WorldWideScience

Sample records for male brain theory

  1. The Extreme Male Brain Theory and Gender Role Behaviour in Persons with an Autism Spectrum Condition

    Stauder, J. E. A.; Cornet, L. J. M.; Ponds, R. W. H. M.

    2011-01-01

    According to the Extreme Male Brain theory persons with autism possess masculinised cognitive traits. In this study masculinisation of gender role behaviour is evaluated in 25 persons with an autism spectrum condition (ASC) and matched controls with gender role behaviour as part of a shortened version of the Minnesota Multiphasic Personality…

  2. Male microchimerism in the human female brain.

    William F N Chan

    Full Text Available In humans, naturally acquired microchimerism has been observed in many tissues and organs. Fetal microchimerism, however, has not been investigated in the human brain. Microchimerism of fetal as well as maternal origin has recently been reported in the mouse brain. In this study, we quantified male DNA in the human female brain as a marker for microchimerism of fetal origin (i.e. acquisition of male DNA by a woman while bearing a male fetus. Targeting the Y-chromosome-specific DYS14 gene, we performed real-time quantitative PCR in autopsied brain from women without clinical or pathologic evidence of neurologic disease (n=26, or women who had Alzheimer's disease (n=33. We report that 63% of the females (37 of 59 tested harbored male microchimerism in the brain. Male microchimerism was present in multiple brain regions. Results also suggested lower prevalence (p=0.03 and concentration (p=0.06 of male microchimerism in the brains of women with Alzheimer's disease than the brains of women without neurologic disease. In conclusion, male microchimerism is frequent and widely distributed in the human female brain.

  3. Male or female? Brains are intersex

    Daphna eJoel

    2011-09-01

    Full Text Available The underlying assumption in popular and scientific publications on sex differences in the brain is that human brains can take one of two forms male or female, and that the differences between these two forms underlie differences between men and women in personality, cognition, emotion and behavior. Documented sex differences in brain structure are typically taken to support this dimorphic view of the brain. However, neuroanatomical data reveal that sex interacts with other factors in utero and throughout life to determine the structure of the brain, and that because these interactions are complex, the result is a multi-morphic, rather than a dimorphic, brain. More specifically, here I argue that human brains are composed of an ever-changing heterogeneous mosaic of male and female brain characteristics (rather than being all male or all female that cannot be aligned on a continuum between a male brain and a female brain. I further suggest that sex differences in the direction of change in the brain mosaic following specific environmental events lead to sex differences in neuropsychiatric disorders.

  4. Brain activation during human male ejaculation

    Holstege, Ger; Georgiadis, Janniko R.; Paans, Anne M.J.; Meiners, Linda C.; Graaf, Ferdinand H.C.E. van der; Reinders, A.A.T.Simone

    2003-01-01

    Brain mechanisms that control human sexual behavior in general, and ejaculation in particular, are poorly understood. We used positron emission tomography to measure increases in regional cerebral blood flow (rCBF) during ejaculation compared with sexual stimulation in heterosexual male volunteers.

  5. Social cognition, the male brain and the autism spectrum.

    Jeremy Hall

    Full Text Available Behavioral studies have shown that, at a population level, women perform better on tests of social cognition and empathy than men. Furthermore Autism Spectrum Disorders (ASDs, which are characterized by impairments in social functioning and empathy, occur more commonly in males than females. These findings have led to the hypothesis that differences in the functioning of the social brain between males and females contribute to the greater vulnerability of males to ASD and the suggestion that ASD may represent an extreme form of the male brain. Here we sought to investigate this hypothesis by determining: (i whether males and females differ in social brain function, and (ii whether any sex differences in social brain function are exaggerated in individuals with ASD. Using fMRI we show that males and females differ markedly in social brain function when making social decisions from faces (compared to simple sex judgements especially when making decisions of an affective nature, with the greatest sex differences in social brain activation being in the inferior frontal cortex (IFC. We also demonstrate that this difference is exaggerated in individuals with ASD, who show an extreme male pattern of IFC function. These results show that males and females differ significantly in social brain function and support the view that sex differences in the social brain contribute to the greater vulnerability of males to ASDs.

  6. Gonadal status in male survivors following childhood brain tumors

    Schmiegelow, M; Lassen, S; Poulsen, H S

    2001-01-01

    The effect of radiotherapy (RT) and chemotherapy (CT) on gonadal function was assessed in males treated for a childhood brain tumor not directly involving the hypothalamus/pituitary (HP) axis in a population-based study with a long follow-up time. All males......The effect of radiotherapy (RT) and chemotherapy (CT) on gonadal function was assessed in males treated for a childhood brain tumor not directly involving the hypothalamus/pituitary (HP) axis in a population-based study with a long follow-up time. All males...

  7. Female brain size affects the assessment of male attractiveness during mate choice.

    Corral-López, Alberto; Bloch, Natasha I; Kotrschal, Alexander; van der Bijl, Wouter; Buechel, Severine D; Mank, Judith E; Kolm, Niclas

    2017-03-01

    Mate choice decisions are central in sexual selection theory aimed to understand how sexual traits evolve and their role in evolutionary diversification. We test the hypothesis that brain size and cognitive ability are important for accurate assessment of partner quality and that variation in brain size and cognitive ability underlies variation in mate choice. We compared sexual preference in guppy female lines selected for divergence in relative brain size, which we have previously shown to have substantial differences in cognitive ability. In a dichotomous choice test, large-brained and wild-type females showed strong preference for males with color traits that predict attractiveness in this species. In contrast, small-brained females showed no preference for males with these traits. In-depth analysis of optomotor response to color cues and gene expression of key opsins in the eye revealed that the observed differences were not due to differences in visual perception of color, indicating that differences in the ability to process indicators of attractiveness are responsible. We thus provide the first experimental support that individual variation in brain size affects mate choice decisions and conclude that differences in cognitive ability may be an important underlying mechanism behind variation in female mate choice.

  8. Resting-state brain activity in adult males who stutter.

    Yun Xuan

    Full Text Available Although developmental stuttering has been extensively studied with structural and task-based functional magnetic resonance imaging (fMRI, few studies have focused on resting-state brain activity in this disorder. We investigated resting-state brain activity of stuttering subjects by analyzing the amplitude of low-frequency fluctuation (ALFF, region of interest (ROI-based functional connectivity (FC and independent component analysis (ICA-based FC. Forty-four adult males with developmental stuttering and 46 age-matched fluent male controls were scanned using resting-state fMRI. ALFF, ROI-based FCs and ICA-based FCs were compared between male stuttering subjects and fluent controls in a voxel-wise manner. Compared with fluent controls, stuttering subjects showed increased ALFF in left brain areas related to speech motor and auditory functions and bilateral prefrontal cortices related to cognitive control. However, stuttering subjects showed decreased ALFF in the left posterior language reception area and bilateral non-speech motor areas. ROI-based FC analysis revealed decreased FC between the posterior language area involved in the perception and decoding of sensory information and anterior brain area involved in the initiation of speech motor function, as well as increased FC within anterior or posterior speech- and language-associated areas and between the prefrontal areas and default-mode network (DMN in stuttering subjects. ICA showed that stuttering subjects had decreased FC in the DMN and increased FC in the sensorimotor network. Our findings support the concept that stuttering subjects have deficits in multiple functional systems (motor, language, auditory and DMN and in the connections between them.

  9. Resting-State Brain Activity in Adult Males Who Stutter

    Zhu, Chaozhe; Wang, Liang; Yan, Qian; Lin, Chunlan; Yu, Chunshui

    2012-01-01

    Although developmental stuttering has been extensively studied with structural and task-based functional magnetic resonance imaging (fMRI), few studies have focused on resting-state brain activity in this disorder. We investigated resting-state brain activity of stuttering subjects by analyzing the amplitude of low-frequency fluctuation (ALFF), region of interest (ROI)-based functional connectivity (FC) and independent component analysis (ICA)-based FC. Forty-four adult males with developmental stuttering and 46 age-matched fluent male controls were scanned using resting-state fMRI. ALFF, ROI-based FCs and ICA-based FCs were compared between male stuttering subjects and fluent controls in a voxel-wise manner. Compared with fluent controls, stuttering subjects showed increased ALFF in left brain areas related to speech motor and auditory functions and bilateral prefrontal cortices related to cognitive control. However, stuttering subjects showed decreased ALFF in the left posterior language reception area and bilateral non-speech motor areas. ROI-based FC analysis revealed decreased FC between the posterior language area involved in the perception and decoding of sensory information and anterior brain area involved in the initiation of speech motor function, as well as increased FC within anterior or posterior speech- and language-associated areas and between the prefrontal areas and default-mode network (DMN) in stuttering subjects. ICA showed that stuttering subjects had decreased FC in the DMN and increased FC in the sensorimotor network. Our findings support the concept that stuttering subjects have deficits in multiple functional systems (motor, language, auditory and DMN) and in the connections between them. PMID:22276215

  10. Males and females differ in brain activation during cognitive tasks.

    Bell, Emily C; Willson, Morgan C; Wilman, Alan H; Dave, Sanjay; Silverstone, Peter H

    2006-04-01

    To examine the effect of gender on regional brain activity, we utilized functional magnetic resonance imaging (fMRI) during a motor task and three cognitive tasks; a word generation task, a spatial attention task, and a working memory task in healthy male (n = 23) and female (n = 10) volunteers. Functional data were examined for group differences both in the number of pixels activated, and the blood-oxygen-level-dependent (BOLD) magnitude during each task. Males had a significantly greater mean activation than females in the working memory task with a greater number of pixels being activated in the right superior parietal gyrus and right inferior occipital gyrus, and a greater BOLD magnitude occurring in the left inferior parietal lobe. However, despite these fMRI changes, there were no significant differences between males and females on cognitive performance of the task. In contrast, in the spatial attention task, men performed better at this task than women, but there were no significant functional differences between the two groups. In the word generation task, there were no external measures of performance, but in the functional measurements, males had a significantly greater mean activation than females, where males had a significantly greater BOLD signal magnitude in the left and right dorsolateral prefrontal cortex, the right inferior parietal lobe, and the cingulate. In neither of the motor tasks (right or left hand) did males and females perform differently. Our fMRI findings during the motor tasks were a greater mean BOLD signal magnitude in males in the right hand motor task, compared to females where males had an increased BOLD signal magnitude in the right inferior parietal gyrus and in the left inferior frontal gyrus. In conclusion, these results demonstrate differential patterns of activation in males and females during a variety of cognitive tasks, even though performance in these tasks may not vary, and also that variability in performance may not

  11. ["A male view?" Texts on feminism film theory].

    Lippert, R

    1994-11-01

    The author traces the course taken by psychoanalytically oriented feminist film theory from its beginnings in the late seventies. She situates its origins in the Anglo-American debate about the exclusion of female subjectivity from the cinema and the new awareness of the problem of the cinematic mise-en-scène of the gaze, of "visual pleasure". First, massive criticism was levelled at the exclusively male/patriarchal gaze of the viewer, then emphasis centred around the specifically female gaze as a category in aesthetic theory. Ultimately, psychoanalytic feminist film theory has turned its attention to films for women, melodrams and early movies in an attempt to capture the respective historical forms of female subjectivity that they reflect.

  12. Toward a theory of holistic needs and the brain.

    Silton, Nava R; Flannelly, Laura T; Flannelly, Kevin J; Galek, Kathleen

    2011-01-01

    This article reviews Maslow's theory of motivation wherein he proposes a hierarchy of human needs. First, it describes the principal elements of Maslow's theory and discusses considerations relating to the flexibility of the hierarchy. Second, it explains the relationship among Maslow's theory of human needs, attachment theory, and evolutionary threat assessment system theory. Third, it provides an overview of the brain structures posited to be involved in attachment and evolutionary threat assessment system theory and their relation to Maslow's hierarchy. Finally, it explains how the 3 theories converge to form a theory of holistic needs.

  13. Quantitative theory of driven nonlinear brain dynamics.

    Roberts, J A; Robinson, P A

    2012-09-01

    Strong periodic stimuli such as bright flashing lights evoke nonlinear responses in the brain and interact nonlinearly with ongoing cortical activity, but the underlying mechanisms for these phenomena are poorly understood at present. The dominant features of these experimentally observed dynamics are reproduced by the dynamics of a quantitative neural field model subject to periodic drive. Model power spectra over a range of drive frequencies show agreement with multiple features of experimental measurements, exhibiting nonlinear effects including entrainment over a range of frequencies around the natural alpha frequency f(α), subharmonic entrainment near 2f(α), and harmonic generation. Further analysis of the driven dynamics as a function of the drive parameters reveals rich nonlinear dynamics that is predicted to be observable in future experiments at high drive amplitude, including period doubling, bistable phase-locking, hysteresis, wave mixing, and chaos indicated by positive Lyapunov exponents. Moreover, photosensitive seizures are predicted for physiologically realistic model parameters yielding bistability between healthy and seizure dynamics. These results demonstrate the applicability of neural field models to the new regime of periodically driven nonlinear dynamics, enabling interpretation of experimental data in terms of specific generating mechanisms and providing new tests of the theory. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Diffuse Optical Tomography for Brain Imaging: Theory

    Yuan, Zhen; Jiang, Huabei

    Diffuse optical tomography (DOT) is a noninvasive, nonionizing, and inexpensive imaging technique that uses near-infrared light to probe tissue optical properties. Regional variations in oxy- and deoxy-hemoglobin concentrations as well as blood flow and oxygen consumption can be imaged by monitoring spatiotemporal variations in the absorption spectra. For brain imaging, this provides DOT unique abilities to directly measure the hemodynamic, metabolic, and neuronal responses to cells (neurons), and tissue and organ activations with high temporal resolution and good tissue penetration. DOT can be used as a stand-alone modality or can be integrated with other imaging modalities such as fMRI/MRI, PET/CT, and EEG/MEG in studying neurophysiology and pathology. This book chapter serves as an introduction to the basic theory and principles of DOT for neuroimaging. It covers the major aspects of advances in neural optical imaging including mathematics, physics, chemistry, reconstruction algorithm, instrumentation, image-guided spectroscopy, neurovascular and neurometabolic coupling, and clinical applications.

  15. The Inexpressive Male: Functional-Conflict and Role Theory as Contrasting Explanations.

    Balswick, Jack

    1979-01-01

    Compares functional-conflict and role theory perspectives in their ability to explain male inexpressiveness. The role theory approach incorporates the individual and the social structure in explaining male inexpressiveness. Change in male expressiveness can be expected if males are encouraged to devote more time and energy to emotionally laden…

  16. The free-energy principle: a unified brain theory?

    Friston, Karl

    2010-02-01

    A free-energy principle has been proposed recently that accounts for action, perception and learning. This Review looks at some key brain theories in the biological (for example, neural Darwinism) and physical (for example, information theory and optimal control theory) sciences from the free-energy perspective. Crucially, one key theme runs through each of these theories - optimization. Furthermore, if we look closely at what is optimized, the same quantity keeps emerging, namely value (expected reward, expected utility) or its complement, surprise (prediction error, expected cost). This is the quantity that is optimized under the free-energy principle, which suggests that several global brain theories might be unified within a free-energy framework.

  17. Network Theory and Effects of Transcranial Brain Stimulation Methods on the Brain Networks

    Sema Demirci

    2014-12-01

    Full Text Available In recent years, there has been a shift from classic localizational approaches to new approaches where the brain is considered as a complex system. Therefore, there has been an increase in the number of studies involving collaborations with other areas of neurology in order to develop methods to understand the complex systems. One of the new approaches is graphic theory that has principles based on mathematics and physics. According to this theory, the functional-anatomical connections of the brain are defined as a network. Moreover, transcranial brain stimulation techniques are amongst the recent research and treatment methods that have been commonly used in recent years. Changes that occur as a result of applying brain stimulation techniques on physiological and pathological networks help better understand the normal and abnormal functions of the brain, especially when combined with techniques such as neuroimaging and electroencephalography. This review aims to provide an overview of the applications of graphic theory and related parameters, studies conducted on brain functions in neurology and neuroscience, and applications of brain stimulation systems in the changing treatment of brain network models and treatment of pathological networks defined on the basis of this theory.

  18. Brain metastasis from male breast cancer treated 12 years ago ...

    A month ago, the patient had headache and vomiting complicated by the sudden onset of left hemiplegia. The brain MRI showed a huge right temporal process with a shift of the ... The development of brain metastases has been associated with young age, ... and immunohistochemistry different profiles regardless of gender.

  19. Brain Imaging, Forward Inference, and Theories of Reasoning

    Heit, Evan

    2015-01-01

    This review focuses on the issue of how neuroimaging studies address theoretical accounts of reasoning, through the lens of the method of forward inference (Henson, 2005, 2006). After theories of deductive and inductive reasoning are briefly presented, the method of forward inference for distinguishing between psychological theories based on brain imaging evidence is critically reviewed. Brain imaging studies of reasoning, comparing deductive and inductive arguments, comparing meaningful versus non-meaningful material, investigating hemispheric localization, and comparing conditional and relational arguments, are assessed in light of the method of forward inference. Finally, conclusions are drawn with regard to future research opportunities. PMID:25620926

  20. Brain imaging, forward inference, and theories of reasoning.

    Heit, Evan

    2014-01-01

    This review focuses on the issue of how neuroimaging studies address theoretical accounts of reasoning, through the lens of the method of forward inference (Henson, 2005, 2006). After theories of deductive and inductive reasoning are briefly presented, the method of forward inference for distinguishing between psychological theories based on brain imaging evidence is critically reviewed. Brain imaging studies of reasoning, comparing deductive and inductive arguments, comparing meaningful versus non-meaningful material, investigating hemispheric localization, and comparing conditional and relational arguments, are assessed in light of the method of forward inference. Finally, conclusions are drawn with regard to future research opportunities.

  1. Sexual orientation, theory of mind and empathy: a comparison of male homosexual and male and female heterosexuals.

    Shapouri, Soheil; Nejati, Vahid; Eftekhar Ardebili, Mehrdad

    2015-01-01

    Researchers have been investigating similarities of and differences between homosexuals and heterosexuals for past few decades. Several studies have shown that in the particular domain (e.g., spatial ability), male homosexuals would resemble female heterosexuals better than male heterosexuals. Executive function, however, has received more attention than social cognition in this line of research. This study focuses on theory of mind and empathy as two important components of social cognition in male homosexuals (N=14), male heterosexuals (N=15) and female heterosexuals (N=14). Applying Reading the Mind in the Eyes test and the Empathy Quotient, no significant difference between groups was identified. This study suggests that similarities of male homosexuals and female heterosexuals may be confined to executive function and not extended to some social cognition abilities like theory of mind or empathy.

  2. Longitudinal genetic analysis of brain volumes in normal elderly male twins

    Lessov-Schlaggar, Christina N.; Hardin, Jill; DeCarli, Charles; Krasnow, Ruth E.; Reed, Terry; Wolf, Philip A.; Swan, Gary E.; Carmelli, Dorit

    2010-01-01

    This study investigated the role of genetic and environmental influences on individual differences in brain volumes measured at two time points in normal elderly males from the National Heart, Lung, and Blood Institute Twin Study. The MRI scans were conducted four years apart on 33 monozygotic and 33 dizygotic male twin pairs, aged 68 to 77 years when first scanned. Volumetric measures of total brain and total cerebrospinal fluid were significantly heritable at baseline (over 70%). For both v...

  3. Human brain evolution, theories of innovation, and lessons from the ...

    Home; Journals; Journal of Biosciences; Volume 29; Issue 3. Human brain evolution, theories of innovation, and lessons from the history of technology. Alfred Gierer. Perspectives Volume 29 Issue 3 September 2004 pp 235-244. Fulltext. Click here to view fulltext PDF. Permanent link:

  4. A test of Hirschi's social bonding theory: a comparison of male and female delinquency.

    Ozbay, Ozden; Ozcan, Yusuf Ziya

    2008-04-01

    In this study, Hirschi's social bonding theory is employed to identify what aspects of the theory can explain male and female delinquency and whether social bonding variables can equally explain male and female delinquency (generalizability problem) in a developing society, Turkey. The data include a two-stage-stratified cluster sample of 1,710 high school students from the central districts of Ankara, the capital of Turkey. The findings suggest that social bonding variables play a more important role for male students than for female students. Furthermore, they indicate that components of the social bonding theory can equally explain both male and female delinquent acts.

  5. Differentiation in boron distribution in adult male and female rats' normal brain: A BNCT approach

    Goodarzi, Samereh; Pazirandeh, Ali; Jameie, Seyed Behnamedin; Baghban Khojasteh, Nasrin

    2012-01-01

    Boron distribution in adult male and female rats' normal brain after boron carrier injection (0.005 g Boric Acid+0.005 g Borax+10 ml distilled water, pH: 7.4) was studied in this research. Coronal sections of control and trial animal tissue samples were irradiated with thermal neutrons. Using alpha autoradiography, significant differences in boron concentration were seen in forebrain, midbrain and hindbrain sections of male and female animal groups with the highest value, four hours after boron compound injection. - Highlights: ► Boron distribution in male and female rats' normal brain was studied in this research. ► Coronal sections of animal tissue samples were irradiated with thermal neutrons. ► Alpha and Lithium tracks were counted using alpha autoradiography. ► Different boron concentration was seen in brain sections of male and female rats. ► The highest boron concentration was seen in 4 h after boron compound injection.

  6. An Evolutionary Game Theory Model of Spontaneous Brain Functioning.

    Madeo, Dario; Talarico, Agostino; Pascual-Leone, Alvaro; Mocenni, Chiara; Santarnecchi, Emiliano

    2017-11-22

    Our brain is a complex system of interconnected regions spontaneously organized into distinct networks. The integration of information between and within these networks is a continuous process that can be observed even when the brain is at rest, i.e. not engaged in any particular task. Moreover, such spontaneous dynamics show predictive value over individual cognitive profile and constitute a potential marker in neurological and psychiatric conditions, making its understanding of fundamental importance in modern neuroscience. Here we present a theoretical and mathematical model based on an extension of evolutionary game theory on networks (EGN), able to capture brain's interregional dynamics by balancing emulative and non-emulative attitudes among brain regions. This results in the net behavior of nodes composing resting-state networks identified using functional magnetic resonance imaging (fMRI), determining their moment-to-moment level of activation and inhibition as expressed by positive and negative shifts in BOLD fMRI signal. By spontaneously generating low-frequency oscillatory behaviors, the EGN model is able to mimic functional connectivity dynamics, approximate fMRI time series on the basis of initial subset of available data, as well as simulate the impact of network lesions and provide evidence of compensation mechanisms across networks. Results suggest evolutionary game theory on networks as a new potential framework for the understanding of human brain network dynamics.

  7. African American Male Achievement: Using a Tenet of Critical Theory to Explain the African American Male Achievement Disparity

    Palmer, Robert T.; Maramba, Dina C.

    2011-01-01

    Although African Americans continue to demonstrate a desire for education, Black male enrollment and completion rates in higher education are dismal when compared to other ethnic groups. Researchers and scholars have noted various theories and philosophies responsible for the academic disengagement of African American men in higher education. This…

  8. Social theory and the cognitive-emotional brain.

    Verweij, Marco; Senior, Timothy J

    2015-01-01

    Pessoa's (2013) arguments imply that various leading approaches in the social sciences have not adequately conceptualized how emotion and cognition influence human decision making and social behavior. This is particularly unfortunate, as these approaches have been central to the efforts to build bridges between neuroscience and the social sciences. We argue that it would be better to base these efforts on other social theories that appear more compatible with Pessoa's analysis of the brain.

  9. Rival male relatedness does not affect ejaculate allocation as predicted by sperm competition theory.

    Melissa L Thomas

    Full Text Available When females are sexually promiscuous, the intensity of sperm competition for males depends on how many partners females mate with. To maximize fitness, males should adjust their copulatory investment in relation to this intensity. However, fitness costs associated with sperm competition may not only depend on how many males a female has mated with, but also how related rival males are. According to theoretical predictions, males should adjust their copulatory investment in response to the relatedness of their male rival, and transfer more sperm to females that have first mated with a non-sibling male than females that have mated to a related male. Here, for the first time, we empirically test this theory using the Australian field cricket Teleogryllus oceanicus. We expose male crickets to sperm competition from either a full sibling or non-sibling male, by using both the presence of a rival male and the rival male's actual competing ejaculate as cues. Contrary to predictions, we find that males do not adjust ejaculates in response to the relatedness of their male rival. Instead, males with both full-sibling and non-sibling rivals allocate sperm of similar quality to females. This lack of kin biased behaviour is independent of any potentially confounding effect of strong competition between close relatives; kin biased behaviour was absent irrespective of whether males were raised in full sibling or mixed relatedness groups.

  10. Is the social brain theory applicable to human individual differences? Relationship between sociability personality dimension and brain size.

    Horváth, Klára; Martos, János; Mihalik, Béla; Bódizs, Róbert

    2011-06-17

    Our study intends to examine whether the social brain theory is applicable to human individual differences. According to the social brain theory primates have larger brains as it could be expected from their body sizes due to the adaptation to a more complex social life. Regarding humans there were few studies about the relationship between theory of mind and frontal and temporal brain lobes. We hypothesized that these brain lobes, as well as the whole cerebrum and neocortex are in connection with the Sociability personality dimension that is associated with individuals' social lives. Our findings support this hypothesis as Sociability correlated positively with the examined brain structures if we control the effects of body size differences and age. These results suggest that the social brain theory can be extended to human interindividual differences and they have some implications to personality psychology too.

  11. Review: magnetic resonance imaging of male/female differences in human adolescent brain anatomy

    Giedd Jay N

    2012-08-01

    Full Text Available Abstract Improvements in neuroimaging technologies, and greater access to their use, have generated a plethora of data regarding male/female differences in the developing brain. Examination of these differences may shed light on the pathophysiology of the many illnesses that differ between the sexes and ultimately lead to more effective interventions. In this review, we attempt to synthesize the anatomic magnetic resonance imaging (MRI literature of male/female brain differences with emphasis on studies encompassing adolescence – a time of divergence in physical and behavioral characteristics. Across all ages total brain size is consistently reported to be about 10% larger in males. Structures commonly reported to be different between sexes include the caudate nucleus, amygdala, hippocampus, and cerebellum – all noted to have a relatively high density of sex steroid receptors. The direction and magnitude of reported brain differences depends on the methodology of data acquisition and analysis, whether and how the subcomponents are adjusted for the total brain volume difference, and the age of the participants in the studies. Longitudinal studies indicate regional cortical gray matter volumes follow inverted U shaped developmental trajectories with peak size occurring one to three years earlier in females. Cortical gray matter differences are modulated by androgen receptor genotyope and by circulating levels of hormones. White matter volumes increase throughout childhood and adolescence in both sexes but more rapidly in adolescent males resulting in an expanding magnitude of sex differences from childhood to adulthood.

  12. Brain serotonin signaling does not determine sexual preference in male mice.

    Mariana Angoa-Pérez

    Full Text Available It was reported recently that male mice lacking brain serotonin (5-HT lose their preference for females (Liu et al., 2011, Nature, 472, 95-100, suggesting a role for 5-HT signaling in sexual preference. Regulation of sex preference by 5-HT lies outside of the well established roles in this behavior established for the vomeronasal organ (VNO and the main olfactory epithelium (MOE. Presently, mice with a null mutation in the gene for tryptophan hydroxylase 2 (TPH2, which are depleted of brain 5-HT, were tested for sexual preference. When presented with inanimate (urine scents from male or estrous female or animate (male or female mouse in estrus sexual stimuli, TPH2-/- males show a clear preference for female over male stimuli. When a TPH2-/- male is offered the simultaneous choice between an estrous female and a male mouse, no sexual preference is expressed. However, when confounding behaviors that are seen among 3 mice in the same cage are controlled, TPH2-/- mice, like their TPH2+/+ counterparts, express a clear preference for female mice. Female TPH2-/- mice are preferred by males over TPH2+/+ females but this does not lead to increased pregnancy success. In fact, if one or both partners in a mating pair are TPH2-/- in genotype, pregnancy success rates are significantly decreased. Finally, expression of the VNO-specific cation channel TRPC2 and of CNGA2 in the MOE of TPH2-/- mice is normal, consistent with behavioral findings that sexual preference of TPH2-/- males for females is intact. In conclusion, 5-HT signaling in brain does not determine sexual preference in male mice. The use of pharmacological agents that are non-selective for the 5-HT neuronal system and that have serious adverse effects may have contributed historically to the stance that 5-HT regulates sexual behavior, including sex partner preference.

  13. Male and female brain evolution is subject to contrasting selection pressures in primates

    Dunbar Robin IM

    2007-05-01

    Full Text Available Abstract The claim that differences in brain size across primate species has mainly been driven by the demands of sociality (the "social brain" hypothesis is now widely accepted. Some of the evidence to support this comes from the fact that species that live in large social groups have larger brains, and in particular larger neocortices. Lindenfors and colleagues (BMC Biology 5:20 add significantly to our appreciation of this process by showing that there are striking differences between the two sexes in the social mechanisms and brain units involved. Female sociality (which is more affiliative is related most closely to neocortex volume, but male sociality (which is more competitive and combative is more closely related to subcortical units (notably those associated with emotional responses. Thus different brain units have responded to different selection pressures.

  14. Sigmund Freud-early network theories of the brain.

    Surbeck, Werner; Killeen, Tim; Vetter, Johannes; Hildebrandt, Gerhard

    2018-06-01

    Since the early days of modern neuroscience, psychological models of brain function have been a key component in the development of new knowledge. These models aim to provide a framework that allows the integration of discoveries derived from the fundamental disciplines of neuroscience, including anatomy and physiology, as well as clinical neurology and psychiatry. During the initial stages of his career, Sigmund Freud (1856-1939), became actively involved in these nascent fields with a burgeoning interest in functional neuroanatomy. In contrast to his contemporaries, Freud was convinced that cognition could not be localised to separate modules and that the brain processes cognition not in a merely serial manner but in a parallel and dynamic fashion-anticipating fundamental aspects of current network theories of brain function. This article aims to shed light on Freud's seminal, yet oft-overlooked, early work on functional neuroanatomy and his reasons for finally abandoning the conventional neuroscientific "brain-based" reference frame in order to conceptualise the mind from a purely psychological perspective.

  15. Brain Transcriptional Profiles of Male Alternative Reproductive Tactics and Females in Bluegill Sunfish.

    Partridge, Charlyn G; MacManes, Matthew D; Knapp, Rosemary; Neff, Bryan D

    2016-01-01

    Bluegill sunfish (Lepomis macrochirus) are one of the classic systems for studying male alternative reproductive tactics (ARTs) in teleost fishes. In this species, there are two distinct life histories: parental and cuckolder, encompassing three reproductive tactics, parental, satellite, and sneaker. The parental life history is fixed, whereas individuals who enter the cuckolder life history transition from sneaker to satellite tactic as they grow. For this study, we used RNAseq to characterize the brain transcriptome of the three male tactics and females during spawning to identify gene ontology (GO) categories and potential candidate genes associated with each tactic. We found that sneaker males had higher levels of gene expression differentiation compared to the other two male tactics. Sneaker males also had higher expression in ionotropic glutamate receptor genes, specifically AMPA receptors, compared to other males, which may be important for increased spatial working memory while attempting to cuckold parental males at their nests. Larger differences in gene expression also occurred among male tactics than between males and females. We found significant expression differences in several candidate genes that were previously identified in other species with ARTs and suggest a previously undescribed role for cAMP-responsive element modulator (crem) in influencing parental male behaviors during spawning.

  16. Brain germinoma presenting as a first psychotic episode in an adolescent male

    2010-01-01

    Brain germinoma presenting as a first psychotic episode in an adolescent male phone: +34-93-2275477 (Undurraga, Juan) (Undurraga, Juan) Department of Psychiatry, Institute of Neuroscience, Hospital Clinic de Barcelona - Servicio de Psiquiatria (Escalera 9, Planta 6), Calle Villarroel, 170 - 08036 - Barcelona - SPAIN (Undurraga, Juan) Department of Child and Adolescent Psychology and Psychiatry, Institute of Neuroscience, Hospital Clinic de Barcelona - Barc...

  17. Neurons in the brain of the male cynomolgus monkey accumulate 3H-medroxyprogesterone acetate (MPA)

    Michael, R.P.; Bonsall, R.W.; Rees, H.D.

    1986-01-01

    MPA is a synthetic progestin with androgen-depleting activity. It is used clinically to reduce sexual motivation and aggression in male sex offenders. The mechanisms for its behavioral effects are not known. The authors used steroid autoradiography to help identify sites where MPA may act in the brain of male primates. Twenty-four hours after castration, two adult male cynomolgus macaques, weighing 4.9 and 6.6 kg, were administered 5 mCi 3 H-MPA (NEN, 47.7 Ci/mmol) i.v., and were killed 1 h later. Left sides of the brains and samples of pituitary glands were frozen and 4-micron sections were cut and processed for thaw-mount autoradiography. Radioactivity was concentrated in the nuclei of many neutrons in the ventromedial hypothalamic nucleus (n.), arcuate n., medial preoptic n., and anterior hypothalamic area. Virtually no labeled cells were seen in the bed n. of stria terminalis, lateral septal n., amygdala, or pituitary gland. Right sides of the brains were analyzed by HPLC which demonstrated that 98% of the radioactivity in cell nuclei from the hypothalamus was in the form of unmetabolized 3 H-MPA. The distribution of labelling in the brain following 3 H-MPA administration resembled that previously seen following 3 H-ORG 2058 in female cynomolgus monkeys. These data indicate that MPA has a circumscribed localization in the brain

  18. Alternative life histories shape brain gene expression profiles in males of the same population.

    Aubin-Horth, Nadia; Landry, Christian R; Letcher, Benjamin H; Hofmann, Hans A

    2005-08-22

    Atlantic salmon (Salmo salar) undergo spectacular marine migrations before homing to spawn in natal rivers. However, males that grow fastest early in life can adopt an alternative 'sneaker' tactic by maturing earlier at greatly reduced size without leaving freshwater. While the ultimate evolutionary causes have been well studied, virtually nothing is known about the molecular bases of this developmental plasticity. We investigate the nature and extent of coordinated molecular changes that accompany such a fundamental transformation by comparing the brain transcription profiles of wild mature sneaker males to age-matched immature males (future large anadromous males) and immature females. Of the ca. 3000 genes surveyed, 15% are differentially expressed in the brains of the two male types. These genes are involved in a wide range of processes, including growth, reproduction and neural plasticity. Interestingly, despite the potential for wide variation in gene expression profiles among individuals sampled in nature, consistent patterns of gene expression were found for individuals of the same reproductive tactic. Notably, gene expression patterns in immature males were different both from immature females and sneakers, indicating that delayed maturation and sea migration by immature males, the 'default' life cycle, may actually result from an active inhibition of development into a sneaker.

  19. GROSS MORPHOLOGY AND ENCEPHALIZATION QUOTIENT OF BRAIN IN MALE AND FEMALE VANARAJA CHICKENS AT DIFFERENT AGES

    Kuldeep Kumar Panigrahy

    2017-06-01

    Full Text Available One hundred fifty day-old sexed Vanaraja chicks (75 male + 75 female were taken as experimental birds. Dissection of cranium was performed carefully and study of gross morphology of brain was undertaken at different ages in male and female birds. The brain in situ appeared like a ‘spade’ symbol in playing card but it appeared rather wider and globular in both sexes. The cerebrum varied from pear to oval or even globular in shape in both sexes. On dorsal view, the cerebral hemispheres appeared moderately convex and smooth surfaced. On ventral surface, ill-developed olfactory lobes were observed anteriorly on either side of the median fissure in both male and female Vanaraja birds. The hippocampus was located transversely to the posterior one third parts of both cerebral hemispheres. Duncan’s EQ ranged from 5.801 ± 0.514 (T3-Male to 5.944 ± 0.451 (T1-Female on 21st day. There was significant decrease (p<0.05 in EQ from Day 21 to 42 across all the groups. On 84th day, the range of EQ was 1.346 ± 0.115 (T3-Male to 1.444 ± 0.114 (T1-Female. In case of Cuvier’s EQ, on 21st day the value ranged from 35.079 ± 0.288 (T2-Male to 36.531 ± 0.312 (T3-Female. There was significant reduction (p<0.05 in Cuvier’s EQ value from Trial-I (21st day to Trial-II (42nd day. Again, a significant decrease in EQ value was evident from Trial-III (63rd Day to Trial-IV (84th Day. On 84th day, the EQ ranged from 15.607 ± 0.123 (T3-Male to 16.038c ± 0.125 (T2-Male. Duncan’s formula had very high correlation coefficient with brain length (0.915. There was also very high degree correlation between brain weight and body weight (0.963. Brain weight and neuronal size are also highly correlated (0.902. Neuronal size and brain volume are also having a high correlation (0.902. The EQ values had medium correlation with neuronal size (0.701 for Cuvier’s Formula and 0.713 for Duncan’s formula. Duncan’s and Cuvier’s value had a very high degree of correlation

  20. Graph theory analysis of complex brain networks: new concepts in brain mapping applied to neurosurgery.

    Hart, Michael G; Ypma, Rolf J F; Romero-Garcia, Rafael; Price, Stephen J; Suckling, John

    2016-06-01

    Neuroanatomy has entered a new era, culminating in the search for the connectome, otherwise known as the brain's wiring diagram. While this approach has led to landmark discoveries in neuroscience, potential neurosurgical applications and collaborations have been lagging. In this article, the authors describe the ideas and concepts behind the connectome and its analysis with graph theory. Following this they then describe how to form a connectome using resting state functional MRI data as an example. Next they highlight selected insights into healthy brain function that have been derived from connectome analysis and illustrate how studies into normal development, cognitive function, and the effects of synthetic lesioning can be relevant to neurosurgery. Finally, they provide a précis of early applications of the connectome and related techniques to traumatic brain injury, functional neurosurgery, and neurooncology.

  1. Brain oxytocin: a key regulator of emotional and social behaviours in both females and males.

    Neumann, I D

    2008-06-01

    In addition to various reproductive stimuli, the neuropeptide oxytocin (OXT) is released both from the neurohypophysial terminal into the blood stream and within distinct brain regions in response to stressful or social stimuli. Brain OXT receptor-mediated actions were shown to be significantly involved in the regulation of a variety of behaviours. Here, complementary methodological approaches are discussed which were utilised to reveal, for example, anxiolytic and anti-stress effects of OXT, both in females and in males, effects that were localised within the central amygdala and the hypothalamic paraventricular nucleus. Also, in male rats, activation of the brain OXT system is essential for the regulation of sexual behaviour, and increased OXT system activity during mating is directly linked to an attenuated anxiety-related behaviour. Moreover, in late pregnancy and during lactation, central OXT is involved in the establishment and fine-tuned maintenance of maternal care and maternal aggression. In monogamous prairie voles, brain OXT is important for mating-induced pair bonding, especially in females. Another example of behavioural actions of intracerebral OXT is the promotion of social memory processes and recognition of con-specifics, as revealed in rats, mice, sheep and voles. Experimental evidence suggests that, in humans, brain OXT exerts similar behavioural effects. Thus, the brain OXT system seems to be a potential target for the development of therapeutics to treat anxiety- and depression-related diseases or abnormal social behaviours including autism.

  2. Toward a brain-based theory of beauty.

    Ishizu, Tomohiro; Zeki, Semir

    2011-01-01

    We wanted to learn whether activity in the same area(s) of the brain correlate with the experience of beauty derived from different sources. 21 subjects took part in a brain-scanning experiment using functional magnetic resonance imaging. Prior to the experiment, they viewed pictures of paintings and listened to musical excerpts, both of which they rated on a scale of 1-9, with 9 being the most beautiful. This allowed us to select three sets of stimuli--beautiful, indifferent and ugly--which subjects viewed and heard in the scanner, and rated at the end of each presentation. The results of a conjunction analysis of brain activity showed that, of the several areas that were active with each type of stimulus, only one cortical area, located in the medial orbito-frontal cortex (mOFC), was active during the experience of musical and visual beauty, with the activity produced by the experience of beauty derived from either source overlapping almost completely within it. The strength of activation in this part of the mOFC was proportional to the strength of the declared intensity of the experience of beauty. We conclude that, as far as activity in the brain is concerned, there is a faculty of beauty that is not dependent on the modality through which it is conveyed but which can be activated by at least two sources--musical and visual--and probably by other sources as well. This has led us to formulate a brain-based theory of beauty.

  3. Implicit Leadership Theories: Do they differ for male and female leaders?

    Haupts, Tristan

    2015-01-01

    Implicit leadership theories have been shown to be potent in the development of global leadership models that accommodate the challenges posed to leadership efforts in a globalized world. Furthermore, the rise of women to leadership positions warrants investigations of whether individuals hold differing implicit leadership theories for men and women. The purpose of this study was to investigate whether implicit leadership theories differ for male and female leaders, and whether the difference...

  4. Brain activation associated to olfactory conditioned same-sex partner preference in male rats.

    Coria-Avila, Genaro A; Cibrian-Llanderal, Tamara; Díaz-Estrada, Victor X; García, Luis I; Toledo-Cárdenas, Rebeca; Pfaus, James G; Manzo, Jorge

    2018-03-01

    Sexual preferences can be strongly modified by Pavlovian learning. For instance, olfactory conditioned same-sex partner preference can occur when a sexually naïve male cohabits with an scented male during repeated periods under the effects of enhanced D2-type activity. Preference is observed days later via social and sexual behaviors. Herein we explored brain activity related to learned same-sex preference (Fos-Immunoreactivity, IR) following exposure to a conditioned odor paired with same-sex preference. During conditioning trials males received either saline or the D2-type receptor agonist quinpirole (QNP) and cohabitated during 24 h with a stimulus male that bore almond scent on the back as conditioned stimulus. This was repeated every 4 days, for a total of three trials. In a drug-free final test we assessed socio/sexual partner preference between the scented male and a receptive female. The results indicated that QNP-conditioned males developed a same-sex preference observed via contact, time spent, olfactory investigations, and non-contact erections. By contrast, saline-conditioned and intact (non-exposed to conditioning) males expressed an unconditioned preference for the female. Four days later the males were exposed to almond scent and their brains were processed for Fos-IR. Results indicated that the QNP-conditioned group expressed more Fos-IR in the nucleus accumbens (AcbSh), medial preoptic area (MPA), piriform cortex (Pir) and ventromedial nucleus of the hypothalamus (VMH) as compared to saline-conditioned. Intact males expressed the lowest Fos-IR in AcbSh and VMH, but the highest in MPA and Pir. We discuss the role of these areas in the learning process of same-sex partner preferences and olfactory discrimination. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Distribution of kappa opioid receptors in the brain of young and old male rats

    Maggi, R.; Limonta, P.; Dondi, D.; Martini, L.; Piva, F.

    1989-01-01

    The experiments to be described have been designed in order to: (a) provide new information on the concentrations of opioid kappa receptors in different regions of the brain of the male rats; and (b) to analyze whether the density of brain kappa receptors might be modified by the process of aging. The concentration of kappa receptors was investigated in the hypothalamus, amygdala, mesencephalon, corpus striatum, hippocampus, thalamus, frontal poles, anterior and posterior cortex collected from male rats of 2 and 19 months of age. 3 H-bremazocine (BRZ) was used as the ligand of kappa receptors, after protection of mu and delta receptors respectively with dihydromorphine and d-ala-d-leu-enkephalin. The results obtained show that: (1) in young male rats, the number of kappa opioid receptors is different in the various brain areas examined. (2) Aging exerts little influence on the number of kappa receptors in the majority of the brain structures considered. However in the amygdala and in the thalamus the number of kappa receptors was increased in old animals

  6. Epigenetic control of vasopressin expression is maintained by steroid hormones in the adult male rat brain

    Auger, Catherine J.; Coss, Dylan; Auger, Anthony P.; Forbes-Lorman, Robin M.

    2011-01-01

    Although some DNA methylation patterns are altered by steroid hormone exposure in the developing brain, less is known about how changes in steroid hormone levels influence DNA methylation patterns in the adult brain. Steroid hormones act in the adult brain to regulate gene expression. Specifically, the expression of the socially relevant peptide vasopressin (AVP) within the bed nucleus of the stria terminalis (BST) of adult brain is dependent upon testosterone exposure. Castration dramatically reduces and testosterone replacement restores AVP expression within the BST. As decreases in mRNA expression are associated with increases in DNA promoter methylation, we explored the hypothesis that AVP expression in the adult brain is maintained through sustained epigenetic modifications of the AVP gene promoter. We find that castration of adult male rats resulted in decreased AVP mRNA expression and increased methylation of specific CpG sites within the AVP promoter in the BST. Similarly, castration significantly increased estrogen receptor α (ERα) mRNA expression and decreased ERα promoter methylation within the BST. These changes were prevented by testosterone replacement. This suggests that the DNA promoter methylation status of some steroid responsive genes in the adult brain is actively maintained by the presence of circulating steroid hormones. The maintenance of methylated or demethylated states of some genes in the adult brain by the presence of steroid hormones may play a role in the homeostatic regulation of behaviorally relevant systems. PMID:21368111

  7. Implications of male circumcision for women in Papua New Guinea: a transformational grounded theory study.

    Redman-MacLaren, Michelle; Mills, Jane; Tommbe, Rachael; MacLaren, David; Speare, Rick; McBride, William J H

    2017-07-27

    Male circumcision reduces the risk of female-to-male transmission of human immunodeficiency virus (HIV) and is being explored for HIV prevention in Papua New Guinea (PNG). PNG has a concentrated HIV epidemic which is largely heterosexually transmitted. There are a diverse range of male circumcision and penile modification practices across PNG. Exploring the implications of male circumcision for women in PNG is important to inform evidence-based health policy that will result in positive, intended consequences. The transformational grounded theory study incorporated participatory action research and decolonizing methodologies. In Phase One, an existing data set from a male circumcision study of 861 male and 519 female participants was theoretically sampled and analyzed for women's understanding and experience of male circumcision. In Phase Two of the study, primary data were co-generated with 64 women in seven interpretive focus group discussions and 11 semi-structured interviews to develop a theoretical model of the processes used by women to manage the outcomes of male circumcision. In Phase Three participants assisted to refine the developing transformational grounded theory and identify actions required to improve health. Many women know a lot about male circumcision and penile modification and the consequences for themselves, their families and communities. Their ability to act on this knowledge is determined by numerous social, cultural and economic factors. A transformational grounded theory was developed with connecting categories of: Women Know a Lot, Increasing Knowledge; Increasing Options; and Acting on Choices. Properties and dimensions of each category are represented in the model, along with the intervening condition of Safety. The condition of Safety contextualises the overarching lived realty for women in PNG, enables the inclusion of men in the transformational grounded theory model, and helps to explain relationships between men and women. The

  8. The relationship between age and brain response to visual erotic stimuli in healthy heterosexual males.

    Seo, Y; Jeong, B; Kim, J-W; Choi, J

    2010-01-01

    The various changes of sexuality, including decreased sexual desire and erectile dysfunction, are also accompanied with aging. To understand the effect of aging on sexuality, we explored the relationship between age and the visual erotic stimulation-related brain response in sexually active male subjects. Twelve healthy, heterosexual male subjects (age 22-47 years) were recorded the functional magnetic resonance imaging (fMRI) signals of their brain activation elicited by passive viewing erotic (ERO), happy-faced (HA) couple, food and nature pictures. Mixed effect analysis and correlation analysis were performed to investigate the relationship between the age and the change of brain activity elicited by erotic stimuli. Our results showed age was positively correlated with the activation of right occipital fusiform gyrus and amygdala, and negatively correlated with the activation of right insula and inferior frontal gyrus. These findings suggest age might be related with functional decline in brain regions being involved in both interoceptive sensation and prefrontal modulation while it is related with the incremental activity of the brain region for early processing of visual emotional stimuli in sexually healthy men.

  9. Neuroscience, virtual reality and neurorehabilitation: brain repair as a validation of brain theory.

    Verschure, Paul F M J

    2011-01-01

    This paper argues that basing cybertherapy approaches on a theoretical understanding of the brain has advantages. On one hand it provides for a rational approach towards therapy design while on the other allowing for a direct validation of brain theory in the clinic. As an example this paper discusses how the Distributed Adaptive Control architecture, a theory of mind, brain and action, has given rise to a new paradigm in neurorehabilitation called the Rehabilitation Gaming System (RGS) and to novel neuroprosthetic systems. The neuroprosthetic system considered is developed to replace the function of cerebellar micro-circuits, expresses core aspects of the learning systems of DAC and has been successfully tested in in-vivo experiments. The Virtual reality based rehabilitation paradigm of RGS has been validated in the treatment of acute and chronic stroke and has been shown to be more effective than existing methods. RGS provides a foundation for integrated at-home therapy systems that can operate largely autonomously when also augmented with appropriate physiological monitoring and diagnostic devices. These examples provide first steps towards a science based medicine.

  10. Brain activation by visual erotic stimuli in healthy middle aged males.

    Kim, S W; Sohn, D W; Cho, Y-H; Yang, W S; Lee, K-U; Juh, R; Ahn, K-J; Chung, Y-A; Han, S-I; Lee, K H; Lee, C U; Chae, J-H

    2006-01-01

    The objective of the present study was to identify brain centers, whose activity changes are related to erotic visual stimuli in healthy, heterosexual, middle aged males. Ten heterosexual, right-handed males with normal sexual function were entered into the present study (mean age 52 years, range 46-55). All potential subjects were screened over 1 h interview, and were encouraged to fill out questionnaires including the Brief Male Sexual Function Inventory. All subjects with a history of sexual arousal disorder or erectile dysfunction were excluded. We performed functional brain magnetic resonance imaging (fMRI) in male volunteers when an alternatively combined erotic and nonerotic film was played for 14 min and 9 s. The major areas of activation associated with sexual arousal to visual stimuli were occipitotemporal area, anterior cingulate gyrus, insula, orbitofrontal cortex, caudate nucleus. However, hypothalamus and thalamus were not activated. We suggest that the nonactivation of hypothalamus and thalamus in middle aged males may be responsible for the lesser physiological arousal in response to the erotic visual stimuli.

  11. The mating brain: early maturing sneaker males maintain investment into the brain also under fast body growth in Atlantic salmon (Salmo salar).

    Kotrschal, Alexander; Trombley, Susanne; Rogell, Björn; Brannström, Ioana; Foconi, Eric; Schmitz, Monika; Kolm, Niclas

    It has been suggested that mating behaviours require high levels of cognitive ability. However, since investment into mating and the brain both are costly features, their relationship is likely characterized by energetic trade-offs. Empirical data on the subject remains equivocal. We investigated if early sexual maturation was associated with brain development in Atlantic salmon ( Salmo salar ), in which males can either stay in the river and sexually mature at a small size (sneaker males) or migrate to the sea and delay sexual maturation until they have grown much larger (anadromous males). Specifically, we tested how sexual maturation may induce plastic changes in brain development by rearing juveniles on either natural or ad libitum feeding levels. After their first season we compared brain size and brain region volumes across both types of male mating tactics and females. Body growth increased greatly across both male mating tactics and females during ad libitum feeding as compared to natural feeding levels. However, despite similar relative increases in body size, early maturing sneaker males maintained larger relative brain size during ad libitum feeding levels as compared to anadromous males and females. We also detected several differences in the relative size of separate brain regions across feeding treatments, sexes and mating strategies. For instance, the relative size of the cognitive centre of the brain, the telencephalon, was largest in sneaker males. Our data support that a large relative brain size is maintained in individuals that start reproduction early also during fast body growth. We propose that the cognitive demands during complex mating behaviours maintain a high level of investment into brain development in reproducing individuals.

  12. Sex-specific signaling in the blood-brain barrier is required for male courtship in Drosophila.

    Valbona Hoxha

    Full Text Available Soluble circulating proteins play an important role in the regulation of mating behavior in Drosophila melanogaster. However, how these factors signal through the blood-brain barrier (bbb to interact with the sex-specific brain circuits that control courtship is unknown. Here we show that male identity of the blood-brain barrier is necessary and that male-specific factors in the bbb are physiologically required for normal male courtship behavior. Feminization of the bbb of adult males significantly reduces male courtship. We show that the bbb-specific G-protein coupled receptor moody and bbb-specific Go signaling in adult males are necessary for normal courtship. These data identify sex-specific factors and signaling processes in the bbb as important regulators of male mating behavior.

  13. Organizational effects of diethylstilbestrol on brain vasotocin and sexual behavior in male quail.

    Viglietti-Panzica, Carla; Montoncello, Barbara; Mura, Elena; Pessatti, Marzia; Panzica, GianCarlo

    2005-04-15

    In Japanese quail, we previously described a sexual dimorphism of the parvocellular vasotocin system of the limbic region that, as the reproductive behavior, is steroid-sensitive and is organized during embryonic life by the exposure to estradiol. We verified in this study whether diethylstilbestrol, a chemical xenoestrogen, has analogous organizational effects on the vasotocin system of limbic regions and on copulatory behavior of male Japanese quail. We injected in the yolk sac of 3 day-old quail embryos diethylstilbestrol or estradiol benzoate (a treatment which suppresses male copulatory behavior in adulthood and reduces vasotocin innervation), or sesame oil (control). No further hormonal manipulations were performed after hatching. Sexual behavior was recorded in males at the age of 6 weeks. Estradiol- and diethylstilbestrol-treated males exhibited a total suppression of copulatory behavior. After behavioral tests, all males were sacrificed and brain sections processed for vasotocin immunocytochemistry. Significant decrease in the density of vasotocin immunoreactivity was detected in the medial preoptic nucleus, in the bed nucleus of stria terminalis, and in the lateral septum of diethylstilbestrol-treated males. The magnocellular vasotocin neurons were, in contrast, not affected. In conclusion, the present data demonstrate that embryonic treatment with diethylstilbestrol induces a full sex reversal of behavioral phenotype as well as a significant decrease of vasotocin expression in the preoptic-limbic region in male Japanese quail. Therefore, the parvocellular vasotocin system could represent an optimal model to investigate the effects of pollutants on neural circuits controlling reproductive functions.

  14. Effects of Bisphenol A on glucose homeostasis and brain insulin signaling pathways in male mice.

    Fang, Fangfang; Chen, Donglong; Yu, Pan; Qian, Wenyi; Zhou, Jing; Liu, Jingli; Gao, Rong; Wang, Jun; Xiao, Hang

    2015-02-01

    The potential effects of Bisphenol A (BPA) on peripheral insulin resistance have recently gained more attention, however, its functions on brain insulin resistance are still unknown. The aim of the present study was to investigate the effects of BPA on insulin signaling and glucose transport in mouse brain. The male mice were administrated of 100 μg/kg/day BPA or vehicle for 15 days then challenged with glucose and insulin tolerance tests. The insulin levels were detected with radioimmunoassay (RIA), and the insulin signaling pathways were investigated by Western blot. Our results revealed that BPA significantly increased peripheral plasma insulin levels, and decreased the insulin signals including phosphorylated insulin receptor (p-IR), phosphorylated insulin receptor substrate 1 (p-IRS1), phosphorylated protein kinase B (p-AKT), phosphorylated glycogen synthase kinase 3β (p-GSK3β) and phosphorylated extracellular regulated protein kinases (p-ERK1/2) in the brain, though insulin expression in both hippocampus and profrontal cortex was increased. In parallel, BPA exposure might contribute to glucose transport disturbance in the brain since the expression of glucose transporters were markedly decreased. In conclusion, BPA exposure perturbs the insulin signaling and glucose transport in the brain, therefore, it might be a risk factor for brain insulin resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Prenatal exposure to paracetamol/acetaminophen and precursor aniline impairs masculinisation of male brain and behaviour

    Hay-Schmidt , Anders; Finkielman , Olivia T. Ejlstrup; Jensen , Benjamin A. H.; Høgsbro , Christine F.; Bak Holm , Jacob; Johansen , Kristoffer Haurum; Jensen , Tina Kold; Andrade , Anderson Martino; Swan , Shanna H.; Bornehag , Carl-Gustaf; Brunak , Soren; Jégou , Bernard; Kristiansen , Karsten; Kristensen , David Møbjerg

    2017-01-01

    International audience; Paracetamol/acetaminophen (N-Acetyl-p-Aminophenol; APAP) is the preferred analgesic for pain relief and fever during pregnancy. It has therefore caused concern that several studies have reported that prenatal exposure to APAP results in developmental alterations in both the reproductive tract and the brain. Genitals and nervous system of male mammals are actively masculinised during foetal development and early postnatal life by the combined actions of prostaglandins a...

  16. Rapid decreases in preoptic aromatase activity and brain monoamine concentrations after engaging in male sexual behavior.

    Cornil, C A; Dalla, C; Papadopoulou-Daifoti, Z; Baillien, M; Dejace, C; Ball, G F; Balthazart, J

    2005-09-01

    In Japanese quail, as in rats, the expression of male sexual behavior over relatively long time periods (days to weeks) is dependent on the local production of estradiol in the preoptic area via the aromatization of testosterone. On a short-term basis (minutes to hours), central actions of dopamine as well as locally produced estrogens modulate behavioral expression. In rats, a view of and sexual interaction with a female increase dopamine release in the preoptic area. In quail, in vitro brain aromatase activity (AA) is rapidly modulated by calcium-dependent phosphorylations that are likely to occur in vivo as a result of changes in neurotransmitter activity. Furthermore, an acute estradiol injection rapidly stimulates copulation in quail, whereas a single injection of the aromatase inhibitor vorozole rapidly inhibits this behavior. We hypothesized that brain aromatase and dopaminergic activities are regulated in quail in association with the expression of male sexual behavior. Visual access as well as sexual interactions with a female produced a significant decrease in brain AA, which was maximal after 5 min. This expression of sexual behavior also resulted in a significant decrease in dopaminergic as well as serotonergic activity after 1 min, which returned to basal levels after 5 min. These results demonstrate for the first time that AA is rapidly modulated in vivo in parallel with changes in dopamine activity. Sexual interactions with the female decreased aromatase and dopamine activities. These data challenge established views about the causal relationships among dopamine, estrogen action, and male sexual behavior.

  17. Brain and gonadal aromatase activity and steroid hormone levels in female and polymorphic males of the peacock blenny Salaria pavo.

    Gonçalves, David; Teles, Magda; Alpedrinha, João; Oliveira, Rui F

    2008-11-01

    In the peacock blenny Salaria pavo large males with well-developed secondary sexual characters establish nests and attract females while small "sneaker" males mimic female sexual displays in order to approach the nests of larger males and parasitically fertilize eggs. These alternative reproductive tactics are sequential, as sneakers irreversibly switch into nesting males. This transition involves major morphologic and behavioral changes and is likely to be mediated by hormones. This study focuses on the role of aromatase, an enzyme that catalyses the conversion of androgens into estrogens, in the regulation of male sexual polymorphism in S. pavo. For this, sex steroid plasma levels and aromatase activity (AA) in gonads, whole brain and brain macroareas were determined in sneakers, transitional males (i.e. sneakers undergoing the transition into nesting males), nesting males and females collected in the field. AA was much higher in ovarian tissue than in testicular tissue and accordingly circulating estradiol levels were highest in females. This supports the view that elevated AA and estradiol levels are associated with the development of a functional ovary. Transitional males are in a non-reproductive phase and had underdeveloped testes when compared with sneakers and nesting males. Testicular AA was approximately 10 times higher in transitional males when compared with sneakers and nesting males, suggesting high AA has a suppressive effect on testicular development. Nesting males had significantly higher plasma levels of both testosterone (T) and 11-ketotestosterone when compared with the other male morphs and previous studies demonstrated that these androgens suppress female-like displays in sneakers. In the brain, AA was highest in macroareas presumably containing hypothalamic nuclei traditionally associated with the regulation of reproductive behaviors. Overall, females presented the highest levels of brain AA. In male morphs AA increased from sneakers, to

  18. Using Gender Role Conflict Theory in Counseling Male-to-Female Transgender Individuals

    Wester, Stephen R.; McDonough, Tracy A.; White, Maureen; Vogel, David L.; Taylor, Lareena

    2010-01-01

    Ignoring gender socialization while counseling transgender clients neglects a significant aspect of the transgender experience. To address this, the authors review the literature on gender role conflict (GRC) theory as it pertains to the transgender experience of biological males whose authentic self is female. They explore the main types of…

  19. Understanding Reduced-Fat Milk Consumption among Male Adolescents Using the Theory of Planned Behavior

    Kassem, Nada O.; Lee, Jerry W.

    2005-01-01

    This study identifies factors that influences reduced-fat milk consumption among 560 male students, ages 13-18 years, attending North Los Angeles County public high schools. Participants completed a group-administered Theory of Planned Behavior-based questionnaire. The majority of the participants, 94.8%, reported that they currently drank some…

  20. Normal Patterns of Deja Experience in a Healthy, Blind Male: Challenging Optical Pathway Delay Theory

    O'Connor, Akira R.; Moulin, Christopher J. A.

    2006-01-01

    We report the case of a 25-year-old healthy, blind male, MT, who experiences normal patterns of deja vu. The optical pathway delay theory of deja vu formation assumes that neuronal input from the optical pathways is necessary for the formation of the experience. Surprisingly, although the sensation of deja vu is known to be experienced by blind…

  1. The Persistence of Erroneous Familiarity in an Epileptic Male: Challenging Perceptual Theories of Deja Vu Activation

    O'Connor, Akira R.; Moulin, Christopher J. A.

    2008-01-01

    We report the case of a 39-year-old, temporal lobe epileptic male, MH. Prior to complex partial seizure, experienced up to three times a day, MH often experiences an aura experienced as a persistent sensation of deja vu. Data-driven theories of deja vu formation suggest that partial familiarity for the perceived stimulus is responsible for the…

  2. Hot heads and cold brains. Aristotle, Galen and the "radiator theory".

    Longo, O

    1996-01-01

    The Author examines two similar theories about the functioning of human brain as a refrigerator: Falk's and Fialkowski's (1990) and Aristotle's (IVth century b.C.). There are surprising, although fortuitous, convergences between the two, with the remarkable difference, however, that Artistotle's doctrine (later severely criticized by Galen) thinks of the brain merely as an organ for the cooling of the body's (the heart's) heat, while according to the modern radiator theory the human brain developed starting as a refrigerator of itself.

  3. Prenatal exposure to paracetamol/acetaminophen and precursor aniline impairs masculinisation of male brain and behaviour.

    Hay-Schmidt, Anders; Finkielman, Olivia T Ejlstrup; Jensen, Benjamin A H; Høgsbro, Christine F; Bak Holm, Jacob; Johansen, Kristoffer Haurum; Jensen, Tina Kold; Andrade, Anderson Martino; Swan, Shanna H; Bornehag, Carl-Gustaf; Brunak, Søren; Jegou, Bernard; Kristiansen, Karsten; Kristensen, David Møbjerg

    2017-08-01

    Paracetamol/acetaminophen (N-Acetyl-p-Aminophenol; APAP) is the preferred analgesic for pain relief and fever during pregnancy. It has therefore caused concern that several studies have reported that prenatal exposure to APAP results in developmental alterations in both the reproductive tract and the brain. Genitals and nervous system of male mammals are actively masculinised during foetal development and early postnatal life by the combined actions of prostaglandins and androgens, resulting in the male-typical reproductive behaviour seen in adulthood. Both androgens and prostaglandins are known to be inhibited by APAP. Through intrauterine exposure experiments in C57BL/6 mice, we found that exposure to APAP decreased neuronal number in the sexually dimorphic nucleus (SDN) of the preoptic area (POA) in the anterior hypothalamus of male adult offspring. Likewise, exposure to the environmental pollutant and precursor of APAP, aniline, resulted in a similar reduction. Decrease in neuronal number in the SDN-POA is associated with reductions in male sexual behaviour. Consistent with the changes, male mice exposed in uteri to APAP exhibited changes in urinary marking behaviour as adults and had a less aggressive territorial display towards intruders of the same gender. Additionally, exposed males had reduced intromissions and ejaculations during mating with females in oestrus. Together, these data suggest that prenatal exposure to APAP may impair male sexual behaviour in adulthood by disrupting the sexual neurobehavioral programming. These findings add to the growing body of evidence suggesting the need to limit the widespread exposure and use of APAP by pregnant women. © 2017 Society for Reproduction and Fertility.

  4. Social Cognitive Theory and Physical Activity Among Korean Male High-School Students.

    Lee, Chung Gun; Park, Seiyeong; Lee, Seung Hwan; Kim, Hyunwoo; Park, Ji-Won

    2018-02-01

    The most critical step in developing and implementing effective physical activity interventions is to understand the determinants and correlates of physical activity, and it is strongly suggested that such effort should be based on theories. The purpose of this study is to test the direct, indirect, and total effect of social cognitive theory constructs on physical activity among Korean male high-school students. Three-hundred and forty-one 10th-grade male students were recruited from a private single-sex high school located in Seoul, South Korea. Structural equation modeling was used to test the expected relationships among the latent variables. The proposed model accounted for 42% of the variance in physical activity. Self-efficacy had the strongest total effect on physical activity. Self-efficacy for being physically active was positively associated with physical activity ( p social cognitive theory is a useful framework to understand physical activity among Korean male adolescents. Physical activity interventions targeting Korean male high-school students should focus on the major sources of efficacy.

  5. Regional Brain Activity in Abstinent Methamphetamine Dependent Males Following Cue Exposure.

    Malcolm, Robert; Myrick, Hugh; Li, Xingbao; Henderson, Scott; Brady, Kathleen T; George, Mark S; See, Ronald E

    Neuroimaging of drug-associated cue presentations has aided in understanding the neurobiological substrates of craving and relapse for cocaine, alcohol, and nicotine. However, imaging of cue-reactivity in methamphetamine addiction has been much less studied. Nine caucasian male methamphetamine-dependent subjects and nine healthy controls were scanned in a Phillips 3.0T MRI scan when they viewed a randomized presentation of visual cues of methamphetamine, neutral objects, and rest conditions. Functional Imaging data were analyzed with Statistical Parametric Mapping software 5 (SPM 5). Methamphetamine subjects had significant brain activation in the ventral striatum and medial frontal cortex in comparison to meth pictures and neutral pictures in healthy controls (pcues, have increased brain activity in ventral striatum, caudate nucleus and medial frontal cortex which subserve craving, drug-seeking, and drug use.

  6. Evidence for an inhibitory-control theory of the reasoning brain.

    Houdé, Olivier; Borst, Grégoire

    2015-01-01

    In this article, we first describe our general inhibitory-control theory and, then, we describe how we have tested its specific hypotheses on reasoning with brain imaging techniques in adults and children. The innovative part of this perspective lies in its attempt to come up with a brain-based synthesis of Jean Piaget's theory on logical algorithms and Daniel Kahneman's theory on intuitive heuristics.

  7. In vivo brain anatomy of adult males with Fragile X syndrome: an MRI study.

    Hallahan, Brian P; Craig, Michael C; Toal, Fiona; Daly, Eileen M; Moore, Caroline J; Ambikapathy, Anita; Robertson, Dene; Murphy, Kieran C; Murphy, Declan G M

    2011-01-01

    Fragile X Syndrome (FraX) is caused by the expansion of a single trinucleotide gene sequence (CGG) on the X chromosome, and is a leading cause of learning disability (mental retardation) worldwide. Relatively few studies, however, have examined the neuroanatomical abnormalities associated with FraX. Of those that are available many included mixed gender populations, combined FraX children and adults into one sample, and employed manual tracing techniques which measures bulk volume of particular regions. Hence, there is relatively little information on differences in grey and white matter content across whole brain. We employed magnetic resonance imaging to investigate brain anatomy in 17 adult males with FraX and 18 healthy controls that did not differ significantly in age. Data were analysed using stereology and VBM to compare (respectively) regional brain bulk volume, and localised grey/white matter content. Using stereology we found that FraX males had a significant increase in bulk volume bilaterally of the caudate nucleus and parietal lobes and of the right brainstem, but a significant decrease in volume of the left frontal lobe. Our complimentary VBM analysis revealed an increased volume of grey matter in fronto-striatal regions (including bilaterally in the caudate nucleus), and increased white matter in regions extending from the brainstem to the parahippocampal gyrus, and from the left cingulate cortex extending into the corpus callosum. People with FraX have regionally specific differences in brain anatomy from healthy controls with enlargement of the caudate nuclei that persists into adulthood. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. In vivo brain anatomy of adult males with Fragile X syndrome: an MRI study.

    Hallahan, Brian P

    2011-01-01

    Fragile X Syndrome (FraX) is caused by the expansion of a single trinucleotide gene sequence (CGG) on the X chromosome, and is a leading cause of learning disability (mental retardation) worldwide. Relatively few studies, however, have examined the neuroanatomical abnormalities associated with FraX. Of those that are available many included mixed gender populations, combined FraX children and adults into one sample, and employed manual tracing techniques which measures bulk volume of particular regions. Hence, there is relatively little information on differences in grey and white matter content across whole brain. We employed magnetic resonance imaging to investigate brain anatomy in 17 adult males with FraX and 18 healthy controls that did not differ significantly in age. Data were analysed using stereology and VBM to compare (respectively) regional brain bulk volume, and localised grey\\/white matter content. Using stereology we found that FraX males had a significant increase in bulk volume bilaterally of the caudate nucleus and parietal lobes and of the right brainstem, but a significant decrease in volume of the left frontal lobe. Our complimentary VBM analysis revealed an increased volume of grey matter in fronto-striatal regions (including bilaterally in the caudate nucleus), and increased white matter in regions extending from the brainstem to the parahippocampal gyrus, and from the left cingulate cortex extending into the corpus callosum. People with FraX have regionally specific differences in brain anatomy from healthy controls with enlargement of the caudate nuclei that persists into adulthood.

  9. Foveal splitting causes differential processing of Chinese orthography in the male and female brain.

    Hsiao, Janet Hui-Wen; Shillcock, Richard

    2005-10-01

    Chinese characters contain separate phonetic and semantic radicals. A dominant character type exists in which the semantic radical is on the left and the phonetic radical on the right; an opposite, minority structure also exists, with the semantic radical on the right and the phonetic radical on the left. We show that, when asked to pronounce isolated tokens of these two character types, males responded significantly faster when the phonetic information was on the right, whereas females showed a non-significant tendency in the opposite direction. Recent research on foveal structure and reading suggests that the two halves of a centrally fixated character are initially processed in different hemispheres. The male brain typically relies more on the left hemisphere for phonological processing compared with the female brain, causing this gender difference to emerge. This interaction is predicted by an implemented computational model. This study supports the existence of a gender difference in phonological processing, and shows that the effects of foveal splitting in reading extend far enough into word recognition to interact with the gender of the reader in a naturalistic reading task.

  10. Testes and brain gene expression in precocious male and adult maturing Atlantic salmon (Salmo salar

    Houeix Benoit

    2010-03-01

    Full Text Available Abstract Background The male Atlantic salmon generally matures in fresh water upon returning after one or several years at sea. Some fast-growing male parr develop an alternative life strategy where they sexually mature before migrating to the oceans. These so called 'precocious' parr or 'sneakers' can successfully fertilise adult female eggs and so perpetuate their line. We have used a custom-built cDNA microarray to investigate gene expression changes occurring in the salmon gonad and brain associated with precocious maturation. The microarray has been populated with genes selected specifically for involvement in sexual maturation (precocious and adult and in the parr-smolt transformation. Results Immature and mature parr collected from a hatchery-reared stock in January were significantly different in weight, length and condition factor. Changes in brain expression were small - never more than 2-fold on the microarray, and down-regulation of genes was much more pronounced than up-regulation. Significantly changing genes included isotocin, vasotocin, cathepsin D, anamorsin and apolipoprotein E. Much greater changes in expression were seen in the testes. Among those genes in the testis with the most significant changes in expression were anti-Mullerian hormone, collagen 1A, and zinc finger protein (Zic1, which were down-regulated in precocity and apolipoproteins E and C-1, lipoprotein lipase and anti-leukoproteinase precursor which were up-regulated in precocity. Expression changes of several genes were confirmed in individual fish by quantitative PCR and several genes (anti-Mullerian hormone, collagen 1A, beta-globin and guanine nucleotide binding protein (G protein beta polypeptide 2-like 1 (GNB2L1 were also examined in adult maturing testes. Down-regulation of anti-Mullerian hormone was judged to be greater than 160-fold for precocious males and greater than 230-fold for November adult testes in comparison to July testes by this method. For

  11. Effects of GSM modulated radio-frequency electromagnetic radiation on permeability of blood-brain barrier in male & female rats.

    Sırav, Bahriye; Seyhan, Nesrin

    2016-09-01

    With the increased use of mobile phones, their biological and health effects have become more important. Usage of mobile phones near the head increases the possibility of effects on brain tissue. This study was designed to investigate the possible effects of pulse modulated 900MHz and 1800MHz radio-frequency radiation on the permeability of blood-brain barrier of rats. Study was performed with 6 groups of young adult male and female wistar albino rats. The permeability of blood-brain barrier to intravenously injected evans blue dye was quantitatively examined for both control and radio-frequency radiarion exposed groups. For male groups; Evans blue content in the whole brain was found to be 0.08±0.01mg% in the control, 0.13±0.03mg% in 900MHz exposed and 0.26±0.05mg% in 1800MHz exposed animals. In both male radio-frequency radiation exposed groups, the permeability of blood-brain barrier found to be increased with respect to the controls (pradiation exposure was found more effective on the male animals (p0.01). However 900MHz pulse modulated radio-frequency exposure was found effective on the permeability of blood-brain barrier of female animals. Results have shown that 20min pulse modulated radio-frequency radiation exposure of 900MHz and 1800MHz induces an effect and increases the permeability of blood-brain barrier of male rats. For females, 900MHz was found effective and it could be concluded that this result may due to the physiological differences between female and male animals. The results of this study suggest that mobile phone radation could lead to increase the permeability of blood-brain barrier under non-thermal exposure levels. More studies are needed to demonstrate the mechanisms of that breakdown. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Toward improved interpretation and theory building of African American male sexualities.

    Lewis, Linwood J; Kertzner, Robert M

    2003-11-01

    This paper examined five challenges to clear understanding of African American male sexualities: incorrect assumptions of African American homogeneity; an underemphasis on developmental change, the contexts and the meanings of sexual behaviors; and a lack of compelling theoretical grounding for African American sexualities. Critical elements for effective theorizing and research about African American sexualities (i.e. multiple levels of analysis, examination of phenomenological meaning of sexuality, measurement of dynamic/developmental change) were outlined and candidate theories within sexual science (social exchange theories, symbolic interactionism, sexual scripting theory) were analyzed in light of these elements. It is suggested that a re-orientation of sex research about African American men using these elements will result in improved understanding of African American sexualities in multiple contexts.

  13. A quantum theory of the mind-brain interface

    Stapp, H.P.

    1990-01-01

    The Heisenberg quantum mechanical conception of nature is extended and applied to the brain. Strict adherence to the principle of parsimony, and to quantum thinking, produces naturally, on the basis of an overview of brain operation compatible with the information provided by the brain sciences, a unified description of the physical and mental aspects of nature that can account in principle for the full content of felt human experience. 33 refs

  14. A quantum theory of the mind-brain interface

    Stapp, H.P.

    1990-07-30

    The Heisenberg quantum mechanical conception of nature is extended and applied to the brain. Strict adherence to the principle of parsimony, and to quantum thinking, produces naturally, on the basis of an overview of brain operation compatible with the information provided by the brain sciences, a unified description of the physical and mental aspects of nature that can account in principle for the full content of felt human experience. 33 refs.

  15. Finding influential nodes for integration in brain networks using optimal percolation theory.

    Del Ferraro, Gino; Moreno, Andrea; Min, Byungjoon; Morone, Flaviano; Pérez-Ramírez, Úrsula; Pérez-Cervera, Laura; Parra, Lucas C; Holodny, Andrei; Canals, Santiago; Makse, Hernán A

    2018-06-11

    Global integration of information in the brain results from complex interactions of segregated brain networks. Identifying the most influential neuronal populations that efficiently bind these networks is a fundamental problem of systems neuroscience. Here, we apply optimal percolation theory and pharmacogenetic interventions in vivo to predict and subsequently target nodes that are essential for global integration of a memory network in rodents. The theory predicts that integration in the memory network is mediated by a set of low-degree nodes located in the nucleus accumbens. This result is confirmed with pharmacogenetic inactivation of the nucleus accumbens, which eliminates the formation of the memory network, while inactivations of other brain areas leave the network intact. Thus, optimal percolation theory predicts essential nodes in brain networks. This could be used to identify targets of interventions to modulate brain function.

  16. The experience of women in male-dominated occupations: A constructivist grounded theory inquiry

    Phiona Martin

    2013-06-01

    Full Text Available Orientation: Women in male-dominated occupations face unique challenges and use distinct coping strategies affecting their motivation and retention in these occupations. Research purpose: The purpose was to explore the experiences of women working in maledominated occupations to clarify the challenges they face and identify coping strategies that enable them to continue on their career paths. Motivation for the study: Many women who choose male-dominated careers soon change in favour of more female-dominated or gender-balanced career paths. An understanding of women’s experiences may facilitate strategies geared towards their motivation and retention in male-dominated occupations. Research design, approach and method: The authors conducted this exploratory qualitative study from a constructivist grounded theory perspective. They used a purposive sample of five women and conducted in-depth unstructured interviews. They analysed data using a constructivist grounded theory methodology. Main findings: The authors found that formal and covert organisational practices, which upheld gender discrimination and bias, were the main challenges that women face. These practices included the inadequate accommodation of women’s unique physical, identity and work-life balance needs. Elements of women’s resilience included the use of femininity, adopting male characteristics, mentorship and intrinsic motivational factors. Practical/managerial implications: The findings may guide organisations to develop and implement policies, strategies and initiatives geared towards attracting, integrating, retaining, supporting and motivating women who are, or wish to be, employed in historically maledominated occupations. Contribution/value-add: This study contributes to an evolving body of knowledge aimed at understanding how to integrate and retain women in male-dominated occupations better.

  17. Brain cortical thickness in male adolescents with serious substance use and conduct problems.

    Chumachenko, Serhiy Y; Sakai, Joseph T; Dalwani, Manish S; Mikulich-Gilbertson, Susan K; Dunn, Robin; Tanabe, Jody; Young, Susan; McWilliams, Shannon K; Banich, Marie T; Crowley, Thomas J

    2015-01-01

    Adolescents with substance use disorder (SUD) and conduct problems exhibit high levels of impulsivity and poor self-control. Limited work to date tests for brain cortical thickness differences in these youths. To investigate differences in cortical thickness between adolescents with substance use and conduct problems and controls. We recruited 25 male adolescents with SUD, and 19 male adolescent controls, and completed structural 3T magnetic resonance brain imaging. Using the surface-based morphometry software FreeSurfer, we completed region-of-interest (ROI) analyses for group cortical thickness differences in left, and separately right, inferior frontal gyrus (IFG), orbitofrontal cortex (OFC) and insula. Using FreeSurfer, we completed whole-cerebrum analyses of group differences in cortical thickness. Versus controls, the SUD group showed no cortical thickness differences in ROI analyses. Controlling for age and IQ, no regions with cortical thickness differences were found using whole-cerebrum analyses (though secondary analyses co-varying IQ and whole-cerebrum cortical thickness yielded a between-group cortical thickness difference in the left posterior cingulate/precuneus). Secondary findings showed that the SUD group, relative to controls, demonstrated significantly less right > left asymmetry in IFG, had weaker insular-to-whole-cerebrum cortical thickness correlations, and showed a positive association between conduct disorder symptom count and cortical thickness in a superior temporal gyrus cluster. Functional group differences may reflect a more nuanced cortical morphometric difference than ROI cortical thickness. Further investigation of morphometric differences is needed. If replicable findings can be established, they may aid in developing improved diagnostic or more targeted treatment approaches.

  18. Alternate day fasting impacts the brain insulin-signaling pathway of young adult male C57BL/6 mice.

    Lu, Jianghua; E, Lezi; Wang, Wenfang; Frontera, Jennifer; Zhu, Hao; Wang, Wen-Tung; Lee, Phil; Choi, In Young; Brooks, William M; Burns, Jeffrey M; Aires, Daniel; Swerdlow, Russell H

    2011-04-01

    Dietary restriction (DR) has recognized health benefits that may extend to brain. We examined how DR affects bioenergetics-relevant enzymes and signaling pathways in the brains of C57BL/6 mice. Five-month-old male mice were placed in ad libitum or one of two repeated fasting and refeeding (RFR) groups, an alternate day (intermittent fed; IF) or alternate day plus antioxidants (blueberry, pomegranate, and green tea extracts) (IF + AO) fed group. During the 24-h fast blood glucose levels initially fell but stabilized within 6 h of starting the fast, thus avoiding frank hypoglycemia. DR in general appeared to enhance insulin sensitivity. After six weeks brain AKT and glycogen synthase kinase 3 beta phosphorylation were lower in the RFR mice, suggesting RFR reduced brain insulin-signaling pathway activity. Pathways that mediate mitochondrial biogenesis were not activated; AMP kinase phosphorylation, silent information regulator 2 phosphorylation, peroxisomal proliferator-activated receptor-gamma coactivator 1 alpha levels, and cytochrome oxidase subunit 4 levels did not change. ATP levels also did not decline, which suggests the RFR protocols did not directly impact brain bioenergetics. Antioxidant supplementation did not affect the brain parameters we evaluated. Our data indicate in young adult male C57BL/6 mice, RFR primarily affects brain energy metabolism by reducing brain insulin signaling, which potentially results indirectly as a consequence of reduced peripheral insulin production. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  19. Predictors of Tobacco Smoking in Male Adolescents in Hamadan Based on the Theory of Planned Behavior

    Majid Barati

    2014-12-01

    Full Text Available Background and Objectives: The cognitive determinants of social behaviors play an important role in adolescents' decision-making for starting smoking. The present study was therefore conducted to determine the predictors of tobacco smoking in male adolescents in Hamadan, Iran, based on the Theory of Planned Behavior (TPB. Materials and Methods: The present descriptive-analytical study was conducted on 810 male high school students in Hamadan selected through the multistage sampling method. Data were collected using a self-report questionnaire with a section on participants' demographic information and another section based on the TPB constructs. Data were then analyzed in SPSS-18 and AMOS-18 using the Pearson correlation test and the indices of model fit. Results: Overall, 17.2% of the male adolescents reported to have smoked cigarettes in the past. Perceived behavioral control, subjective norms and attitude were the best predictors of behavioral intention for tobacco smoking, in the order of importance (P<0.001. Perceived behavioral control (&beta=-0.59 P<0.001 was a better predictor of the studied behavior than behavioral intention (&beta=0.11 P<0.001. In the structural equation model, TPB constructs accounted for 32% of behavioral intention variances and 50% of behavior variances. Conclusion: The results demonstrated the poor role of behavioral intention in reporting smoking behaviors in male adolescents. Other psychological factors that affect adolescents' decision-making regarding tobacco smoking should also be scrutinized.

  20. Localization of glucocorticoid receptor mRNA in the male rat brain by in situ hybridization

    Aronsson, M.; Fuxe, K.; Dong, Y.; Agnati, L.F.; Okret, S.; Gustafsson, J.A.

    1988-01-01

    The localization and distribution of mRNA encoding the glucocorticoid receptor (GR) was investigated in tissue sections of the adult male rat brain by in situ hybridization and RNA blot analysis. GR mRNA levels were measured by quantitative autoradiography with 35S- and 32P-labeled RNA probes, respectively. Strong labeling was observed within the pyramidal nerve cells of the CA1 and CA2 areas of the hippocampal formation, in the granular cells of the dentate gyrus, in the parvocellular nerve cells of the paraventricular hypothalamic nucleus, and in the cells of the arcuate nucleus, especially the parvocellular part. Moderate labeling of a large number of nerve cells was observed within layers II, III, and VI of the neocortex and in many thalamic nuclei, especially the anterior and ventral nuclear groups as well as several midline nuclei. Within the cerebellar cortex, strong labeling was observed all over the granular layer. In the lower brainstem, strong labeling was found within the entire locus coeruleus and within the mesencephalic raphe nuclei rich in noradrenaline and 5-hydroxytryptamine cell bodies, respectively. A close correlation was found between the distribution of GR mRNA and the distribution of previously described GR immunoreactivity. These studies open the possibility of obtaining additional information on in vivo regulation of GR synthesis and how the brain may alter its sensitivity to circulating glucocorticoids

  1. Cognitive and default-mode resting state networks: do male and female brains "rest" differently?

    Weissman-Fogel, Irit; Moayedi, Massieh; Taylor, Keri S; Pope, Geoff; Davis, Karen D

    2010-11-01

    Variability in human behavior related to sex is supported by neuroimaging studies showing differences in brain activation patterns during cognitive task performance. An emerging field is examining the human connectome, including networks of brain regions that are not only temporally-correlated during different task conditions, but also networks that show highly correlated spontaneous activity during a task-free state. Both task-related and task-free network activity has been associated with individual task performance and behavior under certain conditions. Therefore, our aim was to determine whether sex differences exist during a task-free resting state for two networks associated with cognitive task performance (executive control network (ECN), salience network (SN)) and the default mode network (DMN). Forty-nine healthy subjects (26 females, 23 males) underwent a 5-min task-free fMRI scan in a 3T MRI. An independent components analysis (ICA) was performed to identify the best-fit IC for each network based on specific spatial nodes defined in previous studies. To determine the consistency of these networks across subjects we performed self-organizing group-level ICA analyses. There were no significant differences between sexes in the functional connectivity of the brain areas within the ECN, SN, or the DMN. These important findings highlight the robustness of intrinsic connectivity of these resting state networks and their similarity between sexes. Furthermore, our findings suggest that resting state fMRI studies do not need to be controlled for sex. © 2010 Wiley-Liss, Inc.

  2. Theory of feedback controlled brain stimulations for Parkinson's disease

    Sanzeni, A.; Celani, A.; Tiana, G.; Vergassola, M.

    2016-01-01

    Limb tremor and other debilitating symptoms caused by the neurodegenerative Parkinson's disease are currently treated by administering drugs and by fixed-frequency deep brain stimulation. The latter interferes directly with the brain dynamics by delivering electrical impulses to neurons in the subthalamic nucleus. While deep brain stimulation has shown therapeutic benefits in many instances, its mechanism is still unclear. Since its understanding could lead to improved protocols of stimulation and feedback control, we have studied a mathematical model of the many-body neural network dynamics controlling the dynamics of the basal ganglia. On the basis of the results obtained from the model, we propose a new procedure of active stimulation, that depends on the feedback of the network and that respects the constraints imposed by existing technology. We show by numerical simulations that the new protocol outperforms the standard ones for deep brain stimulation and we suggest future experiments that could further improve the feedback procedure.

  3. Are Patients Ready for "EARLYSTIM"? Attitudes towards Deep Brain Stimulation among Female and Male Patients with Moderately Advanced Parkinson's Disease.

    Sperens, Maria; Hamberg, Katarina; Hariz, Gun-Marie

    2017-01-01

    Objective . To explore, in female and male patients with medically treated, moderately advanced Parkinson's disease (PD), their knowledge and reasoning about Deep Brain Stimulation (DBS). Methods . 23 patients with PD (10 women), aged 46-70, were interviewed at a mean of 8 years after diagnosis, with open-ended questions concerning their reflections and considerations about DBS. The interviews were transcribed verbatim and analysed according to the difference and similarity technique in Grounded Theory. Results . From the patients' narratives, the core category "Processing DBS: balancing symptoms, fears and hopes" was established. The patients were knowledgeable about DBS and expressed cautious and well considered attitudes towards its outcome but did not consider themselves ill enough to undergo DBS. They were aware of its potential side-effects. They considered DBS as the last option when oral medication is no longer sufficient. There was no difference between men and women in their reasoning and attitudes towards DBS. Conclusion . This study suggests that knowledge about the pros and cons of DBS exists among PD patients and that they have a cautious attitude towards DBS. Our patients did not seem to endorse an earlier implementation of DBS, and they considered that it should be the last resort when really needed.

  4. Novel theory of the human brain: information-commutation basis of architecture and principles of operation

    Bryukhovetskiy AS

    2015-02-01

    Full Text Available Andrey S Bryukhovetskiy Center for Biomedical Technologies, Federal Research and Clinical Center for Specialized Types of Medical Assistance and Medical Technologies of the Federal Medical Biological Agency, NeuroVita Clinic of Interventional and Restorative Neurology and Therapy, Moscow, Russia Abstract: Based on the methodology of the informational approach and research of the genome, proteome, and complete transcriptome profiles of different cells in the nervous tissue of the human brain, the author proposes a new theory of information-commutation organization and architecture of the human brain which is an alternative to the conventional systemic connective morphofunctional paradigm of the brain framework. Informational principles of brain operation are defined: the modular principle, holographic principle, principle of systematicity of vertical commutative connection and complexity of horizontal commutative connection, regulatory principle, relay principle, modulation principle, “illumination” principle, principle of personalized memory and intellect, and principle of low energy consumption. The author demonstrates that the cortex functions only as a switchboard and router of information, while information is processed outside the nervous tissue of the brain in the intermeningeal space. The main structural element of information-commutation in the brain is not the neuron, but information-commutation modules that are subdivided into receiver modules, transmitter modules, and subscriber modules, forming a vertical architecture of nervous tissue in the brain as information lines and information channels, and a horizontal architecture as central, intermediate, and peripheral information-commutation platforms. Information in information-commutation modules is transferred by means of the carriers that are characteristic to the specific information level from inductome to genome, transcriptome, proteome, metabolome, secretome, and magnetome

  5. The brain smell centres - comparison of localisation and activation in male and female subjects using functional MR imaging

    Marchwicka-Wasiak, M.; Goraj, B.

    2004-01-01

    The study was conducted in order to determine and to compare the location and activation of smell brain centres in females and males brains using olfactory nerve-mediated (geraniol) and combined olfactory and trigeminal nerve-mediated (patchouli) stimulants. 10 normal volunteers (five women and five men), right-handed, non-smokers, without any CNS diseases were examined to determine the activated cortex areas during stimulation by geraniol and patchouli. MR brain scans were obtained using a 1.5 T clinical scanner, with the head-neck coil. The imaging was performed in each subject using SE and EPI sequences with a blood-oxygen-level-dependent (BOLD) effect. The individual inhaled odorized air during the 30 seconds period and alternating room air over the same period. The mean pixel intensity of activated images was substracted from the mean pixel intensity of preactivated images. The olfactory system-mediated stimuli (geraniol) evoked bilateral activation of female brains smell centres and right hemisphere centres activation in male brains. The exposure to the olfactory and trigeminal nerve-mediated stimuli (patchouli) showed more activated regions in both sexes than to the olfactory nerve-ediated stimuli. fMRI proved to be a useful method to compare the location and activation of male and female brain smell centres. (author)

  6. The effect of caffeine on working memory load-­related brain activation in middle-­aged males

    Klaassen, Elissa; De Groot, Renate; Evers, Lisbeth; Snel, Jan; Veerman, Enno; Ligtenberg, Antoon; Jolles, Jelle; Veltman, Dick

    2012-01-01

    Klaassen, E. B., De Groot, R. H. M., Evers, E. A. T., Snel, J., Veerman, E. C. I., Ligtenberg, A. J. M., Jolles, J., & Veltman, D. J. (2013). The effect of caffeine on working memory load-related brain activation in middle-aged male. Neuropharmacology, 64, 160-167.

  7. Working memory in middle-aged males: Age-related brain activation changes and cognitive fatigue effects

    Klaassen, Elissa; Evers, Elisabeth; De Groot, Renate; Backes, Walter; Veltman, Dick; Jolles, Jelle

    2017-01-01

    We examined the effects of aging and cognitive fatigue on working memory (WM) related brain activation using functional magnetic resonance imaging. Age-related differences were investigated in 13 young and 16 middle-aged male school teachers. Cognitive fatigue was induced by sustained performance on

  8. Finasteride inhibited brain dopaminergic system and open-field behaviors in adolescent male rats.

    Li, Li; Kang, Yun-Xiao; Ji, Xiao-Ming; Li, Ying-Kun; Li, Shuang-Cheng; Zhang, Xiang-Jian; Cui, Hui-Xian; Shi, Ge-Ming

    2018-02-01

    Finasteride inhibits the conversion of testosterone to dihydrotestosterone. Because androgen regulates dopaminergic system in the brain, it could be hypothesized that finasteride may inhibit dopaminergic system. The present study therefore investigates the effects of finasteride in adolescent and early developmental rats on dopaminergic system, including contents of dopamine and its metabolites (dihydroxy phenyl acetic acid and homovanillic acid) and tyrosine hydroxylase expressions both at gene and protein levels. Meanwhile, open-field behaviors of the rats are examined because of the regulatory effect of dopaminergic system on the behaviors. Open-field behaviors were evaluated by exploratory and motor behaviors. Dopamine and its metabolites were assayed by liquid chromatography-mass spectrometry. Tyrosine hydroxylase mRNA and protein expressions were determined by real-time qRT-PCR and western blot, respectively. It was found that in adolescent male rats, administration of finasteride at doses of 25 and 50 mg/kg for 14 days dose dependently inhibited open-field behaviors, reduced contents of dopamine and its metabolites in frontal cortex, hippocampus, caudate putamen, nucleus accumbens, and down-regulated tyrosine hydroxylase mRNA and protein expressions in substantia nigra and ventral tegmental area. However, there was no significant change of these parameters in early developmental rats after finasteride treatment. These results suggest that finasteride inhibits dopaminergic system and open-field behaviors in adolescent male rats by inhibiting the conversion of testosterone to dihydrotestosterone, and imply finasteride as a potential therapeutic option for neuropsychiatric disorders associated with hyperactivities of dopaminergic system and androgen. © 2017 John Wiley & Sons Ltd.

  9. Brain activity and cognition: a connection from thermodynamics and information theory.

    Collell, Guillem; Fauquet, Jordi

    2015-01-01

    The connection between brain and mind is an important scientific and philosophical question that we are still far from completely understanding. A crucial point to our work is noticing that thermodynamics provides a convenient framework to model brain activity, whereas cognition can be modeled in information-theoretical terms. In fact, several models have been proposed so far from both approaches. A second critical remark is the existence of deep theoretical connections between thermodynamics and information theory. In fact, some well-known authors claim that the laws of thermodynamics are nothing but principles in information theory. Unlike in physics or chemistry, a formalization of the relationship between information and energy is currently lacking in neuroscience. In this paper we propose a framework to connect physical brain and cognitive models by means of the theoretical connections between information theory and thermodynamics. Ultimately, this article aims at providing further insight on the formal relationship between cognition and neural activity.

  10. Brain activity and cognition: a connection from thermodynamics and information theory

    Collell, Guillem; Fauquet, Jordi

    2015-01-01

    The connection between brain and mind is an important scientific and philosophical question that we are still far from completely understanding. A crucial point to our work is noticing that thermodynamics provides a convenient framework to model brain activity, whereas cognition can be modeled in information-theoretical terms. In fact, several models have been proposed so far from both approaches. A second critical remark is the existence of deep theoretical connections between thermodynamics and information theory. In fact, some well-known authors claim that the laws of thermodynamics are nothing but principles in information theory. Unlike in physics or chemistry, a formalization of the relationship between information and energy is currently lacking in neuroscience. In this paper we propose a framework to connect physical brain and cognitive models by means of the theoretical connections between information theory and thermodynamics. Ultimately, this article aims at providing further insight on the formal relationship between cognition and neural activity. PMID:26136709

  11. Biomechanical Analysis of Normal Brain Development during the First Year of Life Using Finite Strain Theory

    Kim, Jeong Chul; Wang, Li; Shen, Dinggang; Lin, Weili

    2016-01-01

    The first year of life is the most critical time period for structural and functional development of the human brain. Combining longitudinal MR imaging and finite strain theory, this study aimed to provide new insights into normal brain development through a biomechanical framework. Thirty-three normal infants were longitudinally imaged using MRI from 2 weeks to 1 year of age. Voxel-wise Jacobian determinant was estimated to elucidate volumetric changes while Lagrange strains (both normal and...

  12. Male Youth Perceptions of Violent Extremism: towards a Test of Rational Choice Theory.

    Dhami, Mandeep K; Murray, Jennifer

    2016-09-20

    Understanding how people perceive the pros and cons of risky behaviors such as terrorism or violent extremism represents a first step in developing research testing rational choice theory aiming to explain and predict peoples' intentions to engage in, or support, these behaviors. Accordingly, the present study provides a qualitative, exploratory analysis of a sample of 57 male youths' perceptions of the benefits and drawbacks of: (a) accessing a violent extremist website, (b) joining a violent extremist group, and (c) leaving such a group. Youth perceived significantly more drawbacks than benefits of joining a violent extremist group (p = .001, d = .46) and accessing a violent extremist website (p = .001, d = .46). The perceived benefits of engagement referred to gaining knowledge/awareness, being part of a group/similar people, and fighting the enemy/for a cause. The drawbacks referred to being exposed to negative material and emotions, having violent/criminal beliefs and behaviors, and getting in trouble with the law. The perceived benefits of disengagement referred to no longer committing illegal acts, and regaining independence/not being manipulated. The drawbacks referred to exposing oneself to harm and reprisal. These findings provide an insight into how male youth think about (dis)engagement in violent extremism, and can inform future quantitative research designed to explain and predict (dis)engagement in violent extremism. Eventually, such research may inform the development of evidence-based prevention and intervention strategies.

  13. The role of melatonin in radiation induced biochemical disturbances in brain and thyroid gland in adult male albino rats

    Abdel Kader, S.M.; EI-Sherbiny, E.M.

    2007-01-01

    Radiation induced changes in adult male albino male rats before and after melatonin administration were monitored to detect some biochemical changes in brain and thyroid gland. The parameters monitored were dopamine (DA), norepinephdne (NE) and gamma aminobutyric acid (GABA) in brain and triiodothyronine (T 3 ) thyroxine (T 4 ) and thyroid stimulating hormone (TSH) in serum of irradiated adult male albino rats before and after intraperitoneal injection of melatonin. Results indicated that 6.0 Gy whole body γ-irradiated rats showed gradual and significant decrease in DA, NE and GABA contents in different brain areas under investigation (cerebellum, pons+medulla oblongata, corpus striatum, cerebral cortex, hypothalamus, midbrain and hippocampus). The maximum effect of whole body γ-irradiation was observed after 21 days. Moreover, gradual and significant decrease in serum T 3 and T 4 levels were recorded after γ-irradiation. However, TSH level showed significant elevation throughout the experimental period. Melatonin at a dose level of 15 mg/kg b.wt. was intraperitoneally injected daily 30 minutes after 6.0 Gy whole body γ-irradiation, ameliorated DA, NE and GABA contents in different brain areas compared to those measured in irradiated rats. Moreover, melatonin gradually attenuated the effect of γ-irradiation on serum T 3 and T 4 levels to reach nearly the control level at day 21 after melatonin injection. However, melatonin ameliorated the elevated TSH level induced by γ-irradiation to reach its corresponding control value at day 21

  14. Brain volume in male patients with recent onset schizophrenia with and without cannabis use disorders

    Koenders, L.; Machielsen, M.W.; van der Meer, F.J.; van Gasselt, A.C.; Meijer, C.J.; van den Brink, W.; Koeter, M.W.; Caan, M.W.; Cousijn, J.; den Braber, A.; van 't Ent, D.; Rive, M.M.; Schene, A.H.; van de Giessen, E.; Huyser, C.; de Kwaasteniet, B.P.; Veltman, D.J.; de Haan, L.

    2014-01-01

    BACKGROUND: Schizophrenia is highly comorbid with cannabis use disorders (CUDs), and this comorbidity is associated with an unfavourable course. Early onset or frequent cannabis use may influence brain structure. A key question is whether comorbid CUDs modulate brain morphology alterations

  15. Differentiation in boron distribution in adult male and female rats' normal brain: A BNCT approach

    Goodarzi, Samereh, E-mail: samere.g@gmail.com [Department of Nuclear Engineering, Science and Research Branch, Islamic Azad University, PO Box 19395-1943, Tehran (Iran, Islamic Republic of); Pazirandeh, Ali, E-mail: paziran@yahoo.com [Department of Nuclear Engineering, Science and Research Branch, Islamic Azad University, PO Box 19395-1943, Tehran (Iran, Islamic Republic of); Jameie, Seyed Behnamedin, E-mail: behnamjameie@tums.ac.ir [Basic Science Department, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Baghban Khojasteh, Nasrin, E-mail: khojasteh_n@yahoo.com [Department of Nuclear Engineering, Science and Research Branch, Islamic Azad University, PO Box 19395-1943, Tehran (Iran, Islamic Republic of)

    2012-06-15

    Boron distribution in adult male and female rats' normal brain after boron carrier injection (0.005 g Boric Acid+0.005 g Borax+10 ml distilled water, pH: 7.4) was studied in this research. Coronal sections of control and trial animal tissue samples were irradiated with thermal neutrons. Using alpha autoradiography, significant differences in boron concentration were seen in forebrain, midbrain and hindbrain sections of male and female animal groups with the highest value, four hours after boron compound injection. - Highlights: Black-Right-Pointing-Pointer Boron distribution in male and female rats' normal brain was studied in this research. Black-Right-Pointing-Pointer Coronal sections of animal tissue samples were irradiated with thermal neutrons. Black-Right-Pointing-Pointer Alpha and Lithium tracks were counted using alpha autoradiography. Black-Right-Pointing-Pointer Different boron concentration was seen in brain sections of male and female rats. Black-Right-Pointing-Pointer The highest boron concentration was seen in 4 h after boron compound injection.

  16. Nonlinear Dynamic Theory of Acute Cell Injuries and Brain Ischemia

    Taha, Doaa; Anggraini, Fika; Degracia, Donald; Huang, Zhi-Feng

    2015-03-01

    Cerebral ischemia in the form of stroke and cardiac arrest brain damage affect over 1 million people per year in the USA alone. In spite of close to 200 clinical trials and decades of research, there are no treatments to stop post-ischemic neuron death. We have argued that a major weakness of current brain ischemia research is lack of a deductive theoretical framework of acute cell injury to guide empirical studies. A previously published autonomous model based on the concept of nonlinear dynamic network was shown to capture important facets of cell injury, linking the concept of therapeutic to bistable dynamics. Here we present an improved, non-autonomous formulation of the nonlinear dynamic model of cell injury that allows multiple acute injuries over time, thereby allowing simulations of both therapeutic treatment and preconditioning. Our results are connected to the experimental data of gene expression and proteomics of neuron cells. Importantly, this new model may be construed as a novel approach to pharmacodynamics of acute cell injury. The model makes explicit that any pro-survival therapy is always a form of sub-lethal injury. This insight is expected to widely influence treatment of acute injury conditions that have defied successful treatment to date. This work is supported by NIH NINDS (NS081347) and Wayne State University President's Research Enhancement Award.

  17. Electroencephalographic power and coherence analyses suggest altered brain function in abstinent male heroin-dependent patients

    Franken, Ingmar H. A.; Stam, Cornelis J.; Hendriks, Vincent M.; van den Brink, Wim

    2004-01-01

    Previous studies have shown that drug abuse is associated with altered brain function. However, studies of heroin abuse-related brain dysfunctions are scarce. Electroencephalographic ( EEG) power and coherence analyses are two important tools for examining the effects of drugs on brain function. In

  18. Factors Associated with Anger among Male Adolescents in Western Iran: An Application of Social Cognitive Theory.

    Abedzadeh Zavareh, Moammad Sadegh; Niknami, Shamsaddin; Hidarnia, Ali Reza

    2015-05-20

    Anger can be defined a natural emotional response that is gradually formed to protect us in dealing with threats, damages, assaults, and failures; while hatred is a change of attitude which is built following the persistence of anger towards a subject or an individual. One of the main reasons of adolescents' reference to the counseling centers is their anger accompanied by violence. This study aims to determine the social cognitive factors associated with anger among a population of adolescents in the west of Iran based on the social cognitive theory. Samples were selected based on multi-stage cluster sampling. Method including the first and the second-grade male high school students from Ilam town (N=360). The Spielberger's anger questionnaire (STAXI 2) and a self-designed questionnaire based on Bandura's social cognitive theory were employed as the data collection instruments in the present study. Of the selected population, 200 students were the first-grade and 160 students were the second-grade students. 135 students were the first child of the family, 150 students were the second or the third birth, and 75 students were the fifth or above in their families. Descriptive tests and correlation analysis were used to conduct the statistical analysis. Although there was a significant and inverse relationship between all the components of the theory and anger, the strongest relationship was seen in self-efficacy (-0.585) and the weakest relationship was seen in modeling (-0.297). If was concluded that helping people to know their abilities and have a better personal judgment in this case, can influence their anger control. In addition, the process of stress management can effectively increase an individual's emotional coping.

  19. Time Is Brain: The Stroke Theory of Relativity.

    Gomez, Camilo R

    2018-04-25

    Since the introduction of the philosophical tenet "Time is Brain!," multiple lines of research have demonstrated that other factors contribute to the degree of ischemic injury at any one point in time, and it is now clear that the therapeutic window of acute ischemic stroke is more protracted than it was first suspected. To define a more realistic relationship between time and the ischemic process, we used computational modeling to assess how these 2 variables are affected by collateral circulatory competence. Starting from the premise that the expression "Time=Brain" is mathematically false, we reviewed the existing literature on the attributes of cerebral ischemia over time, with particular attention to relevant clinical parameters, and the effect of different variables, particularly collateral circulation, on the time-ischemia relationship. We used this information to construct a theoretical computational model and applied it to categorically different yet abnormal cerebral perfusion scenarios, allowing comparison of their behavior both overall (i.e., final infarct volume) and in real-time (i.e., instantaneous infarct growth rate). Optimal collateral circulatory competence was predictably associated with slower infarct growth rates and prolongation of therapeutic window. Modeling of identifiable specific types of perfusion maps allows forecasting of the fate of the ischemic process over time. Distinct cerebral perfusion map patterns can be readily identified in patients with acute ischemic stroke. These patterns have inherently different behaviors relative to the time-ischemia construct, allowing the possibility of improving parsing and treatment allocation. It is clearly evident that the effect of time on the ischemic process is relative. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  20. Communicative versus strategic rationality: Habermas theory of communicative action and the social brain.

    Schaefer, Michael; Heinze, Hans-Jochen; Rotte, Michael; Denke, Claudia

    2013-01-01

    In the philosophical theory of communicative action, rationality refers to interpersonal communication rather than to a knowing subject. Thus, a social view of rationality is suggested. The theory differentiates between two kinds of rationality, the emancipative communicative and the strategic or instrumental reasoning. Using experimental designs in an fMRI setting, recent studies explored similar questions of reasoning in the social world and linked them with a neural network including prefrontal and parietal brain regions. Here, we employed an fMRI approach to highlight brain areas associated with strategic and communicative reasoning according to the theory of communicative action. Participants were asked to assess different social scenarios with respect to communicative or strategic rationality. We found a network of brain areas including temporal pole, precuneus, and STS more activated when participants performed communicative reasoning compared with strategic thinking and a control condition. These brain regions have been previously linked to moral sensitivity. In contrast, strategic rationality compared with communicative reasoning and control was associated with less activation in areas known to be related to moral sensitivity, emotional processing, and language control. The results suggest that strategic reasoning is associated with reduced social and emotional cognitions and may use different language related networks. Thus, the results demonstrate experimental support for the assumptions of the theory of communicative action.

  1. Consilience and Life History Theory: From Genes to Brain to Reproductive Strategy

    Figueredo, Aurelio Jose; Vasquez, Geneva; Brumbach, Barbara H.; Schneider, Stephanie M. R.; Sefcek, Jon A.; Tal, Ilanit R.; Hill, Dawn; Wenner, Christopher J.; Jacobs, W. Jake

    2006-01-01

    We describe an integrated theory of individual differences that traces the behavioral development of life history from genes to brain to reproductive strategy. We provide evidence that a single common factor, the K-Factor, underpins a variety of life-history parameters, including an assortment of sexual, reproductive, parental, familial, and…

  2. Exploring the relation between People’s Theories of Intelligence and Beliefs about Brain Development

    Ashley J Thomas

    2015-07-01

    Full Text Available A person’s belief about whether intelligence can change (called their implicit theory of intelligence predicts something about that person’s thinking and behavior. People who believe intelligence is fixed (called entity theorists attribute failure to traits (i.e. I failed the test because I’m not smart. and tend to be less motivated in school; those who believe intelligence is malleable (called incremental theorists tend to attribute failure to behavior (i.e. I failed the test because I didn’t study. and are more motivated in school. In previous studies, researchers have characterized participants as either entity or incremental theorists based on their agreement or disagreement with three statements. The present study further explored the theories-of-intelligence construct in two ways: first, we asked whether these theories are coherent, in the sense that they show up not only in participants’ responses to the three standard assessment items, but on a broad range of questions about intelligence and the brain. Second, we asked whether these theories are discrete or continuous. In other words, we asked whether people one thing or the other (i.e. that intelligence is malleable or fixed, or if there is a continuous range of beliefs (i.e., people believe in malleability to a greater or lesser degree. Study (1 asked participants a range of general questions about the malleability of intelligence and the brain. Study (2 asked participants more specific questions about the brains of a pair of identical twins who were separated at birth. Results showed that theories of intelligence are coherent: participants’ responses to the three standard survey items are correlated with their responses to questions about the brain. But the theories are not discrete: although responses to the three standard survey items fell into a bimodal distribution, responses to the broader range of questions fell into a normal distribution suggesting the theories are

  3. Are Patients Ready for ?EARLYSTIM?? Attitudes towards Deep Brain Stimulation among Female and Male Patients with Moderately Advanced Parkinson's Disease

    Sperens, Maria; Hamberg, Katarina; Hariz, Gun-Marie

    2017-01-01

    Objective. To explore, in female and male patients with medically treated, moderately advanced Parkinson's disease (PD), their knowledge and reasoning about Deep Brain Stimulation (DBS). Methods. 23 patients with PD (10 women), aged 46- 70, were interviewed at a mean of 8 years after diagnosis, with open-ended questions concerning their reflections and considerations about DBS. The interviews were transcribed verbatim and analysed according to the difference and similarity technique in Ground...

  4. Relative contribution of organs other than brain to resting energy expenditure is consistent among male power athletes.

    Oshima, Satomi; Miyauchi, Sakiho; Asaka, Meiko; Kawano, Hiroshi; Taguchi, Motoko; Torii, Suguru; Higuchi, Mitsuru

    2013-01-01

    We have previously shown that resting energy expenditure (REE) adjusted by fat-free mass (FFM) in male college athletes remains consistent regardless of FFM. The FFM comprises internal organs with high metabolic activity, such as liver and brain, which account for 60 to 80% of REE in adults. The purpose of the present study is to examine the contribution of internal organs to the REE of the FFM fraction among male power athletes. The study included 37 American male college football players. REE was measured by indirect calorimetry and body composition was measured by dual energy X-ray absorptiometry (DXA). Mass of brain, liver, and kidneys was measured by MRI and mass of heart was estimated by echocardiography. Normal levels of thyroid hormone (triiodothyronine: T3) were confirmed in all subjects prior to the analysis. Multiple regression analysis was used to assess the influence of FFM, fat mass (FM), T3, and mass of organs on variance of REE. Average body weight and FFM were 81.2±11.3 kg and 67.7±7.4 kg, respectively. The relative contributions of liver, kidneys, and heart to REE were consistent regardless of FFM, while the REE of brain was negatively correlated with FFM (r=-0.672, pFFM and T3 were found to be independent factors influencing REE. These results suggest that a steady contribution of internal organs other than the brain is the major reason for the consistency of the REE/FFM ratio in male power athletes.

  5. Theory of brain function, quantum mechanics and superstrings

    Nanopoulos, Dimitri V.

    1995-01-01

    Recent developments/efforts to understand aspects of the brain function at the {\\em sub-neural} level are discussed. MicroTubules (MTs) participate in a wide variety of dynamical processes in the cell especially in bioinformation processes such as learning and memory, by possessing a well-known binary error-correcting code with 64 words. In fact, MTs and DNA/RNA are unique cell structures that possess a code system. It seems that the MTs' code system is strongly related to a kind of ``Mental Code" in the following sense. The MTs' periodic paracrystalline structure make them able to support a superposition of coherent quantum states, as it has been recently conjectured by Hameroff and Penrose, representing an external or mental order, for sufficient time needed for efficient quantum computing. Then the quantum superposition collapses spontaneously/dynamically through a new, string-derived mechanism for collapse proposed recently by Ellis, Mavromatos, and myself. At the moment of collapse, organized quantum exo...

  6. Brain fMRI study of crave induced by cue pictures in online game addicts (male adolescents).

    Sun, Yueji; Ying, Huang; Seetohul, Ravi M; Xuemei, Wang; Ya, Zheng; Qian, Li; Guoqing, Xu; Ye, Sun

    2012-08-01

    To study crave-related cerebral regions induced by game figure cues in online game addicts. fMRI brain imaging was done when the subjects were shown picture cues of the WoW (World of Warcraft, Version: 4.1.014250) game. 10 male addicts of WoW were selected as addicts' group, and 10 other healthy male non-addicts who were matched by age, were used as non-game addicts' group. All volunteers participated in fMRI paradigms. WoW associated cue pictures and neutral pictures were shown. We examined functional cerebral regions activated by the pictures with 3.0 T Philips MRI. The imaging signals' database was analyzed by SPM5. The correlation between game craving scores and different image results were assessed. When the game addicts watch the pictures, some brain areas show increased signal activity namely: dorsolateral prefrontal cortex, bilateral temporal cortex, cerebellum, right inferior parietal lobule, right cuneus, right hippocampus, parahippocampal gyrus, left caudate nucleus. But in these same brain regions we did not observe remarkable activities in the control group. Differential image signal densities of the addict group were subtracted from the health control group, results of which were expressed in the bilateral dorsolateral prefrontal cortex, anterior cingulate cortex, inferior parietal lobe and inferior temporal gyrus, cerebellum, right insular and the right angular gyrus. The increased imaging signal densities were significant and positively correlated with the craving scale scores in the bilateral prefrontal cortex, anterior cingulate cortex and right inferior parietal lobe. Craving of online game addicts was successfully induced by game cue pictures. Crave related brain areas are: dorsolateral prefrontal cortex, anterior cingulate cortex, and right inferior parietal lobe. The brain regions are overlapped with cognitive and emotion related processing brain areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. From static to temporal network theory: Applications to functional brain connectivity

    William Hedley Thompson

    2017-06-01

    Full Text Available Network neuroscience has become an established paradigm to tackle questions related to the functional and structural connectome of the brain. Recently, interest has been growing in examining the temporal dynamics of the brain’s network activity. Although different approaches to capturing fluctuations in brain connectivity have been proposed, there have been few attempts to quantify these fluctuations using temporal network theory. This theory is an extension of network theory that has been successfully applied to the modeling of dynamic processes in economics, social sciences, and engineering article but it has not been adopted to a great extent within network neuroscience. The objective of this article is twofold: (i to present a detailed description of the central tenets of temporal network theory and describe its measures, and; (ii to apply these measures to a resting-state fMRI dataset to illustrate their utility. Furthermore, we discuss the interpretation of temporal network theory in the context of the dynamic functional brain connectome. All the temporal network measures and plotting functions described in this article are freely available as the Python package Teneto. Temporal network theory is a subfield of network theory that has had limited application to date within network neuroscience. The aims of this work are to introduce temporal network theory, define the metrics relevant to the context of network neuroscience, and illustrate their potential by analyzing a resting-state fMRI dataset. We found both between-subjects and between-task differences that illustrate the potential for these tools to be applied in a wider context. Our tools for analyzing temporal networks have been released in a Python package called Teneto.

  8. Applications of operant learning theory to the management of challenging behavior after traumatic brain injury.

    Wood, Rodger Ll; Alderman, Nick

    2011-01-01

    For more than 3 decades, interventions derived from learning theory have been delivered within a neurobehavioral framework to manage challenging behavior after traumatic brain injury with the aim of promoting engagement in the rehabilitation process and ameliorating social handicap. Learning theory provides a conceptual structure that facilitates our ability to understand the relationship between challenging behavior and environmental contingencies, while accommodating the constraints upon learning imposed by impaired cognition. Interventions derived from operant learning theory have most frequently been described in the literature because this method of associational learning provides good evidence for the effectiveness of differential reinforcement methods. This article therefore examines the efficacy of applying operant learning theory to manage challenging behavior after TBI as well as some of the limitations of this approach. Future developments in the application of learning theory are also considered.

  9. Circulating Insulin-Like Growth Factor I Regulates Its Receptor in the Brain of Male Mice.

    Trueba-Saiz, A; Fernandez, A M; Nishijima, T; Mecha, M; Santi, A; Munive, V; Aleman, I Torres

    2017-02-01

    The role of IGF-1 and its receptor (IGF-1R) in brain pathology is still unclear. Thus, either reduction of IGF-IR or treatment with IGF-1, two apparently opposite actions, has proven beneficial in brain diseases such as Alzheimer's dementia. A possible explanation of this discrepancy is that IGF-1 down-regulates brain IGF-1R levels, as previously seen in a mouse Alzheimer's dementia model. We now explored whether under normal conditions IGF-1 modulates its receptor. We first observed that in vitro, IGF-1 reduced IGF-1R mRNA levels in all types of brain cells including neurons, astrocytes, microglia, endothelial cells, and oligodendrocytes. IGF-1 also inhibited its own expression in neurons and brain endothelium. Next, we analyzed the in vivo actions of IGF-1. Because serum IGF-1 can enter the brain, we injected mice with IGF-1 ip. As soon as 1 hour after the injection, decreased hippocampal IGF-1 levels were observed, followed by increased IGF-1 and IGF-1R mRNAs 6 hours later. Because environmental enrichment (EE) stimulates the entrance of serum IGF-1 into the brain, we analyzed whether a physiological entrance of IGF-1 also produced changes in brain IGF-1R. Stimulation of IGF-1R by EE triggered a gradual decrease in hippocampal IGF-1 levels. After 6 hours of EE exposure, IGF-1 levels reached a significant decrease in parallel with increased IGF-1R expression. After longer times, IGF-1R mRNA levels returned to baseline. Thus, under nonpathological conditions, IGF-1 regulates brain IGF-1R. Because baseline IGF-1R levels are rapidly restored, a tight control of brain IGF-1R expression seems to operate under physiological conditions. Copyright © 2017 by the Endocrine Society.

  10. Driving the brain towards creativity and intelligence: A network control theory analysis.

    Kenett, Yoed N; Medaglia, John D; Beaty, Roger E; Chen, Qunlin; Betzel, Richard F; Thompson-Schill, Sharon L; Qiu, Jiang

    2018-01-04

    High-level cognitive constructs, such as creativity and intelligence, entail complex and multiple processes, including cognitive control processes. Recent neurocognitive research on these constructs highlight the importance of dynamic interaction across neural network systems and the role of cognitive control processes in guiding such a dynamic interaction. How can we quantitatively examine the extent and ways in which cognitive control contributes to creativity and intelligence? To address this question, we apply a computational network control theory (NCT) approach to structural brain imaging data acquired via diffusion tensor imaging in a large sample of participants, to examine how NCT relates to individual differences in distinct measures of creative ability and intelligence. Recent application of this theory at the neural level is built on a model of brain dynamics, which mathematically models patterns of inter-region activity propagated along the structure of an underlying network. The strength of this approach is its ability to characterize the potential role of each brain region in regulating whole-brain network function based on its anatomical fingerprint and a simplified model of node dynamics. We find that intelligence is related to the ability to "drive" the brain system into easy to reach neural states by the right inferior parietal lobe and lower integration abilities in the left retrosplenial cortex. We also find that creativity is related to the ability to "drive" the brain system into difficult to reach states by the right dorsolateral prefrontal cortex (inferior frontal junction) and higher integration abilities in sensorimotor areas. Furthermore, we found that different facets of creativity-fluency, flexibility, and originality-relate to generally similar but not identical network controllability processes. We relate our findings to general theories on intelligence and creativity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Motivation in rehabilitation and acquired brain injury: can theory help us understand it?

    Kusec, Andrea; Velikonja, Diana; DeMatteo, Carol; Harris, Jocelyn E

    2018-04-25

    In acquired brain injury (ABI) populations, low motivation to engage in rehabilitation is associated with poor rehabilitation outcomes. Motivation in ABI is thought to be influenced by internal and external factors. This is consistent with Self-determination Theory, which posits that motivation is intrinsic and extrinsic. This paper discusses the benefit of using Self-determination Theory to guide measurement of motivation in ABI. Using a narrative review of the Self-determination Theory literature and clinical rehabilitation research, this paper discusses the unique role intrinsic and extrinsic motivation has in healthcare settings and the importance of understanding both when providing rehabilitation in ABI. Based on the extant literature, it is possible that two independently developed measures of motivation for ABI populations, the Brain Injury Rehabilitation Trust Motivation Questionnaire-Self and the Motivation for Traumatic Brain Injury Rehabilitation Questionnaire, may assess intrinsic and extrinsic motivation, respectively. Intrinsic and extrinsic motivation in ABI may be two equally important but independent factors that could provide a comprehensive understanding of motivation in individuals with ABI. This increased understanding could help facilitate behavioural approaches in rehabilitation. Implications for Rehabilitation Conceptualization of motivation in ABI would benefit from drawing upon Self-determination Theory. External factors of motivation such as the therapeutic environment or social support should be carefully considered in rehabilitation in order to increase engagement. Assessing motivation as a dual rather than a global construct may provide more precise information about the extent to which a patient is motivated.

  12. Multimodal neuroimaging of male and female brain structure in health and disease across the life span.

    Jahanshad, Neda; Thompson, Paul M

    2017-01-02

    Sex differences in brain development and aging are important to identify, as they may help to understand risk factors and outcomes in brain disorders that are more prevalent in one sex compared with the other. Brain imaging techniques have advanced rapidly in recent years, yielding detailed structural and functional maps of the living brain. Even so, studies are often limited in sample size, and inconsistent findings emerge, one example being varying findings regarding sex differences in the size of the corpus callosum. More recently, large-scale neuroimaging consortia such as the Enhancing Neuro Imaging Genetics through Meta Analysis Consortium have formed, pooling together expertise, data, and resources from hundreds of institutions around the world to ensure adequate power and reproducibility. These initiatives are helping us to better understand how brain structure is affected by development, disease, and potential modulators of these effects, including sex. This review highlights some established and disputed sex differences in brain structure across the life span, as well as pitfalls related to interpreting sex differences in health and disease. We also describe sex-related findings from the ENIGMA consortium, and ongoing efforts to better understand sex differences in brain circuitry. © 2016 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc. © 2016 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.

  13. Environmental Enrichment, Performance, and Brain Injury in Male and Female Rats

    Elliott, Brenda M

    2004-01-01

    ...) and physical enrichment (PE) on the cognitive performance of neurologically intact and brain-injured rats and to determine if there are gender differences in these effects. Measures of basic (i.e...

  14. Alterations of Brain Functional Architecture Associated with Psychopathic Traits in Male Adolescents with Conduct Disorder

    Pu, Weidan; Luo, Qiang; Jiang, Yali; Gao, Yidian; Ming, Qingsen; Yao, Shuqiao

    2017-01-01

    Psychopathic traits of conduct disorder (CD) have a core callous-unemotional (CU) component and an impulsive-antisocial component. Previous task-driven fMRI studies have suggested that psychopathic traits are associated with dysfunction of several brain areas involved in different cognitive functions (e.g., empathy, reward, and response inhibition etc.), but the relationship between psychopathic traits and intrinsic brain functional architecture has not yet been explored in CD. Using a holist...

  15. Hormonal regulation of steroid receptor coactivator-1 mRNA in the male and female green anole brain.

    Kerver, H N; Wade, J

    2015-03-01

    Green anole lizards are seasonal breeders, with male sexual behaviour primarily regulated by an annual increase in testosterone. Morphological, biochemical and behavioural changes associated with reproduction are activated by testosterone, generally with a greater effect in the breeding season (BS) than in the nonbreeding season (NBS). The present study investigates the possibility that differences in a steroid receptor coactivator may regulate this seasonal difference in responsiveness to testosterone. In situ hybridisation was used to examine the expression of steroid receptor coactivator-1 (SRC-1) in the brains of gonadally intact male and female green anoles across breeding states. A second experiment examined gonadectomised animals with and without testosterone treatment. Gonadally intact males had more SRC-1 expressing cells in the preoptic area and larger volumes of this region as defined by these cells than females. Main effects of both sex and season (males > females and BS > NBS) were present in cell number and volume of the ventromedial hypothalamus. An interaction between sex and season suggested that high expression in BS males was driving these effects. In hormone-manipulated animals, testosterone treatment increased both the number of SRC-1 expressing cells in and volumes of the preoptic area and amygdala. These results suggest that testosterone selectively regulates SRC-1, and that this coactivator may play a role in facilitating reproductive behaviours across both sexes. However, changes in SRC-1 expression are not likely responsible for the seasonal change in responsiveness to testosterone. © 2014 British Society for Neuroendocrinology.

  16. Sex differences in DNA methylation and expression in zebrafish brain: a test of an extended 'male sex drive' hypothesis.

    Chatterjee, Aniruddha; Lagisz, Malgorzata; Rodger, Euan J; Zhen, Li; Stockwell, Peter A; Duncan, Elizabeth J; Horsfield, Julia A; Jeyakani, Justin; Mathavan, Sinnakaruppan; Ozaki, Yuichi; Nakagawa, Shinichi

    2016-09-30

    The sex drive hypothesis predicts that stronger selection on male traits has resulted in masculinization of the genome. Here we test whether such masculinizing effects can be detected at the level of the transcriptome and methylome in the adult zebrafish brain. Although methylation is globally similar, we identified 914 specific differentially methylated CpGs (DMCs) between males and females (435 were hypermethylated and 479 were hypomethylated in males compared to females). These DMCs were prevalent in gene body, intergenic regions and CpG island shores. We also discovered 15 distinct CpG clusters with striking sex-specific DNA methylation differences. In contrast, at transcriptome level, more female-biased genes than male-biased genes were expressed, giving little support for the male sex drive hypothesis. Our study provides genome-wide methylome and transcriptome assessment and sheds light on sex-specific epigenetic patterns and in zebrafish for the first time. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Applying Fear Appeals Theory for Preventing Drug Abuse among Male High School Students in Tehran

    K. Witte

    2006-10-01

    Full Text Available Introduction & Objective: Drug abuse is one of the complicated phenomenons in the human communities that it produces health problems. The effect of applying fear appeal message on attitudes and intention against drug abuse, drug resistance skills, knowledge about side effect of drugs and drug abuse related behaviors among male high school students was studied based on applying extended parallel process model as a theoretical framework. Materials & Methods: Two high schools were chosen from six state high schools as an intervention (n=86 and control (n=97 groups. Educational curriculum, that was designed, based on students’ educational needs, appealed students’ fear and recommended messages developed students' ability for resisting against drugs. Before intervention 5-6 students who were known as a favourite and leader of students, were selected by student’s opinion in each class as students' leaders. The each leader of the group had a coordinator and mediate role between his group and health educators. Henceforth a favourite teacher was chosen by students’ vote for helping health educators and participated in the educational intervention program.Results: The result showed that educational manipulation had significant effect on intervention group’s average response for intention (t= -4.03, p<0.000 and attitude against drug abuse (t= -6.19, p<0.000, peer resistance skills (t=-0.82, p<0.000, and knowledge (t= -10.88, p<0.000. In addition, it was not found positive urinary rapid immune-chromatography test for opium and marijuana in the intervention group whereas 6.3% in the control groups.Conclusion: This findings suggest that applying fear appeals theories and effective health risk message would be an efficient tool for preventing drug abuse education programs but further studies are needed to define function of EPPM as a effective model for creating social inoculation against drug abuse among non- drug expose adolescents.

  18. Cognitive performance of male and female C57BL/6J mice after repetitive concussive brain injuries.

    Velosky, Alexander G; Tucker, Laura B; Fu, Amanda H; Liu, Jiong; McCabe, Joseph T

    2017-05-01

    In contact sports, repetitive concussive brain injury (rCBI) is the prevalent form of head injury seen in athletes. The need for effective treatment is urgent as rCBI has been associated with a host of cognitive, behavioral and neurological complaints. There has been a growing trend in the use of female animals in pre-clinical research, but few studies have investigated possible sex differences following rCBI. The goal of the current study was to determine any differences between male and female C57BL/6J mice on assessments of learning and memory after repetitive concussive injury. Following rCBI by impact to the scalp, male mice exhibited longer righting reflexes during acute recovery. In both sexes, there were no evident histopathological changes observed in the underlying cerebral cortex or hippocampus. Reactive astrogliosis was elevated in the corpus callosum and optic tract, and astrogliosis was slightly less in the optic tract of female mice. rCBI mice exhibited impairment during the learning phase of the Morris water maze (MWM), but female mice, in comparison to male mice, were observed to have superior spatial memory during standard MWM probe trials. Female mice were overall more active, evidenced by greater distances traveled in the y-maze and greater swim speeds in the MWM. The results of this study demonstrate sex differences in cognitive performance following rCBI and support previous research suggesting the neuroprotective role of sex in brain injury. Published by Elsevier B.V.

  19. HIT and brain reward function: A case of mistaken identity (theory).

    Wright, Cory; Colombo, Matteo; Beard, Alexander

    2017-08-01

    This paper employs a case study from the history of neuroscience-brain reward function-to scrutinize the inductive argument for the so-called 'Heuristic Identity Theory' (HIT). The case fails to support HIT, illustrating why other case studies previously thought to provide empirical support for HIT also fold under scrutiny. After distinguishing two different ways of understanding the types of identity claims presupposed by HIT and considering other conceptual problems, we conclude that HIT is not an alternative to the traditional identity theory so much as a relabeling of previously discussed strategies for mechanistic discovery. Copyright © 2017. Published by Elsevier Ltd.

  20. Human Development XII: A Theory for the Structure and Function of the Human Brain

    Søren Ventegodt

    2008-01-01

    Full Text Available The human brain is probably the most complicated single structure in the biological universe. The cerebral cortex that is traditionally connected with consciousness is extremely complex. The brain contains approximately 1,000,000 km of nerve fibers, indicating its enormous complexity and which makes it difficult for scientists to reveal the function of the brain. In this paper, we propose a new model for brain functions, i.e., information-guided self-organization of neural patterns, where information is provided from the abstract wholeness of the biophysical system of an organism (often called the true self, or the “soul””. We present a number of arguments in favor of this model that provide self-conscious control over the thought process or cognition. Our arguments arise from analyzing experimental data from different research fields: histology, anatomy, electroencephalography (EEG, cerebral blood flow, neuropsychology, evolutionary studies, and mathematics. We criticize the popular network theories as the consequence of a simplistic, mechanical interpretation of reality (philosophical materialism applied to the brain. We demonstrate how viewing brain functions as information-guided self-organization of neural patterns can explain the structure of conscious mentation; we seem to have a dual hierarchical representation in the cerebral cortex: one for sensation-perception and one for will-action. The model explains many of our unique mental abilities to think, memorize, associate, discriminate, and make abstractions. The presented model of the conscious brain also seems to be able to explain the function of the simpler brains, such as those of insects and hydra.

  1. Daily Dose effect of Valerian root extract on some Neurotransmitter contents in different Brain areas of male Albino Rats

    Waggas, Abeer M

    2007-01-01

    The aim of the present study was to investigate the daily effect of valerian (Valeriana officinalis L .) root extract on epinephrine (E), norepinephrine (NE), dopamine (DA), serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) , and gamma-aminobutyric acid (GABA) contents in different brain areas (cerebellum , pons plus medulla oblongata , striatum , cerebral cortex, hypothalamus, midbrain and hippocampus) of male albino rats .The daily intraperitoneal ( i.p.) injection of 300 mg/kg body wt valerian for 30 days caused a significant increase in epinephrine ( E ) content in pons plus medulla oblongata, cerebral cortex , hypothalamus and in midbrain . Norepinephrine (NE ) content was significantly increased in all brain areas tested except in cerebellum and cerebral cortex . Dopamine (DA) content was significantly increased in all tested brain areas except in cerebral cortex and hippocampus . moreover , there was also a significant increase in serotonin (5-HT ) and 5-hydroxyindol acetic acid (5-HIAA) contents in all tested brain areas . However, gamma-aminobutyric acid (GABA) content was significantly decreased in all tested brain areas . After the extract withdrawal, the increase in ( E, NE, DA , 5-HT ) contents and the decrease in GABA content persisted in pons plus medulla oblongata , striatum , midbrain and hippocampus , and this might be due to regional differences toward the effect. The increase in E, NE, DA , 5-HT and 5-HIAA contents, at the same time the decrease in GABA content in the different brain areas of albino rats may be due to the presence of both valepotriates and valerenic acid in the extract which mediated the GABA ergic mechanisms including the inhibition of GABA metabolism and the increase in GABA synthesis and release , although agonized the GABAA receptors which led to the inhibit of the neurotransmitter release. Valerian root extract may be useful as a herbal medicine having sedative effect and it is safe. (author)

  2. Comparative protective effects of royal jelly and cod liver oil against neurotoxic impact of tartrazine on male rat pups brain.

    Mohamed, Amany Abdel-Rahman; Galal, Azza A A; Elewa, Yaser H A

    2015-09-01

    This study is aimed to evaluate the possible neurotoxic effect of tartrazine (T), an extensively used synthetic azo dye, as well as to determine the potential modulatory role of cod liver oil (CLO) or royal jelly (RJ) against such effects. For this purpose, thirty-six male rat pups were allocated into six groups. The 1st group received distilled water (control group), the 2nd group was given 300 mg RJ/kg bw (RJ group), the 3rd group was given 0.4 ml CLO/kg bw (CLO group), the 4th was given 500 mg T/kg bw (T group). The 5th group was given T concurrently with RJ (TRJ group) and the 6th group was given T concurrently with CLO (TCLO group), at the same doses as the former groups. All treatments were given orally for 30 consecutive days. The concentrations of different brain neurotransmitters, gamma amino butyric acid (GABA), dopamine (DA) and serotonin (5HT) as well as the antioxidant and oxidative stress biomarkers were measured in the brain homogenates. An immunohistochemical staining of the cerebral cortex was applied with the anti-ssDNA antibody (an apoptotic cell marker) to reveal the changes in brain structure. The T group revealed a significant decrease in the concentration of the brain neurotransmitters, a sharp shortage in the level of antioxidant biomarkers (super oxide dismutase, catalase and the reduced glutathione), a marked increase in malondialdehyde levels, and numerous apoptotic cells in the brain cortex compared with the other groups. Interestingly, all the previously mentioned parameters were almost retrieved in both the TRJ and TCLO groups compared to the T group. These results conclusively demonstrate that RJ and CLO administration provides sufficient protection against the ruinous effects of T on rat pups brain tissue function and structure. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. MULTIPLE INTELLIGENCE THEORY AND FOREIGN LANGUAGE LEARNING:A BRAIN-BASED PERSPECTIVE

    Jane Arnold

    2004-06-01

    Full Text Available Gardner's Multiple Intelligences theory is presented as a cognitive perspective on intelligence which has profound implications for education in general. More specifically, it has led to the application of eight of these frames to language teaching and learning. In this chapter, we will argue in favour of the application of MIT to the EFL classroom, using as support some of the major insights for language teaching from brain science.

  4. THE SEXUAL JURIDIFICATION AND THE SIMBOLIC VIOLENCE: A SOCIAL AND LEGAL ANALYSIS FROM THE MALE DOMINATION THEORY OF PIERRE BOURDIEU

    Barbara Lou da Costa Veloso Dias

    2015-12-01

    Full Text Available This article has as his main object of study the juridification process of sexuality and its relationship with the male symbolic violence. Therefore, initially it was made explanations about sexuality juridification process, with the illustration of that process by analyzing three bills; followed by exposure of the main aspects of the Pierre Bourdieu's theory of male domination, especially the concepts of Symbolic Domination, Symbolic Power, Symbolic Violence and Habitus; highlighting, at a later time, the incorporation of that domination by subversive movements; to the end, analyze a possible relationship between the quoted sexuality juridification process and symbolic violence, in accordance with the wisdom of Pierre Bourdieu. The objectives are, initially, conceptualize and illustrate the sexuality of juridification process; expose the main elements of the Male Domination's theory written by Pierre Bourdieu; examine the idea of incorporation of domination from the theoretical background discussed in the previous section; and to investigate the relationship between that sexuality juridification process and the male symbolic violence. These objectives have the purpose of analyze the hypothesis of this present article, which consists of the view that the jurification of sexuality process incorporates a male symbolic violence, even this having a subversive nature.

  5. Nutrition and dopamine: An intake of tyrosine in royal jelly can affect the brain levels of dopamine in male honeybees (Apis mellifera L.).

    Sasaki, Ken

    2016-04-01

    Precursors of neuroactive substances can be obtained from dietary sources, which can affect the resulting production of such substances in the brain. In social species, an intake of the precursor in food could be controlled by social interactions. To test the effects of dietary tyrosine on the brain dopamine levels in social insect colonies, male and worker honeybees were fed tyrosine or royal jelly under experimental conditions and the brain levels of dopamine and its metabolite were then measured. The results showed that the levels of dopamine and its metabolite in the brains of 4- and 8-day-old workers and 8-day-old males were significantly higher in tyrosine-fed bees than in control bees, but the levels in 4-day-old males were not. The brain levels of dopamine and its metabolite in 4- and 8-day-old males and workers were significantly higher in royal jelly-fed bees than in control bees, except for one group of 4-day-old workers. Food exchanges with workers were observed in males during 1-3 days, but self-feedings were also during 5-7 days. These results suggest that the brain levels of dopamine in males can be controlled by an intake of tyrosine in food via exchanging food with nestmates and by self-feeding. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. MicroRNAs show mutually exclusive expression patterns in the brain of adult male rats

    Olsen, Line; Klausen, Mikkel; Helboe, Lone

    2009-01-01

    BACKGROUND: The brain is a major site of microRNA (miRNA) gene expression, but the spatial expression patterns of miRNAs within the brain have not yet been fully covered. METHODOLOGY/PRINCIPAL FINDINGS: We have characterized the regional expression profiles of miRNAs in five distinct regions...... of the adult rat brain: amygdala, cerebellum, hippocampus, hypothalamus and substantia nigra. Microarray profiling uncovered 48 miRNAs displaying more than three-fold enrichment between two or more brain regions. Notably, we found reciprocal expression profiles for a subset of the miRNAs predominantly found...... (> ten times) in either the cerebellum (miR-206 and miR-497) or the forebrain regions (miR-132, miR-212, miR-221 and miR-222). CONCLUSIONS/SIGNIFICANCE: The results indicate that some miRNAs could be important for area-specific functions in the brain. Our data, combined with previous studies in mice...

  7. Peculiarities of brain electric activity in young males and females of different creativity levels

    Ermakov, Pavel N.

    2013-09-01

    Full Text Available This article shows that the peculiarities of divergent and convergent thinking in young males and females of various creativity levels are stipulated by a definite EEG frequency-and-spatial arrangement. Young males and females of mixed and left lateral arrangement profiles demonstrate an expressed activity of occipital, central, and temporal areas of both cerebral hemispheres. In young males and females of right LAP (lateral arrangement profile, connections are clearly localized in case of solution of both convergent and divergent tasks. Solution of divergent and convergent tasks may condition certain frequency-and-spatial arrangement of EEG in young males and females with different levels of academic progress and a different lateral arrangement profile (LAP.

  8. Environmental Enrichment, Performance, and Brain Injury in Male and Female Rats

    Elliott, Brenda M

    2004-01-01

    .... The extent to which physical vs. social aspects of enriched environments separately contribute to superior performance, or the extent to which males and females differ in their response to enrichment has not been examined previously...

  9. Executive functions and theory of mind as predictors of social adjustment in childhood traumatic brain injury.

    Robinson, Kristen E; Fountain-Zaragoza, Stephanie; Dennis, Maureen; Taylor, H Gerry; Bigler, Erin D; Rubin, Kenneth; Vannatta, Kathryn; Gerhardt, Cynthia A; Stancin, Terry; Yeates, Keith Owen

    2014-11-15

    This study examined whether executive function and theory of mind mediate the effects of pediatric traumatic brain injury (TBI) on social adjustment, relative to children with orthopedic injury (OI). Participants included 19 children with severe TBI, 41 children with complicated mild/moderate TBI, and 57 children with OI. They completed measures of executive function, as well as cognitive, affective, and conative theory of mind. Parents provided ratings of children's social adjustment. Children with severe TBI performed more poorly than children with OI on executive function and theory of mind tasks and were rated by parents as having more behavioral symptoms and worse communication and social skills. Executive function and theory of mind were positively correlated with social skills and communication skills, and negatively correlated with behavioral symptoms. In multiple mediator models, theory of mind and executive function were not significant direct predictors of any measure of social adjustment, but mediated the association between injury and adjustment for children with severe TBI. Theory of mind was a significant independent mediator when predicting social skills, but executive function was not. TBI in children, particularly severe injury, is associated with poor social adjustment. The impact of TBI on children's social adjustment is likely mediated by its effects on executive function and theory of mind.

  10. Aerobic Fitness Linked to Cortical Brain Development in Adolescent Males: Preliminary Findings Suggest a Possible Role of BDNF Genotype

    Herting, Megan M.; Keenan, Madison F.; Nagel, Bonnie J.

    2016-01-01

    Aerobic exercise has been shown to impact brain structure and cognition in children and adults. Exercise-induced activation of a growth protein known as brain derived neurotrophic factor (BDNF) is thought to contribute to such relationships. To date, however, no study has examined how aerobic fitness relates to cortical brain structure during development and if BDNF genotype moderates these relationships. Using structural magnetic resonance imaging (MRI) and FreeSurfer, the current study examined how aerobic fitness relates to volume, thickness, and surface area in 34 male adolescents, 15 to 18 years old. Moreover, we examined if the val66met BDNF genotype moderated these relationships. We hypothesized that aerobic fitness would relate to greater thickness and volumes in frontal, parietal, and motor regions, and that these relationships would be less robust in individuals carrying a Met allele, since this genotype leads to lower BDNF expression. We found that aerobic fitness positively related to right rostral middle frontal cortical volume in all adolescents. However, results also showed BDNF genotype moderated the relationship between aerobic fitness and bilateral medial precuneus surface area, with a positive relationship seen in individuals with the Val/Val allele, but no relationship detected in those adolescents carrying a Met allele. Lastly, using self-reported levels of aerobic activity, we found that higher-fit adolescents showed larger right medial pericalcarine, right cuneus and left precuneus surface areas as compared to their low-fit peers. Our findings suggest that aerobic fitness is linked to cortical brain development in male adolescents, and that more research is warranted to determine how an individual’s genes may influence these relationships. PMID:27445764

  11. Aerobic Fitness Linked to Cortical Brain Development in Adolescent Males: Preliminary Findings Suggest a Possible Role of BDNF Genotype.

    Herting, Megan M; Keenan, Madison F; Nagel, Bonnie J

    2016-01-01

    Aerobic exercise has been shown to impact brain structure and cognition in children and adults. Exercise-induced activation of a growth protein known as brain derived neurotrophic factor (BDNF) is thought to contribute to such relationships. To date, however, no study has examined how aerobic fitness relates to cortical brain structure during development and if BDNF genotype moderates these relationships. Using structural magnetic resonance imaging (MRI) and FreeSurfer, the current study examined how aerobic fitness relates to volume, thickness, and surface area in 34 male adolescents, 15 to 18 years old. Moreover, we examined if the val66met BDNF genotype moderated these relationships. We hypothesized that aerobic fitness would relate to greater thickness and volumes in frontal, parietal, and motor regions, and that these relationships would be less robust in individuals carrying a Met allele, since this genotype leads to lower BDNF expression. We found that aerobic fitness positively related to right rostral middle frontal cortical volume in all adolescents. However, results also showed BDNF genotype moderated the relationship between aerobic fitness and bilateral medial precuneus surface area, with a positive relationship seen in individuals with the Val/Val allele, but no relationship detected in those adolescents carrying a Met allele. Lastly, using self-reported levels of aerobic activity, we found that higher-fit adolescents showed larger right medial pericalcarine, right cuneus and left precuneus surface areas as compared to their low-fit peers. Our findings suggest that aerobic fitness is linked to cortical brain development in male adolescents, and that more research is warranted to determine how an individual's genes may influence these relationships.

  12. Assessment the Plasticity of Cortical Brain Theory through Visual Memory in Deaf and Normal Students

    Ali Ghanaee-Chamanabad

    2012-10-01

    Full Text Available Background: The main aim of this research was to assess the differences of visual memory in deaf and normal students according to plasticity of cortical brain.Materials and Methods: This is an ex-post factor research. Benton visual test was performed by two different ways on 46 students of primary school. (22 deaf and 24 normal students. The t-student was used to analysis the data. Results: The visual memory in deaf students was significantly higher than the similar normal students (not deaf.While the action of visual memory in deaf girls was risen in comparison to normal girls in both ways, the deaf boys presented the better action in just one way of the two performances of Benton visual memory test.Conclusion: The action of plasticity of brain shows that the brain of an adult is dynamic and there are some changes in it. This brain plasticity has not limited to sensory somatic systems. Therefore according to plasticity of cortical brain theory, the deaf students due to the defect of hearing have increased the visual the visual inputs which developed the procedural visual memory.

  13. Random matrix theory for analyzing the brain functional network in attention deficit hyperactivity disorder

    Wang, Rong; Wang, Li; Yang, Yong; Li, Jiajia; Wu, Ying; Lin, Pan

    2016-11-01

    Attention deficit hyperactivity disorder (ADHD) is the most common childhood neuropsychiatric disorder and affects approximately 6 -7 % of children worldwide. Here, we investigate the statistical properties of undirected and directed brain functional networks in ADHD patients based on random matrix theory (RMT), in which the undirected functional connectivity is constructed based on correlation coefficient and the directed functional connectivity is measured based on cross-correlation coefficient and mutual information. We first analyze the functional connectivity and the eigenvalues of the brain functional network. We find that ADHD patients have increased undirected functional connectivity, reflecting a higher degree of linear dependence between regions, and increased directed functional connectivity, indicating stronger causality and more transmission of information among brain regions. More importantly, we explore the randomness of the undirected and directed functional networks using RMT. We find that for ADHD patients, the undirected functional network is more orderly than that for normal subjects, which indicates an abnormal increase in undirected functional connectivity. In addition, we find that the directed functional networks are more random, which reveals greater disorder in causality and more chaotic information flow among brain regions in ADHD patients. Our results not only further confirm the efficacy of RMT in characterizing the intrinsic properties of brain functional networks but also provide insights into the possibilities RMT offers for improving clinical diagnoses and treatment evaluations for ADHD patients.

  14. Brain SERT Expression of Male Rats Is Reduced by Aging and Increased by Testosterone Restitution

    José Jaime Herrera-Pérez

    2013-01-01

    Full Text Available In preclinical and clinical studies aging has been associated with a deteriorated response to antidepressant treatment. We hypothesize that such impairment is explained by an age-related decrease in brain serotonin transporter (SERT expression associated with low testosterone (T levels. The objectives of this study were to establish (1 if brain SERT expression is reduced by aging and (2 if the SERT expression in middle-aged rats is increased by T-restitution. Intact young rats (3–5 months and gonad-intact middle-aged rats with or without T-restitution were used. The identification of the brain SERT expression was done by immunofluorescence in prefrontal cortex, lateral septum, hippocampus, and raphe nuclei. An age-dependent reduction of SERT expression was observed in all brain regions examined, while T-restitution recovered the SERT expression only in the dorsal raphe of middle-aged rats. This last action seems relevant since dorsal raphe plays an important role in the antidepressant action of selective serotonin reuptake inhibitors. All data suggest that this mechanism accounts for the T-replacement usefulness to improve the response to antidepressants in the aged population.

  15. Alterations of Brain Functional Architecture Associated with Psychopathic Traits in Male Adolescents with Conduct Disorder.

    Pu, Weidan; Luo, Qiang; Jiang, Yali; Gao, Yidian; Ming, Qingsen; Yao, Shuqiao

    2017-09-12

    Psychopathic traits of conduct disorder (CD) have a core callous-unemotional (CU) component and an impulsive-antisocial component. Previous task-driven fMRI studies have suggested that psychopathic traits are associated with dysfunction of several brain areas involved in different cognitive functions (e.g., empathy, reward, and response inhibition etc.), but the relationship between psychopathic traits and intrinsic brain functional architecture has not yet been explored in CD. Using a holistic brain-wide functional connectivity analysis, this study delineated the alterations in brain functional networks in patients with conduct disorder. Compared with matched healthy controls, we found decreased anti-synchronization between the fronto-parietal network (FPN) and default mode network (DMN), and increased intra-network synchronization within the frontothalamic-basal ganglia, right frontoparietal, and temporal/limbic/visual networks in CD patients. Correlation analysis showed that the weakened FPN-DMN interaction was associated with CU traits, while the heightened intra-network functional connectivity was related to impulsivity traits in CD patients. Our findings suggest that decoupling of cognitive control (FPN) with social understanding of others (DMN) is associated with the CU traits, and hyper-functions of the reward and motor inhibition systems elevate impulsiveness in CD.

  16. Needs and Concerns of Male Combat Veterans with Mild Traumatic Brain Injury

    2013-01-01

    is bothering me . . . . I bought an old house and I’ve been remodeling it. And I found some old dressers from an old house, I’ve been refin- ishing...EW, Tong EC, Yip SC, Lui WF, Lam CS. Health services needs and quality of life assessment of individuals with brain injuries: a pilot cross -sectional

  17. An item response theory analysis of the Psychological Inventory of Criminal Thinking Styles: comparing male and female probationers and prisoners.

    Walters, Glenn D

    2014-09-01

    An item response theory (IRT) analysis of the Psychological Inventory of Criminal Thinking Styles (PICTS) was performed on 26,831 (19,067 male and 7,764 female) federal probationers and compared with results obtained on 3,266 (3,039 male and 227 female) prisoners from previous research. Despite the fact male and female federal probationers scored significantly lower on the PICTS thinking style scales than male and female prisoners, discrimination and location parameter estimates for the individual PICTS items were comparable across sex and setting. Consistent with the results of a previous IRT analysis conducted on the PICTS, the current results did not support sentimentality as a component of general criminal thinking. Findings from this study indicate that the discriminative power of the individual PICTS items is relatively stable across sex (male, female) and correctional setting (probation, prison) and that the PICTS may be measuring the same criminal thinking construct in male and female probationers and prisoners. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  18. The persistence of erroneous familiarity in an epileptic male : Challenging perceptual theories of déjà vu activation

    O'Connor, Akira Robert; Moulin, Christopher J. A.

    2008-01-01

    We report the case of a 39-year-old, temporal lobe epileptic male, MH. Prior to complex partial seizure, experienced up to three times a day, MH often experiences an aura experienced as a persistent sensation of deja vu. Data-driven theories of deja vu formation suggest that partial familiarity for the perceived stimulus is responsible for the sensation. Consequently, diverting attention away from this stimulus should cause the sensation to dissipate. MH, whose sensations of deja vu persist l...

  19. Prospect theory on the brain? Toward a cognitive neuroscience of decision under risk.

    Trepel, Christopher; Fox, Craig R; Poldrack, Russell A

    2005-04-01

    Most decisions must be made without advance knowledge of their consequences. Economists and psychologists have devoted much attention to modeling decisions made under conditions of risk in which options can be characterized by a known probability distribution over possible outcomes. The descriptive shortcomings of classical economic models motivated the development of prospect theory (D. Kahneman, A. Tversky, Prospect theory: An analysis of decision under risk. Econometrica, 4 (1979) 263-291; A. Tversky, D. Kahneman, Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5 (4) (1992) 297-323) the most successful behavioral model of decision under risk. In the prospect theory, subjective value is modeled by a value function that is concave for gains, convex for losses, and steeper for losses than for gains; the impact of probabilities are characterized by a weighting function that overweights low probabilities and underweights moderate to high probabilities. We outline the possible neural bases of the components of prospect theory, surveying evidence from human imaging, lesion, and neuropharmacology studies as well as animal neurophysiology studies. These results provide preliminary suggestions concerning the neural bases of prospect theory that include a broad set of brain regions and neuromodulatory systems. These data suggest that focused studies of decision making in the context of quantitative models may provide substantial leverage towards a fuller understanding of the cognitive neuroscience of decision making.

  20. Effect of long-term caloric restriction on brain monoamines in aging male and female Fischer 344 rats.

    Kolta, M G; Holson, R; Duffy, P; Hart, R W

    1989-05-01

    The present study examines the changes in central monoamines and their metabolites in aged male and female rats after long-term caloric restriction. Fischer 344 rats of both sexes (n = 5-10/group) were maintained on one of two dietary regimens: ad libitum NIH 31 diet or 60% by weight of the ad lib. intake (restricted), supplemented with vitamins and minerals. Animals received these diets from the age of 14 weeks until killed at 22.25 months of age. Caudate nucleus (CN), hypothalamus (HYPO), olfactory bulb (OB) and nucleus accumbens (NA) were assayed for content of norepinephrine (NE), dopamine (DA) and its metabolites (dihydroxyphenylacetic acid, DOPAC, and homovanillic acid, HVA) and serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) using HPLC/EC. Relative to the ad lib. group, restricted rats of both sex showed significant decreases in NE content in CN, HYPO and OB. DA and 5-HT content were decreased significantly in the CN and HYPO. No significant changes were found in the levels of DA metabolites in all brain regions studied. While the 5-HIAA level was significantly reduced in the HYPO and NA of the female restricted rats, it was increased several-fold in the OB of the male restricted animals. These preliminary results suggest that long-term caloric restriction alters brain monoamine concentrations, an effect which may in turn modify the normal rate of aging.

  1. Study effects sublethal concentration of diazinon on testis, brain and heart of Rutilus frisii kutum (Kamensky, 1901 male brood stocks

    M Mohammad Nejad Shamoushaki

    2011-11-01

    Full Text Available In this study the effects of toxic pesticides, Diazinon (60% emulsion on the some tissues of (Rutilus frisii kutum, Kamensky, 1901 male brood stocks were studied. The test were studied under static water quality conditions at 15 °C ± 2 ºC in winter and spring 2009. The effective physical and chemical parameters of water were pH= 7-8.2, dh= 300 mg/L (caco3, DO= 7 ppm and T= 15 °C±2 ºC. LC50 96h pesticide Diazinon on the first 0.4 mg/L was determined and then fish were exposed by the toxin with 3 concentrations, MAC value, LC1, LC5, and a control with three replicates for 45 days. Pathology results showed toxin diazinon no effect on average weight and fish body length, the average weight of heart and brain but caueses decrease of gonad weigth and gonad index and also, cause complications of atrophy, fibrosis and necrosis in testis , vascular congestion, increased distance between the myocardium and fibrous string in heart and neuronal loss, vascular congestion and edema in the brain of kutum male brood stocks.

  2. Prenatal exposure to paracetamol/acetaminophen and precursor aniline impairs masculinisation of male brain and behaviour

    Hay-Schmidt, Anders; Finkielman, Olivia T. Ejlstrup; Jensen, Benjamin Anderschou Holbech

    2017-01-01

    to be inhibited by APAP. Through intrauterine exposure experiments in C57BL/6 mice, we found that exposure to APAP decreased neuronal number in the sexually dimorphic nucleus (SDN) of the preoptic area (POA) in the anterior hypothalamus of male adult offspring. Likewise, exposure to the environmental pollutant...

  3. Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X.

    Hagerman, R J; Leehey, M; Heinrichs, W; Tassone, F; Wilson, R; Hills, J; Grigsby, J; Gage, B; Hagerman, P J

    2001-07-10

    The authors report five elderly men with the fragile X premutation who had a progressive action tremor associated with executive function deficits and generalized brain atrophy. These individuals had elevated fragile X mental retardation 1 gene (FMR1) messenger RNA and normal or borderline levels of FMR1 protein. The authors propose that elevations of FMR1 messenger RNA may be causative for a neurodegenerative syndrome in a subgroup of elderly men with the FMR1 premutation.

  4. Brain arginine vasotocin and isotocin in breeding female three-spined sticklebacks (Gasterosteus aculeatus): the presence of male and egg deposition.

    Kulczykowska, Ewa; Kleszczyńska, Agnieszka

    2014-08-01

    Arginine vasotocin (AVT) and isotocin (IT) are fish hypothalamic nonapeptides involved in numerous social and reproductive behaviors. Vasotocinergic and isotocinergic fibers project to different brain areas where peptides act as neurotransmitters and/or neuromodulators. In this study, we measured whole brain levels of bioactive AVT and IT in breeding females of three-spined stickleback (Gasterosteus aculeatus) when they were kept with: (i) courting nest-owners, (ii) courting males that did not build the nest, (iii) non-courting males, and (iv) alone. Only some of the females kept with courting nest-owners deposited eggs. The highest and similar brain AVT levels were in those of females that did not deposit eggs, regardless of whether they were kept with non-courting or courting male, having the nest or not. The highest IT levels were in females that did not deposit eggs but only in those kept with courting male. We suggest that production of AVT in females' brain is stimulated by the presence of male in close proximity, irrespective of whether or not it displays courting behavior, but that of IT is stimulated by male courtship proxies. Moreover, presence of courting or non-courting male that stimulate IT or/and AVT producing neurones may be decisive for final oocyte maturation or egg deposition, because brain levels of both nonapeptides decrease after egg deposition. Similar AVT levels in brains of aggressive and non-aggressive individuals and lack of correlation between brain IT levels and aggressive behavior of females suggest that the nonapeptides are not related to females aggressiveness in three-spined sticklebacks. Copyright © 2014. Published by Elsevier Inc.

  5. Methanol extract of Nigella sativa seed induces changes in the levels of neurotransmitter amino acids in male rat brain regions.

    El-Naggar, Tarek; Carretero, María Emilia; Arce, Carmen; Gómez-Serranillos, María Pilar

    2017-12-01

    Nigella sativa L. (Ranunculaceae) (NS) has been used for medicinal and culinary purposes. Different parts of the plant are used to treat many disorders. This study investigates the effects of NS methanol extract on brain neurotransmitter amino acid levels. We measured the changes in aspartate, glutamate, glycine and γ-aminobutyric acid in five brain regions of male Wistar rats after methanol extract treatment. Animals were injected intraperitoneally with saline solution (controls) or NS methanol extract (equivalent of 2.5 g/kg body weight) and sacrificed 1 h later or after administering 1 daily dose for 8 days. The neurotransmitters were measured in the hypothalamus, cortex, striatum, hippocampus and thalamus by HPLC. Results showed significant changes in amino acids compared to basal values. Glutamate increased significantly (16-36%) in the regions analyzed except the striatum. Aspartate in the hypothalamus (50 and 76%) and glycine in hippocampus (32 and 25%), thalamus (66 and 29%) and striatum (75 and 48%) also increased with the two treatment intervals. γ-Aminobutyric acid significantly increased in the hippocampus (38 and 32%) and thalamus (22 and 40%) but decreased in the cortex and hypothalamus although in striatum only after eight days of treatment (24%). Our results suggest that injected methanol extract modifies amino acid levels in the rat brain regions. These results could be of interest since some neurodegenerative diseases are related to amino acid level imbalances in the central nervous system, suggesting the prospect for therapeutic use of NS against these disorders.

  6. The role of brain peptides in the reproduction of blue gourami males (Trichogaster trichopterus).

    Levy, Gal; Degani, Gad

    2013-10-01

    In all vertebrates, reproduction and growth are closely linked and both are controlled by complex hormonal interactions at the brain-pituitary level. In this study, we focused on the reciprocal interactions between brain peptides that regulate growth and reproductive functions in a teleostei fish (blue gourami Trichogaster trichopterus). An increase in gonadotropin-releasing hormone 1 (GnRH1) gene expression was detected during ontogeny, and this peptide increased growth hormone (GH) and β follicle-stimulating hormone (βFSH) gene expression in pituitary cell culture. However, although no change in gonadotropin-releasing hormone 2 (GnRH2) gene expression during the reproductive cycle or sexual behavior was detected, a stimulatory effect of this peptide on β gonadotropins (βGtH) gene expression was observed. In addition, pituitary adenylate cyclase-activating polypeptide 38 (PACAP-38) inhibited GnRH-analog-induced βFSH gene expression, and co-treatment of cells with GnRH-analog and PACAP-38 inhibited GnRH-analog-stimulatory and PACAP-38-inhibitory effects on GH gene expression. These findings together with previous studies were used to create a model summarizing the mechanism of brain peptides (GnRH, PACAP and its related peptide) and the relationship to reproduction and growth through pituitary hormone gene expression during ontogenesis and reproductive stages in blue gourami. © 2013 Wiley Periodicals, Inc.

  7. Brain Morphometry on Congenital Hand Deformities based on Teichmüller Space Theory.

    Peng, Hao; Wang, Xu; Duan, Ye; Frey, Scott H; Gu, Xianfeng

    2015-01-01

    Congenital Hand Deformities (CHD) are usually occurred between fourth and eighth week after the embryo is formed. Failure of the transformation from arm bud cells to upper limb can lead to an abnormal appearing/functioning upper extremity which is presented at birth. Some causes are linked to genetics while others are affected by the environment, and the rest have remained unknown. CHD patients develop prehension through the use of their hands, which affect the brain as time passes. In recent years, CHD have gain increasing attention and researches have been conducted on CHD, both surgically and psychologically. However, the impacts of CHD on brain structure are not well-understood so far. Here, we propose a novel approach to apply Teichmüller space theory and conformal welding method to study brain morphometry in CHD patients. Conformal welding signature reflects the geometric relations among different functional areas on the cortex surface, which is intrinsic to the Riemannian metric, invariant under conformal deformation, and encodes complete information of the functional area boundaries. The computational algorithm is based on discrete surface Ricci flow, which has theoretic guarantees for the existence and uniqueness of the solutions. In practice, discrete Ricci flow is equivalent to a convex optimization problem, therefore has high numerically stability. In this paper, we compute the signatures of contours on general 3D surfaces with surface Ricci flow method, which encodes both global and local surface contour information. Then we evaluated the signatures of pre-central and post-central gyrus on healthy control and CHD subjects for analyzing brain cortical morphometry. Preliminary experimental results from 3D MRI data of CHD/control data demonstrate the effectiveness of our method. The statistical comparison between left and right brain gives us a better understanding on brain morphometry of subjects with Congenital Hand Deformities, in particular, missing

  8. Regional differences in mu and kappa opioid receptor G-protein activation in brain in male and female prairie voles.

    Martin, T J; Sexton, T; Kim, S A; Severino, A L; Peters, C M; Young, L J; Childers, S R

    2015-12-17

    Prairie voles are unusual mammals in that, like humans, they are capable of forming socially monogamous pair bonds, display biparental care, and engage in alloparental behaviors. Both mu and kappa opioid receptors are involved in behaviors that either establish and maintain, or result from pair bond formation in these animals. Mu and kappa opioid receptors both utilize inhibitory G-proteins in signal transduction mechanisms, however the efficacy by which these receptor subtypes stimulate G-protein signaling across the prairie vole neuraxis is not known. Utilizing [(35)S]GTPγS autoradiography, we characterized the efficacy of G-protein stimulation in coronal sections throughout male and female prairie vole brains by [D-Ala2,NMe-Phe4,Gly-ol5]-enkephalin (DAMGO) and U50,488H, selective mu and kappa opioid agonists, respectively. DAMGO stimulation was highest in the forebrain, similar to that found with other rodent species. U-50,488H produced greater stimulation in prairie voles than is typically seen in mice and rats, particularly in select forebrain areas. DAMGO produced higher stimulation in the core versus the shell of the nucleus accumbens (NAc) in females, while the distribution of U-50,488H stimulation was the opposite. There were no gender differences for U50,488H stimulation of G-protein activity across the regions examined, while DAMGO stimulation was greater in sections from females compared to those from males for NAc core, entopeduncular nucleus, and hippocampus. These data suggest that the kappa opioid system may be more sensitive to manipulation in prairie voles compared to mice and rats, and that female prairie voles may be more sensitive to mu agonists in select brain regions than males. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Cognitive, affective, and conative theory of mind (ToM) in children with traumatic brain injury.

    Dennis, Maureen; Simic, Nevena; Bigler, Erin D; Abildskov, Tracy; Agostino, Alba; Taylor, H Gerry; Rubin, Kenneth; Vannatta, Kathryn; Gerhardt, Cynthia A; Stancin, Terry; Yeates, Keith Owen

    2013-07-01

    We studied three forms of dyadic communication involving theory of mind (ToM) in 82 children with traumatic brain injury (TBI) and 61 children with orthopedic injury (OI): Cognitive (concerned with false belief), Affective (concerned with expressing socially deceptive facial expressions), and Conative (concerned with influencing another's thoughts or feelings). We analyzed the pattern of brain lesions in the TBI group and conducted voxel-based morphometry for all participants in five large-scale functional brain networks, and related lesion and volumetric data to ToM outcomes. Children with TBI exhibited difficulty with Cognitive, Affective, and Conative ToM. The perturbation threshold for Cognitive ToM is higher than that for Affective and Conative ToM, in that Severe TBI disturbs Cognitive ToM but even Mild-Moderate TBI disrupt Affective and Conative ToM. Childhood TBI was associated with damage to all five large-scale brain networks. Lesions in the Mirror Neuron Empathy network predicted lower Conative ToM involving ironic criticism and empathic praise. Conative ToM was significantly and positively related to the package of Default Mode, Central Executive, and Mirror Neuron Empathy networks and, more specifically, to two hubs of the Default Mode Network, the posterior cingulate/retrosplenial cortex and the hippocampal formation, including entorhinal cortex and parahippocampal cortex. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Biomechanical Analysis of Normal Brain Development during the First Year of Life Using Finite Strain Theory.

    Kim, Jeong Chul; Wang, Li; Shen, Dinggang; Lin, Weili

    2016-12-02

    The first year of life is the most critical time period for structural and functional development of the human brain. Combining longitudinal MR imaging and finite strain theory, this study aimed to provide new insights into normal brain development through a biomechanical framework. Thirty-three normal infants were longitudinally imaged using MRI from 2 weeks to 1 year of age. Voxel-wise Jacobian determinant was estimated to elucidate volumetric changes while Lagrange strains (both normal and shear strains) were measured to reveal directional growth information every 3 months during the first year of life. Directional normal strain maps revealed that, during the first 6 months, the growth pattern of gray matter is anisotropic and spatially inhomogeneous with higher left-right stretch around the temporal lobe and interhemispheric fissure, anterior-posterior stretch in the frontal and occipital lobes, and superior-inferior stretch in right inferior occipital and right inferior temporal gyri. In contrast, anterior lateral ventricles and insula showed an isotropic stretch pattern. Volumetric and directional growth rates were linearly decreased with age for most of the cortical regions. Our results revealed anisotropic and inhomogeneous brain growth patterns of the human brain during the first year of life using longitudinal MRI and a biomechanical framework.

  11. Temperature affects brain and pituitary gene expression related to reproduction and growth in the male blue gouramis, Trichogaster trichopterus.

    David, Dalia; Degani, Gad

    2011-04-01

    This study examined the effect of temperature on reproduction and growth-related factors in blue gourami males under nonreproductive and reproductive conditions. Males that were maintained under nonreproductive conditions did not build nest and the gonado-somatic index (% GSI) was significantly higher in fish maintained at 27°C compared with fish maintained at 23°C. The relative mRNA levels of brain gonadotropin-releasing hormone 3 (GnRH3), pituitary adenylate cyclase-activating polypeptide (PACAP), insulin-like growth factor-1(IGF-1), pituitary β-luteinizing hormone (βLH), and prolactin were significantly higher when the fish were maintained at 27°C than at 23°C or 31°C. β-Follicle-stimulating hormone (βFSH) mRNA levels were significantly lower when maintained at 31°C than at the other temperatures. Nests were observed only in males under reproductive conditions. In these fish, higher mRNA levels of GnRH3, PACAP, βFSH, βLH and prolactin were detected at 27°C, and higher mRNA levels of IGF-1 were detected at 23°C, when compared with other temperature of maintenance or with fish that did not build nest. In conclusion, we propose that temperature has more effect on the transcription of genes, associated with reproduction, than on those pertaining to growth. Copyright © 2011 Wiley-Liss, Inc., A Wiley Company.

  12. Sociality and oxytocin and vasopressin in the brain of male and female dominant and subordinate mandarin voles.

    Qiao, Xufeng; Yan, Yating; Wu, Ruiyong; Tai, Fadao; Hao, Ping; Cao, Yan; Wang, Jianli

    2014-02-01

    The dominant-subordinate hierarchy in animals often needs to be established via agonistic encounters and consequently affects reproduction and survival. Differences in brain neuropeptides and sociality among dominant and subordinate males and females remain poorly understood. Here we explore neuropeptide levels and sociality during agonistic encounter tests in mandarin voles. We found that dominant mandarin voles engaged in higher levels of approaching, investigating, self-grooming and exploring behavior than subordinates. Dominant males habituated better to a stimulus vole than dominant females. Dominant males displayed significantly less oxytocin-immunoreactive neurons in the paraventricular nuclei and more vasopressin-immunoreactive neurons in the paraventricular nuclei, supraoptic nuclei, and the lateral and anterior hypothalamus than subordinates. Dominant females displayed significantly more vasopressin-immunoreactive neurons in the lateral hypothalamus and anterior hypothalamus than subordinates. Sex differences were found in the level of oxytocin and vasopressin. These results indicate that distinct parameters related to central nervous oxytocin and vasopressin are associated with behaviors during agonistic encounters in a sex-specific manner in mandarin voles.

  13. The (in)consistency of changes in brain macrostructure in male paedophiles

    Gerwinn, Hannah; Pohl, Alexander; Granert, Oliver

    2015-01-01

    matter differences between groups. In contrast to previous studies, less than half of the individuals in our paedophilic group had a record of sexual offences against children, as subjects were partially recruited from two outpatient facilities of a child sexual abuse prevention project for self......Thus far, four studies have used magnetic resonance imaging (MRI) to test for differences in brain structure between paedophilic (i.e. sexually attracted to pre-pubescent children) and teleiophilic (i.e. sexually attracted to adults) men, revealing divergent results. To re-examine this issue, we...

  14. Removing barriers to rehabilitation: Theory-based family intervention in community settings after brain injury.

    Stejskal, Taryn M

    2012-01-01

    Rehabilitation professionals have become increasingly aware that family members play a critical role in the recovery process of individuals after brain injury. In addition, researchers have begun to identify a relationship between family member caregivers' well-being and survivors' outcomes. The idea of a continuum of care or following survivors from inpatient care to community reintegration has become an important model of treatment across many hospital and community-based settings. In concert with the continuum of care, present research literature indicates that family intervention may be a key component to successful rehabilitation after brain injury. Yet, clinicians interacting with family members and survivors often feel confounded about how exactly to intervene with the broader family system beyond the individual survivor. Drawing on the systemic nature of the field of marriage and family therapy (MFT), this article provides information to assist clinicians in effectively intervening with families using theory-based interventions in community settings. First, a rationale for the utilization of systems-based, as opposed to individual-based, therapies will be uncovered. Second, historically relevant publications focusing on family psychotherapy and intervention after brain injury are reviewed and their implications discussed. Recommendations for the utilization of systemic theory-based principles and strategies, specifically cognitive behavioral therapy (CBT), narrative therapy (NT), and solution-focused therapy (SFT) will be examined. Descriptions of common challenges families and couples face will be presented along with case examples to illustrate how these theoretical frameworks might be applied to these special concerns postinjury. Finally, the article concludes with an overview of the ideas presented in this manuscript to assist practitioners and systems of care in community-based settings to more effectively intervene with the family system as a whole

  15. Sex differences in the risk profile and male predominance in silent brain infarction in community-dwelling elderly subjects. The Sefuri brain MRI study

    Takashima, Yuki; Mori, Takahiro; Hashimoto, Manabu; Yuzuriha, Takefumi; Yao, Hiroshi; Miwa, Yoshikazu; Sasaguri, Toshiyuki; Uchino, Akira

    2010-01-01

    Although brain infarction is more common in men, the male predominance of silent brain infarction (SBI) was inconsistent in the earlier studies. This study was to examine the relationship between sex differences in the risk profile and SBI. We conducted a population-based, cross-sectional analysis of cardiovascular risk factors and SBI on MRI. We asked all the female participants about the age at natural menopause and parity. SBI was detected in 77 (11.3%) of 680 participants (266 men and 414 women) with a mean age of 64.5 (range 40-93) years. In the logistic analysis, age (odds ratio (OR)=2.760/10 years, 95% confidence interval (CI)=2.037-3.738), hypertension (OR=3.465, 95% CI=1.991-6.031), alcohol intake (OR=2.494, 95% CI=1.392-4.466) and smoking (OR=2.302, 95% CI=1.161-4.565) were significant factors concerning SBI. Although SBI was more prevalent among men, this sex difference disappeared on the multivariate model after adjustment for other confounders. In 215 women aged 60 years or older, age at natural menopause, early menopause, duration of menopause, number of children and age at the last parity were not significantly associated with SBI after adjustment for age. Hypertension and age were considered to be the major risk factors for SBI in community-dwelling people. Male predominance in SBI was largely due to higher prevalence of alcohol habit and smoking in men than in women in our population. (author)

  16. Brain Activation in Response to Visually Evoked Sexual Arousal in Male-to-Female Transsexuals: 3.0 Tesla Functional Magnetic Resonance Imaging

    Oh, Seok-Kyun; Kim, Gwang-Won; Yang, Jong-Chul; Kim, Seok-Kwun; Kang, Heoung-Keun

    2012-01-01

    Objective This study used functional magnetic resonance imaging (fMRI) to contrast the differential brain activation patterns in response to visual stimulation with both male and female erotic nude pictures in male-to-female (MTF) transsexuals who underwent a sex reassignment surgery. Materials and Methods A total of nine healthy MTF transsexuals after a sex reassignment surgery underwent fMRI on a 3.0 Tesla MR Scanner. The brain activation patterns were induced by visual stimulation with both male and female erotic nude pictures. Results The sex hormone levels of the postoperative MTF transsexuals were in the normal range of healthy heterosexual females. The brain areas, which were activated by viewing male nude pictures when compared with viewing female nude pictures, included predominantly the cerebellum, hippocampus, putamen, anterior cingulate gyrus, head of caudate nucleus, amygdala, midbrain, thalamus, insula, and body of caudate nucleus. On the other hand, brain activation induced by viewing female nude pictures was predominantly observed in the hypothalamus and the septal area. Conclusion Our findings suggest that distinct brain activation patterns associated with visual sexual arousal in postoperative MTF transsexuals reflect their sexual orientation to males. PMID:22563262

  17. Brain Activation in Response to Visually Evoked Sexual Arousal in Male-to-Female Transsexuals: 3.0 Tesla Functional Magnetic Resonance Imaging

    Oh, Seok Kyun; Kim, Gwang Won; Kang, Heoung Keun; Jeong, Gwang Woo [Chonnam National University, Gwangju (Korea, Republic of); Yang, Jong Chul [Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kim, Seok Kwun [Dong-A University College of Medicine, Busan (Korea, Republic of)

    2012-06-15

    This study used functional magnetic resonance imaging (fMRI) to contrast the differential brain activation patterns in response to visual stimulation with both male and female erotic nude pictures in male-to-female (MTF) transsexuals who underwent a sex reassignment surgery. A total of nine healthy MTF transsexuals after a sex reassignment surgery underwent fMRI on a 3.0 Tesla MR Scanner. The brain activation patterns were induced by visual stimulation with both male and female erotic nude pictures. The sex hormone levels of the postoperative MTF transsexuals were in the normal range of healthy heterosexual females. The brain areas, which were activated by viewing male nude pictures when compared with viewing female nude pictures, included predominantly the cerebellum, hippocampus, putamen, anterior cingulate gyrus, head of caudate nucleus, amygdala, midbrain, thalamus, insula, and body of caudate nucleus. On the other hand, brain activation induced by viewing female nude pictures was predominantly observed in the hypothalamus and the septal area. Our findings suggest that distinct brain activation patterns associated with visual sexual arousal in postoperative MTF transsexuals reflect their sexual orientation to males.

  18. Brain Activation in Response to Visually Evoked Sexual Arousal in Male-to-Female Transsexuals: 3.0 Tesla Functional Magnetic Resonance Imaging

    Oh, Seok Kyun; Kim, Gwang Won; Kang, Heoung Keun; Jeong, Gwang Woo; Yang, Jong Chul; Kim, Seok Kwun

    2012-01-01

    This study used functional magnetic resonance imaging (fMRI) to contrast the differential brain activation patterns in response to visual stimulation with both male and female erotic nude pictures in male-to-female (MTF) transsexuals who underwent a sex reassignment surgery. A total of nine healthy MTF transsexuals after a sex reassignment surgery underwent fMRI on a 3.0 Tesla MR Scanner. The brain activation patterns were induced by visual stimulation with both male and female erotic nude pictures. The sex hormone levels of the postoperative MTF transsexuals were in the normal range of healthy heterosexual females. The brain areas, which were activated by viewing male nude pictures when compared with viewing female nude pictures, included predominantly the cerebellum, hippocampus, putamen, anterior cingulate gyrus, head of caudate nucleus, amygdala, midbrain, thalamus, insula, and body of caudate nucleus. On the other hand, brain activation induced by viewing female nude pictures was predominantly observed in the hypothalamus and the septal area. Our findings suggest that distinct brain activation patterns associated with visual sexual arousal in postoperative MTF transsexuals reflect their sexual orientation to males.

  19. Neuroendocrine mechanisms and the aetiology of male and female homosexuality.

    MacCulloch, M J; Waddington, J L

    1981-10-01

    Theories on the classification and aetiology of male homosexuality are reviewed, particularly recent hypotheses on the role of prenatal hormonal influences on brain sexual differentiation and subsequent sexual object choice in the male. Female as well as male brain sexual differentiation may be hormonally determined, and so primary homosexuality in both sexes may be due to abnormalities in foetal exposure to hormones, leading first to physical mis-differentiation and later to homosexual behaviour in genetically and phenotypically normal men and women.

  20. Left Brain to Right Brain: Notes from the Human Laboratory.

    Baumli, Francis

    1982-01-01

    Examines the implications of the left brain-right brain theory on communications styles in male-female relationships. The author contends that women tend to use the vagueness of their emotional responses manipulatively. Men need to apply rational approaches to increase clarity in communication. (AM)

  1. Are separable aromatase systems involved in hormonal regulation of the male brain

    Hutchison, J.B.; Schumacher, M.; Steimer, T.; Gahr, M.

    1990-01-01

    In vitro study of testosterone (T) metabolism shows that formation of estradiol-17 beta (E2) is regionally specific within the preoptic area (POA) of the male ring dove. The POA is known to be involved in the formation of E2 required for specific components of male sexual behavior. Two sub-areas of high aromatase activity, anterior (aPOA) and posterior preoptic (pPOA) areas, have been identified. Aromatase activity is higher in aPOA than in pPOA. The aromatase activity within the aPOA is also more sensitive to the inductive effects of low circulating T, derived from subcutaneous silastic implants, than the enzyme activity in pPOA. Kinetic analysis of preoptic fractions indicates that a similar high-affinity enzyme occurs in both areas (apparent Km less than 14 nM), but the Vmax of aPOA enzyme activity is higher than pPOA. Cells containing estrogen receptors (ER) are localized in areas of high aromatase activity. There is overlap between immunostained cells in the aPOA and in samples containing inducible aromatase activity measured in vitro. Within the aPOA there is a higher density of ER cells in the nucleus preopticus medialis. The pPOA area also contains ER, notably in the nucleus interstitialis, but at a lower density. We conclude that the hormonal regulation of the male preoptic-anterior hypothalamic region, which is a target for the behavioral action of T, involves at least two inducible aromatase systems with associated estrogen receptor cells

  2. Female Mimicry by Sneaker Males Has a Transcriptomic Signature in Both the Brain and the Gonad in a Sex-Changing Fish.

    Todd, Erica V; Liu, Hui; Lamm, Melissa S; Thomas, Jodi T; Rutherford, Kim; Thompson, Kelly C; Godwin, John R; Gemmell, Neil J

    2018-01-01

    Phenotypic plasticity represents an elegant adaptive response of individuals to a change in their environment. Bluehead wrasses (Thalassoma bifasciatum) exhibit astonishing sexual plasticity, including female-to-male sex change and discrete male morphs that differ strikingly in behavior, morphology, and gonadal investment. Using RNA-seq transcriptome profiling, we examined the genes and physiological pathways underlying flexible behavioral and gonadal differences among female, dominant (bourgeois) male, and female-mimic (sneaker) male blueheads. For the first time in any organism, we find that female mimicry by sneaker males has a transcriptional signature in both the brain and the gonad. Sneaker males shared striking similarity in neural gene expression with females, supporting the idea that males with alternative reproductive phenotypes have "female-like brains." Sneaker males also overexpressed neuroplasticity genes, suggesting that their opportunistic reproductive strategy requires a heightened capacity for neuroplasticity. Bourgeois males overexpressed genes associated with socio-sexual behaviors (e.g., isotocin), but also neuroprotective genes and biomarkers of oxidative stress and aging, indicating a hitherto unexplored cost to these males of attaining the reproductively privileged position at the top of the social hierarchy. Our novel comparison of testicular transcriptomes in a fish with male sexual polymorphism associates greater gonadal investment by sneaker males with overexpression of genes involved in cell proliferation and sperm quality control. We propose that morphological female-mimicry by sneaker male teleosts entails pervasive downregulation of androgenesis genes, consistent with low androgen production in males lacking well-developed secondary sexual characters. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Male/female differences in neuroprotection and neuromodulation of brain dopamine.

    Mélanie eBourque

    2011-09-01

    Full Text Available The existence of a sex difference in Parkinson’s disease is observed in several variables, including susceptibility of the disease, age at onset and symptoms. These differences between men and women represent a significant characteristic of Parkinson’s disease which suggests that estrogens may exert beneficial effects against the development and the progression of the disease. This paper reviews the neuroprotective and neuromodulator effect of 17β-estradiol and progesterone as compared to androgens in the nigrostriatal dopaminergic system of both female and male rodents. The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP mice model of Parkinson’s disease and methamphetamine toxicity faithfully reproduce the sex differences of Parkinson’s disease in that endogenous estrogen levels appear to influence the vulnerability to toxins targeting the nigrostriatal dopaminergic system. Exogenous 17β-estradiol and/or progesterone treatments show neuroprotective properties against nigrostriatal dopaminergic toxins while androgens fail to induce beneficial effect. Sex steroids treatments show males and females difference in their neuroprotective action against methamphetamine toxicity. Nigrostriatal dopaminergic structure and function, as well as the distribution of estrogen receptors, show sex difference and may influence the susceptibility to the toxins and the response to sex steroids. Genomic and non-genomic actions of 17β-estradiol converge to promote survival factors and the presence of both estrogen receptors α and β are critical to 17β-estradiol neuroprotective action against MPTP toxicity.

  4. Computed tomography of the brain, hepatotoxic drugs and high alcohol consumption in male alcoholic patients and a random sample from the general male population

    Muetzell, S. (Univ. Hospital of Uppsala (Sweden). Dept. of Family Medicine)

    1992-01-01

    Computed tomography (CT) of the brain was performed in a random sample of a total of 195 men and 211 male alcoholic patients admitted for the first time during a period of two years from the same geographically limited area of Greater Stockholm as the sample. Laboratory tests were performed, including liver and pancreatic tests. Toxicological screening was performed and the consumption of hepatotoxic drugs was also investigated. The groups were then subdivided with respect to alcohol consumption and use of hepatotoxic drugs: group IA, men from the random sample with low or moderate alcohol consumption and no use of hepatotoxic drugs; IB, men from the random sample with low or moderate alcohol consumption with use of hepatotoxic drugs; IIA, alcoholic inpatients with use of alcohol and no drugs; and IIB, alcoholic inpatients with use of alcohol and drugs. Group IIB was found to have a higher incidence of cortical and subcortical changes than group IA. Group IB had a higher incidence of subcortical changes than group IA, and they differed only in drug use. Groups IIN and IIA only differed in drug use, and IIB had a higher incidence of brian damage except for anterior horn index and wide cerebellar sulci indicating vermian atrophy. Significantly higher serum levels of bilirubin, GGT, ASAT, ALAT, CK LD, and amylase were found in IIB. The results indicate that drug use influences the incidence of cortical and subcortical aberrations, except anterior horn index. It is concluded that the groups with alcohol abuse who used hepatotoxic drugs showed a picture of cortical changes (wide transport sulci and clear-cut of high-grade cortical changes) and also of subcortical aberrations, expressed as an increased widening on the third ventricle.

  5. Computed tomography of the brain, hepatotoxic drugs and high alcohol consumption in male alcoholic patients and a random sample from the general male population

    Muetzell, S.

    1992-01-01

    Computed tomography (CT) of the brain was performed in a random sample of a total of 195 men and 211 male alcoholic patients admitted for the first time during a period of two years from the same geographically limited area of Greater Stockholm as the sample. Laboratory tests were performed, including liver and pancreatic tests. Toxicological screening was performed and the consumption of hepatotoxic drugs was also investigated. The groups were then subdivided with respect to alcohol consumption and use of hepatotoxic drugs: group IA, men from the random sample with low or moderate alcohol consumption and no use of hepatotoxic drugs; IB, men from the random sample with low or moderate alcohol consumption with use of hepatotoxic drugs; IIA, alcoholic inpatients with use of alcohol and no drugs; and IIB, alcoholic inpatients with use of alcohol and drugs. Group IIB was found to have a higher incidence of cortical and subcortical changes than group IA. Group IB had a higher incidence of subcortical changes than group IA, and they differed only in drug use. Groups IIN and IIA only differed in drug use, and IIB had a higher incidence of brian damage except for anterior horn index and wide cerebellar sulci indicating vermian atrophy. Significantly higher serum levels of bilirubin, GGT, ASAT, ALAT, CK LD, and amylase were found in IIB. The results indicate that drug use influences the incidence of cortical and subcortical aberrations, except anterior horn index. It is concluded that the groups with alcohol abuse who used hepatotoxic drugs showed a picture of cortical changes (wide transport sulci and clear-cut of high-grade cortical changes) and also of subcortical aberrations, expressed as an increased widening on the third ventricle

  6. Teaching About "Brain and Learning" in High School Biology Classes: Effects on Teachers' Knowledge and Students' Theory of Intelligence.

    Dekker, Sanne; Jolles, Jelle

    2015-01-01

    This study evaluated a new teaching module about "Brain and Learning" using a controlled design. The module was implemented in high school biology classes and comprised three lessons: (1) brain processes underlying learning; (2) neuropsychological development during adolescence; and (3) lifestyle factors that influence learning performance. Participants were 32 biology teachers who were interested in "Brain and Learning" and 1241 students in grades 8-9. Teachers' knowledge and students' beliefs about learning potential were examined using online questionnaires. Results indicated that before intervention, biology teachers were significantly less familiar with how the brain functions and develops than with its structure and with basic neuroscientific concepts (46 vs. 75% correct answers). After intervention, teachers' knowledge of "Brain and Learning" had significantly increased (64%), and more students believed that intelligence is malleable (incremental theory). This emphasizes the potential value of a short teaching module, both for improving biology teachers' insights into "Brain and Learning," and for changing students' beliefs about intelligence.

  7. Effect of adult onset hypothyroidism on behavioral parameters and acetylcholinesterase isoforms activity in specific brain regions of male mice.

    Vasilopoulou, Catherine G; Constantinou, Caterina; Giannakopoulou, Dimitra; Giompres, Panagiotis; Margarity, Marigoula

    2016-10-01

    Thyroid hormones (TH) are essential for normal development and function of mammalian central nervous system (CNS); TH dysregulation has been implicated in several cognitive and behavioral deficits related to dysfunctions of neurotransmitter systems. In the present study, we investigated the effects of adult onset hypothyroidism on the activity of acetylcholinesterase (AChE) and on related behavioral parameters. For this purpose we used adult male Balb/cJ mice that were divided randomly into euthyroid and hypothyroid animal groups. Animals were rendered hypothyroid through administration of 1% w/v KClO4 in their drinking water for 8weeks. At the end of the treatment, learning/memory procedures were examined through step-through passive avoidance task while fear/anxiety was assessed using elevated plus-maze (EPM) and open-field (OF) tests. AChE activity was determined colorimetrically in two different fractions, salt-soluble fraction (SS) (containing mainly the G1 isoform) and detergent-soluble fraction (DS) (containing mainly the G4 isoform) in cerebral cortex, cerebellum, midbrain, hippocampus and striatum. Our results indicate that adult onset hypothyroidism caused significant memory impairment and increased fear/anxiety. Moreover, the activity of both isoforms of AChE was reduced in all brain regions examined in a brain region- and isoform-specific manner. Copyright © 2016. Published by Elsevier Inc.

  8. Insulin signaling disruption in male mice due to perinatal bisphenol A exposure: Role of insulin signaling in the brain.

    Fang, Fangfang; Gao, Yue; Wang, Tingwei; Chen, Donglong; Liu, Jingli; Qian, Wenyi; Cheng, Jie; Gao, Rong; Wang, Jun; Xiao, Hang

    2016-03-14

    Bisphenol A (BPA), an environmental estrogenic endocrine disruptor, is widely used for producing polycarbonate plastics and epoxy resins. Available data have shown that perinatal exposure to BPA contributes to peripheral insulin resistance, while in the present study, we aimed to investigate the effects of perinatal BPA exposure on insulin signaling and glucose transport in the cortex of offspring mice. The pregnant mice were administrated either vehicle or BPA (100 μg/kg/day) at three perinatal stages. Stage I: from day 6 of gestation until parturition (P6-PND0 fetus exposure); Stage II: from lactation until delactation (PND0-PND21 newborn exposure) and Stage III: from day 6 of pregnancy until delactation (P6-PND21 fetus and newborn exposure). At 8 months of age for the offspring mice, the insulin signaling pathways and glucose transporters (GLUTs) were detected. Our data indicated that the insulin signaling including insulin, phosphorylated insulin receptor (IR), phosphorylated protein kinase B (p-AKT), phosphorylated glycogen synthase kinase 3β (p-GSK3β) and phosphorylated extracellular signal regulated protein kinase (p-ERK) were significantly decreased in the brain. In parallel, GLUTs (GLUT1/3/4) were obviously decreased as well in BPA-treated group in mice brain. Noteworthily, the phosphorylated tau (p-tau) and amyloid precursor protein (APP) were markedly up-regulated in all BPA-treated groups. These results, taken together, suggest the adverse effects of BPA on insulin signaling and GLUTs, which might subsequently contribute to the increment of p-tau and APP in the brain of adult offspring. Therefore, perinatal BPA exposure might be a risk factor for the long-term neurodegenerative changes in offspring male mice. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Functional brain networks contributing to the Parieto-Frontal Integration Theory of Intelligence.

    Vakhtin, Andrei A; Ryman, Sephira G; Flores, Ranee A; Jung, Rex E

    2014-12-01

    The refinement of localization of intelligence in the human brain is converging onto a distributed network that broadly conforms to the Parieto-Frontal Integration Theory (P-FIT). While this theory has received support in the neuroimaging literature, no functional magnetic resonance imaging study to date has conducted a whole-brain network-wise examination of the changes during engagement in tasks that are reliable measures of general intelligence (e.g., Raven's Progressive Matrices Test; RPM). Seventy-nine healthy subjects were scanned while solving RPM problems and during rest. Functional networks were extracted from the RPM and resting state data using Independent Component Analysis. Twenty-nine networks were identified, 26 of which were detected in both conditions. Fourteen networks were significantly correlated with the RPM task. The networks' spatial maps and functional connectivity measures at 3 frequency levels (low, medium, & high) were compared between the RPM and rest conditions. The regions involved in the networks that were found to be task related were consistent with the P-FIT, localizing to the bilateral medial frontal and parietal regions, right superior frontal lobule, and the right cingulate gyrus. Functional connectivity in multiple component pairs was differentially affected across all frequency levels during the RPM task. Our findings demonstrate that functional brain networks are more stable than previously thought, and maintain their general features across resting state and engagement in a complex cognitive task. The described spatial and functional connectivity alterations that such components undergo during fluid reasoning provide a network-wise framework of the P-FIT that can be valuable for further, network based, neuroimaging inquiries regarding the neural underpinnings of intelligence. Published by Elsevier Inc.

  10. Brain-derived neurotrophic factor (BDNF) and oxidative stress in heroin-dependent male patients undergoing methadone maintenance treatment.

    Tsai, Meng-Chang; Huang, Tiao-Lai

    2017-03-01

    Brain-derived neurotrophic factor (BDNF) and oxidative stress may play a role in patients with heroin dependence. The aim of this study was to investigate the serum levels and activities of BDNF and oxidative stress markers, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), thiobarbituric acid reactive substances (TBARS), protein carbonyl content (PCC), and 8-hydroxy 2'-deoxyguanosine (8-OHdG), in heroin-dependent patients undergoing methadone maintenance treatment (MMT). 60 heroin-dependent male MMT patients and 30 healthy males were recruited for this study. The serum BDNF and oxidative stress markers of these subjects were measured with assay kits. Analyses of covariance (ANCOVAs) with age and body mass index adjustments indicated that the serum levels of BDNF in the MMT patients were significantly higher than those in the healthy controls (F=5.169; p=0.026). However, there were no significant differences between the heroin-dependent patients and the healthy controls in the serum levels or activities of oxidative stress markers (p>0.05). In conclusion, our results suggest that MMT increases BDNF levels in heroin-dependent patients, and that patients undergoing MMT might be in a balanced state of reduced oxidation. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  11. Pathological Outcomes in Kidney and Brain in Male Fischer Rats Given Dietary Ochratoxin A, Commencing at One Year of Age

    Mantle, Peter G.; Nolan, Christopher C.

    2010-01-01

    Malignant renal carcinoma, manifest in morbid ageing rats, is the striking component of an otherwise silent response after about nine months of exposure to ochratoxin A in the first year of life (daily intake ~100-250 µg/kg body weight). Reasons for the long latency are unclear, as is whether there would be a similar carcinogenic response if toxin exposure started at one year of age. Therefore, 24 male Fischer rats were given 100 µg ochratoxin A as a daily dietary contaminant for 35 weeks from age 50 weeks. Plasma ochratoxin A concentration reached a maximum value of ~8 µg/mL within one month of starting the toxin regimen. No renal carcinomas occurred. Four renal adenomas, two of which were only microscopic, were found among the six rats surviving for 110 weeks. The findings raise new questions about a difference between young adults and mature adults in sensitivity of male rats to the ochratoxin A-induced DNA damage necessary for renal carcinogenesis. A pilot histological study of perfuse-fixed brains of the toxin-treated rats showed no gross abnormalities, correlating with the consistent absence of behavioral or neurological disorders from chronic ochratoxin A exposure regimens in the range 100-250 µg/kg/day during the second half of life. Reasoned questioning concerning ochratoxin A as a neurotoxic mycotoxin is made. PMID:22069628

  12. Pathological Outcomes in Kidney and Brain in Male Fischer Rats Given Dietary Ochratoxin A, Commencing at One Year of Age

    Peter G. Mantle

    2010-05-01

    Full Text Available Malignant renal carcinoma, manifest in morbid ageing rats, is the striking component of an otherwise silent response after about nine months of exposure to ochratoxin A in the first year of life (daily intake ~100–250 µg/kg body weight. Reasons for the long latency are unclear, as is whether there would be a similar carcinogenic response if toxin exposure started at one year of age. Therefore, 24 male Fischer rats were given 100 µg ochratoxin A as a daily dietary contaminant for 35 weeks from age 50 weeks. Plasma ochratoxin A concentration reached a maximum value of ~8 µg/mL within one month of starting the toxin regimen. No renal carcinomas occurred. Four renal adenomas, two of which were only microscopic, were found among the six rats surviving for 110 weeks. The findings raise new questions about a difference between young adults and mature adults in sensitivity of male rats to the ochratoxin A-induced DNA damage necessary for renal carcinogenesis. A pilot histological study of perfuse-fixed brains of the toxin-treated rats showed no gross abnormalities, correlating with the consistent absence of behavioral or neurological disorders from chronic ochratoxin A exposure regimens in the range 100–250 µg/kg/day during the second half of life. Reasoned questioning concerning ochratoxin A as a neurotoxic mycotoxin is made.

  13. Are Patients Ready for “EARLYSTIM”? Attitudes towards Deep Brain Stimulation among Female and Male Patients with Moderately Advanced Parkinson's Disease

    2017-01-01

    Objective. To explore, in female and male patients with medically treated, moderately advanced Parkinson's disease (PD), their knowledge and reasoning about Deep Brain Stimulation (DBS). Methods. 23 patients with PD (10 women), aged 46–70, were interviewed at a mean of 8 years after diagnosis, with open-ended questions concerning their reflections and considerations about DBS. The interviews were transcribed verbatim and analysed according to the difference and similarity technique in Grounded Theory. Results. From the patients' narratives, the core category “Processing DBS: balancing symptoms, fears and hopes” was established. The patients were knowledgeable about DBS and expressed cautious and well considered attitudes towards its outcome but did not consider themselves ill enough to undergo DBS. They were aware of its potential side-effects. They considered DBS as the last option when oral medication is no longer sufficient. There was no difference between men and women in their reasoning and attitudes towards DBS. Conclusion. This study suggests that knowledge about the pros and cons of DBS exists among PD patients and that they have a cautious attitude towards DBS. Our patients did not seem to endorse an earlier implementation of DBS, and they considered that it should be the last resort when really needed. PMID:28458943

  14. Are Patients Ready for “EARLYSTIM”? Attitudes towards Deep Brain Stimulation among Female and Male Patients with Moderately Advanced Parkinson’s Disease

    Maria Sperens

    2017-01-01

    Full Text Available Objective. To explore, in female and male patients with medically treated, moderately advanced Parkinson’s disease (PD, their knowledge and reasoning about Deep Brain Stimulation (DBS. Methods. 23 patients with PD (10 women, aged 46–70, were interviewed at a mean of 8 years after diagnosis, with open-ended questions concerning their reflections and considerations about DBS. The interviews were transcribed verbatim and analysed according to the difference and similarity technique in Grounded Theory. Results. From the patients’ narratives, the core category “Processing DBS: balancing symptoms, fears and hopes” was established. The patients were knowledgeable about DBS and expressed cautious and well considered attitudes towards its outcome but did not consider themselves ill enough to undergo DBS. They were aware of its potential side-effects. They considered DBS as the last option when oral medication is no longer sufficient. There was no difference between men and women in their reasoning and attitudes towards DBS. Conclusion. This study suggests that knowledge about the pros and cons of DBS exists among PD patients and that they have a cautious attitude towards DBS. Our patients did not seem to endorse an earlier implementation of DBS, and they considered that it should be the last resort when really needed.

  15. Chronic Opium Treatment Can Differentially Induce Brain and Liver Cells Apoptosis in Diabetic and Non-diabetic Male and Female Rats

    Asiabanha, Majid; Asadikaram, Gholamreza; Rahnema, Amir; Mahmoodi, Mehdi; Hasanshahi, Gholamhosein; Hashemi, Mohammad; Khaksari, Mohammad

    2011-01-01

    It has been shown that some opium derivatives promote cell death via apoptosis. This study was designed to examine the influence of opium addiction on brain and liver cells apoptosis in male and female diabetic and non-diabetic Wistar rats. This experimental study was performed on normal, opium-addicted, diabetic and diabetic opium-addicted male and female rats. Apoptosis was evaluated by TUNEL and DNA fragmentation assays. Results of this study showed that apoptosis in opium-addicted and dia...

  16. Increasing brain angiotensin converting enzyme 2 activity decreases anxiety-like behavior in male mice by activating central Mas receptors.

    Wang, Lei; de Kloet, Annette D; Pati, Dipanwita; Hiller, Helmut; Smith, Justin A; Pioquinto, David J; Ludin, Jacob A; Oh, S Paul; Katovich, Michael J; Frazier, Charles J; Raizada, Mohan K; Krause, Eric G

    2016-06-01

    Over-activation of the brain renin-angiotensin system (RAS) has been implicated in the etiology of anxiety disorders. Angiotensin converting enzyme 2 (ACE2) inhibits RAS activity by converting angiotensin-II, the effector peptide of RAS, to angiotensin-(1-7), which activates the Mas receptor (MasR). Whether increasing brain ACE2 activity reduces anxiety by stimulating central MasR is unknown. To test the hypothesis that increasing brain ACE2 activity reduces anxiety-like behavior via central MasR stimulation, we generated male mice overexpressing ACE2 (ACE2 KI mice) and wild type littermate controls (WT). ACE2 KI mice explored the open arms of the elevated plus maze (EPM) significantly more than WT, suggesting increasing ACE2 activity is anxiolytic. Central delivery of diminazene aceturate, an ACE2 activator, to C57BL/6 mice also reduced anxiety-like behavior in the EPM, but centrally administering ACE2 KI mice A-779, a MasR antagonist, abolished their anxiolytic phenotype, suggesting that ACE2 reduces anxiety-like behavior by activating central MasR. To identify the brain circuits mediating these effects, we measured Fos, a marker of neuronal activation, subsequent to EPM exposure and found that ACE2 KI mice had decreased Fos in the bed nucleus of stria terminalis but had increased Fos in the basolateral amygdala (BLA). Within the BLA, we determined that ∼62% of GABAergic neurons contained MasR mRNA and expression of MasR mRNA was upregulated by ACE2 overexpression, suggesting that ACE2 may influence GABA neurotransmission within the BLA via MasR activation. Indeed, ACE2 overexpression was associated with increased frequency of spontaneous inhibitory postsynaptic currents (indicative of presynaptic release of GABA) onto BLA pyramidal neurons and central infusion of A-779 eliminated this effect. Collectively, these results suggest that ACE2 may reduce anxiety-like behavior by activating central MasR that facilitate GABA release onto pyramidal neurons within the

  17. Genetic-gonadal-genitals sex (3G-sex) and the misconception of brain and gender, or, why 3G-males and 3G-females have intersex brain and intersex gender.

    Joel, Daphna

    2012-12-17

    The categorization of individuals as "male" or "female" is based on chromosome complement and gonadal and genital phenotype. This combined genetic-gonadal-genitals sex, here referred to as 3G-sex, is internally consistent in ~99% of humans (i.e., one has either the "female" form at all levels, or the "male" form at all levels). About 1% of the human population is identified as "intersex" because of either having an intermediate form at one or more levels, or having the "male" form at some levels and the "female" form at other levels. These two types of "intersex" reflect the facts, respectively, that the different levels of 3G-sex are not completely dimorphic nor perfectly consistent. Using 3G-sex as a model to understand sex differences in other domains (e.g., brain, behavior) leads to the erroneous assumption that sex differences in these other domains are also highly dimorphic and highly consistent. But parallel lines of research have led to the conclusion that sex differences in the brain and in behavior, cognition, personality, and other gender characteristics are for the most part not dimorphic and not internally consistent (i.e., having one brain/gender characteristic with the "male" form is not a reliable predictor for the form of other brain/gender characteristics). Therefore although only ~1% percent of humans are 3G-"intersex", when it comes to brain and gender, we all have an intersex gender (i.e., an array of masculine and feminine traits) and an intersex brain (a mosaic of "male" and "female" brain characteristics).

  18. Brain-grounded theory of temporal and spatial design in architecture and the environment

    Ando, Yoichi

    2016-01-01

    In this book, brain-grounded theory of temporal and spatial design in architecture and the environment is discussed. The author believes that it is a key to solving such global problems as environmental disorders and severe climate change as well as conflicts that are caused by the ill-conceived notion of “time is money”. There are three phases or aspects of a person’s life: the physical life, the spiritual or mental life, and the third stage of life, when a person moves from middle age into old age and can choose what he or she wishes to do instead of simply what must be done. This book describes the temporal design of the environment based on the theory of subjective preference, which could make it possible for an individual to realize a healthy life in all three phases. In his previously published work, the present author wrote that the theory of subjective preference has been established for the sound and visual fields based on neural evidence, and that subjective preference is an overall response o...

  19. Non-critical string theory formulation of microtubule dynamics and quantum aspects of brain function

    Mavromatos, Nikolaos E

    1995-01-01

    Microtubule (MT) networks, subneural paracrystalline cytosceletal structures, seem to play a fundamental role in the neurons. We cast here the complicated MT dynamics in the form of a 1+1-dimensional non-critical string theory, thus enabling us to provide a consistent quantum treatment of MTs, including enviromental {\\em friction} effects. We suggest, thus, that the MTs are the microsites, in the brain, for the emergence of stable, macroscopic quantum coherent states, identifiable with the {\\em preconscious states}. Quantum space-time effects, as described by non-critical string theory, trigger then an {\\em organized collapse} of the coherent states down to a specific or {\\em conscious state}. The whole process we estimate to take {\\cal O}(1\\,{\\rm sec}), in excellent agreement with a plethora of experimental/observational findings. The {\\em microscopic arrow of time}, endemic in non-critical string theory, and apparent here in the self-collapse process, provides a satisfactory and simple resolution to the age...

  20. Characterization of Aromatase Expression in the Adult Male and Female Mouse Brain. I. Coexistence with Oestrogen Receptors α and β, and Androgen Receptors

    Stanić, Davor; Dubois, Sydney; Chua, Hui Kheng; Tonge, Bruce; Rinehart, Nicole; Horne, Malcolm K.; Boon, Wah Chin

    2014-01-01

    Aromatase catalyses the last step of oestrogen synthesis. There is growing evidence that local oestrogens influence many brain regions to modulate brain development and behaviour. We examined, by immunohistochemistry, the expression of aromatase in the adult male and female mouse brain, using mice in which enhanced green fluorescent protein (EGFP) is transcribed following the physiological activation of the Cyp19A1 gene. EGFP-immunoreactive processes were distributed in many brain regions, including the bed nucleus of the stria terminalis, olfactory tubercle, medial amygdaloid nucleus and medial preoptic area, with the densest distributions of EGFP-positive cell bodies in the bed nucleus and medial amygdala. Differences between male and female mice were apparent, with the density of EGFP-positive cell bodies and fibres being lower in some brain regions of female mice, including the bed nucleus and medial amygdala. EGFP-positive cell bodies in the bed nucleus, lateral septum, medial amygdala and hypothalamus co-expressed oestrogen receptor (ER) α and β, or the androgen receptor (AR), although single-labelled EGFP-positive cells were also identified. Additionally, single-labelled ERα−, ERβ- or AR-positive cell bodies often appeared to be surrounded by EGFP-immunoreactive nerve fibres/terminals. The widespread distribution of EGFP-positive cell bodies and fibres suggests that aromatase signalling is common in the mouse brain, and that locally synthesised brain oestrogens could mediate biological effects by activating pre- and post-synaptic oestrogen α and β receptors, and androgen receptors. The higher number of EGFP-positive cells in male mice may indicate that the autocrine and paracrine effects of oestrogens are more prominent in males than females. PMID:24646567

  1. Green Mind Theory: How Brain-Body-Behaviour Links into Natural and Social Environments for Healthy Habits

    Jules Pretty

    2017-06-01

    Full Text Available We propose a Green Mind Theory (GMT to link the human mind with the brain and body, and connect the body into natural and social environments. The processes are reciprocal: environments shape bodies, brains, and minds; minds change body behaviours that shape the external environment. GMT offers routes to improved individual well-being whilst building towards greener economies. It builds upon research on green exercise and nature-based therapies, and draws on understanding derived from neuroscience and brain plasticity, spiritual and wisdom traditions, the lifeways of original cultures, and material consumption behaviours. We set out a simple metaphor for brain function: a bottom brain stem that is fast-acting, involuntary, impulsive, and the driver of fight and flight behaviours; a top brain cortex that is slower, voluntary, the centre for learning, and the driver of rest and digest. The bottom brain reacts before thought and directs the sympathetic nervous system. The top brain is calming, directing the parasympathetic nervous system. Here, we call the top brain blue and the bottom brain red; too much red brain is bad for health. In modern high-consumption economies, life has often come to be lived on red alert. An over-active red mode impacts the gastrointestinal, immune, cardiovascular, and endocrine systems. We develop our knowledge of nature-based interventions, and suggest a framework for the blue brain-red brain-green mind. We show how activities involving immersive-attention quieten internal chatter, how habits affect behaviours across the lifecourse, how long habits take to be formed and hard-wired into daily practice, the role of place making, and finally how green minds could foster prosocial and greener economies. We conclude with observations on twelve research priorities and health interventions, and ten calls to action.

  2. Green Mind Theory: How Brain-Body-Behaviour Links into Natural and Social Environments for Healthy Habits.

    Pretty, Jules; Rogerson, Mike; Barton, Jo

    2017-06-30

    We propose a Green Mind Theory (GMT) to link the human mind with the brain and body, and connect the body into natural and social environments. The processes are reciprocal: environments shape bodies, brains, and minds; minds change body behaviours that shape the external environment. GMT offers routes to improved individual well-being whilst building towards greener economies. It builds upon research on green exercise and nature-based therapies, and draws on understanding derived from neuroscience and brain plasticity, spiritual and wisdom traditions, the lifeways of original cultures, and material consumption behaviours. We set out a simple metaphor for brain function: a bottom brain stem that is fast-acting, involuntary, impulsive, and the driver of fight and flight behaviours; a top brain cortex that is slower, voluntary, the centre for learning, and the driver of rest and digest. The bottom brain reacts before thought and directs the sympathetic nervous system. The top brain is calming, directing the parasympathetic nervous system. Here, we call the top brain blue and the bottom brain red; too much red brain is bad for health. In modern high-consumption economies, life has often come to be lived on red alert. An over-active red mode impacts the gastrointestinal, immune, cardiovascular, and endocrine systems. We develop our knowledge of nature-based interventions, and suggest a framework for the blue brain-red brain-green mind. We show how activities involving immersive-attention quieten internal chatter, how habits affect behaviours across the lifecourse, how long habits take to be formed and hard-wired into daily practice, the role of place making, and finally how green minds could foster prosocial and greener economies. We conclude with observations on twelve research priorities and health interventions, and ten calls to action.

  3. Sunitinib-ibuprofen drug interaction affects the pharmacokinetics and tissue distribution of sunitinib to brain, liver, and kidney in male and female mice differently.

    Lau, Christine Li Ling; Chan, Sook Tyng; Selvaratanam, Manimegahlai; Khoo, Hui Wen; Lim, Adeline Yi Ling; Modamio, Pilar; Mariño, Eduardo L; Segarra, Ignacio

    2015-08-01

    Tyrosine kinase inhibitor sunitinib (used in GIST, advanced RCC, and pancreatic neuroendocrine tumors) undergoes CYP3A4 metabolism and is an ABCB1B and ABCG2 efflux transporters substrate. We assessed the pharmacokinetic interaction with ibuprofen (an NSAID used by patients with cancer) in Balb/c male and female mice. Mice (study group) were coadministered (30 min apart) 30 mg/kg of ibuprofen and 60 mg/kg of sunitinib PO and compared with the control groups, which received sunitinib alone (60 mg/kg, PO). Sunitinib concentration in plasma, brain, kidney, and liver was measured by HPLC as scheduled and noncompartmental pharmacokinetic parameters estimated. In female control mice, sunitinib AUC0→∞ decreased in plasma (P brain (P male control mice. After ibuprofen coadministration, female mice showed lower AUC0→∞ in plasma (P brain, liver, and kidney (all P male mice, AUC0→∞ remained unchanged in plasma, increased in liver and kidney, and decreased in brain (all P male and female control mice, but changed after ibuprofen coadministration: Male mice showed 1.6-fold higher liver-to-plasma ratio (P female mice and in kidney (male and female mice) but decreased 55% in brain (P differences. The results illustrate the relevance of this DDI on sunitinib pharmacokinetics and tissue uptake. These may be due to gender-based P450 and efflux/transporters differences. © 2015 Société Française de Pharmacologie et de Thérapeutique.

  4. Can Sex Differences in Science Be Tied to the Long Reach of Prenatal Hormones? Brain Organization Theory, Digit Ratio (2D/4D), and Sex Differences in Preferences and Cognition.

    Valla, Jeffrey; Ceci, Stephen J

    2011-03-01

    Brain organization theory posits a cascade of physiological and behavioral changes initiated and shaped by prenatal hormones. Recently, this theory has been associated with outcomes including gendered toy preference, 2D/4D digit ratio, personality characteristics, sexual orientation, and cognitive profile (spatial, verbal, and mathematical abilities). We examine the evidence for this claim, focusing on 2D/4D and its putative role as a biomarker for organizational features that influence cognitive abilities/interests predisposing males toward mathematically and spatially intensive careers. Although massive support exists for early brain organization theory overall, there are myriad inconsistencies, alternative explanations, and outright contradictions that must be addressed while still taking the entire theory into account. Like a fractal within the larger theory, the 2D/4D hypothesis mirrors this overall support on a smaller scale while likewise suffering from inconsistencies (positive, negative, and sex-dependent correlations), alternative explanations (2D/4D related to spatial preferences rather than abilities per se), and contradictions (feminine 2D/4D in men associated with higher spatial ability). Using the debate over brain organization theory as the theoretical stage, we focus on 2D/4D evidence as an increasingly important player on this stage, a demonstrative case in point of the evidential complexities of the broader debate, and an increasingly important topic in its own right.

  5. Why are autism spectrum conditions more prevalent in males?

    Simon Baron-Cohen

    2011-06-01

    Full Text Available Autism Spectrum Conditions (ASC are much more common in males, a bias that may offer clues to the etiology of this condition. Although the cause of this bias remains a mystery, we argue that it occurs because ASC is an extreme manifestation of the male brain. The extreme male brain (EMB theory, first proposed in 1997, is an extension of the Empathizing-Systemizing (E-S theory of typical sex differences that proposes that females on average have a stronger drive to empathize while males on average have a stronger drive to systemize. In this first major update since 2005, we describe some of the evidence relating to the EMB theory of ASC and consider how typical sex differences in brain structure may be relevant to ASC. One possible biological mechanism to account for the male bias is the effect of fetal testosterone (fT. We also consider alternative biological theories, the X and Y chromosome theories, and the reduced autosomal penetrance theory. None of these theories has yet been fully confirmed or refuted, though the weight of evidence in favor of the fT theory is growing from converging sources (longitudinal amniocentesis studies from pregnancy to age 10 years old, current hormone studies, and genetic association studies of SNPs in the sex steroid pathways. Ultimately, as these theories are not mutually exclusive and ASC is multi-factorial, they may help explain the male prevalence of ASC.

  6. Oestrogens are Not Related to Emotional Processing : a Study of Regional Brain Activity in Female-to-Male Transsexuals Under Gonadal Suppression

    Soleman, Remi S; Staphorsius, A.S.; Cohen-Kettenis, Peggy T; Lambalk, Cornelis B; Veltman, Dick J; van Trotsenburg, M.A.A.; Hompes, Peter G A; Drent, M L; de Ronde, W P; Kreukels, Baudewijntje P C

    Although the prevailing opinion is that emotional processes are influenced by sex hormones, the literature is still inconclusive. The aim of the current study was to examine the effects of gonadal suppression on brain activity during affective picture processing. Twenty-one female-to-male (FtM)

  7. Activation patterns of vasopressinergic and oxytocinergic brain regions following social play exposure in juvenile male and female rats.

    Reppucci, C J; Gergely, C K; Veenema, A H

    2018-02-09

    Social play is a highly rewarding and motivated behavior predominately displayed by juveniles and expressed by nearly all mammalian species. Prior work suggested that the vasopressin (AVP) and oxytocin (OT) systems can regulate the expression of social play in sex-specific ways. Here we investigated whether there are sex differences in the recruitment of vasopressinergic and oxytocinergic brain regions following social play exposure in juvenile rats. Single-housed rats were allowed to play, in their home cage, with an age- and sex-matched unfamiliar conspecific for 10 min, or received similar handling but no partner. Double-labeled fluorescent immunohistochemistry for Fos and either AVP or OT was completed in adjacent series of tissue to determine recruitment of AVP- and OT-immunoreactive neurons in response to social play. Exposure to social play did not increase recruitment of AVP or OT neurons in the supraoptic (SO) or paraventricular (PVH) hypothalamic nuclei of either sex compared to the no-play control condition. Interestingly, there was a robust sex difference in SO recruitment, irrespective of social play condition, with males exhibiting twice the recruitment of SO-AVP and SO-OT neurons compared to females. Lastly, exposure to social play increased recruitment of the posterior bed nuclei of the stria terminalis (pBST) and the posterodorsal medial amygdalar nucleus (MEApd) compared to the no-play control condition, and this effect was most pronounced in females. Our findings revealed sex differences in the recruitment of brain regions (i) independent of play condition (i.e., SO) possibly representing a sex difference in the baseline levels of AVP and OT signaling required for typical functioning and (ii) specific to play condition (i.e., pBST, MEApd). In sum, this study provides further evidence that the neural substrates underlying social play behavior are sex-specific. This article is protected by copyright. All rights reserved. This article is protected

  8. Effects of protein restriction, melatonin administration, and short daylength on brain benzodiazepine receptors in prepubertal male rats

    Kennaway, D.J.; Royles, P.; Webb, H.; Carbone, F.

    1988-01-01

    The possibility that there are changes in brain benzodiazepine binding sites controlled by photoperiod was investigated in two strains of male rats. The hypothesis was tested by 3H-diazepam binding studies in various brain regions of prepubertal rats maintained in 14 or 10 h of light or treated with late-afternoon injections of melatonin (50 micrograms/day). Protein restriction was applied during the experiment to sensitize the animals to the treatments. Under the conditions employed, rats kept in short daylength throughout or kept on long photoperiod and given late-afternoon melatonin injections showed evidence of delayed puberty (seminal vesicle, ventral prostate, and testis weight decreased by 45%, 55%, and 60% respectively, compared to control rats). Binding measurements were made 1 h before and 2 and 5 h after the onset of darkness in the pubertal (42-day-old) or experimentally prepubertal rats. In the rats of the Porton strain (for which protein restriction was obligatory for the gonadal response) there was no consistent treatment or time effects on specific binding of 3H-diazepam to washed membranes of the hypothalamus, midbrain, or striatum. Similarly, there were no differences in the stimulation of 3H-diazepam binding by 100 microM GABA or the inhibition of binding by 50 microM N-acetyl 5 methoxy kynurenamine. By contrast, in Wistar rats, specific binding to midbrain membranes was reduced 5 h after dark compared to 2 h (37% saline; 20% melatonin) and the extent of stimulation by GABA in the hypothalamus was increased 5 h after darkness (35.6% to 46.7% saline; 37.4% to 50% melatonin). Melatonin treatment resulted in significantly higher specific binding in the hypothalamus 2 h after dark (10%, control fed; 20%, protein restricted) but reduced the GABA induced stimulation of binding in the midbrain (35.5% to 25%, control fed; 33.7% to 23.5%, protein restricted)

  9. Intersectionality, critical race theory, and American sporting oppression: examining black and gay male athletes.

    Anderson, Eric; McCormack, Mark

    2010-01-01

    This article examines the influence of the racial categories of White and Black and the sexual categories of gay and straight on sporting American men. The effect of the intersection of these cultural categories is discussed by investigating the exclusion of athletes who are both Black and gay, as well as highlighting the culturally perceived differences of (straight) Black and (White) gay men. However, the analysis accounts for more than just difference, examining the commonalities of oppression between these discrete identity groups. We use the research on Black athletes to call for further empirical study on gay athletes. It is argued that critical race theory and intersectionality offer complex and nuanced understandings of these oppressions, which, when theorizing is left solely to the realm of poststructuralism, can otherwise be missed.

  10. Usefulness of the protection motivation theory in explaining hearing protection device use among male industrial workers.

    Melamed, S; Rabinowitz, S; Feiner, M; Weisberg, E; Ribak, J

    1996-05-01

    The present study examined the usefulness of personal variables: noise annoyance, and components of the protection motivation theory (R. W. Rogers, 1983) along with social-organizational factors in explaining hearing protection device (HPD) use among Israeli manufacturing workers. Participants were 281 men exposed to harmful noise levels for which routine HPD use is required by regulation. In practice, 3 HPD user groups were identified: nonusers (n = 38), occasional users (n = 125), and regular users (n = 118). HPD use was objectively verified. HPD use was primarily related to the personal variables but not to management pressure, coworker pressure, or family support. The most powerful predictors of HPD use were perceived self-efficacy (for long-term HPD use), perceived susceptibility (to hearing loss), and noise annoyance, together explaining 48% of the outcome variance. These findings have implications for interventions aimed at motivating workers to use HPDs regularly.

  11. Relative social standing and suicide ideation among Kenyan males: the interpersonal theory of suicide in context.

    Goodman, M L; Serag, H; Keiser, P K; Gitari, S; Raimer, B G

    2017-10-01

    The purpose of this study is to investigate the association between subjective social status and suicide ideation in a sample of young Kenyan men (age 18-34 years). Situating insights from the interpersonal theory of suicide within social determinants of health framework, we consider whether lower subjective social status predicts lower collective self-esteem (CSE), hopelessness, less meaning in life and more loneliness, and whether these characteristics mediate associations between subjective social status and suicide ideation. A community-based, semi-rural sample (n = 532) of young men, aged 18-34 years, was collected using a standardized questionnaire. The survey questionnaire included the following validated scale items: the short form of the Social and Emotional Loneliness Scale for Adults, CSE, Herth Hope Index, the Meaning in Life Questionnaire, and the Modified Scale for Suicide Ideation. Regression and mediation analyses were used to test hypotheses. Nearly 12% of respondents reported suicide ideation. Suicide ideation was significantly more common among survey respondents who reported lower subjective social standing. In the first of two mediation models, we found that lower CSE and more loneliness mediate the association between lower subjective social status and suicide ideation. In the second model, we found that respondents with lower CSE and more loneliness expressed lower hope and meaning in life, which also mediated pathways to suicide ideation. Findings show a novel synthesis of social determinants literature with the interpersonal theory of suicide. Suicide ideation, along with other mental and social outcomes, may figure more prominently than previously appreciated in the benefits of socio-economic equality. Those who do not participate equally in socio-economic development may be at greater risk of engaging in suicide ideation and behaviors. Suicide prevention research and programmatic responses should adopt a health equity perspective to

  12. Multiple [3H]imipramine binding sites in brains of male and female Fawn-Hooded and Long-Evans rats

    Ieni, J.R.; Zukin, S.R.; Praag, H.M. van; Tobach, E.; Barr, G.A.

    1985-01-01

    Comparisons of high- and low-affinity [ 3 H]imipramine binding to whole brain homogenates from adult male and female rats of the Fawn-Hooded and Long-Evans strains were performed. Most strikingly, no significant differences were observed between the two strains in any of the binding parameters, indicating that brain [ 3 H]imipramine binding sites, which may be related to the serotonergic uptake process, appear normal in a strain of rats with serotonin platelet storage pool disease. However, a significant sex difference in high- but not low-affinity whole brain [ 3 H]imipramine Bsub(max) values was observed, with females of both strains having higher densities than males. (Auth.)

  13. Theory of corticothalamic brain activity in a spherical geometry: Spectra, coherence, and correlation

    Mukta, K. N.; MacLaurin, J. N.; Robinson, P. A.

    2017-11-01

    Corticothalamic neural field theory is applied to a spherical geometry to better model neural activity in the human brain and is also compared with planar approximations. The frequency power spectrum, correlation, and coherence functions are computed analytically and numerically. The effects of cortical boundary conditions and resulting modal aspects of spherical corticothalamic dynamics are explored, showing that the results of spherical and finite planar geometries converge to those for the infinite planar geometry in the limit of large brain size. Estimates are made of the point at which modal series can be truncated and it is found that for physiologically plausible parameters only the lowest few spatial eigenmodes are needed for an accurate representation of macroscopic brain activity. A difference between the geometries is that there is a low-frequency 1 /f spectrum in the infinite planar geometry, whereas in the spherical geometry it is 1 /f2 . Another difference is that the alpha peak in the spherical geometry is sharper and stronger than in the planar geometry. Cortical modal effects can lead to a double alpha peak structure in the power spectrum, although the main determinant of the alpha peak is corticothalamic feedback. In the spherical geometry, the cross spectrum between two points is found to only depend on their relative distance apart. At small spatial separations the low-frequency cross spectrum is stronger than for an infinite planar geometry and the alpha peak is sharper and stronger due to the partitioning of the energy into discrete modes. In the spherical geometry, the coherence function between points decays monotonically as their separation increases at a fixed frequency, but persists further at resonant frequencies. The correlation between two points is found to be positive, regardless of the time lag and spatial separation, but decays monotonically as the separation increases at fixed time lag. At fixed distance the correlation has peaks

  14. Lost for emotion words: What motor and limbic brain activity reveals about autism and semantic theory

    Moseley, Rachel L.; Shtyrov, Yury; Mohr, Bettina; Lombardo, Michael V.; Baron-Cohen, Simon; Pulvermüller, Friedemann

    2015-01-01

    Autism spectrum conditions (ASC) are characterised by deficits in understanding and expressing emotions and are frequently accompanied by alexithymia, a difficulty in understanding and expressing emotion words. Words are differentially represented in the brain according to their semantic category and these difficulties in ASC predict reduced activation to emotion-related words in limbic structures crucial for affective processing. Semantic theories view ‘emotion actions’ as critical for learning the semantic relationship between a word and the emotion it describes, such that emotion words typically activate the cortical motor systems involved in expressing emotion actions such as facial expressions. As ASC are also characterised by motor deficits and atypical brain structure and function in these regions, motor structures would also be expected to show reduced activation during emotion-semantic processing. Here we used event-related fMRI to compare passive processing of emotion words in comparison to abstract verbs and animal names in typically-developing controls and individuals with ASC. Relatively reduced brain activation in ASC for emotion words, but not matched control words, was found in motor areas and cingulate cortex specifically. The degree of activation evoked by emotion words in the motor system was also associated with the extent of autistic traits as revealed by the Autism Spectrum Quotient. We suggest that hypoactivation of motor and limbic regions for emotion word processing may underlie difficulties in processing emotional language in ASC. The role that sensorimotor systems and their connections might play in the affective and social-communication difficulties in ASC is discussed. PMID:25278250

  15. Functional and structural brain correlates of theory of mind and empathy deficits in schizophrenia.

    Benedetti, Francesco; Bernasconi, Alessandro; Bosia, Marta; Cavallaro, Roberto; Dallaspezia, Sara; Falini, Andrea; Poletti, Sara; Radaelli, Daniele; Riccaboni, Roberta; Scotti, Giuseppe; Smeraldi, Enrico

    2009-10-01

    Patients affected by schizophrenia show deficits in social cognition, with abnormal performance on tasks targeting theory of mind (ToM) and empathy (Emp). Brain imaging studies suggested that ToM and Emp depend on the activation of brain networks mainly localized at the superior temporal lobe and temporo-parietal junction. Participants included 24 schizophrenia patients and 20 control subjects. We used brain blood oxygen level dependent fMRI to study the neural responses to tasks targeting ToM and Emp. We then studied voxel-based morphometry of grey matter in areas where diagnosis influenced functional activation to both tasks. Outcomes were analyzed in the context of the general linear model, with global grey matter volume as nuisance covariate for structural MRI. Patients showed worse performance on both tasks. We found significant effects of diagnosis on neural responses to the tasks in a wide cluster in right posterior superior temporal lobe (encompassing BA 22-42), in smaller clusters in left temporo-parietal junction and temporal pole (BA 38 and 39), and in a white matter region adjacent to medial prefrontal cortex (BA 10). A pattern of double dissociation of the effects of diagnosis and task on neural responses emerged. Among these areas, grey matter volume was found to be reduced in right superior temporal lobe regions of patients. Functional and structural abnormalities were observed in areas affected by the schizophrenic process early in the illness course, and known to be crucial for social cognition, suggesting a biological basis for social cognition deficits in schizophrenia.

  16. What Should Be the Roles of Conscious States and Brain States in Theories of Mental Activity?**

    Dulany, Donelson E.

    2011-01-01

    Answers to the title’s question have been influenced by a history in which an early science of consciousness was rejected by behaviourists on the argument that this entails commitment to ontological dualism and “free will” in the sense of indeterminism. This is, however, a confusion of theoretical assertions with metaphysical assertions. Nevertheless, a legacy within computational and information-processing views of mind rejects or de-emphasises a role for consciousness. This paper sketches a mentalistic metatheory in which conscious states are the sole carriers of symbolic representations, and thus have a central role in the explanation of mental activity and action-while specifying determinism and materialism as useful working assumptions. A mentalistic theory of causal learning, experimentally examined with phenomenal reports, is followed by examination of these questions: Are there common roles for phenomenal reports and brain imaging? Is there defensible evidence for unconscious brain states carrying symbolic representations? Are there interesting dissociations within consciousness? PMID:21694964

  17. Neuropsychiatric Symptom Modeling in Male and Female C57BL/6J Mice after Experimental Traumatic Brain Injury

    Tucker, Laura B.; Burke, John F.; Fu, Amanda H.

    2017-01-01

    Abstract Psychiatric symptoms such as anxiety and depression are frequent and persistent complaints following traumatic brain injury (TBI). Modeling these symptoms in animal models of TBI affords the opportunity to determine mechanisms underlying behavioral pathologies and to test potential therapeutic agents. However, testing these symptoms in animal models of TBI has yielded inconsistent results. The goal of the current study was to employ a battery of tests to measure multiple anxiety- and depressive-like symptoms following TBI in C57BL/6J mice, and to determine if male and female mice are differentially affected by the injury. Following controlled cortical impact (CCI) at a parietal location, neither male nor female mice showed depressive-like symptoms as measured by the Porsolt forced-swim test and sucrose preference test. Conclusions regarding anxiety-like behaviors were dependent upon the assay employed; CCI-induced thigmotaxis in the open field suggested an anxiogenic effect of the injury; however, results from the elevated zero maze, light-dark box, and marble-burying tests indicated that CCI reduced anxiety-like behaviors. Fewer anxiety-like behaviors were also associated with the female sex. Increased levels of activity were also measured in female mice and injured mice in these tests, and conclusions regarding anxiety should be taken with caution when experimental manipulations induce changes in baseline activity. These results underscore the irreconcilability of results from studies attempting to model TBI-induced neuropsychiatric symptoms. Changes in injury models or better attempts to replicate the clinical syndrome may improve the translational applicability of rodent models of TBI-induced anxiety and depression. PMID:27149139

  18. Growth and development of male "little" mice assessed with Parks' theory of feeding and growth.

    Puche, Rodolfo C; Alloatti, Rosa; Chapo, Gustavo

    2002-01-01

    This work was designed to characterize the appetite kinetics and growth of male C57BL/6J (lit) mice. Those variables were assessed with Parks' function of ad libitum feeding and growth. Heterozygous mice (lit/+) attained their mature weight at 12-15 weeks of age, peak growth rate (3.5 g/week) at 5 weeks and displayed the normal decay of food conversion efficiency as a function of age. The homozygous genotype has a chronic defect in the synthesis and secretion of growth hormone (GH). Homozygous mice could not be assessed with Park's function. From the 4th to the 15th week of age, body weight increased linearly and exhibited constant food conversion efficiency. Food intake of both genotypes was commensurate with their body weights. Lit/lit mice became progressively obese. At 40 weeks of age, body fat of lit/lit mice was fivefold that of lit/+ and their body weight was similar to their heterozygous controls. The chronic deficiency of growth hormone produced a lower bone mass (compared to heterozygous controls). Bone mass of both genotypes attained maturity at 12-15 weeks with a maximum growth rate at 5 weeks. Body weight and bone mass grow harmoniously in lit/+ but not in lit/lit mice.

  19. Understanding young and older male drivers' willingness to drive while intoxicated: the predictive utility of constructs specified by the theory of planned behaviour and the prototype willingness model.

    Rivis, Amanda; Abraham, Charles; Snook, Sarah

    2011-05-01

    The present study examined the predictive utility of constructs specified by the theory of planned behaviour (TPB) and prototype willingness model (PWM) for young and older male drivers' willingness to drive while intoxicated. A cross-sectional questionnaire was employed. Two hundred male drivers, recruited via a street survey, voluntarily completed measures of attitude, subjective norm, perceived behavioural control, prototype perceptions, and willingness. Findings showed that the TPB and PWM variables explained 65% of the variance in young male drivers' willingness and 47% of the variance in older male drivers' willingness, with the interaction between prototype favourability and similarity contributing 7% to the variance explained in older males' willingness to drive while intoxicated. The findings possess implications for theory, research, and anti-drink driving campaigns. ©2010 The British Psychological Society.

  20. Effect of N′-nitrosodimethylamine on red blood cell rheology and proteomic profiles of brain in male albino rats

    Ahmad, Areeba; Fatima, Ravish; Maheshwari, Veena; Ahmad, Riaz

    2011-01-01

    We investigated the effects of N'-nitrosodimethylamine (NDMA) induced toxicity on red blood cell rheology in male rats and identified bands in proteomic profiles of brain which can be used as novel markers. Polyacrylamide gel electrophoresis (PAGE) profiles exhibited constitutive as well as induced expression of the polypeptides. Remarkably, the molecular weight range of the polypeptides (8–150 kDa) corresponded to that of the family of heat shock proteins. Our results revealed significant changes in blood parameters and showed the presence of acanthocytes, tear drop cells, spicules and cobot rings in the treated categories. Lactate dehydrogenase and esterase zymograms displayed a shift to anaerobic metabolism generating hypoxia-like conditions. This study strongly suggests that NDMA treatment causes acute toxicity leading to cell membrane destruction and alters protein profiles in rats. It is therefore recommended that caution should be exercised in using NDMA to avoid risks, and if at all necessary strategies should be designed to combat such conditions. PMID:22058653

  1. [Effect of electro-acupuncture on metabolites in the cerebral cortex of ulcerative colitis rats based on Pi/Wei-brain related theory].

    Yang, Yang; Zhao, Ji-lan; Hou, Tian-shu; Han, Xiao-xia; Zhao, Zheng-yu; Peng, Xiao-hua; Wu, Qiao-Feng

    2014-10-01

    To study the effect of electro-acupuncture (EA) at points along Foot Yangming Channel on metabolite of ulcerative colitis (UC) rats' cerebral cortex and to identify key metabolites by referring to Pi/Wei-brain related theory in Chinese medicine (CM). The UC rat model was set up by dextran sulfate sodium (DSS) method. Male SD rats were randomly divided into the model group and the EA group, 13 in each group. Another 13 rats were recruited as the blank control group. Rats in the blank control group and the model group received no EA. EA was performed at Zusanli (ST36), Shangjuxu (ST37), and Tianshu (ST25) for 5 days by using disperse-dense wave. Then all rats were sacrificed. Their recto-colon and the ileocecal junction were pathomorphologically observed by light microscope and transmission electron microscope (TEM). Cerebral cortexes were extracted. Water-soluble and lipid-soluble brain tissue metabolites were respectively extracted for metabolic research using 1H nuclear magnetic resonance (1H-NMR). EA could obviously improve the general condition of UC model rats, decrease the value of DAI, reduce the infiltration of inflammatory cells in the intestinal tract, stabilize structures such as mitochondria, endoplasmic reticulum and so on (P theory.

  2. Anticipation-related brain connectivity in bipolar and unipolar depression: a graph theory approach.

    Manelis, Anna; Almeida, Jorge R C; Stiffler, Richelle; Lockovich, Jeanette C; Aslam, Haris A; Phillips, Mary L

    2016-09-01

    Bipolar disorder is often misdiagnosed as major depressive disorder, which leads to inadequate treatment. Depressed individuals versus healthy control subjects, show increased expectation of negative outcomes. Due to increased impulsivity and risk for mania, however, depressed individuals with bipolar disorder may differ from those with major depressive disorder in neural mechanisms underlying anticipation processes. Graph theory methods for neuroimaging data analysis allow the identification of connectivity between multiple brain regions without prior model specification, and may help to identify neurobiological markers differentiating these disorders, thereby facilitating development of better therapeutic interventions. This study aimed to compare brain connectivity among regions involved in win/loss anticipation in depressed individuals with bipolar disorder (BDD) versus depressed individuals with major depressive disorder (MDD) versus healthy control subjects using graph theory methods. The study was conducted at the University of Pittsburgh Medical Center and included 31 BDD, 39 MDD, and 36 healthy control subjects. Participants were scanned while performing a number guessing reward task that included the periods of win and loss anticipation. We first identified the anticipatory network across all 106 participants by contrasting brain activation during all anticipation periods (win anticipation + loss anticipation) versus baseline, and win anticipation versus loss anticipation. Brain connectivity within the identified network was determined using the Independent Multiple sample Greedy Equivalence Search (IMaGES) and Linear non-Gaussian Orientation, Fixed Structure (LOFS) algorithms. Density of connections (the number of connections in the network), path length, and the global connectivity direction ('top-down' versus 'bottom-up') were compared across groups (BDD/MDD/healthy control subjects) and conditions (win/loss anticipation). These analyses showed that

  3. Differential recruitment of theory of mind brain network across three tasks: An independent component analysis.

    Thye, Melissa D; Ammons, Carla J; Murdaugh, Donna L; Kana, Rajesh K

    2018-07-16

    Social neuroscience research has focused on an identified network of brain regions primarily associated with processing Theory of Mind (ToM). However, ToM is a broad cognitive process, which encompasses several sub-processes, such as mental state detection and intentional attribution, and the connectivity of brain regions underlying the broader ToM network in response to paradigms assessing these sub-processes requires further characterization. Standard fMRI analyses which focus only on brain activity cannot capture information about ToM processing at a network level. An alternative method, independent component analysis (ICA), is a data-driven technique used to isolate intrinsic connectivity networks, and this approach provides insight into network-level regional recruitment. In this fMRI study, three complementary, but distinct ToM tasks assessing mental state detection (e.g. RMIE: Reading the Mind in the Eyes; RMIV: Reading the Mind in the Voice) and intentional attribution (Causality task) were each analyzed using ICA in order to separately characterize the recruitment and functional connectivity of core nodes in the ToM network in response to the sub-processes of ToM. Based on visual comparison of the derived networks for each task, the spatiotemporal network patterns were similar between the RMIE and RMIV tasks, which elicited mentalizing about the mental states of others, and these networks differed from the network derived for the Causality task, which elicited mentalizing about goal-directed actions. The medial prefrontal cortex, precuneus, and right inferior frontal gyrus were seen in the components with the highest correlation with the task condition for each of the tasks highlighting the role of these regions in general ToM processing. Using a data-driven approach, the current study captured the differences in task-related brain response to ToM in three distinct ToM paradigms. The findings of this study further elucidate the neural mechanisms associated

  4. Substance use avoidance among Iranian male adolescents: a comparison of three versions of the theory of reasoned action.

    Tavousi, Mahmoud; Montazeri, Ali; Hidarnia, Alireza; Hajizadeh, Ebrahim; Taremian, Farhad; Haerimehrizi, Aliasghar

    2015-08-01

    The theory of reasoned action (TRA) is one of the most common models in predicting health-related behaviors and is used more often in health education studies. This study aimed to add two control constructs (perceived behavioral control - PBC and self-efficacy - SE) to the TRA and compare them using the structural equation modeling (SEM) for substance use avoidance among Iranian male adolescents in order to find out which model was a better fit in predicting the intention. This was a cross-sectional study carried out in Tehran, Iran. Data were collected from a random sample of high school male students (15-19 years of age) using a questionnaire containing items related to the TRA plus items reflecting two additional constructs (SE and PBC). In all, 433 students completed the questionnaires. The results obtained from SEM indicated a better fit to the data for the TRA with SE compared to the TPB (TRA with PBC) and TRA (χ2/df=2.55, RMSEA=0.072, CFI=0.96, NFI=0.94, NNFI=0.95, SRMR=0.058). Comparing SE and PBC, the results showed that self-efficacy was a better control construct in improving the TRA and predicting substance use avoidance intention (41%). The TRA with SE had a better model fit than TPB and the original version of the TRA.

  5. Condom Use During Commercial Sex Among Male Clients of Female Sex Workers in Sichuan China: A Social Cognitive Theory Analysis.

    Yang, Yi; Yang, Cui; Latkin, Carl A; Luan, Rongsheng; Nelson, Kenrad E

    2016-10-01

    There has been little theory-based research focusing on condom use among male clients of female sex workers (CFSW) in China. The current study applied social cognitive theory to condom use behaviors of CFSW in China. Face-to-face structured interviews were conducted among 584 CFSW recruited through snowball sampling. Bivariate and multivariate logistic regression models were applied to examine factors associated with consistent condom use. A minority (30.65 %) of respondents reported using condoms consistently with FSW, and 7 of 12 social cognitive dimensions/subdimensions were found to be significantly influential. The most significant factors were self-efficacy [adjusted prevalence ratio (APR) = 2.11, 95 %, CI = 1.74-2.43] and personal pleasure reduction (APR = 0.3, 95 % CI = 0.15-0.6). HIV-related knowledge, perceived HIV susceptibility, condom cost, condom efficacy, and embarrassment of carrying condoms were not associated with consistent condom uses with FSW. Findings from the current study suggest future prevention programs should target sex venues, and condom access should ensure both quantity and quality. Peer education should focus on knowledge education and peer norms, and knowledge education should include information on HIV infection severity and how to increase pleasure with condom use.

  6. Uptake and metabolism of [3H]testosterone in the brain, pituitary gland and genital tract of the male cynomolgus monkey

    Bonsall, R.W.; Rees, H.D.; Micheal, R.P.

    1986-01-01

    To study the mechanism by which testosterone restores the sexual potency of castrated cynomolgus monkeys, two males (body weights 5.2 and 5.3 kg) were castrated and, 3 days later, injected with 3 mCi [ 3 H]testosterone ([ 3 H]T) as an intravenous bolus. After 30 min, males were killed and brains and samples of other tissues were rapidly removed and placed on ice. Samples were dissected from the right halves of the brain and homogenized. Purified cell nuclei were prepared and ether extracts were analyzed by reverse-phase HPCL. Generally, unchanged [ 3 H]T was the major form of radioactivity in brain and pituitary gland, but in cell nuclei from hypothalamus, preoptic area and amygdala, a large proportion (34 - 61%) was in the form of [ 3 H]estradiol ([ 4 H]E 2 ). Little or no [ 3 H]dihydrotestosterone ([ 3 H]DHT) was detected in cell nuclei from any brain region or from pituitary gland. However, [ 3 H]DHT was the major form (61 - 95%) of radioactivity in cell nuclei from glans penis, prostrate and seminal vesicles. In autoradiograms of the left halves of the same brains, the percentage of cells that accumulated radioactivity in their nuclei was high in specific regions of the hypothalamus, preoptic areas and amygdala. The authors conclude that the peripheral actions of T are mediated via DHT, but its central actions are dependent on unchanged T or on E 2 formed locally by aromatization

  7. Changes in Male Rat Sexual Behavior and Brain Activity Revealed by Functional Magnetic Resonance Imaging in Response to Chronic Mild Stress.

    Chen, Guotao; Yang, Baibing; Chen, Jianhuai; Zhu, Leilei; Jiang, Hesong; Yu, Wen; Zang, Fengchao; Chen, Yun; Dai, Yutian

    2018-02-01

    Non-organic erectile dysfunction (noED) at functional imaging has been related to abnormal brain activity and requires animal models for further research on the associated molecular mechanisms. To develop a noED animal model based on chronic mild stress and investigate brain activity changes. We used 6 weeks of chronic mild stress to induce depression. The sucrose consumption test was used to assess the hedonic state. The apomorphine test and sexual behavior test were used to select male rats with ED. Rats with depression and ED were considered to have noED. Blood oxygen level-dependent-based resting-state functional magnetic resonance imaging (fMRI) studies were conducted on these rats, and the amplitude of low-frequency fluctuations and functional connectivity were analyzed to determine brain activity changes. The sexual behavior test and resting-state fMRI were used for outcome measures. The induction of depression was confirmed by the sucrose consumption test. A low intromission ratio and increased mount and intromission latencies were observed in male rats with depression. No erection was observed in male rats with depression during the apomorphine test. Male rats with depression and ED were considered to have noED. The possible central pathologic mechanism shown by fMRI involved the amygdaloid body, dorsal thalamus, hypothalamus, caudate-putamen, cingulate gyrus, insular cortex, visual cortex, sensory cortex, motor cortex, and cerebellum. Similar findings have been found in humans. The present study provided a novel noED rat model for further research on the central mechanism of noED. The present study developed a novel noED rat model and analyzed brain activity changes based at fMRI. The observed brain activity alterations might not extend to humans. The present study developed a novel noED rat model with brain activity alterations related to sexual arousal and erection, which will be helpful for further research involving the central mechanism of noED. Chen

  8. Abnormal Brain Activation During Theory of Mind Tasks in Schizophrenia: A Meta-Analysis.

    Kronbichler, Lisa; Tschernegg, Melanie; Martin, Anna Isabel; Schurz, Matthias; Kronbichler, Martin

    2017-10-21

    Social cognition abilities are severely impaired in schizophrenia (SZ). The current meta-analysis used foci of 21 individual studies on functional abnormalities in the schizophrenic brain in order to identify regions that reveal convergent under- or over-activation during theory of mind (TOM) tasks. Studies were included in the analyses when contrasting tasks that require the processing of mental states with tasks which did not. Only studies that investigated patients with an ICD or DSM diagnosis were included. Quantitative voxel-based meta-analyses were done using Seed-based d Mapping software. Common TOM regions like medial-prefrontal cortex and temporo-parietal junction revealed abnormal activation in schizophrenic patients: Under-activation was identified in the medial prefrontal cortex, left orbito-frontal cortex, and in a small section of the left posterior temporo-parietal junction. Remarkably, robust over-activation was identified in a more dorsal, bilateral section of the temporo-parietal junction. Further abnormal activation was identified in medial occipito-parietal cortex, right premotor areas, left cingulate gyrus, and lingual gyrus. The findings of this study suggest that SZ patients simultaneously show over- and under-activation in TOM-related regions. Especially interesting, temporo-parietal junction reveals diverging activation patterns with an under-activating left posterior and an over-activating bilateral dorsal section. In conclusion, SZ patients show less specialized brain activation in regions linked to TOM and increased activation in attention-related networks suggesting compensatory effects. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center.

  9. Vision restoration after brain and retina damage: the "residual vision activation theory".

    Sabel, Bernhard A; Henrich-Noack, Petra; Fedorov, Anton; Gall, Carolin

    2011-01-01

    Vision loss after retinal or cerebral visual injury (CVI) was long considered to be irreversible. However, there is considerable potential for vision restoration and recovery even in adulthood. Here, we propose the "residual vision activation theory" of how visual functions can be reactivated and restored. CVI is usually not complete, but some structures are typically spared by the damage. They include (i) areas of partial damage at the visual field border, (ii) "islands" of surviving tissue inside the blind field, (iii) extrastriate pathways unaffected by the damage, and (iv) downstream, higher-level neuronal networks. However, residual structures have a triple handicap to be fully functional: (i) fewer neurons, (ii) lack of sufficient attentional resources because of the dominant intact hemisphere caused by excitation/inhibition dysbalance, and (iii) disturbance in their temporal processing. Because of this resulting activation loss, residual structures are unable to contribute much to everyday vision, and their "non-use" further impairs synaptic strength. However, residual structures can be reactivated by engaging them in repetitive stimulation by different means: (i) visual experience, (ii) visual training, or (iii) noninvasive electrical brain current stimulation. These methods lead to strengthening of synaptic transmission and synchronization of partially damaged structures (within-systems plasticity) and downstream neuronal networks (network plasticity). Just as in normal perceptual learning, synaptic plasticity can improve vision and lead to vision restoration. This can be induced at any time after the lesion, at all ages and in all types of visual field impairments after retinal or brain damage (stroke, neurotrauma, glaucoma, amblyopia, age-related macular degeneration). If and to what extent vision restoration can be achieved is a function of the amount of residual tissue and its activation state. However, sustained improvements require repetitive

  10. Brain reward circuitry beyond the mesolimbic dopamine system: a neurobiological theory.

    Ikemoto, Satoshi

    2010-11-01

    Reductionist attempts to dissect complex mechanisms into simpler elements are necessary, but not sufficient for understanding how biological properties like reward emerge out of neuronal activity. Recent studies on intracranial self-administration of neurochemicals (drugs) found that rats learn to self-administer various drugs into the mesolimbic dopamine structures-the posterior ventral tegmental area, medial shell nucleus accumbens and medial olfactory tubercle. In addition, studies found roles of non-dopaminergic mechanisms of the supramammillary, rostromedial tegmental and midbrain raphe nuclei in reward. To explain intracranial self-administration and related effects of various drug manipulations, I outlined a neurobiological theory claiming that there is an intrinsic central process that coordinates various selective functions (including perceptual, visceral, and reinforcement processes) into a global function of approach. Further, this coordinating process for approach arises from interactions between brain structures including those structures mentioned above and their closely linked regions: the medial prefrontal cortex, septal area, ventral pallidum, bed nucleus of stria terminalis, preoptic area, lateral hypothalamic areas, lateral habenula, periaqueductal gray, laterodorsal tegmental nucleus and parabrachical area. Published by Elsevier Ltd.

  11. Down, But Not Out: Partial Elimination of Androgen Receptors in the Male Mouse Brain Does Not Affect Androgenic Regulation of Anxiety or HPA Activity.

    Chen, Chieh V; Brummet, Jennifer L; Jordan, Cynthia L; Breedlove, S Marc

    2016-02-01

    We previously found that androgen receptor (AR) activity mediates two effects of T in adult male mice: reduction of anxiety-like behaviors and dampening of the hypothalamic-pituitary-adrenal response to stress. To determine whether brain ARs mediate these effects, we used the Cre/loxP technology seeking to disable AR throughout the central nervous system (CNS). Female mice carrying the floxed AR allele (ARlox) were crossed with males carrying cre recombinase transgene controlled by the nestin promoter (NesCre), producing cre in developing neurons and glia. Among male offspring, four genotypes resulted: males carrying ARlox and NesCre (NesARko), and three control groups (wild types, NesCre, and ARlox). Reporter mice indicated ubiquitous Cre expression throughout the CNS. Nevertheless, AR immunocytochemistry in NesARko mice revealed efficient knockout (KO) of AR in some brain regions (hippocampus and medial prefrontal cortex [mPFC]), but not others. Substantial AR protein was seen in the amygdala and hypothalamus among other regions, whereas negligible AR remained in others like the bed nucleus of the stria terminalis and dorsal periaqueductal gray. This selective KO allowed for testing the role of AR in hippocampus and mPFC. Males were castrated and implanted with T at postnatal day 60 before testing on postnatal day 90-100. In contrast with males with global KO of AR, T still modulated anxiety-related behavior and hypothalamic-pituitary-adrenal activity in NesARko males. These results leave open the possibility that AR acting in the CNS mediates these effects of T, but demonstrate that AR is not required in the hippocampus or mPFC for T's anxiolytic effects.

  12. Temporal variation in brain transcriptome is associated with the expression of female mimicry as a sequential male alternative reproductive tactic in fish.

    Cardoso, Sara D; Gonçalves, David; Goesmann, Alexander; Canário, Adelino V M; Oliveira, Rui F

    2018-02-01

    Distinct patterns of gene expression often underlie intra- and intersexual differences, and the study of this set of coregulated genes is essential to understand the emergence of complex behavioural phenotypes. Here, we describe the development of a de novo transcriptome and brain gene expression profiles of wild-caught peacock blenny, Salaria pavo, an intertidal fish with sex-role reversal in courtship behaviour (i.e., females are the courting sex) and sequential alternative reproductive tactics in males (i.e., larger and older nest-holder males and smaller and younger sneaker males occur). Sneakers mimic both female's courtship behaviour and nuptial coloration to get access to nests and sneak fertilizations, and later in life transition into nest-holder males. Thus, this species offers the unique opportunity to study how the regulation of gene expression can contribute to intersex phenotypes and to the sequential expression of male and female behavioural phenotypes by the same individual. We found that at the whole brain level, expression of the sneaker tactic was paralleled by broader and divergent gene expression when compared to either females or nest-holder males, which were more similar between themselves. When looking at sex-biased transcripts, sneaker males are intersex rather than being either nest-holder or female-like, and their transcriptome is simultaneously demasculinized for nest-holder-biased transcripts and feminized for female-biased transcripts. These results indicate that evolutionary changes in reproductive plasticity can be achieved through regulation of gene expression, and in particular by varying the magnitude of expression of sex-biased genes, throughout the lifetime of the same individual. © 2017 John Wiley & Sons Ltd.

  13. Cognitive Reserve and Brain Maintenance: Orthogonal Concepts in Theory and Practice.

    Habeck, C; Razlighi, Q; Gazes, Y; Barulli, D; Steffener, J; Stern, Y

    2017-08-01

    Cognitive Reserve and Brain Maintenance have traditionally been understood as complementary concepts: Brain Maintenance captures the processes underlying the structural preservation of the brain with age, and might be assessed relative to age-matched peers. Cognitive Reserve, on the other hand, refers to how cognitive processing can be performed regardless of how well brain structure has been maintained. Thus, Brain Maintenance concerns the "hardware," whereas Cognitive Reserve concerns "software," that is, brain functioning explained by factors beyond mere brain structure. We used structural brain data from 368 community-dwelling adults, age 20-80, to derive measures of Brain Maintenance and Cognitive Reserve. We found that Brain Maintenance and Cognitive were uncorrelated such that values on one measure did not imply anything about the other measure. Further, both measures were positively correlated with verbal intelligence and education, hinting at formative influences of the latter to both measures. We performed extensive split-half simulations to check our derived measures' statistical robustness. Our approach enables the out-of-sample quantification of Brain Maintenance and Cognitive Reserve for single subjects on the basis of chronological age, neuropsychological performance and structural brain measures. Future work will investigate the prognostic power of these measures with regard to future cognitive status. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. The Effects of Dietary Fat and Iron Interaction on Brain Regional Iron Contents and Stereotypical Behaviors in Male C57BL/6J Mice

    Lumei Liu

    2016-07-01

    Full Text Available Adequate brain iron levels are essential for enzyme activities, myelination, and neurotransmitter synthesis in the brain. Although systemic iron deficiency has been found in genetically or dietary-induced obese subjects, the effects of obesity-associated iron dysregulation in brain regions have not been examined. The objective of this study was to examine the effect of dietary fat and iron interaction on brain regional iron contents and regional-associated behavior patterns in a mouse model. Thirty C57BL/6J male weanling mice were randomly assigned to six dietary treatment groups (n=5 with varying fat (control/high and iron (control/high/low contents. The stereotypical behaviors were measured during the 24th week. Blood, liver, and brain tissues were collected at the end of the 24th week. Brains were dissected into the hippocampus, midbrain, striatum, and thalamus regions. Iron contents and ferritin-H (FtH protein and mRNA expressions in these regions were measured. Correlations between stereotypical behaviors and brain regional iron contents were analyzed at the 5% significance level. Results showed that high-fat diet altered the stereotypical behaviors such as inactivity and total distance traveled (P<0.05. The high-fat diet altered brain iron contents and ferritin-H (FtH protein and mRNA expressions in a regional-specific manner: 1 high-fat diet significantly decreased the brain iron content in the striatum (P<0.05, but not other regions; and 2 thalamus has a more distinct change in FtH mRNA expression compared to other regions. Furthermore, high-fat diet resulted in a significant decreased total distance traveled and a significant correlation between iron content and sleeping in midbrain (P<0.05. Dietary iron also decreased brain iron content and FtH protein expression in a regionally specific manner. The effect of interaction between dietary fat and iron was observed in brain iron content and behaviors. All these findings will lay

  15. Teaching about ‘Brain & Learning’ in high school biology classes: Effects on teachers’ knowledge and students’ theory of intelligence

    Sanne eDekker

    2015-12-01

    Full Text Available This study evaluated a new teaching module about ‘Brain&Learning’ using a controlled design. The module was implemented in high school biology classes and comprised three lessons: 1 brain processes underlying learning; 2 neuropsychological development during adolescence; and 3 lifestyle factors that influence learning performance. Participants were 32 biology teachers who were interested in ‘Brain&Learning’ and 1241 students in grades 8-9. Teachers’ knowledge and students’ beliefs about learning potential were examined using online questionnaires. Results indicated that before intervention, biology teachers were significantly less familiar with how the brain functions and develops than with its structure and with basic neuroscientific concepts (46% vs. 75% correct answers. After intervention, teachers’ knowledge of ‘Brain&Learning’ had significantly increased (64%, and more students believed that intelligence is malleable (incremental theory. This emphasizes the potential value of a short teaching module, both for improving biology teachers’ insights into ‘Brain&Learning’, and for changing students’ beliefs about intelligence.

  16. Age and haplotype variations within FADS1 interact and associate with alterations in fatty acid composition in human male cortical brain tissue.

    Erika Freemantle

    Full Text Available Fatty acids (FA play an integral role in brain function and alterations have been implicated in a variety of complex neurological disorders. Several recent genomic studies have highlighted genetic variability in the fatty acid desaturase (FADS1/2/3 gene cluster as an important contributor to FA alterations in serum lipids as well as measures of FA desaturase index estimated by ratios of relevant FAs. The contribution to alterations of FAs within the brain by local synthesis is still a matter of debate. Thus, the impact of genetic variants in FADS genes on gene expression and brain FA levels is an important avenue to investigate.Analyses were performed on brain tissue from prefrontal cortex Brodmann area 47 (BA47 of 61 male subjects of French Canadian ancestry ranging in age from young adulthood to middle age (18-58 years old, with the exception of one teenager (15 years old. Haplotype tagging SNPs were selected using the publicly available HapMap genotyping dataset in conjunction with Haploview. DNA sequencing was performed by the Sanger method and gene expression was measured by quantitative real-time PCR. FAs in brain tissue were analysed by gas chromatography. Variants in the FADS1 gene region were sequenced and analyzed for their influence on both FADS gene expression and FAs in brain tissue.Our results suggest an association of the minor haplotype with alteration in estimated fatty acid desaturase activity. Analysis of the impact of DNA variants on expression and alternative transcripts of FADS1 and FADS2, however, showed no differences. Furthermore, there was a significant interaction between haplotype and age on certain brain FA levels.This study suggests that genetic variability in the FADS genes cluster, previously shown to be implicated in alterations in peripheral FA levels, may also affect FA composition in brain tissue, but not likely by local synthesis.

  17. Conditioned same-sex partner preference in male rats is facilitated by oxytocin and dopamine: effect on sexually dimorphic brain nuclei.

    Triana-Del Rio, Rodrigo; Tecamachaltzi-Silvarán, Miriam B; Díaz-Estrada, Victor X; Herrera-Covarrubias, Deissy; Corona-Morales, Aleph A; Pfaus, James G; Coria-Avila, Genaro A

    2015-04-15

    Conditioned same-sex partner preference can develop in male rats that undergo cohabitation under the effects of quinpirole (QNP, D2 agonist). Herein, we assessed the development of conditioned same-sex social/sexual preference in males that received either nothing, saline, QNP, oxytocin (OT), or QNP+OT during cohabitation with another male (+) or single-caged (-). This resulted in the following groups: (1) Intact-, (2) Saline+, (3) QNP-, (4) OT-, (5) QNP+, (6) OT+ and (7) QNP/OT+. Cohabitation occurred during 24h in a clean cage with a male partner that bore almond scent on the back as conditioned stimulus. This was repeated every 4 days for a total of three trials. Social and sexual preference were assessed four days after the last conditioning trial in a drug-free test in which experimental males chose between the scented familiar male and a novel sexually receptive female. Results showed that males from groups Intact-, Saline+, QNP- and OT- displayed a clear preference for the female (opposite-sex), whereas groups QNP+, OT+ and QNP/OT+ displayed socio/sexual preference for the male partner (same-sex). In Experiment 2, the brains were processed for Nissl dye and the area size of two sexually dimorphic nuclei (SDN-POA and SON) was compared between groups. Males from groups OT-, OT+ and QNP/OT+ expressed a smaller SDN-POA and groups QNP+ and QNP/OT+ expressed a larger SON. Accordingly, conditioned same-sex social/sexual partner preference can develop during cohabitation under enhanced D2 or OT activity but such preference does not depend on the area size of those sexually dimorphic nuclei. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Disruptions in aromatase expression in the brain, reproductive behavior, and secondary sexual characteristics in male guppies (Poecilia reticulata) induced by tributyltin.

    Tian, Hua; Wu, Peng; Wang, Wei; Ru, Shaoguo

    2015-05-01

    Although bioaccumulation of tributyltin (TBT) in fish has been confirmed, information on possible effects of TBT on reproductive system of fish is still relatively scarce, particularly at environmentally relevant levels. To evaluate the adverse effects and intrinsic toxicological properties of TBT in male fish, we studied aromatase gene expression in the brain, sex steroid contents, primary and secondary sexual characteristics, and reproductive behavior in male guppies (Poecilia reticulata) exposed to tributyltin chloride at the nominal concentrations of 5, 50, and 500 ng/L for 28 days in a semi-static exposure system. Radioimmunoassay demonstrated that treatment with 50 ng/L TBT caused an increase in systemic levels of testosterone of male guppies. Gonopodial index, which showed a positive correlation with testosterone levels, was elevated in the 5 ng/L and 50 ng/L TBT treated groups. Real-time PCR revealed that TBT exposure had inhibiting effects on expression of two isoforms of guppy aromatase in the brain, and these changes at the molecular levels were associated with a disturbance of reproductive behavior of the individuals, as measured by decreases in frequencies of posturing, sigmoid display, and chase activities when males were paired with females. This study provides the first evidence that TBT can cause abnormalities of secondary sexual characteristics in teleosts and that suppression of reproductive behavior in teleosts by TBT is due to its endocrine-disrupting action as an aromatase inhibitor targeting the nervous system. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Paranormal experience and the COMT dopaminergic gene: a preliminary attempt to associate phenotype with genotype using an underlying brain theory.

    Raz, Amir; Hines, Terence; Fossella, John; Castro, Daniella

    2008-01-01

    Paranormal belief and suggestibility seem related. Given our recent findings outlining a putative association between suggestibility and a specific dopaminergic genetic polymorphism, we hypothesized that similar exploratory genetic data may offer supplementary insights into a similar correlation with paranormal belief. With more affordable costs and better technology in the aftermath of the human genome project, genotyping is increasingly ubiquitous. Compelling brain theories guide specific research hypotheses as scientists begin to unravel tentative relationships between phenotype and genotype. In line with a dopaminergic brain theory, we tried to correlate a specific phenotype concerning paranormal belief with a dopaminergic gene (COMT) known for its involvement in prefrontal executive cognition and for a polymorphism that is positively correlated with suggestibility. Although our preliminary findings are inconclusive, the research approach we outline should pave the road to a more scientific account of elucidating paranormal belief.

  20. Testing and Contrasting Road Safety Education, Deterrence, and Social Capital Theories: A Sociological Approach to the Understanding of Male Drink-Driving in Chile's Metropolitan Region.

    Nazif, José Ignacio

    2011-01-01

    Three theories offer different explanations to the understanding of male drink-driving. In order to test road safety education, deterrence, and social capital theories, logistic regression analysis was applied to predict respondents' statements of having or not having engaged in actual drink-driving (DD). Variable for road safety education theory was whether a driver had graduated from a professional driving school or not. Deterrence theory was operationalized with a variable of whether a driver had been issued a traffic ticket or not. Social capital theory was operationalized with two variables, having children or not and having religion identification or not. Since both variables 'years of formal education' and 'years of driving experience' have been reported to be correlated to alcohol consumption and DD respectively, these were introduced as controls. In order to assess the significance of each variable statistically, Wald tests were applied in seven models. Results indicate on the one hand that road safety education variable is not statistically significant; and on the other, deterrence theory variable and social capital theory variable 'having children' were both statistically significant at the level of .01. Findings are discussed in reference to Chile's context. Data were taken from the "Road Users Attitudes and Behaviors towards Traffic Safety" survey from the National Commission of Road Safety of the Government of Chile (2005). The sample size was reported to be 2,118 (N of male drivers was 396). This survey was representative of Chile's Metropolitan Region road users' population.

  1. Comparing brain networks of different size and connectivity density using graph theory.

    Bernadette C M van Wijk

    Full Text Available Graph theory is a valuable framework to study the organization of functional and anatomical connections in the brain. Its use for comparing network topologies, however, is not without difficulties. Graph measures may be influenced by the number of nodes (N and the average degree (k of the network. The explicit form of that influence depends on the type of network topology, which is usually unknown for experimental data. Direct comparisons of graph measures between empirical networks with different N and/or k can therefore yield spurious results. We list benefits and pitfalls of various approaches that intend to overcome these difficulties. We discuss the initial graph definition of unweighted graphs via fixed thresholds, average degrees or edge densities, and the use of weighted graphs. For instance, choosing a threshold to fix N and k does eliminate size and density effects but may lead to modifications of the network by enforcing (ignoring non-significant (significant connections. Opposed to fixing N and k, graph measures are often normalized via random surrogates but, in fact, this may even increase the sensitivity to differences in N and k for the commonly used clustering coefficient and small-world index. To avoid such a bias we tried to estimate the N,k-dependence for empirical networks, which can serve to correct for size effects, if successful. We also add a number of methods used in social sciences that build on statistics of local network structures including exponential random graph models and motif counting. We show that none of the here-investigated methods allows for a reliable and fully unbiased comparison, but some perform better than others.

  2. Gender differences in brain activity and the relationship between brain activity and differences in prevalence rates between male and female major depressive disorder patients: a resting-state fMRI study.

    Yao, Zhijian; Yan, Rui; Wei, Maobin; Tang, Hao; Qin, Jiaolong; Lu, Qing

    2014-11-01

    We examined the gender-difference effect on abnormal spontaneous neuronal activity of male and female major depressive disorder (MDD) patients using the amplitude of low-frequency fluctuation (ALFF) and the further clarified the relationship between the abnormal ALFF and differences in MDD prevalence rates between male and female patients. Fourteen male MDD patients, 13 female MDD patients and 15 male and 15 female well matched healthy controls (HCs) completed this study. The ALFF approach was used, and Pearson correlation was conducted to observe a possible clinical relevance. There were widespread differences in ALFF values between female and male MDD patients, including some important parts of the frontoparietal network, auditory network, attention network and cerebellum network. In female MDD patients, there was a positive correlation between average ALFF values of the left postcentral gyrus and the severity of weight loss symptom. The gender-difference effect leading to abnormal brain activity is an important underlying pathomechanism for different somatic symptoms in MDD patients of different genders and is likely suggestive of higher MDD prevalence rates in females. The abnormal ALFF resulting from the gender-difference effect might improve our understanding of the differences in prevalence rates between male and female MDD patients from another perspective. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Qualitative and quantitative measurement of brain activity associated with visual sexual arousal in males and females: 3.0 tesIa functional MR imaging

    Kim, Hyung Joong; Jeong, Gwang Woo; Eun, Sung Jong; Cho, Seong Hoon; Seo, Jeong Jin; Kang, Heoung Keun; Park, Kwang Sung

    2004-01-01

    The present study utilized 3.0 Tesla functional MR imaging to identify and quantify the activated brain regions associated with visually evoked sexual arousal, and also to discriminate the gender differences between the cortical activation patterns in response to sexual stimuli. A total of 24 healthy, right-handed volunteers, 14 males (mean age: 24) and 10 females (mean age: 23), with normal heterosexual function underwent functional MRI on a 3.0T MR scanner (Forte, Isole technique, Korea). The sexual stimulation consisted of a 1-minute rest with black screen, followed by a 3- minute stimulation by an erotic video film, and concluded with a 1-minute rest. The fMRI data was obtained from 20 slices (5 mm slice thickness, no gap) parallel to the AC-PC (anterior commissure and posterior commissure) line on the sagittal plane, giving a total of 2,100 images. The brain activation maps and the resulting quantification were analyzed by the statistical parametric mapping program, SPM 99. The mean-activated images were obtained from each individual activation map using one sampled t-test. The FALBA program, which is a new algorithm based on the pixel differentiation method, was used to identify and quantify the brain activation and lateralization indices with respect to the functional and anatomical terms. In both male and female volunteers, significant brain activation showed in the limbic areas of the parahippocampal gyrus, septal area, cingulate gyrus and thalamus. It is interesting to note that the septal areas gave a relatively lower activation ratio with high brain activities. On the contrary, the putamen, insula cortex, and corpus callosum gave a higher activation ratio with low brain activities. In particular, brain activation in the septal area, which was not reported in the previous fMRI studies under 1.5 Tesla, represents a distinct finding of this study using 3.0T MR scanner. The overall lateralization index of activation shows left predominance (LI= 35.3%) in

  4. Qualitative and quantitative measurement of brain activity associated with visual sexual arousal in males and females: 3.0 tesIa functional MR imaging

    Kim, Hyung Joong; Jeong, Gwang Woo; Eun, Sung Jong; Cho, Seong Hoon; Seo, Jeong Jin; Kang, Heoung Keun; Park, Kwang Sung [School of Medicine, Chonnam National Univ., Gwangju (Korea, Republic of)

    2004-08-01

    The present study utilized 3.0 Tesla functional MR imaging to identify and quantify the activated brain regions associated with visually evoked sexual arousal, and also to discriminate the gender differences between the cortical activation patterns in response to sexual stimuli. A total of 24 healthy, right-handed volunteers, 14 males (mean age: 24) and 10 females (mean age: 23), with normal heterosexual function underwent functional MRI on a 3.0T MR scanner (Forte, Isole technique, Korea). The sexual stimulation consisted of a 1-minute rest with black screen, followed by a 3- minute stimulation by an erotic video film, and concluded with a 1-minute rest. The fMRI data was obtained from 20 slices (5 mm slice thickness, no gap) parallel to the AC-PC (anterior commissure and posterior commissure) line on the sagittal plane, giving a total of 2,100 images. The brain activation maps and the resulting quantification were analyzed by the statistical parametric mapping program, SPM 99. The mean-activated images were obtained from each individual activation map using one sampled t-test. The FALBA program, which is a new algorithm based on the pixel differentiation method, was used to identify and quantify the brain activation and lateralization indices with respect to the functional and anatomical terms. In both male and female volunteers, significant brain activation showed in the limbic areas of the parahippocampal gyrus, septal area, cingulate gyrus and thalamus. It is interesting to note that the septal areas gave a relatively lower activation ratio with high brain activities. On the contrary, the putamen, insula cortex, and corpus callosum gave a higher activation ratio with low brain activities. In particular, brain activation in the septal area, which was not reported in the previous fMRI studies under 1.5 Tesla, represents a distinct finding of this study using 3.0T MR scanner. The overall lateralization index of activation shows left predominance (LI= 35.3%) in

  5. Taurine reverses sodium fluoride-mediated increase in inflammation, caspase-3 activity, and oxidative damage along the brain-pituitary-gonadal axis in male rats.

    Adedara, Isaac A; Olabiyi, Bolanle F; Ojuade, TeminiJesu D; Idris, Umar F; Onibiyo, Esther M; Farombi, Ebenezer O

    2017-09-01

    Excessive exposure to fluoride is associated with male reproductive dysfunction in humans and animals. Taurine (2-aminoethane sulfonic acid) is a free intracellular β-amino acid with antioxidant, anti-inflammatory, and neuroprotective properties. However, the effect of taurine on fluoride-induced reproductive toxicity has not been reported. The present study investigated the influence of taurine on sodium fluoride (NaF)-induced functional changes along the brain-pituitary-gonadal axis in male rats. NaF was administered singly in drinking water at 15 mg·L -1 alone or orally co-administered by gavage with taurine at 100 and 200 mg·(kg body mass) -1 for 45 consecutive days. Results showed that taurine significantly prevented NaF-induced increase in oxidative stress indices as well as augmented antioxidant enzymes activities and glutathione level in the brain, testes, and epididymis of the treated rats. Moreover, taurine reversed NaF-induced elevation in inflammatory biomarkers and caspase-3 activity as well as histological damage in the brain, testes, and epididymis of the treated rats. The significant reversal of NaF-induced decreases in testosterone level and testicular activities of acid phosphatase, alkaline phosphatase, and lactate dehydrogenase by taurine was accompanied by enhancement of sperm functional characteristics in the treated rats. Taurine may be a possible chemopreventive candidate against reproductive dysfunction resulting from fluoride exposure.

  6. Effect of exposure and withdrawal of 900-MHz-electromagnetic waves on brain, kidney and liver oxidative stress and some biochemical parameters in male rats.

    Ragy, Merhan Mamdouh

    2015-01-01

    Increasing use of mobile phones in daily life with increasing adverse effects of electromagnetic radiation (EMR), emitted from mobile on some physiological processes, cause many concerns about their effects on human health. Therefore, this work was designed to study the effects of exposure to mobile phone emits 900-MHz EMR on the brain, liver and kidney of male albino rats. Thirty male adult rats were randomly divided into four groups (10 each) as follows: control group (rats without exposure to EMR), exposure group (exposed to 900-MHz EMR for 1 h/d for 60 d) and withdrawal group (exposed to 900-MHz electromagnetic wave for 1 h/d for 60 d then left for 30 d without exposure). EMR emitted from mobile phone led to a significant increase in malondialdehyde (MDA) levels and significant decrease total antioxidant capacity (TAC) levels in brain, liver and kidneys tissues. The sera activity of alanine transaminase (ALT), aspartate aminotransferase (AST), urea, creatinine and corticosterone were significantly increased (p electromagnetic field emitting from mobile phone might produce impairments in some biochemicals changes and oxidative stress in brain, liver and renal tissue of albino rats. These alterations were corrected by withdrawal.

  7. Performance of Male and Female C57BL/6J Mice on Motor and Cognitive Tasks Commonly Used in Pre-Clinical Traumatic Brain Injury Research

    Tucker, Laura B.; Fu, Amanda H.

    2016-01-01

    Abstract To date, clinical trials have failed to find an effective therapy for victims of traumatic brain injury (TBI) who live with motor, cognitive, and psychiatric complaints. Pre-clinical investigators are now encouraged to include male and female subjects in all translational research, which is of particular interest in the field of neurotrauma given that circulating female hormones (progesterone and estrogen) have been demonstrated to exert neuroprotective effects. To determine whether behavior of male and female C57BL6/J mice is differentially impaired by TBI, male and cycling female mice were injured by controlled cortical impact and tested for several weeks with functional assessments commonly employed in pre-clinical research. We found that cognitive and motor impairments post-TBI, as measured by the Morris water maze (MWM) and rotarod, respectively, were largely equivalent in male and female animals. However, spatial working memory, assessed by the y-maze, was poorer in female mice. Female mice were generally more active, as evidenced by greater distance traveled in the first exposure to the open field, greater distance in the y-maze, and faster swimming speeds in the MWM. Statistical analysis showed that variability in all behavioral data was no greater in cycling female mice than it was in male mice. These data all suggest that with careful selection of tests, procedures, and measurements, both sexes can be included in translational TBI research without concern for effect of hormones on functional impairments or behavioral variability. PMID:25951234

  8. Sex matters: females in proestrus show greater diazepam anxiolysis and brain-derived neurotrophin factor- and parvalbumin-positive neurons than males.

    Ravenelle, Rebecca; Berman, Ariel K; La, Jeffrey; Mason, Briana; Asumadu, Evans; Yelleswarapu, Chandra; Donaldson, S Tiffany

    2018-04-01

    In humans and animal models, sex differences are reported for anxiety-like behavior and response to anxiogenic stimuli. In the current work, we studied anxiety-like behavior and response to the prototypical anti-anxiety drug, diazepam. We used 6th generation outbred lines of adult Long Evans rats with high and low anxiety-like behavior phenotypes to investigate the impact of proestrus on the baseline and diazepam-induced behavior. At three doses of diazepam (0, 0.1, and 1.0 mg/kg, i.p.), we measured anxiogenic responses on the elevated plus maze of adult male and female rats. We assessed parvalbumin and brain-derived neurotrophin protein levels in forebrain and limbic structures implicated in anxiety/stress using immunohistochemistry. At baseline, we saw significant differences between anxiety lines, with high anxiety lines displaying less time on the open arms of the elevated plus maze, and less open arm entries, regardless of sex. During proestrus, high anxiety females showed less anxiety-like behavior at 0.1 mg/kg, while low anxiety females displayed less anxiety-like behavior at 0.1 and 1.0 doses, relative to males. Brain-derived neurotrophin protein was elevated in females in the medial prefrontal cortex and central amygdala, while parvalbumin-immunoreactive cells were greater in males in the medial prefrontal cortex. Parvalbumin-positive cells in high anxiety females were higher in CA2 and dentate gyrus relative to males from the same line. In sum, when tested in proestrus, females showed greater anxiolytic effects of diazepam relative to males, and this correlated with increases in neurotrophin and parvalbumin neuron density in corticolimbic structures. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. The different effects of lithium and tamoxifen on memory formation and the levels of neurotrophic factors in the brain of male and female rats.

    Valvassori, Samira S; Borges, Cenita P; Varela, Roger B; Bavaresco, Daniela V; Bianchini, Guilherme; Mariot, Edemilson; Arent, Camila O; Resende, Wilson R; Budni, Josiane; Quevedo, João

    2017-09-01

    Lithium (Li) is a mood-stabilizing drug used in the treatment of bipolar disorder (BD). Recently, preclinical studies have demonstrated the potential of tamoxifen (TMX) in the treatment of acute episodes of BD. However, the prolonged use of TMX for mood disorders treatment is controversial. In this study, we evaluated the effects of TMX or Li on cognitive behavior, as well as the levels of neurotrophic factors in the brain of male and female rats. Male and female Wistar rats received administrations of water (control group), TMX or Li via gavage for a period of 28days; the rats were then subjected to the open-field test (to evaluate spontaneous locomotion), and the novel object recognition and step-down inhibitory avoidance tests (to evaluate cognition). The levels of NGF, BDNF and GDNF were evaluated in the hippocampus and frontal cortex of the subject rats. No significant differences were observed in the open-field and inhibitory avoidance tests after drug administration in either the male or female rats. The administration of TMX, but not Li, decreased the recognition index of both the male and female rats in the object recognition test. The chronic administration of TMX decreased, whereas Li increased the levels of BDNF in the hippocampus of both the male and female rats. Tamoxifen decreased the levels of NGF in the hippocampus of female rats. In conclusion, it can be suggested that long-term treatments with TMX can lead to significant cognitive impairments by reducing the levels of neurotrophic factors in the brain of rats. Copyright © 2017. Published by Elsevier Inc.

  10. An Examination of the Gender Inclusiveness of Current Theories of Sexual Violence in Adulthood: Recognizing Male Victims, Female Perpetrators, and Same-Sex Violence.

    Turchik, Jessica A; Hebenstreit, Claire L; Judson, Stephanie S

    2016-04-01

    Although the majority of adulthood sexual violence involves a male perpetrator and a female victim, there is also substantial evidence that members of both genders can be victims and perpetrators of sexual violence. As an alternative to viewing sexual violence within gender-specific terms, we advocate for the use of a gender inclusive conceptualization of sexual aggression that takes into account the factors that contribute to sexual victimization of, and victimization by, both men and women. The goal of the current review is to examine the need and importance of a gender inclusive conceptualization of sexual violence and to discuss how compatible our current theories are with this conceptualization. First, we examine evidence of how a gender-specific conceptualization of sexual violence aids in obscuring assault experiences that are not male to female and how this impacts victims of such violence. We specifically discuss this impact regarding research, law, public awareness, advocacy, and available victim treatment and resources. Next, we provide an overview of a number of major sexual violence theories that are relevant for adult perpetrators and adult victims, including neurobiological and integrated biological theories, evolutionary psychology theory, routine activity theory, feminist theory, social learning and related theories, typology approaches, and integrated theories. We critically examine these theories' applicability to thinking about sexual violence through a gender inclusive lens. Finally, we discuss further directions for research, clinical interventions, and advocacy in this area. Specifically, we encourage sexual violence researchers and clinicians to identify and utilize appropriate theoretical frameworks and to apply these frameworks in ways that incorporate a full range of sexual violence. © The Author(s) 2015.

  11. Specifying the brain anatomy underlying temporo-parietal junction activations for theory of mind: A review using probabilistic atlases from different imaging modalities

    Schurz, M.; Tholen, M.G.; Perner, J.; Mars, R.B.; Sallet, J.

    2017-01-01

    In this quantitative review, we specified the anatomical basis of brain activity reported in the Temporo-Parietal Junction (TPJ) in Theory of Mind (ToM) research. Using probabilistic brain atlases, we labeled TPJ peak coordinates reported in the literature. This was carried out for four different

  12. Effect of Omega-3 Fatty Acids on Neurotransmitters Level in the Brain of Male Albino Rats Exposed to Gamma Irradiation

    Saada, H.N.; Said, U.Z.; Shedid, S.M.; Mahdy, E.M.E.; Elmezayen, H.E.

    2014-01-01

    The omega-3 fatty acids are essential dietary nutrients, and one of their important roles is providing docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) for growth and function of nervous tissue. Reduced level of DHA in the brain induce dramatic changes in brain function including changes in size of neurons as well as changes in learning and memory. The objective of this study was to evaluate the role of fish oil rich in omega-3 fatty acids on γ-radiation-induced physiological changes in the brain cerebral hemispheres. Omega-3 fatty acids was supplemented daily by gavages to rats at a dose of 400 mg/ kg body wt for 7 days pre- and 21 days post-exposure to whole body fractionated gamma rays at doses of 2 Gy/week up to a total dose of 8 Gy. The results demonstrated that whole body γ-irradiation induced oxidative stress, de - creased the main polyunsaturated fatty acids; DHA and EPA, and induced neurotransmitters alteration in brain tissues. Oxidative stress was manifested by a significant increase in lipid peroxidation product malondialdehyde (MDA) and decrease in the activity of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px). Oxidative stress was accompanied by alterations in the level of the neurotransmitters manifested by a significant increase of glutamic and aspartic and a significant decrease of serotonin (5-HT) levels in brain cerebral hemispheres. Rats receiving fish oil 7 days before and 21 days after exposure to γ-radiation showed significant improvement in the levels of EPA and DHA associated with significant amelioration of oxidative stress and neurotransmitters alteration. It is concluded that fish oil protect the brain from radiation-induced physiological changes by protecting brain cellular membranes through counteracting the decrease of omega-3 fatty acids and minimizing oxidative stress

  13. Aluminium and Gamma Irradiation Induced Oxidative Damage in Brain Tissue of Male Rats - Protective Role of Ferulic Acid

    Mansour, S.Z.; Hanafi, N.; Noaman, E.

    2011-01-01

    The current study was carried out to investigate the potential role of ferulic acid (FA) against Aluminium chloride (AlCl 3 ), γ- radiation either alone or combination induced oxidative stress in brain tissue of Wistar rats. The period of the experiment was eight weeks. Animals were administrated by aluminium chloride at a dose of 8.5 mg/kg/day and exposed to a single dose (4 Gy) of γ-radiation. FA was administered orally (50 mg/Kg body weight)/day. Histopathological observations and myeloid protein distribution were recorded in brain tissue. Induction of oxidative stress was recorded after all exposures. Brain tissue of AlCl 3 and γ- irradiation treatments either alone or combined revealed many altered changes and myeloid protein distribution. Also a decrease in serotonin concentration was recorded. An increase in Malonaldialdahyde (MDA) and acetylcholinesterase activity and percentage of saturated fatty acids in plasma and brain tissue was recorded. Reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) in blood and brain showed a significant decrease. Treatment of AlCl 3 loaded animals by FA showed simple atrophy as shrunken morphology saw in amyotrophic lateral sclerosis and a decrease in myeloid protein deposition. FA treatment of AlCl 3 loaded or irradiated animals represented a significant increase in serotonin concentration and ameliorated affects on oxidative stress markers, acetylcholinesterase activity and percentage of saturated fatty acids in plasma and brain tissue. In conclusion FA has a role in reducing the oxidative stress of AlCl 3 and γ- irradiation on brain tissue of rats

  14. Case report of a 28-year-old male with the rapid progression of steroid-resistant central nervous system vasculitis diagnosed by a brain biopsy.

    Takahashi, Keigo; Sato, Hideki; Hattori, Hidenori; Takao, Masaki; Takahashi, Shinichi; Suzuki, Norihiro

    2017-09-30

    A 28-year-old Japanese male without a significant past medical history presented with new-onset generalized clonic seizure and headache. A brain MRI revealed multiple enhanced lesions on both cerebral hemispheres. Laboratory exams showed no evidence of systemic inflammation or auto-immune antibodies such as ANCAs. Despite four courses of high-dose methylprednisolone pulse therapy and five treatments with plasmapheresis, his symptoms worsened and the MRI lesions progressed rapidly. During these treatments, we performed a targeted brain biopsy, that revealed histological findings consistent with a predominant angiitis of parenchymal and subdural small vessels. He was provided with diagnosis of central nervous system vasculitis (CNSV). Subsequent cyclophosphamide pulse therapy enabled a progressive successful improvement of his symptoms. While diagnostic methods for CNSV remain controversial, histological findings are thought to be more useful in obtaining a more definitive diagnosis than findings in image studies, such as MRI and angiography. We suggest that a brain biopsy should be considered during the early period of cases with suspected CNSV and rapid clinical deterioration. We also detected human herpesvirus 7 (HHV-7) using PCR technology in brain biopsy specimens, however the relationship between CNSV and HHV-7 infection is unknow.

  15. Plasma concentration of prolactin, testosterone might be associated with brain response to visual erotic stimuli in healthy heterosexual males.

    Seo, Younghee; Jeong, Bumseok; Kim, Ji-Woong; Choi, Jeewook

    2009-09-01

    Many studies have showed that excess or lack of sexual hormones, such as prolactin and testosterone, induced the sexual dysfunction in humans. Little, however, is known about the role of sexual hormones showing normal range in, especially, the basal state unexposed to any sexual stimulation. We hypothesized sexual hormones in the basal state may affect sexual behavior. We investigated the association of the sexual hormones level in the basal hormonal state before visual sexual stimulation with the sexual response-related brain activity during the stimulation. Twelve heterosexual men were recorded the functional MRI signals of their brain activation elicited by passive viewing erotic (ERO), happy-faced (HA) couple, food and nature pictures. Both plasma prolacitn and testosterone concentrations were measured before functional MR scanning. A voxel wise regression analyses were performed to investigate the relationship between the concentration of sexual hormones in basal state and brain activity elicited by ERO minus HA, not food minus nature, contrast. The plasma concentration of prolactin in basal state showed positive association with the activity of the brain involving cognitive component of sexual behavior including the left middle frontal gyrus, paracingulate/superior frontal/anterior cingulate gyri, bilateral parietal lobule, right angular, bilateral precuneus and right cerebellum. Testosterone in basal state was positively associated with the brain activity of the bilateral supplementary motor area which related with motivational component of sexual behavior. Our results suggested sexual hormones in basal state may have their specific target regions or network associated with sexual response.

  16. Highlighting the Structure-Function Relationship of the Brain with the Ising Model and Graph Theory

    T. K. Das

    2014-01-01

    Full Text Available With the advent of neuroimaging techniques, it becomes feasible to explore the structure-function relationships in the brain. When the brain is not involved in any cognitive task or stimulated by any external output, it preserves important activities which follow well-defined spatial distribution patterns. Understanding the self-organization of the brain from its anatomical structure, it has been recently suggested to model the observed functional pattern from the structure of white matter fiber bundles. Different models which study synchronization (e.g., the Kuramoto model or global dynamics (e.g., the Ising model have shown success in capturing fundamental properties of the brain. In particular, these models can explain the competition between modularity and specialization and the need for integration in the brain. Graphing the functional and structural brain organization supports the model and can also highlight the strategy used to process and organize large amount of information traveling between the different modules. How the flow of information can be prevented or partially destroyed in pathological states, like in severe brain injured patients with disorders of consciousness or by pharmacological induction like in anaesthesia, will also help us to better understand how global or integrated behavior can emerge from local and modular interactions.

  17. Identification of Transmembrane Protease Serine 2 and Forkhead Box A1 As the Potential Bisphenol A Responsive Genes in the Neonatal Male Rat Brain

    Takayoshi Ubuka

    2018-03-01

    Full Text Available Perinatal exposure of Bisphenol A (BPA to rodents modifies their behavior in later life. To understand how BPA modifies their neurodevelopmental process, we first searched for BPA responsive genes from androgen and estrogen receptor signaling target genes by polymerase chain reaction array in the neonatal male rat brain. We used a transgenic strain of Wistar rats carrying enhanced green fluorescent protein tagged to gonadotropin-inhibitory hormone (GnIH promoter to investigate the possible interaction of BPA responsive genes and GnIH neurons. We found upregulation of transmembrane protease serine 2 (Tmprss2, an androgen receptor signaling target gene, and downregulation of Forkhead box A1 (Foxa1, an ER signaling target gene, in the medial amygdala of male rats that were subcutaneously administered with BPA from day 1 to 3. Tmprss2-immunoreactive (ir cells were distributed in the olfactory bulb, cerebral cortex, hippocampus, amygdala, and hypothalamus in 3 days old but not in 1-month-old male rats. Density of Tmprss2-ir cells in the medial amygdala was increased by daily administration of BPA from day 1 to 3. Tmprss2 immunoreactivity was observed in 26.5% of GnIH neurons clustered from the ventral region of the ventromedial hypothalamic nucleus to the dorsal region of the arcuate nucleus of 3-day-old male rat hypothalamus. However, Tmprss2 mRNA expression significantly decreased in the amygdala and hypothalamus of 1-month-old male rats. Foxa1 mRNA expression was higher in the hypothalamus than the amygdala in 3 days old male rats. Intense Foxa1-ir cells were only found in the peduncular part of lateral hypothalamus of 3-day-old male rats. Density of Foxa1-ir cells in the hypothalamus was decreased by daily administration of BPA from day 1 to 3. Foxa1 mRNA expression in the hypothalamus also significantly decreased at 1 month. These results suggest that BPA disturbs the neurodevelopmental process and behavior of rats later in their life by

  18. Uptake and metabolism of sulphated steroids by the blood-brain barrier in the adult male rat.

    Qaiser, M Zeeshan; Dolman, Diana E M; Begley, David J; Abbott, N Joan; Cazacu-Davidescu, Mihaela; Corol, Delia I; Fry, Jonathan P

    2017-09-01

    Little is known about the origin of the neuroactive steroids dehydroepiandrosterone sulphate (DHEAS) and pregnenolone sulphate (PregS) in the brain or of their subsequent metabolism. Using rat brain perfusion in situ, we have found 3 H-PregS to enter more rapidly than 3 H-DHEAS and both to undergo extensive (> 50%) desulphation within 0.5 min of uptake. Enzyme activity for the steroid sulphatase catalysing this deconjugation was enriched in the capillary fraction of the blood-brain barrier and its mRNA expressed in cultures of rat brain endothelial cells and astrocytes. Although permeability measurements suggested a net efflux, addition of the efflux inhibitors GF120918 and/or MK571 to the perfusate reduced rather than enhanced the uptake of 3 H-DHEAS and 3 H-PregS; a further reduction was seen upon the addition of unlabelled steroid sulphate, suggesting a saturable uptake transporter. Analysis of brain fractions after 0.5 min perfusion with the 3 H-steroid sulphates showed no further metabolism of PregS beyond the liberation of free steroid pregnenolone. By contrast, DHEAS underwent 17-hydroxylation to form androstenediol in both the steroid sulphate and the free steroid fractions, with some additional formation of androstenedione in the latter. Our results indicate a gain of free steroid from circulating steroid sulphates as hormone precursors at the blood-brain barrier, with implications for ageing, neurogenesis, neuronal survival, learning and memory. © 2017 International Society for Neurochemistry.

  19. Potassium-selective microelectrode revealed difference in threshold potassium concentration for cortical spreading depression in female and male rat brain

    Adámek, S.; Vyskočil, František

    2011-01-01

    Roč. 1370, - (2011), s. 215-219 ISSN 0006-8993 R&D Projects: GA AV ČR(CZ) IAA500110905 Institutional research plan: CEZ:AV0Z50110509 Keywords : rat cortex * potassium in brain Subject RIV: ED - Physiology Impact factor: 2.728, year: 2011

  20. AGE-INDEPENDENT, GREY-MATTER-LOCALIZED, BRAIN ENHANCED OXIDATIVE STRESS IN MALE FISCHER 344 RATS,1,2

    While studies showed that aging is accompanied by increased exposure of the brain to oxidative stress, others have not detected any age-correlated differences in levels of markers of oxidative stress. Use of conventional markers of oxidative damage in vivo, which may be formed ex...

  1. Suppressed Fat Appetite after Roux-en-Y Gastric Bypass Surgery Associates with Reduced Brain μ-opioid Receptor Availability in Diet-Induced Obese Male Rats.

    Hankir, Mohammed K; Patt, Marianne; Patt, Jörg T W; Becker, Georg A; Rullmann, Michael; Kranz, Mathias; Deuther-Conrad, Winnie; Schischke, Kristin; Seyfried, Florian; Brust, Peter; Hesse, Swen; Sabri, Osama; Krügel, Ute; Fenske, Wiebke K

    2016-01-01

    Brain μ-opioid receptors (MORs) stimulate high-fat (HF) feeding and have been implicated in the distinct long term outcomes on body weight of bariatric surgery and dieting. Whether alterations in fat appetite specifically following these disparate weight loss interventions relate to changes in brain MOR signaling is unknown. To address this issue, diet-induced obese male rats underwent either Roux-en-Y gastric bypass (RYGB) or sham surgeries. Postoperatively, animals were placed on a two-choice diet consisting of low-fat (LF) and HF food and sham-operated rats were further split into ad libitum fed (Sham-LF/HF) and body weight-matched (Sham-BWM) to RYGB groups. An additional set of sham-operated rats always only on a LF diet (Sham-LF) served as lean controls, making four experimental groups in total. Corresponding to a stage of weight loss maintenance for RYGB rats, two-bottle fat preference tests in conjunction with small-animal positron emission tomography (PET) imaging studies with the selective MOR radioligand [ 11 C]carfentanil were performed. Brains were subsequently collected and MOR protein levels in the hypothalamus, striatum, prefrontal cortex and orbitofrontal cortex were analyzed by Western Blot. We found that only the RYGB group presented with intervention-specific changes: having markedly suppressed intake and preference for high concentration fat emulsions, a widespread reduction in [ 11 C]carfentanil binding potential (reflecting MOR availability) in various brain regions, and a downregulation of striatal and prefrontal MOR protein levels compared to the remaining groups. These findings suggest that the suppressed fat appetite caused by RYGB surgery is due to reduced brain MOR signaling, which may contribute to sustained weight loss unlike the case for dieting.

  2. That's Using Your Brain!

    Visser, Dana R.

    1996-01-01

    Discusses new adult learning theories, including those of Roger Sperry (left brain/right brain), Paul McLean (triune brain), and Howard Gardner (multiple intelligences). Relates adult learning theory to training. (JOW)

  3. Plasma Concentration of Prolactin, Testosterone Might Be Associated with Brain Response to Visual Erotic Stimuli in Healthy Heterosexual Males

    Seo, Younghee; Kim, Ji-Woong; Choi, Jeewook

    2009-01-01

    Objective Many studies have showed that excess or lack of sexual hormones, such as prolactin and testosterone, induced the sexual dysfunction in humans. Little, however, is known about the role of sexual hormones showing normal range in, especially, the basal state unexposed to any sexual stimulation. We hypothesized sexual hormones in the basal state may affect sexual behavior. Methods We investigated the association of the sexual hormones level in the basal hormonal state before visual sexual stimulation with the sexual response-related brain activity during the stimulation. Twelve heterosexual men were recorded the functional MRI signals of their brain activation elicited by passive viewing erotic (ERO), happy-faced (HA) couple, food and nature pictures. Both plasma prolacitn and testosterone concentrations were measured before functional MR scanning. A voxel wise regression analyses were performed to investigate the relationship between the concentration of sexual hormones in basal state and brain activity elicited by ERO minus HA, not food minus nature, contrast. Results The plasma concentration of prolactin in basal state showed positive association with the activity of the brain involving cognitive component of sexual behavior including the left middle frontal gyrus, paracingulate/superior frontal/anterior cingulate gyri, bilateral parietal lobule, right angular, bilateral precuneus and right cerebellum. Testosterone in basal state was positively associated with the brain activity of the bilateral supplementary motor area which related with motivational component of sexual behavior. Conclusion Our results suggested sexual hormones in basal state may have their specific target regions or network associated with sexual response. PMID:20046395

  4. Social instigation and repeated aggressive confrontations in male Swiss mice: analysis of plasma corticosterone, CRF and BDNF levels in limbic brain areas

    Paula Madeira Fortes

    2017-06-01

    Full Text Available Abstract Introduction: Agonistic behaviors help to ensure survival, provide advantage in competition, and communicate social status. The resident-intruder paradigm, an animal model based on male intraspecific confrontations, can be an ethologically relevant tool to investigate the neurobiology of aggressive behavior. Objectives: To examine behavioral and neurobiological mechanisms of aggressive behavior in male Swiss mice exposed to repeated confrontations in the resident intruder paradigm. Methods: Behavioral analysis was performed in association with measurements of plasma corticosterone of mice repeatedly exposed to a potential rival nearby, but inaccessible (social instigation, or to 10 sessions of social instigation followed by direct aggressive encounters. Moreover, corticotropin-releasing factor (CRF and brain-derived neurotrophic factor (BNDF were measured in the brain of these animals. Control mice were exposed to neither social instigation nor aggressive confrontations. Results: Mice exposed to aggressive confrontations exhibited a similar pattern of species-typical aggressive and non-aggressive behaviors on the first and the last session. Moreover, in contrast to social instigation only, repeated aggressive confrontations promoted an increase in plasma corticosterone. After 10 aggressive confrontation sessions, mice presented a non-significant trend toward reducing hippocampal levels of CRF, which inversely correlated with plasma corticosterone levels. Conversely, repeated sessions of social instigation or aggressive confrontation did not alter BDNF concentrations at the prefrontal cortex and hippocampus. Conclusion: Exposure to repeated episodes of aggressive encounters did not promote habituation over time. Additionally, CRF seems to be involved in physiological responses to social stressors.

  5. Correlates of objectively measured sedentary behavior in cancer patients with brain metastases: an application of the theory of planned behavior.

    Lowe, Sonya S; Danielson, Brita; Beaumont, Crystal; Watanabe, Sharon M; Baracos, Vickie E; Courneya, Kerry S

    2015-07-01

    The aim of this study is to examine the demographic, medical, and social-cognitive correlates of objectively measured sedentary behavior in advanced cancer patients with brain metastases. Advanced cancer patients diagnosed with brain metastases, aged 18 years or older, cognitively intact, and with palliative performance scale greater than 30%, were recruited from a Rapid Access Palliative Radiotherapy Program multidisciplinary brain metastases clinic. A cross-sectional survey interview assessed the theory of planned behavior variables and medical and demographic information. Participants wore activPAL™ (PAL Technologies Ltd, Glasgow, United Kingdom) accelerometers recording time spent supine, sitting, standing, and stepping during 7 days encompassing palliative whole brain radiotherapy treatments. Thirty-one patients were recruited. Correlates of median time spent supine or sitting in hours per day were instrumental attitude (i.e., perceived benefits) of physical activity (r = -0.42; p = 0.030) and affective attitude (i.e., perceived enjoyment) of physical activity (r = -0.43; p = 0.024). Moreover, participants who sat or were supine for greater than 20.7 h per day reported significantly lower instrumental attitude (M = 0.7; 95% CI = 0.0-1.4; p = 0.051) and affective attitude (M = 0.7; 95% CI = 0.0-1.4; p = 0.041). Finally, participants who were older than 60 years of age spent more time sitting or being supine. Instrumental attitude and affective attitude were the strongest correlates of objectively measured sedentary behavior. This information could inform intervention studies to increase physical activity in advanced cancer patients with brain metastases. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Brain Networks for Working Memory and Factors of Intelligence Assessed in Males and Females with fMRI and DTI

    Tang, C. Y.; Eaves, E. L.; Ng, J. C.; Carpenter, D. M.; Mai, X.; Schroeder, D. H.; Condon, C. A.; Colom, R.; Haier, R. J.

    2010-01-01

    Neuro-imaging studies of intelligence implicate the importance of a parietal-frontal network. One unresolved issue is whether this network underlies a general factor of intelligence ("g") or other specific cognitive factors. A second unresolved issue is whether males and females use different parts of this network. Here we obtained intelligence…

  7. Theory of mind mediates the prospective relationship between abnormal social brain network morphology and chronic behavior problems after pediatric traumatic brain injury.

    Ryan, Nicholas P; Catroppa, Cathy; Beare, Richard; Silk, Timothy J; Crossley, Louise; Beauchamp, Miriam H; Yeates, Keith Owen; Anderson, Vicki A

    2016-04-01

    Childhood and adolescence coincide with rapid maturation and synaptic reorganization of distributed neural networks that underlie complex cognitive-affective behaviors. These regions, referred to collectively as the 'social brain network' (SBN) are commonly vulnerable to disruption from pediatric traumatic brain injury (TBI); however, the mechanisms that link morphological changes in the SBN to behavior problems in this population remain unclear. In 98 children and adolescents with mild to severe TBI, we acquired 3D T1-weighted MRIs at 2-8 weeks post-injury. For comparison, 33 typically developing controls of similar age, sex and education were scanned. All participants were assessed on measures of Theory of Mind (ToM) at 6 months post-injury and parents provided ratings of behavior problems at 24-months post-injury. Severe TBI was associated with volumetric reductions in the overall SBN package, as well as regional gray matter structural change in multiple component regions of the SBN. When compared with TD controls and children with milder injuries, the severe TBI group had significantly poorer ToM, which was associated with more frequent behavior problems and abnormal SBN morphology. Mediation analysis indicated that impaired theory of mind mediated the prospective relationship between abnormal SBN morphology and more frequent chronic behavior problems. Our findings suggest that sub-acute alterations in SBN morphology indirectly contribute to long-term behavior problems via their influence on ToM. Volumetric change in the SBN and its putative hub regions may represent useful imaging biomarkers for prediction of post-acute social cognitive impairment, which may in turn elevate risk for chronic behavior problems. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  8. Protective role of Scoparia dulcis plant extract on brain antioxidant status and lipidperoxidation in STZ diabetic male Wistar rats

    Pari, Leelavinothan; Latha, Muniappan

    2004-01-01

    Abstract Background The aim of the study was to investigate the effect of aqueous extract of Scoparia dulcis on the occurrence of oxidative stress in the brain of rats during diabetes by measuring the extent of oxidative damage as well as the status of the antioxidant defense system. Methods Aqueous extract of Scoparia dulcis plant was administered orally (200 mg/kg body weight) and the effect of extract on blood glucose, plasma insulin and the levels of thiobarbituric acid reactive substance...

  9. How does multiple trauma, traumatic brain injury (TBI) or spinal cord injury (SCI) affect male sexual functioning?

    Treacy, C.

    2015-01-01

    Sex is an important part of life for many people, therefore dealing with erectile problems, living with the effects of physical injury, changes in your appearance or side-effects of treatment can have an enormous impact on your sex life and relationships. Normal sexual behaviour and erectile function depends on a complex interaction between various body-systems, including the brain, nerves, blood-supply and hormones. All of these systems (alone or in combination) may be affected following mul...

  10. Bisphenol A disrupts glucose transport and neurophysiological role of IR/IRS/AKT/GSK3β axis in the brain of male mice.

    Li, Jing; Wang, Yixin; Fang, Fangfang; Chen, Donglong; Gao, Yue; Liu, Jingli; Gao, Rong; Wang, Jun; Xiao, Hang

    2016-04-01

    Bisphenol A (BPA), one of the most prevalent chemicals for daily use, was recently reported to disturb the homeostasis of energy metabolism and insulin signaling pathways, which might contribute to the increasing prevalence rate of mild cognitive impairment (MCI). However, the underlying mechanisms are remained poorly understood. Here we studied the effects of low dose BPA on glucose transport and the IR/IRS/AKT/GSK3β axis in adult male mice to delineate the association between insulin signaling disruption and neurotoxicity mediated by BPA. Mice were treated with subcutaneous injection of 100μg/kg/d BPA or vehicle for 30 days, then the insulin signaling and glucose transporters in the hippocampus and prefrontal cortex were detected by western blot. Our results showed that mice treated with BPA displayed significant decrease of insulin sensitivity, and in glucose transporter 1, 3 (GLUT1, 3) protein levels in mouse brain. Meanwhile, hyperactivation of IR/IRS/AKT/GSK3β axis was detected in the brain of BPA treated mice. Noteworthily, significant increases of phosphorylated tau and β-APP were observed in BPA treated mice. These results strongly suggest that BPA exposure significantly disrupts brain insulin signaling and might be considered as a potential risk factor for neurodegenerative diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Protective effect of pineapple (Ananas cosmosus peel extract on alcohol-induced oxidative stress in brain tissues of male albino rats

    Ochuko L Erukainure

    2011-03-01

    Full Text Available Objective: To investigate the ability of pineapple peels to protect against alcohol-induced oxidative stress in brain tissues using male albino rat models. Methods: Response surface methodology (RSM was used to design a series of experiments to optimize treatment conditions with the aim of investigating the protective effect of pineapple peel extract on alcohol-induced oxidative stress in brain tissues. Oxidative stress was induced by oral administration of ethanol (20% w/v at a dosage of 5 mL/kg bw. The treatment lasted for 28 days. At the end of the treatment, the rats were fasted overnight and sacrificed by cervical dislocation. Tissue homogenates were used for the assessment of protein concentration, reduced glutathione (GSH content, catalase, and SOD. Results: Alcohol administration caused a significant decrease (P>0.05 in GSH level in the group which was only fed alcohol. Treatment with pineapple peel extracts caused increase in GSH level in alcohol fed groups. No significant difference (P<0.05 was observed in SOD levels of the negative control and group fed on only pineapple peel extract. Elevated level of catalase was observed in the negative control but pineapple peel extract significantly reduced the levels. Conclusions: This study indicates the protective effect of pineapple peel against alcoholinduced oxidative stress in brain tissues.

  12. Therapeutic effect of methanolic extract of Laportea aestuans (L.) Chew, on oxidative stress in the brain of male Wistar rats

    Elizabeth, Omotosho Omolola; Olawumi, Ogunlade Oladipupo

    2018-04-01

    The aim of this study was to assess the effect of diclofenac-induced oxidative stress in the brain of Wistar rats. The experiment was carried out using thirty-six rats. Six groups contained six rats in each. The first group being the control group received 1ml of gum acacia which is the vehicle. Groups 2 to 6 were induced with oxidative stress by oral administration of 40 mg/kg body weight of diclofenac and pretreated as follows: group 2 received only diclofenac, group 3 with 200 mg/kg body weight of methanolic extract of Laportea aestuans (L.) Chew, group 4 with 400 mg/kg body weight of Laportea aestuans extract, group 5 with 800 mg/kg body weight of Laportea aestuans and group 6 with 50 mg/kg body weight of cimetidine. The pretreatment was carried out for a period of seven days after which oxidative stress was induced. The animals were thereafter sacrificed and brain was excised. Antioxidant enzymes and molecules such as superoxide dismutase, catalase, glutathione, levels of malondialdehyde and protein carbonyl were assayed by standard methods. The results showed significant increases in glutathione level and activities of catalase, superoxide dismutase and significant decrease in lipid peroxidation and protein carbonyl in groups 3 to 5 when compared to group 2. This shows that the methanolic extract of Laportea aestuans has a protective effect on the brain against oxidative stress.

  13. Protective role of Scoparia dulcis plant extract on brain antioxidant status and lipidperoxidation in STZ diabetic male Wistar rats

    Latha Muniappan

    2004-11-01

    Full Text Available Abstract Background The aim of the study was to investigate the effect of aqueous extract of Scoparia dulcis on the occurrence of oxidative stress in the brain of rats during diabetes by measuring the extent of oxidative damage as well as the status of the antioxidant defense system. Methods Aqueous extract of Scoparia dulcis plant was administered orally (200 mg/kg body weight and the effect of extract on blood glucose, plasma insulin and the levels of thiobarbituric acid reactive substances (TBARS, hydroperoxides, superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx, glutathione-S-transferase (GST and reduced glutathione (GSH were estimated in streptozotocin (STZ induced diabetic rats. Glibenclamide was used as standard reference drug. Results A significant increase in the activities of plasma insulin, superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and reduced glutathione was observed in brain on treatment with 200 mg/kg body weight of Scoparia dulcis plant extract (SPEt and glibenclamide for 6 weeks. Both the treated groups showed significant decrease in TBARS and hydroperoxides formation in brain, suggesting its role in protection against lipidperoxidation induced membrane damage. Conclusions Since the study of induction of the antioxidant enzymes is considered to be a reliable marker for evaluating the antiperoxidative efficacy of the medicinal plant, these findings suggest a possible antiperoxidative role for Scoparia dulcis plant extract. Hence, in addition to antidiabetic effect, Scoparia dulcis possess antioxidant potential that may be used for therapeutic purposes.

  14. Protective role of Scoparia dulcis plant extract on brain antioxidant status and lipidperoxidation in STZ diabetic male Wistar rats.

    Pari, Leelavinothan; Latha, Muniappan

    2004-11-02

    The aim of the study was to investigate the effect of aqueous extract of Scoparia dulcis on the occurrence of oxidative stress in the brain of rats during diabetes by measuring the extent of oxidative damage as well as the status of the antioxidant defense system. Aqueous extract of Scoparia dulcis plant was administered orally (200 mg/kg body weight) and the effect of extract on blood glucose, plasma insulin and the levels of thiobarbituric acid reactive substances (TBARS), hydroperoxides, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and reduced glutathione (GSH) were estimated in streptozotocin (STZ) induced diabetic rats. Glibenclamide was used as standard reference drug. A significant increase in the activities of plasma insulin, superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and reduced glutathione was observed in brain on treatment with 200 mg/kg body weight of Scoparia dulcis plant extract (SPEt) and glibenclamide for 6 weeks. Both the treated groups showed significant decrease in TBARS and hydroperoxides formation in brain, suggesting its role in protection against lipidperoxidation induced membrane damage. Since the study of induction of the antioxidant enzymes is considered to be a reliable marker for evaluating the antiperoxidative efficacy of the medicinal plant, these findings suggest a possible antiperoxidative role for Scoparia dulcis plant extract. Hence, in addition to antidiabetic effect, Scoparia dulcis possess antioxidant potential that may be used for therapeutic purposes.

  15. Higher mind-brain development in successful leaders: testing a unified theory of performance.

    Harung, Harald S; Travis, Frederick

    2012-05-01

    This study explored mind-brain characteristics of successful leaders as reflected in scores on the Brain Integration Scale, Gibbs's Socio-moral Reasoning questionnaire, and an inventory of peak experiences. These variables, which in previous studies distinguished world-class athletes and professional classical musicians from average-performing controls, were recorded in 20 Norwegian top-level managers and in 20 low-level managers-matched for age, gender, education, and type of organization (private or public). Top-level managers were characterized by higher Brain Integration Scale scores, higher levels of moral reasoning, and more frequent peak experiences. These multilevel measures could be useful tools in selection and recruiting of potential managers and in assessing leadership education and development programs. Future longitudinal research could further investigate the relationship between leadership success and these and other multilevel variables.

  16. Tumor necrosis factor-alpha during neonatal brain development affects anxiety- and depression-related behaviors in adult male and female mice.

    Babri, Shirin; Doosti, Mohammad-Hossein; Salari, Ali-Akbar

    2014-03-15

    A nascent literature suggests that neonatal infection is a risk factor for the development of brain, behavior and hypothalamic-pituitary-adrenal axis which can affect anxiety- and depression-related behaviors in later life. It has been documented that neonatal infection raises the concentrations of tumor necrosis factor-alpha (TNF-α) in neonate rodents and such infections may result in neonatal brain injury, at least in part, through pro-inflammatory cytokines. In addition, previous studies have shown that TNF-α is involved in cellular differentiation, neurogenesis and programmed cell death during the development of the central nervous system. We investigated for the first time whether neonatal exposure to TNF-α can affect body weight, stress-induced corticosterone (COR), anxiety- and depression-related behaviors in adult mice. In the present study, neonatal mice were treated to recombinant mouse TNF-α (0.2, 0.4, 0.7 and 1 μg/kg) or saline on postnatal days 3 and 5, then adult male and female mice were exposed to different behavioral tests. The results indicated that neonatal TNF-α treatment reduced body weight in neonatal period in both sexes. In addition, this study presents findings indicating that high doses of TNF- increase stress-induced COR levels, anxiety- and depression-related behaviors in adult males, but increase levels of anxiety without significantly influencing depression in adult female mice [corrected]. Our findings suggest that TNF-α exposure during neonatal period can alter brain and behavior development in a dose and sex-dependent manner in mice. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Co-localization patterns of neurotensin receptor 1 and tyrosine hydroxylase in brain regions involved in motivation and social behavior in male European starlings.

    Merullo, Devin P; Spool, Jeremy A; Zhao, Changjiu; Riters, Lauren V

    2018-04-01

    Animals communicate in distinct social contexts to convey information specific to those contexts, such as sexual or agonistic motivation. In seasonally-breeding male songbirds, seasonal changes in day length and increases in testosterone stimulate sexually-motivated song directed at females for courtship and reproduction. Dopamine and testosterone may act in the same brain regions to stimulate sexually-motivated singing. The neuropeptide neurotensin, acting at the neurotensin receptor 1 (NTR1), can strongly influence dopamine transmission. The goal of this study was to gain insight into the degree to which seasonal changes in physiology modify interactions between neurotensin and dopamine to adjust context-appropriate communication. Male European starlings were examined in physiological conditions that stimulate season-typical forms of communication: late summer/early fall non-breeding condition (low testosterone; birds sing infrequently), late fall non-breeding condition (low testosterone; birds produce non-sexually motivated song), and spring breeding condition (high testosterone; males produce sexually-motivated song). Double fluorescent immunolabeling was performed to detect co-localization patterns between tyrosine hydroxylase (TH; the rate-limiting enzyme in dopamine synthesis) and NTR1 in brain regions implicated in motivation and song production (the ventral tegmental area, medial preoptic nucleus, periaqueductal gray, and lateral septum). Co-localization between TH and NTR1 was present in the ventral tegmental area for all physiological conditions, and the number of co-localized cells did not differ across conditions. Immunolabeling for TH and NTR1 was also present in the other examined regions, although no co-localization was seen. These results support the hypothesis that interactions between NTR1 and dopamine in the ventral tegmental area may modulate vocalizations, but suggest that testosterone- or photoperiod-induced changes in NTR1/TH co

  18. Cannabinoid receptor expression and phosphorylation are differentially regulated between male and female cerebellum and brain stem after repeated stress: implication for PTSD and drug abuse.

    Xing, Guoqiang; Carlton, Janis; Zhang, Lei; Jiang, Xiaolong; Fullerton, Carol; Li, He; Ursano, Robert

    2011-09-08

    Recent study demonstrated a close relationship between cerebellum atrophy and symptom severity of pediatric maltreatment-related posttraumatic stress disorder (PTSD). It has also been known that females are more vulnerable than males in developing anxiety disorders after exposure to traumatic stress. The mechanisms are unknown. Because cannabinoid receptors (CB₁ and CB₂) are neuroprotective and highly expressed in the cerebellum, we investigated cerebellar CB expression in stressed rats. Young male and female Sprague-Dawley rats were given 40 unpredictable electric tail-shocks for 2h daily on 3 consecutive days. CB₁ and CB₂ mRNA and protein levels in rat cerebellum and brain stem were determined using quantitative real-time PCR and Western blot, respectively. Two-way ANOVA revealed significant gender and stress effects on cerebellar CB₁ mRNA expression, with females and non-stressed rats exhibiting higher CB₁ mRNA levels than the males (3 fold, pstressed rats (30%, pstress increased the level of phosphorylated CB₁ receptors, the inactivated CB₁, in rat cerebellum (pstress interaction. Thus, repeated severe stress caused greater CB₁ mRNA suppression and CB₁ receptor phosphorylation in female cerebellum that could lead to increased susceptibility to stress-related anxiety disorders including PTSD. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Electron-microscopic characteristics of neuroendocrine neurons in the amygdaloid body of the brain in male rats and female rats at different stages of the estral cycle.

    Akhmadeev, A V; Kalimullina, L B

    2008-01-01

    The ultrastructural features of neuroendocrine neurons in the dorsomedial nucleus (DMN) of the amygdaloid body of the brain - one of the major zones of sexual dimorphism - in 12 Wistar rats weighing 250-300 g were studied in three males and nine females at different stages of the estral cycle. On the basis of ultrastructural characteristics, analysis of the functional states of an average of 50 DMN neurons were studied in each animal. A morphofunctional classification reflecting hormone-dependent variations in neuron activity is proposed. DMN neurons were found to be in different structural-functional states, which could be classified as the states of rest, moderate activity, elevated activity, tension (maximal activity), decreased activity (types 1 and 2, depending on prior history), return to the initial state, and apoptosis. At the estrus stage, there was a predominance of neurons in the states of elevated activity (40% of all cells) and maximal activity (26%). At the metestrus stage, neurons in the state of decreased activity type 1 (with increased nuclear heterochromatin content) predominated (30% of cells), while 25% and 20% of cells were in the states of maximal activity and elevated activity respectively. In diestrus, neurons in the resting state, in moderate and elevated activity, in maximal activity, and in decreased activity type 1 were present in essentially identical proportions (18%, 21%, 18%, 20%, and 16% respectively). In males, 35% and 22% of neurons were in the states of elevated and maximal activity respectively. Neuron death was seen only in males.

  20. Integrating robotic action with biologic perception: A brain-machine symbiosis theory

    Mahmoudi, Babak

    In patients with motor disability the natural cyclic flow of information between the brain and external environment is disrupted by their limb impairment. Brain-Machine Interfaces (BMIs) aim to provide new communication channels between the brain and environment by direct translation of brain's internal states into actions. For enabling the user in a wide range of daily life activities, the challenge is designing neural decoders that autonomously adapt to different tasks, environments, and to changes in the pattern of neural activity. In this dissertation, a novel decoding framework for BMIs is developed in which a computational agent autonomously learns how to translate neural states into action based on maximization of a measure of shared goal between user and the agent. Since the agent and brain share the same goal, a symbiotic relationship between them will evolve therefore this decoding paradigm is called a Brain-Machine Symbiosis (BMS) framework. A decoding agent was implemented within the BMS framework based on the Actor-Critic method of Reinforcement Learning. The rule of the Actor as a neural decoder was to find mapping between the neural representation of motor states in the primary motor cortex (MI) and robot actions in order to solve reaching tasks. The Actor learned the optimal control policy using an evaluative feedback that was estimated by the Critic directly from the user's neural activity of the Nucleus Accumbens (NAcc). Through a series of computational neuroscience studies in a cohort of rats it was demonstrated that NAcc could provide a useful evaluative feedback by predicting the increase or decrease in the probability of earning reward based on the environmental conditions. Using a closed-loop BMI simulator it was demonstrated the Actor-Critic decoding architecture was able to adapt to different tasks as well as changes in the pattern of neural activity. The custom design of a dual micro-wire array enabled simultaneous implantation of MI and

  1. Selective brain responses to acute and chronic low-dose X-ray irradiation in males and females

    Silasi, Greg; Diaz-Heijtz, Rochellys; Besplug, Jill; Rodriguez-Juarez, Rocio; Titov, Viktor; Kolb, Bryan; Kovalchuk, Olga

    2004-01-01

    Radiation exposure is known to have profound effects on the brain, leading to precursor cell dysfunction and debilitating cognitive declines [Nat. Med. 8 (2002) 955]. Although a plethora of data exist on the effects of high radiation doses, the effects of low-dose irradiation, such as ones received during repetitive diagnostic and therapeutic exposures, are still under-investigated [Am. J. Otolaryngol. 23 (2002) 215; Proc. Natl. Acad. Sci. USA 97 (2000) 889; Curr. Opin. Neurol. 16 (2003) 129]. Furthermore, most studies of the biological effects of ionizing radiation have been performed using a single acute dose, while clinically and environmentally relevant exposures occur predominantly under chronic/repetitive conditions. Here, we have used a mouse model to compare the effects of chronic/repetitive and acute low-dose radiation (LDR) exposure (0.5 Gy) to ionizing radiation on the brain in vivo. We examined the LDR effects on p42/44 MAPK (ERK1/ERK2), CaMKII, and AKT signaling-the interconnected pathways that have been previously shown to be crucial for neuronal survival upon irradiation. We report perturbations in ERK1/2, AKT, and CREB upon acute and chronic/repetitive low-dose exposure in the hippocampus and frontal cortex of mice. These studies were paralleled by the analysis of radiation effects on neurogenesis and cellular proliferation. Repetitive exposure had a much more pronounced effect on cellular signaling and neurogenesis than acute exposure. These results suggest that studies of single acute exposures might be limited in terms of their predictive value. We also present the first evidence of sex differences in radiation-induced signaling in the hippocampus and frontal cortex. We show the role of estrogens in brain radiation responses and discuss the implications of the observed changes

  2. Bridging the gap between theory and practice: dynamic systems theory as a framework for understanding and promoting recovery of function in children and youth with acquired brain injuries.

    Levac, Danielle; DeMatteo, Carol

    2009-11-01

    A theoretical framework can help physiotherapists understand and promote recovery of function in children and youth with acquired brain injuries (ABI). Physiotherapy interventions for this population have traditionally been based in hierarchical-maturational theories of motor development emphasizing the role of the central nervous system (CNS) in controlling motor behaviour. In contrast, Dynamic Systems Theory (DST) views movement as resulting from the interaction of many subsystems within the individual, features of the functional task to be accomplished, and the environmental context in which the movement takes place. DST is now a predominant theoretical framework in pediatric physiotherapy. The purpose of this article is to describe how DST can be used to understand and promote recovery of function after pediatric ABI. A DST-based approach for children and youth with ABI does not treat the impaired CNS in isolation but rather emphasizes the role of all subsystems, including the family and the environment, in influencing recovery. The emphasis is on exploration, problem solving, and practice of functional tasks. A case scenario provides practical recommendations for the use of DST to inform physiotherapy interventions and clinical decision making in the acute phase of recovery from ABI. Future research is required to evaluate the effectiveness of interventions based in this theoretical framework.

  3. Middle age onset short-term intermittent fasting dietary restriction prevents brain function impairments in male Wistar rats.

    Singh, Rumani; Manchanda, Shaffi; Kaur, Taranjeet; Kumar, Sushil; Lakhanpal, Dinesh; Lakhman, Sukhwinder S; Kaur, Gurcharan

    2015-12-01

    Intermittent fasting dietary restriction (IF-DR) is recently reported to be an effective intervention to retard age associated disease load and to promote healthy aging. Since sustaining long term caloric restriction regimen is not practically feasible in humans, so use of alternate approach such as late onset short term IF-DR regimen which is reported to trigger similar biological pathways is gaining scientific interest. The current study was designed to investigate the effect of IF-DR regimen implemented for 12 weeks in middle age rats on their motor coordination skills and protein and DNA damage in different brain regions. Further, the effect of IF-DR regimen was also studied on expression of energy regulators, cell survival pathways and synaptic plasticity marker proteins. Our data demonstrate that there was an improvement in motor coordination and learning response with decline in protein oxidative damage and recovery in expression of energy regulating neuropeptides. We further observed significant downregulation in nuclear factor kappa B (NF-κB) and cytochrome c (Cyt c) levels and moderate upregulation of mortalin and synaptophysin expression. The present data may provide an insight on how a modest level of short term IF-DR, imposed in middle age, can slow down or prevent the age-associated impairment of brain functions and promote healthy aging by involving multiple regulatory pathways aimed at maintaining energy homeostasis.

  4. Atomoxetine, a selective norepinephrine reuptake inhibitor, improves short-term histological outcomes after hypoxic-ischemic brain injury in the neonatal male rat.

    Toshimitsu, Masatake; Kamei, Yoshimasa; Ichinose, Mari; Seyama, Takahiro; Imada, Shinya; Iriyama, Takayuki; Fujii, Tomoyuki

    2018-03-30

    Despite the recent progress of perinatal medicine, perinatal hypoxic-ischemic (HI) insult remains an important cause of brain injury in neonates, and is pathologically characterized by neuronal loss and the presence of microglia. Neurotransmitters, such as norepinephrine (NE) and glutamate, are involved in the pathogenesis of hypoxic-ischemic encephalopathy via the interaction between neurons and microglia. Although it is well known that the monoamine neurotransmitter NE acts as an anti-inflammatory agent in the brain under pathological conditions, its effects on perinatal HI insult remains elusive. Atomoxetine, a selective NE reuptake inhibitor, has been used clinically for the treatment of attention-deficit hyperactivity disorder in children. Here, we investigated whether the enhancement of endogenous NE by administration of atomoxetine could protect neonates against HI insult by using the neonatal male rat model. We also examined the involvement of microglia in this process. Unilateral HI brain injury was induced by the combination of left carotid artery dissection followed by ligation and hypoxia (8% O 2 , 2 h) in postnatal day 7 (P7) male rat pups. The pups were randomized into three groups: the atomoxetine treatment immediately after HI insult, the atomoxetine treatment at 3 h after HI insult, or the vehicle treatment group. The pups were euthanized on P8 and P14, and the brain regions including the cortex, striatum, hippocampus, and thalamus were evaluated by immunohistochemistry. HI insult resulted in severe brain damage in the ipsilateral hemisphere at P14. Atomoxetine treatment immediately after HI insult significantly increased NE levels in the ipsilateral hemisphere at 1 h after HI insult and reduced the neuronal damage via the increased phosphorylation of cAMP response element-binding protein (pCREB) in all brain regions examined. In addition, the number of microglia was maintained under atomoxetine treatment compared with that of the vehicle

  5. Investigating the Views of Male Students on Using Bicycles Based on the Theory of Planned Behavior in Yazd University of Medical Sciences, 2012

    MH Baghianimoghadam

    2014-11-01

    Full Text Available Introduction: Today, it is somewhat possible for general Population to use bicycle as a means of transportation or sport. Physical activity is considered as an important strategy for the prevention and treatment of obesity and other critical metabolic diseases in the different ages of life. Since the Theory of Planned Behavior assesses perceived control beliefs about behaviors, it seems appropriate to study exercise. In the study, the views of male students - as a group which are affective on community norms- about bicycle use were investigated. Method: In this cross-sectional study 250 male students in Yazd University of Medical Sciences responded to a researcher made questionnaire which was designed for assessing their views about bicycle use, based on the Theory of Planned Behavior. The data were analyzed using SPSS v16. Results: The mean age of participants was 23. 01± 3. 83. Findings revealed that the scale means of the theory constructs were as follows: behavioral intention: 8. 54 ±3. 9, Attitude: 2. 97 ± 15. 2, subjective norm: 12. 1± 2. 9 and perceived behavioral control: 17. 5 ±4. 6. Regression analysis indicated that attitude and subjective norm explained 29. 7% of behavioral intention variations (P<0. 001. Conclusion: According to results which indicated that Attitude and subjective norm had more powerful relationship with and predictive power of behavioral intention about using bicycle it is recommended that cultural activities and interventions may be effective to promote using bicycle among students.

  6. Predicting High School Graduation for Latino Males Using Expectancy Value Theory of Motivation and Tenth Grade Reading Achievement Scores

    Knape, Erin Oakley

    2010-01-01

    National education data indicate that young men of color and students living in poverty are not experiencing the same academic success as their female, White, or higher socioeconomic status peers, as evidenced by low reading achievement levels and high dropout rates. Of particular concern is the underachievement of Latino males, who currently have…

  7. Gonadotropin Inhibitory Hormone Down-Regulates the Brain-Pituitary Reproductive Axis of Male European Sea Bass (Dicentrarchus labrax).

    Paullada-Salmerón, José A; Cowan, Mairi; Aliaga-Guerrero, María; Morano, Francesca; Zanuy, Silvia; Muñoz-Cueto, José A

    2016-06-01

    Gonadotropin-inhibitory hormone (GnIH) inhibits gonadotropin synthesis and release from the pituitary of birds and mammals. However, the physiological role of orthologous GnIH peptides on the reproductive axis of fish is still uncertain, and their actions on the main neuroendocrine systems controlling reproduction (i.e., GnRHs, kisspeptins) have received little attention. In a recent study performed in the European sea bass, we cloned a cDNA encoding a precursor polypeptide that contained C-terminal MPMRFamide (sbGnIH-1) and MPQRFamide (sbGnIH-2) peptide sequences, developed a specific antiserum against sbGnIH-2, and characterized its central and pituitary GnIH projections in this species. In this study, we analyzed the effects of intracerebroventricular injection of sbGnIH-1 and sbGnIH-2 on brain and pituitary expression of reproductive hormone genes (gnrh1, gnrh2, gnrh3, kiss1, kiss2, gnih, lhbeta, fshbeta), and their receptors (gnrhr II-1a, gnrhr II-2b, kiss1r, kiss2r, and gnihr) as well as on plasma Fsh and Lh levels. In addition, we determined the effects of GnIH on pituitary somatotropin (Gh) expression. The results obtained revealed the inhibitory role of sbGnIH-2 on brain gnrh2, kiss1, kiss2, kiss1r, gnih, and gnihr transcripts and on pituitary fshbeta, lhbeta, gh, and gnrhr-II-1a expression, whereas sbGnIH-1 only down-regulated brain gnrh1 expression. However, at different doses, central administration of both sbGnIH-1 and sbGnIH-2 decreased Lh plasma levels. Our work represents the first study reporting the effects of centrally administered GnIH in fish and provides evidence of the differential actions of sbGnIH-1 and sbGnIH-2 on the reproductive axis of sea bass, the main inhibitory role being exerted by the sbGnIH-2 peptide. © 2016 by the Society for the Study of Reproduction, Inc.

  8. Neuronal coupling by endogenous electric fields: cable theory and applications to coincidence detector neurons in the auditory brain stem.

    Goldwyn, Joshua H; Rinzel, John

    2016-04-01

    The ongoing activity of neurons generates a spatially and time-varying field of extracellular voltage (Ve). This Ve field reflects population-level neural activity, but does it modulate neural dynamics and the function of neural circuits? We provide a cable theory framework to study how a bundle of model neurons generates Ve and how this Ve feeds back and influences membrane potential (Vm). We find that these "ephaptic interactions" are small but not negligible. The model neural population can generate Ve with millivolt-scale amplitude, and this Ve perturbs the Vm of "nearby" cables and effectively increases their electrotonic length. After using passive cable theory to systematically study ephaptic coupling, we explore a test case: the medial superior olive (MSO) in the auditory brain stem. The MSO is a possible locus of ephaptic interactions: sounds evoke large (millivolt scale)Vein vivo in this nucleus. The Ve response is thought to be generated by MSO neurons that perform a known neuronal computation with submillisecond temporal precision (coincidence detection to encode sound source location). Using a biophysically based model of MSO neurons, we find millivolt-scale ephaptic interactions consistent with the passive cable theory results. These subtle membrane potential perturbations induce changes in spike initiation threshold, spike time synchrony, and time difference sensitivity. These results suggest that ephaptic coupling may influence MSO function. Copyright © 2016 the American Physiological Society.

  9. Brain serotonin synthesis in adult males characterized by physical aggression during childhood: a 21-year longitudinal study.

    Linda Booij

    2010-06-01

    Full Text Available Adults exhibiting severe impulsive and aggressive behaviors have multiple indices of low serotonin (5-HT neurotransmission. It remains unclear though whether low 5-HT mediates the behavior or instead reflects a pre-existing vulnerability trait.In the present study, positron emission tomography with the tracer alpha-[(11C]methyl-L-tryptophan ((11C-AMT was used to compare 5-HT synthesis capacity in two groups of adult males from a 21-year longitudinal study (mean age +/- SD: 27.1+/-0.7: individuals with a history of childhood-limited high physical aggression (C-LHPA; N = 8 and individuals with normal (low patterns of physical aggression (LPA; N = 18. The C-LHPA males had significantly lower trapping of (11C-AMT bilaterally in the orbitofrontal cortex and self-reported more impulsiveness. Despite this, in adulthood there were no group differences in plasma tryptophan levels, genotyping, aggression, emotional intelligence, working memory, computerized measures of impulsivity, psychosocial functioning/adjustment, and personal and family history of mood and substance abuse disorders.These results force a re-examination of the low 5-HT hypothesis as central in the biology of violence. They suggest that low 5-HT does not mediate current behavior and should be considered a vulnerability factor for impulsive-aggressive behavior that may or may not be expressed depending on other biological factors, experience, and environmental support during development.

  10. Effects of testosterone and its metabolites on aromatase-immunoreactive cells in the quail brain: relationship with the activation of male reproductive behavior.

    Balthazart, J; Foidart, A; Absil, P; Harada, N

    1996-01-01

    The enzyme aromatase converts testosterone (T) into 17 beta-estradiol and plays a pivotal role in the control of reproduction. In particular, the aromatase activity (AA) located in the preoptic area (POA) of male Japanese quail is a limiting step in the activation by T of copulatory behavior. Aromatase-immunoreactive (ARO-ir) cells of the POA are specifically localized within the cytoarchitectonic boundaries of the medial preoptic nucleus(POM), a sexually dimorphic and steroid-sensitive structure that is a necessary and sufficient site of steroid action in the activation of behavior. Stereotaxic implantation of aromatase inhibitors in but not around the POM strongly decreases the behavioral effects of a systemic treatment with T of castrated males. AA is decreased by castration and increased by aromatizable androgens and by estrogens. These changes have been independently documented at three levels of analysis: the enzymatic activity measured by radioenzymatic assays in vitro, the enzyme concentration evaluated semi-quantitatively by immunocytochemistry and the concentration of its messenger RNA quantified by reverse transcription-polymerase chain reaction (RT-PCR). These studies demonstrate that T acting mostly through its estrogenic metabolites regulates brain aromatase by acting essentially at the transcriptional level. Estrogens produced by central aromatization of T therefore have two independent roles: they activate male copulatory behavior and they regulate the synthesis of aromatase. Double label immunocytochemical studies demonstrate that estrogen receptors(ER) are found in all brain areas containing ARO-ir cells but the extent to which these markers are colocalized varies from one brain region to the other. More than 70% of ARO-ir cells contain detectable ER in the tuberal hypothalamus but less than 20% of the cells display this colocalization in the POA. This absence of ER in ARO-ir cells is also observed in the POA of the rat brain. This suggests that

  11. The effect of GABA A receptor antagonist - bicucullin - administration on the number of multiform neurons in the brain parabrachial nucleus due to pain induction of adult male rats

    Mahsa Kamali

    2015-10-01

    Full Text Available Background and Aim:  A lot of biological investigations are aimed to find pain decreasing or relieving substances that appear in various diseases. Parabrachial nucleus plays an important role in cognitive and emotional aspects of pain. The present study was designed to evaluate the inhibitory effect of bicuculine- as a GABA A receptor antagonist- on the number of multiform neurons in Parabrachial region of adult male rats in tonic pain model. Materials and Methods: This experimental study was carried out on 40 Wistar male rats. Based on the pain induction, the animals were divided into 8 groups (n=5. Bicuculine was administrated in doses of  50, 100, and 200 ng/rat.  Using stereotaxic method, Bicuculine was administrated to the rats` brain parabrachial area. The present study utilized Formalin test as a standard method for pain stimulations. Thereafter, Gimsa staining method was applied for histological determination of multiform cells. The obtained data was analyzed using statistical testsincluding Student-t and  one-way ANOVA. Results: Our data showed no significant changes in the number of multiform cells in Parabrachial nucleus between the animals administrated by bicuculine at the dose of 50   compared  with the controls (P>0.05. Nevertheless, the number of these cells was decreased significantly in the animals administrated by bicuculine at the doses of 100 and 200   when compared to the controls (p<0.05. Conclusion:  It was found that nociceptive stimulations cause changes in the number of multiform neurons in para- brachial nucleus. Nevertheless, higher dose administration of GABA A receptor antagonist has preventive effects on neuronal dysmorphogenesis at this brain area.

  12. Risk-Taking Behavior in a Computerized Driving Task: Brain Activation Correlates of Decision-Making, Outcome, and Peer Influence in Male Adolescents.

    Vorobyev, Victor; Kwon, Myoung Soo; Moe, Dagfinn; Parkkola, Riitta; Hämäläinen, Heikki

    2015-01-01

    Increased propensity for risky behavior in adolescents, particularly in peer groups, is thought to reflect maturational imbalance between reward processing and cognitive control systems that affect decision-making. We used functional magnetic resonance imaging (fMRI) to investigate brain functional correlates of risk-taking behavior and effects of peer influence in 18-19-year-old male adolescents. The subjects were divided into low and high risk-taking groups using either personality tests or risk-taking rates in a simulated driving task. The fMRI data were analyzed for decision-making (whether to take a risk at intersections) and outcome (pass or crash) phases, and for the influence of peer competition. Personality test-based groups showed no difference in the amount of risk-taking (similarly increased during peer competition) and brain activation. When groups were defined by actual task performance, risk-taking activated two areas in the left medial prefrontal cortex (PFC) significantly more in low than in high risk-takers. In the entire sample, risky decision-specific activation was found in the anterior and dorsal cingulate, superior parietal cortex, basal ganglia (including the nucleus accumbens), midbrain, thalamus, and hypothalamus. Peer competition increased outcome-related activation in the right caudate head and cerebellar vermis in the entire sample. Our results suggest that the activation of the medial (rather than lateral) PFC and striatum is most specific to risk-taking behavior of male adolescents in a simulated driving situation, and reflect a stronger conflict and thus increased cognitive effort to take risks in low risk-takers, and reward anticipation for risky decisions, respectively. The activation of the caudate nucleus, particularly for the positive outcome (pass) during peer competition, further suggests enhanced reward processing of risk-taking under peer influence.

  13. Risk-Taking Behavior in a Computerized Driving Task: Brain Activation Correlates of Decision-Making, Outcome, and Peer Influence in Male Adolescents.

    Victor Vorobyev

    Full Text Available Increased propensity for risky behavior in adolescents, particularly in peer groups, is thought to reflect maturational imbalance between reward processing and cognitive control systems that affect decision-making. We used functional magnetic resonance imaging (fMRI to investigate brain functional correlates of risk-taking behavior and effects of peer influence in 18-19-year-old male adolescents. The subjects were divided into low and high risk-taking groups using either personality tests or risk-taking rates in a simulated driving task. The fMRI data were analyzed for decision-making (whether to take a risk at intersections and outcome (pass or crash phases, and for the influence of peer competition. Personality test-based groups showed no difference in the amount of risk-taking (similarly increased during peer competition and brain activation. When groups were defined by actual task performance, risk-taking activated two areas in the left medial prefrontal cortex (PFC significantly more in low than in high risk-takers. In the entire sample, risky decision-specific activation was found in the anterior and dorsal cingulate, superior parietal cortex, basal ganglia (including the nucleus accumbens, midbrain, thalamus, and hypothalamus. Peer competition increased outcome-related activation in the right caudate head and cerebellar vermis in the entire sample. Our results suggest that the activation of the medial (rather than lateral PFC and striatum is most specific to risk-taking behavior of male adolescents in a simulated driving situation, and reflect a stronger conflict and thus increased cognitive effort to take risks in low risk-takers, and reward anticipation for risky decisions, respectively. The activation of the caudate nucleus, particularly for the positive outcome (pass during peer competition, further suggests enhanced reward processing of risk-taking under peer influence.

  14. Psychological differences between influence of temperament with the hemishere asymmetry of a brain on size of sensorymotor reactions of male and female cosmonauts

    Prisniakova, Lyudmila; Prisniakov, Volodymyr; Volkov, D. S.

    The purpose of research was definition and comparison of relative parameters of sensorimotor reactions with a choice depending on a level of lateral asymmetry of hemispheres of a brain at representatives of various types of temperament OF male and female cosmonauts . These parameters were by the bases for verification of theoretical dependence for the latent period of reaction in conditions of weightlessness and overloads. The hypothesis about influence of functional asymmetry on parameters of psychomotor in sensory-motor reactions was laid in a basis of experiment. Techniques of definition of individual characters of the sensori-motor asymmetries were used, and G. Ajzenk's questionnaire EPQ adapted by Prisniakova L. Time of sensorimotor reaction has significant distinctions between representatives of different types of temperament with a various level interchemishere asymmetry OF male and female cosmonauts. With increase in expressiveness of the right hemisphere time of reaction tends to reduction at representatives of all types of temperament, the number of erroneous reactions as a whole increases also a level of achievement tends to reduction. Results of time of sensorimotor reaction correspond with parameter L. Prisniakova which characterizes individual - psychological features. .Earlier the received experimental data of constant time of processing of the information in memory at a period of a sensorimotor reactions of the man and new results for women were used for calculation of these time constants for overloads distinct from terrestrial. These data enable to predict dynamics of behavior of cosmonauts with differing sex in conditions of flight in view of their individual characteristics connected with the hemisphere asymmetry of a brain and with by a various degree of lateralization.

  15. Theory of Mind and the Brain in Anorexia Nervosa: Relation to Treatment Outcome

    Schulte-Ruther, Martin; Mainz, Verena; Fink, Gereon R.; Herpertz-Dahlmann, Beate; Konrad, Kerstin

    2012-01-01

    Objective: Converging evidence suggests deficits in theory-of-mind (ToM) processing in patients with anorexia nervosa (AN). The present study aimed at elucidating the neural mechanisms underlying ToM-deficits in AN. Method: A total of 19 adolescent patients with AN and 21 age-matched controls were investigated using functional magnetic resonance…

  16. Effect Of Electromagnetic Waves Emitted From Mobile Phone On Brain Stem Auditory Evoked Potential In Adult Males.

    Singh, K

    2015-01-01

    Mobile phone (MP) is commonly used communication tool. Electromagnetic waves (EMWs) emitted from MP may have potential health hazards. So, it was planned to study the effect of electromagnetic waves (EMWs) emitted from the mobile phone on brainstem auditory evoked potential (BAEP) in male subjects in the age group of 20-40 years. BAEPs were recorded using standard method of 10-20 system of electrode placement and sound click stimuli of specified intensity, duration and frequency.Right ear was exposed to EMW emitted from MP for about 10 min. On comparison of before and after exposure to MP in right ear (found to be dominating ear), there was significant increase in latency of II, III (p potential.

  17. Impact of experimental hypothyroidism on monoamines level in discrete brain regions and other peripheral tissues of young and adult male rats.

    Hassan, Wafaa A; Aly, Mona S; Rahman, Taghride Abdel; Shahat, Asmaa S

    2013-06-01

    The levels of dopamine (DA), norepinephrine (NE) and serotonin (5-HT) in different brain regions as well as in blood plasma, cardiac muscle and adrenal gland of young and adult male albino rats were measured following experimentally induced hypothyroidism. Hypothyroidism induced by daily oral administration of propylthiouracil (PTU, 5mg/kg body wt) caused a significant reduction in DA levels in most of the tissues examined of both young and adult rats after 21 and 28 days, in NE levels after all the time intervals studied in young rats, and after 21 and 28 days in adult rats. 5-HT exhibited a significant reduction in the selected brain regions and blood plasma after 21 and 28 days and in cardiac muscle after all the time intervals in the two age groups of animals. It may be suggested that the changes in monoamine levels induced by hypothyroidism may be due to disturbance in the synthesis and release of these amines through the neurons impairment or may be due to an alteration pattern of their synthesizing and/or degradative enzymes. Copyright © 2013 ISDN. Published by Elsevier Ltd. All rights reserved.

  18. Alterations in monoamines level in discrete brain regions and other peripheral tissues in young and adult male rats during experimental hyperthyroidism.

    Hassan, Wafaa A; Rahman, Taghride Abdel; Aly, Mona S; Shahat, Asmaa S

    2013-08-01

    The present study was conducted to investigate the effect of experimentally-induced hyperthyroidism on dopamine (DA), norepinephrine (NE) and serotonin (5-HT) levels in different brain regions as well as in blood plasma, cardiac muscle and adrenal gland of young and adult male albino rats (60 rats of each age). Hyperthyroidism was induced by daily s.c. injection of L-thyroxine (L-T4, 500 μg/kg body wt.) for 21 consecutive days. Induction of hyperthyroidism caused a significant elevation in DA and 5-HT levels in most of the tissues studied of both young and adult animals after 7, 14, and 21 days. NE content significantly decreased after 21 days in most of the brain regions examined and after 14 and 21 days in blood plasma of young rats following hyperthyroidism. In adult rats, NE content decreased after 14 and 21 days in cardiac muscle and after 21 days only in adrenal gland. It may be suggested that the changes in monoamines level induced by hyperthyroidism may be due to disturbance in the synthesis, turnover and release of these amines through the neurons impairment or may attributed to an alteration pattern of their synthesis and/or degradative enzymes or changes in the sensitivity of their receptors. Copyright © 2013 ISDN. Published by Elsevier Ltd. All rights reserved.

  19. The impact of adult vitamin D deficiency on behaviour and brain function in male Sprague-Dawley rats.

    Jacqueline H Byrne

    Full Text Available BACKGROUND: Vitamin D deficiency is common in the adult population, and this has been linked to depression and cognitive outcomes in clinical populations. The aim of this study was to investigate the effects of adult vitamin D (AVD deficiency on behavioural tasks of relevance to neuropsychiatric disorders in male Sprague-Dawley rats. METHODS: Ten-week old male Sprague-Dawley rats were fed a control or vitamin D deficient diet for 6 weeks prior to, and during behavioural testing. We first examined a range of behavioural domains including locomotion, exploration, anxiety, social behaviour, learned helplessness, sensorimotor gating, and nociception. We then assessed locomotor response to the psychomimetic drugs, amphetamine and MK-801. Attention and vigilance were assessed using the 5 choice serial reaction time task (5C-SRT and the 5 choice continuous performance task (5C-CPT and, in a separate cohort, working memory was assessed using the delay match to sample (DMTS task. We also examined excitatory and inhibitory neurotransmitters in prefrontal cortex and striatum. RESULTS: AVD-deficient rats were deficient in vitamin D3 (<10 nM and had normal calcium and phosphate levels after 8-10 weeks on the diet. Overall, AVD deficiency was not associated with an altered phenotype across the range of behavioural domains tested. On the 5C-SRT AVD-deficient rats made more premature responses and more head entries during longer inter-trial intervals (ITI than control rats. On the 5C-CPT AVD-deficient rats took longer to make false alarm (FA responses than control rats. AVD-deficient rats had increases in baseline GABA levels and the ratio of DOPAC/HVA within the striatum. CONCLUSIONS: AVD-deficient rats exhibited no major impairments in any of the behavioural domains tested. Impairments in premature responses in AVD-deficient rats may indicate that these animals have specific alterations in striatal systems governing compulsive or reward-seeking behaviour.

  20. The entropic brain:A theory of conscious states informed by neuroimaging research with psychedelic drugs

    Robin Lester Carhart-Harris

    2014-02-01

    Full Text Available Entropy is a dimensionless quantity that is used for measuring uncertainty about the state of a system but it can also imply physical qualities, where high entropy is synonymous with high disorder. Entropy is applied here in the context of states of consciousness and their associated neural dynamics, with a particular focus on the psychedelic state. The psychedelic state is considered an exemplar of a primitive or primary state of consciousness that preceded the development of modern, adult, human, normal waking consciousness. Based on neuroimaging data with psilocybin, a classic psychedelic drug, it is argued that the defining feature of ‘primary states’ is elevated entropy in certain aspects of brain function, such as the repertoire of functional connectivity motifs that form and fragment across time. It is noted that elevated entropy in this sense, is a characteristic of systems exhibiting ‘self-organised criticality’, i.e., a property of systems that gravitate towards a ‘critical’ point in a transition zone between order and disorder in which certain phenomena such as power-law scaling appear. This implies that entropy is suppressed in normal waking consciousness, meaning that the brain operates just below criticality. It is argued that this entropy suppression furnishes consciousness with a constrained quality and associated metacognitive functions, including reality-testing and self-awareness. It is also proposed that entry into primary states depends on a collapse of the normally highly organised activity within the default-mode network (DMN and a decoupling between the DMN and the medial temporal lobes (which are normally significantly coupled. These hypotheses can be tested by examining brain activity and associated cognition in other candidate primary states such as REM sleep and early psychosis and comparing these with non-primary states such as normal waking consciousness and the anaesthetised state.

  1. The entropic brain: a theory of conscious states informed by neuroimaging research with psychedelic drugs

    Carhart-Harris, Robin L.; Leech, Robert; Hellyer, Peter J.; Shanahan, Murray; Feilding, Amanda; Tagliazucchi, Enzo; Chialvo, Dante R.; Nutt, David

    2014-01-01

    Entropy is a dimensionless quantity that is used for measuring uncertainty about the state of a system but it can also imply physical qualities, where high entropy is synonymous with high disorder. Entropy is applied here in the context of states of consciousness and their associated neurodynamics, with a particular focus on the psychedelic state. The psychedelic state is considered an exemplar of a primitive or primary state of consciousness that preceded the development of modern, adult, human, normal waking consciousness. Based on neuroimaging data with psilocybin, a classic psychedelic drug, it is argued that the defining feature of “primary states” is elevated entropy in certain aspects of brain function, such as the repertoire of functional connectivity motifs that form and fragment across time. Indeed, since there is a greater repertoire of connectivity motifs in the psychedelic state than in normal waking consciousness, this implies that primary states may exhibit “criticality,” i.e., the property of being poised at a “critical” point in a transition zone between order and disorder where certain phenomena such as power-law scaling appear. Moreover, if primary states are critical, then this suggests that entropy is suppressed in normal waking consciousness, meaning that the brain operates just below criticality. It is argued that this entropy suppression furnishes normal waking consciousness with a constrained quality and associated metacognitive functions, including reality-testing and self-awareness. It is also proposed that entry into primary states depends on a collapse of the normally highly organized activity within the default-mode network (DMN) and a decoupling between the DMN and the medial temporal lobes (which are normally significantly coupled). These hypotheses can be tested by examining brain activity and associated cognition in other candidate primary states such as rapid eye movement (REM) sleep and early psychosis and comparing

  2. Pituitary and brain D2 receptor density measured in vitro and in vivo in EEDQ treated male rats

    Ekman, A.; Eriksson, E.

    1991-01-01

    The effect of the alkylating compound N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) on dopamine D2 receptor density in rat pituitary and brain was measured using in vitro and in vivo radioligand binding techniques. In the in vitro radioligand binding experiments EEDQ was found to reduce the density (B max ) of [ 3 H]-spiperone binding sites in the striatum by 86% while in the pituitary the corresponding decrease was only 37%. The affinity (K D ) of the remaining striatal and pituitary D2 receptors was not different in EEDQ treated animals as compared to controls. When D2 receptor density was measured in vivo the effect of EEDQ was less pronounced. Thus, in rats given EEDQ the specific binding of either of the two D2 ligands [ 3 H]-raclopride or [ 3 H]-spiperone in striatum and in the limbic forebrain was reduced by 45-62%; moreover, no significant decrease in pituitary D2 receptor density was observed. The data are discussed in relation to the finding that the same dose of EEDQ that failed to influence pituitary D2 receptor density as measured in vivo effectively antagonizes the prolactin decreasing effect of the partial D2 agonist (-)-3-(3-hydroxyphenyl)-N-n-propyl-piperidine [(-)-3-PPP

  3. Altered Brain Network in Amyotrophic Lateral Sclerosis: A Resting Graph Theory-Based Network Study at Voxel-Wise Level.

    Zhou, Chaoyang; Hu, Xiaofei; Hu, Jun; Liang, Minglong; Yin, Xuntao; Chen, Lin; Zhang, Jiuquan; Wang, Jian

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a rare degenerative disorder characterized by loss of upper and lower motor neurons. Neuroimaging has provided noticeable evidence that ALS is a complex disease, and shown that anatomical and functional lesions extend beyond precentral cortices and corticospinal tracts, to include the corpus callosum; frontal, sensory, and premotor cortices; thalamus; and midbrain. The aim of this study is to investigate graph theory-based functional network abnormalities at voxel-wise level in ALS patients on a whole brain scale. Forty-three ALS patients and 44 age- and sex-matched healthy volunteers were enrolled. The voxel-wise network degree centrality (DC), a commonly employed graph-based measure of network organization, was used to characterize the alteration of whole brain functional network. Compared with the controls, the ALS patients showed significant increase of DC in the left cerebellum posterior lobes, bilateral cerebellum crus, bilateral occipital poles, right orbital frontal lobe, and bilateral prefrontal lobes; significant decrease of DC in the bilateral primary motor cortex, bilateral sensory motor region, right prefrontal lobe, left bilateral precuneus, bilateral lateral temporal lobes, left cingulate cortex, and bilateral visual processing cortex. The DC's z-scores of right inferior occipital gyrus were significant negative correlated with the ALSFRS-r scores. Our findings confirm that the regions with abnormal network DC in ALS patients were located in multiple brain regions including primary motor, somatosensory and extra-motor areas, supporting the concept that ALS is a multisystem disorder. Specifically, our study found that DC in the visual areas was altered and ALS patients with higher DC in right inferior occipital gyrus have more severity of disease. The result demonstrated that the altered DC value in this region can probably be used to assess severity of ALS.

  4. Altered brain network in Amyotrophic Lateral Sclerosis: a resting graph theory-based network study at voxel-wise level

    Chaoyang eZhou

    2016-05-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a rare degenerative disorder characterized by loss of upper and lower motor neurons. Neuroimaging has provided noticeable evidence that ALS is a complex disease, and shown that anatomical and functional lesions extend beyond precentral cortices and corticospinal tracts, to include the corpus callosum; frontal, sensory, and premotor cortices; thalamus; and midbrain. The aim of this study is to investigate graph theory-based functional network abnormalities at voxel-wise level in ALS patients on a whole brain scale. Forty-three ALS patients and 44 age- and sex- matched healthy volunteers were enrolled. The voxel-wise network degree centrality (DC, a commonly employed graph-based measure of network organization, was used to characterize the alteration of whole brain functional network. Compared with the controls, the ALS patients showed significant increase of DC in the left cerebellum posterior lobes, bilateral cerebellum crus, bilateral occipital poles, right orbital frontal lobe and bilateral prefrontal lobes; significant decrease of DC in the bilateral primary motor cortex, bilateral sensory motor region, right prefrontal lobe, left bilateral precuneus, bilateral lateral temporal lobes, left cingulate cortex, and bilateral visual processing cortex. The DC’s z-scores of right inferior occipital gyrus were significant negative correlated with the ALSFRS-r scores. Our findings confirm that the regions with abnormal network DC in ALS patients were located in multiple brain regions including primary motor, somatosensory and extra-motor areas, supporting the concept that ALS is a multisystem disorder. Specifically, our study found that DC in the visual areas was altered and ALS patients with higher DC in right inferior occipital gyrus have more severity of disease. The result demonstrated that the altered DC value in this region can probably be used to assess severity of ALS.

  5. Development and psychometric properties of an informant assessment scale of theory of mind for adults with traumatic brain injury.

    Zhang, Dengke; Pang, Yanxia; Cai, Weixiong; Fazio, Rachel L; Ge, Jianrong; Su, Qiaorong; Xu, Shuiqin; Pan, Yinan; Chen, Sanmei; Zhang, Hongwei

    2016-08-01

    Impairment of theory of mind (ToM) is a common phenomenon following traumatic brain injury (TBI) that has clear effects on patients' social functioning. A growing body of research has focused on this area, and several methods have been developed to assess ToM deficiency. Although an informant assessment scale would be useful for examining individuals with TBI, very few studies have adopted this approach. The purpose of the present study was to develop an informant assessment scale of ToM for adults with traumatic brain injury (IASToM-aTBI) and to test its reliability and validity with 196 adults with TBI and 80 normal adults. A 44-item scale was developed following a literature review, interviews with patient informants, consultations with experts, item analysis, and exploratory factor analysis (EFA). The following three common factors were extracted: social interaction, understanding of beliefs, and understanding of emotions. The psychometric analyses indicate that the scale has good internal consistency reliability, split-half reliability, test-retest reliability, inter-rater reliability, structural validity, discriminate validity and criterion validity. These results provide preliminary evidence that supports the reliability and validity of the IASToM-aTBI as a ToM assessment tool for adults with TBI.

  6. Transcultural differences in brain activation patterns during theory of mind (ToM) task performance in Japanese and Caucasian participants.

    Koelkebeck, Katja; Hirao, Kazuyuki; Kawada, Ryousaku; Miyata, Jun; Saze, Teruyasu; Ubukata, Shiho; Itakura, Shoji; Kanakogi, Yasuhiro; Ohrmann, Patricia; Bauer, Jochen; Pedersen, Anya; Sawamoto, Nobukatsu; Fukuyama, Hidenao; Takahashi, Hidehiko; Murai, Toshiya

    2011-01-01

    Theory of mind (ToM) functioning develops during certain phases of childhood. Factors such as language development and educational style seem to influence its development. Some studies that have focused on transcultural aspects of ToM development have found differences between Asian and Western cultures. To date, however, little is known about transcultural differences in neural activation patterns as they relate to ToM functioning. The aim of our study was to observe ToM functioning and differences in brain activation patterns, as assessed by functional magnetic resonance imaging (fMRI). This study included a sample of 18 healthy Japanese and 15 healthy Caucasian subjects living in Japan. We presented a ToM task depicting geometrical shapes moving in social patterns. We also administered questionnaires to examine empathy abilities and cultural background factors. Behavioral data showed no significant group differences in the subjects' post-scan descriptions of the movies. The imaging results displayed stronger activation in the medial prefrontal cortex (MPFC) in the Caucasian sample during the presentation of ToM videos. Furthermore, the task-associated activation of the MPFC was positively correlated with autistic and alexithymic features in the Japanese sample. In summary, our results showed evidence of culturally dependent sociobehavioral trait patterns, which suggests that they have an impact on brain activation patterns during information processing involving ToM.

  7. Neuroactive steroids modulate HPA axis activity and cerebral brain-derived neurotrophic factor (BDNF) protein levels in adult male rats.

    Naert, Gaëlle; Maurice, Tangui; Tapia-Arancibia, Lucia; Givalois, Laurent

    2007-01-01

    Depression is characterized by hypothalamo-pituitary-adrenocortical (HPA) axis hyperactivity. In this major mood disorder, neurosteroids and neurotrophins, particularly brain-derived neurotrophic factor (BDNF), seem to be implicated and have some antidepressant effects. BDNF is highly involved in regulation of the HPA axis, whereas neurosteroids effects have never been clearly established. In this systematic in vivo study, we showed that the principal neuroactive steroids, namely dehydroepiandrosterone (DHEA), pregnenolone (PREG) and their sulfate esters (DHEA-S and PREG-S), along with allopregnanolone (ALLO), stimulated HPA axis activity, while also modulating central BDNF contents. In detail, DHEA, DHEA-S, PREG, PREG-S and ALLO induced corticotropin-releasing hormone (CRH) and/or arginine vasopressin (AVP) synthesis and release at the hypothalamic level, thus enhancing plasma adrenocorticotropin hormone (ACTH) and corticosterone (CORT) concentrations. This stimulation of the HPA axis occurred concomitantly with BDNF modifications at the hippocampus, amygdala and hypothalamus levels. We showed that these neurosteroids induced rapid effects, probably via neurotransmitter receptors and delayed effects perhaps after metabolization in other neuroactive steroids. We highlighted that they had peripheral effects directly at the adrenal level by inducing CORT release, certainly after estrogenic metabolization. In addition, we showed that, at the dose used, only DHEA, DHEA-S and PREG-S had antidepressant effects. In conclusion, these results highly suggest that part of the HPA axis and antidepressant effects of neuroactive steroids could be mediated by BDNF, particularly at the amygdala level. They also suggest that neurosteroids effects on central BDNF could partially explain the trophic properties of these molecules.

  8. Informing the scaling up of voluntary medical male circumcision efforts through the use of theory of reasoned action: survey findings among uncircumcised young men in Swaziland.

    Gurman, Tilly A; Dhillon, Preeti; Greene, Jessica L; Makadzange, Panganai; Khumlao, Philisiwe; Shekhar, Navendu

    2015-04-01

    Assessing predictors of intention to circumcise can help to identify effective strategies for increasing uptake of voluntary medical male circumcision (VMMC). Grounded in the theory of reasoned action (TRA), the current study of uncircumcised males ages 13-29 in Swaziland (N = 1,257) employed multivariate logistic regression to determine predictors of VMMC intention. The strongest predictors were strongly disagreeing/disagreeing that sex was more painful for a circumcised man (odds ratio [OR] = 4.37; p = < .007), a Christian man should not get circumcised (OR = 2.47; p < .001), and circumcision makes penetration more painful and difficult (OR = 2.44; p = .007). Several beliefs about enhanced sexual performance, normative beliefs (parents, sexual partner, and friends), and non-TRA-related factors (e.g., importance of plowing season to daily schedule) were also statistically significant predictors. TRA proved a useful theory to explore young men's intention to circumcise and can help inform interventions aimed at increasing uptake of VMMC.

  9. Fractal fluctuations and quantum-like chaos in the brain by analysis of variability of brain waves: A new method based on a fractal variance function and random matrix theory: A link with El Naschie fractal Cantorian space-time and V. Weiss and H. Weiss golden ratio in brain

    Conte, Elio; Khrennikov, Andrei; Federici, Antonio; Zbilut, Joseph P.

    2009-01-01

    We develop a new method for analysis of fundamental brain waves as recorded by the EEG. To this purpose we introduce a Fractal Variance Function that is based on the calculation of the variogram. The method is completed by using Random Matrix Theory. Some examples are given. We also discuss the link of such formulation with H. Weiss and V. Weiss golden ratio found in the brain, and with El Naschie fractal Cantorian space-time theory.

  10. The effect of caffeine on working memory load-related brain activation in middle-aged males.

    Klaassen, Elissa B; de Groot, Renate H M; Evers, Elisabeth A T; Snel, Jan; Veerman, Enno C I; Ligtenberg, Antoon J M; Jolles, Jelle; Veltman, Dick J

    2013-01-01

    Caffeine is commonly consumed in an effort to enhance cognitive performance. However, little is known about the usefulness of caffeine with regard to memory enhancement, with previous studies showing inconsistent effects on memory performance. We aimed to determine the effect of caffeine on working memory (WM) load-related activation during encoding, maintenance and retrieval phases of a WM maintenance task using functional magnetic resonance imaging (fMRI). 20 healthy, male, habitual caffeine consumers aged 40-61 years were administered 100 mg of caffeine in a double-blind placebo-controlled crossover design. Participants were scanned in a non-withdrawn state following a workday during which caffeinated products were consumed according to individual normal use (range = 145-595 mg). Acute caffeine administration was associated with increased load-related activation compared to placebo in the left and right dorsolateral prefrontal cortex during WM encoding, but decreased load-related activation in the left thalamus during WM maintenance. These findings are indicative of an effect of caffeine on the fronto-parietal network involved in the top-down cognitive control of WM processes during encoding and an effect on the prefrontal cortico-thalamic loop involved in the interaction between arousal and the top-down control of attention during maintenance. Therefore, the effects of caffeine on WM may be attributed to both a direct effect of caffeine on WM processes, as well as an indirect effect on WM via arousal modulation. Behavioural and fMRI results were more consistent with a detrimental effect of caffeine on WM at higher levels of WM load, than caffeine-related WM enhancement. This article is part of a Special Issue entitled 'Cognitive Enhancers'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Presurgery resting-state local graph-theory measures predict neurocognitive outcomes after brain surgery in temporal lobe epilepsy.

    Doucet, Gaelle E; Rider, Robert; Taylor, Nathan; Skidmore, Christopher; Sharan, Ashwini; Sperling, Michael; Tracy, Joseph I

    2015-04-01

    This study determined the ability of resting-state functional connectivity (rsFC) graph-theory measures to predict neurocognitive status postsurgery in patients with temporal lobe epilepsy (TLE) who underwent anterior temporal lobectomy (ATL). A presurgical resting-state functional magnetic resonance imaging (fMRI) condition was collected in 16 left and 16 right TLE patients who underwent ATL. In addition, patients received neuropsychological testing pre- and postsurgery in verbal and nonverbal episodic memory, language, working memory, and attention domains. Regarding the functional data, we investigated three graph-theory properties (local efficiency, distance, and participation), measuring segregation, integration and centrality, respectively. These measures were only computed in regions of functional relevance to the ictal pathology, or the cognitive domain. Linear regression analyses were computed to predict the change in each neurocognitive domain. Our analyses revealed that cognitive outcome was successfully predicted with at least 68% of the variance explained in each model, for both TLE groups. The only model not significantly predictive involved nonverbal episodic memory outcome in right TLE. Measures involving the healthy hippocampus were the most common among the predictors, suggesting that enhanced integration of this structure with the rest of the brain may improve cognitive outcomes. Regardless of TLE group, left inferior frontal regions were the best predictors of language outcome. Working memory outcome was predicted mostly by right-sided regions, in both groups. Overall, the results indicated our integration measure was the most predictive of neurocognitive outcome. In contrast, our segregation measure was the least predictive. This study provides evidence that presurgery rsFC measures may help determine neurocognitive outcomes following ATL. The results have implications for refining our understanding of compensatory reorganization and predicting

  12. A Grounded Theory Study of the Process of Accessing Information on the World Wide Web by People with Mild Traumatic Brain Injury

    Blodgett, Cynthia S.

    2008-01-01

    The purpose of this grounded theory study was to examine the process by which people with Mild Traumatic Brain Injury (MTBI) access information on the web. Recent estimates include amateur sports and recreation injuries, non-hospital clinics and treatment facilities, private and public emergency department visits and admissions, providing…

  13. From molecule to behavior: Brain aromatase (cyp19a1b) characterization, expression analysis and its relation with social status and male agonistic behavior in a Neotropical cichlid fish.

    Ramallo, Martín R; Morandini, Leonel; Birba, Agustina; Somoza, Gustavo M; Pandolfi, Matías

    2017-03-01

    The enzyme aromatase, responsible for the conversion of C19 androgens to C18 estrogens, exists as two paralogue copies in teleost fish: Cyp19a1a mostly expressed in the gonads, referred as gonadal aromatase, and Cyp19a1b, mostly expressed in the brain, accordingly known as brain aromatase. The neural localization of Cyp19a1b is greatly contained within the social behavior network and mesolimbic reward system in fish, suggesting a strong role of estrogen synthesis in the regulation of social behavior. In this work we aimed to analyze the variation in cyp19a1b expression in brain and pituitary of males of a highly social cichlid, Cichlasoma dimerus (locally known as chanchita), and its relation with inter-individual variability in agonistic behavior in a communal social environment. We first characterized chanchita's cyp19a1b mRNA and deduced amino acid sequence, which showed a high degree of conservation when compared to other teleost brain aromatase sequences, and its tissue expression patterns. Within the brain, Cyp19a1b was solely detected at putative radial glial cells of the forebrain, close to the brain ventricles. We then studied the relative expression levels of cyp19a1b by Real Time PCR in the brain and pituitary of males of different social status, territorial vs. non-territorial, and its relationship with an index of agonistic behavior. We found that even though, brain aromatase expression did not differ between types of males, pituitary cyp19a1b expression levels positively correlated with the index of agonistic behavior. This suggests a novel role of the pituitary in the regulation of social behavior by local estrogen synthesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. [Quantitative analysis method based on fractal theory for medical imaging of normal brain development in infants].

    Li, Heheng; Luo, Liangping; Huang, Li

    2011-02-01

    The present paper is aimed to study the fractal spectrum of the cerebral computerized tomography in 158 normal infants of different age groups, based on the calculation of chaotic theory. The distribution range of neonatal period was 1.88-1.90 (mean = 1.8913 +/- 0.0064); It reached a stable condition at the level of 1.89-1.90 during 1-12 months old (mean = 1.8927 +/- 0.0045); The normal range of 1-2 years old infants was 1.86-1.90 (mean = 1.8863 +/- 4 0.0085); It kept the invariance of the quantitative value among 1.88-1.91(mean = 1.8958 +/- 0.0083) during 2-3 years of age. ANOVA indicated there's no significant difference between boys and girls (F = 0.243, P > 0.05), but the difference of age groups was significant (F = 8.947, P development.

  15. Neural field theory of perceptual echo and implications for estimating brain connectivity

    Robinson, P. A.; Pagès, J. C.; Gabay, N. C.; Babaie, T.; Mukta, K. N.

    2018-04-01

    Neural field theory is used to predict and analyze the phenomenon of perceptual echo in which random input stimuli at one location are correlated with electroencephalographic responses at other locations. It is shown that this echo correlation (EC) yields an estimate of the transfer function from the stimulated point to other locations. Modal analysis then explains the observed spatiotemporal structure of visually driven EC and the dominance of the alpha frequency; two eigenmodes of similar amplitude dominate the response, leading to temporal beating and a line of low correlation that runs from the crown of the head toward the ears. These effects result from mode splitting and symmetry breaking caused by interhemispheric coupling and cortical folding. It is shown how eigenmodes obtained from functional magnetic resonance imaging experiments can be combined with temporal dynamics from EC or other evoked responses to estimate the spatiotemporal transfer function between any two points and hence their effective connectivity.

  16. A Network Neuroscience of Human Learning: Potential to Inform Quantitative Theories of Brain and Behavior.

    Bassett, Danielle S; Mattar, Marcelo G

    2017-04-01

    Humans adapt their behavior to their external environment in a process often facilitated by learning. Efforts to describe learning empirically can be complemented by quantitative theories that map changes in neurophysiology to changes in behavior. In this review we highlight recent advances in network science that offer a sets of tools and a general perspective that may be particularly useful in understanding types of learning that are supported by distributed neural circuits. We describe recent applications of these tools to neuroimaging data that provide unique insights into adaptive neural processes, the attainment of knowledge, and the acquisition of new skills, forming a network neuroscience of human learning. While promising, the tools have yet to be linked to the well-formulated models of behavior that are commonly utilized in cognitive psychology. We argue that continued progress will require the explicit marriage of network approaches to neuroimaging data and quantitative models of behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The Effect of Extremely Low Frequency Electromagnetic Fields on Visual Learning & Memory and Anatomical Structures of the Brain in Male Rhesus Monkeys

    Elahe Tekieh

    2018-04-01

    Full Text Available Background: Humans in modern societies expose to substantially elevated levels of electromagnetic field (EMF emissions with different frequencies.The neurobiological effects of EMF have been the subject of debate and intensive research over the past few decades. Therefore, we evaluated the effects of EMF on visual learning and anatomical dimensions of the hippocampus and the prefrontal area (PFA in male Rhesus monkeys. Materials and Methods:In this study, four rhesus monkeys were irradiated by 0.7 microtesla ELF-EMF either at 5 or 30 Hz, 4 h a day, for 30 days. Alterations in visual learning and memory were assessed before and after irradiation phase by using a box designed that cchallenging animals for gaining rewards Also, the monkeys’ brains were scanned by using MRI technique one week before and one week after irradiation. The monkeys were anesthetized by intramuscular injection of ketamine hydrochloride (10–20 mg/kg and xylazine (0.2–0.4 mg/kg, and scanned with a 3-Tesla Magnetom, in axial, sagittal, and coronal planes using T2 weight­ed protocol with a slice thickness of 3 mm. The anatomical changes of hippocampus and the prefrontal area (PFA was measured by volumetric study. Results: Electromagnetic field exposure at a frequency of 30 Hz reduced the number of correct responses in the learning process and delayed memory formation in the two tested monkeys. While, ELF-EMF at 5 Hz had no effect on the visual learning and memory changes. No anatomical changes were found in the prefrontal area and the hippocampus at both frequencies. Conclusion: ELF-EMF irradiation at 30 Hz adversely affected visual learning and memory, pprobably through these changes apply through effects on other factors except changes in brain structure and anatomy.

  18. Altered intrinsic regional brain activity in male patients with severe obstructive sleep apnea: a resting-state functional magnetic resonance imaging study

    Peng DC

    2014-09-01

    Full Text Available De-Chang Peng,1 Xi-Jian Dai,1,2 Hong-Han Gong,1 Hai-Jun Li,1 Xiao Nie,1 Wei Zhang3 1Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi, 2Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region, 3Department of Pneumology, The First Affiliated Hospital of Nanchang University, Jiangxi, People’s Republic of China Background: Previous studies have demonstrated that obstructive sleep apnea (OSA is associated with abnormal brain structural deficits. However, little is known about the changes in local synchronization of spontaneous activity in patients with OSA. The primary aim of the present study was to investigate spontaneous brain activity in patients with OSA compared with good sleepers (GSs using regional homogeneity (ReHo analysis based on resting-state ­functional magnetic resonance imaging (MRI. Methods: Twenty-five untreated male patients with severe OSA and 25 male GSs matched for age and years of education were included in this study. The ReHo method was calculated to assess the strength of local signal synchrony and was compared between the two groups. The observed mean ReHo values were entered into Statistical Package for the Social Sciences software to assess their correlation with behavioral performance. Results: Compared with GSs, patients with OSA showed significantly lower ReHo in the right medial frontal gyrus (BA11, right superior frontal gyrus (BA10, right cluster of the precuneus and angular gyrus (BA39, and left superior parietal lobule (BA7, and higher ReHo in the right posterior lobe of the cerebellum, right cingulate gyrus (BA23, and bilateral cluster covering the lentiform nucleus, putamen, and insula (BA13. The lower mean ReHo value in the right cluster of the precuneus and angular gyrus had a significant negative correlation with sleep time (r=-0.430, P=0.032, and higher ReHo in

  19. Abnormal brain white matter network in young smokers: a graph theory analysis study.

    Zhang, Yajuan; Li, Min; Wang, Ruonan; Bi, Yanzhi; Li, Yangding; Yi, Zhang; Liu, Jixin; Yu, Dahua; Yuan, Kai

    2018-04-01

    Previous diffusion tensor imaging (DTI) studies had investigated the white matter (WM) integrity abnormalities in some specific fiber bundles in smokers. However, little is known about the changes in topological organization of WM structural network in young smokers. In current study, we acquired DTI datasets from 58 male young smokers and 51 matched nonsmokers and constructed the WM networks by the deterministic fiber tracking approach. Graph theoretical analysis was used to compare the topological parameters of WM network (global and nodal) and the inter-regional fractional anisotropy (FA) weighted WM connections between groups. The results demonstrated that both young smokers and nonsmokers had small-world topology in WM network. Further analysis revealed that the young smokers exhibited the abnormal topological organization, i.e., increased network strength, global efficiency, and decreased shortest path length. In addition, the increased nodal efficiency predominately was located in frontal cortex, striatum and anterior cingulate gyrus (ACG) in smokers. Moreover, based on network-based statistic (NBS) approach, the significant increased FA-weighted WM connections were mainly found in the PFC, ACG and supplementary motor area (SMA) regions. Meanwhile, the network parameters were correlated with the nicotine dependence severity (FTND) scores, and the nodal efficiency of orbitofrontal cortex was positive correlation with the cigarette per day (CPD) in young smokers. We revealed the abnormal topological organization of WM network in young smokers, which may improve our understanding of the neural mechanism of young smokers form WM topological organization level.

  20. Brain regional differences in social encounter-induced Fos expression in male and female rats after post-weaning social isolation.

    Ahern, Megan; Goodell, Dayton J; Adams, Jessica; Bland, Sondra T

    2016-01-01

    Early life adversity has been related to a number of psychological disorders including mood and other disorders that can manifest as inappropriate or aggressive responses to social challenges. The present study used post-weaning social isolation (PSI) in rats, a model of early life adversity, to examine its effects on Fos protein expression produced by exposure to a novel social encounter. We have previously reported that the social encounter-induced increase in Fos expression in the medial prefrontal cortex observed in group-housed controls (GRP) was attenuated in rats that had experienced PSI. Here we assessed Fos expression in other brain regions thought to be involved in emotion regulation and social behavior. Male and female rats were housed in same-sex groups or in isolation (ISO) for 4 weeks beginning on postnatal day (P) 21 and were exposed to a single 15 min social encounter with a novel same-sex conspecific on P49. Fos positive cells were assessed using immunohistochemistry in 16 regions within the forebrain. Exposure to a novel conspecific increased Fos expression in the forebrain of GRP rats in a region- and sex-specific fashion. This increase was blunted or absent in ISO rats within many regions including cortical regions, thalamus, habenula, dentate gyrus, lateral septum, and basolateral amygdala. In several regions, the increase in Fos was greater in male than in female group housed rats. Negative relationships were observed between social interactions and Fos in some regions. Forebrain hypofunction produced by early-life adversity may be involved in socially inappropriate behavior. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Dynamic imaging in mild traumatic brain injury: support for the theory of medial temporal vulnerability.

    Umile, Eric M; Sandel, M Elizabeth; Alavi, Abass; Terry, Charles M; Plotkin, Rosette C

    2002-11-01

    To determine whether patients with mild traumatic brain injury (TBI) and persistent postconcussive symptoms have evidence of temporal lobe injury on dynamic imaging. Case series. An academic medical center. Twenty patients with a clinical diagnosis of mild TBI and persistent postconcussive symptoms were referred for neuropsychologic evaluation and dynamic imaging. Fifteen (75%) had normal magnetic resonance imaging (MRI) and/or computed tomography (CT) scans at the time of injury. Neuropsychologic testing, positron-emission tomography (PET), and single-photon emission-computed tomography (SPECT). Temporal lobe findings on static imaging (MRI, CT) and dynamic imaging (PET, SPECT); neuropsychologic test findings on measures of verbal and visual memory. Testing documented neurobehavioral deficits in 19 patients (95%). Dynamic imaging documented abnormal findings in 18 patients (90%). Fifteen patients (75%) had temporal lobe abnormalities on PET and SPECT (primarily in medial temporal regions); abnormal findings were bilateral in 10 patients (50%) and unilateral in 5 (25%). Six patients (30%) had frontal abnormalities, and 8 (40%) had nonfrontotemporal abnormalities. Correlations between neuropsychologic testing and dynamic imaging could be established but not consistently across the whole group. Patients with mild TBI and persistent postconcussive symptoms have a high incidence of temporal lobe injury (presumably involving the hippocampus and related structures), which may explain the frequent finding of memory disorders in this population. The abnormal temporal lobe findings on PET and SPECT in humans may be analogous to the neuropathologic evidence of medial temporal injury provided by animal studies after mild TBI. Copyright 2002 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation

  2. Graph Theory-Based Brain Connectivity for Automatic Classification of Multiple Sclerosis Clinical Courses

    Gabriel Kocevar

    2016-10-01

    Full Text Available Purpose: In this work, we introduce a method to classify Multiple Sclerosis (MS patients into four clinical profiles using structural connectivity information. For the first time, we try to solve this question in a fully automated way using a computer-based method. The main goal is to show how the combination of graph-derived metrics with machine learning techniques constitutes a powerful tool for a better characterization and classification of MS clinical profiles.Materials and methods: Sixty-four MS patients (12 Clinical Isolated Syndrome (CIS, 24 Relapsing Remitting (RR, 24 Secondary Progressive (SP, and 17 Primary Progressive (PP along with 26 healthy controls (HC underwent MR examination. T1 and diffusion tensor imaging (DTI were used to obtain structural connectivity matrices for each subject. Global graph metrics, such as density and modularity, were estimated and compared between subjects’ groups. These metrics were further used to classify patients using tuned Support Vector Machine (SVM combined with Radial Basic Function (RBF kernel.Results: When comparing MS patients to HC subjects, a greater assortativity, transitivity and characteristic path length as well as a lower global efficiency were found. Using all graph metrics, the best F-Measures (91.8%, 91.8%, 75.6% and 70.6% were obtained for binary (HC-CIS, CIS-RR, RR-PP and multi-class (CIS-RR-SP classification tasks, respectively. When using only one graph metric, the best F-Measures (83.6%, 88.9% and 70.7% were achieved for modularity with previous binary classification tasks.Conclusion: Based on a simple DTI acquisition associated with structural brain connectivity analysis, this automatic method allowed an accurate classification of different MS patients’ clinical profiles.

  3. Ghrelin agonists impact on Fos protein expression in brain areas related to food intake regulation in male C57BL/6 mice.

    Pirnik, Z; Bundziková, J; Holubová, M; Pýchová, M; Fehrentz, J A; Martinez, J; Zelezná, B; Maletínská, L; Kiss, A

    2011-11-01

    Many peripheral substances, including ghrelin, induce neuronal activation in the brain. In the present study, we compared the effect of subcutaneously administered ghrelin and its three stable agonists: Dpr(3)ghr ([Dpr(N-octanoyl)(3)] ghrelin) (Dpr - diaminopropionic acid), YA GHRP-6 (H-Tyr-Ala-His-DTrp-Ala-Trp-DPhe-Lys-NH(2)), and JMV1843 (H-Aib-DTrp-D-gTrp-CHO) on the Fos expression in food intake-responsive brain areas such as the hypothalamic paraventricular (PVN) and arcuate (ARC) nuclei, the nucleus of the solitary tract (NTS), and area postrema (AP) in male C57BL/6 mice. Immunohistochemical analysis showed that acute subcutaneous dose of each substance (5mg/kg b.w.), which induced a significant food intake increase, elevated Fos protein expression in all brain areas studied. Likewise ghrelin, each agonist tested induced distinct Fos expression overall the PVN. In the ARC, ghrelin and its agonists specifically activated similarly distributed neurons. Fos occurrence extended from the anterior (aARC) to middle (mARC) ARC region. In the latter part of the ARC, the Fos profiles were localized bilaterally, especially in the ventromedial portions of the nucleus. In the NTS, all substances tested also significantly increased the number of Fos profiles in neurons, which also revealed specific location, i.e., in the NTS dorsomedial subnucleus (dmNTS) and the area subpostrema (AsP). In addition, cells located nearby the NTS, in the AP, also revealed a significant increase in number of Fos-activated cells. These results demonstrate for the first time that ghrelin agonists, regardless of their different chemical nature, have a significant and similar activating impact on specific groups of neurons that can be a part of the circuits involved in the food intake regulation. Therefore there is a real potency for ghrelin agonists to treat cachexia and food intake disorders. Thus, likewise JMV1843, the other ghrelin agonists represent substances that might be involved in

  4. Functional brain networks and white matter underlying theory-of-mind in autism.

    Kana, Rajesh K; Libero, Lauren E; Hu, Christi P; Deshpande, Hrishikesh D; Colburn, Jeffrey S

    2014-01-01

    Human beings constantly engage in attributing causal explanations to one's own and to others' actions, and theory-of-mind (ToM) is critical in making such inferences. Although children learn causal attribution early in development, children with autism spectrum disorders (ASDs) are known to have impairments in the development of intentional causality. This functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) study investigated the neural correlates of physical and intentional causal attribution in people with ASDs. In the fMRI scanner, 15 adolescents and adults with ASDs and 15 age- and IQ-matched typically developing peers made causal judgments about comic strips presented randomly in an event-related design. All participants showed robust activation in bilateral posterior superior temporal sulcus at the temporo-parietal junction (TPJ) in response to intentional causality. Participants with ASDs showed lower activation in TPJ, right inferior frontal gyrus and left premotor cortex. Significantly weaker functional connectivity was also found in the ASD group between TPJ and motor areas during intentional causality. DTI data revealed significantly reduced fractional anisotropy in ASD participants in white matter underlying the temporal lobe. In addition to underscoring the role of TPJ in ToM, this study found an interaction between motor simulation and mentalizing systems in intentional causal attribution and its possible discord in autism.

  5. The maturational theory of brain development and cerebral excitability in the multifactorially inherited manic-depressive psychosis and schizophrenia.

    Saugstad, L F

    1994-12-01

    An association has been established between the multifactorially inherited rate of physical maturation and the final step in brain development, when some 40% of synapses are eliminated. This may imply that similarly to endocrine disease entities, we have cerebral disease entities at the extremes of the maturational rate continuum. The restriction of prepubertal pruning to excitatory synapses leaving the number of inhibitory ones fairly constant, implies changes in cerebral excitability as a function of rate of maturation (age at puberty). In early maturation there will be an excess in excitatory drive due to prematurely abridged pruning, which compounds a synchronization tendency inherent in excessive synaptic density. Lowering excitatory level with antiepileptics is hypothesized to be a logical treatment in this type of brain dysfunction. In late maturation, a deficit in excitatory drive due to failure to shut down the pruning process associated with a tendency to the breakdown of circuitry and desynchronization, adds to a similar adversity inherent in reduced synaptic density. Raising the excitatory level with convulsants is hypothesized to be the treatment for this type of CNS dysfunction. The maturational theory of Kraepelin's psychoses holds that they are naturally occurring contrasting chemical signaling disorders in the brain at the extremes of the maturational rate continuum: manic depressive psychosis is a disorder of the early maturer and comprises raised cerebral excitability and a raised density of synapses. This is successfully treated with anti-epileptics like sodium valproate and carbamazepin. Schizophrenia is a disorder in late maturation with reduced cerebral excitability and reduced synaptic density. This is accordingly treated with convulsants such as typical and atypical neuroleptics. However, the conventional effective treatments in both disorders act on inhibition only by either lowering or raising inhibitory level. While the neuroleptics

  6. Effect of six weeks of endurance exercise and following detraining on serum brain derived neurotrophic factor and memory performance in middle aged males with metabolic syndrome.

    Babaei, P; Azali Alamdari, K; Soltani Tehrani, B; Damirchi, A

    2013-08-01

    Brain derived neurotrophic factor (BDNF) and physical inactivity contribute to the development of metabolic syndrome (MetS). Aerobic training has been reported to improve MetS, however less attention has been directed toward the role of training and detraining on cognitive function in MetS. Twenty one healthy middle-aged males and 21 with MetS were distributed into four groups: MetS exercise (ME), MetS control (MC), Healthy exercise (HE) and healthy control (HC). Both ME and HE, followed a 6-week aerobic training program (3 sessions/week). Digit Span memory test and blood sampling were conducted pre training, post training and also following a six weeks detraining. Data were analyzed using spearman, pearson and repeated measure ANOVA tests. Baseline serum BDNF level was positively correlated with waist circumference (r=0.383, P=0.012) and showed significant elevation in MetS compared with healthy subjects (1101.66±61.34 vs. 903.72±46.57 pg/mL, P=0.014). After aerobic exercise BDNF level significantly increased in HE, but decreased in ME group (P=0.001). Both short and mid term memory significantly increased (PExercise induced cognitive improvement might be mediated via BDNF-linked mechanisms in healthy people. However, the health status of individuals should be considered.

  7. Two takes on the social brain: a comparison of theory of mind tasks.

    Gobbini, Maria Ida; Koralek, Aaron C; Bryan, Ronald E; Montgomery, Kimberly J; Haxby, James V

    2007-11-01

    We compared two tasks that are widely used in research on mentalizing--false belief stories and animations of rigid geometric shapes that depict social interactions--to investigate whether the neural systems that mediate the representation of others' mental states are consistent across these tasks. Whereas false belief stories activated primarily the anterior paracingulate cortex (APC), the posterior cingulate cortex/precuneus (PCC/PC), and the temporo-parietal junction (TPJ)--components of the distributed neural system for theory of mind (ToM)--the social animations activated an extensive region along nearly the full extent of the superior temporal sulcus, including a locus in the posterior superior temporal sulcus (pSTS), as well as the frontal operculum and inferior parietal lobule (IPL)--components of the distributed neural system for action understanding--and the fusiform gyrus. These results suggest that the representation of covert mental states that may predict behavior and the representation of intentions that are implied by perceived actions involve distinct neural systems. These results show that the TPJ and the pSTS play dissociable roles in mentalizing and are parts of different distributed neural systems. Because the social animations do not depict articulated body movements, these results also highlight that the perception of the kinematics of actions is not necessary to activate the mirror neuron system, suggesting that this system plays a general role in the representation of intentions and goals of actions. Furthermore, these results suggest that the fusiform gyrus plays a general role in the representation of visual stimuli that signify agency, independent of visual form.

  8. Hyperammonaemia, plasma aminoacid imbalance, and blood-brain aminoacid transport: a unified theory of portal-systemic encephalopathy.

    James, J H; Ziparo, V; Jeppsson, B; Fischer, J E

    1979-10-13

    It is proposed that hyperammonaemia in liver cirrhosis or after portacaval shunt contributes to plasma neutral aminoacid imbalance and to increased activity of the blood-brain neutral amino-acid transport system. Plasma neutral aminoacid concentrations are deranged, partly, but not completely, because ammonia stimulates glucagon secretion; a high rate of gluconeogenesis and hyperinsulinaemia follow. Brain uptake of neutral aminoacids rises because ammonia stimulates brain-glutamine synthesis, which results in rapid exchange of brain glutamine for plasma neutral aminoacids. Hyperammonaemia therefore contributes to encephalopathy indirectly, by raising the brain concentration of neutral aminoacids which after neurotransmitter metabolism, rather than directly, by toxic effects on neuronal metabolism.

  9. Rapid evolution and copy number variation of primate RHOXF2, an X-linked homeobox gene involved in male reproduction and possibly brain function.

    Niu, Ao-lei; Wang, Yin-qiu; Zhang, Hui; Liao, Cheng-hong; Wang, Jin-kai; Zhang, Rui; Che, Jun; Su, Bing

    2011-10-12

    Homeobox genes are the key regulators during development, and they are in general highly conserved with only a few reported cases of rapid evolution. RHOXF2 is an X-linked homeobox gene in primates. It is highly expressed in the testicle and may play an important role in spermatogenesis. As male reproductive system is often the target of natural and/or sexual selection during evolution, in this study, we aim to dissect the pattern of molecular evolution of RHOXF2 in primates and its potential functional consequence. We studied sequences and copy number variation of RHOXF2 in humans and 16 nonhuman primate species as well as the expression patterns in human, chimpanzee, white-browed gibbon and rhesus macaque. The gene copy number analysis showed that there had been parallel gene duplications/losses in multiple primate lineages. Our evidence suggests that 11 nonhuman primate species have one RHOXF2 copy, and two copies are present in humans and four Old World monkey species, and at least 6 copies in chimpanzees. Further analysis indicated that the gene duplications in primates had likely been mediated by endogenous retrovirus (ERV) sequences flanking the gene regions. In striking contrast to non-human primates, humans appear to have homogenized their two RHOXF2 copies by the ERV-mediated non-allelic recombination mechanism. Coding sequence and phylogenetic analysis suggested multi-lineage strong positive selection on RHOXF2 during primate evolution, especially during the origins of humans and chimpanzees. All the 8 coding region polymorphic sites in human populations are non-synonymous, implying on-going selection. Gene expression analysis demonstrated that besides the preferential expression in the reproductive system, RHOXF2 is also expressed in the brain. The quantitative data suggests expression pattern divergence among primate species. RHOXF2 is a fast-evolving homeobox gene in primates. The rapid evolution and copy number changes of RHOXF2 had been driven by

  10. Rapid evolution and copy number variation of primate RHOXF2, an X-linked homeobox gene involved in male reproduction and possibly brain function

    Zhang Rui

    2011-10-01

    Full Text Available Abstract Background Homeobox genes are the key regulators during development, and they are in general highly conserved with only a few reported cases of rapid evolution. RHOXF2 is an X-linked homeobox gene in primates. It is highly expressed in the testicle and may play an important role in spermatogenesis. As male reproductive system is often the target of natural and/or sexual selection during evolution, in this study, we aim to dissect the pattern of molecular evolution of RHOXF2 in primates and its potential functional consequence. Results We studied sequences and copy number variation of RHOXF2 in humans and 16 nonhuman primate species as well as the expression patterns in human, chimpanzee, white-browed gibbon and rhesus macaque. The gene copy number analysis showed that there had been parallel gene duplications/losses in multiple primate lineages. Our evidence suggests that 11 nonhuman primate species have one RHOXF2 copy, and two copies are present in humans and four Old World monkey species, and at least 6 copies in chimpanzees. Further analysis indicated that the gene duplications in primates had likely been mediated by endogenous retrovirus (ERV sequences flanking the gene regions. In striking contrast to non-human primates, humans appear to have homogenized their two RHOXF2 copies by the ERV-mediated non-allelic recombination mechanism. Coding sequence and phylogenetic analysis suggested multi-lineage strong positive selection on RHOXF2 during primate evolution, especially during the origins of humans and chimpanzees. All the 8 coding region polymorphic sites in human populations are non-synonymous, implying on-going selection. Gene expression analysis demonstrated that besides the preferential expression in the reproductive system, RHOXF2 is also expressed in the brain. The quantitative data suggests expression pattern divergence among primate species. Conclusions RHOXF2 is a fast-evolving homeobox gene in primates. The rapid

  11. Effects of sertraline on brain current source of the high beta frequency band: analysis of electroencephalography during audiovisual erotic stimulation in males with premature ejaculation.

    Kwon, O Y; Kam, S C; Choi, J H; Do, J M; Hyun, J S

    2011-01-01

    To identify the effects of sertraline, a selective serotonin reuptake inhibitor, for the treatment of premature ejaculation (PE), changes in brain current-source density (CSD) of the high beta frequency band (22-30 Hz) induced by sertraline administration were investigated during audiovisual erotic stimulation. Eleven patients with PE (36.9±7.8 yrs) and 11 male volunteers (24.2±1.9 years) were enrolled. Scalp electroencephalography (EEG) was conducted twice: once before sertraline administration and then again 4 h after the administration of 50 mg sertraline. Statistical non-parametric maps were obtained using the EEG segments to detect the current-density differences in the high beta frequency bands (beta-3, 22-30 Hz) between the EEGs before and after sertraline administration in the patient group and between the patient group and controls after the administration of sertraline during the erotic video sessions. Comparing between before and after sertraline administration in the patients with PE, the CSD of the high beta frequency band at 4 h after sertraline administration increased significantly in both superior frontal gyri and the right medial frontal gyrus (P<0.01). The CSD of the beta-3 band of the patients with PE were less activated significantly in the middle and superior temporal gyrus, lingual and fusiform gyrus, inferior occipital gyrus and cuneus of the right cerebral hemisphere compared with the normal volunteers 4 h after sertraline administration (P<0.01). In conclusion, sertraline administration increased the CSD in both the superior frontal and right middle temporal gyrus in patients with PE. The results suggest that the increased neural activity in these particular cerebral regions after sertraline administration may be associated with inhibitory effects on ejaculation in patients with PE.

  12. The client-centred approach as experienced by male neurological rehabilitation clients in occupational therapy. A qualitative study based on a grounded theory tradition.

    Van de Velde, Dominique; Devisch, Ignaas; De Vriendt, Patricia

    2016-08-01

    Purpose To explore the perspectives of male clients in a neurological rehabilitation setting with regard to the occupational therapy they have received and the client-centred approach. Method This study involved a qualitative research design based on the grounded theory tradition. Individual in-depth interviews were used to collect data. Data were analysed using a constant comparative method. Seven male participants from an inpatient neurological setting were included using a theoretical sampling technique. Results Three themes emerged to describe the approach of the therapists to client-centred practice: (a) a shared biomedical focus as the start of the rehabilitation process, (b) the un-simultaneous shift from a biomedical towards a psycho-social focus and (c) formal versus informal nature of gathering client information. Conclusion A client-centred approach entails a shift from the therapist focussing on recovery from the short-term neurological issues towards the long-term consequences of the disease. According to the client, this shift in reasoning must occur at a specific and highly subjective moment during the rehabilitation process. Identifying this moment could strengthen the client-centred approach. Implications for Rehabilitation Client-centred practice entails a shift from recovering the short-term neurological issues towards the long-term psycho-social consequences of the disease. To be effective in client-centred practice, the clients expect from the professional to be an authority with regard to biomedical issues and to be partner with regard to psycho-social issues. Client-centred practice is most likely to be successful when client is susceptible to discuss his psycho-social issues and finding this moment is a challenge for the professional. Using formal methods for goal setting do not necessarily cover all the information needed for a client-centred therapy programme. Rather, using informal methods could lead to a more valid image of the client.

  13. Analysis of tracer transit in rat brain after carotid artery and femoral vein administrations using linear system theory.

    Rudin, M; Beckmann, N; Sauter, A

    1997-01-01

    Determination of tissue perfusion rates by MRI bolus tracking methods relies on the central volume principle which states that tissue blood flow is given by the tissue blood volume divided by the mean tracer transit time (MTT). Accurate determination of the MTT requires knowledge of the arterial input function which in MRI experiments is usually not known, especially when using small animals. The problem of unknown arterial input can be circumvented in animal experiments by directly injecting the contrast agent into a feeding artery of the tissue of interest. In the present article the passage of magnetite nanoparticles through the rat cerebral cortex is analyzed after injection into the internal carotid artery. The results are discussed in the framework of linear system theory using a one-compartment model for brain tissue and by using the well characterized gamma-variate function to describe the tissue concentration profile of the contrast agent. The results obtained from the intra-arterial tracer administration experiments are then compared with the commonly used intra-venous injection of the contrast agent in order to estimate the contribution of the peripheral circulation to the MTT values in the latter case. The experiments were analyzed using a two-compartment model and the gamma-variate function. As an application perfusion rates in normal and ischemic cerebral cortex of hypertensive rats were estimated in a model of focal cerebral ischemia. The results indicate that peripheral circulation has a significant influence on the MTT values and thus on the perfusion rates, which cannot be neglected.

  14. Film excerpts shown to specifically elicit various affects lead to overlapping activation foci in a large set of symmetrical brain regions in males.

    Karama, Sherif; Armony, Jorge; Beauregard, Mario

    2011-01-01

    While the limbic system theory continues to be part of common scientific parlance, its validity has been questioned on multiple grounds. Nonetheless, the issue of whether or not there exists a set of brain areas preferentially dedicated to emotional processing remains central within affective neuroscience. Recently, a widespread neural reference space for emotion which includes limbic as well as other regions was characterized in a large meta-analysis. As methodologically heterogeneous studies go into such meta-analyses, showing in an individual study in which all parameters are kept constant, the involvement of overlapping areas for various emotion conditions in keeping with the neural reference space for emotion, would serve as valuable confirmatory evidence. Here, using fMRI, 20 young adult men were scanned while viewing validated neutral and effective emotion-eliciting short film excerpts shown to quickly and specifically elicit disgust, amusement, or sexual arousal. Each emotion-specific run included, in random order, multiple neutral and emotion condition blocks. A stringent conjunction analysis revealed a large overlap across emotion conditions that fit remarkably well with the neural reference space for emotion. This overlap included symmetrical bilateral activation of the medial prefrontal cortex, the anterior cingulate, the temporo-occipital junction, the basal ganglia, the brainstem, the amygdala, the hippocampus, the thalamus, the subthalamic nucleus, the posterior hypothalamus, the cerebellum, as well as the frontal operculum extending towards the anterior insula. This study clearly confirms for the visual modality, that processing emotional stimuli leads to widespread increases in activation that cluster within relatively confined areas, regardless of valence.

  15. Film excerpts shown to specifically elicit various affects lead to overlapping activation foci in a large set of symmetrical brain regions in males.

    Sherif Karama

    Full Text Available While the limbic system theory continues to be part of common scientific parlance, its validity has been questioned on multiple grounds. Nonetheless, the issue of whether or not there exists a set of brain areas preferentially dedicated to emotional processing remains central within affective neuroscience. Recently, a widespread neural reference space for emotion which includes limbic as well as other regions was characterized in a large meta-analysis. As methodologically heterogeneous studies go into such meta-analyses, showing in an individual study in which all parameters are kept constant, the involvement of overlapping areas for various emotion conditions in keeping with the neural reference space for emotion, would serve as valuable confirmatory evidence. Here, using fMRI, 20 young adult men were scanned while viewing validated neutral and effective emotion-eliciting short film excerpts shown to quickly and specifically elicit disgust, amusement, or sexual arousal. Each emotion-specific run included, in random order, multiple neutral and emotion condition blocks. A stringent conjunction analysis revealed a large overlap across emotion conditions that fit remarkably well with the neural reference space for emotion. This overlap included symmetrical bilateral activation of the medial prefrontal cortex, the anterior cingulate, the temporo-occipital junction, the basal ganglia, the brainstem, the amygdala, the hippocampus, the thalamus, the subthalamic nucleus, the posterior hypothalamus, the cerebellum, as well as the frontal operculum extending towards the anterior insula. This study clearly confirms for the visual modality, that processing emotional stimuli leads to widespread increases in activation that cluster within relatively confined areas, regardless of valence.

  16. Educational disparities in the intention to quit smoking among male smokers in China: a cross-sectional survey on the explanations provided by the theory of planned behaviour.

    Droomers, Mariël; Huang, Xinyuan; Fu, Wenjie; Yang, Yong; Li, Hong; Zheng, Pinpin

    2016-10-07

    We aim to describe the intention to quit smoking among Chinese male smokers from different educational backgrounds and to explain this intention from their attitude, perceived social norms and self-efficacy regarding smoking cessation. Participants were recruited from workplaces and communities to reflect the occupational distribution in three cities (Shanghai, Nanning and Mudanjiang) in China. In 2013 interviews were conducted with 3676 male smokers aged 18 years and older. Multivariate logistic regression analyses calculated educational differences in the intention to quit smoking as well as the association between the intention to quit smoking and attitude, subjective norms, and self-efficacy. Bootstrapping estimated to what extent the educational disparities in the intention to quit smoking were mediated by these three determinants. No educational disparities in the intention to quit smoking within 1 or 6 months were observed among male Chinese smokers (p=0.623 and p=0.153, respectively). A less negative attitude, a higher perceived subjective norm towards smoking cessation, and a higher perceived self-efficacy to quit smoking were all associated with intention to quit (all p values theory of planned behaviour that statistically significantly mediated the differences in the intention to quit smoking (within 1 or 6 months) between the lowest educated Chinese men and the groups with lower (β=0.039, 95% CI 0.017 to 0.071 and β=0.043, 95% CI 0.019 to 0.073), higher (β=0.041, 95% CI 0.017 to 0.075 and β=0.045, 95% CI 0.019 to 0.077) and the highest education (β=0.045, 95% CI 0.019 to 0.080 and β=0.050, 95% CI 0.023 to 0.083). In order to prevent future socioeconomic disparities in smoking cessation, investment in a more stimulating social environment and norms towards smoking cessation among particularly the lowest educated Chinese men is warranted. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a

  17. Theory of Mind Performance in Children Correlates with Functional Specialization of a Brain Region for Thinking about Thoughts

    Gweon, Hyowon; Dodell-Feder, David; Bedny, Marina; Saxe, Rebecca

    2012-01-01

    Thinking about other people's thoughts recruits a specific group of brain regions, including the temporo-parietal junctions (TPJ), precuneus (PC), and medial prefrontal cortex (MPFC). The same brain regions were recruited when children (N = 20, 5-11 years) and adults (N = 8) listened to descriptions of characters' mental states, compared to…

  18. Characterization of the glucagon-like peptide-1 receptor in male mouse brain using a novel antibody and in situ hybridization

    Jensen, Casper Bo; Pyke, Charles; Rasch, Morten Grønbech

    2017-01-01

    was abundantly expressed in numerous regions including the septal nucleus, the hypothalamus and the brain stem. GLP-1R protein expression was also observed on neuronal projections in brain regions devoid of any mRNA which has not been observed in earlier reports. Taken together, these findings provide new......Glucagon-like peptide-1 (GLP-1) is a physiological regulator of appetite and long-acting GLP-1 receptor agonists (GLP-1RA) lower food intake and bodyweight in both human and animal studies. The effects are mediated through brain GLP-1Rs, and several brain nuclei expressing the GLP-1R may...... be involved. To date, mapping the complete location of GLP-1R protein in the brain has been challenged by lack of good antibodies and the discrepancy between mRNA and protein especially relevant in neuronal axonal processes. Here, we present a novel and specific monoclonal GLP-1R antibody...

  19. Insights into Intrinsic Brain Networks based on Graph Theory and PET in right- compared to left-sided Temporal Lobe Epilepsy.

    Vanicek, Thomas; Hahn, Andreas; Traub-Weidinger, Tatjana; Hilger, Eva; Spies, Marie; Wadsak, Wolfgang; Lanzenberger, Rupert; Pataraia, Ekaterina; Asenbaum-Nan, Susanne

    2016-06-28

    The human brain exhibits marked hemispheric differences, though it is not fully understood to what extent lateralization of the epileptic focus is relevant. Preoperative [(18)F]FDG-PET depicts lateralization of seizure focus in patients with temporal lobe epilepsy and reveals dysfunctional metabolic brain connectivity. The aim of the present study was to compare metabolic connectivity, inferred from inter-regional [(18)F]FDG PET uptake correlations, in right-sided (RTLE; n = 30) and left-sided TLE (LTLE; n = 32) with healthy controls (HC; n = 31) using graph theory based network analysis. Comparing LTLE and RTLE and patient groups separately to HC, we observed higher lobar connectivity weights in RTLE compared to LTLE for connections of the temporal and the parietal lobe of the contralateral hemisphere (CH). Moreover, especially in RTLE compared to LTLE higher local efficiency were found in the temporal cortices and other brain regions of the CH. The results of this investigation implicate altered metabolic networks in patients with TLE specific to the lateralization of seizure focus, and describe compensatory mechanisms especially in the CH of patients with RTLE. We propose that graph theoretical analysis of metabolic connectivity using [(18)F]FDG-PET offers an important additional modality to explore brain networks.

  20. Using Expectancy Theory to quantitatively dissociate the neural representation of motivation from its influential factors in the human brain: An fMRI study.

    Kohli, Akshay; Blitzer, David N; Lefco, Ray W; Barter, Joseph W; Haynes, M Ryan; Colalillo, Sam A; Ly, Martina; Zink, Caroline F

    2018-05-08

    Researchers have yet to apply a formal operationalized theory of motivation to neurobiology that would more accurately and precisely define neural activity underlying motivation. We overcome this challenge with the novel application of the Expectancy Theory of Motivation to human fMRI to identify brain activity that explicitly reflects motivation. Expectancy Theory quantitatively describes how individual constructs determine motivation by defining motivation force as the product of three variables: expectancy - belief that effort will better performance; instrumentality - belief that successful performance leads to particular outcome, and valence - outcome desirability. Here, we manipulated information conveyed by reward-predicting cues such that relative cue-evoked activity patterns could be statistically mapped to individual Expectancy Theory variables. The variable associated with activity in any voxel is only reported if it replicated between two groups of healthy participants. We found signals in midbrain, ventral striatum, sensorimotor cortex, and visual cortex that specifically map to motivation itself, rather than other factors. This is important because, for the first time, it empirically clarifies approach motivation neural signals during reward anticipation. It also highlights the effectiveness of the application of Expectancy Theory to neurobiology to more precisely and accurately probe motivation neural correlates than has been achievable previously. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Cortical brain connectivity evaluated by graph theory in dementia: a correlation study between functional and structural data.

    Vecchio, Fabrizio; Miraglia, Francesca; Curcio, Giuseppe; Altavilla, Riccardo; Scrascia, Federica; Giambattistelli, Federica; Quattrocchi, Carlo Cosimo; Bramanti, Placido; Vernieri, Fabrizio; Rossini, Paolo Maria

    2015-01-01

    A relatively new approach to brain function in neuroscience is the "functional connectivity", namely the synchrony in time of activity in anatomically-distinct but functionally-collaborating brain regions. On the other hand, diffusion tensor imaging (DTI) is a recently developed magnetic resonance imaging (MRI)-based technique with the capability to detect brain structural connection with fractional anisotropy (FA) identification. FA decrease has been observed in the corpus callosum of subjects with Alzheimer's disease (AD) and mild cognitive impairment (MCI, an AD prodromal stage). Corpus callosum splenium DTI abnormalities are thought to be associated with functional disconnections among cortical areas. This study aimed to investigate possible correlations between structural damage, measured by MRI-DTI, and functional abnormalities of brain integration, measured by characteristic path length detected in resting state EEG source activity (40 participants: 9 healthy controls, 10 MCI, 10 mild AD, 11 moderate AD). For each subject, undirected and weighted brain network was built to evaluate graph core measures. eLORETA lagged linear connectivity values were used as weight of the edges of the network. Results showed that callosal FA reduction is associated to a loss of brain interhemispheric functional connectivity characterized by increased delta and decreased alpha path length. These findings suggest that "global" (average network shortest path length representing an index of how efficient is the information transfer between two parts of the network) functional measure can reflect the reduction of fiber connecting the two hemispheres as revealed by DTI analysis and also anticipate in time this structural loss.

  2. Why did humans develop a large brain?

    Muscat Baron, Yves

    2012-01-01

    "Of all animals, man has the largest brain in proportion to his size"- Aristotle. Dr Yves Muscat Baron shares his theory on how humans evolved large brains. The theory outlines how gravity could have helped humans develop a large brain- the author has named the theory 'The Gravitational Vascular Theory'. http://www.um.edu.mt/think/why-did-humans-develop-a-large-brain/

  3. Gender differences in smiling: An evolutionary neuroandrogenic theory.

    Ellis, Lee

    2006-07-30

    Studies have found that, under a wide variety of social circumstances, females are more likely than males to smile. The present article offers a theoretical explanation for this difference based on the premise that testosterone (along with other sex hormones) has evolved the tendency to alter brain functioning in ways that inhibit male smiling, especially during their most reproductively active years. Underlying the theory are the assumptions that (a) females have been naturally selected for preferring to mate with males who have the ability to assist in long-term child rearing primarily by provisioning resources, that (b) males partially accommodate this female preference by competing with rival males who are also vying for resources with which to attract mates, and that (c) male smiling interferes with their ability to most effectively intimidate rivals. If this reasoning is correct, genes must be involved in promoting the tendency to compete for resources, the most likely location for which would be on the Y-chromosome. According to the present theory, these genes operate in part by inhibiting social signals of fear and submissiveness. An additional element of the theory asserts that testosterone alters brain functioning in ways that shift the neocortex away from the left (more "prosocial and friendly") hemisphere toward the right (less "prosocial and friendly") hemisphere. Current evidence bearing on the theory is reviewed and a number of largely untested hypotheses are derived from the theory for future assessment of its predictive power.

  4. Epigenetics and sex differences in the brain: A genome-wide comparison of histone-3 lysine-4 trimethylation (H3K4me3) in male and female mice.

    Shen, Erica Y; Ahern, Todd H; Cheung, Iris; Straubhaar, Juerg; Dincer, Aslihan; Houston, Isaac; de Vries, Geert J; Akbarian, Schahram; Forger, Nancy G

    2015-06-01

    Many neurological and psychiatric disorders exhibit gender disparities, and sex differences in the brain likely explain some of these effects. Recent work in rodents points to a role for epigenetics in the development or maintenance of neural sex differences, although genome-wide studies have so far been lacking. Here we review the existing literature on epigenetics and brain sexual differentiation and present preliminary analyses on the genome-wide distribution of histone-3 lysine-4 trimethylation in a sexually dimorphic brain region in male and female mice. H3K4me3 is a histone mark primarily organized as 'peaks' surrounding the transcription start site of active genes. We microdissected the bed nucleus of the stria terminalis and preoptic area (BNST/POA) in adult male and female mice and used ChIP-Seq to compare the distribution of H3K4me3 throughout the genome. We found 248 genes and loci with a significant sex difference in H3K4me3. Of these, the majority (71%) had larger H3K4me3 peaks in females. Comparisons with existing databases indicate that genes and loci with increased H3K4me3 in females are associated with synaptic function and with expression atlases from related brain areas. Based on RT-PCR, only a minority of genes with a sex difference in H3K4me3 has detectable sex differences in expression at baseline conditions. Together with previous findings, our data suggest that there may be sex biases in the use of epigenetic marks. Such biases could underlie sex differences in vulnerabilities to drugs or diseases that disrupt specific epigenetic processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Paracetamol (acetaminophen) administration during neonatal brain development affects cognitive function and alters its analgesic and anxiolytic response in adult male mice.

    Viberg, Henrik; Eriksson, Per; Gordh, Torsten; Fredriksson, Anders

    2014-03-01

    Paracetamol (acetaminophen) is one of the most commonly used drugs for the treatment of pain and fever in children, both at home and in the clinic, and is now also found in the environment. Paracetamol is known to act on the endocannabinoid system, involved in normal development of the brain. We examined if neonatal paracetamol exposure could affect the development of the brain, manifested as adult behavior and cognitive deficits, as well as changes in the response to paracetamol. Ten-day-old mice were administered a single dose of paracetamol (30 mg/kg body weight) or repeated doses of paracetamol (30 + 30 mg/kg body weight, 4h apart). Concentrations of paracetamol and brain-derived neurotrophic factor (BDNF) were measured in the neonatal brain, and behavioral testing was done when animals reached adulthood. This study shows that acute neonatal exposure to paracetamol (2 × 30 mg) results in altered locomotor activity on exposure to a novel home cage arena and a failure to acquire spatial learning in adulthood, without affecting thermal nociceptive responding or anxiety-related behavior. However, mice neonatally exposed to paracetamol (2 × 30 mg) fail to exhibit paracetamol-induced antinociceptive and anxiogenic-like behavior in adulthood. Behavioral alterations in adulthood may, in part, be due to paracetamol-induced changes in BDNF levels in key brain regions at a critical time during development. This indicates that exposure to and presence of paracetamol during a critical period of brain development can induce long-lasting effects on cognitive function and alter the adult response to paracetamol in mice.

  6. A transfer of technology from engineering: use of ROC curves from signal detection theory to investigate information processing in the brain during sensory difference testing.

    Wichchukit, Sukanya; O'Mahony, Michael

    2010-01-01

    This article reviews a beneficial effect of technology transfer from Electrical Engineering to Food Sensory Science. Specifically, it reviews the recent adoption in Food Sensory Science of the receiver operating characteristic (ROC) curve, a tool that is incorporated in the theory of signal detection. Its use allows the information processing that takes place in the brain during sensory difference testing to be studied and understood. The review deals with how Signal Detection Theory, also called Thurstonian modeling, led to the adoption of a more sophisticated way of analyzing the data from sensory difference tests, by introducing the signal-to-noise ratio, d', as a fundamental measure of perceived small sensory differences. Generally, the method of computation of d' is a simple matter for some of the better known difference tests like the triangle, duo-trio and 2-AFC. However, there are occasions when these tests are not appropriate and other tests like the same-different and the A Not-A test are more suitable. Yet, for these, it is necessary to understand how the brain processes information during the test before d' can be computed. It is for this task that the ROC curve has a particular use. © 2010 Institute of Food Technologists®

  7. Past and future corollaries of theories on causes of metabolic syndrome and obesity related co-morbidities part 2: a composite unifying theory review of human-specific co-adaptations to brain energy consumption.

    McGill, Anne-Thea

    2014-01-01

    Metabolic syndrome (MetS) predicts type II diabetes mellitus (TIIDM), cardiovascular disease (CVD) and cancer, and their rates have escalated over the last few decades. Obesity related co-morbidities also overlap the concept of the metabolic syndrome (MetS). However, understanding of the syndrome's underlying causes may have been misapprehended. The current paper follows on from a theory review by McGill, A-T in Archives of Public Health, 72: 30. This accompanying paper utilises research on human evolution and new biochemistry to theorise on why MetS and obesity arise and how they affect the population. The basis of this composite unifying theory is that the proportionately large, energy-demanding human brain may have driven co-adaptive mechanisms to provide, or conserve, energy for the brain. A 'dual system' is proposed. 1) The enlarged, complex cortico-limbic-striatal system increases dietary energy by developing strong neural self-reward/motivation pathways for the acquisition of energy dense food, and (2) the nuclear factor-erythroid 2-related factor 2 (NRF2) cellular protection system amplifies antioxidant, antitoxicant and repair activity by employing plant chemicals. In humans who consume a nutritious diet, the NRF2 system has become highly energy efficient. Other relevant human-specific co-adaptations are explored. In order to 'test' this composite unifying theory it is important to show that the hypothesis and sub-theories pertain throughout the whole of human evolution and history up till the current era. Corollaries of the composite unifying theory of MetS are examined with respect to past under-nutrition and malnutrition since agriculture began 10,000 years ago. The effects of man-made pollutants on degenerative change are examined. Projections are then made from current to future patterns on the state of 'insufficient micronutrient and/or unbalanced high energy malnutrition with central obesity and metabolic dysregulation' or 'malnubesity'. Forecasts

  8. Effect of time period after boric acid injection on {sup 10}B absorption in different regions of adult male rat's brain

    Baghban Khojasteh, Nasrin, E-mail: khojasteh.nasrin@gmail.com [Nuclear Engineering Department, Science and Research Branch, Islamic Azad University, Poonak Sq. PO Box 14515-775, Tehran (Iran, Islamic Republic of); Pazirandeh, Ali [Nuclear Engineering Department, Science and Research Branch, Islamic Azad University, Poonak Sq. PO Box 14515-775, Tehran (Iran, Islamic Republic of); Jameie, Behnam [Nuclear Engineering Department, Science and Research Branch, Islamic Azad University, Poonak Sq. PO Box 14515-775, Tehran (Iran, Islamic Republic of); Laboratory of Basic Science and Neuroscience, Basic Science Dept, Faculty of Allied Medicine, Cellular and Molecular Research Center, Tehran University of Medical Science, Pardis-e-Hemmat,Tehran (Iran, Islamic Republic of); Goodarzi, Samereh [Nuclear Engineering Department, Science and Research Branch, Islamic Azad University, Poonak Sq. PO Box 14515-775, Tehran (Iran, Islamic Republic of)

    2012-06-15

    Distribution of {sup 10}B in different regions of rat normal brain was studied. Two groups were chosen as control and trial. Trial group received 2 ml of neutral boron compound. 2, 4 and 6 h after the injection brain removed, coronal sections of forebrain, midbrain and hindbrain were sandwiched between two pieces of polycarbonate. Autoradiography plots of {sup 10}B distribution showed significant differences in three regions with the highest {sup 10}B concentration in the forebrain during 4 h after injection. - Highlights: Black-Right-Pointing-Pointer Normal tissue tolerance is very important in BNCT. Black-Right-Pointing-Pointer This study has been done to determine {sup 10}B distribution in three anatomical regions of rat normal brain. Black-Right-Pointing-Pointer These specific regions of brain have not been studied in previous BNCT projects. Black-Right-Pointing-Pointer We found significant differences in {sup 10}B distribution between these three regions. Black-Right-Pointing-Pointer In different time periods after neutral boron compound injection, there has been a significant difference in boron absorption.

  9. Fetal brain 11β-hydroxysteroid dehydrogenase type 2 selectively determines programming of adult depressive-like behaviors and cognitive function, but not anxiety behaviors in male mice.

    Wyrwoll, Caitlin; Keith, Marianne; Noble, June; Stevenson, Paula L; Bombail, Vincent; Crombie, Sandra; Evans, Louise C; Bailey, Matthew A; Wood, Emma; Seckl, Jonathan R; Holmes, Megan C

    2015-09-01

    Stress or elevated glucocorticoids during sensitive windows of fetal development increase the risk of neuropsychiatric disorders in adult rodents and humans, a phenomenon known as glucocorticoid programming. 11β-Hydroxysteroid dehydrogenase type 2 (11β-HSD2), which catalyses rapid inactivation of glucocorticoids in the placenta, controls access of maternal glucocorticoids to the fetal compartment, placing it in a key position to modulate glucocorticoid programming of behavior. However, the importance of the high expression of 11β-HSD2 within the midgestational fetal brain is unknown. To examine this, a brain-specific knockout of 11β-HSD2 (HSD2BKO) was generated and compared to wild-type littermates. HSD2BKO have markedly diminished fetal brain 11β-HSD2, but intact fetal body and placental 11β-HSD2 and normal fetal and placental growth. Despite normal fetal plasma corticosterone, HSD2BKO exhibit elevated fetal brain corticosterone levels at midgestation. As adults, HSD2BKO show depressive-like behavior and have cognitive impairments. However, unlike complete feto-placental deficiency, HSD2BKO show no anxiety-like behavioral deficits. The clear mechanistic separation of the programmed components of depression and cognition from anxiety implies distinct mechanisms of pathogenesis, affording potential opportunities for stratified interventions. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  10. Genetic-gonadal-genitals sex (3G-sex and the misconception of brain and gender, or, why 3G-males and 3G-females have intersex brain and intersex gender

    Joel Daphna

    2012-12-01

    Full Text Available Abstract The categorization of individuals as “male” or “female” is based on chromosome complement and gonadal and genital phenotype. This combined genetic-gonadal-genitals sex, here referred to as 3G-sex, is internally consistent in ~99% of humans (i.e., one has either the “female” form at all levels, or the “male” form at all levels. About 1% of the human population is identified as “intersex” because of either having an intermediate form at one or more levels, or having the “male” form at some levels and the “female” form at other levels. These two types of “intersex” reflect the facts, respectively, that the different levels of 3G-sex are not completely dimorphic nor perfectly consistent. Using 3G-sex as a model to understand sex differences in other domains (e.g., brain, behavior leads to the erroneous assumption that sex differences in these other domains are also highly dimorphic and highly consistent. But parallel lines of research have led to the conclusion that sex differences in the brain and in behavior, cognition, personality, and other gender characteristics are for the most part not dimorphic and not internally consistent (i.e., having one brain/gender characteristic with the “male” form is not a reliable predictor for the form of other brain/gender characteristics. Therefore although only ~1% percent of humans are 3G-“intersex”, when it comes to brain and gender, we all have an intersex gender (i.e., an array of masculine and feminine traits and an intersex brain (a mosaic of “male” and “female” brain characteristics.

  11. Specifying the brain anatomy underlying temporo-parietal junction activations for theory of mind: A review using probabilistic atlases from different imaging modalities.

    Schurz, Matthias; Tholen, Matthias G; Perner, Josef; Mars, Rogier B; Sallet, Jerome

    2017-09-01

    In this quantitative review, we specified the anatomical basis of brain activity reported in the Temporo-Parietal Junction (TPJ) in Theory of Mind (ToM) research. Using probabilistic brain atlases, we labeled TPJ peak coordinates reported in the literature. This was carried out for four different atlas modalities: (i) gyral-parcellation, (ii) sulco-gyral parcellation, (iii) cytoarchitectonic parcellation and (iv) connectivity-based parcellation. In addition, our review distinguished between two ToM task types (false belief and social animations) and a nonsocial task (attention reorienting). We estimated the mean probabilities of activation for each atlas label, and found that for all three task types part of TPJ activations fell into the same areas: (i) Angular Gyrus (AG) and Lateral Occpital Cortex (LOC) in terms of a gyral atlas, (ii) AG and Superior Temporal Sulcus (STS) in terms of a sulco-gyral atlas, (iii) areas PGa and PGp in terms of cytoarchitecture and (iv) area TPJp in terms of a connectivity-based parcellation atlas. Beside these commonalities, we also found that individual task types showed preferential activation for particular labels. Main findings for the right hemisphere were preferential activation for false belief tasks in AG/PGa, and in Supramarginal Gyrus (SMG)/PFm for attention reorienting. Social animations showed strongest selective activation in the left hemisphere, specifically in left Middle Temporal Gyrus (MTG). We discuss how our results (i.e., identified atlas structures) can provide a new reference for describing future findings, with the aim to integrate different labels and terminologies used for studying brain activity around the TPJ. Hum Brain Mapp 38:4788-4805, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Male patients dosimetry undergoing brain PET/CT exam for diagnosis of mild cognitive impairment; Dosimetria de pacientes masculinos submetidos ao exame de PET/CT cerebral para diagnostico de comprometimento cognitivo leve

    Santana, P.C.; Mamede, M.; Carvalho, F.M.V., E-mail: pridili@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Fac. de Medicina. Departamento de Anatomia e Imagem; Mourao, A.P. [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET-MG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Eletrica; Silva, T.A.; Oliveira, P.M.C. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-08-15

    Diagnosis of Mild Cognitive Impairment (MCI) can indicate an initial dementia framework, or increase in the likelihood of developing this. The PET/CT (positron emission tomography associated with computed tomography) has shown excellent prospects for MCI diagnosis. The PET/CT helps diagnosis, but the patients effective dose is higher, it depends on the computed tomography (CT) protocol and the radiopharmaceutical patient injected activity. This study evaluates the dose in 38 male patients undergoing this technique for MCI diagnosis. To assess the radiation level from CT modality imaging was used TLD100 detectors embedded in a male anthropomorphic Alderson Randon® phantom, undergoing the same imaging protocol to which patients were referred. The dose resulting of radiopharmaceutical injected activity was estimated using the ICRP106 model proposed. The PET / CT effective dose for producing image was (5.12 ± 0.90) mSv. The contribution to the effective dose due to the FDG brain incorporation was (0.12 ± 0.01) mSv and thyroid (0.13 ± 0.02) mSv. The effective dose contribution due to brain and thyroid CT irradiation was (0.18 ± 0.01) mSv and (0.010 ± 0.001) mSv, respectively. The use of optimized CT protocols and FDG injected activity reduction can assist in this procedure dose reduction. (author)

  13. Effects of Social Cognitive Demand on Theory of Mind in Conversations of Adults with Traumatic Brain Injury

    Byom, Lindsey J.; Turkstra, Lyn

    2012-01-01

    Background: A requisite skill for successful conversation is the ability to adjust one's language according to contextual factors. Aims: This study examined one aspect of language use in context--the use of mental-state terms, i.e. words that communicate thoughts, beliefs or feelings--in conversations between adult males with and without traumatic…

  14. Perinatal exposure to bisphenol-A impairs spatial memory through upregulation of neurexin1 and neuroligin3 expression in male mouse brain.

    Dhiraj Kumar

    Full Text Available Bisphenol-A (BPA, a well known endocrine disruptor, impairs learning and memory in rodents. However, the underlying molecular mechanism of BPA induced impairment in learning and memory is not well known. As synaptic plasticity is the cellular basis of memory, the present study investigated the effect of perinatal exposure to BPA on the expression of synaptic proteins neurexin1 (Nrxn1 and neuroligin3 (Nlgn3, dendritic spine density and spatial memory in postnatal male mice. The pregnant mice were orally administered BPA (50 µg/kgbw/d from gestation day (GD 7 to postnatal day (PND 21 and sesame oil was used as a vehicle control. In Morris water maze (MWM test, BPA extended the escape latency time to locate the hidden platform in 8 weeks male mice. RT-PCR and Immunoblotting results showed significant upregulation of Nrxn1 and Nlgn3 expression in both cerebral cortex and hippocampus of 3 and 8 weeks male mice. This was further substantiated by in-situ hybridization and immunofluorescence techniques. BPA also significantly increased the density of dendritic spines in both regions, as analyzed by rapid Golgi staining. Thus our data suggest that perinatal exposure to BPA impairs spatial memory through upregulation of expression of synaptic proteins Nrxn1 and Nlgn3 and increased dendritic spine density in cerebral cortex and hippocampus of postnatal male mice.

  15. Ghrelin agonists impact on Fos protein expression in brain areas related to food intake regulation in male C57BL/6 mice

    Pirnik, Z.; Bundziková, J.; Holubová, Martina; Pýchová, Miroslava; Fehrentz, J. A.; Martinez, J.; Železná, Blanka; Maletínská, Lenka; Kiss, A.

    2011-01-01

    Roč. 59, č. 6 (2011), s. 889-895 ISSN 0197-0186 R&D Projects: GA ČR GA303/09/0744 Institutional research plan: CEZ:AV0Z40550506 Keywords : ghrelin agonists * Fos immunohistochemistry * male C57BL/6 mice Subject RIV: CC - Organic Chemistry Impact factor: 2.857, year: 2011

  16. Effect of beta-endorphin imprinting during late pregnancy on the brain serotonin and plasma nocistatin levels of adult male rats.

    Tekes, K; Gyenge, M; Hantos, M; Csaba, G

    2007-07-01

    Female rats were treated with 10 microg of beta-endorphin on the 19th day of pregnancy. Offspring were studied when five months old. Serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) content in four brain regions were determined by HPLC-EC and the nocistatin levels of blood plasma using RIA methods. In each brain region studied, the 5-HT levels were highly significantly reduced and that of 5-HIAA in three regions was highly significantly increased. When 5HIAA/5HT ratios, as a measure of serotonin turnover, were calculated, imprinted animals showed extremely high values. Plasma nocistatin level was also significantly elevated. The results call attention to the effect of perinatal endorphin imprinting and its long-term consequences (e.g., setting of aggressiveness, pain tolerance).

  17. Effect of Exercise Intensity on Neurotrophic Factors and Blood-Brain Barrier Permeability Induced by Oxidative-Nitrosative Stress in Male College Students.

    Roh, Hee-Tae; Cho, Su-Youn; Yoon, Hyung-Gi; So, Wi-Young

    2017-06-01

    We investigated the effects of aerobic exercise intensity on oxidative-nitrosative stress, neurotrophic factor expression, and blood-brain barrier (BBB) permeability. Fifteen healthy men performed treadmill running under low-intensity (LI), moderate-intensity (MI), and high-intensity (HI) conditions. Blood samples were collected immediately before exercise (IBE), immediately after exercise (IAE), and 60 min after exercise (60MAE) to examine oxidative-nitrosative stress (reactive oxygen species [ROS]; nitric oxide [NO]), neurotrophic factors (brain-derived neurotrophic factor [BDNF]; nerve growth factor [NGF]), and blood-brain barrier (BBB) permeability (S-100β; neuron-specific enolase). ROS concentration significantly increased IAE and following HI (4.9 ± 1.7 mM) compared with that after LI (2.8 ± 1.4 mM) exercise (p exercise (p exercise (p exercise (p exercise (p .05). Moderate- and/or high-intensity exercise may induce higher oxidative-nitrosative stress than may low-intensity exercise, which can increase peripheral neurotrophic factor levels by increasing BBB permeability.

  18. Uncovering the neuroanatomical correlates of cognitive, affective and conative theory of mind in paediatric traumatic brain injury: a neural systems perspective.

    Ryan, Nicholas P; Catroppa, Cathy; Beare, Richard; Silk, Timothy J; Hearps, Stephen J; Beauchamp, Miriam H; Yeates, Keith O; Anderson, Vicki A

    2017-09-01

    Deficits in theory of mind (ToM) are common after neurological insult acquired in the first and second decade of life, however the contribution of large-scale neural networks to ToM deficits in children with brain injury is unclear. Using paediatric traumatic brain injury (TBI) as a model, this study investigated the sub-acute effect of paediatric traumatic brain injury on grey-matter volume of three large-scale, domain-general brain networks (the Default Mode Network, DMN; the Central Executive Network, CEN; and the Salience Network, SN), as well as two domain-specific neural networks implicated in social-affective processes (the Cerebro-Cerebellar Mentalizing Network, CCMN and the Mirror Neuron/Empathy Network, MNEN). We also evaluated prospective structure-function relationships between these large-scale neural networks and cognitive, affective and conative ToM. 3D T1- weighted magnetic resonance imaging sequences were acquired sub-acutely in 137 children [TBI: n = 103; typically developing (TD) children: n = 34]. All children were assessed on measures of ToM at 24-months post-injury. Children with severe TBI showed sub-acute volumetric reductions in the CCMN, SN, MNEN, CEN and DMN, as well as reduced grey-matter volumes of several hub regions of these neural networks. Volumetric reductions in the CCMN and several of its hub regions, including the cerebellum, predicted poorer cognitive ToM. In contrast, poorer affective and conative ToM were predicted by volumetric reductions in the SN and MNEN, respectively. Overall, results suggest that cognitive, affective and conative ToM may be prospectively predicted by individual differences in structure of different neural systems-the CCMN, SN and MNEN, respectively. The prospective relationship between cerebellar volume and cognitive ToM outcomes is a novel finding in our paediatric brain injury sample and suggests that the cerebellum may play a role in the neural networks important for ToM. These findings are

  19. The globularization hypothesis of the language-ready brain as a developmental frame for prosodic bootstrapping theories of language acquisition

    Aritz eIrurtzun

    2015-12-01

    Full Text Available In recent research Boeckx & Benítez-Burraco (2014a,b have advanced the hypothesis that our species-specific language-ready brain should be understood as the outcome of developmental changes that occurred in our species after the split from Neanderthals-Denisovans, which resulted in a more globular braincase configuration in comparison to our closest relatives, who had elongated endocasts. According to these authors, the development of a globular brain is an essential ingredient for the language faculty and in particular, it is the centrality occupied by the thalamus in a globular brain that allows its modulatory or regulatory role, essential for syntactico-semantic computations. Their hypothesis is that the syntactico-semantic capacities arise in humans as a consequence of a process of globularization, which significantly takes place postnatally (cf. Neubauer et al. (2010. In this paper, I show that Boeckx & Benítez-Burraco’s hypothesis makes an interesting developmental prediction regarding the path of language acquisition: it teases apart the onset of phonological acquisition and the onset of syntactic acquisition (the latter starting significantly later, after globularization. I argue that this hypothesis provides a developmental rationale for the prosodic bootstrapping hypothesis of language acquisition (cf. i.a. Gleitman & Wanner (1982; Mehler et al. (1988, et seq.; Gervain & Werker (2013, which claim that prosodic cues are employed for syntactic parsing. The literature converges in the observation that a large amount of such prosodic cues (in particular, rhythmic cues are already acquired before the completion of the globularization phase, which paves the way for the premises of prosodic bootstrapping hypothesis, allowing babies to have a rich knowledge of the prosody of their target language before they can start parsing the primary linguistic data syntactically.

  20. The "Globularization Hypothesis" of the Language-ready Brain as a Developmental Frame for Prosodic Bootstrapping Theories of Language Acquisition.

    Irurtzun, Aritz

    2015-01-01

    In recent research (Boeckx and Benítez-Burraco, 2014a,b) have advanced the hypothesis that our species-specific language-ready brain should be understood as the outcome of developmental changes that occurred in our species after the split from Neanderthals-Denisovans, which resulted in a more globular braincase configuration in comparison to our closest relatives, who had elongated endocasts. According to these authors, the development of a globular brain is an essential ingredient for the language faculty and in particular, it is the centrality occupied by the thalamus in a globular brain that allows its modulatory or regulatory role, essential for syntactico-semantic computations. Their hypothesis is that the syntactico-semantic capacities arise in humans as a consequence of a process of globularization, which significantly takes place postnatally (cf. Neubauer et al., 2010). In this paper, I show that Boeckx and Benítez-Burraco's hypothesis makes an interesting developmental prediction regarding the path of language acquisition: it teases apart the onset of phonological acquisition and the onset of syntactic acquisition (the latter starting significantly later, after globularization). I argue that this hypothesis provides a developmental rationale for the prosodic bootstrapping hypothesis of language acquisition (cf. i.a. Gleitman and Wanner, 1982; Mehler et al., 1988, et seq.; Gervain and Werker, 2013), which claim that prosodic cues are employed for syntactic parsing. The literature converges in the observation that a large amount of such prosodic cues (in particular, rhythmic cues) are already acquired before the completion of the globularization phase, which paves the way for the premises of the prosodic bootstrapping hypothesis, allowing babies to have a rich knowledge of the prosody of their target language before they can start parsing the primary linguistic data syntactically.

  1. Introducing graph theory to track for neuroplastic alterations in the resting human brain: a transcranial direct current stimulation study.

    Polanía, Rafael; Paulus, Walter; Antal, Andrea; Nitsche, Michael A

    2011-02-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that alters cortical excitability and activity in a polarity-dependent way. Stimulation for a few minutes has been shown to induce plastic alterations of cortical excitability and to improve cognitive performance. These effects might be related to stimulation-induced alterations of functional cortical network connectivity. We aimed to investigate the impact of tDCS on cortical network function by functional connectivity and graph theoretical analysis of the BOLD fMRI spontaneous activity. fMRI resting-state datasets were acquired immediately before and after 10-min bipolar tDCS during rest, with the anode placed over the left primary motor cortex (M1) and the cathode over the contralateral frontopolar cortex. For each dataset, grey matter voxel-based synchronization matrices were calculated and thresholded to construct undirected graphs. Nodal connectivity degree and minimum path length maps were calculated and compared before and after tDCS. Nodal minimum path lengths significantly increased in the left somatomotor (SM1) cortex after anodal tDCS, which means that the number of direct functional connections from the left SM1 to topologically distant grey matter voxels significantly decreased. In contrast, functional coupling between premotor and superior parietal areas with the left SM1 significantly increased. Additionally, the nodal connectivity degree in the left posterior cingulate cortex (PCC) area as well as in the right dorsolateral prefrontal cortex (right DLPFC) significantly increased. In summary, we provide initial support that tDCS-induced neuroplastic alterations might be related to functional connectivity changes in the human brain. Additionally, we propose our approach as a powerful method to track for neuroplastic changes in the human brain. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Involvement of high plasma corticosterone status and activation of brain regional serotonin metabolism in long-term erythrosine-induced rearing motor hyper activity in young adult male rats.

    Dalal, Arindam; Poddar, Mrinal K

    2010-07-01

    Long-term consumption of artificial food color(s) can induce behavioral hyperactivity in human and experimental animals, but no neurobiochemical mechanism is defined. This study investigates the role of brain regional serotonin metabolism including its turnover, MAO-A activity, and plasma corticosterone status in relation to behavioral disturbances due to an artificial food color, erythrosine. Long-term (15 or 30 consecutive days) erythrosine administration with higher dosage (10 or 100 mg/kg/day, p.o.) produced optimal hyperactive state in exploratory behavior (rearing motor activity) after 2 h of last erythrosine administration, in young adult male albino rats. Erythrosine-induced stimulation in brain regional (medulla-pons, hypothalamus, hippocampus, and corpus striatum) serotonin metabolism (measuring steady state levels of 5-HT and 5-HIAA, MAO-A activity), including its turnover (pargyline-induced 5-HT accumulation and 5-HIAA declination rate), as well as plasma corticosterone were also observed depending on dosage(s) and duration(s) of erythrosine administration under similar experimental conditions. The lower dosage of erythrosine (1 mg/kg/day, p.o.) under similar conditions did not affect either of the above. These findings suggests (a) the induction as well as optimal effect of long-term erythrosine (artificial food color) on behavioral hyperactivity in parallel with increase in 5-HT level in brain regions, (b) the activation of brain regional serotonin biosynthesis in accordance with plasma corticosterone status under such behavioral hyperactivity, and (c) a possible inhibitory influence of the enhanced glucocorticoids-serotonin interaction on erythrosine-induced rearing motor hyperactivity in young adult mammals.

  3. Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain.

    Kotrschal, Alexander; Rogell, Björn; Bundsen, Andreas; Svensson, Beatrice; Zajitschek, Susanne; Brännström, Ioana; Immler, Simone; Maklakov, Alexei A; Kolm, Niclas

    2013-01-21

    The large variation in brain size that exists in the animal kingdom has been suggested to have evolved through the balance between selective advantages of greater cognitive ability and the prohibitively high energy demands of a larger brain (the "expensive-tissue hypothesis"). Despite over a century of research on the evolution of brain size, empirical support for the trade-off between cognitive ability and energetic costs is based exclusively on correlative evidence, and the theory remains controversial. Here we provide experimental evidence for costs and benefits of increased brain size. We used artificial selection for large and small brain size relative to body size in a live-bearing fish, the guppy (Poecilia reticulata), and found that relative brain size evolved rapidly in response to divergent selection in both sexes. Large-brained females outperformed small-brained females in a numerical learning assay designed to test cognitive ability. Moreover, large-brained lines, especially males, developed smaller guts, as predicted by the expensive-tissue hypothesis, and produced fewer offspring. We propose that the evolution of brain size is mediated by a functional trade-off between increased cognitive ability and reproductive performance and discuss the implications of these findings for vertebrate brain evolution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. The role of hand of error and stimulus orientation in the relationship between worry and error-related brain activity: Implications for theory and practice.

    Lin, Yanli; Moran, Tim P; Schroder, Hans S; Moser, Jason S

    2015-10-01

    Anxious apprehension/worry is associated with exaggerated error monitoring; however, the precise mechanisms underlying this relationship remain unclear. The current study tested the hypothesis that the worry-error monitoring relationship involves left-lateralized linguistic brain activity by examining the relationship between worry and error monitoring, indexed by the error-related negativity (ERN), as a function of hand of error (Experiment 1) and stimulus orientation (Experiment 2). Results revealed that worry was exclusively related to the ERN on right-handed errors committed by the linguistically dominant left hemisphere. Moreover, the right-hand ERN-worry relationship emerged only when stimuli were presented horizontally (known to activate verbal processes) but not vertically. Together, these findings suggest that the worry-ERN relationship involves left hemisphere verbal processing, elucidating a potential mechanism to explain error monitoring abnormalities in anxiety. Implications for theory and practice are discussed. © 2015 Society for Psychophysiological Research.

  5. Effect of Electromagnetic Radiation Exposure on Histology and DNA Content of the Brain Cortex and Hypothalamus of Young and Adult Male Albino Rats

    Othman, A.I.; Othman, A.I.

    2012-01-01

    Concerns have been raised regarding the potential adverse effects of exposure to electromagnetic radiation (EMR) arising from mobile phone. The present study investigates the effect of the daily exposure of adult and young rats to EMR for 1 hour (at a frequency of 900 MHz, a power density of 0.02 mW/cm 2 and an average specific absorption rate of 1.165 W/kg) on the DNA content and tissue architecture of the cortex and hypothalamus of the rat brain. Both young and adult rats were sacrificed at two intervals, after 4 months of daily EMR exposure and after 1 month of stopping the exposure. The present results showed a significant increase in the DNA intensity of young and adult rats in both areas after 4 months of daily EMR exposure. However, decreased DNA content around the normal level was observed after one month of stopping the exposure. Light microscopic examination of irradiated rats revealed edema, vacuolation, necrosis and proliferated glial cells. Stopping EMR exposure showed mild amelioration in the structural damage of the cerebral cortex of young animals, however, most drastic changes still persisted in the other animals. In conclusion, these data may confirm the neurotoxic risks arising from the extensive use of mobile phones that may alter the brain histology and impair its function

  6. Brain Region-Specific Expression of Genes Mapped within Quantitative Trait Loci for Behavioral Responsiveness to Acute Stress in Fisher 344 and Wistar Kyoto Male Rats (Postprint)

    2018-03-12

    stress in Fisher 344 and Wistar Kyoto male rats. PLoS ONE 13(3): e0194293. https://doi. org /10.1371/journal.pone.0194293 Editor: Alexandra Kavushansky...complex traits in outbred rats. Nature genetics. 2013; 45(7): https://doi. org /10.1038/ng.2644 PMC3821058. PMID: 23708188 15. Ahmadiyeh N, Churchill GA...congenic mouse strains. Nature Genetics. 1997; 17:280. https://doi. org /10.1038/ng1197-280 PMID: 9354790 21. The SC. SNP and haplotype mapping for genetic

  7. Brain Research and Learning.

    Claycomb, Mary

    Current research on brain activity has many implications for educators. The triune brain concept and the left and right hemisphere concepts are among the many complex theories evolving from experimentation and observation. The triune brain concept suggests that the human forebrain has expanded while retaining three structurally unique formations…

  8. Behavioral and multimodal neuroimaging evidence for a deficit in brain timing networks in stuttering: A hypothesis and theory

    Andrew C Etchell

    2014-06-01

    Full Text Available The fluent production of speech requires accurately timed movements. In this article, we propose that a deficit in brain timing networks is the core neurophysiological deficit in stuttering. We first discuss the experimental evidence supporting the involvement of the basal ganglia and supplementary motor area in stuttering and the involvement of the cerebellum as a mechanism for compensating for the neural deficits that underlie stuttering. Next, we outline the involvement of the right inferior frontal gyrus as another putative compensatory locus in stuttering and suggest a role for this structure in an expanded core timing-network. Subsequently, we review behavioral studies of timing in people who stutter and examine their behavioral performance as compared to people who do not stutter. Finally, we highlight challenges to existing research and provide avenues for future research with specific hypotheses.

  9. Theory and practice in sport psychology and motor behaviour needs to be constrained by integrative modelling of brain and behaviour.

    Keil, D; Holmes, P; Bennett, S; Davids, K; Smith, N

    2000-06-01

    Because of advances in technology, the non-invasive study of the human brain has enhanced the knowledge base within the neurosciences, resulting in an increased impact on the psychological study of human behaviour. We argue that application of this knowledge base should be considered in theoretical modelling within sport psychology and motor behaviour alongside existing ideas. We propose that interventions founded on current theoretical and empirical understanding in both psychology and the neurosciences may ultimately lead to greater benefits for athletes during practice and performance. As vehicles for exploring the arguments of a greater integration of psychology and neurosciences research, imagery and perception-action within the sport psychology and motor behaviour domains will serve as exemplars. Current neuroscience evidence will be discussed in relation to theoretical developments; the implications for sport scientists will be considered.

  10. Impact of perinatal systemic hypoxic-ischemic injury on the brain of male offspring rats: an improved model of neonatal hypoxic-ischemic encephalopathy in early preterm newborns.

    Yuejun Huang

    Full Text Available In this study, we attempted to design a model using Sprague-Dawley rats to better reproduce perinatal systemic hypoxic-ischemic encephalopathy (HIE in early preterm newborns. On day 21 of gestation, the uterus of pregnant rats were exposed and the blood supply to the fetuses of neonatal HIE groups were thoroughly abscised by hemostatic clamp for 5, 10 or 15 min. Thereafter, fetuses were moved from the uterus and manually stimulated to initiate breathing in an incubator at 37 °C for 1 hr in air. We showed that survival rates of offspring rats were decreased with longer hypoxic time. TUNEL staining showed that apoptotic cells were significant increased in the brains of offspring rats from the 10 min and 15 min HIE groups as compared to the offspring rats in the control group at postnatal day (PND 1, but there was no statistical difference between the offspring rats in the 5 min HIE and control groups. The perinatal hypoxic treatment resulted in decreased neurons and increased cleaved caspase-3 protein levels in the offspring rats from all HIE groups at PND 1. Platform crossing times and the percentage of the time spent in the target quadrant of Morris Water Maze test were significantly reduced in the offspring rats of all HIE groups at PND 30, which were associated with decreased brain-derived neurotrophic factor levels and neuronal cells in the hippocampus of offspring rats at PND 35. These data demonstrated that perinatal ischemic injury led to the death of neuronal cells and long-lasting impairment of memory. This model reproduced hypoxic ischemic encephalopathy in early preterm newborns and may be appropriate for investigating therapeutic interventions.

  11. Exploring the experience of sleep and fatigue in male and female adults over the 2 years following traumatic brain injury: a qualitative descriptive study.

    Theadom, Alice; Rowland, Vickie; Levack, William; Starkey, Nicola; Wilkinson-Meyers, Laura; McPherson, Kathryn

    2016-04-08

    To explore the experience of fatigue and sleep difficulties over the first 2 years after traumatic brain injury (TBI). Longitudinal qualitative descriptive analysis of interviews completed as part of a larger longitudinal study of recovery following TBI. Data relating to the experience of fatigue and/or sleep were extracted and coded by two independent researchers. Community-based study in the Hamilton and Auckland regions of New Zealand. 30 adult participants who had experienced mild, moderate or severe brain injury within the past 6 months (>16 years of age). 15 participants also nominated significant others to take part. Interviews were completed at 6, 12 and 24 months postinjury. Participants described feeling unprepared for the intensity, impact and persistent nature of fatigue and sleep difficulties after injury. They struggled to learn how to manage their difficulties by themselves and to adapt strategies in response to changing circumstances over time. Four themes were identified: (1) Making sense of fatigue and sleep after TBI; (2) accepting the need for rest; (3) learning how to rest and; (4) need for rest impacts on ability to engage in life. Targeted support to understand, accept and manage the sleep and fatigue difficulties experienced may be crucial to improve recovery and facilitate engagement in everyday life. Advice needs to be timely and revised for relevance over the course of recovery. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  12. Impact of Perinatal Systemic Hypoxic–Ischemic Injury on the Brain of Male Offspring Rats: An Improved Model of Neonatal Hypoxic–Ischemic Encephalopathy in Early Preterm Newborns

    Xu, Hongwu; Wu, Weizhao; Lai, Xiulan; Ho, Guyu; Ma, Lian; Chen, Yunbin

    2013-01-01

    In this study, we attempted to design a model using Sprague-Dawley rats to better reproduce perinatal systemic hypoxic-ischemic encephalopathy (HIE) in early preterm newborns. On day 21 of gestation, the uterus of pregnant rats were exposed and the blood supply to the fetuses of neonatal HIE groups were thoroughly abscised by hemostatic clamp for 5, 10 or 15 min. Thereafter, fetuses were moved from the uterus and manually stimulated to initiate breathing in an incubator at 37 °C for 1 hr in air. We showed that survival rates of offspring rats were decreased with longer hypoxic time. TUNEL staining showed that apoptotic cells were significant increased in the brains of offspring rats from the 10 min and 15 min HIE groups as compared to the offspring rats in the control group at postnatal day (PND) 1, but there was no statistical difference between the offspring rats in the 5 min HIE and control groups. The perinatal hypoxic treatment resulted in decreased neurons and increased cleaved caspase-3 protein levels in the offspring rats from all HIE groups at PND 1. Platform crossing times and the percentage of the time spent in the target quadrant of Morris Water Maze test were significantly reduced in the offspring rats of all HIE groups at PND 30, which were associated with decreased brain-derived neurotrophic factor levels and neuronal cells in the hippocampus of offspring rats at PND 35. These data demonstrated that perinatal ischemic injury led to the death of neuronal cells and long-lasting impairment of memory. This model reproduced hypoxic ischemic encephalopathy in early preterm newborns and may be appropriate for investigating therapeutic interventions. PMID:24324800

  13. Operating without a Safety Net: Gay Male Adolescents and Emerging Adults' Experiences of Marginalization and Migration, and Implications for Theory of Syndemic Production of Health Disparities

    Bruce, Douglas; Harper, Gary W.

    2011-01-01

    Health disparities among gay men (HIV, substance use, depression) have been described as a mutually occurring "syndemic" that is socially produced through two overarching dynamics: marginalization and migration. Although the syndemic theory proposes a developmental trajectory, it has been largely based on epidemiological studies of adult gay men…

  14. Male Infertility

    ... hypothalamus, pituitary, thyroid and adrenal glands. Low testosterone (male hypogonadism) and other hormonal problems have a number of possible underlying causes. Defects of tubules that transport sperm. Many ... syndrome — in which a male is born with two X chromosomes and one ...

  15. A Right Brain/Left Brain Model of Acting.

    Bowlen, Clark

    Using current right brain/left brain research, this paper develops a model that explains acting's underlying quality--the actor is both himself and the character. Part 1 presents (1) the background of the right brain/left brain theory, (2) studies showing that propositional communication is a left hemisphere function while affective communication…

  16. Immune activation in lactating dams alters sucklings' brain cytokines and produces non-overlapping behavioral deficits in adult female and male offspring: A novel neurodevelopmental model of sex-specific psychopathology.

    Arad, Michal; Piontkewitz, Yael; Albelda, Noa; Shaashua, Lee; Weiner, Ina

    2017-07-01

    Early immune activation (IA) in rodents, prenatal through the mother or early postnatal directly to the neonate, is widely used to produce behavioral endophenotypes relevant to schizophrenia and depression. Given that maternal immune response plays a crucial role in the deleterious effects of prenatal IA, and lactation is a critical vehicle of immunological support to the neonate, we predicted that immune activation of the lactating dam will produce long-term abnormalities in the sucklings. Nursing dams were injected on postnatal day 4 with the viral mimic poly-I:C (4mg/kg) or saline. Cytokine assessment was performed in dams' plasma and milk 2h, and in the sucklings' hippocampus, 6h and 24h following poly-I:C injection. Male and female sucklings were assessed in adulthood for: a) performance on behavioral tasks measuring constructs considered relevant to schizophrenia (selective attention and executive control) and depression (despair and anhedonia); b) response to relevant pharmacological treatments; c) brain structural changes. Maternal poly-I:C injection caused cytokine alterations in the dams' plasma and milk, as well as in the sucklings' hippocampus. Lactational poly-I:C exposure led to sex-dimorphic (non-overlapping) behavioral abnormalities in the adult offspring, with male but not female offspring exhibiting attentional and executive function abnormalities (manifested in persistent latent inhibition and slow reversal) and hypodopaminergia, and female but not male offspring exhibiting despair and anhedonia (manifested in increased immobility in the forced swim test and reduced saccharine preference) and hyperdopaminergia, mimicking the known sex-bias in schizophrenia and depression. The behavioral double-dissociation predicted distinct pharmacological profiles, recapitulating the pharmacology of negative/cognitive symptoms and depression. In-vivo imaging revealed hippocampal and striatal volume reductions in both sexes, as found in both disorders. This is

  17. Male Hypogonadism

    ... the hormone that plays a key role in masculine growth and development during puberty — or has an ... Adulthood In adult males, hypogonadism may alter certain masculine physical characteristics and impair normal reproductive function. Signs ...

  18. Male Infertility

    ... to have a baby? If treatment doesn’t work, what are our other options? Resources National Institute of Child Health and Human Development, What Causes Male Infertility? Last Updated: May 30, 2017 This ...

  19. Male contraception.

    Amory, John K

    2016-11-01

    Although female contraceptives are very effective at preventing unintended pregnancy, some women can not use them because of health conditions or side-effects, leaving some couples without effective contraceptive options. In addition, many men wish to take active responsibility for family planning. Thus, there is a great need for male contraceptives to prevent unintended pregnancies, of which 80-90 million occur annually. At present, effective male contraceptive options are condoms and vasectomy, which are not ideal for all men. Therefore, efforts are under way to develop novel male contraceptives. This paper briefly reviews the advantages and disadvantages of condoms and vasectomies and then discusses the research directed toward development of novel methods of male contraception. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  20. Condoms - male

    Prophylactics; Rubbers; Male condoms; Contraceptive - condom; Contraception - condom; Barrier method - condom ... your health care provider or pharmacy about emergency contraception ("morning-after pills"). PROBLEMS WITH CONDOM USE Some ...

  1. Male contraception

    Mathew, Vivek; Bantwal, Ganapathi

    2012-01-01

    Contraception is an accepted route for the control of population explosion in the world. Traditionally hormonal contraceptive methods have focused on women. Male contraception by means of hormonal and non hormonal methods is an attractive alternative. Hormonal methods of contraception using testosterone have shown good results. Non hormonal reversible methods of male contraception like reversible inhibition of sperm under guidanceare very promising. In this article we have reviewed the curren...

  2. Theory of Mind and the Whole Brain Functional Connectivity: Behavioral and Neural Evidences with the Amsterdam Resting State Questionnaire.

    Marchetti, Antonella; Baglio, Francesca; Costantini, Isa; Dipasquale, Ottavia; Savazzi, Federica; Nemni, Raffaello; Sangiuliano Intra, Francesca; Tagliabue, Semira; Valle, Annalisa; Massaro, Davide; Castelli, Ilaria

    2015-01-01

    A topic of common interest to psychologists and philosophers is the spontaneous flow of thoughts when the individual is awake but not involved in cognitive demands. This argument, classically referred to as the "stream of consciousness" of James, is now known in the psychological literature as "Mind-Wandering." Although of great interest, this construct has been scarcely investigated so far. Diaz et al. (2013) created the Amsterdam Resting State Questionnaire (ARSQ), composed of 27 items, distributed in seven factors: discontinuity of mind, theory of mind (ToM), self, planning, sleepiness, comfort, and somatic awareness. The present study aims at: testing psychometric properties of the ARSQ in a sample of 670 Italian subjects; exploring the neural correlates of a subsample of participants (N = 28) divided into two groups on the basis of the scores obtained in the ToM factor. Results show a satisfactory reliability of the original factional structure in the Italian sample. In the subjects with a high mean in the ToM factor compared to low mean subjects, functional MRI revealed: a network (48 nodes) with higher functional connectivity (FC) with a dominance of the left hemisphere; an increased within-lobe FC in frontal and insular lobes. In both neural and behavioral terms, our results support the idea that the mind, which does not rest even when explicitly asked to do so, has various and interesting mentalistic-like contents.

  3. Male sexuality.

    Ginsberg, Terrie B

    2010-05-01

    It should be recognized that sexuality in the aging male is of such import that a complete sexual history must be performed. By taking a complete sexual history, facts can be obtained that will allow for appropriate focus relating to a holistic evaluation and will enable us to dispel antiquated sexual myths pertaining to the aging male. If initiated by the history taker, questions concerning sexuality may be discussed more comfortably by the patient. Erectile dysfunction, male sexual response cycle, testosterone, sexually transmitted diseases, human immunodeficiency virus, long-term illness, along with religion and culture are explored in this article with the aim of improving one's knowledge base, self reflection, and awareness of the importance of male sexuality. A complete understanding and appreciation of the aging male's medical history, surgical history, social history, and emotional history as well as his sexual, cultural, and religious concepts will allow the health care provider to better analyze information, and to recommend and provide appropriate advice and treatment to the aging male patient. Copyright 2010 Elsevier Inc. All rights reserved.

  4. What do brain lesions tell us about theories of embodied semantics and the human mirror neuron system?

    Arévalo, Analia L; Baldo, Juliana V; Dronkers, Nina F

    2012-02-01

    Recent work has been mixed with respect to the notion of embodied semantics, which suggests that processing linguistic stimuli referring to motor-related concepts recruits the same sensorimotor regions of cortex involved in the execution and observation of motor acts or the objects associated with those acts. In this study, we asked whether lesions to key sensorimotor regions would preferentially impact the comprehension of stimuli associated with the use of the hand, mouth or foot. Twenty-seven patients with left-hemisphere strokes and 10 age- and education-matched controls were presented with pictures and words representing objects and actions typically associated with the use of the hand, mouth, foot or no body part at all (i.e., neutral). Picture/sound pairs were presented simultaneously, and participants were required to press a space bar only when the item pairs matched (i.e., congruent trials). We conducted two different analyses: 1) we compared task performance of patients with and without lesions in several key areas previously implicated in the putative human mirror neuron system (i.e., Brodmann areas 4/6, 1/2/3, 21 and 44/45), and 2) we conducted Voxel-based Lesion-Symptom Mapping analyses (VLSM; Bates et al., 2003) to identify additional regions associated with the processing of effector-related versus neutral stimuli. Processing of effector-related stimuli was associated with several regions across the left hemisphere, and not solely with premotor/motor or somatosensory regions. We also did not find support for a somatotopically-organized distribution of effector-specific regions. We suggest that, rather than following the strict interpretation of homuncular somatotopy for embodied semantics, these findings support theories proposing the presence of a greater motor-language network which is associated with, but not restricted to, the network responsible for action execution and observation. Copyright © 2010 Elsevier Srl. All rights reserved.

  5. Postural complexity influences development in infants born preterm with brain injury: relating perception-action theory to 3 cases.

    Dusing, Stacey C; Izzo, Theresa; Thacker, Leroy R; Galloway, James Cole

    2014-10-01

    Perception-action theory suggests a cyclical relationship between movement and perceptual information. In this case series, changes in postural complexity were used to quantify an infant's action and perception during the development of early motor behaviors. Three infants born preterm with periventricular white matter injury were included. Longitudinal changes in postural complexity (approximate entropy of the center of pressure), head control, reaching, and global development, measured with the Test of Infant Motor Performance and the Bayley Scales of Infant and Toddler Development, were assessed every 0.5 to 3 months during the first year of life. All 3 infants demonstrated altered postural complexity and developmental delays. However, the timing of the altered postural complexity and the type of delays varied among the infants. For infant 1, reduced postural complexity or limited action while learning to control her head in the midline position may have contributed to her motor delay. However, her ability to adapt her postural complexity eventually may have supported her ability to learn from her environment, as reflected in her relative cognitive strength. For infant 2, limited early postural complexity may have negatively affected his learning through action, resulting in cognitive delay. For infant 3, an increase in postural complexity above typical levels was associated with declining neurological status. Postural complexity is proposed as a measure of perception and action in the postural control system during the development of early behaviors. An optimal, intermediate level of postural complexity supports the use of a variety of postural control strategies and enhances the perception-action cycle. Either excessive or reduced postural complexity may contribute to developmental delays in infants born preterm with white matter injury. © 2014 American Physical Therapy Association.

  6. Regional volumes and spatial volumetric distribution of gray matter in the gender dysphoric brain.

    Hoekzema, Elseline; Schagen, Sebastian E. E.; Kreukels, Baudewijntje P. C.; Veltman, Dick J.; Cohen-Kettenis, Peggy T.; Delemarre-van de Waal, Henriette; Bakker, Julie

    2015-01-01

    The sexual differentiation of the brain is primarily driven by gonadal hormones during fetal development. Leading theories on the etiology of gender dysphoria (GD) involve deviations herein. To examine whether there are signs of a sex-atypical brain development in GD, we quantified regional neural gray matter (GM) volumes in 55 female-to-male and 38 male-to-female adolescents, 44 boys and 52 girls without GD and applied both univariate and multivariate analyses. In girls, more GM volume was o...

  7. Effect of a change in housing conditions on body weight, behavior and brain neurotransmitters in male C57BL/6J mice.

    Pasquarelli, Noemi; Voehringer, Patrizia; Henke, Julia; Ferger, Boris

    2017-08-30

    The development of modern housing regimes such as individually ventilated cage (IVC) systems has become very popular and attractive in order to reduce spreading of pathogenic organisms and to lower the risk to develop a laboratory animal allergy for staff members. Additionally, optimal housing of laboratory animals contributes to improve animal health status and ensures high and comparable experimental and animal welfare standards. However, it has not been clearly elucidated whether 1) a change to IVC systems have an impact on various physiological phenotypic parameters of mice when compared to conventional, standard cages and 2) if this is further affected by changing from social to single housing. Therefore, we investigated the influence of a change in housing conditions (standard cages with social housing changed to standard or IVC cages combined with social or single housing) on body weight, behavior and a neurochemical fingerprint of male C57BL/6J mice. Body weight progression was significantly reduced when changing mice to single or social IVC cages as well as in single standard cages when compared to social standard housing. Automated motor activity measurement in the open field showed that mice maintained in social husbandry with standard cages displayed the lowest exploratory behavior but the highest activity difference upon amphetamine treatment. Elevated plus maze test revealed that a change to IVC single and social housing as well as single standard housing produced anxiety-related behavior when compared to maintenance in social standard housing. Additionally, postmortem neurochemical analysis of the striatum using high-performance liquid chromatography coupled to electrochemical detection showed significant differences in striatal dopamine and serotonin turnover levels. In summary, our data indicate a crucial influence of a change in housing conditions on several mouse phenotype parameters. We propose that the maintenance of well-defined housing

  8. Male baldness.

    Clarke, Philip

    2016-04-01

    Male baldness is very common. Its effect on individuals is extremely variable, and in some people it will have a significant adverse effect on their quality of life. The objectives of this article are to help general practitioners (GPs) be aware of potential health problems related to male baldness, to have an approach to assessing hair loss and to be aware of treatment options. Male baldness is, most often, a normal occurrence, but it may have significant effects on a man's health. It may also be a pointer to other potential health issues. The GP is in the ideal position to conduct an initial evaluation, consider other health issues and advise on treatment options.

  9. Psychobiology of Male Homosexuality: Recent Findings

    Annicchiarico Iseda, Ivan Darío; Universidad Nacional de Colombia

    2009-01-01

    In this paper, empirical and theoretical reports which question the causes of male homosexuality are examined. According to these reports, male homosexuality differs from female homosexuality in some respects. Additionally, evidence favouring the consideration of male homosexuality as a biological condition is shown: there are brain differences between gay men and heterosexual men, there are genetic and perinatal factors associated to male homosexuality, there are cognitive and behavioral dif...

  10. A Quick Tour of the Brain.

    Hart, Leslie

    1983-01-01

    Using a question-and-answer format, the author discusses brain research, its relationship to existing learning theory, left- and right-brain differences and their relationship to logical thinking, brain growth spurts, learning styles, and the effects of future brain knowledge on learning, especially on schools' development of brain-compatible…

  11. Will male advertisement be a reliable indicator of paternal care, if offspring survival depends on male care?

    Kelly, Natasha B.; Alonzo, Suzanne H.

    2009-01-01

    Existing theory predicts that male signalling can be an unreliable indicator of paternal care, but assumes that males with high levels of mating success can have high current reproductive success, without providing any parental care. As a result, this theory does not hold for the many species where offspring survival depends on male parental care. We modelled male allocation of resources between advertisement and care for species with male care where males vary in quality, and the effect of c...

  12. Left Brain/Right Brain Learning for Adult Education.

    Garvin, Barbara

    1986-01-01

    Contrasts and compares the theory and practice of adult education as it relates to the issue of right brain/left brain learning. The author stresses the need for a whole-brain approach to teaching and suggests that adult educators, given their philosophical directions, are the perfect potential users of this integrated system. (Editor/CT)

  13. Human emotion in the brain and the body: Why language matters. Comment on "The quartet theory of human emotions: An integrative and neurofunctional model" by S. Koelsch et al.

    Herbert, Cornelia

    2015-06-01

    What is an Emotion? This question has fascinated scientific research since William James. Despite the fact that a consensus has been reached about the biological origin of emotions, uniquely human aspects of emotions are still poorly understood. One of these blind spots concerns the relationship between emotion and human language. Historically, many theories imply a duality between emotions on the one hand and cognitive functions such as language on the other hand. Especially for symbolic forms of written language and word processing, it has been assumed that semantic information would bear no relation to bodily, affective, or sensorimotor processing (for an overview see Ref. [1]). The Quartet Theory proposed by Koelsch and colleagues [2] could provide a solution to this problem. It offers a novel, integrative neurofunctional model of human emotions which considers language and emotion as closely related. Crucially, language - be it spoken or written - is assumed to "regulate, modulate, and partly initiate" activity in core affective brain systems in accord with physical needs and individual concerns [cf. page 34, line 995]. In this regard, the Quartet Theory combines assumptions from earlier bioinformational theories of emotions [3], contemporary theories of embodied cognition [4], and appraisal theories such as the Component Process Model [5] into one framework, thereby providing a holistic model for the neuroscientific investigation of human emotion processing at the interface of emotion and cognition, mind and body.

  14. Making Brains run Faster: are they Becoming Smarter?

    Pahor, Anja; Jaušovec, Norbert

    2016-12-05

    A brief overview of structural and functional brain characteristics related to g is presented in the light of major neurobiological theories of intelligence: Neural Efficiency, P-FIT and Multiple-Demand system. These theories provide a framework to discuss the main objective of the paper: what is the relationship between individual alpha frequency (IAF) and g? Three studies were conducted in order to investigate this relationship: two correlational studies and a third study in which we experimentally induced changes in IAF by means of transcranial alternating current stimulation (tACS). (1) In a large scale study (n = 417), no significant correlations between IAF and IQ were observed. However, in males IAF positively correlated with mental rotation and shape manipulation and with an attentional focus on detail. (2) The second study showed sex-specific correlations between IAF (obtained during task performance) and scope of attention in males and between IAF and reaction time in females. (3) In the third study, individuals' IAF was increased with tACS. The induced changes in IAF had a disrupting effect on male performance on Raven's matrices, whereas a mild positive effect was observed for females. Neuro-electric activity after verum tACS showed increased desynchronization in the upper alpha band and dissociation between fronto-parietal and right temporal brain areas during performance on Raven's matrices. The results are discussed in the light of gender differences in brain structure and activity.

  15. A mathematical theory of shape and neuro-fuzzy methodology-based diagnostic analysis: a comparative study on early detection and treatment planning of brain cancer.

    Kar, Subrata; Majumder, D Dutta

    2017-08-01

    Investigation of brain cancer can detect the abnormal growth of tissue in the brain using computed tomography (CT) scans and magnetic resonance (MR) images of patients. The proposed method classifies brain cancer on shape-based feature extraction as either benign or malignant. The authors used input variables such as shape distance (SD) and shape similarity measure (SSM) in fuzzy tools, and used fuzzy rules to evaluate the risk status as an output variable. We presented a classifier neural network system (NNS), namely Levenberg-Marquardt (LM), which is a feed-forward back-propagation learning algorithm used to train the NN for the status of brain cancer, if any, and which achieved satisfactory performance with 100% accuracy. The proposed methodology is divided into three phases. First, we find the region of interest (ROI) in the brain to detect the tumors using CT and MR images. Second, we extract the shape-based features, like SD and SSM, and grade the brain tumors as benign or malignant with the concept of SD function and SSM as shape-based parameters. Third, we classify the brain cancers using neuro-fuzzy tools. In this experiment, we used a 16-sample database with SSM (μ) values and classified the benignancy or malignancy of the brain tumor lesions using the neuro-fuzzy system (NFS). We have developed a fuzzy expert system (FES) and NFS for early detection of brain cancer from CT and MR images. In this experiment, shape-based features, such as SD and SSM, were extracted from the ROI of brain tumor lesions. These shape-based features were considered as input variables and, using fuzzy rules, we were able to evaluate brain cancer risk values for each case. We used an NNS with LM, a feed-forward back-propagation learning algorithm, as a classifier for the diagnosis of brain cancer and achieved satisfactory performance with 100% accuracy. The proposed network was trained with MR image datasets of 16 cases. The 16 cases were fed to the ANN with 2 input neurons, one

  16. Brain, body and culture

    Geertz, Armin W.

    2010-01-01

    This essay sketches out a biocultural theory of religion which is based on an expanded view of cognition that is anchored in brain and body (embrained and embodied), deeply dependent on culture (enculturated) and extended and distributed beyond the borders of individual brains. Such an approach...... uniquely accommodates contemporary cultural and neurobiological sciences. Since the challenge that the study of religion faces, in my opinion, is at the interstices of these sciences, I have tried to develop a theory of religion which acknowledges the fact. My hope is that the theory can be of use...

  17. Brain herniation

    ... herniation; Uncal herniation; Subfalcine herniation; Tonsillar herniation; Herniation - brain ... Brain herniation occurs when something inside the skull produces pressure that moves brain tissues. This is most ...

  18. “They think you’re lazy,” and Other Messages Black Parents Send Their Black Sons: An Exploration of Critical Race Theory in the Examination of Educational Outcomes for Black Males

    Rema Reynolds

    2010-05-01

    Full Text Available Parents play an integral role in the social, emotional, physical, and intellectual development of their children. We know that school success has been associated with parents’ involvement and engagement1 practices. Studies have shown that despite socioeconomic disparities, children whose parents are involved perform markedly better than those whose parents are not. Little research has looked exclusively at parent involvement and its effects on the educational outcomes of Black males. A qualitative study conducted with Black parents and their involvement and engagement practices as the focus proved that this relationship warrants scholarly attention using Critical Race Theory as a tool for examination. Parents in this study were involved in their children’s educational processes in ways not always validated or valued by schools. Instead of engaging in conventional forms of involvement such as volunteering in the classroom, parents spent time and resources supplementing their children’s education at home. Subtle acts of racism manifested through microaggressions were detected by parents when interfacing with school officials2 and these exchanges prompted candid conversations with their sons. According to the parents in this study, deliberate messages about racism and educator expectations were often critical supplements for their Black sons in order to ensure educational success.

  19. Insights into Intrinsic Brain Networks based on Graph Theory and PET in right- compared to left-sided Temporal Lobe Epilepsy

    Thomas Vanicek; Andreas Hahn; Tatjana Traub-Weidinger; Eva Hilger; Marie Spies; Wolfgang Wadsak; Rupert Lanzenberger; Ekaterina Pataraia; Susanne Asenbaum-Nan

    2016-01-01

    The human brain exhibits marked hemispheric differences, though it is not fully understood to what extent lateralization of the epileptic focus is relevant. Preoperative [18F]FDG-PET depicts lateralization of seizure focus in patients with temporal lobe epilepsy and reveals dysfunctional metabolic brain connectivity. The aim of the present study was to compare metabolic connectivity, inferred from inter-regional [18F]FDG PET uptake correlations, in right-sided (RTLE; n?=?30) and left-sided TL...

  20. Comparison of the performances of male and female armed services ...

    Comparison of the performances of male and female armed services recruits undergoing sports vision testing. ... Previous research has shown that the difference in performance in both males and females is the result of brain lateralization, test familiarity and nerve conduction velocity in the brain. This was, however, not ...

  1. A behavioral comparison of male and female adults with high functioning autism spectrum conditions.

    Meng-Chuan Lai

    Full Text Available Autism spectrum conditions (ASC affect more males than females in the general population. However, within ASC it is unclear if there are phenotypic sex differences. Testing for similarities and differences between the sexes is important not only for clinical assessment but also has implications for theories of typical sex differences and of autism. Using cognitive and behavioral measures, we investigated similarities and differences between the sexes in age- and IQ-matched adults with ASC (high-functioning autism or Asperger syndrome. Of the 83 (45 males and 38 females participants, 62 (33 males and 29 females met Autism Diagnostic Interview-Revised (ADI-R cut-off criteria for autism in childhood and were included in all subsequent analyses. The severity of childhood core autism symptoms did not differ between the sexes. Males and females also did not differ in self-reported empathy, systemizing, anxiety, depression, and obsessive-compulsive traits/symptoms or mentalizing performance. However, adult females with ASC showed more lifetime sensory symptoms (p = 0.036, fewer current socio-communication difficulties (p = 0.001, and more self-reported autistic traits (p = 0.012 than males. In addition, females with ASC who also had developmental language delay had lower current performance IQ than those without developmental language delay (p<0.001, a pattern not seen in males. The absence of typical sex differences in empathizing-systemizing profiles within the autism spectrum confirms a prediction from the extreme male brain theory. Behavioral sex differences within ASC may also reflect different developmental mechanisms between males and females with ASC. We discuss the importance of the superficially better socio-communication ability in adult females with ASC in terms of why females with ASC may more often go under-recognized, and receive their diagnosis later, than males.

  2. Early oestrogens in shaping reproductive networks: evidence for a potential organisational role of oestradiol in female brain development.

    Bakker, J; Brock, O

    2010-07-01

    A central tenet of contemporary theories on mammalian brain and behavioural sexual differentiation is that an organisational action of testosterone, secreted by the male's testes, controls male-typical aspects of brain and behavioural development, whereas no active perinatal sex hormone signalling is required for female-typical sexual differentiation. Furthermore, the available evidence suggests that many, although not all, of the perinatal organisational actions of testosterone on the development of the male brain result from the cellular effects of oestradiol formed via neural aromatisation of testosterone. However, a default developmental programme for the female brain has been criticised. Indeed, we review new results obtained in aromatase knockout mice indicating that oestradiol actively contributes to the differentiation of female-typical aspects of brain and behavioural sexual differentiation. Furthermore, we propose that male-typical neural and behavioural differentiation occurs prenatally in genetic males under the influence of oestradiol, which is avoided in foetal genetic females by the neuroprotective actions of alpha-fetoprotein, whereas female-typical neural and behavioural differentiation normally occurs postnatally in genetic females under the influence of oestradiol that is presumably produced by the ovaries.

  3. Handbook of Brain Connectivity

    Jirsa, Viktor K

    2007-01-01

    Our contemporary understanding of brain function is deeply rooted in the ideas of the nonlinear dynamics of distributed networks. Cognition and motor coordination seem to arise from the interactions of local neuronal networks, which themselves are connected in large scales across the entire brain. The spatial architectures between various scales inevitably influence the dynamics of the brain and thereby its function. But how can we integrate brain connectivity amongst these structural and functional domains? Our Handbook provides an account of the current knowledge on the measurement, analysis and theory of the anatomical and functional connectivity of the brain. All contributors are leading experts in various fields concerning structural and functional brain connectivity. In the first part of the Handbook, the chapters focus on an introduction and discussion of the principles underlying connected neural systems. The second part introduces the currently available non-invasive technologies for measuring struct...

  4. Endometriosis in the male.

    Martin, J D; Hauck, A E

    1985-07-01

    An 83-year-old man with an endometrioma of the lower abdominal wall has been reported. This occurred following the administration of 25 mg of TACE for a period of about 10 years for what was thought to be carcinoma of the prostate. A second transurethral resection done by Dr. R. C. Thompson proved to be adenocarcinoma. Subsequent to this he was continued on TACE. A review of the more commonly accepted theories of the development of endometriosis in the female has been presented. It is pointed out that the separation between the male and female urogenital systems occurs in the embryo between the eighth week and the fourth month. There is always a possibility for remnants of the opposite sex to remain in individuals. No such was seen in the case which is herein reported. Normal phenotype male was demonstrated in the chromosomal evaluation. A review of the literature on endometriosis in the male reveals several cases which have occurred; the origin of which is though to be from the prostatic utricle which is a remnant of the uterus existing in the male. After a prolonged course the patient reported was followed until he died in 1979. There was no recurrence of the abdominal wall mass but persistent low grade carcinoma of the prostate remained. The terminal process was related to cardiovascular disease and not carcinoma of the prostate. There was delay in publication of this unusual case. The original plan was to await final confirmation of the exact pathologic nature of this condition; unfortunately this was never done since a postmortem examination was not performed.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Brain venous pathologies: MRI findings

    Salvatico, Rosana; Gonzalez, Alejandro; Yanez, Paulina; Romero, Carlos; Trejo, Mariano; Lambre, Hector

    2006-01-01

    Purpose: To describe MRI findings of the different brain venous pathologies. Material and Methods: Between January 2002 and March 2004, 18 patients were studied 10 males and 8 females between 6 and 63 years old; with different brain venous pathologies. In all cases brain MRI were performed including morphological sequences with and without gadolinium injection and angiographic venous sequences. Results: 10 venous occlusions were found, 6 venous angiomas, and 2 presented varices secondary to arteriovenous dural fistula. Conclusion: Brain venous pathologies can appear in many different clinical contexts, with different prognosis and treatment. In all the cases brain MRI was the best imaging study to disclose typical morphologic abnormalities. (author) [es

  6. Developing a targeted, theory-informed implementation intervention using two theoretical frameworks to address health professional and organisational factors: a case study to improve the management of mild traumatic brain injury in the emergency department.

    Tavender, Emma J; Bosch, Marije; Gruen, Russell L; Green, Sally E; Michie, Susan; Brennan, Sue E; Francis, Jill J; Ponsford, Jennie L; Knott, Jonathan C; Meares, Sue; Smyth, Tracy; O'Connor, Denise A

    2015-05-25

    Despite the availability of evidence-based guidelines for the management of mild traumatic brain injury in the emergency department (ED), variations in practice exist. Interventions designed to implement recommended behaviours can reduce this variation. Using theory to inform intervention development is advocated; however, there is no consensus on how to select or apply theory. Integrative theoretical frameworks, based on syntheses of theories and theoretical constructs relevant to implementation, have the potential to assist in the intervention development process. This paper describes the process of applying two theoretical frameworks to investigate the factors influencing recommended behaviours and the choice of behaviour change techniques and modes of delivery for an implementation intervention. A stepped approach was followed: (i) identification of locally applicable and actionable evidence-based recommendations as targets for change, (ii) selection and use of two theoretical frameworks for identifying barriers to and enablers of change (Theoretical Domains Framework and Model of Diffusion of Innovations in Service Organisations) and (iii) identification and operationalisation of intervention components (behaviour change techniques and modes of delivery) to address the barriers and enhance the enablers, informed by theory, evidence and feasibility/acceptability considerations. We illustrate this process in relation to one recommendation, prospective assessment of post-traumatic amnesia (PTA) by ED staff using a validated tool. Four recommendations for managing mild traumatic brain injury were targeted with the intervention. The intervention targeting the PTA recommendation consisted of 14 behaviour change techniques and addressed 6 theoretical domains and 5 organisational domains. The mode of delivery was informed by six Cochrane reviews. It was delivered via five intervention components : (i) local stakeholder meetings, (ii) identification of local opinion

  7. The shopping brain: math anxiety modulates brain responses to buying decisions.

    Jones, William J; Childers, Terry L; Jiang, Yang

    2012-01-01

    Metacognitive theories propose that consumers track fluency feelings when buying, which may have biological underpinnings. We explored this using event-related potential (ERP) measures as twenty high-math anxiety (High MA) and nineteen low-math anxiety (Low MA) consumers made buying decisions for promoted (e.g., 15% discount) and non-promoted products. When evaluating prices, ERP correlates of higher perceptual and conceptual fluency were associated with buys, however only for High MA females under no promotions. In contrast, High MA females and Low MA males demonstrated greater FN400 amplitude, associated with enhanced conceptual processing, to prices of buys relative to non-buys under promotions. Concurrent late positive component (LPC) differences under no promotions suggest discrepant retrieval processes during price evaluations between consumer groups. When making decisions to buy or not, larger (smaller) P3, sensitive to outcome responses in the brain, was associated with buying for High MA females (Low MA females) under promotions, an effect also present for males under no promotions. Thus, P3 indexed decisions to buy differently between anxiety groups, but only for promoted items among females and for no promotions among males. Our findings indicate that perceptual and conceptual processes interact with anxiety and gender to modulate brain responses during consumer choices. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Inside the Diabetic Brain

    Chomova M.

    2014-12-01

    Full Text Available CNS complications resulting from diabetes mellitus (DM are a problem gaining more acceptance and attention in the recent years. Both types 1 and 2 DM represent an significant risk factor for decreased cognitive functions, memory and learning deficits as well as development of Alzheimer’s disease. Chronic hyperglycemia through protein glycation and increased oxidative stress contributes to brain dysfunction, however increasing evidences suggest that the pathology of DM in the brain involves a progressive and coordinated disruption of insulin signaling, with profound consequences for brain function and plasticity. Since many of the CNS changes observed in diabetic patients and animal models of DM are reminiscent of the changes seen in aging, the theory of advanced brain aging in DM has been proposed. This review summarizes the findings of the literature regarding the effects of DM on the brain in the terms of diabetes-related metabolic derangements and intracellular signaling.

  9. Brain Tumors

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  10. Sexual Murderers' Implicit Theories

    Beech, Anthony; Fisher, Dawn; Ward, Tony

    2005-01-01

    Interviews with 28 sexual murderers were subjected to grounded theory analysis. Five implicit theories (ITs) were identified: dangerous world, male sex drive is uncontrollable, entitlement, women as sexual objects, and women as unknowable. These ITs were found to be identical to those identified in the literature as being present in rapists. The…

  11. Is the Brain Stuff Still the Right (or Left) Stuff?

    Lynch, Dudley

    1986-01-01

    The author presents evidence that supports the argument for the validity of right brain-left brain theories. Discusses the brain's "sense of the future," what the brain does with new information, and altering the brain's ability to process change. A bibliography of further readings is included. (CT)

  12. Sex Differences in the Adolescent Brain

    Lenroot, Rhoshel K.; Giedd, Jay N.

    2010-01-01

    Adolescence is a time of increased divergence between males and females in physical characteristics, behavior, and risk for psychopathology. Here we will review data regarding sex differences in brain structure and function during this period of the lifespan. The most consistent sex difference in brain morphometry is the 9-12% larger brain size…

  13. Brain surgery

    Craniotomy; Surgery - brain; Neurosurgery; Craniectomy; Stereotactic craniotomy; Stereotactic brain biopsy; Endoscopic craniotomy ... cut depends on where the problem in the brain is located. The surgeon creates a hole in ...

  14. Brain Malformations

    Most brain malformations begin long before a baby is born. Something damages the developing nervous system or causes it ... medicines, infections, or radiation during pregnancy interferes with brain development. Parts of the brain may be missing, ...

  15. Evaluation of chlorpyrifos toxicity through a 28-day study: Cholinesterase activity, oxidative stress responses, parent compound/metabolite levels, and primary DNA damage in blood and brain tissue of adult male Wistar rats.

    Kopjar, Nevenka; Žunec, Suzana; Mendaš, Gordana; Micek, Vedran; Kašuba, Vilena; Mikolić, Anja; Lovaković, Blanka Tariba; Milić, Mirta; Pavičić, Ivan; Čermak, Ana Marija Marjanović; Pizent, Alica; Lucić Vrdoljak, Ana; Želježić, Davor

    2018-01-05

    In this 28 day-study, we evaluated the effects of the insecticide chlorpyrifos orally administered to Wistar rats at doses 0.160, 0.015, and 0.010 mg/kg b. w./day. Following treatment, total cholinesterase activity and activities of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were measured. Oxidative stress responses were evaluated using a battery of endpoints to establish lipid peroxidation, changes in total antioxidant capacity, level of reactive oxygen species (ROS), glutathione (GSH) level and activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase. Using HPLC-UV DAD analysis, levels of the parent compound and its main metabolite 3,5,6-trichloro-2-pyridinol in plasma and brain tissue were measured. The genotoxic effect was estimated using alkaline comet assay in leukocytes and brain tissue. The exposure did not result in significant effects on total cholinesterase, AChE and BChE activity in plasma and brain tissue. Lipid peroxidation slightly increased both in plasma and brain tissue. Total antioxidant capacity, ROS and GSH levels were marginally influenced by the exposure. Treatment led to significant increases of GSH-Px activity in blood, SOD activity in erythrocytes and a slight increase of catalase activity in plasma. HPLC-UV DAD analysis revealed the presence of both the parent compound and its main metabolite in the plasma of all of the experimental animals and brain tissue of the animals treated at the two higher doses. All of the tested doses of chlorpyrifos were slightly genotoxic, both to leukocytes and brain tissue. Our results call for further research using other sensitive biomarkers of effect, along with different exposure scenarios. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Male pattern baldness

    Alopecia in men; Baldness - male; Hair loss in men; Androgenetic alopecia ... Male pattern baldness is related to your genes and male sex hormones. It usually follows a pattern of receding hairline and ...

  17. Genital sores - male

    Sores - male genitals; Ulcers - male genitals ... A common cause of male genital sores are infections that are spread through sexual contact, such as: Genital herpes (small, painful blisters filled with clear ...

  18. A Closer Look at the Brain As Related to Teachers and Learners.

    Haglund, Elaine

    1981-01-01

    Recent findings related to neurological research include: (1) the Proster Theory implies that the brain works by sets of programs or prosters; (2) the Brain Growth Spurts theory defines the growth of the brain in spurts with cycles of rest; and (3) in the Hemispheric Specialization Theory, the left and right hemispheres of the brain have specific…

  19. Parametric mapping of 5HT1A receptor sites in the human brain with the Hypotime method: theory and normal values

    Møller, Mette; Rodell, Anders; Gjedde, Albert

    2009-01-01

    The radioligand [carbonyl-(11)C]WAY-100635 ((11)C-WAY) is a PET tracer of the serotonin 5HT(1A) receptors in the human brain. It is metabolized so rapidly in the circulation that it behaves more as a chemical microsphere than as a tracer subject to continuous exchange between the circulation...... and reference regions continue to exchange radioligand with the circulation during the entire uptake period. Here, we proposed a method of calculation (Hypotime) that specifically uses the washout rather than the accumulation of (11)C-WAY to determine binding potentials (BP(ND)), without the use of regression...

  20. Will male advertisement be a reliable indicator of paternal care, if offspring survival depends on male care?

    Kelly, Natasha B; Alonzo, Suzanne H

    2009-09-07

    Existing theory predicts that male signalling can be an unreliable indicator of paternal care, but assumes that males with high levels of mating success can have high current reproductive success, without providing any parental care. As a result, this theory does not hold for the many species where offspring survival depends on male parental care. We modelled male allocation of resources between advertisement and care for species with male care where males vary in quality, and the effect of care and advertisement on male fitness is multiplicative rather than additive. Our model predicts that males will allocate proportionally more of their resources to whichever trait (advertisement or paternal care) is more fitness limiting. In contrast to previous theory, we find that male advertisement is always a reliable indicator of paternal care and male phenotypic quality (e.g. males with higher levels of advertisement never allocate less to care than males with lower levels of advertisement). Our model shows that the predicted pattern of male allocation and the reliability of male signalling depend very strongly on whether paternal care is assumed to be necessary for offspring survival and how male care affects offspring survival and male fitness.

  1. The imprinted brain: how genes set the balance between autism and psychosis.

    Badcock, Christopher

    2011-06-01

    The imprinted brain theory proposes that autism spectrum disorder (ASD) represents a paternal bias in the expression of imprinted genes. This is reflected in a preference for mechanistic cognition and in the corresponding mentalistic deficits symptomatic of ASD. Psychotic spectrum disorder (PSD) would correspondingly result from an imbalance in favor of maternal and/or X-chromosome gene expression. If differences in gene expression were reflected locally in the human brain as mouse models and other evidence suggests they are, ASD would represent not so much an 'extreme male brain' as an extreme paternal one, with PSD correspondingly representing an extreme maternal brain. To the extent that copy number variation resembles imprinting and aneuploidy in nullifying or multiplying the expression of particular genes, it has been found to conform to the diametric model of mental illness peculiar to the imprinted brain theory. The fact that nongenetic factors such as nutrition in pregnancy can mimic and/or interact with imprinted gene expression suggests that the theory might even be able to explain the notable effect of maternal starvation on the risk of PSD - not to mention the 'autism epidemic' of modern affluent societies. Finally, the theory suggests that normality represents balanced cognition, and that genius is an extraordinary extension of cognitive configuration in both mentalistic and mechanistic directions. Were it to be proven correct, the imprinted brain theory would represent one of the biggest single advances in our understanding of the mind and of mental illness that has ever taken place, and would revolutionize psychiatric diagnosis, prevention and treatment - not to mention our understanding of epigenomics.

  2. Thermodynamic laws apply to brain function.

    Salerian, Alen J

    2010-02-01

    Thermodynamic laws and complex system dynamics govern brain function. Thus, any change in brain homeostasis by an alteration in brain temperature, neurotransmission or content may cause region-specific brain dysfunction. This is the premise for the Salerian Theory of Brain built upon a new paradigm for neuropsychiatric disorders: the governing influence of neuroanatomy, neurophysiology, thermodynamic laws. The principles of region-specific brain function thermodynamics are reviewed. The clinical and supporting evidence including the paradoxical effects of various agents that alter brain homeostasis is demonstrated.

  3. Thinking about Seeing: perceptual sources of knowledge are encoded in the theory of mind brain regions of sighted and blind adults

    Koster-Hale, Jorie; Bedny, Marina; Saxe, Rebecca

    2014-01-01

    Blind people's inferences about how other people see provide a window into fundamental questions about the human capacity to think about one another's thoughts. By working with blind individuals, we can ask both what kinds of representations people form about others’ minds, and how much these representations depend on the observer having had similar mental states themselves. Thinking about others’ mental states depends on a specific group of brain regions, including the right temporo-parietal junction (RTPJ). We investigated the representations of others’ mental states in these brain regions, using multivoxel pattern analyses (MVPA). We found that, first, in the RTPJ of sighted adults, the pattern of neural response distinguished the source of the mental state (did the protagonist see or hear something?) but not the valence (did the protagonist feel good or bad?). Second, these neural representations were preserved in congenitally blind adults. These results suggest that the temporo-parietal junction contains explicit, abstract representations of features of others’ mental states, including the perceptual source. The persistence of these representations in congenitally blind adults, who have no first-person experience with sight, provides evidence that these representations emerge even in the absence of first-person perceptual experiences. PMID:24960530

  4. Thinking about seeing: perceptual sources of knowledge are encoded in the theory of mind brain regions of sighted and blind adults.

    Koster-Hale, Jorie; Bedny, Marina; Saxe, Rebecca

    2014-10-01

    Blind people's inferences about how other people see provide a window into fundamental questions about the human capacity to think about one another's thoughts. By working with blind individuals, we can ask both what kinds of representations people form about others' minds, and how much these representations depend on the observer having had similar mental states themselves. Thinking about others' mental states depends on a specific group of brain regions, including the right temporo-parietal junction (RTPJ). We investigated the representations of others' mental states in these brain regions, using multivoxel pattern analyses (MVPA). We found that, first, in the RTPJ of sighted adults, the pattern of neural response distinguished the source of the mental state (did the protagonist see or hear something?) but not the valence (did the protagonist feel good or bad?). Second, these neural representations were preserved in congenitally blind adults. These results suggest that the temporo-parietal junction contains explicit, abstract representations of features of others' mental states, including the perceptual source. The persistence of these representations in congenitally blind adults, who have no first-person experience with sight, provides evidence that these representations emerge even in the absence of relevant first-person perceptual experiences. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Sleep, Memory & Brain Rhythms.

    Watson, Brendon O; Buzsáki, György

    2015-01-01

    Sleep occupies roughly one-third of our lives, yet the scientific community is still not entirely clear on its purpose or function. Existing data point most strongly to its role in memory and homeostasis: that sleep helps maintain basic brain functioning via a homeostatic mechanism that loosens connections between overworked synapses, and that sleep helps consolidate and re-form important memories. In this review, we will summarize these theories, but also focus on substantial new information regarding the relation of electrical brain rhythms to sleep. In particular, while REM sleep may contribute to the homeostatic weakening of overactive synapses, a prominent and transient oscillatory rhythm called "sharp-wave ripple" seems to allow for consolidation of behaviorally relevant memories across many structures of the brain. We propose that a theory of sleep involving the division of labor between two states of sleep-REM and non-REM, the latter of which has an abundance of ripple electrical activity-might allow for a fusion of the two main sleep theories. This theory then postulates that sleep performs a combination of consolidation and homeostasis that promotes optimal knowledge retention as well as optimal waking brain function.

  6. Why does Jack, and not Jill, break his crown? Sex disparity in brain tumors

    Sun, Tao; Warrington, Nicole M; Rubin, Joshua B

    2012-01-01

    Abstract It is often reported that brain tumors occur more frequently in males, and that males suffer a worse outcome from brain tumors than females. If correct, these observations suggest that sex plays a fundamental role in brain tumor biology. The following review of the literature regarding primary and metastatic brain tumors, reveals that brain tumors do occur more frequently in males compared to females regardless of age, tumor histology, or region of the world. Sexually dimorphic mecha...

  7. Male-male aggression peaks at intermediate relatedness in a social spider mite

    Sato, Y.; Egas, M.; Sabelis, M.W.; Mochizuki, A.

    2013-01-01

    Theory predicts that when individuals live in groups or colonies, male-male aggression peaks at intermediate levels of local average relatedness. Assuming that aggression is costly and directed toward nonrelatives and that competition for reproduction acts within the colony, benefits of aggressive

  8. Negotiating the "White Male Math Myth": African American Male Students and Success in School Mathematics

    Stinson, David W.

    2013-01-01

    This article shows how equity research in mathematics education can be decentered by reporting the "voices" of mathematically successful African American male students as they recount their experiences with school mathematics, illustrating, in essence, how they negotiated the White male math myth. Using post-structural theory, the…

  9. Effects of Ascorbic Acid on Reproductive Functions of Male Wistar ...

    In conclusion, ascorbic acid supplement may suppress nicotine toxic effects on reproductive functions in male rats. ... et al., 2007). Nicotine is rapidly absorbed by the brain .... difference (LSD) test. p<0.05 was considered significant. Statistical ...

  10. Argumentación de la teoría científica: modo de funcionamiento subconsciente del cerebro en estado hipnótico Argument of the scientific theory: way of unconscious functioning of brain in hypnotic state

    Pedro Manuel Rodríguez Sánchez

    2011-07-01

    Full Text Available Se realizó una revisión bibliográfica del objeto de estudio, a la vez que se aportaron datos de investigaciones del autor, que le dan sustento a novedosas teorías científicas, con vistas a fundamentar los estudios fisiológicos e investigativos de la hipnosis con una concepción científica y materialista del mundo y un enfoque didáctico metodológico, entre otros importantes aspectos. Se expone una teoría científica de la génesis, naturaleza y mantenimiento del proceso hipnótico, así como del modo de funcionamiento subconsciente del cerebro en estado hipnótico, lo cual permite proponer la definición y el concepto de hipnosis desde esta perspectiva.A literature review of the object of study was carried out, and at the same time data of the author's investigations were added, which provide the support to novel scientific theories aimed at establishing the bases of physiological and investigative studies of hypnosis with a scientific and materialist conception of the world and a methodological didactic approach, among other important aspects. A scientific theory on the genesis, nature and maintenance of the hypnotic process, as well as on the way of unconscious functioning of brain in hypnotic state is exposed, allowing to propose the definition and concept of hypnosis from this perspective.

  11. Progesterone impairs social recognition in male rats.

    Bychowski, Meaghan E; Auger, Catherine J

    2012-04-01

    The influence of progesterone in the brain and on the behavior of females is fairly well understood. However, less is known about the effect of progesterone in the male system. In male rats, receptors for progesterone are present in virtually all vasopressin (AVP) immunoreactive cells in the bed nucleus of the stria terminalis (BST) and the medial amygdala (MeA). This colocalization functions to regulate AVP expression, as progesterone and/or progestin receptors (PR)s suppress AVP expression in these same extrahypothalamic regions in the brain. These data suggest that progesterone may influence AVP-dependent behavior. While AVP is implicated in numerous behavioral and physiological functions in rodents, AVP appears essential for social recognition of conspecifics. Therefore, we examined the effects of progesterone on social recognition. We report that progesterone plays an important role in modulating social recognition in the male brain, as progesterone treatment leads to a significant impairment of social recognition in male rats. Moreover, progesterone appears to act on PRs to impair social recognition, as progesterone impairment of social recognition is blocked by a PR antagonist, RU-486. Social recognition is also impaired by a specific progestin agonist, R5020. Interestingly, we show that progesterone does not interfere with either general memory or olfactory processes, suggesting that progesterone seems critically important to social recognition memory. These data provide strong evidence that physiological levels of progesterone can have an important impact on social behavior in male rats. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Causes of metabolic syndrome and obesity-related co-morbidities Part 1: A composite unifying theory review of human-specific co-adaptations to brain energy consumption.

    McGill, Anne-Thea

    2014-01-01

    The medical, research and general community is unable to effect significantly decreased rates of central obesity and related type II diabetes mellitus (TIIDM), cardiovascular disease (CVD) and cancer. All conditions seem to be linked by the concept of the metabolic syndrome (MetS), but the underlying causes are not known. MetS markers may have been mistaken for causes, thus many treatments are destined to be suboptimal. The current paper aims to critique current paradigms, give explanations for their persistence, and to return to first principles in an attempt to determine and clarify likely causes of MetS and obesity related comorbidities. A wide literature has been mined, study concepts analysed and the basics of human evolution and new biochemistry reviewed. A plausible, multifaceted composite unifying theory is formulated. The basis of the theory is that the proportionately large, energy-demanding human brain may have driven co-adaptive mechanisms to provide, or conserve, energy for the brain. A 'dual system' is proposed. 1) The enlarged, complex cortico-limbic-striatal system increases dietary energy by developing strong neural self-reward/motivation pathways for the acquisition of energy dense food, and (2) the nuclear factor-erythroid 2-related factor 2 (NRF2) cellular protection system amplifies antioxidant, antitoxicant and repair activity by employing plant chemicals, becoming highly energy efficient in humans. The still-evolving, complex human cortico-limbic-striatal system generates strong behavioural drives for energy dense food procurement, including motivating agricultural technologies and social system development. Addiction to such foods, leading to neglect of nutritious but less appetizing 'common or garden' food, appears to have occurred. Insufficient consumption of food micronutrients prevents optimal human NRF2 function. Inefficient oxidation of excess energy forces central and non-adipose cells to store excess toxic lipid. Oxidative stress and

  13. Minor Delinquency and Immigration: A Longitudinal Study among Male Adolescents

    Titzmann, Peter F.; Silbereisen, Rainer K.; Mesch, Gustavo

    2014-01-01

    On the basis of general theories of delinquency and the specific situation of immigrants, this longitudinal study investigated predictors of initial levels and rates of change in delinquency among 188 male ethnic German Diaspora immigrants from the former Soviet Union (FSU) in Germany, 237 male native German adolescents, and 182 male Jewish…

  14. Differential effects of face-realism and emotion on event-related brain potentials and their implications for the uncanny valley theory

    Schindler, Sebastian; Zell, Eduard; Botsch, Mario; Kissler, Johanna

    2017-03-01

    Cartoon characters are omnipresent in popular media. While few studies have scientifically investigated their processing, in computer graphics, efforts are made to increase realism. Yet, close approximations of reality have been suggested to evoke sometimes a feeling of eeriness, the “uncanny valley” effect. Here, we used high-density electroencephalography to investigate brain responses to professionally stylized happy, angry, and neutral character faces. We employed six face-stylization levels varying from abstract to realistic and investigated the N170, early posterior negativity (EPN), and late positive potential (LPP) event-related components. The face-specific N170 showed a u-shaped modulation, with stronger reactions towards both most abstract and most realistic compared to medium-stylized faces. For abstract faces, N170 was generated more occipitally than for real faces, implying stronger reliance on structural processing. Although emotional faces elicited highest amplitudes on both N170 and EPN, on the N170 realism and expression interacted. Finally, LPP increased linearly with face realism, reflecting activity increase in visual and parietal cortex for more realistic faces. Results reveal differential effects of face stylization on distinct face processing stages and suggest a perceptual basis to the uncanny valley hypothesis. They are discussed in relation to face perception, media design, and computer graphics.

  15. Back home after an acquired brain injury: building a "low-cost" team to provide theory-driven cognitive rehabilitation after routine interventions.

    Pierini, Davide; Hoerold, Doreen

    2014-01-01

    Individuals with Acquired Brain Injury (ABI) could benefit from further cognitive rehabilitation, after they have returned home. However, a lack of specialist services to provide such rehabilitation often prevents this. This leads to reduced reintegration of patients, increased social disadvantages and ultimately, higher economic costs. 10 months post-stroke, a 69 year-old woman was discharged from an inpatient rehabilitation program and returned home with severe cognitive impairments. We describe a pilot project which provided an individualised, low cost rehabilitation program, supervised and trained by a neuropsychologist. Progress was monitored every 3 months in order to decide on continuation of the program, based on the achieved results and predicted costs. Post intervention, despite severe initial impairment, cognitive and most notably daily functioning had improved. Although the financial investment was moderately high for the family, the intervention was still considered cost-effective when compared with the required costs of care in a local non-specialist care home. Moreover, the pilot experience was used to build a "local expert team" available for other individuals requiring rehabilitation. These results encourage the development of similar local "low cost" teams in the community, to provide scientifically-grounded cognitive rehabilitation for ABI patients returning home.

  16. A Strange Case of Downward Displacement of a Deep Brain Stimulation Electrode 10 Years Following Implantation: The Gliding Movement of Snakes Theory.

    Iacopino, Domenico Gerardo; Maugeri, Rosario; Giugno, Antonella; Giller, Cole A

    2015-08-01

    Despite the best efforts to ensure stereotactic precision, deep brain stimulation (DBS) electrodes can wander from their intended position after implantation. We report a case of downward electrode migration 10 years following successful implantation in a patient with Parkinson disease. A 53-year-old man with Parkinson disease underwent bilateral implantation of DBS electrodes connected to a subclavicular 2-channel pulse generator. The generator was replaced 7 years later, and a computed tomography (CT) scan confirmed the correct position of both leads. The patient developed a gradual worsening affecting his right side 3 years later, 10 years after the original implantation. A CT scan revealed displacement of the left electrode inferiorly into the pons. The new CT scans and the CT scans obtained immediately after the implantation were merged within a stereotactic planning workstation (Brainlab). Comparing the CT scans, the distal end of the electrode was in the same position, the proximal tip being significantly more inferior. The size and configuration of the coiled portions of the electrode had not changed. At implantation, the length was 27.7 cm; after 10 years, the length was 30.6 cm. These data suggests that the electrode had been stretched into its new position rather than pushed. Clinicians evaluating patients with a delayed worsening should be aware of this rare event. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Differential effects of face-realism and emotion on event-related brain potentials and their implications for the uncanny valley theory.

    Schindler, Sebastian; Zell, Eduard; Botsch, Mario; Kissler, Johanna

    2017-03-23

    Cartoon characters are omnipresent in popular media. While few studies have scientifically investigated their processing, in computer graphics, efforts are made to increase realism. Yet, close approximations of reality have been suggested to evoke sometimes a feeling of eeriness, the "uncanny valley" effect. Here, we used high-density electroencephalography to investigate brain responses to professionally stylized happy, angry, and neutral character faces. We employed six face-stylization levels varying from abstract to realistic and investigated the N170, early posterior negativity (EPN), and late positive potential (LPP) event-related components. The face-specific N170 showed a u-shaped modulation, with stronger reactions towards both most abstract and most realistic compared to medium-stylized faces. For abstract faces, N170 was generated more occipitally than for real faces, implying stronger reliance on structural processing. Although emotional faces elicited highest amplitudes on both N170 and EPN, on the N170 realism and expression interacted. Finally, LPP increased linearly with face realism, reflecting activity increase in visual and parietal cortex for more realistic faces. Results reveal differential effects of face stylization on distinct face processing stages and suggest a perceptual basis to the uncanny valley hypothesis. They are discussed in relation to face perception, media design, and computer graphics.

  18. Calcium Hypothesis of Alzheimer's disease and brain aging: A framework for integrating new evidence into a comprehensive theory of pathogenesis.

    2017-02-01

    This article updates the Calcium Hypothesis of Alzheimer's disease and brain aging on the basis of emerging evidence since 1994 (The present article, with the subtitle "New evidence for a central role of Ca 2+ in neurodegeneration," includes three appendices that provide context and further explanations for the rationale for the revisions in the updated hypothesis-the three appendices are as follows: Appendix I "Emerging concepts on potential pathogenic roles of [Ca 2+ ]," Appendix II "Future studies to validate the central role of dysregulated [Ca 2+ ] in neurodegeneration," and Appendix III "Epilogue: towards a comprehensive hypothesis.") (Marx J. Fresh evidence points to an old suspect: calcium. Science 2007; 318:384-385). The aim is not only to re-evaluate the original key claims of the hypothesis with a critical eye but also to identify gaps in knowledge required to validate relevant claims and delineate additional studies and/or data that are needed. Some of the key challenges for this effort included examination of questions regarding (1) the temporal and spatial relationships of molecular mechanisms that regulate neuronal calcium ion (Ca 2+ ), (2) the role of changes in concentration of calcium ion [Ca 2+ ] in various subcellular compartments of neurons, (3) how alterations in Ca 2+ signaling affect the performance of neurons under various conditions, ranging from optimal functioning in a healthy state to conditions of decline and deterioration in performance during aging and in disease, and (4) new ideas about the contributions of aging, genetic, and environmental factors to the causal relationships between dysregulation of [Ca 2+ ] and the functioning of neurons (see Appendices I and II). The updated Calcium Hypothesis also includes revised postulates that are intended to promote further crucial experiments to confirm or reject the various predictions of the hypothesis (see Appendix III). Copyright © 2016 the Alzheimer's Association. All rights reserved.

  19. Spatial memory performance in androgen insensitive male rats.

    Jones, Bryan A; Watson, Neil V

    2005-06-02

    Masculinization of the developing rodent brain critically depends on the process of aromatization of circulating testosterone (T) to its estrogenic metabolite 17beta-estradiol, which subsequently interacts with estrogen receptors to permanently masculinize the brain. However, it remains unclear what role other androgenic mechanisms may play in the process of masculinization. A novel way of examining this is through the study of male rats that express the tfm mutation of the androgen receptor (AR) gene; such males are fully androgen insensitive and manifest a female phenotype due to a failure of AR-mediated masculinization of peripheral structures. Because tfm-affected males develop secretory testes and have near-normal T titers during development, aromatization would be expected to proceed normally, and brain mechanisms may be developmentally masculinized despite the feminized periphery. We compared tfm-affected males (X(tfm)Y) with normal males and females in the Morris Water Maze, a task in which males typically perform better than females. Performance of tfm-affected males was intermediate between that of normal males and females. While an overall male superiority was found in the task, the X(tfm)Y group reached male-typical escape latencies faster than females. Furthermore, in the X(tfm)Y group, the granule cell layer of the dentate gyrus was significantly larger than in females. These results support the suggestion that that AR mediated mechanisms contribute to the masculinization of spatial behaviours and hippocampal morphology, and this may be independent of estrogenic processes.

  20. Brain Diseases

    The brain is the control center of the body. It controls thoughts, memory, speech, and movement. It regulates the function of many organs. When the brain is healthy, it works quickly and automatically. However, ...

  1. Male pattern baldness (image)

    Male pattern baldness is a sex-linked characteristic that is passed from mother to child. A man can more accurately predict his chances of developing male pattern baldness by observing his mother's father than by looking ...

  2. [Male urinary incontinence

    Boer, T.A. de; Heesakkers, J.P.F.A.

    2008-01-01

    *Urinary incontinence in males is gaining increasingly more attention. *Male urinary incontinence can be classified as storage incontinence due to overactive bladder syndrome or stress incontinence due to urethral sphincter dysfunction. *Most patients benefit from the currently available treatment

  3. Self catheterization - male

    ... male; CIC - male Images Catheterization References Davis JE, Silverman MA. Urologic procedures. In: Roberts JR, ed. Roberts ... provided by VeriMed Healthcare Network. Also reviewed by David Zieve, MD, MHA, Medical Director, Brenda Conaway, Editorial ...

  4. Brain Region-Specific Expression of Genes Mapped within Quantitative Trait Loci for Behavioral Responsiveness to Acute Stress in Fisher 344 and Wistar Kyoto Male Rats (Open Access Postprint)

    2018-03-12

    responsiveness to acute stress in Fisher 344 and Wistar Kyoto male rats. PLoS ONE 13(3): e0194293. https://doi. org /10.1371/journal.pone.0194293 Editor...mapping analysis of complex traits in outbred rats. Nature genetics. 2013; 45(7): https://doi. org /10.1038/ng.2644 PMC3821058. PMID: 23708188 15...assisted breeding of congenic mouse strains. Nature Genetics. 1997; 17:280. https://doi. org /10.1038/ng1197-280 PMID: 9354790 21. The SC. SNP and haplotype

  5. Prostatitis and male infertility.

    Alshahrani, Saad; McGill, John; Agarwal, Ashok

    2013-11-01

    The prostate gland plays an important role in male reproduction. Inflammation of the prostate gland (prostatitis) is a common health problem affecting many young and middle aged men. Prostatitis is considered a correctable cause of male infertility, but the pathophysiology and appropriate treatment options of prostatitis in male infertility remain unclear. This literature review will focus on current data regarding prostatitis and its impact on male infertility. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Neural Networks: Making Connections about the Brain and about College while Monitoring Student Engagement in Second Graders

    Mead, Kristina S.

    2010-01-01

    This article describes a neuroscience outreach program developed by college undergraduates and aimed at second graders. Over a period of four weeks, twenty-five Denison students enrolled in a non-majors course on gender and the brain visited twenty-four second grade classrooms to engage a total of 464 students. We had a mission to both promote college awareness and to specifically bring some brain science into the classroom. The desire to engage students with the brain was in part a wish to celebrate brain awareness week and in part a wish to follow a feminist tenet of bridging theory and practice via activism. The college students chose six activities: a brain puzzle, a sock content guessing game, a jelly bean olfaction and taste test, mystery noises, a message transmission game, and a version of tag. During our outreach with the second graders, my students monitored student engagement and compared engagement between male and female second graders. Engagement was high for nearly all activities but girls were more engaged than boys during the brain puzzle and jelly bean activities. Effect sizes measured as Cohen’s “d” statistics were small to large (0.2 to 0.93). The other four activities (mystery socks, mystery noises, message transmission and neuron chain tag) showed no difference in engagement between male and female second graders. Our program benefited the Denison students as well, introducing many to community involvement and awakening in them an interest in teaching or working with kids. PMID:23494920

  7. Hemisphere- and gender-related differences in small-world brain networks: a resting-state functional MRI study.

    Tian, Lixia; Wang, Jinhui; Yan, Chaogan; He, Yong

    2011-01-01

    We employed resting-state functional MRI (R-fMRI) to investigate hemisphere- and gender-related differences in the topological organization of human brain functional networks. Brain networks were first constructed by measuring inter-regional temporal correlations of R-fMRI data within each hemisphere in 86 young, healthy, right-handed adults (38 males and 48 females) followed by a graph-theory analysis. The hemispheric networks exhibit small-world attributes (high clustering and short paths) that are compatible with previous results in the whole-brain functional networks. Furthermore, we found that compared with females, males have a higher normalized clustering coefficient in the right hemispheric network but a lower clustering coefficient in the left hemispheric network, suggesting a gender-hemisphere interaction. Moreover, we observed significant hemisphere-related differences in the regional nodal characteristics in various brain regions, such as the frontal and occipital regions (leftward asymmetry) and the temporal regions (rightward asymmetry), findings that are consistent with previous studies of brain structural and functional asymmetries. Together, our results suggest that the topological organization of human brain functional networks is associated with gender and hemispheres, and they provide insights into the understanding of functional substrates underlying individual differences in behaviors and cognition. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Brain Aneurysm

    A brain aneurysm is an abnormal bulge or "ballooning" in the wall of an artery in the brain. They are sometimes called berry aneurysms because they ... often the size of a small berry. Most brain aneurysms produce no symptoms until they become large, ...

  9. Brain Development

    ... Become a Member Home Early Development & Well-Being Brain Development A child’s brain undergoes an amazing period of development from birth ... neural connections each second. The development of the brain is influenced by many factors, including a child’s ...

  10. Varicocele and male infertility

    Jensen, Christian Fuglesang S.; Østergren, Peter; Dupree, James M.

    2017-01-01

    The link between varicoceles and male infertility has been a matter of debate for more than half a century. Varicocele is considered the most common correctable cause of male infertility, but some men with varicoceles are able to father children, even without intervention. In addition, improvements...... if the male partner has a clinically palpable varicocele and affected semen parameters....

  11. Left Brain. Right Brain. Whole Brain

    Farmer, Lesley S. J.

    2004-01-01

    As the United States student population is becoming more diverse, library media specialists need to find ways to address these distinctive needs. However, some of these differences transcend culture, touching on variations in the brain itself. Most people have a dominant side of the brain, which can affect their personality and learning style.…

  12. Personality and birth order in monozygotic twins adopted apart: a test of Sulloway's theory; Research Reviews: twin births and cancer risk in mothers, male sexual dysfunction, twin study of ultimatum game behavior; Human Interest: 'The Land of Twins', twin-like reunion-I, twin-like reunion-II.

    Segal, Nancy L

    2008-02-01

    A brief overview of Sulloway's (1996) theory of birth order and personality is presented. A reared apart twin approach for testing his personality findings regarding openness to experience and conscientiousness in first borns and later borns is described. This is followed by summaries of three recent twin studies. The topics include cancer risk in mother of twins, sexual dysfunction in males and responder behavior during ultimatum games. This article concludes with a discussion of twinning rates and rituals among the Yoruba of western Nigeria, and descriptions of two unusual reunions between siblings and twins.

  13. “Making difference: theories on gender, body and behaviour”

    Maria Teresa Citeli

    2001-01-01

    Full Text Available Since the end of the nineteenth century, when Darwin published his work on evolution, several female scientists have reacted by adopting basically two points of view: while some deny the potential of the biological sciences to explain social arrangements, others reinterpret biology studies on sex differences, admitting that these may explain human behavior and social inequality. In an attempt to appraise how social differences are assigned to the human body, this article discusses theoretical trends in recent works of biological sciences, which try to either reaffirm or deny the plausibility of theories that resort to sex differences presumably located in the body (brains, genes, male and female physiology to explain variations in human beings’ skills, abilities, cognitive patterns, and sexuality. And, given the influence of the media on our views on male and female, it also discusses the repercussion of such essentialist views on national and international print media.

  14. Brain Basics: Know Your Brain

    ... however, the brain is beginning to relinquish its secrets. Scientists have learned more about the brain in ... through the activity of these lobes. At the top of each temporal lobe is an area responsible ...

  15. Left Brain/Right Brain: Research and Learning. Focused Access to Selected Topics (FAST) Bibliography No. 12.

    Eppele, Ruth

    This 27-item bibliography represents the variety of articles added to the ERIC database from 1983 through 1988 on left-brain/right-brain research, theory, and application as it relates to classroom incorporation. Included are conflicting opinions as to the usefulness of left-brain/right-brain studies and their application in the learning…

  16. Male lifespan and the secondary sex ratio.

    Catalano, Ralph; Bruckner, Tim

    2006-01-01

    Literature speculating on the fetal origins of later life morbidity often invokes the "damaged cohort" theory, i.e., that maternal responses to exogenous shocks induce "stress reactivity" in fetuses and thereby shorten the lifespan of males in utero during stressful times. A rival, or "culled cohort," theory posits that exogenous shocks to gravid females induce spontaneous abortions of frail male fetuses, leaving relatively hardy survivors who enjoy, on average, lifespans longer than males in less stressed birth cohorts. A recent test based on archival data from Sweden supported the culled cohort theory. Several characteristics of the Swedish data, however, raise questions regarding the external validity of the findings. We repeat the test with data from Denmark, Iceland, and England and Wales. We use time-series methods that control for trends, seasonal cycles, and other forms of autocorrelation that could confound the test. None of the results supports the "damaged cohort" theory. Consistent with the Swedish findings and with evolutionary theory, we find support in Iceland and England and Wales for the "culled cohort" theory. We discuss the implications of our findings for basic research as well as for public health.

  17. Sneaker "jack" males outcompete dominant "hooknose" males under sperm competition in Chinook salmon (Oncorhynchus tshawytscha).

    Young, Brent; Conti, David V; Dean, Matthew D

    2013-12-01

    In a variety of taxa, males deploy alternative reproductive tactics to secure fertilizations. In many species, small "sneaker" males attempt to steal fertilizations while avoiding encounters with larger, more aggressive, dominant males. Sneaker males usually face a number of disadvantages, including reduced access to females and the higher likelihood that upon ejaculation, their sperm face competition from other males. Nevertheless, sneaker males represent an evolutionarily stable strategy under a wide range of conditions. Game theory suggests that sneaker males compensate for these disadvantages by investing disproportionately in spermatogenesis, by producing more sperm per unit body mass (the "fair raffle") and/or by producing higher quality sperm (the "loaded raffle"). Here, we test these models by competing sperm from sneaker "jack" males against sperm from dominant "hooknose" males in Chinook salmon. Using two complementary approaches, we reject the fair raffle in favor of the loaded raffle and estimate that jack males were ∼1.35 times as likely as hooknose males to fertilize eggs under controlled competitive conditions. Interestingly, the direction and magnitude of this skew in paternity shifted according to individual female egg donors, suggesting cryptic female choice could moderate the outcomes of sperm competition in this externally fertilizing species.

  18. Artificial Intelligence and Economic Theories

    Marwala, Tshilidzi; Hurwitz, Evan

    2017-01-01

    The advent of artificial intelligence has changed many disciplines such as engineering, social science and economics. Artificial intelligence is a computational technique which is inspired by natural intelligence such as the swarming of birds, the working of the brain and the pathfinding of the ants. These techniques have impact on economic theories. This book studies the impact of artificial intelligence on economic theories, a subject that has not been extensively studied. The theories that...

  19. Aberrant brain functional connectome in patients with obstructive sleep apnea.

    Chen, Li-Ting; Fan, Xiao-Le; Li, Hai-Jun; Ye, Cheng-Long; Yu, Hong-Hui; Xin, Hui-Zhen; Gong, Hong-Han; Peng, De-Chang; Yan, Li-Ping

    2018-01-01

    Obstructive sleep apnea (OSA) is accompanied by widespread abnormal spontaneous regional activity related to cognitive deficits. However, little is known about the topological properties of the functional brain connectome of patients with OSA. This study aimed to use the graph theory approaches to investigate the topological properties and functional connectivity (FC) of the functional connectome in patients with OSA, based on resting-state functional magnetic resonance imaging (rs-fMRI). Forty-five male patients with newly diagnosed untreated severe OSA and 45 male good sleepers (GSs) underwent a polysomnography (PSG), clinical evaluations, and rs-fMRI scans. The automated anatomical labeling (AAL) atlas was used to construct the functional brain connectome. The topological organization and FC of brain functional networks in patients with OSA were characterized using graph theory methods and investigated the relationship between functional network topology and clinical variables. Both the patients with OSA and the GSs exhibited high-efficiency "small-world" network attributes. However, the patients with OSA exhibited decreased σ, γ, E glob ; increased Lp, λ; and abnormal nodal centralities in several default-mode network (DMN), salience network (SN), and central executive network (CEN) regions. However, the patients with OSA exhibited abnormal functional connections between the DMN, SN, and CEN. The disrupted FC was significantly positive correlations with the global network metrics γ and σ. The global network metrics were significantly correlated with the Epworth Sleepiness Scale (ESS) score, Montreal Cognitive Assessment (MoCA) score, and oxygen desaturation index. The findings suggest that the functional connectome of patients with OSA exhibited disrupted functional integration and segregation, and functional disconnections of the DMN, SN, and CEN. The aberrant topological attributes may be associated with disrupted FC and cognitive functions. These

  20. Brain glycogen

    Obel, Linea Lykke Frimodt; Müller, Margit S; Walls, Anne B

    2012-01-01

    Glycogen is a complex glucose polymer found in a variety of tissues, including brain, where it is localized primarily in astrocytes. The small quantity found in brain compared to e.g., liver has led to the understanding that brain glycogen is merely used during hypoglycemia or ischemia....... In this review evidence is brought forward highlighting what has been an emerging understanding in brain energy metabolism: that glycogen is more than just a convenient way to store energy for use in emergencies-it is a highly dynamic molecule with versatile implications in brain function, i.e., synaptic...... activity and memory formation. In line with the great spatiotemporal complexity of the brain and thereof derived focus on the basis for ensuring the availability of the right amount of energy at the right time and place, we here encourage a closer look into the molecular and subcellular mechanisms...

  1. A gestational diet high in fat-soluble vitamins alters expression of genes in brain pathways and reduces sucrose preference, but not food intake, in Wistar male rat offspring.

    Sanchez-Hernandez, Diana; Poon, Abraham N; Kubant, Ruslan; Kim, Hwanki; Huot, Pedro S P; Cho, Clara E; Pannia, Emanuela; Pausova, Zdenka; Anderson, G Harvey

    2015-04-01

    High intakes of multivitamins (HV) during pregnancy by Wistar rats increase food intake, body weight, and characteristics of the metabolic syndrome in male offspring. In this study, high-fat soluble vitamins were fed in combination during gestation to test the hypothesis that they partially account for the effects of the HV diet. Pregnant Wistar rats (14-16/group) were fed a recommended multivitamin diet (1-fold all vitamins) or high-fat soluble vitamin diet (HFS; 10-fold vitamins A, D, E, and K) during pregnancy. Offspring body weight, food intake, and preference as well as expression of selected genes in the hypothalamus and hippocampus were evaluated at birth, weaning, and 14 weeks postweaning. Body weight and food intake were not affected but sucrose preference decreased by 4% in those born to dams fed the HFS gestational diet. Gene expressions of the hypothalamic anorexogenic pro-opiomelanocortin (Pomc) and orexogenic neuropeptide Y (Npy) (∼30% p = 0.008, ∼40% p = 0.007) were increased in weaning and adult rats, respectively. Hippocampal dopaminergic genes (35%-50% p vitamins A, D, E, and K does not show the effects of the HV diet on body weight or food intake but may affect the development of higher hedonic regulatory pathways associated with food preference.

  2. Waltz's Theory of Theory

    Wæver, Ole

    2009-01-01

    -empiricism and anti-positivism of his position. Followers and critics alike have treated Waltzian neorealism as if it was at bottom a formal proposition about cause-effect relations. The extreme case of Waltz being so victorious in the discipline, and yet being consistently mis-interpreted on the question of theory......, shows the power of a dominant philosophy of science in US IR, and thus the challenge facing any ambitious theorising. The article suggests a possible movement of fronts away from the ‘fourth debate' between rationalism and reflectivism towards one of theory against empiricism. To help this new agenda...

  3. The effect of the ginger on the apoptosis of hippochampal cells according to the expression of BAX and Cyclin D1 genes and histological characteristics of brain in streptozotocin male diabetic rats.

    Molahosseini, A; Taghavi, M M; Taghipour, Z; Shabanizadeh, A; Fatehi, F; Kazemi Arababadi, M; Eftekhar Vaghefe, S H

    2016-10-31

    Diabetes is the most common endocrine disorder in humans with multiple complications including nervous system damages. The aim of the present study was to determine the effect of ginger extract on apoptosis of the neurons of hippocampus, via evaluation of BAX and Cyclin D1 and also histological analysis, in male diabetic rats. In this experimental study, 60 Wistar rats (220 ± 30gr) were conducted in 5 groups as follow: diabetic group treated with saline (group 1), normal group treated with saline (group 2), diabetic group treated with ginger (group 3), diabetic group treated with ginger-insulin (group 4), diabetic group treated with insulin (group 5). STZ (60 mg/kg) was intraperitoneally used to induce the diabetes. Expression levels of BAX and Cyclin D1 were examined using Real-Time PCR technique and the normality of neurons was evaluated using H&E staining method. The results showed that blood glucose level significantly decreased in group 4 when compared to group 1. In molecular analysis, there was no significant difference between groups regarding the expression of BAX gens, while, the expression of Cyclin D1 were significantly decreased in group 4 compared with group 1. Histological analysis revealed that pathological symptoms were lower in group 4 than the other diabetic groups. The results of present study showed that the ginger in addition to lowering blood sugar level, changes the expression of Cyclin D1 gene and histological characteristics in a positive manner. This means that the ginger may protects neurons of the hippocampus from apoptosis in diabetic patients.

  4. Review: neuroestrogen regulation of socio-sexual behavior of males.

    Ubuka, Takayoshi; Tsutsui, Kazuyoshi

    2014-01-01

    It is thought that estrogen (neuroestrogen) synthesized by the action of aromatase in the brain from testosterone activates male socio-sexual behaviors, such as aggression and sexual behavior in birds. We recently found that gonadotropin-inhibitory hormone (GnIH), a hypothalamic neuropeptide, inhibits socio-sexual behaviors of male quail by directly activating aromatase and increasing neuroestrogen synthesis in the preoptic area (POA). The POA is thought to be the most critical site of aromatization and neuroestrogen action for the regulation of socio-sexual behavior of male birds. We concluded that GnIH inhibits socio-sexual behaviors of male quail by increasing neuroestrogen concentration beyond its optimal concentration in the brain for expression of socio-sexual behavior. On the other hand, it has been reported that dopamine and glutamate, which stimulate male socio-sexual behavior in birds and mammals, inhibit the activity of aromatase in the POA. Multiple studies also report that the activity of aromatase or neuroestrogen is negatively correlated with changes in male socio-sexual behavior in fish, birds, and mammals including humans. Here, we review previous studies that investigated the role of neuroestrogen in the regulation of male socio-sexual behavior and reconsider the hypothesis that neuroestrogen activates male socio-sexual behavior in vertebrates. It is considered that basal concentration of neuroestrogen is required for the maintenance of male socio-sexual behavior but higher concentration of neuroestrogen may inhibit male socio-sexual behavior.

  5. Male Adolescent Contraceptive Utilization.

    Finkel, Madelon Lubin; Finkel, David J.

    1978-01-01

    The contraceptive utilization of a sample of sexually active, urban, high school males (Black, Hispanic, and White) was examined by anonymous questionnaire. Contraceptive use was haphazard, but White males tended to be more effective contraceptors than the other two groups. Reasons for nonuse were also studied. (Author/SJL)

  6. Male mating biology

    Howell, Paul I.; Knols, Bart G. J.

    2009-01-01

    Before sterile mass-reared mosquitoes are released in an attempt to control local populations, many facets of male mating biology need to be elucidated. Large knowledge gaps exist in how both sexes meet in space and time, the correlation of male size and mating success and in which arenas matings

  7. Male breast cancer

    Lautrup, Marianne D; Thorup, Signe S; Jensen, Vibeke

    2018-01-01

    OBJECTIVE: Describe prognostic parameters of Danish male breast cancer patients (MBCP) diagnosed from 1980-2009. Determine all-cause mortality compared to the general male population and analyze survival/mortality compared with Danish female breast cancer patients (FBCP) in the same period...

  8. The Brain--His and Hers

    King, Kelly; Gurian, Michael

    2006-01-01

    This article describes and discusses, some of the 100 structural differences between the male and female brain identified by some researchers. Teachers need to be aware of these differences, and how they manifest themselves in male and female students. If teachers are not familiar with these differences, and how they affect learning styles,…

  9. Gender effects on age-related changes in brain structure.

    Xu, J; Kobayashi, S; Yamaguchi, S; Iijima, K; Okada, K; Yamashita, K

    2000-01-01

    Previous reports have suggested that brain atrophy is associated with aging and that there are gender differences in brain atrophy with aging. These reports, however, neither exclude silent brain lesions in "healthy subjects" nor divide the brain into subregions. The aim of this study is to clarify the effect of gender on age-related changes in brain subregions by MR imaging. A computer-assisted system was used to calculate the brain matter area index (BMAI) of various regions of the brain from MR imaging of 331 subjects without brain lesions. There was significantly more brain atrophy with aging in the posterior parts of the right frontal lobe in male subjects than there was in female subjects. Age-related atrophy in the middle part of the right temporal lobe, the left basal ganglia, the parietal lobe, and the cerebellum also was found in male subjects, but not in female subjects. In the temporal lobe, thalamus, parieto-occipital lobe, and cerebellum, brain volume in the left hemisphere is significantly smaller than in the right hemisphere; sex and age did not affect the hemisphere differences of brain volume in these regions. The effect of gender on brain atrophy with aging varied in different subregions of the brain. There was more brain atrophy with aging in male subjects than in female subjects.

  10. Brain Drain, Brain Gain, and Mobility: Theories and Prospective Methods

    Jalowiecki, Bohdan; Gorzelak, Grzegorz Jerzy

    2004-01-01

    This paper presents some theoretical and methodological considerations associated with the geographical and professional mobility of science professionals, including the conduct by the authors of a large scale survey questionnaire in Poland in 1994. It does not directly relate to research conducted elsewhere in the region, but does reflect…

  11. Male depression in females?

    Möller-Leimkühler, Anne Maria; Yücel, Mete

    2010-02-01

    Scientific evidence for a male-typed depression ("male depression") is still limited, but mainly supports this concept with respect to single externalizing symptoms or symptom clusters. In particular, studies on non-clinical populations including males and females are lacking. The present study aims at assessing general well-being, the risk and the symptoms of male depression dependent on biological sex and gender-role orientation on instrumental (masculine) and expressive (feminine) personality traits in an unselected community sample of males and females. Students (518 males, 500 females) of the Ludwig-Maximilians-University of Munich, Germany, were asked to participate in a "stress study" and complete the following self-report questionnaires: the WHO-5 Well-being Index [Bech, P., 1998. Quality of Life in the Psychiatric Patient. Mosby-Wolfe, London], the Gotland Scale for Male Depression [Walinder, J., Rutz, W., 2001. Male depression and suicide. International Clinical Psychopharmacology 16 (suppl 2), 21-24] and the German Extended Personal Attribute Questionnaire [Runge, T.E., Frey, D., Gollwitzer, P.M., et al., 1981. Masculine (instrumental) and feminine (expressive) traits. A comparison between students in the United States and West Germany. Journal of Cross-Cultural Psychology 12, 142-162]. General well-being of the students was significantly lower compared to population norms. Contrary to expectations, female students had a greater risk of male depression than male students (28.9% vs. 22.4%; p<0.05). Overall, prototypic depressive symptoms as well as externalizing symptoms were more pronounced in females. In the subgroup of those at risk for male depression, biological sex and kind of symptoms were unrelated. Principal component analyses revealed a similar symptom structure for males and females. Low scores on masculinity/instrumentality significantly predicted higher risk of male depression, independent of biological sex. The study sample is not

  12. Demand for male contraception.

    Dorman, Emily; Bishai, David

    2012-10-01

    The biological basis for male contraception was established decades ago, but despite promising breakthroughs and the financial burden men increasingly bear due to better enforcement of child support policies, no viable alternative to the condom has been brought to market. Men who wish to control their fertility must rely on female compliance with contraceptives, barrier methods, vasectomy or abstinence. Over the last 10 years, the pharmaceutical industry has abandoned most of its investment in the field, leaving only nonprofit organisations and public entities pursuing male contraception. Leading explanations are uncertain forecasts of market demand pitted against the need for critical investments to demonstrate the safety of existing candidate products. This paper explores the developments and challenges in male contraception research. We produce preliminary estimates of potential market size for a safe and effective male contraceptive based on available data to estimate the potential market for a novel male method.

  13. Male depression and suicide.

    Wålinder, J; Rutzt, W

    2001-03-01

    Based on the experiences of the Gotland Study that education of general practitioners about depressive illness resulted in a statistically significant reduction in the number of female suicides, leaving the rate of male suicides almost unaffected, we propose the concept of a male depressive syndrome. This syndrome comprises a low stress tolerance, an acting-out behavior, a low impulse control, substance abuse and a hereditary loading of depressive illness, alcoholism and suicide. This notion is supported by data from The Amish study as well as the concept of van Praag of a stress-precipitated, cortisol-induced, serotonin-related and anxiety-driven depressive illness most often seen in males. In order to identify depressed males, the Gotland Male Depression Scale has been developed. Some preliminary data using the scale in a group of alcohol-dependant patients are presented.

  14. CDCA7L and Mechanisms of Increased Male Bias in Glioma

    2016-05-01

    astrocytoma and glioblastoma and neurotransmitter levels in NF1 mutant brains , comparing males and females . The results of this work can be used to develop...additional hypotheses on whether a "yin-yang" relationship exists in males and females between risk for brain cancer and risk for depression, or...hypothesized that CDCA7L may have different molecular propensities in males and females and are examining the role of Chr Y-specific epigenetic modifiers in

  15. Brain imaging

    Mishkin, F.S.

    1978-01-01

    The techniques of brain imaging and results in perfusion studies and delayed images are outlined. An analysis of the advantages and disadvantages of the brain scan in a variety of common problems is discussed, especially as compared with other available procedures. Both nonneoplastic and neoplastic lesions are considered. (Auth/C.F.)

  16. Unusual radiological characteristics of teratoid/rhabdoid brain tumor ...

    We report a case of atypical teratoid rhabdoid brain tumor for 4 months old male child, who presented with unusual radiological findings, that can be confused with other brain tumors ,so we high light these unusual imaging features to aid in making correct diagnosis. Keywords: atypical teratoid–rhabdoid tumor, brain tumor, ...

  17. Mapping plasticity: sex/gender and the changing brain

    Kleinherenbrink, A.

    2014-01-01

    There is a consensus in the neuroscientific literature that brains are either male or female, and that ‘brain sex’ is a fixed, immutable trait. Feminist critics have challenged this idea, raising questions, for example, about brain plasticity (the role of sociocultural factors in the emergence and

  18. Preferred partner characteristics in homosexual men in relation to speculated patterns of brain differentiation.

    Muscarella, Frank

    2002-08-01

    The current study was designed to test a neurohormonally based theory of sexual orientation and preferred partner characteristics in homosexual men. The theory holds that the brains of homosexual men are masculinized and feminized directing attraction to targets younger and more masculine than self, and the brains of homosexual adolescents are incompletely masculinized and feminized directing attraction to targets older and more masculine than self. Ninety-six homosexual men completed questionnaires that asked them to rate morphological and behavioral characteristics associated with ethologically relevant indicators of masculinity. The participants made ratings for themselves as adolescents and adults, their current partners and idealized partners as adults, and their idealized partners as adolescents. Results of within-subjects multivariate analyses of variance supported most of the hypotheses. Participants as adults rated their idealized partners as more masculine than themselves and their real partners on five measures: height, weight, muscle development, facial hair, and sexuality. As adolescents they indicated a preference for males older and more masculine than self. The participants in adulthood did not show the predicted preference for partners younger than themselves. The increased ratings of sexuality for self from adolescence to adulthood support the contention that some additional masculinization of the brain may occur with aging. The increased ratings of body size for the idealized target from adolescence to adulthood keeps the target more masculine then self across developmental periods. This phenomenon is consistent with the speculated feminization of the brain at both periods and its effects on partner preferences.

  19. Altered brain network measures in patients with primary writing tremor

    Lenka, Abhishek; Jhunjhunwala, Ketan Ramakant [National Institute of Mental Health and Neurosciences, Department of Clinical Neurosciences, Bangalore, Karnataka (India); National Institute of Mental Health and Neurosciences (NIMHANS), Department of Neurology, Bangalore, Karnataka (India); Panda, Rajanikant; Saini, Jitender; Bharath, Rose Dawn [National Institute of Mental Health and Neurosciences, Department of Neuroimaging and Interventional Radiology, Bangalore, Karnataka (India); Yadav, Ravi; Pal, Pramod Kumar [National Institute of Mental Health and Neurosciences (NIMHANS), Department of Neurology, Bangalore, Karnataka (India)

    2017-10-15

    Primary writing tremor (PWT) is a rare task-specific tremor, which occurs only while writing or while adopting the hand in the writing position. The basic pathophysiology of PWT has not been fully understood. The objective of this study is to explore the alterations in the resting state functional brain connectivity, if any, in patients with PWT using graph theory-based analysis. This prospective case-control study included 10 patients with PWT and 10 age and gender matched healthy controls. All subjects underwent MRI in a 3-Tesla scanner. Several parameters of small-world functional connectivity were compared between patients and healthy controls by using graph theory-based analysis. There were no significant differences in age, handedness (all right handed), gender distribution (all were males), and MMSE scores between the patients and controls. The mean age at presentation of tremor in the patient group was 51.7 ± 8.6 years, and the mean duration of tremor was 3.5 ± 1.9 years. Graph theory-based analysis revealed that patients with PWT had significantly lower clustering coefficient and higher path length compared to healthy controls suggesting alterations in small-world architecture of the brain. The clustering coefficients were lower in PWT patients in left and right medial cerebellum, right dorsolateral prefrontal cortex (DLPFC), and left posterior parietal cortex (PPC). Patients with PWT have significantly altered small-world brain connectivity in bilateral medial cerebellum, right DLPFC, and left PPC. Further studies with larger sample size are required to confirm our results. (orig.)

  20. Altered brain network measures in patients with primary writing tremor

    Lenka, Abhishek; Jhunjhunwala, Ketan Ramakant; Panda, Rajanikant; Saini, Jitender; Bharath, Rose Dawn; Yadav, Ravi; Pal, Pramod Kumar

    2017-01-01

    Primary writing tremor (PWT) is a rare task-specific tremor, which occurs only while writing or while adopting the hand in the writing position. The basic pathophysiology of PWT has not been fully understood. The objective of this study is to explore the alterations in the resting state functional brain connectivity, if any, in patients with PWT using graph theory-based analysis. This prospective case-control study included 10 patients with PWT and 10 age and gender matched healthy controls. All subjects underwent MRI in a 3-Tesla scanner. Several parameters of small-world functional connectivity were compared between patients and healthy controls by using graph theory-based analysis. There were no significant differences in age, handedness (all right handed), gender distribution (all were males), and MMSE scores between the patients and controls. The mean age at presentation of tremor in the patient group was 51.7 ± 8.6 years, and the mean duration of tremor was 3.5 ± 1.9 years. Graph theory-based analysis revealed that patients with PWT had significantly lower clustering coefficient and higher path length compared to healthy controls suggesting alterations in small-world architecture of the brain. The clustering coefficients were lower in PWT patients in left and right medial cerebellum, right dorsolateral prefrontal cortex (DLPFC), and left posterior parietal cortex (PPC). Patients with PWT have significantly altered small-world brain connectivity in bilateral medial cerebellum, right DLPFC, and left PPC. Further studies with larger sample size are required to confirm our results. (orig.)

  1. Altered brain network measures in patients with primary writing tremor.

    Lenka, Abhishek; Jhunjhunwala, Ketan Ramakant; Panda, Rajanikant; Saini, Jitender; Bharath, Rose Dawn; Yadav, Ravi; Pal, Pramod Kumar

    2017-10-01

    Primary writing tremor (PWT) is a rare task-specific tremor, which occurs only while writing or while adopting the hand in the writing position. The basic pathophysiology of PWT has not been fully understood. The objective of this study is to explore the alterations in the resting state functional brain connectivity, if any, in patients with PWT using graph theory-based analysis. This prospective case-control study included 10 patients with PWT and 10 age and gender matched healthy controls. All subjects underwent MRI in a 3-Tesla scanner. Several parameters of small-world functional connectivity were compared between patients and healthy controls by using graph theory-based analysis. There were no significant differences in age, handedness (all right handed), gender distribution (all were males), and MMSE scores between the patients and controls. The mean age at presentation of tremor in the patient group was 51.7 ± 8.6 years, and the mean duration of tremor was 3.5 ± 1.9 years. Graph theory-based analysis revealed that patients with PWT had significantly lower clustering coefficient and higher path length compared to healthy controls suggesting alterations in small-world architecture of the brain. The clustering coefficients were lower in PWT patients in left and right medial cerebellum, right dorsolateral prefrontal cortex (DLPFC), and left posterior parietal cortex (PPC). Patients with PWT have significantly altered small-world brain connectivity in bilateral medial cerebellum, right DLPFC, and left PPC. Further studies with larger sample size are required to confirm our results.

  2. Regional volumes and spatial volumetric distribution of gray matter in the gender dysphoric brain.

    Hoekzema, Elseline; Schagen, Sebastian E E; Kreukels, Baudewijntje P C; Veltman, Dick J; Cohen-Kettenis, Peggy T; Delemarre-van de Waal, Henriette; Bakker, Julie

    2015-05-01

    The sexual differentiation of the brain is primarily driven by gonadal hormones during fetal development. Leading theories on the etiology of gender dysphoria (GD) involve deviations herein. To examine whether there are signs of a sex-atypical brain development in GD, we quantified regional neural gray matter (GM) volumes in 55 female-to-male and 38 male-to-female adolescents, 44 boys and 52 girls without GD and applied both univariate and multivariate analyses. In girls, more GM volume was observed in the left superior medial frontal cortex, while boys had more volume in the bilateral superior posterior hemispheres of the cerebellum and the hypothalamus. Regarding the GD groups, at whole-brain level they differed only from individuals sharing their gender identity but not from their natal sex. Accordingly, using multivariate pattern recognition analyses, the GD groups could more accurately be automatically discriminated from individuals sharing their gender identity than those sharing their natal sex based on spatially distributed GM patterns. However, region of interest analyses indicated less GM volume in the right cerebellum and more volume in the medial frontal cortex in female-to-males in comparison to girls without GD, while male-to-females had less volume in the bilateral cerebellum and hypothalamus than natal boys. Deviations from the natal sex within sexually dimorphic structures were also observed in the untreated subsamples. Our findings thus indicate that GM distribution and regional volumes in GD adolescents are largely in accordance with their respective natal sex. However, there are subtle deviations from the natal sex in sexually dimorphic structures, which can represent signs of a partial sex-atypical differentiation of the brain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Male Body Practices.

    Lefkowich, Maya; Oliffe, John L; Hurd Clarke, Laura; Hannan-Leith, Madeline

    2017-03-01

    The pressure on boys and men to engage in extensive body practices (e.g., closely monitored eating and exercise habits) and achieve ideal male bodies has grown significantly over the past 20 years. Central to the depiction of ideal male bodies and body practices are both the pursuit and achievement of lean and well-defined muscles. The labels "pitches," "purchases," and "performativities" were inductively derived from the literature, and used to describe the multifaceted connections between masculinities, muscularity, and idealized male body practices. "Pitches" distil how popular culture posture norms of masculinity, and manly bodies and behaviors attainable and necessary. "Purchases" refer to men's diverse buy-in to dominant discourses about acceptable male bodies and practices. "Performativities" chronicle how men embody and navigate gender norms as they evaluate their own bodies, behaviors, and eating habits and those of their peers. Based on findings from the current scoping review, future research could benefit from fully linking masculinities with the drive for muscularity to address health and social risks associated with the pursuit of the idealized male body. In highlighting the plurality of masculinities and the complexity of men's diverse identities, health care providers can better reach and support men. Focusing on, and celebrating, a wider range of male bodies could help recenter dominant discourses about how and whose bodies and experiences are idealized. The current scoping review article offers an overview of how masculinities and muscularity have been linked to male body practices, and recommendations to advance this emergent field.

  4. Decision theory, reinforcement learning, and the brain.

    Dayan, Peter; Daw, Nathaniel D

    2008-12-01

    Decision making is a core competence for animals and humans acting and surviving in environments they only partially comprehend, gaining rewards and punishments for their troubles. Decision-theoretic concepts permeate experiments and computational models in ethology, psychology, and neuroscience. Here, we review a well-known, coherent Bayesian approach to decision making, showing how it unifies issues in Markovian decision problems, signal detection psychophysics, sequential sampling, and optimal exploration and discuss paradigmatic psychological and neural examples of each problem. We discuss computational issues concerning what subjects know about their task and how ambitious they are in seeking optimal solutions; we address algorithmic topics concerning model-based and model-free methods for making choices; and we highlight key aspects of the neural implementation of decision making.

  5. Female sticklebacks use male coloration in mate choice and hence avoid parasitized males

    Milinski, Manfred; Bakker, Theo C. M.

    1990-03-01

    AN important problem in evolutionary biology since the time of Darwin has been to understand why females preferentially mate with males handicapped by secondary sexual ornaments1-3. One hypothesis of sexual selection theory is that these ornaments reliably reveal the male's condition4-6, which can be affected for example by parasites4,7-13. Here we show that in the three-spined stickleback (Gasterosteus aculeatus) the intensity of male red breeding coloration positively correlates with physical condition. Gravid females base their active mate choice on the intensity of the male's red coloration. Choice experiments under green light prevent the use of red colour cues by females, and males that were previously preferred are now chosen no more than randomly, although the courtship behaviour of the males remains unchanged. Parasitieation causes a deterioration in the males' condition and a decrease in the intensity of their red coloration. Tests under both lighting conditions reveal that the females recognize the formerly parasitized males by the lower intensity of their breeding coloration. Female sticklebacks possibly select a male with a good capacity for paternal care14 but if there is additive genetic variation for parasite resistance, then they might also select for resistance genes, as proposed by Hamilton and Zuk4.

  6. The social brain network and autism.

    Misra, Vivek

    2014-04-01

    Available research data in Autism suggests the role of a network of brain areas, often known as the 'social brain'. Recent studies highlight the role of genetic mutations as underlying patho-mechanism in Autism. This mini review, discusses the basic concepts behind social brain networks, theory of mind and genetic factors associated with Autism. It critically evaluates and explores the relationship between the behavioral outcomes and genetic factors providing a conceptual framework for understanding of autism.

  7. Toward Developmental Connectomics of the Human Brain

    Cao, Miao; Huang, Hao; Peng, Yun; Dong, Qi; He, Yong

    2016-01-01

    Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying structural and functional connectivity patterns of the developing brain. Normal brain development is characterized by continuous and significant network evolution throughout infancy, childhood, and adolescence, following specific maturational patterns. Disruption of these normal changes is associated with neuropsychiatric developmental disorders, such as autism spectrum disorder...

  8. Towards Developmental Connectomics of the Human Brain

    Miao eCao; Hao eHuang; Hao eHuang; Yun ePeng; Qi eDong; Yong eHe

    2016-01-01

    Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying structural and functional connectivity patterns of the developing brain. Normal brain development is characterized by continuous and significant network evolution throughout infancy, childhood and adolescence, following specific maturational patterns. Disruption of these normal changes is associated with neuropsychiatric developmental disorders, such as autism spectrum disorders...

  9. Adolescent Black Males' Drug Trafficking and Addiction: Three Theoretical Perspectives.

    Moore, Sharon E.

    1995-01-01

    Explains the incidence and nature of drug trafficking and chemical dependency among adolescent black males. The paper also discusses the social science theories of Emile Durkheim, Karl Marx, and Molefi Asante to better understand the behaviors, and the consequences of those behaviors, of young black males who participate in drug trafficking. (GR)

  10. Balancing extensive ambition and a context overflowing with opportunities and demands: A grounded theory on stress and recovery among highly educated working young women entering male-dominated occupational areas

    Jesper Löve

    2011-09-01

    Full Text Available Several factors underline the issue of stress-related health among young highly educated women. Major societal changes might provide more new challenges with considerably changed and expanded roles than were expected by earlier generations, especially among women. The quantity of young women with higher education has also increased threefold in Sweden in less than two decades and there are a growing number of young women that hereby break with traditional gender positions and enter new occupational areas traditionally dominated by men. The research questions in the present study were: “What is the main concern, regarding stress and recovery, among young highly educated working women breaking with traditional gender positions and entering male-dominated occupational areas?” and “How do they handle this concern?” We conducted open-ended interviews with 20 informants, aged 23–29 years. The results showed that the synergy between highly ambitious individuals and a context overflowing with opportunities and demands ended up in the informants’ constantly striving to find a balance in daily life (main concern. This concern refers to the respondents experiencing a constant overload of ambiguity and that they easily became entangled in a loop of stress and dysfunctional coping behavior, threatening the balance between stress and sufficient recovery. In order to handle this concern, the respondents used different strategies in balancing extensive ambition and a context overflowing with opportunities and demands (core category. This preliminary theoretical model deepens our understanding of how the increasing numbers of highly educated young women face complex living conditions endangering their possibility of maintaining health and work ability.

  11. Cytogenetic of Male Infertility

    Lutfiye Ozpak

    2011-08-01

    Full Text Available Infertility by definition, is not to get pregnant within one year of regular sexual relationship without protection, affects 15-20% of reproductive age couples. Approximately 30% of infertility cases are male originated. Male infertility is caused by endocrine-related genetic defects affecting urogenital system function. These defects adversely affect subsequent spermatogenesis, sexual function, fertility, early embryonic stage of sexual maturation. Autosomal and gonosomal, numerical and structural chromosome abnormalities and related syndromes rank at the top causes of male infertility. Similar chromosome abnormalities are detected in male infertility and as the rate of these abnormalities increase, it was found to reduce sperm count especially in azospermic and oligozoospermic men. [Archives Medical Review Journal 2011; 20(4.000: 230-245

  12. Males and Eating Disorders

    ... Bar Home Current Issue Past Issues Males and Eating Disorders Past Issues / Spring 2008 Table of Contents For ... this page please turn Javascript on. Photo: PhotoDisc Eating disorders primarily affect girls and women, but boys and ...

  13. Male hypogonadism (Part 1)

    Ye.V. Luchytskyy; V.Yе. Luchytskyy; M.D. Tronko

    2017-01-01

    The first part of the review presents the current data on the prevalence of male hypogonadism, methods of diagnosing different forms of hypogonadism, describes the clinical manifestations of the most common forms of this disease.

  14. Male hypogonadism (Part 1

    Ye.V. Luchytskyy

    2017-05-01

    Full Text Available The first part of the review presents the current data on the prevalence of male hypogonadism, methods of diagnosing different forms of hypogonadism, describes the clinical manifestations of the most common forms of this disease.

  15. Male breast lesions

    Matushita, J.P.K.; Andrade, L.G. de; Carregal, E.; Marimatsu, R.I.; Matushita, J.S.

    1989-01-01

    Roentgenographic examination of the male breast is an important aspect of the continued, intensive investigation of the radiologic morphology of the normal and diseased breast conducted in 17 cases examined at the Instituto Nacional do Cancer - RJ. It is purpose of this report to present the Roentgen appearance of various lesions of the male breast as they have been found in our practice and also to stress some of the difficulties in the differential diagnosis of these lesions. (author) [pt

  16. Thyroid and male reproduction

    Anand Kumar

    2014-01-01

    Full Text Available Male reproduction is governed by the classical hypothalamo-hypophyseal testicular axis: Hypothalamic gonadotropin releasing hormone (GnRH, pituitary luteinizing hormone (LH and follicle stimulating hormone (FSH and the gonadal steroid, principally, testosterone. Thyroid hormones have been shown to exert a modulatory influence on this axis and consequently the sexual and spermatogenic function of man. This review will examine the modulatory influence of thyroid hormones on male reproduction.

  17. Sex beyond the genitalia: The human brain mosaic

    Joel, Daphna; Berman, Zohar; Tavor, Ido; Wexler, Nadav; Gaber, Olga; Stein, Yaniv; Shefi, Nisan; Pool, Jared; Urchs, Sebastian; Margulies, Daniel S.; Liem, Franziskus; Hänggi, Jürgen; Jäncke, Lutz; Assaf, Yaniv

    2015-01-01

    Whereas a categorical difference in the genitals has always been acknowledged, the question of how far these categories extend into human biology is still not resolved. Documented sex/gender differences in the brain are often taken as support of a sexually dimorphic view of human brains (“female brain” or “male brain”). However, such a distinction would be possible only if sex/gender differences in brain features were highly dimorphic (i.e., little overlap between the forms of these features in males and females) and internally consistent (i.e., a brain has only “male” or only “female” features). Here, analysis of MRIs of more than 1,400 human brains from four datasets reveals extensive overlap between the distributions of females and males for all gray matter, white matter, and connections assessed. Moreover, analyses of internal consistency reveal that brains with features that are consistently at one end of the “maleness-femaleness” continuum are rare. Rather, most brains are comprised of unique “mosaics” of features, some more common in females compared with males, some more common in males compared with females, and some common in both females and males. Our findings are robust across sample, age, type of MRI, and method of analysis. These findings are corroborated by a similar analysis of personality traits, attitudes, interests, and behaviors of more than 5,500 individuals, which reveals that internal consistency is extremely rare. Our study demonstrates that, although there are sex/gender differences in the brain, human brains do not belong to one of two distinct categories: male brain/female brain. PMID:26621705

  18. Brain tumor - primary - adults

    ... Vestibular schwannoma (acoustic neuroma) - adults; Meningioma - adults; Cancer - brain tumor (adults) ... Primary brain tumors include any tumor that starts in the brain. Primary brain tumors can start from brain cells, ...

  19. Brain Stimulation Therapies

    ... Magnetic Seizure Therapy Deep Brain Stimulation Additional Resources Brain Stimulation Therapies Overview Brain stimulation therapies can play ... for a shorter recovery time than ECT Deep Brain Stimulation Deep brain stimulation (DBS) was first developed ...

  20. Brain radiation - discharge

    Radiation - brain - discharge; Cancer - brain radiation; Lymphoma - brain radiation; Leukemia - brain radiation ... Decadron) while you are getting radiation to the brain. It may make you hungrier, cause leg swelling ...

  1. Ring Theory

    Jara, Pascual; Torrecillas, Blas

    1988-01-01

    The papers in this proceedings volume are selected research papers in different areas of ring theory, including graded rings, differential operator rings, K-theory of noetherian rings, torsion theory, regular rings, cohomology of algebras, local cohomology of noncommutative rings. The book will be important for mathematicians active in research in ring theory.

  2. Game theory

    Hendricks, Vincent F.

    Game Theory is a collection of short interviews based on 5 questions presented to some of the most influential and prominent scholars in game theory. We hear their views on game theory, its aim, scope, use, the future direction of game theory and how their work fits in these respects....

  3. Brain abscess

    ... found. However, the most common source is a lung infection. Less often, a heart infection is the cause. The following raise your chance of developing a brain abscess: A weakened immune system (such as in people ...

  4. Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats

    McBride, Devin W.; Wang, Yuechun; Sherchan, Prativa; Tang, Jiping; Zhang, John H.

    2015-01-01

    Brain edema is a major contributor to poor outcome and reduced quality of life after surgical brain injury (SBI). Although SBI pathophysiology is well-known, the correlation between cerebral edema and neurological deficits has not been thoroughly examined in the rat model of SBI. Thus, the purpose of this study was to determine the correlation between brain edema and deficits in standard sensorimotor neurobehavior tests for rats subjected to SBI. Sixty male Sprague-Dawley rats were subjected ...

  5. Brain imaging and autism

    Zilbovicius, M.

    2006-01-01

    Autism is a neuro-developmental disorder with a range of clinical presentations, from mild to severe, referred to as autism spectrum disorders (ASD). The most common clinical ASD sign is social interaction impairment, which is associated with verbal and non-verbal communication deficits and stereotyped and obsessive behaviors. Thanks to recent brain imaging studies, scientists are getting a better idea of the neural circuits involved in ASD. Indeed, functional brain imaging, such as positron emission tomography (PET), single positron emission tomograph y (SPECT) and functional MRI (fMRI) have opened a new perspective to study normal and pathological brain functions. Three independent studies have found anatomical and rest functional temporal abnormalities. These anomalies are localized in the superior temporal sulcus bilaterally which are critical for perception of key social stimuli. In addition, functional studies have shown hypo-activation of most areas implicated in social perception (face and voice perception) and social cognition (theory of mind). These data suggest an abnormal functioning of the social brain network. The understanding of such crucial abnormal mechanism may drive the elaboration of new and more adequate social re-educative strategies in autism. (author)

  6. Brain imaging and autism

    Zilbovicius, M [Service Hospitalier Frederic Joliot (CEA/DSV/DRM), INSERM CEA 0205, 91 - Orsay (France)

    2006-07-01

    Autism is a neuro-developmental disorder with a range of clinical presentations, from mild to severe, referred to as autism spectrum disorders (ASD). The most common clinical ASD sign is social interaction impairment, which is associated with verbal and non-verbal communication deficits and stereotyped and obsessive behaviors. Thanks to recent brain imaging studies, scientists are getting a better idea of the neural circuits involved in ASD. Indeed, functional brain imaging, such as positron emission tomography (PET), single positron emission tomograph y (SPECT) and functional MRI (fMRI) have opened a new perspective to study normal and pathological brain functions. Three independent studies have found anatomical and rest functional temporal abnormalities. These anomalies are localized in the superior temporal sulcus bilaterally which are critical for perception of key social stimuli. In addition, functional studies have shown hypo-activation of most areas implicated in social perception (face and voice perception) and social cognition (theory of mind). These data suggest an abnormal functioning of the social brain network. The understanding of such crucial abnormal mechanism may drive the elaboration of new and more adequate social re-educative strategies in autism. (author)

  7. A note on Boltzmann brains

    Nomura, Yasunori, E-mail: ynomura@berkeley.edu

    2015-10-07

    Understanding the observed arrow of time is equivalent, under general assumptions, to explaining why Boltzmann brains do not overwhelm ordinary observers. It is usually thought that this provides a condition on the decay rate of every cosmologically accessible de Sitter vacuum, and that this condition is determined by the production rate of Boltzmann brains calculated using semiclassical theory built on each such vacuum. We argue, based on a recently developed picture of microscopic quantum gravitational degrees of freedom, that this thinking needs to be modified. In particular, depending on the structure of the fundamental theory, the decay rate of a de Sitter vacuum may not have to satisfy any condition except for the one imposed by the Poincaré recurrence. The framework discussed here also addresses the question of whether a Minkowski vacuum may produce Boltzmann brains.

  8. String theory

    Chan Hongmo.

    1987-10-01

    The paper traces the development of the String Theory, and was presented at Professor Sir Rudolf Peierls' 80sup(th) Birthday Symposium. The String theory is discussed with respect to the interaction of strings, the inclusion of both gauge theory and gravitation, inconsistencies in the theory, and the role of space-time. The physical principles underlying string theory are also outlined. (U.K.)

  9. Brain imaging and brain function

    Sokoloff, L.

    1985-01-01

    This book is a survey of the applications of imaging studies of regional cerebral blood flow and metabolism to the investigation of neurological and psychiatric disorders. Contributors review imaging techniques and strategies for measuring regional cerebral blood flow and metabolism, for mapping functional neural systems, and for imaging normal brain functions. They then examine the applications of brain imaging techniques to the study of such neurological and psychiatric disorders as: cerebral ischemia; convulsive disorders; cerebral tumors; Huntington's disease; Alzheimer's disease; depression and other mood disorders. A state-of-the-art report on magnetic resonance imaging of the brain and central nervous system rounds out the book's coverage

  10. Age-dependent male mating investment in Drosophila pseudoobscura.

    Sumit Dhole

    Full Text Available Male mating investment can strongly influence fitness gained from a mating. Yet, male mating investment often changes with age. Life history theory predicts that mating investment should increase with age, and males should become less discriminatory about their mate as they age. Understanding age-dependent changes in male behavior and their effects on fitness is important for understanding how selection acts in age-structured populations. Although the independent effects of male or female age have been studied in many species, how these interact to influence male mating investment and fitness is less well understood. We mated Drosophila pseudoobscura males of five different age classes (4-, 8-, 11-, 15-, 19-day old to either young (4-day or old (11-day females, and measured copulation duration and early post-mating fecundity. Along with their independent effects, we found a strong interaction between the effects of male and female ages on male mating investment and fitness from individual matings. Male mating investment increased with male age, but this increase was more prominent in matings with young females. Male D. pseudoobscura made smaller investments when mating with old females. The level of such discrimination based on female age, however, also changed with male age. Intermediate aged males were most discriminatory, while the youngest and the oldest males did not discriminate between females of different ages. We also found that larger male mating investments resulted in higher fitness payoffs. Our results show that male and female ages interact to form a complex pattern of age-specific male mating investment and fitness.

  11. Theory of cortical function

    Heeger, David J.

    2017-01-01

    Most models of sensory processing in the brain have a feedforward architecture in which each stage comprises simple linear filtering operations and nonlinearities. Models of this form have been used to explain a wide range of neurophysiological and psychophysical data, and many recent successes in artificial intelligence (with deep convolutional neural nets) are based on this architecture. However, neocortex is not a feedforward architecture. This paper proposes a first step toward an alternative computational framework in which neural activity in each brain area depends on a combination of feedforward drive (bottom-up from the previous processing stage), feedback drive (top-down context from the next stage), and prior drive (expectation). The relative contributions of feedforward drive, feedback drive, and prior drive are controlled by a handful of state parameters, which I hypothesize correspond to neuromodulators and oscillatory activity. In some states, neural responses are dominated by the feedforward drive and the theory is identical to a conventional feedforward model, thereby preserving all of the desirable features of those models. In other states, the theory is a generative model that constructs a sensory representation from an abstract representation, like memory recall. In still other states, the theory combines prior expectation with sensory input, explores different possible perceptual interpretations of ambiguous sensory inputs, and predicts forward in time. The theory, therefore, offers an empirically testable framework for understanding how the cortex accomplishes inference, exploration, and prediction. PMID:28167793

  12. Theory of cortical function.

    Heeger, David J

    2017-02-21

    Most models of sensory processing in the brain have a feedforward architecture in which each stage comprises simple linear filtering operations and nonlinearities. Models of this form have been used to explain a wide range of neurophysiological and psychophysical data, and many recent successes in artificial intelligence (with deep convolutional neural nets) are based on this architecture. However, neocortex is not a feedforward architecture. This paper proposes a first step toward an alternative computational framework in which neural activity in each brain area depends on a combination of feedforward drive (bottom-up from the previous processing stage), feedback drive (top-down context from the next stage), and prior drive (expectation). The relative contributions of feedforward drive, feedback drive, and prior drive are controlled by a handful of state parameters, which I hypothesize correspond to neuromodulators and oscillatory activity. In some states, neural responses are dominated by the feedforward drive and the theory is identical to a conventional feedforward model, thereby preserving all of the desirable features of those models. In other states, the theory is a generative model that constructs a sensory representation from an abstract representation, like memory recall. In still other states, the theory combines prior expectation with sensory input, explores different possible perceptual interpretations of ambiguous sensory inputs, and predicts forward in time. The theory, therefore, offers an empirically testable framework for understanding how the cortex accomplishes inference, exploration, and prediction.

  13. Genetically conditioned male sterility

    Gottschalk, W.

    1976-01-01

    A survey is given of two different types of genetically controlled male sterility in higher plants. 'Functional' male sterility is due to the action of mutated genes causing a misdifferentiation of the growing points in different specific ways. Under the influence of the genes of this group either the stamens or the archespore tissues are not differentiated. In other mutants functionable male germ cells are produced but cannot be used for fertilizing the egg cells because the anthers remain closed or anthers and stigma become spatially separated from each other. Other genes of the group are responsible for the transformation of stamens into carpels, i.e. for a change of the hermaphrodite flower into a unisexually female one. A second type of male sterility is due to the action of ms genes influencing the course of micro-sporogenesis directly. They cause the breakdown of this process in a specific meiotic stage characteristic for each gene of the group. This breakdown is introduced by the degeneration of PMCs, microspores, or pollen grains preventing the production of male germ cells. The female sex organs remain uninfluenced. (author)

  14. Male sterility in chestnuts

    Omura, Mitsuo; Akihama, Tomoya

    1982-01-01

    A tentative plan was proposed for chestnuts based on their pollination system, male sterility and restoration. The studies on the male sterility of 1,063 cultivars and clones suggested that there were three types of male sterility. The first type (S-1) was characterized by antherless florets. In the second type (S-2), the catkins fell before anthesis, and the third type (S-3) appeared to develop normally in gross floral morphology, but the pollen grains were abnormal in shape and did not have germinating power. In an interspecific hybrid clone CS which belonged to S-1, fertility was restored in an open pollinated progeny. The use of CS and CSO-3 with its restored fertility, permitted the planning of breeding the chestnut hybrid cultivars propagated by seeds. The inbred clones with either male sterility or restorer genes are first bred mainly by back crossing with parents with favorable pollen. The clones are selected individually for early bearing, wasp and disease resistance, and restoration. Then, the hybrid seedling lines between male sterile and restorer inbreds are evaluated for homogenity in nut characters and tree habits. Next, the hybrid seedling lines selected will be examined for crop yield, vigor and cross compatibility. The superior seedling lines are finally selected, and the parental inbreds are grafted to be propagated for seed production orchards. (Kaihara, S.)

  15. Modeling Brain Responses in an Arithmetic Working Memory Task

    Hamid, Aini Ismafairus Abd; Yusoff, Ahmad Nazlim; Mukari, Siti Zamratol-Mai Sarah; Mohamad, Mazlyfarina; Manan, Hanani Abdul; Hamid, Khairiah Abdul

    2010-07-01

    Functional magnetic resonance imaging (fMRI) was used to investigate brain responses due to arithmetic working memory. Nine healthy young male subjects were given simple addition and subtraction instructions in noise and in quiet. The general linear model (GLM) and random field theory (RFT) were implemented in modelling the activation. The results showed that addition and subtraction evoked bilateral activation in Heschl's gyrus (HG), superior temporal gyrus (STG), inferior frontal gyrus (IFG), supramarginal gyrus (SG) and precentral gyrus (PCG). The HG, STG, SG and PCG activate higher number of voxels in noise as compared to in quiet for addition and subtraction except for IFG that showed otherwise. The percentage of signal change (PSC) in all areas is higher in quiet as compared to in noise. Surprisingly addition (not subtraction) exhibits stronger activation.

  16. String theory or field theory?

    Marshakov, A.V.

    2002-01-01

    The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments, which are our concern in this review [ru

  17. An Annotated Bibliography of the Literature Dealing with the Incorporation of Right Brain Learning into Left Brain Oriented Schools.

    Lewallen, Martha

    Articles and documents concerning brain growth and hemispheric specialization, theories of cognitive style, educational implications of brain research, and right-brain learning activities are cited in this annotated bibliography. Citations are preceded by a glossary of terms and followed by a brief review of the assembled literature. Educational…

  18. Male gametogenesis without centrioles.

    Riparbelli, Maria Giovanna; Callaini, Giuliano

    2011-01-15

    The orientation of the mitotic spindle plays a central role in specifying stem cell-renewal by enabling interaction of the daughter cells with external cues: the daughter cell closest to the hub region is instructed to self-renew, whereas the distal one starts to differentiate. Here, we have analyzed male gametogenesis in DSas-4 Drosophila mutants and we have reported that spindle alignment and asymmetric divisions are properly executed in male germline stem cells that lack centrioles. Spermatogonial divisions also correctly proceed in the absence of centrioles, giving rise to cysts of 16 primary spermatocytes. By contrast, abnormal meiotic spindles assemble in primary spermatocytes. These results point to different requirements for centrioles during male gametogenesis of Drosophila. Spindle formation during germ cell mitosis may be successfully supported by an acentrosomal pathway that is inadequate to warrant the proper execution of meiosis. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. A tortoiseshell male cat

    Pedersen, A. S.; Berg, Lise Charlotte; Almstrup, Kristian

    2014-01-01

    Tortoiseshell coat color is normally restricted to female cats due to X-linkage of the gene that encodes the orange coat color. Tortoiseshell male cats do, however, occur at a low frequency among tortoiseshell cats because of chromosome aberrations similar to the Klinefelter syndrome in man...... tissue from a tortoiseshell male cat referred to us. Chromosome analysis using RBA-banding consistently revealed a 39,XXY karyotype. Histological examinations of testis biopsies from this cat showed degeneration of the tubules, hyperplasia of the interstitial tissue, and complete loss of germ cells....... Immunostaining using anti-vimentin and anti-VASA (DDX4) showed that only Sertoli cells and no germ cells were observed in the testicular tubules. As no sign of spermatogenesis was detected, we conclude that this is a classic case of a sterile, male tortoiseshell cat with a 39,XXY chromosome complement. © 2013 S...

  20. Localization and Expression of the Proto-Oncoprotein BRX in the Mouse Brain and Pituitary

    Eddington, David

    2003-01-01

    .... Results indicated that Brx is expressed in specific regions of the brain and pituitary. Furthermore, the results indicate that differences exist in both brain and pituitary tissue of male and female mice with greater expression in the female...