI patients and age-matched normal controls. Three large voxel clusters of significantly decreased cerebral blood perfusion were found in patients with TBI. The largest clusters were area including medial frontal gyrus (voxel number 3642, peak Z-value = 4.31, 4.27, p = 0.000) in both hemispheres. The second largest clusters were areas including cingulated gyrus and anterior cingulate gyrus of left hemisphere (voxel number 381, peak Z-value = 3.67, 3.62, p = 0.000). Other clusters were parahippocampal gyrus (voxel number 173, peak Z-value = 3.40, p = 0.000) and hippocampus (voxel number 173, peak Z-value = 3.23, p = 0.001) in the left hemisphere. The false discovery rate (FDR) was less than 0.04. From this study, group and individual analyses of SPM2 could clearly identify the perfusion abnormalities of brain SPECT in patients with TBI. Group analysis of SPM2 showed hypoperfusion pattern in the areas including medial frontal gyrus of both hemispheres, cingulate gyrus, anterior cingulate gyrus, parahippocampal gyrus and hippocampus in the left hemisphere compared to age-matched normal controls. Also, left parahippocampal gyrus and left hippocampus were additional hypoperfusion areas. However, these findings deserve further investigation on a larger number of patients to be performed to allow a better validation of objective SPM analysis in patients with TBI.

  9. Automated voxel-based analysis of brain perfusion SPECT for vasospasm after subarachnoid haemorrhage

    International Nuclear Information System (INIS)

    Iwabuchi, S.; Yokouchi, T.; Hayashi, M.; Kimura, H.; Tomiyama, A.; Hirata, Y.; Saito, N.; Harashina, J.; Nakayama, H.; Sato, K.; Aoki, K.; Samejima, H.; Ueda, M.; Terada, H.; Hamazaki, K.

    2008-01-01

    We evaluated regional cerebral blood flow (rCBF) during vasospasm after subarachnoid haemorrhage ISAH) using automated voxel-based analysis of brain perfusion single-photon emission computed tomography (SPELT). Brain perfusion SPECT was performed 7 to 10 days after onset of SAH. Automated voxel-based analysis of SPECT used a Z-score map that was calculated by comparing the patients data with a control database. In cases where computed tomography (CT) scans detected an ischemic region due to vasospasm, automated voxel-based analysis of brain perfusion SPECT revealed dramatically reduced rCBF (Z-score ≤ -4). No patients with mildly or moderately diminished rCBF (Z-score > -3) progressed to cerebral infarction. Some patients with a Z-score < -4 did not progress to cerebral infarction after active treatment with a angioplasty. Three-dimensional images provided detailed anatomical information and helped us to distinguish surgical sequelae from vasospasm. In conclusion, automated voxel-based analysis of brain perfusion SPECT using a Z-score map is helpful in evaluating decreased rCBF due to vasospasm. (author)

  10. The impact of sample size on the reproducibility of voxel-based lesion-deficit mappings.

    Science.gov (United States)

    Lorca-Puls, Diego L; Gajardo-Vidal, Andrea; White, Jitrachote; Seghier, Mohamed L; Leff, Alexander P; Green, David W; Crinion, Jenny T; Ludersdorfer, Philipp; Hope, Thomas M H; Bowman, Howard; Price, Cathy J

    2018-07-01

    This study investigated how sample size affects the reproducibility of findings from univariate voxel-based lesion-deficit analyses (e.g., voxel-based lesion-symptom mapping and voxel-based morphometry). Our effect of interest was the strength of the mapping between brain damage and speech articulation difficulties, as measured in terms of the proportion of variance explained. First, we identified a region of interest by searching on a voxel-by-voxel basis for brain areas where greater lesion load was associated with poorer speech articulation using a large sample of 360 right-handed English-speaking stroke survivors. We then randomly drew thousands of bootstrap samples from this data set that included either 30, 60, 90, 120, 180, or 360 patients. For each resample, we recorded effect size estimates and p values after conducting exactly the same lesion-deficit analysis within the previously identified region of interest and holding all procedures constant. The results show (1) how often small effect sizes in a heterogeneous population fail to be detected; (2) how effect size and its statistical significance varies with sample size; (3) how low-powered studies (due to small sample sizes) can greatly over-estimate as well as under-estimate effect sizes; and (4) how large sample sizes (N ≥ 90) can yield highly significant p values even when effect sizes are so small that they become trivial in practical terms. The implications of these findings for interpreting the results from univariate voxel-based lesion-deficit analyses are discussed. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  11. Validation of voxel-based morphometry (VBM) based on MRI

    Science.gov (United States)

    Yang, Xueyu; Chen, Kewei; Guo, Xiaojuan; Yao, Li

    2007-03-01

    Voxel-based morphometry (VBM) is an automated and objective image analysis technique for detecting differences in regional concentration or volume of brain tissue composition based on structural magnetic resonance (MR) images. VBM has been used widely to evaluate brain morphometric differences between different populations, but there isn't an evaluation system for its validation until now. In this study, a quantitative and objective evaluation system was established in order to assess VBM performance. We recruited twenty normal volunteers (10 males and 10 females, age range 20-26 years, mean age 22.6 years). Firstly, several focal lesions (hippocampus, frontal lobe, anterior cingulate, back of hippocampus, back of anterior cingulate) were simulated in selected brain regions using real MRI data. Secondly, optimized VBM was performed to detect structural differences between groups. Thirdly, one-way ANOVA and post-hoc test were used to assess the accuracy and sensitivity of VBM analysis. The results revealed that VBM was a good detective tool in majority of brain regions, even in controversial brain region such as hippocampus in VBM study. Generally speaking, much more severity of focal lesion was, better VBM performance was. However size of focal lesion had little effects on VBM analysis.

  12. Absorbed dose estimates to structures of the brain and head using a high-resolution voxel-based head phantom

    International Nuclear Information System (INIS)

    Evans, Jeffrey F.; Blue, Thomas E.; Gupta, Nilendu

    2001-01-01

    The purpose of this article is to demonstrate the viability of using a high-resolution 3-D head phantom in Monte Carlo N-Particle (MCNP) for boron neutron capture therapy (BNCT) structure dosimetry. This work describes a high-resolution voxel-based model of a human head and its use for calculating absorbed doses to the structures of the brain. The Zubal head phantom is a 3-D model of a human head that can be displayed and manipulated on a computer. Several changes were made to the original head phantom which now contains over 29 critical structures of the brain and head. The modified phantom is a 85x109x120 lattice of voxels, where each voxel is 2.2x2.2x1.4 mm 3 . This model was translated into MCNP lattice format. As a proof of principle study, two MCNP absorbed dose calculations were made (left and right lateral irradiations) using a uniformly distributed neutron disk source with an 1/E energy spectrum. Additionally, the results of these two calculations were combined to estimate the absorbed doses from a bilateral irradiation. Radiobiologically equivalent (RBE) doses were calculated for all structures and were normalized to 12.8 Gy-Eq. For a left lateral irradiation, the left motor cortex receives the limiting RBE dose. For a bilateral irradiation, the insula cortices receive the limiting dose. Among the nonencephalic structures, the parotid glands receive RBE doses that were within 15% of the limiting dose

  13. Medical images of patients in voxel structures in high resolution for Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Boia, Leonardo S.; Menezes, Artur F.; Silva, Ademir X., E-mail: lboia@con.ufrj.b, E-mail: ademir@con.ufrj.b [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Engenharia Nuclear; Salmon Junior, Helio A. [Clinicas Oncologicas Integradas (COI), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    This work aims to present a computational process of conversion of tomographic and MRI medical images from patients in voxel structures to an input file, which will be manipulated in Monte Carlo Simulation code for tumor's radiotherapic treatments. The problem's scenario inherent to the patient is simulated by such process, using the volume element (voxel) as a unit of computational tracing. The head's voxel structure geometry has voxels with volumetric dimensions around 1 mm{sup 3} and a population of millions, which helps - in that way, for a realistic simulation and a decrease in image's digital process techniques for adjustments and equalizations. With such additional data from the code, a more critical analysis can be developed in order to determine the volume of the tumor, and the protection, beside the patients' medical images were borrowed by Clinicas Oncologicas Integradas (COI/RJ), joined to the previous performed planning. In order to execute this computational process, SAPDI computational system is used in a digital image process for optimization of data, conversion program Scan2MCNP, which manipulates, processes, and converts the medical images into voxel structures to input files and the graphic visualizer Moritz for the verification of image's geometry placing. (author)

  14. Improvement of skeleton conversion in ICRP reference phantom conversion project

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhao Jun; Yeom, Yeon Soo; Thang, Nguyen Tat; Kim, Han Sung; Han, Min Cheol; Kim, Chan Hyeong [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of); Kim, Seong Hoon [Dept. of Radiation Oncology, College of Medicine, Hanyang University, Seoul (Korea, Republic of)

    2014-11-15

    In the previous skeleton conversion, most bones were directly converted from the ICRP voxel phantoms by using the 3D rendering method whereas several complex-shape bones (cranium, ribs, spines, feet, and hands) were not able to be directly converted. We alternatively employed the corresponding well-defined polygonal models and attempted to adjust them to match the voxel models. However, this approach was unsatisfactory. The shapes of the alternative models were significantly different from those of the voxel models, making it virtually impossible to exactly match the voxel models as shown in Fig. 3 (left). In order to overcome the difficulty in the complex bone conversion, the present study developed a new conversion method and converted these complex bones voxel models of the ICRP male phantom to polygonal models. The present study developed the new conversion method and successfully improved polygonal models for cranium, ribs, and spines for the ICRP male phantom. The new conversion method will be also applied to the complex bone conversion for the ICRP female phantom as well as other complex organ conversion in the future.

  15. Improvement of skeleton conversion in ICRP reference phantom conversion project

    International Nuclear Information System (INIS)

    Wang, Zhao Jun; Yeom, Yeon Soo; Thang, Nguyen Tat; Kim, Han Sung; Han, Min Cheol; Kim, Chan Hyeong; Kim, Seong Hoon

    2014-01-01

    In the previous skeleton conversion, most bones were directly converted from the ICRP voxel phantoms by using the 3D rendering method whereas several complex-shape bones (cranium, ribs, spines, feet, and hands) were not able to be directly converted. We alternatively employed the corresponding well-defined polygonal models and attempted to adjust them to match the voxel models. However, this approach was unsatisfactory. The shapes of the alternative models were significantly different from those of the voxel models, making it virtually impossible to exactly match the voxel models as shown in Fig. 3 (left). In order to overcome the difficulty in the complex bone conversion, the present study developed a new conversion method and converted these complex bones voxel models of the ICRP male phantom to polygonal models. The present study developed the new conversion method and successfully improved polygonal models for cranium, ribs, and spines for the ICRP male phantom. The new conversion method will be also applied to the complex bone conversion for the ICRP female phantom as well as other complex organ conversion in the future

  16. Computational lymphatic node models in pediatric and adult hybrid phantoms for radiation dosimetry

    International Nuclear Information System (INIS)

    Lee, Choonsik; Lamart, Stephanie; Moroz, Brian E

    2013-01-01

    We developed models of lymphatic nodes for six pediatric and two adult hybrid computational phantoms to calculate the lymphatic node dose estimates from external and internal radiation exposures. We derived the number of lymphatic nodes from the recommendations in International Commission on Radiological Protection (ICRP) Publications 23 and 89 at 16 cluster locations for the lymphatic nodes: extrathoracic, cervical, thoracic (upper and lower), breast (left and right), mesentery (left and right), axillary (left and right), cubital (left and right), inguinal (left and right) and popliteal (left and right), for different ages (newborn, 1-, 5-, 10-, 15-year-old and adult). We modeled each lymphatic node within the voxel format of the hybrid phantoms by assuming that all nodes have identical size derived from published data except narrow cluster sites. The lymph nodes were generated by the following algorithm: (1) selection of the lymph node site among the 16 cluster sites; (2) random sampling of the location of the lymph node within a spherical space centered at the chosen cluster site; (3) creation of the sphere or ovoid of tissue representing the node based on lymphatic node characteristics defined in ICRP Publications 23 and 89. We created lymph nodes until the pre-defined number of lymphatic nodes at the selected cluster site was reached. This algorithm was applied to pediatric (newborn, 1-, 5-and 10-year-old male, and 15-year-old males) and adult male and female ICRP-compliant hybrid phantoms after voxelization. To assess the performance of our models for internal dosimetry, we calculated dose conversion coefficients, called S values, for selected organs and tissues with Iodine-131 distributed in six lymphatic node cluster sites using MCNPX2.6, a well validated Monte Carlo radiation transport code. Our analysis of the calculations indicates that the S values were significantly affected by the location of the lymph node clusters and that the values increased for

  17. Reconstruction of head-to-knee voxel model for Syrian adult male of average height and weight

    Directory of Open Access Journals (Sweden)

    Bashira Taleb

    2015-06-01

    Conclusion: Comparisons with SAFs data of Zubal model accentuated the fact that the organ masses and the specific anatomy have a significant effect on SAFs. SyrMan model can be considered as the first model built in the Middle East region, and it is an important step toward the Syrian Reference Man.

  18. Ratios between effective doses for tomographic and mathematician models due to internal exposure of photons

    International Nuclear Information System (INIS)

    Lima, F.R.A.; Kramer, R.; Khoury, H.J.; Santos, A.M.; Loureiro, E.C.M.

    2005-01-01

    The development of new and sophisticated Monte Carlo codes and tomographic human phantoms or voxels motivated the International Commission on Radiological Protection (ICRP) to revise the traditional models of exposure, which have been used to calculate effective dose coefficients for organs and tissues based on mathematician phantoms known as MIRD5. This paper shows the results of calculations using tomographic phantoms MAX (Male Adult voXel) and FAX (Female Adult voXel), recently developed by the authors as well as with the phantoms ADAM and EVA, of specific genres, type MIRD5, coupled to the EGS4 Monte Carlo and MCNP4C codes, for internal exposure with photons of energies between 10 keV and 4 MeV to several organs sources. Effective Doses for both models, tomographic and mathematician, will be compared separately as a function of the Monte Carlo code replacement, of compositions of human tissues and the anatomy reproduced through tomographs. The results indicate that for photon internal exposure, the use of models of exposure based in voxel, increases the values of effective doses up to 70% for some organs sources considered in this study, when compared with the corresponding results obtained with phantoms of MIRD-5 type

  19. MATSIM -The Development and Validation of a Numerical Voxel Model based on the MATROSHKA Phantom

    Science.gov (United States)

    Beck, Peter; Rollet, Sofia; Berger, Thomas; Bergmann, Robert; Hajek, Michael; Latocha, Marcin; Vana, Norbert; Zechner, Andrea; Reitz, Guenther

    The AIT Austrian Institute of Technology coordinates the project MATSIM (MATROSHKA Simulation) in collaboration with the Vienna University of Technology and the German Aerospace Center. The aim of the project is to develop a voxel-based model of the MATROSHKA anthro-pomorphic torso used at the International Space Station (ISS) as foundation to perform Monte Carlo high-energy particle transport simulations for different irradiation conditions. Funded by the Austrian Space Applications Programme (ASAP), MATSIM is a co-investigation with the European Space Agency (ESA) ELIPS project MATROSHKA, an international collaboration of more than 18 research institutes and space agencies from all over the world, under the science and project lead of the German Aerospace Center. The MATROSHKA facility is designed to determine the radiation exposure of an astronaut onboard ISS and especially during an ex-travehicular activity. The numerical model developed in the frame of MATSIM is validated by reference measurements. In this report we give on overview of the model development and compare photon and neutron irradiations of the detector-equipped phantom torso with Monte Carlo simulations using FLUKA. Exposure to Co-60 photons was realized in the standard ir-radiation laboratory at Seibersdorf, while investigations with neutrons were performed at the thermal column of the Vienna TRIGA Mark-II reactor. The phantom was loaded with passive thermoluminescence dosimeters. In addition, first results of the calculated dose distribution within the torso are presented for a simulated exposure in low-Earth orbit.

  20. S values at voxels level for 188Re and 90Y calculated with the MCNP-4C code

    International Nuclear Information System (INIS)

    Coca, M.A.; Torres, L.A.; Cornejo, N.; Martin, G.

    2008-01-01

    Full text: MIRD formalism at voxel level has been suggested as an optional methodology to perform internal radiation dosimetry calculation during internal radiation therapy in Nuclear Medicine. Voxel S values for Y 90 , 131 I, 32 P, 99m Tc and 89 Sr have been published to different sizes. Currently, 188 Re has been proposed as a promising radionuclide for therapy due to its physical features and availability from generators. The main objective of this work was to estimate the voxel S values for 188 Re at cubical geometry using the MCNP-4C code for the simulations of radiation transport and energy deposition. Mean absorbed dose to target voxels per radioactive decay in a source voxel were estimated and reported for 188 Re and Y 90 . A comparison of voxel S values computed with the MCNP code and the data reported in MIRD Pamphlet 17 for 90 Y was performed in order to evaluate our results. (author)

  1. Identification of Voxels Confounded by Venous Signals Using Resting-State fMRI Functional Connectivity Graph Clustering

    Directory of Open Access Journals (Sweden)

    Klaudius eKalcher

    2015-12-01

    Full Text Available Identifying venous voxels in fMRI datasets is important to increase the specificity of fMRI analyses to microvasculature in the vicinity of the neural processes triggering the BOLD response. This is, however, difficult to achieve in particular in typical studies where magnitude images of BOLD EPI are the only data available. In this study, voxelwise functional connectivity graphs were computed on minimally preprocessed low TR (333 ms multiband resting-state fMRI data, using both high positive and negative correlations to define edges between nodes (voxels. A high correlation threshold for binarization ensures that most edges in the resulting sparse graph reflect the high coherence of signals in medium to large veins. Graph clustering based on the optimization of modularity was then employed to identify clusters of coherent voxels in this graph, and all clusters of 50 or more voxels were then interpreted as corresponding to medium to large veins. Indeed, a comparison with SWI reveals that 75.6 ± 5.9% of voxels within these large clusters overlap with veins visible in the SWI image or lie outside the brain parenchyma. Some of the remainingdifferences between the two modalities can be explained by imperfect alignment or geometric distortions between the two images. Overall, the graph clustering based method for identifying venous voxels has a high specificity as well as the additional advantages of being computed in the same voxel grid as the fMRI dataset itself and not needingany additional data beyond what is usually acquired (and exported in standard fMRI experiments.

  2. S values at voxels level for 188Re and 90Y calculated with the MCNP-4C code

    International Nuclear Information System (INIS)

    Coca Perez, Marco Antonio; Torres Aroche, Leonel Alberto; Cornejo, Nestor; Martin Hernandez, Guido

    2003-01-01

    The main objective of this work was estimate the voxels S values for 188 Re at cubical geometry using the MCNP-4C code for the simulation of radiation transport and energy deposition. Mean absorbed dose to target voxels per radioactive decay in a source voxels were estimated and reported for 188 Re and Y 90 . A comparison of voxels S values computed with the MCNP code the data reported in MIRD pamphlet 17 for 90 Y was performed in order to evaluate our results

  3. FASH and MASH: female and male adult human phantoms based on polygon mesh surfaces: II. Dosimetric calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, R; Cassola, V F; Khoury, H J [Department of Nuclear Energy, Federal University of Pernambuco, Avenida Prof. Luiz Freire, 1000, CEP 50740-540, Recife (Brazil); Vieira, J W [Federal Institute of Education, Science and Technology of Pernambuco, Recife (Brazil); De Melo Lima, V J [Department of Anatomy, Federal University of Pernambuco, Recife (Brazil); Robson Brown, K [Imaging Laboratory, Department of Archaeology and Anthropology, University of Bristol, Bristol (United Kingdom)], E-mail: rkramer@uol.com.br

    2010-01-07

    Female and male adult human phantoms, called FASH (Female Adult meSH) and MASH (Male Adult meSH), have been developed in the first part of this study using 3D animation software and anatomical atlases to replace the image-based FAX06 and the MAX06 voxel phantoms. 3D modelling methods allow for phantom development independent from medical images of patients, volunteers or cadavers. The second part of this study investigates the dosimetric implications for organ and tissue equivalent doses due to the anatomical differences between the new and the old phantoms. These differences are mainly caused by the supine position of human bodies during scanning in order to acquire digital images for voxel phantom development. Compared to an upright standing person, in image-based voxel phantoms organs are often coronally shifted towards the head and sometimes the sagittal diameter of the trunk is reduced by a gravitational change of the fat distribution. In addition, volumes of adipose and muscle tissue shielding internal organs are sometimes too small, because adaptation of organ volumes to ICRP-based organ masses often occurs at the expense of general soft tissues, such as adipose, muscle or unspecified soft tissue. These effects have dosimetric consequences, especially for partial body exposure, such as in x-ray diagnosis, but also for whole body external exposure and for internal exposure. Using the EGSnrc Monte Carlo code, internal and external exposure to photons and electrons has been simulated with both pairs of phantoms. The results show differences between organ and tissue equivalent doses for the upright standing FASH/MASH and the image-based supine FAX06/MAX06 phantoms of up to 80% for external exposure and up to 100% for internal exposure. Similar differences were found for external exposure between FASH/MASH and REGINA/REX, the reference voxel phantoms of the International Commission on Radiological Protection. Comparison of effective doses for external photon

  4. FASH and MASH: female and male adult human phantoms based on polygon mesh surfaces: II. Dosimetric calculations

    Science.gov (United States)

    Kramer, R.; Cassola, V. F.; Khoury, H. J.; Vieira, J. W.; de Melo Lima, V. J.; Robson Brown, K.

    2010-01-01

    Female and male adult human phantoms, called FASH (Female Adult meSH) and MASH (Male Adult meSH), have been developed in the first part of this study using 3D animation software and anatomical atlases to replace the image-based FAX06 and the MAX06 voxel phantoms. 3D modelling methods allow for phantom development independent from medical images of patients, volunteers or cadavers. The second part of this study investigates the dosimetric implications for organ and tissue equivalent doses due to the anatomical differences between the new and the old phantoms. These differences are mainly caused by the supine position of human bodies during scanning in order to acquire digital images for voxel phantom development. Compared to an upright standing person, in image-based voxel phantoms organs are often coronally shifted towards the head and sometimes the sagittal diameter of the trunk is reduced by a gravitational change of the fat distribution. In addition, volumes of adipose and muscle tissue shielding internal organs are sometimes too small, because adaptation of organ volumes to ICRP-based organ masses often occurs at the expense of general soft tissues, such as adipose, muscle or unspecified soft tissue. These effects have dosimetric consequences, especially for partial body exposure, such as in x-ray diagnosis, but also for whole body external exposure and for internal exposure. Using the EGSnrc Monte Carlo code, internal and external exposure to photons and electrons has been simulated with both pairs of phantoms. The results show differences between organ and tissue equivalent doses for the upright standing FASH/MASH and the image-based supine FAX06/MAX06 phantoms of up to 80% for external exposure and up to 100% for internal exposure. Similar differences were found for external exposure between FASH/MASH and REGINA/REX, the reference voxel phantoms of the International Commission on Radiological Protection. Comparison of effective doses for external photon

  5. Shifting from region of interest (ROI) to voxel-based analysis in human brain mapping

    International Nuclear Information System (INIS)

    Astrakas, Loukas G.; Argyropoulou, Maria I.

    2010-01-01

    Current clinical studies involve multidimensional high-resolution images containing an overwhelming amount of structural and functional information. The analysis of such a wealth of information is becoming increasingly difficult yet necessary in order to improve diagnosis, treatment and healthcare. Voxel-wise analysis is a class of modern methods of image processing in the medical field with increased popularity. It has replaced manual region of interest (ROI) analysis and has provided tools to make statistical inferences at voxel level. The introduction of voxel-based analysis software in all modern commercial scanners allows clinical use of these techniques. This review will explain the main principles, advantages and disadvantages behind these methods of image analysis. (orig.)

  6. A Morphological Approach to the Voxelization of Solids

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas; Sramek, Milos; Christensen, Niels Jørgen

    2000-01-01

    In this paper we present a new, morphological criterion for determining whether a geometric solid is suitable for voxelization at a given resolution. The criterion embodies two conditions, namely that the curvature of the solid must be bounded and the critical points of the distance field must be...

  7. Gray matter changes in right superior temporal gyrus in criminal psychopaths. Evidence from voxel-based morphometry.

    Science.gov (United States)

    Müller, Jürgen L; Gänssbauer, Susanne; Sommer, Monika; Döhnel, Katrin; Weber, Tatjana; Schmidt-Wilcke, Tobias; Hajak, Göran

    2008-08-30

    "Psychopathy" according to the PCL-R describes a specific subgroup of antisocial personality disorder with a high risk for criminal relapses. Lesion and imaging studies point towards frontal or temporal brain regions connected with disturbed social behavior, antisocial personality disorder (APD) and psychopathy. Morphologically, some studies described a reduced prefrontal brain volume, whereas others reported on temporal lobe atrophy. To further investigate whether participants with psychopathy according to the Psychopathy Checklist-Revised Version (PCL-R) show abnormalities in brain structure, we used voxel-based morphometry (VBM) to investigate region-specific changes in gray matter in 17 forensic male inpatients with high PCL-R scores (PCL-R>28) and 17 male control subjects with low PCL-R scores (PCLright superior temporal gyrus. This is the first study to show that psychopathy is associated with a decrease in gray matter in both frontal and temporal brain regions, in particular in the right superior temporal gyrus, supporting the hypothesis that a disturbed frontotemporal network is critically involved in the pathogenesis of psychopathy.

  8. MO-F-CAMPUS-J-01: Effect of Iodine Contrast Agent Concentration On Cerebrovascular Dose for Synchrotron Radiation Microangiography Based On a Simple Mouse Head Model and a Voxel Mouse Head Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Lin, H; Jing, J; Xie, C [Hefei University of Technology, Hefei (China); Lu, Y [Shanghai Jiao Tong University, Shanghai (China)

    2015-06-15

    Purpose: To find effective setting methods to mitigate the irradiation injure in synchrotron radiation microangiography(SRA) by Monte Carlo simulation. Methods: A mouse 1-D head model and a segmented voxel mouse head phantom were simulated by EGSnrc/Dosxyznrc code to investigate the dose enhancement effect of the iodine contrast agent irradiated by a monochromatic synchrotron radiation(SR) source. The influence of, like iodine concentration (IC), vessel width and depth, with and without skull layer protection and the various incident X ray energies, were simulated. The dose enhancement effect and the absolute dose based on the segmented voxel mouse head phantom were evaluated. Results: The dose enhancement ratio depends little on the irradiation depth, but strongly on the IC, which is linearly increases with IC. The skull layer protection cannot be ignored in SRA, the 700µm thick skull could decrease 10% of the dose. The incident X-ray energy can significantly affact the dose. E.g. compared to the dose of 33.2keV for 50mgI/ml, the 32.7keV dose decreases 38%, whereas the dose of 33.7 keV increases 69.2%, and the variation will strengthen more with enhanced IC. The segmented voxel mouse head phantom also showed that the average dose enhancement effect and the maximal voxel dose per photon depends little on the iodine voxel volume ratio, but strongly on IC. Conclusion: To decrease dose damage in SRA, the high-Z contrast agent should be used as little as possible, and try to avoid radiating locally the injected position immediately after the contrast agent injection. The fragile vessel containing iodine should avoid closely irradiating. Avoiding irradiating through the no or thin skull region, or appending thin equivalent material from outside to protect is also a better method. As long as SRA image quality is ensured, using incident X-ray energy as low as possible.

  9. Application of digital image processing for the generation of voxels phantoms for Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Boia, L.S.; Menezes, A.F.; Cardoso, M.A.C. [Programa de Engenharia Nuclear/COPPE (Brazil); Rosa, L.A.R. da [Instituto de Radioprotecao e Dosimetria-IRD, Av. Salvador Allende, s/no Recreio dos Bandeirantes, CP 37760, CEP 22780-160 Rio de Janeiro, RJ (Brazil); Batista, D.V.S. [Instituto de Radioprotecao e Dosimetria-IRD, Av. Salvador Allende, s/no Recreio dos Bandeirantes, CP 37760, CEP 22780-160 Rio de Janeiro, RJ (Brazil); Instituto Nacional de Cancer-Secao de Fisica Medica, Praca Cruz Vermelha, 23-Centro, 20230-130 Rio de Janeiro, RJ (Brazil); Cardoso, S.C. [Departamento de Fisica Nuclear, Instituto de Fisica, Universidade Federal do Rio de Janeiro, Bloco A-Sala 307, CP 68528, CEP 21941-972 Rio de Janeiro, RJ (Brazil); Silva, A.X., E-mail: ademir@con.ufrj.br [Programa de Engenharia Nuclear/COPPE (Brazil); Departamento de Engenharia Nuclear/Escola Politecnica, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970 Rio de Janeiro, RJ (Brazil); Facure, A. [Comissao Nacional de Energia Nuclear, R. Gal. Severiano 90, sala 409, 22294-900 Rio de Janeiro, RJ (Brazil)

    2012-01-15

    This paper presents the application of a computational methodology for optimizing the conversion of medical tomographic images in voxel anthropomorphic models for simulation of radiation transport using the MCNP code. A computational system was developed for digital image processing that compresses the information from the DICOM medical image before it is converted to the Scan2MCNP software input file for optimization of the image data. In order to validate the computational methodology, a radiosurgery treatment simulation was performed using the Alderson Rando phantom and the acquisition of DICOM images was performed. The simulation results were compared with data obtained with the BrainLab planning system. The comparison showed good agreement for three orthogonal treatment beams of {sup 60}Co gamma radiation. The percentage differences were 3.07%, 0.77% and 6.15% for axial, coronal and sagital projections, respectively. - Highlights: Black-Right-Pointing-Pointer We use a method to optimize the CT image conversion in voxel model for MCNP simulation. Black-Right-Pointing-Pointer We present a methodology to compress a DICOM image before conversion to input file. Black-Right-Pointing-Pointer To validate this study an idealized radiosurgery applied to the Alderson phantom was used.

  10. Direct Monte Carlo dose calculation using polygon-surface computational human model

    International Nuclear Information System (INIS)

    Jeong, Jong Hwi; Kim, Chan Hyeong; Yeom, Yeon Su; Cho, Sungkoo; Chung, Min Suk; Cho, Kun-Woo

    2011-01-01

    In the present study, a voxel-type computational human model was converted to a polygon-surface model, after which it was imported directly to the Geant4 code without using a voxelization process, that is, without converting back to a voxel model. The original voxel model was also imported to the Geant4 code, in order to compare the calculated dose values and the computational speed. The average polygon size of the polygon-surface model was ∼0.5 cm 2 , whereas the voxel resolution of the voxel model was 1.981 × 1.981 × 2.0854 mm 3 . The results showed a good agreement between the calculated dose values of the two models. The polygon-surface model was, however, slower than the voxel model by a factor of 6–9 for the photon energies and irradiation geometries considered in the present study, which nonetheless is considered acceptable, considering that direct use of the polygon-surface model does not require a separate voxelization process. (author)

  11. Voxel Advanced Digital-manufacturing for Earth & Regolith in Space

    Data.gov (United States)

    National Aeronautics and Space Administration — A voxel is a discrete three-dimensional (3D) element of material that is used to construct a larger 3D object. It is the 3D equivalent of a pixel. This project will...

  12. Single Voxel Proton Spectroscopy for Neurofeedback at 7 Tesla

    Directory of Open Access Journals (Sweden)

    Mark A. Elliott

    2011-09-01

    Full Text Available Echo-planar imaging (EPI in fMRI is regularly used to reveal BOLD activation in presubscribed regions of interest (ROI. The response is mediated by relative changes in T2* which appear as changes in the image pixel intensities. We have proposed an application of functional single-voxel proton spectroscopy (fSVPS for real-time studies at ultra-high MR field which can be comparable to the EPI BOLD fMRI technique. A spin-echo SVPS protocol without water suppression was acquired with 310 repetitions on a 7T Siemens MR scanner (TE/TR = 20/1000 ms, flip angle α = 90°, voxel size 10 × 10 × 10 mm3. Transmitter reference voltage was optimized for the voxel location. Spectral processing of the water signal free induction decay (FID using log-linear regression was used to estimate the T2* change between rest and activation of a functional task. The FID spectrum was filtered with a Gaussian window around the water peak, and log-linear regression was optimized for the particular ROI by adoption of the linearization length. The spectroscopic voxel was positioned on an ROI defined from a real-time fMRI EPI BOLD localizer. Additional online signal processing algorithms performed signal drift removal (exponential moving average, despiking and low-pass filtering (modified Kalman filter and, finally, the dynamic feedback signal normalization. Two functional tasks were used to estimate the sensitivity of the SVPS method compared to BOLD signal changes, namely the primary motor cortex (PMC, left hand finger tapping and visual cortex (VC, blinking checkerboard. Four healthy volunteers performed these tasks and an additional session using real-time signal feedback modulating their activation level of the PMC. Results show that single voxel spectroscopy is able to provide a good and reliable estimation of the BOLD signal changes. Small data size and FID signal processing instead of processing entire brain volumes as well as more information revealed from the

  13. Rapid Assemblers for Voxel-Based VLSI Robotics

    Science.gov (United States)

    2014-02-12

    flux vector given by the Nernst -Planck equation ( equation ), where the partial derivative of the concentration of ions with respect to time plus the...species i given by the Nernst -Einstein equation . The boundary conditions are that the diffusive and convective contribu- tions to the flux are zero at...dependent partial differential equations . SIAM Journal of Numerical Analysis, 32(3):797-823, 1995. Task 2: cm-scale voxels for prototypes Task

  14. Treating voxel geometries in radiation protection dosimetry with a patched version of the Monte Carlo codes MCNP and MCNPX.

    Science.gov (United States)

    Burn, K W; Daffara, C; Gualdrini, G; Pierantoni, M; Ferrari, P

    2007-01-01

    The question of Monte Carlo simulation of radiation transport in voxel geometries is addressed. Patched versions of the MCNP and MCNPX codes are developed aimed at transporting radiation both in the standard geometry mode and in the voxel geometry treatment. The patched code reads an unformatted FORTRAN file derived from DICOM format data and uses special subroutines to handle voxel-to-voxel radiation transport. The various phases of the development of the methodology are discussed together with the new input options. Examples are given of employment of the code in internal and external dosimetry and comparisons with results from other groups are reported.

  15. Voxel-wise grey matter asymmetry analysis in left- and right-handers.

    Science.gov (United States)

    Ocklenburg, Sebastian; Friedrich, Patrick; Güntürkün, Onur; Genç, Erhan

    2016-10-28

    Handedness is thought to originate in the brain, but identifying its structural correlates in the cortex has yielded surprisingly incoherent results. One idea proclaimed by several authors is that structural grey matter asymmetries might underlie handedness. While some authors have found significant associations with handedness in different brain areas (e.g. in the central sulcus and precentral sulcus), others have failed to identify such associations. One method used by many researchers to determine structural grey matter asymmetries is voxel based morphometry (VBM). However, it has recently been suggested that the standard VBM protocol might not be ideal to assess structural grey matter asymmetries, as it establishes accurate voxel-wise correspondence across individuals but not across both hemispheres. This could potentially lead to biased and incoherent results. Recently, a new toolbox specifically geared at assessing structural asymmetries and involving accurate voxel-wise correspondence across hemispheres has been published [F. Kurth, C. Gaser, E. Luders. A 12-step user guide for analyzing voxel-wise gray matter asymmetries in statistical parametric mapping (SPM), Nat Protoc 10 (2015), 293-304]. Here, we used this new toolbox to re-assess grey matter asymmetry differences in left- vs. right-handers and linked them to quantitative measures of hand preference and hand skill. While we identified several significant left-right asymmetries in the overall sample, no difference between left- and right-handers reached significance after correction for multiple comparisons. These findings indicate that the structural brain correlates of handedness are unlikely to be rooted in macroscopic grey matter area differences that can be assessed with VBM. Future studies should focus on other potential structural correlates of handedness, e.g. structural white matter asymmetries. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Quantitative genetic models of sexual selection by male choice.

    Science.gov (United States)

    Nakahashi, Wataru

    2008-09-01

    There are many examples of male mate choice for female traits that tend to be associated with high fertility. I develop quantitative genetic models of a female trait and a male preference to show when such a male preference can evolve. I find that a disagreement between the fertility maximum and the viability maximum of the female trait is necessary for directional male preference (preference for extreme female trait values) to evolve. Moreover, when there is a shortage of available male partners or variance in male nongenetic quality, strong male preference can evolve. Furthermore, I also show that males evolve to exhibit a stronger preference for females that are more feminine (less resemblance to males) than the average female when there is a sexual dimorphism caused by fertility selection which acts only on females.

  17. [Voxel-Based Morphometry in Medicated-naive Boys with Attention-deficit/hyperactivity Disorder(ADHD)].

    Science.gov (United States)

    Liu, Qi; Chen, Lizhou; Li, Fei; Chen, Ying; Guo, Lanting; Gong, Qiyong; Huang, Xiaoqi

    2016-06-01

    Attention-deficit/hyperactivity disorder(ADHD)is one of the most common neuro-developmental disorders occurring in childhood,characterized by symptoms of age-inappropriate inattention,hyperactivity/impulsivity,and the prevalence is higher in boys.Although gray matter volume deficits have been frequently reported for ADHD children via structural magnetic resonance imaging,few of them had specifically focused on male patients.The present study aimed to explore the alterations of gray matter volumes in medicated-naive boys with ADHD via a relatively new voxel-based morphometry technique.According to the criteria of DSM-IV-TR,43medicated-naive ADHD boys and 44age-matched healthy boys were recruited.The magnetic resonance image(MRI)scan was performed via a 3T MRI system with three-dimensional(3D)spoiled gradient recalled echo(SPGR)sequence.Voxel-based morphometry with diffeomorphic anatomical registration through exponentiated lie algebra in SPM8 was used to preprocess the3DT1-weighted images.To identify gray matter volume differences between the ADHD and the controls,voxelbased analysis of whole brain gray matter volumes between two groups were done via two sample t-test in SPM8 with age as covariate,threshold at P<0.001.Finally,compared to the controls,significantly reduced gray matter volumes were identified in the right orbitofrontal cortex(peak coordinates[-2,52,-25],t=4.01),and bilateral hippocampus(Left:peak coordinates[14,0,-18],t=3.61;Right:peak coordinates[-14,15,-28],t=3.64)of ADHD boys.Our results demonstrated obvious reduction of whole brain gray matter volumes in right orbitofrontal cortex and bilateral hippocampus in boys with ADHD.This suggests that the abnormalities of prefrontal-hippocampus circuit may be the underlying cause of the cognitive dysfunction and abnormal behavioral inhibition in medicatednaive boys with ADHD.

  18. An Improved Optimization Method for the Relevance Voxel Machine

    DEFF Research Database (Denmark)

    Ganz, Melanie; Sabuncu, M. R.; Van Leemput, Koen

    2013-01-01

    In this paper, we will re-visit the Relevance Voxel Machine (RVoxM), a recently developed sparse Bayesian framework used for predicting biological markers, e.g., presence of disease, from high-dimensional image data, e.g., brain MRI volumes. The proposed improvement, called IRVoxM, mitigates the ...

  19. Effects of the volume and shape of voxels on the measurement of phantom volume using three-dimensional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Mori, Koichi; Tonami, Syuichi; Nakamura, Mamoru; Kuranishi, Makoto; Hagino, Hirofumi; Saitou, Osamu; Yotsutsuji, Takashi

    2002-01-01

    Recently, an increasing number of volumetric studies of the human brain have been reported, using three-dimensional magnetic resonance imaging (3D-MRI). To our knowledge, however, there are few investigations on the relation of the volume and shape of voxels which constitute and MR image to the accuracy in volume measurement of an imaged object. The purpose of this study was to evaluate the effect of a different shape of voxel, that is, isotropic or anisotropic, as well as the volume of a voxel on the volume measurement based on the original image data and multiplanar reconstruction (MPR) data, respectively. In the experiment, we repeatedly acquired contiguous sagittal images of a single globe phantom with a known volume under the condition in which the volume and shape of voxels varied, on a 1.5 T MR scanner. We used a gradient echo sequence (3D FLASH). The volume of the globe phantom from both original images and MPR ones was measured on workstations employing a semi-automated local thresholding technique. As a result, the smaller volume of voxels tended to give us the more correct measurement, and an isotropic voxel reduced measurement errors as compared to an anisotropic one. Therefore, it is concluded that the setting of voxel with both an isotropic shape and small volume, e.g., a voxel of 1 mm x 1 mm x 1 mm at present, is recommended in order to get a precise volume measurement using 3D-MRI. (author)

  20. [Effects of the volume and shape of voxels on the measurement of phantom volume using three-dimensional magnetic resonance imaging].

    Science.gov (United States)

    Mori, Koichi; Hagino, Hirofumi; Saitou, Osamu; Yotsutsuji, Takashi; Tonami, Syuichi; Nakamura, Mamoru; Kuranishi, Makoto

    2002-01-01

    Recently, an increasing number of volumetric studies of the human brain have been reported, using three-dimensional magnetic resonance imaging (3D-MRI). To our knowledge, however, there are few investigations on the relation of the volume and shape of voxels which constitute an MR image to the accuracy in volume measurement of an imaged object. The purpose of this study was to evaluate the effect of a different shape of voxel, that is, isotropic or anisotropic, as well as the volume of a voxel on the volume measurement based on the original image data and multiplanar reconstruction (MPR) data, respectively. In the experiment, we repeatedly acquired contiguous sagittal images of a single globe phantom with a known volume under the condition in which the volume and shape of voxels varied, on a 1.5T MR scanner. We used a gradient echo sequence (3D FLASH). The volume of the globe phantom from both original images and MPR ones was measured on workstations employing a semi-automated local thresholding technique. As a result, the smaller volume of voxels tended to give us the more correct measurement, and an isotropic voxel reduced measurement errors as compared to an anisotropic one. Therefore, it is concluded that the setting of voxel with both an isotropic shape and small volume, e.g., a voxel of 1 mm x 1 mm x 1 mm at present, is recommended in order to get a precise volume measurement using 3D-MRI.

  1. All about FAX: a Female Adult voXel phantom for Monte Carlo calculation in radiation protection dosimetry.

    Science.gov (United States)

    Kramer, R; Khoury, H J; Vieira, J W; Loureiro, E C M; Lima, V J M; Lima, F R A; Hoff, G

    2004-12-07

    The International Commission on Radiological Protection (ICRP) has created a task group on dose calculations, which, among other objectives, should replace the currently used mathematical MIRD phantoms by voxel phantoms. Voxel phantoms are based on digital images recorded from scanning of real persons by computed tomography or magnetic resonance imaging (MRI). Compared to the mathematical MIRD phantoms, voxel phantoms are true to the natural representations of a human body. Connected to a radiation transport code, voxel phantoms serve as virtual humans for which equivalent dose to organs and tissues from exposure to ionizing radiation can be calculated. The principal database for the construction of the FAX (Female Adult voXel) phantom consisted of 151 CT images recorded from scanning of trunk and head of a female patient, whose body weight and height were close to the corresponding data recommended by the ICRP in Publication 89. All 22 organs and tissues at risk, except for the red bone marrow and the osteogenic cells on the endosteal surface of bone ('bone surface'), have been segmented manually with a technique recently developed at the Departamento de Energia Nuclear of the UFPE in Recife, Brazil. After segmentation the volumes of the organs and tissues have been adjusted to agree with the organ and tissue masses recommended by ICRP for the Reference Adult Female in Publication 89. Comparisons have been made with the organ and tissue masses of the mathematical EVA phantom, as well as with the corresponding data for other female voxel phantoms. The three-dimensional matrix of the segmented images has eventually been connected to the EGS4 Monte Carlo code. Effective dose conversion coefficients have been calculated for exposures to photons, and compared to data determined for the mathematical MIRD-type phantoms, as well as for other voxel phantoms.

  2. Brain-volume changes in young and middle-aged smokers: a DARTEL-based voxel-based morphometry study.

    Science.gov (United States)

    Peng, Peng; Wang, Zhenchang; Jiang, Tao; Chu, Shuilian; Wang, Shuangkun; Xiao, Dan

    2017-09-01

    Many studies have reported brain volume changes in smokers. However, the volume differences of grey matter (GM) and white matter (WM) in young and middle-aged male smokers with different lifetime tobacco consumption (pack-years) remain uncertain. To examine the brain volume change, especially whether more pack-years smoking would be associated with smaller gray matter and white matter volume in young and middle-aged male smokers. We used a 3T MR scanner and performed Diffeomorphic anatomical registration through exponentiated lie algebra (DARTEL)-based voxel-based morphometry on 53 long-term male smokers (30.72 ± 4.19 years) and 53 male healthy non-smokers (30.83 ± 5.18 years). We separated smokers to light and heavy smokers by pack-years and compared brain volume between different smoker groups and non-smokers. And then we did analysis of covariance (ANCOVA) between smokers and non-smokers by setting pack-years as covariates. Light and heavy smokers all displayed smaller GM and WM volume than non-smokers and more obviously in heavy smokers. The main smaller areas in light and heavy smokers were superior temporal gyrus, insula, middle occipital gyrus, posterior cingulate, precuneus in GM and posterior cingulate, thalamus and midbrain in WM, in addition, we also observed more pack-years smoking was associated with some certain smaller GM and WM volumes by ANCOVA. Young and middle-aged male smokers had many smaller brain areas than non-smokers. Some of these areas' volume had negative correlation with pack-years, while some had not. These may due to different pathophysiological role of smokings. © 2015 John Wiley & Sons Ltd.

  3. TU-F-CAMPUS-J-04: Impact of Voxel Anisotropy On Statistic Texture Features of Oncologic PET: A Simulation Study

    International Nuclear Information System (INIS)

    Yang, F; Byrd, D; Bowen, S; Kinahan, P; Sandison, G

    2015-01-01

    Purpose: Texture metrics extracted from oncologic PET have been investigated with respect to their usefulness as definitive indicants for prognosis in a variety of cancer. Metric calculation is often based on cubic voxels. Most commonly used PET scanners, however, produce rectangular voxels, which may change texture metrics. The objective of this study was to examine the variability of PET texture feature metrics resulting from voxel anisotropy. Methods: Sinograms of NEMA NU-2 phantom for 18F-FDG were simulated using the ASIM simulation tool. The obtained projection data was reconstructed (3D-OSEM) on grids of cubic and rectangular voxels, producing PET images of resolution of 2.73x2.73x3.27mm3 and 3.27x3.27x3.27mm3, respectively. An interpolated dataset obtained from resampling the rectangular voxel data for isotropic voxel dimension (3.27mm) was also considered. For each image dataset, 28 texture parameters based on grey-level co-occurrence matrices (GLCOM), intensity histograms (GLIH), neighborhood difference matrices (GLNDM), and zone size matrices (GLZSM) were evaluated within lesions of diameter of 33, 28, 22, and 17mm. Results: In reference to the isotopic image data, texture features appearing on the rectangular voxel data varied with a range of -34-10% for GLCOM based, -31-39% for GLIH based, -80 -161% for GLNDM based, and −6–45% for GLZSM based while varied with a range of -35-23% for GLCOM based, -27-35% for GLIH based, -65-86% for GLNDM based, and -22 -18% for GLZSM based for the interpolated image data. For the anisotropic data, GLNDM-cplx exhibited the largest extent of variation (161%) while GLZSM-zp showed the least (<1%). As to the interpolated data, GLNDM-busy varied the most (86%) while GLIH-engy varied the least (<1%). Conclusion: Variability of texture appearance on oncologic PET with respect to voxel representation is substantial and feature-dependent. It necessitates consideration of standardized voxel representation for inter

  4. Efficient voxel navigation for proton therapy dose calculation in TOPAS and Geant4

    Science.gov (United States)

    Schümann, J.; Paganetti, H.; Shin, J.; Faddegon, B.; Perl, J.

    2012-06-01

    A key task within all Monte Carlo particle transport codes is ‘navigation’, the calculation to determine at each particle step what volume the particle may be leaving and what volume the particle may be entering. Navigation should be optimized to the specific geometry at hand. For patient dose calculation, this geometry generally involves voxelized computed tomography (CT) data. We investigated the efficiency of navigation algorithms on currently available voxel geometry parameterizations in the Monte Carlo simulation package Geant4: G4VPVParameterisation, G4VNestedParameterisation and G4PhantomParameterisation, the last with and without boundary skipping, a method where neighboring voxels with the same Hounsfield unit are combined into one larger voxel. A fourth parameterization approach (MGHParameterization), developed in-house before the latter two parameterizations became available in Geant4, was also included in this study. All simulations were performed using TOPAS, a tool for particle simulations layered on top of Geant4. Runtime comparisons were made on three distinct patient CT data sets: a head and neck, a liver and a prostate patient. We included an additional version of these three patients where all voxels, including the air voxels outside of the patient, were uniformly set to water in the runtime study. The G4VPVParameterisation offers two optimization options. One option has a 60-150 times slower simulation speed. The other is compatible in speed but requires 15-19 times more memory compared to the other parameterizations. We found the average CPU time used for the simulation relative to G4VNestedParameterisation to be 1.014 for G4PhantomParameterisation without boundary skipping and 1.015 for MGHParameterization. The average runtime ratio for G4PhantomParameterisation with and without boundary skipping for our heterogeneous data was equal to 0.97: 1. The calculated dose distributions agreed with the reference distribution for all but the G4

  5. 3D dose distribution calculation in a voxelized human phantom by means of Monte Carlo method

    International Nuclear Information System (INIS)

    Abella, V.; Miro, R.; Juste, B.; Verdu, G.

    2010-01-01

    The aim of this work is to provide the reconstruction of a real human voxelized phantom by means of a MatLab program and the simulation of the irradiation of such phantom with the photon beam generated in a Theratron 780 (MDS Nordion) 60 Co radiotherapy unit, by using the Monte Carlo transport code MCNP (Monte Carlo N-Particle), version 5. The project results in 3D dose mapping calculations inside the voxelized antropomorphic head phantom. The program provides the voxelization by first processing the CT slices; the process follows a two-dimensional pixel and material identification algorithm on each slice and three-dimensional interpolation in order to describe the phantom geometry via small cubic cells, resulting in an MCNP input deck format output. Dose rates are calculated by using the MCNP5 tool FMESH, superimposed mesh tally, which gives the track length estimation of the particle flux in units of particles/cm 2 . Furthermore, the particle flux is converted into dose by using the conversion coefficients extracted from the NIST Physical Reference Data. The voxelization using a three-dimensional interpolation technique in combination with the use of the FMESH tool of the MCNP Monte Carlo code offers an optimal simulation which results in 3D dose mapping calculations inside anthropomorphic phantoms. This tool is very useful in radiation treatment assessments, in which voxelized phantoms are widely utilized.

  6. Behavioral Inhibition System activity is associated with increased amygdala and hippocampal gray matter volume: A voxel-based morphometry study.

    Science.gov (United States)

    Barrós-Loscertales, A; Meseguer, V; Sanjuán, A; Belloch, V; Parcet, M A; Torrubia, R; Avila, C

    2006-11-15

    Recent research has examined anxiety and hyperactivity in the amygdala and the anterior hippocampus while processing aversive stimuli. In order to determine whether these functional differences have a structural basis, optimized voxel-based morphometry was used to study the relationship between gray matter concentration in the brain and scores on a Behavioral Inhibition System measure (the Sensitivity to Punishment scale) in a sample of 63 male undergraduates. Results showed a positive correlation between Sensitivity to Punishment scores and gray matter volume in the amygdala and the hippocampal formation, that is, in areas that Gray, J.A., and McNaughton, N.J. (2000). The neuropsychology of anxiety. Oxford: Oxford Medical Publications. associated with the Behavioral Inhibition System.

  7. Voxel based statistical analysis method for microPET studies to assess the cerebral glucose metabolism in cat deafness model: comparison to ROI based method

    International Nuclear Information System (INIS)

    Kim, Jin Su; Lee, Jae Sung; Park, Min Hyun; Lee, Jong Jin; Kang, Hye Jin; Lee, Hyo Jeong; Oh, Seung Ha; Kim, Chong Sun; Jung, June Key; Lee, Myung Chul; Lee, Dong Soo; Lim, Sang Moo

    2005-01-01

    Imaging research on the brain of sensory-deprived cats using small animal PET scanner has gained interest since the abundant information about the sensory system of ths animal is available and close examination of the brain is possible due to larger size of its brain than mouse or rat. In this study, we have established the procedures for 3D voxel-based statistical analysis (SPM) of FDG PET image of cat brain, and confirmed using ROI based-method. FDG PET scans of 4 normal and 4 deaf cats were acquired for 30 minutes using microPET R4 scanner. Only the brain cortices were extracted using a masking and threshold method to facilitate spatial normalization. After spatial normalization and smoothing, 3D voxel-wise and ROI based t-test were performed to identify the regions with significant different FDG uptake between the normal and deaf cats. In ROI analysis, 26 ROIs were drawn on both hemispheres, and regional mean pixel value in each ROI was normalized to the global mean of the brain. Cat brains were spatially normalized well onto the target brain due to the removal of background activity. When cerebral glucose metabolism of deaf cats were compared to the normal controls after removing the effects of the global count, the glucose metabolism in the auditory cortex, head of caudate nucleus, and thalamus in both hemispheres of the deaf cats was significantly lower than that of the controls (P<0.01). No area showed a significantly increased metabolism in the deaf cats even in higher significance level (P<0.05). ROI analysis also showed significant reduction of glucose metabolism in the same region. This study established and confirmed a method for voxel-based analysis of animal PET data of cat brain, which showed high localization accuracy and specificity and was useful for examining the cerebral glucose metabolism in a cat cortical deafness model

  8. Voxel based statistical analysis method for microPET studies to assess the cerebral glucose metabolism in cat deafness model: comparison to ROI based method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Su; Lee, Jae Sung; Park, Min Hyun; Lee, Jong Jin; Kang, Hye Jin; Lee, Hyo Jeong; Oh, Seung Ha; Kim, Chong Sun; Jung, June Key; Lee, Myung Chul; Lee, Dong Soo [Seoul National University College of Medicine, Seoul (Korea, Republic of); Lim, Sang Moo [KIRAMS, Seoul (Korea, Republic of)

    2005-07-01

    Imaging research on the brain of sensory-deprived cats using small animal PET scanner has gained interest since the abundant information about the sensory system of ths animal is available and close examination of the brain is possible due to larger size of its brain than mouse or rat. In this study, we have established the procedures for 3D voxel-based statistical analysis (SPM) of FDG PET image of cat brain, and confirmed using ROI based-method. FDG PET scans of 4 normal and 4 deaf cats were acquired for 30 minutes using microPET R4 scanner. Only the brain cortices were extracted using a masking and threshold method to facilitate spatial normalization. After spatial normalization and smoothing, 3D voxel-wise and ROI based t-test were performed to identify the regions with significant different FDG uptake between the normal and deaf cats. In ROI analysis, 26 ROIs were drawn on both hemispheres, and regional mean pixel value in each ROI was normalized to the global mean of the brain. Cat brains were spatially normalized well onto the target brain due to the removal of background activity. When cerebral glucose metabolism of deaf cats were compared to the normal controls after removing the effects of the global count, the glucose metabolism in the auditory cortex, head of caudate nucleus, and thalamus in both hemispheres of the deaf cats was significantly lower than that of the controls (P<0.01). No area showed a significantly increased metabolism in the deaf cats even in higher significance level (P<0.05). ROI analysis also showed significant reduction of glucose metabolism in the same region. This study established and confirmed a method for voxel-based analysis of animal PET data of cat brain, which showed high localization accuracy and specificity and was useful for examining the cerebral glucose metabolism in a cat cortical deafness model.

  9. Comparison of internal radiation doses estimated by MIRD and voxel techniques for a ''family'' of phantoms

    International Nuclear Information System (INIS)

    Smith, T.

    2000-01-01

    The aim of this study was to use a new system of realistic voxel phantoms, based on computed tomography scanning of humans, to assess its ability to specify the internal dosimetry of selected human examples in comparison with the well-established MIRD system of mathematical anthropomorphic phantoms. Differences in specific absorbed fractions between the two systems were inferred by using organ dose estimates as the end point for comparison. A ''family'' of voxel phantoms, comprising an 8-week-old baby, a 7-year-old child and a 38-year-old adult, was used and a close match to these was made by interpolating between organ doses estimated for pairs of the series of six MIRD phantoms. Using both systems, doses were calculated for up to 22 organs for four radiopharmaceuticals with widely differing biodistribution and emission characteristics (technetium-99m pertechnetate, administered without thyroid blocking; iodine-123 iodide; indium-111 antimyosin; oxygen-15 water). Organ dose estimates under the MIRD system were derived using the software MIRDOSE 3, which incorporates specific absorbed fraction (SAF) values for the MIRD phantom series. The voxel system uses software based on the same dose calculation formula in conjunction with SAF values determined by Monte Carlo analysis at the GSF of the three voxel phantoms. Effective doses were also compared. Substantial differences in organ weights were observed between the two systems, 18% differing by more than a factor of 2. Out of a total of 238 organ dose comparisons, 5% differed by more than a factor of 2 between the systems; these included some doses to walls of the GI tract, a significant result in relation to their high tissue weighting factors. Some of the largest differences in dose were associated with organs of lower significance in terms of radiosensitivity (e.g. thymus). In this small series, voxel organ doses tended to exceed MIRD values, on average, and a 10% difference was significant when all 238 organ doses

  10. A stylized computational model of the head for the reference Japanese male

    International Nuclear Information System (INIS)

    Yamauchi, M.; Ishikawa, M.; Hoshi, M.

    2005-01-01

    Computational models of human anatomy, along with Monte Carlo radiation transport simulations, have been used by Snyder et al. [MIRD Pamphlet No. 5, revised (The Society of Nuclear Medicine, New York, 1978)], Cristy and Eckerman [ORNL/TM-8381/VI, Oak Ridge National Laboratory, Oak Ridge, TN (1987)] and Zubal et al. [Med. Phys. 21, 299-302 (1994)] to estimate internal organ doses from internal and external radiation sources. These were created using physiological data from Caucasoid subjects but not from other races. There is a need for research to determine whether the obvious differences from the Caucasoid anatomy make these models unsuitable for estimating the absorbed dose in other races such as the Mongoloid. We used the cranial region of the adult Japanese male to represent the Mongoloid race. This region contains organs that are highly sensitive to radiation. The cranial region of a physical phantom produced by KYOTO KAGAKU Co., LTD. using numerical data from a Japanese Reference Man [Tanaka, Nippon Acta. Radiol. 48, 509-513 (1988)] was used to supply the data for the geometry of a stylized computational model. Our computational model was constructed with equations rather than voxel-based, in order to deal with as small a number of parameters as possible in the computer simulation experiment. The accuracy of our computational model was checked by comparing simulated experimental results obtained with MCNP4C with actual doses measured with thermoluminescence dosimeters (TLDs) inside the physical phantom from which our computational model was constructed. The TLDs, whose margin of error is less than ±10%, were arranged at six positions. Co-60 was used as the radiation source. The irradiated dose was 2 Gy in terms of air kerma. In the computer simulation experiments, we used our computational model and Cristy's computational model, whose component data are those of the tissue substitute materials and of the human body as published in ICRU Report 46. The

  11. MO-F-BRA-04: Voxel-Based Statistical Analysis of Deformable Image Registration Error via a Finite Element Method.

    Science.gov (United States)

    Li, S; Lu, M; Kim, J; Glide-Hurst, C; Chetty, I; Zhong, H

    2012-06-01

    Purpose Clinical implementation of adaptive treatment planning is limited by the lack of quantitative tools to assess deformable image registration errors (R-ERR). The purpose of this study was to develop a method, using finite element modeling (FEM), to estimate registration errors based on mechanical changes resulting from them. Methods An experimental platform to quantify the correlation between registration errors and their mechanical consequences was developed as follows: diaphragm deformation was simulated on the CT images in patients with lung cancer using a finite element method (FEM). The simulated displacement vector fields (F-DVF) were used to warp each CT image to generate a FEM image. B-Spline based (Elastix) registrations were performed from reference to FEM images to generate a registration DVF (R-DVF). The F- DVF was subtracted from R-DVF. The magnitude of the difference vector was defined as the registration error, which is a consequence of mechanically unbalanced energy (UE), computed using 'in-house-developed' FEM software. A nonlinear regression model was used based on imaging voxel data and the analysis considered clustered voxel data within images. Results A regression model analysis showed that UE was significantly correlated with registration error, DVF and the product of registration error and DVF respectively with R̂2=0.73 (R=0.854). The association was verified independently using 40 tracked landmarks. A linear function between the means of UE values and R- DVF*R-ERR has been established. The mean registration error (N=8) was 0.9 mm. 85.4% of voxels fit this model within one standard deviation. Conclusions An encouraging relationship between UE and registration error has been found. These experimental results suggest the feasibility of UE as a valuable tool for evaluating registration errors, thus supporting 4D and adaptive radiotherapy. The research was supported by NIH/NCI R01CA140341. © 2012 American Association of Physicists in

  12. VoxHenry: FFT-Accelerated Inductance Extraction for Voxelized Geometries

    KAUST Repository

    Yucel, Abdulkadir C.

    2018-01-18

    VoxHenry, a fast Fourier transform (FFT)-accelerated integral-equation-based simulator for extracting frequency-dependent inductances and resistances of structures discretized by voxels, is presented. VoxHenry shares many features with the popular inductance extractor, FastHenry. Just like FastHenry, VoxHenry solves a combination of the electric volume integral equation and the current continuity equation, but with three distinctions that make VoxHenry suitable and extremely efficient for analyzing voxelized geometries: 1) it leverages a carefully selected set of piecewise-constant and piecewise-linear basis functions; 2) it exploits FFTs to accelerate the matrix-vector multiplications during the iterative solution of system of equations; and 3) it employs a sparse preconditioner to ensure the rapid convergence of iterative solution. VoxHenry is capable of accurately computing frequency-dependent inductances and resistances of arbitrarily shaped and large-scale structures on a desktop computer. The accuracy, efficiency, and applicability of VoxHenry are demonstrated through inductance analysis of various structures, including square and circular coils as well as arrays of RF inductors (situated over ground planes).

  13. Effects of posture on FDTD calculations of specific absorption rate in a voxel model of the human body

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, R P; Dimbylow, P J [National Radiological Protection Board, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom)

    2005-08-21

    A change in the posture of the human body can significantly affect the way in which it absorbs radiofrequency electromagnetic radiation. To study this, an anatomically realistic model of the body has been modified to develop new voxel models in postures other than the standard standing position with arms to the side. These postures were sitting, arms stretched out horizontally to the side and vertically above the head. Finite-difference time-domain (FDTD) calculations of the whole-body averaged specific energy absorption rate (SAR) have been performed from 10 MHz to 300 MHz at a resolution of 4 mm. Calculations show that the effect of a raised arm above the head posture was to increase the value of the whole-body averaged SAR at resonance by up to 35% when compared to the standard, arms by the side position. SAR values, both whole-body averaged and localized in the ankle, were used to derive the external electric field values required to produce the SAR basic restrictions of the ICNIRP guidelines. It was found that, in certain postures, external electric field reference levels alone would not provide a conservative estimate of localized SAR exposure and it would be necessary to invoke secondary reference levels on limb currents to provide compliance with restrictions.

  14. Effects of posture on FDTD calculations of specific absorption rate in a voxel model of the human body

    International Nuclear Information System (INIS)

    Findlay, R P; Dimbylow, P J

    2005-01-01

    A change in the posture of the human body can significantly affect the way in which it absorbs radiofrequency electromagnetic radiation. To study this, an anatomically realistic model of the body has been modified to develop new voxel models in postures other than the standard standing position with arms to the side. These postures were sitting, arms stretched out horizontally to the side and vertically above the head. Finite-difference time-domain (FDTD) calculations of the whole-body averaged specific energy absorption rate (SAR) have been performed from 10 MHz to 300 MHz at a resolution of 4 mm. Calculations show that the effect of a raised arm above the head posture was to increase the value of the whole-body averaged SAR at resonance by up to 35% when compared to the standard, arms by the side position. SAR values, both whole-body averaged and localized in the ankle, were used to derive the external electric field values required to produce the SAR basic restrictions of the ICNIRP guidelines. It was found that, in certain postures, external electric field reference levels alone would not provide a conservative estimate of localized SAR exposure and it would be necessary to invoke secondary reference levels on limb currents to provide compliance with restrictions

  15. Effects of posture on FDTD calculations of specific absorption rate in a voxel model of the human body

    Science.gov (United States)

    Findlay, R. P.; Dimbylow, P. J.

    2005-08-01

    A change in the posture of the human body can significantly affect the way in which it absorbs radiofrequency electromagnetic radiation. To study this, an anatomically realistic model of the body has been modified to develop new voxel models in postures other than the standard standing position with arms to the side. These postures were sitting, arms stretched out horizontally to the side and vertically above the head. Finite-difference time-domain (FDTD) calculations of the whole-body averaged specific energy absorption rate (SAR) have been performed from 10 MHz to 300 MHz at a resolution of 4 mm. Calculations show that the effect of a raised arm above the head posture was to increase the value of the whole-body averaged SAR at resonance by up to 35% when compared to the standard, arms by the side position. SAR values, both whole-body averaged and localized in the ankle, were used to derive the external electric field values required to produce the SAR basic restrictions of the ICNIRP guidelines. It was found that, in certain postures, external electric field reference levels alone would not provide a conservative estimate of localized SAR exposure and it would be necessary to invoke secondary reference levels on limb currents to provide compliance with restrictions.

  16. Influence of evanescent waves on the voxel profile in multipulse multiphoton polymerization nanofabrication

    International Nuclear Information System (INIS)

    Li Wei; Cao Tianxiang; Zhai Zhaohui; Yu Xuanyi; Zhang Xinzheng; Xu Jingjun

    2013-01-01

    The relationship between the profile of the structures obtained by multiphoton polymerization and the optical parameters of nanofabrication systems has been studied theoretically for a multipulse scheme. We find that the profile of sub-wavelength structures is greatly affected by the evanescent waves affect. Not only is the photocured polymer voxel affected by the beam profile, but the beam propagation behavior is influenced by the photocured polymer voxel. This gives us a new view of matter–light interactions in multipulse polymerization process, which is useful to the accurate control of the nanofabrication profile and the selection of new nanofabrication materials. (paper)

  17. Anatomical specificity of vascular endothelial growth factor expression in glioblastomas: a voxel-based mapping analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Xing [Capital Medical University, Department of Neurosurgery, Beijing Tiantan Hospital, Beijing (China); Wang, Yinyan [Capital Medical University, Department of Neurosurgery, Beijing Tiantan Hospital, Beijing (China); Capital Medical University, Department of Neuropathology, Beijing Neurosurgical Institute, Beijing (China); Wang, Kai; Ma, Jun; Li, Shaowu [Capital Medical University, Department of Neuroradiology, Beijing Tiantan Hospital, Beijing (China); Liu, Shuai [Chinese Academy of Medical Sciences and Peking Union Medical College, Departments of Neurosurgery, Peking Union Medical College Hospital, Beijing (China); Liu, Yong [Chinese Academy of Sciences, Brainnetome Center, Institute of Automation, Beijing (China); Jiang, Tao [Capital Medical University, Department of Neurosurgery, Beijing Tiantan Hospital, Beijing (China); Beijing Academy of Critical Illness in Brain, Department of Clinical Oncology, Beijing (China)

    2016-01-15

    The expression of vascular endothelial growth factor (VEGF) is a common genetic alteration in malignant gliomas and contributes to the angiogenesis of tumors. This study aimed to investigate the anatomical specificity of VEGF expression levels in glioblastomas using voxel-based neuroimaging analysis. Clinical information, MR scans, and immunohistochemistry stains of 209 patients with glioblastomas were reviewed. All tumor lesions were segmented manually and subsequently registered to standard brain space. Voxel-based regression analysis was performed to correlate the brain regions of tumor involvement with the level of VEGF expression. Brain regions identified as significantly associated with high or low VEGF expression were preserved following permutation correction. High VEGF expression was detected in 123 (58.9 %) of the 209 patients. Voxel-based statistical analysis demonstrated that high VEGF expression was more likely in tumors located in the left frontal lobe and the right caudate and low VEGF expression was more likely in tumors that occurred in the posterior region of the right lateral ventricle. Voxel-based neuroimaging analysis revealed the anatomic specificity of VEGF expression in glioblastoma, which may further our understanding of genetic heterogeneity during tumor origination. This finding provides primary theoretical support for potential future application of customized antiangiogenic therapy. (orig.)

  18. Anatomical specificity of vascular endothelial growth factor expression in glioblastomas: a voxel-based mapping analysis

    International Nuclear Information System (INIS)

    Fan, Xing; Wang, Yinyan; Wang, Kai; Ma, Jun; Li, Shaowu; Liu, Shuai; Liu, Yong; Jiang, Tao

    2016-01-01

    The expression of vascular endothelial growth factor (VEGF) is a common genetic alteration in malignant gliomas and contributes to the angiogenesis of tumors. This study aimed to investigate the anatomical specificity of VEGF expression levels in glioblastomas using voxel-based neuroimaging analysis. Clinical information, MR scans, and immunohistochemistry stains of 209 patients with glioblastomas were reviewed. All tumor lesions were segmented manually and subsequently registered to standard brain space. Voxel-based regression analysis was performed to correlate the brain regions of tumor involvement with the level of VEGF expression. Brain regions identified as significantly associated with high or low VEGF expression were preserved following permutation correction. High VEGF expression was detected in 123 (58.9 %) of the 209 patients. Voxel-based statistical analysis demonstrated that high VEGF expression was more likely in tumors located in the left frontal lobe and the right caudate and low VEGF expression was more likely in tumors that occurred in the posterior region of the right lateral ventricle. Voxel-based neuroimaging analysis revealed the anatomic specificity of VEGF expression in glioblastoma, which may further our understanding of genetic heterogeneity during tumor origination. This finding provides primary theoretical support for potential future application of customized antiangiogenic therapy. (orig.)

  19. A novel 3D volumetric voxel registration technique for volume-view-guided image registration of multiple imaging modalities

    International Nuclear Information System (INIS)

    Li Guang; Xie Huchen; Ning, Holly; Capala, Jacek; Arora, Barbara C.; Coleman, C. Norman; Camphausen, Kevin; Miller, Robert W.

    2005-01-01

    Purpose: To provide more clinically useful image registration with improved accuracy and reduced time, a novel technique of three-dimensional (3D) volumetric voxel registration of multimodality images is developed. Methods and Materials: This technique can register up to four concurrent images from multimodalities with volume view guidance. Various visualization effects can be applied, facilitating global and internal voxel registration. Fourteen computed tomography/magnetic resonance (CT/MR) image sets and two computed tomography/positron emission tomography (CT/PET) image sets are used. For comparison, an automatic registration technique using maximization of mutual information (MMI) and a three-orthogonal-planar (3P) registration technique are used. Results: Visually sensitive registration criteria for CT/MR and CT/PET have been established, including the homogeneity of color distribution. Based on the registration results of 14 CT/MR images, the 3D voxel technique is in excellent agreement with the automatic MMI technique and is indicatory of a global positioning error (defined as the means and standard deviations of the error distribution) using the 3P pixel technique: 1.8 deg ± 1.2 deg in rotation and 2.0 ± 1.3 (voxel unit) in translation. To the best of our knowledge, this is the first time that such positioning error has been addressed. Conclusion: This novel 3D voxel technique establishes volume-view-guided image registration of up to four modalities. It improves registration accuracy with reduced time, compared with the 3P pixel technique. This article suggests that any interactive and automatic registration should be safeguarded using the 3D voxel technique

  20. Measured body composition and geometrical data of four ``virtual family'' members for thermoregulatory modeling

    Science.gov (United States)

    Xu, Xiaojiang; Rioux, Timothy P.; MacLeod, Tynan; Patel, Tejash; Rome, Maxwell N.; Potter, Adam W.

    2017-03-01

    The purpose of this paper is to develop a database of tissue composition, distribution, volume, surface area, and skin thickness from anatomically correct human models, the virtual family. These models were based on high-resolution magnetic resonance imaging (MRI) of human volunteers, including two adults (male and female) and two children (boy and girl). In the segmented image dataset, each voxel is associated with a label which refers to a tissue type that occupies up that specific cubic millimeter of the body. The tissue volume was calculated from the number of the voxels with the same label. Volumes of 24 organs in body and volumes of 7 tissues in 10 specific body regions were calculated. Surface area was calculated from the collection of voxels that are touching the exterior air. Skin thicknesses were estimated from its volume and surface area. The differences between the calculated and original masses were about 3 % or less for tissues or organs that are important to thermoregulatory modeling, e.g., muscle, skin, and fat. This accurate database of body tissue distributions and geometry is essential for the development of human thermoregulatory models. Data derived from medical imaging provide new effective tools to enhance thermal physiology research and gain deeper insight into the mechanisms of how the human body maintains heat balance.

  1. Age and gender effects on normal regional cerebral blood flow studied using two different voxel-based statistical analyses; Effets de l'age et du genre sur la perfusion cerebrale regionale etudiee par deux methodes d'analyse statistique voxel-par-voxel

    Energy Technology Data Exchange (ETDEWEB)

    Pirson, A.S.; George, J.; Krug, B.; Vander Borght, T. [Universite Catholique de Louvain, Service de Medecine Nucleaire, Cliniques Universitaires de Mont-Godinne, Yvoir (Belgium); Van Laere, K. [Leuven Univ. Hospital, Nuclear Medicine Div. (Belgium); Jamart, J. [Universite Catholique de Louvain, Dept. de Biostatistiques, Cliniques Universitaires de Mont-Godinne, Yvoir (Belgium); D' Asseler, Y. [Ghent Univ., Medical Signal and Image Processing Dept. (MEDISIP), Faculty of applied sciences (Belgium); Minoshima, S. [Washington Univ., Dept. of Radiology, Seattle (United States)

    2009-10-15

    Fully automated analysis programs have been applied more and more to aid for the reading of regional cerebral blood flow SPECT study. They are increasingly based on the comparison of the patient study with a normal database. In this study, we evaluate the ability of Three-Dimensional Stereotactic Surface Projection (3 D-S.S.P.) to isolate effects of age and gender in a previously studied normal population. The results were also compared with those obtained using Statistical Parametric Mapping (S.P.M.99). Methods Eighty-nine {sup 99m}Tc-E.C.D.-SPECT studies performed in carefully screened healthy volunteers (46 females, 43 males; age 20 - 81 years) were analysed using 3 D-S.S.P.. A multivariate analysis based on the general linear model was performed with regions as intra-subject factor, gender as inter-subject factor and age as co-variate. Results Both age and gender had a significant interaction effect with regional tracer uptake. An age-related decline (p < 0.001) was found in the anterior cingulate gyrus, left frontal association cortex and left insula. Bilateral occipital association and left primary visual cortical uptake showed a significant relative increase with age (p < 0.001). Concerning the gender effect, women showed higher uptake (p < 0.01) in the parietal and right sensorimotor cortices. An age by gender interaction (p < 0.01) was only found in the left medial frontal cortex. The results were consistent with those obtained with S.P.M.99. Conclusion 3 D-S.S.P. analysis of normal r.C.B.F. variability is consistent with the literature and other automated voxel-based techniques, which highlight the effects of both age and gender. (authors)

  2. Application of voxel phantoms and Monte Carlo methods to internal and external dosimetry

    International Nuclear Information System (INIS)

    Hunt, J.G.; Santos, D. de S.; Silva, F.C. da; Dantas, B.M.; Azeredo, A.; Malatova, I.; Foltanova, S.

    2000-01-01

    Voxel phantoms and the Monte Carlo technique are applied to the areas of calibration of in vivo measurement systems, Specific Effective Energy calculations, and dose calculations due to external sources of radiation. The main advantages of the use of voxel phantoms is their high level of detail of body structures, and the ease with which their physical dimensions can be changed. For the simulation of in vivo measurement systems for calibration purposes, a voxel phantom with a format of 871 'slices' each of 277 x 148 picture elements was used. The Monte Carlo technique is used to simulate the tissue contamination, to transport the photons through the tissues and to simulate the detection of the radiation. For benchmarking, the program was applied to obtain calibration factors for the in vivo measurement of 241 Am, U nat and 137 Cs deposited in various tissues or in the whole body, as measured with a NaI or Gernlanium detector. The calculated and real activities in all cases were found to be in good agreement. For the calculation of Specific Effective Energies (SEEs) and the calculation of dose received from external sources, the Yale voxel phantom with a format of 493 slices' each of 87 x 147 picture elements was used. The Monte Carlo program was developed to calculate external doses due to environmental, occupational or accidental exposures. The program calculates tissue and effective dose for the following geometries: cloud immersion, ground contamination, X-ray irradiation, point source irradiation or others. The benchmarking results for the external source are in good agreement with the measured values. The results obtained for the SEEs are compatible with the ICRP values. (author)

  3. Combined brain voxel-based morphometry and diffusion tensor imaging study in idiopathic restless legs syndrome patients.

    Science.gov (United States)

    Rizzo, G; Manners, D; Vetrugno, R; Tonon, C; Malucelli, E; Plazzi, G; Marconi, S; Pizza, F; Testa, C; Provini, F; Montagna, P; Lodi, R

    2012-07-01

      The aim of this study was to evaluate the presence of abnormalities in the brain of patients with restless legs syndrome (RLS) using voxel-based morphometry and diffusion tensor imaging (DTI).   Twenty patients and twenty controls were studied. Voxel-based morphometry analysis was performed using statistical parametric mapping (SPM8) and FSL-VBM software tools. For voxel-wise analysis of DTI, tract-based spatial statistics (TBSS) and SPM8 were used.   Applying an appropriate threshold of probability, no significant results were found either in comparison or in correlation analyses.   Our data argue against clear structural or microstructural abnormalities in the brain of patients with idiopathic RLS, suggesting a prevalent role of functional or metabolic impairment. © 2011 The Author(s) European Journal of Neurology © 2011 EFNS.

  4. Internal dosimetry estimates using voxelized reference phantoms for thyroid agents

    International Nuclear Information System (INIS)

    Hoseinian-Azghadi, E.; Rafat-Motavalli, L.; Miri-Hakimabad, H.

    2014-01-01

    This work presents internal dosimetry estimates for diagnostic procedures performed for thyroid disorders by relevant radiopharmaceuticals. The organ doses for 131 Iodine, 123 Iodine and 99m Tc incorporated into the body were calculated for the International Commission on Radiological Protection (ICRP) reference voxel phantoms using the Monte Carlo transport method. A comparison between different thyroid uptakes of iodine in the range of 0–55% was made, and the effect of various techniques for administration of 99m Tc on organ doses was studied. To investigate the necessity of calculating organ dose from all source regions, the major source organ and its contribution to total dose were specified for each target organ. Moreover, we compared effective dose in ICRP voxel phantoms with that in stylized phantoms. In our method, we directly calculated the organ dose without using the S values or SAFs, as is commonly done. Hence, a distribution of the absorbed dose to entire tissues was obtained. The chord length distributions (CLDs) were also computed for the selected source–target pairs to make comparison across the genders. The results showed that the S values for radionuclides in the thyroid are not sufficient for calculating the organ doses, especially for 123 I and 99m Tc. The thyroid and its neighboring organs receive a greater dose as thyroid uptake increases. Our comparisons also revealed an underestimation of organ doses reported for the stylized phantoms compared with the values based on the ICRP voxel phantoms in the uptake range of 5–55%, and an overestimation of absorbed dose by up to 2-fold for Iodine administration using blocking agent and for 99m Tc incorporation. (author)

  5. The effect of voxel size on dose distribution in Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Yani, Sitti; Dirgayussa, I Gde E.; Haryanto, Freddy; Arif, Idam; Rhani, Moh. Fadhillah

    2015-01-01

    Recently, Monte Carlo (MC) calculation method has reported as the most accurate method of predicting dose distributions in radiotherapy. The MC code system (especially DOSXYZnrc) has been used to investigate the different voxel (volume elements) sizes effect on the accuracy of dose distributions. To investigate this effect on dosimetry parameters, calculations were made with three different voxel sizes. The effects were investigated with dose distribution calculations for seven voxel sizes: 1 × 1 × 0.1 cm 3 , 1 × 1 × 0.5 cm 3 , and 1 × 1 × 0.8 cm 3 . The 1 × 10 9 histories were simulated in order to get statistical uncertainties of 2%. This simulation takes about 9-10 hours to complete. Measurements are made with field sizes 10 × 10 cm2 for the 6 MV photon beams with Gaussian intensity distribution FWHM 0.1 cm and SSD 100.1 cm. MC simulated and measured dose distributions in a water phantom. The output of this simulation i.e. the percent depth dose and dose profile in d max from the three sets of calculations are presented and comparisons are made with the experiment data from TTSH (Tan Tock Seng Hospital, Singapore) in 0-5 cm depth. Dose that scored in voxels is a volume averaged estimate of the dose at the center of a voxel. The results in this study show that the difference between Monte Carlo simulation and experiment data depend on the voxel size both for percent depth dose (PDD) and profile dose. PDD scan on Z axis (depth) of water phantom, the big difference obtain in the voxel size 1 × 1 × 0.8 cm 3 about 17%. In this study, the profile dose focused on high gradient dose area. Profile dose scan on Y axis and the big difference get in the voxel size 1 × 1 × 0.1 cm 3 about 12%. This study demonstrated that the arrange voxel in Monte Carlo simulation becomes important

  6. The effect of voxel size on dose distribution in Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    Science.gov (United States)

    Yani, Sitti; Dirgayussa, I. Gde E.; Rhani, Moh. Fadhillah; Haryanto, Freddy; Arif, Idam

    2015-09-01

    Recently, Monte Carlo (MC) calculation method has reported as the most accurate method of predicting dose distributions in radiotherapy. The MC code system (especially DOSXYZnrc) has been used to investigate the different voxel (volume elements) sizes effect on the accuracy of dose distributions. To investigate this effect on dosimetry parameters, calculations were made with three different voxel sizes. The effects were investigated with dose distribution calculations for seven voxel sizes: 1 × 1 × 0.1 cm3, 1 × 1 × 0.5 cm3, and 1 × 1 × 0.8 cm3. The 1 × 109 histories were simulated in order to get statistical uncertainties of 2%. This simulation takes about 9-10 hours to complete. Measurements are made with field sizes 10 × 10 cm2 for the 6 MV photon beams with Gaussian intensity distribution FWHM 0.1 cm and SSD 100.1 cm. MC simulated and measured dose distributions in a water phantom. The output of this simulation i.e. the percent depth dose and dose profile in dmax from the three sets of calculations are presented and comparisons are made with the experiment data from TTSH (Tan Tock Seng Hospital, Singapore) in 0-5 cm depth. Dose that scored in voxels is a volume averaged estimate of the dose at the center of a voxel. The results in this study show that the difference between Monte Carlo simulation and experiment data depend on the voxel size both for percent depth dose (PDD) and profile dose. PDD scan on Z axis (depth) of water phantom, the big difference obtain in the voxel size 1 × 1 × 0.8 cm3 about 17%. In this study, the profile dose focused on high gradient dose area. Profile dose scan on Y axis and the big difference get in the voxel size 1 × 1 × 0.1 cm3 about 12%. This study demonstrated that the arrange voxel in Monte Carlo simulation becomes important.

  7. Accuracy and reproducibility of voxel based superimposition of cone beam computed tomography models on the anterior cranial base and the zygomatic arches

    NARCIS (Netherlands)

    Nada, R.M.; Maal, T.J.J.; Breuning, K.H.; Berge, S.J.; Mostafa, Y.A.; Kuijpers-Jagtman, A.M.

    2011-01-01

    Superimposition of serial Cone Beam Computed Tomography (CBCT) scans has become a valuable tool for three dimensional (3D) assessment of treatment effects and stability. Voxel based image registration is a newly developed semi-automated technique for superimposition and comparison of two CBCT scans.

  8. Voxel-Based Morphometry ALE meta-analysis of Bipolar Disorder

    Science.gov (United States)

    Magana, Omar; Laird, Robert

    2012-03-01

    A meta-analysis was performed independently to view the changes in gray matter (GM) on patients with Bipolar disorder (BP). The meta-analysis was conducted on a Talairach Space using GingerALE to determine the voxels and their permutation. In order to achieve the data acquisition, published experiments and similar research studies were uploaded onto the online Voxel-Based Morphometry database (VBM). By doing so, coordinates of activation locations were extracted from Bipolar disorder related journals utilizing Sleuth. Once the coordinates of given experiments were selected and imported to GingerALE, a Gaussian was performed on all foci points to create the concentration points of GM on BP patients. The results included volume reductions and variations of GM between Normal Healthy controls and Patients with Bipolar disorder. A significant amount of GM clusters were obtained in Normal Healthy controls over BP patients on the right precentral gyrus, right anterior cingulate, and the left inferior frontal gyrus. In future research, more published journals could be uploaded onto the database and another VBM meta-analysis could be performed including more activation coordinates or a variation of age groups.

  9. WE-AB-202-12: Voxel-Wise Analysis of Apparent Diffusion Coefficient and Perfusion Maps in Multi-Parametric MRI of Prostate Cancer

    International Nuclear Information System (INIS)

    Engstroem, K; Casares-Magaz, O; Muren, L; Roervik, J; Andersen, E

    2016-01-01

    Purpose: Multi-parametric MRI (mp-MRI) is being introduced in radiotherapy (RT) of prostate cancer, including for tumour delineation in focal boosting strategies. We recently developed an image-based tumour control probability model, based on cell density distributions derived from apparent diffusion coefficient (ADC) maps. Beyond tumour volume and cell densities, tumour hypoxia is also an important determinant of RT response. Since tissue perfusion from mp-MRI has been related to hypoxia we have explored the patterns of ADC and perfusion maps, and the relations between them, inside and outside prostate index lesions. Methods: ADC and perfusion maps from 20 prostate cancer patients were used, with the prostate and index lesion delineated by a dedicated uro-radiologist. To reduce noise, the maps were averaged over a 3×3×3 voxel cube. Associations between different ADC and perfusion histogram parameters within the prostate, inside and outside the index lesion, were evaluated with the Pearson’s correlation coefficient. In the voxel-wise analysis, scatter plots of ADC vs perfusion were analysed for voxels in the prostate, inside and outside of the index lesion, again with the associations quantified with the Pearson’s correlation coefficient. Results: Overall ADC was lower inside the index lesion than in the normal prostate as opposed to ktrans that was higher inside the index lesion than outside. In the histogram analysis, the minimum ktrans was significantly correlated with the maximum ADC (Pearson=0.47; p=0.03). At the voxel level, 15 of the 20 cases had a statistically significant inverse correlation between ADC and perfusion inside the index lesion; ten of the cases had a Pearson < −0.4. Conclusion: The minimum value of ktrans across the tumour was correlated to the maximum ADC. However, on the voxel level, the ‘local’ ktrans in the index lesion is inversely (i.e. negatively) correlated to the ‘local’ ADC in most patients. Research agreement with

  10. A Voxel-Based Approach to Explore Local Dose Differences Associated With Radiation-Induced Lung Damage

    Energy Technology Data Exchange (ETDEWEB)

    Palma, Giuseppe [Institute of Biostructure and Bioimaging, National Research Council, Naples (Italy); Monti, Serena [IRCCS SDN, Naples (Italy); D' Avino, Vittoria [Institute of Biostructure and Bioimaging, National Research Council, Naples (Italy); Conson, Manuel [Institute of Biostructure and Bioimaging, National Research Council, Naples (Italy); Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Naples (Italy); Liuzzi, Raffaele [Institute of Biostructure and Bioimaging, National Research Council, Naples (Italy); Pressello, Maria Cristina [Department of Health Physics, S. Camillo-Forlanini Hospital, Rome (Italy); Donato, Vittorio [Department of Radiation Oncology, S. Camillo-Forlanini Hospital, Rome (Italy); Deasy, Joseph O. [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY (United States); Quarantelli, Mario [Institute of Biostructure and Bioimaging, National Research Council, Naples (Italy); Pacelli, Roberto [Institute of Biostructure and Bioimaging, National Research Council, Naples (Italy); Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Naples (Italy); Cella, Laura, E-mail: laura.cella@cnr.it [Institute of Biostructure and Bioimaging, National Research Council, Naples (Italy)

    2016-09-01

    Purpose: To apply a voxel-based (VB) approach aimed at exploring local dose differences associated with late radiation-induced lung damage (RILD). Methods and Materials: An interinstitutional database of 98 patients who were Hodgkin lymphoma (HL) survivors treated with postchemotherapy supradiaphragmatic radiation therapy was analyzed in the study. Eighteen patients experienced late RILD, classified according to the Radiation Therapy Oncology Group scoring system. Each patient's computed tomographic (CT) scan was normalized to a single reference case anatomy (common coordinate system, CCS) through a log-diffeomorphic approach. The obtained deformation fields were used to map the dose of each patient into the CCS. The coregistration robustness and the dose mapping accuracy were evaluated by geometric and dose scores. Two different statistical mapping schemes for nonparametric multiple permutation inference on dose maps were applied, and the corresponding P<.05 significance lung subregions were generated. A receiver operating characteristic (ROC)-based test was performed on the mean dose extracted from each subregion. Results: The coregistration process resulted in a geometrically robust and accurate dose warping. A significantly higher dose was consistently delivered to RILD patients in voxel clusters near the peripheral medial-basal portion of the lungs. The area under the ROC curves (AUC) from the mean dose of the voxel clusters was higher than the corresponding AUC derived from the total lung mean dose. Conclusions: We implemented a framework including a robust registration process and a VB approach accounting for the multiple comparison problem in dose-response modeling, and applied it to a cohort of HL survivors to explore a local dose–RILD relationship in the lungs. Patients with RILD received a significantly greater dose in parenchymal regions where low doses (∼6 Gy) were delivered. Interestingly, the relation between differences in the high

  11. Variability of average SUV from several hottest voxels is lower than that of SUVmax and SUVpeak

    Energy Technology Data Exchange (ETDEWEB)

    Laffon, E. [CHU de Bordeaux, Service de Medecine Nucleaire, Hopital du Haut-Leveque, Pessac (France); Universite de Bordeaux 2, Centre de Recherche Cardio-Thoracique, Bordeaux (France); INSERM U 1045, Centre de Recherche Cardio-Thoracique, Bordeaux (France); Lamare, F.; Clermont, H. de [CHU de Bordeaux, Service de Medecine Nucleaire, Hopital du Haut-Leveque, Pessac (France); Burger, I.A. [University Hospital of Zurich, Division of Nuclear Medicine, Department Medical Radiology, Zurich (Switzerland); Marthan, R. [Universite de Bordeaux 2, Centre de Recherche Cardio-Thoracique, Bordeaux (France); INSERM U 1045, Centre de Recherche Cardio-Thoracique, Bordeaux (France)

    2014-08-15

    To assess variability of the average standard uptake value (SUV) computed by varying the number of hottest voxels within an {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG)-positive lesion. This SUV metric was compared with the maximal SUV (SUV{sub max}: the hottest voxel) and peak SUV (SUV{sub peak}: SUV{sub max} and its 26 neighbouring voxels). Twelve lung cancer patients (20 lesions) were analysed using PET dynamic acquisition involving ten successive 2.5-min frames. In each frame and lesion, average SUV obtained from the N = 5, 10, 15, 20, 25 or 30 hottest voxels (SUV{sub max-N}){sub ,} SUV{sub max} and SUV{sub peak} were assessed. The relative standard deviations (SDrs) from ten frames were calculated for each SUV metric and lesion, yielding the mean relative SD from 20 lesions for each SUV metric (SDr{sub N}, SDr{sub max} and SDr{sub peak}), and hence relative measurement error and repeatability (MEr-R). For each N, SDr{sub N} was significantly lower than SDr{sub max} and SDr{sub peak}. SDr{sub N} correlated strongly with N: 6.471 x N{sup -0.103} (r = 0.994; P < 0.01). MEr-R of SUV{sub max-30} was 8.94-12.63 % (95 % CL), versus 13.86-19.59 % and 13.41-18.95 % for SUV{sub max} and SUV{sub peak} respectively. Variability of SUV{sub max-N} is significantly lower than for SUV{sub max} and SUV{sub peak}. Further prospective studies should be performed to determine the optimal total hottest volume, as voxel volume may depend on the PET system. (orig.)

  12. A voxel-based investigation for MRI-only radiotherapy of the brain using ultra short echo times

    DEFF Research Database (Denmark)

    Edmund, Jens Morgenthaler; Kjer, Hans Martin; Van Leemput, Koen

    2014-01-01

    including or excluding additional spatial information. Approach 3 used a statistical regression correlating MRI voxels with their corresponding CT voxels. A similar photon and proton treatment plan was generated for a target positioned between the nasal cavity and the brainstem for all patients. The CT...... receiving cranial irradiation, each containing a co-registered MRI and CT scan, were included. An ultra short echo time MRI sequence for bone visualization was used. Six methods were investigated for three popular types of voxel-based approaches; (1) threshold-based segmentation, (2) Bayesian segmentation...... significantly better than the threshold and Bayesian segmentation methods (excluding spatial information). All methods agreed significantly better with CT than a reference water MRI comparison. The mean dosimetric deviation for photons and protons compared to the CT was about 2% and highest in the gradient dose...

  13. How distributed processing produces false negatives in voxel-based lesion-deficit analyses.

    Science.gov (United States)

    Gajardo-Vidal, Andrea; Lorca-Puls, Diego L; Crinion, Jennifer T; White, Jitrachote; Seghier, Mohamed L; Leff, Alex P; Hope, Thomas M H; Ludersdorfer, Philipp; Green, David W; Bowman, Howard; Price, Cathy J

    2018-07-01

    In this study, we hypothesized that if the same deficit can be caused by damage to one or another part of a distributed neural system, then voxel-based analyses might miss critical lesion sites because preservation of each site will not be consistently associated with preserved function. The first part of our investigation used voxel-based multiple regression analyses of data from 359 right-handed stroke survivors to identify brain regions where lesion load is associated with picture naming abilities after factoring out variance related to object recognition, semantics and speech articulation so as to focus on deficits arising at the word retrieval level. A highly significant lesion-deficit relationship was identified in left temporal and frontal/premotor regions. Post-hoc analyses showed that damage to either of these sites caused the deficit of interest in less than half the affected patients (76/162 = 47%). After excluding all patients with damage to one or both of the identified regions, our second analysis revealed a new region, in the anterior part of the left putamen, which had not been previously detected because many patients had the deficit of interest after temporal or frontal damage that preserved the left putamen. The results illustrate how (i) false negative results arise when the same deficit can be caused by different lesion sites; (ii) some of the missed effects can be unveiled by adopting an iterative approach that systematically excludes patients with lesions to the areas identified in previous analyses, (iii) statistically significant voxel-based lesion-deficit mappings can be driven by a subset of patients; (iv) focal lesions to the identified regions are needed to determine whether the deficit of interest is the consequence of focal damage or much more extensive damage that includes the identified region; and, finally, (v) univariate voxel-based lesion-deficit mappings cannot, in isolation, be used to predict outcome in other patients

  14. Diffusion tensor imaging and voxel based morphometry study in amyotrophic lateral sclerosis: relationships with motor disability

    OpenAIRE

    Thivard, Lionel; Pradat, Pierre‐François; Lehéricy, Stéphane; Lacomblez, Lucette; Dormont, Didier; Chiras, Jacques; Benali, Habib; Meininger, Vincent

    2007-01-01

    International audience; The aim of this study was to investigate the extent of cortical and subcortical lesions in amyotrophic lateral sclerosis (ALS) using, in combination, voxel based diffusion tensor imaging (DTI) and voxel based morphometry (VBM). We included 15 patients with definite or probable ALS and 25 healthy volunteers. Patients were assessed using the revised ALS Functional Rating Scale (ALSFRS-R). In patients, reduced fractional anisotropy was found in bilateral corticospinal tra...

  15. The effect of voxel size on dose distribution in Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yani, Sitti, E-mail: sitti.yani@s.itb.ac.id [Nuclear Physics and Biophysics Division, Physics Department, Institut Teknologi Bandung (Indonesia); Akademi Kebidanan Pelita Ibu, Kendari (Indonesia); Dirgayussa, I Gde E.; Haryanto, Freddy; Arif, Idam [Nuclear Physics and Biophysics Division, Physics Department, Institut Teknologi Bandung (Indonesia); Rhani, Moh. Fadhillah [Tan Tock Seng Hospital (Singapore)

    2015-09-30

    Recently, Monte Carlo (MC) calculation method has reported as the most accurate method of predicting dose distributions in radiotherapy. The MC code system (especially DOSXYZnrc) has been used to investigate the different voxel (volume elements) sizes effect on the accuracy of dose distributions. To investigate this effect on dosimetry parameters, calculations were made with three different voxel sizes. The effects were investigated with dose distribution calculations for seven voxel sizes: 1 × 1 × 0.1 cm{sup 3}, 1 × 1 × 0.5 cm{sup 3}, and 1 × 1 × 0.8 cm{sup 3}. The 1 × 10{sup 9} histories were simulated in order to get statistical uncertainties of 2%. This simulation takes about 9-10 hours to complete. Measurements are made with field sizes 10 × 10 cm2 for the 6 MV photon beams with Gaussian intensity distribution FWHM 0.1 cm and SSD 100.1 cm. MC simulated and measured dose distributions in a water phantom. The output of this simulation i.e. the percent depth dose and dose profile in d{sub max} from the three sets of calculations are presented and comparisons are made with the experiment data from TTSH (Tan Tock Seng Hospital, Singapore) in 0-5 cm depth. Dose that scored in voxels is a volume averaged estimate of the dose at the center of a voxel. The results in this study show that the difference between Monte Carlo simulation and experiment data depend on the voxel size both for percent depth dose (PDD) and profile dose. PDD scan on Z axis (depth) of water phantom, the big difference obtain in the voxel size 1 × 1 × 0.8 cm{sup 3} about 17%. In this study, the profile dose focused on high gradient dose area. Profile dose scan on Y axis and the big difference get in the voxel size 1 × 1 × 0.1 cm{sup 3} about 12%. This study demonstrated that the arrange voxel in Monte Carlo simulation becomes important.

  16. Regional Grey Matter Structure Differences between Transsexuals and Healthy Controls—A Voxel Based Morphometry Study

    Science.gov (United States)

    Simon, Lajos; Kozák, Lajos R.; Simon, Viktória; Czobor, Pál; Unoka, Zsolt; Szabó, Ádám; Csukly, Gábor

    2013-01-01

    Gender identity disorder (GID) refers to transsexual individuals who feel that their assigned biological gender is incongruent with their gender identity and this cannot be explained by any physical intersex condition. There is growing scientific interest in the last decades in studying the neuroanatomy and brain functions of transsexual individuals to better understand both the neuroanatomical features of transsexualism and the background of gender identity. So far, results are inconclusive but in general, transsexualism has been associated with a distinct neuroanatomical pattern. Studies mainly focused on male to female (MTF) transsexuals and there is scarcity of data acquired on female to male (FTM) transsexuals. Thus, our aim was to analyze structural MRI data with voxel based morphometry (VBM) obtained from both FTM and MTF transsexuals (n = 17) and compare them to the data of 18 age matched healthy control subjects (both males and females). We found differences in the regional grey matter (GM) structure of transsexual compared with control subjects, independent from their biological gender, in the cerebellum, the left angular gyrus and in the left inferior parietal lobule. Additionally, our findings showed that in several brain areas, regarding their GM volume, transsexual subjects did not differ significantly from controls sharing their gender identity but were different from those sharing their biological gender (areas in the left and right precentral gyri, the left postcentral gyrus, the left posterior cingulate, precuneus and calcarinus, the right cuneus, the right fusiform, lingual, middle and inferior occipital, and inferior temporal gyri). These results support the notion that structural brain differences exist between transsexual and healthy control subjects and that majority of these structural differences are dependent on the biological gender. PMID:24391851

  17. Regional grey matter structure differences between transsexuals and healthy controls--a voxel based morphometry study.

    Science.gov (United States)

    Simon, Lajos; Kozák, Lajos R; Simon, Viktória; Czobor, Pál; Unoka, Zsolt; Szabó, Ádám; Csukly, Gábor

    2013-01-01

    Gender identity disorder (GID) refers to transsexual individuals who feel that their assigned biological gender is incongruent with their gender identity and this cannot be explained by any physical intersex condition. There is growing scientific interest in the last decades in studying the neuroanatomy and brain functions of transsexual individuals to better understand both the neuroanatomical features of transsexualism and the background of gender identity. So far, results are inconclusive but in general, transsexualism has been associated with a distinct neuroanatomical pattern. Studies mainly focused on male to female (MTF) transsexuals and there is scarcity of data acquired on female to male (FTM) transsexuals. Thus, our aim was to analyze structural MRI data with voxel based morphometry (VBM) obtained from both FTM and MTF transsexuals (n = 17) and compare them to the data of 18 age matched healthy control subjects (both males and females). We found differences in the regional grey matter (GM) structure of transsexual compared with control subjects, independent from their biological gender, in the cerebellum, the left angular gyrus and in the left inferior parietal lobule. Additionally, our findings showed that in several brain areas, regarding their GM volume, transsexual subjects did not differ significantly from controls sharing their gender identity but were different from those sharing their biological gender (areas in the left and right precentral gyri, the left postcentral gyrus, the left posterior cingulate, precuneus and calcarinus, the right cuneus, the right fusiform, lingual, middle and inferior occipital, and inferior temporal gyri). These results support the notion that structural brain differences exist between transsexual and healthy control subjects and that majority of these structural differences are dependent on the biological gender.

  18. Regional grey matter structure differences between transsexuals and healthy controls--a voxel based morphometry study.

    Directory of Open Access Journals (Sweden)

    Lajos Simon

    Full Text Available Gender identity disorder (GID refers to transsexual individuals who feel that their assigned biological gender is incongruent with their gender identity and this cannot be explained by any physical intersex condition. There is growing scientific interest in the last decades in studying the neuroanatomy and brain functions of transsexual individuals to better understand both the neuroanatomical features of transsexualism and the background of gender identity. So far, results are inconclusive but in general, transsexualism has been associated with a distinct neuroanatomical pattern. Studies mainly focused on male to female (MTF transsexuals and there is scarcity of data acquired on female to male (FTM transsexuals. Thus, our aim was to analyze structural MRI data with voxel based morphometry (VBM obtained from both FTM and MTF transsexuals (n = 17 and compare them to the data of 18 age matched healthy control subjects (both males and females. We found differences in the regional grey matter (GM structure of transsexual compared with control subjects, independent from their biological gender, in the cerebellum, the left angular gyrus and in the left inferior parietal lobule. Additionally, our findings showed that in several brain areas, regarding their GM volume, transsexual subjects did not differ significantly from controls sharing their gender identity but were different from those sharing their biological gender (areas in the left and right precentral gyri, the left postcentral gyrus, the left posterior cingulate, precuneus and calcarinus, the right cuneus, the right fusiform, lingual, middle and inferior occipital, and inferior temporal gyri. These results support the notion that structural brain differences exist between transsexual and healthy control subjects and that majority of these structural differences are dependent on the biological gender.

  19. Automated Coarse Registration of Point Clouds in 3d Urban Scenes Using Voxel Based Plane Constraint

    Science.gov (United States)

    Xu, Y.; Boerner, R.; Yao, W.; Hoegner, L.; Stilla, U.

    2017-09-01

    For obtaining a full coverage of 3D scans in a large-scale urban area, the registration between point clouds acquired via terrestrial laser scanning (TLS) is normally mandatory. However, due to the complex urban environment, the automatic registration of different scans is still a challenging problem. In this work, we propose an automatic marker free method for fast and coarse registration between point clouds using the geometric constrains of planar patches under a voxel structure. Our proposed method consists of four major steps: the voxelization of the point cloud, the approximation of planar patches, the matching of corresponding patches, and the estimation of transformation parameters. In the voxelization step, the point cloud of each scan is organized with a 3D voxel structure, by which the entire point cloud is partitioned into small individual patches. In the following step, we represent points of each voxel with the approximated plane function, and select those patches resembling planar surfaces. Afterwards, for matching the corresponding patches, a RANSAC-based strategy is applied. Among all the planar patches of a scan, we randomly select a planar patches set of three planar surfaces, in order to build a coordinate frame via their normal vectors and their intersection points. The transformation parameters between scans are calculated from these two coordinate frames. The planar patches set with its transformation parameters owning the largest number of coplanar patches are identified as the optimal candidate set for estimating the correct transformation parameters. The experimental results using TLS datasets of different scenes reveal that our proposed method can be both effective and efficient for the coarse registration task. Especially, for the fast orientation between scans, our proposed method can achieve a registration error of less than around 2 degrees using the testing datasets, and much more efficient than the classical baseline methods.

  20. Comparison of classification methods for voxel-based prediction of acute ischemic stroke outcome following intra-arterial intervention

    Science.gov (United States)

    Winder, Anthony J.; Siemonsen, Susanne; Flottmann, Fabian; Fiehler, Jens; Forkert, Nils D.

    2017-03-01

    Voxel-based tissue outcome prediction in acute ischemic stroke patients is highly relevant for both clinical routine and research. Previous research has shown that features extracted from baseline multi-parametric MRI datasets have a high predictive value and can be used for the training of classifiers, which can generate tissue outcome predictions for both intravenous and conservative treatments. However, with the recent advent and popularization of intra-arterial thrombectomy treatment, novel research specifically addressing the utility of predictive classi- fiers for thrombectomy intervention is necessary for a holistic understanding of current stroke treatment options. The aim of this work was to develop three clinically viable tissue outcome prediction models using approximate nearest-neighbor, generalized linear model, and random decision forest approaches and to evaluate the accuracy of predicting tissue outcome after intra-arterial treatment. Therefore, the three machine learning models were trained, evaluated, and compared using datasets of 42 acute ischemic stroke patients treated with intra-arterial thrombectomy. Classifier training utilized eight voxel-based features extracted from baseline MRI datasets and five global features. Evaluation of classifier-based predictions was performed via comparison to the known tissue outcome, which was determined in follow-up imaging, using the Dice coefficient and leave-on-patient-out cross validation. The random decision forest prediction model led to the best tissue outcome predictions with a mean Dice coefficient of 0.37. The approximate nearest-neighbor and generalized linear model performed equally suboptimally with average Dice coefficients of 0.28 and 0.27 respectively, suggesting that both non-linearity and machine learning are desirable properties of a classifier well-suited to the intra-arterial tissue outcome prediction problem.

  1. a Super Voxel-Based Riemannian Graph for Multi Scale Segmentation of LIDAR Point Clouds

    Science.gov (United States)

    Li, Minglei

    2018-04-01

    Automatically segmenting LiDAR points into respective independent partitions has become a topic of great importance in photogrammetry, remote sensing and computer vision. In this paper, we cast the problem of point cloud segmentation as a graph optimization problem by constructing a Riemannian graph. The scale space of the observed scene is explored by an octree-based over-segmentation with different depths. The over-segmentation produces many super voxels which restrict the structure of the scene and will be used as nodes of the graph. The Kruskal coordinates are used to compute edge weights that are proportional to the geodesic distance between nodes. Then we compute the edge-weight matrix in which the elements reflect the sectional curvatures associated with the geodesic paths between super voxel nodes on the scene surface. The final segmentation results are generated by clustering similar super voxels and cutting off the weak edges in the graph. The performance of this method was evaluated on LiDAR point clouds for both indoor and outdoor scenes. Additionally, extensive comparisons to state of the art techniques show that our algorithm outperforms on many metrics.

  2. Whole-brain voxel-based morphometry of white matter in mild cognitive impairment

    International Nuclear Information System (INIS)

    Wang Zhiqun; Guo Xiaojuan; Qi Zhigang; Yao Li; Li Kuncheng

    2010-01-01

    Purpose: The purpose of this study was to analyze whole-brain white matter changes in mild cognitive impairment (MCI). Materials and methods: We studied 14 patients with MCI and 14 age- and sex-matched healthy control subjects using voxel-based morphometry (VBM) on T1-weighted 3D datasets. The data were collected on a 3T MR system and analyzed by SPM2 to generate white matter volume maps. Results: Voxel-based morphometry revealed diffusively reduced white matter in MCI prominently including the bilateral temporal gyrus, the right anterior cingulate, the bilateral superior and medial frontal gyrus and right parietal angular gyrus. White matter reduction was more prominent in anterior regions than that in posterior regions. Conclusion: Whole-brain white matter reduction in MCI patients detected with VBM has special distribution which is in line with the white matter pathology of MCI.

  3. Whole-brain voxel-based morphometry of white matter in mild cognitive impairment

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhiqun [Department of Radiology, Xuanwu Hospital of Capital Medical University, 100053, Beijing (China); Guo Xiaojuan [College of Information Science and Technology, Beijing Normal University, 100875, Beijing (China); National Key Laboratory for Cognitive Neuroscience and Learning, Beijing Normal University, 100875, Beijing (China); Qi Zhigang [Department of Radiology, Xuanwu Hospital of Capital Medical University, 100053, Beijing (China); Yao Li [College of Information Science and Technology, Beijing Normal University, 100875, Beijing (China); National Key Laboratory for Cognitive Neuroscience and Learning, Beijing Normal University, 100875, Beijing (China); Li Kuncheng, E-mail: likuncheng@xwh.ccmu.edu.c [Department of Radiology, Xuanwu Hospital of Capital Medical University, 100053, Beijing (China)

    2010-08-15

    Purpose: The purpose of this study was to analyze whole-brain white matter changes in mild cognitive impairment (MCI). Materials and methods: We studied 14 patients with MCI and 14 age- and sex-matched healthy control subjects using voxel-based morphometry (VBM) on T1-weighted 3D datasets. The data were collected on a 3T MR system and analyzed by SPM2 to generate white matter volume maps. Results: Voxel-based morphometry revealed diffusively reduced white matter in MCI prominently including the bilateral temporal gyrus, the right anterior cingulate, the bilateral superior and medial frontal gyrus and right parietal angular gyrus. White matter reduction was more prominent in anterior regions than that in posterior regions. Conclusion: Whole-brain white matter reduction in MCI patients detected with VBM has special distribution which is in line with the white matter pathology of MCI.

  4. The Improved Relevance Voxel Machine

    DEFF Research Database (Denmark)

    Ganz, Melanie; Sabuncu, Mert; Van Leemput, Koen

    The concept of sparse Bayesian learning has received much attention in the machine learning literature as a means of achieving parsimonious representations of features used in regression and classification. It is an important family of algorithms for sparse signal recovery and compressed sensing....... Hence in its current form it is reminiscent of a greedy forward feature selection algorithm. In this report, we aim to solve the problems of the original RVoxM algorithm in the spirit of [7] (FastRVM).We call the new algorithm Improved Relevance Voxel Machine (IRVoxM). Our contributions...... and enables basis selection from overcomplete dictionaries. One of the trailblazers of Bayesian learning is MacKay who already worked on the topic in his PhD thesis in 1992 [1]. Later on Tipping and Bishop developed the concept of sparse Bayesian learning [2, 3] and Tipping published the Relevance Vector...

  5. Srna-Monte Carlo codes for proton transport simulation in combined and voxelized geometries

    CERN Document Server

    Ilic, R D; Stankovic, S J

    2002-01-01

    This paper describes new Monte Carlo codes for proton transport simulations in complex geometrical forms and in materials of different composition. The SRNA codes were developed for three dimensional (3D) dose distribution calculation in proton therapy and dosimetry. The model of these codes is based on the theory of proton multiple scattering and a simple model of compound nucleus decay. The developed package consists of two codes: SRNA-2KG and SRNA-VOX. The first code simulates proton transport in combined geometry that can be described by planes and second order surfaces. The second one uses the voxelized geometry of material zones and is specifically adopted for the application of patient computer tomography data. Transition probabilities for both codes are given by the SRNADAT program. In this paper, we will present the models and algorithms of our programs, as well as the results of the numerical experiments we have carried out applying them, along with the results of proton transport simulation obtaine...

  6. A voxel-based mouse for internal dose calculations using Monte Carlo simulations (MCNP).

    Science.gov (United States)

    Bitar, A; Lisbona, A; Thedrez, P; Sai Maurel, C; Le Forestier, D; Barbet, J; Bardies, M

    2007-02-21

    Murine models are useful for targeted radiotherapy pre-clinical experiments. These models can help to assess the potential interest of new radiopharmaceuticals. In this study, we developed a voxel-based mouse for dosimetric estimates. A female nude mouse (30 g) was frozen and cut into slices. High-resolution digital photographs were taken directly on the frozen block after each section. Images were segmented manually. Monoenergetic photon or electron sources were simulated using the MCNP4c2 Monte Carlo code for each source organ, in order to give tables of S-factors (in Gy Bq-1 s-1) for all target organs. Results obtained from monoenergetic particles were then used to generate S-factors for several radionuclides of potential interest in targeted radiotherapy. Thirteen source and 25 target regions were considered in this study. For each source region, 16 photon and 16 electron energies were simulated. Absorbed fractions, specific absorbed fractions and S-factors were calculated for 16 radionuclides of interest for targeted radiotherapy. The results obtained generally agree well with data published previously. For electron energies ranging from 0.1 to 2.5 MeV, the self-absorbed fraction varies from 0.98 to 0.376 for the liver, and from 0.89 to 0.04 for the thyroid. Electrons cannot be considered as 'non-penetrating' radiation for energies above 0.5 MeV for mouse organs. This observation can be generalized to radionuclides: for example, the beta self-absorbed fraction for the thyroid was 0.616 for I-131; absorbed fractions for Y-90 for left kidney-to-left kidney and for left kidney-to-spleen were 0.486 and 0.058, respectively. Our voxel-based mouse allowed us to generate a dosimetric database for use in preclinical targeted radiotherapy experiments.

  7. Simultaneous two-voxel localized 1H-observed 13C-edited spectroscopy for in vivo MRS on rat brain at 9.4 T: Application to the investigation of excitotoxic lesions

    Science.gov (United States)

    Doan, Bich-Thuy; Autret, Gwennhael; Mispelter, Joël; Méric, Philippe; Même, William; Montécot-Dubourg, Céline; Corrèze, Jean-Loup; Szeremeta, Frédéric; Gillet, Brigitte; Beloeil, Jean-Claude

    2009-05-01

    13C spectroscopy combined with the injection of 13C-labeled substrates is a powerful method for the study of brain metabolism in vivo. Since highly localized measurements are required in a heterogeneous organ such as the brain, it is of interest to augment the sensitivity of 13C spectroscopy by proton acquisition. Furthermore, as focal cerebral lesions are often encountered in animal models of disorders in which the two brain hemispheres are compared, we wished to develop a bi-voxel localized sequence for the simultaneous bilateral investigation of rat brain metabolism, with no need for external additional references. Two sequences were developed at 9.4 T: a bi-voxel 1H-( 13C) STEAM-POCE (Proton Observed Carbon Edited) sequence and a bi-voxel 1H-( 13C) PRESS-POCE adiabatically decoupled sequence with Hadamard encoding. Hadamard encoding allows both voxels to be recorded simultaneously, with the same acquisition time as that required for a single voxel. The method was validated in a biological investigation into the neuronal damage and the effect on the Tri Carboxylic Acid cycle in localized excitotoxic lesions. Following an excitotoxic quinolinate-induced localized lesion in the rat cortex and the infusion of U- 13C glucose, two 1H-( 13C) spectra of distinct (4 × 4 × 4 mm 3) voxels, one centred on the injured hemisphere and the other on the contralateral hemisphere, were recorded simultaneously. Two 1H bi-voxel spectra were also recorded and showed a significant decrease in N-acetyl aspartate, and an accumulation of lactate in the ipsilateral hemisphere. The 1H-( 13C) spectra could be recorded dynamically as a function of time, and showed a fall in the glutamate/glutamine ratio and the presence of a stable glutamine pool, with a permanent increase of lactate in the ipsilateral hemisphere. This bi-voxel 1H-( 13C) method can be used to investigate simultaneously both brain hemispheres, and to perform dynamic studies. We report here the neuronal damage and the

  8. Analysis of multiplex gene expression maps obtained by voxelation

    OpenAIRE

    An, L; Xie, H; Chin, MH; Obradovic, Z; Smith, DJ; Megalooikonomou, V

    2009-01-01

    Abstract Background Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we presen...

  9. Volumetric abnormalities of the brain in a rat model of recurrent headache.

    Science.gov (United States)

    Jia, Zhihua; Tang, Wenjing; Zhao, Dengfa; Hu, Guanqun; Li, Ruisheng; Yu, Shengyuan

    2018-01-01

    Voxel-based morphometry is used to detect structural brain changes in patients with migraine. However, the relevance of migraine and structural changes is not clear. This study investigated structural brain abnormalities based on voxel-based morphometry using a rat model of recurrent headache. The rat model was established by infusing an inflammatory soup through supradural catheters in conscious male rats. Rats were subgrouped according to the frequency and duration of the inflammatory soup infusion. Tactile sensory testing was conducted prior to infusion of the inflammatory soup or saline. The periorbital tactile thresholds in the high-frequency inflammatory soup stimulation group declined persistently from day 5. Increased white matter volume was observed in the rats three weeks after inflammatory soup stimulation, brainstem in the in the low-frequency inflammatory soup-infusion group and cortex in the high-frequency inflammatory soup-infusion group. After six weeks' stimulation, rats showed gray matter volume changes. The brain structural abnormalities recovered after the stimulation was stopped in the low-frequency inflammatory soup-infused rats and persisted even after the high-frequency inflammatory soup stimulus stopped. The changes of voxel-based morphometry in migraineurs may be the result of recurrent headache. Cognition, memory, and learning may play an important role in the chronification of migraines. Reducing migraine attacks has the promise of preventing chronicity of migraine.

  10. Voxel-based lesion analysis of brain regions underlying reading and writing.

    Science.gov (United States)

    Baldo, Juliana V; Kacinik, Natalie; Ludy, Carl; Paulraj, Selvi; Moncrief, Amber; Piai, Vitória; Curran, Brian; Turken, And; Herron, Tim; Dronkers, Nina F

    2018-03-20

    The neural basis of reading and writing has been a source of inquiry as well as controversy in the neuroscience literature. Reading has been associated with both left posterior ventral temporal zones (termed the "visual word form area") as well as more dorsal zones, primarily in left parietal cortex. Writing has also been associated with left parietal cortex, as well as left sensorimotor cortex and prefrontal regions. Typically, the neural basis of reading and writing are examined in separate studies and/or rely on single case studies exhibiting specific deficits. Functional neuroimaging studies of reading and writing typically identify a large number of activated regions but do not necessarily identify the core, critical hubs. Last, due to constraints on the functional imaging environment, many previous studies have been limited to measuring the brain activity associated with single-word reading and writing, rather than sentence-level processing. In the current study, the brain correlates of reading and writing at both the single- and sentence-level were studied in a large sample of 111 individuals with a history of chronic stroke using voxel-based lesion symptom mapping (VLSM). VLSM provides a whole-brain, voxel-by-voxel statistical analysis of the role of distinct regions in a particular behavior by comparing performance of individuals with and without a lesion at every voxel. Rather than comparing individual cases or small groups with particular behavioral dissociations in reading and writing, VLSM allowed us to analyze data from a large, well-characterized sample of stroke patients exhibiting a wide range of reading and writing impairments. The VLSM analyses revealed that reading was associated with a critical left inferior temporo-occipital focus, while writing was primarily associated with the left supramarginal gyrus. Separate VLSM analyses of single-word versus sentence-level reading showed that sentence-level reading was uniquely associated with anterior

  11. A review of US anthropometric reference data (1971-2000) with comparisons to both stylized and tomographic anatomic models

    International Nuclear Information System (INIS)

    Huh, C; Bolch, W E

    2003-01-01

    Two classes of anatomic models currently exist for use in both radiation protection and radiation dose reconstruction: stylized mathematical models and tomographic voxel models. The former utilize 3D surface equations to represent internal organ structure and external body shape, while the latter are based on segmented CT or MR images of a single individual. While tomographic models are clearly more anthropomorphic than stylized models, a given model's characterization as being anthropometric is dependent upon the reference human to which the model is compared. In the present study, data on total body mass, standing/sitting heights and body mass index are collected and reviewed for the US population covering the time interval from 1971 to 2000. These same anthropometric parameters are then assembled for the ORNL series of stylized models, the GSF series of tomographic models (Golem, Helga, Donna, etc), the adult male Zubal tomographic model and the UF newborn tomographic model. The stylized ORNL models of the adult male and female are found to be fairly representative of present-day average US males and females, respectively, in terms of both standing and sitting heights for ages between 20 and 60-80 years. While the ORNL adult male model provides a reasonably close match to the total body mass of the average US 21-year-old male (within ∼5%), present-day 40-year-old males have an average total body mass that is ∼16% higher. For radiation protection purposes, the use of the larger 73.7 kg adult ORNL stylized hermaphrodite model provides a much closer representation of average present-day US females at ages ranging from 20 to 70 years. In terms of the adult tomographic models from the GSF series, only Donna (40-year-old F) closely matches her age-matched US counterpart in terms of average body mass. Regarding standing heights, the better matches to US age-correlated averages belong to Irene (32-year-old F) for the females and Golem (38-year-old M) for the males

  12. Sensitivity study of voxel-based PET image comparison to image registration algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Stephen, E-mail: syip@lroc.harvard.edu; Chen, Aileen B.; Berbeco, Ross [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Aerts, Hugo J. W. L. [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 and Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2014-11-01

    Purpose: Accurate deformable registration is essential for voxel-based comparison of sequential positron emission tomography (PET) images for proper adaptation of treatment plan and treatment response assessment. The comparison may be sensitive to the method of deformable registration as the optimal algorithm is unknown. This study investigated the impact of registration algorithm choice on therapy response evaluation. Methods: Sixteen patients with 20 lung tumors underwent a pre- and post-treatment computed tomography (CT) and 4D FDG-PET scans before and after chemoradiotherapy. All CT images were coregistered using a rigid and ten deformable registration algorithms. The resulting transformations were then applied to the respective PET images. Moreover, the tumor region defined by a physician on the registered PET images was classified into progressor, stable-disease, and responder subvolumes. Particularly, voxels with standardized uptake value (SUV) decreases >30% were classified as responder, while voxels with SUV increases >30% were progressor. All other voxels were considered stable-disease. The agreement of the subvolumes resulting from difference registration algorithms was assessed by Dice similarity index (DSI). Coefficient of variation (CV) was computed to assess variability of DSI between individual tumors. Root mean square difference (RMS{sub rigid}) of the rigidly registered CT images was used to measure the degree of tumor deformation. RMS{sub rigid} and DSI were correlated by Spearman correlation coefficient (R) to investigate the effect of tumor deformation on DSI. Results: Median DSI{sub rigid} was found to be 72%, 66%, and 80%, for progressor, stable-disease, and responder, respectively. Median DSI{sub deformable} was 63%–84%, 65%–81%, and 82%–89%. Variability of DSI was substantial and similar for both rigid and deformable algorithms with CV > 10% for all subvolumes. Tumor deformation had moderate to significant impact on DSI for progressor

  13. Hitchhiker'S Guide to Voxel Segmentation for Partial Volume Correction of in Vivo Magnetic Resonance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Scott Quadrelli

    2016-01-01

    Full Text Available Partial volume effects have the potential to cause inaccuracies when quantifying metabolites using proton magnetic resonance spectroscopy (MRS. In order to correct for cerebrospinal fluid content, a spectroscopic voxel needs to be segmented according to different tissue contents. This article aims to detail how automated partial volume segmentation can be undertaken and provides a software framework for researchers to develop their own tools. While many studies have detailed the impact of partial volume correction on proton magnetic resonance spectroscopy quantification, there is a paucity of literature explaining how voxel segmentation can be achieved using freely available neuroimaging packages.

  14. Topographic deformation patterns of knee cartilage after exercises with high knee flexion: an in vivo 3D MRI study using voxel-based analysis at 3T

    International Nuclear Information System (INIS)

    Horng, Annie; Stockinger, M.; Notohamiprodjo, M.; Raya, J.G.; Pietschmann, M.; Hoehne-Hueckstaedt, U.; Glitsch, U.; Ellegast, R.; Hering, K.G.; Glaser, C.

    2015-01-01

    To implement a novel voxel-based technique to identify statistically significant local cartilage deformation and analyze in-vivo topographic knee cartilage deformation patterns using a voxel-based thickness map approach for high-flexion postures. Sagittal 3T 3D-T1w-FLASH-WE-sequences of 10 healthy knees were acquired before and immediately after loading (kneeling/squatting/heel sitting/knee bends). After cartilage segmentation, 3D-reconstruction and 3D-registration, colour-coded deformation maps were generated by voxel-based subtraction of loaded from unloaded datasets to visualize cartilage thickness changes in all knee compartments. Compression areas were found bifocal at the peripheral medial/caudolateral patella, both posterior femoral condyles and both anterior/central tibiae. Local cartilage thickening were found adjacent to the compression areas. Significant local strain ranged from +13 to -15 %. Changes were most pronounced after squatting, least after knee bends. Shape and location of deformation areas varied slightly with the loading paradigm, but followed a similar pattern consistent between different individuals. Voxel-based deformation maps identify individual in-vivo load-specific and posture-associated strain distribution in the articular cartilage. The data facilitate understanding individual knee loading properties and contribute to improve biomechanical 3 models. They lay a base to investigate the relationship between cartilage degeneration patterns in common osteoarthritis and areas at risk of cartilage wear due to mechanical loading in work-related activities. (orig.)

  15. Topographic deformation patterns of knee cartilage after exercises with high knee flexion: an in vivo 3D MRI study using voxel-based analysis at 3T

    Energy Technology Data Exchange (ETDEWEB)

    Horng, Annie; Stockinger, M.; Notohamiprodjo, M. [Ludwig-Maximilians-University Hospital Munich, Institute for Clinical Radiology, Munich (Germany); Raya, J.G. [New York University Langone Medical Center, Center for Biomedical Imaging, New York, NY (United States); Pietschmann, M. [Ludwig-Maximilians-University Hospital Munich, Department of Orthopedic Surgery, Munich (Germany); Hoehne-Hueckstaedt, U.; Glitsch, U.; Ellegast, R. [Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA), Sankt Augustin (Germany); Hering, K.G. [Miner' s Hospital, Department of Diagnostic Radiology, Dortmund (Germany); Glaser, C. [Ludwig-Maximilians-University Hospital Munich, Institute for Clinical Radiology, Munich (Germany); RZM Zentrum, Munich (Germany)

    2015-06-01

    To implement a novel voxel-based technique to identify statistically significant local cartilage deformation and analyze in-vivo topographic knee cartilage deformation patterns using a voxel-based thickness map approach for high-flexion postures. Sagittal 3T 3D-T1w-FLASH-WE-sequences of 10 healthy knees were acquired before and immediately after loading (kneeling/squatting/heel sitting/knee bends). After cartilage segmentation, 3D-reconstruction and 3D-registration, colour-coded deformation maps were generated by voxel-based subtraction of loaded from unloaded datasets to visualize cartilage thickness changes in all knee compartments. Compression areas were found bifocal at the peripheral medial/caudolateral patella, both posterior femoral condyles and both anterior/central tibiae. Local cartilage thickening were found adjacent to the compression areas. Significant local strain ranged from +13 to -15 %. Changes were most pronounced after squatting, least after knee bends. Shape and location of deformation areas varied slightly with the loading paradigm, but followed a similar pattern consistent between different individuals. Voxel-based deformation maps identify individual in-vivo load-specific and posture-associated strain distribution in the articular cartilage. The data facilitate understanding individual knee loading properties and contribute to improve biomechanical 3 models. They lay a base to investigate the relationship between cartilage degeneration patterns in common osteoarthritis and areas at risk of cartilage wear due to mechanical loading in work-related activities. (orig.)

  16. Right Brodmann area 18 predicts tremor arrest after Vim radiosurgery: a voxel-based morphometry study.

    Science.gov (United States)

    Tuleasca, Constantin; Witjas, Tatiana; Van de Ville, Dimitri; Najdenovska, Elena; Verger, Antoine; Girard, Nadine; Champoudry, Jerome; Thiran, Jean-Philippe; Cuadra, Meritxell Bach; Levivier, Marc; Guedj, Eric; Régis, Jean

    2018-03-01

    Drug-resistant essential tremor (ET) can benefit from open standard stereotactic procedures, such as deep-brain stimulation or radiofrequency thalamotomy. Non-surgical candidates can be offered either high-focused ultrasound (HIFU) or radiosurgery (RS). All procedures aim to target the same thalamic site, the ventro-intermediate nucleus (e.g., Vim). The mechanisms by which tremor stops after Vim RS or HIFU remain unknown. We used voxel-based morphometry (VBM) on pretherapeutic neuroimaging data and assessed which anatomical site would best correlate with tremor arrest 1 year after Vim RS. Fifty-two patients (30 male, 22 female; mean age 71.6 years, range 49-82) with right-sided ET benefited from left unilateral Vim RS in Marseille, France. Targeting was performed in a uniform manner, using 130 Gy and a single 4-mm collimator. Neurological (pretherapeutic and 1 year after) and neuroimaging (baseline) assessments were completed. Tremor score on the treated hand (TSTH) at 1 year after Vim RS was included in a statistical parametric mapping analysis of variance (ANOVA) model as a continuous variable with pretherapeutic neuroimaging data. Pretherapeutic gray matter density (GMD) was further correlated with TSTH improvement. No a priori hypothesis was used in the statistical model. The only statistically significant region was right Brodmann area (BA) 18 (visual association area V2, p = 0.05, cluster size K c  = 71). Higher baseline GMD correlated with better TSTH improvement at 1 year after Vim RS (Spearman's rank correlation coefficient = 0.002). Routine baseline structural neuroimaging predicts TSTH improvement 1 year after Vim RS. The relevant anatomical area is the right visual association cortex (BA 18, V2). The question whether visual areas should be included in the targeting remains open.

  17. Analysis of multiplex gene expression maps obtained by voxelation

    Directory of Open Access Journals (Sweden)

    Smith Desmond J

    2009-04-01

    Full Text Available Abstract Background Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we present an approach for identifying the relation between gene expression maps obtained by voxelation and gene functions. Results To analyze the dataset, we chose typical genes as queries and aimed at discovering similar gene groups. Gene similarity was determined by using the wavelet features extracted from the left and right hemispheres averaged gene expression maps, and by the Euclidean distance between each pair of feature vectors. We also performed a multiple clustering approach on the gene expression maps, combined with hierarchical clustering. Among each group of similar genes and clusters, the gene function similarity was measured by calculating the average gene function distances in the gene ontology structure. By applying our methodology to find similar genes to certain target genes we were able to improve our understanding of gene expression patterns and gene functions. By applying the clustering analysis method, we obtained significant clusters, which have both very similar gene expression maps and very similar gene functions respectively to their corresponding gene ontologies. The cellular component ontology resulted in prominent clusters expressed in cortex and corpus callosum. The molecular function ontology gave prominent clusters in cortex, corpus callosum and hypothalamus. The biological process ontology resulted in clusters in cortex, hypothalamus and choroid plexus. Clusters from all three ontologies combined were most prominently expressed in

  18. Analysis of multiplex gene expression maps obtained by voxelation.

    Science.gov (United States)

    An, Li; Xie, Hongbo; Chin, Mark H; Obradovic, Zoran; Smith, Desmond J; Megalooikonomou, Vasileios

    2009-04-29

    Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we present an approach for identifying the relation between gene expression maps obtained by voxelation and gene functions. To analyze the dataset, we chose typical genes as queries and aimed at discovering similar gene groups. Gene similarity was determined by using the wavelet features extracted from the left and right hemispheres averaged gene expression maps, and by the Euclidean distance between each pair of feature vectors. We also performed a multiple clustering approach on the gene expression maps, combined with hierarchical clustering. Among each group of similar genes and clusters, the gene function similarity was measured by calculating the average gene function distances in the gene ontology structure. By applying our methodology to find similar genes to certain target genes we were able to improve our understanding of gene expression patterns and gene functions. By applying the clustering analysis method, we obtained significant clusters, which have both very similar gene expression maps and very similar gene functions respectively to their corresponding gene ontologies. The cellular component ontology resulted in prominent clusters expressed in cortex and corpus callosum. The molecular function ontology gave prominent clusters in cortex, corpus callosum and hypothalamus. The biological process ontology resulted in clusters in cortex, hypothalamus and choroid plexus. Clusters from all three ontologies combined were most prominently expressed in cortex and corpus callosum. The experimental

  19. Whole-remnant and maximum-voxel SPECT/CT dosimetry in {sup 131}I-NaI treatments of differentiated thyroid cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mínguez, Pablo, E-mail: pablo.minguezgabina@osakidetza.eus [Department of Medical Radiation Physics, Lund University, Lund 22185, Sweden and Department of Medical Physics, Gurutzeta/Cruces University Hospital, Barakaldo 48903 (Spain); Flux, Glenn [Joint Department of Physics, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Sutton SM2 5PT (United Kingdom); Genollá, José; Delgado, Alejandro; Rodeño, Emilia [Department of Nuclear Medicine, Gurutzeta/Cruces University Hospital, Barakaldo 48903 (Spain); Sjögreen Gleisner, Katarina [Department of Medical Radiation Physics, Lund University, Lund 22185 (Sweden)

    2016-10-15

    Purpose: To investigate the possible differences between SPECT/CT based whole-remnant and maximum-voxel dosimetry in patients receiving radio-iodine ablation treatment of differentiated thyroid cancer (DTC). Methods: Eighteen DTC patients were administered 1.11 GBq of {sup 131}I-NaI after near-total thyroidectomy and rhTSH stimulation. Two patients had two remnants, so in total dosimetry was performed for 20 sites. Three SPECT/CT scans were performed for each patient at 1, 2, and 3–7 days after administration. The activity, the remnant mass, and the maximum-voxel activity were determined from these images and from a recovery-coefficient curve derived from experimental phantom measurements. The cumulated activity was estimated using trapezoidal-exponential integration. Finally, the absorbed dose was calculated using S-values for unit-density spheres in whole-remnant dosimetry and S-values for voxels in maximum-voxel dosimetry. Results: The mean absorbed dose obtained from whole-remnant dosimetry was 40 Gy (range 2–176 Gy) and from maximum-voxel dosimetry 34 Gy (range 2–145 Gy). For any given patient, the activity concentrations for each of the three time-points were approximately the same for the two methods. The effective half-lives varied (R = 0.865), mainly due to discrepancies in estimation of the longer effective half-lives. On average, absorbed doses obtained from whole-remnant dosimetry were 1.2 ± 0.2 (1 SD) higher than for maximum-voxel dosimetry, mainly due to differences in the S-values. The method-related differences were however small in comparison to the wide range of absorbed doses obtained in patients. Conclusions: Simple and consistent procedures for SPECT/CT based whole-volume and maximum-voxel dosimetry have been described, both based on experimentally determined recovery coefficients. Generally the results from the two approaches are consistent, although there is a small, systematic difference in the absorbed dose due to differences in the

  20. Multiscale Systems Modeling of Male Reproductive Tract ...

    Science.gov (United States)

    The reproductive tract is a complex, integrated organ system with diverse embryology and unique sensitivity to prenatal environmental exposures that disrupt morphoregulatory processes and endocrine signaling. U.S. EPA’s in vitro high-throughput screening (HTS) database (ToxCastDB) was used to profile the bioactivity of 54 chemicals with male developmental consequences across ~800 molecular and cellular features [Leung et al., accepted manuscript]. The in vitro bioactivity on molecular targets could be condensed into 156 gene annotations in a bipartite network. These results highlighted the role of estrogen and androgen signaling pathways in male reproductive tract development, and importantly, broadened the list of molecular targets to include GPCRs, cytochrome-P450s, vascular remodeling proteins, and retinoic acid signaling. A multicellular agent-based model was used to simulate the complex interactions between morphoregulatory, endocrine, and environmental influences during genital tubercle (GT) development. Spatially dynamic signals (e.g., SHH, FGF10, and androgen) were implemented in the model to address differential adhesion, cell motility, proliferation, and apoptosis. Urethral tube closure was an emergent feature of the model that was linked to gender-specific rates of ventral mesenchymal proliferation and urethral plate endodermal apoptosis, both under control of androgen signaling [Leung et al., manuscript in preparation]. A systemic parameter sweep w

  1. Conversion of ICRP male reference phantom to polygon-surface phantom

    International Nuclear Information System (INIS)

    Yeom, Yeon Soo; Han, Min Cheol; Kim, Chan Hyeong; Jeong, Jong Hwi

    2013-01-01

    The International Commission on Radiological Protection (ICRP) reference phantoms, developed based on computed tomography images of human bodies, provide much more realism of human anatomy than the previously used MIRD5 (Medical Internal Radiation Dose) mathematical phantoms. It has been, however, realized that the ICRP reference phantoms have some critical limitations showing a considerable amount of holes for the skin and wall organs mainly due to the nature of voxels of which the phantoms are made, especially due to their low voxel resolutions. To address this problem, we are planning to develop the polygon-surface version of ICRP reference phantoms by directly converting the ICRP reference phantoms (voxel phantoms) to polygon-surface phantoms. The objective of this preliminary study is to see if it is indeed possible to construct the high-quality polygon-surface phantoms based on the ICRP reference phantoms maintaining identical organ morphology and also to identify any potential issues, and technologies to address these issues, in advance. For this purpose, in the present study, the ICRP reference male phantom was roughly converted to a polygon-surface phantom. Then, the constructed phantom was implemented in Geant4, Monte Carlo particle transport code, for dose calculations, and the calculated dose values were compared with those of the original ICRP reference phantom to see how much the calculated dose values are sensitive to the accuracy of the conversion process. The results of the present study show that it is certainly possible to convert the ICRP reference phantoms to surface phantoms with enough accuracy. In spite of using relatively less resources (<2 man-months), we were able to construct the polygon-surface phantom with the organ masses perfectly matching the ICRP reference values. The analysis of the calculated dose values also implies that the dose values are indeed not very sensitive to the detailed morphology of the organ models in the phantom

  2. Micro-computed tomography pore-scale study of flow in porous media: Effect of voxel resolution

    Science.gov (United States)

    Shah, S. M.; Gray, F.; Crawshaw, J. P.; Boek, E. S.

    2016-09-01

    A fundamental understanding of flow in porous media at the pore-scale is necessary to be able to upscale average displacement processes from core to reservoir scale. The study of fluid flow in porous media at the pore-scale consists of two key procedures: Imaging - reconstruction of three-dimensional (3D) pore space images; and modelling such as with single and two-phase flow simulations with Lattice-Boltzmann (LB) or Pore-Network (PN) Modelling. Here we analyse pore-scale results to predict petrophysical properties such as porosity, single-phase permeability and multi-phase properties at different length scales. The fundamental issue is to understand the image resolution dependency of transport properties, in order to up-scale the flow physics from pore to core scale. In this work, we use a high resolution micro-computed tomography (micro-CT) scanner to image and reconstruct three dimensional pore-scale images of five sandstones (Bentheimer, Berea, Clashach, Doddington and Stainton) and five complex carbonates (Ketton, Estaillades, Middle Eastern sample 3, Middle Eastern sample 5 and Indiana Limestone 1) at four different voxel resolutions (4.4 μm, 6.2 μm, 8.3 μm and 10.2 μm), scanning the same physical field of view. Implementing three phase segmentation (macro-pore phase, intermediate phase and grain phase) on pore-scale images helps to understand the importance of connected macro-porosity in the fluid flow for the samples studied. We then compute the petrophysical properties for all the samples using PN and LB simulations in order to study the influence of voxel resolution on petrophysical properties. We then introduce a numerical coarsening scheme which is used to coarsen a high voxel resolution image (4.4 μm) to lower resolutions (6.2 μm, 8.3 μm and 10.2 μm) and study the impact of coarsening data on macroscopic and multi-phase properties. Numerical coarsening of high resolution data is found to be superior to using a lower resolution scan because it

  3. Regional Gray Matter Volumes Are Related to Concern About Falling in Older People: A Voxel-Based Morphometric Study.

    Science.gov (United States)

    Tuerk, Carola; Zhang, Haobo; Sachdev, Perminder; Lord, Stephen R; Brodaty, Henry; Wen, Wei; Delbaere, Kim

    2016-01-01

    Concern about falling is common in older people. Various related psychological constructs as well as poor balance and slow gait have been associated with decreased gray matter (GM) volume in old age. The current study investigates the association between concern about falling and voxel-wise GM volumes. A total of 281 community-dwelling older people aged 70-90 years underwent structural magnetic resonance imaging. Concern about falling was assessed using Falls Efficacy Scale-International (FES-I). For each participant, voxel-wise GM volumes were generated with voxel-based morphometry and regressed on raw FES-I scores (p fall risk did not alter these associations. After adjustment for anxiety, only left cerebellum and bilateral inferior occipital gyrus remained negatively associated with FES-I scores (voxels-in-cluster = 2,426; p falling is negatively associated with brain volumes in areas important for emotional control and for motor control, executive functions and visual processing in a large sample of older men and women. Regression analyses suggest that these relationships were primarily accounted for by psychological factors (generalized anxiety and neuroticism) and not by physical fall risk or vision. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Voxel-based model construction from colored tomographic images; Construcao de simuladores baseados em elementos de volume a partir de imagens tomograficas coloridas

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, Eduardo Cesar de Miranda

    2002-07-01

    This work presents a new approach in the construction of voxel-based phantoms that was implemented to simplify the segmentation process of organs and tissues reducing the time used in this procedure. The segmentation process is performed by painting tomographic images and attributing a different color for each organ or tissue. A voxel-based head and neck phantom was built using this new approach. The way as the data are stored allows an increasing in the performance of the radiation transport code. The program that calculates the radiation transport also works with image files. This capability allows image reconstruction showing isodose areas, under several points of view, increasing the information to the user. Virtual X-ray photographs can also be obtained allowing that studies could be accomplished looking for the radiographic techniques optimization assessing, at the same time, the doses in organs and tissues. The accuracy of the program here presented, called MCvoxEL, that implements this new approach, was tested by comparison to results from two modern and well-supported Monte Carlo codes. Dose conversion factors for parallel X-ray exposure were also calculated. (author)

  5. Effects of subliminal stimulation on masculinity-femininity ratings of a male model.

    Science.gov (United States)

    Hovsepian, W; Quatman, G

    1978-02-01

    The effects of subliminal stimulation on masculinity-femininity ratings of a male model were tested for 100 male undergraduates, randomly divided into four groups and individually shown a slide of a male model. One group received no further stimulation. A second group received a subliminal flash of white light across the image of the model; a third group was presented with the subliminal message "masculine," while a fourth group was presented with the subliminal message "feminine." Subjects were asked to rate the model on a six-point scale of masculinity-femininity. The differences in ratings among groups were not significant, indicating that subliminal stimulation did not influence masculinity-femininity value-norm-anchor judgments. There were no significant differences in the reported perception of additional stimuli or the tendency to be relaxed among the four groups. However, subjects who received the "masculine" message and reported that they were more relaxed did tend to rate the model higher in masculinity.

  6. Single Voxel Proton Spectroscopy for Neurofeedback at 7 Tesla

    OpenAIRE

    Koush, Yury; Elliott, Mark A.; Mathiak, Klaus

    2011-01-01

    Echo-planar imaging (EPI) in fMRI is regularly used to reveal BOLD activation in presubscribed regions of interest (ROI). The response is mediated by relative changes in T2* which appear as changes in the image pixel intensities. We have proposed an application of functional single-voxel proton spectroscopy (fSVPS) for real-time studies at ultra-high MR field which can be comparable to the EPI BOLD fMRI technique. A spin-echo SVPS protocol without water suppression was acquired with 310 repet...

  7. Voxel-based comparison of whole brain gray matter of patients with mild Alzheimer's disease with normal aging volunteers

    International Nuclear Information System (INIS)

    Xie Sheng; Wu Hongkun; Xiao Jiangxi; Wang Yinhua; Jiang Xuexiang

    2006-01-01

    Objective: To detect gray matter abnormalities of whole brain in patients with mild Alzheimer's disease (AD) by voxel-based morphometry (VBM). Methods: Thirteen patients with mild Alzheimer's disease and sixteen normal aging volunteers underwent 3D SPGR scanning. For every subject, data was transferred to PC to be normalized, segmented and smoothed using SPM99. Non-dependent samples T-tests were conducted to compare gray matter' density voxel to voxel between the two groups. Results Significant reductions in gray matter density were found in the bilateral hippocampi and nucleus amygdalae, bilateral insulae, bilateral medial thalami, bilateral rectus gyri, right superior temporal gyms, right caudate nucleus, fight prefrontal lobe, right basal forebrain and portions of right occipital lobe. Conclusion: VBM reveals significant gray matter' reductions of numeral cortices in mild Alzheimer's disease. It can be a useful method to evaluate the anatomical changes in the progress of the disease. (authors)

  8. A software for digital image processing used in constructions of voxels phantoms

    International Nuclear Information System (INIS)

    Vieira, Jose Wilson; Fernando Roberto de Andrade

    2008-01-01

    This paper presents, based on menus and menu items, the second version of software DIP-Digital Image Processing, that reads, edits and writes binary files containing the matrix 3D corresponding to a transversal voxels images of a certain geometry that may be a human body or other volume of interest

  9. Improvements in the Quantitative Assessment of Cerebral Blood Volume and Flow with the Removal of Vessel Voxels from MR Perfusion Images

    Directory of Open Access Journals (Sweden)

    Michael Mu Huo Teng

    2013-01-01

    Full Text Available Objective. To improve the quantitative assessment of cerebral blood volume (CBV and flow (CBF in the brain voxels from MR perfusion images. Materials and Methods. Normal brain parenchyma was automatically segmented with the time-to-peak criteria after cerebrospinal fluid removal and preliminary vessel voxel removal. Two scaling factors were calculated by comparing the relative CBV and CBF of the segmented normal brain parenchyma with the absolute values in the literature. Using the scaling factors, the relative values were converted to the absolute CBV and CBF. Voxels with either CBV > 8 mL/100 g or CBF > 100 mL/100 g/min were characterized as vessel voxels and were excluded from the quantitative measurements. Results. The segmented brain parenchyma with normal perfusion was consistent with the angiographic findings for each patient. We confirmed the necessity of dual thresholds including CBF and CBV for proper removal of vessel voxels. The scaling factors were 0.208 ± 0.041 for CBV, and 0.168 ± 0.037, 0.172 ± 0.037 for CBF calculated using standard and circulant singular value decomposition techniques, respectively. Conclusion. The automatic scaling and vessel removal techniques provide an alternative method for obtaining improved quantitative assessment of CBV and CBF in patients with thromboembolic cerebral arterial disease.

  10. Whole-brain voxel-based morphometry of white matter in medial temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Yu Aihong [Department of Radiology, Xuanwu Hospital, Capital University of Medical Sciences, Beijing 100053 (China); Li Kuncheng [Department of Radiology, Xuanwu Hospital, Capital University of Medical Sciences, Beijing 100053 (China)], E-mail: Likuncheng@vip.sina.com; Li Lin; Shan Baoci [Institute of High Energy Physics, Chinese Academy of Sciences (China); Wang Yuping; Xue Sufang [Department of Neurology, Xuanwu Hospital, Capital University of Medical Sciences (China)

    2008-01-15

    Purpose: The purpose of this study was to analyze whole-brain white matter changes in medial temporal lobe epilepsy (MTLE). Materials and methods: We studied 23 patients with MTLE and 13 age- and sex-matched healthy control subjects using voxel-based morphometry (VBM) on T1-weighted 3D datasets. The seizure focus was right sided in 11 patients and left sided in 12. The data were collected on a 1.5 T MR system and analyzed by SPM 99 to generate white matter density maps. Results: Voxel-based morphometry revealed diffusively reduced white matter in MTLE prominently including bilateral frontal lobes, bilateral temporal lobes and corpus callosum. White matter reduction was also found in the bilateral cerebellar hemispheres in the left MTLE group. Conclusion: VBM is a simple and automated approach that is able to identify diffuse whole-brain white matter reduction in MTLE.

  11. Whole-brain voxel-based morphometry of white matter in medial temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Yu Aihong; Li Kuncheng; Li Lin; Shan Baoci; Wang Yuping; Xue Sufang

    2008-01-01

    Purpose: The purpose of this study was to analyze whole-brain white matter changes in medial temporal lobe epilepsy (MTLE). Materials and methods: We studied 23 patients with MTLE and 13 age- and sex-matched healthy control subjects using voxel-based morphometry (VBM) on T1-weighted 3D datasets. The seizure focus was right sided in 11 patients and left sided in 12. The data were collected on a 1.5 T MR system and analyzed by SPM 99 to generate white matter density maps. Results: Voxel-based morphometry revealed diffusively reduced white matter in MTLE prominently including bilateral frontal lobes, bilateral temporal lobes and corpus callosum. White matter reduction was also found in the bilateral cerebellar hemispheres in the left MTLE group. Conclusion: VBM is a simple and automated approach that is able to identify diffuse whole-brain white matter reduction in MTLE

  12. Clinical implications of alternative TCP models for nonuniform dose distributions

    International Nuclear Information System (INIS)

    Deasy, J. O.

    1995-01-01

    Several tumor control probability (TCP) models for nonuniform dose distributions were compared, including: (a) a logistic/inter-patient-heterogeneity model, (b) a probit/inter-patient-heterogeneity model, (c) a Poisson/radioresistant-strain/identical-patients model, (d) a Poisson/inter-patient-heterogeneity model and (e) a Poisson/intra-tumor- and inter-patient-heterogeneity model. The models were analyzed in terms of the probability of controlling a single tumor voxel (the voxel control probability, or VCP), as a function of voxel volume and dose. Alternatively, the VCP surface can be thought of as the effect of a small cold spot. The models based on the Poisson equation which include inter-patient heterogeneity ((d) and (e)) have VCP surfaces (VCP as a function of dose and volume) which have a threshold 'waterfall' shape: below the waterfall (in dose), VCP is nearly zero. The threshold dose decreases with decreasing voxel volume. However, models (a), (b), and (c) all show a high probability of controlling a voxel (VCP>50%) with very low dose (e.g., 1 Gy) if the voxel is small (smaller than about 10 -3 of the tumor volume). Model (c) does not have the waterfall shape at low volumes due to the assumption of patient uniformity and a neglect of the effect of the clonogens which are more radiosensitive (and more numerous). Models (a) and (b) deviate from the waterfall shape at low volumes due to numerical differences between the functions used and the Poisson function. Hence, the Possion models which include inter-patient heterogeneities ((d) and (e)) are more sensitive to the effects of small cold spots than the other models considered

  13. Modification of male adult simulator posture of ICRP 110 reference; Modificacao da postura do simulador adulto masculino (AM) de referencia da ICRP 110

    Energy Technology Data Exchange (ETDEWEB)

    Galeano, Diego C.; Souza, Divanizia N.; Santos, Willian S.; Carvalho Junior, Alberico B., E-mail: galeano88@gmail.com [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Dept. de Fisica

    2014-07-01

    Voxel simulators are usually constructed based on computed tomography and magnetic resonance, so the supine position (lying) is the most used. This may result in a overestimated or underestimated the radiation dose, depending on the exposure scenario adopted. Thus, the objective was to change the attitude of the male adult simulator reference ICRP 110, AM (Adult Male), to a sitting posture. For change of posture were possible, it was necessary increasing the number of slices that comprise AM simulator by reducing the height of the voxel of 8.0 mm to 2.0 mm, thus making each voxel approximately cubic. A subroutine was created in Visual Monte Carlo software (VMC) to rotate the thigh region of the simulator and position it between the region of the leg and trunk. The ScionImage software was used to rebuild and soften the contours of the knee and hip of the simulator in a sitting posture, and 3D visualization of the simulator was used VolView software. The AM simulator in the seated position has the same anatomical features of the simulator in the standing posture. Using the MCNPX code [ref] was carried out the conversion coefficients for calculating the AP irradiation geometry (anteroposterior) comparing the AM simulator standing and sitting in order to evaluate the difference scattering and absorption of radiation by the two simulators. The result shows a difference up to 100% in the fluency conversion coefficients in nearby organs located in the pelvic region and in organs with distribution in the whole body (such as skin, muscle, lymph nodes and skeletal)

  14. Multimodal Voxel-Based Meta-Analysis of White Matter Abnormalities in Obsessive-Compulsive Disorder

    NARCIS (Netherlands)

    Radua, J.; Grau, M.; van den Heuvel, O.A.; Thiebaut de Schotten, M.; Stein, D.J.; Canales-Rodriguez, E.J.; Catani, M.; Mataix-Cols, D.

    2014-01-01

    White matter (WM) abnormalities have long been suspected in obsessive-compulsive disorder (OCD) but the available evidence has been inconsistent. We conducted the first multimodal meta-analysis of WM volume (WMV) and fractional anisotropy (FA) studies in OCD. All voxel-wise studies comparing WMV or

  15. VoxelMages: a general-purpose graphical interface for designing geometries and processing DICOM images for PENELOPE.

    Science.gov (United States)

    Giménez-Alventosa, V; Ballester, F; Vijande, J

    2016-12-01

    The design and construction of geometries for Monte Carlo calculations is an error-prone, time-consuming, and complex step in simulations describing particle interactions and transport in the field of medical physics. The software VoxelMages has been developed to help the user in this task. It allows to design complex geometries and to process DICOM image files for simulations with the general-purpose Monte Carlo code PENELOPE in an easy and straightforward way. VoxelMages also allows to import DICOM-RT structure contour information as delivered by a treatment planning system. Its main characteristics, usage and performance benchmarking are described in detail. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The construction of trunk voxel phantom by using CT images and application to 3 dimensional radiotherapy treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C. S.; Lee, J. K. [Hanyang Univ., Seoul (Korea, Republic of)

    2001-10-01

    Trunk voxel phantom was constructed by using whole body CT images and tumor doses were calculated by using Monte Carlo method after simulating situation of radiotheraphy treatment planning. The whole body CT images of VHP (Visual Human Project) man were acquired from National Library of Medicine of USA. 153 slices of trunk part were extracted from whole body CT images and MCNP4B, a general purpose Monte Carlo code, was used for dose calculation. Gray scale of CT images were converted into density of medium and processed into trunk voxel phantom ported to MCNP4B input deck. The conversion method was verified by comparing cross sectional images of voxel phantom with original CT images. Tumor volumes with diameter of 3 cm were defined in liver, stomach and right lung and irradiated with 5, 10 and 15 MeV gamma beam with diameter of 6 cm. The technical basis for 3D dose calculation was established through this study for localization of 3D RTP system.

  17. Gray and white matter asymmetries in healthy individuals aged 21-29 years: a voxel-based morphometry and diffusion tensor imaging study.

    Science.gov (United States)

    Takao, Hidemasa; Abe, Osamu; Yamasue, Hidenori; Aoki, Shigeki; Sasaki, Hiroki; Kasai, Kiyoto; Yoshioka, Naoki; Ohtomo, Kuni

    2011-10-01

    The hemispheres of the human brain are functionally and structurally asymmetric. The study of structural asymmetries provides important clues to the neuroanatomical basis of lateralized brain functions. Previous studies have demonstrated age-related changes in morphology and diffusion properties of brain tissue. In this study, we simultaneously explored gray and white matter asymmetry using voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) in 109 young healthy individuals (58 females and 51 males). To eliminate the potential confounding effects of aging and handedness, we restricted the study to right-handed subjects aged 21-29 years. VBM and voxel-based analysis of fractional anisotropy (FA) maps derived from DTI revealed a number of gray matter volume asymmetries (including the right frontal and left occipital petalias and leftward asymmetry of the planum temporale) and white matter FA asymmetries (including leftward asymmetry of the arcuate fasciculus, cingulum, and corticospinal tract). There was no significant effect of sex on gray and white matter asymmetry. Leftward volume asymmetry of the planum temporale and leftward FA asymmetry of the arcuate fasciculus were simultaneously demonstrated. Post hoc analysis showed that the gray matter volume of the planum temporale and FA of the arcuate fasciculus were positively related (Pearson correlation coefficient, 0.43; P < 0.0001). The results of our study demonstrate gray and white matter asymmetry in right-handed healthy young adults and suggest that leftward volume asymmetry of the planum temporale and leftward FA asymmetry of the arcuate fasciculus may be related. Copyright © 2010 Wiley-Liss, Inc.

  18. Effects of RF pulse profile and intra-voxel phase dispersion on MR fingerprinting with balanced SSFP readout.

    Science.gov (United States)

    Chiu, Su-Chin; Lin, Te-Ming; Lin, Jyh-Miin; Chung, Hsiao-Wen; Ko, Cheng-Wen; Büchert, Martin; Bock, Michael

    2017-09-01

    To investigate possible errors in T1 and T2 quantification via MR fingerprinting with balanced steady-state free precession readout in the presence of intra-voxel phase dispersion and RF pulse profile imperfections, using computer simulations based on Bloch equations. A pulse sequence with TR changing in a Perlin noise pattern and a nearly sinusoidal pattern of flip angle following an initial 180-degree inversion pulse was employed. Gaussian distributions of off-resonance frequency were assumed for intra-voxel phase dispersion effects. Slice profiles of sinc-shaped RF pulses were computed to investigate flip angle profile influences. Following identification of the best fit between the acquisition signals and those established in the dictionary based on known parameters, estimation errors were reported. In vivo experiments were performed at 3T to examine the results. Slight intra-voxel phase dispersion with standard deviations from 1 to 3Hz resulted in prominent T2 under-estimations, particularly at large T2 values. T1 and off-resonance frequencies were relatively unaffected. Slice profile imperfections led to under-estimations of T1, which became greater as regional off-resonance frequencies increased, but could be corrected by including slice profile effects in the dictionary. Results from brain imaging experiments in vivo agreed with the simulation results qualitatively. MR fingerprinting using balanced SSFP readout in the presence of intra-voxel phase dispersion and imperfect slice profile leads to inaccuracies in quantitative estimations of the relaxation times. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. An integral projection model with YY-males and application to evaluating grass carp control

    Science.gov (United States)

    Erickson, Richard A.; Eager, Eric A.; Brey, Marybeth; Hansen, Michael J.; Kocovsky, Patrick

    2017-01-01

    Invasive fish species disrupt ecosystems and cause economic damage. Several methods have been discussed to control populations of invasive fish including the release of YY-males. YY-males are fish that have 2 male chromosomes compared to a XY-male. When YY-males mate, they only produce male (XY) offspring. This decreases the female proportion of the population and can, in theory, eradicate local populations by biasing the sex-ratio. YY-males have been used as a population control tool for brook trout in montane streams and lakes in Idaho, USA. The YY-male control method has been discussed for grass carp in Lake Erie, North America. We developed and presented an integral projection model for grass carp to model the use of YY-males as a control method for populations in this lake. Using only the YY-male control method, we found that high levels of YY-males would need to be release annually to control the species. Specifically, these levels were the same order of magnitude as the baseline adult population (e.g., 1000 YY-males needed to be released annual for 20 years to control a baseline adult population of 2500 grass carp). These levels may not be reasonable or obtainable for fisheries managers given the impacts of YY-males on aquatic vegetation and other constraints of natural resource management.

  20. The Relevance Voxel Machine (RVoxM): A Bayesian Method for Image-Based Prediction

    DEFF Research Database (Denmark)

    Sabuncu, Mert R.; Van Leemput, Koen

    2011-01-01

    This paper presents the Relevance VoxelMachine (RVoxM), a Bayesian multivariate pattern analysis (MVPA) algorithm that is specifically designed for making predictions based on image data. In contrast to generic MVPA algorithms that have often been used for this purpose, the method is designed to ...

  1. Attention enhances multi-voxel representation of novel objects in frontal, parietal and visual cortices.

    Science.gov (United States)

    Woolgar, Alexandra; Williams, Mark A; Rich, Anina N

    2015-04-01

    Selective attention is fundamental for human activity, but the details of its neural implementation remain elusive. One influential theory, the adaptive coding hypothesis (Duncan, 2001, An adaptive coding model of neural function in prefrontal cortex, Nature Reviews Neuroscience 2:820-829), proposes that single neurons in certain frontal and parietal regions dynamically adjust their responses to selectively encode relevant information. This selective representation may in turn support selective processing in more specialized brain regions such as the visual cortices. Here, we use multi-voxel decoding of functional magnetic resonance images to demonstrate selective representation of attended--and not distractor--objects in frontal, parietal, and visual cortices. In addition, we highlight a critical role for task demands in determining which brain regions exhibit selective coding. Strikingly, representation of attended objects in frontoparietal cortex was highest under conditions of high perceptual demand, when stimuli were hard to perceive and coding in early visual cortex was weak. Coding in early visual cortex varied as a function of attention and perceptual demand, while coding in higher visual areas was sensitive to the allocation of attention but robust to changes in perceptual difficulty. Consistent with high-profile reports, peripherally presented objects could also be decoded from activity at the occipital pole, a region which corresponds to the fovea. Our results emphasize the flexibility of frontoparietal and visual systems. They support the hypothesis that attention enhances the multi-voxel representation of information in the brain, and suggest that the engagement of this attentional mechanism depends critically on current task demands. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Parker's sneak-guard model revisited: why do reproductively parasitic males heavily invest in testes?

    Science.gov (United States)

    Ota, Kazutaka; Kohda, Masanori; Hori, Michio; Sato, Tetsu

    2011-10-01

    Alternative reproductive tactics are widespread in males and may cause intraspecific differences in testes investment. Parker's sneak-guard model predicts that sneaker males, who mate under sperm competition risk, invest in testes relatively more than bourgeois conspecifics that have lower risk. Given that sneakers are much smaller than bourgeois males, sneakers may increase testes investment to overcome their limited sperm productivity because of their small body sizes. In this study, we examined the mechanism that mediates differential testes investment across tactics in the Lake Tanganyika cichlid fish Lamprologus callipterus. In the Rumonge population of Burundi, bourgeois males are small compared with those in other populations and have a body size close to sneaky dwarf males. Therefore, if differences in relative testis investment depend on sperm competition, the rank order of relative testis investment should be dwarf males > bourgeois males in Rumonge = bourgeois males in the other populations. If differences in relative testis investment depend on body size, the rank order of relative testes investment should be dwarf males > bourgeois males in Rumonge > bourgeois males in the other populations. Comparisons of relative testis investment among the three male groups supported the role of sperm competition, as predicted by the sneak-guard model. Nevertheless, the effects of absolute body size on testes investment should be considered to understand the mechanisms underlying intraspecific variation in testes investment caused by alternative reproductive tactics.

  3. Monte Carlo simulation of dose calculation in voxel and geometric phantoms using GEANT4 code

    International Nuclear Information System (INIS)

    Martins, Maximiano C.; Santos, Denison de S.; Queiroz Filho, Pedro P. de; Silva, Rosana de S. e; Begalli, Marcia

    2009-01-01

    Monte Carlo simulation techniques have become a valuable tool for scientific purposes. In radiation protection many quantities are obtained by means of the simulation of particles passing through human body models, also known as phantoms, allowing the calculation of doses deposited in an individual's organs exposed to ionizing radiation. These information are very useful from the medical viewpoint, as they are used in the planning of external beam radiotherapy and brachytherapy treatments. The goal of this work is the implementation of a voxel phantom and a geometrical phantom in the framework of the Geant4 tool kit, aiming at a future use of this code by professionals in the medical area. (author)

  4. A multicenter reproducibility study of single-voxel 1H-MRS of the medial temporal lobe

    International Nuclear Information System (INIS)

    Traeber, Frank; Block, Wolfgang; Guer, Okan; Schild, Hans H.; Freymann, Nikolaus; Heun, Reinhard; Jessen, Frank; Kucinski, Thomas; Hammen, Thilo; Ende, Gabriele; Pilatus, Ulrich; Hampel, Harald

    2006-01-01

    Proton magnetic resonance spectroscopy ( 1 H-MRS) has provided evidence for a reduction of N-acetyl-aspartate (NAA) in the medial temporal lobe (MTL) in cerebral disorders such as Alzheimer's Disease. Within the 1 H-MRS study of the German Research Network on Dementia, we determined the multicenter reproducibility of single-voxel 1 H-MRS of the MTL. At five sites with 1.5T MR systems, single-voxel 1 H spectra from the MTL of an identical healthy subject were measured. The same subject was also examined at one of the sites five times to assess intracenter stability. The protocol included water-suppressed spectra with TE 272 ms and TE 30 ms and unsuppressed spectra for absolute quantification of metabolite concentrations. The intracenter reproducibility of absolute NAA concentration, expressed as coefficient of variation (CV), was 1.8%. CV for the concentrations of creatine (Cr), choline (Cho), and myoinositol (MI) and for the ratios NAA/Cr, NAA/Cho, and MI/NAA varied by 11-16%. Intercenter CV was 3.9% for NAA and were below 10% for all other metabolites and metabolic ratios. Our study demonstrates that quantitative assessment of NAA with single-voxel MRS can be performed with high intercenter reproducibility. This is the basis for applying 1 H-MRS in large-scale early recognition and treatment studies in MTL affecting disorders. (orig.)

  5. Conceptual model of male military sexual trauma.

    Science.gov (United States)

    Elder, William B; Domino, Jessica L; Rentz, Timothy O; Mata-Galán, Emma L

    2017-08-01

    Male sexual trauma is understudied, leaving much to be known about the unique mental health needs of male survivors. This study examined veteran men's perceptions of the effects of military sexual trauma. Military sexual trauma was defined as physically forced, verbally coerced, or substance-incapacitated acts experienced during military service. Interviews were conducted with 21 male veterans who reported experiencing military sexual trauma. Data were drawn together using a grounded theory methodology. Three categories emerged from data analysis, including (a) types of military sexual trauma (being touched in a sexual way against their will [N = 18]; sexual remarks directed at them [N = 15]; being physically forced to have sex [N = 13]); (b) negative life effects (difficulty trusting others [N = 18]; fear of abandonment [N = 17]; substance use [N = 13]; fear of interpersonal violence [N = 12]; conduct and vocational problems [N = 11]; irritability/aggression [N = 8]; insecurity about sexual performance [N = 8]; difficulty managing anger [N = 8]); and (c) posttraumatic growth (N = 15). Results from this study suggest sexual trauma in the military context may affect systems of self-organization, specifically problems in affective, self-concept, and relational domains, similar to symptoms of those who have experienced prolonged traumatic stressors. This model can be used by clinicians to select treatments that specifically target these symptoms and promote posttraumatic growth. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. A voxel-based investigation for MRI-only radiotherapy of the brain using ultra short echo times

    Science.gov (United States)

    Edmund, Jens M.; Kjer, Hans M.; Van Leemput, Koen; Hansen, Rasmus H.; Andersen, Jon AL; Andreasen, Daniel

    2014-12-01

    Radiotherapy (RT) based on magnetic resonance imaging (MRI) as the only modality, so-called MRI-only RT, would remove the systematic registration error between MR and computed tomography (CT), and provide co-registered MRI for assessment of treatment response and adaptive RT. Electron densities, however, need to be assigned to the MRI images for dose calculation and patient setup based on digitally reconstructed radiographs (DRRs). Here, we investigate the geometric and dosimetric performance for a number of popular voxel-based methods to generate a so-called pseudo CT (pCT). Five patients receiving cranial irradiation, each containing a co-registered MRI and CT scan, were included. An ultra short echo time MRI sequence for bone visualization was used. Six methods were investigated for three popular types of voxel-based approaches; (1) threshold-based segmentation, (2) Bayesian segmentation and (3) statistical regression. Each approach contained two methods. Approach 1 used bulk density assignment of MRI voxels into air, soft tissue and bone based on logical masks and the transverse relaxation time T2 of the bone. Approach 2 used similar bulk density assignments with Bayesian statistics including or excluding additional spatial information. Approach 3 used a statistical regression correlating MRI voxels with their corresponding CT voxels. A similar photon and proton treatment plan was generated for a target positioned between the nasal cavity and the brainstem for all patients. The CT agreement with the pCT of each method was quantified and compared with the other methods geometrically and dosimetrically using both a number of reported metrics and introducing some novel metrics. The best geometrical agreement with CT was obtained with the statistical regression methods which performed significantly better than the threshold and Bayesian segmentation methods (excluding spatial information). All methods agreed significantly better with CT than a reference water MRI

  7. Tomographic anthropomorphic models. Pt. 4. Organ doses for adults due to idealized external photon exposures

    International Nuclear Information System (INIS)

    Zankl, M.; Petoussi-Henss, N.; Fill, U.; Regulla, D.

    2002-01-01

    The present report contains extensive tables and figures of conversion coefficients of organ and tissue equivalent dose, normalised to air kerma free in air for voxel anthropomorphic phantoms and for standard geometries of external photon radiation, estimated with Monte Carlo techniques. Four realistic adult voxel phantoms were used for the calculations, based on computed tomographic data of real people: three male phantoms, two of them being of average size, one representing a big man, and one female phantom of a tall and somewhat over weighted woman. (orig.)

  8. Tomographic anthropomorphic models. Pt. 4. Organ doses for adults due to idealized external photon exposures

    CERN Document Server

    Zankl, M; Petoussi-Henss, N; Regulla, D

    2002-01-01

    The present report contains extensive tables and figures of conversion coefficients of organ and tissue equivalent dose, normalised to air kerma free in air for voxel anthropomorphic phantoms and for standard geometries of external photon radiation, estimated with Monte Carlo techniques. Four realistic adult voxel phantoms were used for the calculations, based on computed tomographic data of real people: three male phantoms, two of them being of average size, one representing a big man, and one female phantom of a tall and somewhat over weighted woman.

  9. Voxel-based plaque classification in coronary intravascular optical coherence tomography images using decision trees

    Science.gov (United States)

    Kolluru, Chaitanya; Prabhu, David; Gharaibeh, Yazan; Wu, Hao; Wilson, David L.

    2018-02-01

    Intravascular Optical Coherence Tomography (IVOCT) is a high contrast, 3D microscopic imaging technique that can be used to assess atherosclerosis and guide stent interventions. Despite its advantages, IVOCT image interpretation is challenging and time consuming with over 500 image frames generated in a single pullback volume. We have developed a method to classify voxel plaque types in IVOCT images using machine learning. To train and test the classifier, we have used our unique database of labeled cadaver vessel IVOCT images accurately registered to gold standard cryoimages. This database currently contains 300 images and is growing. Each voxel is labeled as fibrotic, lipid-rich, calcified or other. Optical attenuation, intensity and texture features were extracted for each voxel and were used to build a decision tree classifier for multi-class classification. Five-fold cross-validation across images gave accuracies of 96 % +/- 0.01 %, 90 +/- 0.02% and 90 % +/- 0.01 % for fibrotic, lipid-rich and calcified classes respectively. To rectify performance degradation seen in left out vessel specimens as opposed to left out images, we are adding data and reducing features to limit overfitting. Following spatial noise cleaning, important vascular regions were unambiguous in display. We developed displays that enable physicians to make rapid determination of calcified and lipid regions. This will inform treatment decisions such as the need for devices (e.g., atherectomy or scoring balloon in the case of calcifications) or extended stent lengths to ensure coverage of lipid regions prone to injury at the edge of a stent.

  10. An improved MCNP version of the NORMAN voxel phantom for dosimetry studies.

    Science.gov (United States)

    Ferrari, P; Gualdrini, G

    2005-09-21

    In recent years voxel phantoms have been developed on the basis of tomographic data of real individuals allowing new sets of conversion coefficients to be calculated for effective dose. Progress in radiation studies brought ICRP to revise its recommendations and a new report, already circulated in draft form, is expected to change the actual effective dose evaluation method. In the present paper the voxel phantom NORMAN developed at HPA, formerly NRPB, was employed with MCNP Monte Carlo code. A modified version of the phantom, NORMAN-05, was developed to take into account the new set of tissues and weighting factors proposed in the cited ICRP draft. Air kerma to organ equivalent dose and effective dose conversion coefficients for antero-posterior and postero-anterior parallel photon beam irradiations, from 20 keV to 10 MeV, have been calculated and compared with data obtained in other laboratories using different numerical phantoms. Obtained results are in good agreement with published data with some differences for the effective dose calculated employing the proposed new tissue weighting factors set in comparison with previous evaluations based on the ICRP 60 report.

  11. Prostate dose calculations for permanent implants using the MCNPX code and the Voxels phantom MAX

    Energy Technology Data Exchange (ETDEWEB)

    Reis Junior, Juraci Passos dos; Silva, Ademir Xavier da, E-mail: jjunior@con.ufrj.b, E-mail: Ademir@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear; Facure, Alessandro N.S., E-mail: facure@cnen.gov.b [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2010-07-01

    This paper presents the modeling of 80, 88 and 100 of {sup 125}I seeds, punctual and volumetric inserted into the phantom spherical volume representing the prostate and prostate phantom voxels MAX. Starting values of minimum and maximum activity, 0.27 mCi and 0.38 mCi, respectively, were simulated in the Monte Carlo code MCNPX in order to determine whether the final dose, according to the integration of the equation of decay at time t = 0 to t = {infinity} corresponds to the default value set by the AAPM 64 which is 144 Gy. The results showed that consider sources results in doses exceeding the percentage discrepancy of the default value of 200%, while volumetric consider sources result in doses close to 144 Gy. (author)

  12. Prostate dose calculations for permanent implants using the MCNPX code and the Voxels phantom MAX

    International Nuclear Information System (INIS)

    Reis Junior, Juraci Passos dos; Silva, Ademir Xavier da

    2010-01-01

    This paper presents the modeling of 80, 88 and 100 of 125 I seeds, punctual and volumetric inserted into the phantom spherical volume representing the prostate and prostate phantom voxels MAX. Starting values of minimum and maximum activity, 0.27 mCi and 0.38 mCi, respectively, were simulated in the Monte Carlo code MCNPX in order to determine whether the final dose, according to the integration of the equation of decay at time t = 0 to t = ∞ corresponds to the default value set by the AAPM 64 which is 144 Gy. The results showed that consider sources results in doses exceeding the percentage discrepancy of the default value of 200%, while volumetric consider sources result in doses close to 144 Gy. (author)

  13. Conversion of ICRP male reference phantom to polygon-surface phantom

    Science.gov (United States)

    Yeom, Yeon Soo; Han, Min Cheol; Kim, Chan Hyeong; Jeong, Jong Hwi

    2013-10-01

    The International Commission on Radiological Protection (ICRP) reference phantoms, developed based on computed tomography images of human bodies, provide much more realism of human anatomy than the previously used MIRD5 (Medical Internal Radiation Dose) mathematical phantoms. It has been, however, realized that the ICRP reference phantoms have some critical limitations showing a considerable amount of holes for the skin and wall organs mainly due to the nature of voxels of which the phantoms are made, especially due to their low voxel resolutions. To address this problem, we are planning to develop the polygon-surface version of ICRP reference phantoms by directly converting the ICRP reference phantoms (voxel phantoms) to polygon-surface phantoms. The objective of this preliminary study is to see if it is indeed possible to construct the high-quality polygon-surface phantoms based on the ICRP reference phantoms maintaining identical organ morphology and also to identify any potential issues, and technologies to address these issues, in advance. For this purpose, in the present study, the ICRP reference male phantom was roughly converted to a polygon-surface phantom. Then, the constructed phantom was implemented in Geant4, Monte Carlo particle transport code, for dose calculations, and the calculated dose values were compared with those of the original ICRP reference phantom to see how much the calculated dose values are sensitive to the accuracy of the conversion process. The results of the present study show that it is certainly possible to convert the ICRP reference phantoms to surface phantoms with enough accuracy. In spite of using relatively less resources (original ICRP reference phantoms, it is believed that the polygon-surface version of ICRP reference phantoms properly developed will not only provide the same or similar dose values (say, difference <5 or 10%) for highly penetrating radiations, but also provide correct dose values for the weakly penetrating

  14. A multicenter reproducibility study of single-voxel {sup 1}H-MRS of the medial temporal lobe

    Energy Technology Data Exchange (ETDEWEB)

    Traeber, Frank; Block, Wolfgang; Guer, Okan; Schild, Hans H. [University of Bonn, Department of Radiology, Bonn (Germany); Freymann, Nikolaus; Heun, Reinhard; Jessen, Frank [University of Bonn, Department of Psychiatry, Bonn (Germany); Kucinski, Thomas [University of Hamburg, Department of Neuroradiology, Hamburg (Germany); Hammen, Thilo [University of Erlangen, Department of Psychiatry, Erlangen (Germany); Ende, Gabriele [Central Institute of Mental Health, NMR Research in Psychiatry, Mannheim (Germany); Pilatus, Ulrich [University of Frankfurt, Department of Neuroradiology, Frankfurt (Germany); Hampel, Harald [University of Munich, Department of Psychiatry, Munich (Germany)

    2006-05-15

    Proton magnetic resonance spectroscopy ({sup 1}H-MRS) has provided evidence for a reduction of N-acetyl-aspartate (NAA) in the medial temporal lobe (MTL) in cerebral disorders such as Alzheimer's Disease. Within the {sup 1}H-MRS study of the German Research Network on Dementia, we determined the multicenter reproducibility of single-voxel {sup 1}H-MRS of the MTL. At five sites with 1.5T MR systems, single-voxel {sup 1}H spectra from the MTL of an identical healthy subject were measured. The same subject was also examined at one of the sites five times to assess intracenter stability. The protocol included water-suppressed spectra with TE 272 ms and TE 30 ms and unsuppressed spectra for absolute quantification of metabolite concentrations. The intracenter reproducibility of absolute NAA concentration, expressed as coefficient of variation (CV), was 1.8%. CV for the concentrations of creatine (Cr), choline (Cho), and myoinositol (MI) and for the ratios NAA/Cr, NAA/Cho, and MI/NAA varied by 11-16%. Intercenter CV was 3.9% for NAA and were below 10% for all other metabolites and metabolic ratios. Our study demonstrates that quantitative assessment of NAA with single-voxel MRS can be performed with high intercenter reproducibility. This is the basis for applying {sup 1}H-MRS in large-scale early recognition and treatment studies in MTL affecting disorders. (orig.)

  15. Diagnostic Accuracy of CBCT with Different Voxel Sizes and Intraoral Digital Radiography for Detection of Periapical Bone Lesions: An Ex-Vivo Study

    Directory of Open Access Journals (Sweden)

    Shirin Sakhdari

    2016-10-01

    Full Text Available Objectives: This study sought to assess the diagnostic accuracy of cone beam computed tomography (CBCT with different voxel sizes and intraoral digital radiography with photostimulable phosphor (PSP plate for detection of periapical (PA bone lesions.Materials and Methods: In this ex vivo diagnostic study, one-millimeter defects were created in the alveolar sockets of 15 bone blocks, each with two posterior teeth. A no-defect control group was also included. Digital PA radiographs with PSP plates and CBCT scans with 200, 250 and 300μ voxel sizes were obtained. Four observers evaluated the possibility of lesion detection using a 5-point scale. Sensitivity, specificity, positive predictive value (PPV and negative predicative value (NPV were analyzed using one-way ANOVA and Tamhane’s post hoc test. Kappa and weighted kappa statistics were applied to assess intraobserver and interobserver agreements.Results: Cochrane Q test showed no significant difference between PSP and CBCT imaging modalities in terms of kappa and weighted kappa statistics (P=0.675. The complete sensitivity and complete NPV for 200 and 250 μ voxel sizes were higher than those of 300 μ voxel size and digital radiography (P<0.001. No significant difference was noted in other parameters among other imaging modalities (P=0.403.Conclusions: The results showed that high-resolution CBCT scans had higher diagnostic accuracy than PSP digital radiography for detection of artificially created PA bone lesions. Voxel size (field of view must be taken into account to minimize patient radiation dose.Keywords: Diagnosis; Cone-Beam Computed Tomography; Radiography, Dental, Digital; Periapical Periodontitis

  16. Reliability of voxel gray values in cone beam computed tomography for preoperative implant planning assessment

    NARCIS (Netherlands)

    Parsa, A.; Ibrahim, N.; Hassan, B.; Motroni, A.; van der Stelt, P.; Wismeijer, D.

    2012-01-01

    Purpose: To assess the reliability of cone beam computed tomography (CBCT) voxel gray value measurements using Hounsfield units (HU) derived from multislice computed tomography (MSCT) as a clinical reference (gold standard). Materials and Methods: Ten partially edentulous human mandibular cadavers

  17. Resting-state brain activity in the motor cortex reflects task-induced activity: A multi-voxel pattern analysis.

    Science.gov (United States)

    Kusano, Toshiki; Kurashige, Hiroki; Nambu, Isao; Moriguchi, Yoshiya; Hanakawa, Takashi; Wada, Yasuhiro; Osu, Rieko

    2015-08-01

    It has been suggested that resting-state brain activity reflects task-induced brain activity patterns. In this study, we examined whether neural representations of specific movements can be observed in the resting-state brain activity patterns of motor areas. First, we defined two regions of interest (ROIs) to examine brain activity associated with two different behavioral tasks. Using multi-voxel pattern analysis with regularized logistic regression, we designed a decoder to detect voxel-level neural representations corresponding to the tasks in each ROI. Next, we applied the decoder to resting-state brain activity. We found that the decoder discriminated resting-state neural activity with accuracy comparable to that associated with task-induced neural activity. The distribution of learned weighted parameters for each ROI was similar for resting-state and task-induced activities. Large weighted parameters were mainly located on conjunctive areas. Moreover, the accuracy of detection was higher than that for a decoder whose weights were randomly shuffled, indicating that the resting-state brain activity includes multi-voxel patterns similar to the neural representation for the tasks. Therefore, these results suggest that the neural representation of resting-state brain activity is more finely organized and more complex than conventionally considered.

  18. Structural covariance in the hallucinating brain: a voxel-based morphometry study

    Science.gov (United States)

    Modinos, Gemma; Vercammen, Ans; Mechelli, Andrea; Knegtering, Henderikus; McGuire, Philip K.; Aleman, André

    2009-01-01

    Background Neuroimaging studies have indicated that a number of cortical regions express altered patterns of structural covariance in schizophrenia. The relation between these alterations and specific psychotic symptoms is yet to be investigated. We used voxel-based morphometry to examine regional grey matter volumes and structural covariance associated with severity of auditory verbal hallucinations. Methods We applied optimized voxel-based morphometry to volumetric magnetic resonance imaging data from 26 patients with medication-resistant auditory verbal hallucinations (AVHs); statistical inferences were made at p < 0.05 after correction for multiple comparisons. Results Grey matter volume in the left inferior frontal gyrus was positively correlated with severity of AVHs. Hallucination severity influenced the pattern of structural covariance between this region and the left superior/middle temporal gyri, the right inferior frontal gyrus and hippocampus, and the insula bilaterally. Limitations The results are based on self-reported severity of auditory hallucinations. Complementing with a clinician-based instrument could have made the findings more compelling. Future studies would benefit from including a measure to control for other symptoms that may covary with AVHs and for the effects of antipsychotic medication. Conclusion The results revealed that overall severity of AVHs modulated cortical intercorrelations between frontotemporal regions involved in language production and verbal monitoring, supporting the critical role of this network in the pathophysiology of hallucinations. PMID:19949723

  19. Repeated intravenous administration of gadobutrol does not lead to increased signal intensity on unenhanced T1-weighted images - a voxel-based whole brain analysis

    Energy Technology Data Exchange (ETDEWEB)

    Langner, Soenke; Kromrey, Marie-Luise [University Medicine Greifswald, Institute of Diagnostic Radiology and Neuroradiology, Greifswald (Germany); Kuehn, Jens-Peter [University Medicine Greifswald, Institute of Diagnostic Radiology and Neuroradiology, Greifswald (Germany); University Hospital, Carl Gustav Carus University Dresden, Institute for Radiology, Dresden (Germany); Grothe, Matthias [University Medicine Greifswald, Department of Neurology, Greifswald (Germany); Domin, Martin [University Medicine Greifswald, Functional Imaging Unit, Institute of Diagnostic Radiology and Neuroradiology, Greifswald (Germany)

    2017-09-15

    To identify a possible association between repeated intravenous administration of gadobutrol and increased signal intensity in the grey and white matter using voxel-based whole-brain analysis. In this retrospective single-centre study, 217 patients with a clinically isolated syndrome underwent baseline brain magnetic resonance imaging and at least one annual follow-up examination with intravenous administration of 0.1 mmol/kg body weight of gadobutrol. Using the ''Diffeomorphic Anatomical Registration using Exponentiated Lie algebra'' (DARTEL) normalisation process, tissue templates for grey matter (GM), white matter (WM), and cerebrospinal fluid (CSF) were calculated, as were GM-CSF and WM-CSF ratios. Voxel-based whole-brain analysis was used to calculate the signal intensity for each voxel in each data set. Paired t-test was applied to test differences to baseline MRI for significance. Voxel-based whole-brain analysis demonstrated no significant changes in signal intensity of grey and white matter after up to five gadobutrol administrations. There was no significant change in GM-CSF and grey WM-CSF ratios. Voxel-based whole-brain analysis did not demonstrate increased signal intensity of GM and WM on unenhanced T1-weighted images after repeated gadobutrol administration. The molecular structure of gadolinium-based contrast agent preparations may be an essential factor causing SI increase on unenhanced T1-weighted images. (orig.)

  20. Male sexual strategies modify ratings of female models with specific waist-to-hip ratios.

    Science.gov (United States)

    Brase, Gary L; Walker, Gary

    2004-06-01

    Female waist-to-hip ratio (WHR) has generally been an important general predictor of ratings of physical attractiveness and related characteristics. Individual differences in ratings do exist, however, and may be related to differences in the reproductive tactics of the male raters such as pursuit of short-term or long-term relationships and adjustments based on perceptions of one's own quality as a mate. Forty males, categorized according to sociosexual orientation and physical qualities (WHR, Body Mass Index, and self-rated desirability), rated female models on both attractiveness and likelihood they would approach them. Sociosexually restricted males were less likely to approach females rated as most attractive (with 0.68-0.72 WHR), as compared with unrestricted males. Males with lower scores in terms of physical qualities gave ratings indicating more favorable evaluations of female models with lower WHR. The results indicate that attractiveness and willingness to approach are overlapping but distinguishable constructs, both of which are influenced by variations in characteristics of the raters.

  1. Morphometric changes of whole brain in patients with alcohol addiction: a voxel-based morphometry study

    International Nuclear Information System (INIS)

    Li Jinfeng; Chen Zhiye; Ma Lin

    2011-01-01

    Objective: To evaluate morphometric changes of brain in patients with alcohol addiction by voxel-based morphometry. Methods: Fifteen patients with alcohol addiction and 15 health controls were recruited and underwent fluid attenuated inversion recovery (FLAIR) and 3D fast spoiled gradient echo (FSPGR) T 1 -weighted sequences on a 3.0 T MRI system. 3D FSPGR T 1 structure images were normalized, segmented and smoothed, and then underwent voxel-based morphometry. An ANCOVA was applied with age, body mass index (BMI), and education years as covariates because of exact sex match. A statistical threshold of P 0.05). Conclusions: Regional gray and white matter atrophy can be the initial changes in patients with alcohol addiction and the frontal region is a relative specific damaged brain region. VBM has a potential value for the detection of subtle brain atrophy in patients with alcohol addiction. (authors)

  2. Srna - Monte Carlo codes for proton transport simulation in combined and voxelized geometries

    Directory of Open Access Journals (Sweden)

    Ilić Radovan D.

    2002-01-01

    Full Text Available This paper describes new Monte Carlo codes for proton transport simulations in complex geometrical forms and in materials of different composition. The SRNA codes were developed for three dimensional (3D dose distribution calculation in proton therapy and dosimetry. The model of these codes is based on the theory of proton multiple scattering and a simple model of compound nucleus decay. The developed package consists of two codes: SRNA-2KG and SRNA-VOX. The first code simulates proton transport in combined geometry that can be described by planes and second order surfaces. The second one uses the voxelized geometry of material zones and is specifically adopted for the application of patient computer tomography data. Transition probabilities for both codes are given by the SRNADAT program. In this paper, we will present the models and algorithms of our programs, as well as the results of the numerical experiments we have carried out applying them, along with the results of proton transport simulation obtained through the PETRA and GEANT programs. The simulation of the proton beam characterization by means of the Multi-Layer Faraday Cup and spatial distribution of positron emitters obtained by our program indicate the imminent application of Monte Carlo techniques in clinical practice.

  3. Mister Voxel: 3D internal dosimetry software for nuclear medicine

    International Nuclear Information System (INIS)

    McKay, E.

    1998-01-01

    Full text: Calculation of individual internal dosimetry in nuclear medicine is a complex, multi-stage process. Most often, calculations are biased on the MIRD methodology, which assumes uniform distribution of cumulated activity inside a set of mathematically described internal organs. The MIRD 'reference man' geometry is highly simplified and the dosimetry estimates generated by this method were originally only intended to predict the average dose expected in an exposed population. We have developed a software package for the Macintosh computer ('Mister Voxel') that uses a fast Fourier transform to calculate the 3D distribution of absorbed dose by convolving a 3D dose kernel with a 3D distribution of cumulated activity. This makes it possible to generate dose volume histograms and isodose contours for organs or tumours treated with radiopharmaceuticals, a task not possible using the MIRD technique. In addition to providing 3D convolution, Mister Voxel performs basic image processing functions (image math, filters, cut and paste) and provides a collection of painting tools and simple morphological operators to facilitate the delineation of regions of interest (ROIs) along anatomical boundaries. The package also includes an image registration module with tools for automated or manual registration of 3D data sets. The structure of the package allows ROIs drawn on CT or MRI data to be easily transferred to registered SPECT data. Dose kernels are implemented by plug-in code modules, allowing the user to extend the system's capabilities if required. File import and export capabilities are also extensible

  4. A GPU-based Monte Carlo dose calculation code for photon transport in a voxel phantom

    Energy Technology Data Exchange (ETDEWEB)

    Bellezzo, M.; Do Nascimento, E.; Yoriyaz, H., E-mail: mbellezzo@gmail.br [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo method has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this paper, we present the CUBMC code, a GPU-based Mc photon transport algorithm for dose calculation under the Compute Unified Device Architecture platform. The simulation of physical events is based on the algorithm used in Penelope, and the cross section table used is the one generated by the Material routine, als present in Penelope code. Photons are transported in voxel-based geometries with different compositions. To demonstrate the capabilities of the algorithm developed in the present work four 128 x 128 x 128 voxel phantoms have been considered. One of them is composed by a homogeneous water-based media, the second is composed by bone, the third is composed by lung and the fourth is composed by a heterogeneous bone and vacuum geometry. Simulations were done considering a 6 MeV monoenergetic photon point source. There are two distinct approaches that were used for transport simulation. The first of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon stop in the frontier will be considered depending on the material changing across the photon travel line. Dose calculations using these methods are compared for validation with Penelope and MCNP5 codes. Speed-up factors are compared using a NVidia GTX 560-Ti GPU card against a 2.27 GHz Intel Xeon CPU processor. (Author)

  5. A GPU-based Monte Carlo dose calculation code for photon transport in a voxel phantom

    International Nuclear Information System (INIS)

    Bellezzo, M.; Do Nascimento, E.; Yoriyaz, H.

    2014-08-01

    As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo method has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this paper, we present the CUBMC code, a GPU-based Mc photon transport algorithm for dose calculation under the Compute Unified Device Architecture platform. The simulation of physical events is based on the algorithm used in Penelope, and the cross section table used is the one generated by the Material routine, als present in Penelope code. Photons are transported in voxel-based geometries with different compositions. To demonstrate the capabilities of the algorithm developed in the present work four 128 x 128 x 128 voxel phantoms have been considered. One of them is composed by a homogeneous water-based media, the second is composed by bone, the third is composed by lung and the fourth is composed by a heterogeneous bone and vacuum geometry. Simulations were done considering a 6 MeV monoenergetic photon point source. There are two distinct approaches that were used for transport simulation. The first of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon stop in the frontier will be considered depending on the material changing across the photon travel line. Dose calculations using these methods are compared for validation with Penelope and MCNP5 codes. Speed-up factors are compared using a NVidia GTX 560-Ti GPU card against a 2.27 GHz Intel Xeon CPU processor. (Author)

  6. Brain volumes in healthy adults aged 40 years and over: a voxel-based morphometry study.

    Science.gov (United States)

    Riello, Roberta; Sabattoli, Francesca; Beltramello, Alberto; Bonetti, Matteo; Bono, Giorgio; Falini, Andrea; Magnani, Giuseppe; Minonzio, Giorgio; Piovan, Enrico; Alaimo, Giuseppina; Ettori, Monica; Galluzzi, Samantha; Locatelli, Enrico; Noiszewska, Malgorzata; Testa, Cristina; Frisoni, Giovanni B

    2005-08-01

    Gender and age effect on brain morphology have been extensively investigated. However, the great variety in methods applied to morphology partly explain the conflicting results of linear patterns of tissue changes and lateral asymmetry in men and women. The aim of the present study was to assess the effect of age, gender and laterality on the volumes of gray matter (GM) and white matter (WM) in a large group of healthy adults by means of voxel-based morphometry. This technique, based on observer-independent algorithms, automatically segments the 3 types of tissue and computes the amount of tissue in each single voxel. Subjects were 229 healthy subjects of 40 years of age or older, who underwent magnetic resonance (MR) for reasons other than cognitive impairment. MR images were reoriented following the AC-PC line and, after removing the voxels below the cerebellum, were processed by Statistical Parametric Mapping (SPM99). GM and WM volumes were normalized for intracranial volume. Women had more fractional GM and WM volumes than men. Age was negatively correlated with both fractional GM and WM, and a gender x age interaction effect was found for WM, men having greater WM loss with advancing age. Pairwise differences between left and right GM were negative (greater GM in right hemisphere) in men, and positive (greater GM in left hemisphere) in women (-0.56+/-4.2 vs 0.99+/-4.8; p=0.019). These results support side-specific accelerated WM loss in men, and may help our better understanding of changes in regional brain structures associated with pathological aging.

  7. Comparison of the accuracy of 3-dimensional cone-beam computed tomography and micro-computed tomography reconstructions by using different voxel sizes.

    Science.gov (United States)

    Maret, Delphine; Peters, Ove A; Galibourg, Antoine; Dumoncel, Jean; Esclassan, Rémi; Kahn, Jean-Luc; Sixou, Michel; Telmon, Norbert

    2014-09-01

    Cone-beam computed tomography (CBCT) data are, in principle, metrically exact. However, clinicians need to consider the precision of measurements of dental morphology as well as other hard tissue structures. CBCT spatial resolution, and thus image reconstruction quality, is restricted by the acquisition voxel size. The aim of this study was to assess geometric discrepancies among 3-dimensional CBCT reconstructions relative to the micro-CT reference. A total of 37 permanent teeth from 9 mandibles were scanned with CBCT 9500 and 9000 3D and micro-CT. After semiautomatic segmentation, reconstructions were obtained from CBCT acquisitions (voxel sizes 76, 200, and 300 μm) and from micro-CT (voxel size 41 μm). All reconstructions were positioned in the same plane by image registration. The topography of the geometric discrepancies was displayed by using a color map allowing the maximum differences to be located. The maximum differences were mainly found at the cervical margins and on the cusp tips or incisal edges. Geometric reconstruction discrepancies were significant at 300-μm resolution (P = .01, Wilcoxon test). To study hard tissue morphology, CBCT acquisitions require voxel sizes smaller than 300 μm. This experimental study will have to be complemented by studies in vivo that consider the conditions of clinical practice. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Giga-voxel computational morphogenesis for structural design

    Science.gov (United States)

    Aage, Niels; Andreassen, Erik; Lazarov, Boyan S.; Sigmund, Ole

    2017-10-01

    In the design of industrial products ranging from hearing aids to automobiles and aeroplanes, material is distributed so as to maximize the performance and minimize the cost. Historically, human intuition and insight have driven the evolution of mechanical design, recently assisted by computer-aided design approaches. The computer-aided approach known as topology optimization enables unrestricted design freedom and shows great promise with regard to weight savings, but its applicability has so far been limited to the design of single components or simple structures, owing to the resolution limits of current optimization methods. Here we report a computational morphogenesis tool, implemented on a supercomputer, that produces designs with giga-voxel resolution—more than two orders of magnitude higher than previously reported. Such resolution provides insights into the optimal distribution of material within a structure that were hitherto unachievable owing to the challenges of scaling up existing modelling and optimization frameworks. As an example, we apply the tool to the design of the internal structure of a full-scale aeroplane wing. The optimized full-wing design has unprecedented structural detail at length scales ranging from tens of metres to millimetres and, intriguingly, shows remarkable similarity to naturally occurring bone structures in, for example, bird beaks. We estimate that our optimized design corresponds to a reduction in mass of 2-5 per cent compared to currently used aeroplane wing designs, which translates into a reduction in fuel consumption of about 40-200 tonnes per year per aeroplane. Our morphogenesis process is generally applicable, not only to mechanical design, but also to flow systems, antennas, nano-optics and micro-systems.

  9. Gray Matter Alterations in Adults with Attention-Deficit/Hyperactivity Disorder Identified by Voxel Based Morphometry

    Science.gov (United States)

    Seidman, Larry J.; Biederman, Joseph; Liang, Lichen; Valera, Eve M.; Monuteaux, Michael C.; Brown, Ariel; Kaiser, Jonathan; Spencer, Thomas; Faraone, Stephen V.; Makris, Nikos

    2014-01-01

    Background Gray and white matter volume deficits have been reported in many structural magnetic resonance imaging (MRI) studies of children with attention-deficit/hyperactivity disorder (ADHD); however, there is a paucity of structural MRI studies of adults with ADHD. This study used voxel based morphometry and applied an a priori region of interest approach based on our previous work, as well as from well-developed neuroanatomical theories of ADHD. Methods Seventy-four adults with DSM-IV ADHD and 54 healthy control subjects comparable on age, sex, race, handedness, IQ, reading achievement, frequency of learning disabilities, and whole brain volume had an MRI on a 1.5T Siemens scanner. A priori region of interest hypotheses focused on reduced volumes in ADHD in dorsolateral prefrontal cortex, anterior cingulate cortex, caudate, putamen, inferior parietal lobule, and cerebellum. Analyses were carried out by FSL-VBM 1.1. Results Relative to control subjects, ADHD adults had significantly smaller gray matter volumes in parts of six of these regions at p ≤ .01, whereas parts of the dorsolateral prefrontal cortex and inferior parietal lobule were significantly larger in ADHD at this threshold. However, a number of other regions were smaller and larger in ADHD (especially fronto-orbital cortex) at this threshold. Only the caudate remained significantly smaller at the family-wise error rate. Conclusions Adults with ADHD have subtle volume reductions in the caudate and possibly other brain regions involved in attention and executive control supporting frontostriatal models of ADHD. Modest group brain volume differences are discussed in the context of the nature of the samples studied and voxel based morphometry methodology. PMID:21183160

  10. Detecting damaged regions of cerebral white matter in the subacute phase after carbon monoxide poisoning using voxel-based analysis with diffusion tensor imaging

    International Nuclear Information System (INIS)

    Fujiwara, Shunrou; Nishimoto, Hideaki; Ogasawara, Kuniaki; Beppu, Takaaki; Sanjo, Katsumi; Koeda, Atsuhiko; Mori, Kiyoshi; Kudo, Kohsuke; Sasaki, Makoto

    2012-01-01

    The present study aimed to detect the main regions of cerebral white matter (CWM) showing damage in the subacute phase for CO-poisoned patients with chronic neurological symptoms using voxel-based analysis (VBA) with diffusion tensor imaging (DTI). Subjects comprised 22 adult CO-poisoned patients and 16 age-matched healthy volunteers as controls. Patients were classified into patients with transient acute symptoms only (group A) and patients with chronic neurological symptoms (group S). In all patients, DTI covering the whole brain was performed with a 3.0-T magnetic resonance imaging system at 2 weeks after CO exposure. As procedures for VBA, all fractional anisotropy (FA) maps obtained from DTI were spatially normalized, and FA values for all voxels in the whole CWM on normalized FA maps were statistically compared among the two patient groups and controls. Voxels with significant differences in FA were detected at various regions in comparisons between groups S and A and between group S and controls. In these comparisons, more voxels were detected in deep CWM, including the centrum semiovale, than in other regions. A few voxels were detected between group A and controls. Absolute FA values in the centrum semiovale were significantly lower in group S than in group A or controls. VBA demonstrated that CO-poisoned patients with chronic neurological symptoms had already suffered damage to various CWM regions in the subacute phase. In these regions, the centrum semiovale was suggested to be the main region damaged in the subacute phase after CO inhalation. (orig.)

  11. The Effects of Voxel Localization and Time of Echo on the Diagnostic Accuracy of Cystic Brain Tumors in 3 Tesla Magnetic Resonance Spectroscopy

    International Nuclear Information System (INIS)

    Rezvanizadeh, Alireza; Firouznia, Kavous; Salehi-Sadaghiani, Mohammad; Mohseni, Meisam; Gharaei, Dona; Ghanaati, Hossein; Saligheh Rad, Hamidreza; Masoudnia, Majid

    2012-01-01

    Although magnetic resonance spectroscopy (MRS) has been shown as an effective diagnostic tool in distinguishing inflammation from neoplasm in cystic brain lesions, the optimum approach in selecting the portions of lesions in MRS and the possible effects of different times of echoes (TEs) remains unknown. To determine the most effective TE in diagnosing neoplastic lesions based on detecting choline (Cho), N acetyl aspartate (NAA) and creatinine (Cr). Moreover, the role of voxel localization on the diagnosis of the neoplastic nature of the lesions is assessed through comparing the abovementioned metabolite ratios in the rim and center of each lesion with the same TE. In 16 patients with brain cystic tumors, MRS was performed at TEs of 30, 135 and 270 ms for detection of Cho, NAA and Cr metabolites using a 3 tesla MRI unit. The percentage of analyzed ratios greater than a cut-off point of 1.3 for Cho/Cr and 1.6 for Cho/NAA were calculated. Cho/Cr and Cho/NAA ratio means at all TEs were more at the central area in comparison with the periphery, although none of the differences were statistically significant. There was no statistically significant difference among the compared TEs. The percentages of ratios above the cut-off point at all TEs were more in the rim compared to the center and in the union of both compared to the rim or center. All the patients had at least one voxel with a Cho/Cr ratio of more than 1.3 when the voxel was chosen according to the hotspots shown in the chemical shift imaging map, regardless of their location at all examined TEs. Selection of voxels with the guide of chemical shift imaging map yields to 100% diagnostic sensitivity. If not accessible, the use of the union of peripheral and central voxels enhances the sensitivity when compared to usage of peripheral or central voxels solely

  12. Skeletal dosimetry for external exposures to photons based on {mu}CT images of spongiosa: Consideration of voxel resolution, cluster size, and medullary bone surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, R.; Khoury, H. J.; Vieira, J. W.; Brown, K. A. Robson [Departamento de Energia Nuclear, Universidade Federal de Pernambuco, Avenida Professor Luiz Freire 1000, Cidade Universitaria, CEP 50740-540, Recife, Pernambuco (Brazil); Centro Federal de Educacao Tecnologica de Pernambuco, Avenida Professor Luiz Freire 500, CEP 50740-540, Recife, Pernambuco, Brazil and Escola Politecnica, UPE, Rua Benfica 455, CEP 50751-460, Recife, Pernambuco (Brazil); Imaging Laboratory, Department of Archaeology and Anthropology, University of Bristol, 43 Woodland Road, Bristol BS8 1UU (United Kingdom)

    2009-11-15

    Skeletal dosimetry based on {mu}CT images of trabecular bone has recently been introduced to calculate the red bone marrow (RBM) and the bone surface cell (BSC) equivalent doses in human phantoms for external exposure to photons. In order to use the {mu}CT images for skeletal dosimetry, spongiosa voxels in the skeletons were replaced at run time by so-called micromatrices, which have exactly the size of a spongiosa voxel and contain segmented trabecular bone and marrow microvoxels. A cluster (=parallelepiped) of 2x2x2=8 micromatrices was used systematically and periodically throughout the spongiosa volume during the radiation transport calculation. Systematic means that when a particle leaves a spongiosa voxel to enter into a neighboring spongiosa voxel, then the next micromatrix in the cluster will be used. Periodical means that if the particle travels through more than two spongiosa voxels in a row, then the cluster will be repeated. Based on the bone samples available at the time, clusters of up to 3x3x3=27 micromatrices were studied. While for a given trabecular bone volume fraction the whole-body RBM equivalent dose showed converging results for cluster sizes between 8 and 27 micromatrices, this was not the case for the BSC equivalent dose. The BSC equivalent dose seemed to be very sensitive to the number, form, and thickness of the trabeculae. In addition, the cluster size and/or the microvoxel resolution were considered to be possible causes for the differences observed. In order to resolve this problem, this study used a bone sample large enough to extract clusters containing up to 8x8x8=512 micromatrices and which was scanned with two different voxel resolutions. Taking into account a recent proposal, this investigation also calculated the BSC equivalent dose on medullary surfaces of cortical bone in the arm and leg bones. The results showed (1) that different voxel resolutions have no effect on the RBM equivalent dose but do influence the BSC equivalent

  13. A MATHEMATICAL MODEL FOR THE KINETICS OF THE MALE REPRODUCTIVE ENDOCRINE SYSTEM

    Science.gov (United States)

    In this presentation a model for the hormonal regulation of the reproductive endocrine system in the adult male rat will be discussed. The model includes a description of the kinetics of the androgenic hormones testosterone and dihydrotestosterone, as well as the receptor-mediate...

  14. Modeling Brain Responses in an Arithmetic Working Memory Task

    Science.gov (United States)

    Hamid, Aini Ismafairus Abd; Yusoff, Ahmad Nazlim; Mukari, Siti Zamratol-Mai Sarah; Mohamad, Mazlyfarina; Manan, Hanani Abdul; Hamid, Khairiah Abdul

    2010-07-01

    Functional magnetic resonance imaging (fMRI) was used to investigate brain responses due to arithmetic working memory. Nine healthy young male subjects were given simple addition and subtraction instructions in noise and in quiet. The general linear model (GLM) and random field theory (RFT) were implemented in modelling the activation. The results showed that addition and subtraction evoked bilateral activation in Heschl's gyrus (HG), superior temporal gyrus (STG), inferior frontal gyrus (IFG), supramarginal gyrus (SG) and precentral gyrus (PCG). The HG, STG, SG and PCG activate higher number of voxels in noise as compared to in quiet for addition and subtraction except for IFG that showed otherwise. The percentage of signal change (PSC) in all areas is higher in quiet as compared to in noise. Surprisingly addition (not subtraction) exhibits stronger activation.

  15. 4D RECONSTRUCTIONS FROM LOW-COUNT SPECT DATA USING DEFORMABLE MODELS WITH SMOOTH INTERIOR INTENSITY VARIATIONS

    International Nuclear Information System (INIS)

    Cunningham, G. S.; Lehovich, A.

    2000-01-01

    The Bayes Inference Engine (BIE) has been used to perform a 4D reconstruction of a first-pass radiotracer bolus distribution inside a CardioWest Total Artificial Heart, imaged with the University of Arizona's FastSPECT system. The BIE estimates parameter values that define the 3D model of the radiotracer distribution at each of 41 times spanning about two seconds. The 3D models have two components: a closed surface, composed of hi-quadratic Bezier triangular surface patches, that defines the interface between the part of the blood pool that contains radiotracer and the part that contains no radiotracer, and smooth voxel-to-voxel variations in intensity within the closed surface. Ideally, the surface estimates the ventricular wall location where the bolus is infused throughout the part of the blood pool contained by the right ventricle. The voxel-to-voxel variations are needed to model an inhomogeneously-mixed bolus. Maximum a posterior (MAP) estimates of the Bezier control points and voxel values are obtained for each time frame. We show new reconstructions using the Bezier surface models, and discuss estimates of ventricular volume as a function of time, ejection fraction, and wall motion. The computation time for our reconstruction process, which directly estimates complex 3D model parameters from the raw data, is performed in a time that is competitive with more traditional voxel-based methods (ML-EM, e.g.)

  16. Motion as a perturbation: Measurement-guided dose estimates to moving patient voxels during modulated arc deliveries

    Energy Technology Data Exchange (ETDEWEB)

    Feygelman, Vladimir; Zhang, Geoffrey; Hunt, Dylan; Opp, Daniel [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida 33612 (United States); Stambaugh, Cassandra [Department of Physics, University of South Florida, Tampa, Florida 33612 (United States); Wolf, Theresa K. [Live Oak Technologies LLC, Kirkwood, Missouri 63122 (United States); Nelms, Benjamin E. [Canis Lupus LLC, Merrimac, Wisconsin 53561 (United States)

    2013-02-15

    Purpose: To present a framework for measurement-guided VMAT dose reconstruction to moving patient voxels from a known motion kernel and the static phantom data, and to validate this perturbation-based approach with the proof-of-principle experiments. Methods: As described previously, the VMAT 3D dose to a static patient can be estimated by applying a phantom measurement-guided perturbation to the treatment planning system (TPS)-calculated dose grid. The fraction dose to any voxel in the presence of motion, assuming the motion kernel is known, can be derived in a similar fashion by applying a measurement-guided motion perturbation. The dose to the diodes in a helical phantom is recorded at 50 ms intervals and is transformed into a series of time-resolved high-density volumetric dose grids. A moving voxel is propagated through this 4D dose space and the fraction dose to that voxel in the phantom is accumulated. The ratio of this motion-perturbed, reconstructed dose to the TPS dose in the phantom serves as a perturbation factor, applied to the TPS fraction dose to the similarly situated voxel in the patient. This approach was validated by the ion chamber and film measurements on four phantoms of different shape and structure: homogeneous and inhomogeneous cylinders, a homogeneous cube, and an anthropomorphic thoracic phantom. A 2D motion stage was used to simulate the motion. The stage position was synchronized with the beam start time with the respiratory gating simulator. The motion patterns were designed such that the motion speed was in the upper range of the expected tumor motion (1-1.4 cm/s) and the range exceeded the normally observed limits (up to 5.7 cm). The conformal arc plans for X or Y motion (in the IEC 61217 coordinate system) consisted of manually created narrow (3 cm) rectangular strips moving in-phase (tracking) or phase-shifted by 90 Degree-Sign (crossing) with respect to the phantom motion. The XY motion was tested with the computer-derived VMAT

  17. Motion as a perturbation: Measurement-guided dose estimates to moving patient voxels during modulated arc deliveries

    International Nuclear Information System (INIS)

    Feygelman, Vladimir; Zhang, Geoffrey; Hunt, Dylan; Opp, Daniel; Stambaugh, Cassandra; Wolf, Theresa K.; Nelms, Benjamin E.

    2013-01-01

    Purpose: To present a framework for measurement-guided VMAT dose reconstruction to moving patient voxels from a known motion kernel and the static phantom data, and to validate this perturbation-based approach with the proof-of-principle experiments. Methods: As described previously, the VMAT 3D dose to a static patient can be estimated by applying a phantom measurement-guided perturbation to the treatment planning system (TPS)-calculated dose grid. The fraction dose to any voxel in the presence of motion, assuming the motion kernel is known, can be derived in a similar fashion by applying a measurement-guided motion perturbation. The dose to the diodes in a helical phantom is recorded at 50 ms intervals and is transformed into a series of time-resolved high-density volumetric dose grids. A moving voxel is propagated through this 4D dose space and the fraction dose to that voxel in the phantom is accumulated. The ratio of this motion-perturbed, reconstructed dose to the TPS dose in the phantom serves as a perturbation factor, applied to the TPS fraction dose to the similarly situated voxel in the patient. This approach was validated by the ion chamber and film measurements on four phantoms of different shape and structure: homogeneous and inhomogeneous cylinders, a homogeneous cube, and an anthropomorphic thoracic phantom. A 2D motion stage was used to simulate the motion. The stage position was synchronized with the beam start time with the respiratory gating simulator. The motion patterns were designed such that the motion speed was in the upper range of the expected tumor motion (1–1.4 cm/s) and the range exceeded the normally observed limits (up to 5.7 cm). The conformal arc plans for X or Y motion (in the IEC 61217 coordinate system) consisted of manually created narrow (3 cm) rectangular strips moving in-phase (tracking) or phase-shifted by 90° (crossing) with respect to the phantom motion. The XY motion was tested with the computer-derived VMAT MLC

  18. Voxel-based analysis of whole-brain effects of age and gender on dopamine transporter SPECT imaging in healthy subjects

    International Nuclear Information System (INIS)

    Eusebio, Alexandre; Azulay, Jean-Philippe; Ceccaldi, Mathieu; Girard, Nadine; Mundler, Olivier; Guedj, Eric

    2012-01-01

    Several studies have shown age- and gender-related differences in striatal dopamine transporter (DaT) binding. These studies were based on a striatal region on interest approach that may have underestimated these effects and could not evaluate extrastriatal regions. Our aim was to determine the effects at the voxel level of age and gender on whole-brain DaT distribution using [ 123 I]FP-CIT SPECT in healthy subjects. We performed a whole-brain [ 123 I]FP-CIT SPECT voxel-based analysis using SPM8 and a standardized normalization template (p < 0.05, corrected using the false discovery rate method) in 51 healthy subjects aged from 21 to 79 years. We found an age-related DaT binding decrease in the striatum, anterior cingulate/medial frontal cortices and insulo-opercular cortices. Also DaT binding ratios were higher in women than men in the striatum and opercular cortices. This study showed both striatal and extrastriatal age-related and gender-related differences in DaT binding in healthy subjects using a whole-brain voxel-based non-a priori approach. These differences highlight the need for careful age and gender matching in DaT analyses of neuropsychiatric disorders. (orig.)

  19. Voxel-based analysis of whole-brain effects of age and gender on dopamine transporter SPECT imaging in healthy subjects

    Energy Technology Data Exchange (ETDEWEB)

    Eusebio, Alexandre; Azulay, Jean-Philippe [APHM, Hopital de la Timone, Service de Neurologie et Pathologie du Mouvement, Marseille (France); CNRS, Aix-Marseille Univ, Institut de Neurosciences de la Timone, Marseille (France); Ceccaldi, Mathieu [APHM, Hopital de la Timone, Service de Neurologie et de Neuropsychologie, Marseille (France); Aix-Marseille Univ, UMR Inserm 1106, Institut de Neurosciences des Systemes, Marseille (France); Girard, Nadine [APHM, Hopital de la Timone, Service de Neuroradiologie diagnostique et interventionnelle, Marseille (France); Mundler, Olivier [APHM, Hopital de la Timone, Service Central de Biophysique et Medecine Nucleaire, Marseille (France); Aix-Marseille Univ, CERIMED, Marseille (France); Guedj, Eric [CNRS, Aix-Marseille Univ, Institut de Neurosciences de la Timone, Marseille (France); APHM, Hopital de la Timone, Service Central de Biophysique et Medecine Nucleaire, Marseille (France); Aix-Marseille Univ, CERIMED, Marseille (France)

    2012-11-15

    Several studies have shown age- and gender-related differences in striatal dopamine transporter (DaT) binding. These studies were based on a striatal region on interest approach that may have underestimated these effects and could not evaluate extrastriatal regions. Our aim was to determine the effects at the voxel level of age and gender on whole-brain DaT distribution using [{sup 123}I]FP-CIT SPECT in healthy subjects. We performed a whole-brain [{sup 123}I]FP-CIT SPECT voxel-based analysis using SPM8 and a standardized normalization template (p < 0.05, corrected using the false discovery rate method) in 51 healthy subjects aged from 21 to 79 years. We found an age-related DaT binding decrease in the striatum, anterior cingulate/medial frontal cortices and insulo-opercular cortices. Also DaT binding ratios were higher in women than men in the striatum and opercular cortices. This study showed both striatal and extrastriatal age-related and gender-related differences in DaT binding in healthy subjects using a whole-brain voxel-based non-a priori approach. These differences highlight the need for careful age and gender matching in DaT analyses of neuropsychiatric disorders. (orig.)

  20. A non-voxel-based broad-beam (NVBB) framework for IMRT treatment planning.

    Science.gov (United States)

    Lu, Weiguo

    2010-12-07

    We present a novel framework that enables very large scale intensity-modulated radiation therapy (IMRT) planning in limited computation resources with improvements in cost, plan quality and planning throughput. Current IMRT optimization uses a voxel-based beamlet superposition (VBS) framework that requires pre-calculation and storage of a large amount of beamlet data, resulting in large temporal and spatial complexity. We developed a non-voxel-based broad-beam (NVBB) framework for IMRT capable of direct treatment parameter optimization (DTPO). In this framework, both objective function and derivative are evaluated based on the continuous viewpoint, abandoning 'voxel' and 'beamlet' representations. Thus pre-calculation and storage of beamlets are no longer needed. The NVBB framework has linear complexities (O(N(3))) in both space and time. The low memory, full computation and data parallelization nature of the framework render its efficient implementation on the graphic processing unit (GPU). We implemented the NVBB framework and incorporated it with the TomoTherapy treatment planning system (TPS). The new TPS runs on a single workstation with one GPU card (NVBB-GPU). Extensive verification/validation tests were performed in house and via third parties. Benchmarks on dose accuracy, plan quality and throughput were compared with the commercial TomoTherapy TPS that is based on the VBS framework and uses a computer cluster with 14 nodes (VBS-cluster). For all tests, the dose accuracy of these two TPSs is comparable (within 1%). Plan qualities were comparable with no clinically significant difference for most cases except that superior target uniformity was seen in the NVBB-GPU for some cases. However, the planning time using the NVBB-GPU was reduced many folds over the VBS-cluster. In conclusion, we developed a novel NVBB framework for IMRT optimization. The continuous viewpoint and DTPO nature of the algorithm eliminate the need for beamlets and lead to better plan

  1. A non-voxel-based broad-beam (NVBB) framework for IMRT treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Lu Weiguo, E-mail: wlu@tomotherapy.co [TomoTherapy Inc., 1240 Deming Way, Madison, WI 53717 (United States)

    2010-12-07

    We present a novel framework that enables very large scale intensity-modulated radiation therapy (IMRT) planning in limited computation resources with improvements in cost, plan quality and planning throughput. Current IMRT optimization uses a voxel-based beamlet superposition (VBS) framework that requires pre-calculation and storage of a large amount of beamlet data, resulting in large temporal and spatial complexity. We developed a non-voxel-based broad-beam (NVBB) framework for IMRT capable of direct treatment parameter optimization (DTPO). In this framework, both objective function and derivative are evaluated based on the continuous viewpoint, abandoning 'voxel' and 'beamlet' representations. Thus pre-calculation and storage of beamlets are no longer needed. The NVBB framework has linear complexities (O(N{sup 3})) in both space and time. The low memory, full computation and data parallelization nature of the framework render its efficient implementation on the graphic processing unit (GPU). We implemented the NVBB framework and incorporated it with the TomoTherapy treatment planning system (TPS). The new TPS runs on a single workstation with one GPU card (NVBB-GPU). Extensive verification/validation tests were performed in house and via third parties. Benchmarks on dose accuracy, plan quality and throughput were compared with the commercial TomoTherapy TPS that is based on the VBS framework and uses a computer cluster with 14 nodes (VBS-cluster). For all tests, the dose accuracy of these two TPSs is comparable (within 1%). Plan qualities were comparable with no clinically significant difference for most cases except that superior target uniformity was seen in the NVBB-GPU for some cases. However, the planning time using the NVBB-GPU was reduced many folds over the VBS-cluster. In conclusion, we developed a novel NVBB framework for IMRT optimization. The continuous viewpoint and DTPO nature of the algorithm eliminate the need for beamlets

  2. The Relationship between Trabecular Bone Structure Modeling Methods and the Elastic Modulus as Calculated by FEM

    Directory of Open Access Journals (Sweden)

    Tomasz Topoliński

    2012-01-01

    Full Text Available Trabecular bone cores were collected from the femoral head at the time of surgery (hip arthroplasty. Investigated were 42 specimens, from patients with osteoporosis and coxarthrosis. The cores were scanned used computer microtomography (microCT system at an isotropic spatial resolution of 36 microns. Image stacks were converted to finite element models via a bone voxel-to-element algorithm. The apparent modulus was calculated based on the assumptions that for the elastic properties, E=10 MPa and ν=0.3. The compressive deformation as calculated by finite elements (FE analysis was 0.8%. The models were coarsened to effectively change the resolution or voxel size (from 72 microns to 288 microns or from 72 microns to 1080 microns. The aim of our study is to determine how an increase in the distance between scans changes the elastic properties as calculated by FE models. We tried to find a border value voxel size at which the module values were possible to calculate. As the voxel size increased, the mean voxel volume increased and the FEA-derived apparent modulus decreased. The slope of voxel size versus modulus relationship correlated with several architectural indices of trabecular bone.

  3. Evaluation of the fluence to dose conversion coefficients for high energy neutrons using a voxel phantom coupled with the GEANT4 code

    CERN Document Server

    Paganini, S

    2005-01-01

    Crews working on present-day jet aircraft are a large occupationally exposed group with a relatively high average effective dose from Galactic cosmic radiation. Crews of future high-speed commercial flying at higher altitudes would be even more exposed. To help reduce the significant uncertainties in calculations of such exposures, the male adult voxels phantom MAX, developed in the Nuclear Energy Department of Pernambuco Federal University in Brazil, has been coupled with the Monte Carlo simulation code GEANT4. This toolkit, distributed and upgraded from the international scientific community of CERN/Switzerland, simulates thermal to ultrahigh energy neutrons transport and interactions in the matter. The high energy neutrons are pointed as the component that contribute about 70% of the neutron effective dose that represent the 35% to 60% total dose at aircraft altitude. In this research calculations of conversion coefficients from fluence to effective dose are performed for neutrons of energies from 100 MeV ...

  4. Diffuse Decreased Gray Matter in Patients with Idiopathic Craniocervical Dystonia: a Voxel-Based Morphometry Study

    Directory of Open Access Journals (Sweden)

    Camila Callegari Piccinin

    2015-01-01

    Full Text Available Background: Recent studies have addressed the role of structures other than the basal ganglia in the pathophysiology of craniocervical dystonia. Neuroimaging studies have attempted to identify structural abnormalities in craniocervical dystonia but a clear pattern of alteration has not been established. We performed whole brain evaluation using voxel-based morphometry to identify patterns of gray matter changes in craniocervical dystonia.Methods: We compared 27 patients with craniocervical dystonia matched in age and gender to 54 healthy controls. Voxel-based morphometry was used to compare gray matter volumes. We created a two-sample t-test corrected for subjects’ age and we tested with a level of significance of p<0.001 and false discovery rate correction (p<0.05. Results: Voxel-based morphometry demonstrated significant reductions of gray matter using p<0.001 in the cerebellar vermis IV/V, bilaterally in the superior frontal gyrus, precuneus, anterior cingulate and paracingulate, insular cortex, lingual gyrus and calcarine fissure; in the left hemisphere in the supplemementary motor area (SMA, inferior frontal gyrus, inferior parietal gyrus, temporal pole, supramarginal gyrus, rolandic operculum , hippocampus, middle occipital gyrus, cerebellar lobules IV/V, superior and middle temporal gyri; in the right hemisphere, the middle cingulate and precentral gyrus. Our study did not report any significant result using the false discovery rate correction. We also detected correlations between gray matter volume and age, disease duration, duration of botulinum toxin treatment and the Marsden-Fahn dystonia scale scores.Conclusions: We detected large clusters of gray matter changes chiefly in structures primarily involved in sensorimotor integration, motor planning, visuospatial function and emotional processing.

  5. Adolescents of the U.S. National Longitudinal Lesbian Family Study: male role models, gender role traits, and psychological adjustment

    NARCIS (Netherlands)

    Bos, H.; Goldberg, N.; van Gelderen, L.; Gartrell, N.

    2012-01-01

    This article focuses on the influence of male role models on the lives of adolescents (N = 78) in the U.S. National Longitudinal Lesbian Family Study. Half of the adolescents had male role models; those with and those without male role models had similar scores on the feminine and masculine scales

  6. Comparison of low-contrast detectability between two CT reconstruction algorithms using voxel-based 3D printed textured phantoms.

    Science.gov (United States)

    Solomon, Justin; Ba, Alexandre; Bochud, François; Samei, Ehsan

    2016-12-01

    To use novel voxel-based 3D printed textured phantoms in order to compare low-contrast detectability between two reconstruction algorithms, FBP (filtered-backprojection) and SAFIRE (sinogram affirmed iterative reconstruction) and determine what impact background texture (i.e., anatomical noise) has on estimating the dose reduction potential of SAFIRE. Liver volumes were segmented from 23 abdominal CT cases. The volumes were characterized in terms of texture features from gray-level co-occurrence and run-length matrices. Using a 3D clustered lumpy background (CLB) model, a fitting technique based on a genetic optimization algorithm was used to find CLB textures that were reflective of the liver textures, accounting for CT system factors of spatial blurring and noise. With the modeled background texture as a guide, four cylindrical phantoms (Textures A-C and uniform, 165 mm in diameter, and 30 mm height) were designed, each containing 20 low-contrast spherical signals (6 mm diameter at nominal contrast levels of ∼3.2, 5.2, 7.2, 10, and 14 HU with four repeats per signal). The phantoms were voxelized and input into a commercial multimaterial 3D printer (Object Connex 350), with custom software for voxel-based printing (using principles of digital dithering). Images of the textured phantoms and a corresponding uniform phantom were acquired at six radiation dose levels (SOMATOM Flash, Siemens Healthcare) and observer model detection performance (detectability index of a multislice channelized Hotelling observer) was estimated for each condition (5 contrasts × 6 doses × 2 reconstructions × 4 backgrounds = 240 total conditions). A multivariate generalized regression analysis was performed (linear terms, no interactions, random error term, log link function) to assess whether dose, reconstruction algorithm, signal contrast, and background type have statistically significant effects on detectability. Also, fitted curves of detectability (averaged across contrast levels

  7. Voxel-based analysis of fractional anisotropy in post-stroke apathy.

    Directory of Open Access Journals (Sweden)

    Song-ran Yang

    Full Text Available To explore the structural basis of post-stroke apathy by using voxel-based analysis (VBA of fractional anisotropy (FA maps.We enrolled 54 consecutive patients with ischemic stroke during convalescence, and divided them into apathy (n = 31 and non-apathy (n = 23 groups. We obtained magnetic resonance images of their brains, including T1, T2 and DTI sequences. Age, sex, education level, Hamilton Depression Scale (HAMD scores, Mini-Mental State Examination (MMSE scores, National Institutes of Health Stroke Scale (NIHSS scores, and infarct locations for the two groups were compared. Finally, to investigate the structural basis of post-stroke apathy, VBA of FA maps was performed in which we included the variables that a univariate analysis determined had P-values less than 0.20 as covariates.HAMD (P = 0.01 and MMSE (P<0.01 scores differed significantly between the apathy and non-apathy groups. After controlling for age, education level, HAMD scores, and MMSE scores, significant FA reduction was detected in four clusters with peak voxels at the genu of the corpus callosum (X = -16, Y = 30, Z = 8, left anterior corona radiata (-22, 30, 10, splenium of the corpus callosum (-24, -56, 18, and right inferior frontal gyrus white matter (52, 24, 18, after family-wise error correction for multiple comparisons.Post-stroke apathy is related to depression and cognitive decline. Damage to the genu of the corpus callosum, left anterior corona radiata, splenium of the corpus callosum, and white matter in the right inferior frontal gyrus may lead to apathy after ischemic stroke.

  8. Dosimetry in Japanese male and female models for a low-frequency electric field

    International Nuclear Information System (INIS)

    Hirata, Akimasa; Fujiwara, Osamu

    2007-01-01

    The present study quantified induced current in anatomically based Japanese male and female models for exposure to low-frequency electric fields. A quasi-static finite-difference time-domain (FDTD) method was applied to analyze this problem. For our computational results, the difference of the induced current density averaged over an area of 1 cm 2 between Japanese male and female models was less than 30% for each nerve tissue. The difference of induced current density between the present study and earlier works was less than 50% for the same conductivities, despite the different morphology. Particularly, maximum current density in central nerve tissues appeared in the retina of Japanese models, the same as in the earlier works. (note)

  9. Regional White Matter Decreases in Alzheimer's Disease Using Optimized Voxel-Based Morphometry

    International Nuclear Information System (INIS)

    Shuyu Li; Fang Pu; Feng Shi; Sheng Xie; Yinhua Wang; Tianzi Jiang

    2008-01-01

    Background: Most studies that attempt to clarify structural abnormalities related to functional disconnection in patients with Alzheimer's disease (AD) have focused on exploring pathological changes in cortical gray matter. However, white matter fibers connecting these cerebral areas may also be abnormal. Purpose: To investigate the regional changes of white matter volume in patients with AD compared to healthy subjects. Material and Methods: White matter volume changes in whole-brain magnetic resonance images acquired from 19 patients with AD and 20 healthy subjects (control group) were observed using the optimized voxel-based morphometry (VBM) method. In addition, the corpus callosum (CC) of AD patients and the control group was investigated further by outlining manually the boundary of the CC on a midsagittal slice. Each area of the CC was then corrected by dividing each subject's intracranial area in the midsagittal plane. Results: Compared with the control group, AD patients showed significantly reduced white matter volumes in the posterior part of the CC and the temporal lobe in the left and right hemispheres. Moreover, the voxel showing peak statistical difference in the posterior of the CC was left sided. The five subdivisions of the CC were also significantly smaller among the AD patients relative to the control group. Conclusion: Our findings suggest that these abnormalities in white matter regions may contribute to the functional disconnections in AD

  10. Detecting phase singularities and rotor center trajectories based on the Hilbert transform of intraatrial electrograms in an atrial voxel model

    Directory of Open Access Journals (Sweden)

    Unger Laura Anna

    2015-09-01

    Full Text Available This work aimed at the detection of rotor centers within the atrial cavity during atrial fibrillation on the basis of phase singularities. A voxel based method was established which employs the Hilbert transform and the phase of unipolar electrograms. The method provides a 3D overview of phase singularities at the endocardial surface and within the blood volume. Mapping those phase singularities from the inside of the atria at the endocardium yielded rotor center trajectories. We discuss the results for an unstable and a more stable rotor. The side length of the areas covered by the trajectories varied from 1.5 mm to 10 mm. These results are important for cardiologists who target rotors with RF ablation in order to cure atrial fibrillation.

  11. Comparing the Effect of Different Voxel Resolutions for Assessment of Vertical Root Fracture of Permanent Teeth

    International Nuclear Information System (INIS)

    Uzun, Ismail; Gunduz, Kaan; Celenk, Peruze; Avsever, Hakan; Orhan, Kaan; Canitezer, Gozde; Ozmen, Bilal; Cicek, Ersan; Egrioglu, Erol

    2015-01-01

    The teeth with undiagnosed vertical root fractures (VRFs) are likely to receive endodontic treatment or retreatment, leading to frustration and inappropriate endodontic therapies. Moreover, many cases of VRFs cannot be diagnosed definitively until the extraction of tooth. This study aimed to assess the use of different voxel resolutions of two different cone beam computerized tomography (CBCT) units in the detection VRFs in vitro. The study material comprised 74 extracted human mandibular single rooted premolar teeth without root fractures that had not undergone any root-canal treatment. Images were obtained by two different CBCT units. Four image sets were obtained as follows: 1) 3D Accuitomo 170, 4 × 4 cm field of view (FOV) (0.080 mm 3 ); 2) 3D Accuitomo 170. 6 × 6 cm FOV (0.125 mm 3 ); 3) NewTom 3G, 6” (0.16 mm 3 ) and 4) NewTom 3G, 9” FOV (0.25 mm 3 ). Kappa coefficients were calculated to assess both intra- and inter-observer agreements for each image set. No significant differences were found among observers or voxel sizes, with high average Z (Az) results being reported for all groups. Both intra- and inter-observer agreement values were relatively better for 3D Accuitomo 170 images than the images from NewTom 3G. The highest Az and kappa values were obtained with 3D Accuitomo 170, 4 × 4 cm FOV (0.080 mm 3 ) images. No significant differences were found among observers or voxel sizes, with high Az results reported for all groups

  12. MR diffusion tensor imaging voxel-based analysis of whole brain white matter in patients with amnestic-type mild cognitive impairment and mild Alzheimer disease

    International Nuclear Information System (INIS)

    Li Yadi; Feng Xiaoyuan; He Huijin; Ding Ding; Tang Weijun; Zhao Qianhua

    2011-01-01

    Objective: To evaluate the microstructural integrity of white matter (WM) in patients with amnestic mild cognitive impairment (aMCI) and mild Alzheimer's disease (AD) using voxel-based analysis (VBA), and investigate the relationship between WM abnormalities and gray matter (GM) atrophy. Methods: Thirty-three cases with aMCI, 32 cases with mild AD and 31 normal aging volunteers as control subjects were scanned on a 3.0 T MR system using diffusion tensor imaging (DTI) and three-dimensional spoiled gradient-recalled (3DSPGR) sequences. Fractional anisotropy (FA) maps and morphological images were preprocessed by SPM5 and voxel-based comparisons between the 2 patient groups and the control group were performed by t test. Results: Relative to the control group, patients with aMCI showed significantly reduced FA value in bilateral frontal, temporal and left occipital WM, left anterior part of cingulum, left inferior parietal lobule, and the WM adjacent to the triangular part of the right lateral ventricle (k ≥ 20 voxels). In mild AD, significantly reduced FA value was found in bilateral hippocampal, inferior parietal lobular, frontal, temporal, and occipital WM, bilateral corpus callosum, anterior part of cingulums, the WM adjacent to the triangular part of the bilateral lateral ventricles, left temporal stem, left thalamus, right precuneus (k ≥ 20 voxels). Significantly reduced GM volume was found in left hippocampus, parahippocampal gyrus, lingual gyrus and superior temporal gyrus, bilateral insulae and middle temporal gyri in aMCI group when compared with control group (k ≥ 50 voxels). In mild AD, significantly reduced GM volume was found in bilateral hippocampi, parahippocampal gyri, amygdalae, thalami, temporal, parietal, frontal, occipital cortex (k ≥ 50 voxels). The pattern of areas with reduced FA differs from that of the GM volumetric reduction. No areas with significantly reduced FA was detected in aMCI compared with mild AD. There was no significant

  13. Job Stress and Related Factors Among Iranian Male Staff Using a Path Analysis Model.

    Science.gov (United States)

    Azad-Marzabadi, Esfandiar; Gholami Fesharaki, Mohammad

    2016-06-01

    In recent years, job stress has been cited as a risk factor for some diseases. Given the importance of this subject, we established a new model for classifying job stress among Iranian male staff using path analysis. This cross-sectional study was done on male staff in Tehran, Iran, 2013. The participants in the study were selected using a proportional stratum sampling method. The tools used included nine questionnaires (1- HSE questionnaire; 2- GHQ questionnaire; 3- Beck depression inventory; 4- Framingham personality type; 5- Azad-Fesharaki's physical activity questionnaire; 6- Adult attachment style questionnaire; 7- Azad socioeconomic questionnaire; 8- Job satisfaction survey; and 9- demographic questionnaire). A total of 575 individuals (all male) were recruited for the study. Their mean (±SD) age was 33.49 (±8.9) and their mean job experience was 12.79 (±8.98) years. The pathway of job stress among Iranian male staff showed an adequate model fit (RMSEA=0.021, GFI=0.99, AGFI=0.97, P=0.136). In addition, the total effect of variables like personality type (β=0.283), job satisfaction (β=0.287), and age (β=0.108) showed a positive relationship with job stress, while variables like general health (β=-0.151) and depression (β=-0.242) showed the reverse effect on job stress. According to the results of this study, we can conclude that our suggested model is suited to explaining the pathways of stress among Iranian male staff.

  14. Single-view volumetric PIV via high-resolution scanning, isotropic voxel restructuring and 3D least-squares matching (3D-LSM)

    International Nuclear Information System (INIS)

    Brücker, C; Hess, D; Kitzhofer, J

    2013-01-01

    Scanning PIV as introduced by Brücker (1995 Exp. Fluids 19 255–63, 1996a Appl. Sci. Res. 56 157–79) has been successfully applied in the last 20 years to different flow problems where the frame rate was sufficient to ensure a ‘frozen’ field condition. The limited number of parallel planes however leads typically to an under-sampling in the scan direction in depth; therefore, the spatial resolution in depth is typically considerably lower than the spatial resolution in the plane of the laser sheet (depth resolution = scan shift Δz ≫ pixel unit in object space). In addition, a partial volume averaging effect due to the thickness of the light sheet must be taken into account. Herein, the method is further developed using a high-resolution scanning in combination with a Gaussian regression technique to achieve an isotropic representation of the tracer particles in a voxel-based volume reconstruction with cuboidal voxels. This eliminates the partial volume averaging effect due to light sheet thickness and leads to comparable spatial resolution of the particle field reconstructions in x-, y- and z-axes. In addition, advantage of voxel-based processing with estimations of translation, rotation and shear/strain is taken by using a 3D least-squares matching method, well suited for reconstruction of grey-level pattern fields. The method is discussed in this paper and used to investigate the ring vortex instability at Re = 2500 within a measurement volume of roughly 75 × 75 × 50 mm 3 with a spatial resolution of 100 µm/voxel (750 × 750 × 500 voxel elements). The volume has been scanned with a number of 100 light sheets and scan rates of 10 kHz. The results show the growth of the Tsai–Widnall azimuthal instabilities accompanied with a precession of the axis of the vortex ring. Prior to breakdown, secondary instabilities evolve along the core with streamwise oriented striations. The front stagnation point's streamwise distance to the core starts to decrease

  15. Voxel-based lesion-symptom mapping of stroke lesions underlying somatosensory deficits

    Directory of Open Access Journals (Sweden)

    Sarah Meyer

    2016-01-01

    Full Text Available The aim of this study was to investigate the relationship between stroke lesion location and the resulting somatosensory deficit. We studied exteroceptive and proprioceptive somatosensory symptoms and stroke lesions in 38 patients with first-ever acute stroke. The Erasmus modified Nottingham Sensory Assessment was used to clinically evaluate somatosensory functioning in the arm and hand within the first week after stroke onset. Additionally, more objective measures such as the perceptual threshold of touch and somatosensory evoked potentials were recorded. Non-parametric voxel-based lesion-symptom mapping was performed to investigate lesion contribution to different somatosensory deficits in the upper limb. Additionally, structural connectivity of brain areas that demonstrated the strongest association with somatosensory symptoms was determined, using probabilistic fiber tracking based on diffusion tensor imaging data from a healthy age-matched sample. Voxels with a significant association to somatosensory deficits were clustered in two core brain regions: the central parietal white matter, also referred to as the sensory component of the superior thalamic radiation, and the parietal operculum close to the insular cortex, representing the secondary somatosensory cortex. Our objective recordings confirmed findings from clinical assessments. Probabilistic tracking connected the first region to thalamus, internal capsule, brain stem, postcentral gyrus, cerebellum, and frontal pathways, while the second region demonstrated structural connections to thalamus, insular and primary somatosensory cortex. This study reveals that stroke lesions in the sensory fibers of the superior thalamocortical radiation and the parietal operculum are significantly associated with multiple exteroceptive and proprioceptive deficits in the arm and hand.

  16. Voxel-based lesion-symptom mapping of stroke lesions underlying somatosensory deficits.

    Science.gov (United States)

    Meyer, Sarah; Kessner, Simon S; Cheng, Bastian; Bönstrup, Marlene; Schulz, Robert; Hummel, Friedhelm C; De Bruyn, Nele; Peeters, Andre; Van Pesch, Vincent; Duprez, Thierry; Sunaert, Stefan; Schrooten, Maarten; Feys, Hilde; Gerloff, Christian; Thomalla, Götz; Thijs, Vincent; Verheyden, Geert

    2016-01-01

    The aim of this study was to investigate the relationship between stroke lesion location and the resulting somatosensory deficit. We studied exteroceptive and proprioceptive somatosensory symptoms and stroke lesions in 38 patients with first-ever acute stroke. The Erasmus modified Nottingham Sensory Assessment was used to clinically evaluate somatosensory functioning in the arm and hand within the first week after stroke onset. Additionally, more objective measures such as the perceptual threshold of touch and somatosensory evoked potentials were recorded. Non-parametric voxel-based lesion-symptom mapping was performed to investigate lesion contribution to different somatosensory deficits in the upper limb. Additionally, structural connectivity of brain areas that demonstrated the strongest association with somatosensory symptoms was determined, using probabilistic fiber tracking based on diffusion tensor imaging data from a healthy age-matched sample. Voxels with a significant association to somatosensory deficits were clustered in two core brain regions: the central parietal white matter, also referred to as the sensory component of the superior thalamic radiation, and the parietal operculum close to the insular cortex, representing the secondary somatosensory cortex. Our objective recordings confirmed findings from clinical assessments. Probabilistic tracking connected the first region to thalamus, internal capsule, brain stem, postcentral gyrus, cerebellum, and frontal pathways, while the second region demonstrated structural connections to thalamus, insular and primary somatosensory cortex. This study reveals that stroke lesions in the sensory fibers of the superior thalamocortical radiation and the parietal operculum are significantly associated with multiple exteroceptive and proprioceptive deficits in the arm and hand.

  17. Application of a dual-resolution voxelization scheme to compressed-sensing (CS)-based iterative reconstruction in digital tomosynthesis (DTS)

    Science.gov (United States)

    Park, S. Y.; Kim, G. A.; Cho, H. S.; Park, C. K.; Lee, D. Y.; Lim, H. W.; Lee, H. W.; Kim, K. S.; Kang, S. Y.; Park, J. E.; Kim, W. S.; Jeon, D. H.; Je, U. K.; Woo, T. H.; Oh, J. E.

    2018-02-01

    In recent digital tomosynthesis (DTS), iterative reconstruction methods are often used owing to the potential to provide multiplanar images of superior image quality to conventional filtered-backprojection (FBP)-based methods. However, they require enormous computational cost in the iterative process, which has still been an obstacle to put them to practical use. In this work, we propose a new DTS reconstruction method incorporated with a dual-resolution voxelization scheme in attempt to overcome these difficulties, in which the voxels outside a small region-of-interest (ROI) containing target diagnosis are binned by 2 × 2 × 2 while the voxels inside the ROI remain unbinned. We considered a compressed-sensing (CS)-based iterative algorithm with a dual-constraint strategy for more accurate DTS reconstruction. We implemented the proposed algorithm and performed a systematic simulation and experiment to demonstrate its viability. Our results indicate that the proposed method seems to be effective for reducing computational cost considerably in iterative DTS reconstruction, keeping the image quality inside the ROI not much degraded. A binning size of 2 × 2 × 2 required only about 31.9% computational memory and about 2.6% reconstruction time, compared to those for no binning case. The reconstruction quality was evaluated in terms of the root-mean-square error (RMSE), the contrast-to-noise ratio (CNR), and the universal-quality index (UQI).

  18. A Voxel-Based Method for Automated Identification and Morphological Parameters Estimation of Individual Street Trees from Mobile Laser Scanning Data

    Directory of Open Access Journals (Sweden)

    Hongxing Liu

    2013-01-01

    Full Text Available As an important component of urban vegetation, street trees play an important role in maintenance of environmental quality, aesthetic beauty of urban landscape, and social service for inhabitants. Acquiring accurate and up-to-date inventory information for street trees is required for urban horticultural planning, and municipal urban forest management. This paper presents a new Voxel-based Marked Neighborhood Searching (VMNS method for efficiently identifying street trees and deriving their morphological parameters from Mobile Laser Scanning (MLS point cloud data. The VMNS method consists of six technical components: voxelization, calculating values of voxels, searching and marking neighborhoods, extracting potential trees, deriving morphological parameters, and eliminating pole-like objects other than trees. The method is validated and evaluated through two case studies. The evaluation results show that the completeness and correctness of our method for street tree detection are over 98%. The derived morphological parameters, including tree height, crown diameter, diameter at breast height (DBH, and crown base height (CBH, are in a good agreement with the field measurements. Our method provides an effective tool for extracting various morphological parameters for individual street trees from MLS point cloud data.

  19. Convolutional neural network based side attack explosive hazard detection in three dimensional voxel radar

    Science.gov (United States)

    Brockner, Blake; Veal, Charlie; Dowdy, Joshua; Anderson, Derek T.; Williams, Kathryn; Luke, Robert; Sheen, David

    2018-04-01

    The identification followed by avoidance or removal of explosive hazards in past and/or present conflict zones is a serious threat for both civilian and military personnel. This is a challenging task as variability exists with respect to the objects, their environment and emplacement context, to name a few factors. A goal is the development of automatic or human-in-the-loop sensor technologies that leverage signal processing, data fusion and machine learning. Herein, we explore the detection of side attack explosive hazards (SAEHs) in three dimensional voxel space radar via different shallow and deep convolutional neural network (CNN) architectures. Dimensionality reduction is performed by using multiple projected images versus the raw three dimensional voxel data, which leads to noteworthy savings in input size and associated network hyperparameters. Last, we explore the accuracy and interpretation of solutions learned via random versus intelligent network weight initialization. Experiments are provided on a U.S. Army data set collected over different times, weather conditions, target types and concealments. Preliminary results indicate that deep learning can perform as good as, if not better, than a skilled domain expert, even in light of limited training data with a class imbalance.

  20. A fourth gradient to overcome slice dependent phase effects of voxel-sized coils in planar arrays.

    Science.gov (United States)

    Bosshard, John C; Eigenbrodt, Edwin P; McDougall, Mary P; Wright, Steven M

    2010-01-01

    The signals from an array of densely spaced long and narrow receive coils for MRI are complicated when the voxel size is of comparable dimension to the coil size. The RF coil causes a phase gradient across each voxel, which is dependent on the distance from the coil, resulting in a slice dependent shift of k-space. A fourth gradient coil has been implemented and used with the system's gradient set to create a gradient field which varies with slice. The gradients are pulsed together to impart a slice dependent phase gradient to compensate for the slice dependent phase due to the RF coils. However the non-linearity in the fourth gradient which creates the desired slice dependency also results in a through-slice phase ramp, which disturbs normal slice refocusing and leads to additional signal cancelation and reduced field of view. This paper discusses the benefits and limitations of using a fourth gradient coil to compensate for the phase due to RF coils.

  1. Voxel-based analysis of cerebral glucose metabolism in AD and non-AD degenerative dementia using statistical parametric mapping

    International Nuclear Information System (INIS)

    Li Zugui; Gao Shuo; Zhang Benshu; Ma Aijun; Cai Li; Li Dacheng; Li Yansheng; Liu Lei

    2008-01-01

    Objective: It is know that Alzheimer's disease (AD) and non-AD degenerative dementia have some clinical features in common. The aim of this study was to investigate the specific patterns of regional, cerebral glucose metabolism of AD and non-AD degenerative dementia patients, using a voxel-based 18 F-fluorodeoxyglucose (FDG) PET study. Methods: Twenty-three AD patients and 24 non-AD degenerative dementia patients including 9 Parkinson's disease with dementia(PDD), 7 frontal-temporal dementia (FTD), 8 dementia of Lewy bodies (DLB) patients, and 40 normal controls (NC)were included in the study. To evaluate the relative cerebral metabolic rate of glucose (rCMRglc), 18 F-FDG PET imaging was performed in all subjects. Subsequently, statistical comparison of PET data with NC was performed using statistical parametric mapping (SPM). Results: The AD-associated FDG imaging pattern typically presented as focal cortical hypometabolism in bilateral parietotemporal association cortes and(or) frontal lobe and the posterior cingulate gyms. As compared with the comparative NC, FTD group demonstrated significant regional reductions in rCMRglc in bilateral frontal, parietal lobes, the cingulate gyri, insulae, left precuneus, and the subcortical structures (including right putamen, right medial dorsal nucleus and ventral anterior nucleus). The PDD group showed regional reductions in rCMRglc in bilateral frontal cortexes, parietotemporal association cortexes, and the subcortical structures (including left caudate, right putamen, the dorsomedial thalamus, lateral posterior nucleus, and pulvinar). By the voxel-by-voxel comparison between the DLB group and NC group, regional reductions in rCMRglc included bilateral occipital cortexes, precuneuses, frontal and parietal lobes, left anterior cingulate gyms, right superior temporal cortex, and the subcortical structures including putamen, caudate, lateral posterior nucleus, and pulvinar. Conclusions: The rCMRglc was found to be different

  2. Modeling the development of drug addiction in male and female animals.

    Science.gov (United States)

    Lynch, Wendy J

    2018-01-01

    An increasing emphasis has been placed on the development and use of animal models of addiction that capture defining features of human drug addiction, including escalation/binge drug use, enhanced motivation for the drug, preference for the drug over other reward options, use despite negative consequences, and enhanced drug-seeking/relapse vulnerability. The need to examine behavior in both males and females has also become apparent given evidence demonstrating that the addiction process occurs differently in males and females. This review discusses the procedures that are used to model features of addiction in animals, as well as factors that influence their development. Individual differences are also discussed, with a particular focus on sex differences. While no one procedure consistently produces all characteristics, different models have been developed to focus on certain characteristics. A history of escalating/binge patterns of use appears to be critical for producing other features characteristic of addiction, including an enhanced motivation for the drug, enhanced drug seeking, and use despite negative consequences. These characteristics tend to emerge over abstinence, and appear to increase rather than decrease in magnitude over time. In females, these characteristics develop sooner during abstinence and/or following less drug exposure as compared to males, and for psychostimulant addiction, may require estradiol. Although preference for the drug over other reward options has been demonstrated in non-human primates, it has been more difficult to establish in rats. Future research is needed to define the parameters that optimally induce each of these features of addiction in the majority of animals. Such models are essential for advancing our understanding of human drug addiction and its treatment in men and women. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Treatment plan modification using voxel-based weighting factors/dose prescription

    International Nuclear Information System (INIS)

    Wu Chuan; Olivera, Gustavo H; Jeraj, Robert; Keller, Harry; Mackie, Thomas R

    2003-01-01

    Under various clinical situations, it is desirable to modify the original treatment plan to better suit the clinical goals. In this work, a method to help physicians modify treatment plans based on their clinical preferences is proposed. The method uses a weighted quadratic dose objective function. The commonly used organ-/ROI-based weighting factors are expanded to a set of voxel-based weighting factors in order to obtain greater flexibility in treatment plan modification. Two different but equivalent modification schemes based on Rustem's quadratic programming algorithms -modification of a weighting matrix and modification of prescribed doses - are presented. Case studies demonstrated the effectiveness of the two methods with regard to their capability to fine-tune treatment plans

  4. Will male advertisement be a reliable indicator of paternal care, if offspring survival depends on male care?

    Science.gov (United States)

    Kelly, Natasha B; Alonzo, Suzanne H

    2009-09-07

    Existing theory predicts that male signalling can be an unreliable indicator of paternal care, but assumes that males with high levels of mating success can have high current reproductive success, without providing any parental care. As a result, this theory does not hold for the many species where offspring survival depends on male parental care. We modelled male allocation of resources between advertisement and care for species with male care where males vary in quality, and the effect of care and advertisement on male fitness is multiplicative rather than additive. Our model predicts that males will allocate proportionally more of their resources to whichever trait (advertisement or paternal care) is more fitness limiting. In contrast to previous theory, we find that male advertisement is always a reliable indicator of paternal care and male phenotypic quality (e.g. males with higher levels of advertisement never allocate less to care than males with lower levels of advertisement). Our model shows that the predicted pattern of male allocation and the reliability of male signalling depend very strongly on whether paternal care is assumed to be necessary for offspring survival and how male care affects offspring survival and male fitness.

  5. Resting-state brain activity in adult males who stutter.

    Directory of Open Access Journals (Sweden)

    Yun Xuan

    Full Text Available Although developmental stuttering has been extensively studied with structural and task-based functional magnetic resonance imaging (fMRI, few studies have focused on resting-state brain activity in this disorder. We investigated resting-state brain activity of stuttering subjects by analyzing the amplitude of low-frequency fluctuation (ALFF, region of interest (ROI-based functional connectivity (FC and independent component analysis (ICA-based FC. Forty-four adult males with developmental stuttering and 46 age-matched fluent male controls were scanned using resting-state fMRI. ALFF, ROI-based FCs and ICA-based FCs were compared between male stuttering subjects and fluent controls in a voxel-wise manner. Compared with fluent controls, stuttering subjects showed increased ALFF in left brain areas related to speech motor and auditory functions and bilateral prefrontal cortices related to cognitive control. However, stuttering subjects showed decreased ALFF in the left posterior language reception area and bilateral non-speech motor areas. ROI-based FC analysis revealed decreased FC between the posterior language area involved in the perception and decoding of sensory information and anterior brain area involved in the initiation of speech motor function, as well as increased FC within anterior or posterior speech- and language-associated areas and between the prefrontal areas and default-mode network (DMN in stuttering subjects. ICA showed that stuttering subjects had decreased FC in the DMN and increased FC in the sensorimotor network. Our findings support the concept that stuttering subjects have deficits in multiple functional systems (motor, language, auditory and DMN and in the connections between them.

  6. Resting-State Brain Activity in Adult Males Who Stutter

    Science.gov (United States)

    Zhu, Chaozhe; Wang, Liang; Yan, Qian; Lin, Chunlan; Yu, Chunshui

    2012-01-01

    Although developmental stuttering has been extensively studied with structural and task-based functional magnetic resonance imaging (fMRI), few studies have focused on resting-state brain activity in this disorder. We investigated resting-state brain activity of stuttering subjects by analyzing the amplitude of low-frequency fluctuation (ALFF), region of interest (ROI)-based functional connectivity (FC) and independent component analysis (ICA)-based FC. Forty-four adult males with developmental stuttering and 46 age-matched fluent male controls were scanned using resting-state fMRI. ALFF, ROI-based FCs and ICA-based FCs were compared between male stuttering subjects and fluent controls in a voxel-wise manner. Compared with fluent controls, stuttering subjects showed increased ALFF in left brain areas related to speech motor and auditory functions and bilateral prefrontal cortices related to cognitive control. However, stuttering subjects showed decreased ALFF in the left posterior language reception area and bilateral non-speech motor areas. ROI-based FC analysis revealed decreased FC between the posterior language area involved in the perception and decoding of sensory information and anterior brain area involved in the initiation of speech motor function, as well as increased FC within anterior or posterior speech- and language-associated areas and between the prefrontal areas and default-mode network (DMN) in stuttering subjects. ICA showed that stuttering subjects had decreased FC in the DMN and increased FC in the sensorimotor network. Our findings support the concept that stuttering subjects have deficits in multiple functional systems (motor, language, auditory and DMN) and in the connections between them. PMID:22276215

  7. Development of a human head FE model for the impact analysis using VOXEL approach and simulation for the assessment on the focal brain injury

    International Nuclear Information System (INIS)

    Watanabe, Dai; Yuge, Kohei; Nishimoto, Tetsuya; Murakami, Shigeyuki; Takao, Hiroyuki

    2008-01-01

    In this paper, a three-dimensional digital human-head model was developed and several dynamic analyses on the head trauma were conducted. This model was built up by the VOXEL approach using 433 slice CT images (512 x 512 pixels) and made of 1.22 million parallelepiped finite elements with 10 anatomical tissue properties such as scalp, cerebrospinal fluid (CSF), skull, brain, dura mater and so on. The numerical analyses were conducted using a finite element code the authors have developed. The main features of the code are it is based on the explicit time integration method and it uses the one point integration method to evaluate the equivalent nodal forces with the hourglass control proposed by Flanagan and Belythcko and it utilizes the parallel computation with the Massage Passing Interface (MPI). In order to verify the developed model, the head impact experiment for a cadaver by Nahum et al. was simulated. The calculated results showed good agreement with experimental ones. A front and rear impact analyses were also performed investigate the relation between the impact direction and the positions of the high measurement of pressure and stresses in brain. The obtained results represent that brain injury has a closer relation with the Mises equivalent stress rather than the pressure. At this time, the large deformation of a frontal cranial base was observed in both frontal and occipital impact analyses. We expect that it induces the brain injury in a frontal lobe regardless of the impact positions. (author)

  8. Reproducibility of automated simplified voxel-based analysis of PET amyloid ligand [11C]PIB uptake using 30-min scanning data

    International Nuclear Information System (INIS)

    Aalto, Sargo; Scheinin, Noora M.; Naagren, Kjell; Rinne, Juha O.; Kemppainen, Nina M.; Kailajaervi, Marita; Leinonen, Mika; Scheinin, Mika

    2009-01-01

    Positron emission tomography (PET) with 11 C-labelled Pittsburgh compound B ([ 11 C]PIB) enables the quantitation of β-amyloid accumulation in the brain of patients with Alzheimer's disease (AD). Voxel-based image analysis techniques conducted in a standard brain space provide an objective, rapid and fully automated method to analyze [ 11 C]PIB PET data. The purpose of this study was to evaluate both region- and voxel-level reproducibility of automated and simplified [ 11 C]PIB quantitation when using only 30 min of imaging data. Six AD patients and four healthy controls were scanned twice with an average interval of 6 weeks. To evaluate the feasibility of short scanning (convenient for AD patients), [ 11 C]PIB uptake was quantitated using 30 min of imaging data (60 to 90 min after tracer injection) for region-to-cerebellum ratio calculations. To evaluate the reproducibility, a test-retest design was used to derive absolute variability (VAR) estimates and intraclass correlation coefficients at both region-of-interest (ROI) and voxel level. The reproducibility both at the region level (VAR 0.9-5.5%) and at the voxel level (VAR 4.2-6.4%) was good to excellent. Based on the variability estimates obtained, power calculations indicated that 90% power to obtain statistically significant difference can be achieved using a sample size of five subjects per group when a 15% change from baseline (increase or decrease) in [ 11 C]PIB accumulation in the frontal cortex is anticipated in one group compared to no change in another group. Our results showed that an automated analysis method based on an efficient scanning protocol provides reproducible results for [ 11 C]PIB uptake and appears suitable for PET studies aiming at the quantitation of amyloid accumulation in the brain of AD patients for the evaluation of progression and treatment effects. (orig.)

  9. A polygon-surface reference Korean male phantom (PSRK-Man) and its direct implementation in Geant4 Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Hyeong; Jeong, Jong Hwi [Department of Nuclear Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Bolch, Wesley E [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Cho, Kun-Woo [Korea Institute of Nuclear Safety, 19 Guseong-dong, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Hwang, Sung Bae, E-mail: chkim@hanyang.ac.kr [Department of Physical Therapy, Kyungbuk College, Hyucheon 2-dong, Yeongju-si, Gyeongbuk 750-712 (Korea, Republic of)

    2011-05-21

    Even though the hybrid phantom embodies both the anatomic reality of voxel phantoms and the deformability of stylized phantoms, it must be voxelized to be used in a Monte Carlo code for dose calculation or some imaging simulation, which incurs the inherent limitations of voxel phantoms. In the present study, a voxel phantom named VKH-Man (Visible Korean Human-Man), was converted to a polygon-surface phantom (PSRK-Man, Polygon-Surface Reference Korean-Man), which was then adjusted to the Reference Korean data. Subsequently, the PSRK-Man polygon phantom was directly, without any voxelization process, implemented in the Geant4 Monte Carlo code for dose calculations. The calculated dose values and computation time were then compared with those of HDRK-Man (High Definition Reference Korean-Man), a corresponding voxel phantom adjusted to the same Reference Korean data from the same VKH-Man voxel phantom. Our results showed that the calculated dose values of the PSRK-Man surface phantom agreed well with those of the HDRK-Man voxel phantom. The calculation speed for the PSRK-Man polygon phantom though was 70-150 times slower than that of the HDRK-Man voxel phantom; that speed, however, could be acceptable in some applications, in that direct use of the surface phantom PSRK-Man in Geant4 does not require a separate voxelization process. Computing speed can be enhanced, in future, either by optimizing the Monte Carlo transport kernel for the polygon surfaces or by using modern computing technologies such as grid computing and general-purpose computing on graphics processing units programming.

  10. A polygon-surface reference Korean male phantom (PSRK-Man) and its direct implementation in Geant4 Monte Carlo simulation

    International Nuclear Information System (INIS)

    Kim, Chan Hyeong; Jeong, Jong Hwi; Bolch, Wesley E; Cho, Kun-Woo; Hwang, Sung Bae

    2011-01-01

    Even though the hybrid phantom embodies both the anatomic reality of voxel phantoms and the deformability of stylized phantoms, it must be voxelized to be used in a Monte Carlo code for dose calculation or some imaging simulation, which incurs the inherent limitations of voxel phantoms. In the present study, a voxel phantom named VKH-Man (Visible Korean Human-Man), was converted to a polygon-surface phantom (PSRK-Man, Polygon-Surface Reference Korean-Man), which was then adjusted to the Reference Korean data. Subsequently, the PSRK-Man polygon phantom was directly, without any voxelization process, implemented in the Geant4 Monte Carlo code for dose calculations. The calculated dose values and computation time were then compared with those of HDRK-Man (High Definition Reference Korean-Man), a corresponding voxel phantom adjusted to the same Reference Korean data from the same VKH-Man voxel phantom. Our results showed that the calculated dose values of the PSRK-Man surface phantom agreed well with those of the HDRK-Man voxel phantom. The calculation speed for the PSRK-Man polygon phantom though was 70-150 times slower than that of the HDRK-Man voxel phantom; that speed, however, could be acceptable in some applications, in that direct use of the surface phantom PSRK-Man in Geant4 does not require a separate voxelization process. Computing speed can be enhanced, in future, either by optimizing the Monte Carlo transport kernel for the polygon surfaces or by using modern computing technologies such as grid computing and general-purpose computing on graphics processing units programming.

  11. Entrance surface dose distribution and organ dose assessment for cone-beam computed tomography using measurements and Monte Carlo simulations with voxel phantoms

    Science.gov (United States)

    Baptista, M.; Di Maria, S.; Vieira, S.; Vaz, P.

    2017-11-01

    Cone-Beam Computed Tomography (CBCT) enables high-resolution volumetric scanning of the bone and soft tissue anatomy under investigation at the treatment accelerator. This technique is extensively used in Image Guided Radiation Therapy (IGRT) for pre-treatment verification of patient position and target volume localization. When employed daily and several times per patient, CBCT imaging may lead to high cumulative imaging doses to the healthy tissues surrounding the exposed organs. This work aims at (1) evaluating the dose distribution during a CBCT scan and (2) calculating the organ doses involved in this image guiding procedure for clinically available scanning protocols. Both Monte Carlo (MC) simulations and measurements were performed. To model and simulate the kV imaging system mounted on a linear accelerator (Edge™, Varian Medical Systems) the state-of-the-art MC radiation transport program MCNPX 2.7.0 was used. In order to validate the simulation results, measurements of the Computed Tomography Dose Index (CTDI) were performed, using standard PMMA head and body phantoms, with 150 mm length and a standard pencil ionizing chamber (IC) 100 mm long. Measurements for head and pelvis scanning protocols, usually adopted in clinical environment were acquired, using two acquisition modes (full-fan and half fan). To calculate the organ doses, the implemented MC model of the CBCT scanner together with a male voxel phantom ("Golem") was used. The good agreement between the MCNPX simulations and the CTDIw measurements (differences up to 17%) presented in this work reveals that the CBCT MC model was successfully validated, taking into account the several uncertainties. The adequacy of the computational model to map dose distributions during a CBCT scan is discussed in order to identify ways to reduce the total CBCT imaging dose. The organ dose assessment highlights the need to evaluate the therapeutic and the CBCT imaging doses, in a more balanced approach, and the

  12. Comparison of grey matter and metabolic reductions in frontotemporal dementia using FDG-PET and voxel-based morphometric MR studies

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, Tomonori; Uemura, Takafumi; Miyamoto, Naokazu; Yoshikawa, Toshiki; Kono, Atsushi K. [Hyogo Brain and Heart Center, Department of Radiology and Nuclear Medicine, Himeji, Hyogo (Japan); Ishii, Kazunari [Hyogo Brain and Heart Center, Department of Radiology and Nuclear Medicine, Himeji, Hyogo (Japan); Hyogo Institute for Aging Brain and Cognitive Disorders, Division of Neuroimaging Research, Himeji, Hyogo (Japan); Mori, Etsuro [Hyogo Institute for Aging Brain and Cognitive Disorders, Division of Clinical Neurosciences, Himeji, Hyogo (Japan); Tohoku University Graduate School of Medicine, Behavioral Neurology and Cognitive Neuroscience, Sendai, Miyagi (Japan)

    2008-12-15

    The aim of this study was to investigate the regional differences between the morphologic and functional changes in the same patients with frontotemporal dementia (FTD) using statistical parametric mapping and voxel-based morphometry (VBM). Thirteen FTD patients (mean age, 64.9 years old; mean MMSE score, 17.7), 20 sex-matched Alzheimer's disease (AD) patients (mean age, 65.0 years old; mean MMSE score, 17.5), and 20 normal volunteers (mean age, 65.2 years old; mean MMSE score, 29.0) underwent both [{sup 18}F]FDG positron emission tomography and three-dimensional spoiled gradient echo MRI. Statistical parametric mapping was used to conduct a VBM analysis of the morphologic data, which were compared voxel by voxel with the results of a similar analysis of glucose metabolic data. FTD patients showed decreased grey matter volume and decreased glucose metabolism in the frontal lobe and anterior temporal lobe. In addition, there was a clear asymmetry in grey matter volume in FTD patients by the VBM analysis while the glucose metabolic data showed little asymmetry. In AD patients, glucose metabolic reduction occurred in the bilateral posterior cingulate gyri and parietal lobules while grey matter density decreased the least in the same patients. In FTD, metabolic and morphologic changes occur in the bilateral frontal lobe and temporal lobe with a limited asymmetry whereas there was considerable discordance in the AD group. (orig.)

  13. Effects of image distortion correction on voxel-based morphometry

    International Nuclear Information System (INIS)

    Goto, Masami; Abe, Osamu; Kabasawa, Hiroyuki

    2012-01-01

    We aimed to show that correcting image distortion significantly affects brain volumetry using voxel-based morphometry (VBM) and to assess whether the processing of distortion correction reduces system dependency. We obtained contiguous sagittal T 1 -weighted images of the brain from 22 healthy participants using 1.5- and 3-tesla magnetic resonance (MR) scanners, preprocessed images using Statistical Parametric Mapping 5, and tested the relation between distortion correction and brain volume using VBM. Local brain volume significantly increased or decreased on corrected images compared with uncorrected images. In addition, the method used to correct image distortion for gradient nonlinearity produced fewer volumetric errors from MR system variation. This is the first VBM study to show more precise volumetry using VBM with corrected images. These results indicate that multi-scanner or multi-site imaging trials require correction for distortion induced by gradient nonlinearity. (author)

  14. Age and gender effects on normal regional cerebral blood flow studied using two different voxel-based statistical analyses

    International Nuclear Information System (INIS)

    Pirson, A.S.; George, J.; Krug, B.; Vander Borght, T.; Van Laere, K.; Jamart, J.; D'Asseler, Y.; Minoshima, S.

    2009-01-01

    Fully automated analysis programs have been applied more and more to aid for the reading of regional cerebral blood flow SPECT study. They are increasingly based on the comparison of the patient study with a normal database. In this study, we evaluate the ability of Three-Dimensional Stereotactic Surface Projection (3 D-S.S.P.) to isolate effects of age and gender in a previously studied normal population. The results were also compared with those obtained using Statistical Parametric Mapping (S.P.M.99). Methods Eighty-nine 99m Tc-E.C.D.-SPECT studies performed in carefully screened healthy volunteers (46 females, 43 males; age 20 - 81 years) were analysed using 3 D-S.S.P.. A multivariate analysis based on the general linear model was performed with regions as intra-subject factor, gender as inter-subject factor and age as co-variate. Results Both age and gender had a significant interaction effect with regional tracer uptake. An age-related decline (p < 0.001) was found in the anterior cingulate gyrus, left frontal association cortex and left insula. Bilateral occipital association and left primary visual cortical uptake showed a significant relative increase with age (p < 0.001). Concerning the gender effect, women showed higher uptake (p < 0.01) in the parietal and right sensorimotor cortices. An age by gender interaction (p < 0.01) was only found in the left medial frontal cortex. The results were consistent with those obtained with S.P.M.99. Conclusion 3 D-S.S.P. analysis of normal r.C.B.F. variability is consistent with the literature and other automated voxel-based techniques, which highlight the effects of both age and gender. (authors)

  15. VK-phantom male with 583 structures and female with 459 structures, based on the sectioned images of a male and a female, for computational dosimetry.

    Science.gov (United States)

    Park, Jin Seo; Jung, Yong Wook; Choi, Hyung-Do; Lee, Ae-Kyoung

    2018-04-05

    The anatomical structures in most phantoms are classified according to tissue properties rather than according to their detailed structures, because the tissue properties, not the detailed structures, are what is considered important. However, if a phantom does not have detailed structures, the phantom will be unreliable because different tissues can be regarded as the same. Thus, we produced the Visible Korean (VK) -phantoms with detailed structures (male, 583 structures; female, 459 structures) based on segmented images of the whole male body (interval, 1.0 mm; pixel size, 1.0 mm2) and the whole female body (interval, 1.0 mm; pixel size, 1.0 mm2), using house-developed software to analyze the text string and voxel information for each of the structures. The density of each structure in the VK-phantom was calculated based on Virtual Population and a publication of the International Commission on Radiological Protection. In the future, we will standardize the size of each structure in the VK-phantoms. If the VK-phantoms are standardized and the mass density of each structure is precisely known, researchers will be able to measure the exact absorption rate of electromagnetic radiation in specific organs and tissues of the whole body.

  16. A spatio-temporal nonparametric Bayesian variable selection model of fMRI data for clustering correlated time courses.

    Science.gov (United States)

    Zhang, Linlin; Guindani, Michele; Versace, Francesco; Vannucci, Marina

    2014-07-15

    In this paper we present a novel wavelet-based Bayesian nonparametric regression model for the analysis of functional magnetic resonance imaging (fMRI) data. Our goal is to provide a joint analytical framework that allows to detect regions of the brain which exhibit neuronal activity in response to a stimulus and, simultaneously, infer the association, or clustering, of spatially remote voxels that exhibit fMRI time series with similar characteristics. We start by modeling the data with a hemodynamic response function (HRF) with a voxel-dependent shape parameter. We detect regions of the brain activated in response to a given stimulus by using mixture priors with a spike at zero on the coefficients of the regression model. We account for the complex spatial correlation structure of the brain by using a Markov random field (MRF) prior on the parameters guiding the selection of the activated voxels, therefore capturing correlation among nearby voxels. In order to infer association of the voxel time courses, we assume correlated errors, in particular long memory, and exploit the whitening properties of discrete wavelet transforms. Furthermore, we achieve clustering of the voxels by imposing a Dirichlet process (DP) prior on the parameters of the long memory process. For inference, we use Markov Chain Monte Carlo (MCMC) sampling techniques that combine Metropolis-Hastings schemes employed in Bayesian variable selection with sampling algorithms for nonparametric DP models. We explore the performance of the proposed model on simulated data, with both block- and event-related design, and on real fMRI data. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Behavioral changes in early ALS correlate with voxel-based morphometry and diffusion tensor imaging.

    Science.gov (United States)

    Tsujimoto, Masashi; Senda, Jo; Ishihara, Tetsuro; Niimi, Yoshiki; Kawai, Yoshinari; Atsuta, Naoki; Watanabe, Hirohisa; Tanaka, Fumiaki; Naganawa, Shinji; Sobue, Gen

    2011-08-15

    Amyotrophic lateral sclerosis (ALS) is a multisystem disorder with impairment of frontotemporal functions such as cognition and behavior, but the behavioral changes associated with ALS are not well defined. Twenty-one consecutive patients with sporadic ALS and 21 control subjects participated in the study. The Frontal System Behavior Scale (FrSBe) was used to assess behavioral change. Voxel-based morphometry (VBM) and voxel-based analysis of diffusion tensor images (DTI) were performed to explore the associations of brain degeneration with behavior. All patients were evaluated before the notification of ALS. FrSBe scores of ALS patients before notification were significantly increased compared to those of control subjects. Moreover, the FrSBe Apathy score of ALS patients significantly changed from pre- to post-illness (P<0.001). The severity of apathy was significantly correlated with atrophy in the prefrontal cortex, especially in the orbitofrontal (P=0.006) and dorsolateral prefrontal (P=0.006) cortices in VBM, and in the right frontal gyrus (P<0.001) in DTI. ALS patients exhibited apathy during the early course of the illness, the severity of which was significantly associated with frontal lobe involvement. These findings support the view that a continuum exits between ALS and frontotemporal dementia. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. A whole-brain gray and white matter analysis in children with 45XO karyotype Turner syndrome: voxel-based morphometry

    International Nuclear Information System (INIS)

    Zhao Qiuling; Zhang Zhixin; Cheng Pangui; Xie Sheng; Liu Xiwei; Pan Hui; Li Kang; Zhang Jiaying; Gong Gaolang

    2013-01-01

    Objective: To detect the structural changes of cerebral gray and white matter in children of monosomy Turner syndrome (TS) by using voxel-based morphometry (VBM). Methods: Nine children 45XO karyotype TS and 20 age-matched control girls were recruited in this study. Wechsler intelligence scale for children was used to obtain their intelligence quotients (IQ). High-resolution magnetic MR imaging was performed in TS children and control girls to collect the whole brain structural data. The data were analyzed by VBM based on SPM 8 to compare the volume of gray and white matter between the TS children and normal controls by using covariance analysis. Results: The IQ of TS children was 81 ± 13, and the IQ of the controls was 109 ± 16. Statistical analysis revealed significant difference of IQ between the two groups (t = -4.70, P < 0.05). Compared with normal controls, TS children showed significantly decreased volume (numbers of voxel in clusters were 631, 525, 520, t = 3.95, 3.50, 3.36, P < 0.05, FWE-corrected) in the gray matter of the right superior parietal lobule, postcentral gyrus, precuneus lobule, calcarine, cuneus cortices, as well as the left middle and inferior occipital lobe. However, the volume of the bilateral supplemental motor area and the medial superior frontal lobes, the right middle cingulum, the left superior, middle, and inferior temporal gyri were increased in the TS children compared to the controls. The left fusiform, the left parahippocampus, the left hippocampus and the left cerebellum were also enlarged in TS children (numbers of voxel in clusters were 2082, 974, 1708, 588, 579, t = 5.45, 4.59, 4.40, 4.29, 3.55, P < 0.05, FWE-corrected). White matter regions in the left postcentral gyrus and inferior parietal lobule showed significantly reduced volume (voxel number 957, t = 5.85, P < 0.05, FWE-corrected). Conclusion: Children with monosomy TS show abnormal gray and white matter volumes in some brain regions, which may be involved in the

  19. Brain involvement in patients with inflammatory bowel disease: a voxel-based morphometry and diffusion tensor imaging study.

    Science.gov (United States)

    Zikou, Anastasia K; Kosmidou, Maria; Astrakas, Loukas G; Tzarouchi, Loukia C; Tsianos, Epameinondas; Argyropoulou, Maria I

    2014-10-01

    To investigate structural brain changes in inflammatory bowel disease (IBD). Brain magnetic resonance imaging (MRI) was performed on 18 IBD patients (aged 45.16 ± 14.71 years) and 20 aged-matched control subjects. The imaging protocol consisted of a sagittal-FLAIR, a T1-weighted high-resolution three-dimensional spoiled gradient-echo sequence, and a multisession spin-echo echo-planar diffusion-weighted sequence. Differences between patients and controls in brain volume and diffusion indices were evaluated using the voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) methods, respectively. The presence of white-matter hyperintensities (WMHIs) was evaluated on FLAIR images. VBM revealed decreased grey matter (GM) volume in patients in the fusiform and the inferior temporal gyrus bilaterally, the right precentral gyrus, the right supplementary motor area, the right middle frontal gyrus and the left superior parietal gyrus (p tensor imaging detects microstructural brain abnormalities in IBD. • Voxel based morphometry reveals brain atrophy in IBD.

  20. Voxel-based MRI intensitometry reveals extent of cerebral white matter pathology in amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Viktor Hartung

    Full Text Available Amyotrophic lateral sclerosis (ALS is characterized by progressive loss of upper and lower motor neurons. Advanced MRI techniques such as diffusion tensor imaging have shown great potential in capturing a common white matter pathology. However the sensitivity is variable and diffusion tensor imaging is not yet applicable to the routine clinical environment. Voxel-based morphometry (VBM has revealed grey matter changes in ALS, but the bias-reducing algorithms inherent to traditional VBM are not optimized for the assessment of the white matter changes. We have developed a novel approach to white matter analysis, namely voxel-based intensitometry (VBI. High resolution T1-weighted MRI was acquired at 1.5 Tesla in 30 ALS patients and 37 age-matched healthy controls. VBI analysis at the group level revealed widespread white matter intensity increases in the corticospinal tracts, corpus callosum, sub-central, frontal and occipital white matter tracts and cerebellum. VBI results correlated with disease severity (ALSFRS-R and patterns of cerebral involvement differed between bulbar- and limb-onset. VBI would be easily translatable to the routine clinical environment, and once optimized for individual analysis offers significant biomarker potential in ALS.

  1. The brain and the subjective experience of time. A voxel based symptom-lesion mapping study.

    Science.gov (United States)

    Trojano, Luigi; Caccavale, Michelina; De Bellis, Francesco; Crisci, Claudio

    2017-06-30

    The aim of the study was to identify the anatomical bases involved in the subjective experience of time, by means of a voxel based symptom-lesion mapping (VLSM) study on patients with focal brain damage. Thirty-three patients (nineteen with right-hemisphere lesions -RBD, and fourteen with left lesion- LBD) and twenty-eight non-neurological controls (NNC) underwent the semi-structured QUEstionnaire for the Subjective experience of Time (QUEST) requiring retrospective and prospective judgements on self-relevant time intervals. All participants also completed tests to assess general cognitive functioning and two questionnaires to evaluate their emotional state. Both groups of brain-damaged patients achieved significantly different scores from NNC on the time performance, without differences between RBD and LBD. VLSM showed a cluster of voxels located in the right inferior parietal lobule significantly related to errors in the prospective items. The lesion subtraction analysis revealed two different patterns possibly associated with errors in the prospective items (the right inferior parietal cortex, rolandic operculum and posterior middle temporal gyrus) and in the retrospective items (superior middle temporal gyrus, white matter posterior to the insula). Copyright © 2017 Elsevier B.V. All rights reserved.

  2. An optimized voxel-based morphometry MRI study of the brain in patients with first episode schizophrenia

    International Nuclear Information System (INIS)

    Lv Su; Huang Xiaoqi; Tang Hehan; Gong Qiyong; Ouyang Luo; Deng Wei; Jiang Lijun; Li Tao

    2007-01-01

    Objective: To evaluate the structural differences between patients with first episode schizophrenia and normal controls using optimized voxel-based morphometry (VBM) study. Methods: High resolution T 1 weighted images were obtained using 3.0 T MR from 13 first-episode, untreated schizophrenia and 13 age, sex, handedness matched normal controls. Images were preprocessed by employing the optimized VBM and two sample t-test was used to detect differences between patients and normal controls with respect to both density and volume of gray matter in the brain. Results Patients with schizophrenia had significant lower gray matter density and gray matter volume generally distributed among bilateral hemispheres, especially in bilateral frontal and temporal lobes. However, no significant increase of gray matter density and gray matter volume was observed in these patients. Conclusions: Optimized voxel-based morphometry study is an automatic and effective method to study psychological diseases such as schizophrenia. Compared with normal controls, patients with schizophrenia had significantly lower gray matter density and gray matter volume across the bilateral hemispheres. (authors)

  3. Relationship between aging and T1 relaxation time in deep gray matter: A voxel-based analysis.

    Science.gov (United States)

    Okubo, Gosuke; Okada, Tomohisa; Yamamoto, Akira; Fushimi, Yasutaka; Okada, Tsutomu; Murata, Katsutoshi; Togashi, Kaori

    2017-09-01

    To investigate age-related changes in T 1 relaxation time in deep gray matter structures in healthy volunteers using magnetization-prepared 2 rapid acquisition gradient echoes (MP2RAGE). In all, 70 healthy volunteers (aged 20-76, mean age 42.6 years) were scanned at 3T magnetic resonance imaging (MRI). A MP2RAGE sequence was employed to quantify T 1 relaxation times. After the spatial normalization of T 1 maps with the diffeomorphic anatomical registration using the exponentiated Lie algebra algorithm, voxel-based regression analysis was conducted. In addition, linear and quadratic regression analyses of regions of interest (ROIs) were also performed. With aging, voxel-based analysis (VBA) revealed significant T 1 value decreases in the ventral-inferior putamen, nucleus accumbens, and amygdala, whereas T 1 values significantly increased in the thalamus and white matter as well (P time vary by location in deep gray matter. 2 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:724-731. © 2017 International Society for Magnetic Resonance in Medicine.

  4. Evaluation of brain perfusion in specific Brodmann areas in Frontotemporal dementia and Alzheimer disease using automated 3-D voxel based analysis

    Energy Technology Data Exchange (ETDEWEB)

    Valotassiou, V; Tsougos, I; Tzavara, C; Georgoulias, P [Nuclear Medicine Dpt, University Hospital of Larissa, Larissa (Greece); Papatriantafyllou, J; Karageorgiou, C [Neurology Dpt, General Hospital ' G. Gennimatas' , Athens (Greece); Sifakis, N; Zerva, C [Nuclear Medicine Dpt, ' Alexandra' University Hospital, Athens (Greece)], E-mail: vanvalot@yahoo.gr

    2009-05-15

    Introduction. Brain perfusion studies with single-photon emission computed tomography (SPECT) have been applied in demented patients to provide better discrimination between frontotemporal dementia (FTD) and Alzheimer's disease (AD). Aim. To assess the perfusion of specific Brodmann (Br) areas of the brain cortex in FTD and AD patients, using NeuroGam processing program to provide 3D voxel-by-voxel cerebral SPECT analysis. Material and methods. We studied 34 consecutive patients. We used the established criteria for the diagnosis of dementia and the specific established criteria for the diagnosis of FTD and AD. All the patients had a neuropsychological evaluation with a battery of tests including the mini-mental state examination (MMSE).Twenty-six patients (16 males, 10 females, mean age 68.76{+-}6.51 years, education 11.81{+-}4.25 years, MMSE 16.69{+-}9.89) received the diagnosis of FTD and 8 patients (all females, mean age 71.25{+-}10.48 years, education 10{+-}4.6 years, MMSE 12.5{+-}3.89) the diagnosis of AD. All the patients underwent a brain SPECT. We applied the NeuroGam Software for the evaluation of brain perfusion in specific Br areas in the left (L) and right (R) hemispheres. Results. Statistically significant hypoperfusion in FTD compared to AD patients, was found in the following Br areas: 11L (p<0.0001), 11R, 20L, 20R, 32L, 38L, 38R, 44L (p<0.001), 32R, 36L, 36R, 45L, 45R, 47R (p<0.01), 9L, 21L, 39R, 44R, 46R, 47L (p<0.05). On the contrary, AD patients presented significant (p<0.05) hypoperfusion in 7R and 39R Br areas. Conclusion. NeuroGam processing program of brain perfusion SPECT could result in enhanced accuracy for the differential diagnosis between AD and FTD patients.

  5. Evaluation of brain perfusion in specific Brodmann areas in Frontotemporal dementia and Alzheimer disease using automated 3-D voxel based analysis

    International Nuclear Information System (INIS)

    Valotassiou, V; Tsougos, I; Tzavara, C; Georgoulias, P; Papatriantafyllou, J; Karageorgiou, C; Sifakis, N; Zerva, C

    2009-01-01

    Introduction. Brain perfusion studies with single-photon emission computed tomography (SPECT) have been applied in demented patients to provide better discrimination between frontotemporal dementia (FTD) and Alzheimer's disease (AD). Aim. To assess the perfusion of specific Brodmann (Br) areas of the brain cortex in FTD and AD patients, using NeuroGam processing program to provide 3D voxel-by-voxel cerebral SPECT analysis. Material and methods. We studied 34 consecutive patients. We used the established criteria for the diagnosis of dementia and the specific established criteria for the diagnosis of FTD and AD. All the patients had a neuropsychological evaluation with a battery of tests including the mini-mental state examination (MMSE).Twenty-six patients (16 males, 10 females, mean age 68.76±6.51 years, education 11.81±4.25 years, MMSE 16.69±9.89) received the diagnosis of FTD and 8 patients (all females, mean age 71.25±10.48 years, education 10±4.6 years, MMSE 12.5±3.89) the diagnosis of AD. All the patients underwent a brain SPECT. We applied the NeuroGam Software for the evaluation of brain perfusion in specific Br areas in the left (L) and right (R) hemispheres. Results. Statistically significant hypoperfusion in FTD compared to AD patients, was found in the following Br areas: 11L (p<0.0001), 11R, 20L, 20R, 32L, 38L, 38R, 44L (p<0.001), 32R, 36L, 36R, 45L, 45R, 47R (p<0.01), 9L, 21L, 39R, 44R, 46R, 47L (p<0.05). On the contrary, AD patients presented significant (p<0.05) hypoperfusion in 7R and 39R Br areas. Conclusion. NeuroGam processing program of brain perfusion SPECT could result in enhanced accuracy for the differential diagnosis between AD and FTD patients.

  6. Evaluation of brain perfusion in specific Brodmann areas in Frontotemporal dementia and Alzheimer disease using automated 3-D voxel based analysis

    Science.gov (United States)

    Valotassiou, V.; Papatriantafyllou, J.; Sifakis, N.; Karageorgiou, C.; Tsougos, I.; Tzavara, C.; Zerva, C.; Georgoulias, P.

    2009-05-01

    Introduction. Brain perfusion studies with single-photon emission computed tomography (SPECT) have been applied in demented patients to provide better discrimination between frontotemporal dementia (FTD) and Alzheimer's disease (AD). Aim. To assess the perfusion of specific Brodmann (Br) areas of the brain cortex in FTD and AD patients, using NeuroGam processing program to provide 3D voxel-by-voxel cerebral SPECT analysis. Material and methods. We studied 34 consecutive patients. We used the established criteria for the diagnosis of dementia and the specific established criteria for the diagnosis of FTD and AD. All the patients had a neuropsychological evaluation with a battery of tests including the mini-mental state examination (MMSE).Twenty-six patients (16 males, 10 females, mean age 68.76±6.51 years, education 11.81±4.25 years, MMSE 16.69±9.89) received the diagnosis of FTD and 8 patients (all females, mean age 71.25±10.48 years, education 10±4.6 years, MMSE 12.5±3.89) the diagnosis of AD. All the patients underwent a brain SPECT. We applied the NeuroGam Software for the evaluation of brain perfusion in specific Br areas in the left (L) and right (R) hemispheres. Results. Statistically significant hypoperfusion in FTD compared to AD patients, was found in the following Br areas: 11L (p<0.0001), 11R, 20L, 20R, 32L, 38L, 38R, 44L (p<0.001), 32R, 36L, 36R, 45L, 45R, 47R (p<0.01), 9L, 21L, 39R, 44R, 46R, 47L (p<0.05). On the contrary, AD patients presented significant (p<0.05) hypoperfusion in 7R and 39R Br areas. Conclusion. NeuroGam processing program of brain perfusion SPECT could result in enhanced accuracy for the differential diagnosis between AD and FTD patients.

  7. Preventing HIV Transmission Among Partners of HIV-Positive Male Sex Workers in Mexico City: A Modeling Study.

    Science.gov (United States)

    Monteiro, João Filipe G; Marshall, Brandon D L; Escudero, Daniel; Sosa-Rubí, Sandra G; González, Andrea; Flanigan, Timothy; Operario, Don; Mayer, Kenneth H; Lurie, Mark N; Galárraga, Omar

    2015-09-01

    Mexico has a concentrated HIV epidemic, with male sex workers constituting a key affected population. We estimated annual HIV cumulative incidence among male sex workers' partners, and then compared incidence under three hypothetical intervention scenarios: improving condom use; and scaling up HIV treatment as prevention, considering current viral suppression rates (CVS, 60.7 %) or full viral suppression among those treated (FVS, 100 %). Clinical and behavioral data to inform model parameterization were derived from a sample (n = 79) of male sex workers recruited from street locations and Clínica Condesa, an HIV clinic in Mexico City. We estimated annual HIV incidence among male sex workers' partners to be 8.0 % (95 % CI: 7.3-8.7). Simulation models demonstrated that increasing condom use by 10 %, and scaling up HIV treatment initiation by 50 % (from baseline values) would decrease the male sex workers-attributable annual incidence to 5.2, 4.4 % (CVS) and 3.2 % (FVS), respectively. Scaling up the number of male sex workers on ART and implementing interventions to ensure adherence is urgently required to decrease HIV incidence among male sex workers' partners in Mexico City.

  8. Neurofunctional maps of the 'maternal brain' and the effects of oxytocin: a multimodal voxel-based meta-analysis.

    Science.gov (United States)

    Rocchetti, Matteo; Radua, Joaquim; Paloyelis, Yannis; Xenaki, Lida-Alkisti; Frascarelli, Marianna; Caverzasi, Edgardo; Politi, Pierluigi; Fusar-Poli, Paolo

    2014-10-01

    Several studies have tried to understand the possible neurobiological basis of mothering. The putative involvement of oxytocin, in this regard, has been deeply investigated. Performing a voxel-based meta-analysis, we aimed at testing the hypothesis of overlapping brain activation in functional magnetic resonance imaging (fMRI) studies investigating the mother-infant interaction and the oxytocin modulation of emotional stimuli in humans. We performed two systematic literature searches: fMRI studies investigating the neurofunctional correlates of the 'maternal brain' by employing mother-infant paradigms; and fMRI studies employing oxytocin during emotional tasks. A unimodal voxel-based meta-analysis was performed on each database, whereas a multimodal voxel-based meta-analytical tool was adopted to assess the hypothesis that the neurofunctional effects of oxytocin are detected in brain areas implicated in the 'maternal brain.' We found greater activation in the bilateral insula extending to the inferior frontal gyrus, basal ganglia and thalamus during mother-infant interaction and greater left insular activation associated with oxytocin administration versus placebo. Left insula extending to basal ganglia and frontotemporal gyri as well as bilateral thalamus and amygdala showed consistent activation across the two paradigms. Right insula also showed activation across the two paradigms, and dorsomedial frontal cortex activation in mothers but deactivation with oxytocin. Significant activation in areas involved in empathy, emotion regulation, motivation, social cognition and theory of mind emerged from our multimodal meta-analysis, supporting the need for further studies directly investigating the neurobiology of oxytocin in the mother-infant relationship. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.

  9. Functional connectivity density mapping of depressive symptoms and loneliness in non-demented elderly male

    Directory of Open Access Journals (Sweden)

    Chen-Chia eLan

    2016-01-01

    Full Text Available Background: Depression and loneliness are prevalent and highly correlated phenomena among the elderly and influence both physical and mental health. Brain functional connectivity changes associated with depressive symptoms and loneliness are not fully understood.Methods: A cross-sectional functional MRI study was conducted among 85 non-demented male elders. Geriatric depression scale-short form and loneliness scale were used to evaluate the severity of depressive symptoms and loneliness, respectively. Whole brain voxel-wise resting-state functional connectivity density (FCD mapping was performed to delineate short-range FCD (SFCD and long-range FCD (LFCD. Regional correlations between depressive symptoms or loneliness and SFCD or LFCD were examined using general linear model, with age incorporated as a covariate and depressive symptoms and loneliness as predictors.Results: Positive correlations between depressive symptoms and LFCD were observed in left rectal gyrus, left superior frontal gyrus, right supraorbital gyrus, and left inferior temporal gyrus. Positive correlations between depressive symptoms and SFCD were observed in left middle frontal gyrus, left superior frontal gyrus, bilateral superior medial frontal gyrus, left inferior temporal gyrus, and left middle occipital region. Positive correlations between SFCD and loneliness were centered over bilateral lingual gyrus.Conclusion: Depressive symptoms are associated with FCD changes over frontal and temporal regions, which may involve the cognitive control, affective regulation, and default mode networks. Loneliness is associated with FCD changes in bilateral lingual gyri that are known to be important in social cognition. Depressive symptoms and loneliness may be associated with different brain regions in non-demented elderly male.

  10. Examining the Pathologic Adaptation Model of Community Violence Exposure in Male Adolescents of Color

    Science.gov (United States)

    Gaylord-Harden, Noni K.; So, Suzanna; Bai, Grace J.; Henry, David B.; Tolan, Patrick H.

    2017-01-01

    The current study examined a model of desensitization to community violence exposure—the pathologic adaptation model—in male adolescents of color. The current study included 285 African American (61%) and Latino (39%) male adolescents (W1 M age = 12.41) from the Chicago Youth Development Study to examine the longitudinal associations between community violence exposure, depressive symptoms, and violent behavior. Consistent with the pathologic adaptation model, results indicated a linear, positive association between community violence exposure in middle adolescence and violent behavior in late adolescence, as well as a curvilinear association between community violence exposure in middle adolescence and depressive symptoms in late adolescence, suggesting emotional desensitization. Further, these effects were specific to cognitive-affective symptoms of depression and not somatic symptoms. Emotional desensitization outcomes, as assessed by depressive symptoms, can occur in male adolescents of color exposed to community violence and these effects extend from middle adolescence to late adolescence. PMID:27653968

  11. Application of the mathematical modelling and human phantoms for calculation of the organ doses

    International Nuclear Information System (INIS)

    Kluson, J.; Cechak, T.

    2005-01-01

    Increasing power of the computers hardware and new versions of the software for the radiation transport simulation and modelling of the complex experimental setups and geometrical arrangement enable to dramatically improve calculation of organ or target volume doses ( dose distributions) in the wide field of medical physics and radiation protection applications. Increase of computers memory and new software features makes it possible to use not only analytical (mathematical) phantoms but also allow constructing the voxel models of human or phantoms with voxels fine enough (e.g. 1·1·1 mm) to represent all required details. CT data can be used for the description of such voxel model geometry .Advanced scoring methods are available in the new software versions. Contribution gives the overview of such new possibilities in the modelling and doses calculations, discusses the simulation/approximation of the dosimetric quantities ( especially dose ) and calculated data interpretation. Some examples of application and demonstrations will be shown, compared and discussed. Present computational tools enables to calculate organ or target volumes doses with new quality of large voxel models/phantoms (including CT based patient specific model ), approximating the human body with high precision. Due to these features has more and more importance and use in the fields of medical and radiological physics, radiation protection, etc. (authors)

  12. Application of the Voxeldose software for dosimetric evaluation on the thyroid during thorax-AP irradiation considering the peak voltages (k Vp) most used in diagnostic X-ray

    International Nuclear Information System (INIS)

    Vieira, I.F.; Vieira, J.W.; Leal Neto, V.

    2009-01-01

    The evaluation of the absorbed dose distribution can be obtained through a computational model of exposures (ECM), being one the main difficulties at the specific dosimetric evaluation such as the radiodiagnostic, coupling the Monte Carlo computer code, developed for general use, to a anthropomorphic model. This problem can be solved by the software used in this paper, the VoxelDose, and it consists of an algorithm for X-ray diagnostic sources with the Monte Carlo EGS4 code coupled to the voxel anthropomorphic phantoms MAX (Male Adult voXel) and FAX (Female Adult voXel). The graphic interface allows the user to insert the mos common exams parameters, and to execute the simulation, obtaining conversion coefficients and the estimative of the deposited energy on organs/tissues radio sensible during the routine procedures. The data obtained were organized into graphics showing the thyroid equivalent dose, which is a radio sensible with 20 g mass and a weight factor of 5 %, compared with the effective dose during an irradiation of thorax-AP

  13. Apparent brain temperature imaging with multi-voxel proton magnetic resonance spectroscopy compared with cerebral blood flow and metabolism imaging on positron emission tomography in patients with unilateral chronic major cerebral artery steno-occlusive disease

    Energy Technology Data Exchange (ETDEWEB)

    Nanba, Takamasa; Nishimoto, Hideaki; Murakami, Toshiyuki; Fujiwara, Shunrou; Ogasawara, Kuniaki [Iwate Medical University, Department of Neurosurgery, Iwate (Japan); Yoshioka, Yoshichika [Osaka University, Open and Transdisciplinary Research Initiatives, Osaka (Japan); Sasaki, Makoto; Uwano, Ikuko [Iwate Medical University, Institute for Biomedical Science, Iwate (Japan); Terasaki, Kazunori [Iwate Medical University, Cyclotron Research Center, Iwate (Japan)

    2017-09-15

    The purpose of the present study was to determine whether apparent brain temperature imaging using multi-voxel proton magnetic resonance (MR) spectroscopy correlates with cerebral blood flow (CBF) and metabolism imaging in the deep white matter of patients with unilateral chronic major cerebral artery steno-occlusive disease. Apparent brain temperature and CBF and metabolism imaging were measured using proton MR spectroscopy and {sup 15}O-positron emission tomography (PET), respectively, in 35 patients. A set of regions of interest (ROIs) of 5 x 5 voxels was placed on an MR image so that the voxel row at each edge was located in the deep white matter of the centrum semiovale in each cerebral hemisphere. PET images were co-registered with MR images with these ROIs and were re-sliced automatically using image analysis software. In 175 voxel pairs located in the deep white matter, the brain temperature difference (affected hemisphere - contralateral hemisphere: ΔBT) was correlated with cerebral blood volume (CBV) (r = 0.570) and oxygen extraction fraction (OEF) ratios (affected hemisphere/contralateral hemisphere) (r = 0.641). We excluded voxels that contained ischemic lesions or cerebrospinal fluid and calculated the mean values of voxel pairs in each patient. The mean ΔBT was correlated with the mean CBF (r = - 0.376), mean CBV (r = 0.702), and mean OEF ratio (r = 0.774). Apparent brain temperature imaging using multi-voxel proton MR spectroscopy was correlated with CBF and metabolism imaging in the deep white matter of patients with unilateral major cerebral artery steno-occlusive disease. (orig.)

  14. Comparison of PET/CT and whole-mount histopathology sections of the human prostate: a new strategy for voxel-wise evaluation.

    Science.gov (United States)

    Schiller, F; Fechter, T; Zamboglou, C; Chirindel, A; Salman, N; Jilg, C A; Drendel, V; Werner, M; Meyer, P T; Grosu, A-L; Mix, M

    2017-08-17

    Implementation of PET/CT in diagnosis of primary prostate cancer (PCa) requires a profound knowledge about the tracer, preferably from a quantitative evaluation. Direct visual comparison of PET/CT slices to whole prostate sections is hampered by considerable uncertainties from imperfect coregistration and fundamentally different image modalities. In the current study, we present a novel method for advanced voxel-wise comparison of histopathology from excised prostates to pre-surgical PET. Resected prostates from eight patients who underwent PSMA-PET/CT were scanned (ex vivo CT) and thoroughly pathologically prepared. In vivo and ex vivo CT including histopathology were coregistered with three different methods (manual, semi-/automatic). Spatial overlap after CT-based registration was evaluated with dice similarity (DSC). Furthermore, we constructed 3D cancer distribution models from histopathologic information in various slices. Subsequent smoothing reflected the intrinsically limited spatial resolution of PSMA-PET. The resulting histoPET models were used for quantitative analysis of spatial histopathology-PET pattern agreement focusing on p values and coefficients of determination (R 2 ). We examined additional rigid mutual information (MI) coregistration directly based on PSMA-PET and histoPET. Mean DSC for the three different methods (ManReg, ScalFactReg, and DefReg) were 0.79 ± 0.06, 0.82 ± 0.04, and 0.90 ± 0.02, respectively, while quantification of PET-histopathology pattern agreement after CT-based registration revealed R 2 45.7, 43.2, and 41.3% on average with p PET-based MI coregistration yielded R 2 61.3, 55.9, and 55.6%, respectively, while implying anatomically plausible transformations. Creating 3D histoPET models based on thorough histopathological preparation allowed sophisticated quantitative analyses showing highly significant correlations between histopathology and (PSMA-)PET. We recommend manual CT-based coregistration followed by a PET

  15. Comparison of gray matter and metabolic reduction in mild Alzheimer's disease using FDG-PET and voxel-based morphometric MR studies

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Kazunari; Sasaki, Hiroki; Kono, Atsushi K.; Miyamoto, Naokazu; Fukuda, Tetsuya [Hyogo Brain and Heart Center, Department of Radiology and Nuclear Medicine, Himeji, Hyogo (Japan); Mori, Etsuro [Hyogo Brain and Heart Center, Institute for Aging Brain and Cognitive Disorders, Himeji, Hyogo (Japan)

    2005-08-01

    The aim of this study was to investigate regional differences between morphologic and functional changes in the same patients with mild Alzheimer's disease (AD) using statistical parametric mapping (SPM) and voxel-based morphometry (VBM). Thirty patients with very mild AD (mean age 66.8 years, mean MMSE score 24.0) and 30 age- and sex-matched normal volunteers underwent both{sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET) and three-dimensional spoiled gradient echo (SPGR) magnetic resonance imaging (MRI). Statistical parametric mapping was used to conduct VBM analysis of the morphological data, which were compared voxel by voxel with the results of a similar analysis of the glucose metabolic data. In AD patients, VBM data indicated a significant gray matter volume density decrease in bilateral amygdala/hippocampus complex (p<0.05, corrected), while FDG-PET analysis showed significant glucose metabolic reductions in the posterior cingulate gyri and the right parietal lobule, compared with those in the normal control group. In very mild AD, morphological change occurs in the medial temporal lobes, while in contrast, metabolic changes occur in the posterior cingulate gyri and parietal lobule. (orig.)

  16. New quantitative and multi-modal approach for in-vivo studies of small animals: coupling of the β-microprobe with magnetic techniques and development of voxelized rat and mouse phantoms

    International Nuclear Information System (INIS)

    Desbree, A.

    2005-09-01

    For the last 15 years, animal models that mimic human disorders have become ubiquitous participants to understand biological mechanisms and human disorders and to evaluate new therapeutic approaches. The necessity to study these models in the course of time has stimulated the development of instruments dedicated to in vivo small animal studies. To further understand physiopathological processes, the current challenge is to couple simultaneously several of these methods. Given this context, the combination of the magnetic and radioactive techniques remains an exciting challenge since it is still limited by strict technical constraints. Therefore we propose to couple the magnetic techniques with the radiosensitive Beta-Microprobe, developed in the IPB group and which shown to be an elegant alternative to PET measurements. In this context, the thesis was dedicated to the study of the coupling feasibility from a physical point of view, by simulation and experimental characterizations. Then, the determination of a biological protocol was carried out on the basis of pharmacokinetic studies. The experiments have shown the possibility to use the probe for radioactive measurements under intense magnetic field simultaneously to anatomical images acquisitions. Simultaneously, we have sought to improve the quantification of the radioactive signal using a voxelized phantom of a rat brain. Finally, the emergence of transgenic models led us to reproduce pharmacokinetic studies for the mouse and to develop voxelized mouse phantoms. (author)

  17. Dyslexia and voxel-based morphometry: correlations between five behavioural measures of dyslexia and gray and white matter volumes

    NARCIS (Netherlands)

    Tamboer, P.; Scholte, H.S.; Vorst, H.C.M.

    2015-01-01

    In voxel-based morphometry studies of dyslexia, the relation between causal theories of dyslexia and gray matter (GM) and white matter (WM) volume alterations is still under debate. Some alterations are consistently reported, but others failed to reach significance. We investigated GM alterations in

  18. Development of a Monte Carlo software to photon transportation in voxel structures using graphic processing units; Desenvolvimento de um software de Monte Carlo para transporte de fotons em estruturas de voxels usando unidades de processamento grafico

    Energy Technology Data Exchange (ETDEWEB)

    Bellezzo, Murillo

    2014-09-01

    As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo Method (MCM) has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this thesis, the CUBMC code is presented, a GPU-based MC photon transport algorithm for dose calculation under the Compute Unified Device Architecture (CUDA) platform. The simulation of physical events is based on the algorithm used in PENELOPE, and the cross section table used is the one generated by the MATERIAL routine, also present in PENELOPE code. Photons are transported in voxel-based geometries with different compositions. There are two distinct approaches used for transport simulation. The rst of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon ignores the existence of borders and travels in homogeneous fictitious media. The CUBMC code aims to be an alternative of Monte Carlo simulator code that, by using the capability of parallel processing of graphics processing units (GPU), provide high performance simulations in low cost compact machines, and thus can be applied in clinical cases and incorporated in treatment planning systems for radiotherapy. (author)

  19. Intercomparison of whole-body averaged SAR in European and Japanese voxel phantoms

    International Nuclear Information System (INIS)

    Dimbylow, Peter J; Hirata, Akimasa; Nagaoka, Tomoaki

    2008-01-01

    This paper provides an intercomparison of the HPA male and female models, NORMAN and NAOMI with the National Institute of Information and Communications Technology (NICT) male and female models, TARO and HANAKO. The calculations of the whole-body SAR in these four phantoms were performed at the HPA, at NICT and at the Nagoya Institute of Technology (NIT). These were for a plane wave with a vertically aligned electric field incident upon the front of the body from 30 MHz to 3 GHz for isolated conditions. As well as investigating the general differences through this frequency range, particular emphasis was placed on the assumptions of how dielectric properties are assigned to tissues (particularly skin and fat) and the consequence of using different algorithms for calculating SAR at the higher frequencies.

  20. Regional White Matter Decreases in Alzheimer's Disease Using Optimized Voxel-Based Morphometry

    Energy Technology Data Exchange (ETDEWEB)

    Shuyu Li; Fang Pu; Feng Shi; Sheng Xie; Yinhua Wang; Tianzi Jiang [Dept. of Bioengineering, Beijing Univ. of Aeronautics and Astronautics, Beijing (China)

    2008-02-15

    Background: Most studies that attempt to clarify structural abnormalities related to functional disconnection in patients with Alzheimer's disease (AD) have focused on exploring pathological changes in cortical gray matter. However, white matter fibers connecting these cerebral areas may also be abnormal. Purpose: To investigate the regional changes of white matter volume in patients with AD compared to healthy subjects. Material and Methods: White matter volume changes in whole-brain magnetic resonance images acquired from 19 patients with AD and 20 healthy subjects (control group) were observed using the optimized voxel-based morphometry (VBM) method. In addition, the corpus callosum (CC) of AD patients and the control group was investigated further by outlining manually the boundary of the CC on a midsagittal slice. Each area of the CC was then corrected by dividing each subject's intracranial area in the midsagittal plane. Results: Compared with the control group, AD patients showed significantly reduced white matter volumes in the posterior part of the CC and the temporal lobe in the left and right hemispheres. Moreover, the voxel showing peak statistical difference in the posterior of the CC was left sided. The five subdivisions of the CC were also significantly smaller among the AD patients relative to the control group. Conclusion: Our findings suggest that these abnormalities in white matter regions may contribute to the functional disconnections in AD.

  1. Regional White Matter Decreases in Alzheimer's Disease Using Optimized Voxel-Based Morphometry

    Energy Technology Data Exchange (ETDEWEB)

    Shuyu Li; Fang Pu; Feng Shi; Sheng Xie; Yinhua Wang; Tianzi Jiang (Dept. of Bioengineering, Beijing Univ. of Aeronautics and Astronautics, Beijing (China))

    2008-02-15

    Background: Most studies that attempt to clarify structural abnormalities related to functional disconnection in patients with Alzheimer's disease (AD) have focused on exploring pathological changes in cortical gray matter. However, white matter fibers connecting these cerebral areas may also be abnormal. Purpose: To investigate the regional changes of white matter volume in patients with AD compared to healthy subjects. Material and Methods: White matter volume changes in whole-brain magnetic resonance images acquired from 19 patients with AD and 20 healthy subjects (control group) were observed using the optimized voxel-based morphometry (VBM) method. In addition, the corpus callosum (CC) of AD patients and the control group was investigated further by outlining manually the boundary of the CC on a midsagittal slice. Each area of the CC was then corrected by dividing each subject's intracranial area in the midsagittal plane. Results: Compared with the control group, AD patients showed significantly reduced white matter volumes in the posterior part of the CC and the temporal lobe in the left and right hemispheres. Moreover, the voxel showing peak statistical difference in the posterior of the CC was left sided. The five subdivisions of the CC were also significantly smaller among the AD patients relative to the control group. Conclusion: Our findings suggest that these abnormalities in white matter regions may contribute to the functional disconnections in AD

  2. Direct voxel-based comparisons between grey matter shrinkage and glucose hypometabolism in chronic alcoholism.

    Science.gov (United States)

    Ritz, Ludivine; Segobin, Shailendra; Lannuzel, Coralie; Boudehent, Céline; Vabret, François; Eustache, Francis; Beaunieux, Hélène; Pitel, Anne L

    2016-09-01

    Alcoholism is associated with widespread brain structural abnormalities affecting mainly the frontocerebellar and the Papez's circuits. Brain glucose metabolism has received limited attention, and few studies used regions of interest approach and showed reduced global brain metabolism predominantly in the frontal and parietal lobes. Even though these studies have examined the relationship between grey matter shrinkage and hypometabolism, none has performed a direct voxel-by-voxel comparison between the degrees of structural and metabolic abnormalities. Seventeen alcoholic patients and 16 control subjects underwent both structural magnetic resonance imaging and (18)F-2-fluoro-deoxy-glucose-positron emission tomography examinations. Structural abnormalities and hypometabolism were examined in alcoholic patients compared with control subjects using two-sample t-tests. Then, these two patterns of brain damage were directly compared with a paired t-test. Compared to controls, alcoholic patients had grey matter shrinkage and hypometabolism in the fronto-cerebellar circuit and several nodes of Papez's circuit. The direct comparison revealed greater shrinkage than hypometabolism in the cerebellum, cingulate cortex, thalamus and hippocampus and parahippocampal gyrus. Conversely, hypometabolism was more severe than shrinkage in the dorsolateral, premotor and parietal cortices. The distinct profiles of abnormalities found within the Papez's circuit, the fronto-cerebellar circuit and the parietal gyrus in chronic alcoholism suggest the involvement of different pathological mechanisms. © The Author(s) 2015.

  3. Application of Radial Basis Function Methods in the Development of a 95th Percentile Male Seated FEA Model.

    Science.gov (United States)

    Vavalle, Nicholas A; Schoell, Samantha L; Weaver, Ashley A; Stitzel, Joel D; Gayzik, F Scott

    2014-11-01

    Human body finite element models (FEMs) are a valuable tool in the study of injury biomechanics. However, the traditional model development process can be time-consuming. Scaling and morphing an existing FEM is an attractive alternative for generating morphologically distinct models for further study. The objective of this work is to use a radial basis function to morph the Global Human Body Models Consortium (GHBMC) average male model (M50) to the body habitus of a 95th percentile male (M95) and to perform validation tests on the resulting model. The GHBMC M50 model (v. 4.3) was created using anthropometric and imaging data from a living subject representing a 50th percentile male. A similar dataset was collected from a 95th percentile male (22,067 total images) and was used in the morphing process. Homologous landmarks on the reference (M50) and target (M95) geometries, with the existing FE node locations (M50 model), were inputs to the morphing algorithm. The radial basis function was applied to morph the FE model. The model represented a mass of 103.3 kg and contained 2.2 million elements with 1.3 million nodes. Simulations of the M95 in seven loading scenarios were presented ranging from a chest pendulum impact to a lateral sled test. The morphed model matched anthropometric data to within a rootmean square difference of 4.4% while maintaining element quality commensurate to the M50 model and matching other anatomical ranges and targets. The simulation validation data matched experimental data well in most cases.

  4. Fast three-material modeling with triple arch projection for electronic cleansing in CTC.

    Science.gov (United States)

    Lee, Hyunna; Lee, Jeongjin; Kim, Bohyoung; Kim, Se Hyung; Shin, Yeong-Gil

    2014-07-01

    In this paper, we propose a fast three-material modeling for electronic cleansing (EC) in computed tomographic colonography. Using a triple arch projection, our three-material modeling provides a very quick estimate of the three-material fractions to remove ridge-shaped artifacts at the T-junctions where air, soft-tissue (ST), and tagged residues (TRs) meet simultaneously. In our approach, colonic components including air, TR, the layer between air and TR, the layer between ST and TR (L(ST/TR)), and the T-junction are first segmented. Subsequently, the material fraction of ST for each voxel in L(ST/TR) and the T-junction is determined. Two-material fractions of the voxels in L(ST/TR) are derived based on a two-material transition model. On the other hand, three-material fractions of the voxels in the T-junction are estimated based on our fast three-material modeling with triple arch projection. Finally, the CT density value of each voxel is updated based on our fold-preserving reconstruction model. Experimental results using ten clinical datasets demonstrate that the proposed three-material modeling successfully removed the T-junction artifacts and clearly reconstructed the whole colon surface while preserving the submerged folds well. Furthermore, compared with the previous three-material transition model, the proposed three-material modeling resulted in about a five-fold increase in speed with the better preservation of submerged folds and the similar level of cleansing quality in T-junction regions.

  5. Tomographic anthropomorphic models. Pt. 1

    International Nuclear Information System (INIS)

    Veit, R.; Zankl, M.; Petoussi, N.; Mannweiler, E.; Drexler, G.; Williams, G.

    1989-01-01

    The first generation of heterogenoeous anthropomorphic mathematical models to be used in dose calculations was the MIRD-5 adult phantom, followed by the pediatric MIRD-type phantoms and by the GSF sex-specific phantoms ADAM and EVA. A new generation of realistic anthropomorphic models is now introduced. The organs and tissues of these models consist of a well defined number of volume elements (voxels), derived from computer tomographic (CT) data; consequently, these models were named voxel or tomographic models. So far two voxel models of real patients are available: one of an 8 week old baby and of a 7 year old child. For simplicity, the model of the baby will be referred to as BABY and that of the child as CHILD. In chapter 1 a brief literature review is given on the existing mathematical models and their applications. The reasons that lead to the construction of the new CT models is discussed. In chapter 2 the technique is described which allows to convert any physical object into computer files to be used for dose calculations. The technique which produces three dimensional reconstructions of high resolution is discussed. In chapter 3 the main characteristics of the models of the baby and child are given. Tables of organ masses and volumes are presented together with three dimensional images of some organs and tissues. A special mention is given to the assessment of bone marrow distribution. Chapter 4 gives a short description of the Monte Carlo code used in conjunction with the models to calculate organ and tissue doses resulting from photon exposures. Some technical details concerning the computer files which describe the models are also given. (orig./HP)

  6. Detection of transgenerational spermatogenic inheritance of adult male acquired CNS gene expression characteristics using a Drosophila systems model.

    Directory of Open Access Journals (Sweden)

    Abhay Sharma

    Full Text Available Available instances of inheritance of epigenetic transgenerational phenotype are limited to environmental exposures during embryonic and adult gonadal development. Adult exposures can also affect gametogenesis and thereby potentially result in reprogramming of the germline. Although examples of epigenetic effects on gametogenesis exist, it is notable that transgenerational inheritance of environment-induced adult phenotype has not yet been reported. Epigenetic codes are considered to be critical in neural plasticity. A Drosophila systems model of pentylenetetrazole (PTZ induced long-term brain plasticity has recently been described. In this model, chronic PTZ treatment of adult males causes alterations in CNS transcriptome. Here, we describe our search for transgenerational spermatogenic inheritance of PTZ induced gene expression phenotype acquired by adult Drosophila males. We generated CNS transcriptomic profiles of F(1 adults after treating F(0 adult males with PTZ and of F(2 adults resulting from a cross between F(1 males and normal females. Surprisingly, microarray clustering showed F(1 male profile as closest to F(1 female and F(0 male profile closest to F(2 male. Differentially expressed genes in F(1 males, F(1 females and F(2 males showed significant overlap with those caused by PTZ. Interestingly, microarray evidence also led to the identification of upregulated rRNA in F(2 males. Next, we generated microarray expression profiles of adult testis from F(0 and F(1 males. Further surprising, clustering of CNS and testis profiles and matching of differentially expressed genes in them provided evidence of a spermatogenic mechanism in the transgenerational effect observed. To our knowledge, we report for the first time detection of transgenerational spermatogenic inheritance of adult acquired somatic gene expression characteristic. The Drosophila systems model offers an excellent opportunity to understand the epigenetic mechanisms underlying

  7. Detection of transgenerational spermatogenic inheritance of adult male acquired CNS gene expression characteristics using a Drosophila systems model.

    Science.gov (United States)

    Sharma, Abhay; Singh, Priyanka

    2009-06-02

    Available instances of inheritance of epigenetic transgenerational phenotype are limited to environmental exposures during embryonic and adult gonadal development. Adult exposures can also affect gametogenesis and thereby potentially result in reprogramming of the germline. Although examples of epigenetic effects on gametogenesis exist, it is notable that transgenerational inheritance of environment-induced adult phenotype has not yet been reported. Epigenetic codes are considered to be critical in neural plasticity. A Drosophila systems model of pentylenetetrazole (PTZ) induced long-term brain plasticity has recently been described. In this model, chronic PTZ treatment of adult males causes alterations in CNS transcriptome. Here, we describe our search for transgenerational spermatogenic inheritance of PTZ induced gene expression phenotype acquired by adult Drosophila males. We generated CNS transcriptomic profiles of F(1) adults after treating F(0) adult males with PTZ and of F(2) adults resulting from a cross between F(1) males and normal females. Surprisingly, microarray clustering showed F(1) male profile as closest to F(1) female and F(0) male profile closest to F(2) male. Differentially expressed genes in F(1) males, F(1) females and F(2) males showed significant overlap with those caused by PTZ. Interestingly, microarray evidence also led to the identification of upregulated rRNA in F(2) males. Next, we generated microarray expression profiles of adult testis from F(0) and F(1) males. Further surprising, clustering of CNS and testis profiles and matching of differentially expressed genes in them provided evidence of a spermatogenic mechanism in the transgenerational effect observed. To our knowledge, we report for the first time detection of transgenerational spermatogenic inheritance of adult acquired somatic gene expression characteristic. The Drosophila systems model offers an excellent opportunity to understand the epigenetic mechanisms underlying the

  8. Development of a Monte Carlo software to photon transportation in voxel structures using graphic processing units

    International Nuclear Information System (INIS)

    Bellezzo, Murillo

    2014-01-01

    As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo Method (MCM) has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this thesis, the CUBMC code is presented, a GPU-based MC photon transport algorithm for dose calculation under the Compute Unified Device Architecture (CUDA) platform. The simulation of physical events is based on the algorithm used in PENELOPE, and the cross section table used is the one generated by the MATERIAL routine, also present in PENELOPE code. Photons are transported in voxel-based geometries with different compositions. There are two distinct approaches used for transport simulation. The rst of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon ignores the existence of borders and travels in homogeneous fictitious media. The CUBMC code aims to be an alternative of Monte Carlo simulator code that, by using the capability of parallel processing of graphics processing units (GPU), provide high performance simulations in low cost compact machines, and thus can be applied in clinical cases and incorporated in treatment planning systems for radiotherapy. (author)

  9. The Effect of Physical Attractiveness of Models on Advertising Effectiveness for Male and Female Adolescents

    Science.gov (United States)

    Tsai, Chia-Ching; Chang, Chih-Hsiang

    2007-01-01

    This study investigates the effect of advertising with physically attractive models on male and female adolescents. The findings suggest that highly attractive models are less effective than those who are normally attractive. Implications of social comparison are discussed.

  10. Surface models of the male urogenital organs built from the Visible Korean using popular software

    Science.gov (United States)

    Shin, Dong Sun; Park, Jin Seo; Shin, Byeong-Seok

    2011-01-01

    Unlike volume models, surface models, which are empty three-dimensional images, have a small file size, so they can be displayed, rotated, and modified in real time. Thus, surface models of male urogenital organs can be effectively applied to an interactive computer simulation and contribute to the clinical practice of urologists. To create high-quality surface models, the urogenital organs and other neighboring structures were outlined in 464 sectioned images of the Visible Korean male using Adobe Photoshop; the outlines were interpolated on Discreet Combustion; then an almost automatic volume reconstruction followed by surface reconstruction was performed on 3D-DOCTOR. The surface models were refined and assembled in their proper positions on Maya, and a surface model was coated with actual surface texture acquired from the volume model of the structure on specially programmed software. In total, 95 surface models were prepared, particularly complete models of the urinary and genital tracts. These surface models will be distributed to encourage other investigators to develop various kinds of medical training simulations. Increasingly automated surface reconstruction technology using commercial software will enable other researchers to produce their own surface models more effectively. PMID:21829759

  11. Comparison of different tube-of-response (TOR) models for resolution recovery in PET image reconstruction for the Philips Ingenuity TF PET/MR

    International Nuclear Information System (INIS)

    Lougovski, Alexandr; Hofheinz, Frank; Van Den Hoff, Jorg

    2015-01-01

    Recently, we have proposed a method for on-the-fly system matrix computation where the tube-of-response (TOR) is approximated as a cylinder with constant density (TORCD) and the cubic voxels are replaced by spheres. We could show that with this model the PET image quality can be notably improved compared to the vendor provided image reconstruction of our Philips Ingenuity-TF PET/MR. In this work we address the question whether image quality can be further improved by using a variable density TOR (TOR-VD). The radial variability of TOR-VD was modelled by a Kaiser-Bessel function. Free parameters of this density model were used to optimize image properties regarding resolution, noise, and Gibbs artifacts. Additional, a TOR-VD model accounting for position dependent effects along the TOR caused by the finite solid angles of the detectors is under investigation. Phantom measurement were performed with a Philips Ingenuity-TF PET/MR scanner. Listmode data were reconstructed using TOR-CD and TORVD, respectively on two different grids with cubic voxel size of 2 mm and 4 mm. Image quality was assessed with resolution-noise curves and investigation of the radial position dependence of the spatial resolution. For 2 mm voxels, TOR-VD consistently yields a slight improvement of the investigated image quality measures compared to TOR-CD. For 4 mm voxels both models lead essentially to the same results. These findings can be understood as a consequence of the relative size of voxel and TOR. For typical whole body studies (4 mm voxel size) a variable TOR does not improve image quality beyond what is achievable with a constant density TOR. For smaller voxel size the image quality can indeed be somewhat improved with a variable TOR but at the expense of drastically increased computation time.

  12. Comparison of different tube-of-response (TOR) models for resolution recovery in PET image reconstruction for the Philips Ingenuity TF PET/MR

    Energy Technology Data Exchange (ETDEWEB)

    Lougovski, Alexandr; Hofheinz, Frank; Van Den Hoff, Jorg [Helmholtz-Center Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, PET Center, Dresden (Germany)

    2015-05-18

    Recently, we have proposed a method for on-the-fly system matrix computation where the tube-of-response (TOR) is approximated as a cylinder with constant density (TORCD) and the cubic voxels are replaced by spheres. We could show that with this model the PET image quality can be notably improved compared to the vendor provided image reconstruction of our Philips Ingenuity-TF PET/MR. In this work we address the question whether image quality can be further improved by using a variable density TOR (TOR-VD). The radial variability of TOR-VD was modelled by a Kaiser-Bessel function. Free parameters of this density model were used to optimize image properties regarding resolution, noise, and Gibbs artifacts. Additional, a TOR-VD model accounting for position dependent effects along the TOR caused by the finite solid angles of the detectors is under investigation. Phantom measurement were performed with a Philips Ingenuity-TF PET/MR scanner. Listmode data were reconstructed using TOR-CD and TORVD, respectively on two different grids with cubic voxel size of 2 mm and 4 mm. Image quality was assessed with resolution-noise curves and investigation of the radial position dependence of the spatial resolution. For 2 mm voxels, TOR-VD consistently yields a slight improvement of the investigated image quality measures compared to TOR-CD. For 4 mm voxels both models lead essentially to the same results. These findings can be understood as a consequence of the relative size of voxel and TOR. For typical whole body studies (4 mm voxel size) a variable TOR does not improve image quality beyond what is achievable with a constant density TOR. For smaller voxel size the image quality can indeed be somewhat improved with a variable TOR but at the expense of drastically increased computation time.

  13. Family support and acceptance, gay male identity formation, and psychological adjustment: a path model.

    Science.gov (United States)

    Elizur, Y; Ziv, M

    2001-01-01

    While heterosexist family undermining has been demonstrated to be a developmental risk factor in the life of persons with same-gender orientation, the issue of protective family factors is both controversial and relatively neglected. In this study of Israeli gay males (N = 114), we focused on the interrelations of family support, family acceptance and family knowledge of gay orientation, and gay male identity formation, and their effects on mental health and self-esteem. A path model was proposed based on the hypotheses that family support, family acceptance, family knowledge, and gay identity formation have an impact on psychological adjustment, and that family support has an effect on gay identity formation that is mediated by family acceptance. The assessment of gay identity formation was based on an established stage model that was streamlined for cross-cultural practice by defining three basic processes of same-gender identity formation: self-definition, self-acceptance, and disclosure (Elizur & Mintzer, 2001). The testing of our conceptual path model demonstrated an excellent fit with the data. An alternative model that hypothesized effects of gay male identity on family acceptance and family knowledge did not fit the data. Interpreting these results, we propose that the main effect of family support/acceptance on gay identity is related to the process of disclosure, and that both general family support and family acceptance of same-gender orientation play a significant role in the psychological adjustment of gay men.

  14. WE-AB-202-07: Ventilation CT: Voxel-Level Comparison with Hyperpolarized Helium-3 & Xenon-129 MRI

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, B; Marshall, H; Hughes, P; Stewart, N; Horn, F; Collier, G; Norquay, G; Hart, K; Swinscoe, J; Hatton, M; Wild, J; Ireland, R [University of Sheffield, Sheffield (United Kingdom)

    2016-06-15

    Purpose: To compare the spatial correlation of ventilation surrogates computed from inspiratory and expiratory breath-hold CT with hyperpolarized Helium-3 & Xenon-129 MRI in a cohort of lung cancer patients. Methods: 5 patients underwent expiration & inspiration breath-hold CT. Xenon-129 & {sup 1}H MRI were also acquired at the same inflation state as inspiratory CT. This was followed immediately by acquisition of Helium-3 & {sup 1}H MRI in the same breath and at the same inflation state as inspiratory CT. Expiration CT was deformably registered to inspiration CT for calculation of ventilation CT from voxel-wise differences in Hounsfield units. Inspiration CT and the Xenon-129’s corresponding anatomical {sup 1}H MRI were registered to Helium-3 MRI via the same-breath anatomical {sup 1}H MRI. This enabled direct comparison of CT ventilation with Helium-3 MRI & Xenon-129 MRI for the median values in corresponding regions of interest, ranging from finer to coarser in-plane dimensions of 10 by 10, 20 by 20, 30 by 30 and 40 by 40, located within the lungs as defined by the same-breath {sup 1}H MRI lung mask. Spearman coefficients were used to assess voxel-level correlation. Results: The median Spearman’s coefficients of ventilation CT with Helium-3 & Xenon-129 MRI for ROIs of 10 by 10, 20 by 20, 30 by 30 and 40 by 40 were 0.52, 0.56, 0.60 and 0.68 and 0.40, 0.42, 0.52 and 0.70, respectively. Conclusion: This work demonstrates a method of acquiring CT & hyperpolarized gas MRI (Helium-3 & Xenon-129 MRI) in similar breath-holds to enable direct spatial comparison of ventilation maps. Initial results show moderate correlation between ventilation CT & hyperpolarized gas MRI, improving for coarser regions which could be attributable to the inherent noise in CT intensity, non-ventilatory effects and registration errors at the voxel-level. Thus, it may be more beneficial to quantify ventilation at a more regional level.

  15. Regional patterns of grey matter atrophy and magnetisation transfer ratio abnormalities in multiple sclerosis clinical subgroups: a voxel-based analysis study.

    Science.gov (United States)

    Mallik, Shahrukh; Muhlert, Nils; Samson, Rebecca S; Sethi, Varun; Wheeler-Kingshott, Claudia A M; Miller, David H; Chard, Declan T

    2015-04-01

    In multiple sclerosis (MS), demyelination and neuro-axonal loss occur in the brain grey matter (GM). We used magnetic resonance imaging (MRI) measures of GM magnetisation transfer ratio (MTR) and volume to assess the regional localisation of reduced MTR (reflecting demyelination) and atrophy (reflecting neuro-axonal loss) in relapsing-remitting MS (RRMS), secondary progressive MS (SPMS) and primary progressive MS (PPMS). A total of 98 people with MS (51 RRMS, 28 SPMS, 19 PPMS) and 29 controls had T1-weighted volumetric and magnetisation transfer scans. SPM8 was used to undertake voxel-based analysis (VBA) of GM tissue volumes and MTR. MS subgroups were compared with controls, adjusting for age and gender. A voxel-by-voxel basis correlation analysis between MTR and volume within each subject group was performed, using biological parametric mapping. MTR reduction was more extensive than atrophy. RRMS and SPMS patients showed proportionately more atrophy in the deep GM. SPMS and PPMS patients showed proportionately greater cortical MTR reduction. RRMS patients demonstrated the most correlation of MTR reduction and atrophy in deep GM. In SPMS and PPMS patients, there was less extensive correlation. These results suggest that in the deep GM of RRMS patients, demyelination and neuro-axonal loss may be linked, while in SPMS and PPMS patients, neuro-axonal loss and demyelination may occur mostly independently. © The Author(s), 2014.

  16. Frontotemporal alterations in pediatric bipolar disorder: results of a voxel-based morphometry study.

    Science.gov (United States)

    Dickstein, Daniel P; Milham, Michael P; Nugent, Allison C; Drevets, Wayne C; Charney, Dennis S; Pine, Daniel S; Leibenluft, Ellen

    2005-07-01

    While numerous magnetic resonance imaging (MRI) studies have evaluated adults with bipolar disorder (BPD), few have examined MRI changes in children with BPD. To determine volume alterations in children with BPD using voxel-based morphometry, an automated MRI analysis method with reduced susceptibility to various biases. A priori regions of interest included amygdala, accumbens, hippocampus, dorsolateral prefrontal cortex (DLPFC), and orbitofrontal cortex. Ongoing study of the pathophysiology of pediatric BPD. Intramural National Institute of Mental Health; approved by the institutional review board. Patients Pediatric subjects with BPD (n = 20) with at least 1 manic or hypomanic episode meeting strict DSM-IV criteria for duration and elevated, expansive mood. Controls (n = 20) and their first-degree relatives lacked psychiatric disorders. Groups were matched for age and sex and did not differ in IQ. With a 1.5-T MRI machine, we collected 1.2-mm axial sections (124 per subject) with an axial 3-dimensional spoiled gradient recalled echo in the steady state sequence. Image analysis was by optimized voxel-based morphometry. Subjects with BPD had reduced gray matter volume in the left DLPFC. With a less conservative statistical threshold, additional gray matter reductions were found in the left accumbens and left amygdala. No difference was found in the hippocampus or orbitofrontal cortex. Our results are consistent with data implicating the prefrontal cortex in emotion regulation, a process that is perturbed in BPD. Reductions in amygdala and accumbens volumes are consistent with neuropsychological data on pediatric BPD. Further study is required to determine the relationship between these findings in children and adults with BPD.

  17. Effect of eplerenone on serum TNF-α levels in adriamycin induced heart failure male rat models

    International Nuclear Information System (INIS)

    Xuan Nan; Song Liping; Xing Haiyan

    2009-01-01

    Objective: To investigate the effect of eplerenone on serum TNF-α levels in adriamycin induced heart failure male rat models. Methods: Forty male rat models of adriamycin-induced heart failure were prepared with weekly intraperitoneal injection of adriamycin (4/mg/kg) for six weeks. Twenty surviving models were randomly divided into two groups: (1)eplerenone-treated group, n=10, treated with garage of eplerenone 200mg/kg/d for 12 weeks (2) non-treated group n=10. All the surviving models (group (1) n=8, group (2) n=6) were sacrificed after 12 weeks with left ventricular hemodynamic function parameters tested and serum TNF-α levels measured. Ten male rats without adriamycin administration served as controls. Results: Left ventricular hemodynamic parameters in the non-treated group were significantly worse than those in controls (P<0.05). The parameters in the eplerenone treated group were significantly better than those in the non-treated group (P<0.05). The serum TNF-α levels in the non-treated group were significantly higher than those in controls (P<0.05). TNF-α levels in the eplerenone group were significantly lower than those in the non-treated group (P<0.05). Conclusion: Eplerenone could reduce the serum TNF-α levels in the rat models of heart failure. (authors)

  18. Gray and white matter density changes in monozygotic and same-sex dizygotic twins discordant for schizophrenia using voxel-based morphometry

    DEFF Research Database (Denmark)

    Hulshoff Pol, HE; Schnack, HG; Mandl, RC

    2006-01-01

    Global gray matter brain tissue volume decreases in schizophrenia have been associated to disease-related (possibly nongenetic) factors. Global white matter brain tissue volume decreases were related to genetic risk factors for the disease. However, which focal gray and white matter brain regions...... best reflect the genetic and environmental risk factors in the brains of patients with schizophrenia remains unresolved. 1.5-T MRI brain scans of 11 monozygotic and 11 same-sex dizygotic twin-pairs discordant for schizophrenia were compared to 11 monozygotic and 11 same-sex dizygotic healthy control...... twin-pairs using voxel-based morphometry. Linear regression analysis was done in each voxel for the average and difference in gray and white matter density separately, in each twin-pair, with group (discordant, healthy) and zygosity (monozygotic, dizygotic) as between subject variables, and age, sex...

  19. Brain structural changes in cynomolgus monkeys administered with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: A longitudinal voxel-based morphometry and diffusion tensor imaging study.

    Science.gov (United States)

    Jeong, Hyeonseok S; Lee, Sang-Rae; Kim, Jieun E; Lyoo, In Kyoon; Yoon, Sujung; Namgung, Eun; Chang, Kyu-Tae; Kim, Bom Sahn; Yang, Sejung; Im, Jooyeon J; Jeon, Saerom; Kang, Ilhyang; Ma, Jiyoung; Chung, Yong-An; Lim, Soo Mee

    2018-01-01

    In animal models of Parkinson's disease (PD), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is one of the most widely used agents that damages the nigrostriatal dopaminergic pathway. However, brain structural changes in response to MPTP remain unclear. This study aimed to investigate in vivo longitudinal changes in gray matter (GM) volume and white matter (WM) microstructure in primate models administered with MPTP. In six cynomolgus monkeys, high-resolution magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) scans were acquired 7 times over 32 weeks, and assessments of motor symptoms were conducted over 15 months, before and after the MPTP injection. Changes in GM volume and WM microstructure were estimated on a voxel-by-voxel basis. Mixed-effects regression models were used to examine the trajectories of these structural changes. GM volume initially increased after the MPTP injection and gradually decreased in the striatum, midbrain, and other dopaminergic areas. The cerebellar volume temporarily decreased and returned to its baseline level. The rate of midbrain volume increase was positively correlated with the increase rate of motor symptom severity (Spearman rho = 0.93, p = 0.008). Mean, axial, and radial diffusivity in the striatum and frontal areas demonstrated initial increases and subsequent decreases. The current multi-modal imaging study of MPTP-administered monkeys revealed widespread and dynamic structural changes not only in the nigrostriatal pathway but also in other cortical, subcortical, and cerebellar areas. Our findings may suggest the need to further investigate the roles of inflammatory reactions and glial activation as potential underlying mechanisms of these structural changes.

  20. On the relation between Kaiser–Bessel blob and tube of response based modelling of the system matrix in iterative PET image reconstruction

    International Nuclear Information System (INIS)

    Lougovski, Alexandr; Hofheinz, Frank; Maus, Jens; Schramm, Georg; Van den Hoff, Jörg

    2015-01-01

    We investigate the question of how the blob approach is related to tube of response based modelling of the system matrix. In our model, the tube of response (TOR) is approximated as a cylinder with constant density (TOR-CD) and the cubic voxels are replaced by spheres. Here we investigate a modification of the TOR model that makes it effectively equivalent to the blob model, which models the intersection of lines of response (LORs) with radially variant basis functions (‘blobs’) replacing the cubic voxels. Implications of the achieved equivalence regarding the necessity of final resampling in blob-based reconstructions are considered. We extended TOR-CD to a variable density tube model (TOR-VD) that yields a weighting function (defining all system matrix elements) which is essentially identical to that of the blob model. The variable density of TOR-VD was modelled by a Gaussian and a Kaiser–Bessel function, respectively. The free parameters of both model functions were determined by fitting the corresponding weighting function to the weighting function of the blob model. TOR-CD and the best-fitting TOR-VD were compared to the blob model with a final resampling step (BLOB-RS) and without resampling (BLOB-NRS) in phantom studies. For three different contrast ratios and two different voxel sizes, resolution noise curves were generated. TOR-VD and BLOB-NRS lead to nearly identical images for all investigated contrast ratios and voxel sizes. Both models showed strong Gibbs artefacts at 4 mm voxel size, while at 2 mm voxel size there were no Gibbs artefacts visible. The spatial resolution was similar to the resolution with TOR-CD in all cases. The resampling step removed most of the Gibbs artefacts and reduced the noise level but also degraded the spatial resolution substantially. We conclude that the blob model can be considered just as a special case of a TOR-based reconstruction. The latter approach provides a more natural description of the detection process

  1. Why Are Males Bad for Females? Models for the Evolution of Damaging Male Mating Behavior

    NARCIS (Netherlands)

    Lessells, C.M.

    2005-01-01

    One explanation for the cost to mating for females caused by damaging male mating behavior is that this causes the females to adaptively modify their subsequent life histories in a way that also increases male fitness. This might occur because the reduction in residual reproductive value of the

  2. Accelerating Monte Carlo simulations of photon transport in a voxelized geometry using a massively parallel graphics processing unit

    International Nuclear Information System (INIS)

    Badal, Andreu; Badano, Aldo

    2009-01-01

    Purpose: It is a known fact that Monte Carlo simulations of radiation transport are computationally intensive and may require long computing times. The authors introduce a new paradigm for the acceleration of Monte Carlo simulations: The use of a graphics processing unit (GPU) as the main computing device instead of a central processing unit (CPU). Methods: A GPU-based Monte Carlo code that simulates photon transport in a voxelized geometry with the accurate physics models from PENELOPE has been developed using the CUDA programming model (NVIDIA Corporation, Santa Clara, CA). Results: An outline of the new code and a sample x-ray imaging simulation with an anthropomorphic phantom are presented. A remarkable 27-fold speed up factor was obtained using a GPU compared to a single core CPU. Conclusions: The reported results show that GPUs are currently a good alternative to CPUs for the simulation of radiation transport. Since the performance of GPUs is currently increasing at a faster pace than that of CPUs, the advantages of GPU-based software are likely to be more pronounced in the future.

  3. Accelerating Monte Carlo simulations of photon transport in a voxelized geometry using a massively parallel graphics processing unit

    Energy Technology Data Exchange (ETDEWEB)

    Badal, Andreu; Badano, Aldo [Division of Imaging and Applied Mathematics, OSEL, CDRH, U.S. Food and Drug Administration, Silver Spring, Maryland 20993-0002 (United States)

    2009-11-15

    Purpose: It is a known fact that Monte Carlo simulations of radiation transport are computationally intensive and may require long computing times. The authors introduce a new paradigm for the acceleration of Monte Carlo simulations: The use of a graphics processing unit (GPU) as the main computing device instead of a central processing unit (CPU). Methods: A GPU-based Monte Carlo code that simulates photon transport in a voxelized geometry with the accurate physics models from PENELOPE has been developed using the CUDA programming model (NVIDIA Corporation, Santa Clara, CA). Results: An outline of the new code and a sample x-ray imaging simulation with an anthropomorphic phantom are presented. A remarkable 27-fold speed up factor was obtained using a GPU compared to a single core CPU. Conclusions: The reported results show that GPUs are currently a good alternative to CPUs for the simulation of radiation transport. Since the performance of GPUs is currently increasing at a faster pace than that of CPUs, the advantages of GPU-based software are likely to be more pronounced in the future.

  4. Accelerating Monte Carlo simulations of photon transport in a voxelized geometry using a massively parallel graphics processing unit.

    Science.gov (United States)

    Badal, Andreu; Badano, Aldo

    2009-11-01

    It is a known fact that Monte Carlo simulations of radiation transport are computationally intensive and may require long computing times. The authors introduce a new paradigm for the acceleration of Monte Carlo simulations: The use of a graphics processing unit (GPU) as the main computing device instead of a central processing unit (CPU). A GPU-based Monte Carlo code that simulates photon transport in a voxelized geometry with the accurate physics models from PENELOPE has been developed using the CUDATM programming model (NVIDIA Corporation, Santa Clara, CA). An outline of the new code and a sample x-ray imaging simulation with an anthropomorphic phantom are presented. A remarkable 27-fold speed up factor was obtained using a GPU compared to a single core CPU. The reported results show that GPUs are currently a good alternative to CPUs for the simulation of radiation transport. Since the performance of GPUs is currently increasing at a faster pace than that of CPUs, the advantages of GPU-based software are likely to be more pronounced in the future.

  5. Comparison of conversion coefficients for equivalent dose in terms of air kerma for photons using a male adult voxel simulator in sitting and standing posture with geometry of irradiation antero-posterior

    International Nuclear Information System (INIS)

    Galeano, D.C.; Cavalcante, F.R.; Carvalho, A.B.; Hunt, J.

    2014-01-01

    The dose conversion coefficient (DCC) is important to quantify and assess effective doses associated with medical, professional and public exposures. The calculation of DCCs using anthropomorphic simulators and radiation transport codes is justified since in-vivo measurement of effective dose is extremely difficult and not practical for occupational dosimetry. DCCs have been published by the ICRP using simulators in a standing posture, which is not always applicable to all exposure scenarios, providing an inaccurate dose estimation. The aim of this work was to calculate DCCs for equivalent dose in terms of air kerma (H/Kair) using the Visual Monte Carlo (VMC) code and the VOXTISS8 adult male voxel simulator in sitting and standing postures. In both postures, the simulator was irradiated by a plane source of monoenergetic photons in antero-posterior (AP) geometry. The photon energy ranged from 15 keV to 2 MeV. The DCCs for both postures were compared and the DCCs for the standing simulator were higher. For certain organs, the difference of DCCs were more significant, as in gonads (48% higher), bladder (16% higher) and colon (11% higher). As these organs are positioned in the abdominal region, the posture of the anthropomorphic simulator modifies the form in which the radiation is transported and how the energy is deposited. It was also noted that the average percentage difference of conversion coefficients was 33% for the bone marrow, 11% for the skin, 13% for the bone surface and 31% for the muscle. For other organs, the percentage difference of the DCCs for both postures was not relevant (less than 5%) due to no anatomical changes in the organs of the head, chest and upper abdomen. We can conclude that is important to obtain DCCs using different postures from those present in the scientific literature. - Highlights: • Scenarios of external photon exposures were performed in VMC code. • The VOXTISS8 simulator was irradiated in standing and sitting postures.

  6. Medial prefrontal aberrations in major depressive disorder revealed by cytoarchitectonically informed voxel-based morphometry

    Science.gov (United States)

    Bludau, Sebastian; Bzdok, Danilo; Gruber, Oliver; Kohn, Nils; Riedl, Valentin; Sorg, Christian; Palomero-Gallagher, Nicola; Müller, Veronika I.; Hoffstaedter, Felix; Amunts, Katrin; Eickhoff, Simon B.

    2017-01-01

    Objective The heterogeneous human frontal pole has been identified as a node in the dysfunctional network of major depressive disorder. The contribution of the medial (socio-affective) versus lateral (cognitive) frontal pole to major depression pathogenesis is currently unclear. The present study performs morphometric comparison of the microstructurally informed subdivisions of human frontal pole between depressed patients and controls using both uni- and multivariate statistics. Methods Multi-site voxel- and region-based morphometric MRI analysis of 73 depressed patients and 73 matched controls without psychiatric history. Frontal pole volume was first compared between depressed patients and controls by subdivision-wise classical morphometric analysis. In a second approach, frontal pole volume was compared by subdivision-naive multivariate searchlight analysis based on support vector machines. Results Subdivision-wise morphometric analysis found a significantly smaller medial frontal pole in depressed patients with a negative correlation of disease severity and duration. Histologically uninformed multivariate voxel-wise statistics provided converging evidence for structural aberrations specific to the microstructurally defined medial area of the frontal pole in depressed patients. Conclusions Across disparate methods, we demonstrated subregion specificity in the left medial frontal pole volume in depressed patients. Indeed, the frontal pole was shown to structurally and functionally connect to other key regions in major depression pathology like the anterior cingulate cortex and the amygdala via the uncinate fasciculus. Present and previous findings consolidate the left medial portion of the frontal pole as particularly altered in major depression. PMID:26621569

  7. A socio-sports model of disordered eating among Brazilian male athletes.

    Science.gov (United States)

    Fortes, Leonardo de Sousa; Ferreira, Maria Elisa Caputo; de Oliveira, Saulo Melo Fernandes; Cyrino, Edilson Serpeloni; Almeida, Sebastião Sousa

    2015-09-01

    The objective of this study was to develop a socio-sports model of disordered eating (DE) in Brazilian male athletes. Three hundred and twenty one athletes over 12 years of age from 18 different sports modalities were investigated. The Eating Attitudes Test (EAT-26) was applied to evaluate DE. The Body Shape Questionnaire (BSQ) was used to evaluate athlete dissatisfaction with body fat levels. The Muscularity Concern subscale of the Drive for Muscularity Scale (DMS) was used to evaluate athlete dissatisfaction with muscularity levels. To investigate the influence of sociocultural factors on body image, the Sociocultural Attitudes Towards Appearance Questionnaire-3 (SATAQ-3) was applied. Body fat was estimated by skinfold measurement. Demographic data were collected (competitive level and training regimen). Structural equation modelling was conducted to analyse the relationships between research variables and the factors that mediate them. The results indicated that the sociocultural factors and body fat dissatisfaction adhered to socio-sports model of DE (X(2) = 18.50, p = .001, RMSEA = .069, GFI = .97, AGFI = .91, TLI = .93). The BSQ accurately predicted the relationship between SATAQ-3 and EAT-26 (R(2) = .08, p = 0.001) scores. A direct relationship between the SATAQ-3 and EAT-26 (R(2) = .07, p = 0.01) and BSQ (R(2) = .10, p = 0.001) scores was identified. No relationship was found between structural equation model and Muscularity Concern (R(2) = .02, p = 0.14), competitive level (R(2) = .01, p = 0.19), training regimen (R(2) = .03, p = 0.11) or body fat (R(2) = .02, p = 0.14). The results suggest that sociocultural factors and body fat dissatisfaction follow the socio-sports model of DE in Brazilian male athletes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Reduction of dopamine level enhances the attractiveness of male Drosophila to other males.

    Science.gov (United States)

    Liu, Tong; Dartevelle, Laurence; Yuan, Chunyan; Wei, Hongping; Wang, Ying; Ferveur, Jean-François; Guo, Aike

    2009-01-01

    Dopamine is an important neuromodulator in animals and its roles in mammalian sexual behavior are extensively studied. Drosophila as a useful model system is widely used in many fields of biological studies. It has been reported that dopamine reduction can affect female receptivity in Drosophila and leave male-female courtship behavior unaffected. Here, we used genetic and pharmacological approaches to decrease the dopamine level in dopaminergic cells in Drosophila, and investigated the consequence of this manipulation on male homosexual courtship behavior. We find that reduction of dopamine level can induce Drosophila male-male courtship behavior, and that this behavior is mainly due to the increased male attractiveness or decreased aversiveness towards other males, but not to their enhanced propensity to court other males. Chemical signal input probably plays a crucial role in the male-male courtship induced by the courtees with reduction of dopamine. Our finding provides insight into the relationship between the dopamine reduction and male-male courtship behavior, and hints dopamine level is important for controlling Drosophila courtship behavior.

  9. Modeling Manhood: Reimagining Black Male Identities in School

    Science.gov (United States)

    Givens, Jarvis R.; Nasir, Na'ilah; ross, kihana; de Royston, Maxine McKinney

    2016-01-01

    This paper examines the process by which stereotypical mainstream representations of black males (as hard, as anti-school, and as disconnected from the domestic sphere) were reimagined in all-black, all-male manhood development classes for 9th graders in urban public high schools. Findings show that instructors debunked stereotypes and created new…

  10. Application of Single Voxel 1H Magnetic Resonance Spectroscopy in Hepatic Benign and Malignant Lesions.

    Science.gov (United States)

    Yang, Zifeng; Sun, Shiqiang; Chen, Yuanli; Li, Rui

    2016-12-19

    BACKGROUND To quantify the metabolite changes in hepatic tumors by single-voxel 1H magnetic resonance spectroscopy (MRS) at 3.0 T and explore the application value of 1HMRS in the diagnosis of hepatic benign and malignant lesions. MATERIAL AND METHODS A total of 45 patients (55 lesions) diagnosed with hepatic lesions by ultrasound and/or computer topography (CT) from November 2006 to March 2007 were included in this study. All patients underwent 3D-dynamic enhanced scan with liver acquisition with acceleration volume acquisition (LAVA) sequence and single-voxel 1HMRS imaging with PRESS (point-resolved spectroscopy) sequence. The metabolite concentrations such as choline (Cho) and lipids (Lip) were measured. RESULTS There was significant difference regarding the occurrence rate of the obvious elevated Cho peaks between benign and malignant tumors (7/27 vs. 21/28, p=0.000). There was statistical significant differences regarding the Cho/Lip ratios in hepatic benign (0.0686±0.0283, 95% CI: 0.0134-0.1245) and malignant (0.1266 ±0.1124, 95% CI: 0.0937-0.2203) lesions (pbenign and malignant lesions. Combined use of 1HMRS and MRI can greatly improve the application value of MRI assessment in the diagnosis of hepatic benign and malignant lesions with a higher sensitivity, negative predictive value, and overall accuracy.

  11. Gray matter abnormalities in Internet addiction: A voxel-based morphometry study

    International Nuclear Information System (INIS)

    Zhou Yan; Lin Fuchun; Du Yasong; Qin Lingdi; Zhao Zhimin; Xu Jianrong; Lei Hao

    2011-01-01

    Background: This study aims to investigate brain gray matter density (GMD) changes in adolescents with Internet addiction (IA) using voxel-based morphometry (VBM) analysis on high-resolution T1-weighted structural magnetic resonance images. Methods: Eighteen IA adolescents and 15 age- and gender-matched healthy controls took part in this study. High-resolution T1-weighted magnetic resonance imaging scans were performed on the two groups. VBM analysis was used to compare the GMD between the two groups. Results: Compared with healthy controls, IA adolescents had lower GMD in the left anterior cingulate cortex, left posterior cingulate cortex, left insula, and left lingual gyrus. Conclusions: Our findings suggested that brain structural changes were present in IA adolescents, and this finding may provide a new insight into the pathogenesis of IA.

  12. Gray matter abnormalities in Internet addiction: A voxel-based morphometry study

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Yan, E-mail: clare1475@hotmail.com [Department of Radiology, RenJi Hospital, Jiao Tong University Medical School, Shanghai 200127 (China); Lin Fuchun, E-mail: fclin@wipm.ac.cn [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Du Yasong, E-mail: yasongdu@yahoo.com.cn [Department of Child and Adolescent Psychiatry Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai 200030 (China); Qin Lingdi, E-mail: flyingfool838@hotmail.com [Department of Radiology, RenJi Hospital, Jiao Tong University Medical School, Shanghai 200127 (China); Zhao Zhimin, E-mail: zmzsky@163.com [Department of Child and Adolescent Psychiatry Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai 200030 (China); Xu Jianrong, E-mail: xujianr@hotmail.com [Department of Radiology, RenJi Hospital, Jiao Tong University Medical School, Shanghai 200127 (China); Lei Hao, E-mail: leihao@wipm.ac.cn [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China)

    2011-07-15

    Background: This study aims to investigate brain gray matter density (GMD) changes in adolescents with Internet addiction (IA) using voxel-based morphometry (VBM) analysis on high-resolution T1-weighted structural magnetic resonance images. Methods: Eighteen IA adolescents and 15 age- and gender-matched healthy controls took part in this study. High-resolution T1-weighted magnetic resonance imaging scans were performed on the two groups. VBM analysis was used to compare the GMD between the two groups. Results: Compared with healthy controls, IA adolescents had lower GMD in the left anterior cingulate cortex, left posterior cingulate cortex, left insula, and left lingual gyrus. Conclusions: Our findings suggested that brain structural changes were present in IA adolescents, and this finding may provide a new insight into the pathogenesis of IA.

  13. A multidimensional intergenerational model of young males' driving styles.

    Science.gov (United States)

    Gil, Shani; Taubman-Ben-Ari, Orit; Toledo, Tomer

    2016-12-01

    This study examines the associations between fathers' driving styles, the family's general and driving-related atmosphere, and the young drivers' motivations, on one hand, and young males' driving styles, on the other. The 242 father and son pairs that participated in the study independently completed several self-report questionnaires at different points in time within the first year after licensure of the young drivers. A structural equation model (SEM) was developed, in which the contribution of fathers' driving style and their sons' perceptions of the general family relations, the family climate for road safety (FCRS), and costs and benefits of driving, to the driving styles of the young male drivers was examined. The SEM estimation results show direct as well as indirect significant effects between the various dimensions. The FCRS factors of non-commitment and messages, and the cost of thrill, were found to be the strongest mediators between the fathers' driving style and the family cohesion, on one hand, and the driving style of the young driver, on the other. These results may be useful in pointing out directions for the development of interventions that could assist in reducing the involvement of youngsters in risky driving and car crashes, and encourage safe and considerate driving. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Progressive and widespread brain damage in ALS: MRI voxel-based morphometry and diffusion tensor imaging study.

    Science.gov (United States)

    Senda, Joe; Kato, Shigenori; Kaga, Tomotsugu; Ito, Mizuki; Atsuta, Naoki; Nakamura, Tomohiko; Watanabe, Hirohisa; Tanaka, Fumiaki; Naganawa, Shinji; Sobue, Gen

    2011-01-01

    We investigated 17 patients with sporadic amyotrophic lateral sclerosis (ALS) using voxel-based morphometry (VBM) and voxel-based analysis of diffusion tensor images (DTI) at baseline and after a six-month follow-up. Compared with 17 healthy controls, ALS patients at baseline showed only minimal white matter volume decreases in the inferior frontal gyrus but marked decreases in the gray matter of several regions, especially in the bilateral paracentral lobule of the premotor cortex. DTI revealed reduced fractional anisotropy in the bilateral corticospinal tracts, insula, ventrolateral premotor cortex, and parietal cortex. Increased mean diffusivity was noted bilaterally in the motor cortex, ventrolateral premotor cortex, insula, hippocampal formation, and temporal gyrus. At the six-month follow-up, ALS patients showed widespread volume decreases in gray matter, and DTI abnormalities extended mainly into the bilateral frontal lobes, while volume changes in the white matter remained minimal but more distinct. Our combined VBM and DTI techniques revealed extra-corticospinal tract neuronal degeneration mainly in the frontotemporal lobe of ALS patients. In particular, follow-up examinations in these patients showed that whole-brain DTI changes occurred predominantly in the regions of brain atrophy. These objective analyses can be used to assess the disease condition of the ALS brain.

  15. The problem of low variance voxels in statistical parametric mapping; a new hat avoids a 'haircut'.

    Science.gov (United States)

    Ridgway, Gerard R; Litvak, Vladimir; Flandin, Guillaume; Friston, Karl J; Penny, Will D

    2012-02-01

    Statistical parametric mapping (SPM) locates significant clusters based on a ratio of signal to noise (a 'contrast' of the parameters divided by its standard error) meaning that very low noise regions, for example outside the brain, can attain artefactually high statistical values. Similarly, the commonly applied preprocessing step of Gaussian spatial smoothing can shift the peak statistical significance away from the peak of the contrast and towards regions of lower variance. These problems have previously been identified in positron emission tomography (PET) (Reimold et al., 2006) and voxel-based morphometry (VBM) (Acosta-Cabronero et al., 2008), but can also appear in functional magnetic resonance imaging (fMRI) studies. Additionally, for source-reconstructed magneto- and electro-encephalography (M/EEG), the problems are particularly severe because sparsity-favouring priors constrain meaningfully large signal and variance to a small set of compactly supported regions within the brain. (Acosta-Cabronero et al., 2008) suggested adding noise to background voxels (the 'haircut'), effectively increasing their noise variance, but at the cost of contaminating neighbouring regions with the added noise once smoothed. Following theory and simulations, we propose to modify--directly and solely--the noise variance estimate, and investigate this solution on real imaging data from a range of modalities. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. A Universal 3D Voxel Descriptor for Solid-State Material Informatics with Deep Convolutional Neural Networks.

    Science.gov (United States)

    Kajita, Seiji; Ohba, Nobuko; Jinnouchi, Ryosuke; Asahi, Ryoji

    2017-12-05

    Material informatics (MI) is a promising approach to liberate us from the time-consuming Edisonian (trial and error) process for material discoveries, driven by machine-learning algorithms. Several descriptors, which are encoded material features to feed computers, were proposed in the last few decades. Especially to solid systems, however, their insufficient representations of three dimensionality of field quantities such as electron distributions and local potentials have critically hindered broad and practical successes of the solid-state MI. We develop a simple, generic 3D voxel descriptor that compacts any field quantities, in such a suitable way to implement convolutional neural networks (CNNs). We examine the 3D voxel descriptor encoded from the electron distribution by a regression test with 680 oxides data. The present scheme outperforms other existing descriptors in the prediction of Hartree energies that are significantly relevant to the long-wavelength distribution of the valence electrons. The results indicate that this scheme can forecast any functionals of field quantities just by learning sufficient amount of data, if there is an explicit correlation between the target properties and field quantities. This 3D descriptor opens a way to import prominent CNNs-based algorithms of supervised, semi-supervised and reinforcement learnings into the solid-state MI.

  17. Transient population dynamics of mosquitoes during sterile male releases: modelling mating behaviour and perturbations of life history parameters.

    Directory of Open Access Journals (Sweden)

    Christopher M Stone

    Full Text Available The release of genetically-modified or sterile male mosquitoes offers a promising form of mosquito-transmitted pathogen control, but the insights derived from our understanding of male mosquito behaviour have not fully been incorporated into the design of such genetic control or sterile-male release methods. The importance of aspects of male life history and mating behaviour for sterile-male release programmes were investigated by projecting a stage-structured matrix model over time. An elasticity analysis of transient dynamics during sterile-male releases was performed to provide insight on which vector control methods are likely to be most synergistic. The results suggest that high mating competitiveness and mortality costs of released males are required before the sterile-release method becomes ineffective. Additionally, if released males suffer a mortality cost, older males should be released due to their increased mating capacity. If released males are of a homogenous size and size-assortative mating occurs in nature, this can lead to an increase in the abundance of large females and reduce the efficacy of the population-suppression effort. At a high level of size-assortative mating, the disease transmission potential of the vector population increases due to male releases, arguing for the release of a heterogeneously-sized male population. The female population was most sensitive to perturbations of density-dependent components of larval mortality and female survivorship and fecundity. These findings suggest source reduction might be a particularly effective complement to mosquito control based on the sterile insect technique (SIT. In order for SIT to realize its potential as a key component of an integrated vector-management strategy to control mosquito-transmitted pathogens, programme design of sterile-male release programmes must account for the ecology, behaviour and life history of mosquitoes. The model used here takes a step in this

  18. Numerical method for time-dependent localized corrosion analysis with moving boundaries by combining the finite volume method and voxel method

    International Nuclear Information System (INIS)

    Onishi, Yuki; Takiyasu, Jumpei; Amaya, Kenji; Yakuwa, Hiroshi; Hayabusa, Keisuke

    2012-01-01

    Highlights: ► A novel numerical method to analyze time dependent localized corrosion is developed. ► It takes electromigration, mass diffusion, chemical reactions, and moving boundaries. ► Our method perfectly satisfies the conservation of mass and electroneutrality. ► The behavior of typical crevice corrosion is successfully simulated. ► Both verification and validation of our method are carried out. - Abstract: A novel numerical method for time-dependent localized corrosion analysis is presented. Electromigration, mass diffusion, chemical reactions, and moving boundaries are considered in the numerical simulation of localized corrosion of engineering alloys in an underwater environment. Our method combines the finite volume method (FVM) and the voxel method. The FVM is adopted in the corrosion rate calculation so that the conservation of mass is satisfied. A newly developed decoupled algorithm with a projection method is introduced in the FVM to decouple the multiphysics problem into the electrostatic, mass transport, and chemical reaction analyses with electroneutrality maintained. The polarization curves for the corroding metal are used as boundary conditions for the metal surfaces to calculate the corrosion rates. The voxel method is adopted in updating the moving boundaries of cavities without remeshing and mesh-to-mesh solution mapping. Some modifications of the standard voxel method, which represents the boundaries as zigzag-shaped surfaces, are introduced to generate smooth surfaces. Our method successfully reproduces the numerical and experimental results of a capillary electrophoresis problem. Furthermore, the numerical results are qualitatively consistent with the experimental results for several examples of crevice corrosion.

  19. Modeling Dynamic Contrast-Enhanced MRI Data with a Constrained Local AIF

    DEFF Research Database (Denmark)

    Duan, Chong; Kallehauge, Jesper F.; Pérez-Torres, Carlos J

    2018-01-01

    PURPOSE: This study aims to develop a constrained local arterial input function (cL-AIF) to improve quantitative analysis of dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) data by accounting for the contrast-agent bolus amplitude error in the voxel-specific AIF. PROCEDURES....... RESULTS: When the data model included the cL-AIF, tracer kinetic parameters were correctly estimated from in silico data under contrast-to-noise conditions typical of clinical DCE-MRI experiments. Considering the clinical cervical cancer data, Bayesian model selection was performed for all tumor voxels...

  20. Detection by voxel-wise statistical analysis of significant changes in regional cerebral glucose uptake in an APP/PS1 transgenic mouse model of Alzheimer's disease.

    Science.gov (United States)

    Dubois, Albertine; Hérard, Anne-Sophie; Delatour, Benoît; Hantraye, Philippe; Bonvento, Gilles; Dhenain, Marc; Delzescaux, Thierry

    2010-06-01

    Biomarkers and technologies similar to those used in humans are essential for the follow-up of Alzheimer's disease (AD) animal models, particularly for the clarification of mechanisms and the screening and validation of new candidate treatments. In humans, changes in brain metabolism can be detected by 1-deoxy-2-[(18)F] fluoro-D-glucose PET (FDG-PET) and assessed in a user-independent manner with dedicated software, such as Statistical Parametric Mapping (SPM). FDG-PET can be carried out in small animals, but its resolution is low as compared to the size of rodent brain structures. In mouse models of AD, changes in cerebral glucose utilization are usually detected by [(14)C]-2-deoxyglucose (2DG) autoradiography, but this requires prior manual outlining of regions of interest (ROI) on selected sections. Here, we evaluate the feasibility of applying the SPM method to 3D autoradiographic data sets mapping brain metabolic activity in a transgenic mouse model of AD. We report the preliminary results obtained with 4 APP/PS1 (64+/-1 weeks) and 3 PS1 (65+/-2 weeks) mice. We also describe new procedures for the acquisition and use of "blockface" photographs and provide the first demonstration of their value for the 3D reconstruction and spatial normalization of post mortem mouse brain volumes. Despite this limited sample size, our results appear to be meaningful, consistent, and more comprehensive than findings from previously published studies based on conventional ROI-based methods. The establishment of statistical significance at the voxel level, rather than with a user-defined ROI, makes it possible to detect more reliably subtle differences in geometrically complex regions, such as the hippocampus. Our approach is generic and could be easily applied to other biomarkers and extended to other species and applications. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Larger corpus callosum and reduced orbitofrontal cortex homotopic connectivity in codeine cough syrup-dependent male adolescents and young adults.

    Science.gov (United States)

    Qiu, Ying-Wei; Lv, Xiao-Fei; Jiang, Gui-Hua; Su, Huan-Huan; Ma, Xiao-Fen; Tian, Jun-Zhang; Zhuo, Fu-Zhen

    2017-03-01

    To characterize interhemispheric functional and anatomical connectivity and their relationships with impulsive behaviour in codeine-containing cough syrup (CCS)-dependent male adolescents and young adults. We compared volumes of corpus callosum (CC) and its five subregion and voxel-mirrored homotopic functional connectivity (VMHC) in 33 CCS-dependent male adolescents and young adults and 38 healthy controls, group-matched for age, education and smoking status. Barratt impulsiveness scale (BIS.11) was used to assess participant impulsive behaviour. Abnormal CC subregions and VMHC revealed by group comparison were extracted and correlated with impulsive behaviour and duration of CCS use. We found selective increased mid-posterior CC volume in CCS-dependent male adolescents and young adults and detected decreased homotopic interhemispheric functional connectivity of medial orbitofrontal cortex (OFC). Moreover, impairment of VMHC was associated with the impulsive behaviour and correlated with the duration of CCS abuse in CCS-dependent male adolescents and young adults. These findings reveal CC abnormalities and disruption of interhemispheric homotopic connectivity in CCS-dependent male adolescents and young adults, which provide a novel insight into the impact of interhemispheric disconnectivity on impulsive behaviour in substance addiction pathophysiology. • CCS-dependent individuals (patients) had selective increased volumes of mid-posterior corpus callosum • Patients had attenuated interhemispheric homotopic FC (VMHC) of bilateral orbitofrontal cortex • Impairment of VMHC correlated with impulsive behaviour in patients • Impairment of VMHC correlated with the CCS duration in patients.

  2. Construction of a computational exposure model for dosimetric calculations using the EGS4 Monte Carlo code and voxel phantoms

    International Nuclear Information System (INIS)

    Vieira, Jose Wilson

    2004-07-01

    The MAX phantom has been developed from existing segmented images of a male adult body, in order to achieve a representation as close as possible to the anatomical properties of the reference adult male specified by the ICRP. In computational dosimetry, MAX can simulate the geometry of a human body under exposure to ionizing radiations, internal or external, with the objective of calculating the equivalent dose in organs and tissues for occupational, medical or environmental purposes of the radiation protection. This study presents a methodology used to build a new computational exposure model MAX/EGS4: the geometric construction of the phantom; the development of the algorithm of one-directional, divergent, and isotropic radioactive sources; new methods for calculating the equivalent dose in the red bone marrow and in the skin, and the coupling of the MAX phantom with the EGS4 Monte Carlo code. Finally, some results of radiation protection, in the form of conversion coefficients between equivalent dose (or effective dose) and free air-kerma for external photon irradiation are presented and discussed. Comparing the results presented with similar data from other human phantoms it is possible to conclude that the coupling MAX/EGS4 is satisfactory for the calculation of the equivalent dose in radiation protection. (author)

  3. Development of a 30-week-pregnant female tomographic model from computed tomography (CT) images for Monte Carlo organ dose calculations

    International Nuclear Information System (INIS)

    Shi Chengyu; Xu, X. George

    2004-01-01

    Assessment of radiation dose and risk to a pregnant woman and her fetus is an important task in radiation protection. Although tomographic models for male and female patients of different ages have been developed using medical images, such models for pregnant women had not been developed to date. This paper reports the construction of a partial-body model of a pregnant woman from a set of computed tomography (CT) images. The patient was 30 weeks into pregnancy, and the CT scan covered the portion of the body from above liver to below pubic symphysis in 70 slices. The thickness for each slice is 7 mm, and the image resolution is 512x512 pixels in a 48 cmx48 cm field; thus, the voxel size is 6.15 mm 3 . The images were segmented to identify 34 major internal organs and tissues considered sensitive to radiation. Even though the masses are noticeably different from other models, the three-dimensional visualization verified the segmentation and its suitability for Monte Carlo calculations. The model has been implemented into a Monte Carlo code, EGS4-VLSI (very large segmented images), for the calculations of radiation dose to a pregnant woman. The specific absorbed fraction (SAF) results for internal photons were compared with those from a stylized model. Small and large differences were found, and the differences can be explained by mass differences and by the relative geometry differences between the source and the target organs. The research provides the radiation dosimetry community with the first voxelized tomographic model of a pregnant woman, opening the door to future dosimetry studies

  4. Connecting horizon pixels and interior voxels of a black hole

    International Nuclear Information System (INIS)

    Nicolini, Piero; Singleton, Douglas

    2014-01-01

    In this paper we discuss to what extent one can infer details of the interior structure of a black hole based on its horizon. Recalling that black hole thermal properties are connected to the non-classical nature of gravity, we circumvent the restrictions of the no-hair theorem by postulating that the black hole interior is singularity free due to violations of the usual energy conditions. Further these conditions allow one to establish a one-to-one, holographic projection between Planckian areal “bits” on the horizon and “voxels”, representing the gravitational degrees of freedom in the black hole interior. We illustrate the repercussions of this idea by discussing an example of the black hole interior consisting of a de Sitter core postulated to arise from the local graviton quantum vacuum energy. It is shown that the black hole entropy can emerge as the statistical entropy of a gas of voxels

  5. Brain structural changes in cynomolgus monkeys administered with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: A longitudinal voxel-based morphometry and diffusion tensor imaging study.

    Directory of Open Access Journals (Sweden)

    Hyeonseok S Jeong

    Full Text Available In animal models of Parkinson's disease (PD, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP is one of the most widely used agents that damages the nigrostriatal dopaminergic pathway. However, brain structural changes in response to MPTP remain unclear. This study aimed to investigate in vivo longitudinal changes in gray matter (GM volume and white matter (WM microstructure in primate models administered with MPTP. In six cynomolgus monkeys, high-resolution magnetic resonance imaging (MRI and diffusion tensor imaging (DTI scans were acquired 7 times over 32 weeks, and assessments of motor symptoms were conducted over 15 months, before and after the MPTP injection. Changes in GM volume and WM microstructure were estimated on a voxel-by-voxel basis. Mixed-effects regression models were used to examine the trajectories of these structural changes. GM volume initially increased after the MPTP injection and gradually decreased in the striatum, midbrain, and other dopaminergic areas. The cerebellar volume temporarily decreased and returned to its baseline level. The rate of midbrain volume increase was positively correlated with the increase rate of motor symptom severity (Spearman rho = 0.93, p = 0.008. Mean, axial, and radial diffusivity in the striatum and frontal areas demonstrated initial increases and subsequent decreases. The current multi-modal imaging study of MPTP-administered monkeys revealed widespread and dynamic structural changes not only in the nigrostriatal pathway but also in other cortical, subcortical, and cerebellar areas. Our findings may suggest the need to further investigate the roles of inflammatory reactions and glial activation as potential underlying mechanisms of these structural changes.

  6. Active brain changes after initiating fingolimod therapy in multiple sclerosis patients using individual voxel-based analyses for diffusion tensor imaging.

    Science.gov (United States)

    Senda, Joe; Watanabe, Hirohisa; Endo, Kuniyuki; Yasui, Keizo; Hawsegawa, Yasuhiro; Yoneyama, Noritaka; Tsuboi, Takashi; Hara, Kazuhiro; Ito, Mizuki; Atsuta, Naoki; Epifanio, Bagarinao; Katsuno, Masahisa; Naganawa, Shinji; Sobue, Gen

    2016-12-01

    Voxel-based analysis (VBA) of diffusion tensor images (DTI) and voxel-based morphometry (VBM) in patients with multiple sclerosis (MS) can sensitively detect occult tissue damage that underlies pathological changes in the brain. In the present study, both at the start of fingolimod and post-four months clinical remission, we assessed four patients with MS who were evaluated with VBA of DTI, VBM, and fluid-attenuated inversion recovery (FLAIR). DTI images for all four patients showed widespread areas of increased mean diffusivity (MD) and decreased fractional anisotropy (FA) that were beyond the high-intensity signal areas across images. After four months of continuous fingolimod therapy, DTI abnormalities progressed; in particular, MD was significantly increased, while brain volume and high-intensity signals were unchanged. These findings suggest that VBA of DTI (e.g., MD) may help assess MS demyelination as neuroinflammatory conditions, even though clinical manifestations of MS appear to be in complete remission during fingolimod.

  7. Modeling the population-level effects of male circumcision as an HIV-preventive measure: a gendered perspective.

    Directory of Open Access Journals (Sweden)

    Jonathan Dushoff

    Full Text Available BACKGROUND: Evidence from biological, epidemiological, and controlled intervention studies has demonstrated that male circumcision (MC protects males from HIV infection, and MC is now advocated as a public-health intervention against HIV. MC provides direct protection only to men, but is expected to provide indirect protection to women at risk of acquiring HIV from heterosexual transmission. How such indirect protection interacts with the possibility that MC campaigns will lead to behavior changes, however, is not yet well understood. Our objective here is to investigate the link between individual-level effects of MC campaigns and long-term population-level outcomes resulting from disease dynamics, looking at both genders separately, over a broad range of parameters. METHODS AND FINDINGS: We use simple mathematical models of heterosexual transmission to investigate the potential effects of a circumcision scale-up, combined with possible associated behavioral disinhibition. We examine patterns in expected long-term prevalence using a simple equilibrium model based on transmission factors, and validate our results with ODE-based simulations, focusing on the link between effects on females and those on males.We find that the long-term population-level effects on females and males are not strongly linked: there are many possible ways in which an intervention which reduces prevalence in males might nonetheless increase prevalence in females. CONCLUSIONS: Since an intervention that reduces long-term male prevalence could nonetheless increase long-term female prevalence, MC campaigns should explicitly consider both the short-term and long-term effects of MC interventions on females. Our findings strongly underline the importance of pairing MC programs with education, support programs and HIV testing and counseling, together with other prevention measures.

  8. Correction: Koush, Y.; Elliott, M.A. and Mathiak, K. Single Voxel Proton Spectroscopy for Neurofeedback at 7 Tesla. Materials 2011, 4, 1548–1563

    Directory of Open Access Journals (Sweden)

    Yury Koush

    2011-11-01

    Full Text Available In the published manuscript “Koush, Y.; Elliott, M.A. and Mathiak, K. Single Voxel Proton Spectroscopy for Neurofeedback at 7 Tesla. Materials 2011, 4, 1548-1563”, all estimates of T2* from the single voxel spectroscopy data were overestimated by a factor of 4. This was due to an incorrectly assumed four-fold lower sampling rate. The focus of the manuscript is on the relative changes in T2* with BOLD activation, and not on the absolute values. Therefore, none of the central claims are affected, but the scaling in most of the figures needs to be adjusted. The authors would like to make the following corrections to their published paper.

  9. SU-E-T-625: Robustness Evaluation and Robust Optimization of IMPT Plans Based on Per-Voxel Standard Deviation of Dose Distributions.

    Science.gov (United States)

    Liu, W; Mohan, R

    2012-06-01

    Proton dose distributions, IMPT in particular, are highly sensitive to setup and range uncertainties. We report a novel method, based on per-voxel standard deviation (SD) of dose distributions, to evaluate the robustness of proton plans and to robustly optimize IMPT plans to render them less sensitive to uncertainties. For each optimization iteration, nine dose distributions are computed - the nominal one, and one each for ± setup uncertainties along x, y and z axes and for ± range uncertainty. SD of dose in each voxel is used to create SD-volume histogram (SVH) for each structure. SVH may be considered a quantitative representation of the robustness of the dose distribution. For optimization, the desired robustness may be specified in terms of an SD-volume (SV) constraint on the CTV and incorporated as a term in the objective function. Results of optimization with and without this constraint were compared in terms of plan optimality and robustness using the so called'worst case' dose distributions; which are obtained by assigning the lowest among the nine doses to each voxel in the clinical target volume (CTV) and the highest to normal tissue voxels outside the CTV. The SVH curve and the area under it for each structure were used as quantitative measures of robustness. Penalty parameter of SV constraint may be varied to control the tradeoff between robustness and plan optimality. We applied these methods to one case each of H&N and lung. In both cases, we found that imposing SV constraint improved plan robustness but at the cost of normal tissue sparing. SVH-based optimization and evaluation is an effective tool for robustness evaluation and robust optimization of IMPT plans. Studies need to be conducted to test the methods for larger cohorts of patients and for other sites. This research is supported by National Cancer Institute (NCI) grant P01CA021239, the University Cancer Foundation via the Institutional Research Grant program at the University of Texas MD

  10. DTI Analysis of Presbycusis Using Voxel-Based Analysis.

    Science.gov (United States)

    Ma, W; Li, M; Gao, F; Zhang, X; Shi, L; Yu, L; Zhao, B; Chen, W; Wang, G; Wang, X

    2016-07-14

    Presbycusis is the most common sensory deficit in the aging population. A recent study reported using a DTI-based tractography technique to identify a lack of integrity in a portion of the auditory pathway in patients with presbycusis. The aim of our study was to investigate the white matter pathology of patients with presbycusis by using a voxel-based analysis that is highly sensitive to local intensity changes in DTI data. Fifteen patients with presbycusis and 14 age- and sex-matched healthy controls were scanned on a 3T scanner. Fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity were obtained from the DTI data. Intergroup statistics were implemented on these measurements, which were transformed to Montreal Neurological Institute coordinates by using a nonrigid image registration method called large deformation diffeomorphic metric mapping. Increased axial diffusivity, radial diffusivity, and mean diffusivity and decreased fractional anisotropy were found near the right-side hearing-related areas in patients with presbycusis. Increased radial diffusivity and mean diffusivity were also found near a language-related area (Broca area) in patients with presbycusis. Our findings could be important for exploring reliable imaging evidence of presbycusis and could complement an ROI-based approach. © 2016 American Society of Neuroradiology.

  11. Will male advertisement be a reliable indicator of paternal care, if offspring survival depends on male care?

    OpenAIRE

    Kelly, Natasha B.; Alonzo, Suzanne H.

    2009-01-01

    Existing theory predicts that male signalling can be an unreliable indicator of paternal care, but assumes that males with high levels of mating success can have high current reproductive success, without providing any parental care. As a result, this theory does not hold for the many species where offspring survival depends on male parental care. We modelled male allocation of resources between advertisement and care for species with male care where males vary in quality, and the effect of c...

  12. A voxel-based morphometry and diffusion tensor imaging analysis of asymptomatic Parkinson's disease-related G2019S LRRK2 mutation carriers

    NARCIS (Netherlands)

    Thaler, A.; Artzi, M.; Mirelman, A.; Jacob, Y.; Helmich, R.C.G.; Nuenen, B.F.L. van; Gurevich, T.; Orr-Urtreger, A.; Marder, K.; Bressman, S.; Bloem, B.R.; Hendler, T.; Giladi, N.; Bashat, D. Ben; et al.,

    2014-01-01

    BACKGROUND: Patients with Parkinson's disease have reduced gray matter volume and fractional anisotropy in both cortical and sub-cortical structures, yet changes in the pre-motor phase of the disease are unknown. METHODS: A comprehensive imaging study using voxel-based morphometry and diffusion

  13. Evaluation of elastix-based propagated align algorithm for VOI- and voxel-based analysis of longitudinal F-18-FDG PET/CT data from patients with non-small cell lung cancer (NSCLC)

    OpenAIRE

    Kerner, Gerald S. M. A.; Fischer, Alexander; Koole, Michel J. B.; Pruim, Jan; Groen, Harry J. M.

    2015-01-01

    Background: Deformable image registration allows volume of interest (VOI)- and voxel-based analysis of longitudinal changes in fluorodeoxyglucose (FDG) tumor uptake in patients with non-small cell lung cancer (NSCLC). This study evaluates the performance of the elastix toolbox deformable image registration algorithm for VOI and voxel-wise assessment of longitudinal variations in FDG tumor uptake in NSCLC patients. Methods: Evaluation of the elastix toolbox was performed using F-18-FDG PET/CT ...

  14. A Model-Based Analysis of Chemical and Temporal Patterns of Cuticular Hydrocarbons in Male Drosophila melanogaster

    Science.gov (United States)

    Kent, Clement; Azanchi, Reza; Smith, Ben; Chu, Adrienne; Levine, Joel

    2007-01-01

    Drosophila Cuticular Hydrocarbons (CH) influence courtship behaviour, mating, aggregation, oviposition, and resistance to desiccation. We measured levels of 24 different CH compounds of individual male D. melanogaster hourly under a variety of environmental (LD/DD) conditions. Using a model-based analysis of CH variation, we developed an improved normalization method for CH data, and show that CH compounds have reproducible cyclic within-day temporal patterns of expression which differ between LD and DD conditions. Multivariate clustering of expression patterns identified 5 clusters of co-expressed compounds with common chemical characteristics. Turnover rate estimates suggest CH production may be a significant metabolic cost. Male cuticular hydrocarbon expression is a dynamic trait influenced by light and time of day; since abundant hydrocarbons affect male sexual behavior, males may present different pheromonal profiles at different times and under different conditions. PMID:17896002

  15. A model-based analysis of chemical and temporal patterns of cuticular hydrocarbons in male Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Clement Kent

    Full Text Available Drosophila Cuticular Hydrocarbons (CH influence courtship behaviour, mating, aggregation, oviposition, and resistance to desiccation. We measured levels of 24 different CH compounds of individual male D. melanogaster hourly under a variety of environmental (LD/DD conditions. Using a model-based analysis of CH variation, we developed an improved normalization method for CH data, and show that CH compounds have reproducible cyclic within-day temporal patterns of expression which differ between LD and DD conditions. Multivariate clustering of expression patterns identified 5 clusters of co-expressed compounds with common chemical characteristics. Turnover rate estimates suggest CH production may be a significant metabolic cost. Male cuticular hydrocarbon expression is a dynamic trait influenced by light and time of day; since abundant hydrocarbons affect male sexual behavior, males may present different pheromonal profiles at different times and under different conditions.

  16. Voxel-based morphometric brain comparison between healthy subjects and major depressive disorder patients in Japanese with the s/s genotype of 5-HTTLPR.

    Science.gov (United States)

    Igata, Natsuki; Kakeda, Shingo; Watanabe, Keita; Ide, Satoru; Kishi, Taro; Abe, Osamu; Igata, Ryouhei; Katsuki, Asuka; Iwata, Nakao; Yoshimura, Reiji; Korogi, Yukunori

    2017-06-21

    Individuals with s/s genotype of serotonin transporter gene-linked promotor region (5-HTTLPR), which appear with a high frequency in Japanese, exhibit more diagnosable depression in relation to stressful life events than those with the s/l or l/l genotype. We prospectively investigated the brain volume changes in first-episode and medication naïve major depression disorder patients (MDD) with the s/s genotype in Japanese. We assessed the differences between 27 MDD with the s/s genotype and 44 healthy subjects (HS) with the same genotype using a whole-brain voxel-by-voxel statistical analysis of MRI. Gray matter volume in a brain region with significant clusters obtained via voxel-based morphometry analysis were measured and, as an exploratory analysis, evaluated for relationships to the subcategory scores (core, sleep, activity, psychic, somatic anxiety, delusion) of the Hamilton Depression Rating Scale (HAM-D) and the Social Readjustment Rating Scale (SRRS). The brain volume in the left insula lobe was significantly smaller in the MDD than in the HS. The left insula lobe volume correlated negatively with the "psychic" score of HAM-D and the SRRS. In a Japanese population with the s/s genotype, we found an atrophy of the insula in the MDD, which might be associated with "psychic" symptom and stress events.

  17. Voxel-based morphometry in women with borderline personality disorder with and without comorbid posttraumatic stress disorder.

    Directory of Open Access Journals (Sweden)

    Inga Niedtfeld

    Full Text Available Patients with Borderline Personality Disorder (BPD showed reduced volume of amygdala and hippocampus, but similar findings are evident in Posttraumatic Stress Disorder (PTSD. Applying voxel-based morphometry (VBM in a larger cohort of patients with BPD, we sought to extend earlier findings of volume abnormalities in limbic regions and to evaluate the influence of co-occurring PTSD in BPD patients. We used voxel-based morphometry to study gray matter volume (GMV in 60 healthy controls (HC and 60 patients with BPD. Subgroup analyses on 53 patients concerning the role of co-occurring PTSD were conducted. Additionally, regression analyses were calculated to assess the relation between borderline symptom severity as well as dissociative experiences and GMV. Differences in local GMV between patients with BPD and HC were observed in the amygdale and hippocampus as well as in the fusiform and cingulate gyrus. Co-occurring PTSD was accompanied by increased GMV in the superior temporal gyrus and dorsolateral prefrontal cortex. Independent of co-occurring PTSD, severity of BPD symptoms predicted smaller GMV in the amygdala and dorsal ACC. Dissociation was positively related to GMV in the middle temporal gyrus. We could replicate earlier findings of diminished limbic GMV in patients with BPD and additionally show that patients with co-morbid PTSD feature increased GMV in prefrontal regions associated with cognitive control.

  18. Hippocampal and neocortical metabolite ratio in patients with complex partial seizure: short TE and long TE techniques using single voxel proton MR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jin Il; Kim, Dong Ik; Lee, Byung In; Lee, Seung Ik; Yoon, Pyeong Ho [Medical College, Yonsei University, Seoul (Korea, Republic of)

    2000-08-01

    To compare hippocampal and neocortical metabolite ratios using single-voxel proton MR spectroscopy with different echo times in patients with complex partial seizure. Using a GE Signa 1.5T scanner with STEAM and PRESS sequences, automated single voxel proton MRS was used to determine metabolite ratio differences in the hippocampus and neocortex of nine complex partial seizure patients (mesial temporal sclerosis (n=3D5), status epilepticus (n=3D1), tumor (n=3D1), cortical dysplasia (n=3D1), occipital lobe epilepsy (n=3D1)). A total of 20 examinations were performed in the region of the hippocampus (n=3D17), temporal neocortex (n=3D1), and parieto-occipital gray matter (n=3D1). Voxel size range was 5.2-17.4 cm{sup 3}. The calculated creatine (Cr) peak was employed as an internal reference and the relative ratio of N-acetylaspartate (NAA) and choline (Cho) was calculated for both short and long echo times using an automated PROBE/SV (GE Medical Systems) package. Each NAA/Cho ratio obtained using both PRESS and STEAM techniques was compared by means of statistical analysis (paired Student t-test). Using PRESS (long TE, 272 ms), NAA/Cho ratios were successfully calculated in 16 of 20 examinations; in four this was not possible due to noise levels of the Cr and Cho peaks. Using STEAM (short TE, 30 ms) NAA/Cho ratios were successfully calculated in 19 of 20 examinations; in one, the Cho peak could not be measured. Using PRESS and STEAM, mean and standard deviations for the NAA/Cho ratio were 1.22{+-}0.50 and 1.16{+-}0.36, respectively. There were no statistically significant differences in this ratio between the short and long TE method (p less than 0.01). In complex partial seizure patients, no significant metabolite differences were found between short and long echo times of single voxel proton MR spectroscopy. The metabolite ratio at different echo times can be reliably obtained using this simplified and automated PROBE/SV quantitation method. (author)

  19. A voxel-based MRI morphometric study of Alzheimer's disease

    International Nuclear Information System (INIS)

    Hao Jing; Li Kuncheng; Yang Yanhui; Wang Wei; Li Ke; Yan Bin; Shan Baoci

    2005-01-01

    Objective: To assess the diagnostic value of voxel-based Morphometry (VBM) in studying Alzheimer's disease (AD). Methods: Graymatter density were comprehensive assessed by means of VBM on T 1 -weighted MRI volume sets in 19 patients with AD and 15 healthy subjects of similar age and gender ratio, 15 healthy adults. The data were collected on Siemens 1.5 T Sonata MRI systems and analyzed by SPM 99 to generate gray matter density map. Results: Relative to healthy controls, significant clusters of reduced gray matter density were found to affect medial temporal lobe ( hippocampus) (P<0.001). For hippocampus, reduced gray matter density were 1529 in the right and 1281 in the left with right-sided predominance. Moreover, atrophy of right caudate head and left medial thalamus were showed. We demonstrate global asymmetrical cortical atrophy with sparing of the sensorimotor cortex, occipital lobe and cerebellum. Conclusion: The results from VBM are in perfect agreement with those of earlier neuroimaging, which confirmed its value in demonstrating neuroanatomy of AD. VBM, the simple and automatic approach providing a full-brain assessment of AD morphology, has a good clinical perspective. (authors)

  20. Geometry segmentation of voxelized representations of heterogeneous microstructures using betweenness centrality

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Rui; Singh, Sudhanshu S.; Chawla, Nikhilesh; Oswald, Jay, E-mail: joswald1@asu.edu

    2016-08-15

    We present a robust method for automating removal of “segregation artifacts” in segmented tomographic images of three-dimensional heterogeneous microstructures. The objective of this method is to accurately identify and separate discrete features in composite materials where limitations in imaging resolution lead to spurious connections near close contacts. The method utilizes betweenness centrality, a measure of the importance of a node in the connectivity of a graph network, to identify voxels that create artificial bridges between otherwise distinct geometric features. To facilitate automation of the algorithm, we develop a relative centrality metric to allow for the selection of a threshold criterion that is not sensitive to inclusion size or shape. As a demonstration of the effectiveness of the algorithm, we report on the segmentation of a 3D reconstruction of a SiC particle reinforced aluminum alloy, imaged by X-ray synchrotron tomography.

  1. Multi-voxel MR spectroscopic imaging of the brain: utility in clinical setting-initial results

    International Nuclear Information System (INIS)

    Parmar, Hemant; Lim, Tchoyoson C.C.; Yin Hong; Chua, Violet; Khin, Lay-Wai; Raidy, Tom; Hui, Francis

    2005-01-01

    Background and purpose: Compared to single voxel methods, MR spectroscopic imaging (MRSI) of the brain provides metabolic information with improved anatomical coverage and spectral resolution, but may be difficult to perform in the clinical setting. We evaluate the factors influencing spectral quality in MRSI using a semi-automated method, focussing on lipid contamination, and phase correction errors related to magnetic field inhomogeneity. Methods: We retrospectively analysed MRSI studies planned by radiologists and radiographers. Two-dimensional MRSI studies using point-resolved spectroscopy (PRESS) localisation, at long echo time (135 or 144 ms) were acquired on a 1.5 T scanner. Studies that contained lipid contamination and abnormally inverted spectra were reviewed and the latter correlated with anatomic location at the base of skull, and with the area of the region of interest (ROI) studied. Results: Of 128 consecutive MRSI studies, six showed abnormal inverted spectra, of which four were acquired at the base of skull. Multivariate logistic regression analysis showed that study location at the base of skull, but not larger ROI, was a significant predictor for the risk of being affected by inverted spectra (RR for base of skull: 11.76, 95% CI: 1.86-74.18, P = 0.009. RR for area of ROI: 3.68, 95% CI: 0.57-23.67, P = 0.170). Seven studies showed lipid contamination; all were in close proximity to the overlying scalp. Conclusion: Using a semi-automated acquisition and post-processing method, MRSI can be successfully applied in the clinical setting. However, care should be taken to avoid regions of high magnetic field inhomogeneity at the base of skull, and lipid contamination in voxels prescribed near the scalp

  2. SU-E-T-642: PTV Is the Voxel-Wise Worst-Case of CTV in Prostate Photon Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, D; Schild, S; Wong, W; Vora, S; Liu, W [Mayo Clinic Arizona, Phoenix, AZ (United States)

    2015-06-15

    Purpose: To examine the adequacy of the planning target volume (PTV) dose distribution as the worst-case representation of clinical target volume (CTV) dose distribution in prostate volumetric-modulated arc therapy (VMAT) plans. Methods: Ten intact prostate cancer cases treated by VMAT at our institution were randomly selected. Isocenter was shifted in the three cardinal directions by a displacement equal to the PTV expansion on the CTV (±3 mm) for a total of six shifted plans per original plan. Rotationally-perturbed plans were generated with a couch rotation of ±1° to simulate patient yaw. The eight perturbed dose distributions were recalculated in the treatment planning system using the same, fixed fluence map as the original plan. The voxel-wise worst-case CTV dose distribution was constructed from the minimum value per voxel from the eight perturbed doses. The resulting dose volume histograms (DVH) were evaluated for statistical correlation between the worst-case CTV and nominal PTV dose distributions based on D95% by Wilcoxon signed-rank test with significance level p ≤ 0.05. Results: Inspection demonstrates the PTV DVH in the nominal dose distribution is bounded by the CTV DVH in the worst-case dose distribution. Comparison of D95% for the two dose distributions by Wilcoxon signed-rank test gives p = 0.131. Therefore the null hypothesis cannot be rejected since the difference in median values is not statistically significant. Conclusion: The assumption that the nominal dose distribution for PTV represents the worst-case dose distribution for CTV appears valid for the ten plans under examination. Although the worst-case dose distribution is unphysical since the dose per voxel is chosen independently, it serves as a lower bound for the possible CTV coverage. Furthermore, this is consistent with the unphysical nature of the PTV. Minor discrepancies between the two dose distributions are expected since the dose cloud is not strictly static. Funding Support

  3. SU-E-T-642: PTV Is the Voxel-Wise Worst-Case of CTV in Prostate Photon Therapy

    International Nuclear Information System (INIS)

    Harrington, D; Schild, S; Wong, W; Vora, S; Liu, W

    2015-01-01

    Purpose: To examine the adequacy of the planning target volume (PTV) dose distribution as the worst-case representation of clinical target volume (CTV) dose distribution in prostate volumetric-modulated arc therapy (VMAT) plans. Methods: Ten intact prostate cancer cases treated by VMAT at our institution were randomly selected. Isocenter was shifted in the three cardinal directions by a displacement equal to the PTV expansion on the CTV (±3 mm) for a total of six shifted plans per original plan. Rotationally-perturbed plans were generated with a couch rotation of ±1° to simulate patient yaw. The eight perturbed dose distributions were recalculated in the treatment planning system using the same, fixed fluence map as the original plan. The voxel-wise worst-case CTV dose distribution was constructed from the minimum value per voxel from the eight perturbed doses. The resulting dose volume histograms (DVH) were evaluated for statistical correlation between the worst-case CTV and nominal PTV dose distributions based on D95% by Wilcoxon signed-rank test with significance level p ≤ 0.05. Results: Inspection demonstrates the PTV DVH in the nominal dose distribution is bounded by the CTV DVH in the worst-case dose distribution. Comparison of D95% for the two dose distributions by Wilcoxon signed-rank test gives p = 0.131. Therefore the null hypothesis cannot be rejected since the difference in median values is not statistically significant. Conclusion: The assumption that the nominal dose distribution for PTV represents the worst-case dose distribution for CTV appears valid for the ten plans under examination. Although the worst-case dose distribution is unphysical since the dose per voxel is chosen independently, it serves as a lower bound for the possible CTV coverage. Furthermore, this is consistent with the unphysical nature of the PTV. Minor discrepancies between the two dose distributions are expected since the dose cloud is not strictly static. Funding Support

  4. SU-D-209-06: Study On the Dose Conversion Coefficients in Pediatric Radiography with the Development of Children Voxel Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Q [Institute of Radiation Medicine Fudan University, Shanghai (China); Shanghai General Hospital, Shanghai, Shanghai (China); Zhuo, W; Liu, H [Institute of Radiation Medicine Fudan University, Shanghai (China); Liu, Y; Chen, T [Shanghai General Hospital, Shanghai, Shanghai (China)

    2016-06-15

    Purpose: Conversion coefficients of organ dose normalized to entrance skin dose (ESD) are widely used to evaluate the organ doses directly using ESD without time-consuming dose measurement, this work aims to investigate the dose conversion coefficients in pediatric chest and abdomen radiography with the development of 5 years and 10 years old children voxel phantoms. Methods: After segmentation of organs and tissues from CT slice images of ATOM tissue-equivalent phantoms, a 5-year-old and a 10-year-old children computational voxel phantoms were developed for Monte Carlo simulation. The organ doses and the entrance skin dose for pediatric chest postero-anterior projection and abdominal antero-posterior projection were simulated at the same time, and then the organ dose conversion coefficients were calculated.To verify the simulated results, dose measurement was carried out with ATOM tissue-equivalent phantoms for 5 year chest radiography. Results: Simulated results and experimental results matched very well with each other, the result differences of all the organs covered in radiation field were below 16% for 5-year-old child in chest projection. I showed that the conversion coefficients of organs covered in the radiation field were much larger than organs out of the field for all the study cases, for example, the conversion coefficients of stomach, liver intestines, and pancreas are larger for abdomen radiography while conversion coefficients of lungs are larger for chest radiography. Conclusion: The voxel children phantoms were helpful to evaluate the radiation doses more accurately and efficiently. Radiation field was the essential factor that affects the organ dose, use reasonably small field should be encouraged for radiation protection. This work was supported by the National Natural Science Foundation of China(11475047)

  5. SU-D-209-06: Study On the Dose Conversion Coefficients in Pediatric Radiography with the Development of Children Voxel Phantoms

    International Nuclear Information System (INIS)

    Liu, Q; Zhuo, W; Liu, H; Liu, Y; Chen, T

    2016-01-01

    Purpose: Conversion coefficients of organ dose normalized to entrance skin dose (ESD) are widely used to evaluate the organ doses directly using ESD without time-consuming dose measurement, this work aims to investigate the dose conversion coefficients in pediatric chest and abdomen radiography with the development of 5 years and 10 years old children voxel phantoms. Methods: After segmentation of organs and tissues from CT slice images of ATOM tissue-equivalent phantoms, a 5-year-old and a 10-year-old children computational voxel phantoms were developed for Monte Carlo simulation. The organ doses and the entrance skin dose for pediatric chest postero-anterior projection and abdominal antero-posterior projection were simulated at the same time, and then the organ dose conversion coefficients were calculated.To verify the simulated results, dose measurement was carried out with ATOM tissue-equivalent phantoms for 5 year chest radiography. Results: Simulated results and experimental results matched very well with each other, the result differences of all the organs covered in radiation field were below 16% for 5-year-old child in chest projection. I showed that the conversion coefficients of organs covered in the radiation field were much larger than organs out of the field for all the study cases, for example, the conversion coefficients of stomach, liver intestines, and pancreas are larger for abdomen radiography while conversion coefficients of lungs are larger for chest radiography. Conclusion: The voxel children phantoms were helpful to evaluate the radiation doses more accurately and efficiently. Radiation field was the essential factor that affects the organ dose, use reasonably small field should be encouraged for radiation protection. This work was supported by the National Natural Science Foundation of China(11475047)

  6. Subtype differentiation of renal tumors using voxel-based histogram analysis of intravoxel incoherent motion parameters.

    Science.gov (United States)

    Gaing, Byron; Sigmund, Eric E; Huang, William C; Babb, James S; Parikh, Nainesh S; Stoffel, David; Chandarana, Hersh

    2015-03-01

    The aim of this study was to determine if voxel-based histogram analysis of intravoxel incoherent motion imaging (IVIM) parameters can differentiate various subtypes of renal tumors, including benign and malignant lesions. A total of 44 patients with renal tumors who underwent surgery and had histopathology available were included in this Health Insurance Portability and Accountability Act-compliant, institutional review board-approved, single-institution prospective study. In addition to routine renal magnetic resonance imaging examination performed on a 1.5-T system, all patients were imaged with axial diffusion-weighted imaging using 8 b values (range, 0-800 s/mm). A biexponential model was fitted to the diffusion signal data using a segmented algorithm to extract the IVIM parameters perfusion fraction (fp), tissue diffusivity (Dt), and pseudodiffusivity (Dp) for each voxel. Mean and histogram measures of heterogeneity (standard deviation, skewness, and kurtosis) of IVIM parameters were correlated with pathology results of tumor subtype using unequal variance t tests to compare subtypes in terms of each measure. Correction for multiple comparisons was accomplished using the Tukey honestly significant difference procedure. A total of 44 renal tumors including 23 clear cell (ccRCC), 4 papillary (pRCC), 5 chromophobe, and 5 cystic renal cell carcinomas, as well as benign lesions, 4 oncocytomas (Onc) and 3 angiomyolipomas (AMLs), were included in our analysis. Mean IVIM parameters fp and Dt differentiated 8 of 15 pairs of renal tumors. Histogram analysis of IVIM parameters differentiated 9 of 15 subtype pairs. One subtype pair (ccRCC vs pRCC) was differentiated by mean analysis but not by histogram analysis. However, 2 other subtype pairs (AML vs Onc and ccRCC vs Onc) were differentiated by histogram distribution parameters exclusively. The standard deviation of Dt [σ(Dt)] differentiated ccRCC (0.362 ± 0.136 × 10 mm/s) from AML (0.199 ± 0.043 × 10 mm/s) (P = 0

  7. Voxel-based registration of simulated and real patient CBCT data for accurate dental implant pose estimation

    Science.gov (United States)

    Moreira, António H. J.; Queirós, Sandro; Morais, Pedro; Rodrigues, Nuno F.; Correia, André Ricardo; Fernandes, Valter; Pinho, A. C. M.; Fonseca, Jaime C.; Vilaça, João. L.

    2015-03-01

    The success of dental implant-supported prosthesis is directly linked to the accuracy obtained during implant's pose estimation (position and orientation). Although traditional impression techniques and recent digital acquisition methods are acceptably accurate, a simultaneously fast, accurate and operator-independent methodology is still lacking. Hereto, an image-based framework is proposed to estimate the patient-specific implant's pose using cone-beam computed tomography (CBCT) and prior knowledge of implanted model. The pose estimation is accomplished in a threestep approach: (1) a region-of-interest is extracted from the CBCT data using 2 operator-defined points at the implant's main axis; (2) a simulated CBCT volume of the known implanted model is generated through Feldkamp-Davis-Kress reconstruction and coarsely aligned to the defined axis; and (3) a voxel-based rigid registration is performed to optimally align both patient and simulated CBCT data, extracting the implant's pose from the optimal transformation. Three experiments were performed to evaluate the framework: (1) an in silico study using 48 implants distributed through 12 tridimensional synthetic mandibular models; (2) an in vitro study using an artificial mandible with 2 dental implants acquired with an i-CAT system; and (3) two clinical case studies. The results shown positional errors of 67+/-34μm and 108μm, and angular misfits of 0.15+/-0.08° and 1.4°, for experiment 1 and 2, respectively. Moreover, in experiment 3, visual assessment of clinical data results shown a coherent alignment of the reference implant. Overall, a novel image-based framework for implants' pose estimation from CBCT data was proposed, showing accurate results in agreement with dental prosthesis modelling requirements.

  8. The effects of exposure to muscular male models among men: exploring the moderating role of gym use and exercise motivation.

    Science.gov (United States)

    Halliwell, Emma; Dittmar, Helga; Orsborn, Amber

    2007-09-01

    This study examines the effects of exposure to the muscular male body ideal on body-focused negative affect among male gym users and non-exercisers. As hypothesized, the impact of media exposure depended on men's exercise status. Non-exercisers (n = 58) reported greater body-focused negative affect after exposure to images of muscular male models than after neutral images (no model controls), whereas gym users (n = 58) showed a tendency for less body-focused negative affect after the model images than after the control images. Furthermore, the extent to which gym users were motivated to increase strength and muscularity moderated these exposure effects; men who reported stronger strength and muscularity exercise motivation reported a greater degree of self-enhancement after exposure to the muscular ideal. The findings are interpreted with respect to likely differences in motives for social comparisons.

  9. The Establishment of Metabolic Syndrome Model by Induction of Fructose Drinking Water in Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Norshalizah Mamikutty

    2014-01-01

    Full Text Available Background. Metabolic syndrome can be caused by modification of diet by means of consumption of high carbohydrate and high fat diet such as fructose. Aims. To develop a metabolic syndrome rat model by induction of fructose drinking water (FDW in male Wistar rats. Methods. Eighteen male Wistar rats were fed with FDW 20% and FDW 25% for a duration of eight weeks. The physiological changes with regard to food and fluid intake, as well as calorie intake, were measured. The metabolic changes such as obesity, dyslipidaemia, hypertension, and hyperglycaemia were determined. Data was presented in mean ± SEM subjected to one-way ANOVA. Results. Male Wistar rats fed with FDW 20% for eight weeks developed significant higher obesity parameters compared to those fed with FDW 25%. There was hypertrophy of adipocytes in F20 and F25. There were also systolic hypertension, hypertriglyceridemia, and hyperglycemia in both groups. Conclusion. We conclude that the metabolic syndrome rat model is best established with the induction of FDW 20% for eight weeks. This was evident in the form of higher obesity parameter which caused the development of the metabolic syndrome.

  10. Voxel Based Analysis of Surgical Revascularization for Moyamoya Disease: Pre- and Postoperative SPECT Studies.

    Directory of Open Access Journals (Sweden)

    Yasutaka Fushimi

    Full Text Available Moyamoya disease (MMD is a chronic, progressive, cerebrovascular occlusive disease that causes abnormal enlargement of collateral pathways (moyamoya vessels in the region of the basal ganglia and thalamus. Cerebral revascularization procedures remain the preferred treatment for patients with MMD, improving the compromised cerebral blood flow (CBF. However, voxel based analysis (VBA of revascularization surgery for MMD based on data from pre- and postoperative data has not been established. The latest algorithm called as Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL has been introduced for VBA as the function of statistical parametric mapping (SPM8, and improved registration has been achieved by SPM8 with DARTEL. In this study, VBA was conducted to evaluate pre- and postoperative single photon emission computed tomography (SPECT images for MMD by SPM8 with DARTEL algorithm, and the results were compared with those from SPM8 without DARTEL (a conventional method. Thirty-two patients with MMD who underwent superficial temporal artery-middle cerebral artery (STA-MCA bypass surgery as the first surgery were included and all patients underwent pre- and postoperative 3D T1-weighted imaging and SPECT. Pre- and postoperative SPECT images were registered to 3D T1-weighted images, then VBA was conducted. Postoperative SPECT showed more statistically increased CBF areas in the bypassed side cerebral hemisphere by using SPM8 with DARTEL (58,989 voxels; P<0.001, and increased ratio of CBF after operation was less than 15%. Meanwhile, postoperative SPECT showed less CBF increased areas by SPM8 without DARTEL. In conclusion, VBA was conducted for patients with MMD, and SPM8 with DARTEL revealed that postoperative SPECT showed statistically significant CBF increases over a relatively large area and with at most 15% increase ratio.

  11. Voluntary Medical Male Circumcision for HIV Prevention: New Mathematical Models for Strategic Demand Creation Prioritizing Subpopulations by Age and Geography.

    Science.gov (United States)

    Hankins, Catherine; Warren, Mitchell; Njeuhmeli, Emmanuel

    2016-01-01

    Over 11 million voluntary medical male circumcisions (VMMC) have been performed of the projected 20.3 million needed to reach 80% adult male circumcision prevalence in priority sub-Saharan African countries. Striking numbers of adolescent males, outside the 15-49-year-old age target, have been accessing VMMC services. What are the implications of overall progress in scale-up to date? Can mathematical modeling provide further insights on how to efficiently reach the male circumcision coverage levels needed to create and sustain further reductions in HIV incidence to make AIDS no longer a public health threat by 2030? Considering ease of implementation and cultural acceptability, decision makers may also value the estimates that mathematical models can generate of immediacy of impact, cost-effectiveness, and magnitude of impact resulting from different policy choices. This supplement presents the results of mathematical modeling using the Decision Makers' Program Planning Tool Version 2.0 (DMPPT 2.0), the Actuarial Society of South Africa (ASSA2008) model, and the age structured mathematical (ASM) model. These models are helping countries examine the potential effects on program impact and cost-effectiveness of prioritizing specific subpopulations for VMMC services, for example, by client age, HIV-positive status, risk group, and geographical location. The modeling also examines long-term sustainability strategies, such as adolescent and/or early infant male circumcision, to preserve VMMC coverage gains achieved during rapid scale-up. The 2016-2021 UNAIDS strategy target for VMMC is an additional 27 million VMMC in high HIV-prevalence settings by 2020, as part of access to integrated sexual and reproductive health services for men. To achieve further scale-up, a combination of evidence, analysis, and impact estimates can usefully guide strategic planning and funding of VMMC services and related demand-creation strategies in priority countries. Mid-course corrections

  12. Voluntary Medical Male Circumcision for HIV Prevention: New Mathematical Models for Strategic Demand Creation Prioritizing Subpopulations by Age and Geography.

    Directory of Open Access Journals (Sweden)

    Catherine Hankins

    Full Text Available Over 11 million voluntary medical male circumcisions (VMMC have been performed of the projected 20.3 million needed to reach 80% adult male circumcision prevalence in priority sub-Saharan African countries. Striking numbers of adolescent males, outside the 15-49-year-old age target, have been accessing VMMC services. What are the implications of overall progress in scale-up to date? Can mathematical modeling provide further insights on how to efficiently reach the male circumcision coverage levels needed to create and sustain further reductions in HIV incidence to make AIDS no longer a public health threat by 2030? Considering ease of implementation and cultural acceptability, decision makers may also value the estimates that mathematical models can generate of immediacy of impact, cost-effectiveness, and magnitude of impact resulting from different policy choices. This supplement presents the results of mathematical modeling using the Decision Makers' Program Planning Tool Version 2.0 (DMPPT 2.0, the Actuarial Society of South Africa (ASSA2008 model, and the age structured mathematical (ASM model. These models are helping countries examine the potential effects on program impact and cost-effectiveness of prioritizing specific subpopulations for VMMC services, for example, by client age, HIV-positive status, risk group, and geographical location. The modeling also examines long-term sustainability strategies, such as adolescent and/or early infant male circumcision, to preserve VMMC coverage gains achieved during rapid scale-up. The 2016-2021 UNAIDS strategy target for VMMC is an additional 27 million VMMC in high HIV-prevalence settings by 2020, as part of access to integrated sexual and reproductive health services for men. To achieve further scale-up, a combination of evidence, analysis, and impact estimates can usefully guide strategic planning and funding of VMMC services and related demand-creation strategies in priority countries. Mid

  13. Hippocampal and neocortical metabolite ratio in patients with complex partial seizure: short TE and long TE techniques using single voxel proton MR spectroscopy

    International Nuclear Information System (INIS)

    Chung, Jin Il; Kim, Dong Ik; Lee, Byung In; Lee, Seung Ik; Yoon, Pyeong Ho

    2000-01-01

    To compare hippocampal and neocortical metabolite ratios using single-voxel proton MR spectroscopy with different echo times in patients with complex partial seizure. Using a GE Signa 1.5T scanner with STEAM and PRESS sequences, automated single voxel proton MRS was used to determine metabolite ratio differences in the hippocampus and neocortex of nine complex partial seizure patients (mesial temporal sclerosis (n=3D5), status epilepticus (n=3D1), tumor (n=3D1), cortical dysplasia (n=3D1), occipital lobe epilepsy (n=3D1)). A total of 20 examinations were performed in the region of the hippocampus (n=3D17), temporal neocortex (n=3D1), and parieto-occipital gray matter (n=3D1). Voxel size range was 5.2-17.4 cm 3 . The calculated creatine (Cr) peak was employed as an internal reference and the relative ratio of N-acetylaspartate (NAA) and choline (Cho) was calculated for both short and long echo times using an automated PROBE/SV (GE Medical Systems) package. Each NAA/Cho ratio obtained using both PRESS and STEAM techniques was compared by means of statistical analysis (paired Student t-test). Using PRESS (long TE, 272 ms), NAA/Cho ratios were successfully calculated in 16 of 20 examinations; in four this was not possible due to noise levels of the Cr and Cho peaks. Using STEAM (short TE, 30 ms) NAA/Cho ratios were successfully calculated in 19 of 20 examinations; in one, the Cho peak could not be measured. Using PRESS and STEAM, mean and standard deviations for the NAA/Cho ratio were 1.22±0.50 and 1.16±0.36, respectively. There were no statistically significant differences in this ratio between the short and long TE method (p less than 0.01). In complex partial seizure patients, no significant metabolite differences were found between short and long echo times of single voxel proton MR spectroscopy. The metabolite ratio at different echo times can be reliably obtained using this simplified and automated PROBE/SV quantitation method. (author)

  14. Sneaker "jack" males outcompete dominant "hooknose" males under sperm competition in Chinook salmon (Oncorhynchus tshawytscha).

    Science.gov (United States)

    Young, Brent; Conti, David V; Dean, Matthew D

    2013-12-01

    In a variety of taxa, males deploy alternative reproductive tactics to secure fertilizations. In many species, small "sneaker" males attempt to steal fertilizations while avoiding encounters with larger, more aggressive, dominant males. Sneaker males usually face a number of disadvantages, including reduced access to females and the higher likelihood that upon ejaculation, their sperm face competition from other males. Nevertheless, sneaker males represent an evolutionarily stable strategy under a wide range of conditions. Game theory suggests that sneaker males compensate for these disadvantages by investing disproportionately in spermatogenesis, by producing more sperm per unit body mass (the "fair raffle") and/or by producing higher quality sperm (the "loaded raffle"). Here, we test these models by competing sperm from sneaker "jack" males against sperm from dominant "hooknose" males in Chinook salmon. Using two complementary approaches, we reject the fair raffle in favor of the loaded raffle and estimate that jack males were ∼1.35 times as likely as hooknose males to fertilize eggs under controlled competitive conditions. Interestingly, the direction and magnitude of this skew in paternity shifted according to individual female egg donors, suggesting cryptic female choice could moderate the outcomes of sperm competition in this externally fertilizing species.

  15. The Monte Carlo SRNA-VOX code for 3D proton dose distribution in voxelized geometry using CT data

    International Nuclear Information System (INIS)

    Ilic, Radovan D; Spasic-Jokic, Vesna; Belicev, Petar; Dragovic, Milos

    2005-01-01

    This paper describes the application of the SRNA Monte Carlo package for proton transport simulations in complex geometry and different material compositions. The SRNA package was developed for 3D dose distribution calculation in proton therapy and dosimetry and it was based on the theory of multiple scattering. The decay of proton induced compound nuclei was simulated by the Russian MSDM model and our own using ICRU 63 data. The developed package consists of two codes: the SRNA-2KG, which simulates proton transport in combinatorial geometry and the SRNA-VOX, which uses the voxelized geometry using the CT data and conversion of the Hounsfield's data to tissue elemental composition. Transition probabilities for both codes are prepared by the SRNADAT code. The simulation of the proton beam characterization by multi-layer Faraday cup, spatial distribution of positron emitters obtained by the SRNA-2KG code and intercomparison of computational codes in radiation dosimetry, indicate immediate application of the Monte Carlo techniques in clinical practice. In this paper, we briefly present the physical model implemented in the SRNA package, the ISTAR proton dose planning software, as well as the results of the numerical experiments with proton beams to obtain 3D dose distribution in the eye and breast tumour

  16. Utilization of MAX and FAX human phantoms for space radiation exposure calculations using HZETRN

    Science.gov (United States)

    Qualls, Garry; Slaba, Tony; Clowdsley, Martha; Blattnig, Steve; Walker, Steven; Simonsen, Lisa

    To estimate astronaut health risk due to space radiation, one must have the ability to calculate, for known radiation environments external to the body, particle spectra, LET spectra, dose, dose equivalent, or gray equivalent that are averaged over specific organs or tissue types. This may be accomplished using radiation transport software and computational human body tissue models. Historically, NASA scientists have used the HZETRN software to calculate radiation transport through both vehicle shielding materials and body tissue. The Computerized Anatomical Man (CAM) and the Computerized Anatomical Female (CAF) body models, combined with the CAMERA software, have been used for body tissue self-shielding calculations. The CAM and CAF, which were developed in 1973 and 1992, respectively, model the 50th percentile U.S. Air Force male and female and are constructed using individual quadric surfaces that combine to form thousands of solid regions that represent specific tissues and structures within the body. In order to transport an external radiation environment to a point within one of the body models using HZETRN, a directional distribution of the tissues surrounding that point is needed. The CAMERA software is used to "ray trace" the CAM and CAF models, providing the thickness of each tissue type traversed along each of a large number of rays originating at a dose point. More recently, R. Kramer of the Departmento de Energia Nuclear, Universidade Federal de Pernambuco in Brazil and his co-workers developed the Male Adult voXel (MAX) model and the Female Adult voXel (FAX). These voxel-based body models were developed using segmented Computed Tomography (CT) scans of adult cadavers, and the quantities and distributions of various body tissues have been adjusted to match those specified in the International Commission on Radiological Protection (ICRP) reference adult male and female. A new set of tools has been developed to facilitate space radiation exposure

  17. Oral administration of choline does not affect metabolic characteristics of gliomas and normal-appearing white matter, as detected with single-voxel 1H-MRS at 1.5 T

    International Nuclear Information System (INIS)

    Chernov, Mikhail F.; Iseki, Hiroshi; Takakura, Kintomo; Muragaki, Yoshihiro; Maruyama, Takashi; Ono, Yuko; Usukura, Masao; Yoshida, Shigetoshi; Nakamura, Ryoichi; Kubo, Osami; Hori, Tomokatsu

    2009-01-01

    The present study was done for evaluation of the possible influence of the oral administration of choline on metabolic characteristics of gliomas detected with proton magnetic resonance spectroscopy ( 1 H-MRS). Thirty patients (22 men and eight women; mean age 38±15 years) with suspicious intracranial gliomas underwent single-voxel long-echo (TR 2,000 ms, TE 136 ms, 128-256 acquisitions) 1 H-MRS of the tumor, peritumoral brain tissue, and distant normal-appearing white matter before and several hours (median, 3 h; range, 1.2-3.7 h) after ingestion of choline with prescribed dose of 50 mg/kg (median actual dose, 52 mg/kg; range, 48-78 mg/kg). Investigations were done using 1.5 T clinical magnetic resonance imager. The volume of the rectangular 1 H-MRS voxel was either 3.4 or 8 cm 3 . At the time of both spectroscopic examinations, similar voxels' positioning and size and technical parameters of 1 H-MRS were used. Surgery was done in 27 patients within 1 to 68 days thereafter. In all cases, more than 80% resection of the neoplasm was attained. There were 12 low-grade gliomas and 15 high-grade gliomas. MIB-1 index varied from 0% to 51.7% (median, 13.8%). Statistical analysis did not disclose significant differences of any investigated metabolic parameter of the tumor, peritumoral brain tissue and distant normal-appearing white matter between two spectroscopic examinations. Single-voxel 1 H-MRS at 1.5 T could not detect significant changes of the metabolic characteristics of gliomas, peritumoral brain tissue, and distant normal-appearing white matter after oral administration of choline. (orig.)

  18. Voxel-based analysis of diffusion tensor indices in the brain in patients with Parkinson's disease

    International Nuclear Information System (INIS)

    Zhang Kaiyuan; Yu Chunshui; Zhang Yujin; Wu Xiaoli; Zhu Chaozhe; Chan Piu; Li Kuncheng

    2011-01-01

    Purpose: To investigate the abnormal diffusion in cerebral white matter and its relationship with the olfactory dysfunction in patients with Parkinson's disease (PD) through diffusion tensor imaging (DTI). Materials and methods: Diffusion tensor imaging of the cerebrum was performed in 25 patients with Parkinson's disease and 25 control subjects matched for age and sex. Differences in fractional anisotropy (FA) and mean diffusivity (MD) between these two groups were studied by voxel-based analysis of the DTI data. Correlations between diffusion indices and the olfactory function in PD patients were evaluated using the multiple regression model after controlling for the duration of the disease, Unified Parkinson's Disease Rating Sale (UPDRS), and age. Results: The damaged white and gray matter showed decreased FA or increased MD, localized bilaterally in the cerebellar and orbitofrontal cortex. In addition, in PD patients there was a positive correlation between FA values in the white matter of the left cerebellum and the thresholds of olfactory identification (TOI) and a negative correlation between MD values in the white matter of right cerebellum and the TOI. Conclusion: In patients with PD, there was disruption in the cerebellar white matter which may play an important role in the olfactory dysfunction in patients with Parkinson's disease.

  19. Interstitial diffusion and the relationship between compartment modelling and multi-scale spatial-temporal modelling of (18)F-FLT tumour uptake dynamics.

    Science.gov (United States)

    Liu, Dan; Chalkidou, Anastasia; Landau, David B; Marsden, Paul K; Fenwick, John D

    2014-09-07

    Tumour cell proliferation can be imaged via positron emission tomography of the radiotracer 3'-deoxy-3'-18F-fluorothymidine (18F-FLT). Conceptually, the number of proliferating cells might be expected to correlate more closely with the kinetics of 18F-FLT uptake than with uptake at a fixed time. Radiotracer uptake kinetics are standardly visualized using parametric maps of compartment model fits to time-activity-curves (TACs) of individual voxels. However the relationship between the underlying spatiotemporal accumulation of FLT and the kinetics described by compartment models has not yet been explored. In this work tumour tracer uptake is simulated using a mechanistic spatial-temporal model based on a convection-diffusion-reaction equation solved via the finite difference method. The model describes a chain of processes: the flow of FLT between the spatially heterogeneous tumour vasculature and interstitium; diffusion and convection of FLT within the interstitium; transport of FLT into cells; and intracellular phosphorylation. Using values of model parameters estimated from the biological literature, simulated FLT TACs are generated with shapes and magnitudes similar to those seen clinically. Results show that the kinetics of the spatial-temporal model can be recovered accurately by fitting a 3-tissue compartment model to FLT TACs simulated for those tumours or tumour sub-volumes that can be viewed as approximately closed, for which tracer diffusion throughout the interstitium makes only a small fractional change to the quantity of FLT they contain. For a single PET voxel of width 2.5-5 mm we show that this condition is roughly equivalent to requiring that the relative difference in tracer uptake between the voxel and its neighbours is much less than one.

  20. Multi-Voxel Decoding and the Topography of Maintained Information During Visual Working Memory.

    Science.gov (United States)

    Lee, Sue-Hyun; Baker, Chris I

    2016-01-01

    The ability to maintain representations in the absence of external sensory stimulation, such as in working memory, is critical for guiding human behavior. Human functional brain imaging studies suggest that visual working memory can recruit a network of brain regions from visual to parietal to prefrontal cortex. In this review, we focus on the maintenance of representations during visual working memory and discuss factors determining the topography of those representations. In particular, we review recent studies employing multi-voxel pattern analysis (MVPA) that demonstrate decoding of the maintained content in visual cortex, providing support for a "sensory recruitment" model of visual working memory. However, there is some evidence that maintained content can also be decoded in areas outside of visual cortex, including parietal and frontal cortex. We suggest that the ability to maintain representations during working memory is a general property of cortex, not restricted to specific areas, and argue that it is important to consider the nature of the information that must be maintained. Such information-content is critically determined by the task and the recruitment of specific regions during visual working memory will be both task- and stimulus-dependent. Thus, the common finding of maintained information in visual, but not parietal or prefrontal, cortex may be more of a reflection of the need to maintain specific types of visual information and not of a privileged role of visual cortex in maintenance.