WorldWideScience

Sample records for malaria vectors anopheles

  1. morphological identification of malaria vectors within anopheles

    African Journals Online (AJOL)

    DR. AMIN

    Africa among the human population. Determination of risk of malaria transmission requires quick and accurate methods of identification of Anopheles mosquitoes especially when targeting vector control. (Maxwell, et al., 2003). Anopheles mosquito transmits malaria. The most important vectors of malaria are members of.

  2. Anopheles Vectors in Mainland China While Approaching Malaria Elimination.

    Science.gov (United States)

    Zhang, Shaosen; Guo, Shaohua; Feng, Xinyu; Afelt, Aneta; Frutos, Roger; Zhou, Shuisen; Manguin, Sylvie

    2017-11-01

    China is approaching malaria elimination; however, well-documented information on malaria vectors is still missing, which could hinder the development of appropriate surveillance strategies and WHO certification. This review summarizes the nationwide distribution of malaria vectors, their bionomic characteristics, control measures, and related studies. After several years of effort, the area of distribution of the principal malaria vectors was reduced, in particular for Anopheles lesteri (synonym: An. anthropophagus) and Anopheles dirus s.l., which nearly disappeared from their former endemic regions. Anopheles sinensis is becoming the predominant species in southwestern China. The bionomic characteristics of these species have changed, and resistance to insecticides was reported. There is a need to update surveillance tools and investigate the role of secondary vectors in malaria transmission. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Susceptibility Status of The Malaria Vector Anopheles Arabiensis To ...

    African Journals Online (AJOL)

    Background: Increasing insecticide resistancein the major anopheline vectors remain the main obstacle for malaria control programmes in African countries including Sudan. Objectives: To assess the susceptibility status of Anopheles arabiensis the malaria vector to different classes of insecticides in Khartoum State.

  4. BIONOMY OF Anopheles punctulatus GROUP (Anopheles farauti, Anopheles koliensis, Anopheles punctulatus MALARIA VECTOR IN PAPUA PROVINCE

    Directory of Open Access Journals (Sweden)

    Semuel Sandy

    2014-08-01

    Full Text Available ABSTRAKMalaria merupakan masalah kesehatan utama di Provinsi Papua dengan angka Annual Parasite Incidence (API padatahun 2011 sebesar 58 per 1000 penduduk dan Annual Malaria Incidence (AMI sebesar 169 per 1000 penduduk. Vektormalaria Papua dilaporkan Anopheles farauti, An. punctulatus dan An. koliensis. Tiga spesies tersebut aktif menggigit padamalam hari (nokturnal, antropofilik dengan karakteristik tempat perkembangbiakan, aktifitas menggigit, dan tempatistirahat dilaporkan spesifik setiap spesies. Kajian ini untuk melihat beberapa aspek bionomi (tempat perkembangbiakan,aktifitas menggigit, dan tempat istirahat. Larva An. farauti memiliki habitat di daerah pantai, perairan payau (memilikitoleransi terhadap salinitas 4,6%, irigasi buatan atau alami. Nyamuk dewasa An. farauti betina bersifat nokturnal,eksofagik, eksofilik, dan antropofilik. Larva An. koliensis tidak ditemukan di perairan payau, banyak ditemukan di hutanrawa, hutan sagu, kolam semi permanen atau permanen yang dangkal dan terpapar sinar matahari langsung. Nyamukdewasa An. koliensis bersifat nokturnal, antropofilik (78% menggigit manusia, eksofagik, eksofilik sedangkan larva An.punctulatus tidak ditemukan di air payau, tetapi ditemukan pada kolam dengan air jernih atau keruh dengan vegetasi atautanpa vegetasi air. Larva An. punctulatus juga ditemukan di hutan sagu dan hutan rawa dengan paparan sinar mataharilangsung. Nyamuk dewasa An. punctulatus bersifat nokturnal, antropofilik (98% menggigit manusia, eksofagik, endofilik.Data dasar mengenai perilaku nyamuk Anopheles (bionomi sangat diperlukan dalam mengembangkan pola intervensi dankontrol vektor yang lebih efektif dan efisien.Kata kunci: vektor malaria, An. punctulatus group, bionomi, PapuaABSTRACTMalaria is a major health problem in Papua province with Annual Parasite Incidence (API was reported 58/1000population in 2011, and the Annual Malaria Incidence (AMI was 169/1000 population. The malaria vector in Papua wereAnopheles

  5. Highly evolvable malaria vectors : The genomes of 16 Anopheles mosquitoes

    NARCIS (Netherlands)

    Neafsey, D. E.; Waterhouse, R. M.; Abai, M. R.; Aganezov, S. S.; Alekseyev, M. A.; Allen, J. E.; Amon, J.; Arca, B.; Arensburger, P.; Artemov, G.; Assour, L. A.; Basseri, H.; Berlin, A.; Birren, B. W.; Blandin, S. A.; Brockman, A. I.; Burkot, T. R.; Burt, A.; Chan, C. S.; Chauve, C.; Chiu, J. C.; Christensen, M.; Costantini, C.; Davidson, V. L. M.; Deligianni, E.; Dottorini, T.; Dritsou, V.; Gabriel, S. B.; Guelbeogo, W. M.; Hall, A. B.; Han, M. V.; Hlaing, T.; Hughes, D. S. T.; Jenkins, A. M.; Jiang, X.; Jungreis, I.; Kakani, E. G.; Kamali, M.; Kemppainen, P.; Kennedy, R. C.; Kirmitzoglou, I. K.; Koekemoer, L. L.; Laban, N.; Langridge, N.; Lawniczak, M. K. N.; Lirakis, M.; Lobo, N. F.; Lowy, E.; Maccallum, R. M.; Mao, C.; Maslen, G.; Mbogo, C.; Mccarthy, J.; Michel, K.; Mitchell, S. N.; Moore, W.; Murphy, K. A.; Naumenko, A. N.; Nolan, T.; Novoa, E. M.; O'loughlin, S.; Oringanje, C.; Oshaghi, M. A.; Pakpour, N.; Papathanos, P. A.; Peery, A. N.; Povelones, M.; Prakash, A.; Price, D. P.; Rajaraman, A.; Reimer, L. J.; Rinker, D. C.; Rokas, A.; Russell, T. L.; Sagnon, N.; Sharakhova, M. V.; Shea, T.; Simao, F. A.; Simard, F.; Slotman, M. A.; Somboon, P.; Stegniy, V.; Struchiner, C. J.; Thomas, G. W. C.; Tojo, M.; Topalis, P.; Tubio, J. M. C.; Unger, M. F.; Vontas, J.; Walton, C.; Wilding, C. S.; Willis, J. H.; Wu, Y.-c.; Yan, G.; Zdobnov, E. M.; Zhou, X.; Catteruccia, F.; Christophides, G. K.; Collins, F. H.; Cornman, R. S.; Crisanti, A.; Donnelly, M. J.; Emrich, S. J.; Fontaine, M. C.; Gelbart, W.; Hahn, M. W.; Hansen, I. A.; Howell, P. I.; Kafatos, F. C.; Kellis, M.; Lawson, D.; Louis, C.; Luckhart, S.; Muskavitch, M. A. T.; Ribeiro, J. M.; Riehle, M. A.; Sharakhov, I. V.; Tu, Z.; Zwiebel, L. J.; Besansky, N. J.

    2015-01-01

    Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16

  6. Structural divergence of chromosomes between malaria vectors Anopheles lesteri and Anopheles sinensis

    Directory of Open Access Journals (Sweden)

    Jiangtao Liang

    2016-11-01

    Full Text Available Abstract Background Anopheles lesteri and Anopheles sinensis are two major malaria vectors in China and Southeast Asia. They are dramatically different in terms of geographical distribution, host preference, resting habitats, and other traits associated with ecological adaptation and malaria transmission. Both species belong to the Anopheles hyrcanus group, but the extent of genetic differences between them is not well understood. To provide an effective way to differentiate between species and to find useful markers for population genetics studies, we performed a comparative cytogenetic analysis of these two malaria vectors. Results Presented here is a standard cytogenetic map for An. lesteri, and a comparative analysis of chromosome structure and gene order between An. lesteri and An. sinensis. Our results demonstrate that much of the gene order on chromosomes X and 2 was reshuffled between the two species. However, the banding pattern and the gene order on chromosome 3 appeared to be conserved. We also found two new polymorphic inversions, 2Lc and 3Rb, in An. lesteri, and we mapped the breakpoints of these two inversions on polytene chromosomes. Conclusions Our results demonstrate the extent of structural divergence of chromosomes between An. lesteri and An. sinensis, and provide a new taxonomic cytogenetic tool to distinguish between these two species. Polymorphic inversions of An. lesteri could serve as markers for studies of the population structure and ecological adaptations of this major malaria vector.

  7. Avoidance behavior to essential oils by Anopheles minimus, a malaria vector in Thailand

    Science.gov (United States)

    Excito-repellency tests were used to characterize behavioral responses of laboratory colonized Anopheles minimus, a malaria vector in Thailand, using four essential oils, citronella (Cymbopogom nadus), hairy basil (Ocimum americanum), sweet basil (Ocimum basilicum), vetiver (Vetiveria zizanioides), ...

  8. Bionomics of the malaria vector Anopheles farauti in Temotu Province, Solomon Islands: issues for malaria elimination

    Directory of Open Access Journals (Sweden)

    Mackenzie Donna O

    2011-05-01

    Full Text Available Abstract Background In the Solomon Islands, the Malaria Eradication Programmes of the 1970s virtually eliminated the malaria vectors: Anopheles punctulatus and Anopheles koliensis, both late night biting, endophagic species. However, the vector, Anopheles farauti, changed its behaviour to bite early in the evening outdoors. Thus, An. farauti mosquitoes were able to avoid insecticide exposure and still maintain transmission. Thirty years on and the Solomon Islands are planning for intensified malaria control and localized elimination; but little is currently known about the behaviour of the vectors and how they will respond to intensified control. Methods In the elimination area, Temotu Province, standard entomological collection methods were conducted in typical coastal villages to determine the vector, its ecology, biting density, behaviour, longevity, and vector efficacy. These vector surveys were conducted pre-intervention and post-intervention following indoor residual spraying and distribution of long-lasting insecticidal nets. Results Anopheles farauti was the only anopheline in Temotu Province. In 2008 (pre-intervention, this species occurred in moderate to high densities (19.5-78.5 bites/person/night and expressed a tendency to bite outdoors, early in the night (peak biting time 6-8 pm. Surveys post intervention showed that there was little, if any, reduction in biting densities and no reduction in the longevity of the vector population. After adjusting for human behaviour, indoor biting was reduced from 57% pre-intervention to 40% post-intervention. Conclusion In an effort to learn from historical mistakes and develop successful elimination programmes, there is a need for implementing complimentary vector control tools that can target exophagic and early biting vectors. Intensified indoor residual spraying and long-lasting insecticide net use has further promoted the early, outdoor feeding behaviour of An. farauti in the Solomon Islands

  9. Larvicidal effects of a neem (Azadirachta indica) oil formulation on the malaria vector Anopheles gambiae

    NARCIS (Netherlands)

    Okumu, F.O.; Knols, B.G.J.; Fillinger, U.

    2007-01-01

    Background - Larviciding is a key strategy used in many vector control programmes around the world. Costs could be reduced if larvicides could be manufactured locally. The potential of natural products as larvicides against the main African malaria vector, Anopheles gambiae s.s was evaluated.

  10. Bionomics and vector potential of Anopheles subpictus as a malaria vector in India: An overview.

    Directory of Open Access Journals (Sweden)

    Dr. Raj Kumar Singh

    2014-03-01

    Full Text Available Anopheles subpictus has been recognised as an important vector of malaria in Sri Lanka and some other countries like Malaysia and Maldives. It has been found to play an important role in malaria transmission as a secondary vector in certain parts of Odisha and coastal areas of south India. An. subpictus is a widely distributed mosquito species that breeds in a variety of fresh as well as saline water habitats. The species is a complex of four sibling species provisionally designated as: sibling species A, B, C and D, but the role of these sibling species in malaria transmission is not clearly known. As there is limited research work available on this species in India, it was thought prudent to review the bionomics and the role of An. subpictus in malaria transmission in Indian context. Further studies are required on the bionomics of An. subpictus and its role in malaria transmission in other parts of the country under the influence of changing ecological conditions.

  11. HUBUNGAN ANOPHELES BARBIROSTRIS DENGAN MALARIA

    Directory of Open Access Journals (Sweden)

    Krisna Iryani

    2013-03-01

    Full Text Available Malaria is a disease caused by intercellular obligate protozoa genus of Plasmodium which is a parasite carried by female Anopheles mosquito. One of them is Anopheles barbirostris. Research in several places already proved that Anopheles barbirostris acts as a vector of malaria. One case that occurred in Cineam district, Tasikmalaya regency showed that Anopheles barbirostris is suspected as vector of malaria. This is proven through a research on the relationship between Anopheles barbirostris with malaria. Data was taken from the larvae and adult mosquitoes captured around Cineam village, Tasikmalaya. The observation was done in the open field and laboratory. Data and identification by pictorial key for female Anopheles showed that the population of Anopheles barbirostris was always a dominant population compared to another Anopheles species. Because of the breeding ponds and the resting places were around the village, it is suspected that they mainly bit humans. The result of the observation in laboratory showed the life cycle of Anopheles barbirostris are around 20-27 days, and the longevity of 20 days. Morphological identification of Anopheles barbirostris by pictorial key for female Anopheles showed that there is no any significant difference. This research showed that Anopheles barbirostris was suspected as vector of malaria in Cineam village, Tasikmalaya.

  12. Role of Anopheles (Kerteszia bellator as malaria vector in Southeastern Brazil (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Oswaldo Paulo Forattini

    1999-11-01

    Full Text Available New research concerning Anopheles bellator in the southeast of the State of São Paulo, Brazil, are reported. Adult females of this mosquito showed remarkable endophily and endophagy which was even greater than An. cruzii. The epidemiological role of this anopheline as a malaria vector is discussed.

  13. Feeding and survival of the malaria vector Anopheles gambiae on plants growing in Kenia

    NARCIS (Netherlands)

    Impoinvil, D.E.; Kongere, J.O.; Foster, W.A.; Njiru, B.N.; Killeen, G.F.; Githure, J.I.; Beier, J.C.; Hassanali, A.; Knols, B.G.J.

    2004-01-01

    The propensity of the malaria vector mosquito Anopheles gambiae Giles (Diptera: Culicidae) to ingest sugars from various plants, and subsequent survival rates, were assessed with laboratory-reared males and females offered eight species of plants commonly cultivated and/or growing wild in western

  14. Malaria case in Madagascar, probable implication of a new vector, Anopheles coustani.

    Science.gov (United States)

    Nepomichene, Thiery N J J; Tata, Etienne; Boyer, Sébastien

    2015-12-01

    Indoor spraying of insecticides and the use of insecticide-treated bed nets are key strategies for national malaria vector control in the central highlands of Madagascar. During the year 2013, malaria outbreaks were reported by the National Malaria Control Programme in the highlands, including the district of Ankazobe. Entomological trapping was carried out in April and May 2013 and in March 2014, using human landing catches, collection of mosquitoes resting in stables and in houses by oral aspirators, and Centers for Disease Control and Prevention light traps. Detection of Plasmodium in mosquitoes was carried out on head and thorax of anopheline females by ELISA, CSP and PCR (Plasmodium falciparum, Plasmodium malariae, Plasmodium vivax, or Plasmodium ovale). Human biting rate (HBR), sporozoite index and entomological infection rate (EIR) were calculated for Anopheles funestus, Anopheles arabiensis, Anopheles mascarensis, and Anopheles coustani. In Ankazobe district, the presence of malaria vectors such as An. funestus, An. arabiensis and An. mascarensis was confirmed, and a new and abundant potential vector, An. coustani was detected. Indeed, one individual of An. funestus and two An. coustani were detected positive with P. falciparum while one An. mascarensis and four An. coustani were positive with P. vivax. For An. coustani, in March 2014, the EIR varied from 0.01 infectious bites/person/month (ipm) outdoors to 0.11 ipm indoors. For An. funestus, in April 2013, the EIR was 0.13 ipm. The highest HBR value was observed for An. coustani, 86.13 ipm outdoors. The highest sporozoite rate was also for An. coustani, 9.5 % of An. coustani caught in stable was sporozoite positive. The implication of An. coustani in malaria transmission was not previously mentioned in Madagascar. Its very high abundance and the detection of Plasmodium coupled with an opportunistic feeding behaviour in villages with malaria cases supports its role in malaria transmission in Madagascar.

  15. Evaluation of Insecticides Susceptibility and Malaria Vector Potential of Anopheles annularis s.l. and Anopheles vagus in Assam, India.

    Directory of Open Access Journals (Sweden)

    Sunil Dhiman

    Full Text Available During the recent past, development of DDT resistance and reduction to pyrethroid susceptibility among the malaria vectors has posed a serious challenge in many Southeast Asian countries including India. Current study presents the insecticide susceptibility and knock-down data of field collected Anopheles annularis sensu lato and An. vagus mosquito species from endemic areas of Assam in northeast India. Anopheles annularis s.l. and An. vagus adult females were collected from four randomly selected sentinel sites in Orang primary health centre (OPHC and Balipara primary health centre (BPHC areas, and used for testing susceptibility to DDT, malathion, deltamethrin and lambda-cyhalothrin. After insecticide susceptibility tests, mosquitoes were subjected to VectorTest™ assay kits to detect the presence of malaria sporozoite in the mosquitoes. An. annularis s.l. was completely susceptible to deltamethrin, lambda-cyhalothrin and malathion in both the study areas. An. vagus was highly susceptible to deltamethrin in both the areas, but exhibited reduced susceptibility to lambda-cyhalothrin in BPHC. Both the species were resistant to DDT and showed very high KDT50 and KDT99 values for DDT. Probit model used to calculate the KDT50 and KDT99 values did not display normal distribution of percent knock-down with time for malathion in both the mosquito species in OPHC (p<0.05 and An. vagus in BPHC (χ2 = 25.3; p = 0.0, and also for deltamethrin to An. vagus in BPHC area (χ2 = 15.4; p = 0.004. Minimum infection rate (MIR of Plasmodium sporozoite for An. vagus was 0.56 in OPHC and 0.13 in BPHC, while for An. annularis MIR was found to be 0.22 in OPHC. Resistance management strategies should be identified to delay the expansion of resistance. Testing of field caught Anopheles vectors from different endemic areas for the presence of malaria sporozoite may be useful to ensure their role in malaria transmission.

  16. Genetic and phenotypic variation of the malaria vector Anopheles atroparvus in southern Europe

    Directory of Open Access Journals (Sweden)

    Romi Roberto

    2011-01-01

    Full Text Available Abstract Background There is a growing concern that global climate change will affect the potential for pathogen transmission by insect species that are vectors of human diseases. One of these species is the former European malaria vector, Anopheles atroparvus. Levels of population differentiation of An. atroparvus from southern Europe were characterized as a first attempt to elucidate patterns of population structure of this former malaria vector. Results are discussed in light of a hypothetical situation of re-establishment of malaria transmission. Methods Genetic and phenotypic variation was analysed in nine mosquito samples collected from five European countries, using eight microsatellite loci and geometric morphometrics on 21 wing landmarks. Results Levels of genetic diversity were comparable to those reported for tropical malaria vectors. Low levels of genetic (0.004 FST An. atroparvus populations spanning over 3,000 km distance. Genetic differentiation (0.202 FST An. atroparvus and Anopheles maculipennis s.s. Differentiation between sibling species was not so evident at the phenotype level. Conclusions Levels of population differentiation within An. atroparvus were low and not correlated with geographic distance or with putative physical barriers to gene flow (Alps and Pyrenées. While these results may suggest considerable levels of gene flow, other explanations such as the effect of historical population perturbations can also be hypothesized.

  17. Thermal limits of wild and laboratory strains of two African malaria vector species, Anopheles arabiensis and Anopheles funestus

    Directory of Open Access Journals (Sweden)

    Lyons Candice L

    2012-07-01

    Full Text Available Abstract Background Malaria affects large parts of the developing world and is responsible for almost 800,000 deaths annually. As climates change, concerns have arisen as to how this vector-borne disease will be impacted by changing rainfall patterns and warming temperatures. Despite the importance and controversy surrounding the impact of climate change on the potential spread of this disease, little information exists on the tolerances of several of the vector species themselves. Methods Using a ramping protocol (to assess critical thermal limits - CT and plunge protocol (to assess lethal temperature limits - LT information on the thermal tolerance of two of Africa’s important malaria vectors, Anopheles arabiensis and Anopheles funestus was collected. The effects of age, thermal acclimation treatment, sex and strain (laboratory versus wild adults were investigated for CT determinations for each species. The effects of age and sex for adults and life stage (larvae, pupae, adults were investigated for LT determinations. Results In both species, females are more tolerant to low and high temperatures than males; larvae and pupae have higher upper lethal limits than do adults. Thermal acclimation of adults has large effects in some instances but small effects in others. Younger adults tend to be more tolerant of low or high temperatures than older age groups. Long-standing laboratory colonies are sufficiently similar in thermal tolerance to field-collected animals to provide reasonable surrogates when making inferences about wild population responses. Differences between these two vectors in their thermal tolerances, especially in larvae and pupae, are plausibly a consequence of different habitat utilization. Conclusions Limited plasticity is characteristic of the adults of these vector species relative to others examined to date, suggesting limited scope for within-generation change in thermal tolerance. These findings and the greater tolerance

  18. An overview of malaria transmission from the perspective of Amazon Anopheles vectors

    Directory of Open Access Journals (Sweden)

    Paulo FP Pimenta

    2015-02-01

    Full Text Available In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Ano- pheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence.

  19. An overview of malaria transmission from the perspective of Amazon Anopheles vectors

    Science.gov (United States)

    Pimenta, Paulo FP; Orfano, Alessandra S; Bahia, Ana C; Duarte, Ana PM; Ríos-Velásquez, Claudia M; Melo, Fabrício F; Pessoa, Felipe AC; Oliveira, Giselle A; Campos, Keillen MM; Villegas, Luis Martínez; Rodrigues, Nilton Barnabé; Nacif-Pimenta, Rafael; Simões, Rejane C; Monteiro, Wuelton M; Amino, Rogerio; Traub-Cseko, Yara M; Lima, José BP; Barbosa, Maria GV; Lacerda, Marcus VG; Tadei, Wanderli P; Secundino, Nágila FC

    2015-01-01

    In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Ano- pheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence. PMID:25742262

  20. Population genetic structure of urban malaria vector Anopheles stephensi in India.

    Science.gov (United States)

    Sharma, Richa; Sharma, Arvind; Kumar, Ashwani; Dube, Madhulika; Gakhar, S K

    2016-04-01

    Malaria is a major public health problem in India because climatic condition and geography of India provide an ideal environment for development of malaria vector. Anopheles stephensi is a major urban malaria vector in India and its control has been hampered by insecticide resistance. In present study population genetic structure of A. stephensi is analyzed at macro geographic level using 13 microsatellite markers. Significantly high genetic differentiation was found in all studied populations with differentiation values (FST) ranging from 0.0398 to 0.1808. The geographic distance was found to be playing a major role in genetic differentiation between different populations. Overall three genetic pools were observed and population of central India was found to be coexisting in two genetic pools. High effective population size (Ne) was found in all the studied populations. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Changing distribution and abundance of the malaria vector Anopheles merus in Mpumalanga Province, South Africa.

    Science.gov (United States)

    Mbokazi, F; Coetzee, M; Brooke, B; Govere, J; Reid, A; Owiti, P; Kosgei, R; Zhou, S; Magagula, R; Kok, G; Namboze, J; Tweya, H; Mabuza, A

    2018-04-25

    Background: The malaria vector Anopheles merus occurs in the Mpumalanga Province of South Africa. As its contribution to malaria transmission in South Africa has yet to be ascertained, an intensification of surveillance is necessary to provide baseline information on this species. The aim of this study was therefore to map An. merus breeding sites in the Ehlanzeni District of Mpumalanga Province and to assess qualitative trends in the distribution and relative abundance of this species over a 9-year period. Methods: The study was carried out during the period 2005-2014 in the four high-risk municipalities of Ehlanzeni District. Fifty-two breeding sites were chosen from all water bodies that produced anopheline mosquitoes. The study data were extracted from historical entomological records that are captured monthly. Results: Of the 15 058 Anopheles mosquitoes collected, 64% were An. merus. The abundance and distribution of An. merus increased throughout the four municipalities in Ehlanzeni District during the study period. Conclusion: The expanded distribution and increased abundance of An. merus in the Ehlanzeni District may contribute significantly to locally acquired malaria in Mpumalanga Province, likely necessitating the incorporation of additional vector control methods specifically directed against populations of this species.

  2. De novo transcriptome sequencing and sequence analysis of the malaria vector Anopheles sinensis (Diptera: Culicidae)

    Science.gov (United States)

    2014-01-01

    Background Anopheles sinensis is the major malaria vector in China and Southeast Asia. Vector control is one of the most effective measures to prevent malaria transmission. However, there is little transcriptome information available for the malaria vector. To better understand the biological basis of malaria transmission and to develop novel and effective means of vector control, there is a need to build a transcriptome dataset for functional genomics analysis by large-scale RNA sequencing (RNA-seq). Methods To provide a more comprehensive and complete transcriptome of An. sinensis, eggs, larvae, pupae, male adults and female adults RNA were pooled together for cDNA preparation, sequenced using the Illumina paired-end sequencing technology and assembled into unigenes. These unigenes were then analyzed in their genome mapping, functional annotation, homology, codon usage bias and simple sequence repeats (SSRs). Results Approximately 51.6 million clean reads were obtained, trimmed, and assembled into 38,504 unigenes with an average length of 571 bp, an N50 of 711 bp, and an average GC content 51.26%. Among them, 98.4% of unigenes could be mapped onto the reference genome, and 69% of unigenes could be annotated with known biological functions. Homology analysis identified certain numbers of An. sinensis unigenes that showed homology or being putative 1:1 orthologues with genomes of other Dipteran species. Codon usage bias was analyzed and 1,904 SSRs were detected, which will provide effective molecular markers for the population genetics of this species. Conclusions Our data and analysis provide the most comprehensive transcriptomic resource and characteristics currently available for An. sinensis, and will facilitate genetic, genomic studies, and further vector control of An. sinensis. PMID:25000941

  3. Habitat suitability of Anopheles vector species and association with human malaria in the Atlantic Forest in south-eastern Brazil.

    Science.gov (United States)

    Laporta, Gabriel Zorello; Ramos, Daniel Garkauskas; Ribeiro, Milton Cezar; Sallum, Maria Anice Mureb

    2011-08-01

    Every year, autochthonous cases of Plasmodium vivax malaria occur in low-endemicity areas of Vale do Ribeira in the south-eastern part of the Atlantic Forest, state of São Paulo, where Anopheles cruzii and Anopheles bellator are considered the primary vectors. However, other species in the subgenus Nyssorhynchus of Anopheles (e.g., Anopheles marajoara) are abundant and may participate in the dynamics of malarial transmission in that region. The objectives of the present study were to assess the spatial distribution of An. cruzii, An. bellator and An. marajoara and to associate the presence of these species with malaria cases in the municipalities of the Vale do Ribeira. Potential habitat suitability modelling was applied to determine both the spatial distribution of An. cruzii, An. bellator and An. marajoara and to establish the density of each species. Poisson regression was utilized to associate malaria cases with estimated vector densities. As a result, An. cruzii was correlated with the forested slopes of the Serra do Mar, An. bellator with the coastal plain and An. marajoara with the deforested areas. Moreover, both An. marajoara and An. cruzii were positively associated with malaria cases. Considering that An. marajoara was demonstrated to be a primary vector of human Plasmodium in the rural areas of the state of Amapá, more attention should be given to the species in the deforested areas of the Atlantic Forest, where it might be a secondary vector.

  4. Differential attractiveness of humans to the African malaria vector Anopheles gambiae Giles : effects of host characteristics and parasite infection

    NARCIS (Netherlands)

    Mukabana, W.R.

    2002-01-01

    The results of a series of studies designed to understand the principal factors that determine the differential attractiveness of humans to the malaria vector Anopheles

  5. Ultrastructure of a microsporidium brachiola gambiae n.sp.parasitising a mosquito anopheles gamblae, a malaria vector

    Czech Academy of Sciences Publication Activity Database

    Weiser, Jaroslav; Žižka, Zdeněk

    - (2003), s. 35-36 ISSN 1214-021X. [Conference on Cell Biology /5./. České Budějovice, 08.09.2003-10.09.2003] Institutional research plan: CEZ:AV0Z5020903 Keywords : anopheles gambiae * malaria * vector Subject RIV: EE - Microbiology, Virology

  6. Mass Spectrometry Based Proteomic Analysis of Salivary Glands of Urban Malaria Vector Anopheles stephensi

    Directory of Open Access Journals (Sweden)

    Sonam Vijay

    2014-01-01

    Full Text Available Salivary gland proteins of Anopheles mosquitoes offer attractive targets to understand interactions with sporozoites, blood feeding behavior, homeostasis, and immunological evaluation of malaria vectors and parasite interactions. To date limited studies have been carried out to elucidate salivary proteins of An. stephensi salivary glands. The aim of the present study was to provide detailed analytical attributives of functional salivary gland proteins of urban malaria vector An. stephensi. A proteomic approach combining one-dimensional electrophoresis (1DE, ion trap liquid chromatography mass spectrometry (LC/MS/MS, and computational bioinformatic analysis was adopted to provide the first direct insight into identification and functional characterization of known salivary proteins and novel salivary proteins of An. stephensi. Computational studies by online servers, namely, MASCOT and OMSSA algorithms, identified a total of 36 known salivary proteins and 123 novel proteins analysed by LC/MS/MS. This first report describes a baseline proteomic catalogue of 159 salivary proteins belonging to various categories of signal transduction, regulation of blood coagulation cascade, and various immune and energy pathways of An. stephensi sialotranscriptome by mass spectrometry. Our results may serve as basis to provide a putative functional role of proteins in concept of blood feeding, biting behavior, and other aspects of vector-parasite host interactions for parasite development in anopheline mosquitoes.

  7. Development of a gravid trap for collecting live malaria vectors Anopheles gambiae s.l.

    Directory of Open Access Journals (Sweden)

    Sisay Dugassa

    Full Text Available Effective malaria vector control targeting indoor host-seeking mosquitoes has resulted in fewer vectors entering houses in many areas of sub-Saharan Africa, with the proportion of vectors outdoors becoming more important in the transmission of this disease. This study aimed to develop a gravid trap for the outdoor collection of the malaria vector Anopheles gambiae s.l. based on evaluation and modification of commercially available gravid traps.Experiments were implemented in an 80 m(2 semi-field system where 200 gravid Anopheles gambiae s.s. were released nightly. The efficacy of the Box, CDC and Frommer updraft gravid traps was compared. The Box gravid trap was tested to determine if the presence of the trap over water and the trap's sound affected catch size. Mosquitoes approaching the treatment were evaluated using electrocuting nets or detergents added to the water in the trap. Based on the results, a new gravid trap (OviART trap that provided an open, unobstructed oviposition site was developed and evaluated.Box and CDC gravid traps collected similar numbers (relative rate (RR 0.8, 95% confidence interval (CI 0.6-1.2; p = 0.284, whereas the Frommer trap caught 70% fewer mosquitoes (RR 0.3, 95% CI 0.2-0.5; p < 0.001. The number of mosquitoes approaching the Box trap was significantly reduced when the trap was positioned over a water-filled basin compared to an open pond (RR 0.7 95% CI 0.6-0.7; p < 0.001. This effect was not due to the sound of the trap. Catch size increased by 60% (RR 1.6, 1.2-2.2; p = 0.001 with the new OviART trap.Gravid An. Gambiae s.s. females were visually deterred by the presence of the trapping device directly over the oviposition medium. Based on these investigations, an effective gravid trap was developed that provides open landing space for egg-laying Anopheles.

  8. Susceptibility of Anopheles gambiae to insecticides used for malaria vector control in Rwanda.

    Science.gov (United States)

    Hakizimana, Emmanuel; Karema, Corine; Munyakanage, Dunia; Iranzi, Gad; Githure, John; Tongren, Jon Eric; Takken, Willem; Binagwaho, Agnes; Koenraadt, Constantianus J M

    2016-12-01

    The widespread emergence of resistance to pyrethroids is a major threat to the gains made in malaria control. To monitor the presence and possible emergence of resistance against a variety of insecticides used for malaria control in Rwanda, nationwide insecticide resistance surveys were conducted in 2011 and 2013. Larvae of Anopheles gambiae sensu lato mosquitoes were collected in 12 sentinel sites throughout Rwanda. These were reared to adults and analysed for knock-down and mortality using WHO insecticide test papers with standard diagnostic doses of the recommended insecticides. A sub-sample of tested specimens was analysed for the presence of knockdown resistance (kdr) mutations. A total of 14,311 mosquitoes were tested and from a sample of 1406 specimens, 1165 (82.9%) were identified as Anopheles arabiensis and 241 (17.1%) as Anopheles gambiae sensu stricto. Mortality results indicated a significant increase in resistance to lambda-cyhalothrin from 2011 to 2013 in 83% of the sites, permethrin in 25% of the sites, deltamethrin in 25% of the sites and DDT in 50% of the sites. Mosquitoes from 83% of the sites showed full susceptibility to bendiocarb and 17% of sites were suspected to harbour resistance that requires further confirmation. No resistance was observed to fenitrothion in all study sites during the entire survey. The kdr genotype results in An. gambiae s.s. showed that 67 (50%) possessed susceptibility (SS) alleles, while 35 (26.1%) and 32 (23.9%) mosquitoes had heterozygous (RS) and homozygous (RR) alleles, respectively. Of the 591 An. arabiensis genotyped, 425 (71.9%) possessed homozygous (SS) alleles while 158 (26.7%) and 8 (1.4%) had heterozygous (RS) and homozygous (RR) alleles, respectively. Metabolic resistance involving oxidase enzymes was also detected using the synergist PBO. This is the first nationwide study of insecticide resistance in malaria vectors in Rwanda. It shows the gradual increase of insecticide resistance to pyrethroids (lambda

  9. Molecular typing of bacteria of the genus Asaia in malaria vector Anopheles arabiensis Patton, 1905

    Directory of Open Access Journals (Sweden)

    S. Epis

    2012-08-01

    Full Text Available The acetic acid bacterium Asaia spp. was successfully detected in Anopheles arabiensis Patton, 1905, one of the major vector of human malaria in Sub-Saharan Africa. A collection of 45 Asaia isolates in cellfree media was established from 20 individuals collected from the field in Burkina Faso. 16S rRNA universal polymerase chain reaction (PCR and specific qPCR, for the detection of Asaia spp. were performed in order to reveal the presence of different bacterial taxa associated with this insect. The isolates were typed by internal transcribed spacer-PCR, BOX-PCR, and randomly amplified polymorphic DNA-PCR, proved the presence of different Asaia in A. arabiensis.

  10. LIFE CYCLE STUDY OF MALARIA VECTOR ANOPHELES ACONITUS DONITZ IN THE LABORATORY

    Directory of Open Access Journals (Sweden)

    Barodji Barodji

    2012-09-01

    Full Text Available Anopheles aconitus Donitz, merupakan vector utama penyakit malaria di daerah-daerah sekitar persawahan di pulau Jawa, sejak tahun 1983 telah berhasil dikembangbiakkan di labo­ratorium. Siklus hidupnya dari telur sampai dewasa paling singkat selama 11 hari, sedang umum­nya antara 13 sampai 16 hari. Perkawinan terjadi sebelum nyamuk mengisap darah. Nyamuk mulai menghisap darah pada dua hari setelah muncul dari pupa dan bertelur dua sampai lima hari ke­mudian. Setelah bertelur nyamuk akan menghisap darah lagi. Dari munculnya nyamuk dewasa sampai bertelur yang pertama diperlukan waktu antara empat sampai tujuh hari, sedang peletakan telur berikutnya terjadi paling cepat dua hari dan paling lama lima hari setelah menghisap darah. Nyamuk generasi baru akan muncul setiap 15 hari sekali. Nyamuk jantan maupun betina dapat ber­tahan hidup sekitar 25 hari, sekitar 50% nyamuk jantan hidup lebih dari 13 hari dan nyamuk betina lebih dari 12 hari.

  11. Remote sensing and environment in the study of the malaria vector Anopheles gambiae in Mali

    Science.gov (United States)

    Rian, Sigrid Katrine Eivindsdatter

    The malaria mosquito Anopheles gambiae is the most important vector for the most devastating form of human malaria, the parasite Plasmodium falciparum. In-depth knowledge of the vector's history and environmental preferences is essential in the pursuit of new malaria mitigation strategies. Research was conducted in Mali across a range of habitats occupied by the vector, focusing on three identified chromosomal forms in the mosquito complex. The development of a 500-m landcover classification map was carried out using MODIS satellite imagery and extensive ground survey. The resulting product has the highest resolution and is the most up-to-date and most extensively ground-surveyed among land-cover maps for the study region. The new landcover classification product is a useful tool in the mapping of the varying ecological preferences of the different An. gambiae chromosomal forms. Climate and vegetation characteristics and their relationship to chromosomal forms were investigated further along a Southwest-Northeast moisture gradient in Mali. This research demonstrates particular ecological preferences of each chromosomal form, and gives a detailed examination of particular vegetation structural and climatological patterns across the study region. A key issue in current research into the population structure of An. gambiae is speciation and evolution in the complex, as an understanding of the mechanisms of change can help in the development of new mitigation strategies. A historical review of the paleoecology, archaeology, and other historical sources intended to shed light on the evolutionary history of the vector is presented. The generally held assumption that the current breed of An. gambiae emerged in the rainforest is called into question and discussed within the framework of paleoenvironment and human expansions in sub-Saharan West Africa.

  12. Visual and olfactory associative learning in the malaria vector Anopheles gambiae sensu stricto

    Directory of Open Access Journals (Sweden)

    Chilaka Nora

    2012-01-01

    Full Text Available Abstract Background Memory and learning are critical aspects of the ecology of insect vectors of human pathogens because of their potential effects on contacts between vectors and their hosts. Despite this epidemiological importance, there have been only a limited number of studies investigating associative learning in insect vector species and none on Anopheline mosquitoes. Methods A simple behavioural assays was developed to study visual and olfactory associative learning in Anopheles gambiae, the main vector of malaria in Africa. Two contrasted membrane qualities or levels of blood palatability were used as reinforcing stimuli for bi-directional conditioning during blood feeding. Results Under such experimental conditions An. gambiae females learned very rapidly to associate visual (chequered and white patterns and olfactory cues (presence and absence of cheese or Citronella smell with the reinforcing stimuli (bloodmeal quality and remembered the association for up to three days. Associative learning significantly increased with the strength of the conditioning stimuli used. Importantly, learning sometimes occurred faster when a positive reinforcing stimulus (palatable blood was associated with an innately preferred cue (such as a darker visual pattern. However, the use of too attractive a cue (e.g. Shropshire cheese smell was counter-productive and decreased learning success. Conclusions The results address an important knowledge gap in mosquito ecology and emphasize the role of associative memory for An. gambiae's host finding and blood-feeding behaviour with important potential implications for vector control.

  13. Observations on the distribution of anophelines in Suriname with particular reference to the malaria vector Anopheles darlingi

    Directory of Open Access Journals (Sweden)

    J. A. Rozendaal

    1990-06-01

    Full Text Available A study was made on the distribution of anophelines in Suriname with special emphasis on the principal malaria vector Anopheles darlingi and on the occurrence of other possible vector species. Peridomestic human bait collections of adult mosquitoes and collections of larvae were made in many localities with a recent history of malaria transmission. Stable population of An. darlingi were only found in the interior, south of the limit of tidal influence, due to year-round availability of breeding habitats in quietly sunlit places in flooded forest areas and along river banks. In the area with tidal movement of the rivers, breeding is limited to flooded areas in the west season. Anopheles darlingi was only incidentally collected in low densities. In the interior, malaria transmission occurred in all places where An. darlingi was found. The absence of malaria transmission along the Upper Suriname River could be explained by the absence of An. darlingi. In the malaria endemic areas, An darlingi was the most numerous mosquito biting on man. In the tidal region, malaria outbreak are infrequent and might be explained by the temporary availability of favourable beeding habitats for An. darlingi. However, evidence is insufficient to incriminate an. darlingi as the vector of malaria in this region and the possible vectorial role of other anophelines is discussed.

  14. Molecular characterization of larval peripheral thermosensory responses of the malaria vector mosquito Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Chao Liu

    Full Text Available Thermosensation provides vital inputs for the malaria vector mosquito, Anopheles gambiae which utilizes heat-sensitivity within a broad spectrum of behaviors, most notably, the localization of human hosts for blood feeding. In this study, we examine thermosensory behaviors in larval-stage An. gambiae, which as a result of their obligate aquatic habitats and importance for vectorial capacity, represents an opportunistic target for vector control as part of the global campaign to eliminate malaria. As is the case for adults, immature mosquitoes respond differentially to a diverse array of external heat stimuli. In addition, larvae exhibit a striking phenotypic plasticity in thermal-driven behaviors that are established by temperature at which embryonic development occurs. Within this spectrum, RNAi-directed gene-silencing studies provide evidence for the essential role of the Transient Receptor Potential sub-family A1 (TRPA1 channel in mediating larval thermal-induced locomotion and thermal preference within a discrete upper range of ambient temperatures.

  15. Population genetics of the malaria vector Anopheles aconitus in China and Southeast Asia.

    Science.gov (United States)

    Chen, Bin; Harbach, Ralph E; Walton, Catherine; He, Zhengbo; Zhong, Daibin; Yan, Guiyun; Butlin, Roger K

    2012-12-01

    Anopheles aconitus is a well-known vector of malaria and is broadly distributed in the Oriental Region, yet there is no information on its population genetic characteristics. In this study, the genetic differentiation among populations was examined using 140 mtDNA COII sequences from 21 sites throughout Southern China, Myanmar, Vietnam, Thailand, Laos and Sri Lanka. The population in Sri Lanka has characteristic rDNA D3 and ITS2, mtDNA COII and ND5 haplotypes, and may be considered a distinct subspecies. Clear genetic structure was observed with highly significant genetic variation present among population groups in Southeast Asia. The greatest genetic diversity exists in Yunnan and Myanmar population groups. All population groups are significantly different from one another in pairwise Fst values, except Northern Thailand with Central Thailand. Mismatch distributions and extremely significant F(s) values suggest that the populations passed through a recent demographic expansion. These patterns are discussed in relation to the likely biogeographic history of the region and compared to other Anopheles species. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Semi-field assessment of the BG-Malaria trap for monitoring the African malaria vector, Anopheles arabiensis.

    Directory of Open Access Journals (Sweden)

    Elis P A Batista

    Full Text Available Odour-baited technologies are increasingly considered for effective monitoring of mosquito populations and for the evaluation of vector control interventions. The BG-Malaria trap (BGM, which is an upside-down variant of the widely used BG-Sentinel trap (BGS, has been demonstrated to be effective to sample the Brazilian malaria vector, Anopheles darlingi. We evaluated the BGM as an improved method for sampling the African malaria vectors, Anopheles arabiensis. Experiments were conducted inside a large semi-field cage to compare trapping efficiencies of BGM and BGS traps, both baited with the synthetic attractant, Ifakara blend, supplemented with CO2. We then compared BGMs baited with either of four synthetic mosquito lures, Ifakara blend, Mbita blend, BG-lure or CO2, and an unbaited BGM. Lastly, we compared BGMs baited with the Ifakara blend dispensed via either nylon strips, BG cartridges (attractant-infused microcapsules encased in cylindrical plastic cartridge or BG sachets (attractant-infused microcapsules encased in plastic sachets. All tests were conducted between 6P.M. and 7A.M., with 200-600 laboratory-reared An. arabiensis released nightly in the test chamber. The median number of An. arabiensis caught by the BGM per night was 83, IQR:(73.5-97.75, demonstrating clear superiority over BGS (median catch = 32.5 (25.25-37.5. Compared to unbaited controls, BGMs baited with Mbita blend caught most mosquitoes (45 (29.5-70.25, followed by BGMs baited with CO2 (42.5 (27.5-64, Ifakara blend (31 (9.25-41.25 and BG lure (16 (4-22. BGM caught 51 (29.5-72.25 mosquitoes/night, when the attractants were dispensed using BG-Cartridges, compared to BG-Sachet (29.5 (24.75-40.5, and nylon strips (27 (19.25-38.25, in all cases being significantly superior to unbaited controls (p < 000.1. The findings demonstrate potential of the BGM as a sampling tool for African malaria vectors over the standard BGS trap. Its efficacy can be optimized by selecting

  17. Vector capacity of Anopheles sinensis in malaria outbreak areas of central China

    Directory of Open Access Journals (Sweden)

    Pan Jia-Yun

    2012-07-01

    Full Text Available Abstract Background Both falciparum and vivax malaria were historically prevalent in China with high incidence. With the control efforts, the annual incidence in the whole country has reduced to 0.0001% except in some areas in the southern borders after 2000. Despite this, the re-emergence or outbreak of malaria was unavoidable in central China during 2005–2007. In order to understand the role of the vector in the transmission of malaria during the outbreak period, the vector capacity of An. sinensis in Huanghuai valley of central China was investigated. Findings The study was undertaken in two sites, namely Huaiyuan county of Anhui province and Yongcheng county of Henan province. In each county, malaria cases were recorded for recent years, and transmission risk factors for each study village including anti-mosquito facilities and total number of livestock were recorded by visiting each household in the study sites. The specimens of mosquitoes were collected in two villages, and population density and species in each study site were recorded after the identification of different species, and the blood-fed mosquitoes were tested by ring precipitation test. Finally, various indicators were calculated to estimate vector capacity or dynamics, including mosquito biting rate (MBR, human blood index (HBI, and the parous rates (M. Finally, the vector capacity, as an important indicator of malaria transmission to predict the potential recurrence of malaria, was estimated and compared in each study site. About 93.0% of 80 households in Huaiyuan and 89.3% of 192 households in Yongcheng had anti-mosquito facilities. No cattle or pigs were found, only less than 10 sheep were found in each study village. A total of 94 and 107 Anopheles spp. mosquitos were captured in two study sites, respectively, and all of An. sinensis were morphologically identified. It was found that mosquito blood-feeding peak was between 9:00 pm and 12:00 pm. Man biting rate of

  18. A Simple Key for Identifying the Sibling Species of the Malaria Vector Anopheles gambiae (Giles Complex by Polytene Chromosome Cytogenetics

    Directory of Open Access Journals (Sweden)

    Music Temitope OBEMBE

    2018-03-01

    Full Text Available It has been established that Anopheles gambiae complex sibling species are the major Plasmodium malaria vectors in Africa; however, not all the sibling species transmit the infection. Easier molecular methods, PCR-based assays, have been developed to distinguish the several members of the A. gambiae complex. However, malaria vector research in less developed countries, particularly sub-Saharan Africa, is being hampered by the lack of PCR facilities in laboratories and the cost of carrying out the assay within lack of funding. Hence, the present study was designed to develop a simple identification key, based on an affordable method of polytene chromosome cytotaxonomy, for identifying the major P. falciparum vectors. The Identification Key was successfully used to identify two members of the A. gambiae complex, A. gambiae sensu stricto and A. arabiensis, which are the most potent malaria vectors in Africa; even so, it could not be used to establish the infective and the refractory strains.

  19. Human biting activity, spatial-temporal distribution and malaria vector role of Anopheles calderoni in the southwest of Colombia.

    Science.gov (United States)

    Orjuela, Lorena I; Ahumada, Martha L; Avila, Ivonni; Herrera, Sócrates; Beier, John C; Quiñones, Martha L

    2015-06-24

    Anopheles calderoni was first recognized in Colombia in 2010 as this species had been misidentified as Anopheles punctimacula due to morphological similarities. An. calderoni is considered a malaria vector in Peru and has been found naturally infected with Plasmodium falciparum in Colombia. However, its biting behaviour, population dynamics and epidemiological importance have not been well described for Colombia. To assess the contribution of An. calderoni to malaria transmission and its human biting behaviour and spatial/temporal distribution in the southwest of Colombia, human landing catches (HLC) and larval collections were carried out in a cross-sectional, entomological study in 22 localities between 2011 and 2012, and a longitudinal study was performed in the Boca de Prieta locality in Olaya Herrera municipality between July 2012 and June 2013. All mosquitoes determined as An. calderoni were tested by ELISA to establish infection with Plasmodium spp. Larvae of An. calderoni were found in four localities in 12 out of 244 breeding sites inspected. An. calderoni adults were collected in 14 out of 22 localities during the cross-sectional study and represented 41.3% (459 of 1,111) of the collected adult specimens. Other species found were Anopheles albimanus (54.7%), Anopheles apicimacula (2.1%), Anopheles neivai (1.7%), and Anopheles argyritarsis (0.2%). In the localities that reported the highest malaria Annual Parasite Index (>10/1,000 inhabitants) during the year of sampling, An. calderoni was the predominant species (>90% of the specimens collected). In the longitudinal study, 1,528 An. calderoni were collected by HLC with highest biting rates in February, May and June 2013, periods of high precipitation. In general, the species showed a preference to bite outdoors (p Colombia. Its observed preference for outdoor biting is a major challenge for malaria control.

  20. Larvicidal effects of a neem (Azadirachta indica oil formulation on the malaria vector Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Knols Bart GJ

    2007-05-01

    Full Text Available Abstract Background Larviciding is a key strategy used in many vector control programmes around the world. Costs could be reduced if larvicides could be manufactured locally. The potential of natural products as larvicides against the main African malaria vector, Anopheles gambiae s.s was evaluated. Methods To assess the larvicidal efficacy of a neem (Azadirachta indica oil formulation (azadirachtin content of 0.03% w/v on An. gambiae s.s., larvae were exposed as third and fourth instars to a normal diet supplemented with the neem oil formulations in different concentrations. A control group of larvae was exposed to a corn oil formulation in similar concentrations. Results Neem oil had an LC50 value of 11 ppm after 8 days, which was nearly five times more toxic than the corn oil formulation. Adult emergence was inhibited by 50% at a concentration of 6 ppm. Significant reductions on growth indices and pupation, besides prolonged larval periods, were observed at neem oil concentrations above 8 ppm. The corn oil formulation, in contrast, produced no growth disruption within the tested range of concentrations. Conclusion Neem oil has good larvicidal properties for An. gambiae s.s. and suppresses successful adult emergence at very low concentrations. Considering the wide distribution and availability of this tree and its products along the East African coast, this may prove a readily available and cheap alternative to conventional larvicides.

  1. Additional selection for insecticide resistance in urban malaria vectors: DDT resistance in Anopheles arabiensis from Bobo-Dioulasso, Burkina Faso.

    Directory of Open Access Journals (Sweden)

    Christopher M Jones

    Full Text Available In the city of Bobo-Dioulasso in Burkina Faso, Anopheles arabiensis has superseded Anopheles gambiae s.s. as the major malaria vector and the larvae are found in highly polluted habitats normally considered unsuitable for Anopheles mosquitoes. Here we show that An. gambiae s.l. adults emerging from a highly polluted site in the city centre (Dioulassoba have a high prevalence of DDT resistance (percentage mortality after exposure to diagnostic dose=65.8% in the dry season and 70.4% in the rainy season, respectively. An investigation into the mechanisms responsible found an unexpectedly high frequency of the 1014S kdr mutation (allele frequency=0.4, which is found at very low frequencies in An. arabiensis in the surrounding rural areas, and an increase in transcript levels of several detoxification genes, notably from the glutathione transferase and cytochrome P450 gene families. A number of ABC transporter genes were also expressed at elevated levels in the DDT resistant An. arabiensis. Unplanned urbanisation provides numerous breeding grounds for mosquitoes. The finding that Anopheles mosquitoes adapted to these urban breeding sites have a high prevalence of insecticide resistance has important implications for our understanding of the selective forces responsible for the rapid spread of insecticide resistant populations of malaria vectors in Africa.

  2. Identification and analysis of Single Nucleotide Polymorphisms (SNPs in the mosquito Anopheles funestus, malaria vector

    Directory of Open Access Journals (Sweden)

    Hemingway Janet

    2007-01-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are the most common source of genetic variation in eukaryotic species and have become an important marker for genetic studies. The mosquito Anopheles funestus is one of the major malaria vectors in Africa and yet, prior to this study, no SNPs have been described for this species. Here we report a genome-wide set of SNP markers for use in genetic studies on this important human disease vector. Results DNA fragments from 50 genes were amplified and sequenced from 21 specimens of An. funestus. A third of specimens were field collected in Malawi, a third from a colony of Mozambican origin and a third form a colony of Angolan origin. A total of 494 SNPs including 303 within the coding regions of genes and 5 indels were identified. The physical positions of these SNPs in the genome are known. There were on average 7 SNPs per kilobase similar to that observed in An. gambiae and Drosophila melanogaster. Transitions outnumbered transversions, at a ratio of 2:1. The increased frequency of transition substitutions in coding regions is likely due to the structure of the genetic code and selective constraints. Synonymous sites within coding regions showed a higher polymorphism rate than non-coding introns or 3' and 5'flanking DNA with most of the substitutions in coding regions being observed at the 3rd codon position. A positive correlation in the level of polymorphism was observed between coding and non-coding regions within a gene. By genotyping a subset of 30 SNPs, we confirmed the validity of the SNPs identified during this study. Conclusion This set of SNP markers represents a useful tool for genetic studies in An. funestus, and will be useful in identifying candidate genes that affect diverse ranges of phenotypes that impact on vector control, such as resistance insecticide, mosquito behavior and vector competence.

  3. Larval nutrition differentially affects adult fitness and Plasmodium development in the malaria vectors Anopheles gambiae and Anopheles stephensi

    NARCIS (Netherlands)

    Takken, W.; Smallegange, R.C.; Vigneau, A.J.; Johnston, V.; Brown, M.; Mordue-Luntz, A.J.; Billingsley, P.F.

    2013-01-01

    BACKGROUND: Mosquito fitness is determined largely by body size and nutritional reserves. Plasmodium infections in the mosquito and resultant transmission of malaria parasites might be compromised by the vector's nutritional status. We studied the effects of nutritional stress and malaria parasite

  4. Artificial activation of mature unfertilized eggs in the malaria vector mosquito, Anopheles stephensi (Diptera, Culicidae).

    Science.gov (United States)

    Yamamoto, Daisuke S; Hatakeyama, Masatsugu; Matsuoka, Hiroyuki

    2013-08-01

    In the past decade, many transgenic lines of mosquitoes have been generated and analyzed, whereas the maintenance of a large number of transgenic lines requires a great deal of effort and cost. In vitro fertilization by an injection of cryopreserved sperm into eggs has been proven to be effective for the maintenance of strains in mammals. The technique of artificial egg activation is a prerequisite for the establishment of in vitro fertilization by sperm injection. We demonstrated that artificial egg activation is feasible in the malaria vector mosquito, Anopheles stephensi (Diptera, Culicidae). Nearly 100% of eggs dissected from virgin females immersed in distilled water darkened, similar to normally oviposited fertilized eggs. It was revealed by the cytological examination of chromosomes that meiotic arrest was relieved in these eggs approximately 20 min after incubation in water. Biochemical examinations revealed that MAPK (mitogen-activated protein kinase)/ERK (extracellular signal-regulated protein kinase) and MEK (MAPK/ERK kinase) were dephosphorylated similar to that in fertilized eggs. These results indicate that dissected unfertilized eggs were activated in distilled water and started development. Injection of distilled water into body cavity of the virgin blood-fed females also induced activation of a portion of eggs in the ovaries. The technique of artificial egg activation is expected to contribute to the success of in vitro fertilization in A. stephensi.

  5. Genome-Wide Divergence in the West-African Malaria Vector Anopheles melas

    Directory of Open Access Journals (Sweden)

    Kevin C. Deitz

    2016-09-01

    Full Text Available Anopheles melas is a member of the recently diverged An. gambiae species complex, a model for speciation studies, and is a locally important malaria vector along the West-African coast where it breeds in brackish water. A recent population genetic study of An. melas revealed species-level genetic differentiation between three population clusters. An. melas West extends from The Gambia to the village of Tiko, Cameroon. The other mainland cluster, An. melas South, extends from the southern Cameroonian village of Ipono to Angola. Bioko Island, Equatorial Guinea An. melas populations are genetically isolated from mainland populations. To examine how genetic differentiation between these An. melas forms is distributed across their genomes, we conducted a genome-wide analysis of genetic differentiation and selection using whole genome sequencing data of pooled individuals (Pool-seq from a representative population of each cluster. The An. melas forms exhibit high levels of genetic differentiation throughout their genomes, including the presence of numerous fixed differences between clusters. Although the level of divergence between the clusters is on a par with that of other species within the An. gambiae complex, patterns of genome-wide divergence and diversity do not provide evidence for the presence of pre- and/or postmating isolating mechanisms in the form of speciation islands. These results are consistent with an allopatric divergence process with little or no introgression.

  6. Landscape movements of Anopheles gambiae malaria vector mosquitoes in rural Gambia.

    Science.gov (United States)

    Thomas, Christopher J; Cross, Dónall E; Bøgh, Claus

    2013-01-01

    For malaria control in Africa it is crucial to characterise the dispersal of its most efficient vector, Anopheles gambiae, in order to target interventions and assess their impact spatially. Our study is, we believe, the first to present a statistical model of dispersal probability against distance from breeding habitat to human settlements for this important disease vector. We undertook post-hoc analyses of mosquito catches made in The Gambia to derive statistical dispersal functions for An. gambiae sensu lato collected in 48 villages at varying distances to alluvial larval habitat along the River Gambia. The proportion dispersing declined exponentially with distance, and we estimated that 90% of movements were within 1.7 km. Although a 'heavy-tailed' distribution is considered biologically more plausible due to active dispersal by mosquitoes seeking blood meals, there was no statistical basis for choosing it over a negative exponential distribution. Using a simple random walk model with daily survival and movements previously recorded in Burkina Faso, we were able to reproduce the dispersal probabilities observed in The Gambia. Our results provide an important quantification of the probability of An. gambiae s.l. dispersal in a rural African setting typical of many parts of the continent. However, dispersal will be landscape specific and in order to generalise to other spatial configurations of habitat and hosts it will be necessary to produce tractable models of mosquito movements for operational use. We show that simple random walk models have potential. Consequently, there is a pressing need for new empirical studies of An. gambiae survival and movements in different settings to drive this development.

  7. Population structure of the malaria vector Anopheles moucheti in the equatorial forest region of Africa

    Directory of Open Access Journals (Sweden)

    Fontenille Didier

    2008-07-01

    Full Text Available Abstract Background Anopheles moucheti is a major malaria vector in forested areas of Africa. However, despite its important epidemiological role, it remains poorly known and insufficiently studied. Here, levels of genetic differentiation were estimated between different A. moucheti populations sampled throughout its distribution range in Central Africa. Methods Polymorphism at ten microsatellite markers was compared in mosquitoes sampled in Cameroon, the Democratic Republic of Congo and an island on Lake Victoria in Uganda. Microsatellite data were used to estimate genetic diversity within populations, their relative long-term effective population size, and the level of genetic differentiation between them. Results All specimens collected in Tsakalakuku (Democratic Republic of Congo were identified as A. m. bervoetsi while other samples consisted of A. m. moucheti. Successful amplification was obtained at all microsatellite loci within all A. m. moucheti samples while only six loci amplified in A. m. bervoetsi. Allelic richness and heterozygosity were high for all populations except the island population of Uganda and A. m. bervoetsi. High levels of genetic differentiation were recorded between A. m. bervoetsi and each A. m. moucheti sample as well as between the island population of A. m. moucheti and mainland populations. Significant isolation by distance was evidenced between mainland populations. Conclusion High levels of genetic differentiation supports complete speciation of A. m. bervoetsi which should henceforth be recognized as a full species and named A. bervoetsi. Isolation by distance is the main force driving differentiation between mainland populations of A. m. moucheti. Genetically and geographically isolated populations exist on Lake Victoria islands, which might serve as relevant field sites for evaluation of innovative vector control strategies.

  8. Malaria in Kakuma refugee camp, Turkana, Kenya: facilitation of Anopheles arabiensis vector populations by installed water distribution and catchment systems

    Directory of Open Access Journals (Sweden)

    Cetron Martin S

    2011-06-01

    Full Text Available Abstract Background Malaria is a major health concern for displaced persons occupying refugee camps in sub-Saharan Africa, yet there is little information on the incidence of infection and nature of transmission in these settings. Kakuma Refugee Camp, located in a dry area of north-western Kenya, has hosted ca. 60,000 to 90,000 refugees since 1992, primarily from Sudan and Somalia. The purpose of this study was to investigate malaria prevalence and attack rate and sources of Anopheles vectors in Kakuma refugee camp, in 2005-2006, after a malaria epidemic was observed by staff at camp clinics. Methods Malaria prevalence and attack rate was estimated from cases of fever presenting to camp clinics and the hospital in August 2005, using rapid diagnostic tests and microscopy of blood smears. Larval habitats of vectors were sampled and mapped. Houses were sampled for adult vectors using the pyrethrum knockdown spray method, and mapped. Vectors were identified to species level and their infection with Plasmodium falciparum determined. Results Prevalence of febrile illness with P. falciparum was highest among the 5 to 17 year olds (62.4% while malaria attack rate was highest among the two to 4 year olds (5.2/1,000/day. Infected individuals were spatially concentrated in three of the 11 residential zones of the camp. The indoor densities of Anopheles arabiensis, the sole malaria vector, were similar during the wet and dry seasons, but were distributed in an aggregated fashion and predominantly in the same zones where malaria attack rates were high. Larval habitats and larval populations were also concentrated in these zones. Larval habitats were man-made pits of water associated with tap-stands installed as the water delivery system to residents with year round availability in the camp. Three percent of A. arabiensis adult females were infected with P. falciparum sporozoites in the rainy season. Conclusions Malaria in Kakuma refugee camp was due mainly

  9. Vector Competence of Anopheles kleini and Anopheles sinensis (Diptera: Culicidae) From the Republic of Korea to Vivax Malaria-Infected Blood From Patients From Thailand.

    Science.gov (United States)

    Ubalee, Ratawan; Kim, Heung-Chul; Schuster, Anthony L; McCardle, Patrick W; Phasomkusolsil, Siriporn; Takhampunya, Ratree; Davidson, Silas A; Lee, Won-Ja; Klein, Terry A

    2016-11-01

    In total, 1,300 each of Anopheles kleini Rueda and Anopheles sinensis Wiedemann sensu stricto (s.s.) females (colonized from the Republic of Korea) and Anopheles dirus Peyton & Harrison (Thai strain) were allowed to feed on blood from Thai malaria patients naturally infected with Plasmodium vivax The overall oocyst infection rates for An. dirus, An. kleini, and An. sinensis s.s. were 77.4, 46.1, and 45.9%, respectively. The mean number of oocysts was significantly higher for An. dirus (82.7) compared with An. kleini (6.1) and An. sinensis s.s. (8.6), whereas the mean number of oocysts for An. kleini and An. sinensis s.s. was similar. The overall sporozoite infection rates for An. dirus, An. kleini, and An. sinensis s.s. dissected on days 14-15, 21, and 28 days post-feed were significantly higher for An. dirus (90.0%) than An. kleini (5.4%), whereas An. kleini sporozoite rates were significantly higher than An. sinensis s.s. (1,000 sporozoites) salivary gland indices were significantly higher for An. dirus (85.7%), compared with An. kleini (47.1%). Only one An. sinensis s.s. had sporozoites (+2; >10-100 sporozoites). These results indicate that An. kleini is a competent vector of vivax malaria. Although An. sinensis s.s. develops relatively high numbers of oocysts, it is considered a very poor vector of vivax malaria due to a salivary gland barrier. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the US.

  10. Distribution of the species of the Anopheles gambiae complex and first evidence of Anopheles merus as a malaria vector in Madagascar

    Directory of Open Access Journals (Sweden)

    Le Goff Gilbert

    2003-10-01

    Full Text Available Abstract Background Members of the Anopheles gambiae complex are amongst the best malaria vectors in the world, but their vectorial capacities vary between species and populations. A large-scale sampling of An. gambiae sensu lato was carried out in various bioclimatic domains of Madagascar. Local abundance of an unexpected member of this complex raised questions regarding its role in malaria transmission. Methods Sampling took place at 38 sites and 2,067 females were collected. Species assessment was performed using a PCR targeting a sequence in the IGS of the rDNA. Analysis focused on the relative prevalence of the species per site, bioclimatic domain and altitude. Infectivity of Anopheles merus was assessed using an ELISA to detect the presence of malarial circumsporozoite protein in the head-thorax. Results Three species were identified: An. gambiae, Anopheles arabiensis and An. merus. The distribution of each species is mainly a function of bioclimatic domains and, to a lesser extent, altitude. An. arabiensis is present in all bioclimatic domains with highest prevalence in sub-humid, dry and sub-arid domains. An. gambiae has its highest prevalence in the humid domain, is in the minority in dry areas, rare in sub-humid and absent in sub-arid domains. An. merus is restricted to the coastal fringe in the south and west; it was in the majority in one southern village. The majority of sites were sympatric for at least two of the species (21/38 and two sites harboured all three species. The role of An. merus as malaria vector was confirmed in the case of two human-biting females, which were ELISA-positive for Plasmodium falciparum. Conclusion Despite the huge environmental (mainly man-made changes in Madagascar, the distribution of An. gambiae and An. arabiensis appears unchanged for the past 35 years. The distribution of An. merus is wider than was previously known, and its effectiveness as a malaria vector has been shown for the first time; this

  11. Melanotic pathology and vertical transmission of the gut commensal Elizabethkingia meningoseptica in the major malaria vector Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Idir G Akhouayri

    Full Text Available The resident gut flora is known to have significant impacts on the life history of the host organism. Endosymbiotic bacterial species in the Anopheles mosquito gut are potent modulators of sexual development of the malaria parasite, Plasmodium, and thus proposed as potential control agents of malaria transmission.Here we report a melanotic pathology in the major African malaria vector Anopheles gambiae, caused by the dominant mosquito endosymbiont Elizabethkingiameningoseptica. Transfer of melanised tissues into the haemolymph of healthy adult mosquitoes or direct haemolymph inoculation with isolated E. meningoseptica bacteria were the only means for transmission and de novo formation of melanotic lesions, specifically in the fat body tissues of recipient individuals. We show that E. meningoseptica can be vertically transmitted from eggs to larvae and that E. meningoseptica-mono-associated mosquitoes display significant mortality, which is further enhanced upon Plasmodium infection, suggesting a synergistic impact of E. meningoseptica and Plasmodium on mosquito survival.The high pathogenicity and permanent association of E. meningoseptica with An. Gambiae through vertical transmission constitute attractive characteristics towards the potential design of novel mosquito/malaria biocontrol strategies.

  12. A de novo expression profiling of Anopheles funestus, malaria vector in Africa, using 454 pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Richard Gregory

    2011-02-01

    Full Text Available Anopheles funestus is one of the major malaria vectors in Africa and yet there are few genomic tools available for this species compared to An. gambiae. To start to close this knowledge gap, we sequenced the An. funestus transcriptome using cDNA libraries developed from a pyrethroid resistant laboratory strain and a pyrethroid susceptible field strain from Mali.Using a pool of life stages (pupae, larvae, adults: females and males for each strain, 454 sequencing generated 375,619 reads (average length of 182 bp. De novo assembly generated 18,103 contigs with average length of 253 bp. The average depth of coverage of these contigs was 8.3. In total 20.8% of all reads were novel when compared to reference databases. The sequencing of the field strain generated 204,758 reads compared to 170,861 from the insecticide resistant laboratory strain. The contigs most differentially represented in the resistant strain belong to the P450 gene family and cuticular genes which correlates with previous studies implicating both of these gene families in pyrethroid resistance. qPCR carried out on six contigs indicates that these ESTs could be suitable for gene expression studies such as microarray. 31,000 sites were estimated to contain Single Nucleotide Polymorphisms (SNPs and analysis of SNPs from 20 contigs suggested that most of these SNPs are likely to be true SNPs. Gene conservation analysis confirmed the close phylogenetic relationship between An. funestus and An. gambiae.This study represents a significant advance for the genetics and genomics of An. funestus since it provides an extensive set of both Expressed Sequence Tags (ESTs and SNPs which can be readily adopted for the design of new genomic tools such as microarray or SNP platforms.

  13. Biology, Bionomics and Molecular Biology of Anopheles sinensis Wiedemann 1828 (Diptera: Culicidae), Main Malaria Vector in China.

    Science.gov (United States)

    Feng, Xinyu; Zhang, Shaosen; Huang, Fang; Zhang, Li; Feng, Jun; Xia, Zhigui; Zhou, Hejun; Hu, Wei; Zhou, Shuisen

    2017-01-01

    China has set a goal to eliminate all malaria in the country by 2020, but it is unclear if current understanding of malaria vectors and transmission is sufficient to achieve this objective. Anopheles sinensis is the most widespread malaria vector specie in China, which is also responsible for vivax malaria outbreak in central China. We reviewed literature from 1954 to 2016 on An. sinensis with emphasis on biology, bionomics, and molecular biology. A total of 538 references were relevant and included. An. sienesis occurs in 29 Chinese provinces. Temperature can affect most life-history parameters. Most An. sinensis are zoophilic, but sometimes they are facultatively anthropophilic. Sporozoite analysis demonstrated An. sinensis efficacy on Plasmodium vivax transmission. An. sinensis was not stringently refractory to P. falciparum under experimental conditions, however, sporozoite was not found in salivary glands of field collected An. sinensis . The literature on An. sienesis biology and bionomics was abundant, but molecular studies, such as gene functions and mechanisms, were limited. Only 12 molecules (genes, proteins or enzymes) have been studied. In addition, there were considerable untapped omics resources for potential vector control tools. Existing information on An. sienesis could serve as a baseline for advanced research on biology, bionomics and genetics relevant to vector control strategies.

  14. First record of the Asian malaria vector Anopheles stephensi and its possible role in the resurgence of malaria in Djibouti, Horn of Africa.

    Science.gov (United States)

    Faulde, Michael K; Rueda, Leopoldo M; Khaireh, Bouh A

    2014-11-01

    Anopheles stephensi is an important vector of urban malaria in India and the Persian Gulf area. Its previously known geographical range includes southern Asia and the Arab Peninsula. For the first time, we report A. stephensi from the African continent, based on collections made in Djibouti, on the Horn of Africa, where this species' occurrence was linked to an unusual urban outbreak of Plasmodium falciparum malaria, with 1228 cases reported from February to May 2013, and a second, more severe epidemic that emerged in November 2013 and resulted in 2017 reported malaria cases between January and February 2014. Anopheles stephensi was initially identified using morphological identification keys, followed by sequencing of the Barcode cytochrome c-oxidase I (COI) gene and the rDNA second internal transcribed spacer (ITS2). Positive tests for P. falciparum circumsporozoite antigen in two of six female A. stephensi trapped in homes of malaria patients in March 2013 are evidence that autochthonous urban malaria transmission by A. stephensi has occurred. Concurrent with the second malaria outbreak, P. falciparum-positive A. stephensi females were detected in Djibouti City starting in November 2013. In sub-Saharan Africa, newly present A. stephensi may pose a significant future health threat because of this species' high susceptibility to P. falciparum infection and its tolerance of urban habitats. This may lead to increased malaria outbreaks in African cities. Rapid interruption of the urban malaria transmission cycle, based on integrated vector surveillance and control programs aimed at the complete eradication of A. stephensi from the African continent, is strongly recommended. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Effect of phyto-synthesized silver nanoparticles on developmental stages of malaria vector, Anopheles stephensi and dengue vector, Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Madanagopal Nalini

    2017-09-01

    Full Text Available Rapidly synthesized phyto-mediated silver nanoparticles (Ag NPs using Artemisia nilagirica aqueous leaf filtrate has been confirmed through UV–visible spectrophotometer. The synthesized Ag NPs were further characterized using Fourier transform infra-red (FTIR, X-ray diffraction analysis (XRD to determine the present of functional groups and average particle size (6.723 nm with cubic nature, respectively. Spherical shape (≤30 nm of Ag NPs was confirmed by scanning electron microscopy (SEM. Bio-efficacy of these nanoparticles showed larvicidal and pupicidal properties than the aqueous leaf extract treatment alone against developmental stages (I–IV instars and pupa of malaria vector Anopheles stephensi and dengue vector Aedes aegypti at 0.25% concentration level. The LC50 (LCL:UCL at 95% confidence limit values of I–IV instar and pupa of An. stephensi were recorded at 0.343 (0.261:0.405, 0.169 (0.025:0.263, 0.198 (0.105:0.265, 0.141 (0.045:0.205 and 0.050 (0.606:0.224 % respectively and for Ae. aegypti (I–IV instar and pupa 0.460 (0.364:0.537, 0.352 (0.239:0.432, 0.331 (0.833:0.549, 0.217 (0.228:0.378 and 0.161 (0.630:0.356 % were observed, after 24 h exposure. The first report of present investigation revealed that the rapid biological synthesis of silver nanoparticles using A. nilagirica leaf filtrate would be an effective potential alternative green larvicide for the control of mosquitoes at the developmental stages with eco-friendly approach.

  16. IgG responses to Anopheles gambiae salivary antigen gSG6 detect variation in exposure to malaria vectors and disease risk

    DEFF Research Database (Denmark)

    Stone, Will; Bousema, Teun; Jones, Sophie

    2012-01-01

    as the basis of an immuno-assay determining exposure to Afrotropical malaria vectors. In the present study, IgG responses to gSG6 and 6 malaria antigens (CSP, AMA-1, MSP-1, MSP-3, GLURP R1, and GLURP R2) were compared to Anopheles exposure and malaria incidence in a cohort of children from Korogwe district...... with subsequent malaria incidence (test for trend p¿=¿0.004), comparable to malaria antigens MSP-1 and GLURP R2. Our results show that the gSG6 assay is sensitive to micro-epidemiological variations in exposure to Anopheles mosquitoes, and provides a correlate of malaria risk that is unrelated to immune...

  17. Spatial and temporal distribution of the malaria mosquito Anopheles arabiensis in northern Sudan: influence of environmental factors and implications for vector control

    NARCIS (Netherlands)

    Ageep, T.B.; Cox, J.; Hassan, M.M.; Knols, B.G.J.; Benedict, M.Q.; Malcolm, C.A.; Babiker, A.; Sayed, El B.B.

    2009-01-01

    Background - Malaria is an important public health problem in northern Sudan, but little is known about the dynamics of its transmission. Given the characteristic low densities of Anopheles arabiensis and the difficult terrain in this area, future vector control strategies are likely to be based on

  18. Reflections on the Anopheles gambiae genome sequence, transgenic mosquitoes and the prospect for controlling malaria and other vector borne diseases.

    Science.gov (United States)

    Tabachnick, Walter J

    2003-09-01

    The completion of the Anopheles gambiae Giles genome sequencing project is a milestone toward developing more effective strategies in reducing the impact of malaria and other vector borne diseases. The successes in developing transgenic approaches using mosquitoes have provided another essential new tool for further progress in basic vector genetics and the goal of disease control. The use of transgenic approaches to develop refractory mosquitoes is also possible. The ability to use genome sequence to identify genes, and transgenic approaches to construct refractory mosquitoes, has provided the opportunity that with the future development of an appropriate genetic drive system, refractory transgenes can be released into vector populations leading to nontransmitting mosquitoes. An. gambiae populations incapable of transmitting malaria. This compelling strategy will be very difficult to achieve and will require a broad substantial research program for success. The fundamental information that is required on genome structure, gene function and environmental effects on genetic expression are largely unknown. The ability to predict gene effects on phenotype is rudimentary, particularly in natural populations. As a result, the release of a refractory transgene into natural mosquito populations is imprecise and there is little ability to predict unintended consequences. The new genetic tools at hand provide opportunities to address an array of important issues, many of which can have immediate impact on the effectiveness of a host of strategies to control vector borne disease. Transgenic release approaches represent only one strategy that should be pursued. A balanced research program is required.

  19. Investigating knockdown resistance (kdr) mechanism against pyrethroids/DDT in the malaria vector Anopheles funestus across Africa.

    Science.gov (United States)

    Irving, Helen; Wondji, Charles S

    2017-08-09

    Understanding the molecular basis of insecticide resistance is key to improve the surveillance and monitoring of malaria vector populations under control. In the major malaria vector Anopheles funestus, little is currently known about the role of the knockdown resistance (kdr) mechanism. Here, we investigated the presence and contribution of knockdown resistance (kdr) to pyrethroids/DDT resistance observed in Anopheles funestus across Africa. Pyrosequencing genotyping and sequencing of the voltage gated sodium channel (VGSC) gene did not detect the common L1014F mutation in field collected An. funestus across Africa. Amplification and cloning of the full-length of the sodium channel gene in pyrethroid resistant mosquitoes revealed evidences of alternative splicing events with three transcripts of 2092, 2061 and 2117 amino acids (93% average similarity to An. gambiae). Several amino acid changes were detected close to the domain II of the protein such as L928R, F938 W, I939S, L802S and T1008 M. However, all these mutations are found at low frequency and their role in pyrethroid resistance could not be established. The presence of the exclusive alternative splicing at exon 19 was not associated with resistance phenotype. Analysis of patterns of genetic diversity of the VGSC gene revealed a high polymorphism level of this gene across Africa with no evidence of directional selection suggesting a limited role for knockdown resistance in pyrethroid resistance in An. funestus. Patterns of genetic differentiation correlate with previous observations of the existence of barriers to gene flow Africa-wide with southern population significantly differentiated from other regions. Despite an apparent limited role of knockdown resistance in An. funestus, it is necessary to continue to monitor the contribution of the mutations detected here as increasing selection from insecticide-based interventions may change the dynamic in field populations as previously observed in other

  20. Genetic evidence for malaria vectors of the Anopheles sundaicus complex in Sri Lanka with morphological characteristics attributed to Anopheles subpictus species B

    Directory of Open Access Journals (Sweden)

    Jude Pavillupillai J

    2010-11-01

    Full Text Available Abstract Background Anopheles subpictus sensu lato, a widespread malaria vector in Asia, is reportedly composed of four sibling species A - D. Mosquitoes morphologically identified as belonging to the Subpictus complex were collected from different locations near the east coast of Sri Lanka, and specific ribosomal DNA sequences determined to validate their taxonomic status. Methods Anopheles subpictus s.l. larvae and blood-fed adults were collected from different locations in the Eastern province and their sibling species status was determined based on published morphological characteristics. DNA sequences of the D3 domain of 28 S ribosomal DNA (rDNA and the internal transcribed spacer -2 (ITS-2 of mosquitoes morphologically identified as An. subpictus sibling species A, B, C and D were determined. Results Phylogenetic analysis based on D3 domain of rDNA resulted in two clades: one clade with mosquitoes identified as An. subpictus species A, C, D and some mosquitoes identified as species B, and another clade with a majority of mosquitoes identified as species B with D3 sequences that were identical to Anopheles sundaicus cytotype D. Analysis of ITS-2 sequences confirmed a close relationship between a majority of mosquitoes identified as An. subpictus B with members of the An. sundaicus complex and others identified as An. subpictus B with An. subpictus s.l. Conclusions The study suggests that published morphological characteristics are not specific enough to identify some members of the Subpictus complex, particularly species B. The sequences of the ITS-2 and D3 domain of rDNA suggest that a majority that were identified morphologically as An. subpictus species B in the east coast of Sri Lanka, and some identified elsewhere in SE Asia as An. subpictus s.l., are in fact members of the Sundaicus complex based on genetic similarity to An. sundaicus s.l. In view of the well-known ability of An. sundaicus s.l. to breed in brackish and fresh water and

  1. Alstonia boonei De Wild oil extract in the management of mosquito (Anopheles gambiae, a vector of malaria disease

    Directory of Open Access Journals (Sweden)

    Kayode David Ileke

    2015-07-01

    Full Text Available Objective: To evaluate the insecticidal potential of Alstonia boonei (A. boonei oils and derivatives against different life stages of a malaria vector, Anopheles gambiae. Methods: The leaf, stem bark and root bark of A. boonei were collected from an open field and air dried before being blended to fine powder. Oils from this plant were extracted by cold extraction and were prepared at different concentrations. Contact toxicity of A. boonei was tested against the larvae and pupae of the insect while smoke toxicity of the plant materials in form of mosquito coil was tested against the adult insect. Results: Alstodine recorded the highest insect mortality rate and the order of susceptibility of the life stages of the insect to the plant was pupae alstonine > stem bark extract > leaf extract > root bark extract.

  2. Regulation of anti-Plasmodium immunity by a LITAF-like transcription factor in the malaria vector Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Ryan C Smith

    Full Text Available The mosquito is the obligate vector for malaria transmission. To complete its development within the mosquito, the malaria parasite Plasmodium must overcome the protective action of the mosquito innate immune system. Here we report on the involvement of the Anopheles gambiae orthologue of a conserved component of the vertebrate immune system, LPS-induced TNFα transcription factor (LITAF, and its role in mosquito anti-Plasmodium immunity. An. gambiae LITAF-like 3 (LL3 expression is up-regulated in response to midgut invasion by both rodent and human malaria parasites. Silencing of LL3 expression greatly increases parasite survival, indicating that LL3 is part of an anti-Plasmodium defense mechanism. Electrophoretic mobility shift assays identified specific LL3 DNA-binding motifs within the promoter of SRPN6, a gene that also mediates mosquito defense against Plasmodium. Further experiments indicated that these motifs play a direct role in LL3 regulation of SRPN6 expression. We conclude that LL3 is a transcription factor capable of modulating SRPN6 expression as part of the mosquito anti-Plasmodium immune response.

  3. Microgeographic Genetic Variation of the Malaria Vector Anopheles darlingi Root (Diptera: Culicidae) from Córdoba and Antioquia, Colombia

    Science.gov (United States)

    Gutiérrez, Lina A.; Gómez, Giovan F.; González, John J.; Castro, Martha I.; Luckhart, Shirley; Conn, Jan E.; Correa, Margarita M.

    2010-01-01

    Anopheles darlingi is an important vector of Plasmodium spp. in several malaria-endemic regions of Colombia. This study was conducted to test genetic variation of An. darlingi at a microgeographic scale (approximately 100 km) from localities in Córdoba and Antioquia states, in western Colombia, to better understand the potential contribution of population genetics to local malaria control programs. Microsatellite loci: nuclear white and cytochrome oxidase subunit I (COI) gene sequences were analyzed. The northern white gene lineage was exclusively distributed in Córdoba and Antioquia and shared COI haplotypes were highly represented in mosquitoes from both states. COI analyses showed these An. darlingi are genetically closer to Central American populations than southern South American populations. Overall microsatellites and COI analysis showed low to moderate genetic differentiation among populations in northwestern Colombia. Given the existence of high gene flow between An. darlingi populations of Córdoba and Antioquia, integrated vector control strategies could be developed in this region of Colombia. PMID:20595475

  4. Population genetic structure of the major malaria vector Anopheles funestus s.s. and allied species in southern Africa

    Directory of Open Access Journals (Sweden)

    Choi Kwang Shik

    2012-12-01

    Full Text Available Abstract Background Anopheles funestus s.s., one of the major malaria vectors in sub-Saharan Africa, belongs to a group of eleven African species that are morphologically similar at the adult stage, most of which do not transmit malaria. The population structure of An. funestus based on mitochondrial DNA data led to the description of two cryptic subdivisions, clade I widespread throughout Africa and clade II known only from Mozambique and Madagascar. In this study, we investigated five common members of the Anopheles funestus group in southern Africa in order to determine relationships within and between species. Methods A total of 155 specimens of An. funestus, An. parensis, An. vaneedeni, An. funestus-like and An. rivulorum from South Africa, Mozambique and Malawi were used for the study. The population genetic structure was assessed within and between populations using mitochondrial DNA. Results The phylogenetic trees revealed three main lineages: 1 An. rivulorum; 2 An. funestus-like clade I and An. parensis clade II; and 3 An. funestus clades I and II, An. funestus-like clade II, An. parensis clade I and An. vaneedeni clades I and II. Within An. funestus, 32 specimens from Mozambique consisted of 40.6% clade I and 59.4% clade II while all 21 individuals from Malawi were clade I. In the analysis of mitochondrial DNA sequences, there were 37 polymorphic sites and 9 fixed different nucleotides for ND5 and 21 polymorphic sites and 6 fixed different nucleotides for COI between the two An. funestus clades. The results for COI supported the ND5 analysis. Conclusion This is the first report comparing An. funestus group species including An. funestus clades I and II and the new species An. funestus-like. Anopheles funestus clade I is separated from the rest of the members of the An. funestus subgroup and An. funestus-like is distinctly distributed from the other species in this study. However, there were two clades for An. funestus-like, An

  5. Fitness consequences of larval exposure to Beauveria bassiana on adults of the malaria vector Anopheles stephensi.

    Science.gov (United States)

    Vogels, Chantal B F; Bukhari, Tullu; Koenraadt, Constantianus J M

    2014-06-01

    Entomopathogenic fungi have shown to be effective in biological control of both larval and adult stages of malaria mosquitoes. However, a small fraction of mosquitoes is still able to emerge after treatment with fungus during the larval stage. It remains unclear whether fitness of these adults is affected by the treatment during the larval stage and whether they are still susceptible for another treatment during the adult stage. Therefore, we tested the effects of larval exposure to the entomopathogenic fungus Beauveria bassiana on fitness of surviving Anopheles stephensi females. Furthermore, we tested whether larval exposed females were still susceptible to re-exposure to the fungus during the adult stage. Sex ratio, survival and reproductive success were compared between non-exposed and larval exposed A. stephensi. Comparisons were also made between survival of non-exposed and larval exposed females that were re-exposed to B. bassiana during the adult stage. Larval treatment did not affect sex ratio of emerging mosquitoes. Larval exposed females that were infected died significantly faster and laid equal numbers of eggs from which equal numbers of larvae hatched, compared to non-exposed females. Larval exposed females that were uninfected had equal survival, but laid a significantly larger number of eggs from which a significantly higher number of larvae hatched, compared to non-exposed females. Larval exposed females which were re-exposed to B. bassiana during the adult stage had equal survival as females exposed only during the adult stage. Our results suggest that individual consequences for fitness of larval exposed females depended on whether a fungal infection was acquired during the larval stage. Larval exposed females remained susceptible to re-exposure with B. bassiana during the adult stage, indicating that larval and adult control of malaria mosquitoes with EF are compatible. Copyright © 2014. Published by Elsevier Inc.

  6. Cuticle thickening associated with pyrethroid resistance in the major malaria vector Anopheles funestus

    Directory of Open Access Journals (Sweden)

    Coetzee M

    2010-08-01

    Full Text Available Abstract Background Malaria in South Africa is primarily transmitted by Anopheles funestus Giles. Resistance to pyrethroid insecticides in An. funestus in northern Kwazulu/Natal, South Africa, and in neighbouring areas of southern Mozambique enabled populations of this species to increase their ranges into areas where pyrethroids were being exclusively used for malaria control. Pyrethroid resistance in southern African An. funestus is primarily conferred by monooxygenase enzyme metabolism. However, selection for this resistance mechanism is likely to have occurred in conjunction with other factors that improve production of the resistance phenotype. A strong candidate is cuticle thickening. This is because thicker cuticles lead to slower rates of insecticide absorption, which is likely to increase the efficiency of metabolic detoxification. Results Measures of mean cuticle thickness in laboratory samples of female An. funestus were obtained using scanning electron microscopy (SEM. These females were drawn from a laboratory colony carrying the pyrethroid resistance phenotype at a stable rate, but not fixed. Prior to cuticle thickness measurements, these samples were characterised as either more or less tolerant to permethrin exposure in one experiment, and either permethrin resistant or susceptible in another experiment. There was a significant and positive correlation between mean cuticle thickness and time to knock down during exposure to permethrin. Mean cuticle thickness was significantly greater in those samples characterised either as more tolerant or resistant to permethrin exposure compared to those characterised as either less tolerant or permethrin susceptible. Further, insecticide susceptible female An. funestus have thicker cuticles than their male counterparts. Conclusion Pyrethroid tolerant or resistant An. funestus females are likely to have thicker cuticles than less tolerant or susceptible females, and females generally have

  7. Molecular evidence for historical presence of knock-down resistance in Anopheles albimanus, a key malaria vector in Latin America.

    Science.gov (United States)

    Lol, Juan C; Castellanos, María E; Liebman, Kelly A; Lenhart, Audrey; Pennington, Pamela M; Padilla, Norma R

    2013-09-18

    Anopheles albimanus is a key malaria vector in the northern neotropics. Current vector control measures in the region are based on mass distributions of long-lasting insecticidal nets (LLINs) and focal indoor residual spraying (IRS) with pyrethroids. Resistance to pyrethroid insecticides can be mediated by increased esterase and/or multi-function oxidase activity and/or mutations in the voltage-gated sodium channel gene. The aim of this work was to characterize the homologous kdr region of the voltage-gated sodium channel gene in An. albimanus and to conduct a preliminary retrospective analysis of field samples collected in the 1990's, coinciding with a time of intense pyrethroid application related to agricultural and public health insect control in the region. Degenerate primers were designed to amplify the homologous kdr region in a pyrethroid-susceptible laboratory strain (Sanarate) of An. albimanus. Subsequently, a more specific primer pair was used to amplify and sequence the region that contains the 1014 codon associated with pyrethroid resistance in other Anopheles spp. (L1014F, L1014S or L1014C). Direct sequencing of the PCR products confirmed the presence of the susceptible kdr allele in the Sanarate strain (L1014) and the presence of homozygous-resistant kdr alleles in field-collected individuals from Mexico (L1014F), Nicaragua (L1014C) and Costa Rica (L1014C). For the first time, the kdr region in An. albimanus is described. Furthermore, molecular evidence suggests the presence of kdr-type resistance in field-collected An. albimanus in Mesoamerica in the 1990s. Further research is needed to conclusively determine an association between the genotypes and resistant phenotypes, and to what extent they may compromise current vector control efforts.

  8. Mapping a Quantitative Trait Locus (QTL conferring pyrethroid resistance in the African malaria vector Anopheles funestus

    Directory of Open Access Journals (Sweden)

    Hunt Richard H

    2007-01-01

    Full Text Available Abstract Background Pyrethroid resistance in Anopheles funestus populations has led to an increase in malaria transmission in southern Africa. Resistance has been attributed to elevated activities of cytochrome P450s but the molecular basis underlying this metabolic resistance is unknown. Microsatellite and SNP markers were used to construct a linkage map and to detect a quantitative trait locus (QTL associated with pyrethroid resistance in the FUMOZ-R strain of An. funestus from Mozambique. Results By genotyping 349 F2 individuals from 11 independent families, a single major QTL, rp1, at the telomeric end of chromosome 2R was identified. The rp1 QTL appears to present a major effect since it accounts for more than 60% of the variance in susceptibility to permethrin. This QTL has a strong additive genetic effect with respect to susceptibility. Candidate genes associated with pyrethroid resistance in other species were physically mapped to An. funestus polytene chromosomes. This showed that rp1 is genetically linked to a cluster of CYP6 cytochrome P450 genes located on division 9 of chromosome 2R and confirmed earlier reports that pyrethroid resistance in this strain is not associated with target site mutations (knockdown resistance. Conclusion We hypothesize that one or more of these CYP6 P450s clustered on chromosome 2R confers pyrethroid resistance in the FUMOZ-R strain of An. funestus.

  9. The sterilizing effect of pyriproxyfen on the malaria vector Anopheles gambiae: physiological impact on ovaries development.

    Science.gov (United States)

    Koama, Bayili; Namountougou, Moussa; Sanou, Roger; Ndo, Sévérin; Ouattara, Abdoulaye; Dabiré, Roch K; Malone, David; Diabaté, Abdoulaye

    2015-03-04

    Adult females An. gambiae were exposed in 3 min cone test to treated nets with PPF before or after they were blood fed. The effects of PPF on ovaries development, females oviposition and eggs hatching were assessed. Both unfed and fed mosquitoes exposed to PPF exhibited nearly complete inhibition of fecundity (70-100%) and fertility (90-100%). After females have been exposed once to PPF, the sterilizing effect on their fecundity was observed over 3 consecutive blood meals suggesting that PPF might have an irreversible sterilizing effect. Observation of the ovaries of exposed females to PPF under microscope revealed that the ovaries failed to develop even after several blood meals. The combination of PPF to pyrethroids on bednets could provide better malaria control tool and prevent the further development and spread of pyrethroid resistance in malaria vectors.

  10. Datura metel-synthesized silver nanoparticles magnify predation of dragonfly nymphs against the malaria vector Anopheles stephensi.

    Science.gov (United States)

    Murugan, Kadarkarai; Dinesh, Devakumar; Kumar, Prabhu Jenil; Panneerselvam, Chellasamy; Subramaniam, Jayapal; Madhiyazhagan, Pari; Suresh, Udaiyan; Nicoletti, Marcello; Alarfaj, Abdullah A; Munusamy, Murugan A; Higuchi, Akon; Mehlhorn, Heinz; Benelli, Giovanni

    2015-12-01

    Malaria is a life-threatening disease caused by parasites transmitted to people and animals through the bites of infected mosquitoes. The employ of synthetic insecticides to control Anopheles populations leads to high operational costs, non-target effects, and induced resistance. Recently, plant-borne compounds have been proposed for efficient and rapid extracellular synthesis of mosquitocidal nanoparticles. However, their impact against predators of mosquito larvae has been poorly studied. In this study, we synthesized silver nanoparticles (AgNPs) using the Datura metel leaf extract as reducing and stabilizing agent. The biosynthesis of AgNPs was confirmed analyzing the excitation of surface plasmon resonance using ultraviolet-visible (UV-vis) spectroscopy. Scanning electron microscopy (SEM) showed the clustered and irregular shapes of AgNPs, with a mean size of 40-60 nm. The presence of silver was determined by energy-dispersive X-ray (EDX) spectroscopy. Fourier transform infrared (FTIR) spectroscopy analysis investigated the identity of secondary metabolites, which may be acting as AgNP capping agents. In laboratory, LC50 of D. metel extract against Anopheles stephensi ranged from 34.693 ppm (I instar larvae) to 81.500 ppm (pupae). LC50 of AgNP ranged from 2.969 ppm (I instar larvae) to 6.755 ppm (pupae). Under standard laboratory conditions, the predation efficiency of Anax immaculifrons nymphs after 24 h was 75.5 % (II instar larvae) and 53.5 % (III instar larvae). In AgNP-contaminated environment, predation rates were boosted to 95.5 and 78 %, respectively. Our results documented that D. metel-synthesized AgNP might be employed at rather low doses to reduce larval populations of malaria vectors, without detrimental effects on behavioral traits of young instars of the dragonfly Anax immaculifrons.

  11. Development of a DNA-Based Method for Distinguishing the Malaria Vectors, Anopheles gambiae From Anopheles arabiensis.

    Science.gov (United States)

    1986-06-01

    our preliminary studies hybridization with the Droso- phila actin probe required such low stringency conditions that the signal to noise ratio made...Balabacensis complex of Southeast Asia (Diptera: Culicidae). Genetica 57:81-86. (14) Mahon RJ and PM Miethke. 1982. Anopheles farauti No. 3, a hitherto un

  12. Partial mitochondrial DNA sequences suggest the existence of a cryptic species within the Leucosphyrus group of the genus Anopheles (Diptera: Culicidae), forest malaria vectors, in northern Vietnam.

    Science.gov (United States)

    Takano, Kohei Takenaka; Nguyen, Ngoc Thi Hong; Nguyen, Binh Thi Huong; Sunahara, Toshihiko; Yasunami, Michio; Nguyen, Manh Duc; Takagi, Masahiro

    2010-04-30

    During the last decade, Southeast Asian countries have been very successful in reducing the burden of malaria. However, malaria remains endemic in these countries, especially in remote and forested areas. The Leucosphyrus group of the genus Anopheles harbors the most important malaria vectors in forested areas of Southeast Asia. In Vietnam, previous molecular studies have resulted in the identification of only Anopheles dirus sensu stricto (previously known as An. dirus species A) among the Leucosphyrus group members. However, Vietnamese entomologists have recognized that mosquitoes belonging to the Leucosphyrus group in northern Vietnam exhibit morphological characteristics similar to those of Anopheles takasagoensis, which has been reported only from Taiwan. Here, we aimed to confirm the genetic and morphological identities of the members of the Leucosphyrus group in Vietnam. In the molecular phylogenetic trees reconstructed using partial COI and ND6 mitochondrial gene sequences, samples collected from southern and central Vietnam clustered together with GenBank sequences of An. dirus that were obtained from Thailand. However, samples from northern Vietnam formed a distinct clade separated from both An. dirus and An. takasagoensis by other valid species. The results suggest the existence of a cryptic species in northern Vietnam that is morphologically similar to, but phylogenetically distant from both An. dirus and An. takasagoensis. We have tentatively designated this possible cryptic species as Anopheles aff. takasagoensis for convenience, until a valid name is assigned. However, it is difficult to distinguish the species solely on the basis of morphological characteristics. Further studies on such as karyotypes and polytene chromosome banding patterns are necessary to confirm whether An. aff. takasagoensis is a valid species. Moreover, studies on (1) the geographic distribution, which is potentially spreading along the Vietnam, China, Laos, and Myanmar borders

  13. The Role of Oxidative Stress in the Longevity and Insecticide Resistance Phenotype of the Major Malaria Vectors Anopheles arabiensis and Anopheles funestus.

    Directory of Open Access Journals (Sweden)

    Shüné V Oliver

    Full Text Available Oxidative stress plays numerous biological roles, both functional and pathological. The role of oxidative stress in various epidemiologically relevant biological traits in Anopheles mosquitoes is not well established. In this study, the effects of oxidative stress on the longevity and insecticide resistance phenotype in the major malaria vector species An. arabiensis and An. funestus were examined. Responses to dietary copper sulphate and hydrogen peroxide were used as proxies for the oxidative stress phenotype by determining the effect of copper on longevity and hydrogen peroxide lethal dose. Glutathione peroxidase and catalase activities were determined colorimetrically. Oxidative burden was quantified as protein carbonyl content. Changes in insecticide resistance phenotype were monitored by WHO bioassay. Insecticide resistant individuals showed an increased capacity for coping with oxidative stress, mediated by increased glutathione peroxidase and catalase activity. This effect was observed in both species, as well as in laboratory strains and F1 individuals derived from wild-caught An. funestus mothers. Phenotypic capacity for coping with oxidative stress was greatest in strains with elevated Cytochrome P450 activity. Synergism of oxidative stress defence enzymes by dietary supplementation with haematin, 3-Amino-1, 2, 4-triazole and Sodium diethyldithiocarbamate significantly increased pyrethroid-induced mortality in An. arabiensis and An. funestus. It is therefore concluded that defence against oxidative stress underlies the augmentation of the insecticide resistance phenotype associated with multiple blood-feeding. This is because multiple blood-feeding ultimately leads to a reduction of oxidative stress in insecticide resistant females, and also reduces the oxidative burden induced by DDT and pyrethroids, by inducing increased glutathione peroxidase activity. This study highlights the importance of oxidative stress in the longevity and

  14. The Role of Oxidative Stress in the Longevity and Insecticide Resistance Phenotype of the Major Malaria Vectors Anopheles arabiensis and Anopheles funestus.

    Science.gov (United States)

    Oliver, Shüné V; Brooke, Basil D

    2016-01-01

    Oxidative stress plays numerous biological roles, both functional and pathological. The role of oxidative stress in various epidemiologically relevant biological traits in Anopheles mosquitoes is not well established. In this study, the effects of oxidative stress on the longevity and insecticide resistance phenotype in the major malaria vector species An. arabiensis and An. funestus were examined. Responses to dietary copper sulphate and hydrogen peroxide were used as proxies for the oxidative stress phenotype by determining the effect of copper on longevity and hydrogen peroxide lethal dose. Glutathione peroxidase and catalase activities were determined colorimetrically. Oxidative burden was quantified as protein carbonyl content. Changes in insecticide resistance phenotype were monitored by WHO bioassay. Insecticide resistant individuals showed an increased capacity for coping with oxidative stress, mediated by increased glutathione peroxidase and catalase activity. This effect was observed in both species, as well as in laboratory strains and F1 individuals derived from wild-caught An. funestus mothers. Phenotypic capacity for coping with oxidative stress was greatest in strains with elevated Cytochrome P450 activity. Synergism of oxidative stress defence enzymes by dietary supplementation with haematin, 3-Amino-1, 2, 4-triazole and Sodium diethyldithiocarbamate significantly increased pyrethroid-induced mortality in An. arabiensis and An. funestus. It is therefore concluded that defence against oxidative stress underlies the augmentation of the insecticide resistance phenotype associated with multiple blood-feeding. This is because multiple blood-feeding ultimately leads to a reduction of oxidative stress in insecticide resistant females, and also reduces the oxidative burden induced by DDT and pyrethroids, by inducing increased glutathione peroxidase activity. This study highlights the importance of oxidative stress in the longevity and insecticide resistance

  15. Effective autodissemination of pyriproxyfen to breeding sites by the exophilic malaria vector Anopheles arabiensis in semi-field settings in Tanzania

    OpenAIRE

    Lwetoijera, Dickson; Harris, Caroline; Kiware, Samson; Dongus, Stefan; Devine, Gregor J; McCall, Philip; Majambere, Silas

    2014-01-01

    BACKGROUND\\ud Malaria vector control strategies that target adult female mosquitoes are challenged by the emergence of insecticide resistance and behavioural resilience. Conventional larviciding is restricted by high operational costs and inadequate knowledge of mosquito-breeding habitats in rural settings that might be overcome by the juvenile hormone analogue, Pyriproxyfen (PPF). This study assessed the potential for Anopheles arabiensis to pick up and transfer lethal doses of PPF from cont...

  16. The effect of metal pollution on the life history and insecticide resistance phenotype of the major malaria vector Anopheles arabiensis (Diptera: Culicidae)

    OpenAIRE

    Oliver, Shüné V.; Brooke, Basil D.

    2018-01-01

    Metal exposure is one of the commonest anthropogenic pollutants mosquito larvae are exposed to, both in agricultural and urban settings. As members of the Anopheles gambiae complex, which contains several major malaria vector species including An. arabiensis, are increasingly adapting to polluted environments, this study examined the effects of larval metal exposure on various life history traits of epidemiological importance. Two laboratory strains of An. arabiensis, SENN (insecticide suscep...

  17. Transcription regulation of sex-biased genes during ontogeny in the malaria vector Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Kalle Magnusson

    Full Text Available In Anopheles gambiae, sex-regulated genes are responsible for controlling gender dimorphism and are therefore crucial in determining the ability of female mosquitoes to transmit human malaria. The identification and functional characterization of these genes will shed light on the sexual development and maturation of mosquitoes and provide useful targets for genetic control measures aimed at reducing mosquito fertility and/or distorting the sex ratio.We conducted a genome wide transcriptional analysis of sex-regulated genes from early developmental stages through adulthood combined with functional screening of novel gonadal genes. Our results demonstrate that the male-biased genes undergo a major transcription turnover starting from larval stages to adulthood. The male biased genes at the adult stage include a significant high number of unique sequences compared to the rest of the genome. This is in contrast to female-biased genes that are much more conserved and are mainly activated during late developmental stages.The high frequency of unique sequences would indicate that male-biased genes evolve more rapidly than the rest of the genome. This finding is particularly intriguing because A. gambiae is a strictly female monogamous species suggesting that driving forces in addition to sperm competition must account for the rapid evolution of male-biased genes. We have also identified and functionally characterized a number of previously unknown A. gambiae testis- and ovary-specific genes. Two of these genes, zero population growth and a suppressor of defective silencing 3 domain of the histone deacetylase co-repressor complex, were shown to play a key role in gonad development.

  18. Identification of Salivary Gland Proteins Depleted after Blood Feeding in the Malaria Vector Anopheles campestris-like Mosquitoes (Diptera: Culicidae)

    OpenAIRE

    Sor-suwan, Sriwatapron; Jariyapan, Narissara; Roytrakul, Sittiruk; Paemanee, Atchara; Phumee, Atchara; Phattanawiboon, Benjarat; Intakhan, Nuchpicha; Chanmol, Wetpisit; Bates, Paul A.; Saeung, Atiporn; Choochote, Wej

    2014-01-01

    Malaria sporozoites must invade the salivary glands of mosquitoes for maturation before transmission to vertebrate hosts. The duration of the sporogonic cycle within the mosquitoes ranges from 10 to 21 days depending on the parasite species and temperature. During blood feeding salivary gland proteins are injected into the vertebrate host, along with malaria sporozoites in the case of an infected mosquito. To identify salivary gland proteins depleted after blood feeding of female Anopheles ca...

  19. Identification of salivary gland proteins depleted after blood feeding in the malaria vector Anopheles campestris-like mosquitoes (Diptera: Culicidae.

    Directory of Open Access Journals (Sweden)

    Sriwatapron Sor-suwan

    Full Text Available Malaria sporozoites must invade the salivary glands of mosquitoes for maturation before transmission to vertebrate hosts. The duration of the sporogonic cycle within the mosquitoes ranges from 10 to 21 days depending on the parasite species and temperature. During blood feeding salivary gland proteins are injected into the vertebrate host, along with malaria sporozoites in the case of an infected mosquito. To identify salivary gland proteins depleted after blood feeding of female Anopheles campestris-like, a potential malaria vector of Plasmodium vivax in Thailand, two-dimensional gel electrophoresis and nano-liquid chromatography-mass spectrometry techniques were used. Results showed that 19 major proteins were significantly depleted in three to four day-old mosquitoes fed on a first blood meal. For the mosquitoes fed the second blood meal on day 14 after the first blood meal, 14 major proteins were significantly decreased in amount. The significantly depleted proteins in both groups included apyrase, 5'-nucleotidase/apyrase, D7, D7-related 1, short form D7r1, gSG6, anti-platelet protein, serine/threonine-protein kinase rio3, putative sil1, cyclophilin A, hypothetical protein Phum_PHUM512530, AGAP007618-PA, and two non-significant hit proteins. To our knowledge, this study presents for the first time the salivary gland proteins that are involved in the second blood feeding on the day corresponding to the transmission period of the sporozoites to new mammalian hosts. This information serves as a basis for future work concerning the possible role of these proteins in the parasite transmission and the physiological processes that occur during the blood feeding.

  20. Identification of salivary gland proteins depleted after blood feeding in the malaria vector Anopheles campestris-like mosquitoes (Diptera: Culicidae).

    Science.gov (United States)

    Sor-suwan, Sriwatapron; Jariyapan, Narissara; Roytrakul, Sittiruk; Paemanee, Atchara; Phumee, Atchara; Phattanawiboon, Benjarat; Intakhan, Nuchpicha; Chanmol, Wetpisit; Bates, Paul A; Saeung, Atiporn; Choochote, Wej

    2014-01-01

    Malaria sporozoites must invade the salivary glands of mosquitoes for maturation before transmission to vertebrate hosts. The duration of the sporogonic cycle within the mosquitoes ranges from 10 to 21 days depending on the parasite species and temperature. During blood feeding salivary gland proteins are injected into the vertebrate host, along with malaria sporozoites in the case of an infected mosquito. To identify salivary gland proteins depleted after blood feeding of female Anopheles campestris-like, a potential malaria vector of Plasmodium vivax in Thailand, two-dimensional gel electrophoresis and nano-liquid chromatography-mass spectrometry techniques were used. Results showed that 19 major proteins were significantly depleted in three to four day-old mosquitoes fed on a first blood meal. For the mosquitoes fed the second blood meal on day 14 after the first blood meal, 14 major proteins were significantly decreased in amount. The significantly depleted proteins in both groups included apyrase, 5'-nucleotidase/apyrase, D7, D7-related 1, short form D7r1, gSG6, anti-platelet protein, serine/threonine-protein kinase rio3, putative sil1, cyclophilin A, hypothetical protein Phum_PHUM512530, AGAP007618-PA, and two non-significant hit proteins. To our knowledge, this study presents for the first time the salivary gland proteins that are involved in the second blood feeding on the day corresponding to the transmission period of the sporozoites to new mammalian hosts. This information serves as a basis for future work concerning the possible role of these proteins in the parasite transmission and the physiological processes that occur during the blood feeding.

  1. Household-level and surrounding peri-domestic environmental characteristics associated with malaria vectors Anopheles arabiensis and Anopheles funestus along an urban-rural continuum in Blantyre, Malawi.

    Science.gov (United States)

    Dear, Nicole F; Kadangwe, Chifundo; Mzilahowa, Themba; Bauleni, Andy; Mathanga, Don P; Duster, Chifundo; Walker, Edward D; Wilson, Mark L

    2018-06-08

    Malaria is increasing in some recently urbanized areas that historically were considered lower risk. Understanding what drives urban transmission is hampered by inconsistencies in how "urban" contexts are defined. A dichotomized "urban-rural" approach, based on political boundaries may misclassify environments or fail to capture local drivers of risk. Small-scale agriculture in urban or peri-urban settings has been shown to be a major risk determinant. Household-level Anopheles abundance patterns in and around Malawi's commercial capital of Blantyre (~ 1.9 M pop.) were analysed. Clusters (N = 64) of five houses each located at 2.5 km intervals along eight transects radiating out from Blantyre city centre were sampled during rainy and dry seasons of 2015 and 2016. Mosquito densities were measured inside houses using aspirators to sample resting mosquitoes, and un-baited CDC light traps to sample host seeking mosquitoes. Of 38,895 mosquitoes captured, 91% were female and 87% were Culex spp. Anopheles females (N = 5058) were primarily captured in light traps (97%). Anopheles abundance was greater during rainy seasons. Anopheles funestus was more abundant than Anopheles arabiensis, but both were found on all transects, and had similar associations with environmental risk factors. Anopheles funestus and An. arabiensis females significantly increased with distance from the urban centre, but this trend was not consistent across all transects. Presence of small-scale agriculture was predictive of greater Anopheles spp. abundance, even after controlling for urbanicity, number of nets per person, number of under-5-year olds, years of education, and season. This study revealed how small-scale agriculture along a rural-to-urban transition was associated with An. arabiensis and An. funestus indoor abundances, and that indoor Anopheles density can be high within Blantyre city limits, particularly where agriculture is present. Typical rural areas with lower house

  2. Wide cross-reactivity between Anopheles gambiae and Anopheles funestus SG6 salivary proteins supports exploitation of gSG6 as a marker of human exposure to major malaria vectors in tropical Africa

    Directory of Open Access Journals (Sweden)

    Petrarca Vincenzo

    2011-07-01

    Full Text Available Abstract Background The Anopheles gambiae gSG6 is an anopheline-specific salivary protein which helps female mosquitoes to efficiently feed on blood. Besides its role in haematophagy, gSG6 is immunogenic and elicits in exposed individuals an IgG response, which may be used as indicator of exposure to the main African malaria vector A. gambiae. However, malaria transmission in tropical Africa is sustained by three main vectors (A. gambiae, Anopheles arabiensis and Anopheles funestus and a general marker, reflecting exposure to at least these three species, would be especially valuable. The SG6 protein is highly conserved within the A. gambiae species complex whereas the A. funestus homologue, fSG6, is more divergent (80% identity with gSG6. The aim of this study was to evaluate cross-reactivity of human sera to gSG6 and fSG6. Methods The A. funestus SG6 protein was expressed/purified and the humoral response to gSG6, fSG6 and a combination of the two antigens was compared in a population from a malaria hyperendemic area of Burkina Faso where both vectors were present, although with a large A. gambiae prevalence (>75%. Sera collected at the beginning and at the end of the high transmission/rainy season, as well as during the following low transmission/dry season, were analysed. Results According to previous observations, both anti-SG6 IgG level and prevalence decreased during the low transmission/dry season and showed a typical age-dependent pattern. No significant difference in the response to the two antigens was found, although their combined use yielded in most cases higher IgG level. Conclusions Comparative analysis of gSG6 and fSG6 immunogenicity to humans suggests the occurrence of a wide cross-reactivity, even though the two proteins carry species-specific epitopes. This study supports the use of gSG6 as reliable indicator of exposure to the three main African malaria vectors, a marker which may be useful to monitor malaria transmission

  3. Population structure of the malaria vector Anopheles sinensis (Diptera: Culicidae in China: two gene pools inferred by microsatellites.

    Directory of Open Access Journals (Sweden)

    Yajun Ma

    Full Text Available BACKGROUND: Anopheles sinensis is a competent malaria vector in China. An understanding of vector population structure is important to the vector-based malaria control programs. However, there is no adequate data of A. sinensis population genetics available yet. METHODOLOGY/PRINCIPAL FINDINGS: This study used 5 microsatellite loci to estimate population genetic diversity, genetic differentiation and demographic history of A. sinensis from 14 representative localities in China. All 5 microsatellite loci were highly polymorphic across populations, with high allelic richness and heterozygosity. Hardy-Weinberg disequilibrium was found in 12 populations associated with heterozygote deficits, which was likely caused by the presence of null allele and the Wahlund effect. Bayesian clustering analysis revealed two gene pools, grouping samples into two population clusters; one includes six and the other includes eight populations. Out of 14 samples, six samples were mixed with individuals from both gene pools, indicating the coexistence of two genetic units in the areas sampled. The overall differentiation between two genetic pools was moderate (F(ST = 0.156. Pairwise differentiation between populations were lower within clusters (F(ST = 0.008-0.028 in cluster I and F(ST = 0.004-0.048 in cluster II than between clusters (F(ST = 0.120-0.201. A reduced gene flow (Nm = 1-1.7 was detected between clusters. No evidence of isolation by distance was detected among populations neither within nor between the two clusters. There are differences in effective population size (Ne = 14.3-infinite across sampled populations. CONCLUSIONS/SIGNIFICANCE: Two genetic pools with moderate genetic differentiation were identified in the A. sinensis populations in China. The population divergence was not correlated with geographic distance or barrier in the range. Variable effective population size and other demographic effects of historical population

  4. Isolation and Characterization of Polymorphic Microsatellite Markers from the Malaria Vector Anopheles fluviatilis Species T (Diptera: Culicidae).

    Science.gov (United States)

    Lather, Manila; Sharma, Divya; Dang, Amita S; Adak, Tridibes; Singh, Om P

    2015-05-01

    Anopheles fluviatilis James is an important malaria vector in India, Pakistan, Nepal, and Iran. It has now been recognized as a complex of at least four sibling species-S, T, U, and V, among which species T is the most widely distributed species throughout India. The taxonomic status of these species is confusing owing to controversies prevailing in the literature. In addition, chromosomal inversion genotypes, which were considered species-diagnostic for An. fluviatilis species T, are unreliable due to the existence of polymorphism in some populations. To study the genetic diversity at population level, we isolated and characterized 20 microsatellite markers from microsatellite-enriched genomic DNA library of An. fluviatilis T, of which 18 were polymorphic while two were monomorphic. The number of alleles per locus among polymorphic markers ranged from 4 to 19, and values for observed and expected heterozygosities varied from 0.352 to 0.857 and from 0.575 to 0.933, respectively. Thirteen markers had cross-cryptic species transferability to species S and U of the Fluviatilis Complex. This study provides a promising genetic tool for the population genetic analyses of An. fluviatilis. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. 1.45 Å resolution structure of SRPN18 from the malaria vector Anopheles gambiae

    Energy Technology Data Exchange (ETDEWEB)

    Meekins, David A.; Zhang, Xin; Battaile, Kevin P.; Lovell, Scott; Michel, Kristin (Kansas); (KSU); (HWMRI)

    2016-11-19

    Serine protease inhibitors (serpins) in insects function within development, wound healing and immunity. The genome of the African malaria vector,Anopheles gambiae, encodes 23 distinct serpin proteins, several of which are implicated in disease-relevant physiological responses.A. gambiaeserpin 18 (SRPN18) was previously categorized as non-inhibitory based on the sequence of its reactive-center loop (RCL), a region responsible for targeting and initiating protease inhibition. The crystal structure ofA. gambiaeSRPN18 was determined to a resolution of 1.45 Å, including nearly the entire RCL in one of the two molecules in the asymmetric unit. The structure reveals that the SRPN18 RCL is extremely short and constricted, a feature associated with noncanonical inhibitors or non-inhibitory serpin superfamily members. Furthermore, the SRPN18 RCL does not contain a suitable protease target site and contains a large number of prolines. The SRPN18 structure therefore reveals a unique RCL architecture among the highly conserved serpin fold.

  6. Insecticidal Activities of Bark, Leaf and Seed Extracts of Zanthoxylum heitzii against the African Malaria Vector Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Hans J. Overgaard

    2014-12-01

    Full Text Available The olon tree, Zanthoxylum heitzii (syn. Fagara heitzii is commonly found in the central-west African forests. In the Republic of Congo (Congo-Brazzaville its bark is anecdotally reported to provide human protection against fleas. Here we assess the insecticidal activities of Z. heitzii stem bark, seed and leaf extracts against Anopheles gambiae s.s, the main malaria vector in Africa. Extracts were obtained by Accelerated Solvent Extraction (ASE using solvents of different polarity and by classical Soxhlet extraction using hexane as solvent. The insecticidal effects of the crude extracts were evaluated using topical applications of insecticides on mosquitoes of a susceptible reference strain (Kisumu [Kis], a strain homozygous for the L1014F kdr mutation (kdrKis, and a strain homozygous for the G119S Ace1R allele (AcerKis. The insecticidal activities were measured using LD50 and LD95 and active extracts were characterized by NMR spectroscopy and HPLC chromatography. Results show that the ASE hexane stem bark extract was the most effective compound against An. gambiae (LD50 = 102 ng/mg female, but was not as effective as common synthetic insecticides. Overall, there was no significant difference between the responses of the three mosquito strains to Z. heitzii extracts, indicating no cross resistance with conventional pesticides.

  7. Genetic population structure of the malaria vector Anopheles baimaii in north-east India using mitochondrial DNA.

    Science.gov (United States)

    Sarma, Devojit K; Prakash, Anil; O'Loughlin, Samantha M; Bhattacharyya, Dibya R; Mohapatra, Pradumnya K; Bhattacharjee, Kanta; Das, Kanika; Singh, Sweta; Sarma, Nilanju P; Ahmed, Gias U; Walton, Catherine; Mahanta, Jagadish

    2012-03-20

    Anopheles baimaii is a primary vector of human malaria in the forest settings of Southeast Asia including the north-eastern region of India. Here, the genetic population structure and the basic population genetic parameters of An. baimaii in north-east India were estimated using DNA sequences of the mitochondrial cytochrome oxidase sub unit II (COII) gene. Anopheles baimaii were collected from 26 geo-referenced locations across the seven north-east Indian states and the COII gene was sequenced from 176 individuals across these sites. Fifty-seven COII sequences of An. baimaii from six locations in Bangladesh, Myanmar and Thailand from a previous study were added to this dataset. Altogether, 233 sequences were grouped into eight population groups, to facilitate analyses of genetic diversity, population structure and population history. A star-shaped median joining haplotype network, unimodal mismatch distribution and significantly negative neutrality tests indicated population expansion in An. baimaii with the start of expansion estimated to be ~0.243 million years before present (MYBP) in north-east India. The populations of An. baimaii from north-east India had the highest haplotype and nucleotide diversity with all other populations having a subset of this diversity, likely as the result of range expansion from north-east India. The north-east Indian populations were genetically distinct from those in Bangladesh, Myanmar and Thailand, indicating that mountains, such as the Arakan mountain range between north-east India and Myanmar, are a significant barrier to gene flow. Within north-east India, there was no genetic differentiation among populations with the exception of the Central 2 population in the Barail hills area that was significantly differentiated from other populations. The high genetic distinctiveness of the Central 2 population in the Barail hills area of the north-east India should be confirmed and its epidemiological significance further

  8. Genetic population structure of the malaria vector Anopheles baimaii in north-east India using mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Sarma Devojit K

    2012-03-01

    Full Text Available Abstract Background Anopheles baimaii is a primary vector of human malaria in the forest settings of Southeast Asia including the north-eastern region of India. Here, the genetic population structure and the basic population genetic parameters of An. baimaii in north-east India were estimated using DNA sequences of the mitochondrial cytochrome oxidase sub unit II (COII gene. Methods Anopheles baimaii were collected from 26 geo-referenced locations across the seven north-east Indian states and the COII gene was sequenced from 176 individuals across these sites. Fifty-seven COII sequences of An. baimaii from six locations in Bangladesh, Myanmar and Thailand from a previous study were added to this dataset. Altogether, 233 sequences were grouped into eight population groups, to facilitate analyses of genetic diversity, population structure and population history. Results A star-shaped median joining haplotype network, unimodal mismatch distribution and significantly negative neutrality tests indicated population expansion in An. baimaii with the start of expansion estimated to be ~0.243 million years before present (MYBP in north-east India. The populations of An. baimaii from north-east India had the highest haplotype and nucleotide diversity with all other populations having a subset of this diversity, likely as the result of range expansion from north-east India. The north-east Indian populations were genetically distinct from those in Bangladesh, Myanmar and Thailand, indicating that mountains, such as the Arakan mountain range between north-east India and Myanmar, are a significant barrier to gene flow. Within north-east India, there was no genetic differentiation among populations with the exception of the Central 2 population in the Barail hills area that was significantly differentiated from other populations. Conclusions The high genetic distinctiveness of the Central 2 population in the Barail hills area of the north-east India should be

  9. Population genetic structure of the major malaria vector Anopheles darlingi (Diptera: Culicidae from the Brazilian Amazon, using microsatellite markers

    Directory of Open Access Journals (Sweden)

    Vera Margarete Scarpassa

    2007-06-01

    Full Text Available The population genetic structure of Anopheles darlingi, the major human malaria vector in the Neotropics, was examined using seven microsatellite loci from nine localities in central and western Amazonian Brazil. High levels of genetic variability were detected (5-25 alleles per locus; H E = 0.519-0.949. There was deviation from Hardy-Weinberg Equilibrium for 59.79% of the tests due to heterozygote deficits, while the analysis of linkage disequilibrium was significant for only two of 189 (1.05% tests, most likely caused by null alleles. Genetic differentiation (F ST = 0.001-0.095; Nm = 4.7-363.8 indicates that gene flow is extensive among locations < 152 km apart (with two exceptions and reduced, but not absent, at a larger geographic scale. Genetic and geographic distances were significantly correlated (R² = 0.893, P < 0.0002, supporting the isolation by distance (IBD model. The overall estimate of Ne was 202.4 individuals under the linkage disequilibrium model, and 8 under the heterozygote excess model. Analysis of molecular variance showed that nearly all variation (~ 94% was within sample locations. The UPGMA phenogram clustered the samples geographically, with one branch including 5/6 of the state of Amazonas localities and the other branch the Acre, Rondônia, and remaining Amazonas localities. Taken together, these data suggest little genetic structure for An. darlingi from central and western Amazonian Brazil. These findings also imply that the IBD model explains nearly all of the differentiation detected. In practical terms, populations of An. darlingi at distances < 152 km should respond similarly to vector control measures, because of high gene flow.

  10. The Brazilian Malaria Vector Anopheles (Kerteszia) Cruzii: Life Stages and Biology (Diptera: Culicidae)

    Science.gov (United States)

    1991-11-01

    Mosquitos no litoral paranaense. I - Idade fisioldgica de no Parque National da Serra dos Orgaos, Anopheles cruzii (Diptera, Culicidae). Arq. Estado do...no Parque National da Peryassii, A.G. 1908. OS culicideos do Brazil. Serra dos Grgaos, Estado do Rio de Janeiro, Inst. de Manguinhos, Rio de Janeiro...Kerteszia no litoral Guimar%es, A.E. and V.N.M. Victoria. 1986. do estado de Santa Catarina. Rev. Bras. Mosquitos no Parque National da Serra dos

  11. Water source most suitable for rearing a sensitive malaria vector, Anopheles funestus in the laboratory [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Genevieve Tchigossou

    2017-11-01

    Full Text Available Background:  The insecticide susceptibility status of Anopheles funestus, one of the main malaria vectors in the Afrotropical regions, remains under-studied due to the difficulty of working with this mosquito species. Collecting their larvae in natural breeding sites, rearing and maintaining them in normal laboratory conditions have been a difficult task. Forced-egg laying technique has been a very good tool to generate eggs from adult mosquitoes collected from the wild but rearing these eggs to obtain satisfying portion as adults has always been the problem. In this study, we optimized the development of mosquito species larvae under standard laboratory conditions for desired production of adult mosquitoes that can be useful for insecticide susceptibility tests. Methods:  A forced-egg laying technique was used to obtain eggs from gravid female Anopheles funestus collected from Kpome locality in Benin. Eggs were reared in three different water samples (water from the borehole,and two mineral water namely FIFA and Possotômè and larvae were fed with TetraMin baby fish food. The physico-chemical parameters of the waters were investigated prior to use for egg incubation. Results:In contrast to mineral water that had no contamination, the borehole water source was contaminated with lead (2.5mg/L and nitrate (118.8mg/L. Egg hatching rates ranged as 91.9 ± 4.4%, 89.1 ± 2.5% and 87.9 ± 2.6% in FIFA, Possotômè and borehole water respectively. High emergence of larvae to adult mosquitoes was recorded as in FIFA (74.3% and Possotômè(79.5% water. No adult mosquito was obtained from larvae reared in borehole water. Conclusions: This study gave insight on the water sources that could be good for rearing to mass produce An. funestus in the laboratory. More analysis with other local mineral water sources in our environments could be considered in the future, hopefully giving better outputs.

  12. Water source most suitable for rearing a sensitive malaria vector, Anopheles funestus in the laboratory [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Genevieve Tchigossou

    2018-01-01

    Full Text Available Background:  The insecticide susceptibility status of Anopheles funestus, one of the main malaria vectors in the Afrotropical regions, remains under-studied due to the difficulty of working with this mosquito species. Collecting their larvae in natural breeding sites, rearing and maintaining them in normal laboratory conditions have been a difficult task. Forced-egg laying technique has been a very good tool to generate eggs from adult mosquitoes collected from the wild but rearing these eggs to obtain satisfying portion as adults has always been the problem. In this study, we optimized the development of mosquito species larvae under standard laboratory conditions for desired production of adult mosquitoes that can be useful for insecticide susceptibility tests. Methods:  A forced-egg laying technique was used to obtain eggs from gravid female Anopheles funestus collected from Kpome locality in Benin. Eggs were reared in three different water samples (water from the borehole, and two mineral water namely FIFA and Possotômè and larvae were fed with TetraMin baby fish food. The physico-chemical parameters of the waters were investigated prior to use for egg incubation (introduction of eggs’ batches into water. Results: In contrast to mineral water that had no contamination, the borehole water source was contaminated with lead (2.5mg/L and nitrate (118.8mg/L. Egg hatching rates ranged as 91.9 ± 4.4%, 89.1 ± 2.5% and 87.9 ± 2.6% in FIFA, Possotômè and borehole water respectively. High emergence of larvae to adult mosquitoes was recorded as in FIFA (74.3% and Possotômè (79.5% water. No adult mosquito was obtained from larvae reared in borehole water. Conclusions: This study gave insight on the water sources that could be good for rearing to mass produce An. funestus in the laboratory. More analysis with other local mineral water sources in our environments could be considered in the future, hopefully giving better outputs.

  13. Partial mitochondrial DNA sequences suggest the existence of a cryptic species within the Leucosphyrus group of the genus Anopheles (Diptera: Culicidae, forest malaria vectors, in northern Vietnam

    Directory of Open Access Journals (Sweden)

    Yasunami Michio

    2010-04-01

    Full Text Available Abstract Background During the last decade, Southeast Asian countries have been very successful in reducing the burden of malaria. However, malaria remains endemic in these countries, especially in remote and forested areas. The Leucosphyrus group of the genus Anopheles harbors the most important malaria vectors in forested areas of Southeast Asia. In Vietnam, previous molecular studies have resulted in the identification of only Anopheles dirus sensu stricto (previously known as An. dirus species A among the Leucosphyrus group members. However, Vietnamese entomologists have recognized that mosquitoes belonging to the Leucosphyrus group in northern Vietnam exhibit morphological characteristics similar to those of Anopheles takasagoensis, which has been reported only from Taiwan. Here, we aimed to confirm the genetic and morphological identities of the members of the Leucosphyrus group in Vietnam. Results In the molecular phylogenetic trees reconstructed using partial COI and ND6 mitochondrial gene sequences, samples collected from southern and central Vietnam clustered together with GenBank sequences of An. dirus that were obtained from Thailand. However, samples from northern Vietnam formed a distinct clade separated from both An. dirus and An. takasagoensis by other valid species. Conclusions The results suggest the existence of a cryptic species in northern Vietnam that is morphologically similar to, but phylogenetically distant from both An. dirus and An. takasagoensis. We have tentatively designated this possible cryptic species as Anopheles aff. takasagoensis for convenience, until a valid name is assigned. However, it is difficult to distinguish the species solely on the basis of morphological characteristics. Further studies on such as karyotypes and polytene chromosome banding patterns are necessary to confirm whether An. aff. takasagoensis is a valid species. Moreover, studies on (1 the geographic distribution, which is potentially

  14. Abundance, composition and natural infection of Anopheles mosquitoes from two malaria-endemic regions of Colombia

    OpenAIRE

    Carolina Montoya; Priscila Bascuñán; Julián Rodríguez-Zabala; Margarita M. Correa

    2017-01-01

    Introduction: In Colombia there are three Anopheles species implicated in malaria transmission as primary vectors; however, the local role of some Anopheles species must still be defined. Objective: To determine the abundance, composition and natural infection rates for Anopheles mosquitoes with Plasmodium spp. in two malaria-endemic regions of Colombia. Materials and methods: Anopheles mosquitoes were collected using the human-landing catches and while resting in livestock corrals in n...

  15. Odour - mediated host - seeking behaviour of the Afro-tropical malaria vector Anopheles gambiae Giles

    OpenAIRE

    Knols, B.G.J.

    1996-01-01


    Malaria remains the single most important parasitic disease of man in tropical regions of the world. It is estimated that 40% of the world's population, in 102 countries, is at risk from the disease. Some 100-200 million cases occur annually worldwide, of which 90 million in Africa, with 1-2 million deaths.

    Efforts to control malaria by chemoprophylactic and/or curative drugs are seriously jeopardized due to widespread parasite resistance, and

  16. Odour - mediated host - seeking behaviour of the Afro-tropical malaria vector Anopheles gambiae Giles

    NARCIS (Netherlands)

    Knols, B.G.J.

    1996-01-01


    Malaria remains the single most important parasitic disease of man in tropical regions of the world. It is estimated that 40% of the world's population, in 102 countries, is at risk from the disease. Some 100-200 million cases occur annually worldwide, of which 90

  17. Lineage Divergence Detected in the Malaria Vector Anopheles marajoara (Diptera: Culicidae) in Amazonian Brazil

    Science.gov (United States)

    2010-10-07

    species [22], but see Bourke et al [17]. Genealogical analyses of complete mtDNA COI (Cyto- chrome oxidase I) sequences found that A. marajoara is...darlingi in human malaria transmission in Boa Vista, state of Roraima, Brazil. Mem Inst Oswaldo Cruz 2006, 101:163-168. 17. Bourke BP, Foster PG

  18. Microsatellite data suggest significant population structure and differentiation within the malaria vector Anopheles darlingi in Central and South America

    Directory of Open Access Journals (Sweden)

    Achee Nicole L

    2008-03-01

    Full Text Available Abstract Background Anopheles darlingi is the most important malaria vector in the Neotropics. An understanding of A. darlingi's population structure and contemporary gene flow patterns is necessary if vector populations are to be successfully controlled. We assessed population genetic structure and levels of differentiation based on 1,376 samples from 31 localities throughout the Peruvian and Brazilian Amazon and Central America using 5–8 microsatellite loci. Results We found high levels of polymorphism for all of the Amazonian populations (mean RS = 7.62, mean HO = 0.742, and low levels for the Belize and Guatemalan populations (mean RS = 4.3, mean HO = 0.457. The Bayesian clustering analysis revealed five population clusters: northeastern Amazonian Brazil, southeastern and central Amazonian Brazil, western and central Amazonian Brazil, Peruvian Amazon, and the Central American populations. Within Central America there was low non-significant differentiation, except for between the populations separated by the Maya Mountains. Within Amazonia there was a moderate level of significant differentiation attributed to isolation by distance. Within Peru there was no significant population structure and low differentiation, and some evidence of a population expansion. The pairwise estimates of genetic differentiation between Central America and Amazonian populations were all very high and highly significant (FST = 0.1859 – 0.3901, P DA and FST distance-based trees illustrated the main division to be between Central America and Amazonia. Conclusion We detected a large amount of population structure in Amazonia, with three population clusters within Brazil and one including the Peru populations. The considerable differences in Ne among the populations may have contributed to the observed genetic differentiation. All of the data suggest that the primary division within A. darlingi corresponds to two white gene genotypes between Amazonia (genotype 1

  19. Genetic sex separation of the malaria vector, Anopheles arabiensis, by exposing eggs to dieldrin.

    Science.gov (United States)

    Yamada, Hanano; Benedict, Mark Q; Malcolm, Colin A; Oliva, Clelia F; Soliban, Sharon M; Gilles, Jeremie R L

    2012-06-19

    The sterile insect technique (SIT) has been used with success for suppressing or eliminating important insect pests of agricultural or veterinary importance. In order to develop SIT for mosquitoes, female elimination prior to release is essential as they are the disease-transmitting sex. A genetic sexing strain (GSS) of Anopheles arabiensis was created based on resistance to dieldrin, and methods of sex separation at the egg stage were developed. The use of this strain for SIT will require sexually sterile males: useful radiation doses for this purpose were determined for pupae and adults. For the creation of the sexing strain, dieldrin-resistant males were irradiated with 40 Gy using a 60Co source and were subsequently crossed to homozygous susceptible virgin females. Individual families were screened for semi-sterility and for male resistance to dieldrin. For sex separation, eggs of a resulting GSS, ANO IPCL1, were exposed to varying concentrations of dieldrin for different durations. Percent hatch, larval survival, and male and female emergence were recorded. Radiation induced sterility was determined following adult and pupa exposure to gamma rays at 0-105 Gy. Mortality induced by dieldrin treatment, and levels of sterility post radiation were investigated. ANO IPCL1 contains a complex chromosome aberration that pseudo-links the male-determining Y chromosome and dieldrin resistance, conferring high natural semi-sterility. Exposure of eggs to 2, 3, and 4 ppm dieldrin solutions resulted in complete female elimination without a significant decrease of male emergence compared to the controls. A dose of 75 Gy reduced the fertility to 3.8 and 6.9% when males were irradiated as pupae or adults respectively, but the proportions of progeny of these males reaching adulthood were 0.6 and 1.5% respectively The GSS ANO IPCL1 was shown to be a suitable strain for further testing for SIT though high semi-sterility is a disadvantage for mass rearing.

  20. Bionomic status of Anopheles epiroticus Linton & Harbach, a coastal malaria vector, in Rayong Province, Thailand.

    Science.gov (United States)

    Sumruayphol, Suchada; Apiwathnasorn, Chamnarn; Komalamisra, Narumon; Ruangsittichai, Jiraporn; Samung, Yudthana; Chavalitshewinkoon-Petmitr, Porntip

    2010-05-01

    A longitudinal entomological survey was conducted to provide in-depth information on An. epiroticus and determine whether ecological and entomological factors could influence malaria transmission in Rayong Province, Thailand. The mosquitoes were collected monthly from May 2007 to April 2008 by human landing catch technique from 6:00-12:00 PM for 2 consecutive nights, at 3 collection sites. A total of 3,048 mosquitoes within 5 species were captured: An. epiroticus, Culex quinquefasciatus Say, Cx. sitiens Wiedemann, Aedes aegypti (L.) and Ae. albopictus Skuse. PCR was used for molecular identification of An. sundaicus complex, by determination of COI, ITS2, and D3 genes. The target mosquitoes were An. epiroticus, which was the predominant species, accounting for 43.8% of specimens collected. The biting cycle pattern increased during 6:00-8:00 PM and reached a maximum of 6.6 bites/person/hour by 12:00 PM. The mosquitoes varied in population density throughout the year. The highest biting rate was 37.6 bites/person/ half night in September and the lowest (10.2 bites/person/half night) in January. Nested PCR and real-time PCR techniques were used to detect the malaria parasite in An. epiroticus adult females. Nine of 926 (0.97%) mosquitoes tested were malaria parasite positive: 6 P. falciparum and 3 P. vivax. The infective mosquitoes were found in the dry and early rainy seasons. The overall annual entomological inoculation rate (EIR) in the village was 76.6. The overall parity rate was 74%. A total of 38 cement tanks were used to characterize the nature of the breeding places of An. epiroticus. An. epiroticus larvae coexisted with Aedes and Culex larvae; the maximum larval density was more than 140 larvae per dip in May. Breeding places included fresh, brackish and salt water, typically with full sunlight and mats of green algae on the water surface. The salinity of the water ranged from 0.5 to 119.4 g/l, with a narrow pH range of 8.2-8.7. Dissolved oxygen was highest

  1. The larvicidal effects of black pepper (Piper nigrum L.) and piperine against insecticide resistant and susceptible strains of Anopheles malaria vector mosquitoes.

    Science.gov (United States)

    Samuel, Michael; Oliver, Shüné V; Coetzee, Maureen; Brooke, Basil D

    2016-04-26

    Insecticide resistance carries the potential to undermine the efficacy of insecticide based malaria vector control strategies. Therefore, there is an urgent need for new insecticidal compounds. Black pepper (dried fruit from the vine, Piper nigrum), used as a food additive and spice, and its principal alkaloid piperine, have previously been shown to have larvicidal properties. The aim of this study was to investigate the larvicidal effects of ground black pepper and piperine against third and fourth instar Anopheles larvae drawn from several laboratory-reared insecticide resistant and susceptible strains of Anopheles arabiensis, An. coluzzii, An. gambiae, An. quadriannulatus and An. funestus. Larvae were fed with mixtures of standard larval food and either ground black pepper or piperine in different proportions. Mortality was recorded 24 h after black pepper and 48 h after piperine were applied to the larval bowls. Black pepper and piperine mixtures caused high mortality in the An. gambiae complex strains, with black pepper proving significantly more toxic than piperine. The An. funestus strains were substantially less sensitive to black pepper and piperine which may reflect a marked difference in the feeding habits of this species compared to that of the Gambiae complex or a difference in food metabolism as a consequence of differences in breeding habitat between species. Insecticide resistant and susceptible strains by species proved equally susceptible to black pepper and piperine. It is concluded that black pepper shows potential as a larvicide for the control of certain malaria vector species.

  2. Population structure of the malaria vector Anopheles darlingi in a malaria-endemic region of Eastern Amazonian Brazil

    DEFF Research Database (Denmark)

    Conn, Jan E.; Vineis, Joseph H.; Bollback, Jonathan Paul

    2006-01-01

    of insecticides, but since the mid-1990s there has been a shift to patient treatment and focal insecticide fogging. Anopheles darlingi was believed to have been significantly reduced in a gold-mining community, Peixoto de Azevedo (in Mato Grosso State), in the early 1990s by insecticide use during a severe...... malaria epidemic. In contrast, although An. darlingi was eradicated from some districts of the city of Belem (the capital of Para State) in 1968 to reduce malaria, populations around the water protection area in the eastern district were treated only briefly. To investigate the population structure of An...

  3. Population Dynamics and Plasmodium falciparum (Haemosporida: Plasmodiidae) Infectivity Rates for the Malaria Vector Anopheles arabiensis (Diptera: Culicidae) at Mamfene, KwaZulu-Natal, South Africa.

    Science.gov (United States)

    Dandalo, Leonard C; Brooke, Basil D; Munhenga, Givemore; Lobb, Leanne N; Zikhali, Jabulani; Ngxongo, Sifiso P; Zikhali, Phineas M; Msimang, Sipho; Wood, Oliver R; Mofokeng, Mohlominyana; Misiani, Eunice; Chirwa, Tobias; Koekemoer, Lizette L

    2017-11-07

    Anopheles arabiensis (Patton; Diptera: Culicidae) is a major malaria vector in the southern African region. In South Africa, effective control of this species using indoor-based interventions is reduced owing to its tendency to rest outdoors. As South Africa moves towards malaria elimination there is a need for complementary vector control strategies. One of the methods under consideration is the use of the sterile insect technique (SIT). Key to the successful implementation of an SIT programme is prior knowledge of the size and spatial distribution of the target population. Understanding mosquito population dynamics for both males and females is critical for efficient programme implementation. It is thus necessary to use outdoor-based population monitoring tools capable of sampling both sexes of the target population. In this project mosquito surveillance and evaluation of tools capable of collecting both genders were carried out at Mamfene in northern KwaZulu-Natal Province, South Africa, during the period January 2014 to December 2015. Outdoor- and indoor-resting Anopheles mosquitoes were sampled in three sections of Mamfene over the 2-yr sampling period using modified plastic buckets, clay pots and window exit traps. Morphological and molecular techniques were used for species identifications of all samples. Wild-caught adult females were tested for Plasmodium falciparum (Welch; Haemosporida: Plasmodiidae) infectivity. Out of 1,705 mosquitoes collected, 1,259 (73.8%) and 255 (15%) were identified as members of either the Anopheles gambiae complex or Anopheles funestus group respectively. An. arabiensis was the most abundant species contributing 78.8% of identified specimens. Mosquito density was highest in summer and lowest during winter. Clay pots yielded 16.3 mosquitoes per trap compared to 10.5 for modified plastic buckets over the 2-yr sampling period. P. falciparum infection rates for An. arabiensis were 0.7% and 0.5% for 2014 and 2015, respectively

  4. Malaria vector species in Colombia: a review

    Directory of Open Access Journals (Sweden)

    James Montoya-Lerma

    2011-08-01

    Full Text Available Here we present a comprehensive review of the literature on the vectorial importance of the major Anopheles malaria vectors in Colombia. We provide basic information on the geographical distribution, altitudinal range, immature habitats, adult behaviour, feeding preferences and anthropophily, endophily and infectivity rates. We additionally review information on the life cycle, longevity and population fluctuation of Colombian Anopheles species. Emphasis was placed on the primary vectors that have been epidemiologically incriminated in malaria transmission: Anopheles darlingi, Anopheles albimanus and Anopheles nuneztovari. The role of a selection of local, regional or secondary vectors (e.g., Anopheles pseudopunctipennis and Anopheles neivai is also discussed. We highlight the importance of combining biological, morphological and molecular data for the correct taxonomical determination of a given species, particularly for members of the species complexes. We likewise emphasise the importance of studying the bionomics of primary and secondary vectors along with an examination of the local conditions affecting the transmission of malaria. The presence and spread of the major vectors and the emergence of secondary species capable of transmitting human Plasmodia are of great interest. When selecting control measures, the anopheline diversity in the region must be considered. Variation in macroclimate conditions over a species' geographical range must be well understood and targeted to plan effective control measures based on the population dynamics of the local Anopheles species.

  5. Insecticide resistance status of three malaria vectors, Anopheles gambiae (s.l.), An. funestus and An. mascarensis, from the south, central and east coasts of Madagascar.

    Science.gov (United States)

    Rakotoson, Jean-Desire; Fornadel, Christen M; Belemvire, Allison; Norris, Laura C; George, Kristen; Caranci, Angela; Lucas, Bradford; Dengela, Dereje

    2017-08-23

    Insecticide-based vector control, which comprises use of insecticide-treated bed nets (ITNs) and indoor residual spraying (IRS), is the key method to malaria control in Madagascar. However, its effectiveness is threatened as vectors become resistant to insecticides. This study investigated the resistance status of malaria vectors in Madagascar to various insecticides recommended for use in ITNs and/or IRS. WHO tube and CDC bottle bioassays were performed on populations of Anopheles gambiae (s.l.), An. funestus and An. mascarensis. Adult female An. gambiae (s.l.) mosquitoes reared from field-collected larvae and pupae were tested for their resistance to DDT, permethrin, deltamethrin, alpha-cypermethrin, lambda-cyhalothrin, bendiocarb and pirimiphos-methyl. Resting An. funestus and An. mascarensis female mosquitoes collected from unsprayed surfaces were tested against permethrin, deltamethrin and pirimiphos-methyl. The effect on insecticide resistance of pre-exposure to the synergists piperonyl-butoxide (PBO) and S,S,S-tributyl phosphorotrithioate (DEF) also was assessed. Molecular analyses were done to identify species and determine the presence of knock-down resistance (kdr) and acetylcholinesterase resistance (ace-1 R ) gene mutations. Anopheles funestus and An. mascarensis were fully susceptible to permethrin, deltamethrin and pirimiphos-methyl. Anopheles gambiae (s.l.) was fully susceptible to bendiocarb and pirimiphos-methyl. Among the 17 An. gambiae (s.l.) populations tested for deltamethrin, no confirmed resistance was recorded, but suspected resistance was observed in two sites. Anopheles gambiae (s.l.) was resistant to permethrin in four out of 18 sites (mortality 68-89%) and to alpha-cypermethrin (89% mortality) and lambda-cyhalothrin (80% and 85%) in one of 17 sites, using one or both assay methods. Pre-exposure to PBO restored full susceptibility to all pyrethroids tested except in one site where only partial restoration to permethrin was observed. DEF

  6. Autodissemination of the entomopathogenic fungus Metarhizium anisopliae amongst adults of the malaria vector anopheles gambiae s.s.

    NARCIS (Netherlands)

    Scholte, E.J.; Knols, B.G.J.; Takken, W.

    2004-01-01

    Background - The entomopathogenic fungus Metarhizium anisopliae is being considered as a biocontrol agent for adult African malaria vectors. In the laboratory, work was carried out to assess whether horizontal transmission of the pathogen can take place during copulation, as this would enhance the

  7. An extra-domiciliary method of delivering entomopathogenic fungus, Metharizium anisopliae IP 46 for controlling adult populations of the malaria vector, Anopheles arabiensis

    Directory of Open Access Journals (Sweden)

    Mnyone Ladslaus L

    2010-03-01

    Full Text Available Abstract Fungal biopesticides have the potential to significantly reduce densities of malaria vectors as well as associated malaria transmission. In previous field trials, entomopathogenic fungus was delivered from within human dwellings, where its efficacy was limited by low infection rates of target mosquitoes, high costs of spraying fungus inside houses, and potential public health concerns associated with introducing fungal conidia inside houses. Here we have demonstrated that Metarhizium anisopliae IP 46, delivered within an extra-domiciliary odor-baited station (OBS, can infect and slowly-kill a high proportion of the wild adult malaria vector, Anopheles arabiensis which entered and exited the OBS. This study, carried out in rural Tanzania, showed that by using a concentration of 3.9 × 1010 conidia/m2, more than 95% of mosquitoes that flew in and out of the OBS died within 14 days post-exposure. At least 86% infection of mosquito cadavers was recorded with a significant reduction in the probability of daily survival of exposed An. arabiensis in both treatments tested: low quantity of conidia (eave baffles plus one cotton panel; HR = 2.65, P P

  8. Next-generation site-directed transgenesis in the malaria vector mosquito Anopheles gambiae: self-docking strains expressing germline-specific phiC31 integrase.

    Directory of Open Access Journals (Sweden)

    Janet M Meredith

    Full Text Available Diseases transmitted by mosquitoes have a devastating impact on global health and the situation is complicated due to difficulties with both existing control measures and the impact of climate change. Genetically modified mosquitoes that are refractory to disease transmission are seen as having great potential in the delivery of novel control strategies. The Streptomyces phage phiC31 integrase system has been successfully adapted for site-directed transgene integration in a range of insects, thus overcoming many limitations due to size constraints and random integration associated with transposon-mediated transformation. Using this technology, we previously published the first site-directed transformation of Anopheles gambiae, the principal vector of human malaria. Mosquitoes were initially engineered to incorporate the phiC31 docking site at a defined genomic location. A second phase of genetic modification then achieved site-directed integration of an anti-malarial effector gene. In the current publication we report improved efficiency and utility of the phiC31 integrase system following the generation of Anopheles gambiae self-docking strains. Four independent strains, with docking sites at known locations on three different chromosome arms, were engineered to express integrase under control of the regulatory regions of the nanos gene from Anopheles gambiae. The resulting protein accumulates in the posterior oocyte to provide integrase activity at the site of germline development. Two self-docking strains, exhibiting significantly different levels of integrase expression, were assessed for site-directed transgene integration and found to demonstrate greatly improved survival and efficiency of transformation. In the fight against malaria, it is imperative to establish a broad repertoire of both anti-malarial effector genes and tissue-specific promoters to regulate their expression, enabling those offering maximum effect with minimum fitness

  9. Insecticide resistance in Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) and Anopheles gambiae Giles (Diptera: Culicidae) could compromise the sustainability of malaria vector control strategies in West Africa.

    Science.gov (United States)

    Gnankiné, Olivier; Bassolé, Imael H N; Chandre, Fabrice; Glitho, Isabelle; Akogbeto, Martin; Dabiré, Roch K; Martin, Thibaud

    2013-10-01

    Insecticides from the organophosphate (OP) and pyrethroid (PY) chemical families, have respectively, been in use for 50 and 30 years in West Africa, mainly against agricultural pests, but also against vectors of human disease. The selection pressure, with practically the same molecules year after year (mainly on cotton), has caused insecticide resistance in pest populations such as Bemisia tabaci, vector of harmful phytoviruses on vegetables. The evolution toward insecticide resistance in malaria vectors such as Anopheles gambiae sensus lato (s.l.) is probably related to the current use of these insecticides in agriculture. Thus, successful pest and vector control in West Africa requires an investigation of insect susceptibility, in relation to the identification of species and sub species, such as molecular forms or biotypes. Identification of knock down resistance (kdr) and acetylcholinesterase gene (Ace1) mutations modifying insecticide targets in individual insects and measure of enzymes activity typically involved in insecticide metabolism (oxidase, esterase and glutathion-S-transferase) are indispensable in understanding the mechanisms of resistance. Insecticide resistance is a good example in which genotype-phenotype links have been made successfully. Insecticides used in agriculture continue to select new resistant populations of B. tabaci that could be from different biotype vectors of plant viruses. As well, the evolution of insecticide resistance in An. gambiae threatens the management of malaria vectors in West Africa. It raises the question of priority in the use of insecticides in health and/or agriculture, and more generally, the question of sustainability of crop protection and vector control strategies in the region. Here, we review the susceptibility tests, biochemical and molecular assays data for B. tabaci, a major pest in cotton and vegetable crops, and An. gambiae, main vector of malaria. The data reviewed was collected in Benin and Burkina

  10. The effect of larval nutritional deprivation on the life history and DDT resistance phenotype in laboratory strains of the malaria vector Anopheles arabiensis

    Directory of Open Access Journals (Sweden)

    Oliver Shüné V

    2013-02-01

    Full Text Available Abstract Background Anopheles arabiensis is a major malaria vector in Africa. It thrives in agricultural areas and has been associated with increased malaria incidence in areas under rice and maize cultivation. This effect may be due to increased adult size and abundance as a consequence of optimal larval nutrition. The aim of this study was to examine the effect of larval nutrition on the life history and expression of insecticide resistance in adults of laboratory reared An. arabiensis. Methods Larvae drawn from an insecticide susceptible An. arabiensis strain (SENN as well as a DDT-resistant strain (SENN-DDT were subjected to three fasting regimes: 1 mg of food per larva offered once per day, once every second day and once every third day. Control cohorts included larvae offered 1 mg food thrice per day. The rate of larval development was compared between matched cohorts from each strain as well as between fasted larvae and their respective controls. The expression of DDT resistance/tolerance in adults was compared between the starved cohorts and their controls by strain. Factors potentially affecting variation in DDT resistance/tolerance were examined including: adult body size (wing length, knock-down resistance (kdr status and levels of detoxification enzyme activity. Results and conclusion Anopheles arabiensis larval development is prolonged by nutrient deprivation and adults that eclose from starved larvae are smaller and less tolerant to DDT intoxication. This effect on DDT tolerance in adults is also associated with reduced detoxification enzyme activity. Conversely, well fed larvae develop comparatively quickly into large, more DDT tolerant (SENN or resistant (SENN-DDT adults. This is important in those instances where cereal farming is associated with increased An. arabiensis transmitted malaria incidence, because large adult females with high teneral reserves and decreased susceptibility to insecticide intoxication may also

  11. The effect of larval nutritional deprivation on the life history and DDT resistance phenotype in laboratory strains of the malaria vector Anopheles arabiensis

    Science.gov (United States)

    2013-01-01

    Background Anopheles arabiensis is a major malaria vector in Africa. It thrives in agricultural areas and has been associated with increased malaria incidence in areas under rice and maize cultivation. This effect may be due to increased adult size and abundance as a consequence of optimal larval nutrition. The aim of this study was to examine the effect of larval nutrition on the life history and expression of insecticide resistance in adults of laboratory reared An. arabiensis. Methods Larvae drawn from an insecticide susceptible An. arabiensis strain (SENN) as well as a DDT-resistant strain (SENN-DDT) were subjected to three fasting regimes: 1 mg of food per larva offered once per day, once every second day and once every third day. Control cohorts included larvae offered 1 mg food thrice per day. The rate of larval development was compared between matched cohorts from each strain as well as between fasted larvae and their respective controls. The expression of DDT resistance/tolerance in adults was compared between the starved cohorts and their controls by strain. Factors potentially affecting variation in DDT resistance/tolerance were examined including: adult body size (wing length), knock-down resistance (kdr) status and levels of detoxification enzyme activity. Results and conclusion Anopheles arabiensis larval development is prolonged by nutrient deprivation and adults that eclose from starved larvae are smaller and less tolerant to DDT intoxication. This effect on DDT tolerance in adults is also associated with reduced detoxification enzyme activity. Conversely, well fed larvae develop comparatively quickly into large, more DDT tolerant (SENN) or resistant (SENN-DDT) adults. This is important in those instances where cereal farming is associated with increased An. arabiensis transmitted malaria incidence, because large adult females with high teneral reserves and decreased susceptibility to insecticide intoxication may also prove to be more

  12. The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic précis

    Directory of Open Access Journals (Sweden)

    Okara Robi M

    2010-12-01

    Full Text Available Abstract Background This is the second in a series of three articles documenting the geographical distribution of 41 dominant vector species (DVS of human malaria. The first paper addressed the DVS of the Americas and the third will consider those of the Asian Pacific Region. Here, the DVS of Africa, Europe and the Middle East are discussed. The continent of Africa experiences the bulk of the global malaria burden due in part to the presence of the An. gambiae complex. Anopheles gambiae is one of four DVS within the An. gambiae complex, the others being An. arabiensis and the coastal An. merus and An. melas. There are a further three, highly anthropophilic DVS in Africa, An. funestus, An. moucheti and An. nili. Conversely, across Europe and the Middle East, malaria transmission is low and frequently absent, despite the presence of six DVS. To help control malaria in Africa and the Middle East, or to identify the risk of its re-emergence in Europe, the contemporary distribution and bionomics of the relevant DVS are needed. Results A contemporary database of occurrence data, compiled from the formal literature and other relevant resources, resulted in the collation of information for seven DVS from 44 countries in Africa containing 4234 geo-referenced, independent sites. In Europe and the Middle East, six DVS were identified from 2784 geo-referenced sites across 49 countries. These occurrence data were combined with expert opinion ranges and a suite of environmental and climatic variables of relevance to anopheline ecology to produce predictive distribution maps using the Boosted Regression Tree (BRT method. Conclusions The predicted geographic extent for the following DVS (or species/suspected species complex* is provided for Africa: Anopheles (Cellia arabiensis, An. (Cel. funestus*, An. (Cel. gambiae, An. (Cel. melas, An. (Cel. merus, An. (Cel. moucheti and An. (Cel. nili*, and in the European and Middle Eastern Region: An. (Anopheles atroparvus

  13. Using remote sensing to map larval and adult populations of Anopheles hyrcanus (Diptera: Culicidae a potential malaria vector in Southern France

    Directory of Open Access Journals (Sweden)

    Roger François

    2008-02-01

    Full Text Available Abstract Background Although malaria disappeared from southern France more than 60 years ago, suspicions of recent autochthonous transmission in the French Mediterranean coast support the idea that the area could still be subject to malaria transmission. The main potential vector of malaria in the Camargue area, the largest river delta in southern France, is the mosquito Anopheles hyrcanus (Diptera: Culicidae. In the context of recent climatic and landscape changes, the evaluation of the risk of emergence or re-emergence of such a major disease is of great importance in Europe. When assessing the risk of emergence of vector-borne diseases, it is crucial to be able to characterize the arthropod vector's spatial distribution. Given that remote sensing techniques can describe some of the environmental parameters which drive this distribution, satellite imagery or aerial photographs could be used for vector mapping. Results In this study, we propose a method to map larval and adult populations of An. hyrcanus based on environmental indices derived from high spatial resolution imagery. The analysis of the link between entomological field data on An. hyrcanus larvae and environmental indices (biotopes, distance to the nearest main productive breeding sites of this species i.e., rice fields led to the definition of a larval index, defined as the probability of observing An. hyrcanus larvae in a given site at least once over a year. Independent accuracy assessments showed a good agreement between observed and predicted values (sensitivity and specificity of the logistic regression model being 0.76 and 0.78, respectively. An adult index was derived from the larval index by averaging the larval index within a buffer around the trap location. This index was highly correlated with observed adult abundance values (Pearson r = 0.97, p An. hyrcanus larval and adult populations from the landscape indices. Conclusion This work shows that it is possible to use

  14. Phenotypic dissection of a Plasmodium-refractory strain of malaria vector Anopheles stephensi: the reduced susceptibility to P. berghei and P. yoelii.

    Directory of Open Access Journals (Sweden)

    Naoaki Shinzawa

    Full Text Available Anopheline mosquitoes are the major vectors of human malaria. Parasite-mosquito interactions are a critical aspect of disease transmission and a potential target for malaria control. Current investigations into parasite-mosquito interactions frequently assume that genetically resistant and susceptible mosquitoes exist in nature. Therefore, comparisons between the Plasmodium susceptibility profiles of different mosquito species may contribute to a better understanding of vectorial capacity. Anopheles stephensi is an important malaria vector in central and southern Asia and is widely used as a laboratory model of parasite transmission due to its high susceptibility to Plasmodium infection. In the present study, we identified a rodent malaria-refractory strain of A. stephensi mysorensis (Ehime by comparative study of infection susceptibility. A very low number of oocysts develop in Ehime mosquitoes infected with P. berghei and P. yoelii, as determined by evaluation of developed oocysts on the basal lamina. A stage-specific study revealed that this reduced susceptibility was due to the impaired formation of ookinetes of both Plasmodium species in the midgut lumen and incomplete crossing of the midgut epithelium. There were no apparent abnormalities in the exflagellation of male parasites in the ingested blood or the maturation of oocysts after the rounding up of the ookinetes. Overall, these results suggest that invasive-stage parasites are eliminated in both the midgut lumen and epithelium in Ehime mosquitoes by strain-specific factors that remain unknown. The refractory strain newly identified in this report would be an excellent study system for investigations into novel parasite-mosquito interactions in the mosquito midgut.

  15. nanos-Driven expression of piggyBac transposase induces mobilization of a synthetic autonomous transposon in the malaria vector mosquito, Anopheles stephensi.

    Science.gov (United States)

    Macias, Vanessa M; Jimenez, Alyssa J; Burini-Kojin, Bianca; Pledger, David; Jasinskiene, Nijole; Phong, Celine Hien; Chu, Karen; Fazekas, Aniko; Martin, Kelcie; Marinotti, Osvaldo; James, Anthony A

    2017-08-01

    Transposons are a class of selfish DNA elements that can mobilize within a genome. If mobilization is accompanied by an increase in copy number (replicative transposition), the transposon may sweep through a population until it is fixed in all of its interbreeding members. This introgression has been proposed as the basis for drive systems to move genes with desirable phenotypes into target species. One such application would be to use them to move a gene conferring resistance to malaria parasites throughout a population of vector mosquitos. We assessed the feasibility of using the piggyBac transposon as a gene-drive mechanism to distribute anti-malarial transgenes in populations of the malaria vector, Anopheles stephensi. We designed synthetic gene constructs that express the piggyBac transposase in the female germline using the control DNA of the An. stephensi nanos orthologous gene linked to marker genes to monitor inheritance. Two remobilization events were observed with a frequency of one every 23 generations, a rate far below what would be useful to drive anti-pathogen transgenes into wild mosquito populations. We discuss the possibility of optimizing this system and the impetus to do so. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Effective autodissemination of pyriproxyfen to breeding sites by the exophilic malaria vector Anopheles arabiensis in semi-field settings in Tanzania.

    Science.gov (United States)

    Lwetoijera, Dickson; Harris, Caroline; Kiware, Samson; Dongus, Stefan; Devine, Gregor J; McCall, Philip J; Majambere, Silas

    2014-04-29

    Malaria vector control strategies that target adult female mosquitoes are challenged by the emergence of insecticide resistance and behavioural resilience. Conventional larviciding is restricted by high operational costs and inadequate knowledge of mosquito-breeding habitats in rural settings that might be overcome by the juvenile hormone analogue, Pyriproxyfen (PPF). This study assessed the potential for Anopheles arabiensis to pick up and transfer lethal doses of PPF from contamination sites to their breeding habitats (i.e. autodissemination of PPF). A semi-field system (SFS) with four identical separate chambers was used to evaluate PPF-treated clay pots for delivering PPF to resting adult female mosquitoes for subsequent autodissemination to artificial breeding habitats within the chambers. In each chamber, a tethered cow provided blood meals to laboratory-reared, unfed female An. arabiensis released in the SFS. In PPF-treated chambers, clay pot linings were dusted with 0.2 - 0.3 g AI PPF per pot. Pupae were removed from the artificial habitats daily, and emergence rates calculated. Impact of PPF on emergence was determined by comparing treatment with an appropriate control group. Mean (95% CI) adult emergence rates were (0.21 ± 0.299) and (0.95 ± 0.39) from PPF-treated and controls respectively (p clay pot reduced adult emergence in six habitats to (0.34 ± 0.13) compared to (0.98 ± 0.02) in the controls (p < 0.0001), showing a high level of habitats coverage amplification of the autodissemination event. The study provides proof of principle for the autodissemination of PPF to breeding habitats by malaria vectors. These findings highlight the potential for this technique for outdoor control of malaria vectors and call for the testing of this technique in field trials.

  17. Ovicidal, larvicidal and adulticidal properties of Asparagus racemosus (Willd.) (Family: Asparagaceae) root extracts against filariasis (Culex quinquefasciatus), dengue (Aedes aegypti) and malaria (Anopheles stephensi) vector mosquitoes (Diptera: Culicidae).

    Science.gov (United States)

    Govindarajan, Marimuthu; Sivakumar, Rajamohan

    2014-04-01

    Several diseases are associated to the mosquito-human interaction. Mosquitoes are the carriers of severe and well-known illnesses such as malaria, arboviral encephalitis, dengue fever, chikungunya fever, West Nile virus and yellow fever. These diseases produce significant morbidity and mortality in humans and livestock around the world. The present investigation was undertaken to study the ovicidal, larvicidal and adulticidal activities of crude hexane, ethyl acetate, benzene, chloroform and methanol extracts of root of Asparagus racemosus were assayed for their toxicity against three important vector mosquitoes, viz., Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera: Culicidae). The mean percent hatchability of the eggs was observed after 48 h post-treatment. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. All the five solvent extracts showed moderate ovicidal activity; however, the methanol extract showed the highest ovicidal activity. The methanol extract of Asparagus racemosus against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi exerted 100% mortality (zero hatchability) at 375, 300 and 225 ppm, respectively. Control eggs showed 99-100% hatchability. The larval mortality was observed after 24 h of exposure. All extracts showed moderate larvicidal effects; however, the highest larval mortality was found in methanol extract of root of Asparagus racemosus against the larvae of Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi with the LC50 and LC90 values were 115.13, 97.71 and 90.97 ppm and 210.96, 179.92, and 168.82 ppm, respectively. The adult mortality was observed after 24 h recovery period. The plant crude extracts showed dose-dependent mortality. At higher concentrations, the adult showed restless movement for some times with abnormal wagging and then died. Among the extracts tested, the highest adulticidal activity was observed in

  18. Mathematical evaluation of community level impact of combining bed nets and indoor residual spraying upon malaria transmission in areas where the main vectors are Anopheles arabiensis mosquitoes

    Directory of Open Access Journals (Sweden)

    Okumu Fredros O

    2013-01-01

    Full Text Available Abstract Background Indoor residual insecticide spraying (IRS and long-lasting insecticide treated nets (LLINs are commonly used together even though evidence that such combinations confer greater protection against malaria than either method alone is inconsistent. Methods A deterministic model of mosquito life cycle processes was adapted to allow parameterization with results from experimental hut trials of various combinations of untreated nets or LLINs (Olyset®, PermaNet 2.0®, Icon Life® nets with IRS (pirimiphos methyl, lambda cyhalothrin, DDT, in a setting where vector populations are dominated by Anopheles arabiensis, so that community level impact upon malaria transmission at high coverage could be predicted. Results Intact untreated nets alone provide equivalent personal protection to all three LLINs. Relative to IRS plus untreated nets, community level protection is slightly higher when Olyset® or PermaNet 2.0® nets are added onto IRS with pirimiphos methyl or lambda cyhalothrin but not DDT, and when Icon Life® nets supplement any of the IRS insecticides. Adding IRS onto any net modestly enhances communal protection when pirimiphos methyl is sprayed, while spraying lambda cyhalothrin enhances protection for untreated nets but not LLINs. Addition of DDT reduces communal protection when added to LLINs. Conclusions Where transmission is mediated primarily by An. arabiensis, adding IRS to high LLIN coverage provides only modest incremental benefit (e.g. when an organophosphate like pirimiphos methyl is used, but can be redundant (e.g. when a pyrethroid like lambda cyhalothin is used or even regressive (e.g. when DDT is used for the IRS. Relative to IRS plus untreated nets, supplementing IRS with LLINs will only modestly improve community protection. Beyond the physical protection that intact nets provide, additional protection against transmission by An. arabiensis conferred by insecticides will be remarkably small, regardless of

  19. Genome-wide and expression-profiling analyses suggest the main cytochrome P450 genes related to pyrethroid resistance in the malaria vector, Anopheles sinensis (Diptera Culicidae).

    Science.gov (United States)

    Yan, Zheng-Wen; He, Zheng-Bo; Yan, Zhen-Tian; Si, Feng-Ling; Zhou, Yong; Chen, Bin

    2018-02-02

    Anopheles sinensis is one of the major malaria vectors. However, pyrethroid resistance in An. sinensis is threatening malaria control. Cytochrome P450-mediated detoxification is an important pyrethroid resistance mechanism that has been unexplored in An. sinensis. In this study, we performed a comprehensive analysis of the An. sinensis P450 gene superfamily with special attention to their role in pyrethroid resistance using bioinformatics and molecular approaches. Our data revealed the presence of 112 individual P450 genes in An. sinensis, which were classified into four major clans (mitochondrial, CYP2, CYP3 and CYP4), 18 families and 50 subfamilies. Sixty-seven genes formed nine gene clusters, and genes within the same cluster and the same gene family had a similar gene structure. Phylogenetic analysis showed that most of An. sinensis P450s (82/112) had very close 1: 1 orthology with Anopheles gambiae P450s. Five genes (AsCYP6Z2, AsCYP6P3v1, AsCYP6P3v2, AsCYP9J5 and AsCYP306A1) were significantly upregulated in three pyrethroid-resistant populations in both RNA-seq and RT-qPCR analyses, suggesting that they could be the most important P450 genes involved in pyrethroid resistance in An. sinensis. Our study provides insight on the diversity of An. sinensis P450 superfamily and basis for further elucidating pyrethroid resistance mechanism in this mosquito species. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  20. The Field Practices of Lambdacyhalothrin and Deltamethrin Insecticides Against Adult Mosquitoes of Anopheles stephensi as the Main Vector of Malaria: Residual Effects

    Directory of Open Access Journals (Sweden)

    Mousa Khosravani

    2017-04-01

    Full Text Available Background Various chemical control methods have adopted in anti-malaria interventions. Indoor residual spraying (IRS has been proven as a candidate in elimination program. On the other hand, resistance to multiple insecticides was implicated as a concern issue in these polices. Pesticides should be evaluated to identify probable resistant and make decision to choose a technique against vectors. Methods In this cross-sectional study, Bioassay test applied on lambdacyhalothrin WP 10% (0.05 mg a.i. /m2 and deltamethrin WP 5% (0.05 mg a.i./m2 on two surfaces (cement and plaster against adult mosquitoes of Anopheles stephensi according to WHO criteria to measure the residual activity in Saravan county, southern Iran. Overall, 3960 mosquitoes was used in our research. The mortality rates of An.stephensi Liston (Diptera: Culicidae measured between selected surfaces and insecticides in several times. Data analyzed by Mann-Whitney (nonparametric test using SPSS v22 statistic software. Results This paper illustrated that maximal course of residual efficacy was about 3 months. No statistically significant different was exhibited between type of surface within mortality rates of An. Stephensi (P = 0.724 but lambdacyhalothrin has more durability than deltamethrin Conclusions We established that lambdacyhalothrin can be used into control and elimination setting of malaria with two rounds of spray at an interval of 3-4 months in south of Iran.

  1. Insecticide resistance mechanisms associated with different environments in the malaria vector Anopheles gambiae: a case study in Tanzania.

    Science.gov (United States)

    Nkya, Theresia E; Akhouayri, Idir; Poupardin, Rodolphe; Batengana, Bernard; Mosha, Franklin; Magesa, Stephen; Kisinza, William; David, Jean-Philippe

    2014-01-25

    Resistance of mosquitoes to insecticides is a growing concern in Africa. Since only a few insecticides are used for public health and limited development of new molecules is expected in the next decade, maintaining the efficacy of control programmes mostly relies on resistance management strategies. Developing such strategies requires a deep understanding of factors influencing resistance together with characterizing the mechanisms involved. Among factors likely to influence insecticide resistance in mosquitoes, agriculture and urbanization have been implicated but rarely studied in detail. The present study aimed at comparing insecticide resistance levels and associated mechanisms across multiple Anopheles gambiae sensu lato populations from different environments. Nine populations were sampled in three areas of Tanzania showing contrasting agriculture activity, urbanization and usage of insecticides for vector control. Insecticide resistance levels were measured in larvae and adults through bioassays with deltamethrin, DDT and bendiocarb. The distribution of An. gambiae sub-species and pyrethroid target-site mutations (kdr) were investigated using molecular assays. A microarray approach was used for identifying transcription level variations associated to different environments and insecticide resistance. Elevated resistance levels to deltamethrin and DDT were identified in agriculture and urban areas as compared to the susceptible strain Kisumu. A significant correlation was found between adult deltamethrin resistance and agriculture activity. The subspecies Anopheles arabiensis was predominant with only few An. gambiae sensu stricto identified in the urban area of Dar es Salaam. The L1014S kdr mutation was detected at elevated frequency in An gambiae s.s. in the urban area but remains sporadic in An. arabiensis specimens. Microarrays identified 416 transcripts differentially expressed in any area versus the susceptible reference strain and supported the impact

  2. Laboratory and field efficacy of Pedalium murex and predatory copepod, Mesocyclops longisetus on rural malaria vector, Anopheles culicifacies

    Directory of Open Access Journals (Sweden)

    Thangadurai Chitra

    2013-04-01

    Full Text Available Objective: To test the potentiality of the leaf extract of Pedalium murex (P. murex and predatory copepod Mesocyclops longisetus (M. longisetus in individual and combination in controlling the rural malarial vector, Anopheles culicifacies (An. culicifacies in laboratory and field studies. Methods: P. murex leaves were collected from in and around Erode, Tamilnadu, India. The active compounds were extracted with 300 mL of methanol for 8 h in a Soxhlet apparatus. Laboratory studies on larvicidal and pupicidal effects of methanolic extract of P. murex tested against the rural malarial vector, An. culicifacies were significant. Results: Evaluated lethal concentrations (LC50 of P. murex extract were 2.68, 3.60, 4.50, 6.44 and 7.60 mg/L for I, II, III, IV and pupae of An. culicifacies, respectively. Predatory copepod, M. longisetus was examined for their predatory efficacy against the malarial vector, An. culicifacies. M. longisetus showed effective predation on the early instar (47% and 36% on I and II instar when compared with the later ones (3% and 1% on III and IV instar. Predatory efficacy of M. longisetus was increased (70% and 45% on I and II instar when the application was along with the P. murex extract. Conclusions: Predator survival test showed that the methanolic extract of P. murex is non-toxic to the predatory copepod, M. longisetus. Experiments were also conducted to evaluate the efficacy of methanolic extract of P. murex and M. longisetus in the direct breeding sites (paddy fields of An. culicifacies. Reduction in larval density was very high and sustained for a long time in combined treatment of P. murex and M. longisetus.

  3. Ecology of Anopheles darlingi Root with respect to vector importance: a review

    NARCIS (Netherlands)

    Hiwat, H.; Bretas, G.

    2011-01-01

    Anopheles darlingi is one of the most important malaria vectors in the Americas. In this era of new tools and strategies for malaria and vector control it is essential to have knowledge on the ecology and behavior of vectors in order to evaluate appropriateness and impact of control measures. This

  4. Dynamics of multiple insecticide resistance in the malaria vector Anopheles gambiae in a rice growing area in South-Western Burkina Faso

    Directory of Open Access Journals (Sweden)

    Ouédraogo Jean-Bosco

    2008-09-01

    Full Text Available Abstract Background Insecticide resistance of the main malaria vector, Anopheles gambiae, has been reported in south-western Burkina Faso, West Africa. Cross-resistance to DDT and pyrethroids was conferred by alterations at site of action in the sodium channel, the Leu-Phe kdr mutation; resistance to organophosphates and carbamates resulted from a single point mutation in the oxyanion hole of the acetylcholinesterase enzyme designed as ace-1R. Methods An entomological survey was carried out during the rainy season of 2005 at Vallée du Kou, a rice growing area in south-western Burkina Faso. At the Vallée du Kou, both insecticide resistance mechanisms have been previously described in the M and S molecular forms of An. gambiae. This survey aimed i to update the temporal dynamics and the circumsporozoite infection rate of the two molecular forms M and S of An. gambiae ii to update the frequency of the Leu-Phe kdr mutation within these forms and finally iii to investigate the occurrence of the ace-1R mutation. Mosquitoes collected by indoor residual collection and by human landing catches were counted and morphologically identified. Species and molecular forms of An. gambiae, ace-1R and Leu-Phe kdr mutations were determined using PCR techniques. The presence of the circumsporozoite protein of Plasmodium falciparum was determined using ELISA. Results Anopheles gambiae populations were dominated by the M form. However the S form occurred in relative important proportion towards the end of the rainy season with a maximum peak in October at 51%. Sporozoite rates were similar in both forms. The frequency of the Leu-Phe kdr mutation in the S form reached a fixation level while it is still spreading in the M form. Furthermore, the ace-1R mutation prevailed predominately in the S form and has just started spreading in the M form. The two mutations occurred concomitantly both in M and S populations. Conclusion These results showed that the Vallée du Kou

  5. Transmission blocking activity of a standardized neem (Azadirachta indica) seed extract on the rodent malaria parasite Plasmodium berghei in its vector Anopheles stephensi

    Science.gov (United States)

    2010-01-01

    Background The wide use of gametocytocidal artemisinin-based combination therapy (ACT) lead to a reduction of Plasmodium falciparum transmission in several African endemic settings. An increased impact on malaria burden may be achieved through the development of improved transmission-blocking formulations, including molecules complementing the gametocytocidal effects of artemisinin derivatives and/or acting on Plasmodium stages developing in the vector. Azadirachtin, a limonoid (tetranortriterpenoid) abundant in neem (Azadirachta indica, Meliaceae) seeds, is a promising candidate, inhibiting Plasmodium exflagellation in vitro at low concentrations. This work aimed at assessing the transmission-blocking potential of NeemAzal®, an azadirachtin-enriched extract of neem seeds, using the rodent malaria in vivo model Plasmodium berghei/Anopheles stephensi. Methods Anopheles stephensi females were offered a blood-meal on P. berghei infected, gametocytaemic BALB/c mice, treated intraperitoneally with NeemAzal, one hour before feeding. The transmission-blocking activity of the product was evaluated by assessing oocyst prevalence, oocyst density and capacity to infect healthy mice. To characterize the anti-plasmodial effects of NeemAzal® on early midgut stages, i.e. zygotes and ookinetes, Giemsa-stained mosquito midgut smears were examined. Results NeemAzal® completely blocked P. berghei development in the vector, at an azadirachtin dose of 50 mg/kg mouse body weight. The totally 138 examined, treated mosquitoes (three experimental replications) did not reveal any oocyst and none of the healthy mice exposed to their bites developed parasitaemia. The examination of midgut content smears revealed a reduced number of zygotes and post-zygotic forms and the absence of mature ookinetes in treated mosquitoes. Post-zygotic forms showed several morphological alterations, compatible with the hypothesis of an azadirachtin interference with the functionality of the microtubule

  6. Transmission blocking activity of a standardized neem (Azadirachta indica seed extract on the rodent malaria parasite Plasmodium berghei in its vector Anopheles stephensi

    Directory of Open Access Journals (Sweden)

    Esposito Fulvio

    2010-03-01

    Full Text Available Abstract Background The wide use of gametocytocidal artemisinin-based combination therapy (ACT lead to a reduction of Plasmodium falciparum transmission in several African endemic settings. An increased impact on malaria burden may be achieved through the development of improved transmission-blocking formulations, including molecules complementing the gametocytocidal effects of artemisinin derivatives and/or acting on Plasmodium stages developing in the vector. Azadirachtin, a limonoid (tetranortriterpenoid abundant in neem (Azadirachta indica, Meliaceae seeds, is a promising candidate, inhibiting Plasmodium exflagellation in vitro at low concentrations. This work aimed at assessing the transmission-blocking potential of NeemAzal®, an azadirachtin-enriched extract of neem seeds, using the rodent malaria in vivo model Plasmodium berghei/Anopheles stephensi. Methods Anopheles stephensi females were offered a blood-meal on P. berghei infected, gametocytaemic BALB/c mice, treated intraperitoneally with NeemAzal, one hour before feeding. The transmission-blocking activity of the product was evaluated by assessing oocyst prevalence, oocyst density and capacity to infect healthy mice. To characterize the anti-plasmodial effects of NeemAzal® on early midgut stages, i.e. zygotes and ookinetes, Giemsa-stained mosquito midgut smears were examined. Results NeemAzal® completely blocked P. berghei development in the vector, at an azadirachtin dose of 50 mg/kg mouse body weight. The totally 138 examined, treated mosquitoes (three experimental replications did not reveal any oocyst and none of the healthy mice exposed to their bites developed parasitaemia. The examination of midgut content smears revealed a reduced number of zygotes and post-zygotic forms and the absence of mature ookinetes in treated mosquitoes. Post-zygotic forms showed several morphological alterations, compatible with the hypothesis of an azadirachtin interference with the functionality

  7. Genetic variations of ND5 gene of mtDNA in populations of Anopheles sinensis (Diptera: Culicidae) malaria vector in China

    Science.gov (United States)

    2013-01-01

    Background Anopheles sinensis is a principal vector for Plasmodium vivax malaria in most parts of China. Understanding of genetic structure and genetic differentiation of the mosquito should contribute to the vector control and malaria elimination in China. Methods The present study investigated the genetic structure of An. sinensis populations using a 729 bp fragment of mtDNA ND5 among 10 populations collected from seven provinces in China. Results ND5 was polymorphic by single mutations within three groups of An. sinensis that were collected from 10 different geographic populations in China. Out of 140 specimens collected from 10 representative sites, 84 haplotypes and 71 variable positions were determined. The overall level of genetic differentiation of An. sinensis varied from low to moderate across China and with a FST range of 0.00065 – 0.341. Genealogy analysis clustered the populations of An. sinensis into three main clusters. Each cluster shared one main haplotype. Pairwise variations within populations were higher (68.68%) than among populations (31.32%) and with high fixation index (FST = 0.313). The results of the present study support population growth and expansion in the An. sinensis populations from China. Three clusters of An. sinensis populations were detected in this study with each displaying different proportion patterns over seven Chinese provinces. No correlation between genetic and geographic distance was detected in overall populations of An. sinensis (R2 = 0.058; P = 0.301). Conclusions The results indicate that the ND5 gene of mtDNA is highly polymorphic in An. sinensis and has moderate genetic variability in the populations of this mosquito in China. Demographic and spatial results support evidence of expansion in An. sinensis populations. PMID:24192424

  8. Genome-wide identification and characterization of odorant-binding protein (OBP) genes in the malaria vector Anopheles sinensis (Diptera: Culicidae).

    Science.gov (United States)

    He, Xiu; He, Zheng-Bo; Zhang, Yu-Juan; Zhou, Yong; Xian, Peng-Jie; Qiao, Liang; Chen, Bin

    2016-06-01

    Anopheles sinensis is a major malaria vector. Insect odorant-binding proteins (OBPs) may function in the reception of odorants in the olfactory system. The classification and characterization of the An. sinensis OBP genes have not been systematically studied. In this study, 64 putative OBP genes were identified at the whole-genome level of An. sinensis based on the comparison between OBP conserved motifs, PBP_GOBP, and phylogenetic analysis with An. gambiae OBPs. The characterization of An. sinensis OBPs, including the motif's conservation, gene structure, genomic organization and classification, were investigated. A new gene, AsOBP73, belonging to the Plus-C subfamily, was identified with the support of transcript and conservative motifs. These An. sinensis OBP genes were classified into three subfamilies with 37, 15 and 12 genes in the subfamily Classic, Atypical and Plus-C, respectively. The genomic organization of An. sinensis OBPs suggests a clustered distribution across nine different scaffolds. Eight genes (OBP23-28, OBP63-64) might originate from a single gene through a series of historic duplication events at least before divergence of Anopheles, Culex and Aedes. The microsynteny analyses indicate a very high synteny between An. sinensis and An. gambiae OBPs. OBP70 and OBP71 earlier classified under Plus-C in An. gambiae are recognized as belonging to the group Obp59a of the Classic subfamily, and OBP69 earlier classified under Plus-C has been moved to the Atypical subfamily in this study. The study established a basic information frame for further study of the OBP genes in insects as well as in An. sinensis. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  9. Population genetic structure of the malaria vector Anopheles funestus, in a recently re-colonized area of the Senegal River basin and human-induced environmental changes.

    Science.gov (United States)

    Samb, Badara; Dia, Ibrahima; Konate, Lassana; Ayala, Diego; Fontenille, Didier; Cohuet, Anna

    2012-09-05

    Anopheles funestus is one of the major malaria vectors in tropical Africa. Because of several cycles of drought events that occurred during the 1970s, this species had disappeared from many parts of sahelian Africa, including the Senegal River basin. However, this zone has been re-colonized during the last decade by An. funestus, following the implementation of two dams on the Senegal River. Previous studies in that area revealed heterogeneity at the biological and chromosomal level among these recent populations. Here, we studied the genetic structure of the newly established mosquito populations using eleven microsatellite markers in four villages of the Senegal River basin and compared it to another An. funestus population located in the sudanian domain. Our results presume Hardy Weinberg equilibrium in each An. funestus population, suggesting a situation of panmixia. Moreover, no signal from bottleneck or population expansion was detected across populations. The tests of genetic differentiation between sites revealed a slight but significant division into three distinct genetic entities. Genetic distance between populations from the Senegal River basin and sudanian domain was correlated to geographical distance. In contrast, sub-division into the Senegal River basin was not correlated to geographic distance, rather to local adaptation. The high genetic diversity among populations from Senegal River basin coupled with no evidence of bottleneck and with a gene flow with southern population suggests that the re-colonization was likely carried out by a massive and repeated stepping-stone dispersion starting from the neighboring areas where An. funestus endured.

  10. Green-synthesised nanoparticles from Melia azedarach seeds and the cyclopoid crustacean Cyclops vernalis: an eco-friendly route to control the malaria vector Anopheles stephensi?

    Science.gov (United States)

    Anbu, Priya; Murugan, Kadarkarai; Madhiyazhagan, Pari; Dinesh, Devakumar; Subramaniam, Jayapal; Panneerselvam, Chellasamy; Suresh, Udaiyan; Alarfaj, Abdullah A; Munusamy, Murugan A; Higuchi, Akon; Hwang, Jiang-Shiou; Kumar, Suresh; Nicoletti, Marcello; Benelli, Giovanni

    2016-09-01

    The impact of green-synthesised mosquitocidal nanoparticles on non-target aquatic predators is poorly studied. In this research, we proposed a single-step method to synthesise silver nanoparticles (Ag NP) using the seed extract of Melia azedarach. Ag NP were characterised using a variety of biophysical methods, including UV-vis spectrophotometry, scanning electron microscopy, energy-dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. In laboratory assays on Anopheles stephensi, Ag NP showed LC50 ranging from 2.897 (I instar larvae) to 14.548 ppm (pupae). In the field, the application of Ag NP (10 × LC50) lead to complete elimination of larval populations after 72 h. The application of Ag NP in the aquatic environment did not show negative adverse effects on predatory efficiency of the mosquito natural enemy Cyclops vernalis. Overall, this study highlights the concrete possibility to employ M. azedarach-synthesised Ag NP on young instars of malaria vectors.

  11. Spatial and temporal distribution of the malaria mosquito Anopheles arabiensis in northern Sudan: influence of environmental factors and implications for vector control

    Directory of Open Access Journals (Sweden)

    Malcolm Colin A

    2009-06-01

    Full Text Available Abstract Background Malaria is an important public health problem in northern Sudan, but little is known about the dynamics of its transmission. Given the characteristic low densities of Anopheles arabiensis and the difficult terrain in this area, future vector control strategies are likely to be based on area-wide integrated pest management (AW-IPM that may include the sterile insect technique (SIT. To support the planning and implementation of future AW-IPM activities, larval surveys were carried out to provide key data on spatial and seasonal dynamics of local vector populations. Methods Monthly cross-sectional larval surveys were carried out between March 2005 and May 2007 in two localities (Dongola and Merowe adjacent to the river Nile. A stratified random sampling strategy based on the use of Remote Sensing (RS, Geographical Information Systems (GIS and the Global Positioning System (GPS was used to select survey locations. Breeding sites were mapped using GPS and data on larval density and breeding site characteristics were recorded using handheld computers. Bivariate and multivariate logistic regression models were used to identify breeding site characteristics associated with increased risk of presence of larvae. Seasonal patterns in the proportion of breeding sites positive for larvae were compared visually to contemporaneous data on climate and river height. Results Of a total of 3,349 aquatic habitats sampled, 321 (9.6% contained An. arabiensis larvae. The frequency with which larvae were found varied markedly by habitat type. Although most positive sites were associated with temporary standing water around the margins of the main Nile channel, larvae were also found at brickworks and in areas of leaking pipes and canals – often far from the river. Close to the Nile channel, a distinct seasonal pattern in larval populations was evident and appeared to be linked to the rise and fall of the river level. These patterns were not

  12. Dose-response tests and semi-field evaluation of lethal and sub-lethal effects of slow release pyriproxyfen granules (Sumilarv®0.5G) for the control of the malaria vectors Anopheles gambiae sensu lato.

    Science.gov (United States)

    Mbare, Oscar; Lindsay, Steven W; Fillinger, Ulrike

    2013-03-14

    Recently research has shown that larviciding can be an effective tool for integrated malaria vector control. Nevertheless, the uptake of this intervention has been hampered by the need to re-apply larvicides frequently. There is a need to explore persistent, environmentally friendly larvicides for malaria vector control to reduce intervention efforts and costs by reducing the frequency of application. In this study, the efficacy of a 0.5% pyriproxyfen granule (Surmilarv®0.5G, Sumitomo Chemicals) was assessed for the control of Anopheles gambiae sensu stricto and Anopheles arabiensis, the major malaria vectors in sub-Saharan Africa. Dose-response and standardized field tests were implemented following standard procedures of the World Health Organization's Pesticide Evaluation Scheme to determine: (i) the susceptibility of vectors to this formulation; (ii) the residual activity and appropriate retreatment schedule for field application; and, (iii) sub-lethal impacts on the number and viability of eggs laid by adults after exposure to Sumilarv®0.5G during larval development. Anopheles gambiae s.s. and An. arabiensis were highly susceptible to Sumilarv®0.5G. Estimated emergence inhibition (EI) values were very low and similar for both species. The minimum dosage that completely inhibited adult emergence was between 0.01-0.03 parts per million (ppm) active ingredient (ai). Compared to the untreated control, an application of 0.018 ppm ai prevented 85% (95% confidence interval (CI) 82%-88%) of adult emergence over six weeks under standardized field conditions. A fivefold increase in dosage of 0.09 ppm ai prevented 97% (95% CI 94%-98%) emergence. Significant sub-lethal effects were observed in the standardized field tests. Female An. gambiae s.s. that were exposed to 0.018 ppm ai as larvae laid 47% less eggs, and females exposed to 0.09 ppm ai laid 74% less eggs than females that were unexposed to the treatment. Furthermore, 77% of eggs laid by females exposed to 0

  13. Population structure analyses and demographic history of the malaria vector Anopheles albimanus from the Caribbean and the Pacific regions of Colombia

    Directory of Open Access Journals (Sweden)

    Conn Jan E

    2009-11-01

    Full Text Available Abstract Background Anopheles albimanus is an important malaria vector in some areas throughout its distribution in the Caribbean and the Pacific regions of Colombia, covering three biogeographic zones of the neotropical region, Maracaibo, Magdalena and Chocó. Methods This study was conducted to estimate intra-population genetic diversity, genetic differentiation and demographic history of An. albimanus populations because knowledge of vector population structure is a useful tool to guide malaria control programmes. Analyses were based on mtDNA COI gene sequences and four microsatellite loci of individuals collected in eight populations from the Caribbean and the Pacific regions of Colombia. Results Two distinctive groups were consistently detected corresponding to COI haplotypes from each region. A star-shaped statistical parsimony network, significant and unimodal mismatch distribution, and significant negative neutrality tests together suggest a past demographic expansion or a selective sweep in An. albimanus from the Caribbean coast approximately 21,994 years ago during the late Pleistocene. Overall moderate to low genetic differentiation was observed between populations within each region. However, a significant level of differentiation among the populations closer to Buenaventura in the Pacific region was observed. The isolation by distance model best explained genetic differentiation among the Caribbean region localities: Los Achiotes, Santa Rosa de Lima and Moñitos, but it could not explain the genetic differentiation observed between Turbo (Magdalena providence, and the Pacific region localities (Nuquí, Buenaventura, Tumaco. The patterns of differentiation in the populations from the different biogeographic provinces could not be entirely attributed to isolation by distance. Conclusion The data provide evidence for limited past gene flow between the Caribbean and the Pacific regions, as estimated by mtDNA sequences and current gene

  14. The effect of metal pollution on the life history and insecticide resistance phenotype of the major malaria vector Anopheles arabiensis (Diptera: Culicidae.

    Directory of Open Access Journals (Sweden)

    Shüné V Oliver

    Full Text Available Metal exposure is one of the commonest anthropogenic pollutants mosquito larvae are exposed to, both in agricultural and urban settings. As members of the Anopheles gambiae complex, which contains several major malaria vector species including An. arabiensis, are increasingly adapting to polluted environments, this study examined the effects of larval metal exposure on various life history traits of epidemiological importance. Two laboratory strains of An. arabiensis, SENN (insecticide susceptible and SENN DDT (insecticide resistant, were reared in maximum acceptable toxicity concentrations, (MATC-the highest legally accepted concentration of cadmium chloride, lead nitrate and copper nitrate. Following these exposures, time to pupation, adult size and longevity were determined. Larvae reared in double the MATC were assessed for changes in malathion and deltamethrin tolerance, measured by lethal time bottle bioassay, as well as changes in detoxification enzyme activity. As defence against oxidative stress has previously been demonstrated to affect the expression of insecticide resistance, catalase, glutathione peroxidase and superoxide dismutase activity was assessed. The relative metal toxicity to metal naïve larvae was also assessed. SENN DDT larvae were more tolerant of metal pollution than SENN larvae. Pupation in SENN larvae was significantly reduced by metal exposure, while adult longevity was not affected. SENN DDT showed decreased adult size after larval metal exposure. Adult insecticide tolerance was increased after larval metal exposure, and this effect appeared to be mediated by increased β-esterase, cytochrome P450 and superoxide dismutase activity. These data suggest an enzyme-mediated positive link between tolerance to metal pollutants and insecticide resistance in adult mosquitoes. Furthermore, exposure of larvae to metal pollutants may have operational consequences under an insecticide-based vector control scenario by increasing

  15. INSECTICIDAL ACTIVITIES OF ESSENTIAL OILS EXTRACTED FROM THREE SPECIES OF POACEAE ON ANOPHELES GAMBIAE SPP, MAJOR VECTOR OF MALARIA

    Directory of Open Access Journals (Sweden)

    Dominique C. K. Sohounhloué

    2010-12-01

    Full Text Available In this paper, the insecticidal activities on Anopheles gambiae spp of the essential oils (EO extracted from the dry leaves of some species collected in Benin were studied. The essential oil yields are 2.8, 1.7 and 1.4�0respectively for Cymbopogon schoanenthus (L. Spreng (CS, Cymbopogon citratus Stapf. (CC and Cymbopogon giganteus (Hochst. Chiov (CG. The GC/MS analysis showed that the EO of CS had a larger proportion in oxygenated monoterpenes (86.3�20whereas those of the sheets of CC and CG are relatively close proportions (85.5�0and 82.7�0respectively with. The piperitone (68.5�  2-carene (11.5� and -eudesmol (4.6�20are the major components of the EO of CS while trans para-mentha-1(7,8-dien-2-ol (31.9� trans para-mentha-2,8-dien-1-ol (19.6� cis para-mentha-2,8-dien-1-ol (7.2� trans piperitol (6.3�20and limonene (6.3�20prevailed in the EO of CG. The EO of CC revealed a rich composition in geranial (41.3� neral (33� myrcene (10.4� and geraniol (6.6� The biological tests have shown that these three EO induced 100�0mortality of Anopheles gambiae to 1.1, 586.58 and 1549 µg•cm-2 respectively for CC, CS and CG. These effects are also illustrated by weak lethal concentration for 50�0anopheles population (CC: 0.306; CS: 152.453 and CG: 568.327 µg•cm-2 in the same order of reactivity. The EO of CC appeared most active on two stocks (sensitive and resistant of Anopheles gambiae.

  16. Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi?

    Science.gov (United States)

    Dinesh, Devakumar; Murugan, Kadarkarai; Madhiyazhagan, Pari; Panneerselvam, Chellasamy; Kumar, Palanisamy Mahesh; Nicoletti, Marcello; Jiang, Wei; Benelli, Giovanni; Chandramohan, Balamurugan; Suresh, Udaiyan

    2015-04-01

    Mosquitoes represent an important threat for lives of millions of people worldwide, acting as vectors for devastating pathogens, such as malaria, yellow fever, dengue, and West Nile. In addition, pathogens and parasites polluting water also constitute a severe plague for populations of developing countries. Here, we investigated the mosquitocidal and antibacterial properties of Aloe vera leaf extract and silver nanoparticles synthesized using A. vera extract. Mosquitocidal properties were assessed in laboratory against larvae (I-IV instar) and pupae of the malaria vector Anopheles stephensi. Green-synthesized silver nanoparticles were tested against An. stephensi also in field conditions. Antibacterial properties of nanoparticles were evaluated against Bacillus subtilis, Klebsiella pneumoniae, and Salmonella typhi using the agar disk diffusion and minimum inhibitory concentration protocol. The synthesized silver nanoparticles were characterized by UV-vis spectrum, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). In laboratory conditions, the A. vera extract was toxic against An. stephensi larvae and pupae, even at low dosages. LC50 were 48.79 ppm (I instar), 59.09 ppm (II instar), 70.88 ppm (III instar), 83.58 ppm (IV instar), and 152.55 ppm (pupae). Green-synthesized silver nanoparticles were highly toxic against An. stephensi. LC50 were 3.825 ppm (I instar), 4.119 ppm (II instar), 4.982 ppm (III instar), 5.711 ppm (IV instar), and 6.113 ppm (pupae). In field conditions, the application of A. vera-synthesized silver nanoparticles (10 × LC50) leads to An. stephensi larval reduction of 74.5, 86.6, and 97.7%, after 24, 48, and 72 h, respectively. Nanoparticles also showed antibacterial properties, and the maximum concentration tested (150 mg/L) evoked an inhibition zone wider than 80 mm in all tested bacterium species. This study adds knowledge about the use of green synthesis of nanoparticles in

  17. Genome-wide identification, characterization and classification of ionotropic glutamate receptor genes (iGluRs) in the malaria vector Anopheles sinensis (Diptera: Culicidae).

    Science.gov (United States)

    Wang, Ting-Ting; Si, Feng-Ling; He, Zheng-Bo; Chen, Bin

    2018-01-15

    Ionotropic glutamate receptors (iGluRs) are conserved ligand-gated ion channel receptors, and ionotropic receptors (IRs) were revealed as a new family of iGluRs. Their subdivision was unsettled, and their characteristics are little known. Anopheles sinensis is a major malaria vector in eastern Asia, and its genome was recently well sequenced and annotated. We identified iGluR genes in the An. sinensis genome, analyzed their characteristics including gene structure, genome distribution, domains and specific sites by bioinformatic methods, and deduced phylogenetic relationships of all iGluRs in An. sinensis, Anopheles gambiae and Drosophila melanogaster. Based on the characteristics and phylogenetics, we generated the classification of iGluRs, and comparatively analyzed the intron number and selective pressure of three iGluRs subdivisions, iGluR group, Antenna IR and Divergent IR subfamily. A total of 56 iGluR genes were identified and named in the whole-genome of An. sinensis. These genes were located on 18 scaffolds, and 31 of them (29 being IRs) are distributed into 10 clusters that are suggested to form mainly from recent gene duplication. These iGluRs can be divided into four groups: NMDA, non-NMDA, Antenna IR and Divergent IR based on feature comparison and phylogenetic analysis. IR8a and IR25a were suggested to be monophyletic, named as Putative in the study, and moved from the Antenna subfamily in the IR family to the non-NMDA group as a sister of traditional non-NMDA. The generated iGluRs of genes (including NMDA and regenerated non-NMDA) are relatively conserved, and have a more complicated gene structure, smaller ω values and some specific functional sites. The iGluR genes in An. sinensis, An. gambiae and D. melanogaster have amino-terminal domain (ATD), ligand binding domain (LBD) and Lig_Chan domains, except for IR8a that only has the LBD and Lig_Chan domains. However, the new concept IR family of genes (including regenerated Antenna IR, and Divergent

  18. Is there an efficient trap or collection method for sampling Anopheles darlingi and other malaria vectors that can describe the essential parameters affecting transmission dynamics as effectively as human landing catches? - A Review

    Directory of Open Access Journals (Sweden)

    José Bento Pereira Lima

    2014-08-01

    Full Text Available Distribution, abundance, feeding behaviour, host preference, parity status and human-biting and infection rates are among the medical entomological parameters evaluated when determining the vector capacity of mosquito species. To evaluate these parameters, mosquitoes must be collected using an appropriate method. Malaria is primarily transmitted by anthropophilic and synanthropic anophelines. Thus, collection methods must result in the identification of the anthropophilic species and efficiently evaluate the parameters involved in malaria transmission dynamics. Consequently, human landing catches would be the most appropriate method if not for their inherent risk. The choice of alternative anopheline collection methods, such as traps, must consider their effectiveness in reproducing the efficiency of human attraction. Collection methods lure mosquitoes by using a mixture of olfactory, visual and thermal cues. Here, we reviewed, classified and compared the efficiency of anopheline collection methods, with an emphasis on Neotropical anthropophilic species, especially Anopheles darlingi, in distinct malaria epidemiological conditions in Brazil.

  19. BIONOMIK VEKTOR MALARIA NYAMUK Anopheles sundaicus dan Anopheles letifer DI KECAMATAN BELAKANG PADANG , BATAM, KEPULAUAN RIAU

    Directory of Open Access Journals (Sweden)

    Shinta Shinta

    2012-11-01

    Full Text Available Abstract Malaria continues to be a public health problem in the malaria endemic areas in Indonesia and often cause an outbreak. Batam municipality is the priority for development area in the Riau island Province, nevertheless malaria is still a public health problem. The national government and district office government have been committed to have a program for eliminating malaria at Batam area in year 2015. One of the malaria control program is the vector control measure. The failure of vector control is partly due to a lack of understanding of vector behavior in its epidemiological setting. The understanding of  malaria vector species and its behavior will be useful to plan the vector control intervention.  The study of bio-ecology of malaria vector is very important factor to  understand its behavior and to formulate the vector control strtegy in Batam area. This study was carried out at Belakang Padang, Batam in 2008 using breeding habitat survey of Anopheles spp, measuring the pH, salinity and observation of breeding characteristics, mapping of breeding sites distribution using GPS and human landing collection inside as well as outside houses and ELISA for circumsporozoite.  The results of the study revealed that, in the Belakang padang areas were found five natural breeding habitat of Anopheles spp. e.i: marshy areas, marshy with mangrove tree in the peripher, creek, mud-hole and water reservoir (water dam. Larvae of  An. letifer and An sundaicus were found relatively higher number in the marshy areas, with characteristis of pH: 5-7,5,  temperature 28-330C and salinity was 0-28 ‰.  Only one species of anopheline An. sundaicus  was found in the adult stage in Belakang Padang area, though An. letifer was found only in the larva stage.  The biting activities of An. sundaicus throughout the night both indoors and outdoors, though the biting peak occured at 02.00-03.00 am.  Both  An sundaicus and An. letifer at  Belakang Padang

  20. Seasonal variation in wing size and shape between geographic populations of the malaria vector, Anopheles coluzzii in Burkina Faso (West Africa).

    Science.gov (United States)

    Hidalgo, Kevin; Dujardin, Jean-Pierre; Mouline, Karine; Dabiré, Roch K; Renault, David; Simard, Frederic

    2015-03-01

    The mosquito, Anopheles coluzzii is a major vector of human malaria in Africa with widespread distribution throughout the continent. The species hence populates a wide range of environments in contrasted ecological settings often exposed to strong seasonal fluctuations. In the dry savannahs of West Africa, this mosquito population dynamics closely follows the pace of surface water availability: the species pullulates during the rainy season and is able to reproduce throughout the dry season in areas where permanent water bodies are available for breeding. The impact of such environmental fluctuation on mosquito development and the phenotypic quality of emerging adults has however not been addressed in details. Here, we examined and compared phenotypic changes in the duration of pre-imaginal development, body dry mass at emergence and wing size, shape and surface area in young adult females An. coluzzii originated from five distinct geographic locations when they are reared in two contrasting conditions mimicking those experienced by mosquitoes during the rainy season (RS) and at the onset of the dry season (ODS) in Burkina Faso (West Africa). Our results demonstrated strong phenotypic plasticity in all traits, with differences in the magnitude and direction of changes between RS and ODS depending upon the geographic origin, hence the genetic background of the mosquito populations. Highest heterogeneity within population was observed in Bama, where large irrigation schemes allow year-round mosquito breeding. Further studies are needed to explore the adaptive value of such phenotypic plasticity and its relevance for local adaptation in An. coluzzii. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Impact of agriculture on the selection of insecticide resistance in the malaria vector Anopheles gambiae: a multigenerational study in controlled conditions.

    Science.gov (United States)

    Nkya, Theresia Estomih; Poupardin, Rodolphe; Laporte, Frederic; Akhouayri, Idir; Mosha, Franklin; Magesa, Stephen; Kisinza, William; David, Jean-Philippe

    2014-10-16

    Resistance of mosquitoes to insecticides is mainly attributed to their adaptation to vector control interventions. Although pesticides used in agriculture have been frequently mentioned as an additional force driving the selection of resistance, only a few studies were dedicated to validate this hypothesis and characterise the underlying mechanisms. While insecticide resistance is rising dramatically in Africa, deciphering how agriculture affects resistance is crucial for improving resistance management strategies. In this context, the multigenerational effect of agricultural pollutants on the selection of insecticide resistance was examined in Anopheles gambiae. An urban Tanzanian An. gambiae population displaying a low resistance level was used as a parental strain for a selection experiment across 20 generations. At each generation larvae were selected with a mixture containing pesticides and herbicides classically used in agriculture in Africa. The resistance levels of adults to deltamethrin, DDT and bendiocarb were compared between the selected and non-selected strains across the selection process together with the frequency of kdr mutations. A microarray approach was used for pinpointing transcription level variations selected by the agricultural pesticide mixture at the adult stage. A gradual increase of adult resistance to all insecticides was observed across the selection process. The frequency of the L1014S kdr mutation rose from 1.6% to 12.5% after 20 generations of selection. Microarray analysis identified 90 transcripts over-transcribed in the selected strain as compared to the parental and the non-selected strains. Genes encoding cuticle proteins, detoxification enzymes, proteins linked to neurotransmitter activity and transcription regulators were mainly affected. RT-qPCR transcription profiling of candidate genes across multiple generations supported their link with insecticide resistance. This study confirms the potency of agriculture in selecting

  2. An extra-domiciliary method of delivering entomopathogenic fungus, Metharizium anisopliae IP 46 for controlling adult populations of the malaria vector, Anopheles arabiensis

    NARCIS (Netherlands)

    Lwetoijera, D.W.; Sumaye, R.D.; Madumla, E.P.; Kavishe, D.R.; Mnyone, L.L.; Russell, T.L.; Okumu, F.O.

    2010-01-01

    Fungal biopesticides have the potential to significantly reduce densities of malaria vectors as well as associated malaria transmission. In previous field trials, entomopathogenic fungus was delivered from within human dwellings, where its efficacy was limited by low infection rates of target

  3. Neem by-products in the fight against mosquito-borne diseases: Biotoxicity of neem cake fractions towards the rural malaria vector Anopheles culicifacies (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Balamurugan Chandramohan

    2016-06-01

    Conclusions: Overall, this study suggests that the methanolic fractions of neem cake may be considered as a new and cheap source of highly effective compounds against the rural malaria vector An. culicifacies.

  4. Insecticide resistance in the West African malaria vector Anopheles gambiae and investigation of alternative tools for its delay

    NARCIS (Netherlands)

    N'Guessan, R.

    2009-01-01

    There is a current policy to eliminate malaria in the African continent. Pyrethroid-incorporated Long Lasting Insecticidal Nets (LLINs) and/or Indoor Residual Spraying (IRS) are the chemical weapons being deployed to achieve that goal. Rather worryingly, resistance to pyrethroids is well documented

  5. Modeling Malaria Vector Distribution under Climate Change Scenarios in Kenya

    Science.gov (United States)

    Ngaina, J. N.

    2017-12-01

    Projecting the distribution of malaria vectors under climate change is essential for planning integrated vector control strategies for sustaining elimination and preventing reintroduction of malaria. However, in Kenya, little knowledge exists on the possible effects of climate change on malaria vectors. Here we assess the potential impact of future climate change on locally dominant Anopheles vectors including Anopheles gambiae, Anopheles arabiensis, Anopheles merus, Anopheles funestus, Anopheles pharoensis and Anopheles nili. Environmental data (Climate, Land cover and elevation) and primary empirical geo-located species-presence data were identified. The principle of maximum entropy (Maxent) was used to model the species' potential distribution area under paleoclimate, current and future climates. The Maxent model was highly accurate with a statistically significant AUC value. Simulation-based estimates suggest that the environmentally suitable area (ESA) for Anopheles gambiae, An. arabiensis, An. funestus and An. pharoensis would increase under all two scenarios for mid-century (2016-2045), but decrease for end century (2071-2100). An increase in ESA of An. Funestus was estimated under medium stabilizing (RCP4.5) and very heavy (RCP8.5) emission scenarios for mid-century. Our findings can be applied in various ways such as the identification of additional localities where Anopheles malaria vectors may already exist, but has not yet been detected and the recognition of localities where it is likely to spread to. Moreover, it will help guide future sampling location decisions, help with the planning of vector control suites nationally and encourage broader research inquiry into vector species niche modeling

  6. Establishment of a self-propagating population of the African malaria vector Anopheles arabiensis under semi-field conditions

    NARCIS (Netherlands)

    Ng'habi, K.R.N.; Mwasheshi, D.; Knols, B.G.J.; Ferguson, H.M.

    2010-01-01

    Background: The successful control of insect disease vectors relies on a thorough understanding of their ecology and behaviour. However, knowledge of the ecology of many human disease vectors lags behind that of agricultural pests. This is partially due to the paucity of experimental tools for

  7. Efficacy of mosquito nets treated with a pyrethroid-organophosphorous mixture against Kdr- and Kdr+ malaria vectors (Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Darriet F.

    2003-12-01

    Full Text Available In order to prevent the resistance of Anopheles gambiae s.l. to pyrethroids from spreading too quickly and to lengthen the effectiveness of insecticide impregnated mosquito nets, it has recently been suggested to use mixtures of insecticides that have different modes of action. This study presents the results obtained with tulle mosquito nets treated with bifenthrin (a pyrethroid] and chlorpyrifos-methyl (an organophosphorous both separately and in mixture on two strains of An. gambiae, one sensitive to all insecticides, and the other resistant to pyrethroids. The values of KDt50 and KDt95 and the mortality induced with the mixture of bifenthrin (25 mg/m2 and chlorpyrifos-methyl (4.5 mg/m2 show a significant synergistic effect on the strain of An. gambiae susceptible to insecticides. However, the tested combination does not induce any synergistic effect on the VKPR strain selected with permethrin, but only enhances the effectiveness of the two insecticides taken separately.

  8. Species Composition, Larval Habitats, Seasonal Occurrence and Distribution of Potential Malaria Vectors and Associated Species of Anopheles (Diptera: Culicidae) from the Republic of Korea

    Science.gov (United States)

    2010-02-17

    vegetation dynamics are a major determinant of the life cycles of insects in a wide range of environ- ments [9,24]. Remote sensing data are useful to...vectors of Plasmodium vivax malaria near the demilitarized zone (DMZ), while An. sinensis is a secondary vector [4]. Females of An. sineroides and An

  9. Costs of insensitive acetylcholinesterase insecticide resistance for the malaria vector Anopheles gambiae homozygous for the G119S mutation

    Directory of Open Access Journals (Sweden)

    Noel Valérie

    2010-01-01

    Full Text Available Abstract Background The G119S mutation responsible for insensitive acetylcholinesterase resistance to organophosphate and carbamate insecticides has recently been reported from natural populations of Anopheles gambiae in West Africa. These reports suggest there are costs of resistance associated with this mutation for An. gambiae, especially for homozygous individuals, and these costs could be influential in determining the frequency of carbamate resistance in these populations. Methods Life-history traits of the AcerKis and Kisumu strains of An. gambiae were compared following the manipulation of larval food availability in three separate experiments conducted in an insecticide-free laboratory environment. These two strains share the same genetic background, but differ in being homozygous for the presence or absence of the G119S mutation at the ace-1 locus, respectively. Results Pupae of the resistant strain were significantly more likely to die during pupation than those of the susceptible strain. Ages at pupation were significantly earlier for the resistant strain and their dry starved weights were significantly lighter; this difference in weight remained when the two strains were matched for ages at pupation. Conclusions The main cost of resistance found for An. gambiae mosquitoes homozygous for the G119S mutation was that they were significantly more likely to die during pupation than their susceptible counterparts, and they did so across a range of larval food conditions. Comparing the frequency of G119S in fourth instar larvae and adults emerging from the same populations would provide a way to test whether this cost of resistance is being expressed in natural populations of An. gambiae and influencing the dynamics of this resistance mutation.

  10. Infection of malaria (Anopheles gambiae s.s.) and filariasis (Culex quinquefasciatus) vectors with the entomopathogenic fungus Metarhizium anisopliae

    NARCIS (Netherlands)

    Scholte, E.J.; Njiru, B.N.; Smallegange, R.C.; Takken, W.; Knols, B.G.J.

    2003-01-01

    Background: Current intra-domiciliary vector control depends on the application of residual insecticides and/or repellents. Although biological control agents have been developed against aquatic mosquito stages, none are available for adults. Following successful use of an entomopathogenic fungus

  11. Contrasting Plasmodium infection rates and insecticide susceptibility profiles between the sympatric sibling species Anopheles parensis and Anopheles funestus s.s: a potential challenge for malaria vector control in Uganda

    Science.gov (United States)

    2014-01-01

    Background Although the An. funestus group conceals one of the major malaria vectors in Africa, little is known about the dynamics of members of this group across the continent. Here, we investigated the species composition, infection rate and susceptibility to insecticides of this species group in Uganda. Methods Indoor resting blood-fed Anopheles adult female mosquitoes were collected from 3 districts in Uganda. Mosquitoes morphologically belonging to the An. funestus group were identified to species by PCR. The sporozoite infection rates were determined by TaqMan and a nested PCR. Susceptibility to major insecticides was assessed using WHO bioassays. The potential role of four candidate resistance genes was assessed using qRT-PCR. Results An. funestus s.s. and An. parensis, were the only members of the An. funestus group identified. Both species were sympatric in Masindi (North-West), whereas only An. parensis was present in Mityana (Central) and Ntungamo (South-West). The Plasmodium falciparum infection detected in An. parensis (4.2%) by TaqMan could not be confirmed by nested PCR, whereas the 5.3% infection in An. funestus s.s. was confirmed. An. parensis was susceptible to most insecticides, however, a moderate resistance was observed against deltamethrin and DDT. In the sympatric population of Masindi, resistance was observed to pyrethroids (permethrin and deltamethrin) and DDT, but all the resistant mosquitoes belonged to An. funestus s.s. No significant over-expression was observed for the four P450 candidate genes CYP6M7, CYP9K1, CYP6P9 and CYP6AA4 between deltamethrin resistant and control An. parensis. However, when compared with the susceptible FANG An. funestus s.s strain, the CYP9K1 is significantly over-expressed in An. parensis (15-fold change; P resistance. Conclusion The contrasting infection rates and insecticide susceptibility profiles of both species highlights the importance of accurate species identification for successful vector control

  12. Knockdown resistance (kdr)-like mutations in the voltage-gated sodium channel of a malaria vector Anopheles stephensi and PCR assays for their detection.

    Science.gov (United States)

    Singh, Om P; Dykes, Cherry L; Lather, Manila; Agrawal, Om P; Adak, Tridibes

    2011-03-14

    Knockdown resistance (kdr) in insects, resulting from mutation(s) in the voltage-gated sodium channel (vgsc) gene is one of the mechanisms of resistance against DDT and pyrethroid-group of insecticides. The most common mutation(s) associated with knockdown resistance in insects, including anophelines, has been reported to be present at residue Leu1014 in the IIS6 transmembrane segment of the vgsc gene. This study reports the presence of two alternative kdr-like mutations, L1014S and L1014F, at this residue in a major malaria vector Anopheles stephensi and describes new PCR assays for their detection. Part of the vgsc (IIS4-S5 linker-to-IIS6 transmembrane segment) of An. stephensi collected from Alwar (Rajasthan, India) was PCR-amplified from genomic DNA, sequenced and analysed for the presence of deduced amino acid substitution(s). Analysis of DNA sequences revealed the presence of two alternative non-synonymous point mutations at L1014 residue in the IIS6 transmembrane segment of vgsc, i.e., T>C mutation on the second position and A>T mutation on the third position of the codon, leading to Leu (TTA)-to-Ser (TCA) and -Phe (TTT) amino acid substitutions, respectively. Polymerase chain reaction (PCR) assays were developed for identification of each of these two point mutations. Genotyping of An. stephensi mosquitoes from Alwar by PCR assays revealed the presence of both mutations, with a high frequency of L1014S. The PCR assays developed for detection of the kdr mutations were specific as confirmed by DNA sequencing of PCR-genotyped samples. Two alternative kdr-like mutations, L1014S and L1014F, were detected in An. stephensi with a high allelic frequency of L1014S. The occurrence of L1014S is being reported for the first time in An. stephensi. Two specific PCR assays were developed for detection of two kdr-like mutations in An. stephensi.

  13. The effect of multiple blood-feeding on the longevity and insecticide resistant phenotype in the major malaria vector Anopheles arabiensis (Diptera: Culicidae).

    Science.gov (United States)

    Oliver, Shüné V; Brooke, Basil D

    2014-08-23

    Anopheles arabiensis is a major malaria vector in Africa. Adult females are likely to imbibe multiple blood meals during their lifetime. This results in regular exposure to potential toxins and blood-meal induced oxidative stress. Defence responses to these stressors may affect other factors of epidemiological significance, such as insecticide resistance and longevity. The aims of this study were to examine the effect of multiple blood-feeding on insecticide tolerance/resistance with increasing age, to assess the underlying biochemical mechanisms for the responses recorded, and to assess the effect of multiple blood-feeding on the life histories of adult females drawn from insecticide resistant and susceptible laboratory reared An. arabiensis. Laboratory reared An. arabiensis females from an insecticide resistant and an insecticide susceptible colony were offered either a single blood meal or multiple blood meals at 3-day intervals. Their tolerance or resistance to insecticide was then monitored by WHO bioassay four hours post blood-feeding. The biochemical basis of the phenotypic response was assessed by examining the effect of blood on detoxification enzyme activity and the effect of blood-meals on detoxification enzyme activity in ageing mosquitoes. Control cohorts that were not offered any blood meals showed steadily decreasing levels of insecticide tolerance/resistance with age, whereas a single blood meal significantly increased tolerance/resistance primarily at the age of three days. The expression of resistance/tolerance in those cohorts fed multiple blood meals generally showed the least variation with age. These results were consistent following exposure to DDT and pyrethroids but not to malathion. Multiple blood-meals also maintained the DDT and permethrin resistant phenotype, even after treatment females had stopped taking blood-meals. Biochemical analysis suggests that this phenotypic effect in resistant females may be mediated by the maintenance of

  14. Dose–response tests and semi-field evaluation of lethal and sub-lethal effects of slow release pyriproxyfen granules (Sumilarv®0.5G) for the control of the malaria vectors Anopheles gambiae sensu lato

    Science.gov (United States)

    2013-01-01

    Background Recently research has shown that larviciding can be an effective tool for integrated malaria vector control. Nevertheless, the uptake of this intervention has been hampered by the need to re-apply larvicides frequently. There is a need to explore persistent, environmentally friendly larvicides for malaria vector control to reduce intervention efforts and costs by reducing the frequency of application. In this study, the efficacy of a 0.5% pyriproxyfen granule (Surmilarv®0.5G, Sumitomo Chemicals) was assessed for the control of Anopheles gambiae sensu stricto and Anopheles arabiensis, the major malaria vectors in sub-Saharan Africa. Methods Dose–response and standardized field tests were implemented following standard procedures of the World Health Organization’s Pesticide Evaluation Scheme to determine: (i) the susceptibility of vectors to this formulation; (ii) the residual activity and appropriate retreatment schedule for field application; and, (iii) sub-lethal impacts on the number and viability of eggs laid by adults after exposure to Sumilarv®0.5G during larval development. Results Anopheles gambiae s.s. and An. arabiensis were highly susceptible to Sumilarv®0.5G. Estimated emergence inhibition (EI) values were very low and similar for both species. The minimum dosage that completely inhibited adult emergence was between 0.01-0.03 parts per million (ppm) active ingredient (ai). Compared to the untreated control, an application of 0.018 ppm ai prevented 85% (95% confidence interval (CI) 82%-88%) of adult emergence over six weeks under standardized field conditions. A fivefold increase in dosage of 0.09 ppm ai prevented 97% (95% CI 94%-98%) emergence. Significant sub-lethal effects were observed in the standardized field tests. Female An. gambiae s.s. that were exposed to 0.018 ppm ai as larvae laid 47% less eggs, and females exposed to 0.09 ppm ai laid 74% less eggs than females that were unexposed to the treatment. Furthermore, 77

  15. Salivary gland proteins of the human malaria vector, Anopheles dirus B (Diptera: Culicidae Proteínas das glândulas salivares do Anopheles dirus B (Diptera: Culicidae, vetor da malária humana

    Directory of Open Access Journals (Sweden)

    Narissara Jariyapan

    2007-02-01

    Full Text Available Salivary gland proteins of the human malaria vector, Anopheles dirus B were determined and analyzed. The amount of salivary gland proteins in mosquitoes aged between 3 - 10 days was approximately 1.08 ± 0.04 µg/female and 0.1 ± 0.05 µg/male. The salivary glands of both sexes displayed the same morphological organization as that of other anopheline mosquitoes. In females, apyrase accumulated in the distal regions, whereas alpha-glucosidase was found in the proximal region of the lateral lobes. This differential distribution of the analyzed enzymes reflects specialization of different regions for sugar and blood feeding. SDS-PAGE analysis revealed that at least seven major proteins were found in the female salivary glands, of which each morphological region contained different major proteins. Similar electrophoretic protein profiles were detected comparing unfed and blood-fed mosquitoes, suggesting that there is no specific protein induced by blood. Two-dimensional polyacrylamide gel analysis showed the most abundant salivary gland protein, with a molecular mass of approximately 35 kilodaltons and an isoelectric point of approximately 4.0. These results provide basic information that would lead to further study on the role of salivary proteins of An. dirus B in disease transmission and hematophagy.Proteínas das glândulas salivares do Anopheles dirus B (Diptera: Culicidae, vetor da malária humana foram determinadas e analisadas. A quantidade de proteínas das glândulas salivares em mosquitos com três a 10 dias de idade foi de aproximadamente 1,08 ± 0,04 µg/ fêmea e de 0,1 ± 0,05 µg/macho. As glândulas salivares de ambos os sexos mostraram organização morfológica semelhante à de outros mosquitos anofelinos. Em fêmeas, apirase acumula-se nas regiões distais, enquanto alfa-glucosidase foi encontrada na região proximal dos lóbulos laterais. Esta distribuição diferencial das enzimas analisadas reflete a especialização de

  16. The role of skin microbiota in the attractiveness of humans to the malaria mosquito Anopheles gambiae Giles

    NARCIS (Netherlands)

    Verhulst, N.O.

    2010-01-01

    Malaria is one of the most serious infectious diseases in the world. The African mosquito Anopheles gambiae sensu stricto (henceforth termed An. gambiae) is highly competent for malaria parasites and preferably feeds on humans inside houses, which make it one of the most effective vectors of the

  17. The invasive shrub Prosopis juliflora enhances the malaria parasite transmission capacity of Anopheles mosquitoes: a habitat manipulation experiment.

    Science.gov (United States)

    Muller, Gunter C; Junnila, Amy; Traore, Mohamad M; Traore, Sekou F; Doumbia, Seydou; Sissoko, Fatoumata; Dembele, Seydou M; Schlein, Yosef; Arheart, Kristopher L; Revay, Edita E; Kravchenko, Vasiliy D; Witt, Arne; Beier, John C

    2017-07-05

    A neglected aspect of alien invasive plant species is their influence on mosquito vector ecology and malaria transmission. Invasive plants that are highly attractive to Anopheles mosquitoes provide them with sugar that is critical to their survival. The effect on Anopheles mosquito populations was examined through a habitat manipulation experiment that removed the flowering branches of highly attractive Prosopis juliflora from selected villages in Mali, West Africa. Nine villages in the Bandiagara district of Mali were selected, six with flowering Prosopis juliflora, and three without. CDC-UV light traps were used to monitor their Anopheles spp. vector populations, and recorded their species composition, population size, age structure, and sugar feeding status. After 8 days, all of the flowering branches were removed from three villages and trap catches were analysed again. Villages where flowering branches of the invasive shrub Prosopis juliflora were removed experienced a threefold drop in the older more dangerous Anopheles females. Population density dropped by 69.4% and the species composition shifted from being a mix of three species of the Anopheles gambiae complex to one dominated by Anopheles coluzzii. The proportion of sugar fed females dropped from 73 to 15% and males from 77 to 10%. This study demonstrates how an invasive plant shrub promotes the malaria parasite transmission capacity of African malaria vector mosquitoes. Proper management of invasive plants could potentially reduce mosquito populations and malaria transmission.

  18. Widespread Pyrethroid and DDT Resistance in the Major Malaria Vector Anopheles funestus in East Africa Is Driven by Metabolic Resistance Mechanisms

    Science.gov (United States)

    Mulamba, Charles; Riveron, Jacob M.; Ibrahim, Sulaiman S.; Irving, Helen; Barnes, Kayla G.; Mukwaya, Louis G.; Birungi, Josephine; Wondji, Charles S.

    2014-01-01

    Background Establishing the extent, geographical distribution and mechanisms of insecticide resistance in malaria vectors is a prerequisite for resistance management. Here, we report a widespread distribution of insecticide resistance in the major malaria vector An. funestus across Uganda and western Kenya under the control of metabolic resistance mechanisms. Methodology/Principal Findings Female An. funestus collected throughout Uganda and western Kenya exhibited a Plasmodium infection rate between 4.2 to 10.4%. Widespread resistance against both type I (permethrin) and II (deltamethrin) pyrethroids and DDT was observed across Uganda and western Kenya. All populations remain highly susceptible to carbamate, organophosphate and dieldrin insecticides. Knockdown resistance plays no role in the pyrethroid and DDT resistance as no kdr mutation associated with resistance was detected despite the presence of a F1021C replacement. Additionally, no signature of selection was observed on the sodium channel gene. Synergist assays and qRT-PCR indicated that metabolic resistance plays a major role notably through elevated expression of cytochrome P450s. DDT resistance mechanisms differ from West Africa as the L119F-GSTe2 mutation only explains a small proportion of the genetic variance to DDT resistance. Conclusion The extensive distribution of pyrethroid and DDT resistance in East African An. funestus populations represents a challenge to the control of this vector. However, the observed carbamate and organophosphate susceptibility offers alternative solutions for resistance management. PMID:25333491

  19. Chemical Compositions of the Peel Essential Oil of Citrus aurantium and its Natural Larvicidal Activity against the Malaria Vector Anopheles stephensi (Diptera: Culicidae in Comparison with Citrus paradisi

    Directory of Open Access Journals (Sweden)

    Alireza Sanei-Dehkordi

    2016-10-01

    Full Text Available Background: Recently, essential oils and extracts derived from plants have received much interest as potential bioactive agents against mosquito vectors.Methods: The essential oils extract from fresh peel of ripe fruit of Citrus aurantium and Citrus paradisi were tested against mosquito vector Anopheles stephensi (Diptera: Culicidae under laboratory condition. Then chemical com­position of the essential oil of C. aurantium was analyzed using gas chromatography-mass spectrometry (GC–MS.Results: The essential oils obtained from C. aurantium, and C. paradisi showed good larviciding effect against An. stephensi with LC50 values 31.20 ppm and 35.71 ppm respectively. Clear dose response relationships were established with the highest dose of 80 ppm plant extract evoking almost 100% mortality. Twenty-one (98.62% constituents in the leaf oil were identified. The main constituent of the leaf oil was Dl-limonene (94.81.Conclusion: The results obtained from this study suggest that the limonene of peel essential oil of C. aurantium is promising as larvicide against An. stephensi larvae and could be useful in the search for new natural larvicidal compounds.

  20. Bionomics of Anopheles fluviatilis and Anopheles culicifacies (Diptera: Culicidae) in Relation to Malaria Transmission in East-Central India.

    Science.gov (United States)

    Sahu, S S; Gunasekaran, K; Krishnamoorthy, N; Vanamail, P; Mathivanan, A; Manonmani, A; Jambulingam, P

    2017-07-01

    The southern districts of Odisha State in east-central India have been highly endemic for falciparum malaria for many decades. However, there is no adequate information on the abundance of the vector species or their bionomics in relation to space and time in these districts. Therefore, a study was carried out on the entomological aspects of malaria transmission to generate such information. Collections of mosquitoes were made once during each of the three seasons in 128 villages selected from eight districts. Villages within the foot-hill ecotype had a significantly greater abundance of Anopheles fluviatilis James s. l., whereas the abundance of Anopheles culicifacies Giles s. l. was significantly greater in the plain ecotype. The abundance of An. fluviatilis was maximum during the cold season, whereas An. culicifacies abundance was highest during summer and rainy seasons. The maximum likelihood estimation of the malaria infection rate in An. fluviatilis was 1.78%, 6.05%, and 2.6% in Ganjam, Kalahandi, and Rayagada districts, respectively. The infection rate of An. culicifacies was 1.39% only in Kandhamal district; infected females were not detected elsewhere. Concurrently, the annual malaria parasite incidence (MPI) was significantly higher in hill-top (17.6) and foot-hill (14.4) villages compared to plain villages (4.1). The districts with more villages in hill-top and foot-hill ecotypes also had a greater abundance of An. fluviatilis, the major malaria vector, and exhibited a higher incidence of malaria than villages within the plain ecotype, where An. culicifacies was the most abundant vector. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  1. Study on Fungal Flora in the Midgut of the Larva and Adult of the Different Populations of the Malaria Vector Anopheles stephensi

    Directory of Open Access Journals (Sweden)

    L Tajedin

    2009-07-01

    Full Text Available Abstract Background: Many microorganisms in midgut of mosquito challenge with their host and also other pathogens pre­sent in midgut. The aim of this study was presence of non-pathogens microorganisms like fungal flora which may be cru­cial on interaction between vectors and pathogens."nMethods: Different populations of Anopheles stephensi were reared in insectary and objected to determine fungal flora in their midguts. The midgut paunch of mosquito adults and larvae as well as breading water and larval food sam­ples transferred on Subaru-dextrose agar, in order to detect the environment fungus."nResults: Although four fungi, Aspergillus, Rhizopus, Geotrichum and Sacharomyces were found in the food and wa­ter, but only Aspiragilus observed in the midgut of larvae. No fungus was found in the midgut of adults. This is the first report on fungal flora in the midgut of the adults and larvae of An. stephensi and possible stadial transmission of fungi from immature stages to adults."nConclusion: The midgut environment of adults is not compatible for survivorship of fungi but the larval midgut may con­tain few fungi as a host or even pathogen.

  2. [Vectors of malaria: biology, diversity, prevention, and individual protection].

    Science.gov (United States)

    Pages, F; Orlandi-Pradines, E; Corbel, V

    2007-03-01

    Only the Anopheles mosquitoes are implicated in the transmission of malaria. Among the numerous species of anopheles, around fifty are currently involved in the transmission. 20 are responsible for most of the transmission in the world. The diversity of behavior between species and in a single species of anopheles as well as climatic and geographical conditions along with the action of man on the environment condition the man vector contact level and the various epidemiological aspects of malaria. The anopheles are primarily rural mosquitoes and are less likely to be found in city surroundings in theory. But actually, the adaptation of some species to urban surroundings and the common habit of market gardening in big cities or in the suburbs is responsible for the de persistence of Anopheles populations in town. Except for South-East Asia, urban malaria has become a reality. The transmission risk of malaria is heterogeneous and varies with time. There is a great variation of risk within a same country, a same zone, and even within a few kilometers. The transmission varies in time according to seasons but also according to years and to the level of climatic events. For the traveler, prevention at any time relies on the strict application of individual protection, as well in rural than in urban surroundings.

  3. Susceptibility of female Anopheles mosquito to pyrethroid ...

    African Journals Online (AJOL)

    The detection of insecticides resistance status in a natural population of Anopheles vectors is a vital tool for malaria control intervention strategy against Anopheles gambiae sensu lato, which is the main malaria vector in Nigeria. This study was conducted to determine the susceptibility status of the female Anopheles ...

  4. Blood-feeding patterns of Anopheles mosquitoes in a malaria-endemic area of Bangladesh

    Directory of Open Access Journals (Sweden)

    Bashar Kabirul

    2012-02-01

    Full Text Available Abstract Background Blood-feeding patterns of mosquitoes are crucial for incriminating malaria vectors. However, little information is available on the host preferences of Anopheles mosquitoes in Bangladesh. Therefore, the objective of the present study was to determine the hematophagic tendencies of the anophelines inhabiting a malaria-endemic area of Bangladesh. Methods Adult Anopheles mosquitoes were collected using light traps (LTs, pyrethrum spray (PS, and human bait (HB from a malaria-endemic village (Kumari, Bandarban, Bangladesh during the peak months of malaria transmission (August-September. Enzyme-linked immunosorbent assay (ELISA and polymerase chain reaction (PCR were performed to identify the host blood meals of Anopheles mosquitoes. Results In total, 2456 female anopheline mosquitoes representing 21 species were collected from the study area. Anopheles vagus Doenitz (35.71% was the dominant species followed by An. philippinensis Ludlow (26.67% and An. minimus s.l. Theobald (5.78%. All species were collected by LTs set indoors (n = 1094, 19 species were from outdoors (n = 784, whereas, six by PS (n = 549 and four species by HB (n = 29. Anopheline species composition significantly differed between every possible combination of the three collection methods (χ2 test, P Anopheles samples belonging to 17 species. Values of the human blood index (HBI of anophelines collected from indoors and outdoors were 6.96% and 11.73%, respectively. The highest values of HBI were found in An. baimai Baimaii (80%, followed by An. minimus s.l. (43.64% and An. annularis Van den Wulp (37.50%. Anopheles baimai (Bi = 0.63 and An. minimus s.l. (Bi = 0.24 showed strong relative preferences (Bi for humans among all hosts (human, bovine, goats/sheep, and others. Anopheles annularis, An. maculatus s.l. Theobald, and An. pallidus Theobald exhibited opportunistic blood-feeding behavior, in that they fed on either humans or animals, depending on whichever was

  5. First record of Anopheles stephensi in Sri Lanka: a potential challenge for prevention of malaria reintroduction.

    Science.gov (United States)

    Gayan Dharmasiri, A G; Perera, A Yashan; Harishchandra, Jeevanie; Herath, Hemantha; Aravindan, Kandasamy; Jayasooriya, H T R; Ranawaka, Gaya R; Hewavitharane, Mihirini

    2017-08-10

    The major malaria vector in Sri Lanka is reported to be Anopheles culicifacies with Anopheles subpictus, Anopheles annularis, and Anopheles varuna considered as potential vectors. The occurrence of Anopheles stephensi, which is the key vector of urban malaria in India and the Middle East, had never been reported from Sri Lanka. A series of entomological investigations were carried out by the Anti Malaria Campaign, Ministry of Health, Sri Lanka during December 2016 to April 2017 in two localities of the Mannar District in the Northern Province of the country. Adult mosquito collections were done through indoor and outdoor resting collections, animal and human biting collections and emergence traps. Potential mosquito breeding sites were investigated through larval surveys. The larvae and adults of An. stephensi were initially identified using morphological keys, and subsequently confirmed by sequencing the barcode region of the cytochrome c oxidase I (COI) gene. This is the first report of the presence of An. stephensi in the island of Mannar in the Northern Province of Sri Lanka. Anopheles stephensi (36.65%) was the most abundant anopheline species in the larval habitats in Mannar. It was found breeding together with An. culicifacies (20.7%), An. subpictus (13.5%) and An. varuna (28.13%). Anopheles stephensi was found to be abundantly breeding in built wells used for domestic purposes. Adult females of An. stephensi were observed in emergence trap collections (93.9%), human landing catches all night (79.2%), pyrethrum spray sheet collections (38.6%), outdoor collections (8.3%), donkey-baited trap collections (14.3), and cattle-baited net trap collections (0.7%). Sri Lanka was certified as malaria-free by the WHO in September 2016, however, this new finding may pose a serious challenge to the efforts of the Ministry of Health to prevent the re-introduction of malaria transmission in the country, considering the role that An. stephensi could play in urban and high

  6. The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission.

    Directory of Open Access Journals (Sweden)

    Lindsay M Beck-Johnson

    Full Text Available The parasites that cause malaria depend on Anopheles mosquitoes for transmission; because of this, mosquito population dynamics are a key determinant of malaria risk. Development and survival rates of both the Anopheles mosquitoes and the Plasmodium parasites that cause malaria depend on temperature, making this a potential driver of mosquito population dynamics and malaria transmission. We developed a temperature-dependent, stage-structured delayed differential equation model to better understand how climate determines risk. Including the full mosquito life cycle in the model reveals that the mosquito population abundance is more sensitive to temperature than previously thought because it is strongly influenced by the dynamics of the juvenile mosquito stages whose vital rates are also temperature-dependent. Additionally, the model predicts a peak in abundance of mosquitoes old enough to vector malaria at more accurate temperatures than previous models. Our results point to the importance of incorporating detailed vector biology into models for predicting the risk for vector borne diseases.

  7. Application of GIS to predict malaria hotspots based on Anopheles arabiensis habitat suitability in Southern Africa

    Science.gov (United States)

    Gwitira, Isaiah; Murwira, Amon; Zengeya, Fadzai M.; Shekede, Munyaradzi Davis

    2018-02-01

    Malaria remains a major public health problem and a principal cause of morbidity and mortality in most developing countries. Although malaria still presents health problems, significant successes have been recorded in reducing deaths resulting from the disease. As malaria transmission continues to decline, control interventions will increasingly depend on the ability to define high-risk areas known as malaria hotspots. Therefore, there is urgent need to use geospatial tools such as geographic information system to detect spatial patterns of malaria and delineate disease hot spots for better planning and management. Thus, accurate mapping and prediction of seasonality of malaria hotspots is an important step towards developing strategies for effective malaria control. In this study, we modelled seasonal malaria hotspots as a function of habitat suitability of Anopheles arabiensis (A. Arabiensis) as a first step towards predicting likely seasonal malaria hotspots that could provide guidance in targeted malaria control. We used Geographical information system (GIS) and spatial statistic methods to identify seasonal hotspots of malaria cases at the country level. In order to achieve this, we first determined the spatial distribution of seasonal malaria hotspots using the Getis Ord Gi* statistic based on confirmed positive malaria cases recorded at health facilities in Zimbabwe over four years (1996-1999). We then used MAXENT technique to model habitat suitability of A. arabiensis from presence data collected from 1990 to 2002 based on bioclimatic variables and altitude. Finally, we used autologistic regression to test the extent to which malaria hotspots can be predicted using A. arabiensis habitat suitability. Our results show that A. arabiensis habitat suitability consistently and significantly (p < 0.05) predicts malaria hotspots from 1996 to 1999. Overall, our results show that malaria hotspots can be predicted using A. arabiensis habitat suitability, suggesting

  8. Contributions of Anopheles larval control to malaria suppression in tropical Africa: review of achievements and potential.

    Science.gov (United States)

    Walker, K; Lynch, M

    2007-03-01

    Malaria vector control targeting the larval stages of mosquitoes was applied successfully against many species of Anopheles (Diptera: Culicidae) in malarious countries until the mid-20th Century. Since the introduction of DDT in the 1940s and the associated development of indoor residual spraying (IRS), which usually has a more powerful impact than larval control on vectorial capacity, the focus of malaria prevention programmes has shifted to the control of adult vectors. In the Afrotropical Region, where malaria is transmitted mainly by Anopheles funestus Giles and members of the Anopheles gambiae Giles complex, gaps in information on larval ecology and the ability of An. gambiae sensu lato to exploit a wide variety of larval habitats have discouraged efforts to develop and implement larval control strategies. Opportunities to complement adulticiding with other components of integrated vector management, along with concerns about insecticide resistance, environmental impacts, rising costs of IRS and logistical constraints, have stimulated renewed interest in larval control of malaria vectors. Techniques include environmental management, involving the temporary or permanent removal of anopheline larval habitats, as well as larviciding with chemical or biological agents. This present review covers large-scale trials of anopheline larval control methods, focusing on field studies in Africa conducted within the past 15 years. Although such studies are limited in number and scope, their results suggest that targeting larvae, particularly in human-made habitats, can significantly reduce malaria transmission in appropriate settings. These approaches are especially suitable for urban areas, where larval habitats are limited, particularly when applied in conjunction with IRS and other adulticidal measures, such as the use of insecticide treated bednets.

  9. Ecology of urban malaria vectors in Niamey, Republic of Niger.

    Science.gov (United States)

    Labbo, Rabiou; Fandeur, Thierry; Jeanne, Isabelle; Czeher, Cyril; Williams, Earle; Arzika, Ibrahim; Soumana, Amadou; Lazoumar, Ramatoulaye; Duchemin, Jean-Bernard

    2016-06-08

    Urbanization in African cities has major impact on malaria risk. Niamey, the capital of the Republic of Niger, is situated in the West African Sahel zone. The short rainy season and human activities linked with the Niger River influence mosquito abundance. This study aimed at deciphering the factors of distribution of urban malaria vectors in Niamey. The distribution of mosquito aquatic stages was investigated monthly from December 2002 to November 2003, at up to 84 breeding sites, throughout Niamey. An exploratory analysis of association between mosquito abundance and environmental factors was performed by a Principal Component Analysis and confirmed by Kruskall-Wallis non-parametric test. To assess the relative importance of significant factors, models were built for Anopheles and Culicinae. In a second capture session, adult mosquitoes were collected weekly with pyrethrum sprays and CDC light-traps from June 2008 to June 2009 in two differentiated urban areas chosen after the study's first step. Members of the Anopheles gambiae complex were genotyped and Anopheles females were tested for the presence of Plasmodium falciparum circumsporozoite antigens using ELISA. In 2003, 29 % of 8420 mosquitoes collected as aquatic stages were Anopheles. They were significantly more likely to be found upstream, relatively close to the river and highly productive in ponds. These factors remained significant in regression and generalized linear models. The Culicinae were found significantly more likely close to the river, and in the main temporary affluent stream. In 2009, Anopheles specimens, including Anopheles gambiae s.l. (95 %), but also Anopheles funestus (0.6 %) accounted for 18 % of the adult mosquito fauna, with a large difference between the two sampled zones. Three members of the An. gambiae complex were found: Anopheles arabiensis, Anopheles coluzzii, and An. gambiae. Nineteen (1.3 %) out of 1467 females tested for P. falciparum antigen were found positive. The

  10. The Plasmodium bottleneck: malaria parasite losses in the mosquito vector

    Science.gov (United States)

    Smith, Ryan C; Vega-Rodríguez, Joel; Jacobs-Lorena, Marcelo

    2014-01-01

    Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission. PMID:25185005

  11. The Plasmodium bottleneck: malaria parasite losses in the mosquito vector

    Directory of Open Access Journals (Sweden)

    Ryan C Smith

    2014-08-01

    Full Text Available Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission.

  12. Evaluation of Methods for Sampling the Malaria Vector Anopheles darlingi (Diptera, Culicidae) in Suriname and the Relation With Its Biting Behavior

    NARCIS (Netherlands)

    Hiwat-van Laar, H.; Rijk, de M.; Andriessen, R.; Koenraadt, C.J.M.; Takken, W.

    2011-01-01

    The effectiveness of CO2-baited and human-baited mosquito traps for the sampling of Anopheles darlingi Root was evaluated and compared with human landing collections in Suriname. Biting preferences of this mosquito on a human host were studied and related to trapping data. Traps used were the

  13. Evaluation of two counterflow traps for testing behaviour-mediating compounds for the malaria vector Anopheles gambiae s.s. under semi-field conditions in Tanzania

    NARCIS (Netherlands)

    Schmied, W.H.; Takken, W.; Killeen, G.F.; Knols, B.G.J.; Smallegange, R.C.

    2008-01-01

    Background Evaluation of mosquito responses towards different trap-bait combinations in field trials is a time-consuming process that can be shortened by experiments in contained semi-field systems. Possible use of the BG Sentinel (BGS) trap to sample Anopheles gambiae s.s. was evaluated. The

  14. Integrated malaria vector control in different agro-ecosystems in western Kenya

    NARCIS (Netherlands)

    Imbahale, S.S.

    2009-01-01

    Malaria is a complex disease and its transmission is a function of the interaction between the Anopheles mosquito vector, the Plasmodium parasite, the hosts and the environment. Malaria control has mainly targeted the Plasmodium parasite or the adult anopheline mosquitoes. However, development of

  15. New records of Anopheles arabiensis breeding on the Mount Kenya highlands indicate indigenous malaria transmission

    Directory of Open Access Journals (Sweden)

    Githure John I

    2006-03-01

    Full Text Available Abstract Background Malaria cases on the highlands west of Mount Kenya have been noticed since 10 – 20 years ago. It was not clear whether these cases were introduced from the nearby lowland or resulted from local transmission because of no record of vector mosquitoes on the highlands. Determination of presence and abundance of malaria vector is vital for effective control and epidemic risk assessment of malaria among both local residents and tourists. Methods A survey on 31 aquatic sites for the malaria-vector mosquitoes was carried out along the primary road on the highlands around Mount Kenya and the nearby Mwea lowland during April 13 to June 28, 2005. Anopheline larvae were collected and reared into adults for morphological and molecular species identification. In addition, 31 families at three locations of the highlands were surveyed using a questionnaire about their history of malaria cases during the past five to 20 years. Results Specimens of Anopheles arabiensis were molecularly identified in Karatina and Naro Moru on the highlands at elevations of 1,720 – 1,921 m above sea level. This species was also the only malaria vector found in the Mwea lowland. Malaria cases were recorded in the two highland locations in the past 10 years with a trend of increasing. Conclusion Local malaria transmission on the Mount Kenya highlands is possible due to the presence of An. arabiensis. Land use pattern and land cover might be the key factors affecting the vector population dynamics and the highland malaria transmission in the region.

  16. Anopheles moucheti and Anopheles vinckei are candidate vectors of ape Plasmodium parasites, including Plasmodium praefalciparum in Gabon.

    Directory of Open Access Journals (Sweden)

    Christophe Paupy

    Full Text Available During the last four years, knowledge about the diversity of Plasmodium species in African great apes has considerably increased. Several new species were described in chimpanzees and gorillas, and some species that were previously considered as strictly of human interest were found to be infecting African apes. The description in gorillas of P. praefalciparum, the closest relative of P. falciparum which is the main malignant agent of human malaria, definitively changed the way we understand the evolution and origin of P. falciparum. This parasite is now considered to have appeared recently, following a cross-species transfer from gorillas to humans. However, the Plasmodium vector mosquito species that have served as bridge between these two host species remain unknown. In order to identify the vectors that ensure ape Plasmodium transmission and evaluate the risk of transfer of these parasites to humans, we carried out a field study in Gabon to capture Anopheles in areas where wild and semi-wild ape populations live. We collected 1070 Anopheles females belonging to 15 species, among which An. carnevalei, An. moucheti and An. marshallii were the most common species. Using mtDNA-based PCR tools, we discovered that An. moucheti, a major human malaria vector in Central Africa, could also ensure the natural transmission of P. praefalciparum among great apes. We also showed that, together with An. vinckei, An. moucheti was infected with P. vivax-like parasites. An. moucheti constitutes, therefore, a major candidate for the transfer of Plasmodium parasites from apes to humans.

  17. Genome-Wide Transcription and Functional Analyses Reveal Heterogeneous Molecular Mechanisms Driving Pyrethroids Resistance in the Major Malaria Vector Anopheles funestus Across Africa.

    Science.gov (United States)

    Riveron, Jacob M; Ibrahim, Sulaiman S; Mulamba, Charles; Djouaka, Rousseau; Irving, Helen; Wondji, Murielle J; Ishak, Intan H; Wondji, Charles S

    2017-06-07

    Pyrethroid resistance in malaria vector, An. funestus is increasingly reported across Africa, threatening the sustainability of pyrethroid-based control interventions, including long lasting insecticidal nets (LLINs). Managing this problem requires understanding of the molecular basis of the resistance from different regions of the continent, to establish whether it is being driven by a single or independent selective events. Here, using a genome-wide transcription profiling of pyrethroid resistant populations from southern (Malawi), East (Uganda), and West Africa (Benin), we investigated the molecular basis of resistance, revealing strong differences between the different African regions. The duplicated cytochrome P450 genes ( CYP6P9a and CYP6P9b ) which were highly overexpressed in southern Africa are not the most upregulated in other regions, where other genes are more overexpressed, including GSTe2 in West (Benin) and CYP9K1 in East (Uganda). The lack of directional selection on both CYP6P9a and CYP6P9b in Uganda in contrast to southern Africa further supports the limited role of these genes outside southern Africa. However, other genes such as the P450 CYP9J11 are commonly overexpressed in all countries across Africa. Here, CYP9J11 is functionally characterized and shown to confer resistance to pyrethroids and moderate cross-resistance to carbamates (bendiocarb). The consistent overexpression of GSTe2 in Benin is coupled with a role of allelic variation at this gene as GAL4-UAS transgenic expression in Drosophila flies showed that the resistant 119F allele is highly efficient in conferring both DDT and permethrin resistance than the L119. The heterogeneity in the molecular basis of resistance and cross-resistance to insecticides in An. funestus populations throughout sub-Saharan African should be taken into account in designing resistance management strategies. Copyright © 2017 Riveron et al.

  18. Genome-Wide Transcription and Functional Analyses Reveal Heterogeneous Molecular Mechanisms Driving Pyrethroids Resistance in the Major Malaria Vector Anopheles funestus Across Africa

    Science.gov (United States)

    Riveron, Jacob M.; Ibrahim, Sulaiman S.; Mulamba, Charles; Djouaka, Rousseau; Irving, Helen; Wondji, Murielle J.; Ishak, Intan H.; Wondji, Charles S.

    2017-01-01

    Pyrethroid resistance in malaria vector, An. funestus is increasingly reported across Africa, threatening the sustainability of pyrethroid-based control interventions, including long lasting insecticidal nets (LLINs). Managing this problem requires understanding of the molecular basis of the resistance from different regions of the continent, to establish whether it is being driven by a single or independent selective events. Here, using a genome-wide transcription profiling of pyrethroid resistant populations from southern (Malawi), East (Uganda), and West Africa (Benin), we investigated the molecular basis of resistance, revealing strong differences between the different African regions. The duplicated cytochrome P450 genes (CYP6P9a and CYP6P9b) which were highly overexpressed in southern Africa are not the most upregulated in other regions, where other genes are more overexpressed, including GSTe2 in West (Benin) and CYP9K1 in East (Uganda). The lack of directional selection on both CYP6P9a and CYP6P9b in Uganda in contrast to southern Africa further supports the limited role of these genes outside southern Africa. However, other genes such as the P450 CYP9J11 are commonly overexpressed in all countries across Africa. Here, CYP9J11 is functionally characterized and shown to confer resistance to pyrethroids and moderate cross-resistance to carbamates (bendiocarb). The consistent overexpression of GSTe2 in Benin is coupled with a role of allelic variation at this gene as GAL4-UAS transgenic expression in Drosophila flies showed that the resistant 119F allele is highly efficient in conferring both DDT and permethrin resistance than the L119. The heterogeneity in the molecular basis of resistance and cross-resistance to insecticides in An. funestus populations throughout sub-Saharan African should be taken into account in designing resistance management strategies. PMID:28428243

  19. Population Structure of the Primary Malaria Vector in South America, Anopheles darlingi, Using Isozyme, Random Amplified Polymorphic DNA, Internal Transcribed Spacer 2, and Morphologic Markers

    Science.gov (United States)

    1999-01-01

    401 16 to Jan E. Conn for the ITS2 sequencing, by Consejo National de Investigaciones Cientificas y Tecnologicas (MPS-RPIV-130032-9), and the Pan... Investigaciones , Escuela de Malariologia y Saneamiento Ambiental, Maracay, Venezuela Abstract. A genetic and morphologic survey of Anopheles darlingi...0086. Yasmin Rubio-Palis, Division de Investigaciones , Escuela de Malariologia y Saneamiento Ambiental Dr. Arnold0 Ga- baldon, Apartado 2073

  20. Mixture for Controlling Insecticide-Resistant Malaria Vectors

    OpenAIRE

    Pennetier, Cédric; Costantini, Carlo; Corbel, Vincent; Licciardi, Séverine; Dabire, R. K.; Lapied, B.; Chandre, Fabrice; Hougard, Jean-Marc

    2008-01-01

    The spread of resistance to pyrethroids in the major Afrotropical malaria vectors Anopheles gambiae s.s. necessitates the development of new strategies to control resistant mosquito populations. To test the efficacy of nets treated with repellent and insecticide against susceptible and insecticide-resistant An. gambiae mosquito populations, we impregnated mosquito bed nets with an insect repellent mixed with a low dose of organophosphorous insecticide and tested them in a rice-growing area ne...

  1. Identification of four evolutionarily related G protein-coupled receptors from the malaria mosquito Anopheles gambiae

    DEFF Research Database (Denmark)

    Belmont, Martin; Cazzamali, Giuseppe; Williamson, Michael

    2006-01-01

    The mosquito Anopheles gambiae is an important vector for malaria, which is one of the most serious human parasitic diseases in the world, causing up to 2.7 million deaths yearly. To contribute to our understanding of A. gambiae and to the transmission of malaria, we have now cloned four evolutio......The mosquito Anopheles gambiae is an important vector for malaria, which is one of the most serious human parasitic diseases in the world, causing up to 2.7 million deaths yearly. To contribute to our understanding of A. gambiae and to the transmission of malaria, we have now cloned four...... evolutionarily related G protein-coupled receptors (GPCRs) from this mosquito and expressed them in Chinese hamster ovary cells. After screening of a library of thirty-three insect or other invertebrate neuropeptides and eight biogenic amines, we could identify (de-orphanize) three of these GPCRs as...... relationship to the A. gambiae and other insect AKH receptors suggested that it is a receptor for an AKH-like peptide. This is the first published report on evolutionarily related AKH, corazonin, and CCAP receptors in mosquitoes....

  2. VECTORS OF MALARIA AND FILARIASIS IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Hoedojo Hoedojo

    2012-09-01

    Full Text Available Malaria at present is still one of the important mosquito-borne diseases in Indonesia. The disease is widespread all over the country and involves nearly all islands. Sixteen Anopheles species have been reconfirmed as malaria vectors. They were distributed geographi­cally as follows: Coastal areas and lagoons ------------------------------------- An sundaicus and An.subpictus Cultivated ricefields and swampy areas -------------------- An.aconitus, An.barbirostris, An.nigerrimus and An.sinensis Forest inland areas in shaded temporary pools, muddy animal wallows and hoof-prints -------------------------------------------------------- An.balabacensis, An.bancrofti, An.farauti, An.koliensis and An.punctulatus Swamp forest edge in ditches with vegeta- ---------------- An.letifer and An.ludlowae don Hilly areas in seepages, streams and clear moving water ---------------------------------------------- Anflavirostris, An.maculatus and Anminimus.   The species (of most general importance is An.sundaicus, which is restricted by its preference for brackish water and is prevalent in coastal areas of Java. Their types in behaviour of An.sundaicus appear as follows : 1. An.sundaicus in South Coast of Java in general. This species is essentially anthropophilic, exophagic and rests outdoor. It shows susceptible to DDT. 2. An.sundaicus in Cilacap, Central Java. This mosquito is a pure anthropophilic form. It bites man in houses and outdoors, rests indoors and is known resistant to DDT. 3. An.sundaicus in Yogyakarta and Purworejo, Central Java. This mosquito is a strong zoophilic species. It rests and prefers to bite outdoors and shows tolerance to DDT. Human filariasis in Indonesia is the result of infection by three endemic species, namely, Wuchereria bancrofti, Brugia malayi, and Brugia timori.W.bancrofti infection is found in both urban and rural areas. Twenty species of mosquitoes are confirmed as filariasis vectors. The urban type bancroftian filariasis

  3. Vector competence of Anopheles and Culex mosquitoes for Zika virus

    Directory of Open Access Journals (Sweden)

    Brittany L. Dodson

    2017-03-01

    Full Text Available Zika virus is a newly emergent mosquito-borne flavivirus that has caused recent large outbreaks in the new world, leading to dramatic increases in serious disease pathology including Guillain-Barre syndrome, newborn microcephaly, and infant brain damage. Although Aedes mosquitoes are thought to be the primary mosquito species driving infection, the virus has been isolated from dozens of mosquito species, including Culex and Anopheles species, and we lack a thorough understanding of which mosquito species to target for vector control. We exposed Anopheles gambiae, Anopheles stephensi, and Culex quinquefasciatus mosquitoes to blood meals supplemented with two Zika virus strains. Mosquito bodies, legs, and saliva were collected five, seven, and 14 days post blood meal and tested for infectious virus by plaque assay. Regardless of titer, virus strain, or timepoint, Anopheles gambiae, Anopheles stephensi, and Culex quinquefasciatus mosquitoes were refractory to Zika virus infection. We conclude that Anopheles gambiae, Anopheles stephensi, and Culex quinquefasciatus mosquitoes likely do not contribute significantly to Zika virus transmission to humans. However, future studies should continue to explore the potential for other novel potential vectors to transmit the virus.

  4. Field experiments of Anopheles gambiae attraction to local fruits/seedpods and flowering plants in Mali to optimize strategies for malaria vector control in Africa using attractive toxic sugar bait methods

    Directory of Open Access Journals (Sweden)

    Bah Sekou

    2010-09-01

    Full Text Available Abstract Background Based on recent studies in Israel demonstrating that attractive toxic sugar bait (ATSB methods can be used to decimate local anopheline and culicine mosquito populations, an important consideration is whether the same methods can be adapted and improved to attract and kill malaria vectors in Africa. The ATSB approach uses fruit or flower scent as an attractant, sugar solution as a feeding stimulant, and an oral toxin. The ATSB solutions are either sprayed on vegetation or suspended in simple bait stations, and the mosquitoes ingesting the toxic solutions are killed. As such, this approach targets sugar-feeding female and male mosquitoes. This study examines the attractiveness of African malaria vectors to local fruits/seedpods and flowering plants, key biological elements of the ATSB approach for mosquito control. Methods Three field experiments were conducted at sites in Mali. The attraction of Anopheles gambiae s.l. to 26 different local fruits and seedpods was determined at a site in the semi-arid Bandiagara District of Mali. Wire mesh glue traps with fruits/seedpods suspended on skewers inside were set along a seasonal lagoon. Seven replicates of each fruit/seedpod species were tested, with a water-soaked sponge and a sugar-soaked sponge as controls. The attraction of An. gambiae s.l. to 26 different types of flowering plants was determined at a site near Mopti in Mali. The flowering plants held in a water-filled buried container were tested using the same glue traps, with controls including water only and sugar solution. Six replicates of each selected plant type were tested on transects between rice paddies. Additional studies using CDC light traps were done to determine the relative densities and periodicity of An. gambiae s.l. attraction to branches of the most highly attractive flowering plant, branches without flowers, human odor, and candescent light. Results Of the 26 fruits and seedpods tested, 6 were attractive

  5. Field experiments of Anopheles gambiae attraction to local fruits/seedpods and flowering plants in Mali to optimize strategies for malaria vector control in Africa using attractive toxic sugar bait methods.

    Science.gov (United States)

    Müller, Günter C; Beier, John C; Traore, Sekou F; Toure, Mahamoudou B; Traore, Mohamed M; Bah, Sekou; Doumbia, Seydou; Schlein, Yosef

    2010-09-20

    Based on recent studies in Israel demonstrating that attractive toxic sugar bait (ATSB) methods can be used to decimate local anopheline and culicine mosquito populations, an important consideration is whether the same methods can be adapted and improved to attract and kill malaria vectors in Africa. The ATSB approach uses fruit or flower scent as an attractant, sugar solution as a feeding stimulant, and an oral toxin. The ATSB solutions are either sprayed on vegetation or suspended in simple bait stations, and the mosquitoes ingesting the toxic solutions are killed. As such, this approach targets sugar-feeding female and male mosquitoes. This study examines the attractiveness of African malaria vectors to local fruits/seedpods and flowering plants, key biological elements of the ATSB approach for mosquito control. Three field experiments were conducted at sites in Mali. The attraction of Anopheles gambiae s.l. to 26 different local fruits and seedpods was determined at a site in the semi-arid Bandiagara District of Mali. Wire mesh glue traps with fruits/seedpods suspended on skewers inside were set along a seasonal lagoon. Seven replicates of each fruit/seedpod species were tested, with a water-soaked sponge and a sugar-soaked sponge as controls. The attraction of An. gambiae s.l. to 26 different types of flowering plants was determined at a site near Mopti in Mali. The flowering plants held in a water-filled buried container were tested using the same glue traps, with controls including water only and sugar solution. Six replicates of each selected plant type were tested on transects between rice paddies. Additional studies using CDC light traps were done to determine the relative densities and periodicity of An. gambiae s.l. attraction to branches of the most highly attractive flowering plant, branches without flowers, human odor, and candescent light. Of the 26 fruits and seedpods tested, 6 were attractive to An. gambiae s.l. females and males, respectively

  6. Wild Anopheles funestus mosquito genotypes are permissive for infection with the rodent malaria parasite, Plasmodium berghei.

    Directory of Open Access Journals (Sweden)

    Jiannong Xu

    Full Text Available Malaria parasites undergo complex developmental transitions within the mosquito vector. A commonly used laboratory model for studies of mosquito-malaria interaction is the rodent parasite, P. berghei. Anopheles funestus is a major malaria vector in sub-Saharan Africa but has received less attention than the sympatric species, Anopheles gambiae. The imminent completion of the A. funestus genome sequence will provide currently lacking molecular tools to describe malaria parasite interactions in this mosquito, but previous reports suggested that A. funestus is not permissive for P. berghei development.An A. funestus population was generated in the laboratory by capturing female wild mosquitoes in Mali, allowing them to oviposit, and rearing the eggs to adults. These F1 progeny of wild mosquitoes were allowed to feed on mice infected with a fluorescent P. berghei strain. Fluorescence microscopy was used to track parasite development inside the mosquito, salivary gland sporozoites were tested for infectivity to mice, and parasite development in A. funestus was compared to A. gambiae.P. berghei oocysts were detectable on A. funestus midguts by 7 days post-infection. By 18-20 days post-infection, sporozoites had invaded the median and distal lateral lobes of the salivary glands, and hemocoel sporozoites were observed in the hemolymph. Mosquitoes were capable of infecting mice via bite, demonstrating that A. funestus supports the complete life cycle of P. berghei. In a random sample of wild mosquito genotypes, A. funestus prevalence of infection and the characteristics of parasite development were similar to that observed in A. gambiae-P. berghei infections.The data presented in this study establish an experimental laboratory model for Plasmodium infection of A. funestus, an important vector of human malaria. Studying A. funestus-Plasmodium interactions is now feasible in a laboratory setting. This information lays the groundwork for exploitation of the

  7. Monitoring the operational impact of insecticide usage for malaria control on Anopheles funestus from Mozambique

    Directory of Open Access Journals (Sweden)

    Sharp Brian L

    2007-10-01

    Full Text Available Abstract Background Indoor residual spraying (IRS has again become popular for malaria control in Africa. This combined with the affirmation by WHO that DDT is appropriate for use in the absence of longer lasting insecticide formulations in some malaria endemic settings, has resulted in an increase in IRS with DDT as a major malaria vector control intervention in Africa. DDT was re-introduced into Mozambique's IRS programme in 2005 and is increasingly becoming the main insecticide used for malaria vector control in Mozambique. The selection of DDT as the insecticide of choice in Mozambique is evidence-based, taking account of the susceptibility of Anopheles funestus to all available insecticide choices, as well as operational costs of spraying. Previously lambda cyhalothrin had replaced DDT in Mozambique in 1993. However, resistance appeared quickly to this insecticide and, in 2000, the pyrethroid was phased out and the carbamate bendiocarb introduced. Low level resistance was detected by biochemical assay to bendiocarb in 1999 in both An. funestus and Anopheles arabiensis, although this was not evident in WHO bioassays of the same population. Methods Sentinel sites were established and monitored for insecticide resistance using WHO bioassays. These assays were conducted on 1–3 day old F1 offspring of field collected adult caught An. funestus females to determine levels of insecticide resistance in the malaria vector population. WHO biochemical assays were carried out to determine the frequency of insecticide resistance genes within the same population. Results In surveys conducted between 2002 and 2006, low levels of bendiocarb resistance were detected in An. funestus, populations using WHO bioassays. This is probably due to significantly elevated levels of Acetylcholinesterase levels found in the same populations. Pyrethroid resistance was also detected in populations and linked to elevated levels of p450 monooxygenase activity. One site had

  8. Current vector control challenges in the fight against malaria.

    Science.gov (United States)

    Benelli, Giovanni; Beier, John C

    2017-10-01

    The effective and eco-friendly control of Anopheles vectors plays a key role in any malaria management program. Integrated Vector Management (IVM) suggests making use of the full range of vector control tools available. The strategies for IVM require novel technologies to control outdoor transmission of malaria. Despite the wide number of promising control tools tested against mosquitoes, current strategies for malaria vector control used in most African countries are not sufficient to achieve successful malaria control. The majority of National Malaria Control Programs in Africa still rely on indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs). These methods reduce malaria incidence but generally have little impact on malaria prevalence. In addition to outdoor transmission, growing levels of insecticide resistance in targeted vectors threaten the efficacy of LLINs and IRS. Larvicidal treatments can be useful, but are not recommended for rural areas. The research needed to improve the quality and delivery of mosquito vector control should focus on (i) optimization of processes and methods for vector control delivery; (ii) monitoring of vector populations and biting activity with reliable techniques; (iii) the development of effective and eco-friendly tools to reduce the burden or locally eliminate malaria and other mosquito-borne diseases; (iv) the careful evaluation of field suitability and efficacy of new mosquito control tools to prove their epidemiological impact; (v) the continuous monitoring of environmental changes which potentially affect malaria vector populations; (vi) the cooperation among different disciplines, with main emphasis on parasitology, tropical medicine, ecology, entomology, and ecotoxicology. A better understanding of behavioral ecology of malaria vectors is required. Key ecological obstacles that limit the effectiveness of vector control include the variation in mosquito behavior, development of insecticide resistance

  9. Malaria vectors in Lake Victoria and adjacent habitats in western Kenya.

    Directory of Open Access Journals (Sweden)

    Noboru Minakawa

    Full Text Available The prevalence of malaria among the residents of the Lake Victoria basin remains high. The environment associated with the lake may maintain a high number of malaria vectors. Lake habitats including water hyacinths have been suspected to be the source of vectors. This study investigated whether malaria vectors breed in the lake habitats and adjacent backwater pools. Anopheline larvae were collected within the littoral zone of the lake and adjacent pools located along approximately 24.3 km of the lakeshore in western Kenya, and their breeding sites characterized. Three primary vector species, Anopheles arabiensis, Anopheles gambiae s.s. and Anopheles funestus s.s., and three potential vectors, were found in the lake habitats. Unexpectedly, An. arabiensis was the most dominant vector species in the lake sampling sites. Its habitats were uncovered or covered with short grass. A potential secondary malaria vector, Anopheles rivulorum, dominated the water hyacinths in the lake. Most breeding sites in the lake were limited to areas that were surrounded by tall emergent plants, including trees, and those not exposed to waves. Nearly half of adjacent habitats were lagoons that were separated from the lake by sand bars. Lagoons contained a variety of microhabitats. Anopheles arabiensis dominated open habitats, whereas An. funestus s.s. was found mainly in vegetated habitats in lagoons. The current study confirmed that several breeding sites are associated with Lake Victoria. Given that Lake Victoria is the second largest lake in the world, the lake related habitats must be extensive; therefore, making targeted vector control difficult. Further exploration is necessary to estimate the effects of lake associated habitats on malaria transmission so as to inform a rational decision-making process for vector control.

  10. Differential expression of glutathione s-transferase enzyme in different life stages of various insecticide-resistant strains of Anopheles stephensi: a malaria vector.

    Science.gov (United States)

    Sanil, D; Shetty, V; Shetty, N J

    2014-06-01

    Interest in insect glutathione s-transferases (GSTs) has primarily focused on their role in insecticide resistance. These play an important role in biotransformation and detoxification of many different xenobiotic and endogenous substances including insecticides. The GST activity among 10 laboratory selected insecticide resistant and susceptible/control strains of Anopheles stephensi was compared using the substrates 1-chloro-2,4-dinitrobenzene (CDNB). The difference in the GST activities of different life stages of diverse insecticide resistant strains was compared and presented. About 100 larvae, pupae, adult males, adult females and eggs (100 μg in total weight) were collected and used for the experiment. The extracts were prepared from each of the insecticide-resistant strains and control. Protein contents of the enzyme homogenate and GST activities were determined. Deltamethrin and cyfluthrin-resistant strains of An. stephensi showed significantly higher GST activity. Larvae and pupae of DDT-resistant strain showed peak GST activity followed by the propoxur-resistant strain. On contrary, the GST activity was found in reduced quantity in alphamethrin, bifenthrin, carbofuran and chloropyrifos resistant strains. Adults of either sexes showed higher GST activity in mosquito strain resistant to organophosphate group of insecticides namely, temephos and chloropyrifos. The GST activity was closely associated with almost all of the insecticides used in the study, strengthening the fact that one of the mechanisms associated with resistance includes an increase of GST activity. This comparative data on GST activity in An. stephensi can be useful database to identify possible underlying mechanisms governing insecticide-resistance by GSTs.

  11. Changes in vector species composition and current vector biology and behaviour will favour malaria elimination in Santa Isabel Province, Solomon Islands

    Directory of Open Access Journals (Sweden)

    Beebe Nigel W

    2011-09-01

    Full Text Available Abstract Background In 2009, Santa Isabel Province in the Solomon Islands embarked on a malaria elimination programme. However, very little is known in the Province about the anopheline fauna, which species are vectors, their bionomics and how they may respond to intensified intervention measures. The purpose of this study was to provide baseline data on the malaria vectors and to ascertain the possibility of successfully eliminating malaria using the existing conventional vector control measures, such as indoor residual spraying (IRS and long-lasting insecticidal nets (LLIN. Methods Entomological surveys were undertaken during October 2009. To determine species composition and distribution larval surveys were conducted across on the whole island. For malaria transmission studies, adult anophelines were sampled using human landing catches from two villages - one coastal and one inland. Results Five Anopheles species were found on Santa Isabel: Anopheles farauti, Anopheles hinesorum, Anopheles lungae, Anopheles solomonis, and Anopheles nataliae. Anopheles hinesorum was the most widespread species. Anopheles farauti was abundant, but found only on the coast. Anopheles punctulatus and Anopheles koliensis were not found. Anopheles farauti was the only species found biting in the coastal village, it was incriminated as a vector in this study; it fed early in the night but equally so indoors and outdoors, and had a low survival rate. Anopheles solomonis was the main species biting humans in the inland village, it was extremely exophagic, with low survival rates, and readily fed on pigs. Conclusion The disappearance of the two major vectors, An. punctulatus and An. koliensis, from Santa Isabel and the predominance of An. hinesorum, a non-vector species may facilitate malaria elimination measures. Anopheles farauti was identified as the main coastal vector with An. solomonis as a possible inland vector. The behaviour of An. solomonis is novel as it has

  12. Shifting suitability for malaria vectors across Africa with warming climates

    Directory of Open Access Journals (Sweden)

    Peterson A Townsend

    2009-05-01

    Full Text Available Abstract Background Climates are changing rapidly, producing warm climate conditions globally not previously observed in modern history. Malaria is of great concern as a cause of human mortality and morbidity, particularly across Africa, thanks in large part to the presence there of a particularly competent suite of mosquito vector species. Methods I derive spatially explicit estimates of human populations living in regions newly suitable climatically for populations of two key Anopheles gambiae vector complex species in Africa over the coming 50 years, based on ecological niche model projections over two global climate models, two scenarios of climate change, and detailed spatial summaries of human population distributions. Results For both species, under all scenarios, given the changing spatial distribution of appropriate conditions and the current population distribution, the models predict a reduction of 11.3–30.2% in the percentage of the overall population living in areas climatically suitable for these vector species in coming decades, but reductions and increases are focused in different regions: malaria vector suitability is likely to decrease in West Africa, but increase in eastern and southern Africa. Conclusion Climate change effects on African malaria vectors shift their distributional potential from west to east and south, which has implications for overall numbers of people exposed to these vector species. Although the total is reduced, malaria is likely to pose novel public health problems in areas where it has not previously been common.

  13. Survivorship of Anopheles darlingi (Diptera: Culicidae in relation with malaria incidence in the Brazilian Amazon.

    Directory of Open Access Journals (Sweden)

    Fábio Saito Monteiro de Barros

    Full Text Available We performed a longitudinal study of adult survival of Anopheles darlingi, the most important vector in the Amazon, in a malarigenous frontier zone of Brazil. Survival rates were determined from both parous rates and multiparous dissections. Anopheles darlingi human biting rates, daily survival rates and expectation of life where higher in the dry season, as compared to the rainy season, and were correlated with malaria incidence. The biting density of mosquitoes that had survived long enough for completing at least one sporogonic cycle was related with the number of malaria cases by linear regression. Survival rates were the limiting factor explaining longitudinal variations in Plasmodium vivax malaria incidence and the association between adult mosquito survival and malaria was statistically significant by logistic regression (P<0.05. Survival rates were better correlated with malaria incidence than adult mosquito biting density. Mathematical modeling showed that P. falciparum and P. malariae were more vulnerable to changes in mosquito survival rates because of longer sporogonic cycle duration, as compared to P. vivax, which could account for the low prevalence of the former parasites observed in the study area. Population modeling also showed that the observed decreases in human biting rates in the wet season could be entirely explained by decreases in survival rates, suggesting that decreased breeding did not occur in the wet season, at the sites where adult mosquitoes were collected. For the first time in the literature, multivariate methods detected a statistically significant inverse relation (P<0.05 between the number of rainy days per month and daily survival rates, suggesting that rainfall may cause adult mortality.

  14. In vitro elicitation, isolation, and characterization of conessine biomolecule from Holarrhena antidysenterica (L.) Wall. callus and its larvicidal activity against malaria vector, Anopheles stephensi Liston.

    Science.gov (United States)

    Kumar, Dinesh; Kumar, Gaurav; Das, Ram; Kumar, Ravindra; Agrawal, Veena

    2018-03-01

    In vitro elicitation of an important compound conessine has been done in the bark-derived callus culture of Holarrhena antidysenterica (L.) Wall. employing different elicitors. For induction of callus, green bark explants excised from field-grown plants were cultured on MS medium augmented with different concentrations (0, 1, 2.5, 5, and 10 μM) of various growth regulators such as BA, IBA, NAA, and 2,4-D either alone or in combinations. The maximum amount of conessine (458.18 ± 0.89 d μg/g dry wt.) was achieved in callus developed on MS medium supplemented with 5 μM BA and 5 μM 2,4-D through HPLC analysis. Elicitation in conessine content in the above callus was achieved employing a variety of organic (phenylalanine, tyrosine, chitosan, tryptophan, casein hydrolysate, proline, sucrose, and yeast extract) as well as inorganic elicitors (Pb(NO 3 ) 2 , As 2 O 3 , CuSO 4 , NaCl, and CdCl 2 ) in different concentrations. The optimum enhancement in conessine content (3518.58 ± 0.28 g  μg/g dry wt.) was seen at the highest concentration (200 mg/L) of phenylalanine. The enhancement was elicitor specific and dose dependent. The overall increment of the conessine content was seen in the order of phenylalanine > tryptophan > Pb(NO 3 ) 2 > sucrose > NaCl > As 2 O 3 > casein hydrolysate > CdCl 2 > chitosan > proline > yeast extract > CuSO 4 > tyrosine. The isolation and purification of conessine was done using methanol as a solvent system through column chromatography (CC) and TLC. The isolated compound was characterized by FT-IR, 1 H-NMR, and HRMS which confirmed with the structure of conessine. The bioassays conducted with the isolated compound revealed a strong larvicidal activity against Anopheles stephensi Liston with LC 50 and LC 90 values being 1.93 and 5.67 ppm, respectively, without harming the nontarget organism, Mesocyclops thermocyclopoides Harada, after 48 h of treatment. This is our first report for the isolation and elicitation of conessine

  15. Mating competitiveness of sterile genetic sexing strain males (GAMA) under laboratory and semi-field conditions: Steps towards the use of the Sterile Insect Technique to control the major malaria vector Anopheles arabiensis in South Africa.

    Science.gov (United States)

    Munhenga, Givemore; Brooke, Basil D; Gilles, Jeremie R L; Slabbert, Kobus; Kemp, Alan; Dandalo, Leonard C; Wood, Oliver R; Lobb, Leanne N; Govender, Danny; Renke, Marius; Koekemoer, Lizette L

    2016-03-02

    Anopheles arabiensis Patton is primarily responsible for malaria transmission in South Africa after successful suppression of other major vector species using indoor spraying of residual insecticides. Control of An. arabiensis using current insecticide based approaches is proving difficult owing to the development of insecticide resistance, and variable feeding and resting behaviours. The use of the sterile insect technique as an area-wide integrated pest management system to supplement the control of An. arabiensis was proposed for South Africa and is currently under investigation. The success of this technique is dependent on the ability of laboratory-reared sterile males to compete with wild males for mates. As part of the research and development of the SIT technique for use against An. arabiensis in South Africa, radio-sensitivity and mating competitiveness of a local An. arabiensis sexing strain were assessed. The optimal irradiation dose inducing male sterility without compromising mating vigour was tested using Cobalt 60 irradiation doses ranging from 70-100 Gy. Relative mating competitiveness of sterile laboratory-reared males (GAMA strain) compared to fertile wild-type males (AMAL strain) for virgin wild-type females (AMAL) was investigated under laboratory and semi-field conditions using large outdoor cages. Three different sterile male to fertile male to wild-type female ratios were evaluated [1:1:1, 5:1:1 and 10:1:1 (sterile males: fertile, wild-type males: fertile, wild-type females)]. Irradiation at the doses tested did not affect adult emergence but had a moderate effect on adult survivorship and mating vigour. A dose of 75 Gy was selected for the competitiveness assays. Mating competitiveness experiments showed that irradiated GAMA male mosquitoes are a third as competitive as their fertile AMAL counterparts under semi-field conditions. However, they were not as competitive under laboratory conditions. An inundative ratio of 10:1 induced the

  16. [Anopheles (Culicidae, Anophelinae) and Malaria in Buriticupu-Santa Luzia, pre-Amazonic Maranhao].

    Science.gov (United States)

    Rebêlo, J M; da Silva, A R; Ferreira, L A; Vieira, J A

    1997-01-01

    Seven species belonging the subgenus Nyssorhyncus were found. Anopheles (N.) darlingi, the principal vector of human malaria, was the most abundant (53.1%) followed by A. (N.) evansae (21.0%, A. (N.) triannulatus (17.4%) e A. (N.) nuñeztovari (4.8%). The others, A. (N.) argyritarsis. A. (N.) oswaldoi and A. (N.) rangeli, were less frequently found, representing only 3.7% of the total sample. The anophelines were most frequent in both the extra (51.7%) and peridomiciles (45.7%). The intradomicile was visited by some specimens of the A. (N.) darlingi and A. (N.) evansae (active in both the rain and dry seasons, especially in the former, when the malaria reached high levels of transmission.

  17. PCR detection of malaria parasites in desiccated Anopheles mosquitoes is uninhibited by storage time and temperature

    Directory of Open Access Journals (Sweden)

    Rider Mark A

    2012-06-01

    Full Text Available Abstract Background Reliable methods to preserve mosquito vectors for malaria studies are necessary for detecting Plasmodium parasites. In field settings, however, maintaining a cold chain of storage from the time of collection until laboratory processing, or accessing other reliable means of sample preservation is often logistically impractical or cost prohibitive. As the Plasmodium infection rate of Anopheles mosquitoes is a central component of the entomological inoculation rate and other indicators of transmission intensity, storage conditions that affect pathogen detection may bias malaria surveillance indicators. This study investigated the effect of storage time and temperature on the ability to detect Plasmodium parasites in desiccated Anopheles mosquitoes by real-time polymerase chain reaction (PCR. Methods Laboratory-infected Anopheles stephensi mosquitoes were chloroform-killed and stored over desiccant for 0, 1, 3, and 6 months while being held at four different temperatures: 28, 37, -20 and -80°C. The detection of Plasmodium DNA was evaluated by real-time PCR amplification of a 111 base pair region of block 4 of the merozoite surface protein. Results Varying the storage time and temperature of desiccated mosquitoes did not impact the sensitivity of parasite detection. A two-way factorial analysis of variance suggested that storage time and temperature were not associated with a loss in the ability to detect parasites. Storage of samples at 28°C resulted in a significant increase in the ability to detect parasite DNA, though no other positive associations were observed between the experimental storage treatments and PCR amplification. Conclusions Cold chain maintenance of desiccated mosquito samples is not necessary for real-time PCR detection of parasite DNA. Though field-collected mosquitoes may be subjected to variable conditions prior to molecular processing, the storage of samples over an inexpensive and logistically

  18. Shading by Napier grass reduces malaria vector larvae in natural habitats in western Kenya highlands

    NARCIS (Netherlands)

    Wamae, P.M.; Githeko, A.K.; Menya, D.M.; Takken, W.

    2010-01-01

    Increased human population in the Western Kenya highlands has led to reclamation of natural swamps resulting in the creation of habitats suitable for the breeding of Anopheles gambiae, the major malaria vector in the region. Here we report on a study to restore the reclaimed swamp and reverse its

  19. Identification of candidate volatiles that affect the behavioural response of the malaria mosquito Anopheles gambiae sensu stricto to an active kairomone blend: laboratory and semi-field assays

    NARCIS (Netherlands)

    Smallegange, R.C.; Bukovinszkine Kiss, G.; Otieno, B.; Mbadi, P.A.; Takken, W.; Mukabana, W.R.; Loon, van J.J.A.

    2012-01-01

    Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) is the most important vector of human malaria in sub-Saharan Africa, affecting the lives of millions of people. Existing tools such as insecticide-treated nets and indoor-residual sprays are not only effective, but also have limitations as a

  20. Synergism between ammonia, lactic acid and carboxylic acids as kairomones in the host-seeking behaviour of the malaria mosquito Anopheles gambiae sensu stricto (Diptera: Culicidae)

    NARCIS (Netherlands)

    Smallegange, R.C.; Qiu, Y.T.; Loon, van J.J.A.; Takken, W.

    2005-01-01

    Host odours play a major role in the orientation and host location of blood-feeding mosquitoes. Anopheles gambiae Giles sensu stricto, which is the most important malaria vector in Africa, is a highly anthropophilic mosquito species, and the host-seeking behaviour of the females of this mosquito is

  1. EFEKTIVITAS INSEKTISIDA ORGANOCHLORIN OMS-1558 DALAM PENGENDALIAN VEKTOR MALARIA ANOPHELES ACONITUS DONITZ YANG SUDAH KEBAL TERHADAP DDT

    Directory of Open Access Journals (Sweden)

    Barodji Barodji

    2012-09-01

    Full Text Available A village-scale trial of organochlorin compound OMS-1558 as an 70% water-dispersible powder (wdp and applied as an indoor residual spray at 2 gr/m2, was carried out against the DDT—resistant malaria vector Anopheles aconitus near Semarang, Central Java. Result of this trial, as evaluated by human-vector contact rates, resting densities and parous rate showed effectiveness against the vector populations for only about one week or less. In contact bioassay tests mortalities of 50% or greater for one week, while mortalities from air-borne bioassay tests were negligible. It was concluded that DDT—resistant malaria vector can not be controlled by this insecticide. The result of susceptibility tests showed there is cross resistance between DDT and new organochlorin OMS-1558.

  2. Detection of 1014F kdr mutation in four major Anopheline malaria vectors in Indonesia

    Directory of Open Access Journals (Sweden)

    Sukowati Supratman

    2010-11-01

    Full Text Available Abstract Background Malaria is a serious public health problem in Indonesia, particularly in areas outside Java and Bali. The spread of resistance to the currently available anti-malarial drugs or insecticides used for mosquito control would cause an increase in malaria transmission. To better understand patterns of transmission and resistance in Indonesia, an integrated mosquito survey was conducted in three areas with different malaria endemicities, Purworejo in Central Java, South Lampung District in Sumatera and South Halmahera District in North Mollucca. Methods Mosquitoes were collected from the three areas through indoor and outdoor human landing catches (HLC and indoor restinging catches. Specimens were identified morphologically by species and kept individually in 1.5 ml Eppendorf microtube. A fragment of the VGSC gene from 95 mosquito samples was sequenced and kdr allelic variation determined. Results The molecular analysis of these anopheline mosquitoes revealed the existence of the 1014F allele in 4 major malaria vectors from South Lampung. These species include, Anopheles sundaicus, Anopheles aconitus, Anopheles subpictus and Anopheles vagus. The 1014F allele was not found in the other areas. Conclusion The finding documents the presence of this mutant allele in Indonesia, and implies that selection pressure on the Anopheles population in this area has occurred. Further studies to determine the impact of the resistance allele on the efficacy of pyrethroids in control programmes are needed.

  3. Detection of 1014F kdr mutation in four major Anopheline malaria vectors in Indonesia.

    Science.gov (United States)

    Syafruddin, Din; Hidayati, Anggi P N; Asih, Puji B S; Hawley, William A; Sukowati, Supratman; Lobo, Neil F

    2010-11-08

    Malaria is a serious public health problem in Indonesia, particularly in areas outside Java and Bali. The spread of resistance to the currently available anti-malarial drugs or insecticides used for mosquito control would cause an increase in malaria transmission. To better understand patterns of transmission and resistance in Indonesia, an integrated mosquito survey was conducted in three areas with different malaria endemicities, Purworejo in Central Java, South Lampung District in Sumatera and South Halmahera District in North Mollucca. Mosquitoes were collected from the three areas through indoor and outdoor human landing catches (HLC) and indoor restinging catches. Specimens were identified morphologically by species and kept individually in 1.5 ml Eppendorf microtube. A fragment of the VGSC gene from 95 mosquito samples was sequenced and kdr allelic variation determined. The molecular analysis of these anopheline mosquitoes revealed the existence of the 1014F allele in 4 major malaria vectors from South Lampung. These species include, Anopheles sundaicus, Anopheles aconitus, Anopheles subpictus and Anopheles vagus. The 1014F allele was not found in the other areas. The finding documents the presence of this mutant allele in Indonesia, and implies that selection pressure on the Anopheles population in this area has occurred. Further studies to determine the impact of the resistance allele on the efficacy of pyrethroids in control programmes are needed.

  4. Malaria in Suriname: a new era : impact of modified intervention strategies on Anopheles darlingi populations and malaria incidence

    NARCIS (Netherlands)

    Hiwat-van Laar, H.

    2011-01-01

    Malaria is an infectious disease caused by Plasmodiumblood parasites which live inside the human host and are spread by Anopheles mosquitoes.Every year an estimated 225 million new cases and near 800.000 malaria deaths are reported. Control of the disease is a formidable task involving all three

  5. Larvicidal activity of Zanthoxylum acanthopodium essential oil against the malaria mosquitoes, Anopheles anthropophagus and Anopheles sinensis.

    Science.gov (United States)

    He, Qi; Wang, Wenxia; Zhu, Liang

    2018-05-15

    Zanthoxylum acanthopodium has insecticidal effect in Chinese traditional medicine. In this study, the essential oil from the dried Zanthoxylum plant was used as a larvicidal compound against the malaria mosquitoes, Anopheles anthropophagus and Anopheles sinensis. Compounds in the Zanthoxylum essential oil were investigated by gas chromatography and mass spectroscopy (GC-MS). The larvicidal bioassays of the whole oil, as well as the main compounds in the oil (estragole and eucalyptol) were performed using WHO method. In total, 63 main compounds (99.32%) were found in the oils, including estragole (15.46%), eucalyptol (10.94%), β-caryophyllene (5.52%), cis-linalool oxide (3.76%), cis-limonene oxide (3.06%). A dose-dependent effect on mortality was recorded with increasing concentrations of essential oil and compounds increasing mortality of the larvae. Larvicidal bioassays revealed that 24 h LC 50 of the whole essential oil was 36.00 mg/L and LC 90 was 101.49 mg/L against An. anthropophagus, while LC 50 was 49.02 mg/L and LC 90 was 125.18 mg/L against An. sinensis. Additionally, 24 h LC 50 of estragole were 38.56 and 41.67 mg/L against An. anthropophagus and An. sinensis, respectively, while the related LC 90 were 95.90 and 107.89 mg/L. LC 50 of eucalyptol were 42.41 and 45.49 mg/L against An. anthropophagus and An. sinensis, while the related LC 90 were 114.45 and 124.95 mg/L. The essential oil of Z. acanthopodium and its several major compounds may have potential for use in the control of malaria mosquitoes.

  6. Vectors and malaria transmission in deforested, rural communities in north-central Vietnam

    Directory of Open Access Journals (Sweden)

    Do Manh Cuong

    2010-09-01

    Full Text Available Abstract Background Malaria is still prevalent in rural communities of central Vietnam even though, due to deforestation, the primary vector Anopheles dirus is uncommon. In these situations little is known about the secondary vectors which are responsible for maintaining transmission. Basic information on the identification of the species in these rural communities is required so that transmission parameters, such as ecology, behaviour and vectorial status can be assigned to the appropriate species. Methods In two rural villages - Khe Ngang and Hang Chuon - in Truong Xuan Commune, Quang Binh Province, north central Vietnam, a series of longitudinal entomological surveys were conducted during the wet and dry seasons from 2003 - 2007. In these surveys anopheline mosquitoes were collected in human landing catches, paired human and animal bait collections, and from larval surveys. Specimens belonging to species complexes were identified by PCR and sequence analysis, incrimination of vectors was by detection of circumsporozoite protein using an enzyme-linked immunosorbent assay. Results Over 80% of the anopheline fauna was made up of Anopheles sinensis, Anopheles aconitus, Anopheles harrisoni, Anopheles maculatus, Anopheles sawadwongporni, and Anopheles philippinensis. PCR and sequence analysis resolved identification issues in the Funestus Group, Maculatus Group, Hyrcanus Group and Dirus Complex. Most species were zoophilic and while all species could be collected biting humans significantly higher densities were attracted to cattle and buffalo. Anopheles dirus was the most anthropophilic species but was uncommon making up only 1.24% of all anophelines collected. Anopheles sinensis, An. aconitus, An. harrisoni, An. maculatus, An. sawadwongporni, Anopheles peditaeniatus and An. philippinensis were all found positive for circumsporozoite protein. Heterogeneity in oviposition site preference between species enabled vector densities to be high in both

  7. Insecticide resistance of Anopheles sinensis and An. vagus in Hainan Island, a malaria-endemic area of China.

    Science.gov (United States)

    Qin, Qian; Li, Yiji; Zhong, Daibin; Zhou, Ning; Chang, Xuelian; Li, Chunyuan; Cui, Liwang; Yan, Guiyun; Chen, Xiao-Guang

    2014-03-03

    Malaria is one of the most important public health problems in Southeast Asia, including Hainan Island, China. Vector control is the main malaria control measure, and insecticide resistance is a major concern for the effectiveness of chemical insecticide control programs. The objective of this study is to determine the resistance status of the main malaria vector species to pyrethroids and other insecticides recommended by the World Health Organization (WHO) for indoor residual sprays. The larvae and pupae of Anopheles mosquitoes were sampled from multiple sites in Hainan Island, and five sites yielded sufficient mosquitoes for insecticide susceptibility bioassays. Bioassays of female adult mosquitoes three days after emergence were conducted in the two most abundant species, Anopheles sinensis and An. vagus, using three insecticides (0.05% deltamethrin, 4% DDT, and 5% malathion) and following the WHO standard tube assay procedure. P450 monooxygenase, glutathione S-transferase and carboxylesterase activities were measured. Mutations at the knockdown resistance (kdr) gene and the ace-1 gene were detected by DNA sequencing and PCR-RFLP analysis, respectively. An. sinensis and An. vagus were the predominant Anopheles mosquito species. An. sinensis was found to be resistant to DDT and deltamethrin. An. vagus was susceptible to deltamethrin but resistant to DDT and malathion. Low kdr mutation (L1014F) frequency (P450 monooxygenase and carboxylesterase activities were detected in deltamethrin-resistant An. sinensis, and significantly higher P450 monooxygenase, glutathione S-transferase and carboxylesterase activities were found in malathion-resistant An. vagus mosquitoes. Multiple insecticide resistance was found in An. sinensis and An. vagus in Hainan Island, a malaria-endemic area of China. Cost-effective integrated vector control programs that go beyond synthetic insecticides are urgently needed.

  8. Factors affecting fungus-induced larval mortality in Anopheles gambiae and Anopheles stephensi

    NARCIS (Netherlands)

    Bukhari, S.T.; Middelman, A.; Koenraadt, C.J.M.; Takken, W.; Knols, B.G.J.

    2010-01-01

    Background Entomopathogenic fungi have shown great potential for the control of adult malaria vectors. However, their ability to control aquatic stages of anopheline vectors remains largely unexplored. Therefore, how larval characteristics (Anopheles species, age and larval density), fungus (species

  9. DINAMIKA POPULASI Anopheles Aconitus KAITANYA DENGAN PREVALENSI MALARIA DI KECAMATAN CINEAM, TASIKMALAYA

    Directory of Open Access Journals (Sweden)

    Amrul Munif

    2012-10-01

    Full Text Available A study on the correlation of population dynamik An. aconitus with malaria prevalence was conducted in Cineam sub-district, Tasikmalaya district, West Java from August 1998 to March 2000. In 1996, outbreaks of malaria did not only occur in the coastal areas but was also spread throughout the more remote areas. Malaria transmission can be detected by the presence of infectious gametocyte dan non-immune individuals, as well as by looking at environmental factors (rainfall and also the density of vector population. The intensity of malaria transmission and the degree of malaria prevalence are affected greatly by the last factor.   The intensity is also determined by the degree of contact between the person and the vector. An. aconitus have been suspected as malaria vector in Cineam sub-district, Tasikmalaya district. The observation of the bionomics wich one component of mosquitoes and its relationship with malaria prevalence as well as the determination of Anopheles spp. as malaria vectors in endemic areas should be given attention as an effort in preventing malaria outbreaks. The high density of vector mosquitoes is partly caused by their high diversity. Determination of the prevalence value is based on the Slide positifrate (SPR that was obtained from analyzing blood samples of the  population. There was an examination on passive case detection (PCD, active case detection  (ACD, and mass blood survey (MBS of the population beforehand. Methods used in surveying dan catching the vector mosquitoes include using humans as bait both inside and outside the house, using light trap, by resting, and also spraying. The longitudinal survey methods were used. Each catched mosquito was identified by looking at its morphological features.The transmission of malaria was found to occur all year round with the highest peak found in August 1998 (SPR= 4.9%, but then declined drastically in May (SPR=2.46% and July 1999 (SPR= 2.4% The occurrence of human biting

  10. Malaria transmission and insecticide resistance of Anopheles gambiae in Libreville and Port-Gentil, Gabon

    Directory of Open Access Journals (Sweden)

    Kombila Maryvonne

    2010-11-01

    Full Text Available Abstract Background Urban malaria is a major health priority for civilian and militaries populations. A preliminary entomologic study has been conducted in 2006-2007, in the French military camps of the two mains towns of Gabon: Libreville and Port-Gentil. The aim was to assess the malaria transmission risk for troops. Methods Mosquitoes sampled by human landing collection were identified morphologically and by molecular methods. The Plasmodium falciparum circumsporozoïte (CSP indexes were measured by ELISA, and the entomological inoculation rates (EIR were calculated for both areas. Molecular assessments of pyrethroid knock down (kdr resistance and of insensitive acetylcholinesterase resistance were conducted. Results In Libreville, Anopheles gambiae s.s. S form was the only specie of the An. gambiae complex present and was responsible of 9.4 bites per person per night. The circumsporozoïte index was 0.15% and the entomological inoculation rate estimated to be 1.23 infective bites during the four months period. In Port-Gentil, Anopheles melas (75.5% of catches and An. gambiae s.s. S form (24.5% were responsible of 58.7 bites per person per night. The CSP indexes were of 1.67% for An. gambiae s.s and 0.28% for An. melas and the EIRs were respectively of 1.8 infective bites per week and of 0.8 infective bites per week. Both kdr-w and kdr-e mutations in An. gambiae S form were found in Libreville and in Port-Gentil. Insensitive acetylcholinesterase has been detected for the first time in Gabon in Libreville. Conclusion Malaria transmission exists in both town, but with high difference in the level of risk. The co-occurrence of molecular resistances to the main families of insecticide has implications for the effectiveness of the current vector control programmes that are based on pyrethroid-impregnated bed nets.

  11. Evaluation of Commercial Agrochemicals as New Tools for Malaria Vector Control.

    Science.gov (United States)

    Hoppé, Mark; Hueter, Ottmar F; Bywater, Andy; Wege, Philip; Maienfisch, Peter

    2016-10-01

    Malaria is a vector-borne and life-threatening disease caused by parasites that are transmitted to people through the bites of infected female Anopheles mosquitoes. The vector control insecticide market represents a small fraction of the crop protection market and is estimated to be valued at up to $500 million at the active ingredient level. Insecticide resistance towards the current WHOPES-approved products urgently requires the development of new tools to protect communities against the transmission of malaria. The evaluation of commercial products for malaria vector control is a viable and cost effective strategy to identify new malaria vector control products. Several examples of such spin-offs from crop protection insecticides are already evidencing the success of this strategy, namely pirimiphos-methyl for indoor residual sprays and spinosad, diflubenzuron, novaluron, and pyriproxifen for mosquito larvae control, a supplementary technology for control of malaria vectors. In our study the adulticidal activities of 81 insecticides representing 23 insecticidal modes of action classes, 34 fungicides from 6 fungicidal mode of action classes and 15 herbicides from 2 herbicidal modes of action classes were tested in a newly developed screening system. WHOPES approved insecticides for malaria vector control consistently caused 80-100% mortality of adult Anopheles stephensi at application rates between 0.2 and 20 mg active ingradient (AI) litre -1 . Chlorfenapyr, fipronil, carbosulfan and endosulfan showed the expected good activity. Four new insecticides and three fungicides with promising activity against adult mosquitoes were identified, namely the insecticides acetamiprid, thiamethoxam, thiocyclam and metaflumizone and the fungicides diflumetorin, picoxystrobin, and fluazinam. Some of these compounds certainly deserve to be further evaluated for malaria vector control. This is the first report describing good activity of commercial fungicides against malaria

  12. Human skin emanations in the host-seeking behaviour of the malaria mosquito Anopheles gambiae

    NARCIS (Netherlands)

    Braks, M.

    1999-01-01

    Malaria is an infectious disease caused by a parasite ( Plasmodium spp.) that is transmitted between human individuals by mosquitoes, belonging to the order of insects, Diptera, family of Culicidae (mosquitoes) and genus of Anopheles (malaria

  13. Phytoextract-induced developmental deformities in malaria vector.

    Science.gov (United States)

    Sharma, Preeti; Mohan, Lalit; Srivastava, C N

    2006-09-01

    Larvicidal potential of petroleum ether (Pee), carbon tetrachloride (Cte) and methanol extract (Mee) of Artemisia annua, Chenopodium album and Sonchus oleraceus was observed against malaria vector, Anopheles stephensi Liston. The Pee of A. annua with LC50 16.85 ppm after 24 h and 11.45 ppm after 48 h of treatment was found most effective, followed by Cte of A. annua and Ch. album, Pee of Ch. album and Mee of A. annua. However, no significant larvicidal activity was observed in Mee of Ch. album and all the three extracts of S. oleraceous. The Pee of A. annua was further investigated for its effect on the metamorphosis and the development of the malaria vector. It influenced the early life cycle of An. stephensi by reducing the percentage of hatching, larval, pupal and adult emergence and also lengthening the larval and pupal periods. The growth index was also reduced significantly. As the extract has remarkable effect on the metamorphosis and high larvicidal potential, it could, therefore, be used as an effective biocontrol agent against the highly nuisant malaria vector.

  14. Natural plant sugar sources of Anopheles mosquitoes strongly impact malaria transmission potential.

    Directory of Open Access Journals (Sweden)

    Weidong Gu

    Full Text Available An improved knowledge of mosquito life history could strengthen malaria vector control efforts that primarily focus on killing mosquitoes indoors using insecticide treated nets and indoor residual spraying. Natural sugar sources, usually floral nectars of plants, are a primary energy resource for adult mosquitoes but their role in regulating the dynamics of mosquito populations is unclear. To determine how the sugar availability impacts Anopheles sergentii populations, mark-release-recapture studies were conducted in two oases in Israel with either absence or presence of the local primary sugar source, flowering Acacia raddiana trees. Compared with population estimates from the sugar-rich oasis, An. sergentii in the sugar-poor oasis showed smaller population size (37,494 vs. 85,595, lower survival rates (0.72 vs. 0.93, and prolonged gonotrophic cycles (3.33 vs. 2.36 days. The estimated number of females older than the extrinsic incubation period of malaria (10 days in the sugar rich site was 4 times greater than in the sugar poor site. Sugar feeding detected in mosquito guts in the sugar-rich site was significantly higher (73% than in the sugar-poor site (48%. In contrast, plant tissue feeding (poor quality sugar source in the sugar-rich habitat was much less (0.3% than in the sugar-poor site (30%. More important, the estimated vectorial capacity, a standard measure of malaria transmission potential, was more than 250-fold higher in the sugar-rich oasis than that in the sugar-poor site. Our results convincingly show that the availability of sugar sources in the local environment is a major determinant regulating the dynamics of mosquito populations and their vector potential, suggesting that control interventions targeting sugar-feeding mosquitoes pose a promising tactic for combating transmission of malaria parasites and other pathogens.

  15. Vector bionomics and malaria transmission along the Thailand-Myanmar border: a baseline entomological survey.

    Science.gov (United States)

    Kwansomboon, N; Chaumeau, V; Kittiphanakun, P; Cerqueira, D; Corbel, V; Chareonviriyaphap, T

    2017-06-01

    Baseline entomological surveys were conducted in four sentinel sites along the Thailand-Myanmar border to address vector bionomics and malaria transmission in the context of a study on malaria elimination. Adult Anopheles mosquitoes were collected using human-landing catch and cow-bait collection in four villages during the rainy season from May-June, 2013. Mosquitoes were identified to species level by morphological characters and by AS-PCR. Sporozoite indexes were determined on head/thoraces of primary and secondary malaria vectors using real-time PCR. A total of 4,301 anopheles belonging to 12 anopheline taxa were identified. Anopheles minimus represented >98% of the Minimus Complex members (n=1,683), whereas the An. maculatus group was composed of two dominant species, An. sawadwongporni and An. maculatus. Overall, 25 Plasmodium-positive mosquitoes (of 2,323) were found, representing a sporozoite index of 1.1% [95%CI 0.66-1.50]. The transmission intensity as measured by the EIR strongly varied according to the village (ANOVA, F=17.67, df=3, PMyanmar border that represent a formidable challenge for malaria control and elimination. © 2017 The Society for Vector Ecology.

  16. Rapid evolution of female-biased genes among four species of Anopheles malaria mosquitoes.

    Science.gov (United States)

    Papa, Francesco; Windbichler, Nikolai; Waterhouse, Robert M; Cagnetti, Alessia; D'Amato, Rocco; Persampieri, Tania; Lawniczak, Mara K N; Nolan, Tony; Papathanos, Philippos Aris

    2017-09-01

    Understanding how phenotypic differences between males and females arise from the sex-biased expression of nearly identical genomes can reveal important insights into the biology and evolution of a species. Among Anopheles mosquito species, these phenotypic differences include vectorial capacity, as it is only females that blood feed and thus transmit human malaria. Here, we use RNA-seq data from multiple tissues of four vector species spanning the Anopheles phylogeny to explore the genomic and evolutionary properties of sex-biased genes. We find that, in these mosquitoes, in contrast to what has been found in many other organisms, female-biased genes are more rapidly evolving in sequence, expression, and genic turnover than male-biased genes. Our results suggest that this atypical pattern may be due to the combination of sex-specific life history challenges encountered by females, such as blood feeding. Furthermore, female propensity to mate only once in nature in male swarms likely diminishes sexual selection of post-reproductive traits related to sperm competition among males. We also develop a comparative framework to systematically explore tissue- and sex-specific splicing to document its conservation throughout the genus and identify a set of candidate genes for future functional analyses of sex-specific isoform usage. Finally, our data reveal that the deficit of male-biased genes on the X Chromosomes in Anopheles is a conserved feature in this genus and can be directly attributed to chromosome-wide transcriptional regulation that de-masculinizes the X in male reproductive tissues. © 2017 Papa et al.; Published by Cold Spring Harbor Laboratory Press.

  17. Malaria vector control: current and future strategies

    NARCIS (Netherlands)

    Takken, W.; Knols, B.G.J.

    2009-01-01

    The recently announced call for malaria eradication represents a new page in the history of this disease. This has been triggered by remarkable reductions in malaria resulting from combined application of effective drugs and vector control. However, this strategy is threatened by development of

  18. A predator from East Africa that chooses malaria vectors as preferred prey.

    Directory of Open Access Journals (Sweden)

    Ximena J Nelson

    Full Text Available BACKGROUND: All vectors of human malaria, a disease responsible for more than one million deaths per year, are female mosquitoes from the genus Anopheles. Evarcha culicivora is an East African jumping spider (Salticidae that feeds indirectly on vertebrate blood by selecting blood-carrying female mosquitoes as preferred prey. METHODOLOGY/PRINCIPAL FINDINGS: By testing with motionless lures made from mounting dead insects in lifelike posture on cork discs, we show that E. culicivora selects Anopheles mosquitoes in preference to other mosquitoes and that this predator can identify Anopheles by static appearance alone. Tests using active (grooming virtual mosquitoes rendered in 3-D animation show that Anopheles' characteristic resting posture is an important prey-choice cue for E. culicivora. Expression of the spider's preference for Anopheles varies with the spider's size, varies with its prior feeding condition and is independent of the spider gaining a blood meal. CONCLUSIONS/SIGNIFICANCE: This is the first experimental study to show that a predator of any type actively chooses Anopheles as preferred prey, suggesting that specialized predators having a role in the biological control of disease vectors is a realistic possibility.

  19. Optimized Pan-species and speciation duplex real-time PCR assays for Plasmodium parasites detection in malaria vectors.

    Directory of Open Access Journals (Sweden)

    Maurice Marcel Sandeu

    Full Text Available BACKGROUND: An accurate method for detecting malaria parasites in the mosquito's vector remains an essential component in the vector control. The Enzyme linked immunosorbent assay specific for circumsporozoite protein (ELISA-CSP is the gold standard method for the detection of malaria parasites in the vector even if it presents some limitations. Here, we optimized multiplex real-time PCR assays to accurately detect minor populations in mixed infection with multiple Plasmodium species in the African malaria vectors Anopheles gambiae and Anopheles funestus. METHODS: Complementary TaqMan-based real-time PCR assays that detect Plasmodium species using specific primers and probes were first evaluated on artificial mixtures of different targets inserted in plasmid constructs. The assays were further validated in comparison with the ELISA-CSP on 200 field caught Anopheles gambiae and Anopheles funestus mosquitoes collected in two localities in southern Benin. RESULTS: The validation of the duplex real-time PCR assays on the plasmid mixtures demonstrated robust specificity and sensitivity for detecting distinct targets. Using a panel of mosquito specimen, the real-time PCR showed a relatively high sensitivity (88.6% and specificity (98%, compared to ELISA-CSP as the referent standard. The agreement between both methods was "excellent" (κ=0.8, P<0.05. The relative quantification of Plasmodium DNA between the two Anopheles species analyzed showed no significant difference (P=0, 2. All infected mosquito samples contained Plasmodium falciparum DNA and mixed infections with P. malariae and/or P. ovale were observed in 18.6% and 13.6% of An. gambiae and An. funestus respectively. Plasmodium vivax was found in none of the mosquito samples analyzed. CONCLUSION: This study presents an optimized method for detecting the four Plasmodium species in the African malaria vectors. The study highlights substantial discordance with traditional ELISA-CSP pointing out the

  20. Malaria vectors in ecologically heterogeneous localities of the Colombian Pacific region.

    Directory of Open Access Journals (Sweden)

    Nelson Naranjo-Díaz

    Full Text Available The Colombian Pacific region is second nationally in number of malaria cases reported. This zone presents great ecological heterogeneity and Anopheles species diversity. However, little is known about the current spatial and temporal distribution of vector species. This study, conducted in three ecologically different localities of the Pacific region, aimed to evaluate the composition and distribution of Anopheles species and characterize transmission intensity. A total of 4,016 Anopheles mosquitoes were collected representing seven species. The composition and dominant species differed in each locality. Three species were infected with malaria parasites: Anopheles darlingi and An. calderoni were infected with Plasmodium falciparum and An. nuneztovari with Plasmodium vivax VK210 and VK247. Annual EIRs varied from 3.5-7.2 infective bites per year. These results confirm the importance of the primary vector An. nuneztovari in areas disturbed by human interventions, of An. darlingi in deforested margins of humid tropical rainforest and An. albimanus and the suspected vector An. calderoni in areas impacted by urbanization and large-scale palm oil agriculture close to the coast. This constitutes the first report in the Colombia Pacific region of naturally infected An. darlingi, and in Colombia of naturally infected An. calderoni. Further studies should evaluate the epidemiological importance of An. calderoni in the Pacific region.

  1. Effect of permethrin-treated bed nets on the spatial distribution of malaria vectors in western Kenya

    NARCIS (Netherlands)

    Gimnig, John E.; Kolczak, Margarette S.; Hightower, Allen W.; Vulule, John M.; Schoute, Erik; Kamau, Luna; Phillips-Howard, Penelope A.; ter Kuile, Feiko O.; Nahlen, Bernard L.; Hawley, William A.

    2003-01-01

    The effect of insecticide (permethrin)-treated bed nets (ITNs) on the spatial distribution of malaria vectors in neighboring villages lacking ITNs was studied during a randomized controlled trial of ITNs in western Kenya. There was a trend of decreased abundance of Anopheles gambiae with decreasing

  2. Increased malaria transmission around irrigation schemes in Ethiopia and the potential of canal water management for malaria vector control.

    Science.gov (United States)

    Kibret, Solomon; Wilson, G Glenn; Tekie, Habte; Petros, Beyene

    2014-09-13

    Irrigation schemes have been blamed for the increase in malaria in many parts of sub-Saharan Africa. However, proper water management could help mitigate malaria around irrigation schemes in this region. This study investigates the link between irrigation and malaria in Central Ethiopia. Larval and adult mosquitoes were collected fortnightly between November 2009 and October 2010 from two irrigated and two non-irrigated (control) villages in the Ziway area, Central Ethiopia. Daily canal water releases were recorded during the study period and bi-weekly correlation analysis was done to determine relationships between canal water releases and larval/adult vector densities. Blood meal sources (bovine vs human) and malaria sporozoite infection were tested using enzyme-linked immunosorbent assay (ELISA). Monthly malaria data were also collected from central health centre of the study villages. Monthly malaria incidence was over six-fold higher in the irrigated villages than the non-irrigated villages. The number of anopheline breeding habitats was 3.6 times higher in the irrigated villages than the non-irrigated villages and the most common Anopheles mosquito breeding habitats were waterlogged field puddles, leakage pools from irrigation canals and poorly functioning irrigation canals. Larval and adult anopheline densities were seven- and nine-fold higher in the irrigated villages than in the non-irrigated villages, respectively, during the study period. Anopheles arabiensis was the predominant species in the study area. Plasmodium falciparum sporozoite rates of An. arabiensis and Anopheles pharoensis were significantly higher in the irrigated villages than the non-irrigated villages. The annual entomological inoculation rate (EIR) calculated for the irrigated and non-irrigated villages were 34.8 and 0.25 P. falciparum infective bites per person per year, respectively. A strong positive correlation was found between bi-weekly anopheline larval density and canal water

  3. Multiple origins of knockdown resistance mutations in the Afrotropical mosquito vector Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    João Pinto

    2007-11-01

    Full Text Available How often insecticide resistance mutations arise in natural insect populations is a fundamental question for understanding the evolution of resistance and also for modeling its spread. Moreover, the development of resistance is regarded as a favored model to study the molecular evolution of adaptive traits. In the malaria vector Anopheles gambiae two point mutations (L1014F and L1014S in the voltage-gated sodium channel gene, that confer knockdown resistance (kdr to DDT and pyrethroid insecticides, have been described. In order to determine whether resistance alleles result from single or multiple mutation events, genotyping of the kdr locus and partial sequencing of the upstream intron-1 was performed on a total of 288 A. gambiae S-form collected from 28 localities in 15 countries. Knockdown resistance alleles were found to be widespread in West Africa with co-occurrence of both 1014S and 1014F in West-Central localities. Differences in intron-1 haplotype composition suggest that kdr alleles may have arisen from at least four independent mutation events. Neutrality tests provided evidence for a selective sweep acting on this genomic region, particularly in West Africa. The frequency and distribution of these kdr haplotypes varied geographically, being influenced by an interplay between different mutational occurrences, gene flow and local selection. This has important practical implications for the management and sustainability of malaria vector control programs.

  4. Integrated vector management for malaria control

    Directory of Open Access Journals (Sweden)

    Impoinvil Daniel E

    2008-12-01

    Full Text Available Abstract Integrated vector management (IVM is defined as "a rational decision-making process for the optimal use of resources for vector control" and includes five key elements: 1 evidence-based decision-making, 2 integrated approaches 3, collaboration within the health sector and with other sectors, 4 advocacy, social mobilization, and legislation, and 5 capacity-building. In 2004, the WHO adopted IVM globally for the control of all vector-borne diseases. Important recent progress has been made in developing and promoting IVM for national malaria control programmes in Africa at a time when successful malaria control programmes are scaling-up with insecticide-treated nets (ITN and/or indoor residual spraying (IRS coverage. While interventions using only ITNs and/or IRS successfully reduce transmission intensity and the burden of malaria in many situations, it is not clear if these interventions alone will achieve those critical low levels that result in malaria elimination. Despite the successful employment of comprehensive integrated malaria control programmes, further strengthening of vector control components through IVM is relevant, especially during the "end-game" where control is successful and further efforts are required to go from low transmission situations to sustained local and country-wide malaria elimination. To meet this need and to ensure sustainability of control efforts, malaria control programmes should strengthen their capacity to use data for decision-making with respect to evaluation of current vector control programmes, employment of additional vector control tools in conjunction with ITN/IRS tactics, case-detection and treatment strategies, and determine how much and what types of vector control and interdisciplinary input are required to achieve malaria elimination. Similarly, on a global scale, there is a need for continued research to identify and evaluate new tools for vector control that can be integrated with

  5. Host feeding patterns and preference of Anopheles minimus (Diptera: Culicidae) in a malaria endemic area of western Thailand: baseline site description.

    Science.gov (United States)

    Tisgratog, Rungarun; Tananchai, Chatchai; Juntarajumnong, Waraporn; Tuntakom, Siripun; Bangs, Michael J; Corbel, Vincent; Chareonviriyaphap, Theeraphap

    2012-06-07

    Host feeding patterns of Anopheles minimus in relation to ambient environmental conditions were observed during a 2-year period at Tum Sua Village, located in Mae Sot District, Tak Province, in western Thailand, where An. minimus is found in abundance and regarded as the most predominant malaria vector species. Detailed information on mosquito behavior is important for understanding the epidemiology of disease transmission and developing more effective and efficient vector control methods. Adult mosquitoes were collected every 2 months for two consecutive nights from 1800 to 0600 hrs. Three collection methods were used; indoor human-landing collections (HLC), outdoor HLC, and outdoor cattle-bait collections (CBC). A total of 7,663 female Anopheles mosquitoes were collected of which 5,392 were identified as members of 3 different species complexes, the most prevalent being Anopheles minimus complex (50.36%), followed by Anopheles maculatus complex (19.68%) and Anopheles dirus complex (0.33%). An. minimus s.s. comprised virtually all (> 99.8 percent) of Minimus Complex species captured. Blood feeding behavior of An. minimus was more pronounced during the second half of the evening, showing a slight preference to blood feed outdoors (~60%) versus inside structures. Significantly (P feeding behavior. Although a significant difference in total number of mosquitoes from the HLC was recorded between the first and second year, the mean biting frequency over the course of the evening hours remained similar. The Human landing activity of An. minimus in Tum Sua Village showed a stronger preference/attraction for humans compared to a cow-baited collection method. This study supports the incrimination of An. minimus as the primary malaria vector in the area. A better understanding of mosquito behavior related to host preference, and the temporal and spatial blood feeding activity will help facilitate the design of vector control strategies and effectiveness of vector

  6. Seasonal Abundance and Host-Feeding Patterns of Anopheline Vectors in Malaria Endemic Area of Iran

    Directory of Open Access Journals (Sweden)

    Hamidreza Basseri

    2010-01-01

    Full Text Available Seasonal abundance and tendency to feed on humans are important parameters to measure for effective control of malaria vectors. The objective of this study was to describe relation between feeding pattern, abundance, and resting behavior of four malaria vectors in southern Iran. This study was conducted in ten indicator villages (based on malaria incidence and entomological indices in mountainous/hilly and plain regions situated south and southeastern Iran. Mosquito vectors were collected from indoor as well as outdoor shelters and the blood meals were examined by ELISA test. Over all 7654 female Anopheles spp. were captured, the most common species were Anopheles stephensi, An. culicifacies, An. fluviatilis, and An. d'thali. The overall human blood index was 37.50%, 19.83%, 16.4%, and 30.1% for An. fluviatilis, An. stephensi, An. culicifacies, and An. d'thali, respectively. In addition, An. fluviatilis fed on human blood during the entire year but the feeding behavior of An. stephensi and An. culicifacies varied according to seasons. Overall, the abundance of the female mosquito positive to human blood was 4.25% per human shelter versus 17.5% per animal shelter. This result indicates that the vectors had tendency to rest in animal shelters after feeding on human. Therefore, vector control measure should be planned based on such as feeding pattern, abundance, and resting behavior of these vectors in the area.

  7. Insecticide mixtures for mosquito net impregnation against malaria vectors

    Directory of Open Access Journals (Sweden)

    Corbel V.

    2002-09-01

    Full Text Available Insecticides belonging to the pyrethroid family are the only compounds currently available for the treatment of mosquito nets. Unfortunately, some malaria vector species have developed resistance to pyrethroids and the lack of alternative chemical categories is a great concern. One strategy for resistance management would be to treat mosquito nets with a mixture associating two insecticides having different modes of action. This study presents the results obtained with insecticide mixtures containing several proportions of bifenthrin (a pyrethroid insecticide and carbosulfan (a carbamate insecticide. The mixtures were sprayed on mosquito net samples and their efficacy were tested against a susceptible strain of Anopheles gambiae, the major malaria vector in Africa. A significant synergism was observed with a mixture containing 25 mg/m2 of bifenthrin (half the recommended dosage for treated nets and 6.25 mg/m2 of carbosulfan (about 2 % of the recommended dosage. The observed mortality was significantly more than expected in the absence of any interaction (80 % vs 41 % and the knock-down effect was maintained, providing an effective barrier against susceptible mosquitoes.

  8. Towards a risk map of malaria for Sri Lanka: the importance of house location relative to vector breeding sites

    DEFF Research Database (Denmark)

    Van Der Hoek, Wim; Konradsen, Flemming; Amerasinghe, Priyanie H

    2003-01-01

    of house location relative to vector breeding sites for the occurrence of malaria in order to assess the usefulness of this parameter in future malaria risk maps. Such risk maps could be important tools for planning efficient malaria control measures. METHODS: In a group of seven villages in north central......BACKGROUND: In Sri Lanka, the major malaria vector Anopheles culicifacies breeds in pools formed in streams and river beds and it is likely that people living close to such breeding sites are at higher risk of malaria than people living further away. This study was done to quantify the importance...... Sri Lanka, malaria cases were compared with community controls for distance from house to breeding sites and a number of other variables, including type of housing construction and use of anti-mosquito measures. The presence of An. culicifacies in bedrooms was determined by indoor insecticide spray...

  9. ABO blood groups of residents and the ABO host choice of malaria vectors in southern Iran.

    Science.gov (United States)

    Anjomruz, Mehdi; Oshaghi, Mohammad A; Sedaghat, Mohammad M; Pourfatollah, Ali A; Raeisi, Ahmad; Vatandoost, Hassan; Mohtarami, Fatemeh; Yeryan, Mohammad; Bakhshi, Hassan; Nikpoor, Fatemeh

    2014-01-01

    Recent epidemiological evidences revealed the higher prevalence of 'O' blood group in the residents of malaria-endemic areas. Also some data indicated preference of mosquitoes to 'O' group. The aim of this study was to determine ABO group ratio in the residents as well as ABO group preference of Anopheles in two malaria endemic areas in south of Iran. Agglutination method was used for ABO typing of residents. Field blood fed Anopheles specimens were tested against vertebrate DNA using mtDNA-cytB PCR-RFLP and then the human fed specimens were tested for ABO groups using multiplex allele-specific PCR. A total of 409 human blood samples were identified, of which 150(36.7%) were 'O' group followed by 113(27.6%), 109(26.7%), and 37(9.0%) of A, B, and AB groups respectively. Analyzing of 95 blood fed mosquitoes revealed that only four Anopheles stephensi had fed human blood with A(1), B(1), and AB(2) groups. Result of this study revealed high prevalence of O group in south of Iran. To our knowledge, it is the first ABO molecular typing of blood meal in mosquitoes; however, due to low number of human blood fed specimens, ABO host choice of the mosquitoes remains unknown. This study revealed that ABO blood preference of malaria vectors and other arthropod vectors deserves future research. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Is the current decline in malaria burden in sub-Saharan Africa due to a decrease in vector population?

    DEFF Research Database (Denmark)

    Meyrowitsch, Dan Wolf; Pedersen, Erling Møller; Alifrangis, Michael

    2011-01-01

    ) and between 2003 and 2009 (2nd period), mosquitoes were collected weekly in 50 households using CDC light traps. Data on rainfall were obtained from the nearby climate station and was used to analyze the association between monthly rainfall and malaria mosquito populations. RESULTS: The average number...... of Anopheles gambiae and Anopheles funestus per trap decreased by 76.8% and 55.3%, respectively over the 1st period, and by 99.7% and 99.8% over the 2nd period. During the last year of sampling (2009), the use of 2368 traps produced a total of only 14 Anopheline mosquitoes. With the exception of the decline...... in An. gambiae during the 1st period, the results did not reveal any statistical association between mean trend in monthly rainfall and declining malaria vector populations. CONCLUSION: A longitudinal decline in the density of malaria mosquito vectors was seen during both study periods despite...

  11. Interventions that effectively target Anopheles funestus mosquitoes could significantly improve control of persistent malaria transmission in south-eastern Tanzania.

    Science.gov (United States)

    Kaindoa, Emmanuel W; Matowo, Nancy S; Ngowo, Halfan S; Mkandawile, Gustav; Mmbando, Arnold; Finda, Marcelina; Okumu, Fredros O

    2017-01-01

    Malaria is transmitted by many Anopheles species whose proportionate contributions vary across settings. We re-assessed the roles of Anopheles arabiensis and Anopheles funestus, and examined potential benefits of species-specific interventions in an area in south-eastern Tanzania, where malaria transmission persists, four years after mass distribution of long-lasting insecticide-treated nets (LLINs). Monthly mosquito sampling was done in randomly selected households in three villages using CDC light traps and back-pack aspirators, between January-2015 and January-2016, four years after the last mass distribution of LLINs in 2011. Multiplex polymerase chain reaction (PCR) was used to identify members of An. funestus and Anopheles gambiae complexes. Enzyme-linked immunosorbent assay (ELISA) was used to detect Plasmodium sporozoites in mosquito salivary glands, and to identify sources of mosquito blood meals. WHO susceptibility assays were done on wild caught female An. funestus s.l, and physiological ages approximated by examining mosquito ovaries for parity. A total of 20,135 An. arabiensis and 4,759 An. funestus were collected. The An. funestus group consisted of 76.6% An. funestus s.s, 2.9% An. rivulorum, 7.1% An. leesoni, and 13.4% unamplified samples. Of all mosquitoes positive for Plasmodium, 82.6% were An. funestus s.s, 14.0% were An. arabiensis and 3.4% were An. rivulorum. An. funestus and An. arabiensis contributed 86.21% and 13.79% respectively, of annual entomological inoculation rate (EIR). An. arabiensis fed on humans (73.4%), cattle (22.0%), dogs (3.1%) and chicken (1.5%), but An. funestus fed exclusively on humans. The An. funestus populations were 100% susceptible to organophosphates, pirimiphos methyl and malathion, but resistant to permethrin (10.5% mortality), deltamethrin (18.7%), lambda-cyhalothrin (18.7%) and DDT (26.2%), and had reduced susceptibility to bendiocarb (95%) and propoxur (90.1%). Parity rate was higher in An. funestus (65.8%) than

  12. Interventions that effectively target Anopheles funestus mosquitoes could significantly improve control of persistent malaria transmission in south–eastern Tanzania

    Science.gov (United States)

    Matowo, Nancy S.; Ngowo, Halfan S.; Mkandawile, Gustav; Mmbando, Arnold; Finda, Marcelina; Okumu, Fredros O.

    2017-01-01

    Malaria is transmitted by many Anopheles species whose proportionate contributions vary across settings. We re-assessed the roles of Anopheles arabiensis and Anopheles funestus, and examined potential benefits of species-specific interventions in an area in south-eastern Tanzania, where malaria transmission persists, four years after mass distribution of long-lasting insecticide-treated nets (LLINs). Monthly mosquito sampling was done in randomly selected households in three villages using CDC light traps and back-pack aspirators, between January-2015 and January-2016, four years after the last mass distribution of LLINs in 2011. Multiplex polymerase chain reaction (PCR) was used to identify members of An. funestus and Anopheles gambiae complexes. Enzyme-linked immunosorbent assay (ELISA) was used to detect Plasmodium sporozoites in mosquito salivary glands, and to identify sources of mosquito blood meals. WHO susceptibility assays were done on wild caught female An. funestus s.l, and physiological ages approximated by examining mosquito ovaries for parity. A total of 20,135 An. arabiensis and 4,759 An. funestus were collected. The An. funestus group consisted of 76.6% An. funestus s.s, 2.9% An. rivulorum, 7.1% An. leesoni, and 13.4% unamplified samples. Of all mosquitoes positive for Plasmodium, 82.6% were An. funestus s.s, 14.0% were An. arabiensis and 3.4% were An. rivulorum. An. funestus and An. arabiensis contributed 86.21% and 13.79% respectively, of annual entomological inoculation rate (EIR). An. arabiensis fed on humans (73.4%), cattle (22.0%), dogs (3.1%) and chicken (1.5%), but An. funestus fed exclusively on humans. The An. funestus populations were 100% susceptible to organophosphates, pirimiphos methyl and malathion, but resistant to permethrin (10.5% mortality), deltamethrin (18.7%), lambda-cyhalothrin (18.7%) and DDT (26.2%), and had reduced susceptibility to bendiocarb (95%) and propoxur (90.1%). Parity rate was higher in An. funestus (65.8%) than

  13. INKRIMINASI VEKTOR MALARIA DAN IDENTIFIKASI PAKAN DARAH PADA NYAMUK AnopHELEs SPP DI KECAMATAN BOROBUDUR, KABUPATEN MAGELANG

    Directory of Open Access Journals (Sweden)

    Umi Widyastuti

    2013-12-01

    abdomennya, dipencet di atas kertas Whatman dan digunakan  untuk  ELISA  pakan  darah.  Hasil  penelitian  menunjukkan  bahwa An.  aconitus  rentan  terhadap P. falciparum dengan angka sporozoit sebesar 0,07 % di Giripurno dan sporozoit P. vivax tidak ditemukan, sedangkan di Giritengah, An. balabacensis rentan terhadap P. falciparum dengan angka sporozoit 4,17 % dan sporozoit P. vivax tidak ditemukan. Proporsi An. aconitus menghisap darah manusia (HBI sebesar 10,34 % di Giripurno dan 5,97 % di Giritengah. An balabacensis dan An. barbirostris menunjukkan HBI sebesar 37,50 % dan 5,88% di Giritengah. Angka paritas dan kepadatan An. aconitus di Giripurno relatif lebih tinggi dibanding di Giritengah, sebaliknya An. balabacensis lebih tinggi di Giritengah dibanding di Giripurno.Kata kunci: malaria, Elisa sporozoit, Elisa pakan darah.AbstractMalaria is still a health problem in Magelang Regency, especially in the Borobudur Subdistrict. The Annual Parasite Incidence (API in the last two years were 0.19 in 2004 and increased 0.34 in 2005, were considered as malarious areas with Low Case Incidence (LCI. The increase of malaria cases in Borobudur Subdistrict is related to the presence of Anopheline mosquitoes which serve as potential vector. The vectorial competence of Anopheline mosquitoes in Borobudur Subdistrict has not been reported yet. Several species such as Anopheles aconitus, An. maculatus, An. barbirostris and An. balabacensis are suspected as potential malaria vectors in this area. The objective of this study was to determine the Anophelene mosquitoes susceptibility to Plasmodia and its anthropophilic characteristic. The susceptibility of mosquito to Plasmodia was measured by detection of sporozoite protein antigen (Circum Sporozoite Protein/ CSP of P. falciparum or P. vivax on the head-thorax of all parous mosquitoes. The anthropophilic characteristic was measured by detection of human blood on the abdomen of blood fed and half gravid mosquitoes. Both of these

  14. Multiple insecticide resistance mechanisms involving metabolic changes and insensitive target sites selected in anopheline vectors of malaria in Sri Lanka

    Directory of Open Access Journals (Sweden)

    Karunaratne SHP Parakrama

    2008-08-01

    Full Text Available Abstract Background The current status of insecticide resistance and the underlying resistance mechanisms were studied in the major vector of malaria, Anopheles culicifacies, and the secondary vector, Anopheles subpictus in five districts (Anuradhapura, Kurunegala, Moneragala, Puttalam and Trincomalee of Sri Lanka. Eight other anophelines, Anopheles annularis, Anopheles barbirostris, Anopheles jamesii, Anopheles nigerrimus, Anopheles peditaeniatus, Anopheles tessellatus, Anopheles vagus and Anopheles varuna from Anuradhapura district were also tested. Methods Adult females were exposed to the WHO discriminating dosages of DDT, malathion, fenitrothion, propoxur, λ-cyhalothrin, cyfluthrin, cypermethrin, deltamethrin, permethrin and etofenprox. The presence of metabolic resistance by esterase, glutathione S-transferase (GST and monooxygenase-based mechanisms, and the sensitivity of the acetylcholinesterase target site were assessed using synergists, and biochemical, and metabolic techniques. Results All the anopheline species had high DDT resistance. All An. culicifacies and An. subpictus populations were resistant to malathion, except An. culicifacies from Kurunegala, where there was no malathion carboxylesterase activity. Kurunegala and Puttalam populations of An. culicifacies were susceptible to fenitrothion. All the An. culicifacies populations were susceptible to carbamates. Both species were susceptible to the discriminating dosages of cypermethrin and cyfluthrin, but had different levels of resistance to other pyrethroids. Of the 8 other anophelines, only An. nigerrimus and An. peditaeniatus were resistant to all the insecticides tested, probably due to their high exposure to the insecticides used in agriculture. An. vagus showed some resistance to permethrin. Esterases, GSTs and monooxygenases were elevated in both An. culicifacies and An. subpictus. AChE was most sensitive to insecticides in Kurunegala and Trincomalee An. culicifacies

  15. Molecular biological approaches to the study of vectors in relation to malaria control

    Directory of Open Access Journals (Sweden)

    J. M. Crampton

    1992-01-01

    Full Text Available To a large extent, control of malaria vectors relies on the elimination of breeding sites and the application of chemical agents. There are increasing problems associated with the use of synthetic insecticides for vector control, including the evolution of resistance, the high cost of developing and registering new insecticides and an awareness of pollution from insecticide residues. These factors have stimulated interest in the application of molecular biology to the study of mosquito vectors of malaria; focussing primarily on two aspects. First, the improvement of existing control measures through the development of simplified DNA probe systems suitable for identification of vectors of malaria. The development of synthetic, non-radioactive DNA probes suitable for identification of species in the Anopheles gambiae complex is described with the aim of defining a simplified methodology wich is suitable for entomologist in the field. The second aspect to be considered is the development of completely novel strategies through the development of completely novel strategies through the genetic manipulation of insect vectors of malaria in order to alter their ability to transmit the disease. The major requirements for producing transgenic mosquitoes are outlined together with the progress wich has been made to date and discussed in relation to the prospects which this type of approach has for the future control of malaria.

  16. Molecular identification of a myosuppressin receptor from the malaria mosquito Anopheles gambiae

    DEFF Research Database (Denmark)

    Schöller, Susanne; Belmont, Martin; Cazzamali, Giuseppe

    2005-01-01

    The insect myosuppressins (X1DVX2HX3FLRFamide) are neuropeptides that generally block insect muscle activities. We have used the genomic sequence information from the malaria mosquito Anopheles gambiae Genome Project to clone a G protein-coupled receptor that was closely related to the two...... previously cloned and characterized myosuppressin receptors from Drosophila [Proc. Natl. Acad. Sci. USA 100 (2003) 9808]. The mosquito receptor cDNA was expressed in Chinese hamster ovary cells and was found to be activated by low concentrations of Anopheles myosuppressin (TDVDHVFLRFamide; EC50, 1.6 x 10...... identification of a mosquito neuropeptide receptor....

  17. Life on the edge: African malaria mosquito (Anopheles gambiae s. l.) larvae are amphibious.

    Science.gov (United States)

    Miller, James R; Huang, Juan; Vulule, John; Walker, Edward D

    2007-03-01

    Anopheles gambiae s.l. is the main vector of malaria in Sub-Saharan Africa. Here, an estimated 1 million people die every year from this disease. Despite considerable research on An. gambiae that increasingly explores sub-organismal phenomena, important facets of the field biology of this deadly insect are yet being discovered. In the current study, we used simple observational tools to reveal that the habitat of larval An. gambiae is not limited within the boundaries of temporary mud puddles, as has been the accepted generalization. Thus, control tactics aimed at immatures must consider zones larger than puddles per se. In fact, eggs are more likely to be found outside than inside puddles. Eggs can develop and larvae can emerge on mud. Larvae are then capable of three distinct modes of terrestrial displacement (two active and one passive), whereby, they can reach standing water. On mud bearing a film of water, larvae actively displace backwards by sinusoidal undulations shown to be only a slight variation of the swimming motor program. On drying mud, larvae switch to a slower and forward form of active locomotion resembling that of a crawling caterpillar. During rains, small larvae may be passively displaced by flowing rainwater so as to be deposited into puddles. These capabilities for being amphibious, along with very rapid growth and development, help explain how An. gambiae thrives in a highly uncertain and often hostile larval environment.

  18. Thermal behaviour of Anopheles stephensi in response to infection with malaria and fungal entomopathogens

    Directory of Open Access Journals (Sweden)

    Read Andrew F

    2009-04-01

    Full Text Available Abstract Background Temperature is a critical determinant of the development of malaria parasites in mosquitoes, and hence the geographic distribution of malaria risk, but little is known about the thermal preferences of Anopheles. A number of other insects modify their thermal behaviour in response to infection. These alterations can be beneficial for the insect or for the infectious agent. Given current interest in developing fungal biopesticides for control of mosquitoes, Anopheles stephensi were examined to test whether mosquitoes showed thermally-mediated behaviour in response to infection with fungal entomopathogens and the rodent malaria, Plasmodium yoelii. Methods Over two experiments, groups of An. stephensi were infected with one of three entomopathogenic fungi, and/or P. yoelii. Infected and uninfected mosquitoes were released on to a thermal gradient (14 – 38°C for "snapshot" assessments of thermal preference during the first five days post-infection. Mosquito survival was monitored for eight days and, where appropriate, oocyst prevalence and intensity was assessed. Results and conclusion Both infected and uninfected An. stephensi showed a non-random distribution on the gradient, indicating some capacity to behaviourally thermoregulate. However, chosen resting temperatures were not altered by any of the infections. There is thus no evidence that thermally-mediated behaviours play a role in determining malaria prevalence or that they will influence the performance of fungal biopesticides against adult Anopheles.

  19. Characteristics of malaria vector breeding habitats in Sri Lanka: relevance for environmental management

    DEFF Research Database (Denmark)

    Hoek, Wim van der; Amerasinghe, F P; Konradsen, F

    1998-01-01

    , potential secondary vectors, were characterized by site, exposure to sunlight, substratum, turbidity of the water, presence of vegetation, and presence of fauna. Availability of pools of stagnant water in the stream near the village and along the edge of the village tank was highly predictive for presence......In and around a village in the Anuradhapura District of Sri Lanka anopheline larvae were sampled from July 1994 to April 1996 in all surface water bodies. Samples positive for Anopheles culicifacies, the established vector of malaria in Sri Lanka, and for An. barbirostris, An. vagus, and An. varuna...... clear water pools, was able to exploit habitats that were shaded and contained turbid water. Environmental management interventions to control An. culicifacies breeding have to take into account that the secondary vectors of malaria exploit other habitats and would not be affected by the interventions....

  20. Present habitat suitability for Anopheles atroparvus (Diptera, Culicidae and its coincidence with former malaria areas in mainland Portugal

    Directory of Open Access Journals (Sweden)

    César Capinha

    2009-05-01

    Full Text Available Malaria was a major health problem in the first half of the 20th Century in mainland Portugal. Nowadays, although the disease is no longer endemic, there is still the risk of future endemic infections due to the continuous occurrence of imported cases and the possibility of transmission in the country by Anopheles atroparvus Van Thiel, 1927. Since vector abundance constitute one of the foremost factors in malaria transmission, we have created several habitat suitability models to describe this vector species’ current distribution. Three different correlative models; namely (i a multilayer perceptron artificial neural network (MLP-ANN; (ii binary logistic regression (BLR; and (iii Mahalanobis distance were used to combine the species records with a set of five environmental predictors. Kappa coefficient values from k-fold cross-validation records showed that binary logistic regression produced the best predictions, while the other two models also produced acceptable results. Therefore, in order to reduce uncertainty, the three suitability models were combined. The resulting model identified high suitability for An. atroparvus in the majority of the country with exception of the northern and central coastal areas. Malaria distribution during the last endemic period in the country was also compared with the combined suitability model, and a high degree of spatial agreement was obtained (kappa = 0.62. It was concluded that habitat suitability for malaria vectors can constitute valuable information on the assessment of several spatial attributes of the disease. In addition, the results suggest that the spatial distribution of An. atroparvus in the country remains very similar to the one known about seven decades ago.

  1. Malaria vector composition and insecticide susceptibility status in Guinea Conakry, West Africa.

    Science.gov (United States)

    Vezenegho, S B; Brooke, B D; Hunt, R H; Coetzee, M; Koekemoer, L L

    2009-12-01

    This study provides data on malaria vector species composition and insecticide susceptibility status from three localities in Guinea Conakry. A total of 497 mosquitoes were collected resting indoors and morphologically identified as belonging to the Anopheles gambiae complex. The majority of these were An. gambiae s.s. (99.6%), but a small percentage (0.4%) were identified as Anopheles arabiensis. Thirty-four Anopheles funestus s.s. were also collected. The molecular S form of An. gambiae s.s. was predominant over the M form in Siguiri (95%) and Boffa (97.4%), whereas at Mt Nimba the M form was more abundant (61.4%) than the S form (38.1%). One hybrid M/S specimen was recorded from Mt Nimba. Siguiri populations showed high levels of resistance to DDT, dieldrin and bendiocarb. Anopheles gambiae from Boffa were largely susceptible to the insecticides tested. At Mt Nimba, resistance to DDT and bendicocarb was detected. Biochemical enzyme analysis showed that an altered acetylcholinesterase is operating in the field at low levels. The frequency of the 1014F kdr allele in the An. gambiae S form was 0.24 at Siguiri and 0.14 at Mt Nimba. A single RR specimen was found in the M form. The heterogeneity in species composition and resistance profiles between sites requires vector control interventions to be tailored to each site based on the data collected from ongoing monitoring and surveillance.

  2. Larvicidal effects of Jatropha curcas L. against Anopheles arabiensis

    African Journals Online (AJOL)

    Bheema

    Key words: Malaria vector control, Anopheles arabiensis, Botanical larvicides J. curcas. 1. ... The white latex serves as a disinfectant in mouth .... distilled water to serve as a negative control solution for larvicidal bioassays involving test.

  3. Efficacy of local neem extracts for sustainable malaria vector control in an African village

    Directory of Open Access Journals (Sweden)

    Duchemin Jean-Bernard

    2008-07-01

    Full Text Available Abstract Background Larval control of malaria vectors has been historically successful in reducing malaria transmission, but largely fell out of favour with the introduction of synthetic insecticides and bed nets. However, an integrated approach to malaria control, including larval control methods, continues to be the best chance for success, in view of insecticide resistance, the behavioural adaptation of the vectors to changing environments and the difficulties of reaching the poorest populations most at risk,. Laboratory studies investigating the effects of neem seed (Azadirachta indica extracts on Anopheles larvae have shown high rates of larval mortality and reductions in adult longevity, as well as low potential for resistance development. Methods This paper describes a method whereby seeds of the neem tree can be used to reduce adult Anopheles gambiae s.l. abundance in a way that is low cost and can be implemented by residents of rural villages in western Niger. The study was conducted in Banizoumbou village, western Niger. Neem seeds were collected from around the village. Dried seeds were ground into a coarse powder, which was then sprinkled onto known Anopheles larvae breeding habitats twice weekly during the rainy season 2007. Adult mosquitoes were captured on a weekly basis in the village and captures compared to those from 2005 and 2006 over the same period. Adult mosquitoes were also captured in a nearby village, Zindarou, as a control data set and compared to those from Banizoumbou. Results It was found that twice-weekly applications of the powder to known breeding habitats of Anopheles larvae in 2007 resulted in 49% fewer adult female Anopheles gambiae s.l. mosquitoes in Banizoumbou, compared with previous captures under similar environmental conditions and with similar habitat characteristics in 2005 and 2006. The productivity of the system in 2007 was found to be suppressed compared to the mean behaviour of 2005 and 2006 in

  4. The decline of malaria in Finland – the impact of the vector and social variables

    Directory of Open Access Journals (Sweden)

    Hulden Larry

    2009-05-01

    Full Text Available Abstract Background Malaria was prevalent in Finland in the 18th century. It declined slowly without deliberate counter-measures and the last indigenous case was reported in 1954. In the present analysis of indigenous malaria in Finland, an effort was made to construct a data set on annual malaria cases of maximum temporal length to be able to evaluate the significance of different factors assumed to affect malaria trends. Methods To analyse the long-term trend malaria statistics were collected from 1750–2008. During that time, malaria frequency decreased from about 20,000 – 50,000 per 1,000,000 people to less than 1 per 1,000,000 people. To assess the cause of the decline, a correlation analysis was performed between malaria frequency per million people and temperature data, animal husbandry, consolidation of land by redistribution and household size. Results Anopheles messeae and Anopheles beklemishevi exist only as larvae in June and most of July. The females seek an overwintering place in August. Those that overwinter together with humans may act as vectors. They have to stay in their overwintering place from September to May because of the cold climate. The temperatures between June and July determine the number of malaria cases during the following transmission season. This did not, however, have an impact on the long-term trend of malaria. The change in animal husbandry and reclamation of wetlands may also be excluded as a possible cause for the decline of malaria. The long-term social changes, such as land consolidation and decreasing household size, showed a strong correlation with the decline of Plasmodium. Conclusion The indigenous malaria in Finland faded out evenly in the whole country during 200 years with limited or no counter-measures or medication. It appears that malaria in Finland was basically a social disease and that malaria trends were strongly linked to changes in human behaviour. Decreasing household size caused

  5. Insecticide resistance testing in malaria vectors in Tanzania ...

    African Journals Online (AJOL)

    mosquito survived much better and the scientists had a total of 467 mosquitoes to run the insecticide susceptibility tests. Innovative ways are necessary under field conditions for mosquito breeding in susceptibility studies. Key words: Malaria, Anopheles gambiae complex, larvae, fabric, resistance, susceptibility, Tanzania.

  6. MalariaSphere: A greenhouse-enclosed simulation of a natural Anopheles gambiae (Diptera: Culicidae ecosystem in western Kenya

    Directory of Open Access Journals (Sweden)

    Mukabana Wolfgang R

    2002-12-01

    Full Text Available Abstract Background The development and implementation of innovative vector control strategies for malaria control in Africa requires in-depth ecological studies in contained semi-field environments. This particularly applies to the development and release of genetically-engineered vectors that are refractory to Plasmodium infection. Here we describe a modified greenhouse, designed to simulate a natural Anopheles gambiae Giles ecosystem, and the first successful trials to complete the life-cycle of this mosquito vector therein. Methods We constructed a local house, planted crops and created breeding sites to simulate the natural ecosystem of this vector in a screen-walled greenhouse, exposed to ambient climate conditions, in western Kenya. Using three different starting points for release (blood-fed females, virgin females and males, or eggs, we allowed subsequent stages of the life-cycle to proceed under close observation until one cycle was completed. Results Completion of the life-cycle was observed in all three trials, indicating that the major life-history behaviours (mating, sugar feeding, oviposition and host seeking occurred successfully. Conclusion The system described can be used to study the behavioural ecology of laboratory-reared and wild mosquitoes, and lends itself to contained studies on the stability of transgenes, fitness effects and phenotypic characteristics of genetically-engineered disease vectors. The extension of this approach, to enable continuous maintenance of successive and overlapping insect generations, should be prioritised. Semi-field systems represent a promising means to significantly enhance our understanding of the behavioural and evolutionary ecology of African malaria vectors and our ability to develop and evaluate innovative control strategies. With regard to genetically-modified mosquitoes, development of such systems is an essential prerequisite to full field releases.

  7. A global map of dominant malaria vectors

    Directory of Open Access Journals (Sweden)

    Sinka Marianne E

    2012-04-01

    Full Text Available Abstract Background Global maps, in particular those based on vector distributions, have long been used to help visualise the global extent of malaria. Few, however, have been created with the support of a comprehensive and extensive evidence-based approach. Methods Here we describe the generation of a global map of the dominant vector species (DVS of malaria that makes use of predicted distribution maps for individual species or species complexes. Results Our global map highlights the spatial variability in the complexity of the vector situation. In Africa, An. gambiae, An. arabiensis and An. funestus are co-dominant across much of the continent, whereas in the Asian-Pacific region there is a highly complex situation with multi-species coexistence and variable species dominance. Conclusions The competence of the mapping methodology to accurately portray DVS distributions is discussed. The comprehensive and contemporary database of species-specific spatial occurrence (currently available on request will be made directly available via the Malaria Atlas Project (MAP website from early 2012.

  8. Predictions of malaria vector distribution in Belize based on multispectral satellite data.

    Science.gov (United States)

    Roberts, D R; Paris, J F; Manguin, S; Harbach, R E; Woodruff, R; Rejmankova, E; Polanco, J; Wullschleger, B; Legters, L J

    1996-03-01

    Use of multispectral satellite data to predict arthropod-borne disease trouble spots is dependent on clear understandings of environmental factors that determine the presence of disease vectors. A blind test of remote sensing-based predictions for the spatial distribution of a malaria vector, Anopheles pseudopunctipennis, was conducted as a follow-up to two years of studies on vector-environmental relationships in Belize. Four of eight sites that were predicted to be high probability locations for presence of An. pseudopunctipennis were positive and all low probability sites (0 of 12) were negative. The absence of An. pseudopunctipennis at four high probability locations probably reflects the low densities that seem to characterize field populations of this species, i.e., the population densities were below the threshold of our sampling effort. Another important malaria vector, An. darlingi, was also present at all high probability sites and absent at all low probability sites. Anopheles darlingi, like An. pseudopunctipennis, is a riverine species. Prior to these collections at ecologically defined locations, this species was last detected in Belize in 1946.

  9. Evaluation of new tools for malaria vector control in Cameroon: focus on long lasting insecticidal nets.

    Science.gov (United States)

    Etang, Josiane; Nwane, Philippe; Piameu, Michael; Manga, Blaise; Souop, Daniel; Awono-Ambene, Parfait

    2013-01-01

    From 2006 to 2011, biological activity of insecticides for Indoor Residual Spraying (IRS), conventional treatment of nets (CTNs) or long lasting insecticidal nets (LLINs) was evaluated before their approval in Cameroon. The objective of the study was to select the best tools for universal malaria vector control coverage. Bioassays were performed using WHO cones and the Kisumu susceptible strain of Anopheles gambiae s.s.. Among tested products, residual activity and wash resistance of Alpha-cypermethrin LLINs (Interceptor) and CTNs (Fendona) were assessed during 5 months in the Ntougou neighborhood. All the 14 tested products were found effective (95-100% knockdown and mortality rates), although a significant decrease of efficacy was seen with lambda-cyhalothrinWP IRS, alpha-cypermethrin CTNs and LLINs (peducation toward universal coverage of malaria vector control in Cameroon.

  10. Bionomics of Anopheles latens in Kapit, Sarawak, Malaysian Borneo in relation to the transmission of zoonotic simian malaria parasite Plasmodium knowlesi

    Directory of Open Access Journals (Sweden)

    Matusop Asmad

    2008-03-01

    Full Text Available Abstract Background A large focus of human infections with Plasmodium knowlesi, a simian parasite naturally found in long-tailed and pig-tailed macaques was discovered in the Kapit Division of Sarawak, Malaysian Borneo. A study was initiated to identify the vectors of malaria, to elucidate where transmission is taking place and to understand the bionomics of the vectors in Kapit. Methods Three different ecological sites in the forest, farm and longhouse in the Kapit district were selected for the study. Mosquitoes were collected by human landing collection at all sites and at the forest also by monkey-baited-traps situated on three different levels. All mosquitoes were identified and salivary glands and midguts of anopheline mosquitoes were dissected to determine the presence of malaria parasites. Results and Discussions Over an 11-month period, a total of 2,504 Anopheles mosquitoes comprising 12 species were caught; 1,035 at the farm, 774 at the forest and 425 at the longhouse. Anopheles latens (62.3% and Anopheles watsonii (30.6% were the predominant species caught in the forested ecotypes, while in the farm Anopheles donaldi (49.9% and An. latens (35.6% predominated. In the long house, An. latens (29.6% and An. donaldi (22.8% were the major Anopheline species. However, An. latens was the only mosquito positive for sporozoites and it was found to be attracted to both human and monkey hosts. In monkey-baited net traps, it preferred to bite monkeys at the canopy level than at ground level. An. latens was found biting early as 18.00 hours. Conclusion Anopheles latens is the main vector for P. knowlesi malaria parasites in the Kapit District of Sarawak, Malaysian Borneo. The study underscores the relationship between ecology, abundance and bionomics of anopheline fauna. The simio-anthropophagic and acrodendrophilic behaviour of An. latens makes it an efficient vector for the transmission of P. knowlesi parasites to both human and monkey hosts.

  11. Bionomics of Anopheles latens in Kapit, Sarawak, Malaysian Borneo in relation to the transmission of zoonotic simian malaria parasite Plasmodium knowlesi

    Science.gov (United States)

    Tan, Cheong H; Vythilingam, Indra; Matusop, Asmad; Chan, Seng T; Singh, Balbir

    2008-01-01

    Background A large focus of human infections with Plasmodium knowlesi, a simian parasite naturally found in long-tailed and pig-tailed macaques was discovered in the Kapit Division of Sarawak, Malaysian Borneo. A study was initiated to identify the vectors of malaria, to elucidate where transmission is taking place and to understand the bionomics of the vectors in Kapit. Methods Three different ecological sites in the forest, farm and longhouse in the Kapit district were selected for the study. Mosquitoes were collected by human landing collection at all sites and at the forest also by monkey-baited-traps situated on three different levels. All mosquitoes were identified and salivary glands and midguts of anopheline mosquitoes were dissected to determine the presence of malaria parasites. Results and Discussions Over an 11-month period, a total of 2,504 Anopheles mosquitoes comprising 12 species were caught; 1,035 at the farm, 774 at the forest and 425 at the longhouse. Anopheles latens (62.3%) and Anopheles watsonii (30.6%) were the predominant species caught in the forested ecotypes, while in the farm Anopheles donaldi (49.9%) and An. latens (35.6%) predominated. In the long house, An. latens (29.6%) and An. donaldi (22.8%) were the major Anopheline species. However, An. latens was the only mosquito positive for sporozoites and it was found to be attracted to both human and monkey hosts. In monkey-baited net traps, it preferred to bite monkeys at the canopy level than at ground level. An. latens was found biting early as 18.00 hours. Conclusion Anopheles latens is the main vector for P. knowlesi malaria parasites in the Kapit District of Sarawak, Malaysian Borneo. The study underscores the relationship between ecology, abundance and bionomics of anopheline fauna. The simio-anthropophagic and acrodendrophilic behaviour of An. latens makes it an efficient vector for the transmission of P. knowlesi parasites to both human and monkey hosts. PMID:18377652

  12. High annual and seasonal variations in malaria transmission by anophelines and vector species composition in Dielmo, a holoendemic area in Senegal

    OpenAIRE

    Fontenille, Didier; Lochouarn, Laurence; Diagne, N.; Sokhna, Cheik Sadibou; Lemasson, Jean-Jacques; Diatta, Mathurin; Konaté, L.; Faye, Faye; Rogier, C.; Trape, Jean-François

    1997-01-01

    We conducted a three-year entomologic study in Dielmo, a village of 250 inhabitants in a holoendemic area for malaria in Senegal. Anophelines were captured on human bait and by pyrethrum spray collections. The mosquitoes belonging to the #Anopheles gambiae$ complex were identified using the polymerase chain reaction. Malaria vectors captured were #An. funestus$, #An. arabiensis$, and #An. gambiae$. #An. funestus$ was the most abundant mosquito captured the first year, #An. arabiensis$ in the ...

  13. Maternal environment shapes the life history and susceptibility to malaria of Anopheles gambiae mosquitoes

    Directory of Open Access Journals (Sweden)

    Lorenz Lena M

    2011-12-01

    Full Text Available Abstract Background It is becoming generally recognized that an individual's phenotype can be shaped not only by its own genotype and environmental experience, but also by its mother's environment and condition. Maternal environmental factors can influence mosquitoes' population dynamics and susceptibility to malaria, and therefore directly and indirectly the epidemiology of malaria. Methods In a full factorial experiment, the effects of two environmental stressors - food availability and infection with the microsporidian parasite Vavraia culicis - of female mosquitoes (Anopheles gambiae sensu stricto on their offspring's development, survival and susceptibility to malaria were studied. Results The offspring of A. gambiae s.s. mothers infected with V. culicis developed into adults more slowly than those of uninfected mothers. This effect was exacerbated when mothers were reared on low food. Maternal food availability had no effect on the survival of their offspring up to emergence, and microsporidian infection decreased survival only slightly. Low food availability for mothers increased and V. culicis-infection of mothers decreased the likelihood that the offspring fed on malaria-infected blood harboured malaria parasites (but neither maternal treatment influenced their survival up to dissection. Conclusions Resource availability and infection with V. culicis of A. gambiae s.s. mosquitoes not only acted as direct environmental stimuli for changes in the success of one generation, but could also lead to maternal effects. Maternal V. culicis infection could make offspring more resistant and less likely to transmit malaria, thus enhancing the efficacy of the microsporidian for the biological control of malaria.

  14. Biting behaviour of African malaria vectors: 1. where do the main vector species bite on the human body?

    Science.gov (United States)

    Braack, Leo; Hunt, Richard; Koekemoer, Lizette L; Gericke, Anton; Munhenga, Givemore; Haddow, Andrew D; Becker, Piet; Okia, Michael; Kimera, Isaac; Coetzee, Maureen

    2015-02-04

    Malaria control in Africa relies heavily on indoor vector management, primarily indoor residual spraying and insecticide treated bed nets. Little is known about outdoor biting behaviour or even the dynamics of indoor biting and infection risk of sleeping household occupants. In this paper we explore the preferred biting sites on the human body and some of the ramifications regarding infection risk and exposure management. We undertook whole-night human landing catches of Anopheles arabiensis in South Africa and Anopheles gambiae s.s. and Anopheles funestus in Uganda, for seated persons wearing short sleeve shirts, short pants, and bare legs, ankles and feet. Catches were kept separate for different body regions and capture sessions. All An. gambiae s.l. and An. funestus group individuals were identified to species level by PCR. Three of the main vectors of malaria in Africa (An. arabiensis, An. gambiae s.s. and An. funestus) all have a preference for feeding close to ground level, which is manifested as a strong propensity (77.3% - 100%) for biting on lower leg, ankles and feet of people seated either indoors or outdoors, but somewhat randomly along the lower edge of the body in contact with the surface when lying down. If the lower extremities of the legs (below mid-calf level) of seated people are protected and therefore exclude access to this body region, vector mosquitoes do not move higher up the body to feed at alternate body sites, instead resulting in a high (58.5% - 68.8%) reduction in biting intensity by these three species. Protecting the lower limbs of people outdoors at night can achieve a major reduction in biting intensity by malaria vector mosquitoes. Persons sleeping at floor level bear a disproportionate risk of being bitten at night because this is the preferred height for feeding by the primary vector species. Therefore it is critical to protect children sleeping at floor level (bednets; repellent-impregnated blankets or sheets, etc

  15. The vertical dispersión of Anopheles (Kerteszia cruzi in a forest in southern Brazil suggests that human cases of malaria of simian origin might be expected

    Directory of Open Access Journals (Sweden)

    Leonidas M. Deane

    1984-12-01

    Full Text Available By staining females of Anopheles cruzi with fluorescent coloured powders in a forest in the State of Santa Catarina, we showed that they move from canopy to ground and vice-versa to feed. This suggests that in areas where this mosquito is a vector of human and simian malarias sporadic infections of man with monkey plasmodia might be expected.Pintando fêmeas de Anopheles cruzi com pós fluorescentes coloridos, numa floresta de Santa Catarina, mostramos que elas movimentam-se da copa ao solo e vice-versa para se alimentar de sangue. Isso sugere que em áreas onde esse mosquito for tansmissor das malárias humana e simiana pode-se esperar que ocorram infecções humanas esporádicas por plasmódios de macacos.

  16. Extensive circadian and light regulation of the transcriptome in the malaria mosquito Anopheles gambiae

    Science.gov (United States)

    2013-01-01

    Background Mosquitoes exhibit 24 hr rhythms in flight activity, feeding, reproduction and development. To better understand the molecular basis for these rhythms in the nocturnal malaria vector Anopheles gambiae, we have utilized microarray analysis on time-of-day specific collections of mosquitoes over 48 hr to explore the coregulation of gene expression rhythms by the circadian clock and light, and compare these with the 24 hr rhythmic gene expression in the diurnal Aedes aegypti dengue vector mosquito. Results In time courses from An. gambiae head and body collected under light:dark cycle (LD) and constant dark (DD) conditions, we applied three algorithms that detect sinusoidal patterns and an algorithm that detects spikes in expression. This revealed across four experimental conditions 393 probes newly scored as rhythmic. These genes correspond to functions such as metabolic detoxification, immunity and nutrient sensing. This includes glutathione S-transferase GSTE5, whose expression pattern and chromosomal location are shared with other genes, suggesting shared chromosomal regulation; and pulsatile expression of the gene encoding CYP6M2, a cytochrome P450 that metabolizes pyrethroid insecticides. We explored the interaction of light and the circadian clock and highlight the regulation of odorant binding proteins (OBPs), important components of the olfactory system. We reveal that OBPs have unique expression patterns as mosquitoes make the transition from LD to DD conditions. We compared rhythmic expression between An. gambiae and Ae. aegypti heads collected under LD conditions using a single cosine fitting algorithm, and report distinct similarities and differences in the temporal regulation of genes involved in tRNA priming, the vesicular-type ATPase, olfaction and vision between the two species. Conclusions These data build on our previous analyses of time-of-day specific regulation of the An. gambiae transcriptome to reveal additional rhythmic genes, an

  17. Host feeding patterns and preference of Anopheles minimus (Diptera: Culicidae in a malaria endemic area of western Thailand: baseline site description

    Directory of Open Access Journals (Sweden)

    Tisgratog Rungarun

    2012-06-01

    Full Text Available Abstract Background Host feeding patterns of Anopheles minimus in relation to ambient environmental conditions were observed during a 2-year period at Tum Sua Village, located in Mae Sot District, Tak Province, in western Thailand, where An. minimus is found in abundance and regarded as the most predominant malaria vector species. Detailed information on mosquito behavior is important for understanding the epidemiology of disease transmission and developing more effective and efficient vector control methods. Methods Adult mosquitoes were collected every 2 months for two consecutive nights from 1800 to 0600 hrs. Three collection methods were used; indoor human-landing collections (HLC, outdoor HLC, and outdoor cattle-bait collections (CBC. Results A total of 7,663 female Anopheles mosquitoes were collected of which 5,392 were identified as members of 3 different species complexes, the most prevalent being Anopheles minimus complex (50.36%, followed by Anopheles maculatus complex (19.68% and Anopheles dirus complex (0.33%. An. minimus s.s. comprised virtually all (> 99.8 percent of Minimus Complex species captured. Blood feeding behavior of An. minimus was more pronounced during the second half of the evening, showing a slight preference to blood feed outdoors (~60% versus inside structures. Significantly (P An. minimus were collected from human-baited methods compared with a tethered cow, indicating a more anthropophilic feeding behavior. Although a significant difference in total number of mosquitoes from the HLC was recorded between the first and second year, the mean biting frequency over the course of the evening hours remained similar. Conclusions The Human landing activity of An. minimus in Tum Sua Village showed a stronger preference/attraction for humans compared to a cow-baited collection method. This study supports the incrimination of An. minimus as the primary malaria vector in the area. A better understanding of mosquito

  18. Malaria Prevalence and Vector Presence in Teluk Limau Village, Jebus District, West Bangka, Bangka Belitung

    Directory of Open Access Journals (Sweden)

    Roy Nusa Rahagus Edo Santya

    2012-06-01

    Full Text Available Malaria elimination in Indonesia need necessary data as a foundation for planning and implementation activities. The purpose of this study was to estimate the malaria prevalence and the presence of potential mosquito vectors. To find out malaria endemicity, blood of sampling group was examined in the study area on 24-30 November 2010. Suspected vector mosquitoes collection was carried out by human landing method on the inside and outside of the house for 12 hours from 18:00 until 06:00. Positive SD percentage from inspection reached 4.21% (18 of 428 SD. Gametocytes SD percentage reached 18.75%, where 3 of 18 positives SD has a gametocytes. Two mosquitoes Anopheles spp. found were an An. sundaicus and An. letifer. The number of An. sundaicus trapped outdoors were five, An. letifer trapped in the house were three and An. letifer trapped outdoors were eight. This result showed malaria transmission potential in the study site and malaria surveillance should be done. It is recommended to distribute insecticide-treated nets and suggest the residents not to stayed outside the house at night to often.

  19. Topography and malaria transmission heterogeneity in western Kenya highlands: prospects for focal vector control

    Directory of Open Access Journals (Sweden)

    Ndenga Bryson A

    2006-11-01

    Full Text Available Abstract Background Recent resurgence of malaria in the highlands of Western Kenya has called for a more comprehensive understanding of the previously neglected complex highland vector ecology. Besides other drivers of malaria epidemiology, topography is likely to have a major effect on spatial vector and parasite distribution. The aim of this study was to determine the effects of topography on malaria spatial vector distribution and parasite prevalence. Methodology Indoor resting adult malaria vectors and blood parasites were collected in three villages along a 4 km transect originating from the valley bottom and ending at the hilltop for 13 months. Members of the Anopheles gambiae complex were identified by PCR. Blood parasites were collected from children 6–13 years old and densities categorized by site of home location and age of the children. Results Ninety eight percent (98% of An. gambiae s.s. and (99% Anopheles funestus were collected in houses located at the edge of the valley bottom, whereas 1% of An. gambiae s.s. were collected at mid hill and at the hilltop respectively. No An. funestus were collected at the hilltop. Malaria prevalence was 68% at the valley bottom, 40.2% at mid hill and 26.7% at the hilltop. Children aged six years and living at the edge of the valley bottom had an annual geometric mean number of 66.1 trophozoites for every 200 white blood cells, while those living at mid-hill had a mean of 84.8, and those living at hilltop had 199.5 trophozoites. Conclusion Malaria transmission in this area is mainly confined to the valley bottom. Effective vector control could be targeted at the foci. However, the few vectors observed at mid-hill maintained a relatively high prevalence rate. The higher variability in blood parasite densities and their low correlation with age in children living at the hilltop suggests a lower stability of transmission than at the mid-hill and valley bottom.

  20. Is the current decline in malaria burden in sub-Saharan Africa due to a decrease in vector population?

    Directory of Open Access Journals (Sweden)

    Rwegoshora Rwehumbiza T

    2011-07-01

    Full Text Available Abstract Background In sub-Saharan Africa (SSA, malaria caused by Plasmodium falciparum has historically been a major contributor to morbidity and mortality. Recent reports indicate a pronounced decline in infection and disease rates which are commonly ascribed to large-scale bed net programmes and improved case management. However, the decline has also occurred in areas with limited or no intervention. The present study assessed temporal changes in Anopheline populations in two highly malaria-endemic communities of NE Tanzania during the period 1998-2009. Methods Between 1998 and 2001 (1st period and between 2003 and 2009 (2nd period, mosquitoes were collected weekly in 50 households using CDC light traps. Data on rainfall were obtained from the nearby climate station and were used to analyze the association between monthly rainfall and malaria mosquito populations. Results The average number of Anopheles gambiae and Anopheles funestus per trap decreased by 76.8% and 55.3%, respectively over the 1st period, and by 99.7% and 99.8% over the 2nd period. During the last year of sampling (2009, the use of 2368 traps produced a total of only 14 Anopheline mosquitoes. With the exception of the decline in An. gambiae during the 1st period, the results did not reveal any statistical association between mean trend in monthly rainfall and declining malaria vector populations. Conclusion A longitudinal decline in the density of malaria mosquito vectors was seen during both study periods despite the absence of organized vector control. Part of the decline could be associated with changes in the pattern of monthly rainfall, but other factors may also contribute to the dramatic downward trend. A similar decline in malaria vector densities could contribute to the decrease in levels of malaria infection reported from many parts of SSA.

  1. Malaria infection and disease in an area with pyrethroid-resistant vectors in southern Benin

    Directory of Open Access Journals (Sweden)

    Akogbéto Martin

    2010-12-01

    Full Text Available Abstract Background This study aimed to investigate baseline data on malaria before the evaluation of new vector control strategies in an area of pyrethroid-resistance of vectors. The burden of malaria was estimated in terms of infection (prevalence and parasite density and of clinical episodes. Methods Between December 2007 and December 2008 in the health district of Ouidah - Kpomassè - Tori Bossito (southern Benin, a descriptive epidemiological survey of malaria was conducted. From 28 selected villages, seven were randomized from which a total of 440 children aged 0 to 5 years were randomly selected. Clinical and parasitological information was obtained by active case detection of malaria episodes carried out during eight periods of six consecutive days scheduled at six weekly intervals and by cross-sectional surveys of asymptomatic infection. Entomological information was also collected. The ownership, the use and the correct use of long-lasting insecticide-treated nets (LLINs were checked over weekly-survey by unannounced visits at home in the late evening. Results Mean parasite density in asymptomatic children was 586 P. falciparum asexual forms per μL of blood (95%CI 504-680. Pyrogenic parasite cut-off was estimated 2,000 P. falciparum asexual blood forms per μL. The clinical incidence of malaria was 1.5 episodes per child per year (95%CI 1.2-1.9. Parasitological and clinical variables did not vary with season. Anopheles gambiae s.l. was the principal vector closely followed by Anopheles funestus. Entomological inoculation rate was 5.3 (95%CI 1.1-25.9 infective bites per human per year. Frequency of the L1014F kdr (West allele was around 50%. Annual prevalence rate of Plasmodium falciparum asymptomatic infection was 21.8% (95%CI 19.1-24.4 and increased according to age. Mean rates of ownership and use of LLINs were 92% and 70% respectively. The only correct use of LLINs (63% conferred 26% individual protection against only infection (OR

  2. Ethical dilemmas in malaria vector research in Africa: Making the ...

    African Journals Online (AJOL)

    Malaria vector research presents several dilemmas relating to the various ways in which humans are used in the malaria vector research enterprise. A review of the past and present practices reveals much about the prevailing attitudes and assumptions with regard to the ethical conduct of research involving humans.

  3. Characterization of malaria vectors in Huye District, Southern Rwanda

    African Journals Online (AJOL)

    Background: Effective control of malaria requires knowledge of vector species, their feeding and resting behaviour as well as breeding habitats. The objective of this study was to determine malaria vector species abundance and identify their larval habitats in Huye district, southern Rwanda. Methods: Adult mosquitoes were ...

  4. Habitat hydrology and geomorphology control the distribution of malaria vector larvae in rural Africa.

    Science.gov (United States)

    Hardy, Andrew J; Gamarra, Javier G P; Cross, Dónall E; Macklin, Mark G; Smith, Mark W; Kihonda, Japhet; Killeen, Gerry F; Ling'ala, George N; Thomas, Chris J

    2013-01-01

    Larval source management is a promising component of integrated malaria control and elimination. This requires development of a framework to target productive locations through process-based understanding of habitat hydrology and geomorphology. We conducted the first catchment scale study of fine resolution spatial and temporal variation in Anopheles habitat and productivity in relation to rainfall, hydrology and geomorphology for a high malaria transmission area of Tanzania. Monthly aggregates of rainfall, river stage and water table were not significantly related to the abundance of vector larvae. However, these metrics showed strong explanatory power to predict mosquito larval abundances after stratification by water body type, with a clear seasonal trend for each, defined on the basis of its geomorphological setting and origin. Hydrological and geomorphological processes governing the availability and productivity of Anopheles breeding habitat need to be understood at the local scale for which larval source management is implemented in order to effectively target larval source interventions. Mapping and monitoring these processes is a well-established practice providing a tractable way forward for developing important malaria management tools.

  5. Genetic variation associated with increased insecticide resistance in the malaria mosquito, Anopheles coluzzii.

    Science.gov (United States)

    Main, Bradley J; Everitt, Amanda; Cornel, Anthony J; Hormozdiari, Fereydoun; Lanzaro, Gregory C

    2018-04-04

    Malaria mortality rates in sub-Saharan Africa have declined significantly in recent years as a result of increased insecticide-treated bed net (ITN) usage. A major challenge to further progress is the emergence and spread of insecticide resistance alleles in the Anopheles mosquito vectors, like An. coluzzii. A non-synonymous mutation in the para voltage-gated sodium channel gene reduces pyrethroid-binding affinity, resulting in knockdown resistance (kdr). Metabolic mechanisms of insecticide resistance involving detoxification genes like cytochrome P450 genes, carboxylesterases, and glutathione S-transferases are also important. As some gene activity is tissue-specific and/or environmentally induced, gene regulatory variation may be overlooked when comparing expression from whole mosquito bodies under standard rearing conditions. We detected complex insecticide resistance in a 2014 An. coluzzii colony from southern Mali using bottle bioassays. Additional bioassays involving recombinant genotypes from a cross with a relatively susceptible 1995 An. coluzzii colony from Mali confirmed the importance of kdr and associated increased permethrin resistance to the CYP9K1 locus on the X chromosome. Significant differential expression of CYP9K1 was not observed among these colonies in Malpighian tubules. However, the P450 gene CYP6Z1 was overexpressed in resistant individuals following sublethal permethrin exposure and the carboxylesterase gene COEAE5G was constitutively overexpressed. The significant P450-related insecticide resistance observed in the 2014 An. coluzzii colony indicates that ITNs treated with the P450 inhibitor piperonyl butoxide (PBO) would be more effective in this region. The known insecticide resistance gene CYP6Z1 was differentially expressed exclusively in the context of sublethal permethrin exposure, highlighting the importance of tissue-specificity and environmental conditions in gene expression studies. The increased activity of the carboxylesterase

  6. Impact of urban agriculture on malaria vectors in Accra, Ghana.

    Science.gov (United States)

    Klinkenberg, Eveline; McCall, Pj; Wilson, Michael D; Amerasinghe, Felix P; Donnelly, Martin J

    2008-08-04

    To investigate the impact of urban agriculture on malaria transmission risk in urban Accra larval and adult stage mosquito surveys, were performed. Local transmission was implicated as Anopheles spp. were found breeding and infected Anopheles mosquitoes were found resting in houses in the study sites. The predominant Anopheles species was Anopheles gambiae s.s.. The relative proportion of molecular forms within a subset of specimens was 86% S-form and 14% M-form. Anopheles spp. and Culex quinquefasciatus outdoor biting rates were respectively three and four times higher in areas around agricultural sites (UA) than in areas far from agriculture (U). The annual Entomological Inoculation Rate (EIR), the number of infectious bites received per individual per year, was 19.2 and 6.6 in UA and U sites, respectively. Breeding sites were highly transitory in nature, which poses a challenge for larval control in this setting. The data also suggest that the epidemiological importance of urban agricultural areas may be the provision of resting sites for adults rather than an increased number of larval habitats. Host-seeking activity peaked between 2-3 am, indicating that insecticide-treated bednets should be an effective control method.

  7. Prevalence and incrimination of Anopheles fluviatilis species S (Diptera: Culicidae in a malaria endemic forest area of Chhattisgarh state, central India

    Directory of Open Access Journals (Sweden)

    Nanda Nutan

    2012-09-01

    Full Text Available Abstract Background Chhattisgarh state in central India is highly endemic for malaria and contributes about 13% of annually reported malaria cases in the country with predominance of P. falciparum. Entomological investigations were carried out in a tribal forested area of district Bastar located in the southern part of Chhattisgarh state to record the prevalence of sibling species of Anopheles fluviatilis and An. culicifacies complexes. The vector species complexes were investigated at sibling species level for their biology in terms of resting and feeding behavior and malaria transmission potential. Methods Indoor resting vector mosquitoes collected during 2010–2011 were identified to sibling species by cytotaxonomy and polymerase chain reaction (PCR assay. The blood meal source analysis and incrimination studies were done at sibling species level by counter current immunoelectrophoresis and enzyme linked immunosorbent assay (ELISA respectively. Results Analysis of sibling species composition revealed predominance of An. fluviatilis species S in the study area, which was found to be highly anthropophagic and rested in human dwellings whereas the sympatric species T was primarily zoophagic. Incrimination studies showed high sporozoite rate in species S, thereby confirming its vectorial efficiency. An. culicifacies was encountered in low numbers and comprised species B and C in almost equal proportion. Both these species were found to be exclusively zoophagic. Conclusion The observations made strongly suggest that species S of Fluviatilis Complex is the principal vector of malaria in certain forest areas of district Bastar, Chhattisgarh state and should be the target species for vector control operation. Vector control strategies based on biological characteristics of Fluviatilis S will lead to substantial decline in malaria incidence in such areas.

  8. Physico-chemical characteristics of Anopheles culicifacies and Anopheles varuna breeding water in a dry zone stream in Sri Lanka

    DEFF Research Database (Denmark)

    Piyaratne, M K; Amerasinghe, F P; Amerasinghe, P H

    2005-01-01

    BACKGROUND & OBJECTIVES: Selected physico-chemical characteristics of flowing and pooled water in a stream that generated two malaria vectors, Anopheles culicifacies s.l. Giles and Anopheles varuna Iyengar, were investigated during August-September 1997 and July 1998 at the Upper Yan Oya watershed.......5% of 151 samples analysed were mosquito-positive. Logistic regression was used for statistical analysis. RESULTS: Among physico-chemical parameters, An. culicifacies (the major malaria vector in the country) was positively related only to temperature, and An. varuna (a secondary malaria vector) to calcium...

  9. Dynamical Mapping of Anopheles darlingi Densities in a Residual Malaria Transmission Area of French Guiana by Using Remote Sensing and Meteorological Data.

    Directory of Open Access Journals (Sweden)

    Antoine Adde

    Full Text Available Local variation in the density of Anopheles mosquitoes and the risk of exposure to bites are essential to explain the spatial and temporal heterogeneities in the transmission of malaria. Vector distribution is driven by environmental factors. Based on variables derived from satellite imagery and meteorological observations, this study aimed to dynamically model and map the densities of Anopheles darlingi in the municipality of Saint-Georges de l'Oyapock (French Guiana. Longitudinal sampling sessions of An. darlingi densities were conducted between September 2012 and October 2014. Landscape and meteorological data were collected and processed to extract a panel of variables that were potentially related to An. darlingi ecology. Based on these data, a robust methodology was formed to estimate a statistical predictive model of the spatial-temporal variations in the densities of An. darlingi in Saint-Georges de l'Oyapock. The final cross-validated model integrated two landscape variables-dense forest surface and built surface-together with four meteorological variables related to rainfall, evapotranspiration, and the minimal and maximal temperatures. Extrapolation of the model allowed the generation of predictive weekly maps of An. darlingi densities at a resolution of 10-m. Our results supported the use of satellite imagery and meteorological data to predict malaria vector densities. Such fine-scale modeling approach might be a useful tool for health authorities to plan control strategies and social communication in a cost-effective, targeted, and timely manner.

  10. Dynamical Mapping of Anopheles darlingi Densities in a Residual Malaria Transmission Area of French Guiana by Using Remote Sensing and Meteorological Data.

    Science.gov (United States)

    Adde, Antoine; Roux, Emmanuel; Mangeas, Morgan; Dessay, Nadine; Nacher, Mathieu; Dusfour, Isabelle; Girod, Romain; Briolant, Sébastien

    2016-01-01

    Local variation in the density of Anopheles mosquitoes and the risk of exposure to bites are essential to explain the spatial and temporal heterogeneities in the transmission of malaria. Vector distribution is driven by environmental factors. Based on variables derived from satellite imagery and meteorological observations, this study aimed to dynamically model and map the densities of Anopheles darlingi in the municipality of Saint-Georges de l'Oyapock (French Guiana). Longitudinal sampling sessions of An. darlingi densities were conducted between September 2012 and October 2014. Landscape and meteorological data were collected and processed to extract a panel of variables that were potentially related to An. darlingi ecology. Based on these data, a robust methodology was formed to estimate a statistical predictive model of the spatial-temporal variations in the densities of An. darlingi in Saint-Georges de l'Oyapock. The final cross-validated model integrated two landscape variables-dense forest surface and built surface-together with four meteorological variables related to rainfall, evapotranspiration, and the minimal and maximal temperatures. Extrapolation of the model allowed the generation of predictive weekly maps of An. darlingi densities at a resolution of 10-m. Our results supported the use of satellite imagery and meteorological data to predict malaria vector densities. Such fine-scale modeling approach might be a useful tool for health authorities to plan control strategies and social communication in a cost-effective, targeted, and timely manner.

  11. Comportamiento de picadura de Anopheles darlingi Root, 1926 (Diptera: Culicidae y su asociación con la transmisión de malaria en Villavicencio (Colombia

    Directory of Open Access Journals (Sweden)

    Martha Liliana Ahumada

    2013-06-01

    Full Text Available Introducción. Anopheles darlingi es el principal vector de la malaria, o paludismo, en el neotrópico. Esta especie es reconocida por presentar un comportamiento antropofílico y variabilidad en sus hábitos de picadura a lo largo de su rango de distribución. Objetivo. Caracterizar el comportamiento de picadura de An. darlingi y establecer su relación con latransmisión de la malaria en Villavicencio. Materiales y métodos. Entre 2008 y 2009 se llevaron a cabo un estudio de tipo transversal y uno longitudinal, en cinco localidades de Villavicencio con transmisión de malaria. Estos incluyeron recolección de ejemplares inmaduros y de adultos en las viviendas. Se utilizó la prueba ELISA para la detección de infección con Plasmodium spp. Resultados. Se recolectaron 2.772 mosquitos. Anopheles darlingi fue la especie predominante enlas capturas con atrayente humano. Los criaderos identificados para esta especie fueron pantanos, caños, lagunas y estanques piscícolas. Anopheles darlingi estuvo presente durante todo el año, con densidades mensuales promedio entre 2,2 y 55,5 mosquitos por persona por noche. Presentó actividad hematofágica durante toda la noche en el intradomicilio y en el peridomicilio. De las 18:00 a las 22:00, se registraron entre el 47 % y el 81 % de los mosquitos capturados en 12 horas de observación. Se encontró una tasa de infección con Plasmodium falciparum de 0,05 % y se estimó una tasa entomológica de inoculación de 2,9 picaduras infecciosas por persona al año. Conclusión. Anopheles darlingi se encontró infectado con P. falciparum, estuvo presente durante todo el año y exhibió características en su comportamiento de picadura que favorecen el contacto entre humano y vector, lo cual es un riesgo permanente para la transmisión de la malaria en Villavicencio.   doi: http://dx.doi.org/10.7705/biomedica.v33i2.1492

  12. Deforestation and Vectorial Capacity of Anopheles gambiae Giles Mosquitoes in Malaria Transmission, Kenya

    Science.gov (United States)

    Afrane, Yaw A.; Little, Tom J.; Lawson, Bernard W.; Githeko, Andrew K.

    2008-01-01

    We investigated the effects of deforestation on microclimates and sporogonic development of Plasmodium falciparum parasites in Anopheles gambiae mosquitoes in an area of the western Kenyan highland prone to malaria epidemics. An. gambiae mosquitoes were fed with P. falciparum–infected blood through membrane feeders. Fed mosquitoes were placed in houses in forested and deforested areas in a highland area (1,500 m above sea level) and monitored for parasite development. Deforested sites had higher temperatures and relative humidities, and the overall infection rate of mosquitoes was increased compared with that in forested sites. Sporozoites appeared on average 1.1 days earlier in deforested areas. Vectorial capacity was estimated to be 77.7% higher in the deforested site than in the forested site. We showed that deforestation changes microclimates, leading to more rapid sporogonic development of P. falciparum and to a marked increase of malaria risk in the western Kenyan highland. PMID:18826815

  13. Malaria in Africa: vector species' niche models and relative risk maps.

    Directory of Open Access Journals (Sweden)

    Alexander Moffett

    2007-09-01

    Full Text Available A central theoretical goal of epidemiology is the construction of spatial models of disease prevalence and risk, including maps for the potential spread of infectious disease. We provide three continent-wide maps representing the relative risk of malaria in Africa based on ecological niche models of vector species and risk analysis at a spatial resolution of 1 arc-minute (9 185 275 cells of approximately 4 sq km. Using a maximum entropy method we construct niche models for 10 malaria vector species based on species occurrence records since 1980, 19 climatic variables, altitude, and land cover data (in 14 classes. For seven vectors (Anopheles coustani, A. funestus, A. melas, A. merus, A. moucheti, A. nili, and A. paludis these are the first published niche models. We predict that Central Africa has poor habitat for both A. arabiensis and A. gambiae, and that A. quadriannulatus and A. arabiensis have restricted habitats in Southern Africa as claimed by field experts in criticism of previous models. The results of the niche models are incorporated into three relative risk models which assume different ecological interactions between vector species. The "additive" model assumes no interaction; the "minimax" model assumes maximum relative risk due to any vector in a cell; and the "competitive exclusion" model assumes the relative risk that arises from the most suitable vector for a cell. All models include variable anthrophilicity of vectors and spatial variation in human population density. Relative risk maps are produced from these models. All models predict that human population density is the critical factor determining malaria risk. Our method of constructing relative risk maps is equally general. We discuss the limits of the relative risk maps reported here, and the additional data that are required for their improvement. The protocol developed here can be used for any other vector-borne disease.

  14. Change in composition of the Anopheles gambiae complex and its possible implications for the transmission of malaria and lymphatic filariasis in north-eastern Tanzania

    Directory of Open Access Journals (Sweden)

    Derua Yahya A

    2012-06-01

    Full Text Available Abstract Background A dramatic decline in the incidence of malaria due to Plasmodium falciparum infection in coastal East Africa has recently been reported to be paralleled (or even preceded by an equally dramatic decline in malaria vector density, despite absence of organized vector control. As part of investigations into possible causes for the change in vector population density, the present study analysed the Anopheles gambiae s.l. sibling species composition in north-eastern Tanzania. Methods The study was in two parts. The first compared current species complex composition in freshly caught An. gambiae s.l. complex from three villages to the composition reported from previous studies carried out 2–4 decades ago in the same villages. The second took advantage of a sample of archived dried An. gambiae s.l. complex specimens collected regularly from a fourth study village since 2005. Both fresh and archived dried specimens were identified to sibling species of the An. gambiae s.l. complex by PCR. The same specimens were moreover examined for Plasmodium falciparum and Wuchereria bancrofti infection by PCR. Results As in earlier studies, An. gambiae s.s., Anopheles merus and Anopheles arabiensis were identified as sibling species found in the area. However, both study parts indicated a marked change in sibling species composition over time. From being by far the most abundant in the past An. gambiae s.s. was now the most rare, whereas An. arabiensis had changed from being the most rare to the most common. P. falciparum infection was rarely detected in the examined specimens (and only in An. arabiensis whereas W. bancrofti infection was prevalent and detected in all three sibling species. Conclusion The study indicates that a major shift in An. gambiae s.l. sibling species composition has taken place in the study area in recent years. Combined with the earlier reported decline in overall malaria vector density, the study suggests that this

  15. Interactions between Asaia, Plasmodium and Anopheles: new insights into mosquito symbiosis and implications in malaria symbiotic control.

    Science.gov (United States)

    Capone, Aida; Ricci, Irene; Damiani, Claudia; Mosca, Michela; Rossi, Paolo; Scuppa, Patrizia; Crotti, Elena; Epis, Sara; Angeletti, Mauro; Valzano, Matteo; Sacchi, Luciano; Bandi, Claudio; Daffonchio, Daniele; Mandrioli, Mauro; Favia, Guido

    2013-06-18

    Malaria represents one of the most devastating infectious diseases. The lack of an effective vaccine and the emergence of drug resistance make necessary the development of new effective control methods. The recent identification of bacteria of the genus Asaia, associated with larvae and adults of malaria vectors, designates them as suitable candidates for malaria paratransgenic control.To better characterize the interactions between Asaia, Plasmodium and the mosquito immune system we performed an integrated experimental approach. Quantitative PCR analysis of the amount of native Asaia was performed on individual Anopheles stephensi specimens. Mosquito infection was carried out with the strain PbGFPCON and the number of parasites in the midgut was counted by fluorescent microscopy.The colonisation of infected mosquitoes was achieved using GFP or DsRed tagged-Asaia strains.Reverse transcriptase-PCR analysis, growth and phagocytosis tests were performed using An. stephensi and Drosophila melanogaster haemocyte cultures and DsRed tagged-Asaia and Escherichia coli strains. Using quantitative PCR we have quantified the relative amount of Asaia in infected and uninfected mosquitoes, showing that the parasite does not interfere with bacterial blooming. The correlation curves have confirmed the active replication of Asaia, while at the same time, the intense decrease of the parasite.The 'in vitro' immunological studies have shown that Asaia induces the expression of antimicrobial peptides, however, the growth curves in conditioned medium as well as a phagocytosis test, indicated that the bacterium is not an immune-target.Using fluorescent strains of Asaia and Plasmodium we defined their co-localisation in the mosquito midgut and salivary glands. We have provided important information about the relationship of Asaia with both Plasmodium and Anopheles. First, physiological changes in the midgut following an infected or uninfected blood meal do not negatively affect the

  16. Malaria vector populations across ecological zones in Guinea Conakry and Mali, West Africa.

    Science.gov (United States)

    Coulibaly, Boubacar; Kone, Raymond; Barry, Mamadou S; Emerson, Becky; Coulibaly, Mamadou B; Niare, Oumou; Beavogui, Abdoul H; Traore, Sekou F; Vernick, Kenneth D; Riehle, Michelle M

    2016-04-08

    Malaria remains a pervasive public health problem in sub-Saharan West Africa. Here mosquito vector populations were explored across four sites in Mali and the Republic of Guinea (Guinea Conakry). The study samples the major ecological zones of malaria-endemic regions in West Africa within a relatively small distance. Mosquito vectors were sampled from larval pools, adult indoor resting sites, and indoor and outdoor human-host seeking adults. Mosquitoes were collected at sites spanning 350 km that represented arid savannah, humid savannah, semi-forest and deep forest ecological zones, in areas where little was previously known about malaria vector populations. 1425 mosquito samples were analysed by molecular assays to determine species, genetic attributes, blood meal sources and Plasmodium infection status. Anopheles gambiae and Anopheles coluzzii were the major anophelines represented in all collections across the ecological zones, with A. coluzzii predominant in the arid savannah and A. gambiae in the more humid sites. The use of multiple collection methodologies across the sampling sites allows assessment of potential collection bias of the different methods. The L1014F kdr insecticide resistance mutation (kdr-w) is found at high frequency across all study sites. This mutation appears to have swept almost to fixation, from low frequencies 6 years earlier, despite the absence of widespread insecticide use for vector control. Rates of human feeding are very high across ecological zones, with only small fractions of animal derived blood meals in the arid and humid savannah. About 30 % of freshly blood-fed mosquitoes were positive for Plasmodium falciparum presence, while the rate of mosquitoes with established infections was an order of magnitude lower. The study represents detailed vector characterization from an understudied area in West Africa with endemic malaria transmission. The deep forest study site includes the epicenter of the 2014 Ebola virus epidemic

  17. Human skin microbiota and their volatiles as odour baits for the malaria mosquito Anopheles gambiae s.s

    NARCIS (Netherlands)

    Verhulst, N.O.; Mukabana, W.R.; Takken, W.; Smallegange, R.C.

    2011-01-01

    Host seeking by the malaria mosquito Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) is mainly guided by volatile chemicals present in human odours. The skin microbiota plays an important role in the production of these volatiles, and skin bacteria grown on agar plates attract An. gambiae

  18. Temporo-spatial distribution of insecticide-resistance in Indian malaria vectors in the last quarter-century: Need for regular resistance monitoring and management.

    Science.gov (United States)

    Raghavendra, Kamaraju; Velamuri, Poonam Sharma; Verma, Vaishali; Elamathi, Natarajan; Barik, Tapan Kumar; Bhatt, Rajendra Mohan; Dash, Aditya Prasad

    2017-01-01

    The Indian vector control programme similar to other programmes in the world is still reliant on chemical insecticides. Anopheles culicifacies is the major vector out of six primary malaria vectors in India and alone contributes about 2/3 malaria cases annually; and per se its control is actually control of malaria in India. For effective management of vectors, current information on their susceptibility status to different insecticides is essential. In this review, an attempt was made to compile and present the available data on the susceptibility status of different malaria vector species in India from the last 2.5 decades. Literature search was conducted by different means mainly web and library search; susceptibility data was collated from 62 sources for the nine malaria vector species from 145 districts in 21 states and two union territories between 1991 and 2016. Interpretation of the susceptibility/resistance status was made on basis of the recent WHO criteria. Comprehensive analysis of the data indicated that An. culicifacies, a major vector species was resistant to at least one insecticide in 70% (101/145) of the districts. It was reported mostly resistant to DDT and malathion whereas, its resistant status against deltamethrin varied across the districts. The major threat for the malaria control programmes is multiple-insecticide-resistance in An. culicifacies which needs immediate attention for resistance management in order to sustain the gains achieved so far, as the programmes have targeted malaria elimination by 2030.

  19. Transgenic Expression of the Anti-parasitic Factor TEP1 in the Malaria Mosquito Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Gloria Volohonsky

    2017-01-01

    Full Text Available Mosquitoes genetically engineered to be resistant to Plasmodium parasites represent a promising novel approach in the fight against malaria. The insect immune system itself is a source of anti-parasitic genes potentially exploitable for transgenic designs. The Anopheles gambiae thioester containing protein 1 (TEP1 is a potent anti-parasitic protein. TEP1 is secreted and circulates in the mosquito hemolymph, where its activated cleaved form binds and eliminates malaria parasites. Here we investigated whether TEP1 can be used to create malaria resistant mosquitoes. Using a GFP reporter transgene, we determined that the fat body is the main site of TEP1 expression. We generated transgenic mosquitoes that express TEP1r, a potent refractory allele of TEP1, in the fat body and examined the activity of the transgenic protein in wild-type or TEP1 mutant genetic backgrounds. Transgenic TEP1r rescued loss-of-function mutations, but did not increase parasite resistance in the presence of a wild-type susceptible allele. Consistent with previous reports, TEP1 protein expressed from the transgene in the fat body was taken up by hemocytes upon a challenge with injected bacteria. Furthermore, although maturation of transgenic TEP1 into the cleaved form was impaired in one of the TEP1 mutant lines, it was still sufficient to reduce parasite numbers and induce parasite melanization. We also report here the first use of Transcription Activator Like Effectors (TALEs in Anopheles gambiae to stimulate expression of endogenous TEP1. We found that artificial elevation of TEP1 expression remains moderate in vivo and that enhancement of endogenous TEP1 expression did not result in increased resistance to Plasmodium. Taken together, our results reveal the difficulty of artificially influencing TEP1-mediated Plasmodium resistance, and contribute to further our understanding of the molecular mechanisms underlying mosquito resistance to Plasmodium parasites.

  20. The impact of livestock on the abundance, resting behaviour and sporozoite rate of malaria vectors in southern Tanzania.

    Science.gov (United States)

    Mayagaya, Valeriana S; Nkwengulila, Gamba; Lyimo, Issa N; Kihonda, Japheti; Mtambala, Hassan; Ngonyani, Hassan; Russell, Tanya L; Ferguson, Heather M

    2015-01-21

    Increases in the coverage of long-lasting insecticidal nets (LLINs) have significantly reduced the abundance of Anopheles gambiae sensu stricto in several African settings, leaving its more zoophagic sibling species Anopheles arabiensis as the primary vector. This study investigated the impact of livestock ownership at the household level on the ecology and malaria infection rate of vectors in an area of Tanzania where An. arabiensis accounts for most malaria transmission. Mosquito vectors were collected resting inside houses, animal sheds and in outdoor resting boxes at households with and without livestock over three years in ten villages of the Kilombero Valley, Tanzania. Additionally, the abundance and sporozoite rate of vectors attempting to bite indoors at these households was assessed as an index of malaria exposure. The mean abundance of An. gambiae s.l. biting indoors was similar at houses with and without livestock. In all years but one, the relative proportion of An. arabiensis within the An. gambiae s.l. species complex was higher at households with livestock. Livestock presence had a significant impact on malaria vector feeding and resting behaviour. Anopheles arabiensis were generally found resting in cattle sheds where livestock were present, and inside houses when absent. Correspondingly, the human blood index of An. arabiensis and An. funestus s.l. was significant reduced at households with livestock, whereas that of An. gambiae s.s. was unaffected. Whilst there was some evidence that sporozoite rates within the indoor-biting An. gambiae s.l population was significantly reduced at households with livestock, the significance of this effect varied depending on how background spatial variation was accounted for. These results confirm that the presence of cattle at the household level can significantly alter the local species composition, feeding and resting behaviour of malaria vectors. However, the net impact of this livestock-associated variation in

  1. Ecology of Malaria Vectors in a Rainforest Suburban Community of ...

    African Journals Online (AJOL)

    User

    2011-04-19

    Apr 19, 2011 ... Key words: Malaria, Mosquito, Vectors, Ecology, Suburban, Community. ... including host bloodmeal preferences, time and place of biting and resting .... Five species of mosquitoes namely Aedes albopictus, Culex tigripes,.

  2. Malaria epidemiology in an area of stable transmission in tribal population of Jharkhand, India

    DEFF Research Database (Denmark)

    Das, Manoj K; Prajapati, Brijesh K; Tiendrebeogo, Régis W

    2017-01-01

    and density levels in the study population showed a gradual decrease with increasing age. This finding is consistent with the phenomenon of naturally acquired immunity against malaria. Three vector species were detected: Anopheles fluviatilis, Anopheles annularis, and Anopheles culicifacies. The incoherence...

  3. Anthropophilic biting behaviour of Anopheles (Kerteszia neivai Howard, Dyar & Knab associated with Fishermen’s activities in a malaria-endemic area in the Colombian Pacific

    Directory of Open Access Journals (Sweden)

    Jesus Eduardo Escovar

    2013-12-01

    Full Text Available On the southwest Pacific Coast of Colombia, a field study was initiated to determine the human-vector association between Anopheles (Kerteszia neivai and fishermen, including their nearby houses. Mosquitoes were collected over 24-h periods from mangrove swamps, marshlands and fishing vessels in three locations, as well as in and around the houses of fishermen. A total of 6,382 mosquitoes were collected. An. neivai was most abundant in mangroves and fishing canoes (90.8%, while Anopheles albimanus was found indoors (82% and outdoors (73%. One An. neivai and one An. albimanus collected during fishing activities in canoes were positive for Plasmodium vivax , whereas one female An. neivai collected in a mangrove was positive for P. vivax . In the mangroves and fishing canoes, An. neivai demonstrated biting activity throughout the day, peaking between 06:00 pm-07:00 pm and there were two minor peaks at dusk and dawn. These peaks coincided with fishing activities in the marshlands and mangroves, a situation that places the fishermen at risk of contracting malaria when they are performing their daily activities. It is recommended that protective measures be implemented to reduce the risk that fishermen will contract malaria.

  4. Malaria Prevention by New Technology: Vectored Delivery of Antibody Genes

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-15-1-0401 TITLE: Malaria Prevention by New Technology : Vectored Delivery of Antibody Genes PRINCIPAL INVESTIGATOR: Gary...CONTRACT NUMBER Malaria Prevention by New Technology : Vectored Delivery of Antibody Genes 5b. GRANT NUMBER W81XWH-15-1-0401 5c. PROGRAM ELEMENT...whole animals. Using a specific technology originally applied to expression of HIV antibodies, we demonstrated that mice can be protected from

  5. Distribution of sibling species of Anopheles culicifacies s.l. and Anopheles fluviatilis s.l. and their vectorial capacity in eight different malaria endemic districts of Orissa, India

    Directory of Open Access Journals (Sweden)

    Asima Tripathy

    2010-12-01

    Full Text Available The study was undertaken in eight endemic districts of Orissa, India, to find the members of the species complexes of Anopheles culicifacies and Anopheles fluviatilis and their distribution patterns. The study area included six forested districts (Keonjhar, Angul, Dhenkanal, Ganjam, Nayagarh and Khurda and two non-forested coastal districts (Puri and Jagatsingpur studied over a period of two years (June 2007-May 2009. An. culicifacies A, B, C and D and An. fluviatilis S and T sibling species were reported. The prevalence of An. culicifacies A ranged from 4.2-8.41%, B from 54.96-76.92%, C from 23.08-33.62% and D from 1.85-5.94% (D was reported for the first time in Orissa, except for occurrences in the Khurda and Nayagarh districts. The anthropophilic indices (AI were 3.2-4.8%, 0.5-1.7%, 0.7-1.37% and 0.91-1.35% for A, B, C and D, respectively, whereas the sporozoite rates (SR were 0.49-0.54%, 0%, 0.28-0.37% and 0.41-0.46% for A, B, C and D, respectively. An. fluviatilis showed a similarly varied distribution pattern in which S was predominant (84.3% overall; its AI and SR values ranged from 60.7-90.4% and 1.2-2.32%, respectively. The study observed that the co-existence of potential vector sibling species of An. culicifacies (A, C and D and An. fluviatilis S (> 50% was responsible for the high endemicity of malaria in forested districts such as Dhenkanal, Keonjhar, Angul, Ganjam, Nayagarh and Khurda (> 5% slide positivity rate. Thus, the epidemiological scenario for malaria is dependent on the distribution of the vector sibling species and their vectorial capacity.

  6. Distribution of sibling species of Anopheles culicifacies s.l. and Anopheles fluviatilis s.l. and their vectorial capacity in eight different malaria endemic districts of Orissa, India.

    Science.gov (United States)

    Tripathy, Asima; Samanta, Luna; Das, Sachidananda; Parida, Sarat Kumar; Marai, Nitisheel; Hazra, Rupenansu Kumar; Kar, Santanu Kumar; Mahapatra, Namita

    2010-12-01

    The study was undertaken in eight endemic districts of Orissa, India, to find the members of the species complexes of Anopheles culicifacies and Anopheles fluviatilis and their distribution patterns. The study area included six forested districts (Keonjhar, Angul, Dhenkanal, Ganjam, Nayagarh and Khurda) and two non-forested coastal districts (Puri and Jagatsingpur) studied over a period of two years (June 2007-May 2009). An. culicifacies A, B, C and D and An. fluviatilis S and T sibling species were reported. The prevalence of An. culicifacies A ranged from 4.2-8.41%, B from 54.96-76.92%, C from 23.08-33.62% and D from 1.85-5.94% (D was reported for the first time in Orissa, except for occurrences in the Khurda and Nayagarh districts). The anthropophilic indices (AI) were 3.2-4.8%, 0.5-1.7%, 0.7-1.37% and 0.91-1.35% for A, B, C and D, respectively, whereas the sporozoite rates (SR) were 0.49-0.54%, 0%, 0.28-0.37% and 0.41-0.46% for A, B, C and D, respectively. An. fluviatilis showed a similarly varied distribution pattern in which S was predominant (84.3% overall); its AI and SR values ranged from 60.7-90.4% and 1.2-2.32%, respectively. The study observed that the co-existence of potential vector sibling species of An. culicifacies (A, C and D) and An. fluviatilis S (> 50%) was responsible for the high endemicity of malaria in forested districts such as Dhenkanal, Keonjhar, Angul, Ganjam, Nayagarh and Khurda (> 5% slide positivity rate). Thus, the epidemiological scenario for malaria is dependent on the distribution of the vector sibling species and their vectorial capacity.

  7. Maternal Germline-Specific Genes in the Asian Malaria Mosquito Anopheles stephensi: Characterization and Application for Disease Control

    Science.gov (United States)

    Biedler, James K.; Qi, Yumin; Pledger, David; Macias, Vanessa M.; James, Anthony A.; Tu, Zhijian

    2014-01-01

    Anopheles stephensi is a principal vector of urban malaria on the Indian subcontinent and an emerging model for molecular and genetic studies of mosquito biology. To enhance our understanding of female mosquito reproduction, and to develop new tools for basic research and for genetic strategies to control mosquito-borne infectious diseases, we identified 79 genes that displayed previtellogenic germline-specific expression based on RNA-Seq data generated from 11 life stage–specific and sex-specific samples. Analysis of this gene set provided insights into the biology and evolution of female reproduction. Promoters from two of these candidates, vitellogenin receptor and nanos, were used in independent transgenic cassettes for the expression of artificial microRNAs against suspected mosquito maternal-effect genes, discontinuous actin hexagon and myd88. We show these promoters have early germline-specific expression and demonstrate 73% and 42% knockdown of myd88 and discontinuous actin hexagon mRNA in ovaries 48 hr after blood meal, respectively. Additionally, we demonstrate maternal-specific delivery of mRNA and protein to progeny embryos. We discuss the application of this system of maternal delivery of mRNA/miRNA/protein in research on mosquito reproduction and embryonic development, and for the development of a gene drive system based on maternal-effect dominant embryonic arrest. PMID:25480960

  8. Attacking the mosquito on multiple fronts: Insights from the Vector Control Optimization Model (VCOM for malaria elimination.

    Directory of Open Access Journals (Sweden)

    Samson S Kiware

    Full Text Available Despite great achievements by insecticide-treated nets (ITNs and indoor residual spraying (IRS in reducing malaria transmission, it is unlikely these tools will be sufficient to eliminate malaria transmission on their own in many settings today. Fortunately, field experiments indicate that there are many promising vector control interventions that can be used to complement ITNs and/or IRS by targeting a wide range of biological and environmental mosquito resources. The majority of these experiments were performed to test a single vector control intervention in isolation; however, there is growing evidence and consensus that effective vector control with the goal of malaria elimination will require a combination of interventions.We have developed a model of mosquito population dynamic to describe the mosquito life and feeding cycles and to optimize the impact of vector control intervention combinations at suppressing mosquito populations. The model simulations were performed for the main three malaria vectors in sub-Saharan Africa, Anopheles gambiae s.s, An. arabiensis and An. funestus. We considered areas having low, moderate and high malaria transmission, corresponding to entomological inoculation rates of 10, 50 and 100 infective bites per person per year, respectively. In all settings, we considered baseline ITN coverage of 50% or 80% in addition to a range of other vector control tools to interrupt malaria transmission. The model was used to sweep through parameters space to select the best optimal intervention packages. Sample model simulations indicate that, starting with ITNs at a coverage of 50% (An. gambiae s.s. and An. funestus or 80% (An. arabiensis and adding interventions that do not require human participation (e.g. larviciding at 80% coverage, endectocide treated cattle at 50% coverage and attractive toxic sugar baits at 50% coverage may be sufficient to suppress all the three species to an extent required to achieve local malaria

  9. Anopheles plumbeus (Diptera: Culicidae) in Germany: updated geographic distribution and public health impact of a nuisance and vector mosquito.

    Science.gov (United States)

    Heym, Eva C; Kampen, Helge; Fahle, Marcus; Hohenbrink, Tobias L; Schäfer, Mandy; Scheuch, Dorothee E; Walther, Doreen

    2017-01-01

    The aim of this study was to map the current spatial distribution of Anopheles plumbeus in Germany, a potential vector of malaria parasites and West Nile virus. Reports of mass occurrence and nuisance connected with artificial breeding site usage by this species were analysed. Distribution data were collected from 2011 to 2014 mainly through trapping and submissions of adult mosquito specimens to a citizen science project. In the framework of the latter, additional information was gathered on recent nuisance incidents caused by An. plumbeus, including a longitudinal analysis of mosquito occurrence and the impact of management measures at a nuisance site in south-western Germany. Based on the most comprehensive set of collection data obtained during the last decades, An. plumbeus is shown to be widely distributed over Germany. The data also indicate a continuing extension of the breeding site repertoire of the species from natural to artificial habitats that facilitate mass development. Increasing incidents of persistent nuisance suggest that this mosquito species is rarely diagnosed correctly and managed adequately. As An. plumbeus is both a serious nuisance pest and a potential vector species, awareness of this species and the public health problems linked to it should be raised among pest managers and public health personnel. © 2016 John Wiley & Sons Ltd.

  10. Impact of deforestation on known malaria vectors in Sonitpur district of Assam, India.

    Science.gov (United States)

    Saxena, Rekha; Nagpal, B N; Singh, V P; Srivastava, Aruna; Dev, Vas; Sharma, M C; Gupta, H P; Tomar, Arvind Singh; Sharma, Shashi; Gupta, Sanjeev Kumar

    2014-09-01

    An alarming rate of deforestation has been reported from Sonitpur district of Assam, India therefore, a study was initiated during 2009 using remote sensing (RS) to assess deforested areas in the district and to study the impact on malaria vectors in order to formulate appropriate control strategy. RS imageries of 2000 and 2009 were used to assess deforested areas in the selected district. Entomological data were collected in four surveys during 2009-2011. The data were analyzed statistically using test of single proportions (χ 2 ) and pair-wise comparison. Vector incrimination was done using enzyme-linked immunosorbent assay (ELISA) and entomological inoculation rate (EIR) was calculated to estimate transmission intensity. The deforested areas were identified in north-western parts of Sonitpur district falling in Dhekiajuli Primary Health Centre (PHC). The forest cover of the PHC decreased >50% during 2000-2009. Five species of anopheline vectors were collected. Anopheles minimus sensu lato (s.l.) was collected least abundantly while An. culicifacies s.l. prevailed most abundantly and significant difference was observed between proportions of the collected vector species. Pair-wise comparison between An. culicifacies s.l. and An. minimus s.l. was also found statistically significant indicating that An. culicifacies s.l. is establishing its population in deforested areas. An. culicifacies s.l. was found ELISA positive and EIR was measured as 4.8 during transmission season. An. culicifacies s.l. replaced An. minimus s.l., the vector of malaria in northeast India and was found ELISA positive, therefore could have possible role in malaria transmission in the deforested areas of the district.

  11. Targeting the breeding sites of malaria mosquitoes: biological and physical control of malaria mosquito larvae

    OpenAIRE

    Bukhari, S.T.

    2011-01-01

    Malaria causes an estimated 225 million cases and 781,000 deaths every year. About 85% of the deaths are in children under five years of age. Malaria is caused by the Plasmodium parasite which is transmitted by the Anopheles mosquito vector. Mainly two methods of intervention are used for vector control, i.e. insecticide-treated bed nets and indoor residual spraying. Both involve the use of insecticides and target Anopheles adults indoors. A rising increase in resistance against these insec...

  12. BIONOMIK NYAMUK Anopheles DAN KEBIASAAN PENDUDUK YANG MENUNJANG KEJADIAN MALARIA DI KECAMATAN PAGEDONGAN KABUPATEN BANJARNEGARA TAHUN 2005

    Directory of Open Access Journals (Sweden)

    Jarohman Raharjo

    2013-03-01

    Full Text Available Malaria masih merupakan masalah kesehatan global termasuk di Indonesia. Kabupaten Banjarnegara merupakan salah satu kabupaten di Jawa Tengah yang mempunyai masalah malaria cukup serius. Sampai dengan tahun 2002 telah tercatat 86 desa endemis dari 276 desa yang ada, sedangkan 175 desa terancam menjadi daerah HCI (High Case lncidens, jumlah penderita malaria pada tahun 2001 sebanyak 6.793 orang (API: 7,47%o meningkat menjadi 13.401 orang (API: 15,33%o pada tahun 2002 dan 90,2% dari kasus penderita indigenous.Tujuan penelitian ini adalah mengetahui bionomik nyamuk anopheles dan kebiasaan penduduk yang menunjang kejadian malaria di lokasi penelitian.Penelitian ini termasuk dalam jenis penelitian deskriptif, karena menggambarkan bionomik nyamuk vektor dan kebiasaan penduduk. Penelitian ini bertempat di Kecamatan Pagedongan, KabupatenBanjarnegara, Provinsi Jawa Tengah dilaksanakan pada bulan Februari Nopember 2005.Tempat berkembangbiak Anopheles spp positif adalah kobakan air (belik dan bekas galian pasir disungai dan mata air. Kebiasaan nyamuk Anopheles spp menggigit orang di dalam dan di luar rumah hampir sama banyaknya. Terjadi peningkatan jumlah nyamuk yang tajam pada bulan September. Aktivitas menggigit di dalam rumah dimulai pada pukul 18.00-19.00. Sedangkan aktivitas menggigit di luar rumah meningkat pada pukul 21. 00-22.00 dan mencapai puncaknya pada pukul 22. 00-23.00 dan 03.00-04.00.Kesimpulan dari penelitian ini adalah adanya nyamuk tersangka vektor, kondisi lingkungan dan pengetahuan masyarakat menjadi faktor yang menunjang kejadian malaria di desa wilayah Kecamatan Pagedongan. Saran yang diberikan adalah meningkatkan pengetahuan masyarakat tentang malaria dan mengurangi keberadaan tempat-tempat perkembangbiakan nyamuk. Kata Kunci : Malaria, Biomonik

  13. Insecticide resistance profile of Anopheles gambiae from a phase II field station in Cové, southern Benin: implications for the evaluation of novel vector control products.

    Science.gov (United States)

    Ngufor, Corine; N'Guessan, Raphael; Fagbohoun, Josias; Subramaniam, Krishanthi; Odjo, Abibatou; Fongnikin, Augustin; Akogbeto, Martin; Weetman, David; Rowland, Mark

    2015-11-18

    Novel indoor residual spraying (IRS) and long-lasting insecticidal net (LLIN) products aimed at improving the control of pyrethroid-resistant malaria vectors have to be evaluated in Phase II semi-field experimental studies against highly pyrethroid-resistant mosquitoes. To better understand their performance it is necessary to fully characterize the species composition, resistance status and resistance mechanisms of the vector populations in the experimental hut sites. Bioassays were performed to assess phenotypic insecticide resistance in the malaria vector population at a newly constructed experimental hut site in Cové, a rice growing area in southern Benin, being used for WHOPES Phase II evaluation of newly developed LLIN and IRS products. The efficacy of standard WHOPES-approved pyrethroid LLIN and IRS products was also assessed in the experimental huts. Diagnostic genotyping techniques and microarray studies were performed to investigate the genetic basis of pyrethroid resistance in the Cové Anopheles gambiae population. The vector population at the Cové experimental hut site consisted of a mixture of Anopheles coluzzii and An. gambiae s.s. with the latter occurring at lower frequencies (23 %) and only in samples collected in the dry season. There was a high prevalence of resistance to pyrethroids and DDT (>90 % bioassay survival) with pyrethroid resistance intensity reaching 200-fold compared to the laboratory susceptible An. gambiae Kisumu strain. Standard WHOPES-approved pyrethroid IRS and LLIN products were ineffective in the experimental huts against this vector population (8-29 % mortality). The L1014F allele frequency was 89 %. CYP6P3, a cytochrome P450 validated as an efficient metabolizer of pyrethroids, was over-expressed. Characterizing pyrethroid resistance at Phase II field sites is crucial to the accurate interpretation of the performance of novel vector control products. The strong levels of pyrethroid resistance at the Cové experimental hut

  14. Malaria Vector Control Still Matters despite Insecticide Resistance.

    Science.gov (United States)

    Alout, Haoues; Labbé, Pierrick; Chandre, Fabrice; Cohuet, Anna

    2017-08-01

    Mosquito vectors' resistance to insecticides is usually considered a major threat to the recent progresses in malaria control. However, studies measuring the impact of interventions and insecticide resistance reveal inconsistencies when using entomological versus epidemiological indices. First, evaluation tests that do not reflect the susceptibility of mosquitoes when they are infectious may underestimate insecticide efficacy. Moreover, interactions between insecticide resistance and vectorial capacity reveal nonintuitive outcomes of interventions. Therefore, considering ecological interactions between vector, parasite, and environment highlights that the impact of insecticide resistance on the malaria burden is not straightforward and we suggest that vector control still matters despite insecticide resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Anopheles culicifacies sibling species in Odisha, eastern India: First appearance of Anopheles culicifacies E and its vectorial role in malaria transmission.

    Science.gov (United States)

    Das, Mumani; Das, Biswadeep; Patra, Aparna P; Tripathy, Hare K; Mohapatra, Namita; Kar, Santanu K; Hazra, Rupenangshu K

    2013-07-01

    To identify the Anopheles culicifacies sibling species complex and study their vectorial role in malaria endemic regions of Odisha. Mosquitoes were collected from 6 malaria endemic districts using standard entomological collection methods. An. culicifacies sibling species were identified by multiplex polymerase chain reaction (PCR) using cytochrome oxidase subunit II (COII) region of mitochondrial DNA. Plasmodium falciparum (Pf) sporozoite rate and human blood fed percentage (HBF) were estimated by PCR using Pf- and human-specific primers. Sequencing and phylogenetic analysis were performed to confirm the type of sibling species of An. culicifacies found in Odisha. Multiplex PCR detected An. culicifacies sibling species A, B, C, D and E in the malaria endemic regions of Odisha. An. culicifacies E was detected for the first time in Odisha, which was further confirmed by molecular phylogenetics. Highest sporozoite rate and HBF percentage were observed in An. culicifacies E in comparison with other sibling species. An. culicifacies E collected from Nawarangapur, Nuapara and Keonjhar district showed high HBF percentage and sporozoite rates. An. culicifacies B was the most abundant species, followed by An. culicifacies C and E. High sporozoite rate and HBF of An. culicifacies E indicated that it plays an important role in malaria transmission in Odisha. Appropriate control measures against An. culicifacies E at an early stage are needed to prevent further malaria transmission in Odisha. © 2013 Blackwell Publishing Ltd.

  16. Larval habitats of Anopheles gambiae s.s. (Diptera: Culicidae influences vector competence to Plasmodium falciparum parasites

    Directory of Open Access Journals (Sweden)

    Gouagna Louis C

    2007-04-01

    Full Text Available Abstract Background The origin of highly competent malaria vectors has been linked to productive larval habitats in the field, but there isn't solid quantitative or qualitative data to support it. To test this, the effect of larval habitat soil substrates on larval development time, pupation rates and vector competence of Anopheles gambiae to Plasmodium falciparum were examined. Methods Soils were collected from active larval habitats with sandy and clay substrates from field sites and their total organic matter estimated. An. gambiae larvae were reared on these soil substrates and the larval development time and pupation rates monitored. The emerging adult mosquitoes were then artificially fed blood with infectious P. falciparum gametocytes from human volunteers and their midguts examined for oocyst infection after seven days. The wing sizes of the mosquitoes were also measured. The effect of autoclaving the soil substrates was also evaluated. Results The total organic matter was significantly different between clay and sandy soils after autoclaving (P = 0.022. A generalized liner model (GLM analysis identified habitat type (clay soil, sandy soil, or lake water and autoclaving (that reduces presence of microbes as significant factors affecting larval development time and oocyst infection intensities in adults. Autoclaving the soils resulted in the production of significantly smaller sized mosquitoes (P = 0.008. Autoclaving clay soils resulted in a significant reduction in Plasmodium falciparum oocyst intensities (P = 0.041 in clay soils (unautoclaved clay soils (4.28 ± 0.18 oocysts/midgut; autoclaved clay soils = 1.17 ± 0.55 oocysts/midgut although no difference (P = 0.480 in infection rates was observed between clay soils (10.4%, sandy soils (5.3% or lake water (7.9%. Conclusion This study suggests an important nutritional role for organic matter and microbial fauna on mosquito fitness and vector competence. It shows that the quality of

  17. Mecanismos de invasión del esporozoíto de Plasmodium en el mosquito vector Anopheles

    Directory of Open Access Journals (Sweden)

    Lilian M. Spencer

    2016-09-01

    Full Text Available La Malaria o Paludismo es una de las enfermedades tropicales considerada un problema de salud pública a nivel mundial por la OMS. Plasmodium es un protozoario cuyo vector es la hembra del mosquito Anopheles. En este vector se cumplen dos procesos fundamentales en el ciclo de vida del parásito, como son la reproducción sexual, con la formación de un cigoto móvil llamado ooquineto como producto de la fertilización entre los gametos; y la invasión del epitelio del estómago y formación del ooquiste. El estadio producto de esta esporogonia son los esporozoítos (reproducción asexual que se dirigen a las glándulas salivales; y es el infectivo para el mamífero. El esporozoíto es el responsable de establecer la enfermedad en su hospedador vertebrado y por lo tanto los procesos de invasión de este a las glándulas salivales del mosquito es uno de los puntos fundamentales de estudio. Nosotros presentamos una revisión acerca de los mecanismos de invasión del parásito dentro del vector mosquito y las proteínas más importantes que median este proceso. Uno de los aspectos más estudiados en las investigaciones en malaria ha sido determinar la antigenicidad de dichas proteínas en esta parte del ciclo con el fin de ser usadas en el diseño de vacunas. Entre ellas, algunas de las más estudiadas son: P230, P48/45, P28, P25, CTRP, CS, TRAP, WARP y SOAP las cuales han sido consideradas en las estrategias para inhibir el desarrollo del parásito, mejor conocidas como vacunas de bloqueo de trasmisión por el vector. Por lo tanto, presentamos algunas de las estrategias en el diseño de vacunas, basado en las proteínas implicadas en los estadios desarrollados dentro del vector.

  18. Predicting malaria vector distribution under climate change scenarios in China: Challenges for malaria elimination

    Science.gov (United States)

    Ren, Zhoupeng; Wang, Duoquan; Ma, Aimin; Hwang, Jimee; Bennett, Adam; Sturrock, Hugh J. W.; Fan, Junfu; Zhang, Wenjie; Yang, Dian; Feng, Xinyu; Xia, Zhigui; Zhou, Xiao-Nong; Wang, Jinfeng

    2016-02-01

    Projecting the distribution of malaria vectors under climate change is essential for planning integrated vector control activities for sustaining elimination and preventing reintroduction of malaria. In China, however, little knowledge exists on the possible effects of climate change on malaria vectors. Here we assess the potential impact of climate change on four dominant malaria vectors (An. dirus, An. minimus, An. lesteri and An. sinensis) using species distribution models for two future decades: the 2030 s and the 2050 s. Simulation-based estimates suggest that the environmentally suitable area (ESA) for An. dirus and An. minimus would increase by an average of 49% and 16%, respectively, under all three scenarios for the 2030 s, but decrease by 11% and 16%, respectively in the 2050 s. By contrast, an increase of 36% and 11%, respectively, in ESA of An. lesteri and An. sinensis, was estimated under medium stabilizing (RCP4.5) and very heavy (RCP8.5) emission scenarios. in the 2050 s. In total, we predict a substantial net increase in the population exposed to the four dominant malaria vectors in the decades of the 2030 s and 2050 s, considering land use changes and urbanization simultaneously. Strategies to achieve and sustain malaria elimination in China will need to account for these potential changes in vector distributions and receptivity.

  19. Predicting malaria vector distribution under climate change scenarios in China: Challenges for malaria elimination.

    Science.gov (United States)

    Ren, Zhoupeng; Wang, Duoquan; Ma, Aimin; Hwang, Jimee; Bennett, Adam; Sturrock, Hugh J W; Fan, Junfu; Zhang, Wenjie; Yang, Dian; Feng, Xinyu; Xia, Zhigui; Zhou, Xiao-Nong; Wang, Jinfeng

    2016-02-12

    Projecting the distribution of malaria vectors under climate change is essential for planning integrated vector control activities for sustaining elimination and preventing reintroduction of malaria. In China, however, little knowledge exists on the possible effects of climate change on malaria vectors. Here we assess the potential impact of climate change on four dominant malaria vectors (An. dirus, An. minimus, An. lesteri and An. sinensis) using species distribution models for two future decades: the 2030 s and the 2050 s. Simulation-based estimates suggest that the environmentally suitable area (ESA) for An. dirus and An. minimus would increase by an average of 49% and 16%, respectively, under all three scenarios for the 2030 s, but decrease by 11% and 16%, respectively in the 2050 s. By contrast, an increase of 36% and 11%, respectively, in ESA of An. lesteri and An. sinensis, was estimated under medium stabilizing (RCP4.5) and very heavy (RCP8.5) emission scenarios. in the 2050 s. In total, we predict a substantial net increase in the population exposed to the four dominant malaria vectors in the decades of the 2030 s and 2050 s, considering land use changes and urbanization simultaneously. Strategies to achieve and sustain malaria elimination in China will need to account for these potential changes in vector distributions and receptivity.

  20. Anthropogenic habitat disturbance and ecological divergence between incipient species of the malaria mosquito Anopheles gambiae.

    Science.gov (United States)

    Kamdem, Colince; Tene Fossog, Billy; Simard, Frédéric; Etouna, Joachim; Ndo, Cyrille; Kengne, Pierre; Boussès, Philippe; Etoa, François-Xavier; Awono-Ambene, Parfait; Fontenille, Didier; Antonio-Nkondjio, Christophe; Besansky, Nora J; Costantini, Carlo

    2012-01-01

    Anthropogenic habitat disturbance is a prime cause in the current trend of the Earth's reduction in biodiversity. Here we show that the human footprint on the Central African rainforest, which is resulting in deforestation and growth of densely populated urban agglomerates, is associated to ecological divergence and cryptic speciation leading to adaptive radiation within the major malaria mosquito Anopheles gambiae. In southern Cameroon, the frequency of two molecular forms--M and S--among which reproductive isolation is strong but still incomplete, was correlated to an index of urbanisation extracted from remotely sensed data, expressed as the proportion of built-up surface in each sampling unit. The two forms markedly segregated along an urbanisation gradient forming a bimodal cline of ∼6-km width: the S form was exclusive to the rural habitat, whereas only the M form was present in the core of densely urbanised settings, co-occurring at times in the same polluted larval habitats of the southern house mosquito Culex quinquefasciatus--a species association that was not historically recorded before. Our results indicate that when humans create novel habitats and ecological heterogeneities, they can provide evolutionary opportunities for rapid adaptive niche shifts associated with lineage divergence, whose consequences upon malaria transmission might be significant.

  1. Field evaluation of picaridin repellents reveals differences in repellent sensitivity between Southeast Asian vectors of malaria and arboviruses.

    Directory of Open Access Journals (Sweden)

    Karel Van Roey

    2014-12-01

    Full Text Available Scaling up of insecticide treated nets has contributed to a substantial malaria decline. However, some malaria vectors, and most arbovirus vectors, bite outdoors and in the early evening. Therefore, topically applied insect repellents may provide crucial additional protection against mosquito-borne pathogens. Among topical repellents, DEET is the most commonly used, followed by others such as picaridin. The protective efficacy of two formulated picaridin repellents against mosquito bites, including arbovirus and malaria vectors, was evaluated in a field study in Cambodia. Over a period of two years, human landing collections were performed on repellent treated persons, with rotation to account for the effect of collection place, time and individual collector. Based on a total of 4996 mosquitoes collected on negative control persons, the overall five hour protection rate was 97.4% [95%CI: 97.1-97.8%], not decreasing over time. Picaridin 20% performed equally well as DEET 20% and better than picaridin 10%. Repellents performed better against Mansonia and Culex spp. as compared to aedines and anophelines. A lower performance was observed against Aedes albopictus as compared to Aedes aegypti, and against Anopheles barbirostris as compared to several vector species. Parity rates were higher in vectors collected on repellent treated person as compared to control persons. As such, field evaluation shows that repellents can provide additional personal protection against early and outdoor biting malaria and arbovirus vectors, with excellent protection up to five hours after application. The heterogeneity in repellent sensitivity between mosquito genera and vector species could however impact the efficacy of repellents in public health programs. Considering its excellent performance and potential to protect against early and outdoor biting vectors, as well as its higher acceptability as compared to DEET, picaridin is an appropriate product to evaluate the

  2. Field evaluation of picaridin repellents reveals differences in repellent sensitivity between Southeast Asian vectors of malaria and arboviruses.

    Science.gov (United States)

    Van Roey, Karel; Sokny, Mao; Denis, Leen; Van den Broeck, Nick; Heng, Somony; Siv, Sovannaroth; Sluydts, Vincent; Sochantha, Tho; Coosemans, Marc; Durnez, Lies

    2014-12-01

    Scaling up of insecticide treated nets has contributed to a substantial malaria decline. However, some malaria vectors, and most arbovirus vectors, bite outdoors and in the early evening. Therefore, topically applied insect repellents may provide crucial additional protection against mosquito-borne pathogens. Among topical repellents, DEET is the most commonly used, followed by others such as picaridin. The protective efficacy of two formulated picaridin repellents against mosquito bites, including arbovirus and malaria vectors, was evaluated in a field study in Cambodia. Over a period of two years, human landing collections were performed on repellent treated persons, with rotation to account for the effect of collection place, time and individual collector. Based on a total of 4996 mosquitoes collected on negative control persons, the overall five hour protection rate was 97.4% [95%CI: 97.1-97.8%], not decreasing over time. Picaridin 20% performed equally well as DEET 20% and better than picaridin 10%. Repellents performed better against Mansonia and Culex spp. as compared to aedines and anophelines. A lower performance was observed against Aedes albopictus as compared to Aedes aegypti, and against Anopheles barbirostris as compared to several vector species. Parity rates were higher in vectors collected on repellent treated person as compared to control persons. As such, field evaluation shows that repellents can provide additional personal protection against early and outdoor biting malaria and arbovirus vectors, with excellent protection up to five hours after application. The heterogeneity in repellent sensitivity between mosquito genera and vector species could however impact the efficacy of repellents in public health programs. Considering its excellent performance and potential to protect against early and outdoor biting vectors, as well as its higher acceptability as compared to DEET, picaridin is an appropriate product to evaluate the epidemiological

  3. Evaluation of new tools for malaria vector control in Cameroon: focus on long lasting insecticidal nets.

    Directory of Open Access Journals (Sweden)

    Josiane Etang

    Full Text Available BACKGROUND: From 2006 to 2011, biological activity of insecticides for Indoor Residual Spraying (IRS, conventional treatment of nets (CTNs or long lasting insecticidal nets (LLINs was evaluated before their approval in Cameroon. The objective of the study was to select the best tools for universal malaria vector control coverage. METHODOLOGY: Bioassays were performed using WHO cones and the Kisumu susceptible strain of Anopheles gambiae s.s.. Among tested products, residual activity and wash resistance of Alpha-cypermethrin LLINs (Interceptor and CTNs (Fendona were assessed during 5 months in the Ntougou neighborhood. PRINCIPAL FINDINGS: All the 14 tested products were found effective (95-100% knockdown and mortality rates, although a significant decrease of efficacy was seen with lambda-cyhalothrinWP IRS, alpha-cypermethrin CTNs and LLINs (p< 0.05. However, the efficacy of Interceptor nets did not decrease during the 5 months evaluation, even after 25 washes (0.07malaria vector control in Cameroon.

  4. Abundance, composition and natural infection of Anopheles mosquitoes from two malaria-endemic regions of Colombia

    Directory of Open Access Journals (Sweden)

    Carolina Montoya

    2017-03-01

    Conclusions: Natural infection of A. darlingi and A. nuneztovari indicate that these malaria vectors continue to be effective carriers of Plasmodium in the localities under study in Valle del Cauca and Chocó. Additionally, the infected A. triannulatus s.l. collected in livestock corrals in the locality of the department of Córdoba suggests the need for further studies to define the epidemiological importance of this species given its abundance and opportunistic anthropophilic behavior.

  5. Efficacy of Bendiocarb Used for Indoor Residual Spraying for Malaria Control in Madagascar: Results With Local Anopheles Species (Diptera: Culicidae) From Experimental Hut Trials.

    Science.gov (United States)

    Randriamaherijaona, Sanjiarizaha; Nepomichene, Thiery Nirina Jean Jose; Assoukpa, Jade; Madec, Yoann; Boyer, Sébastien

    2017-07-01

    To control malaria in Madagascar, two primary vector control interventions are being scaled up: insecticide-treated nets and indoor residual spraying of bendiocarb, which was implemented in the Malagasy Central Highlands in 2009. The current efficacy of bendiocarb against Anopheles species was evaluated in a small-scale field trial. An experimental hut trial comparing the effectiveness of bendiocarb sprayed on five substrates (cement, wood, tin, mud, and vegetative materials) was carried out against Anopheles species in two study sites located in the eastern foothills of Madagascar. No significant difference was detected in either exophily or blood-feeding rates between treated and untreated huts. The mortality rate was significantly greater in treated huts compared to untreated huts. Efficacy up to 80% was found for 5 mo posttreatment. Although effective, bendiocarb has been used for 7 yr, and therefore an alternative insecticide may be needed to avoid the emergence of resistance. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Vector movement underlies avian malaria at upper elevation in Hawaii: implications for transmission of human malaria.

    Science.gov (United States)

    Freed, Leonard A; Cann, Rebecca L

    2013-11-01

    With climate warming, malaria in humans and birds at upper elevations is an emerging infectious disease because development of the parasite in the mosquito vector and vector life history are both temperature dependent. An enhanced-mosquito-movement model from climate warming predicts increased transmission of malaria at upper elevation sites that are too cool for parasite development in the mosquito vector. We evaluate this model with avian malaria (Plasmodium relictum) at 1,900-m elevation on the Island of Hawaii, with air temperatures too low for sporogony in the vector (Culex quinquefasciatus). On a well-defined site over a 14-year period, 10 of 14 species of native and introduced birds became infected, several epizootics occurred, and the increase in prevalence was driven more by resident species than by mobile species that could have acquired their infections at lower elevations. Greater movement of infectious mosquitoes from lower elevations now permits avian malaria to spread at 1,900 m in Hawaii, in advance of climate warming at that elevation. The increase in malaria at upper elevations due to dispersal of infectious mosquitoes is a real alternative to temperature for the increased incidence of human malaria in tropical highlands.

  7. Daily oviposition patterns of the African malaria mosquito Anopheles gambiae Giles (Diptera: Culicidae on different types of aqueous substrates

    Directory of Open Access Journals (Sweden)

    Knols Bart GJ

    2004-12-01

    Full Text Available Abstract Background Anopheles gambiae Giles is the most important vector of human malaria in sub-Saharan Africa. Knowledge of the factors that influence its daily oviposition pattern is crucial if field interventions targeting gravid females are to be successful. This laboratory study investigated the effect of oviposition substrate and time of blood feeding on daily oviposition patterns of An. gambiae mosquitoes. Methods Greenhouse-reared gravid and hypergravid (delayed oviposition onset An. gambiae sensu stricto and wild-caught An. gambiae sensu lato were exposed to three types of substrates in choice and no-choice cage bioassays: water from a predominantly anopheline colonised ground pool (anopheline habitat water, swamp water mainly colonised by culicine larvae (culicine habitat water and distilled water. The daily oviposition pattern and the number of eggs oviposited on each substrate during the entire egg-laying period were determined. The results were subjected to analysis of variance using the General Linear Model (GLM procedure. Results The main oviposition time for greenhouse-reared An. gambiae s.s. was between 19:00 and 20:00 hrs, approximately one hour after sunset. Wild-caught gravid An. gambiae s.l. displayed two distinct peak oviposition times between 19:00 and 20:00 hrs and between 22:00 and 23:00 hrs, respectively. During these times, both greenhouse-reared and wild-caught mosquitoes significantly (P P Conclusion This study shows that the peak oviposition time of An. gambiae s.l. may be regulated by the light-dark cycle rather than oviposition habitat characteristics or feeding times. However, the number of eggs laid by the female mosquito during the peak oviposition time is affected by the suitability of the habitat.

  8. Mosquito Vectors and the Globalization of Plasmodium falciparum Malaria.

    Science.gov (United States)

    Molina-Cruz, Alvaro; Zilversmit, Martine M; Neafsey, Daniel E; Hartl, Daniel L; Barillas-Mury, Carolina

    2016-11-23

    Plasmodium falciparum malaria remains a devastating public health problem. Recent discoveries have shed light on the origin and evolution of Plasmodium parasites and their interactions with their vertebrate and mosquito hosts. P. falciparum malaria originated in Africa from a single horizontal transfer between an infected gorilla and a human, and became global as the result of human migration. Today, P. falciparum malaria is transmitted worldwide by more than 70 different anopheline mosquito species. Recent studies indicate that the mosquito immune system can be a barrier to malaria transmission and that the P. falciparum Pfs47 gene allows the parasite to evade mosquito immune detection. Here, we review the origin and globalization of P. falciparum and integrate this history with analysis of the biology, evolution, and dispersal of the main mosquito vectors. This new perspective broadens our understanding of P. falciparum population structure and the dispersal of important parasite genetic traits.

  9. Characterization of malaria vectors in Huye District, Southern Rwanda

    African Journals Online (AJOL)

    user

    behaviour as well as breeding habitats. The objective of this study was to determine malaria vector species abundance and identify their larval habitats in Huye district, southern Rwanda. Methods: Adult mosquitoes were collected indoors using light trap and pyrethrum spray catch techniques, and outdoors using light traps.

  10. Molecular Taxonomy of Anopheles (Nyssorhynchus) benarrochi (Diptera: Culicidae) and Malaria Epidemiology in Southern Amazonian Peru

    Science.gov (United States)

    Conn, Jan E.; Moreno, Marta; Saavedra, Marlon; Bickersmith, Sara A.; Knoll, Elisabeth; Fernandez, Roberto; Vera, Hubert; Burrus, Roxanne G.; Lescano, Andres G.; Sanchez, Juan Francisco; Rivera, Esteban; Vinetz, Joseph M.

    2013-01-01

    Anopheline specimens were collected in 2011 by human landing catch, Shannon and CDC traps from the malaria endemic localities of Santa Rosa and San Pedro in Madre de Dios Department, Peru. Most specimens were either Anopheles (Nyssorhynchus) benarrochi B or An. (Nys.) rangeli, confirmed by polymerase chain reaction-restriction fragment length polymorphism-internal transcribed spacer 2 (PCR-RFLP-ITS2) and, for selected individuals, ITS2 sequences. A few specimens from Lupuna, Loreto Department, northern Amazonian Peru, were also identified as An. benarrochi B. A statistical parsimony network using ITS2 sequences confirmed that all Peruvian An. benarrochi B analyzed were identical to those in GenBank from Putumayo, southern Colombia. Sequences of the mtDNA COI BOLD region of specimens from all three Peruvian localities were connected using a statistical parsimony network, although there were multiple mutation steps between northern and southern Peruvian sequences. A Bayesian inference of concatenated Peruvian sequences of ITS2+COI detected a single clade with very high support for all An. benarrochi B except one individual from Lupuna that was excluded. No samples were positive for Plasmodium by CytB-PCR. PMID:23243107

  11. Estimation of vectorial capacity of Anopheles minimus Theobald & An. fluviatilis James (Diptera: Culicidae) in a malaria endemic area of Odisha State, India.

    Science.gov (United States)

    Gunasekaran, K; Sahu, S S; Jambulingam, P

    2014-11-01

    Anopheles minimus and An. fluviatilis were incriminated as the major malaria vectors in Keonjhar district of Odisha State recently. This study was carried out to elucidate the potential role of these two vector species in transmission of malaria during different seasons, and vectorial capacity of these species was also estimated. Three hilly and forested villages of Keonjhar district were randomly selected. Vectorial capacity (C) was calculated using the Macdonald's formula as modified by Garret-Jones. The human landing density of the vector species was obtained from all night human landing collections (bait protected by bed-net). Man feeding habit was estimated by multiplying the human blood index with feeding frequency, which was obtained on daily basis from the duration of gonotrophic cycle. The probability of survival through the extrinsic incubation cycle was calculated from the probability of survival through one day and duration of sporogonic cycle. The estimated vectorial capacity of An. minimus varied between 0.014 and 1.09 for Plasmodium falciparum (Pf) and between 0.1 and 1.46 for P. vivax (Pv). The C of An. minimus for both Pf and Pv was higher during rainy season than the other two seasons. The estimated C of An. fluviatilis varied between 0.04 and 1.28 for Pf and between 0.20 and 1.54 for Pv. Based on the estimated values of vectorial capacity of the two vector species, the area could be stratified and such stratification would reflect the difference in the intensity of transmission between different strata and accordingly the appropriate control strategy could be adopted for each stratum.

  12. Estimation of vectorial capacity of Anopheles minimus Theobald & An. fluviatilis James (Diptera: Culicidae in a malaria endemic area of Odisha State, India

    Directory of Open Access Journals (Sweden)

    K Gunasekaran

    2014-01-01

    Full Text Available Background & objectives: Anopheles minimus and An. fluviatilis were incriminated as the major malaria vectors in Keonjhar district of Odisha State recently. This study was carried out to elucidate the potential role of these two vector species in transmission of malaria during different seasons, and vectorial capacity of these species was also estimated. Methods: Three hilly and forested villages of Keonjhar district were randomly selected. Vectorial capacity (C was calculated using the Macdonald′s formula as modified by Garret-Jones. The human landing density of the vector species was obtained from all night human landing collections (bait protected by bed-net. Man feeding habit was estimated by multiplying the human blood index with feeding frequency, which was obtained on daily basis from the duration of gonotrophic cycle. The probability of survival through the extrinsic incubation cycle was calculated from the probability of survival through one day and duration of sporogonic cycle. Results: The estimated vectorial capacity of An. minimus varied between 0.014 and 1.09 for Plasmodium falciparum (Pf and between 0.1 and 1.46 for P. vivax (Pv. The C of An. minimus for both Pf and Pv was higher during rainy season than the other two seasons. The estimated C of An. fluviatilis varied between 0.04 and 1.28 for Pf and between 0.20 and 1.54 for Pv. Interpretation & conclusions: Based on the estimated values of vectorial capacity of the two vector species, the area could be stratified and such stratification would reflect the difference in the intensity of transmission between different strata and accordingly the appropriate control strategy could be adopted for each stratum.

  13. BIOTEKNOLOGI VEKTOR MALARIA NYAMUK Anopheles sundaicus DI KECAMATAN NONGSA, KOTA BATAM, TAHUN 2008

    Directory of Open Access Journals (Sweden)

    Yusniar Ariati

    2012-11-01

    Full Text Available Malaria was one of the vector-borne diseases that still becoming a health problem in Indonesia. It closely related with the environment condition. The case of malaria in Nongsa subdistrict was high with the highest Annual Parasite Incidence (API in Sambau village was 34%o in 2007, whereas in Batu Besar village 2.3%o. The aim of this research was to know bionomic of An.sundaicus malaria vector in Nongsa subdistrict that covered mapping of larvae habitat, density of vector mosquitoes, biting activity, parous rate, vector incrimination as well as sensitivity status to insecticide. The study hold by catching mosquitos with human trap indoor/outdoor and wall resting start on 06.00 PM until 6.00 AM. The larva survey with technique searching in the morning. The results of habitat mapping in the village of Teluk Mata Ikan and Batu Besar found one type of An.sundaicus larvae habitat in the former sand quarry with water salinity between 5-12%o, pH 7 and water temperatures between 29-33°C. The results of An. sundaicus caught in July showed that outdoor Man Biting Rate (MBR 4,7 and indoor 3,0. On October 2008, outdoor Man Biting Rate (MBR were 2.8 and indoor 0.8, whereas in December, the density of An. sundaicus caught outdoor 35.5 and indoor 18.7. An.sundaicus blood sucking activity expressed in the Man Hour Density (MHD in July as the highest, outdoor between the hours of 02.00 to 03.00 AM and outdoor between the hours of 04.00 to 05.00 AM. In October, the highest outdoor was between the hours of 04.00 to 05.00 AM, indoor between the hours of 03.00 to 04.00 AM and 01.00 to 02.00 AM. In December, the highest outdoor was between the hours of 23.00-24.00 and indoor between the hours of 01.00 to 02.00 AM and 03.00 to 04.00 AM. The results of ELISA test to circum sporozoite protein found containing 14.01% P. falciparum and 5.68% of P.vivax. Besides, it also found that An. sundaicus containing 2 types of Plasmodium sp (mix. The results of testing

  14. Control of Malaria Vector Mosquitoes by Insecticide-Treated Combinations of Window Screens and Eave Baffles.

    Science.gov (United States)

    Killeen, Gerry F; Masalu, John P; Chinula, Dingani; Fotakis, Emmanouil A; Kavishe, Deogratius R; Malone, David; Okumu, Fredros

    2017-05-01

    We assessed window screens and eave baffles (WSEBs), which enable mosquitoes to enter but not exit houses, as an alternative to indoor residual spraying (IRS) for malaria vector control. WSEBs treated with water, the pyrethroid lambda-cyhalothrin, or the organophosphate pirimiphos-methyl, with and without a binding agent for increasing insecticide persistence on netting, were compared with IRS in experimental huts. Compared with IRS containing the same insecticide, WSEBs killed similar proportions of Anopheles funestus mosquitoes that were resistant to pyrethroids, carbamates and organochlorines and greater proportions of pyrethroid-resistant, early exiting An. arabiensis mosquitoes. WSEBs with pirimiphos-methyl killed greater proportions of both vectors than lambda-cyhalothrin or lambda-cyhalothrin plus pirimiphos-methyl and were equally efficacious when combined with binding agent. WSEBs required far less insecticide than IRS, and binding agents might enhance durability. WSEBs might enable affordable deployment of insecticide combinations to mitigate against physiologic insecticide resistance and improve control of behaviorally resistant, early exiting vectors.

  15. Comparison of transmission parameters between Anopheles argyritarsis and Anopheles pseudopunctipennis in two ecologically different localities of Bolivia.

    Science.gov (United States)

    Lardeux, Frédéric; Aliaga, Claudia; Tejerina, Rosenka; Torrez, Libia

    2013-08-13

    Anopheles (Anopheles) pseudopunctipennis is a recognized malaria vector in the slopes of the Andes of Bolivia. There, other species might be involved in malaria transmission and one candidate could be Anopheles argyritarsis. Although it is generally admitted that this species is not a malaria vector in the neotropical region, its potential role in transmission is still controversial and this situation has to be cleared, at least for Bolivia. Comparing the vectorial efficiency of An. pseudopunctipennis with that of An. argyritarsis could solve the question. The two species were sampled throughout Bolivia to estimate their degree of co-existence in their distribution range. Vectorial efficiencies of the two species were compared in two ecologically different localities where the species were sympatric by analysing their vectorial capacities and components (i e, human biting rates, human biting index, survival, durations of the gonotrophic cycle and extrinsic cycle), and the entomological inoculation rates (EIR). Mosquitoes were sampled monthly during more than one year in the two localities. A monthly sample consisted in hourly captures in four houses (inside and outside) in each locality, during four consecutive nights. Climatic variables (temperature, humidity, potential evapo-transpiration and precipitations) were recorded to better understand variability in the entomological parameters. Relationships were analysed using multivariate methods. Anopheles pseudopunctipennis and An. argyritarsis are "altitude" species, sharing the same geographical distribution range in the Andes of Bolivia. No Plasmodium parasite was identified in An. argyritarsis and estimates of the vectorial capacity indicated that it is not a malaria vector in the two studied localities, unlike An. pseudopunctipennis which showed positive EIRs. This latter species, although not a very good malaria vector, exhibited better life traits values and better behavioural characteristics in favour of

  16. An entomopathogenic fungus for control of adult African malaria mosquitoes

    NARCIS (Netherlands)

    Scholte, E.J.; Ng'habi, K.R.N.; Kihonda, J.; Takken, W.; Paaijmans, K.P.; Abdulla, S.; Killeen, G.F.; Knols, B.G.J.

    2005-01-01

    Biological control of malaria mosquitoes in Africa has rarely been used in vector control programs. Recent developments in this field show that certain fungi are virulent to adult Anopheles mosquitoes. Practical delivery of an entomopathogenic fungus that infected and killed adult Anopheles gambiae,

  17. Development of a Rapid Method for Distinguishing the Malaria Vectors, Anopheles Gambiae from Anopheles Arabiensis

    Science.gov (United States)

    1989-08-14

    colonized specimens are subject to founder effects and thus may not be representative of the variability in natural populations. In order to be cer...An. merus, V-12 Kenya 5 An. merus, Zulu Zululand 4 An. quadriannulatus, Chil. Zimbabwe 5 -14- Table 2. Southern hybridization pattern of IVS fragments...An. arabiensis, Man - - - - + * + * + An. melas, Ba] * + - + + + + - + * + * + An. merus, Zulu * + * + An. merus, V-12 * + - - - - - + *+ An

  18. SEASONAL DISTRIBUTION OF MALARIA VECTORS (DIPTERA: CULICIDAE IN RURAL LOCALITIES OF PORTO VELHO, RONDÔNIA, BRAZILIAN AMAZON

    Directory of Open Access Journals (Sweden)

    Luiz Herman Soares GIL

    2015-06-01

    Full Text Available We conducted a survey of the malaria vectors in an area where a power line had been constructed, between the municipalities of Porto Velho and Rio Branco, in the states of Rondônia and Acre, respectively. The present paper relates to the results of the survey of Anopheles fauna conducted in the state of Rondônia. Mosquito field collections were performed in six villages along the federal highway BR 364 in the municipality of Porto Velho, namely Porto Velho, Jaci Paraná, Mutum Paraná, Vila Abunã, Vista Alegre do Abunã, and Extrema. Mosquito captures were performed at three distinct sites in each locality during the months of February, July, and October 2011 using a protected human-landing catch method; outdoor and indoor captures were conducted simultaneously at each site for six hours. In the six sampled areas, we captured 2,185 mosquitoes belonging to seven Anopheles species. Of these specimens, 95.1% consisted of Anopheles darlingi, 1.8% An. triannulatus l.s., 1.7% An. deaneorum, 0.8% An. konderi l.s., 0.4 An. braziliensis, 0.1% An. albitarsis l.s., and 0.1% An. benarrochi. An. darlingi was the only species found in all localities; the remaining species occurred in sites with specific characteristics.

  19. CYP6 P450 enzymes and ACE-1 duplication produce extreme and multiple insecticide resistance in the malaria mosquito Anopheles gambiae.

    Science.gov (United States)

    Edi, Constant V; Djogbénou, Luc; Jenkins, Adam M; Regna, Kimberly; Muskavitch, Marc A T; Poupardin, Rodolphe; Jones, Christopher M; Essandoh, John; Kétoh, Guillaume K; Paine, Mark J I; Koudou, Benjamin G; Donnelly, Martin J; Ranson, Hilary; Weetman, David

    2014-03-01

    Malaria control relies heavily on pyrethroid insecticides, to which susceptibility is declining in Anopheles mosquitoes. To combat pyrethroid resistance, application of alternative insecticides is advocated for indoor residual spraying (IRS), and carbamates are increasingly important. Emergence of a very strong carbamate resistance phenotype in Anopheles gambiae from Tiassalé, Côte d'Ivoire, West Africa, is therefore a potentially major operational challenge, particularly because these malaria vectors now exhibit resistance to multiple insecticide classes. We investigated the genetic basis of resistance to the most commonly-applied carbamate, bendiocarb, in An. gambiae from Tiassalé. Geographically-replicated whole genome microarray experiments identified elevated P450 enzyme expression as associated with bendiocarb resistance, most notably genes from the CYP6 subfamily. P450s were further implicated in resistance phenotypes by induction of significantly elevated mortality to bendiocarb by the synergist piperonyl butoxide (PBO), which also enhanced the action of pyrethroids and an organophosphate. CYP6P3 and especially CYP6M2 produced bendiocarb resistance via transgenic expression in Drosophila in addition to pyrethroid resistance for both genes, and DDT resistance for CYP6M2 expression. CYP6M2 can thus cause resistance to three distinct classes of insecticide although the biochemical mechanism for carbamates is unclear because, in contrast to CYP6P3, recombinant CYP6M2 did not metabolise bendiocarb in vitro. Strongly bendiocarb resistant mosquitoes also displayed elevated expression of the acetylcholinesterase ACE-1 gene, arising at least in part from gene duplication, which confers a survival advantage to carriers of additional copies of resistant ACE-1 G119S alleles. Our results are alarming for vector-based malaria control. Extreme carbamate resistance in Tiassalé An. gambiae results from coupling of over-expressed target site allelic variants with

  20. Genetics of refractoriness to Plasmodium falciparum in the mosquito Anopheles stephensi

    NARCIS (Netherlands)

    Feldmann, A.M.; Gemert, Geert-Jan van; Vegte-Bolmer, Marga G. van de; Jansen, Ritsert C.

    1998-01-01

    We previously selected a line of the malaria vector mosquito Anopheles stephensi refractory (resistant) to the human malaria parasite Plasmodium falciparum, using in vitro infections with P. falciparum gametocytes. This report presents data on the genetic background of refractoriness. The results of

  1. Attitudes to malaria, prevention, treatment and management ...

    African Journals Online (AJOL)

    SERVER

    2007-11-05

    Nov 5, 2007 ... consequences of malaria treatment pattern and management strategies in an urban center. Questionnaires were issued ... anopheles mosquitoes as malaria vector are some of the factors militating against prevention and proper management of the .... bush clearing, drainage and gutter control in preventing.

  2. Identification, characterisation, and function of adipokinetic hormones and receptor in the African malaria mosquito, "Anopheles Gambiae" (Diptera)

    OpenAIRE

    Kaufmann, Christian; Betschart, Bruno

    2007-01-01

    En utilisant la bioinformatique et la biologie moléculaire, nous avons pu identifier chez le principal vecteur africain de la malaria, le moustique, Anopheles gambiae deux hormones adipokinétiques (AKHs): l'octapeptide, Anoga-AKH-I (pQLTFTPAWa) et le décapeptide, Anoga-AKH-II, (pQVTFSRDWNAa). La fonction principale des AKHs est d’induire une hyperlipémie (effet d’adipokinétique), ainsi qu’une hypertrehalosémie et une hyperprolinémie. En tant que membres de la famille des AKH, les deux neurope...

  3. Linking individual phenotype to density-dependent population growth: the influence of body size on the population dynamics of malaria vectors

    Science.gov (United States)

    Russell, Tanya L.; Lwetoijera, Dickson W.; Knols, Bart G. J.; Takken, Willem; Killeen, Gerry F.; Ferguson, Heather M.

    2011-01-01

    Understanding the endogenous factors that drive the population dynamics of malaria mosquitoes will facilitate more accurate predictions about vector control effectiveness and our ability to destabilize the growth of either low- or high-density insect populations. We assessed whether variation in phenotypic traits predict the dynamics of Anopheles gambiae sensu lato mosquitoes, the most important vectors of human malaria. Anopheles gambiae dynamics were monitored over a six-month period of seasonal growth and decline. The population exhibited density-dependent feedback, with the carrying capacity being modified by rainfall (97% wAICc support). The individual phenotypic expression of the maternal (p = 0.0001) and current (p = 0.040) body size positively influenced population growth. Our field-based evidence uniquely demonstrates that individual fitness can have population-level impacts and, furthermore, can mitigate the impact of exogenous drivers (e.g. rainfall) in species whose reproduction depends upon it. Once frontline interventions have suppressed mosquito densities, attempts to eliminate malaria with supplementary vector control tools may be attenuated by increased population growth and individual fitness. PMID:21389034

  4. A spatial individual-based model predicting a great impact of copious sugar sources and resting sites on survival of Anopheles gambiae and malaria parasite transmission

    Science.gov (United States)

    Zhu, Lin; Qualls, Whitney A.; Marshall, John M; Arheart, Kris L.; DeAngelis, Donald L.; McManus, John W.; Traore, Sekou F.; Doumbia, Seydou; Schlein, Yosef; Muller, Gunter C.; Beier, John C.

    2015-01-01

    BackgroundAgent-based modelling (ABM) has been used to simulate mosquito life cycles and to evaluate vector control applications. However, most models lack sugar-feeding and resting behaviours or are based on mathematical equations lacking individual level randomness and spatial components of mosquito life. Here, a spatial individual-based model (IBM) incorporating sugar-feeding and resting behaviours of the malaria vector Anopheles gambiae was developed to estimate the impact of environmental sugar sources and resting sites on survival and biting behaviour.MethodsA spatial IBM containing An. gambiae mosquitoes and humans, as well as the village environment of houses, sugar sources, resting sites and larval habitat sites was developed. Anopheles gambiae behaviour rules were attributed at each step of the IBM: resting, host seeking, sugar feeding and breeding. Each step represented one second of time, and each simulation was set to run for 60 days and repeated 50 times. Scenarios of different densities and spatial distributions of sugar sources and outdoor resting sites were simulated and compared.ResultsWhen the number of natural sugar sources was increased from 0 to 100 while the number of resting sites was held constant, mean daily survival rate increased from 2.5% to 85.1% for males and from 2.5% to 94.5% for females, mean human biting rate increased from 0 to 0.94 bites per human per day, and mean daily abundance increased from 1 to 477 for males and from 1 to 1,428 for females. When the number of outdoor resting sites was increased from 0 to 50 while the number of sugar sources was held constant, mean daily survival rate increased from 77.3% to 84.3% for males and from 86.7% to 93.9% for females, mean human biting rate increased from 0 to 0.52 bites per human per day, and mean daily abundance increased from 62 to 349 for males and from 257 to 1120 for females. All increases were significant (P houses.ConclusionsIncreases in densities of sugar sources or

  5. MalariaSphere : a greenhouse-enclosed simulation of a natural Anopheles gambiae (Diptera: Culicidae) ecosystem in western Kenya

    NARCIS (Netherlands)

    Knols, B.G.J.; Njiru, B.N.; Mathenge, E.M.; Mukabana, W.R.; Beier, J.C.; Killeen, G.F.

    2002-01-01

    The development and implementation of innovative vector control strategies for malaria control in Africa requires in-depth ecological studies in contained semi-field environments. This particularly applies to the development and release of genetically-engineered vectors that are refractory to

  6. Genomic Footprints of Selective Sweeps from Metabolic Resistance to Pyrethroids in African Malaria Vectors Are Driven by Scale up of Insecticide-Based Vector Control.

    Science.gov (United States)

    Barnes, Kayla G; Weedall, Gareth D; Ndula, Miranda; Irving, Helen; Mzihalowa, Themba; Hemingway, Janet; Wondji, Charles S

    2017-02-01

    Insecticide resistance in mosquito populations threatens recent successes in malaria prevention. Elucidating patterns of genetic structure in malaria vectors to predict the speed and direction of the spread of resistance is essential to get ahead of the 'resistance curve' and to avert a public health catastrophe. Here, applying a combination of microsatellite analysis, whole genome sequencing and targeted sequencing of a resistance locus, we elucidated the continent-wide population structure of a major African malaria vector, Anopheles funestus. We identified a major selective sweep in a genomic region controlling cytochrome P450-based metabolic resistance conferring high resistance to pyrethroids. This selective sweep occurred since 2002, likely as a direct consequence of scaled up vector control as revealed by whole genome and fine-scale sequencing of pre- and post-intervention populations. Fine-scaled analysis of the pyrethroid resistance locus revealed that a resistance-associated allele of the cytochrome P450 monooxygenase CYP6P9a has swept through southern Africa to near fixation, in contrast to high polymorphism levels before interventions, conferring high levels of pyrethroid resistance linked to control failure. Population structure analysis revealed a barrier to gene flow between southern Africa and other areas, which may prevent or slow the spread of the southern mechanism of pyrethroid resistance to other regions. By identifying a genetic signature of pyrethroid-based interventions, we have demonstrated the intense selective pressure that control interventions exert on mosquito populations. If this level of selection and spread of resistance continues unabated, our ability to control malaria with current interventions will be compromised.

  7. Genomic Footprints of Selective Sweeps from Metabolic Resistance to Pyrethroids in African Malaria Vectors Are Driven by Scale up of Insecticide-Based Vector Control.

    Directory of Open Access Journals (Sweden)

    Kayla G Barnes

    2017-02-01

    Full Text Available Insecticide resistance in mosquito populations threatens recent successes in malaria prevention. Elucidating patterns of genetic structure in malaria vectors to predict the speed and direction of the spread of resistance is essential to get ahead of the 'resistance curve' and to avert a public health catastrophe. Here, applying a combination of microsatellite analysis, whole genome sequencing and targeted sequencing of a resistance locus, we elucidated the continent-wide population structure of a major African malaria vector, Anopheles funestus. We identified a major selective sweep in a genomic region controlling cytochrome P450-based metabolic resistance conferring high resistance to pyrethroids. This selective sweep occurred since 2002, likely as a direct consequence of scaled up vector control as revealed by whole genome and fine-scale sequencing of pre- and post-intervention populations. Fine-scaled analysis of the pyrethroid resistance locus revealed that a resistance-associated allele of the cytochrome P450 monooxygenase CYP6P9a has swept through southern Africa to near fixation, in contrast to high polymorphism levels before interventions, conferring high levels of pyrethroid resistance linked to control failure. Population structure analysis revealed a barrier to gene flow between southern Africa and other areas, which may prevent or slow the spread of the southern mechanism of pyrethroid resistance to other regions. By identifying a genetic signature of pyrethroid-based interventions, we have demonstrated the intense selective pressure that control interventions exert on mosquito populations. If this level of selection and spread of resistance continues unabated, our ability to control malaria with current interventions will be compromised.

  8. Ecological transition from natural forest to tea plantations: effect on the dynamics of malaria vectors in the highlands of Cameroon.

    Science.gov (United States)

    Tanga, M C; Ngundu, W I

    2010-10-01

    From October 2002 to September 2003, an entomological survey was carried out in a rural forested fringed village in the highlands of Mount Cameroon region to determine the temporal dynamics of the anopheline population and the intensity of malaria transmission. A total of 2387 Anopheles spp. were collected, with A. funestus predominating (59.9%), followed by A. hancocki (24.4%) and A. gambiae s.l. (15.7%). Considerable differences were observed in the nocturnal biting cycles of parous mosquitoes, with peak activity in the latter part of the night. PCR revealed that all specimens of the A. funestus group were A. funestus s.s. and all specimens from the A. gambiae complex were A. gambiae s.s. of the S molecular form. Plasmodium falciparum sporozoite rates of 17.3% and 8.5% were recorded for A. funestus and A. hancocki, respectively, with an anthropophilic rate of 96.3%. A strong positive correlation (r=0.996) was found between the human-biting rate and the entomological inoculation rate (EIR). Malaria transmission was very high and perennial, with an estimated annual EIR of 460.1 infective bites per person per year. These results confirm that in high agricultural activity areas, A. funestus can be by far the major malaria vector responsible for malaria transmission. Copyright © 2010 Royal Society of Tropical Medicine and Hygiene.

  9. Targeting the breeding sites of malaria mosquitoes: biological and physical control of malaria mosquito larvae

    NARCIS (Netherlands)

    Bukhari, S.T.

    2011-01-01


    Malaria causes an estimated 225 million cases and 781,000 deaths every year. About 85% of the deaths are in children under five years of age. Malaria is caused by the Plasmodium parasite which is transmitted by the Anopheles mosquito vector. Mainly two methods of intervention are used for

  10. How effective is integrated vector management against malaria and lymphatic filariasis where the diseases are transmitted by the same vector?

    OpenAIRE

    Stone, C.; Lindsay, S.W.; Chitnis, N.

    2014-01-01

    Background: The opportunity to integrate vector management across multiple vector-borne diseases is particularly plausible for malaria and lymphatic filariasis (LF) control where both diseases are transmitted by the same vector. To date most examples of integrated control targeting these diseases have been unanticipated consequences of malaria vector control, rather than planned strategies that aim to maximize the efficacy and take the complex ecological and biological interactions between th...

  11. Effects of blood-feeding on olfactory sensitivity of the malaria mosquito Anopheles gambiae: application of mixed linear models to account for repeated measurements

    NARCIS (Netherlands)

    Qiu, Y.T.; Gort, G.; Torricelli, A.; Takken, W.; Loon, van J.J.A.

    2013-01-01

    Olfaction plays an important role in the host-seeking behavior of the malaria mosquito Anopheles gambiae. After a complete blood meal, female mosquitoes will not engage in host-seeking behavior until oviposition has occurred. We investigated if peripheral olfactory sensitivity changed after a blood

  12. The response of the malaria mosquito, Anopheles gambiae, to two components of human sweat, ammonia and L-lactic acid, in an olfactometer

    NARCIS (Netherlands)

    Braks, M.A.H.; Meijerink, J.; Takken, W.

    2001-01-01

    In an olfactometer study on the response of the anthropophilic malaria mosquito Anopheles gambiae s.s. (Diptera, Culicidae) to human sweat it was found that freshly collected sweat, mostly of eccrine origin, was attractive, but that incubated sweat was significantly more attractive than fresh sweat.

  13. The genetics and ecology of male reproductive investments in the malaria mosquito Anopheles gambiae s.s

    OpenAIRE

    Ekechukwu, Nkuru Esther

    2015-01-01

    Malaria continues to be a major global health problem due to high mortality and morbidity rate in endemic regions. An. gambiae s.s is the major vector in endemic African countries. About 198 million cases of malaria were recorded globally in 2013 and this have led to over 584 000 deaths. Different measures have been implemented in order to reduce and control the transmission rate. However, the drug resistant parasites and insecticide resistant mosquitoes have created problems towards achievin...

  14. Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control.

    Science.gov (United States)

    Benelli, Giovanni; Mehlhorn, Heinz

    2016-05-01

    The fight against mosquito-borne diseases is a challenge of huge public health importance. To our mind, 2015 was an extraordinary year for malaria control, due to three hot news: the Nobel Prize to Youyou Tu for the discovery of artemisinin, the development of the first vaccine against Plasmodium falciparum malaria [i.e. RTS,S/AS01 (RTS,S)], and the fall of malaria infection rates worldwide, with special reference to sub-Saharan Africa. However, there are major challenges that still deserve attention, in order to boost malaria prevention and control. Indeed, parasite strains resistant to artemisinin have been detected, and RTS,S vaccine does not offer protection against Plasmodium vivax malaria, which predominates in many countries outside of Africa. Furthermore, the recent outbreaks of Zika virus infections, occurring in South America, Central America and the Caribbean, represent the most recent of four arrivals of important arboviruses in the Western Hemisphere, over the last 20 years. Zika virus follows dengue (which slyly arrived in the hemisphere over decades and became more aggressive in the 1990s), West Nile virus (emerged in 1999) and chikungunya (emerged in 2013). Notably, there are no specific treatments for these arboviruses. The emerging scenario highlights that the effective and eco-friendly control of mosquito vectors, with special reference to highly invasive species such as Aedes aegypti and Aedes albopictus, is crucial. The concrete potential of screening plant species as sources of metabolites for parasitological purposes is worthy of attention, as elucidated by the Y. Tu's example. Notably, plant-borne molecules are often effective at few parts per million against Aedes, Ochlerotatus, Anopheles and Culex young instars, can be used for the rapid synthesis of mosquitocidal nanoformulations and even employed to prepare cheap repellents with low human toxicity. In addition, behaviour-based control tools relying to the employ of sound traps and the

  15. A research agenda for malaria eradication: vector control.

    Science.gov (United States)

    2011-01-25

    Different challenges are presented by the variety of malaria transmission environments present in the world today. In each setting, improved control for reduction of morbidity is a necessary first step towards the long-range goal of malaria eradication and a priority for regions where the disease burden is high. For many geographic areas where transmission rates are low to moderate, sustained and well-managed application of currently available tools may be sufficient to achieve local elimination. The research needs for these areas will be to sustain and perhaps improve the effectiveness of currently available tools. For other low-to-moderate transmission regions, notably areas where the vectors exhibit behaviours such as outdoor feeding and resting that are not well targeted by current strategies, new interventions that target predictable features of the biology/ecologies of the local vectors will be required. To achieve elimination in areas where high levels of transmission are sustained by very efficient vector species, radically new interventions that significantly reduce the vectorial capacity of wild populations will be needed. Ideally, such interventions should be implemented with a one-time application with a long-lasting impact, such as genetic modification of the vectorial capacity of the wild vector population.

  16. Plasmodium knowlesi in humans: a review on the role of its vectors in Malaysia.

    Science.gov (United States)

    Vythilingam, Indra

    2010-04-01

    Plasmodium knowlesi in humans is life threatening, is on the increase and has been reported from most states in Malaysia. Anopheles latens and Anopheles cracens have been incriminated as vectors. Malaria is now a zoonoses and is occurring in malaria free areas of Malaysia. It is also a threat to eco-tourism. The importance of the vectors and possible control measures is reviewed here.

  17. Standardizing operational vector sampling techniques for measuring malaria transmission intensity: evaluation of six mosquito collection methods in western Kenya.

    Science.gov (United States)

    Wong, Jacklyn; Bayoh, Nabie; Olang, George; Killeen, Gerry F; Hamel, Mary J; Vulule, John M; Gimnig, John E

    2013-04-30

    Operational vector sampling methods lack standardization, making quantitative comparisons of malaria transmission across different settings difficult. Human landing catch (HLC) is considered the research gold standard for measuring human-mosquito contact, but is unsuitable for large-scale sampling. This study assessed mosquito catch rates of CDC light trap (CDC-LT), Ifakara tent trap (ITT), window exit trap (WET), pot resting trap (PRT), and box resting trap (BRT) relative to HLC in western Kenya to 1) identify appropriate methods for operational sampling in this region, and 2) contribute to a larger, overarching project comparing standardized evaluations of vector trapping methods across multiple countries. Mosquitoes were collected from June to July 2009 in four districts: Rarieda, Kisumu West, Nyando, and Rachuonyo. In each district, all trapping methods were rotated 10 times through three houses in a 3 × 3 Latin Square design. Anophelines were identified by morphology and females classified as fed or non-fed. Anopheles gambiae s.l. were further identified as Anopheles gambiae s.s. or Anopheles arabiensis by PCR. Relative catch rates were estimated by negative binomial regression. When data were pooled across all four districts, catch rates (relative to HLC indoor) for An. gambiae s.l (95.6% An. arabiensis, 4.4% An. gambiae s.s) were high for HLC outdoor (RR = 1.01), CDC-LT (RR = 1.18), and ITT (RR = 1.39); moderate for WET (RR = 0.52) and PRT outdoor (RR = 0.32); and low for all remaining types of resting traps (PRT indoor, BRT indoor, and BRT outdoor; RR < 0.08 for all). For Anopheles funestus, relative catch rates were high for ITT (RR = 1.21); moderate for HLC outdoor (RR = 0.47), CDC-LT (RR = 0.69), and WET (RR = 0.49); and low for all resting traps (RR < 0.02 for all). At finer geographic scales, however, efficacy of each trap type varied from district to district. ITT, CDC-LT, and WET appear to be effective methods for large-scale vector sampling in

  18. Agriculture and the promotion of insect pests: rice cultivation in river floodplains and malaria vectors in The Gambia

    Directory of Open Access Journals (Sweden)

    Louca Vasilis

    2009-07-01

    Full Text Available Abstract Background Anthropogenic modification of natural habitats can create conditions in which pest species associated with humans can thrive. In order to mitigate for these changes, it is necessary to determine which aspects of human management are associated with the promotion of those pests. Anopheles gambiae, the main Africa malaria vector, often breeds in rice fields. Here the impact of the ancient practice of 'swamp rice' cultivation, on the floodplains of the Gambia River, on the production of anopheline mosquitoes was investigated. Methods Routine surveys were carried out along 500 m transects crossing rice fields from the landward edge of the floodplains to the river during the 2006 rainy season. Aquatic invertebrates were sampled using area samplers and emergence traps and fish sampled using nets. Semi-field experiments were used to investigate whether nutrients used for swamp rice cultivation affected mosquito larval abundance. Results At the beginning of the rainy season rice is grown on the landward edge of the floodplain; the first area to flood with fresh water and one rich in cattle dung. Later, rice plants are transplanted close to the river, the last area to dry out on the floodplain. Nearly all larval and adult stages of malaria vectors were collected 0–100 m from the landward edge of the floodplains, where immature rice plants were grown. These paddies contained stagnant freshwater with high quantities of cattle faeces. Semi-field studies demonstrated that cattle faeces nearly doubled the number of anopheline larvae compared with untreated water. Conclusion Swamp rice cultivation creates ideal breeding sites for malaria vectors. However, only those close to the landward edge harboured vectors. These sites were productive since they were large areas of standing freshwater, rich in nutrients, protected from fish, and situated close to human habitation, where egg-laying mosquitoes from the villages had short distances to

  19. Survivorship Of Anopheles gambiae In Relation To Malaria Transmission In Ilorin, Nigeria

    Directory of Open Access Journals (Sweden)

    Israel Kayode Olayemi

    2008-11-01

    Full Text Available For the first time in Africa, an entomological study went beyond the conventional practice of determining parity and survival rates of field-collected adult anopheline mosquitoes but also related these variables to duration of Plasmodium sporogony and estimated the expectation of infective life. Blood-seeking female mosquitoes were collected in Ilorin, Nigeria, from January 2005 to December 2006, and dissected for ovarian tracheations following WHO recommended techniques. The results indicated an annual mean parous rate of 70.92%, and significantly higher parous rates in the rainy than dry season, which also had very low densities. Mean probability of daily survival of the mosquitoes was 0.80, with annual mean life expectancy of 12.24 days. The probability of surviving the sporogonic cycle was low (< 0.4 but the expectation of infective life was long, especially in the rainy season (mean = 8.31 days. The epidemiological implications of these results were discussed. The An. gambiae population in Ilorin is dominated by older mosquitoes with high survival rates thus, suggesting a high vector potential for the species in the area. These information on the survival rates of An. gambiae in relation to malaria transmission would enhance the development of a more focused and informed vector control interventions

  20. Lethal Effects of Aspergillus niger against Mosquitoes Vector of Filaria, Malaria, and Dengue: A Liquid Mycoadulticide

    Directory of Open Access Journals (Sweden)

    Gavendra Singh

    2012-01-01

    Full Text Available Aspergillus niger is a fungus of the genus Aspergillus. It has caused a disease called black mold on certain fruits and vegetables. The culture filtrates released from the A. niger ATCC 66566 were grown in Czapek dox broth (CDB then filtered with flash chromatograph and were used for the bioassay after a growth of thirty days. The result demonstrated these mortalities with LC50, LC90, and LC99 values of Culex quinquefasciatus 0.76, 3.06, and 4.75, Anopheles stephensi 1.43, 3.2, and 3.86, and Aedes aegypti 1.43, 2.2, and 4.1 μl/cm2, after exposure of seven hours. We have calculated significant LT90 values of Cx. quinquefasciatus 4.5, An. stephensi 3.54, and Ae. aegypti 6.0 hrs, respectively. This liquid spray of fungal culture isolate of A. niger can reduce malaria, dengue, and filarial transmission. These results significantly support broadening the current vector control paradigm beyond chemical adulticides.

  1. Plasmodium falciparum malaria challenge by the bite of aseptic Anopheles stephensi mosquitoes: results of a randomized infectivity trial.

    Directory of Open Access Journals (Sweden)

    Kirsten E Lyke

    2010-10-01

    Full Text Available Experimental infection of malaria-naïve volunteers by the bite of Plasmodium falciparum-infected mosquitoes is a preferred means to test the protective effect of malaria vaccines and drugs. The standard model relies on the bite of five infected mosquitoes to induce malaria. We examined the efficacy of malaria transmission using mosquitoes raised aseptically in compliance with current Good Manufacturing Practices (cGMPs.Eighteen adults aged 18-40 years were randomized to receive 1, 3 or 5 bites of Anopheles stephensi mosquitoes infected with the chloroquine-sensitive NF54 strain of P. falciparum. Seventeen participants developed malaria; fourteen occurring on Day 11. The mean prepatent period was 10.9 days (9-12 days. The geometric mean parasitemia was 15.7 parasites/µL (range: 4-70 by microscopy. Polymerase chain reaction (PCR detected parasites 3.1 (range: 0-4 days prior to microscopy. The geometric mean sporozoite load was 16,753 sporozoites per infected mosquito (range: 1,000-57,500. A 1-bite participant withdrew from the study on Day 13 post-challenge and was PCR and smear negative.The use of aseptic, cGMP-compliant P. falciparum-infected mosquitoes is safe, is associated with a precise prepatent period compared to the standard model and appears more efficient than the standard approach, as it led to infection in 100% (6/6 of volunteers exposed to three mosquito bites and 83% (5/6 of volunteers exposed to one mosquito bite.ClinicalTrials.gov NCT00744133.

  2. Is outdoor vector control needed for malaria elimination? An individual-based modelling study.

    Science.gov (United States)

    Zhu, Lin; Müller, Günter C; Marshall, John M; Arheart, Kristopher L; Qualls, Whitney A; Hlaing, WayWay M; Schlein, Yosef; Traore, Sekou F; Doumbia, Seydou; Beier, John C

    2017-07-03

    Residual malaria transmission has been reported in many areas even with adequate indoor vector control coverage, such as long-lasting insecticidal nets (LLINs). The increased insecticide resistance in Anopheles mosquitoes has resulted in reduced efficacy of the widely used indoor tools and has been linked with an increase in outdoor malaria transmission. There are considerations of incorporating outdoor interventions into integrated vector management (IVM) to achieve malaria elimination; however, more information on the combination of tools for effective control is needed to determine their utilization. A spatial individual-based model was modified to simulate the environment and malaria transmission activities in a hypothetical, isolated African village setting. LLINs and outdoor attractive toxic sugar bait (ATSB) stations were used as examples of indoor and outdoor interventions, respectively. Different interventions and lengths of efficacy periods were tested. Simulations continued for 420 days, and each simulation scenario was repeated 50 times. Mosquito populations, entomologic inoculation rates (EIRs), probabilities of local mosquito extinction, and proportion of time when the annual EIR was reduced below one were compared between different intervention types and efficacy periods. In the village setting with clustered houses, the combinational intervention of 50% LLINs plus outdoor ATSBs significantly reduced mosquito population and EIR in short term, increased the probability of local mosquito extinction, and increased the time when annual EIR is less than one per person compared to 50% LLINs alone; outdoor ATSBs alone significantly reduced mosquito population in short term, increased the probability of mosquito extinction, and increased the time when annual EIR is less than one compared to 50% LLINs alone, but there was no significant difference in EIR in short term between 50% LLINs and outdoor ATSBs. In the village setting with dispersed houses, the

  3. A review of malaria in pregnancy | Madziyire | Central African ...

    African Journals Online (AJOL)

    Malaria causes over 10000 maternal and 200000 neonatal deaths a year globally. Fifty million pregnant women are at risk of acquiring malaria of which half of them are in Sub-Saharan Africa. It is caused by the plasmodium parasite, which is transmitted by the vector female Anopheles mosquito. Plasmodium falciparum is ...

  4. Anopheles (Kerteszia cruzii (DIPTERA: CULICIDAE IN PERIDOMICILIARY AREA DURING ASYMPTOMATIC MALARIA TRANSMISSION IN THE ATLANTIC FOREST: MOLECULAR IDENTIFICATION OF BLOOD-MEAL SOURCES INDICATES HUMANS AS PRIMARY INTERMEDIATE HOSTS

    Directory of Open Access Journals (Sweden)

    Karin Kirchgatter

    2014-09-01

    Full Text Available Anopheles (Kerteszia cruzii has been implicated as the primary vector of human and simian malarias out of the Brazilian Amazon and specifically in the Atlantic Forest regions. The presence of asymptomatic human cases, parasite-positive wild monkeys and the similarity between the parasites infecting them support the discussion whether these infections can be considered as a zoonosis. Although many aspects of the biology of An. cruzii have already been addressed, studies conducted during outbreaks of malaria transmission, aiming at the analysis of blood feeding and infectivity, are missing in the Atlantic Forest. This study was conducted in the location of Palestina, Juquitiba, where annually the majority of autochthonous human cases are notified in the Atlantic Forest of the state of São Paulo. Peridomiciliary sites were selected for collection of mosquitoes in a perimeter of up to 100 m around the residences of human malaria cases. The mosquitoes were analyzed with the purpose of molecular identification of blood-meal sources and to examine the prevalence of Plasmodium. A total of 13,441 females of An. (Ker. cruzii were collected. The minimum infection rate was calculated at 0.03% and 0.01%, respectively, for P. vivax and P. malariae and only human blood was detected in the blood-fed mosquitoes analyzed. This data reinforce the hypothesis that asymptomatic human carriers are the main source of anopheline infection in the peridomiciliary area, making the probability of zoonotic transmission less likely to happen.

  5. Anopheles (Kerteszia) cruzii (Diptera: Culicidae) in peridomiciliary area during asymptomatic malaria transmission in the Atlantic Forest: molecular identification of blood-meal sources indicates humans as primary intermediate hosts.

    Science.gov (United States)

    Kirchgatter, Karin; Tubaki, Rosa Maria; Malafronte, Rosely dos Santos; Alves, Isabel Cristina; Lima, Giselle Fernandes Maciel de Castro; Guimarães, Lilian de Oliveira; Zampaulo, Robson de Almeida; Wunderlich, Gerhard

    2014-01-01

    Anopheles (Kerteszia) cruzii has been implicated as the primary vector of human and simian malarias out of the Brazilian Amazon and specifically in the Atlantic Forest regions. The presence of asymptomatic human cases, parasite-positive wild monkeys and the similarity between the parasites infecting them support the discussion whether these infections can be considered as a zoonosis. Although many aspects of the biology of An. cruzii have already been addressed, studies conducted during outbreaks of malaria transmission, aiming at the analysis of blood feeding and infectivity, are missing in the Atlantic Forest. This study was conducted in the location of Palestina, Juquitiba, where annually the majority of autochthonous human cases are notified in the Atlantic Forest of the state of São Paulo. Peridomiciliary sites were selected for collection of mosquitoes in a perimeter of up to 100 m around the residences of human malaria cases. The mosquitoes were analyzed with the purpose of molecular identification of blood-meal sources and to examine the prevalence of Plasmodium. A total of 13,441 females of An. (Ker.) cruzii were collected. The minimum infection rate was calculated at 0.03% and 0.01%, respectively, for P. vivax and P. malariae and only human blood was detected in the blood-fed mosquitoes analyzed. This data reinforce the hypothesis that asymptomatic human carriers are the main source of anopheline infection in the peridomiciliary area, making the probability of zoonotic transmission less likely to happen.

  6. Characterization of malaria transmission by vector populations for improved interventions during the dry season in the Kpone-on-Sea area of coastal Ghana

    Directory of Open Access Journals (Sweden)

    Tchouassi David P

    2012-09-01

    Full Text Available Abstract Background Malaria is a major public health problem in Ghana. We present a site-specific entomological study of malaria vectors and transmission indices as part of an effort to develop a site for the testing of improved control strategies including possible vaccine trials. Methods Pyrethrum spray catches (PSC, and indoor and outdoor human landing collections of adult female anopheline mosquitoes were carried out over a six-month period (November 2005 - April 2006 at Kpone-on-Sea, a fishing village in southern Ghana. These were morphologically identified to species level and sibling species of the Anopheles gambiae complex further characterized by the polymerase chain reaction (PCR. Enzyme-linked immunosorbent assay was used to detect Plasmodium falciparum mosquito infectivity and host blood meal sources. Parity rate was examined based on dilatation of ovarian tracheoles following dissection. Results Of the 1233 Anopheles mosquitoes collected, An. gambiae s.l. was predominant (99.5%, followed by An. funestus (0.4% and An. pharoensis (0.1%. All An. gambiae s.l. examined (480 were identified as An. gambiae s.s. with a majority of M molecular form (98.2% and only 1.8% S form with no record of M/S hybrid. A significantly higher proportion of anophelines were observed outdoors relative to indoors (χ2 = 159.34, df = 1, p An. gambiae M molecular form contributed to transmission with a high degree of anthropophily, parity rate and an estimated entomological inoculation rate (EIR of 62.1 infective bites/person/year. The Majority of the infective bites occurred outdoors after 09.00 pm reaching peaks between 12.00-01.00 am and 03.00-04.00 am. Conclusion Anopheles gambiae M molecular form is responsible for maintaining the status quo of malaria in the surveyed site during the study period. The findings provide a baseline for evidence-based planning and implementation of improved malaria interventions. The plasticity observed in

  7. Habitat stability and occurrences of malaria vector larvae in western Kenya highlands

    Directory of Open Access Journals (Sweden)

    Atieli Harrysone

    2009-10-01

    Full Text Available Abstract Background Although the occurrence of malaria vector larvae in the valleys of western Kenya highlands is well documented, knowledge of larval habitats in the uphill sites is lacking. Given that most inhabitants of the highlands actually dwell in the uphill regions, it is important to develop understanding of mosquito breeding habitat stability in these sites in order to determine their potential for larval control. Methods A total of 128 potential larval habitats were identified in hilltops and along the seasonal streams in the Sigalagala area of Kakamega district, western Kenya. Water availability in the habitats was followed up daily from August 3, 2006 to February 23, 2007. A habitat is defined as stable when it remains aquatic continuously for at least 12 d. Mosquito larvae were observed weekly. Frequencies of aquatic, stable and larvae positive habitats were compared between the hilltop and seasonal stream area using χ2-test. Factors affecting the presence/absence of Anopheles gambiae larvae in the highlands were determined using multiple logistic regression analysis. Results Topography significantly affected habitat availability and stability. The occurrence of aquatic habitats in the hilltop was more sporadic than in the stream area. The percentage of habitat occurrences that were classified as stable during the rainy season is 48.76% and 80.79% respectively for the hilltop and stream area. Corresponding frequencies of larvae positive habitats were 0% in the hilltop and 5.91% in the stream area. After the rainy season, only 23.42% of habitat occurrences were stable and 0.01% larvae positive habitats were found in the hilltops, whereas 89.75% of occurrences remained stable in the stream area resulting in a frequency of 12.21% larvae positive habitats. The logistic regression analysis confirmed the association between habitat stability and larval occurrence and indicated that habitat surface area was negatively affecting the

  8. Infection of the malaria mosquito Anopheles gambiae with the entomopathogenic fungus Metarhizium anisopliae reduces blood feeding and fecundity

    NARCIS (Netherlands)

    Scholte, E.J.; Knols, B.G.J.; Takken, W.

    2006-01-01

    The entomopathogenic fungus Metarhizium anisopliae is being considered as a biocontrol agent against adult African malaria vectors. In addition to causing significant mortality, this pathogen is known to cause reductions in feeding and fecundity in a range of insects. In the present study we

  9. Effect of Vetiveria zizanioides L. Root extracts on the malarial vector, Anopheles stephensi Liston

    Directory of Open Access Journals (Sweden)

    N Aarthi

    2012-04-01

    Full Text Available Objective: To evaluate the ovicidal and oviposition deterrent potential of the ethanolic extract from Vetiveria zizanioides (V. zizanioides roots against the malarial vector, Anopheles stephensi (A. stephensi . Methods: The dried clean V. zizanioides roots were powerdered and extracted with ethanol for 8 h in a soxhlet apparatus. After evaporation, the residue was dissolved in acetone. One hundred freshly laid eggs of A. stephensi were exposed to the extract at differnt concentrations for 48 h, and the hatch rate was calculated to evaluate the ovicidal activity. Those exposed to actone aqueous solution were used as control. The egg laying behavior of gravid female A. stephensi was also observed using oviposition deterrent test. Effective repellency (ER was used to evaluate the oviposition deterrent activity. Results: Exposure to the crude ethanol extract of V. zizanioides reduced the hatchability rate of A. stephensi eggs, and zero hatchability was exerted at 375 ppm. In the oviposition deterrent test, the extract alleviated the egg laying with an ER of 78.9% at the highest concentration of 375 ppm and even 53.7% at the lowest concentration of 125 ppm. Moreover, the negative values of oviposition active index also suggests the extract was a good deterrent agent. Conclusions: The ethanolic extract of V. zizanioides roots may be used an alternative pesticide to control A. stephensi at the early stage of life history, possibly due to the presence of various active chemical compounds.

  10. Tissue-specific features of the X chromosome and nucleolus spatial dynamics in a malaria mosquito, Anopheles atroparvus.

    Science.gov (United States)

    Bondarenko, Semen M; Artemov, Gleb N; Sharakhov, Igor V; Stegniy, Vladimir N

    2017-01-01

    Spatial organization of chromosome territories is important for maintenance of genomic stability and regulation of gene expression. Recent studies have shown tissue-specific features of chromosome attachments to the nuclear envelope in various organisms including malaria mosquitoes. However, other spatial characteristics of nucleus organization, like volume and shape of chromosome territories, have not been studied in Anopheles. We conducted a thorough analysis of tissue-specific features of the X chromosome and nucleolus volume and shape in follicular epithelium and nurse cells of the Anopheles atroparvus ovaries using a modern open-source software. DNA of the polytene X chromosome from ovarian nurse cells was obtained by microdissection and was used as a template for amplification with degenerate oligo primers. A fluorescently labeled X chromosome painting probe was hybridized with formaldehyde-fixed ovaries of mosquitoes using a 3D-FISH method. The nucleolus was stained by immunostaining with an anti-fibrillarin antibody. The analysis was conducted with TANGO-a software for a chromosome spatial organization analysis. We show that the volume and position of the X chromosome have tissue-specific characteristics. Unlike nurse cell nuclei, the growth of follicular epithelium nuclei is not accompanied with the proportional growth of the X chromosome. However, the shape of the X chromosome does not differ between the tissues. The dynamics of the X chromosome attachment regions location is tissue-specific and it is correlated with the process of nucleus growth in follicular epithelium and nurse cells.

  11. A physiological time analysis of the duration of the gonotrophic cycle of Anopheles pseudopunctipennis and its implications for malaria transmission in Bolivia

    Directory of Open Access Journals (Sweden)

    Quispe Vicente

    2008-07-01

    Full Text Available Abstract Background The length of the gonotrophic cycle varies the vectorial capacity of a mosquito vector and therefore its exact estimation is important in epidemiological modelling. Because the gonotrophic cycle length depends on temperature, its estimation can be satisfactorily computed by means of physiological time analysis. Methods A model of physiological time was developed and calibrated for Anopheles pseudopunctipennis, one of the main malaria vectors in South America, using data from laboratory temperature controlled experiments. The model was validated under varying temperatures and could predict the time elapsed from blood engorgement to oviposition according to the temperature. Results In laboratory experiments, a batch of An. pseudopunctipennis fed at the same time may lay eggs during several consecutive nights (2–3 at high temperature and > 10 at low temperature. The model took into account such pattern and was used to predict the range of the gonotrophic cycle duration of An. pseudopunctipennis in four characteristic sites of Bolivia. It showed that the predicted cycle duration for An. pseudopunctipennis exhibited a seasonal pattern, with higher variances where climatic conditions were less stable. Predicted mean values of the (minimum duration ranged from 3.3 days up to > 10 days, depending on the season and the geographical location. The analysis of ovaries development stages of field collected biting mosquitoes indicated that the phase 1 of Beklemishev might be of significant duration for An. pseudopunctipennis. The gonotrophic cycle length of An. pseudopunctipennis correlates with malaria transmission patterns observed in Bolivia which depend on locations and seasons. Conclusion A new presentation of cycle length results taking into account the number of ovipositing nights and the proportion of mosquitoes laying eggs is suggested. The present approach using physiological time analysis might serve as an outline to other

  12. The bionomics of Anopheles merus (Diptera: Culicidae along the Kenyan coast

    Directory of Open Access Journals (Sweden)

    Kipyab Pamela C

    2013-02-01

    Full Text Available Abstract Background Anopheles merus, a sibling species of the Anopheles gambiae complex occurs along the East African coast but its biology and role in malaria transmission in this region is poorly understood. We evaluated the blood feeding pattern and the role of this species in malaria transmission in Malindi district, Coastal Kenya. Methods Adult mosquitoes were collected indoors by CDC light traps and Pyrethrum Spray Catch and outdoors by CDC light traps. Anopheles females were identified to species by morphological characteristics and sibling species of An. gambiae complex distinguished by rDNA polymerase chain reaction (PCR. Screening for host blood meal sources and presence or absence of Plasmodium falciparum circumsporozoite proteins was achieved by Enzyme Linked Immunosorbent Assays (ELISA. Results Anopheles merus comprised 77.8% of the 387 Anopheles gambiae s.l adults that were collected. Other sibling species of Anopheles gambiae s.l identified in the study site included An. arabiensis(3.6%, and An. gambiae s.s. (8%. The human blood index for An. merus was 0.12, while the sporozoite rate was 0.3%. Conclusion These findings suggest that An. merus can play a minor role in malaria transmission along the Kenyan Coast and should be a target for vector control which in turn could be applied in designing and implementing mosquito control programmes targeting marsh-breeding mosquitoes; with the ultimate goal being to reduce the transmission of malaria associated with these vectors.

  13. Seaweed-synthesized silver nanoparticles: an eco-friendly tool in the fight against Plasmodium falciparum and its vector Anopheles stephensi?

    Science.gov (United States)

    Murugan, Kadarkarai; Samidoss, Christina Mary; Panneerselvam, Chellasamy; Higuchi, Akon; Roni, Mathath; Suresh, Udaiyan; Chandramohan, Balamurugan; Subramaniam, Jayapal; Madhiyazhagan, Pari; Dinesh, Devakumar; Rajaganesh, Rajapandian; Alarfaj, Abdullah A; Nicoletti, Marcello; Kumar, Suresh; Wei, Hui; Canale, Angelo; Mehlhorn, Heinz; Benelli, Giovanni

    2015-11-01

    Malaria, the most widespread mosquito-borne disease, affects 350-500 million people each year. Eco-friendly control tools against malaria vectors are urgently needed. This research proposed a novel method of plant-mediated synthesis of silver nanoparticles (AgNP) using a cheap seaweed extract of Ulva lactuca, acting as a reducing and capping agent. AgNP were characterized by UV-vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The U. lactuca extract and the green-synthesized AgNP were tested against larvae and pupae of the malaria vector Anopheles stephensi. In mosquitocidal assays, LC50 values of U. lactuca extract against A. stephensi larvae and pupae were 18.365 ppm (I instar), 23.948 ppm (II), 29.701 ppm (III), 37.517 ppm (IV), and 43.012 ppm (pupae). LC50 values of AgNP against A. stephensi were 2.111 ppm (I), 3.090 ppm (II), 4.629 ppm (III), 5.261 ppm (IV), and 6.860 ppm (pupae). Smoke toxicity experiments conducted against mosquito adults showed that U. lactuca coils evoked mortality rates comparable to the permethrin-based positive control (66, 51, and 41%, respectively). Furthermore, the antiplasmodial activity of U. lactuca extract and U. lactuca-synthesized AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. Fifty percent inhibitory concentration (IC50) values of U. lactuca were 57.26 μg/ml (CQ-s) and 66.36 μg/ml (CQ-r); U. lactuca-synthesized AgNP IC50 values were 76.33 μg/ml (CQ-s) and 79.13 μg/ml (CQ-r). Overall, our results highlighted out that U. lactuca-synthesized AgNP may be employed to develop newer and safer agents for malaria control.

  14. Impact of Diurnal Temperature Fluctuations during Larval Development on Adult Life History Traits and Insecticide Susceptibility in Two Vectors; Anopheles gambiae and Aedes aegypti

    Science.gov (United States)

    2014-04-30

    ANOPHELES GAMBIAE AND AEDES AEGYPTI. by Jeffrey W. Clark Dissertation submitted to the Faculty of the Department of Preventive Medicine and...Vectors; Anopheles gambiae and Aedes aegypti." Name of Candidate: Jeffrey Clark Doctor of Philosophy Degree April 30, 2014 DISSERTATION AND ABSTRACT...for the many fruitful discussions and the standing offer to help whenever I needed it; and to Joe Wagman, for providing needed Aedes aegypti eggs from

  15. Field evaluation of two commercial mosquito traps baited with different attractants and colored lights for malaria vector surveillance in Thailand.

    Science.gov (United States)

    Ponlawat, Alongkot; Khongtak, Patcharee; Jaichapor, Boonsong; Pongsiri, Arissara; Evans, Brian P

    2017-08-07

    Sampling for adult mosquito populations is a means of evaluating the efficacy of vector control operations. The goal of this study was to evaluate and identify the most efficacious mosquito traps and combinations of attractants for malaria vector surveillance along the Thai-Myanmar border. In the first part of the study, the BG-Sentinel™ Trap (BGS Trap) and Centers for Disease Control and Prevention miniature light trap (CDC LT) baited with different attractants (BG-lure® and CO 2 ) were evaluated using a Latin square experimental design. The six configurations were BGS Trap with BG-lure, BGS Trap with BG-lure plus CO 2 , BGS Trap with CO 2 , CDC LT with BG-lure, CDC LT with BG lure plus CO 2 , and CDC LT with CO 2 . The second half of the study evaluated the impact of light color on malaria vector collections. Colors included the incandescent bulb, ultraviolet (UV) light-emitting diode (LED), green light stick, red light stick, green LED, and red LED. A total of 8638 mosquitoes consisting of 42 species were captured over 708 trap-nights. The trap types, attractants, and colored lights affected numbers of female anopheline and Anopheles minimus collected (GLM, P surveillance when baited with CO 2 and the BG-lure in combination and can be effectively used as the new gold standard technique for collecting malaria vectors in Thailand.

  16. Efficacy of Olyset® Plus, a new long-lasting insecticidal net incorporating permethrin and piperonyl-butoxide against multi-resistant malaria vectors [corrected].

    Directory of Open Access Journals (Sweden)

    Cédric Pennetier

    Full Text Available Due to the rapid extension of pyrethroid resistance in malaria vectors worldwide, manufacturers are developing new vector control tools including insecticide mixtures containing at least two active ingredients with different mode of action as part of insecticide resistance management. Olyset® Plus is a new long-lasting insecticidal net (LLIN incorporating permethrin and a synergist, piperonyl butoxide (PBO, into its fibres in order to counteract metabolic-based pyrethroid resistance of mosquitoes. In this study, we evaluated the efficacy of Olyset® Plus both in laboratory and field against susceptible and multi-resistant malaria vectors and compared with Olyset Net, which is a permethrin incorporated into polyethylene net. In laboratory, Olyset® Plus performed better than Olyset® Net against susceptible Anopheles gambiae strain with a 2-day regeneration time owing to an improved permethrin bleeding rate with the new incorporation technology. It also performed better than Olyset® Net against multiple resistant populations of An. gambiae in experimental hut trials in West Africa. Moreover, the present study showed evidence for a benefit of incorporating a synergist, PBO, with a pyrethroid insecticide into mosquito netting. These results need to be further validated in a large-scale field trial to assess the durability and acceptability of this new tool for malaria vector control.

  17. On the population dynamics of the malaria vector

    International Nuclear Information System (INIS)

    Ngwa, G.A.

    2005-10-01

    A deterministic differential equation model for the population dynamics of the human malaria vector is derived and studied. Conditions for the existence and stability of a non-zero steady state vector population density are derived. These reveal that a threshold parameter, the vectorial basic reproduction number, exist and the vector can establish itself in the community if and only if this parameter exceeds unity. When a non-zero steady state population density exists, it can be stable but it can also be driven to instability via a Hopf Bifurcation to periodic solutions, as a parameter is varied in parameter space. By considering a special case, an asymptotic perturbation analysis is used to derive the amplitude of the oscillating solutions for the full non-linear system. The present modelling exercise and results show that it is possible to study the population dynamics of disease vectors, and hence oscillatory behaviour as it is often observed in most indirectly transmitted infectious diseases of humans, without recourse to external seasonal forcing. (author)

  18. Chemical composition, toxicity and non-target effects of Pinus kesiya essential oil: An eco-friendly and novel larvicide against malaria, dengue and lymphatic filariasis mosquito vectors.

    Science.gov (United States)

    Govindarajan, Marimuthu; Rajeswary, Mohan; Benelli, Giovanni

    2016-07-01

    Mosquitoes (Diptera: Culicidae) are vectors of important parasites and pathogens causing death, poverty and social disability worldwide, with special reference to tropical and subtropical countries. The overuse of synthetic insecticides to control mosquito vectors lead to resistance, adverse environmental effects and high operational costs. Therefore, the development of eco-friendly control tools is an important public health challenge. In this study, the mosquito larvicidal activity of Pinus kesiya leaf essential oil (EO) was evaluated against the malaria vector Anopheles stephensi, the dengue vector Aedes aegypti and the lymphatic filariasis vector Culex quinquefasciatus. The chemical composition of the EO was analyzed by gas chromatography-mass spectroscopy. GC-MS revealed that the P. kesiya EO contained 18 compounds. Major constituents were α-pinene, β-pinene, myrcene and germacrene D. In acute toxicity assays, the EO showed significant toxicity against early third-stage larvae of An. stephensi, Ae. aegypti and Cx. quinquefasciatus, with LC50 values of 52, 57, and 62µg/ml, respectively. Notably, the EO was safer towards several aquatic non-target organisms Anisops bouvieri, Diplonychus indicus and Gambusia affinis, with LC50 values ranging from 4135 to 8390µg/ml. Overall, this research adds basic knowledge to develop newer and safer natural larvicides from Pinaceae plants against malaria, dengue and filariasis mosquito vectors. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Relative Abundance and Plasmodium Infection Rates of Malaria Vectors in and around Jabalpur, a Malaria Endemic Region in Madhya Pradesh State, Central India.

    Science.gov (United States)

    Singh, Neeru; Mishra, Ashok K; Chand, Sunil K; Bharti, Praveen K; Singh, Mrigendra P; Nanda, Nutan; Singh, Om P; Sodagiri, Kranti; Udhyakumar, Venkatachalam

    2015-01-01

    This study was undertaken in two Primary Health Centers (PHCs) of malaria endemic district Jabalpur in Madhya Pradesh (Central India). In this study we had investigated the relative frequencies of the different anopheline species collected within the study areas by using indoor resting catches, CDC light trap and human landing methods. Sibling species of malaria vectors were identified by cytogenetic and molecular techniques. The role of each vector and its sibling species in the transmission of the different Plasmodium species was ascertained by using sporozoite ELISA. A total of 52,857 specimens comprising of 17 anopheline species were collected by three different methods (39,964 by indoor resting collections, 1059 by human landing and 11,834 by CDC light trap). Anopheles culicifacies was most predominant species in all collections (55, 71 and 32% in indoor resting, human landing and light trap collections respectively) followed by An. subpictus and An. annularis. All five sibling species of An. culicifacies viz. species A, B, C, D and E were found while only species T and S of An. fluviatilis were collected. The overall sporozoite rate in An. culicifacies and An. fluviatilis were 0.42% (0.25% for P. falciparum and 0.17% for P. vivax) and 0.90% (0.45% for P. falciparum and 0.45% for P. vivax) respectively. An. culicifacies and An. fluviatilis were found harbouring both P. vivax variants VK-210 and VK-247, and P. falciparum. An. culicifacies sibling species C and D were incriminated as vectors during most part of the year while sibling species T of An. fluviatilis was identified as potential vector in monsoon and post monsoon season. An. culicifacies species C (59%) was the most abundant species followed by An. culicifacies D (24%), B (8.7%), E (6.7%) and A (1.5%). Among An. fluviatilis sibling species, species T was common (99%) and only few specimens of S were found. Our study provides crucial information on the prevalence of An. culicifacies and An. fluviatilis

  20. Relative Abundance and Plasmodium Infection Rates of Malaria Vectors in and around Jabalpur, a Malaria Endemic Region in Madhya Pradesh State, Central India.

    Directory of Open Access Journals (Sweden)

    Neeru Singh

    Full Text Available This study was undertaken in two Primary Health Centers (PHCs of malaria endemic district Jabalpur in Madhya Pradesh (Central India.In this study we had investigated the relative frequencies of the different anopheline species collected within the study areas by using indoor resting catches, CDC light trap and human landing methods. Sibling species of malaria vectors were identified by cytogenetic and molecular techniques. The role of each vector and its sibling species in the transmission of the different Plasmodium species was ascertained by using sporozoite ELISA.A total of 52,857 specimens comprising of 17 anopheline species were collected by three different methods (39,964 by indoor resting collections, 1059 by human landing and 11,834 by CDC light trap. Anopheles culicifacies was most predominant species in all collections (55, 71 and 32% in indoor resting, human landing and light trap collections respectively followed by An. subpictus and An. annularis. All five sibling species of An. culicifacies viz. species A, B, C, D and E were found while only species T and S of An. fluviatilis were collected. The overall sporozoite rate in An. culicifacies and An. fluviatilis were 0.42% (0.25% for P. falciparum and 0.17% for P. vivax and 0.90% (0.45% for P. falciparum and 0.45% for P. vivax respectively. An. culicifacies and An. fluviatilis were found harbouring both P. vivax variants VK-210 and VK-247, and P. falciparum. An. culicifacies sibling species C and D were incriminated as vectors during most part of the year while sibling species T of An. fluviatilis was identified as potential vector in monsoon and post monsoon season.An. culicifacies species C (59% was the most abundant species followed by An. culicifacies D (24%, B (8.7%, E (6.7% and A (1.5%. Among An. fluviatilis sibling species, species T was common (99% and only few specimens of S were found. Our study provides crucial information on the prevalence of An. culicifacies and An

  1. High entomological inoculation rate of malaria vectors in area of high coverage of interventions in southwest Ethiopia: Implication for residual malaria transmission

    Directory of Open Access Journals (Sweden)

    Misrak Abraham

    2017-05-01

    Finally, there was an indoor residual malaria transmission in a village of high coverage of bed nets and where the principal malaria vector is susceptibility to propoxur and bendiocarb; insecticides currently in use for indoor residual spraying. The continuing indoor transmission of malaria in such village implies the need for new tools to supplement the existing interventions and to reduce indoor malaria transmission.

  2. Successful human infection with P. falciparum using three aseptic Anopheles stephensi mosquitoes: a new model for controlled human malaria infection.

    Directory of Open Access Journals (Sweden)

    Matthew B Laurens

    Full Text Available Controlled human malaria infection (CHMI is a powerful method for assessing the efficacy of anti-malaria vaccines and drugs targeting pre-erythrocytic and erythrocytic stages of the parasite. CHMI has heretofore required the bites of 5 Plasmodium falciparum (Pf sporozoite (SPZ-infected mosquitoes to reliably induce Pf malaria. We reported that CHMI using the bites of 3 PfSPZ-infected mosquitoes reared aseptically in compliance with current good manufacturing practices (cGMP was successful in 6 participants. Here, we report results from a subsequent CHMI study using 3 PfSPZ-infected mosquitoes reared aseptically to validate the initial clinical trial. We also compare results of safety, tolerability, and transmission dynamics in participants undergoing CHMI using 3 PfSPZ-infected mosquitoes reared aseptically to published studies of CHMI using 5 mosquitoes. Nineteen adults aged 18-40 years were bitten by 3 Anopheles stephensi mosquitoes infected with the chloroquine-sensitive NF54 strain of Pf. All 19 participants developed malaria (100%; 12 of 19 (63% on Day 11. The mean pre-patent period was 258.3 hours (range 210.5-333.8. The geometric mean parasitemia at first diagnosis by microscopy was 9.5 parasites/µL (range 2-44. Quantitative polymerase chain reaction (qPCR detected parasites an average of 79.8 hours (range 43.8-116.7 before microscopy. The mosquitoes had a geometric mean of 37,894 PfSPZ/mosquito (range 3,500-152,200. Exposure to the bites of 3 aseptically-raised, PfSPZ-infected mosquitoes is a safe, effective procedure for CHMI in malaria-naïve adults. The aseptic model should be considered as a new standard for CHMI trials in non-endemic areas. Microscopy is the gold standard used for the diagnosis of Pf malaria after CHMI, but qPCR identifies parasites earlier. If qPCR continues to be shown to be highly specific, and can be made to be practical, rapid, and standardized, it should be considered as an alternative for diagnosis

  3. Examination on the protein profiles of salivary glands of P. berghei infected anopheles Sp. post gamma irradiation using SDS-PAGE technique for developing malaria vaccine

    International Nuclear Information System (INIS)

    Tetriana, D.; Syaifudin, M.

    2014-01-01

    Sporozoite is a step of malaria parasitic live cycle that is most invasive and appropriate vaccine candidate. Result of experiments showed that malaria vaccine created by attenuating Plasmodium sp sporozoites with gamma rays was proven more effective. Study on the effects of irradiation to the profiles of protein in vaccine development is also important. The aim of this research was to examine the protein profile of salivary glands in sporozoite infected Anopheles sp post gamma irradiation using Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) technique. Examination covered the infection of Anopheles sp with Plasmodium sp, maintenance of infected mosquitoes for 14-16 days to obtain sporozoites, in vivo - in vitro irradiation of mosquitoes, preparation of salivary glands, electrophoresis on 10% SDS-PAGE, and Commassie blue staining. Results showed a different protein profile of infected and non infected salivary glands of Anopheles sp. There was additional protein band numbers at higher dose of irradiation (200 Gy) from sporozoite protein of P. berghei (MW 62 kDa). However, no difference of the profiles of circumsporozoite protein (CSP) observed among gamma irradiation doses of 150, 175 and 200 Gy. These results provide basic information that would lead to further study on the role of sporozoite proteins in malaria vaccine development. (author)

  4. Field evaluation of ZeroFly--an insecticide incorporated plastic sheeting against malaria vectors & its impact on malaria transmission in tribal area of northern Orissa.

    Science.gov (United States)

    Sharma, S K; Upadhyay, A K; Haque, M A; Tyagi, P K; Mohanty, S S; Mittal, P K; Dash, A P

    2009-10-01

    Insecticide incorporated plastic sheeting is a new technology to control mosquitoes in emergency shelter places and also temporary habitations in different locations. Therefore, field studies were conducted to assess the efficacy of ZeroFly plastic sheeting treated with deltamethrin on prevailing disease vectors Anopheles culicifacies and An. fluviatilis and its impact on malaria transmission in one of the highly endemic areas of Orissa. The study was conducted in Birkera block of Sundargarh district, Orissa state. The study area comprised 3 villages, which were randomized as ZeroFly plastic sheet, untreated plastic sheet and no sheet area. ZeroFly plastic sheets and untreated plastic sheets were fixed in study and control villages respectively covering all the rooms in each household. Longitudinal studies were conducted on the bioefficacy with the help of cone bioassays, monitoring of the mosquito density through hand catch, floor sheet and exit trap collections and fortnightly domiciliary active surveillance in all the study villages. In ZeroFly plastic sheeting area, there was a significant reduction of 84.7 per cent in the entry rate of total mosquitoes in comparison to pre-intervention phase. There was 56.2 per cent immediate mortality in total mosquitoes in houses with ZeroFly sheeting. The overall feeding success rate of mosquitoes in the trial village was only 12.5 per cent in comparison to 49.7 and 51.1 per cent in villages with untreated plastic sheet and no sheet respectively. There was a significant reduction of 65.0 and 70.5 per cent in malaria incidence in ZeroFly plastic sheeting area as compared to untreated plastic sheet and no sheet area respectively. Our study showed that introduction of ZeroFly plastic sheets in a community-based intervention programme is operationally feasible to contain malaria especially in the high transmission difficult areas.

  5. Allelic Variation of Cytochrome P450s Drives Resistance to Bednet Insecticides in a Major Malaria Vector.

    Science.gov (United States)

    Ibrahim, Sulaiman S; Riveron, Jacob M; Bibby, Jaclyn; Irving, Helen; Yunta, Cristina; Paine, Mark J I; Wondji, Charles S

    2015-10-01

    Scale up of Long Lasting Insecticide Nets (LLINs) has massively contributed to reduce malaria mortality across Africa. However, resistance to pyrethroid insecticides in malaria vectors threatens its continued effectiveness. Deciphering the detailed molecular basis of such resistance and designing diagnostic tools is critical to implement suitable resistance management strategies. Here, we demonstrated that allelic variation in two cytochrome P450 genes is the most important driver of pyrethroid resistance in the major African malaria vector Anopheles funestus and detected key mutations controlling this resistance. An Africa-wide polymorphism analysis of the duplicated genes CYP6P9a and CYP6P9b revealed that both genes are directionally selected with alleles segregating according to resistance phenotypes. Modelling and docking simulations predicted that resistant alleles were better metabolizers of pyrethroids than susceptible alleles. Metabolism assays performed with recombinant enzymes of various alleles confirmed that alleles from resistant mosquitoes had significantly higher activities toward pyrethroids. Additionally, transgenic expression in Drosophila showed that flies expressing resistant alleles of both genes were significantly more resistant to pyrethroids compared with those expressing the susceptible alleles, indicating that allelic variation is the key resistance mechanism. Furthermore, site-directed mutagenesis and functional analyses demonstrated that three amino acid changes (Val109Ile, Asp335Glu and Asn384Ser) from the resistant allele of CYP6P9b were key pyrethroid resistance mutations inducing high metabolic efficiency. The detection of these first DNA markers of metabolic resistance to pyrethroids allows the design of DNA-based diagnostic tools to detect and track resistance associated with bednets scale up, which will improve the design of evidence-based resistance management strategies.

  6. How effective is integrated vector management against malaria and lymphatic filariasis where the diseases are transmitted by the same vector?

    Directory of Open Access Journals (Sweden)

    Christopher M Stone

    2014-12-01

    Full Text Available The opportunity to integrate vector management across multiple vector-borne diseases is particularly plausible for malaria and lymphatic filariasis (LF control where both diseases are transmitted by the same vector. To date most examples of integrated control targeting these diseases have been unanticipated consequences of malaria vector control, rather than planned strategies that aim to maximize the efficacy and take the complex ecological and biological interactions between the two diseases into account.We developed a general model of malaria and LF transmission and derived expressions for the basic reproductive number (R0 for each disease. Transmission of both diseases was most sensitive to vector mortality and biting rate. Simulating different levels of coverage of long lasting-insecticidal nets (LLINs and larval control confirms the effectiveness of these interventions for the control of both diseases. When LF was maintained near the critical density of mosquitoes, minor levels of vector control (8% coverage of LLINs or treatment of 20% of larval sites were sufficient to eliminate the disease. Malaria had a far greater R0 and required a 90% population coverage of LLINs in order to eliminate it. When the mosquito density was doubled, 36% and 58% coverage of LLINs and larval control, respectively, were required for LF elimination; and malaria elimination was possible with a combined coverage of 78% of LLINs and larval control.Despite the low level of vector control required to eliminate LF, simulations suggest that prevalence of LF will decrease at a slower rate than malaria, even at high levels of coverage. If representative of field situations, integrated management should take into account not only how malaria control can facilitate filariasis elimination, but strike a balance between the high levels of coverage of (multiple interventions required for malaria with the long duration predicted to be required for filariasis elimination.

  7. How effective is integrated vector management against malaria and lymphatic filariasis where the diseases are transmitted by the same vector?

    Science.gov (United States)

    Stone, Christopher M; Lindsay, Steve W; Chitnis, Nakul

    2014-12-01

    The opportunity to integrate vector management across multiple vector-borne diseases is particularly plausible for malaria and lymphatic filariasis (LF) control where both diseases are transmitted by the same vector. To date most examples of integrated control targeting these diseases have been unanticipated consequences of malaria vector control, rather than planned strategies that aim to maximize the efficacy and take the complex ecological and biological interactions between the two diseases into account. We developed a general model of malaria and LF transmission and derived expressions for the basic reproductive number (R0) for each disease. Transmission of both diseases was most sensitive to vector mortality and biting rate. Simulating different levels of coverage of long lasting-insecticidal nets (LLINs) and larval control confirms the effectiveness of these interventions for the control of both diseases. When LF was maintained near the critical density of mosquitoes, minor levels of vector control (8% coverage of LLINs or treatment of 20% of larval sites) were sufficient to eliminate the disease. Malaria had a far greater R0 and required a 90% population coverage of LLINs in order to eliminate it. When the mosquito density was doubled, 36% and 58% coverage of LLINs and larval control, respectively, were required for LF elimination; and malaria elimination was possible with a combined coverage of 78% of LLINs and larval control. Despite the low level of vector control required to eliminate LF, simulations suggest that prevalence of LF will decrease at a slower rate than malaria, even at high levels of coverage. If representative of field situations, integrated management should take into account not only how malaria control can facilitate filariasis elimination, but strike a balance between the high levels of coverage of (multiple) interventions required for malaria with the long duration predicted to be required for filariasis elimination.

  8. Molecular comparison of topotypic specimens confirms Anopheles (Nyssorhynchus dunhami Causey (Diptera: Culicidae in the Colombian Amazon

    Directory of Open Access Journals (Sweden)

    Freddy Ruiz

    2010-11-01

    Full Text Available The presence of Anopheles (Nyssorhynchus dunhami Causey in Colombia (Department of Amazonas is confirmed for the first time through direct comparison of mtDNA cytochrome c oxidase I (COI barcodes and nuclear rDNA second internal transcribed spacer (ITS2 sequences with topotypic specimens of An. dunhami from Tefé, Brazil. An. dunhami was identified through retrospective correlation of DNA sequences following misidentification as Anopheles nuneztovari s.l. using available morphological keys for Colombian mosquitoes. That An. dunhami occurs in Colombia and also possibly throughout the Amazon Basin, is of importance to vector control programs, as this non-vector species is morphologically similar to known malaria vectors including An. nuneztovari, Anopheles oswaldoi and Anopheles trinkae. Species identification of An. dunhami and differentiation from these closely related species are highly robust using either DNA ITS2 sequences or COI DNA barcode. DNA methods are advocated for future differentiation of these often sympatric taxa in South America.

  9. Change in composition of the Anopheles gambiae complex and its possible implications for the transmission of malaria and lymphatic filariasis in north-eastern Tanzania

    DEFF Research Database (Denmark)

    Derua, Yahya A; Alifrangis, Michael; Hosea, Kenneth M

    2012-01-01

    ABSTRACT: BACKGROUND: A dramatic decline in the incidence of malaria due to Plasmodium falciparum infection in coastal East Africa has recently been reported to be paralleled (or even preceded) by an equally dramatic decline in malaria vector density, despite absence of organized vector control. ...... to differences in biology and vectorial capacity of the An. gambiae s.l. complex the change in sibling species composition will have important implications for the epidemiology and control of malaria and lymphatic filariasis in the study area.......ABSTRACT: BACKGROUND: A dramatic decline in the incidence of malaria due to Plasmodium falciparum infection in coastal East Africa has recently been reported to be paralleled (or even preceded) by an equally dramatic decline in malaria vector density, despite absence of organized vector control...

  10. Is Declining malaria vector population in Africa a result of intervention Measures or sampling tools inefficiency?

    Directory of Open Access Journals (Sweden)

    Eliningaya Kweka

    2013-01-01

    Full Text Available Recent entomological surveys have shown a declining trend of malaria vector population in sub-Saharan Africa and the observation have beenassociated with the scale-up and intensive use of malaria intervention measures such as insecticides treated nets and insecticide residual sprays.However, little is known on the contribution of the mosquito sampling tools inefficiency on the declining trends of malaria vector population. Inthis commentary paper, we explore the possibility of contribution of mosquito sampling tools’ inefficiency to the observed declining trends ofmalaria vector population in Africa.

  11. New gorilla adenovirus vaccine vectors induce potent immune responses and protection in a mouse malaria model.

    Science.gov (United States)

    Limbach, Keith; Stefaniak, Maureen; Chen, Ping; Patterson, Noelle B; Liao, Grant; Weng, Shaojie; Krepkiy, Svetlana; Ekberg, Greg; Torano, Holly; Ettyreddy, Damodar; Gowda, Kalpana; Sonawane, Sharvari; Belmonte, Arnel; Abot, Esteban; Sedegah, Martha; Hollingdale, Michael R; Moormann, Ann; Vulule, John; Villasante, Eileen; Richie, Thomas L; Brough, Douglas E; Bruder, Joseph T

    2017-07-03

    A DNA-human Ad5 (HuAd5) prime-boost malaria vaccine has been shown to protect volunteers against a controlled human malaria infection. The potency of this vaccine, however, appeared to be affected by the presence of pre-existing immunity against the HuAd5 vector. Since HuAd5 seroprevalence is very high in malaria-endemic areas of the world, HuAd5 may not be the most appropriate malaria vaccine vector. This report describes the evaluation of the seroprevalence, immunogenicity and efficacy of three newly identified gorilla adenoviruses, GC44, GC45 and GC46, as potential malaria vaccine vectors. The seroprevalence of GC44, GC45 and GC46 is very low, and the three vectors are not efficiently neutralized by human sera from Kenya and Ghana, two countries where malaria is endemic. In mice, a single administration of GC44, GC45 and GC46 vectors expressing a murine malaria gene, Plasmodium yoelii circumsporozoite protein (PyCSP), induced robust PyCSP-specific T cell and antibody responses that were at least as high as a comparable HuAd5-PyCSP vector. Efficacy studies in a murine malaria model indicated that a prime-boost regimen with DNA-PyCSP and GC-PyCSP vectors can protect mice against a malaria challenge. Moreover, these studies indicated that a DNA-GC46-PyCSP vaccine regimen was significantly more efficacious than a DNA-HuAd5-PyCSP regimen. These data suggest that these gorilla-based adenovectors have key performance characteristics for an effective malaria vaccine. The superior performance of GC46 over HuAd5 highlights its potential for clinical development.

  12. Chemical composition and larvicidal activity of Elaeagnus indica Servett. (Elaeagnaceae plant leaf extracts against dengue and malaria vectors

    Directory of Open Access Journals (Sweden)

    Ramalingam Srinivasan

    2014-12-01

    Full Text Available MMosquito control is facing a threat due to the emergence of resistance to synthetic insecticides. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. The acetone, chloroform, ethyl acetate, hexane, methanol and petroleum benzene leaf extracts of E. indica were tested against fourth instar larvae of malaria vector, Anopheles stephensi and dengue vector, Aedes aegypti. The larval mortality was observed after 24 h of exposure. Highest larval mortality was found in acetone leaf extracts against A. aegypti (LC50 and LC90 values of 2.97027and 5.9820 mg/ml and A. stephensi (LC50 and LC90 values of 3.92501 and 68.3250 mg/ml respectively. GC-MS analysis of plant extracts of acetone solvent revealed 19 compounds, of which the major compounds were -Thujone 1-Isopropyl-4-Methylbicyclo(3.1.0Hexan-3-One 1- (6.71%, 1,6- Cyclodecadiene, 1-Methyl-5-Methylene-8-(1-Methylethyl-, [S-(E,E]-Germacra-1(10,4(15,5-Trie N (3.11%, L-(+-Ascorbic Acid 2,6-Dihexadecanoate (4.06%, 2-Cyclohexylcyclohexanol [1,1'-Bicyclohexyl]-2-Ol (3.16%, Dotriacontane N- Bicetyl (58.7% and Tetrapentacontane (3.85%. E. indica offers promise as potential biocontrol agent against major dengue and malaria mosquitoes particularly in larvicidal effect. Our results shows acetone leaf extracts of E. indica have the potential to be used as an ideal eco-friendly approach for control of mosquito vectors.

  13. [Identification of anopheles breeding sites in the residual foci of low malaria transmission «hotspots» in Central and Western Senegal].

    Science.gov (United States)

    Sy, O; Konaté, L; Ndiaye, A; Dia, I; Diallo, A; Taïrou, F; Bâ, E L; Gomis, J F; Ndiaye, J L; Cissé, B; Gaye, O; Faye, O

    2016-02-01

    Malaria incidence has markedly declined in the Mbour, Fatick, Niakhar and Bambey districts (central and western Senegal) thanks to a scaling up of effective control measures namely LLINs (Long Lasting Insecticide Treated Net), ACTs (Artesunate Combination Therapy) and promoting care seeking. However malaria cases are now maintained by foci of transmission called hotspots. We evaluate the role of anopheles breeding sites in the identification of malaria hotspots in the health districts of Mbour, Fatick, Niakhar and Bambey. Surveys of breeding sites were made in 6 hotspot villages and 4 non-hotspot villages. A sample was taken in each water point with mosquito larvae by dipping method and the collected specimens were identified to the genus level. Additional parameters as name of the village and breeding sites, type of collection, original water turbidity, presence of vegetation, proximity to dwellings, geographic coordinates, sizes were also collected. Sixty-two water collections were surveyed and monitored between 2013 and 2014. Temporary natural breeding sites were predominant regardless of the epidemiological status of the village. Among the 31 breeding sites located within 500 meters of dwellings in hotspots villages, 70% carried Anopheles larvae during the rainy season while 43% of the 21 breeding sites located at similar distances in non-hotspot villages carried Anopheles larvae during the same period (P = 0.042). At the end of the rainy season, the trend is the same with 27% of positive breeding sites in hotspots and 14% in non-hotspots villages. The breeding sites encountered in hotspots villages are mostly small to medium size and are more productive by Anopheles larvae than those found in non-hotspot area. This study showed that the high frequency of smallest and productive breeding sites around and inside the villages can create conditions of residual transmission.

  14. Role of Culex and Anopheles mosquito species as potential vectors of rift valley fever virus in Sudan outbreak, 2007

    Directory of Open Access Journals (Sweden)

    Galal Fatma H

    2010-03-01

    Full Text Available Abstract Background Rift Valley fever (RVF is an acute febrile arthropod-borne viral disease of man and animals caused by a member of the Phlebovirus genus, one of the five genera in the family Bunyaviridae. RVF virus (RVFV is transmitted between animals and human by mosquitoes, particularly those belonging to the Culex, Anopheles and Aedes genera. Methods Experiments were designed during RVF outbreak, 2007 in Sudan to provide an answer about many raised questions about the estimated role of vector in RVFV epidemiology. During this study, adult and immature mosquito species were collected from Khartoum and White Nile states, identified and species abundance was calculated. All samples were frozen individually for further virus detection. Total RNA was extracted from individual insects and RVF virus was detected from Culex, Anopheles and Aedes species using RT-PCR. In addition, data were collected about human cases up to November 24th, 2007 to asses the situation of the disease in affected states. Furthermore, a historical background of the RVF outbreaks was discussed in relation to global climatic anomalies and incriminated vector species. Results A total of 978 mosquitoes, belonging to 3 genera and 7 species, were collected during Sudan outbreak, 2007. Anopheles gambiae arabiensis was the most frequent species (80.7% in White Nile state. Meanwhile, Cx. pipiens complex was the most abundant species (91.2% in Khartoum state. RT-PCR was used and successfully amplified 551 bp within the M segment of the tripartite negative-sense single stranded RNA genome of RVFV. The virus was detected in female, male and larval stages of Culex and Anopheles species. The most affected human age interval was 15-29 years old followed by ≥ 45 years old, 30-44 years old, and then 5-14 years old. Regarding to the profession, housewives followed by farmers, students, shepherd, workers and the free were more vulnerable to the infection. Furthermore, connection between

  15. Protection against mosquito vectors Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus using a novel insect repellent, ethyl anthranilate.

    Science.gov (United States)

    Islam, Johirul; Zaman, Kamaruz; Tyagi, Varun; Duarah, Sanjukta; Dhiman, Sunil; Chattopadhyay, Pronobesh

    2017-10-01

    Growing concern on the application of synthetic mosquito repellents in the recent years has instigated the identification and development of better alternatives to control different mosquito-borne diseases. In view of above, present investigation evaluates the repellent activity of ethyl anthranilate (EA), a non-toxic, FDA approved volatile food additive against three known mosquito vectors namely, Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus under laboratory conditions following standard protocols. Three concentration levels (2%, 5% and 10% w/v) of EA were tested against all the three selected mosquito species employing K & D module and arm-in-cage method to determine the effective dose (ED 50 ) and complete protection time (CPT), respectively. The repellent activity of EA was further investigated by modified arm-in-cage method to determine the protection over extended spatial ranges against all mosquito species. All behavioural situations were compared with the well-documented repellent N,N-diethylphenyl acetamide (DEPA) as a positive control. The findings demonstrated that EA exhibited significant repellent activity against all the three mosquitoes species. The ED 50 values of EA, against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus were found to be 0.96%, 5.4% and 3.6% w/v, respectively. At the concentration of 10% w/v, it provided CPTs of 60, 60 and 30min, respectively, against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus mosquitoes. Again in spatial repellency evaluation, EA was found to be extremely effective in repelling all the three tested species of mosquitoes. Ethyl anthranilate provided comparable results to standard repellent DEPA during the study. Results have concluded that the currently evaluated chemical, EA has potential repellent activity against some well established mosquito vectors. The study emphasizes that repellent activity of EA could be exploited for developing effective, eco

  16. Using low-cost drones to map malaria vector habitats.

    Science.gov (United States)

    Hardy, Andy; Makame, Makame; Cross, Dónall; Majambere, Silas; Msellem, Mwinyi

    2017-01-14

    There is a growing awareness that if we are to achieve the ambitious goal of malaria elimination, we must compliment indoor-based vector control interventions (such as bednets and indoor spraying) with outdoor-based interventions such as larval source management (LSM). The effectiveness of LSM is limited by our capacity to identify and map mosquito aquatic habitats. This study provides a proof of concept for the use of a low-cost (drone (DJI Phantom) for mapping water bodies in seven sites across Zanzibar including natural water bodies, irrigated and non-irrigated rice paddies, peri-urban and urban locations. With flying times of less than 30 min for each site, high-resolution (7 cm) georeferenced images were successfully generated for each of the seven sites, covering areas up to 30 ha. Water bodies were readily identifiable in the imagery, as well as ancillary information for planning LSM activities (access routes to water bodies by road and foot) and public health management (e.g. identification of drinking water sources, mapping individual households and the nature of their construction). The drone-based surveys carried out in this study provide a low-cost and flexible solution to mapping water bodies for operational dissemination of LSM initiatives in mosquito vector-borne disease elimination campaigns. Generated orthomosaics can also be used to provide vital information for other public health planning activities.

  17. Inference of the oxidative stress network in Anopheles stephensi upon Plasmodium infection

    NARCIS (Netherlands)

    Shrinet, Jatin; Nandal, Umesh Kumar; Adak, Tridibes; Bhatnagar, Raj K.; Sunil, Sujatha

    2014-01-01

    Ookinete invasion of Anopheles midgut is a critical step for malaria transmission; the parasite numbers drop drastically and practically reach a minimum during the parasite's whole life cycle. At this stage, the parasite as well as the vector undergoes immense oxidative stress. Thereafter, the

  18. Effectiveness of synthetic versus natural human volatiles as attractants for Anopheles gambiae (Diptera: Culicidae) sensu stricto

    NARCIS (Netherlands)

    Smallegange, R.C.; Knols, B.G.J.; Takken, W.

    2010-01-01

    Females of the African malaria vector, Anopheles gambiae Giles sensu stricto, use human volatiles to find their blood-host. Previous work has shown that ammonia, lactic acid, and aliphatic carboxylic acids significantly affect host orientation and attraction of this species, In the current study,

  19. Effects of fungal infection on feeding and survival of Anopheles gambiae (Diptera: Culicidae) on plant sugars

    NARCIS (Netherlands)

    Ondiaka, S.N.; Masinde, E.W.; Koenraadt, C.J.M.; Takken, W.; Mukabana, W.R.

    2015-01-01

    Background The entomopathogenic fungus Metarhizium anisopliae shows great promise for the control of adult malaria vectors. A promising strategy for infection of mosquitoes is supplying the fungus at plant feeding sites. Methods We evaluated the survival of fungus-exposed Anopheles gambiae

  20. Factors affecting the vectorial competence of Anopheles gambiae: a question of scale

    NARCIS (Netherlands)

    Takken, W.; Lindsay, S.W.

    2003-01-01

    Malaria transmission in Africa is without doubt governed by the existence of a group of highly efficient vectors, of which Anopheles gambiae Giles sensu stricto is predominant. The endophilic and anthropophagic behaviours of this mosquito create an intimate association between the human reservoir

  1. Bionomics and vectorial capacity of Anopheles annularis with special reference to India: a review.

    Science.gov (United States)

    Singh, R K; Haq, S; Kumar, Gaurav; Dhiman, R C

    2013-01-01

    Anopheles annularis is widely distributed mosquito species all over the country. An. annularis has been incriminated as a malaria vector in India, Sri Lanka, Bangladesh, Myanmar, Indonesia, Malaysia and China. In India, it has been reported to play an important role in malaria transmission as a secondary vector in certain parts of Assam, West Bengal and U.P. In Odisha and some neighbouring countries such as Sri Lanka, Nepal and Myanmar it has been recognised as a primary vector of malaria. This is a species complex of two sibling species A and B but the role of these sibling species in malaria transmission is not clearly known. An. annularis is resistant to DDT and dieldrin/HCH and susceptible to malathion and synthetic pyrethorides in most of the parts of India. In view of rapid change in ecological conditions, further studies are required on the bionomics of An. annularis and its role in malaria transmission in other parts of the country. Considering the importance of An. annularis as a malaria vector, the bionomics and its role in malaria transmission has been reviewed in this paper. In this communication, an attempt has been made to review its bionomics and its role as malaria vector. An. annularis is a competent vector of malaria, thus, due attention should be paid for its control under the vector control programmes specially in border states where it is playing a primary role in malaria transmission.

  2. Identifying malaria vector breeding habitats with remote sensing data and terrain-based landscape indices in Zambia.

    Science.gov (United States)

    Clennon, Julie A; Kamanga, Aniset; Musapa, Mulenga; Shiff, Clive; Glass, Gregory E

    2010-11-05

    Malaria, caused by the parasite Plasmodium falciparum, is a significant source of morbidity and mortality in southern Zambia. In the Mapanza Chiefdom, where transmission is seasonal, Anopheles arabiensis is the dominant malaria vector. The ability to predict larval habitats can help focus control measures. A survey was conducted in March-April 2007, at the end of the rainy season, to identify and map locations of water pooling and the occurrence anopheline larval habitats; this was repeated in October 2007 at the end of the dry season and in March-April 2008 during the next rainy season. Logistic regression and generalized linear mixed modeling were applied to assess the predictive value of terrain-based landscape indices along with LandSat imagery to identify aquatic habitats and, especially, those with anopheline mosquito larvae. Approximately two hundred aquatic habitat sites were identified with 69 percent positive for anopheline mosquitoes. Nine species of anopheline mosquitoes were identified, of which, 19% were An. arabiensis. Terrain-based landscape indices combined with LandSat predicted sites with water, sites with anopheline mosquitoes and sites specifically with An. arabiensis. These models were especially successful at ruling out potential locations, but had limited ability in predicting which anopheline species inhabited aquatic sites. Terrain indices derived from 90 meter Shuttle Radar Topography Mission (SRTM) digital elevation data (DEM) were better at predicting water drainage patterns and characterizing the landscape than those derived from 30 m Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) DEM. The low number of aquatic habitats available and the ability to locate the limited number of aquatic habitat locations for surveillance, especially those containing anopheline larvae, suggest that larval control maybe a cost-effective control measure in the fight against malaria in Zambia and other regions with seasonal

  3. Identifying malaria vector breeding habitats with remote sensing data and terrain-based landscape indices in Zambia

    Directory of Open Access Journals (Sweden)

    Shiff Clive

    2010-11-01

    Full Text Available Abstract Background Malaria, caused by the parasite Plasmodium falciparum, is a significant source of morbidity and mortality in southern Zambia. In the Mapanza Chiefdom, where transmission is seasonal, Anopheles arabiensis is the dominant malaria vector. The ability to predict larval habitats can help focus control measures. Methods A survey was conducted in March-April 2007, at the end of the rainy season, to identify and map locations of water pooling and the occurrence anopheline larval habitats; this was repeated in October 2007 at the end of the dry season and in March-April 2008 during the next rainy season. Logistic regression and generalized linear mixed modeling were applied to assess the predictive value of terrain-based landscape indices along with LandSat imagery to identify aquatic habitats and, especially, those with anopheline mosquito larvae. Results Approximately two hundred aquatic habitat sites were identified with 69 percent positive for anopheline mosquitoes. Nine species of anopheline mosquitoes were identified, of which, 19% were An. arabiensis. Terrain-based landscape indices combined with LandSat predicted sites with water, sites with anopheline mosquitoes and sites specifically with An. arabiensis. These models were especially successful at ruling out potential locations, but had limited ability in predicting which anopheline species inhabited aquatic sites. Terrain indices derived from 90 meter Shuttle Radar Topography Mission (SRTM digital elevation data (DEM were better at predicting water drainage patterns and characterizing the landscape than those derived from 30 m Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER DEM. Conclusions The low number of aquatic habitats available and the ability to locate the limited number of aquatic habitat locations for surveillance, especially those containing anopheline larvae, suggest that larval control maybe a cost-effective control measure in the fight

  4. Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities.

    Science.gov (United States)

    Ramirez, Jose Luis; Short, Sarah M; Bahia, Ana C; Saraiva, Raul G; Dong, Yuemei; Kang, Seokyoung; Tripathi, Abhai; Mlambo, Godfree; Dimopoulos, George

    2014-10-01

    Plasmodium and dengue virus, the causative agents of the two most devastating vector-borne diseases, malaria and dengue, are transmitted by the two most important mosquito vectors, Anopheles gambiae and Aedes aegypti, respectively. Insect-bacteria associations have been shown to influence vector competence for human pathogens through multi-faceted actions that include the elicitation of the insect immune system, pathogen sequestration by microbes, and bacteria-produced anti-pathogenic factors. These influences make the mosquito microbiota highly interesting from a disease control perspective. Here we present a bacterium of the genus Chromobacterium (Csp_P), which was isolated from the midgut of field-caught Aedes aegypti. Csp_P can effectively colonize the mosquito midgut when introduced through an artificial nectar meal, and it also inhibits the growth of other members of the midgut microbiota. Csp_P colonization of the midgut tissue activates mosquito immune responses, and Csp_P exposure dramatically reduces the survival of both the larval and adult stages. Ingestion of Csp_P by the mosquito significantly reduces its susceptibility to Plasmodium falciparum and dengue virus infection, thereby compromising the mosquito's vector competence. This bacterium also exerts in vitro anti-Plasmodium and anti-dengue activities, which appear to be mediated through Csp_P -produced stable bioactive factors with transmission-blocking and therapeutic potential. The anti-pathogen and entomopathogenic properties of Csp_P render it a potential candidate for the development of malaria and dengue control strategies.

  5. Enhancing Attraction of African Malaria Vectors to a Synthetic Odor Blend

    NARCIS (Netherlands)

    Mweresa, Collins K.; Mukabana, Wolfgang R.; Omusula, Philemon; Otieno, Bruno; Loon, van Joop J.A.; Takken, Willem

    2016-01-01

    The deployment of odor-baited tools for sampling and controlling malaria vectors is limited by a lack of potent synthetic mosquito attractants. A synthetic mixture of chemical compounds referred to as “the Mbita blend” (MB) was shown to attract as many host-seeking malaria mosquitoes as attracted

  6. The role of research in molecular entomology in the fight against malaria vectors.

    Science.gov (United States)

    della Torre, A; Arca, B; Favia, G; Petrarca, V; Coluzzi, M

    2008-06-01

    The text summarizes the principal current fields of investigation and the recent achievements of the research groups presently contributing to the Molecular Entomology Cluster of the Italian Malaria Network. Particular emphasis is given to the researches with a more direct impact on the fight against malaria vectors.

  7. Taking malaria transmission out of the bottle: implications of mosquito dispersal for vector-control interventions

    NARCIS (Netherlands)

    Killeen, G.F.; Knols, B.G.J.; Gu, W.D.

    2003-01-01

    Most malaria transmission models assume enclosed systems of people, parasites, and vectors in which neither emigration nor immigration of mosquitoes is considered. This simplification has facilitated insightful analyses but has substantial limitations for evaluating control measures in the field.

  8. Reduction of malaria transmission to Anopheles mosquitoes with a six-dose regimen of co-artemether.

    Directory of Open Access Journals (Sweden)

    Colin J Sutherland

    2005-04-01

    Full Text Available Resistance of malaria parasites to chloroquine (CQ and sulphadoxine-pyrimethamine (SP is increasing in prevalence in Africa. Combination therapy can both improve treatment and provide important public health benefits if it curbs the spread of parasites harbouring resistance genes. Thus, drug combinations must be identified which minimise gametocyte emergence in treated cases, and so prevent selective transmission of parasites resistant to any of the partner drugs.In a randomised controlled trial, 497 children with uncomplicated falciparum malaria were treated with CQ and SP (three doses and one dose respectively; n = 91, or six doses of artemether in fixed combination with lumefantrine (co-artemether [Coartem, Riamet] (n = 406. Carriage rates of Plasmodium falciparum gametocytes and trophozoites were measured 7, 14, and 28 d after treatment. The infectiousness of venous blood from 29 children carrying P. falciparum gametocytes 7 d after treatment was tested by membrane-feeding of Anopheles mosquitoes. Children treated with co-artemether were significantly less likely to carry gametocytes within the 4 weeks following treatment than those receiving CQ/SP (30 of 378 [7.94%] versus 42 of 86 [48.8%]; p < 0.0001. Carriers in the co-artemether group harboured gametocytes at significantly lower densities, for shorter periods (0.3 d versus 4.2 d; p < 0.0001 and were less infectious to mosquitoes at day 7 (p < 0.001 than carriers who had received CQ/SP.Co-artemether is highly effective at preventing post-treatment transmission of P. falciparum. Our results suggest that co-artemether has specific activity against immature sequestered gametocytes, and has the capacity to minimise transmission of drug-resistant parasites.

  9. History of the discovery of the malaria parasites and their vectors

    Directory of Open Access Journals (Sweden)

    Cox Francis EG

    2010-02-01

    Full Text Available Abstract Malaria is caused by infection with protozoan parasites belonging to the genus Plasmodium transmitted by female Anopheles species mosquitoes. Our understanding of the malaria parasites begins in 1880 with the discovery of the parasites in the blood of malaria patients by Alphonse Laveran. The sexual stages in the blood were discovered by William MacCallum in birds infected with a related haematozoan, Haemoproteus columbae, in 1897 and the whole of the transmission cycle in culicine mosquitoes and birds infected with Plasmodium relictum was elucidated by Ronald Ross in 1897. In 1898 the Italian malariologists, Giovanni Battista Grassi, Amico Bignami, Giuseppe Bastianelli, Angelo Celli, Camillo Golgi and Ettore Marchiafava demonstrated conclusively that human malaria was also transmitted by mosquitoes, in this case anophelines. The discovery that malaria parasites developed in the liver before entering the blood stream was made by Henry Shortt and Cyril Garnham in 1948 and the final stage in the life cycle, the presence of dormant stages in the liver, was conclusively demonstrated in 1982 by Wojciech Krotoski. This article traces the main events and stresses the importance of comparative studies in that, apart from the initial discovery of parasites in the blood, every subsequent discovery has been based on studies on non-human malaria parasites and related organisms.

  10. Knowledge, Perception and Control Practices of Malaria Vector ...

    African Journals Online (AJOL)

    Malaria remains one of the most devastating public health scourges especially in the tropics. Several studies have documented the prevalence of malaria among different vulnerable groups; however, an understanding of the communities' knowledge, perceptions and practices relating to malaria is crucial to the success of ...

  11. Characterization and potential role of microRNA in the Chinese dominant malaria mosquito Anopheles sinensis (Diptera: Culicidae) throughout four different life stages.

    Science.gov (United States)

    Feng, Xinyu; Wu, Jiatong; Zhou, Shuisen; Wang, Jingwen; Hu, Wei

    2018-01-01

    microRNAs (miRNAs) are one kind of small non-coding RNAs widely distributed in insects. Many studies have shown that miRNAs play critical roles in development, differentiation, apoptosis, and innate immunity. However, there are a few reports describing miRNAs in Anopheles sinensis , the most common, and one of the dominant malaria mosquito in China. Here, we investigated the global miRNA expression profile across four different developmental stages including embryo, larval, pupal, and adult stages using Illumina Hiseq 2500 sequencing. In total, 164 miRNAs were obtained out of 107.46 million raw sequencing reads. 99 of them identified as known miRNAs, and the remaining 65 miRNAs were considered as novel. By analyzing the read counts of miRNAs in all developmental stages, 95 miRNAs showed stage-specific expression (q  1) in consecutive stages, indicating that these miRNAs may be involved in critical physiological activity during development. Sixteen miRNAs were identified to be commonly dysregulated throughout four developmental stages. Many miRNAs showed stage-specific expression, such as asi-miR-2943 was exclusively expressed in the embryo stage, and asi-miR-1891 could not be detected in larval stage. The expression of six selected differentially expressed miRNAs identified by qRT-PCR were consistent with our sequencing results. Furthermore, 5296 and 1902 target genes were identified for the dysregulated 68 known and 27 novel miRNAs respectively by combining miRanda and RNAhybrid prediction. GO annotation and KEGG pathway analysis for the predicted genes of dysregulated miRNAs revealed that they might be involved in a broad range of biological processes related with the development, such as membrane, organic substance transport and several key pathways including protein processing in endoplasmic reticulum, propanoate metabolism and folate biosynthesis. Thirty-two key miRNAs were identified by microRNA-gene network analysis. The present study represents the

  12. Malaria Transmission Risk Factor In West Java (Epidemiology Study About Vector, Plasmodium parasite and Environmental Risk Factors For Malaria Cases

    Directory of Open Access Journals (Sweden)

    Lukman Hakim

    2010-06-01

    Full Text Available Since the territory is divided with the province of Banten, in West Java there are five regencies that defined as malaria endemic area, there are Ciamis, Tasikmalaya, Garut, Cianjur and Sukabumi. Sufferer, concentrated in southern coastal areas (Indonesian Ocean starting from the beach of Kalipucang at Ciamis up to coast of Cikakak at Sukabumi which borders the province of Banten and also mountain and plantations areas. Malaria morbidity incidence risk factors is differ in each of these endemic areas. In general is the presence of malaria patients without symptoms who can be a source of infection that so difficult to know its existence. Still the number of standing water that can become mosqui-to breeding places of Anopheles spp, such as fish pond, small puddle on the riverside, shrimp pond, mangrove forests that potentially at the beginning of the rainy season, the fields during rice that potential when the rice growing and the river that potential in the dry season. The existence of high population mobility and also the number of vegetation in the surrounding residential population and the existence of cattle are placed close to settle-ments.

  13. Adult vector control, mosquito ecology and malaria transmission.

    Science.gov (United States)

    Brady, Oliver J; Godfray, H Charles J; Tatem, Andrew J; Gething, Peter W; Cohen, Justin M; McKenzie, F Ellis; Alex Perkins, T; Reiner, Robert C; Tusting, Lucy S; Scott, Thomas W; Lindsay, Steven W; Hay, Simon I; Smith, David L

    2015-03-01

    Standard advice regarding vector control is to prefer interventions that reduce the lifespan of adult mosquitoes. The basis for this advice is a decades-old sensitivity analysis of 'vectorial capacity', a concept relevant for most malaria transmission models and based solely on adult mosquito population dynamics. Recent advances in micro-simulation models offer an opportunity to expand the theory of vectorial capacity to include both adult and juvenile mosquito stages in the model. In this study we revisit arguments about transmission and its sensitivity to mosquito bionomic parameters using an elasticity analysis of developed formulations of vectorial capacity. We show that reducing adult survival has effects on both adult and juvenile population size, which are significant for transmission and not accounted for in traditional formulations of vectorial capacity. The elasticity of these effects is dependent on various mosquito population parameters, which we explore. Overall, control is most sensitive to methods that affect adult mosquito mortality rates, followed by blood feeding frequency, human blood feeding habit, and lastly, to adult mosquito population density. These results emphasise more strongly than ever the sensitivity of transmission to adult mosquito mortality, but also suggest the high potential of combinations of interventions including larval source management. This must be done with caution, however, as policy requires a more careful consideration of costs, operational difficulties and policy goals in relation to baseline transmission. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.

  14. Strengthening tactical planning and operational frameworks for vector control: the roadmap for malaria elimination in Namibia.

    Science.gov (United States)

    Chanda, Emmanuel; Ameneshewa, Birkinesh; Angula, Hans A; Iitula, Iitula; Uusiku, Pentrina; Trune, Desta; Islam, Quazi M; Govere, John M

    2015-08-05

    Namibia has made tremendous gains in malaria control and the epidemiological trend of the disease has changed significantly over the past years. In 2010, the country reoriented from the objective of reducing disease morbidity and mortality to the goal of achieving malaria elimination by 2020. This manuscript outlines the processes undertaken in strengthening tactical planning and operational frameworks for vector control to facilitate expeditious malaria elimination in Namibia. The information sources for this study included all available data and accessible archived documentary records on malaria vector control in Namibia. A methodical assessment of published and unpublished documents was conducted via a literature search of online electronic databases, Google Scholar, PubMed and WHO, using a combination of search terms. To attain the goal of elimination in Namibia, systems are being strengthened to identify and clear all infections, and significantly reduce human-mosquito contact. Particularly, consolidating vector control for reducing transmission at the identified malaria foci will be critical for accelerated malaria elimination. Thus, guarding against potential challenges and the need for evidence-based and sustainable vector control instigated the strengthening of strategic frameworks by: adopting the integrated vector management (IVM) strategy; initiating implementation of the global plan for insecticide resistance management (GPIRM); intensifying malaria vector surveillance; improving data collection and reporting systems on DDT; updating the indoor residual spraying (IRS) data collection and reporting tool; and, improving geographical reconnaissance using geographical information system-based satellite imagery. Universal coverage with IRS and long-lasting insecticidal nets, supplemented by larval source management in the context of IVM and guided by vector surveillance coupled with rational operationalization of the GPIRM, will enable expeditious

  15. Relationship between Malaria Vector Densities in Artificial Container ...

    African Journals Online (AJOL)

    There was speedy rate of development in the life stages of Anopheles sp in the urban area with its peak of complete metamorphosis occurring at the 7th day of the study whereas in the rural area, the peak of its complete metamorphosis occurred at the 12th day. Statistically, there existed significant differences between daily ...

  16. The genetics of green thorax, a new larval colour mutant, non-linked with ruby - eye locus in the malaria mosquito, Anopheles stephensi.

    Science.gov (United States)

    Sanil, D; Shetty, N J

    2009-06-01

    Anopheles stephensi, an important vector of malaria continues to be distributed widely in the Indian subcontinent. The natural vigour of the species combined with its new tolerance, indeed resistance to insecticides has made it obligatory that we look for control methods involving genetic manipulation. Hence, there is an immediate need for greater understanding of the genetics of this vector species. One of the requirements for such genetic studies is the establishment of naturally occurring mutants, establishment of the genetic basis for the same and use of such mutants in the genetic transformation studies and other genetic control programme(s). This paper describes the isolation and genetic studies of a larval colour mutant, green thorax (gt), and linkage studies involving another autosomal recessive mutant ruby- eye (ru) in An. stephensi. After the initial discovery, the mutant green thorax was crossed inter se and pure homozygous stock of the mutant was established. The stock of the mutant ruby- eye, which has been maintained as a pure stock in the laboratory. Crosses were made between the wild type and mutant, green thorax to determine the mode of inheritance of green thorax. For linkage studies, crosses were made between the mutant green thorax and another autosomal recessive mutant ruby-eye. The percentage cross-over was calculated for the genes linkage relationship for gt and gt ru. Results of crosses between mutant and wild type showed that the inheritance of green thorax (gt) in An. stephensi is monofactorial in nature. The gt allele is recessive to wild type and is autosomal. The linkage studies showed no linkage between ru and gt. The mutant gt represents an excellent marker for An. stephensi as it is expressed in late III instar stage of larvae and is prominent in IV instar and pupal stages with complete penetrance and high viability. The said mutant could be easily identified without the aid of a microscope. This mutant can be used extensively to

  17. Diversity and transmission competence in lymphatic filariasis vectors in West Africa, and the implications for accelerated elimination of Anopheles-transmitted filariasis

    Directory of Open Access Journals (Sweden)

    de Souza Dziedzom K

    2012-11-01

    Full Text Available Abstract Lymphatic Filariasis (LF is targeted for elimination by the Global Programme for the Elimination of Lymphatic Filariasis (GPELF. The strategy adopted is based on the density dependent phenomenon of Facilitation, which hypothesizes that in an area where the vector species transmitting Wuchereria bancrofti are Anopheles mosquitoes, it is feasible to eliminate LF using Mass Drug Administration (MDA because of the inability of Anopheles species to transmit low-density microfilaraemia. Even though earlier studies have shown Anopheles species can exhibit the process of Facilitation in West Africa, observations point towards the process of Limitation in certain areas, in which case vector control is recommended. Studies on Anopheles species in West Africa have also shown genetic differentiation, cryptic taxa and speciation, insecticide resistance and the existence of molecular and chromosomal forms, all of which could influence the vectorial capacity of the mosquitoes and ultimately the elimination goal. This paper outlines the uniqueness of LF vectors in West Africa and the challenges it poses to the 2020 elimination goal, based on the current MDA strategies.

  18. Man biting rate seasonal variation of malaria vectors in Roraima, Brazil

    Directory of Open Access Journals (Sweden)

    Fábio Saito Monteiro de Barros

    2007-06-01

    Full Text Available Malaria control has been directed towards regional actions where more detailed knowledge of local determinants of transmission is of primary importance. This is a short report on range distribution and biting indices for Anopheles darlingi and An. albitarsis during the dry and rainy season that follows river level variation in a savanna/alluvial forest malaria system area in the Northern Amazon Basin. Distribution range and adult biting indices were at their highest during the rainy season for both An. darlingi and An. albitarsis. During the rainy season the neighboring alluvial forest was extensively flooded. This coincided with highest rates in malaria transmission with case clustering near the river. As the river receded, anopheline distribution range and density decreased. This decrease in distribution and density corresponded to a malaria decrease in the near area. An exponential regression function was derived to permit estimations of An. darlingi distribution over specified distances. Anopheline spatio-temporal variations lead to uneven malaria case distribution and are of important implications for control strategies.

  19. First report of the infection of insecticide-resistant malaria vector mosquitoes with an entomopathogenic fungus under field conditions

    Science.gov (United States)

    2011-01-01

    Background Insecticide-resistant mosquitoes are compromising the ability of current mosquito control tools to control malaria vectors. A proposed new approach for mosquito control is to use entomopathogenic fungi. These fungi have been shown to be lethal to both insecticide-susceptible and insecticide-resistant mosquitoes under laboratory conditions. The goal of this study was to see whether entomopathogenic fungi could be used to infect insecticide-resistant malaria vectors under field conditions, and to see whether the virulence and viability of the fungal conidia decreased after exposure to ambient African field conditions. Methods This study used the fungus Beauveria bassiana to infect the insecticide-resistant malaria vector Anopheles gambiae s.s (Diptera: Culicidae) VKPER laboratory colony strain. Fungal conidia were applied to polyester netting and kept under West African field conditions for varying periods of time. The virulence of the fungal-treated netting was tested 1, 3 and 5 days after net application by exposing An. gambiae s.s. VKPER mosquitoes in WHO cone bioassays carried out under field conditions. In addition, the viability of B. bassiana conidia was measured after up to 20 days exposure to field conditions. Results The results show that B. bassiana infection caused significantly increased mortality with the daily risk of dying being increased by 2.5× for the fungus-exposed mosquitoes compared to the control mosquitoes. However, the virulence of the B. bassiana conidia decreased with increasing time spent exposed to the field conditions, the older the treatment on the net, the lower the fungus-induced mortality rate. This is likely to be due to the climate because laboratory trials found no such decline within the same trial time period. Conidial viability also decreased with increasing exposure to the net and natural abiotic environmental conditions. After 20 days field exposure the conidial viability was 30%, but the viability of control

  20. Microbial Pre-exposure and Vectorial Competence of Anopheles Mosquitoes

    Directory of Open Access Journals (Sweden)

    Constentin Dieme

    2017-12-01

    Full Text Available Anopheles female mosquitoes can transmit Plasmodium, the malaria parasite. During their aquatic life, wild Anopheles mosquito larvae are exposed to a huge diversity of microbes present in their breeding sites. Later, adult females often take successive blood meals that might also carry different micro-organisms, including parasites, bacteria, and viruses. Therefore, prior to Plasmodium ingestion, the mosquito biology could be modulated at different life stages by a suite of microbes present in larval breeding sites, as well as in the adult environment. In this article, we highlight several naturally relevant scenarios of Anopheles microbial pre-exposure that we assume might impact mosquito vectorial competence for the malaria parasite: (i larval microbial exposures; (ii protist co-infections; (iii virus co-infections; and (iv pathogenic bacteria co-infections. In addition, significant behavioral changes in African Anopheles vectors have been associated with increasing insecticide resistance. We discuss how these ethological modifications may also increase the repertoire of microbes to which mosquitoes could be exposed, and that might also influence their vectorial competence. Studying Plasmodium–Anopheles interactions in natural microbial environments would efficiently contribute to refining the transmission risks.

  1. Direct and indirect immunosuppression by a malaria parasite in its mosquito vector

    NARCIS (Netherlands)

    Boëte, C.H.J.J.; Paul, R.E.L.; Koëlla, J.C.

    2004-01-01

    Malaria parasites develop as oocysts within the haemocoel of their mosquito vector during a period that is longer than the average lifespan of many of their vectors. How can they escape from the mosquito's immune responses during their long development? Whereas older oocysts might camouflage

  2. Factors influencing the spatial distribution of Anopheles larvae in Coimbatore District, Tamil Nadu, India.

    Science.gov (United States)

    Arjunan, Naresh Kumar; Kadarkarai, Murugan; Kumar, Shobana; Pari, Madhiyazhagan; Thiyagarajan, Nataraj; Vincent, C Thomas; Barnard, Donald R

    2015-12-01

    Malaria causes extensive morbidity and mortality in humans and results in significant economic losses in India. The distribution of immature malaria-transmitting Anopheles mosquitoes was studied in 17 villages in Coimbatore District as a prelude to the development and implementation of vector control strategies that are intended to reduce the risk of human exposure to potentially infectious mosquitoes. Eight Anopheles species were recorded. The most numerous species were Anopheles vagus, Anopheles subpictus, and Anopheles hyrcanus. The location of mosquito development sites and the density of larvae in each village was evaluated for correlation with selected demographic, biologic, and land use parameters using remote sensing and geographic information systems (GIS) technology. We found the number of mosquito development sites in a village and the density of larvae in such sites to be positively correlated with human population density but not the surface area (km(2)) of the village. The number of mosquito development sites and the density of larvae in each site were not correlated. Data from this study are being used to construct a GIS-based mapping system that will enable the location of aquatic habitats with Anopheles larvae in the Coimbatore District, Tamil Nadu, India as target sites for the application of vector control. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Description and Comparison of Morphological Structures of the Eggs of Anopheles Hyrcanus Group and Related Species (Diptera: Culicidae) from the Republic of Korea

    Science.gov (United States)

    2009-10-20

    major vector of malaria in China ; however, its vectorial capacity is unknown in the ROK. The other remaining four Anopheles species are not considered to...morphometry and morphology of Anopheles aconitus Form B and C eggs under scanning electron microscope. Revista do Instituto de Medicina Tropical de Sao Paulo...and its genetic identity with An. (Ano.) anthropophagus from China (Diptera: Culicidae). Zootaxa, 378, 1–14. RUEDA ET AL.40 · Zootaxa 2268 © 2009

  4. Natural products for malaria vector control: flora, fish and fungi

    NARCIS (Netherlands)

    Howard, A.F.V.

    2010-01-01

    Introduction
    Despite international organisations providing much focus over the past 10 years, malaria is still killing vast numbers of Africans, especially children. It is agreed that malaria can only be successfully controlled by using different control tools simultaneously in the spirit of

  5. Isolation and characterization of dipropyl-, S-propyl ester from Exiguobacterium mexicanum (MSSRFS9 against larvae of malaria and dengue vectors

    Directory of Open Access Journals (Sweden)

    Shanmugam Perumal Shanthakumar

    2016-06-01

    Full Text Available Objective: To evaluate the insecticidal property of the compound dipropyl-, S-propyl ester extracted from the Gram-positive rhizosphere bacterium against the fourth instars larvae of malaria vector, Anopheles culicifacies (An. culicifacies and dengue vector, Aedes albopictus (Ae. albopictus. Methods: Bacteria were taxonomically identified as Exiguobacterium mexicanum (E. mexicanum and different crude solvent extracts were examined for its larvicidal potential against mosquito vectors. The crude extract was eluted in silica gel column chromatography and the pure compound was identified. Results: The highest larvicidal activity against An. culicifacies was exhibited by ethyl acetate extract. The bacterium of E. mexicanum extract at 150, 300, 450, 600, 750 mg/L caused against both vector mosquito species. Hexane, chloroform, acetone, methanol and ethyl acetate caused moderate considerable mortality. The highest larval mortality was observed in ethyl acetate extract. Conclusions: The results of the bacterial extract of E. mexicanum are promising as potential larvicidal compound against the mosquito vectors (An. culicifacies and Ae. albopictus. Therefore, this study provides first report on the larvicidal activity with dipropyl-, S-propyl ester compound from India.

  6. Bionomics of Anopheles (Nyssorhynchus albimanus (Diptera: Culicidae in two villages of the Wayúu people, Riohacha, La Guajira, Colombia

    Directory of Open Access Journals (Sweden)

    Airleth Sofía Díaz

    2017-03-01

    Conclusion: Anopheles albimanus was the only collected species found in water supply deposits in the villages Marbacella and El Horno. Given that the species is the main vector for malaria in the area, we suggest the implementation of a community-based entomological surveillance system which should respect Wayúu cosmology and routine activities such as fishing.

  7. Sperm quantity and size variation in un-irradiated and irradiated males of the malaria mosquito Anopheles arabiensis Patton

    NARCIS (Netherlands)

    Helinski, M.; Knols, B.G.J.

    2009-01-01

    Anopheles mosquitoes are important candidates for genetic control strategies. However, little is known about sperm quality and quantity as determinants of male reproductive success. In this study, sperm quantity and length variation were assessed in testes of un-irradiated and irradiated Anopheles

  8. A low-cost repellent for malaria vectors in the Americas: results of two field trials in Guatemala and Peru.

    Science.gov (United States)

    Moore, Sarah J; Darling, Samuel T; Sihuincha, Moisés; Padilla, Norma; Devine, Gregor J

    2007-08-01

    The cost of mosquito repellents in Latin America has discouraged their wider use among the poor. To address this problem, a low-cost repellent was developed that reduces the level of expensive repellent actives by combining them with inexpensive fixatives that appear to slow repellent evaporation. The chosen actives were a mixture of para-menthane-diol (PMD) and lemongrass oil (LG). To test the efficacy of the repellent, field trials were staged in Guatemala and Peru. Repellent efficacy was determined by human-landing catches on volunteers who wore the experimental repellents, control, or 15% DEET. The studies were conducted using a balanced Latin Square design with volunteers, treatments, and locations rotated each night. In Guatemala, collections were performed for two hours, commencing three hours after repellent application. The repellent provided >98% protection for five hours after application, with a biting pressure of >100 landings per person/hour. The 15% DEET control provided lower protection at 92% (p 46 landings per person/hour. The 20% DEET control provided significantly lower protection at 64% (p < 0.0001). In both locations, the PMD/LG repellent provided excellent protection up to six hours after application against a wide range of disease vectors including Anopheles darlingi. The addition of fixatives to the repellent extended its longevity while enhancing efficacy and significantly reducing its cost to malaria-endemic communities.

  9. A low-cost repellent for malaria vectors in the Americas: results of two field trials in Guatemala and Peru

    Directory of Open Access Journals (Sweden)

    Sihuincha Moisés

    2007-08-01

    Full Text Available Abstract Background The cost of mosquito repellents in Latin America has discouraged their wider use among the poor. To address this problem, a low-cost repellent was developed that reduces the level of expensive repellent actives by combining them with inexpensive fixatives that appear to slow repellent evaporation. The chosen actives were a mixture of para-menthane-diol (PMD and lemongrass oil (LG. Methods To test the efficacy of the repellent, field trials were staged in Guatemala and Peru. Repellent efficacy was determined by human-landing catches on volunteers who wore the experimental repellents, control, or 15% DEET. The studies were conducted using a balanced Latin Square design with volunteers, treatments, and locations rotated each night. Results In Guatemala, collections were performed for two hours, commencing three hours after repellent application. The repellent provided >98% protection for five hours after application, with a biting pressure of >100 landings per person/hour. The 15% DEET control provided lower protection at 92% (p 46 landings per person/hour. The 20% DEET control provided significantly lower protection at 64% (p Conclusion In both locations, the PMD/LG repellent provided excellent protection up to six hours after application against a wide range of disease vectors including Anopheles darlingi. The addition of fixatives to the repellent extended its longevity while enhancing efficacy and significantly reducing its cost to malaria-endemic communities.

  10. Single-step biosynthesis and characterization of silver nanoparticles using Zornia diphylla leaves: A potent eco-friendly tool against malaria and arbovirus vectors.

    Science.gov (United States)

    Govindarajan, Marimuthu; Rajeswary, Mohan; Muthukumaran, Udaiyan; Hoti, S L; Khater, Hanem F; Benelli, Giovanni

    2016-08-01

    Mosquitoes (Diptera: Culicidae) are vectors of important pathogens and parasites, including malaria, dengue, chikungunya, Japanese encephalitis, lymphatic filariasis and Zika virus. The application of synthetic insecticides causes development of resistance, biological magnification of toxic substances through the food chain, and adverse effects on the environment and human health. In this scenario, eco-friendly control tools of mosquito vectors are a priority. Here single-step fabrication of silver nanoparticles (AgNP) using a cheap aqueous leaf extract of Zornia diphylla as reducing and capping agent pf Ag(+) ions has been carried out. Biosynthesized AgNP were characterized by UV-visible spectrophotometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX) and X-ray diffraction analysis (XRD). The acute toxicity of Z. diphylla leaf extract and biosynthesized AgNP was evaluated against larvae of the malaria vector Anopheles subpictus, the dengue vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. Both the Z. diphylla leaf extract and Ag NP showed dose dependent larvicidal effect against all tested mosquito species. Compared to the leaf aqueous extract, biosynthesized Ag NP showed higher toxicity against An. subpictus, Ae. albopictus, and Cx. tritaeniorhynchus with LC50 values of 12.53, 13.42 and 14.61μg/ml, respectively. Biosynthesized Ag NP were found safer to non-target organisms Chironomus circumdatus, Anisops bouvieri and Gambusia affinis, with the respective LC50 values ranging from 613.11 to 6903.93μg/ml, if compared to target mosquitoes. Overall, our results highlight that Z. diphylla-fabricated Ag NP are a promising and eco-friendly tool against larval populations of mosquito vectors of medical and veterinary importance, with negligible toxicity against other non-target organisms. Copyright © 2016 Elsevier B

  11. Insecticide resistance and role in malaria transmission of Anopheles funestus populations from Zambia and Zimbabwe.

    Science.gov (United States)

    Choi, Kwang S; Christian, Riann; Nardini, Luisa; Wood, Oliver R; Agubuzo, Eunice; Muleba, Mbanga; Munyati, Shungu; Makuwaza, Aramu; Koekemoer, Lizette L; Brooke, Basil D; Hunt, Richard H; Coetzee, Maureen

    2014-10-08

    Two mitochondrial DNA clades have been described in Anopheles funestus populations from southern Africa. Clade I is common across the continent while clade II is known only from Mozambique and Madagascar. The specific biological status of these clades is at present unknown. We investigated the possible role that each clade might play in the transmission of Plasmodium falciparum and the insecticide resistance status of An. funestus from Zimbabwe and Zambia. Mosquitoes were collected inside houses from Nchelenge District, Zambia and Honde Valley, Zimbabwe in 2013 and 2014. WHO susceptibility tests, synergist assays and resistance intensity tests were conducted on wild females and progeny of wild females. ELISA was used to detect Plasmodium falciparum circumsporozoite protein. Specimens were identified to species and mtDNA clades using standard molecular methods. The Zimbabwean samples were all clade I while the Zambian population comprised 80% clade I and 20% clade II in both years of collection. ELISA tests gave an overall infection rate of 2.3% and 2.1% in 2013, and 3.5% and 9.2% in 2014 for Zimbabwe and Zambia respectively. No significant difference was observed between the clades. All populations were resistant to pyrethroids and carbamates but susceptible to organochlorines and organophosphates. Synergist assays indicated that pyrethroid resistance is mediated by cytochrome P450 mono-oxygenases. Resistance intensity tests showed high survival rates after 8-hrs continuous exposure to pyrethroids but exposure to bendiocarb gave the same results as the susceptible control. This is the first record of An. funestus mtDNA clade II occurring in Zambia. No evidence was found to suggest that the clades are markers of biologically separate populations. The ability of An. funestus to withstand prolonged exposure to pyrethroids has serious implications for the use of these insecticides, either through LLINs or IRS, in southern Africa in general and resistance management

  12. Increased presence of the thermophilic mosquitoes and potential vectors Anopheles hyrcanus (Pallas, 1771) and Culex modestus Ficalbi 1889 in Central Europe’s lower Dyje River basin (South Moravia, Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Šebesta, O.; Gelbič, Ivan

    2015-01-01

    Roč. 51, č. 3 (2015), s. 272-280 ISSN 0037-9271 Institutional support: RVO:60077344 Keywords : Anopheles hyrcanus * Culex modestus * vector Subject RIV: EH - Ecology, Behaviour Impact factor: 0.575, year: 2015

  13. Filling the gap 115 years after Ronald Ross: the distribution of the Anopheles coluzzii and Anopheles gambiae s.s from Freetown and Monrovia, West Africa.

    Directory of Open Access Journals (Sweden)

    Dziedzom K de Souza

    Full Text Available It was in Freetown, Sierra Leone, that the malaria mosquito Anopheles coastalis, now known as Anopheles gambiae, was first discovered as the vector of malaria, in 1899. That discovery led to a pioneering vector research in Sierra Leone and neighbouring Liberia, where mosquito species were extensively characterized. Unfortunately, the decade long civil conflicts of the 1990s, in both countries, resulted in a stagnation of the once vibrant research on disease vectors. This paper attempts to fill in some of the gaps on what is now known of the distribution of the sibling species of the An. gambiae complex, and especially the An. coluzzii and An. gambiae s.s, formerly known as the An. gambiae molecular M and S forms respectively, in the cities of Freetown and Monrovia.

  14. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania

    Directory of Open Access Journals (Sweden)

    Azizi Salum

    2011-04-01

    Full Text Available Abstract Background Insecticide-treated nets (ITNs and indoor residual spraying (IRS represent the front-line tools for malaria vector control globally, but are optimally effective where the majority of baseline transmission occurs indoors. In the surveyed area of rural southern Tanzania, bed net use steadily increased over the last decade, reducing malaria transmission intensity by 94%. Methods Starting before bed nets were introduced (1997, and then after two milestones of net use had been reached-75% community-wide use of untreated nets (2004 and then 47% use of ITNs (2009-hourly biting rates of malaria vectors from the Anopheles gambiae complex and Anopheles funestus group were surveyed. Results In 1997, An. gambiae s.l. and An. funestus mosquitoes exhibited a tendency to bite humans inside houses late at night. For An. gambiae s.l., by 2009, nocturnal activity was less (p = 0.0018. At this time, the sibling species composition of the complex had shifted from predominantly An. gambiae s.s. to predominantly An. arabiensis. For An. funestus, by 2009, nocturnal activity was less (p = 0.0054 as well as the proportion biting indoors (p An. funestus s.s. remained the predominant species within this group. As a consequence of these altered feeding patterns, the proportion (mean ± standard error of human contact with mosquitoes (bites per person per night occurring indoors dropped from 0.99 ± 0.002 in 1997 to 0.82 ± 0.008 in 2009 for the An. gambiae complex (p = 0.0143 and from 1.00 ± An. funestus complex (p = 0.0004 over the same time period. Conclusions High usage of ITNs can dramatically alter African vector populations so that intense, predominantly indoor transmission is replaced by greatly lowered residual transmission, a greater proportion of which occurs outdoors. Regardless of the underlying mechanism, the residual, self-sustaining transmission will respond poorly to further insecticidal measures within houses. Additional vector control

  15. Ranking malaria risk factors to guide malaria control efforts in African highlands.

    Directory of Open Access Journals (Sweden)

    Natacha Protopopoff

    Full Text Available INTRODUCTION: Malaria is re-emerging in most of the African highlands exposing the non immune population to deadly epidemics. A better understanding of the factors impacting transmission in the highlands is crucial to improve well targeted malaria control strategies. METHODS AND FINDINGS: A conceptual model of potential malaria risk factors in the highlands was built based on the available literature. Furthermore, the relative importance of these factors on malaria can be estimated through "classification and regression trees", an unexploited statistical method in the malaria field. This CART method was used to analyse the malaria risk factors in the Burundi highlands. The results showed that Anopheles density was the best predictor for high malaria prevalence. Then lower rainfall, no vector control, higher minimum temperature and houses near breeding sites were associated by order of importance to higher Anopheles density. CONCLUSIONS: In Burundi highlands monitoring Anopheles densities when rainfall is low may be able to predict epidemics. The conceptual model combined with the CART analysis is a decision support tool that could provide an important contribution toward the prevention and control of malaria by identifying major risk factors.

  16. Ranking malaria risk factors to guide malaria control efforts in African highlands.

    Science.gov (United States)

    Protopopoff, Natacha; Van Bortel, Wim; Speybroeck, Niko; Van Geertruyden, Jean-Pierre; Baza, Dismas; D'Alessandro, Umberto; Coosemans, Marc

    2009-11-25

    Malaria is re-emerging in most of the African highlands exposing the non immune population to deadly epidemics. A better understanding of the factors impacting transmission in the highlands is crucial to improve well targeted malaria control strategies. A conceptual model of potential malaria risk factors in the highlands was built based on the available literature. Furthermore, the relative importance of these factors on malaria can be estimated through "classification and regression trees", an unexploited statistical method in the malaria field. This CART method was used to analyse the malaria risk factors in the Burundi highlands. The results showed that Anopheles density was the best predictor for high malaria prevalence. Then lower rainfall, no vector control, higher minimum temperature and houses near breeding sites were associated by order of importance to higher Anopheles density. In Burundi highlands monitoring Anopheles densities when rainfall is low may be able to predict epidemics. The conceptual model combined with the CART analysis is a decision support tool that could provide an important contribution toward the prevention and control of malaria by identifying major risk factors.

  17. Can antibodies against flies alter malaria transmission in birds by changing vector behavior?

    Science.gov (United States)

    Ghosh, Suma; Waite, Jessica L; Clayton, Dale H; Adler, Frederick R

    2014-10-07

    Transmission of insect-borne diseases is shaped by the interactions among parasites, vectors, and hosts. Any factor that alters movement of infected vectors from infected to uninfeced hosts will in turn alter pathogen spread. In this paper, we study one such pathogen-vector-host system, avian malaria in pigeons transmitted by fly ectoparasites, where both two-way and three-way interactions play a key role in shaping disease spread. Bird immune defenses against flies can decrease malaria prevalence by reducing fly residence time on infected birds or increase disease prevalence by enhancing fly movement and thus infection transmission. We develop a mathematical model that illustrates how these changes in vector behavior influence pathogen transmission and show that malaria prevalence is maximized at an intermediate level of defense avoidance by the flies. Understanding how host immune defenses indirectly alter disease transmission by influencing vector behavior has implications for reducing the transmission of human malaria and other vectored pathogens. Published by Elsevier Ltd.

  18. Vector bionomics and malaria transmission in the Upper Orinoco River, Southern Venezuela

    Directory of Open Access Journals (Sweden)

    Magda Magris

    2007-06-01

    Full Text Available A longitudinal epidemiological and entomological study was carried out in Ocamo, Upper Orinoco River, between January 1994 and February 1995 to understand the dynamics of malaria transmission in this area. Malaria transmission occurs throughout the year with a peak in June at the beginning of the rainy season. The Annual Parasite Index was 1,279 per 1,000 populations at risk. Plasmodium falciparum infections accounted for 64% of all infections, P. vivax for 28%, and P. malariae for 4%. Mixed P. falciparum/P. vivax infections were diagnosed in 15 people representing 4% of total cases. Children under 10 years accounted for 58% of the cases; the risk for malaria in this age group was 77% higher than for those in the greater than 50 years age group. Anopheles darlingi was the predominant anopheline species landing on humans indoors with a biting peak between midnight and dawn. A significant positive correlation was found between malaria monthly incidence and mean number of An. darlingi caught. There was not a significant relationship between mean number of An. darlingi and rainfall or between incidence and rainfall. A total of 7295 anophelines were assayed by ELISA for detection of Plasmodium circumsporozoite (CS protein. Only An. darlingi (55 was positive for CS proteins of P. falciparum (0.42%, P. malariae (0.25%, and P. vivax-247 (0.1%. The overall estimated entomological inoculation rate was 129 positive bites/person/year. The present study was the first longitudinal entomological and epidemiological study conducted in this area and set up the basic ground for subsequent intervention with insecticide-treated nets.

  19. History of malaria control in Tajikistan and rapid malaria appraisal in an agro-ecological setting.

    Science.gov (United States)

    Matthys, Barbara; Sherkanov, Tohir; Karimov, Saifudin S; Khabirov, Zamonidin; Mostowlansky, Till; Utzinger, Jürg; Wyss, Kaspar

    2008-10-26

    Reported malaria cases in rice growing areas in western Tajikistan were at the root of a rapid appraisal of the local malaria situation in a selected agro-ecological setting where only scarce information was available. The rapid appraisal was complemented by a review of the epidemiology and control of malaria in Tajikistan and Central Asia from 1920 until today. Following a resurgence in the 1990s, malaria transmission has been reduced considerably in Tajikistan as a result of concerted efforts by the government and international agencies. The goal for 2015 is transmission interruption, with control interventions and surveillance currently concentrated in the South, where foci of Plasmodium vivax and Plasmodium falciparum persist. The rapid malaria appraisal was carried out in six communities of irrigated rice cultivation during the peak of malaria transmission (August/September 2007) in western Tajikistan. In a cross-sectional survey, blood samples were taken from 363 schoolchildren and examined for Plasmodium under a light microscope. A total of 56 farmers were interviewed about agricultural activities and malaria. Potential Anopheles breeding sites were characterized using standardized procedures. A literature review on the epidemiology and control of malaria in Tajikistan was conducted. One case of P. vivax was detected among the 363 schoolchildren examined (0.28%). The interviewees reported to protect themselves against mosquito bites and used their own concepts on fever conditions, which do not distinguish between malaria and other diseases. Three potential malaria vectors were identified, i.e. Anopheles superpictus, Anopheles pulcherrimus and Anopheles hyrcanus in 58 of the 73 breeding sites examined (79.5%). Rice paddies, natural creeks and man-made ponds were the most important Anopheles habitats. The presence of malaria vectors and parasite reservoirs, low awareness of, and protection against malaria in the face of population movements and inadequate

  20. History of malaria control in Tajikistan and rapid malaria appraisal in an agro-ecological setting

    Directory of Open Access Journals (Sweden)

    Utzinger Jürg

    2008-10-01

    Full Text Available Abstract Background Reported malaria cases in rice growing areas in western Tajikistan were at the root of a rapid appraisal of the local malaria situation in a selected agro-ecological setting where only scarce information was available. The rapid appraisal was complemented by a review of the epidemiology and control of malaria in Tajikistan and Central Asia from 1920 until today. Following a resurgence in the 1990s, malaria transmission has been reduced considerably in Tajikistan as a result of concerted efforts by the government and international agencies. The goal for 2015 is transmission interruption, with control interventions and surveillance currently concentrated in the South, where foci of Plasmodium vivax and Plasmodium falciparum persist. Methods The rapid malaria appraisal was carried out in six communities of irrigated rice cultivation during the peak of malaria transmission (August/September 2007 in western Tajikistan. In a cross-sectional survey, blood samples were taken from 363 schoolchildren and examined for Plasmodium under a light microscope. A total of 56 farmers were interviewed about agricultural activities and malaria. Potential Anopheles breeding sites were characterized using standardized procedures. A literature review on the epidemiology and control of malaria in Tajikistan was conducted. Results One case of P. vivax was detected among the 363 schoolchildren examined (0.28%. The interviewees reported to protect themselves against mosquito bites and used their own concepts on fever conditions, which do not distinguish between malaria and other diseases. Three potential malaria vectors were identified, i.e. Anopheles superpictus, Anopheles pulcherrimus and Anopheles hyrcanus in 58 of the 73 breeding sites examined (79.5%. Rice paddies, natural creeks and man-made ponds were the most important Anopheles habitats. Conclusion The presence of malaria vectors and parasite reservoirs, low awareness of, and protection against

  1. Vector incrimination and effects of antimalarial drugs on malaria transmission and control in the Amazon Basin of Brazil

    Directory of Open Access Journals (Sweden)

    T. A. Klein

    1992-01-01

    Full Text Available World ecosystems differ significantly and a multidisciplinary malaria control approach must be adjusted to meet these requirements. These include a comprehensive understanding of the malaria vectors, their behavior, seasonal distribution and abundance, susceptibility to insecticides (physiological and behavioral, methods to reduce the numbers of human gametocyte carriers through effective health care systems and antimalarial drug treatment, urban malaria transmission versus rural or forest malaria transmission, and the impact of vaccine development. Many malaria vectors are members of species complexes and individual relationship to malaria transmission, seasonal distribution, bitting behavior, etc. is poorly understood. Additionaly, malaria patients are not examined for circulating gametocytes and both falciparum and vivax malaria patients may be highly infective to mosquitoes after treatment with currently used antimalarial drugs. Studies on the physiological and behavioral effects of DDT and other insecticides are inconclusive and need to be evalusted.

  2. Physico-chemical characteristics of Anopheles breeding sites ...

    African Journals Online (AJOL)

    ELO

    analysis of the physicochemical parameters of the water samples was carried out in the Nigerian ... Key words: Malaria, Anopheles mosquitoes, breeding habitat, physico-chemical properties. ... Anopheles mosquito has been found to breed in.

  3. Eficacia del control de larvas de vectores de la malaria con peces larvívoros nativos en San Martín, Perú

    Directory of Open Access Journals (Sweden)

    Elmer Rojas P

    2004-01-01

    Full Text Available Objetivo: Determinar la eficacia del control larvario de vectores de la malaria con peces larvívoros nativos en San Martín, Perú. Material y métodos: Estudio experimental que se llevó a cabo en las localidades de Yumbatos, Alianza y San Juan de Shanusi con ocho criaderos cada uno, identificándose las especies nativas Rivulus urophtalmus "chuina" y Pyrrulina brevis "achualillo" comparados con la eficacia ejercida por Poecilia reticulata "guppy". Se midieron variables como temperatura, pH, concentración de electrolitos en el agua, densidad de los peces y presencia de otros depredadores. Resultados: Los peces nativos alcanzaron una eficacia de 98% en el control de larvas de Anopheles, cuando se mantuvieron en densidades entre 10 y 15 peces/m²; estos peces alcanzan longitudes hasta de 8 cm, y tienen similar o mayor voracidad que Poecilia reticulata. Asimismo, se evidenció la existencia de peces depredadores, Hoplias malabaricus "fasaco" y Simbranchus marmoratus "atinga", los que se alimentan de estos peces pequeños. Conclusiones: Los peces nativos son eficaces para el control de larvas de Anopheles; asimismo, se deben tener en cuenta la existencia de otras especies depredadoras, así como la limpieza de la maleza de los criaderos para incrementar la eficacia del control.

  4. The contribution of agricultural insecticide use to increasing insecticide resistance in African malaria vectors.

    Science.gov (United States)

    Reid, Molly C; McKenzie, F Ellis

    2016-02-19

    The fight against malaria is increasingly threatened by failures in vector control due to growing insecticide resistance. This review examines the recent primary research that addresses the putative relationship between agricultural insecticide use and trends in insecticide resistance. To do so, descriptive evidence offered by the new research was categorized, and additional factors that impact the relationship between agricultural insecticide use and observed insecticide resistance in malaria vectors were identified. In 23 of the 25 relevant recent publications from across Africa, higher resistance in mosquito populations was associated with agricultural insecticide use. This association appears to be affected by crop type, farm pest management strategy and urban development.

  5. Malaria hotspots defined by clinical malaria, asymptomatic carriage, PCR and vector numbers in a low transmission area on the Kenyan Coast.

    Science.gov (United States)

    Kangoye, David Tiga; Noor, Abdisalan; Midega, Janet; Mwongeli, Joyce; Mkabili, Dora; Mogeni, Polycarp; Kerubo, Christine; Akoo, Pauline; Mwangangi, Joseph; Drakeley, Chris; Marsh, Kevin; Bejon, Philip; Njuguna, Patricia

    2016-04-14

    Targeted malaria control interventions are expected to be cost-effective. Clinical, parasitological and serological markers of malaria transmission have been used to detect malaria transmission hotspots, but few studies have examined the relationship between the different potential markers in low transmission areas. The present study reports on the relationships between clinical, parasitological, serological and entomological markers of malaria transmission in an area of low transmission intensity in Coastal Kenya. Longitudinal data collected from 831 children aged 5-17 months, cross-sectional survey data from 800 older children and adults, and entomological survey data collected in Ganze on the Kenyan Coast were used in the present study. The spatial scan statistic test used to detect malaria transmission hotspots was based on incidence of clinical malaria episodes, prevalence of asymptomatic asexual parasites carriage detected by microscopy and polymerase chain reaction (PCR), seroprevalence of antibodies to two Plasmodium falciparum merozoite antigens (AMA1 and MSP1-19) and densities of Anopheles mosquitoes in CDC light-trap catches. There was considerable overlapping of hotspots by these different markers, but only weak to moderate correlation between parasitological and serological markers. PCR prevalence and seroprevalence of antibodies to AMA1 or MSP1-19 appeared to be more sensitive markers of hotspots at very low transmission intensity. These findings may support the choice of either serology or PCR as markers in the detection of malaria transmission hotspots for targeted interventions.

  6. Eco-friendly microbial route to synthesize cobalt nanoparticles using Bacillus thuringiensis against malaria and dengue vectors.

    Science.gov (United States)

    Marimuthu, Sampath; Rahuman, Abdul Abdul; Kirthi, Arivarasan Vishnu; Santhoshkumar, Thirunavukkarasu; Jayaseelan, Chidambaram; Rajakumar, Govindasamy

    2013-12-01

    The developments of resistance and persistence to chemical insecticides and concerns about the non-target effects have prompted the development of eco-friendly mosquito control agents. The aim of this study was to investigate the larvicidal activities of synthesized cobalt nanoparticles (Co NPs) using bio control agent, Bacillus thuringiensis against malaria vector, Anopheles subpictus and dengue vector, Aedes aegypti (Diptera: Culicidae). The synthesized Co NPs were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), Field-emission scanning electron microscopy (FESEM) with energy dispersive X-ray spectroscopy, and Transmission electron microscopy (TEM). XRD analysis showed three distinct diffraction peaks at 27.03°, 31.00°, and 45.58° indexed to the planes 102, 122, and 024, respectively on the face-centered cubic cobalt acetate with an average size of 85.3 nm. FTIR spectra implicated role of the peak at 3,436 cm(-1) for O-H hydroxyl group, 2924 cm(-1) for methylene C-H stretch in the formation of Co NPs. FESEM analysis showed the topological and morphological appearance of NPs which were found to be spherical and oval in shape. TEM analysis showed polydispersed and clustered NPs with an average size of 84.81 nm. The maximum larvicidal mortality was observed in the cobalt acetate solution, B. thuringiensis formulation, and synthesized Co NPs against fourth instar larvae of A. subpictus and A. aegypti with LC50 values of 29.16, 8.12, 3.59 mg/L; 34.61, 6.94, and 2.87 mg/L; r (2) values of 0.986, 0.933, 0.942; 0.962, 0.957, and 0.922, respectively.

  7. Converging Human and Malaria Vector Diagnostics with Data Management towards an Integrated Holistic One Health Approach

    Directory of Open Access Journals (Sweden)

    Konstantinos Mitsakakis

    2018-02-01

    Full Text Available Monitoring malaria prevalence in humans, as well as vector populations, for the presence of Plasmodium, is an integral component of effective malaria control, and eventually, elimination. In the field of human diagnostics, a major challenge is the ability to define, precisely, the causative agent of fever, thereby differentiating among several candidate (also non-malaria febrile diseases. This requires genetic-based pathogen identification and multiplexed analysis, which, in combination, are hardly provided by the current gold standard diagnostic tools. In the field of vectors, an essential component of control programs is the detection of Plasmodium species within its mosquito vectors, particularly in the salivary glands, where the infective sporozoites reside. In addition, the identification of species composition and insecticide resistance alleles within vector populations is a primary task in routine monitoring activities, aiming to support control efforts. In this context, the use of converging diagnostics is highly desirable for providing comprehensive information, including differential fever diagnosis in humans, and mosquito species composition, infection status, and resistance to insecticides of vectors. Nevertheless, the two fields of human diagnostics and vector control are rarely combined, both at the diagnostic and at the data management end, resulting in fragmented data and mis- or non-communication between various stakeholders. To this direction, molecular technologies, their integration in automated platforms, and the co-assessment of data from multiple diagnostic sources through information and communication technologies are possible pathways towards a unified human vector approach.

  8. Converging Human and Malaria Vector Diagnostics with Data Management towards an Integrated Holistic One Health Approach.

    Science.gov (United States)

    Mitsakakis, Konstantinos; Hin, Sebastian; Müller, Pie; Wipf, Nadja; Thomsen, Edward; Coleman, Michael; Zengerle, Roland; Vontas, John; Mavridis, Konstantinos

    2018-02-03

    Monitoring malaria prevalence in humans, as well as vector populations, for the presence of Plasmodium , is an integral component of effective malaria control, and eventually, elimination. In the field of human diagnostics, a major challenge is the ability to define, precisely, the causative agent of fever, thereby differentiating among several candidate (also non-malaria) febrile diseases. This requires genetic-based pathogen identification and multiplexed analysis, which, in combination, are hardly provided by the current gold standard diagnostic tools. In the field of vectors, an essential component of control programs is the detection of Plasmodium species within its mosquito vectors, particularly in the salivary glands, where the infective sporozoites reside. In addition, the identification of species composition and insecticide resistance alleles within vector populations is a primary task in routine monitoring activities, aiming to support control efforts. In this context, the use of converging diagnostics is highly desirable for providing comprehensive information, including differential fever diagnosis in humans, and mosquito species composition, infection status, and resistance to insecticides of vectors. Nevertheless, the two fields of human diagnostics and vector control are rarely combined, both at the diagnostic and at the data management end, resulting in fragmented data and mis- or non-communication between various stakeholders. To this direction, molecular technologies, their integration in automated platforms, and the co-assessment of data from multiple diagnostic sources through information and communication technologies are possible pathways towards a unified human vector approach.

  9. Converging Human and Malaria Vector Diagnostics with Data Management towards an Integrated Holistic One Health Approach

    Science.gov (United States)

    Mitsakakis, Konstantinos; Hin, Sebastian; Wipf, Nadja; Coleman, Michael; Zengerle, Roland; Vontas, John; Mavridis, Konstantinos

    2018-01-01

    Monitoring malaria prevalence in humans, as well as vector populations, for the presence of Plasmodium, is an integral component of effective malaria control, and eventually, elimination. In the field of human diagnostics, a major challenge is the ability to define, precisely, the causative agent of fever, thereby differentiating among several candidate (also non-malaria) febrile diseases. This requires genetic-based pathogen identification and multiplexed analysis, which, in combination, are hardly provided by the current gold standard diagnostic tools. In the field of vectors, an essential component of control programs is the detection of Plasmodium species within its mosquito vectors, particularly in the salivary glands, where the infective sporozoites reside. In addition, the identification of species composition and insecticide resistance alleles within vector populations is a primary task in routine monitoring activities, aiming to support control efforts. In this context, the use of converging diagnostics is highly desirable for providing comprehensive information, including differential fever diagnosis in humans, and mosquito species composition, infection status, and resistance to insecticides of vectors. Nevertheless, the two fields of human diagnostics and vector control are rarely combined, both at the diagnostic and at the data management end, resulting in fragmented data and mis- or non-communication between various stakeholders. To this direction, molecular technologies, their integration in automated platforms, and the co-assessment of data from multiple diagnostic sources through information and communication technologies are possible pathways towards a unified human vector approach. PMID:29401670

  10. Light manipulation of mosquito behaviour: acute and sustained photic suppression of biting activity in the Anopheles gambiae malaria mosquito.

    Science.gov (United States)

    Sheppard, Aaron D; Rund, Samuel S C; George, Gary F; Clark, Erin; Acri, Dominic J; Duffield, Giles E

    2017-06-16

    Host-seeking behaviours in anopheline mosquitoes are time-of-day specific, with a greater propensity for nocturnal biting. We investigated how a short exposure to light presented during the night or late day can inhibit biting activity and modulate flight activity behaviour. Anopheles gambiae (s.s.), maintained on a 12:12 LD cycle, were exposed transiently to white light for 10-min at the onset of night and the proportion taking a blood meal in a human biting assay was recorded every 2 h over an 8-h duration. The pulse significantly reduced biting propensity in mosquitoes 2 h following administration, in some trials for 4 h, and with no differences detected after 6 h. Conversely, biting levels were significantly elevated when mosquitoes were exposed to a dark treatment during the late day, suggesting that light suppresses biting behaviour even during the late daytime. These data reveal a potent effect of a discrete light pulse on biting behaviour that is both immediate and sustained. We expanded this approach to develop a method to reduce biting propensity throughout the night by exposing mosquitoes to a series of 6- or 10-min pulses presented every 2 h. We reveal both an immediate suppressive effect of light during the exposure period and 2 h after the pulse. This response was found to be effective during most times of the night: however, differential responses that were time-of-day specific suggest an underlying circadian property of the mosquito physiology that results in an altered treatment efficacy. Finally, we examined the immediate and sustained effects of light on mosquito flight activity behaviour following exposure to a 30-min pulse, and observed activity suppression during early night, and elevated activity during the late night. As mosquitoes and malaria parasites are becoming increasingly resistant to insecticide and drug treatment respectively, there is a necessity for the development of innovative control strategies beyond insecticide

  11. Identification of Spiroplasma insolitum symbionts in Anopheles gambiae [version 1; referees: 2 approved, 1 not approved

    Directory of Open Access Journals (Sweden)

    Sharon T. Chepkemoi

    2017-09-01

    Full Text Available Background: Insect symbionts have the potential to block the transmission of vector-borne diseases by their hosts. The advancement of a symbiont-based transmission blocking strategy for malaria requires the identification and study of Anopheles symbionts. Methods: High throughput 16S amplicon sequencing was used to profile the bacteria associated with Anopheles gambiae sensu lato and identify potential symbionts. The polymerase chain reaction (PCR with specific primers were subsequently used to monitor symbiont prevalence in field populations, as well as symbiont transmission patterns. Results: We report the discovery of the bacterial symbiont, Spiroplasma, in Anopheles gambiae in Kenya. We determine that geographically dispersed Anopheles gambiae populations in Kenya are infected with Spiroplasma at low prevalence levels. Molecular phylogenetics indicates that this Anopheles gambiae associated Spiroplasma is a member of the insolitum clade. We demonstrate that this symbiont is stably maternally transmitted across at least two generations and does not significantly affect the fecundity or egg to adult survival of its host. Conclusions: In diverse insect species, Spiroplasma has been found to render their host resistant to infection by pathogens. The identification of a maternally transmitted strain of Spiroplasma in Anopheles gambiae may therefore open new lines of investigation for the development of symbiont-based strategies for blocking malaria transmission.

  12. Using green fluorescent malaria parasites to screen for permissive vector mosquitoes

    Directory of Open Access Journals (Sweden)

    Martin Beatrice

    2006-03-01

    Full Text Available Abstract Background The Plasmodium species that infect rodents, particularly Plasmodium berghei and Plasmodium yoelii, are useful to investigate host-parasite interactions. The mosquito species that act as vectors of human plasmodia in South East Asia, Africa and South America show different susceptibilities to infection by rodent Plasmodium species. P. berghei and P. yoelii infect both Anopheles gambiae and Anopheles stephensi, which are found mainly in Africa and Asia, respectively. However, it was reported that P. yoelii can infect the South American mosquito, Anopheles albimanus, while P. berghei cannot. Methods P. berghei lines that express the green fluorescent protein were used to screen for mosquitoes that are susceptible to infection by P. berghei. Live mosquitoes were examined and screened for the presence of a fluorescent signal in the abdomen. Infected mosquitoes were then examined by time-lapse microscopy to reveal the dynamic behaviour of sporozoites in haemolymph and extracted salivary glands. Results A single fluorescent oocyst can be detected in live mosquitoes and P. berghei can infect A. albimanus. As in other mosquitoes, P. berghei sporozoites can float through the haemolymph and invade A. albimanus salivary glands and they are infectious in mice after subcutaneous injection. Conclusion Fluorescent Plasmodium parasites can be used to rapidly screen susceptible mosquitoes. These results open the way to develop a laboratory model in countries where importation of A. gambiae and A. stephensi is not allowed.

  13. Surveillance of vector populations and malaria transmission during the 2009/10 El Niño event in the western Kenya highlands: opportunities for early detection of malaria hyper-transmission

    Directory of Open Access Journals (Sweden)

    Wanjala Christine L

    2011-07-01

    Full Text Available Abstract Background Vector control in the highlands of western Kenya has resulted in a significant reduction of malaria transmission and a change in the vectorial system. Climate variability as a result of events such as El Niño increases the highlands suitability for malaria transmission. Surveillance and monitoring is an important component of early transmission risk identification and management. However, below certain disease transmission thresholds, traditional tools for surveillance such as entomological inoculation rates may become insensitive. A rapid diagnostic kit comprising Plasmodium falciparum circumsporozoite surface protein and merozoite surface protein antibodies in humans was tested for early detection of transmission surges in the western Kenya highlands during an El Niño event (October 2009-February 2010. Methods Indoor resting female adult malaria vectors were collected in western Kenya highlands in four selected villages categorized into two valley systems, the U-shaped (Iguhu and Emutete and the V-shaped valleys (Marani and Fort Ternan for eight months. Members of the Anopheles gambiae complex were identified by PCR. Blood samples were collected from children 6-15 years old and exposure to malaria was tested using a circum-sporozoite protein and merozoite surface protein immunchromatographic rapid diagnostic test kit. Sporozoite ELISA was conducted to detect circum-sporozoite protein, later used for estimation of entomological inoculation rates. Results Among the four villages studied, an upsurge in antibody levels was first observed in October 2009. Plasmodium falciparum sporozoites were then first observed in December 2009 at Iguhu village and February 2010 at Emutete. Despite the upsurge in Marani and Fort Ternan no sporozoites were detected throughout the eight month study period. The antibody-based assay had much earlier transmission detection ability than the sporozoite-based assay. The proportion of An. arabiensis

  14. Strong association between house characteristics and malaria vectors in Sri Lanka

    DEFF Research Database (Denmark)

    Konradsen, Flemming; Amerasinghe, Priyanie; van der Hoek, Wim

    2003-01-01

    . The type of house construction and the exact location of all houses were determined. In a multivariate analysis, distance of less than 750 meters between a house and the main vector-breeding site was strongly associated with the presence of Anopheles culicifacies in the house (odds ratio [OR] 4.8, 95......The objective of this study was to determine whether house characteristics could be used to further refine the residual insecticide-spraying program in Sri Lanka. Indoor-resting mosquito densities were estimated in 473 houses based on fortnightly collections over a two-and-a-half-year period...

  15. Transmission intensity and malaria vector population structure in ...

    African Journals Online (AJOL)

    The entomological inoculation rate (EIR) was estimated at 0.51 infectious bites per person per year. This EIR was considered to be relatively low, indicating that malaria transmission in this area is low. Variability in mosquito blood meal shows availability of variety of preferred blood meal choices and impact of other factors ...

  16. Tanzanian Botanical Derivatives in the Control of Malaria Vectors ...

    African Journals Online (AJOL)

    This paper report on assessment of the chemicals derived from Tanzanian botanical resource as a viable source of safe, environmentally friendly and low cost mosquitocidal agents, but has yet to be developed into simple blends and formulations to be used in malaria control campaigns. Selection of bioactive plant species ...

  17. Seasonal abundance and blood feeding activity of Anopheles minimus Theobald (Diptera: Culicidae) in Thailand.

    Science.gov (United States)

    Chareonviriyaphap, Theeraphap; Prabaripai, Atchariya; Bangs, Michael J; Aum-Aung, Boonserm

    2003-11-01

    Anopheline mosquito larvae and adults were sampled at Ban Pu Teuy, Tri-Yok District, Kanchanaburi Province, western Thailand, from January 2000 to December 2001. Over the period of 2 yr, Anopheles minimus sensu lato was the most commonly collected species, followed by Anopheles swadiwongporni and Anopheles dirus sensu lato; all three species are important vectors of malaria in Thailand. Attempted blood feeding by An. minimus occurred throughout the night, with two distinct feeding peaks: strong activity immediately after sunset (1800-2100 hours), followed by a second, less pronounced, rise before sunrise (0300-0600 hours). Anopheles minimus were more abundant during the wet season compared with the dry and hot seasons, although nocturnal adult feeding patterns were similar. Anopheles minimus fed readily on humans inside and outside of houses, showing a slight preference for exophagy. The human-biting peak of An. minimus in our study area differed from other localities sampled in Thailand, indicating the possible existence of site-specific populations of An. minimus exhibiting different host-seeking behavior. These results underscore the importance of conducting site-specific studies to accurately determine vector larval habitats and adult activity patterns and linking their importance in malaria transmission in a given area.