WorldWideScience

Sample records for malaria parasites plasmodium

  1. Chimpanzee malaria parasites related to Plasmodium ovale in Africa.

    Directory of Open Access Journals (Sweden)

    Linda Duval

    Full Text Available Since the 1970's, the diversity of Plasmodium parasites in African great apes has been neglected. Surprisingly, P. reichenowi, a chimpanzee parasite, is the only such parasite to have been molecularly characterized. This parasite is closely phylogenetically related to P. falciparum, the principal cause of the greatest malaria burden in humans. Studies of malaria parasites from anthropoid primates may provide relevant phylogenetic information, improving our understanding of the origin and evolutionary history of human malaria species. In this study, we screened 130 DNA samples from chimpanzees (Pan troglodytes and gorillas (Gorilla gorilla from Cameroon for Plasmodium infection, using cytochrome b molecular tools. Two chimpanzees from the subspecies Pan t. troglodytes presented single infections with Plasmodium strains molecularly related to the human malaria parasite P. ovale. These chimpanzee parasites and 13 human strains of P. ovale originated from a various sites in Africa and Asia were characterized using cytochrome b and cytochrome c oxidase 1 mitochondrial partial genes and nuclear ldh partial gene. Consistent with previous findings, two genetically distinct types of P. ovale, classical and variant, were observed in the human population from a variety of geographical locations. One chimpanzee Plasmodium strain was genetically identical, on all three markers tested, to variant P. ovale type. The other chimpanzee Plasmodium strain was different from P. ovale strains isolated from humans. This study provides the first evidence of possibility of natural cross-species exchange of P. ovale between humans and chimpanzees of the subspecies Pan t. troglodytes.

  2. Enlightening the malaria parasite life cycle: bioluminescent Plasmodium in fundamental and applied research

    Directory of Open Access Journals (Sweden)

    Giulia eSiciliano

    2015-05-01

    Full Text Available The unicellular protozoan parasites of the genus Plasmodium impose on human health worldwide the enormous burden of malaria. The possibility to genetically modify several species of malaria parasites represented a major advance in the possibility to elucidate their biology and is now turning laboratory lines of transgenic Plasmodium into precious weapons to fight malaria. Amongst the various genetically modified plasmodia, transgenic parasite lines expressing bioluminescent reporters have been essential to unveil mechanisms of parasite gene expression and to develop in vivo imaging approaches in mouse malaria models. Mainly the human malaria parasite Plasmodium falciparum and the rodent parasite Plasmodium berghei have been engineered to express bioluminescent reporters in almost all the developmental stages of the parasite along its complex life cycle between the insect and the vertebrate hosts. Plasmodium lines expressing conventional and improved luciferase reporters are now gaining a central role to develop cell based assays in the much needed search of new antimalarial drugs and to open innovative approaches for both fundamental and applied research in malaria.

  3. The genome of the simian and human malaria parasite Plasmodium knowlesi

    DEFF Research Database (Denmark)

    Pain, A; Böhme, U; Berry, A E

    2008-01-01

    Plasmodium knowlesi is an intracellular malaria parasite whose natural vertebrate host is Macaca fascicularis (the 'kra' monkey); however, it is now increasingly recognized as a significant cause of human malaria, particularly in southeast Asia. Plasmodium knowlesi was the first malaria parasite...... species in which antigenic variation was demonstrated, and it has a close phylogenetic relationship to Plasmodium vivax, the second most important species of human malaria parasite (reviewed in ref. 4). Despite their relatedness, there are important phenotypic differences between them, such as host blood...... cell preference, absence of a dormant liver stage or 'hypnozoite' in P. knowlesi, and length of the asexual cycle (reviewed in ref. 4). Here we present an analysis of the P. knowlesi (H strain, Pk1(A+) clone) nuclear genome sequence. This is the first monkey malaria parasite genome to be described...

  4. Enlightening the malaria parasite life cycle: bioluminescent Plasmodium in fundamental and applied research.

    Science.gov (United States)

    Siciliano, Giulia; Alano, Pietro

    2015-01-01

    The unicellular protozoan parasites of the genus Plasmodium impose on human health worldwide the enormous burden of malaria. The possibility to genetically modify several species of malaria parasites represented a major advance in the possibility to elucidate their biology and is now turning laboratory lines of transgenic Plasmodium into precious weapons to fight malaria. Amongst the various genetically modified plasmodia, transgenic parasite lines expressing bioluminescent reporters have been essential to unveil mechanisms of parasite gene expression and to develop in vivo imaging approaches in mouse malaria models. Mainly the human malaria parasite Plasmodium falciparum and the rodent parasite P. berghei have been engineered to express bioluminescent reporters in almost all the developmental stages of the parasite along its complex life cycle between the insect and the vertebrate hosts. Plasmodium lines expressing conventional and improved luciferase reporters are now gaining a central role to develop cell based assays in the much needed search of new antimalarial drugs and to open innovative approaches for both fundamental and applied research in malaria.

  5. From malaria parasite point of view – Plasmodium falciparum evolution

    Directory of Open Access Journals (Sweden)

    Agata Zerka

    2015-12-01

    Full Text Available Malaria is caused by infection with protozoan parasites belonging to the genus Plasmodium, which have arguably exerted the greatest selection pressure on humans in the history of our species. Besides humans, different Plasmodium parasites infect a wide range of animal hosts, from marine invertebrates to primates. On the other hand, individual Plasmodium species show high host specificity. The extraordinary evolution of Plasmodium probably began when a free-living red algae turned parasitic, and culminated with its ability to thrive inside a human red blood cell. Studies on the African apes generated new data on the evolution of malaria parasites in general and the deadliest human-specific species, Plasmodium falciparum, in particular. Initially, it was hypothesized that P. falciparum descended from the chimpanzee malaria parasite P. reichenowi, after the human and the chimp lineage diverged about 6 million years ago. However, a recently identified new species infecting gorillas, unexpectedly showed similarity to P. falciparum and was therefore named P. praefalciparum. That finding spurred an alternative hypothesis, which proposes that P. falciparum descended from its gorilla rather than chimp counterpart. In addition, the gorilla-to-human host shift may have occurred more recently (about 10 thousand years ago than the theoretical P. falciparum-P. reichenowi split. One of the key aims of the studies on Plasmodium evolution is to elucidate the mechanisms that allow the incessant host shifting and retaining the host specificity, especially in the case of human-specific species. Thorough understanding of these phenomena will be necessary to design effective malaria treatment and prevention strategies.

  6. Transformation of the rodent malaria parasite Plasmodium chabaudi

    OpenAIRE

    Spence, Philip J; Cunningham, Deirdre; Jarra, William; Lawton, Jennifer; Langhorne, Jean; Thompson, Joanne

    2011-01-01

    The rodent malaria parasite Plasmodium chabaudi chabaudi shares many features with human malaria species, including P. falciparum, and is the in vivo model of choice for many aspects of malaria research in the mammalian host, from sequestration of parasitized erythrocytes, to antigenic variation and host immunity and immunopathology. this protocol describes an optimized method for the transformation of mature blood-stage P.c. chabaudi and a description of a vector that targets efficient, sing...

  7. Mosquito transmission of the rodent malaria parasite Plasmodium chabaudi

    Directory of Open Access Journals (Sweden)

    Spence Philip J

    2012-12-01

    Full Text Available Abstract Background Serial blood passage of Plasmodium increases virulence, whilst mosquito transmission inherently regulates parasite virulence within the mammalian host. It is, therefore, imperative that all aspects of experimental malaria research are studied in the context of the complete Plasmodium life cycle. Methods Plasmodium chabaudi chabaudi displays many characteristics associated with human Plasmodium infection of natural mosquito vectors and the mammalian host, and thus provides a unique opportunity to study the pathogenesis of malaria in a single infection setting. An optimized protocol that permits efficient and reproducible vector transmission of P. c. chabaudi via Anopheles stephensi was developed. Results and conclusions This protocol was utilized for mosquito transmission of genetically distinct P. c. chabaudi isolates, highlighting differential parasite virulence within the mosquito vector and the spectrum of host susceptibility to infection initiated via the natural route, mosquito bite. An apposite experimental system in which to delineate the pathogenesis of malaria is described in detail.

  8. Mitosis in the Human Malaria Parasite Plasmodium falciparum ▿

    OpenAIRE

    Gerald, Noel; Mahajan, Babita; Kumar, Sanjai

    2011-01-01

    Malaria is caused by intraerythrocytic protozoan parasites belonging to Plasmodium spp. (phylum Apicomplexa) that produce significant morbidity and mortality, mostly in developing countries. Plasmodium parasites have a complex life cycle that includes multiple stages in anopheline mosquito vectors and vertebrate hosts. During the life cycle, the parasites undergo several cycles of extreme population growth within a brief span, and this is critical for their continued transmission and a contri...

  9. Enlightening the malaria parasite life cycle: bioluminescent Plasmodium in fundamental and applied research

    OpenAIRE

    Siciliano, Giulia; Alano, Pietro

    2015-01-01

    The unicellular protozoan parasites of the genus Plasmodium impose on human health worldwide the enormous burden of malaria. The possibility to genetically modify several species of malaria parasites represented a major advance in the possibility to elucidate their biology and is now turning laboratory lines of transgenic Plasmodium into precious weapons to fight malaria. Amongst the various genetically modified plasmodia, transgenic parasite lines expressing bioluminescent reporters have bee...

  10. The Plasmodium bottleneck: malaria parasite losses in the mosquito vector

    Science.gov (United States)

    Smith, Ryan C; Vega-Rodríguez, Joel; Jacobs-Lorena, Marcelo

    2014-01-01

    Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission. PMID:25185005

  11. The Plasmodium bottleneck: malaria parasite losses in the mosquito vector

    Directory of Open Access Journals (Sweden)

    Ryan C Smith

    2014-08-01

    Full Text Available Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission.

  12. Transformation of the rodent malaria parasite Plasmodium chabaudi.

    Science.gov (United States)

    Spence, Philip J; Cunningham, Deirdre; Jarra, William; Lawton, Jennifer; Langhorne, Jean; Thompson, Joanne

    2011-04-01

    The rodent malaria parasite Plasmodium chabaudi chabaudi shares many features with human malaria species, including P. falciparum, and is the in vivo model of choice for many aspects of malaria research in the mammalian host, from sequestration of parasitized erythrocytes, to antigenic variation and host immunity and immunopathology. This protocol describes an optimized method for the transformation of mature blood-stage P.c. chabaudi and a description of a vector that targets efficient, single crossover integration into the P.c. chabaudi genome. Transformed lines are reproducibly generated and selected within 14-20 d, and show stable long-term protein expression even in the absence of drug selection. This protocol, therefore, provides the scientific community with a robust and reproducible method to generate transformed P.c. chabaudi parasites expressing fluorescent, bioluminescent and model antigens that can be used in vivo to dissect many of the fundamental principles of malaria infection.

  13. Comparative Genomics and Systems Biology of Malaria Parasites Plasmodium

    Science.gov (United States)

    Cai, Hong; Zhou, Zhan; Gu, Jianying; Wang, Yufeng

    2013-01-01

    Malaria is a serious infectious disease that causes over one million deaths yearly. It is caused by a group of protozoan parasites in the genus Plasmodium. No effective vaccine is currently available and the elevated levels of resistance to drugs in use underscore the pressing need for novel antimalarial targets. In this review, we survey omics centered developments in Plasmodium biology, which have set the stage for a quantum leap in our understanding of the fundamental processes of the parasite life cycle and mechanisms of drug resistance and immune evasion. PMID:24298232

  14. Lysophosphatidylcholine Regulates Sexual Stage Differentiation in the Human Malaria Parasite Plasmodium falciparum.

    Science.gov (United States)

    Brancucci, Nicolas M B; Gerdt, Joseph P; Wang, ChengQi; De Niz, Mariana; Philip, Nisha; Adapa, Swamy R; Zhang, Min; Hitz, Eva; Niederwieser, Igor; Boltryk, Sylwia D; Laffitte, Marie-Claude; Clark, Martha A; Grüring, Christof; Ravel, Deepali; Blancke Soares, Alexandra; Demas, Allison; Bopp, Selina; Rubio-Ruiz, Belén; Conejo-Garcia, Ana; Wirth, Dyann F; Gendaszewska-Darmach, Edyta; Duraisingh, Manoj T; Adams, John H; Voss, Till S; Waters, Andrew P; Jiang, Rays H Y; Clardy, Jon; Marti, Matthias

    2017-12-14

    Transmission represents a population bottleneck in the Plasmodium life cycle and a key intervention target of ongoing efforts to eradicate malaria. Sexual differentiation is essential for this process, as only sexual parasites, called gametocytes, are infective to the mosquito vector. Gametocyte production rates vary depending on environmental conditions, but external stimuli remain obscure. Here, we show that the host-derived lipid lysophosphatidylcholine (LysoPC) controls P. falciparum cell fate by repressing parasite sexual differentiation. We demonstrate that exogenous LysoPC drives biosynthesis of the essential membrane component phosphatidylcholine. LysoPC restriction induces a compensatory response, linking parasite metabolism to the activation of sexual-stage-specific transcription and gametocyte formation. Our results reveal that malaria parasites can sense and process host-derived physiological signals to regulate differentiation. These data close a critical knowledge gap in parasite biology and introduce a major component of the sexual differentiation pathway in Plasmodium that may provide new approaches for blocking malaria transmission. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Defining the protein interaction network of human malaria parasite Plasmodium falciparum

    KAUST Repository

    Ramaprasad, Abhinay; Pain, Arnab; Ravasi, Timothy

    2012-01-01

    Malaria, caused by the protozoan parasite Plasmodium falciparum, affects around 225. million people yearly and a huge international effort is directed towards combating this grave threat to world health and economic development. Considerable

  16. Origin of the human malaria parasite Plasmodium falciparum in gorillas.

    Science.gov (United States)

    Liu, Weimin; Li, Yingying; Learn, Gerald H; Rudicell, Rebecca S; Robertson, Joel D; Keele, Brandon F; Ndjango, Jean-Bosco N; Sanz, Crickette M; Morgan, David B; Locatelli, Sabrina; Gonder, Mary K; Kranzusch, Philip J; Walsh, Peter D; Delaporte, Eric; Mpoudi-Ngole, Eitel; Georgiev, Alexander V; Muller, Martin N; Shaw, George M; Peeters, Martine; Sharp, Paul M; Rayner, Julian C; Hahn, Beatrice H

    2010-09-23

    Plasmodium falciparum is the most prevalent and lethal of the malaria parasites infecting humans, yet the origin and evolutionary history of this important pathogen remain controversial. Here we develop a single-genome amplification strategy to identify and characterize Plasmodium spp. DNA sequences in faecal samples from wild-living apes. Among nearly 3,000 specimens collected from field sites throughout central Africa, we found Plasmodium infection in chimpanzees (Pan troglodytes) and western gorillas (Gorilla gorilla), but not in eastern gorillas (Gorilla beringei) or bonobos (Pan paniscus). Ape plasmodial infections were highly prevalent, widely distributed and almost always made up of mixed parasite species. Analysis of more than 1,100 mitochondrial, apicoplast and nuclear gene sequences from chimpanzees and gorillas revealed that 99% grouped within one of six host-specific lineages representing distinct Plasmodium species within the subgenus Laverania. One of these from western gorillas comprised parasites that were nearly identical to P. falciparum. In phylogenetic analyses of full-length mitochondrial sequences, human P. falciparum formed a monophyletic lineage within the gorilla parasite radiation. These findings indicate that P. falciparum is of gorilla origin and not of chimpanzee, bonobo or ancient human origin.

  17. Natural infection of Plasmodium brasilianum in humans: Man and monkey share quartan malaria parasites in the Venezuelan Amazon.

    Science.gov (United States)

    Lalremruata, Albert; Magris, Magda; Vivas-Martínez, Sarai; Koehler, Maike; Esen, Meral; Kempaiah, Prakasha; Jeyaraj, Sankarganesh; Perkins, Douglas Jay; Mordmüller, Benjamin; Metzger, Wolfram G

    2015-09-01

    The quartan malaria parasite Plasmodium malariae is the widest spread and best adapted human malaria parasite. The simian Plasmodium brasilianum causes quartan fever in New World monkeys and resembles P. malariae morphologically. Since the genetics of the two parasites are nearly identical, differing only in a range of mutations expected within a species, it has long been speculated that the two are the same. However, no naturally acquired infection with parasites termed as P. brasilianum has been found in humans until now. We investigated malaria cases from remote Yanomami indigenous communities of the Venezuelan Amazon and analyzed the genes coding for the circumsporozoite protein (CSP) and the small subunit of ribosomes (18S) by species-specific PCR and capillary based-DNA sequencing. Based on 18S rRNA gene sequencing, we identified 12 patients harboring malaria parasites which were 100% identical with P. brasilianum isolated from the monkey, Alouatta seniculus. Translated amino acid sequences of the CS protein gene showed identical immunodominant repeat units between quartan malaria parasites isolated from both humans and monkeys. This study reports, for the first time, naturally acquired infections in humans with parasites termed as P. brasilianum. We conclude that quartan malaria parasites are easily exchanged between humans and monkeys in Latin America. We hypothesize a lack of host specificity in mammalian hosts and consider quartan malaria to be a true anthropozoonosis. Since the name P. brasilianum suggests a malaria species distinct from P. malariae, we propose that P. brasilianum should have a nomenclatorial revision in case further research confirms our findings. The expansive reservoir of mammalian hosts discriminates quartan malaria from other Plasmodium spp. and requires particular research efforts.

  18. Primate malarias: Diversity, distribution and insights for zoonotic Plasmodium

    Directory of Open Access Journals (Sweden)

    Christina Faust

    2015-12-01

    Full Text Available Protozoans within the genus Plasmodium are well-known as the causative agents of malaria in humans. Numerous Plasmodium species parasites also infect a wide range of non-human primate hosts in tropical and sub-tropical regions worldwide. Studying this diversity can provide critical insight into our understanding of human malarias, as several human malaria species are a result of host switches from non-human primates. Current spillover of a monkey malaria, Plasmodium knowlesi, in Southeast Asia highlights the permeability of species barriers in Plasmodium. Also recently, surveys of apes in Africa uncovered a previously undescribed diversity of Plasmodium in chimpanzees and gorillas. Therefore, we carried out a meta-analysis to quantify the global distribution, host range, and diversity of known non-human primate malaria species. We used published records of Plasmodium parasites found in non-human primates to estimate the total diversity of non-human primate malarias globally. We estimate that at least three undescribed primate malaria species exist in sampled primates, and many more likely exist in unstudied species. The diversity of malaria parasites is especially uncertain in regions of low sampling such as Madagascar, and taxonomic groups such as African Old World Monkeys and gibbons. Presence–absence data of malaria across primates enables us to highlight the close association of forested regions and non-human primate malarias. This distribution potentially reflects a long coevolution of primates, forest-adapted mosquitoes, and malaria parasites. The diversity and distribution of primate malaria are an essential prerequisite to understanding the mechanisms and circumstances that allow Plasmodium to jump species barriers, both in the evolution of malaria parasites and current cases of spillover into humans.

  19. Genome-scale comparison of expanded gene families in Plasmodium ovale wallikeri and Plasmodium ovale curtisi with Plasmodium malariae and with other Plasmodium species

    KAUST Repository

    Ansari, Hifzur Rahman; Templeton, Thomas J.; Subudhi, Amit; Ramaprasad, Abhinay; Tang, Jianxia; Lu, Feng; Naeem, Raeece; Hashish, Yasmeen; Oguike, Mary C.; Benavente, Ernest Diez; Clark, Taane G.; Sutherland, Colin J.; Barnwell, John W.; Culleton, Richard; Cao, Jun; Pain, Arnab

    2016-01-01

    Malaria in humans is caused by six species of Plasmodium parasites, of which the nuclear genome sequences for the two Plasmodium ovale spp., P. ovale curtisi and P. ovale wallikeri, and Plasmodium malariae have not yet been analyzed. Here we present an analysis of the nuclear genome sequences of these three parasites, and describe gene family expansions therein. Plasmodium ovale curtisi and P. ovale wallikeri are genetically distinct but morphologically indistinguishable and have sympatric ranges through the tropics of Africa, Asia and Oceania. Both P. ovale spp. show expansion of the surfin variant gene family, and an amplification of the Plasmodium interspersed repeat (pir) superfamily which results in an approximately 30% increase in genome size. For comparison, we have also analyzed the draft nuclear genome of P. malariae, a malaria parasite causing mild malaria symptoms with a quartan life cycle, long-term chronic infections, and wide geographic distribution. Plasmodium malariae shows only a moderate level of expansion of pir genes, and unique expansions of a highly diverged transmembrane protein family with over 550 members and the gamete P25/27 gene family. The observed diversity in the P. ovale wallikeri and P. ovale curtisi surface antigens, combined with their phylogenetic separation, supports consideration that the two parasites be given species status.

  20. Genome-scale comparison of expanded gene families in Plasmodium ovale wallikeri and Plasmodium ovale curtisi with Plasmodium malariae and with other Plasmodium species

    KAUST Repository

    Ansari, Hifzur Rahman

    2016-07-05

    Malaria in humans is caused by six species of Plasmodium parasites, of which the nuclear genome sequences for the two Plasmodium ovale spp., P. ovale curtisi and P. ovale wallikeri, and Plasmodium malariae have not yet been analyzed. Here we present an analysis of the nuclear genome sequences of these three parasites, and describe gene family expansions therein. Plasmodium ovale curtisi and P. ovale wallikeri are genetically distinct but morphologically indistinguishable and have sympatric ranges through the tropics of Africa, Asia and Oceania. Both P. ovale spp. show expansion of the surfin variant gene family, and an amplification of the Plasmodium interspersed repeat (pir) superfamily which results in an approximately 30% increase in genome size. For comparison, we have also analyzed the draft nuclear genome of P. malariae, a malaria parasite causing mild malaria symptoms with a quartan life cycle, long-term chronic infections, and wide geographic distribution. Plasmodium malariae shows only a moderate level of expansion of pir genes, and unique expansions of a highly diverged transmembrane protein family with over 550 members and the gamete P25/27 gene family. The observed diversity in the P. ovale wallikeri and P. ovale curtisi surface antigens, combined with their phylogenetic separation, supports consideration that the two parasites be given species status.

  1. African origin of the malaria parasite Plasmodium vivax.

    Science.gov (United States)

    Liu, Weimin; Li, Yingying; Shaw, Katharina S; Learn, Gerald H; Plenderleith, Lindsey J; Malenke, Jordan A; Sundararaman, Sesh A; Ramirez, Miguel A; Crystal, Patricia A; Smith, Andrew G; Bibollet-Ruche, Frederic; Ayouba, Ahidjo; Locatelli, Sabrina; Esteban, Amandine; Mouacha, Fatima; Guichet, Emilande; Butel, Christelle; Ahuka-Mundeke, Steve; Inogwabini, Bila-Isia; Ndjango, Jean-Bosco N; Speede, Sheri; Sanz, Crickette M; Morgan, David B; Gonder, Mary K; Kranzusch, Philip J; Walsh, Peter D; Georgiev, Alexander V; Muller, Martin N; Piel, Alex K; Stewart, Fiona A; Wilson, Michael L; Pusey, Anne E; Cui, Liwang; Wang, Zenglei; Färnert, Anna; Sutherland, Colin J; Nolder, Debbie; Hart, John A; Hart, Terese B; Bertolani, Paco; Gillis, Amethyst; LeBreton, Matthew; Tafon, Babila; Kiyang, John; Djoko, Cyrille F; Schneider, Bradley S; Wolfe, Nathan D; Mpoudi-Ngole, Eitel; Delaporte, Eric; Carter, Richard; Culleton, Richard L; Shaw, George M; Rayner, Julian C; Peeters, Martine; Hahn, Beatrice H; Sharp, Paul M

    2014-01-01

    Plasmodium vivax is the leading cause of human malaria in Asia and Latin America but is absent from most of central Africa due to the near fixation of a mutation that inhibits the expression of its receptor, the Duffy antigen, on human erythrocytes. The emergence of this protective allele is not understood because P. vivax is believed to have originated in Asia. Here we show, using a non-invasive approach, that wild chimpanzees and gorillas throughout central Africa are endemically infected with parasites that are closely related to human P. vivax. Sequence analyses reveal that ape parasites lack host specificity and are much more diverse than human parasites, which form a monophyletic lineage within the ape parasite radiation. These findings indicate that human P. vivax is of African origin and likely selected for the Duffy-negative mutation. All extant human P. vivax parasites are derived from a single ancestor that escaped out of Africa.

  2. African origin of the malaria parasite Plasmodium vivax

    Science.gov (United States)

    Liu, Weimin; Li, Yingying; Shaw, Katharina S.; Learn, Gerald H.; Plenderleith, Lindsey J.; Malenke, Jordan A.; Sundararaman, Sesh A.; Ramirez, Miguel A.; Crystal, Patricia A.; Smith, Andrew G.; Bibollet-Ruche, Frederic; Ayouba, Ahidjo; Locatelli, Sabrina; Esteban, Amandine; Mouacha, Fatima; Guichet, Emilande; Butel, Christelle; Ahuka-Mundeke, Steve; Inogwabini, Bila-Isia; Ndjango, Jean-Bosco N.; Speede, Sheri; Sanz, Crickette M.; Morgan, David B.; Gonder, Mary K.; Kranzusch, Philip J.; Walsh, Peter D.; Georgiev, Alexander V.; Muller, Martin N.; Piel, Alex K.; Stewart, Fiona A.; Wilson, Michael L.; Pusey, Anne E.; Cui, Liwang; Wang, Zenglei; Färnert, Anna; Sutherland, Colin J.; Nolder, Debbie; Hart, John A.; Hart, Terese B.; Bertolani, Paco; Gillis, Amethyst; LeBreton, Matthew; Tafon, Babila; Kiyang, John; Djoko, Cyrille F.; Schneider, Bradley S.; Wolfe, Nathan D.; Mpoudi-Ngole, Eitel; Delaporte, Eric; Carter, Richard; Culleton, Richard L.; Shaw, George M.; Rayner, Julian C.; Peeters, Martine; Hahn, Beatrice H.; Sharp, Paul M.

    2014-01-01

    Plasmodium vivax is the leading cause of human malaria in Asia and Latin America but is absent from most of central Africa due to the near fixation of a mutation that inhibits the expression of its receptor, the Duffy antigen, on human erythrocytes. The emergence of this protective allele is not understood because P. vivax is believed to have originated in Asia. Here we show, using a non-invasive approach, that wild chimpanzees and gorillas throughout central Africa are endemically infected with parasites that are closely related to human P. vivax. Sequence analyses reveal that ape parasites lack host specificity and are much more diverse than human parasites, which form a monophyletic lineage within the ape parasite radiation. These findings indicate that human P. vivax is of African origin and likely selected for the Duffy-negative mutation. All extant human P. vivax parasites are derived from a single ancestor that escaped out of Africa. PMID:24557500

  3. Cytometric quantification of singlet oxygen in the human malaria parasite Plasmodium falciparum

    NARCIS (Netherlands)

    Butzloff, Sabine; Groves, Matthew R; Wrenger, Carsten; Müller, Ingrid B

    The malaria parasite Plasmodium falciparum proliferates within human erythrocytes and is thereby exposed to a variety of reactive oxygen species (ROS) such as hydrogen peroxide, hydroxyl radical, superoxide anion, and highly reactive singlet oxygen ((1)O(2)). While most ROS are already well studied

  4. Genome-scale comparison of expanded gene families in Plasmodium ovale wallikeri and Plasmodium ovale curtisi with Plasmodium malariae and with other Plasmodium species.

    Science.gov (United States)

    Ansari, Hifzur Rahman; Templeton, Thomas J; Subudhi, Amit Kumar; Ramaprasad, Abhinay; Tang, Jianxia; Lu, Feng; Naeem, Raeece; Hashish, Yasmeen; Oguike, Mary C; Benavente, Ernest Diez; Clark, Taane G; Sutherland, Colin J; Barnwell, John W; Culleton, Richard; Cao, Jun; Pain, Arnab

    2016-10-01

    Malaria in humans is caused by six species of Plasmodium parasites, of which the nuclear genome sequences for the two Plasmodium ovale spp., P. ovale curtisi and P. ovale wallikeri, and Plasmodium malariae have not yet been analyzed. Here we present an analysis of the nuclear genome sequences of these three parasites, and describe gene family expansions therein. Plasmodium ovale curtisi and P. ovale wallikeri are genetically distinct but morphologically indistinguishable and have sympatric ranges through the tropics of Africa, Asia and Oceania. Both P. ovale spp. show expansion of the surfin variant gene family, and an amplification of the Plasmodium interspersed repeat (pir) superfamily which results in an approximately 30% increase in genome size. For comparison, we have also analyzed the draft nuclear genome of P. malariae, a malaria parasite causing mild malaria symptoms with a quartan life cycle, long-term chronic infections, and wide geographic distribution. Plasmodium malariae shows only a moderate level of expansion of pir genes, and unique expansions of a highly diverged transmembrane protein family with over 550 members and the gamete P25/27 gene family. The observed diversity in the P. ovale wallikeri and P. ovale curtisi surface antigens, combined with their phylogenetic separation, supports consideration that the two parasites be given species status. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Droplet Microfluidics Platform for Highly Sensitive and Quantitative Detection of Malaria-Causing Plasmodium Parasites Based on Enzyme Activity Measurement

    DEFF Research Database (Denmark)

    Juul, Sissel; Nielsen, Christine Juul Fælled; Labouriau, Rodrigo

    2012-01-01

    detectable at the single-molecule level. Combined with a droplet microfluidics lab-on-a-chip platform, this design allowed for sensitive, specific, and quantitative detection of all human-malaria-causing Plasmodium species in single drops of unprocessed blood with a detection limit of less than one parasite....../μL. Moreover, the setup allowed for detection of Plasmodium parasites in noninvasive saliva samples from infected patients. During recent years malaria transmission has declined worldwide, and with this the number of patients with low-parasite density has increased. Consequently, the need for accurate...

  6. Helminth parasites alter protection against Plasmodium infection.

    Science.gov (United States)

    Salazar-Castañon, Víctor H; Legorreta-Herrera, Martha; Rodriguez-Sosa, Miriam

    2014-01-01

    More than one-third of the world's population is infected with one or more helminthic parasites. Helminth infections are prevalent throughout tropical and subtropical regions where malaria pathogens are transmitted. Malaria is the most widespread and deadliest parasitic disease. The severity of the disease is strongly related to parasite density and the host's immune responses. Furthermore, coinfections between both parasites occur frequently. However, little is known regarding how concomitant infection with helminths and Plasmodium affects the host's immune response. Helminthic infections are frequently massive, chronic, and strong inductors of a Th2-type response. This implies that infection by such parasites could alter the host's susceptibility to subsequent infections by Plasmodium. There are a number of reports on the interactions between helminths and Plasmodium; in some, the burden of Plasmodium parasites increased, but others reported a reduction in the parasite. This review focuses on explaining many of these discrepancies regarding helminth-Plasmodium coinfections in terms of the effects that helminths have on the immune system. In particular, it focuses on helminth-induced immunosuppression and the effects of cytokines controlling polarization toward the Th1 or Th2 arms of the immune response.

  7. Optimized Pan-species and speciation duplex real-time PCR assays for Plasmodium parasites detection in malaria vectors.

    Directory of Open Access Journals (Sweden)

    Maurice Marcel Sandeu

    Full Text Available BACKGROUND: An accurate method for detecting malaria parasites in the mosquito's vector remains an essential component in the vector control. The Enzyme linked immunosorbent assay specific for circumsporozoite protein (ELISA-CSP is the gold standard method for the detection of malaria parasites in the vector even if it presents some limitations. Here, we optimized multiplex real-time PCR assays to accurately detect minor populations in mixed infection with multiple Plasmodium species in the African malaria vectors Anopheles gambiae and Anopheles funestus. METHODS: Complementary TaqMan-based real-time PCR assays that detect Plasmodium species using specific primers and probes were first evaluated on artificial mixtures of different targets inserted in plasmid constructs. The assays were further validated in comparison with the ELISA-CSP on 200 field caught Anopheles gambiae and Anopheles funestus mosquitoes collected in two localities in southern Benin. RESULTS: The validation of the duplex real-time PCR assays on the plasmid mixtures demonstrated robust specificity and sensitivity for detecting distinct targets. Using a panel of mosquito specimen, the real-time PCR showed a relatively high sensitivity (88.6% and specificity (98%, compared to ELISA-CSP as the referent standard. The agreement between both methods was "excellent" (κ=0.8, P<0.05. The relative quantification of Plasmodium DNA between the two Anopheles species analyzed showed no significant difference (P=0, 2. All infected mosquito samples contained Plasmodium falciparum DNA and mixed infections with P. malariae and/or P. ovale were observed in 18.6% and 13.6% of An. gambiae and An. funestus respectively. Plasmodium vivax was found in none of the mosquito samples analyzed. CONCLUSION: This study presents an optimized method for detecting the four Plasmodium species in the African malaria vectors. The study highlights substantial discordance with traditional ELISA-CSP pointing out the

  8. Within-host competition does not select for virulence in malaria parasites; studies with Plasmodium yoelii.

    Directory of Open Access Journals (Sweden)

    Hussein M Abkallo

    2015-02-01

    Full Text Available In endemic areas with high transmission intensities, malaria infections are very often composed of multiple genetically distinct strains of malaria parasites. It has been hypothesised that this leads to intra-host competition, in which parasite strains compete for resources such as space and nutrients. This competition may have repercussions for the host, the parasite, and the vector in terms of disease severity, vector fitness, and parasite transmission potential and fitness. It has also been argued that within-host competition could lead to selection for more virulent parasites. Here we use the rodent malaria parasite Plasmodium yoelii to assess the consequences of mixed strain infections on disease severity and parasite fitness. Three isogenic strains with dramatically different growth rates (and hence virulence were maintained in mice in single infections or in mixed strain infections with a genetically distinct strain. We compared the virulence (defined as harm to the mammalian host of mixed strain infections with that of single infections, and assessed whether competition impacted on parasite fitness, assessed by transmission potential. We found that mixed infections were associated with a higher degree of disease severity and a prolonged infection time. In the mixed infections, the strain with the slower growth rate was often responsible for the competitive exclusion of the faster growing strain, presumably through host immune-mediated mechanisms. Importantly, and in contrast to previous work conducted with Plasmodium chabaudi, we found no correlation between parasite virulence and transmission potential to mosquitoes, suggesting that within-host competition would not drive the evolution of parasite virulence in P. yoelii.

  9. Depletion of Plasmodium berghei plasmoredoxin reveals a non-essential role for life cycle progression of the malaria parasite.

    Science.gov (United States)

    Buchholz, Kathrin; Rahlfs, Stefan; Schirmer, R Heiner; Becker, Katja; Matuschewski, Kai

    2008-06-25

    Proliferation of the pathogenic Plasmodium asexual blood stages in host erythrocytes requires an exquisite capacity to protect the malaria parasite against oxidative stress. This function is achieved by a complex antioxidant defence system composed of redox-active proteins and low MW antioxidants. Here, we disrupted the P. berghei plasmoredoxin gene that encodes a parasite-specific 22 kDa member of the thioredoxin superfamily. The successful generation of plasmoredoxin knockout mutants in the rodent model malaria parasite and phenotypic analysis during life cycle progression revealed a non-vital role in vivo. Our findings suggest that plasmoredoxin fulfils a specialized and dispensable role for Plasmodium and highlights the need for target validation to inform drug development strategies.

  10. Population genomic structure and adaptation in the zoonotic malaria parasite Plasmodium knowlesi

    KAUST Repository

    Assefa, Samuel

    2015-10-06

    Malaria cases caused by the zoonotic parasite Plasmodium knowlesi are being increasingly reported throughout Southeast Asia and in travelers returning from the region. To test for evidence of signatures of selection or unusual population structure in this parasite, we surveyed genome sequence diversity in 48 clinical isolates recently sampled from Malaysian Borneo and in five lines maintained in laboratory rhesus macaques after isolation in the 1960s from Peninsular Malaysia and the Philippines. Overall genomewide nucleotide diversity (π = 6.03 × 10) was much higher than has been seen in worldwide samples of either of the major endemic malaria parasite species Plasmodium falciparum and Plasmodium vivax. A remarkable substructure is revealed within P. knowlesi, consisting of two major sympatric clusters of the clinical isolates and a third cluster comprising the laboratory isolates. There was deep differentiation between the two clusters of clinical isolates [mean genomewide fixation index (F) = 0.21, with 9,293 SNPs having fixed differences of F = 1.0]. This differentiation showed marked heterogeneity across the genome, with mean F values of different chromosomes ranging from 0.08 to 0.34 and with further significant variation across regions within several chromosomes. Analysis of the largest cluster (cluster 1, 38 isolates) indicated long-term population growth, with negatively skewed allele frequency distributions (genomewide average Tajima\\'s D = -1.35). Against this background there was evidence of balancing selection on particular genes, including the circumsporozoite protein (csp) gene, which had the top Tajima\\'s D value (1.57), and scans of haplotype homozygosity implicate several genomic regions as being under recent positive selection.

  11. Population genomic structure and adaptation in the zoonotic malaria parasite Plasmodium knowlesi

    KAUST Repository

    Assefa, Samuel; Lim, Caeul; Preston, Mark D.; Duffy, Craig W.; Nair, Mridul; Adroub, Sabir; Kadir, Khamisah A.; Goldberg, Jonathan M.; Neafsey, Daniel E.; Divis, Paul; Clark, Taane G.; Duraisingh, Manoj T.; Conway, David J.; Pain, Arnab; Singh, Balbir

    2015-01-01

    Malaria cases caused by the zoonotic parasite Plasmodium knowlesi are being increasingly reported throughout Southeast Asia and in travelers returning from the region. To test for evidence of signatures of selection or unusual population structure in this parasite, we surveyed genome sequence diversity in 48 clinical isolates recently sampled from Malaysian Borneo and in five lines maintained in laboratory rhesus macaques after isolation in the 1960s from Peninsular Malaysia and the Philippines. Overall genomewide nucleotide diversity (π = 6.03 × 10) was much higher than has been seen in worldwide samples of either of the major endemic malaria parasite species Plasmodium falciparum and Plasmodium vivax. A remarkable substructure is revealed within P. knowlesi, consisting of two major sympatric clusters of the clinical isolates and a third cluster comprising the laboratory isolates. There was deep differentiation between the two clusters of clinical isolates [mean genomewide fixation index (F) = 0.21, with 9,293 SNPs having fixed differences of F = 1.0]. This differentiation showed marked heterogeneity across the genome, with mean F values of different chromosomes ranging from 0.08 to 0.34 and with further significant variation across regions within several chromosomes. Analysis of the largest cluster (cluster 1, 38 isolates) indicated long-term population growth, with negatively skewed allele frequency distributions (genomewide average Tajima's D = -1.35). Against this background there was evidence of balancing selection on particular genes, including the circumsporozoite protein (csp) gene, which had the top Tajima's D value (1.57), and scans of haplotype homozygosity implicate several genomic regions as being under recent positive selection.

  12. Immune escape strategies of malaria parasites

    Directory of Open Access Journals (Sweden)

    Pollyanna Stephanie Gomes

    2016-10-01

    Full Text Available Malaria is one of the most life-threatening infectious diseases worldwide. Immunity to malaria is slow and short-lived despite the repeated parasite exposure in endemic areas. Malaria parasites have evolved refined machinery to evade the immune system based on a range of genetic changes that include allelic variation, biomolecular exposure of proteins and intracellular replication. All of these features increase the probability of survival in both mosquitoes and the vertebrate host. Plasmodium species escape from the first immunological trap in its invertebrate vector host, the Anopheles mosquitoes. The parasites have to pass through various immunological barriers within the mosquito such as anti-microbial molecules and the mosquito microbiota in order to achieve successful transmission to the vertebrate host. Within these hosts, Plasmodium species employ various immune evasion strategies during different life cycle stages. Parasite persistence against the vertebrate immune response depends on the balance among virulence factors, pathology, metabolic cost of the host immune response, and the parasites ability to evade the immune response. In this review we discuss the strategies that Plasmodium parasites use to avoid the vertebrate host immune system and how they promote successful infection and transmission.

  13. Natural infection of Plasmodium brasilianum in humans: Man and monkey share quartan malaria parasites in the Venezuelan Amazon

    Directory of Open Access Journals (Sweden)

    Albert Lalremruata

    2015-09-01

    Interpretation: This study reports, for the first time, naturally acquired infections in humans with parasites termed as P. brasilianum. We conclude that quartan malaria parasites are easily exchanged between humans and monkeys in Latin America. We hypothesize a lack of host specificity in mammalian hosts and consider quartan malaria to be a true anthropozoonosis. Since the name P. brasilianum suggests a malaria species distinct from P. malariae, we propose that P. brasilianum should have a nomenclatorial revision in case further research confirms our findings. The expansive reservoir of mammalian hosts discriminates quartan malaria from other Plasmodium spp. and requires particular research efforts.

  14. Do the mitochondria of malaria parasites behave like the phoenix after return in the mosquito? Regeneration of degenerated mitochondria is required for successful Plasmodium infection.

    Science.gov (United States)

    Bongaerts, Ger

    2005-01-01

    Mitochondria are energy generators in eukaryotic organisms like man and the pathogenic malaria parasites, the Plasmodium spp. From the moment a mosquito-mediated malaria infection occurs in man the parasite multiplies profusely, but eventually the oxygen supply becomes the limiting factor in this process. Consequently, the parasite will increasingly generate energy (and lactic acid) from sugar fermentation. Simultaneously, the cristate structure of Plasmodium mitochondria degenerates and becomes acristate. The degenerated acristate mitochondria of mammalian Plasmodium parasites seem to be able to revitalise by transforming to cristate mitochondria inside the oxygen-rich mosquito, like the rebirth of the old phoenix. In this way the infectivity of the parasite is revitalised.

  15. Wild Anopheles funestus mosquito genotypes are permissive for infection with the rodent malaria parasite, Plasmodium berghei.

    Directory of Open Access Journals (Sweden)

    Jiannong Xu

    Full Text Available Malaria parasites undergo complex developmental transitions within the mosquito vector. A commonly used laboratory model for studies of mosquito-malaria interaction is the rodent parasite, P. berghei. Anopheles funestus is a major malaria vector in sub-Saharan Africa but has received less attention than the sympatric species, Anopheles gambiae. The imminent completion of the A. funestus genome sequence will provide currently lacking molecular tools to describe malaria parasite interactions in this mosquito, but previous reports suggested that A. funestus is not permissive for P. berghei development.An A. funestus population was generated in the laboratory by capturing female wild mosquitoes in Mali, allowing them to oviposit, and rearing the eggs to adults. These F1 progeny of wild mosquitoes were allowed to feed on mice infected with a fluorescent P. berghei strain. Fluorescence microscopy was used to track parasite development inside the mosquito, salivary gland sporozoites were tested for infectivity to mice, and parasite development in A. funestus was compared to A. gambiae.P. berghei oocysts were detectable on A. funestus midguts by 7 days post-infection. By 18-20 days post-infection, sporozoites had invaded the median and distal lateral lobes of the salivary glands, and hemocoel sporozoites were observed in the hemolymph. Mosquitoes were capable of infecting mice via bite, demonstrating that A. funestus supports the complete life cycle of P. berghei. In a random sample of wild mosquito genotypes, A. funestus prevalence of infection and the characteristics of parasite development were similar to that observed in A. gambiae-P. berghei infections.The data presented in this study establish an experimental laboratory model for Plasmodium infection of A. funestus, an important vector of human malaria. Studying A. funestus-Plasmodium interactions is now feasible in a laboratory setting. This information lays the groundwork for exploitation of the

  16. Factors contributing to the development of anaemia in Plasmodium falciparum malaria: what about drug-resistant parasites?

    DEFF Research Database (Denmark)

    Quashie, Neils Ben; Akanmori, Bartholomew D; Ofori-Adjei, David

    2006-01-01

    implicated in its pathogenesis. Since resolution of malaria restores erythropoiesis, we hypothesized that drug-resistant strains of Plasmodium falciparum would increase the risk of severe anaemia developing from initially uncomplicated malaria. Using both in vivo and in vitro drug-sensitivity tests we...... compared the prevalence of drug-resistant malaria between severe malarial anaemia SA and non-anaemic malaria NAM patients. Assessment of treatment outcome using the WHO in vivo criteria showed no significant difference in parasite resistance between the two groups. The mean parasite clearance time was also......-treatment blood levels of chloroquine did not differ much between the two groups. Findings from this study could not therefore implicate drug-resistant parasites in the pathogenesis of severe malarial anaemia....

  17. Population genomics diversity of Plasmodium falciparum in malaria ...

    African Journals Online (AJOL)

    Background: Plasmodium falciparum, the most dangerous malaria parasite species to ... tigen for subunit malaria vaccine.10 It comprises highly ... were also prepared for Giemsa staining as described by ... parasites with different alleles at a given locus and ranges ..... surface protein 1, immune evasion and vaccines against.

  18. A Feast of Malaria Parasite Genomes.

    Science.gov (United States)

    Carlton, Jane M; Sullivan, Steven A

    2017-03-08

    The Plasmodium genus has evolved over time and across hosts, complexifying our understanding of malaria. In a recent Nature paper, Rutledge et al. (2017) describe the genome sequences of three major human malaria parasite species, providing insight into Plasmodium evolution and raising the question of how many species there are. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Plasmodium vivax Malaria in Cambodia

    Science.gov (United States)

    Siv, Sovannaroth; Roca-Feltrer, Arantxa; Vinjamuri, Seshu Babu; Bouth, Denis Mey; Lek, Dysoley; Rashid, Mohammad Abdur; By, Ngau Peng; Popovici, Jean; Huy, Rekol; Menard, Didier

    2016-01-01

    The Cambodian National Strategic Plan for Elimination of Malaria aims to move step by step toward elimination of malaria across Cambodia with an initial focus on Plasmodium falciparum malaria before achieving elimination of all forms of malaria, including Plasmodium vivax in 2025. The emergence of artemisinin-resistant P. falciparum in western Cambodia over the last decade has drawn global attention to support the ultimate goal of P. falciparum elimination, whereas the control of P. vivax lags much behind, making the 2025 target gradually less achievable unless greater attention is given to P. vivax elimination in the country. The following review presents in detail the past and current situation regarding P. vivax malaria, activities of the National Malaria Control Program, and interventional measures applied. Constraints and obstacles that can jeopardize our efforts to eliminate this parasite species are discussed. PMID:27708187

  20. Protein export marks the early phase of gametocytogenesis of the human malaria parasite Plasmodium falciparum.

    NARCIS (Netherlands)

    Silvestrini, F.; Lasonder, E.; Olivieri, A.; Camarda, G.; Schaijk, B.C.L. van; Sanchez, M.; Younis Younis, S.; Sauerwein, R.W.; Alano, P.

    2010-01-01

    Despite over a century of study of malaria parasites, parts of the Plasmodium falciparum life cycle remain virtually unknown. One of these is the early gametocyte stage, a round shaped cell morphologically similar to an asexual trophozoite in which major cellular transformations ensure subsequent

  1. Plasmodium species differentiation by non-expert on-line volunteers for remote malaria field diagnosis.

    Science.gov (United States)

    Ortiz-Ruiz, Alejandra; Postigo, María; Gil-Casanova, Sara; Cuadrado, Daniel; Bautista, José M; Rubio, José Miguel; Luengo-Oroz, Miguel; Linares, María

    2018-01-30

    Routine field diagnosis of malaria is a considerable challenge in rural and low resources endemic areas mainly due to lack of personnel, training and sample processing capacity. In addition, differential diagnosis of Plasmodium species has a high level of misdiagnosis. Real time remote microscopical diagnosis through on-line crowdsourcing platforms could be converted into an agile network to support diagnosis-based treatment and malaria control in low resources areas. This study explores whether accurate Plasmodium species identification-a critical step during the diagnosis protocol in order to choose the appropriate medication-is possible through the information provided by non-trained on-line volunteers. 88 volunteers have performed a series of questionnaires over 110 images to differentiate species (Plasmodium falciparum, Plasmodium ovale, Plasmodium vivax, Plasmodium malariae, Plasmodium knowlesi) and parasite staging from thin blood smear images digitalized with a smartphone camera adapted to the ocular of a conventional light microscope. Visual cues evaluated in the surveys include texture and colour, parasite shape and red blood size. On-line volunteers are able to discriminate Plasmodium species (P. falciparum, P. malariae, P. vivax, P. ovale, P. knowlesi) and stages in thin-blood smears according to visual cues observed on digitalized images of parasitized red blood cells. Friendly textual descriptions of the visual cues and specialized malaria terminology is key for volunteers learning and efficiency. On-line volunteers with short-training are able to differentiate malaria parasite species and parasite stages from digitalized thin smears based on simple visual cues (shape, size, texture and colour). While the accuracy of a single on-line expert is far from perfect, a single parasite classification obtained by combining the opinions of multiple on-line volunteers over the same smear, could improve accuracy and reliability of Plasmodium species

  2. A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): evolution of life-history traits and host switches.

    Science.gov (United States)

    Martinsen, Ellen S; Perkins, Susan L; Schall, Jos J

    2008-04-01

    Phylogenetic analysis of genomic data allows insights into the evolutionary history of pathogens, especially the events leading to host switching and diversification, as well as alterations of the life cycle (life-history traits). Hundreds, perhaps thousands, of malaria parasite species exploit squamate reptiles, birds, and mammals as vertebrate hosts as well as many genera of dipteran vectors, but the evolutionary and ecological events that led to this diversification and success remain unresolved. For a century, systematic parasitologists classified malaria parasites into genera based on morphology, life cycle, and vertebrate and insect host taxa. Molecular systematic studies based on single genes challenged the phylogenetic significance of these characters, but several significant nodes were not well supported. We recovered the first well resolved large phylogeny of Plasmodium and related haemosporidian parasites using sequence data for four genes from the parasites' three genomes by combining all data, correcting for variable rates of substitution by gene and site, and using both Bayesian and maximum parsimony analyses. Major clades are associated with vector shifts into different dipteran families, with other characters used in traditional parasitological studies, such as morphology and life-history traits, having variable phylogenetic significance. The common parasites of birds now placed into the genus Haemoproteus are found in two divergent clades, and the genus Plasmodium is paraphyletic with respect to Hepatocystis, a group of species with very different life history and morphology. The Plasmodium of mammal hosts form a well supported clade (including Plasmodium falciparum, the most important human malaria parasite), and this clade is associated with specialization to Anopheles mosquito vectors. The Plasmodium of birds and squamate reptiles all fall within a single clade, with evidence for repeated switching between birds and squamate hosts.

  3. Defining the protein interaction network of human malaria parasite Plasmodium falciparum

    KAUST Repository

    Ramaprasad, Abhinay

    2012-02-01

    Malaria, caused by the protozoan parasite Plasmodium falciparum, affects around 225. million people yearly and a huge international effort is directed towards combating this grave threat to world health and economic development. Considerable advances have been made in malaria research triggered by the sequencing of its genome in 2002, followed by several high-throughput studies defining the malaria transcriptome and proteome. A protein-protein interaction (PPI) network seeks to trace the dynamic interactions between proteins, thereby elucidating their local and global functional relationships. Experimentally derived PPI network from high-throughput methods such as yeast two hybrid (Y2H) screens are inherently noisy, but combining these independent datasets by computational methods tends to give a greater accuracy and coverage. This review aims to discuss the computational approaches used till date to construct a malaria protein interaction network and to catalog the functional predictions and biological inferences made from analysis of the PPI network. © 2011 Elsevier Inc.

  4. Malaria case clinical profiles and Plasmodium falciparum parasite genetic diversity: a cross sectional survey at two sites of different malaria transmission intensities in Rwanda.

    Science.gov (United States)

    Kateera, Fredrick; Nsobya, Sam L; Tukwasibwe, Stephen; Mens, Petra F; Hakizimana, Emmanuel; Grobusch, Martin P; Mutesa, Leon; Kumar, Nirbhay; van Vugt, Michele

    2016-04-26

    Malaria remains a public health challenge in sub-Saharan Africa with Plasmodium falciparum being the principal cause of malaria disease morbidity and mortality. Plasmodium falciparum virulence is attributed, in part, to its population-level genetic diversity-a characteristic that has yet to be studied in Rwanda. Characterizing P. falciparum molecular epidemiology in an area is needed for a better understand of malaria transmission and to inform choice of malaria control strategies. In this health-facility based survey, malaria case clinical profiles and parasite densities as well as parasite genetic diversity were compared among P. falciparum-infected patients identified at two sites of different malaria transmission intensities in Rwanda. Data on demographics and clinical features and finger-prick blood samples for microscopy and parasite genotyping were collected(.) Nested PCR was used to genotype msp-2 alleles of FC27 and 3D7. Patients' variables of age group, sex, fever (both by patient report and by measured tympanic temperatures), parasite density, and bed net use were found differentially distributed between the higher endemic (Ruhuha) and lower endemic (Mubuga) sites. Overall multiplicity of P. falciparum infection (MOI) was 1.73 but with mean MOI found to vary significantly between 2.13 at Ruhuha and 1.29 at Mubuga (p < 0.0001). At Ruhuha, expected heterozygosity (EH) for FC27 and 3D7 alleles were 0.62 and 0.49, respectively, whilst at Mubuga, EH for FC27 and 3D7 were 0.26 and 0.28, respectively. In this study, a higher geometrical mean parasite counts, more polyclonal infections, higher MOI, and higher allelic frequency were observed at the higher malaria-endemic (Ruhuha) compared to the lower malaria-endemic (Mubuga) area. These differences in malaria risk and MOI should be considered when choosing setting-specific malaria control strategies, assessing p. falciparum associated parameters such as drug resistance, immunity and impact of used

  5. Transformation of the rodent malaria parasite Plasmodium chabaudi and generation of a stable fluorescent line PcGFPCON

    Directory of Open Access Journals (Sweden)

    Reece Sarah E

    2008-09-01

    Full Text Available Abstract Background The rodent malaria parasite Plasmodium chabaudi has proven of great value in the analysis of fundamental aspects of host-parasite-vector interactions implicated in disease pathology and parasite evolutionary ecology. However, the lack of gene modification technologies for this model has precluded more direct functional studies. Methods The development of in vitro culture methods to yield P. chabaudi schizonts for transfection and conditions for genetic modification of this rodent malaria model are reported. Results Independent P. chabaudi gene-integrant lines that constitutively express high levels of green fluorescent protein throughout their life cycle have been generated. Conclusion Genetic modification of P. chabaudi is now possible. The production of genetically distinct reference lines offers substantial advances to our understanding of malaria parasite biology, especially interactions with the immune system during chronic infection.

  6. Molecular Detection of Plasmodium malariae/Plasmodium brasilianum in Non-Human Primates in Captivity in Costa Rica.

    Science.gov (United States)

    Fuentes-Ramírez, Alicia; Jiménez-Soto, Mauricio; Castro, Ruth; Romero-Zuñiga, Juan José; Dolz, Gaby

    2017-01-01

    One hundred and fifty-two blood samples of non-human primates of thirteen rescue centers in Costa Rica were analyzed to determine the presence of species of Plasmodium using thick blood smears, semi-nested multiplex polymerase chain reaction (SnM-PCR) for species differentiation, cloning and sequencing for confirmation. Using thick blood smears, two samples were determined to contain the Plasmodium malariae parasite, with SnM-PCR, a total of five (3.3%) samples were positive to P. malariae, cloning and sequencing confirmed both smear samples as P. malariae. One sample amplified a larger and conserved region of 18S rDNA for the genus Plasmodium and sequencing confirmed the results obtained microscopically and through SnM-PCR tests. Sequencing and construction of a phylogenetic tree of this sample revealed that the P. malariae/P. brasilianum parasite (GenBank KU999995) found in a howler monkey (Alouatta palliata) is identical to that recently reported in humans in Costa Rica. The SnM-PCR detected P. malariae/P. brasilianum parasite in different non-human primate species in captivity and in various regions of the southern Atlantic and Pacific coast of Costa Rica. The similarity of the sequences of parasites found in humans and a monkey suggests that monkeys may be acting as reservoirs of P.malariae/P. brasilianum, for which reason it is important, to include them in control and eradication programs.

  7. Mosquito Vectors and the Globalization of Plasmodium falciparum Malaria.

    Science.gov (United States)

    Molina-Cruz, Alvaro; Zilversmit, Martine M; Neafsey, Daniel E; Hartl, Daniel L; Barillas-Mury, Carolina

    2016-11-23

    Plasmodium falciparum malaria remains a devastating public health problem. Recent discoveries have shed light on the origin and evolution of Plasmodium parasites and their interactions with their vertebrate and mosquito hosts. P. falciparum malaria originated in Africa from a single horizontal transfer between an infected gorilla and a human, and became global as the result of human migration. Today, P. falciparum malaria is transmitted worldwide by more than 70 different anopheline mosquito species. Recent studies indicate that the mosquito immune system can be a barrier to malaria transmission and that the P. falciparum Pfs47 gene allows the parasite to evade mosquito immune detection. Here, we review the origin and globalization of P. falciparum and integrate this history with analysis of the biology, evolution, and dispersal of the main mosquito vectors. This new perspective broadens our understanding of P. falciparum population structure and the dispersal of important parasite genetic traits.

  8. Polyamine uptake by the intraerythrocytic malaria parasite, Plasmodium falciparum.

    Science.gov (United States)

    Niemand, J; Louw, A I; Birkholtz, L; Kirk, K

    2012-09-01

    Polyamines and the enzymes involved in their biosynthesis are present at high levels in rapidly proliferating cells, including cancer cells and protozoan parasites. Inhibition of polyamine biosynthesis in asexual blood-stage malaria parasites causes cytostatic arrest of parasite development under in vitro conditions, but does not cure infections in vivo. This may be due to replenishment of the parasite's intracellular polyamine pool via salvage of exogenous polyamines from the host. However, the mechanism(s) of polyamine uptake by the intraerythrocytic parasite are not well understood. In this study, the uptake of the polyamines, putrescine and spermidine, into Plasmodium falciparum parasites functionally isolated from their host erythrocyte was investigated using radioisotope flux techniques. Both putrescine and spermidine were taken up into isolated parasites via a temperature-dependent process that showed cross-competition between different polyamines. There was also some inhibition of polyamine uptake by basic amino acids. Inhibition of polyamine biosynthesis led to an increase in the total amount of putrescine and spermidine taken up from the extracellular medium. The uptake of putrescine and spermidine by isolated parasites was independent of extracellular Na(+) but increased with increasing external pH. Uptake also showed a marked dependence on the parasite's membrane potential, decreasing with membrane depolarization and increasing with membrane hyperpolarization. The data are consistent with polyamines being taken up into the parasite via an electrogenic uptake process, energised by the parasite's inwardly negative membrane potential. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  9. Do the mitochondria of malaria parasites behave like the phoenix after return in the mosquito? Regeneration of degenerated mitochondria is required for successful Plasmodium infection.

    NARCIS (Netherlands)

    Bongaerts, G.P.A.

    2005-01-01

    Mitochondria are energy generators in eukaryotic organisms like man and the pathogenic malaria parasites, the Plasmodium spp. From the moment a mosquito-mediated malaria infection occurs in man the parasite multiplies profusely, but eventually the oxygen supply becomes the limiting factor in this

  10. Genetic variability and population structure of Plasmodium falciparum parasite populations from different malaria ecological regions of Kenya.

    Science.gov (United States)

    Ingasia, Luicer A; Cheruiyot, Jelagat; Okoth, Sheila Akinyi; Andagalu, Ben; Kamau, Edwin

    2016-04-01

    Transmission intensity, movement of human and vector hosts, biogeographical features, and malaria control measures are some of the important factors that determine Plasmodium falciparum parasite genetic variability and population structure. Kenya has different malaria ecologies which might require different disease intervention methods. Refined parasite population genetic studies are critical for informing malaria control and elimination strategies. This study describes the genetic diversity and population structure of P. falciparum parasites from the different malaria ecological zones in Kenya. Twelve multi-locus microsatellite (MS) loci previously described were genotyped in 225 P. falciparum isolates collected between 2012 and 2013 from five sites; three in lowland endemic regions (Kisumu, Kombewa, and Malindi) and two in highland, epidemic regions (Kisii and Kericho). Parasites from the lowland endemic and highland epidemic regions of western Kenya had high genetic diversity compared to coastal lowland endemic region of Kenya [Malindi]. The Kenyan parasites had a mean genetic differentiation index (FST) of 0.072 (p=0.011). The multi-locus genetic analysis of the 12 MS revealed all the parasites had unique haplotypes. Significant linkage disequilibrium (LD) was observed in all the five parasite populations. Kisumu had the most significant index of association values (0.16; pKenya after introduction of the artemether-lumefantrine is important in refining the spread of drug resistant strains and malaria transmission for more effective control and eventual elimination of malaria in Kenya. Copyright © 2015. Published by Elsevier B.V.

  11. Population genomics diversity of Plasmodium falciparum in malaria ...

    African Journals Online (AJOL)

    Background: Plasmodium falciparum, the most dangerous malaria parasite species to humans remains an important public health concern in Okelele, a rural community in Ilorin, Kwara State, Nigeria. There is however little information about the genetic diversity of Plasmodium falciparum in Nigeria. Objective: To determine ...

  12. An Unusual Prohibitin Regulates Malaria Parasite Mitochondrial Membrane Potential

    Directory of Open Access Journals (Sweden)

    Joachim Michael Matz

    2018-04-01

    Full Text Available Summary: Proteins of the stomatin/prohibitin/flotillin/HfIK/C (SPFH family are membrane-anchored and perform diverse cellular functions in different organelles. Here, we investigate the SPFH proteins of the murine malaria model parasite Plasmodium berghei, the conserved prohibitin 1, prohibitin 2, and stomatin-like protein and an unusual prohibitin-like protein (PHBL. The SPFH proteins localize to the parasite mitochondrion. While the conserved family members could not be deleted from the Plasmodium genome, PHBL was successfully ablated, resulting in impaired parasite fitness and attenuated virulence in the mammalian host. Strikingly, PHBL-deficient parasites fail to colonize the Anopheles vector because of complete arrest during ookinete development in vivo. We show that this arrest correlates with depolarization of the mitochondrial membrane potential (ΔΨmt. Our results underline the importance of SPFH proteins in the regulation of core mitochondrial functions and suggest that fine-tuning of ΔΨmt in malarial parasites is critical for colonization of the definitive host. : Matz et al. present an experimental genetics study of an unusual prohibitin-like protein in the malaria parasite and find that it regulates mitochondrial membrane polarity. Ablation of this protein causes almost complete mitochondrial depolarization in the mosquito vector, which, in turn, leads to a block in malaria parasite transmission. Keywords: Plasmodium berghei, malaria, SPFH, prohibitin, stomatin-like protein, mitochondrion, membrane potential, ookinete, transmission

  13. Prevalence of Malaria Plasmodium in Abeokuta, Nigeria

    Directory of Open Access Journals (Sweden)

    Okonko, I. O.

    2009-01-01

    Full Text Available This study reports the prevalence of malaria caused by plasmodium between genders in Abeokuta, the capital city of Ogun State located in the forest zone of southwestern Nigeria between January 2002 and December 2004. Blood film examination for malaria parasites in 708 patients; 366 males and 342 females. Microscopic examination of thick films techniques was employed for this study. Of the 708 (100% patients examined, 577 (81.5% were Plasmodium-positive. A high malaria parasite prevalence rate of 81.5% was noted in this study. Female subjects were more infected (42.4% than males (41.9% however, there was no significant difference in the sex of the subjects studied (p=0.05. A high malaria parasite prevalence rate of 86.9% was noted in samples collected in year 2003 than in other years studied. There was significant difference in the years under study (p=0.05. This study shows that a good percentage of people were infested by malaria Plasmodium. This could be attributed to lack of adequate accommodation and poor sanitary conditions in the area under study. Although several efforts have been made to effectively control the high incidence of malaria in Nigeria, these have been largely unsuccessful due to a number of reasons such as irrigated urban agriculture which can be the malaria vector’s breeding ground in the city, stagnant gutters and swamps in our environment where mosquitoes breed in millions, and lack of political will and commitment of the government in its disease management program, low awareness of the magnitude of malaria problem, poor health practices by individuals and communities and resistance to drugs. Therefore, future interventions in Nigeria should be directed toward controlling malaria in the context of a moderate transmission setting; thus, large-scale distribution of insecticide-treated nets or widespread use of indoor residual spraying may be less cost-effective than enhanced surveillance with effective case management or

  14. Molecular cloning of a K+ channel from the malaria parasite Plasmodium falciparum

    DEFF Research Database (Denmark)

    Ellekvist, Peter; Ricke, Christina Høier; Litman, Thomas

    2004-01-01

    In most living cells, K(+) channels are important for the generation of the membrane potential and for volume regulation. The parasite Plasmodium falciparum, which causes malignant malaria, must be able to deal with large variations in the ambient K(+) concentration: it is exposed to high...... concentrations of K(+) when inside the erythrocyte and low concentrations when in plasma. In the recently published genome of P. falciparum, we have identified a gene, pfkch1, encoding a potential K(+) channel, which to some extent resembles the big-conductance (BK) K(+) channel. We have cloned the approximately...

  15. Proteomic identification of host and parasite biomarkers in saliva from patients with uncomplicated Plasmodium falciparum malaria

    Directory of Open Access Journals (Sweden)

    Huang Honglei

    2012-05-01

    Full Text Available Abstract Background Malaria cases attributed to Plasmodium falciparum account for approximately 600,000 deaths yearly, mainly in African children. The gold standard method to diagnose malaria requires the visualization of the parasite in blood. The role of non-invasive diagnostic methods to diagnose malaria remains unclear. Methods A protocol was optimized to deplete highly abundant proteins from saliva to improve the dynamic range of the proteins identified and assess their suitability as candidate biomarkers of malaria infection. A starch-based amylase depletion strategy was used in combination with four different lectins to deplete glycoproteins (Concanavalin A and Aleuria aurantia for N-linked glycoproteins; jacalin and peanut agglutinin for O-linked glycoproteins. A proteomic analysis of depleted saliva samples was performed in 17 children with fever and a positive–malaria slide and compared with that of 17 malaria-negative children with fever. Results The proteomic signature of malaria-positive patients revealed a strong up-regulation of erythrocyte-derived and inflammatory proteins. Three P. falciparum proteins, PFL0480w, PF08_0054 and PFI0875w, were identified in malaria patients and not in controls. Aleuria aurantia and jacalin showed the best results for parasite protein identification. Conclusions This study shows that saliva is a suitable clinical specimen for biomarker discovery. Parasite proteins and several potential biomarkers were identified in patients with malaria but not in patients with other causes of fever. The diagnostic performance of these markers should be addressed prospectively.

  16. Big bang in the evolution of extant malaria parasites.

    Science.gov (United States)

    Hayakawa, Toshiyuki; Culleton, Richard; Otani, Hiroto; Horii, Toshihiro; Tanabe, Kazuyuki

    2008-10-01

    Malaria parasites (genus Plasmodium) infect all classes of terrestrial vertebrates and display host specificity in their infections. It is therefore assumed that malaria parasites coevolved intimately with their hosts. Here, we propose a novel scenario of malaria parasite-host coevolution. A phylogenetic tree constructed using the malaria parasite mitochondrial genome reveals that the extant primate, rodent, bird, and reptile parasite lineages rapidly diverged from a common ancestor during an evolutionary short time period. This rapid diversification occurred long after the establishment of the primate, rodent, bird, and reptile host lineages, which implies that host-switch events contributed to the rapid diversification of extant malaria parasite lineages. Interestingly, the rapid diversification coincides with the radiation of the mammalian genera, suggesting that adaptive radiation to new mammalian hosts triggered the rapid diversification of extant malaria parasite lineages.

  17. The malaria parasite Plasmodium relictum in the endemic avifauna of eastern Cuba.

    Science.gov (United States)

    Soares, Letícia; Marra, Peter; Gray, Lindsey; Ricklefs, Robert E

    2017-12-01

    Island populations are vulnerable to introduced pathogens, as evidenced by extinction or population decline of several endemic Hawaiian birds caused by the malaria parasite, Plasmodium relictum (order Haemosporida). We analyzed blood samples from 363 birds caught near Guantánamo Bay, Cuba, for the presence of haemosporidian infections. We characterized parasite lineages by determining nucleotide variation of the parasite's mitochondrial cyt b gene. Fifty-nine individuals were infected, and we identified 7 lineages of haemosporidian parasites. Fifty individuals were infected by 6 Haemoproteus sp. lineages, including a newly characterized lineage of Haem. (Parahaemoproteus) sp. CUH01. Nine individuals carried the P. relictum lineage GRW4, including 5 endemic Cuban Grassquits (Tiaris canorus) and 1 migratory Cape May Warbler (Setophaga tigrina). A sequence of the merozoite surface protein gene from one Cuban Grassquit infected with GRW4 matched that of the Hawaiian haplotype Pr9. Our results indicate that resident and migratory Cuban birds are infected with a malaria lineage that has severely affected populations of several endemic Hawaiian birds. We suggest GRW4 may be associated with the lack of several bird species on Cuba that are ubiquitous elsewhere in the West Indies. From the standpoint of avian conservation in the Caribbean Basin, it will be important to determine the distribution of haemosporidian parasites, especially P. relictum GRW4, in Cuba as well as the pathogenicity of this lineage in species that occur and are absent from Cuba. © 2017 Society for Conservation Biology.

  18. Host-parasite interactions and ecology of the malaria parasite-a bioinformatics approach.

    Science.gov (United States)

    Izak, Dariusz; Klim, Joanna; Kaczanowski, Szymon

    2018-04-25

    Malaria remains one of the highest mortality infectious diseases. Malaria is caused by parasites from the genus Plasmodium. Most deaths are caused by infections involving Plasmodium falciparum, which has a complex life cycle. Malaria parasites are extremely well adapted for interactions with their host and their host's immune system and are able to suppress the human immune system, erase immunological memory and rapidly alter exposed antigens. Owing to this rapid evolution, parasites develop drug resistance and express novel forms of antigenic proteins that are not recognized by the host immune system. There is an emerging need for novel interventions, including novel drugs and vaccines. Designing novel therapies requires knowledge about host-parasite interactions, which is still limited. However, significant progress has recently been achieved in this field through the application of bioinformatics analysis of parasite genome sequences. In this review, we describe the main achievements in 'malarial' bioinformatics and provide examples of successful applications of protein sequence analysis. These examples include the prediction of protein functions based on homology and the prediction of protein surface localization via domain and motif analysis. Additionally, we describe PlasmoDB, a database that stores accumulated experimental data. This tool allows data mining of the stored information and will play an important role in the development of malaria science. Finally, we illustrate the application of bioinformatics in the development of population genetics research on malaria parasites, an approach referred to as reverse ecology.

  19. Protease-associated cellular networks in malaria parasite Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Lilburn Timothy G

    2011-12-01

    Full Text Available Abstract Background Malaria continues to be one of the most severe global infectious diseases, responsible for 1-2 million deaths yearly. The rapid evolution and spread of drug resistance in parasites has led to an urgent need for the development of novel antimalarial targets. Proteases are a group of enzymes that play essential roles in parasite growth and invasion. The possibility of designing specific inhibitors for proteases makes them promising drug targets. Previously, combining a comparative genomics approach and a machine learning approach, we identified the complement of proteases (degradome in the malaria parasite Plasmodium falciparum and its sibling species 123, providing a catalog of targets for functional characterization and rational inhibitor design. Network analysis represents another route to revealing the role of proteins in the biology of parasites and we use this approach here to expand our understanding of the systems involving the proteases of P. falciparum. Results We investigated the roles of proteases in the parasite life cycle by constructing a network using protein-protein association data from the STRING database 4, and analyzing these data, in conjunction with the data from protein-protein interaction assays using the yeast 2-hybrid (Y2H system 5, blood stage microarray experiments 678, proteomics 9101112, literature text mining, and sequence homology analysis. Seventy-seven (77 out of 124 predicted proteases were associated with at least one other protein, constituting 2,431 protein-protein interactions (PPIs. These proteases appear to play diverse roles in metabolism, cell cycle regulation, invasion and infection. Their degrees of connectivity (i.e., connections to other proteins, range from one to 143. The largest protease-associated sub-network is the ubiquitin-proteasome system which is crucial for protein recycling and stress response. Proteases are also implicated in heat shock response, signal peptide

  20. A novel PCR-based system for the detection of four species of human malaria parasites and Plasmodium knowlesi

    Science.gov (United States)

    Komaki-Yasuda, Kanako; Vincent, Jeanne Perpétue; Nakatsu, Masami; Kato, Yasuyuki; Ohmagari, Norio

    2018-01-01

    A microscopy-based diagnosis is the gold standard for the detection and identification of malaria parasites in a patient’s blood. However, the detection of cases involving a low number of parasites and the differentiation of species sometimes requires a skilled microscopist. Although PCR-based diagnostic methods are already known to be very powerful tools, the time required to apply such methods is still much longer in comparison to traditional microscopic observation. Thus, improvements to PCR systems are sought to facilitate the more rapid and accurate detection of human malaria parasites Plasmodium falciparum, P. vivax, P. ovale, and P. malariae, as well as P. knowlesi, which is a simian malaria parasite that is currently widely distributed in Southeast Asia. A nested PCR that targets the small subunit ribosomal RNA genes of malaria parasites was performed using a “fast PCR enzyme”. In the first PCR, universal primers for all parasite species were used. In the second PCR, inner-specific primers, which targeted sequences from P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi, were used. The PCR reaction time was reduced with the use of the “fast PCR enzyme”, with only 65 minutes required to perform the first and second PCRs. The specific primers only reacted with the sequences of their targeted parasite species and never cross-reacted with sequences from other species under the defined PCR conditions. The diagnoses of 36 clinical samples that were obtained using this new PCR system were highly consistent with the microscopic diagnoses. PMID:29370297

  1. A novel PCR-based system for the detection of four species of human malaria parasites and Plasmodium knowlesi.

    Directory of Open Access Journals (Sweden)

    Kanako Komaki-Yasuda

    Full Text Available A microscopy-based diagnosis is the gold standard for the detection and identification of malaria parasites in a patient's blood. However, the detection of cases involving a low number of parasites and the differentiation of species sometimes requires a skilled microscopist. Although PCR-based diagnostic methods are already known to be very powerful tools, the time required to apply such methods is still much longer in comparison to traditional microscopic observation. Thus, improvements to PCR systems are sought to facilitate the more rapid and accurate detection of human malaria parasites Plasmodium falciparum, P. vivax, P. ovale, and P. malariae, as well as P. knowlesi, which is a simian malaria parasite that is currently widely distributed in Southeast Asia. A nested PCR that targets the small subunit ribosomal RNA genes of malaria parasites was performed using a "fast PCR enzyme". In the first PCR, universal primers for all parasite species were used. In the second PCR, inner-specific primers, which targeted sequences from P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi, were used. The PCR reaction time was reduced with the use of the "fast PCR enzyme", with only 65 minutes required to perform the first and second PCRs. The specific primers only reacted with the sequences of their targeted parasite species and never cross-reacted with sequences from other species under the defined PCR conditions. The diagnoses of 36 clinical samples that were obtained using this new PCR system were highly consistent with the microscopic diagnoses.

  2. Targeting NAD+ metabolism in the human malaria parasite Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Jessica K O'Hara

    Full Text Available Nicotinamide adenine dinucleotide (NAD+ is an essential metabolite utilized as a redox cofactor and enzyme substrate in numerous cellular processes. Elevated NAD+ levels have been observed in red blood cells infected with the malaria parasite Plasmodium falciparum, but little is known regarding how the parasite generates NAD+. Here, we employed a mass spectrometry-based metabolomic approach to confirm that P. falciparum lacks the ability to synthesize NAD+ de novo and is reliant on the uptake of exogenous niacin. We characterized several enzymes in the NAD+ pathway and demonstrate cytoplasmic localization for all except the parasite nicotinamidase, which concentrates in the nucleus. One of these enzymes, the P. falciparum nicotinate mononucleotide adenylyltransferase (PfNMNAT, is essential for NAD+ metabolism and is highly diverged from the human homolog, but genetically similar to bacterial NMNATs. Our results demonstrate the enzymatic activity of PfNMNAT in vitro and demonstrate its ability to genetically complement the closely related Escherichia coli NMNAT. Due to the similarity of PfNMNAT to the bacterial enzyme, we tested a panel of previously identified bacterial NMNAT inhibitors and synthesized and screened twenty new derivatives, which demonstrate a range of potency against live parasite culture. These results highlight the importance of the parasite NAD+ metabolic pathway and provide both novel therapeutic targets and promising lead antimalarial compounds.

  3. Translational repression of the cpw-wpc gene family in the malaria parasite Plasmodium

    KAUST Repository

    Rao, Pavitra N.

    2016-06-14

    The technical challenges of working with the sexual stages of the malaria parasite Plasmodium have hindered the characterization of sexual stage antigens in the quest for a successful malaria transmission-blocking vaccine. One such predicted and largely uncharacterized group of sexual stage candidate antigens is the CPW-WPC family of proteins. CPW-WPC proteins are named for a characteristic domain that contains two conserved motifs, CPxxW and WPC. Conserved across Apicomplexa, this family is also present earlier in the Alveolata in the free-living, non-parasitophorous, photosynthetic chromerids, Chromera and Vitrella. In P. falciparum and P. berghei blood stage parasites the transcripts of all nine cpw-wpc genes have been detected in gametocytes. RNA immunoprecipitation followed by reverse transcriptase-PCR reveals all P. berghei cpw-wpc transcripts to be bound by the translational repressors DOZI and CITH, and thus are likely under translational control prior to transmission from the rodent host to the mosquito vector in P. berghei. The GFP tagging of two endogenous P. berghei genes confirmed translational silencing in the gametocyte and translation in ookinetes. Establishing a luciferase transgene assay we show that the 3′ untranslated region of PF3D7_1331400 controls protein expression of this reporter in P. falciparum gametocytes. Our analyses suggest that cpw-wpc genes are translationally silenced in gametocytes across Plasmodium spp. and activated during ookinete formation and thus may have a role in transmission to the mosquito.

  4. Translational repression of the cpw-wpc gene family in the malaria parasite Plasmodium

    KAUST Repository

    Rao, Pavitra N.; Santos, Jorge M.; Pain, Arnab; Templeton, Thomas J.; Mair, Gunnar R.

    2016-01-01

    The technical challenges of working with the sexual stages of the malaria parasite Plasmodium have hindered the characterization of sexual stage antigens in the quest for a successful malaria transmission-blocking vaccine. One such predicted and largely uncharacterized group of sexual stage candidate antigens is the CPW-WPC family of proteins. CPW-WPC proteins are named for a characteristic domain that contains two conserved motifs, CPxxW and WPC. Conserved across Apicomplexa, this family is also present earlier in the Alveolata in the free-living, non-parasitophorous, photosynthetic chromerids, Chromera and Vitrella. In P. falciparum and P. berghei blood stage parasites the transcripts of all nine cpw-wpc genes have been detected in gametocytes. RNA immunoprecipitation followed by reverse transcriptase-PCR reveals all P. berghei cpw-wpc transcripts to be bound by the translational repressors DOZI and CITH, and thus are likely under translational control prior to transmission from the rodent host to the mosquito vector in P. berghei. The GFP tagging of two endogenous P. berghei genes confirmed translational silencing in the gametocyte and translation in ookinetes. Establishing a luciferase transgene assay we show that the 3′ untranslated region of PF3D7_1331400 controls protein expression of this reporter in P. falciparum gametocytes. Our analyses suggest that cpw-wpc genes are translationally silenced in gametocytes across Plasmodium spp. and activated during ookinete formation and thus may have a role in transmission to the mosquito.

  5. Depletion of Plasmodium berghei Plasmoredoxin Reveals a Non-Essential Role for Life Cycle Progression of the Malaria Parasite

    OpenAIRE

    Buchholz, Kathrin; Rahlfs, Stefan; Schirmer, R. Heiner; Becker, Katja; Matuschewski, Kai

    2008-01-01

    Proliferation of the pathogenic Plasmodium asexual blood stages in host erythrocytes requires an exquisite capacity to protect the malaria parasite against oxidative stress. This function is achieved by a complex antioxidant defence system composed of redox-active proteins and low MW antioxidants. Here, we disrupted the P. berghei plasmoredoxin gene that encodes a parasite-specific 22 kDa member of the thioredoxin superfamily. The successful generation of plasmoredoxin knockout mutants in the...

  6. Non-Genetic Determinants of Mosquito Competence for Malaria Parasites

    Science.gov (United States)

    Lefèvre, Thierry; Vantaux, Amélie; Dabiré, Kounbobr R.; Mouline, Karine; Cohuet, Anna

    2013-01-01

    Understanding how mosquito vectors and malaria parasites interact is of fundamental interest, and it also offers novel perspectives for disease control. Both the genetic and environmental contexts are known to affect the ability of mosquitoes to support malaria development and transmission, i.e., vector competence. Although the role of environment has long been recognized, much work has focused on host and parasite genetic effects. However, the last few years have seen a surge of studies revealing a great diversity of ways in which non-genetic factors can interfere with mosquito-Plasmodium interactions. Here, we review the current evidence for such environmentally mediated effects, including ambient temperature, mosquito diet, microbial gut flora, and infection history, and we identify additional factors previously overlooked in mosquito-Plasmodium interactions. We also discuss epidemiological implications, and the evolutionary consequences for vector immunity and parasite transmission strategies. Finally, we propose directions for further research and argue that an improved knowledge of non-genetic influences on mosquito-Plasmodium interactions could aid in implementing conventional malaria control measures and contribute to the design of novel strategies. PMID:23818841

  7. Non-genetic determinants of mosquito competence for malaria parasites.

    Directory of Open Access Journals (Sweden)

    Thierry Lefèvre

    Full Text Available Understanding how mosquito vectors and malaria parasites interact is of fundamental interest, and it also offers novel perspectives for disease control. Both the genetic and environmental contexts are known to affect the ability of mosquitoes to support malaria development and transmission, i.e., vector competence. Although the role of environment has long been recognized, much work has focused on host and parasite genetic effects. However, the last few years have seen a surge of studies revealing a great diversity of ways in which non-genetic factors can interfere with mosquito-Plasmodium interactions. Here, we review the current evidence for such environmentally mediated effects, including ambient temperature, mosquito diet, microbial gut flora, and infection history, and we identify additional factors previously overlooked in mosquito-Plasmodium interactions. We also discuss epidemiological implications, and the evolutionary consequences for vector immunity and parasite transmission strategies. Finally, we propose directions for further research and argue that an improved knowledge of non-genetic influences on mosquito-Plasmodium interactions could aid in implementing conventional malaria control measures and contribute to the design of novel strategies.

  8. Global histone analysis by mass spectrometry reveals a high content of acetylated lysine residues in the malaria parasite Plasmodium falciparum

    DEFF Research Database (Denmark)

    Trelle, Morten Beck; Salcedo-Amaya, Adriana M; Cohen, Adrian

    2009-01-01

    Post-translational modifications (PTMs) of histone tails play a key role in epigenetic regulation of gene expression in a range of organisms from yeast to human, however, little is known about histone proteins from the parasite that causes malaria in humans, Plasmodium falciparum. We characterize...... comprehensive map of histone modifications in Plasmodium falciparum and highlight the utility of tandem MS for detailed analysis of peptides containing multiple PTMs....

  9. BIOLOGY OF HUMAN MALARIA PLASMODIA INCLUDING PLASMODIUM KNOWLESI

    Directory of Open Access Journals (Sweden)

    Spinello Antinori

    2012-03-01

    Full Text Available Malaria is a vector-borne infection caused by unicellular parasite of the genus Plasmodium. Plasmodia are obligate intracellular parasites that in humans after a clinically silent replication phase in the liver are able to infect and replicate within the erythrocytes. Four species (P.falciparum, P.malariae, P.ovale and P.vivax are traditionally recognized as responsible of natural infection in human beings but the recent upsurge of P.knowlesi malaria in South-East Asia has led clinicians to consider it as the fifth human malaria parasite. Recent studies in wild-living apes in Africa have revealed that P.falciparum, the most deadly form of human malaria, is not only human-host restricted as previously believed and its phylogenetic lineage is much more complex with new species identified in gorilla, bonobo and chimpanzee. Although less impressive, new data on biology of P.malariae, P.ovale and P.vivax are also emerging and will be briefly discussed in this review.

  10. Changes in lipid composition during sexual development of the malaria parasite Plasmodium falciparum.

    Science.gov (United States)

    Tran, Phuong N; Brown, Simon H J; Rug, Melanie; Ridgway, Melanie C; Mitchell, Todd W; Maier, Alexander G

    2016-02-06

    The development of differentiated sexual stages (gametocytes) within human red blood cells is essential for the propagation of the malaria parasite, since only mature gametocytes will survive in the mosquito's midgut. Hence gametocytogenesis is a pre-requisite for transmission of the disease. Physiological changes involved in sexual differentiation are still enigmatic. In particular the lipid metabolism-despite being central to cellular regulation and development-is not well explored. Here the lipid profiles of red blood cells infected with the five different sexual stages of Plasmodium falciparum were analysed by mass spectrometry and compared to those from uninfected and asexual trophozoite infected erythrocytes. Fundamental differences between erythrocytes infected with the different parasite stages were revealed. In mature gametocytes many lipids that decrease in the trophozoite and early gametocyte infected red blood cells are regained. In particular, regulators of membrane fluidity, cholesterol and sphingomyelin, increased significantly during gametocyte maturation. Neutral lipids (serving mainly as caloriometric reserves) increased from 3 % of total lipids in uninfected to 27 % in stage V gametocyte infected red blood cells. The major membrane lipid class (phospholipids) decreased during gametocyte development. The lipid profiles of infected erythrocytes are characteristic for the particular parasite life cycle and maturity stages of gametocytes. The obtained lipid profiles are crucial in revealing the lipid metabolism of malaria parasites and identifying targets to interfere with this deadly disease.

  11. Normocyte-binding protein required for human erythrocyte invasion by the zoonotic malaria parasitePlasmodium knowlesi

    KAUST Repository

    Moon, Robert W.; Sharaf, Hazem; Hastings, Claire H.; Ho, Yung Shwen; Nair, Mridul; Rchiad, ‍ Zineb; Knuepfer, Ellen; Ramaprasad, Abhinay; Mohring, Franziska; Amir, Amirah; Yusuf, Noor A.; Hall, Joanna; Almond, Neil; Lau, Yee Ling; Pain, Arnab; Blackman, Michael J.; Holder, Anthony A.

    2016-01-01

    The dominant cause of malaria in Malaysia is now Plasmodium knowlesi, a zoonotic parasite of cynomolgus macaque monkeys found throughout South East Asia. Comparative genomic analysis of parasites adapted to in vitro growth in either cynomolgus or human RBCs identified a genomic deletion that includes the gene encoding normocyte-binding protein Xa (NBPXa) in parasites growing in cynomolgus RBCs but not in human RBCs. Experimental deletion of the NBPXa gene in parasites adapted to growth in human RBCs (which retain the ability to grow in cynomolgus RBCs) restricted them to cynomolgus RBCs, demonstrating that this gene is selectively required for parasite multiplication and growth in human RBCs. NBPXa-null parasites could bind to human RBCs, but invasion of these cells was severely impaired. Therefore, NBPXa is identified as a key mediator of P. knowlesi human infection and may be a target for vaccine development against this emerging pathogen.

  12. Normocyte-binding protein required for human erythrocyte invasion by the zoonotic malaria parasitePlasmodium knowlesi

    KAUST Repository

    Moon, Robert W.

    2016-06-15

    The dominant cause of malaria in Malaysia is now Plasmodium knowlesi, a zoonotic parasite of cynomolgus macaque monkeys found throughout South East Asia. Comparative genomic analysis of parasites adapted to in vitro growth in either cynomolgus or human RBCs identified a genomic deletion that includes the gene encoding normocyte-binding protein Xa (NBPXa) in parasites growing in cynomolgus RBCs but not in human RBCs. Experimental deletion of the NBPXa gene in parasites adapted to growth in human RBCs (which retain the ability to grow in cynomolgus RBCs) restricted them to cynomolgus RBCs, demonstrating that this gene is selectively required for parasite multiplication and growth in human RBCs. NBPXa-null parasites could bind to human RBCs, but invasion of these cells was severely impaired. Therefore, NBPXa is identified as a key mediator of P. knowlesi human infection and may be a target for vaccine development against this emerging pathogen.

  13. Autophagy-related Atg8 localizes to the apicoplast of the human malaria parasite Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Kei Kitamura

    Full Text Available Autophagy is a membrane-mediated degradation process, which is governed by sequential functions of Atg proteins. Although Atg proteins are highly conserved in eukaryotes, protozoa possess only a partial set of Atg proteins. Nonetheless, almost all protozoa have the complete factors belonging to the Atg8 conjugation system, namely, Atg3, Atg4, Atg7, and Atg8. Here, we report the biochemical properties and subcellular localization of the Atg8 protein of the human malaria parasite Plasmodium falciparum (PfAtg8. PfAtg8 is expressed during intra-erythrocytic development and associates with membranes likely as a lipid-conjugated form. Fluorescence microscopy and immunoelectron microscopy show that PfAtg8 localizes to the apicoplast, a four membrane-bound non-photosynthetic plastid. Autophagosome-like structures are not observed in the erythrocytic stages. These data suggest that, although Plasmodium parasites have lost most Atg proteins during evolution, they use the Atg8 conjugation system for the unique organelle, the apicoplast.

  14. Examining the Reticulocyte Preference of Two Plasmodium berghei Strains during Blood-Stage Malaria Infection

    Directory of Open Access Journals (Sweden)

    Neha Thakre

    2018-02-01

    Full Text Available The blood-stage of the Plasmodium parasite is one of the key phases within its life cycle that influences disease progression during a malaria infection. The efficiency of the parasite in infecting red blood cells (RBC determines parasite load and parasite-induced hemolysis that is responsible for the development of anemia and potentially drives severe disease progression. However, the molecular factors defining the infectivity of Plasmodium parasites have not been completely identified so far. Using the Plasmodium berghei mouse model for malaria, we characterized and compared the blood-stage infection dynamics of PbANKA WT and a mutant parasite strain lacking a novel Plasmodium antigen, PbmaLS_05, that is well conserved in both human and animal Plasmodium parasite strains. Infection of mice with parasites lacking PbmaLS_05 leads to lower parasitemia levels and less severe disease progression in contrast to mice infected with the wildtype PbANKA strain. To specifically determine the effect of deleting PbmaLS_05 on parasite infectivity we developed a mathematical model describing erythropoiesis and malarial infection of RBC. By applying our model to experimental data studying infection dynamics under normal and drug-induced altered erythropoietic conditions, we found that both PbANKA and PbmaLS_05 (- parasite strains differed in their infectivity potential during the early intra-erythrocytic stage of infection. Parasites lacking PbmaLS_05 showed a decreased ability to infect RBC, and immature reticulocytes in particular that are usually a preferential target of the parasite. These altered infectivity characteristics limit parasite burden and affect disease progression. Our integrative analysis combining mathematical models and experimental data suggests that deletion of PbmaLS_05 affects productive infection of reticulocytes, which makes this antigen a useful target to analyze the actual processes relating RBC preferences to the development of

  15. History of the discovery of the malaria parasites and their vectors

    Directory of Open Access Journals (Sweden)

    Cox Francis EG

    2010-02-01

    Full Text Available Abstract Malaria is caused by infection with protozoan parasites belonging to the genus Plasmodium transmitted by female Anopheles species mosquitoes. Our understanding of the malaria parasites begins in 1880 with the discovery of the parasites in the blood of malaria patients by Alphonse Laveran. The sexual stages in the blood were discovered by William MacCallum in birds infected with a related haematozoan, Haemoproteus columbae, in 1897 and the whole of the transmission cycle in culicine mosquitoes and birds infected with Plasmodium relictum was elucidated by Ronald Ross in 1897. In 1898 the Italian malariologists, Giovanni Battista Grassi, Amico Bignami, Giuseppe Bastianelli, Angelo Celli, Camillo Golgi and Ettore Marchiafava demonstrated conclusively that human malaria was also transmitted by mosquitoes, in this case anophelines. The discovery that malaria parasites developed in the liver before entering the blood stream was made by Henry Shortt and Cyril Garnham in 1948 and the final stage in the life cycle, the presence of dormant stages in the liver, was conclusively demonstrated in 1982 by Wojciech Krotoski. This article traces the main events and stresses the importance of comparative studies in that, apart from the initial discovery of parasites in the blood, every subsequent discovery has been based on studies on non-human malaria parasites and related organisms.

  16. A small molecule inhibitor of signal peptide peptidase inhibits Plasmodium development in the liver and decreases malaria severity.

    Directory of Open Access Journals (Sweden)

    Iana Parvanova

    Full Text Available The liver stage of Plasmodium's life cycle is the first, obligatory step in malaria infection. Decreasing the hepatic burden of Plasmodium infection decreases the severity of disease and constitutes a promising strategy for malaria prophylaxis. The efficacy of the gamma-secretase and signal peptide peptidase inhibitor LY411,575 in targeting Plasmodium liver stages was evaluated both in human hepatoma cell lines and in mouse primary hepatocytes. LY411,575 was found to prevent Plasmodium's normal development in the liver, with an IC(50 of approximately 80 nM, without affecting hepatocyte invasion by the parasite. In vivo results with a rodent model of malaria showed that LY411,575 decreases the parasite load in the liver and increases by 55% the resistance of mice to cerebral malaria, one of the most severe malaria-associated syndromes. Our data show that LY411,575 does not exert its effect via the Notch signaling pathway suggesting that it may interfere with Plasmodium development through an inhibition of the parasite's signal peptide peptidase. We therefore propose that selective signal peptide peptidase inhibitors could be potentially used for preventive treatment of malaria in humans.

  17. Malaria rapid diagnostic tests: Plasmodium falciparum infections with high parasite densities may generate false positive Plasmodium vivax pLDH lines

    Directory of Open Access Journals (Sweden)

    van Esbroeck Marjan

    2010-07-01

    Full Text Available Abstract Background Most malaria rapid diagnostic tests (RDTs detect Plasmodium falciparum and an antigen common to the four species. Plasmodium vivax-specific RDTs target P. vivax-specific parasite lactate dehydrogenase (Pv-pLDH. Previous observations of false positive Pv-pLDH test lines in P. falciparum samples incited to the present study, which assessed P. vivax-specific RDTs for the occurrence of false positive Pv-pLDH lines in P. falciparum samples. Methods Nine P. vivax-specific RDTs were tested with 85 P. falciparum samples of high (≥2% parasite density. Mixed P. falciparum/P. vivax infections were ruled out by real-time PCR. The RDTs included two-band (detecting Pv-pLDH, three-band (detecting P. falciparum-antigen and Pv-pLDH and four-band RDTs (detecting P. falciparum, Pv-pLDH and pan-pLDH. Results False positive Pv-pLDH lines were observed in 6/9 RDTs (including two- three- and four-band RDTs. They occurred in the individual RDT brands at frequencies ranging from 8.2% to 29.1%. For 19/85 samples, at least two RDT brands generated a false positive Pv-pLDH line. Sixteen of 85 (18.8% false positive lines were of medium or strong line intensity. There was no significant relation between false positive results and parasite density or geographic origin of the samples. Conclusion False positive Pv-pLDH lines in P. falciparum samples with high parasite density occurred in 6/9 P. vivax-specific RDTs. This is of concern as P. falciparum and P. vivax are co-circulating in many regions. The diagnosis of life-threatening P. falciparum malaria may be missed (two-band Pv-pLDH RDT, or the patient may be treated incorrectly with primaquine (three- or four-band RDTs.

  18. Plasmodium falciparum malaria and antimalarial interventions in ...

    African Journals Online (AJOL)

    Plasmodium falciparum malaria is one of the most important parasitic diseases affecting sub-Saharan Africa, despite the availability of interventions. It exerts tremendous socio-economic and medical burden on the continent, particularly in under five children and pregnant women. In this review, we have attempted to ...

  19. Targeting Plasmodium PI(4)K to eliminate malaria

    Science.gov (United States)

    McNamara, Case W.; Lee, Marcus C. S.; Lim, Chek Shik; Lim, Siau Hoi; Roland, Jason; Nagle, Advait; Simon, Oliver; Yeung, Bryan K. S.; Chatterjee, Arnab K.; McCormack, Susan L.; Manary, Micah J.; Zeeman, Anne-Marie; Dechering, Koen J.; Kumar, T. R. Santha; Henrich, Philipp P.; Gagaring, Kerstin; Ibanez, Maureen; Kato, Nobutaka; Kuhen, Kelli L.; Fischli, Christoph; Rottmann, Matthias; Plouffe, David M.; Bursulaya, Badry; Meister, Stephan; Rameh, Lucia; Trappe, Joerg; Haasen, Dorothea; Timmerman, Martijn; Sauerwein, Robert W.; Suwanarusk, Rossarin; Russell, Bruce; Renia, Laurent; Nosten, Francois; Tully, David C.; Kocken, Clemens H. M.; Glynne, Richard J.; Bodenreider, Christophe; Fidock, David A.; Diagana, Thierry T.; Winzeler, Elizabeth A.

    2013-12-01

    Achieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here we identify a lipid kinase, phosphatidylinositol-4-OH kinase (PI(4)K), as the target of imidazopyrazines, a new antimalarial compound class that inhibits the intracellular development of multiple Plasmodium species at each stage of infection in the vertebrate host. Imidazopyrazines demonstrate potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models, are active against blood-stage field isolates of the major human pathogens P. falciparum and P. vivax, and inhibit liver-stage hypnozoites in the simian parasite P. cynomolgi. We show that imidazopyrazines exert their effect through inhibitory interaction with the ATP-binding pocket of PI(4)K, altering the intracellular distribution of phosphatidylinositol-4-phosphate. Collectively, our data define PI(4)K as a key Plasmodium vulnerability, opening up new avenues of target-based discovery to identify drugs with an ideal activity profile for the prevention, treatment and elimination of malaria.

  20. Species-specific escape of Plasmodium sporozoites from oocysts of avian, rodent, and human malarial parasites.

    Science.gov (United States)

    Orfano, Alessandra S; Nacif-Pimenta, Rafael; Duarte, Ana P M; Villegas, Luis M; Rodrigues, Nilton B; Pinto, Luciana C; Campos, Keillen M M; Pinilla, Yudi T; Chaves, Bárbara; Barbosa Guerra, Maria G V; Monteiro, Wuelton M; Smith, Ryan C; Molina-Cruz, Alvaro; Lacerda, Marcus V G; Secundino, Nágila F C; Jacobs-Lorena, Marcelo; Barillas-Mury, Carolina; Pimenta, Paulo F P

    2016-08-02

    Malaria is transmitted when an infected mosquito delivers Plasmodium sporozoites into a vertebrate host. There are many species of Plasmodium and, in general, the infection is host-specific. For example, Plasmodium gallinaceum is an avian parasite, while Plasmodium berghei infects mice. These two parasites have been extensively used as experimental models of malaria transmission. Plasmodium falciparum and Plasmodium vivax are the most important agents of human malaria, a life-threatening disease of global importance. To complete their life cycle, Plasmodium parasites must traverse the mosquito midgut and form an oocyst that will divide continuously. Mature oocysts release thousands of sporozoites into the mosquito haemolymph that must reach the salivary gland to infect a new vertebrate host. The current understanding of the biology of oocyst formation and sporozoite release is mostly based on experimental infections with P. berghei, and the conclusions are generalized to other Plasmodium species that infect humans without further morphological analyses. Here, it is described the microanatomy of sporozoite escape from oocysts of four Plasmodium species: the two laboratory models, P. gallinaceum and P. berghei, and the two main species that cause malaria in humans, P. vivax and P. falciparum. It was found that sporozoites have species-specific mechanisms of escape from the oocyst. The two model species of Plasmodium had a common mechanism, in which the oocyst wall breaks down before sporozoites emerge. In contrast, P. vivax and P. falciparum sporozoites show a dynamic escape mechanism from the oocyst via polarized propulsion. This study demonstrated that Plasmodium species do not share a common mechanism of sporozoite escape, as previously thought, but show complex and species-specific mechanisms. In addition, the knowledge of this phenomenon in human Plasmodium can facilitate transmission-blocking studies and not those ones only based on the murine and avian models.

  1. Virulence of a malaria parasite, Plasmodium mexicanum, for its sand fly vectors, Lutzomyia vexator and Lutzomyia stewarti (Diptera: Psychodidae).

    Science.gov (United States)

    Schall, Jos J

    2011-11-01

    Evolutionary theory predicts that virulence of parasites for mobile vector insects will be low for natural parasite-host associations that have coevolved. I determined virulence of the malaria parasite of lizards, Plasmodium mexicanum, for its vectors, two species of sand fly (Diptera: Psychodidae), Lutzomyia vexator (Coquillett 1907) and Lutzomyia stewarti (Mangabeira Fo & Galindo 1944), by measuring several life history traits. Developmental rate from egg to eclosion differed for the two species when noninfected. For both sand fly species, developmental rate for each stage (egg to larval hatching, larval period, pupal period) and life span were not altered by infection. Infected sand flies, however, produced fewer eggs. This reduction in fecundity may be a result of lower quality of the blood meal taken from infected lizards (lower concentration of hemoglobin). This report is the first measure of virulence of Plasmodium for an insect vector other than a mosquito and concords with both expectations of theory and previous studies on natural parasite-host associations that revealed low virulence.

  2. Leukocyte profiles for western fence lizards, Sceloporus occidentalis, naturally infected by the malaria parasite Plasmodium mexicanum.

    Science.gov (United States)

    Motz, Victoria L; Lewis, William D; Vardo-Zalik, Anne M

    2014-10-01

    Plasmodium mexicanum is a malaria parasite that naturally infects the western fence lizard, Sceloporus occidentalis , in northern California. We set out to determine whether lizards naturally infected with this malaria parasite have different leukocyte profiles, indicating an immune response to infection. We used 29 naturally infected western fence lizards paired with uninfected lizards based on sex, snout-to-vent length, tail status, and the presence-absence of ectoparasites such as ticks and mites, as well as the presence-absence of another hemoparasite, Schellackia occidentalis. Complete white blood cell (WBC) counts were conducted on blood smears stained with Giemsa, and the proportion of granulocytes per microliter of blood was estimated using the Avian Leukopet method. The abundance of each WBC class (lymphocytes, monocytes, heterophils, eosinophils, and basophils) in infected and uninfected lizards was compared to determine whether leukocyte densities varied with infection status. We found that the numbers of WBCs and lymphocytes per microliter of blood significantly differed (P lizard's immune response to increase the levels of circulating WBCs, but what effect this has on the biology of the parasite remains unclear.

  3. In-depth comparative analysis of malaria parasite genomes reveals protein-coding genes linked to human disease in Plasmodium falciparum genome.

    Science.gov (United States)

    Liu, Xuewu; Wang, Yuanyuan; Liang, Jiao; Wang, Luojun; Qin, Na; Zhao, Ya; Zhao, Gang

    2018-05-02

    Plasmodium falciparum is the most virulent malaria parasite capable of parasitizing human erythrocytes. The identification of genes related to this capability can enhance our understanding of the molecular mechanisms underlying human malaria and lead to the development of new therapeutic strategies for malaria control. With the availability of several malaria parasite genome sequences, performing computational analysis is now a practical strategy to identify genes contributing to this disease. Here, we developed and used a virtual genome method to assign 33,314 genes from three human malaria parasites, namely, P. falciparum, P. knowlesi and P. vivax, and three rodent malaria parasites, namely, P. berghei, P. chabaudi and P. yoelii, to 4605 clusters. Each cluster consisted of genes whose protein sequences were significantly similar and was considered as a virtual gene. Comparing the enriched values of all clusters in human malaria parasites with those in rodent malaria parasites revealed 115 P. falciparum genes putatively responsible for parasitizing human erythrocytes. These genes are mainly located in the chromosome internal regions and participate in many biological processes, including membrane protein trafficking and thiamine biosynthesis. Meanwhile, 289 P. berghei genes were included in the rodent parasite-enriched clusters. Most are located in subtelomeric regions and encode erythrocyte surface proteins. Comparing cluster values in P. falciparum with those in P. vivax and P. knowlesi revealed 493 candidate genes linked to virulence. Some of them encode proteins present on the erythrocyte surface and participate in cytoadhesion, virulence factor trafficking, or erythrocyte invasion, but many genes with unknown function were also identified. Cerebral malaria is characterized by accumulation of infected erythrocytes at trophozoite stage in brain microvascular. To discover cerebral malaria-related genes, fast Fourier transformation (FFT) was introduced to extract

  4. Long- and short-term selective forces on malaria parasite genomes

    DEFF Research Database (Denmark)

    Nygaard, Sanne; Braunstein, Alexander; Malsen, Gareth

    2010-01-01

    Plasmodium parasites, the causal agents of malaria, result in more than 1 million deaths annually. Plasmodium are unicellular eukaryotes with small ~23 Mb genomes encoding ~5200 protein-coding genes. The protein-coding genes comprise about half of these genomes. Although evolutionary processes ha...

  5. Merozoite surface protein-1 genetic diversity in Plasmodium malariae and Plasmodium brasilianum from Brazil.

    Science.gov (United States)

    Guimarães, Lilian O; Wunderlich, Gerhard; Alves, João M P; Bueno, Marina G; Röhe, Fabio; Catão-Dias, José L; Neves, Amanda; Malafronte, Rosely S; Curado, Izilda; Domingues, Wilson; Kirchgatter, Karin

    2015-11-16

    The merozoite surface protein 1 (MSP1) gene encodes the major surface antigen of invasive forms of the Plasmodium erythrocytic stages and is considered a candidate vaccine antigen against malaria. Due to its polymorphisms, MSP1 is also useful for strain discrimination and consists of a good genetic marker. Sequence diversity in MSP1 has been analyzed in field isolates of three human parasites: P. falciparum, P. vivax, and P. ovale. However, the extent of variation in another human parasite, P. malariae, remains unknown. This parasite shows widespread, uneven distribution in tropical and subtropical regions throughout South America, Asia, and Africa. Interestingly, it is genetically indistinguishable from P. brasilianum, a parasite known to infect New World monkeys in Central and South America. Specific fragments (1 to 5) covering 60 % of the MSP1 gene (mainly the putatively polymorphic regions), were amplified by PCR in isolates of P. malariae and P. brasilianum from different geographic origin and hosts. Sequencing of the PCR-amplified products or cloned PCR fragments was performed and the sequences were used to construct a phylogenetic tree by the maximum likelihood method. Data were computed to give insights into the evolutionary and phylogenetic relationships of these parasites. Except for fragment 4, sequences from all other fragments consisted of unpublished sequences. The most polymorphic gene region was fragment 2, and in samples where this region lacks polymorphism, all other regions are also identical. The low variability of the P. malariae msp1 sequences of these isolates and the identification of the same haplotype in those collected many years apart at different locations is compatible with a low transmission rate. We also found greater diversity among P. brasilianum isolates compared with P. malariae ones. Lastly, the sequences were segregated according to their geographic origins and hosts, showing a strong genetic and geographic structure. Our data

  6. The Malaria Parasite Cyclin H Homolog PfCyc1 Is Required for Efficient Cytokinesis in Blood-Stage Plasmodium falciparum.

    Science.gov (United States)

    Robbins, Jonathan A; Absalon, Sabrina; Streva, Vincent A; Dvorin, Jeffrey D

    2017-06-13

    All well-studied eukaryotic cell cycles are driven by cyclins, which activate cyclin-dependent kinases (CDKs), and these protein kinase complexes are viable drug targets. The regulatory control of the Plasmodium falciparum cell division cycle remains poorly understood, and the roles of the various CDKs and cyclins remain unclear. The P. falciparum genome contains multiple CDKs, but surprisingly, it does not contain any sequence-identifiable G 1 -, S-, or M-phase cyclins. We demonstrate that P. falciparum Cyc1 (PfCyc1) complements a G 1 cyclin-depleted Saccharomyces cerevisiae strain and confirm that other identified malaria parasite cyclins do not complement this strain. PfCyc1, which has the highest sequence similarity to the conserved cyclin H, cannot complement a temperature-sensitive yeast cyclin H mutant. Coimmunoprecipitation of PfCyc1 from P. falciparum parasites identifies PfMAT1 and PfMRK as specific interaction partners and does not identify PfPK5 or other CDKs. We then generate an endogenous conditional allele of PfCyc1 in blood-stage P. falciparum using a destabilization domain (DD) approach and find that PfCyc1 is essential for blood-stage proliferation. PfCyc1 knockdown does not impede nuclear division, but it prevents proper cytokinesis. Thus, we demonstrate that PfCyc1 has a functional divergence from bioinformatic predictions, suggesting that the malaria parasite cell division cycle has evolved to use evolutionarily conserved proteins in functionally novel ways. IMPORTANCE Human infection by the eukaryotic parasite Plasmodium falciparum causes malaria. Most well-studied eukaryotic cell cycles are driven by cyclins, which activate cyclin-dependent kinases (CDKs) to promote essential cell division processes. Remarkably, there are no identifiable cyclins that are predicted to control the cell cycle in the malaria parasite genome. Thus, our knowledge regarding the basic mechanisms of the malaria parasite cell cycle remains unsatisfactory. We

  7. Naturally acquired immunity to Plasmodium falciparum malaria in Africa

    DEFF Research Database (Denmark)

    Hviid, Lars

    2005-01-01

    Infection by Plasmodium falciparum parasites can lead to substantial protective immunity to malaria, and available evidence suggest that acquisition of protection against some severe malaria syndromes can be fairly rapid. Although these facts have raised hopes that the development of effective...... protective immunity to P. falciparum malaria is acquired following natural exposure to the parasites is beginning to emerge, not least thanks to studies that have combined clinical and epidemiological data with basic immunological research. This framework involves IgG with specificity for clonally variant...... antigens on the surface of the infected erythrocytes, can explain some of the difficulties in relating particular immune responses with specificity for well-defined antigenic targets to clinical protection, and suggests a radically new approach to controlling malaria-related morbidity and mortality...

  8. Recognition of Human Erythrocyte Receptors by the Tryptophan-Rich Antigens of Monkey Malaria Parasite Plasmodium knowlesi.

    Directory of Open Access Journals (Sweden)

    Kriti Tyagi

    Full Text Available The monkey malaria parasite Plasmodium knowlesi also infect humans. There is a lack of information on the molecular mechanisms that take place between this simian parasite and its heterologous human host erythrocytes leading to this zoonotic disease. Therefore, we investigated here the binding ability of P. knowlesi tryptophan-rich antigens (PkTRAgs to the human erythrocytes and sharing of the erythrocyte receptors between them as well as with other commonly occurring human malaria parasites.Six PkTRAgs were cloned and expressed in E.coli as well as in mammalian CHO-K1 cell to determine their human erythrocyte binding activity by cell-ELISA, and in-vitro rosetting assay, respectively.Three of six PkTRAgs (PkTRAg38.3, PkTRAg40.1, and PkTRAg67.1 showed binding to human erythrocytes. Two of them (PkTRAg40.1 and PkTRAg38.3 showed cross-competition with each other as well as with the previously described P.vivax tryptophan-rich antigens (PvTRAgs for human erythrocyte receptors. However, the third protein (PkTRAg67.1 utilized the additional but different human erythrocyte receptor(s as it did not cross-compete for erythrocyte binding with either of these two PkTRAgs as well as with any of the PvTRAgs. These three PkTRAgs also inhibited the P.falciparum parasite growth in in-vitro culture, further indicating the sharing of human erythrocyte receptors by these parasite species and the biological significance of this receptor-ligand interaction between heterologous host and simian parasite.Recognition and sharing of human erythrocyte receptor(s by PkTRAgs with human parasite ligands could be part of the strategy adopted by the monkey malaria parasite to establish inside the heterologous human host.

  9. Recognition of Human Erythrocyte Receptors by the Tryptophan-Rich Antigens of Monkey Malaria Parasite Plasmodium knowlesi.

    Science.gov (United States)

    Tyagi, Kriti; Gupta, Deepali; Saini, Ekta; Choudhary, Shilpa; Jamwal, Abhishek; Alam, Mohd Shoeb; Zeeshan, Mohammad; Tyagi, Rupesh K; Sharma, Yagya D

    2015-01-01

    The monkey malaria parasite Plasmodium knowlesi also infect humans. There is a lack of information on the molecular mechanisms that take place between this simian parasite and its heterologous human host erythrocytes leading to this zoonotic disease. Therefore, we investigated here the binding ability of P. knowlesi tryptophan-rich antigens (PkTRAgs) to the human erythrocytes and sharing of the erythrocyte receptors between them as well as with other commonly occurring human malaria parasites. Six PkTRAgs were cloned and expressed in E.coli as well as in mammalian CHO-K1 cell to determine their human erythrocyte binding activity by cell-ELISA, and in-vitro rosetting assay, respectively. Three of six PkTRAgs (PkTRAg38.3, PkTRAg40.1, and PkTRAg67.1) showed binding to human erythrocytes. Two of them (PkTRAg40.1 and PkTRAg38.3) showed cross-competition with each other as well as with the previously described P.vivax tryptophan-rich antigens (PvTRAgs) for human erythrocyte receptors. However, the third protein (PkTRAg67.1) utilized the additional but different human erythrocyte receptor(s) as it did not cross-compete for erythrocyte binding with either of these two PkTRAgs as well as with any of the PvTRAgs. These three PkTRAgs also inhibited the P.falciparum parasite growth in in-vitro culture, further indicating the sharing of human erythrocyte receptors by these parasite species and the biological significance of this receptor-ligand interaction between heterologous host and simian parasite. Recognition and sharing of human erythrocyte receptor(s) by PkTRAgs with human parasite ligands could be part of the strategy adopted by the monkey malaria parasite to establish inside the heterologous human host.

  10. Regulation of anti-Plasmodium immunity by a LITAF-like transcription factor in the malaria vector Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Ryan C Smith

    Full Text Available The mosquito is the obligate vector for malaria transmission. To complete its development within the mosquito, the malaria parasite Plasmodium must overcome the protective action of the mosquito innate immune system. Here we report on the involvement of the Anopheles gambiae orthologue of a conserved component of the vertebrate immune system, LPS-induced TNFα transcription factor (LITAF, and its role in mosquito anti-Plasmodium immunity. An. gambiae LITAF-like 3 (LL3 expression is up-regulated in response to midgut invasion by both rodent and human malaria parasites. Silencing of LL3 expression greatly increases parasite survival, indicating that LL3 is part of an anti-Plasmodium defense mechanism. Electrophoretic mobility shift assays identified specific LL3 DNA-binding motifs within the promoter of SRPN6, a gene that also mediates mosquito defense against Plasmodium. Further experiments indicated that these motifs play a direct role in LL3 regulation of SRPN6 expression. We conclude that LL3 is a transcription factor capable of modulating SRPN6 expression as part of the mosquito anti-Plasmodium immune response.

  11. Proteomic profiling of Plasmodium sporozoite maturation identifies new proteins essential for parasite development and infectivity

    DEFF Research Database (Denmark)

    Lasonder, Edwin; Janse, Chris J; van Gemert, Geert-Jan

    2008-01-01

    Plasmodium falciparum sporozoites that develop and mature inside an Anopheles mosquito initiate a malaria infection in humans. Here we report the first proteomic comparison of different parasite stages from the mosquito -- early and late oocysts containing midgut sporozoites, and the mature...... whose annotation suggest an involvement in sporozoite maturation, motility, infection of the human host and associated metabolic adjustments. Analyses of proteins identified in the P. falciparum sporozoite proteomes by orthologous gene disruption in the rodent malaria parasite, P. berghei, revealed...... three previously uncharacterized Plasmodium proteins that appear to be essential for sporozoite development at distinct points of maturation in the mosquito. This study sheds light on the development and maturation of the malaria parasite in an Anopheles mosquito and also identifies proteins that may...

  12. Expression, characterization, and cellular localization of knowpains, papain-like cysteine proteases of the Plasmodium knowlesi malaria parasite.

    Directory of Open Access Journals (Sweden)

    Rajesh Prasad

    Full Text Available Papain-like cysteine proteases of malaria parasites degrade haemoglobin in an acidic food vacuole to provide amino acids for intraerythrocytic parasites. These proteases are potential drug targets because their inhibitors block parasite development, and efforts are underway to develop chemotherapeutic inhibitors of these proteases as the treatments for malaria. Plasmodium knowlesi has recently been shown to be an important human pathogen in parts of Asia. We report expression and characterization of three P. knowlesi papain-like proteases, termed knowpains (KP2-4. Recombinant knowpains were produced using a bacterial expression system, and tested for various biochemical properties. Antibodies against recombinant knowpains were generated and used to determine their cellular localization in parasites. Inhibitory effects of the cysteine protease inhibitor E64 were assessed on P. knowlesi culture to validate drug target potential of knowpains. All three knowpains were present in the food vacuole, active in acidic pH, and capable of degrading haemoglobin at the food vacuolar pH (≈5.5, suggesting roles in haemoglobin degradation. The proteases showed absolute (KP2 and KP3 to moderate (KP4 preference for peptide substrates containing leucine at the P2 position; KP4 preferred arginine at the P2 position. While the three knowpains appear to have redundant roles in haemoglobin degradation, KP4 may also have a role in degradation of erythrocyte cytoskeleton during merozoite egress, as it displayed broad substrate specificity and was primarily localized at the parasite periphery. Importantly, E64 blocked erythrocytic development of P. knowlesi, with enlargement of food vacuoles, indicating inhibition of haemoglobin hydrolysis and supporting the potential for inhibition of knowpains as a strategy for the treatment of malaria. Functional expression and characterization of knowpains should enable simultaneous screening of available cysteine protease

  13. Adaptation of the genetically tractable malaria pathogen Plasmodium knowlesi to continuous culture in human erythrocytes

    KAUST Repository

    Moon, Robert

    2012-12-24

    Research into the aetiological agent of the most widespread form of severe malaria, Plasmodium falciparum, has benefitted enormously from the ability to culture and genetically manipulate blood-stage forms of the parasite in vitro. However, most malaria outside Africa is caused by a distinct Plasmodium species, Plasmodium vivax, and it has become increasingly apparent that zoonotic infection by the closely related simian parasite Plasmodium knowlesi is a frequent cause of life-threatening malaria in regions of southeast Asia. Neither of these important malarial species can be cultured in human cells in vitro, requiring access to primates with the associated ethical and practical constraints. We report the successful adaptation of P. knowlesi to continuous culture in human erythrocytes. Human-adapted P. knowlesi clones maintain their capacity to replicate in monkey erythrocytes and can be genetically modified with unprecedented efficiency, providing an important and unique model for studying conserved aspects of malarial biology as well as species-specific features of an emerging pathogen.

  14. Adaptation of the genetically tractable malaria pathogen Plasmodium knowlesi to continuous culture in human erythrocytes

    KAUST Repository

    Moon, Robert; Hall, Joanna M.; Rangkuti, Farania; Ho, YungShwen; Almond, Neil M.; Mitchell, Graham Howard; Pain, Arnab; Holder, Anthony A.; Blackman, Michael J.

    2012-01-01

    Research into the aetiological agent of the most widespread form of severe malaria, Plasmodium falciparum, has benefitted enormously from the ability to culture and genetically manipulate blood-stage forms of the parasite in vitro. However, most malaria outside Africa is caused by a distinct Plasmodium species, Plasmodium vivax, and it has become increasingly apparent that zoonotic infection by the closely related simian parasite Plasmodium knowlesi is a frequent cause of life-threatening malaria in regions of southeast Asia. Neither of these important malarial species can be cultured in human cells in vitro, requiring access to primates with the associated ethical and practical constraints. We report the successful adaptation of P. knowlesi to continuous culture in human erythrocytes. Human-adapted P. knowlesi clones maintain their capacity to replicate in monkey erythrocytes and can be genetically modified with unprecedented efficiency, providing an important and unique model for studying conserved aspects of malarial biology as well as species-specific features of an emerging pathogen.

  15. Absence of Plasmodium inui and Plasmodium cynomolgi, but detection of Plasmodium knowlesi and Plasmodium vivax infections in asymptomatic humans in the Betong division of Sarawak, Malaysian Borneo.

    Science.gov (United States)

    Siner, Angela; Liew, Sze-Tze; Kadir, Khamisah Abdul; Mohamad, Dayang Shuaisah Awang; Thomas, Felicia Kavita; Zulkarnaen, Mohammad; Singh, Balbir

    2017-10-17

    Plasmodium knowlesi, a simian malaria parasite, has become the main cause of malaria in Sarawak, Malaysian Borneo. Epidemiological data on malaria for Sarawak has been derived solely from hospitalized patients, and more accurate epidemiological data on malaria is necessary. Therefore, a longitudinal study of communities affected by knowlesi malaria was undertaken. A total of 3002 blood samples on filter paper were collected from 555 inhabitants of 8 longhouses with recently reported knowlesi malaria cases in the Betong Division of Sarawak, Malaysian Borneo. Each longhouse was visited bimonthly for a total of 10 times during a 21-month study period (Jan 2014-Oct 2015). DNA extracted from blood spots were examined by a nested PCR assay for Plasmodium and positive samples were then examined by nested PCR assays for Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale, Plasmodium knowlesi, Plasmodium cynomolgi and Plasmodium inui. Blood films of samples positive by PCR were also examined by microscopy. Genus-specific PCR assay detected Plasmodium DNA in 9 out of 3002 samples. Species-specific PCR identified 7 P. knowlesi and one P. vivax. Malaria parasites were observed in 5 thick blood films of the PCR positive samples. No parasites were observed in blood films from one knowlesi-, one vivax- and the genus-positive samples. Only one of 7 P. knowlesi-infected individual was febrile and had sought medical treatment at Betong Hospital the day after sampling. The 6 knowlesi-, one vivax- and one Plasmodium-infected individuals were afebrile and did not seek any medical treatment. Asymptomatic human P. knowlesi and P. vivax malaria infections, but not P. cynomolgi and P. inui infections, are occurring within communities affected with malaria.

  16. Antioxidant vitamin levels among preschool children with uncomplicated Plasmodium falciparum malaria in Sokoto, Nigeria

    Directory of Open Access Journals (Sweden)

    Aghedo FI

    2013-07-01

    Full Text Available Festus I Aghedo,1 Resqua A Shehu,2 Rabiu A Umar,2 Mohammed N Jiya,3 Osaro Erhabor4 1Department of Haematology, Usmanu Danfodiyo University Teaching Hospital, Sokoto, Nigeria; 2Department of Biochemistry, Usmanu Danfodiyo University, Sokoto, Nigeria; 3Department of Paediatrics, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria; 4Department of Haematology, Faculty of Medical Laboratory Science, Usmanu Danfodiyo University, Sokoto, Nigeria Objective: To assess antioxidant vitamin levels among preschool children with plasmodium malarial infection. Methods: We assessed antioxidant vitamin levels by using a standard procedure in 130 malaria-parasitized preschool children. Packed cell volume and parasite density were also evaluated. Forty healthy age- and gender-matched nonparasitized children were included as controls. Results: Plasmodium falciparum was the causative species in all subjects. The mean malaria parasitemia was 4529.45 ± 1237.5/µL. The mean antioxidant concentrations for vitamins A, C, and E among plasmodium-parasitized subjects were 33.15 ± 1.79 µg/dL, 0.51 ± 0.02 mg/dL, and 0.61 ± 0.02 mg/dL, respectively. The mean concentrations of vitamins A, C, and E among the non-malaria-parasitized controls were 69.72 ± 1.71 µg/dL, 1.25 ± 0.04 mg/dL, and 1.31 ± 0.04 mg/dL respectively. We observed that the mean antioxidant concentrations of vitamins A, C, and E were significantly lower among plasmodium-parasitized subjects compared with non-parasitized controls (P = 0.01. Malaria parasitemia correlated negatively with antioxidant concentrations and packed cell volume (r = -0.736 and -0.723, P = 0.001. We observed that the higher the level of parasitemia, the lower the antioxidant concentration. Conclusion: Our study has shown that the antioxidant levels in plasmodium-parasitized children in the North-West of Nigeria are low and that the more severe the malarial infection, the lower the antioxidant level and the

  17. A comprehensive evaluation of rodent malaria parasite genomes and gene expression

    KAUST Repository

    Otto, Thomas D

    2014-10-30

    Background: Rodent malaria parasites (RMP) are used extensively as models of human malaria. Draft RMP genomes have been published for Plasmodium yoelii, P. berghei ANKA (PbA) and P. chabaudi AS (PcAS). Although availability of these genomes made a significant impact on recent malaria research, these genomes were highly fragmented and were annotated with little manual curation. The fragmented nature of the genomes has hampered genome wide analysis of Plasmodium gene regulation and function. Results: We have greatly improved the genome assemblies of PbA and PcAS, newly sequenced the virulent parasite P. yoelii YM genome, sequenced additional RMP isolates/lines and have characterized genotypic diversity within RMP species. We have produced RNA-seq data and utilized it to improve gene-model prediction and to provide quantitative, genome-wide, data on gene expression. Comparison of the RMP genomes with the genome of the human malaria parasite P. falciparum and RNA-seq mapping permitted gene annotation at base-pair resolution. Full-length chromosomal annotation permitted a comprehensive classification of all subtelomeric multigene families including the `Plasmodium interspersed repeat genes\\' (pir). Phylogenetic classification of the pir family, combined with pir expression patterns, indicates functional diversification within this family. Conclusions: Complete RMP genomes, RNA-seq and genotypic diversity data are excellent and important resources for gene-function and post-genomic analyses and to better interrogate Plasmodium biology. Genotypic diversity between P. chabaudi isolates makes this species an excellent parasite to study genotype-phenotype relationships. The improved classification of multigene families will enhance studies on the role of (variant) exported proteins in virulence and immune evasion/modulation.

  18. Application of molecular methods for monitoring transmission stages of malaria parasites

    International Nuclear Information System (INIS)

    Babiker, Hamza A; Schneider, Petra

    2008-01-01

    Recent technical advances in malaria research have allowed specific detection of mRNA of genes that are expressed exclusively in sexual stages (gametocytes) of malaria parasites. The specificity and sensitivity of these techniques were validated on cultured laboratory clones of both human malaria parasites (Plasmodium falciparum) and rodent parasites (P. chabaudi). More recently, quantitative molecular techniques have been developed to quantify these sexual stages and used to monitor gametocyte dynamics and their transmission to mosquitoes. Molecular techniques showed that the infectious reservoir for malaria is larger than expected from previous microscopic studies; individual parasite genotypes within an infection can simultaneously produce infectious gametocytes; gametocyte production can be sustained for several months, and is modulated by environmental factors. The above techniques have empowered approaches for in-depth analysis of the biology of the transmission stages of the parasite and epidemiology of malaria transmission

  19. A Plasmodium falciparum Strain Expressing GFP throughout the Parasite's Life-Cycle

    OpenAIRE

    Talman, Arthur M.; Blagborough, Andrew M.; Sinden, Robert E.

    2010-01-01

    The human malaria parasite Plasmodium falciparum is responsible for the majority of malaria-related deaths. Tools allowing the study of the basic biology of P. falciparum throughout the life cycle are critical to the development of new strategies to target the parasite within both human and mosquito hosts. We here present 3D7HT-GFP, a strain of P. falciparum constitutively expressing the Green Fluorescent Protein (GFP) throughout the life cycle, which has retained its capacity to complete spo...

  20. Case report: spontaneous rupture of spleen in patient with Plasmodium ovale malaria.

    Science.gov (United States)

    Lemmerer, Raphael; Unger, Manuel; Voßen, Matthias; Forstner, Christina; Jalili, Ahmad; Starzengruber, Peter; Werzowa, Johannes; Ramharter, Michael; Winkler, Stefan; Thalhammer, Florian

    2016-01-01

    Malaria may lead to spontaneous splenic rupture as a rare but potentially lethal complication. Most frequently, this has been reported in patients infected with Plasmodium falciparum and Plasmodium vivax, while other parasitic agents are less likely to be the cause.We report a 29-year-old British Caucasian, who after returning from a business trip in Democratic Republic Congo was diagnosed with tertian malaria caused by Plasmodium ovale.During his in-patient stay, the patient suffered a splenic rupture requiring immediate surgical intervention and splenectomy. Following this surgical intervention, there was an uneventful recovery, and the patient was discharged in a good general condition.

  1. Plasmodium cynomolgi genome sequences provide insight into Plasmodium vivax and the monkey malaria clade.

    Science.gov (United States)

    Tachibana, Shin-Ichiro; Sullivan, Steven A; Kawai, Satoru; Nakamura, Shota; Kim, Hyunjae R; Goto, Naohisa; Arisue, Nobuko; Palacpac, Nirianne M Q; Honma, Hajime; Yagi, Masanori; Tougan, Takahiro; Katakai, Yuko; Kaneko, Osamu; Mita, Toshihiro; Kita, Kiyoshi; Yasutomi, Yasuhiro; Sutton, Patrick L; Shakhbatyan, Rimma; Horii, Toshihiro; Yasunaga, Teruo; Barnwell, John W; Escalante, Ananias A; Carlton, Jane M; Tanabe, Kazuyuki

    2012-09-01

    P. cynomolgi, a malaria-causing parasite of Asian Old World monkeys, is the sister taxon of P. vivax, the most prevalent malaria-causing species in humans outside of Africa. Because P. cynomolgi shares many phenotypic, biological and genetic characteristics with P. vivax, we generated draft genome sequences for three P. cynomolgi strains and performed genomic analysis comparing them with the P. vivax genome, as well as with the genome of a third previously sequenced simian parasite, Plasmodium knowlesi. Here, we show that genomes of the monkey malaria clade can be characterized by copy-number variants (CNVs) in multigene families involved in evasion of the human immune system and invasion of host erythrocytes. We identify genome-wide SNPs, microsatellites and CNVs in the P. cynomolgi genome, providing a map of genetic variation that can be used to map parasite traits and study parasite populations. The sequencing of the P. cynomolgi genome is a critical step in developing a model system for P. vivax research and in counteracting the neglect of P. vivax.

  2. Vitamin B6-Dependent Enzymes in the Human Malaria Parasite Plasmodium falciparum: A Druggable Target?

    Directory of Open Access Journals (Sweden)

    Thales Kronenberger

    2014-01-01

    Full Text Available Malaria is a deadly infectious disease which affects millions of people each year in tropical regions. There is no effective vaccine available and the treatment is based on drugs which are currently facing an emergence of drug resistance and in this sense the search for new drug targets is indispensable. It is well established that vitamin biosynthetic pathways, such as the vitamin B6 de novo synthesis present in Plasmodium, are excellent drug targets. The active form of vitamin B6, pyridoxal 5-phosphate, is, besides its antioxidative properties, a cofactor for a variety of essential enzymes present in the malaria parasite which includes the ornithine decarboxylase (ODC, synthesis of polyamines, the aspartate aminotransferase (AspAT, involved in the protein biosynthesis, and the serine hydroxymethyltransferase (SHMT, a key enzyme within the folate metabolism.

  3. Larval nutrition differentially affects adult fitness and Plasmodium development in the malaria vectors Anopheles gambiae and Anopheles stephensi

    NARCIS (Netherlands)

    Takken, W.; Smallegange, R.C.; Vigneau, A.J.; Johnston, V.; Brown, M.; Mordue-Luntz, A.J.; Billingsley, P.F.

    2013-01-01

    BACKGROUND: Mosquito fitness is determined largely by body size and nutritional reserves. Plasmodium infections in the mosquito and resultant transmission of malaria parasites might be compromised by the vector's nutritional status. We studied the effects of nutritional stress and malaria parasite

  4. Anopheles moucheti and Anopheles vinckei are candidate vectors of ape Plasmodium parasites, including Plasmodium praefalciparum in Gabon.

    Directory of Open Access Journals (Sweden)

    Christophe Paupy

    Full Text Available During the last four years, knowledge about the diversity of Plasmodium species in African great apes has considerably increased. Several new species were described in chimpanzees and gorillas, and some species that were previously considered as strictly of human interest were found to be infecting African apes. The description in gorillas of P. praefalciparum, the closest relative of P. falciparum which is the main malignant agent of human malaria, definitively changed the way we understand the evolution and origin of P. falciparum. This parasite is now considered to have appeared recently, following a cross-species transfer from gorillas to humans. However, the Plasmodium vector mosquito species that have served as bridge between these two host species remain unknown. In order to identify the vectors that ensure ape Plasmodium transmission and evaluate the risk of transfer of these parasites to humans, we carried out a field study in Gabon to capture Anopheles in areas where wild and semi-wild ape populations live. We collected 1070 Anopheles females belonging to 15 species, among which An. carnevalei, An. moucheti and An. marshallii were the most common species. Using mtDNA-based PCR tools, we discovered that An. moucheti, a major human malaria vector in Central Africa, could also ensure the natural transmission of P. praefalciparum among great apes. We also showed that, together with An. vinckei, An. moucheti was infected with P. vivax-like parasites. An. moucheti constitutes, therefore, a major candidate for the transfer of Plasmodium parasites from apes to humans.

  5. Proteins involved in invasion of human red blood cells by malaria parasites

    Directory of Open Access Journals (Sweden)

    Ewa Jaśkiewicz

    2010-11-01

    Full Text Available Malaria is a disease caused by parasites of Plasmodium species. It is responsible for around 1-2 million deaths annually, mainly children under the age of 5. It occurs mainly in tropical and subtropical areas.Malaria is caused by five Plasmodium species:[i] P. falciparum, P. malariae, P. vivax, P. knowlesi[/i] and [i]P. ovale[/i]. Mosquitoes spread the disease by biting humans. The malaria parasite has two stages of development: the human stage and the mosquito stage. The first stage occurs in the human body and is divided into two phases: the liver phase and the blood phase.The invasion of erythrocytes by [i]Plasmodium[/i] merozoites is a multistep process of specific protein interactions between the parasite and red blood cell. The first step is the reversible merozoite attachment to the erythrocyte followed by its apical reorientation, then formation of an irreversible “tight” junction and finally entry into the red cell in a parasitophorous vacuole.The blood phase is supported by a number of proteins produced by the parasite. The merozoite surface GPI-anchored proteins (MSP-1, 2, 4, 5, 8 and 10 assist in the process of recognition of susceptible erythrocytes, apical membrane antigen (AMA-1 may be directly responsible for apical reorientation of the merozoite and apical proteins which function in tight junction formation. These ligands are members of two families: Duffy binding-like (DBL and reticulocyte binding-like (RBL proteins. In [i]Plasmodium[/i] [i]falciparum[/i] the DBL family includes: EBA-175, EBA-140 (BAEBL, EBA-181 (JESEBL, EBA-165 (PEBL and EBL-1 ligands.To date, no effective antimalarial vaccine has been developed, but there are several studies for this purpose. Therefore, it is crucial to understand the molecular basis of host cells invasion by parasites. Major efforts are focused on developing a multiantigenic and multiepitope vaccine preventing all steps of [i]Plasmodium[/i] invasion.

  6. Differential induction of functional IgG using the Plasmodium falciparum placental malaria vaccine candidate VAR2CSA

    DEFF Research Database (Denmark)

    Pinto, Vera V; Ditlev, Sisse B; Jensen, Kamilla E

    2011-01-01

    In Plasmodium falciparum malaria endemic areas placental malaria (PM) is an important complication of malaria. The recurrence of malaria in primigravidae women irrespective of acquired protection during childhood is caused by the interaction between the parasite-expressed VAR2CSA antigen and chon...

  7. The Plasmodium PHIST and RESA-Like Protein Families of Human and Rodent Malaria Parasites

    Science.gov (United States)

    Moreira, Cristina K.; Naissant, Bernina; Coppi, Alida; Bennett, Brandy L.; Aime, Elena; Franke-Fayard, Blandine; Janse, Chris J.; Coppens, Isabelle; Sinnis, Photini; Templeton, Thomas J.

    2016-01-01

    The phist gene family has members identified across the Plasmodium genus, defined by the presence of a domain of roughly 150 amino acids having conserved aromatic residues and an all alpha-helical structure. The family is highly amplified in P. falciparum, with 65 predicted genes in the genome of the 3D7 isolate. In contrast, in the rodent malaria parasite P. berghei 3 genes are identified, one of which is an apparent pseudogene. Transcripts of the P. berghei phist genes are predominant in schizonts, whereas in P. falciparum transcript profiles span different asexual blood stages and gametocytes. We pursued targeted disruption of P. berghei phist genes in order to characterize a simplistic model for the expanded phist gene repertoire in P. falciparum. Unsuccessful attempts to disrupt P. berghei PBANKA_114540 suggest that this phist gene is essential, while knockout of phist PBANKA_122900 shows an apparent normal progression and non-essential function throughout the life cycle. Epitope-tagging of P. falciparum and P. berghei phist genes confirmed protein export to the erythrocyte cytoplasm and localization with a punctate pattern. Three P. berghei PEXEL/HT-positive exported proteins exhibit at least partial co-localization, in support of a common vesicular compartment in the cytoplasm of erythrocytes infected with rodent malaria parasites. PMID:27022937

  8. Lineage-specific positive selection at the merozoite surface protein 1 (msp1 locus of Plasmodium vivax and related simian malaria parasites

    Directory of Open Access Journals (Sweden)

    Kawai Satoru

    2010-02-01

    Full Text Available Abstract Background The 200 kDa merozoite surface protein 1 (MSP-1 of malaria parasites, a strong vaccine candidate, plays a key role during erythrocyte invasion and is a target of host protective immune response. Plasmodium vivax, the most widespread human malaria parasite, is closely related to parasites that infect Asian Old World monkeys, and has been considered to have become a parasite of man by host switch from a macaque malaria parasite. Several Asian monkey parasites have a range of natural hosts. The same parasite species shows different disease manifestations among host species. This suggests that host immune responses to P. vivax-related malaria parasites greatly differ among host species (albeit other factors. It is thus tempting to invoke that a major immune target parasite protein such as MSP-1 underwent unique evolution, depending on parasite species that exhibit difference in host range and host specificity. Results We performed comparative phylogenetic and population genetic analyses of the gene encoding MSP-1 (msp1 from P. vivax and nine P. vivax-related simian malaria parasites. The inferred phylogenetic tree of msp1 significantly differed from that of the mitochondrial genome, with a striking displacement of P. vivax from a position close to P. cynomolgi in the mitochondrial genome tree to an outlier of Asian monkey parasites. Importantly, positive selection was inferred for two ancestral branches, one leading to P. inui and P. hylobati and the other leading to P. vivax, P. fieldi and P. cynomolgi. This ancestral positive selection was estimated to have occurred three to six million years ago, coinciding with the period of radiation of Asian macaques. Comparisons of msp1 polymorphisms between P. vivax, P. inui and P. cynomolgi revealed that while some positively selected amino acid sites or regions are shared by these parasites, amino acid changes greatly differ, suggesting that diversifying selection is acting species

  9. Plasmodium cysteine repeat modular proteins 1-4: complex proteins with roles throughout the malaria parasite life cycle.

    Science.gov (United States)

    Thompson, Joanne; Fernandez-Reyes, Delmiro; Sharling, Lisa; Moore, Sally G; Eling, Wijnand M; Kyes, Sue A; Newbold, Christopher I; Kafatos, Fotis C; Janse, Chris J; Waters, Andrew P

    2007-06-01

    The Cysteine Repeat Modular Proteins (PCRMP1-4) of Plasmodium, are encoded by a small gene family that is conserved in malaria and other Apicomplexan parasites. They are very large, predicted surface proteins with multipass transmembrane domains containing motifs that are conserved within families of cysteine-rich, predicted surface proteins in a range of unicellular eukaryotes, and a unique combination of protein-binding motifs, including a >100 kDa cysteine-rich modular region, an epidermal growth factor-like domain and a Kringle domain. PCRMP1 and 2 are expressed in life cycle stages in both the mosquito and vertebrate. They colocalize with PfEMP1 (P. falciparum Erythrocyte Membrane Antigen-1) during its export from P. falciparum blood-stage parasites and are exposed on the surface of haemolymph- and salivary gland-sporozoites in the mosquito, consistent with a role in host tissue targeting and invasion. Gene disruption of pcrmp1 and 2 in the rodent malaria model, P. berghei, demonstrated that both are essential for transmission of the parasite from the mosquito to the mouse and has established their discrete and important roles in sporozoite targeting to the mosquito salivary gland. The unprecedented expression pattern and structural features of the PCRMPs thus suggest a variety of roles mediating host-parasite interactions throughout the parasite life cycle.

  10. Host-seeking behaviors of mosquitoes experimentally infected with sympatric field isolates of the human malaria parasite Plasmodium falciparum: no evidence for host manipulation

    Directory of Open Access Journals (Sweden)

    Amélie eVantaux

    2015-08-01

    Full Text Available Previous studies have shown that Plasmodium parasites can manipulate mosquito feeding behaviours such as motivation and avidity to feed on vertebrate hosts, in ways that increase the probability of parasite transmission. These studies, however, have been mainly carried out on non-natural and/or laboratory based model systems and hence may not reflect what occurs in the field. We now need to move closer to the natural setting, if we are to fully capture the ecological and evolutionary consequences of these parasite-induced behavioral changes. As part of this effort, we conducted a series of experiments to investigate the long and short-range behavioural responses to human stimuli in the mosquito Anopheles coluzzii during different stages of infection with sympatric field isolates of the human malaria parasite Plasmodium falciparum in Burkina Faso. First, we used a dual-port olfactometer designed to take advantage of the whole body odor to gauge mosquito long-range host-seeking behaviors. Second, we used a locomotor activity monitor system to assess mosquito short-range behaviors. Compared to control uninfected mosquitoes, P. falciparum infection had no significant effect neither on long-range nor on short-range behaviors both at the immature and mature stages. This study, using a natural mosquito-malaria parasite association, indicates that manipulation of vector behavior may not be a general phenomenon. We speculate that the observed contrasting phenotypes with model systems might result from coevolution of the human parasite and its natural vector. Future experiments, using other sympatric malaria mosquito populations or species are required to test this hypothesis. In conclusion, our results highlight the importance of following up discoveries in laboratory model systems with studies on natural parasite–mosquito interactions to accurately predict the epidemiological, ecological and evolutionary consequences of parasite manipulation of vector

  11. Proliferation induced by Plasmodium falciparum antigen and interleukin-2 production by lymphocytes isolated from malaria-immune individuals

    DEFF Research Database (Denmark)

    Theander, T G; Bygbjerg, I C; Jepsen, S

    1986-01-01

    Affinity-purified Plasmodium falciparum soluble antigens (SPAg) isolated from in vitro cultures of the parasite were shown to be relatively free of nonspecific polyclonal activators. To determine the presence of lymphocytes with specificity against SPAg in the peripheral blood of malaria-immune i......Affinity-purified Plasmodium falciparum soluble antigens (SPAg) isolated from in vitro cultures of the parasite were shown to be relatively free of nonspecific polyclonal activators. To determine the presence of lymphocytes with specificity against SPAg in the peripheral blood of malaria...

  12. A Plasmodium falciparum screening assay for anti-gametocyte drugs based on parasite lactate dehydrogenase detection

    NARCIS (Netherlands)

    D'Alessandro, S.; Silvestrini, F.; Dechering, K.; Corbett, Y.; Parapini, S.; Timmerman, M.; Galastri, L.; Basilico, N.; Sauerwein, R.; Alano, P.; Taramelli, D.

    2013-01-01

    OBJECTIVES: Plasmodium gametocytes, responsible for malaria parasite transmission from humans to mosquitoes, represent a crucial target for new antimalarial drugs to achieve malaria elimination/eradication. We developed a novel colorimetric screening method for anti-gametocyte compounds based on the

  13. Plasmodium vivax malaria among pregnant women in Eastern Sudan

    Directory of Open Access Journals (Sweden)

    Duria Abdulwhab Rayis

    2016-06-01

    Full Text Available Objective: To determine the epidemiology of malaria [especially Plasmodium vivax (P. vivax] among pregnant women in Eastern Sudan. Methods: A cross sectional study was conducted in the antenatal care of New Halfa hospital, Eastern Sudan to investigate the prevalence, manifestations and determinants of malaria (especially P. vivax among pregnant women. Results: Out of 2 378 pregnant women, there were 48 (2.0% and 36 (1.5% Plasmodium falciparum (P. falciparum and P. vivax infection, respectively. There was no significant difference in the age, parity, gestational age between women with malaria and healthy controls. The mean ± SD of the temperature was significantly higher in patients with P. vivax than in patient with P. falciparum malaria [(38.6 ± 0.7 °C vs. (38.1 ± 0.6 °C, P = 0.001]. Patients with P. vivax malaria had slightly (not reach statistical significance lower hemoglobin level compared with P. falciparum malaria and healthy controls. The geometric parasite count showed no significant difference between patients with P. vivax and P. falciparum malaria infections (12 189.9 vs. 9 755.1 trophozoite/µL, P = 0.356. Conclusions: P. vivax malaria is an existing health problem in Eastern Sudan. Further research is also needed.

  14. A Cas9 transgenic Plasmodium yoelii parasite for efficient gene editing.

    Science.gov (United States)

    Qian, Pengge; Wang, Xu; Yang, Zhenke; Li, Zhenkui; Gao, Han; Su, Xin-Zhuan; Cui, Huiting; Yuan, Jing

    2018-06-01

    The RNA-guided endonuclease Cas9 has applied as an efficient gene-editing method in malaria parasite Plasmodium. However, the size (4.2 kb) of the commonly used Cas9 from Streptococcus pyogenes (SpCas9) limits its utility for genome editing in the parasites only introduced with cas9 plasmid. To establish the endogenous and constitutive expression of Cas9 protein in the rodent malaria parasite P. yoelii, we replaced the coding region of an endogenous gene sera1 with the intact SpCas9 coding sequence using the CRISPR/Cas9-mediated genome editing method, generating the cas9-knockin parasite (PyCas9ki) of the rodent malaria parasite P. yoelii. The resulted PyCas9ki parasite displays normal progression during the whole life cycle and possesses the Cas9 protein expression in asexual blood stage. By introducing the plasmid (pYCs) containing only sgRNA and homologous template elements, we successfully achieved both deletion and tagging modifications for different endogenous genes in the genome of PyCas9ki parasite. This cas9-knockin PyCas9ki parasite provides a new platform facilitating gene functions study in the rodent malaria parasite P. yoelii. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. A Plasmodium falciparum strain expressing GFP throughout the parasite's life-cycle.

    Directory of Open Access Journals (Sweden)

    Arthur M Talman

    2010-02-01

    Full Text Available The human malaria parasite Plasmodium falciparum is responsible for the majority of malaria-related deaths. Tools allowing the study of the basic biology of P. falciparum throughout the life cycle are critical to the development of new strategies to target the parasite within both human and mosquito hosts. We here present 3D7HT-GFP, a strain of P. falciparum constitutively expressing the Green Fluorescent Protein (GFP throughout the life cycle, which has retained its capacity to complete sporogonic development. The GFP expressing cassette was inserted in the Pf47 locus. Using this transgenic strain, parasite tracking and population dynamics studies in mosquito stages and exo-erythrocytic schizogony is greatly facilitated. The development of 3D7HT-GFP will permit a deeper understanding of the biology of parasite-host vector interactions, and facilitate the development of high-throughput malaria transmission assays and thus aid development of new intervention strategies against both parasite and mosquito.

  16. A Plasmodium falciparum strain expressing GFP throughout the parasite's life-cycle.

    Science.gov (United States)

    Talman, Arthur M; Blagborough, Andrew M; Sinden, Robert E

    2010-02-10

    The human malaria parasite Plasmodium falciparum is responsible for the majority of malaria-related deaths. Tools allowing the study of the basic biology of P. falciparum throughout the life cycle are critical to the development of new strategies to target the parasite within both human and mosquito hosts. We here present 3D7HT-GFP, a strain of P. falciparum constitutively expressing the Green Fluorescent Protein (GFP) throughout the life cycle, which has retained its capacity to complete sporogonic development. The GFP expressing cassette was inserted in the Pf47 locus. Using this transgenic strain, parasite tracking and population dynamics studies in mosquito stages and exo-erythrocytic schizogony is greatly facilitated. The development of 3D7HT-GFP will permit a deeper understanding of the biology of parasite-host vector interactions, and facilitate the development of high-throughput malaria transmission assays and thus aid development of new intervention strategies against both parasite and mosquito.

  17. Proteomics methods applied to malaria: Plasmodium falciparum

    International Nuclear Information System (INIS)

    Cuesta Astroz, Yesid; Segura Latorre, Cesar

    2012-01-01

    Malaria is a parasitic disease that has a high impact on public health in developing countries. The sequencing of the plasmodium falciparum genome and the development of proteomics have enabled a breakthrough in understanding the biology of the parasite. Proteomics have allowed to characterize qualitatively and quantitatively the parasite s expression of proteins and has provided information on protein expression under conditions of stress induced by antimalarial. Given the complexity of their life cycle, this takes place in the vertebrate host and mosquito vector. It has proven difficult to characterize the protein expression during each stage throughout the infection process in order to determine the proteome that mediates several metabolic, physiological and energetic processes. Two dimensional electrophoresis, liquid chromatography and mass spectrometry have been useful to assess the effects of antimalarial on parasite protein expression and to characterize the proteomic profile of different p. falciparum stages and organelles. The purpose of this review is to present state of the art tools and advances in proteomics applied to the study of malaria, and to present different experimental strategies used to study the parasite's proteome in order to show the advantages and disadvantages of each one.

  18. Translational Control in Plasmodium and Toxoplasma Parasites

    Science.gov (United States)

    Joyce, Bradley R.; Sullivan, William J.; Nussenzweig, Victor

    2013-01-01

    The life cycles of apicomplexan parasites such as Plasmodium spp. and Toxoplasma gondii are complex, consisting of proliferative and latent stages within multiple hosts. Dramatic transformations take place during the cycles, and they demand precise control of gene expression at all levels, including translation. This review focuses on the mechanisms that regulate translational control in Plasmodium and Toxoplasma, with a particular emphasis on the phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α). Phosphorylation of eIF2α (eIF2α∼P) is a conserved mechanism that eukaryotic cells use to repress global protein synthesis while enhancing gene-specific translation of a subset of mRNAs. Elevated levels of eIF2α∼P have been observed during latent stages in both Toxoplasma and Plasmodium, indicating that translational control plays a role in maintaining dormancy. Parasite-specific eIF2α kinases and phosphatases are also required for proper developmental transitions and adaptation to cellular stresses encountered during the life cycle. Identification of small-molecule inhibitors of apicomplexan eIF2α kinases may selectively interfere with parasite translational control and lead to the development of new therapies to treat malaria and toxoplasmosis. PMID:23243065

  19. Translational control in Plasmodium and toxoplasma parasites.

    Science.gov (United States)

    Zhang, Min; Joyce, Bradley R; Sullivan, William J; Nussenzweig, Victor

    2013-02-01

    The life cycles of apicomplexan parasites such as Plasmodium spp. and Toxoplasma gondii are complex, consisting of proliferative and latent stages within multiple hosts. Dramatic transformations take place during the cycles, and they demand precise control of gene expression at all levels, including translation. This review focuses on the mechanisms that regulate translational control in Plasmodium and Toxoplasma, with a particular emphasis on the phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α). Phosphorylation of eIF2α (eIF2α∼P) is a conserved mechanism that eukaryotic cells use to repress global protein synthesis while enhancing gene-specific translation of a subset of mRNAs. Elevated levels of eIF2α∼P have been observed during latent stages in both Toxoplasma and Plasmodium, indicating that translational control plays a role in maintaining dormancy. Parasite-specific eIF2α kinases and phosphatases are also required for proper developmental transitions and adaptation to cellular stresses encountered during the life cycle. Identification of small-molecule inhibitors of apicomplexan eIF2α kinases may selectively interfere with parasite translational control and lead to the development of new therapies to treat malaria and toxoplasmosis.

  20. Detection of the Malaria causing Plasmodium Parasite in Saliva from Infected Patients using Topoisomerase I Activity as a Biomarker

    DEFF Research Database (Denmark)

    Hede, Marianne Smedegaard; Fjelstrup, Søren; Lötsch, Felix

    2018-01-01

    that may be adapted for low-resource settings. Moreover, we demonstrate the exploitation of this assay for detection of malaria in saliva. The setup relies on pump-free microfluidics enabled extraction combined with a DNA sensor substrate that is converted to a single-stranded DNA circle specifically...... (HRP) and addition of 3,3',5,5'-Tetramethylbenzidine that was converted to a blue colored product by HRP. The assay was directly quantitative, specific for Plasmodium parasites, and allowed detection of Plasmodium infection in a single drop of saliva from 35 out of 35 infected individuals tested....... The results could be determined directly by the naked eye and documented by quantifying the color intensity using a standard paper scanner....

  1. Plasmodium malariae in the Colombian Amazon region: you don't diagnose what you don't suspect.

    Science.gov (United States)

    Niño, Carlos Hernando; Cubides, Juan Ricardo; Camargo-Ayala, Paola Andrea; Rodríguez-Celis, Carlos Arturo; Quiñones, Teódulo; Cortés-Castillo, Moisés Tomás; Sánchez-Suárez, Lizeth; Sánchez, Ricardo; Patarroyo, Manuel Elkin; Patarroyo, Manuel Alfonso

    2016-11-29

    Malaria is a worldwide public health problem; parasites from the genus Plasmodium spp. are the aetiological agent of this disease. The parasite is mainly diagnosed by microscope-based techniques. However, these have limited sensitivity. Many asymptomatic infections are sub-microscopic and can only be detected by molecular methods. This study was aimed at comparing nested PCR results to those obtained by microscope for diagnosing malaria and to present epidemiological data regarding malaria in Colombia's Amazon department. A total of 1392 blood samples (taken by venepuncture) from symptomatic patients in Colombia's Amazon department were analysed in parallel by thick blood smear (TBS) test and nested PCR for determining Plasmodium spp. infection and identifying infecting species, such as Plasmodium vivax, Plasmodium malariae and/or Plasmodium falciparum. Descriptive statistics were used for comparing the results from both tests regarding detection of the disease, typing infecting species and their prevalence in the study region. Bearing the microscope assay in mind as gold standard, PCR diagnosis performance was evaluated by statistical indicators. The present study revealed great differences between both diagnostic tests, as well as suggesting high P. malariae prevalence from a molecular perspective. This differed profoundly from previous studies in this region of Colombia, usually based on the TBS test, suggesting that diagnosis by conventional techniques could lead to underestimating the prevalence of certain Plasmodium spp. having high circulation in this area. The present results highlight the need for modifying state malaria surveillance schemes for more efficient strategies regarding the detection of this disease in endemic areas. The importance of PCR as a back-up test in cases of low parasitaemia or mixed infection is also highlighted.

  2. Prospects and Pitfalls of Pregnancy-Associated Malaria Vaccination Based on the Natural Immune Response to Plasmodium falciparum VAR2CSA-Expressing Parasites

    Directory of Open Access Journals (Sweden)

    Elizabeth G. Kane

    2011-01-01

    Full Text Available Pregnancy-associated malaria, a manifestation of severe malaria, is the cause of up to 200,000 infant deaths a year, through the effects of placental insufficiency leading to growth restriction and preterm delivery. Development of a vaccine is one strategy for control. Plasmodium falciparum-infected red blood cells accumulate in the placenta through specific binding of pregnancy-associated parasite variants that express the VAR2CSA antigen to chondroitin sulphate A on the surface of syncytiotrophoblast cells. Parasite accumulation, accompanied by an inflammatory infiltrate, disrupts the cytokine balance of pregnancy with the potential to cause placental damage and compromise foetal growth. Multigravid women develop immunity towards VAR2CSA-expressing parasites in a gravidity-dependent manner which prevents unfavourable pregnancy outcomes. Although current vaccine design, targeting VAR2CSA antigens, has succeeded in inducing antibodies artificially, this candidate may not provide protection during the first trimester and may only protect those women living in areas endemic for malaria. It is concluded that while insufficient information about placental-parasite interactions is presently available to produce an effective vaccine, incremental progress is being made towards achieving this goal.

  3. Toward forward genetic screens in malaria-causing parasites using the piggyBac transposon

    Directory of Open Access Journals (Sweden)

    de Koning-Ward Tania F

    2011-03-01

    Full Text Available Abstract The ability to analyze gene function in malaria-causing Plasmodium parasites has received a boost with a recent paper in BMC Genomics that describes a genome-wide mutagenesis system in the rodent malaria species Plasmodium berghei using the transposon piggyBac. This advance holds promise for identifying and validating new targets for intervention against malaria. But further improvements are still needed for the full power of genome-wide molecular genetic screens to be utilized in this organism. See research article: http://www.biomedcentral.com/1471-2164/12/155

  4. Plasmodium chabaudi chabaudi malaria parasites can develop stable resistance to atovaquone with a mutation in the cytochrome b gene

    Directory of Open Access Journals (Sweden)

    Alves Ana C

    2010-05-01

    Full Text Available Abstract Background Plasmodium falciparum, has developed resistance to many of the drugs in use. The recommended treatment policy is now to use drug combinations. The atovaquone-proguanil (AP drug combination, is one of the treatment and prophylaxis options. Atovaquone (ATQ exerts its action by inhibiting plasmodial mitochondria electron transport at the level of the cytochrome bc1 complex. Plasmodium falciparum in vitro resistance to ATQ has been associated with specific point mutations in the region spanning codons 271-284 of the cytochrome b gene. ATQ -resistant Plasmodium yoelii and Plasmodium berghei lines have been obtained and resistant lines have amino acid mutations in their CYT b protein sequences. Plasmodium chabaudi model for studying drug-responses and drug-resistance selection is a very useful rodent malaria model but no ATQ resistant parasites have been reported so far. The aim of this study was to determine the ATQ sensitivity of the P. chabaudi clones, to select a resistant parasite line and to perform genotypic characterization of the cytb gene of these clones. Methods To select for ATQ resistance, Plasmodium. chabaudi chabaudi clones were exposed to gradually increasing concentrations of ATQ during several consecutive passages in mice. Plasmodium chabaudi cytb gene was amplified and sequenced. Results ATQ resistance was selected from the clone AS-3CQ. In order to confirm whether an heritable genetic mutation underlies the response of AS-ATQ to ATQ, the stability of the drug resistance phenotype in this clone was evaluated by measuring drug responses after (i multiple blood passages in the absence of the drug, (ii freeze/thawing of parasites in liquid nitrogen and (iii transmission through a mosquito host, Anopheles stephensi. ATQ resistance phenotype of the drug-selected parasite clone kept unaltered. Therefore, ATQ resistance in clone AS-ATQ is genetically encoded. The Minimum Curative Dose of AS-ATQ showed a six

  5. Plasmodium immunomics.

    Science.gov (United States)

    Doolan, Denise L

    2011-01-01

    The Plasmodium parasite, the causative agent of malaria, is an excellent model for immunomic-based approaches to vaccine development. The Plasmodium parasite has a complex life cycle with multiple stages and stage-specific expression of ∼5300 putative proteins. No malaria vaccine has yet been licensed. Many believe that an effective vaccine will need to target several antigens and multiple stages, and will require the generation of both antibody and cellular immune responses. Vaccine efforts to date have been stage-specific and based on only a very limited number of proteins representing Plasmodium parasite life cycle with immune responses implicated in parasite elimination and control. Immunomic approaches which enable the selection of the best possible targets by prioritising antigens according to clinically relevant criteria may overcome the problem of poorly immunogenic, poorly protective vaccines that has plagued malaria vaccine developers for the past 25 years. Herein, current progress and perspectives regarding Plasmodium immunomics are reviewed. Copyright © 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  6. Epidemiology of Plasmodium vivax Malaria in Peru.

    Science.gov (United States)

    Rosas-Aguirre, Angel; Gamboa, Dionicia; Manrique, Paulo; Conn, Jan E; Moreno, Marta; Lescano, Andres G; Sanchez, Juan F; Rodriguez, Hugo; Silva, Hermann; Llanos-Cuentas, Alejandro; Vinetz, Joseph M

    2016-12-28

    Malaria in Peru, dominated by Plasmodium vivax, remains a public health problem. The 1990s saw newly epidemic malaria emerge, primarily in the Loreto Department in the Amazon region, including areas near to Iquitos, the capital city, but sporadic malaria transmission also occurred in the 1990s-2000s in both north-coastal Peru and the gold mining regions of southeastern Peru. Although a Global Fund-supported intervention (PAMAFRO, 2005-2010) was temporally associated with a decrease of malaria transmission, from 2012 to the present, both P. vivax and Plasmodium falciparum malaria cases have rapidly increased. The Peruvian Ministry of Health continues to provide artemesinin-based combination therapy for microscopy-confirmed cases of P. falciparum and chloroquine-primaquine for P. vivax Malaria transmission continues in remote areas nonetheless, where the mobility of humans and parasites facilitates continued reintroduction outside of ongoing surveillance activities, which is critical to address for future malaria control and elimination efforts. Ongoing P. vivax research gaps in Peru include the following: identification of asymptomatic parasitemics, quantification of the contribution of patent and subpatent parasitemics to mosquito transmission, diagnosis of nonparasitemic hypnozoite carriers, and implementation of surveillance for potential emergence of chloroquine- and 8-aminoquinoline-resistant P. vivax Clinical trials of tafenoquine in Peru have been promising, and glucose-6-phosphate dehydrogenase deficiency in the region has not been observed to be a limitation to its use. Larger-scale challenges for P. vivax (and malaria in general) in Peru include logistical difficulties in accessing remote riverine populations, consequences of government policy and poverty trends, and obtaining international funding for malaria control and elimination. © The American Society of Tropical Medicine and Hygiene.

  7. Epidemiology of Plasmodium vivax Malaria in Peru

    Science.gov (United States)

    Rosas-Aguirre, Angel; Gamboa, Dionicia; Manrique, Paulo; Conn, Jan E.; Moreno, Marta; Lescano, Andres G.; Sanchez, Juan F.; Rodriguez, Hugo; Silva, Hermann; Llanos-Cuentas, Alejandro; Vinetz, Joseph M.

    2016-01-01

    Malaria in Peru, dominated by Plasmodium vivax, remains a public health problem. The 1990s saw newly epidemic malaria emerge, primarily in the Loreto Department in the Amazon region, including areas near to Iquitos, the capital city, but sporadic malaria transmission also occurred in the 1990s–2000s in both north-coastal Peru and the gold mining regions of southeastern Peru. Although a Global Fund-supported intervention (PAMAFRO, 2005–2010) was temporally associated with a decrease of malaria transmission, from 2012 to the present, both P. vivax and Plasmodium falciparum malaria cases have rapidly increased. The Peruvian Ministry of Health continues to provide artemesinin-based combination therapy for microscopy-confirmed cases of P. falciparum and chloroquine–primaquine for P. vivax. Malaria transmission continues in remote areas nonetheless, where the mobility of humans and parasites facilitates continued reintroduction outside of ongoing surveillance activities, which is critical to address for future malaria control and elimination efforts. Ongoing P. vivax research gaps in Peru include the following: identification of asymptomatic parasitemics, quantification of the contribution of patent and subpatent parasitemics to mosquito transmission, diagnosis of nonparasitemic hypnozoite carriers, and implementation of surveillance for potential emergence of chloroquine- and 8-aminoquinoline-resistant P. vivax. Clinical trials of tafenoquine in Peru have been promising, and glucose-6-phosphate dehydrogenase deficiency in the region has not been observed to be a limitation to its use. Larger-scale challenges for P. vivax (and malaria in general) in Peru include logistical difficulties in accessing remote riverine populations, consequences of government policy and poverty trends, and obtaining international funding for malaria control and elimination. PMID:27799639

  8. [Congenital malaria due to Plasmodium falciparum and Plasmodium malariae].

    Science.gov (United States)

    Zenz, W; Trop, M; Kollaritsch, H; Reinthaler, F

    2000-05-19

    Increasing tourism and growing numbers of immigrants from malaria-endemic countries are leading to a higher importation rate of rare tropical disorders in European countries. We describe, to the best of our knowledge, the first case of connatal malaria in Austria. The patient is the first child of a 24 year old mother who was born in Ghana and immigrated to Austria one and a half years before delivery. She did not stay in an endemic region during this period and did not show fever or any other signs of malaria. The boy was healthy for the first six weeks of his life. In the 8th week of life he was admitted to our hospital due to persistent fever of unknown origin. On physical examination he showed only mild splenomegaly. Routine laboratory testing revealed mild hemolytic anemia with a hemoglobin value of 8.3 g/l. In the blood smear Plasmodium falciparum and Plasmodium malariae were detected. Oral therapy with quinine hydrochloride was successful and blood smears became negative for Plasmodia within 6 days. This case shows that congenital malaria can occur in children of clinically healthy women who were born in malaria-endemic areas even one and a half year after they have immigrated to non-endemic regions.

  9. Molecular Epidemiology of Plasmodium falciparum Malaria Outbreak, Tumbes, Peru, 2010-2012.

    Science.gov (United States)

    Baldeviano, G Christian; Okoth, Sheila Akinyi; Arrospide, Nancy; Gonzalez, Rommell V; Sánchez, Juan F; Macedo, Silvia; Conde, Silvia; Tapia, L Lorena; Salas, Carola; Gamboa, Dionicia; Herrera, Yeni; Edgel, Kimberly A; Udhayakumar, Venkatachalam; Lescano, Andrés G

    2015-05-01

    During 2010-2012, an outbreak of 210 cases of malaria occurred in Tumbes, in the northern coast of Peru, where no Plasmodium falciparum malaria case had been reported since 2006. To identify the source of the parasite causing this outbreak, we conducted a molecular epidemiology investigation. Microsatellite typing showed an identical genotype in all 54 available isolates. This genotype was also identical to that of parasites isolated in 2010 in the Loreto region of the Peruvian Amazon and closely related to clonet B, a parasite lineage previously reported in the Amazon during 1998-2000. These findings are consistent with travel history of index case-patients. DNA sequencing revealed mutations in the Pfdhfr, Pfdhps, Pfcrt, and Pfmdr1 loci, which are strongly associated with resistance to chloroquine and sulfadoxine/pyrimethamine, and deletion of the Pfhrp2 gene. These results highlight the need for timely molecular epidemiology investigations to trace the parasite source during malaria reintroduction events.

  10. A large proportion of asymptomatic Plasmodium infections with low and sub-microscopic parasite densities in the low transmission setting of Temotu Province, Solomon Islands: challenges for malaria diagnostics in an elimination setting

    Directory of Open Access Journals (Sweden)

    Harris Ivor

    2010-09-01

    Full Text Available Abstract Background Many countries are scaling up malaria interventions towards elimination. This transition changes demands on malaria diagnostics from diagnosing ill patients to detecting parasites in all carriers including asymptomatic infections and infections with low parasite densities. Detection methods suitable to local malaria epidemiology must be selected prior to transitioning a malaria control programme to elimination. A baseline malaria survey conducted in Temotu Province, Solomon Islands in late 2008, as the first step in a provincial malaria elimination programme, provided malaria epidemiology data and an opportunity to assess how well different diagnostic methods performed in this setting. Methods During the survey, 9,491 blood samples were collected and examined by microscopy for Plasmodium species and density, with a subset also examined by polymerase chain reaction (PCR and rapid diagnostic tests (RDTs. The performances of these diagnostic methods were compared. Results A total of 256 samples were positive by microscopy, giving a point prevalence of 2.7%. The species distribution was 17.5% Plasmodium falciparum and 82.4% Plasmodium vivax. In this low transmission setting, only 17.8% of the P. falciparum and 2.9% of P. vivax infected subjects were febrile (≥38°C at the time of the survey. A significant proportion of infections detected by microscopy, 40% and 65.6% for P. falciparum and P. vivax respectively, had parasite density below 100/μL. There was an age correlation for the proportion of parasite density below 100/μL for P. vivax infections, but not for P. falciparum infections. PCR detected substantially more infections than microscopy (point prevalence of 8.71%, indicating a large number of subjects had sub-microscopic parasitemia. The concordance between PCR and microscopy in detecting single species was greater for P. vivax (135/162 compared to P. falciparum (36/118. The malaria RDT detected the 12 microscopy and

  11. High Plasmodium malariae Prevalence in an Endemic Area of the Colombian Amazon Region.

    Science.gov (United States)

    Camargo-Ayala, Paola Andrea; Cubides, Juan Ricardo; Niño, Carlos Hernando; Camargo, Milena; Rodríguez-Celis, Carlos Arturo; Quiñones, Teódulo; Sánchez-Suárez, Lizeth; Patarroyo, Manuel Elkin; Patarroyo, Manuel Alfonso

    2016-01-01

    Malaria is a worldwide public health problem; parasites from the genus Plasmodium are the aetiological agent for this disease. The parasites are mostly diagnosed by conventional microscopy-based techniques; however, their limitations have led to under-registering the reported prevalence of Plasmodium species. This study has thus been aimed at evaluating the infection and coinfection prevalence of 3 species of Plasmodium spp., in an area of the Colombian Amazon region. Blood samples were taken from 671 symptomatic patients by skin puncture; a nested PCR amplifying the 18S ssRNA region was used on all samples to determine the presence of P. vivax, P. malariae and P. falciparum. Statistical analysis determined infection and coinfection frequency; the association between infection and different factors was established. The results showed that P. vivax was the species having the greatest frequency in the study population (61.4%), followed by P. malariae (43.8%) and P. falciparum (11.8%). The study revealed that 35.8% of the population had coinfection, the P. vivax/P. malariae combination occurring most frequently (28.3%); factors such as age, geographical origin and clinical manifestations were found to be associated with triple-infection. The prevalence reported in this study differed from previous studies in Colombia; the results suggest that diagnosis using conventional techniques could be giving rise to underestimating some Plasmodium spp. species having high circulation rates in Colombia (particularly in the Colombian Amazon region). The present study's results revealed a high prevalence of P. malariae and mixed infections in the population being studied. The results provide relevant information which should facilitate updating the epidemiological panorama and species' distribution so as to include control, prevention and follow-up measures.

  12. Plant Hormone Salicylic Acid Produced by a Malaria Parasite Controls Host Immunity and Cerebral Malaria Outcome.

    Directory of Open Access Journals (Sweden)

    Ryuma Matsubara

    Full Text Available The apicomplexan parasite Toxoplasma gondii produces the plant hormone abscisic acid, but it is unclear if phytohormones are produced by the malaria parasite Plasmodium spp., the most important parasite of this phylum. Here, we report detection of salicylic acid, an immune-related phytohormone of land plants, in P. berghei ANKA and T. gondii cell lysates. However, addition of salicylic acid to P. falciparum and T. gondii culture had no effect. We transfected P. falciparum 3D7 with the nahG gene, which encodes a salicylic acid-degrading enzyme isolated from plant-infecting Pseudomonas sp., and established a salicylic acid-deficient mutant. The mutant had a significantly decreased concentration of parasite-synthesized prostaglandin E2, which potentially modulates host immunity as an adaptive evolution of Plasmodium spp. To investigate the function of salicylic acid and prostaglandin E2 on host immunity, we established P. berghei ANKA mutants expressing nahG. C57BL/6 mice infected with nahG transfectants developed enhanced cerebral malaria, as assessed by Evans blue leakage and brain histological observation. The nahG-transfectant also significantly increased the mortality rate of mice. Prostaglandin E2 reduced the brain symptoms by induction of T helper-2 cytokines. As expected, T helper-1 cytokines including interferon-γ and interleukin-2 were significantly elevated by infection with the nahG transfectant. Thus, salicylic acid of Plasmodium spp. may be a new pathogenic factor of this threatening parasite and may modulate immune function via parasite-produced prostaglandin E2.

  13. Signalling in malaria parasites – The MALSIG consortium#

    Directory of Open Access Journals (Sweden)

    Doerig C.

    2009-09-01

    Full Text Available Depending on their developmental stage in the life cycle, malaria parasites develop within or outside host cells, and in extremely diverse contexts such as the vertebrate liver and blood circulation, or the insect midgut and hemocoel. Cellular and molecular mechanisms enabling the parasite to sense and respond to the intra- and the extra-cellular environments are therefore key elements for the proliferation and transmission of Plasmodium, and therefore are, from a public health perspective, strategic targets in the fight against this deadly disease. The MALSIG consortium, which was initiated in February 2009, was designed with the primary objective to integrate research ongoing in Europe and India on i the properties of Plasmodium signalling molecules, and ii developmental processes occurring at various points of the parasite life cycle. On one hand, functional studies of individual genes and their products in Plasmodium falciparum (and in the technically more manageable rodent model Plasmodium berghei are providing information on parasite protein kinases and phosphatases, and of the molecules governing cyclic nucleotide metabolism and calcium signalling. On the other hand, cellular and molecular studies are elucidating key steps of parasite development such as merozoite invasion and egress in blood and liver parasite stages, control of DNA replication in asexual and sexual development, membrane dynamics and trafficking, production of gametocytes in the vertebrate host and further parasite development in the mosquito. This article, which synthetically reviews such signalling molecules and cellular processes, aims to provide a glimpse of the global frame in which the activities of the MALSIG consortium will develop over the next three years.

  14. Serological evidence of discrete spatial clusters of Plasmodium falciparum parasites

    DEFF Research Database (Denmark)

    Bejon, Philip; Turner, Louise; Lavstsen, Thomas

    2011-01-01

    Malaria transmission may be considered to be homogenous with well-mixed parasite populations (as in the classic Ross/Macdonald models). Marked fine-scale heterogeneity of transmission has been observed in the field (i.e., over a few kilometres), but there are relatively few data on the degree...... of mixing. Since the Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) is highly polymorphic, the host's serological responses may be used to infer exposure to parasite sub-populations....

  15. Schistosoma mansoni infection suppresses the growth of Plasmodium yoelii parasites in the liver and reduces gametocyte infectivity to mosquitoes.

    Directory of Open Access Journals (Sweden)

    Taeko Moriyasu

    2018-01-01

    Full Text Available Malaria and schistosomiasis are major parasitic diseases causing morbidity and mortality in the tropics. Epidemiological surveys have revealed coinfection rates of up to 30% among children in Sub-Saharan Africa. To investigate the impact of coinfection of these two parasites on disease epidemiology and pathology, we carried out coinfection studies using Plasmodium yoelii and Schistosoma mansoni in mice. Malaria parasite growth in the liver following sporozoite inoculation is significantly inhibited in mice infected with S. mansoni, so that when low numbers of sporozoites are inoculated, there is a large reduction in the percentage of mice that go on to develop blood stage malaria. Furthermore, gametocyte infectivity is much reduced in mice with S. mansoni infections. These results have profound implications for understanding the interactions between Plasmodium and Schistosoma species, and have implications for the control of malaria in schistosome endemic areas.

  16. A central role for P48/45 in malaria parasite male gamete fertility.

    NARCIS (Netherlands)

    Dijk, M.R. van; Janse, C.J.; Thompson, J.; Waters, A.P.; Braks, J.A.M.; Dodemont, H.J.; Stunnenberg, H.G.; Gemert, G.J.A. van; Sauerwein, R.W.; Eling, W.M.C.

    2001-01-01

    Fertilization and zygote development are obligate features of the malaria parasite life cycle and occur during parasite transmission to mosquitoes. The surface protein PFS48/45 is expressed by male and female gametes of Plasmodium falciparum and PFS48/45 antibodies prevent zygote development and

  17. Parasite density and the spectrum of clinical illness in falciparum malaria

    International Nuclear Information System (INIS)

    Ali, H.; Mahmood, T.; Ahmed, N.

    2008-01-01

    To determine the impact of percentage parasitemia and clinical features on morbidity and mortality in patients with P. falciparum malaria. Seventy-six adult patients of smear positive P. falciparum malaria were selected for the study. Parasite density was estimated on thin blood film and expressed as percentage of red blood cells parasitized. Patients were divided into three groups on the basis of parasite density. The data was analyzed on SPSS version 12. Results were expressed as percentages, mean and standard deviations. P-value 10%. Comparative analysis of the groups showed that pallor, impaired consciousness, jaundice or malarial hepatitis, thrombocytopenia, acute renal failure, DIC, and mortality were all strongly associated with the density of Plasmodium falciparum malaria (p=0.001). Parasite density was not related to age, gender and hepatosplenomegaly. High parasite density was associated with severe clinical illness, complications and mortality. Parasite counts of > 5% may be considered as hyperparasitaemia in this population of the world. (author)

  18. The Clp Chaperones and Proteases of the Human Malaria Parasite Plasmodium falciparum

    Energy Technology Data Exchange (ETDEWEB)

    Bakkouri, Majida El; Pow, Andre; Mulichak, Anne; Cheung, Kevin L.Y.; Artz, Jennifer D.; Amani, Mehrnaz; Fell, Stuart; de Koning-Ward, Tania F.; Goodman, C. Dean; McFadden, Geoffrey I.; Ortega, Joaquin; Hui, Raymond; Houry, Walid A. (McMaster U.); (Melbourne); (Toronto); (Deakin); (HWMRI)

    2015-02-09

    The Clp chaperones and proteases play an important role in protein homeostasis in the cell. They are highly conserved across prokaryotes and found also in the mitochondria of eukaryotes and the chloroplasts of plants. They function mainly in the disaggregation, unfolding and degradation of native as well as misfolded proteins. Here, we provide a comprehensive analysis of the Clp chaperones and proteases in the human malaria parasite Plasmodium falciparum. The parasite contains four Clp ATPases, which we term PfClpB1, PfClpB2, PfClpC and PfClpM. One PfClpP, the proteolytic subunit, and one PfClpR, which is an inactive version of the protease, were also identified. Expression of all Clp chaperones and proteases was confirmed in blood-stage parasites. The proteins were localized to the apicoplast, a non-photosynthetic organelle that accommodates several important metabolic pathways in P. falciparum, with the exception of PfClpB2 (also known as Hsp101), which was found in the parasitophorous vacuole. Both PfClpP and PfClpR form mostly homoheptameric rings as observed by size-exclusion chromatography, analytical ultracentrifugation and electron microscopy. The X-ray structure of PfClpP showed the protein as a compacted tetradecamer similar to that observed for Streptococcus pneumoniae and Mycobacterium tuberculosis ClpPs. Our data suggest the presence of a ClpCRP complex in the apicoplast of P. falciparum.

  19. Transgenic Expression of the Anti-parasitic Factor TEP1 in the Malaria Mosquito Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Gloria Volohonsky

    2017-01-01

    Full Text Available Mosquitoes genetically engineered to be resistant to Plasmodium parasites represent a promising novel approach in the fight against malaria. The insect immune system itself is a source of anti-parasitic genes potentially exploitable for transgenic designs. The Anopheles gambiae thioester containing protein 1 (TEP1 is a potent anti-parasitic protein. TEP1 is secreted and circulates in the mosquito hemolymph, where its activated cleaved form binds and eliminates malaria parasites. Here we investigated whether TEP1 can be used to create malaria resistant mosquitoes. Using a GFP reporter transgene, we determined that the fat body is the main site of TEP1 expression. We generated transgenic mosquitoes that express TEP1r, a potent refractory allele of TEP1, in the fat body and examined the activity of the transgenic protein in wild-type or TEP1 mutant genetic backgrounds. Transgenic TEP1r rescued loss-of-function mutations, but did not increase parasite resistance in the presence of a wild-type susceptible allele. Consistent with previous reports, TEP1 protein expressed from the transgene in the fat body was taken up by hemocytes upon a challenge with injected bacteria. Furthermore, although maturation of transgenic TEP1 into the cleaved form was impaired in one of the TEP1 mutant lines, it was still sufficient to reduce parasite numbers and induce parasite melanization. We also report here the first use of Transcription Activator Like Effectors (TALEs in Anopheles gambiae to stimulate expression of endogenous TEP1. We found that artificial elevation of TEP1 expression remains moderate in vivo and that enhancement of endogenous TEP1 expression did not result in increased resistance to Plasmodium. Taken together, our results reveal the difficulty of artificially influencing TEP1-mediated Plasmodium resistance, and contribute to further our understanding of the molecular mechanisms underlying mosquito resistance to Plasmodium parasites.

  20. Frequency of thrombocytopenia in plasmodium vivax malaria

    International Nuclear Information System (INIS)

    Nadeem, A.; Malik, T.M.; Malik, H.S.

    2014-01-01

    Objective: To determine the frequency of thrombocytopenia in Plasmodium vivax (P.vivax) malaria cases at two hospitals. Study Design: Cross-sectional descriptive study. Place and Duration of Study: The study was conducted at the departments of Pathology, Combined Military Hospitals Malir and Sibi, Pakistan from Jul 2011 to Mar 2012. Patients and Methods: A total of 2709 samples were collected from febrile patients for detection of malaria parasite (944 from CMH Malir and 1765 from CMH Sibi). Cases having infection with P. falciparum alone or having mixed infection with P. Vivax and P. falciparum were excluded from the study. Both thick and thin film microscopy and immunochromatographic method (OptiMA L-IT) were used for detection of malarial parasite. Platelet counts were done using automated haematology analyser (Sysmex KX 21) with re-evaluation of low counts with manual methods. Results: Total of 170 patients were found positive for P. vivax malaria (44 from CMH Malir and 126 from CMH Sibi). Platelet counts ranged from 21 - 457 * 10/sub 9/ with a mean of 134 * 10/sub 9/. Ninety five (2.1%) from CMH Malir and 4.2% from CMH Sibi out of 170 patients had thrombocytopenia, and the difference in thrombocytopenia at the two hospitals was insignificant (0.017). Conclusion: Thrombocytopenia in patients with P. vivax infection is equally prevalent in the two hospitals, representing a widely different geographical area and should prompt a more thorough search for malaria parasite. (author)

  1. Efficacy of Artemether in Unresolving Plasmodium Falciparum Malaria

    African Journals Online (AJOL)

    The emergence of possible resistant Plasmodium falciparum malaria to artemisinin known for its immense benefit in malaria chemotherapy is worrisome. We report a case of unresolving Plasmodium falciparum malaria to Artesunate treatment in a 29- year old man in Enugu Nigeria. Plasmodium falciparum count of Giemsa ...

  2. The evolutionary consequences of blood-stage vaccination on the rodent malaria Plasmodium chabaudi.

    Directory of Open Access Journals (Sweden)

    Victoria C Barclay

    Full Text Available Malaria vaccine developers are concerned that antigenic escape will erode vaccine efficacy. Evolutionary theorists have raised the possibility that some types of vaccine could also create conditions favoring the evolution of more virulent pathogens. Such evolution would put unvaccinated people at greater risk of severe disease. Here we test the impact of vaccination with a single highly purified antigen on the malaria parasite Plasmodium chabaudi evolving in laboratory mice. The antigen we used, AMA-1, is a component of several candidate malaria vaccines currently in various stages of trials in humans. We first found that a more virulent clone was less readily controlled by AMA-1-induced immunity than its less virulent progenitor. Replicated parasites were then serially passaged through control or AMA-1 vaccinated mice and evaluated after 10 and 21 rounds of selection. We found no evidence of evolution at the ama-1 locus. Instead, virulence evolved; AMA-1-selected parasites induced greater anemia in naïve mice than both control and ancestral parasites. Our data suggest that recombinant blood stage malaria vaccines can drive the evolution of more virulent malaria parasites.

  3. Diverse sampling of East African haemosporidians reveals chiropteran origin of malaria parasites in primates and rodents.

    Science.gov (United States)

    Lutz, Holly L; Patterson, Bruce D; Kerbis Peterhans, Julian C; Stanley, William T; Webala, Paul W; Gnoske, Thomas P; Hackett, Shannon J; Stanhope, Michael J

    2016-06-01

    Phylogenies of parasites provide hypotheses on the history of their movements between hosts, leading to important insights regarding the processes of host switching that underlie modern-day epidemics. Haemosporidian (malaria) parasites lack a well resolved phylogeny, which has impeded the study of evolutionary processes associated with host-switching in this group. Here we present a novel phylogenetic hypothesis that suggests bats served as the ancestral hosts of malaria parasites in primates and rodents. Expanding upon current taxon sampling of Afrotropical bat and bird parasites, we find strong support for all major nodes in the haemosporidian tree using both Bayesian and maximum likelihood approaches. Our analyses support a single transition of haemosporidian parasites from saurian to chiropteran hosts, and do not support a monophyletic relationship between Plasmodium parasites of birds and mammals. We find, for the first time, that Hepatocystis and Plasmodium parasites of mammals represent reciprocally monophyletic evolutionary lineages. These results highlight the importance of broad taxonomic sampling when analyzing phylogenetic relationships, and have important implications for our understanding of key host switching events in the history of malaria parasite evolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Malaria case clinical profiles and Plasmodium falciparum parasite genetic diversity: a cross sectional survey at two sites of different malaria transmission intensities in Rwanda

    NARCIS (Netherlands)

    Kateera, Fredrick; Nsobya, Sam L.; Tukwasibwe, Stephen; Mens, Petra F.; Hakizimana, Emmanuel; Grobusch, Martin P.; Mutesa, Leon; Kumar, Nirbhay; van Vugt, Michele

    2016-01-01

    Malaria remains a public health challenge in sub-Saharan Africa with Plasmodium falciparum being the principal cause of malaria disease morbidity and mortality. Plasmodium falciparum virulence is attributed, in part, to its population-level genetic diversity-a characteristic that has yet to be

  5. Molecular Epidemiology of Plasmodium falciparum Malaria Outbreak, Tumbes, Peru, 2010–2012

    Science.gov (United States)

    Okoth, Sheila Akinyi; Arrospide, Nancy; Gonzalez, Rommell V.; Sánchez, Juan F.; Macedo, Silvia; Conde, Silvia; Tapia, L. Lorena; Salas, Carola; Gamboa, Dionicia; Herrera, Yeni; Edgel, Kimberly A.; Udhayakumar, Venkatachalam; Lescano, Andrés G.

    2015-01-01

    During 2010–2012, an outbreak of 210 cases of malaria occurred in Tumbes, in the northern coast of Peru, where no Plasmodium falciparum malaria case had been reported since 2006. To identify the source of the parasite causing this outbreak, we conducted a molecular epidemiology investigation. Microsatellite typing showed an identical genotype in all 54 available isolates. This genotype was also identical to that of parasites isolated in 2010 in the Loreto region of the Peruvian Amazon and closely related to clonet B, a parasite lineage previously reported in the Amazon during 1998–2000. These findings are consistent with travel history of index case-patients. DNA sequencing revealed mutations in the Pfdhfr, Pfdhps, Pfcrt, and Pfmdr1 loci, which are strongly associated with resistance to chloroquine and sulfadoxine/pyrimethamine, and deletion of the Pfhrp2 gene. These results highlight the need for timely molecular epidemiology investigations to trace the parasite source during malaria reintroduction events. PMID:25897626

  6. Plasmodium Cysteine Repeat Modular Proteins 3 and 4 are essential for malaria parasite transmission from the mosquito to the host

    Directory of Open Access Journals (Sweden)

    Mota Maria M

    2011-03-01

    Full Text Available Abstract Background The Plasmodium Cysteine Repeat Modular Proteins (PCRMP are a family of four conserved proteins of malaria parasites, that contain a number of motifs implicated in host-parasite interactions. Analysis of mutants of the rodent parasite Plasmodium berghei lacking expression of PCRMP1 or 2 showed that these proteins are essential for targeting of P. berghei sporozoites to the mosquito salivary gland and, hence, for transmission from the mosquito to the mouse. Methods In this work, the role of the remaining PCRMP family members, PCRMP3 and 4, has been investigated throughout the Plasmodium life cycle by generation and analysis of P. berghei gene deletion mutants, Δpcrmp3 and Δpcrmp4. The role of PCRMP members during the transmission and hepatic stages of the Plasmodium lifecycle has been evaluated by light- and electron microscopy and by analysis of liver stage development in HEPG2 cells in vitro and by infecting mice with mutant sporozoites. In addition, mice were immunized with live Δpcrmp3 and Δpcrmp4 sporozoites to evaluate their immunization potential as a genetically-attenuated parasite-based vaccine. Results Disruption of pcrmp3 and pcrmp4 in P. berghei revealed that they are also essential for transmission of the parasite through the mosquito vector, although acting in a distinct way to pbcrmp1 and 2. Mutants lacking expression of PCRMP3 or PCRMP4 show normal blood stage development and oocyst formation in the mosquito and develop into morphologically normal sporozoites, but these have a defect in egress from oocysts and do not enter the salivary glands. Sporozoites extracted from oocysts perform gliding motility and invade and infect hepatocytes but do not undergo further development and proliferation. Furthermore, the study shows that immunization with Δcrmp3 and Δcrmp4 sporozoites does not confer protective immunity upon subsequent challenge. Conclusions PCRMP3 and 4 play multiple roles during the Plasmodium life

  7. Cytokine balance in human malaria: does Plasmodium vivax elicit more inflammatory responses than Plasmodium falciparum?

    Directory of Open Access Journals (Sweden)

    Raquel M Gonçalves

    Full Text Available BACKGROUND: The mechanisms by which humans regulate pro- and anti-inflammatory responses on exposure to different malaria parasites remains unclear. Although Plasmodium vivax usually causes a relatively benign disease, this parasite has been suggested to elicit more host inflammation per parasitized red blood cell than P. falciparum. METHODOLOGY/PRINCIPAL FINDINGS: We measured plasma concentrations of seven cytokines and two soluble tumor necrosis factor (TNF-α receptors, and evaluated clinical and laboratory outcomes, in Brazilians with acute uncomplicated infections with P. vivax (n = 85, P. falciparum (n = 30, or both species (n = 12, and in 45 asymptomatic carriers of low-density P. vivax infection. Symptomatic vivax malaria patients, compared to those infected with P. falciparum or both species, had more intense paroxysms, but they had no clear association with a pro-inflammatory imbalance. To the contrary, these patients had higher levels of the regulatory cytokine interleukin (IL-10, which correlated positively with parasite density, and elevated IL-10/TNF-α, IL-10/interferon (IFN-γ, IL-10/IL-6 and sTNFRII/TNF-α ratios, compared to falciparum or mixed-species malaria patient groups. Vivax malaria patients had the highest levels of circulating soluble TNF-α receptor sTNFRII. Levels of regulatory cytokines returned to normal values 28 days after P. vivax clearance following chemotherapy. Finally, asymptomatic carriers of low P. vivax parasitemias had substantially lower levels of both inflammatory and regulatory cytokines than did patients with clinical malaria due to either species. CONCLUSIONS: Controlling fast-multiplying P. falciparum blood stages requires a strong inflammatory response to prevent fulminant infections, while reducing inflammation-related tissue damage with early regulatory cytokine responses may be a more cost-effective strategy in infections with the less virulent P. vivax parasite. The early induction

  8. Genome-wide diversity and differentiation in New World populations of the human malaria parasite Plasmodium vivax.

    Science.gov (United States)

    de Oliveira, Thais C; Rodrigues, Priscila T; Menezes, Maria José; Gonçalves-Lopes, Raquel M; Bastos, Melissa S; Lima, Nathália F; Barbosa, Susana; Gerber, Alexandra L; Loss de Morais, Guilherme; Berná, Luisa; Phelan, Jody; Robello, Carlos; de Vasconcelos, Ana Tereza R; Alves, João Marcelo P; Ferreira, Marcelo U

    2017-07-01

    The Americas were the last continent colonized by humans carrying malaria parasites. Plasmodium falciparum from the New World shows very little genetic diversity and greater linkage disequilibrium, compared with its African counterparts, and is clearly subdivided into local, highly divergent populations. However, limited available data have revealed extensive genetic diversity in American populations of another major human malaria parasite, P. vivax. We used an improved sample preparation strategy and next-generation sequencing to characterize 9 high-quality P. vivax genome sequences from northwestern Brazil. These new data were compared with publicly available sequences from recently sampled clinical P. vivax isolates from Brazil (BRA, total n = 11 sequences), Peru (PER, n = 23), Colombia (COL, n = 31), and Mexico (MEX, n = 19). We found that New World populations of P. vivax are as diverse (nucleotide diversity π between 5.2 × 10-4 and 6.2 × 10-4) as P. vivax populations from Southeast Asia, where malaria transmission is substantially more intense. They display several non-synonymous nucleotide substitutions (some of them previously undescribed) in genes known or suspected to be involved in antimalarial drug resistance, such as dhfr, dhps, mdr1, mrp1, and mrp-2, but not in the chloroquine resistance transporter ortholog (crt-o) gene. Moreover, P. vivax in the Americas is much less geographically substructured than local P. falciparum populations, with relatively little between-population genome-wide differentiation (pairwise FST values ranging between 0.025 and 0.092). Finally, P. vivax populations show a rapid decline in linkage disequilibrium with increasing distance between pairs of polymorphic sites, consistent with very frequent outcrossing. We hypothesize that the high diversity of present-day P. vivax lineages in the Americas originated from successive migratory waves and subsequent admixture between parasite lineages from geographically diverse sites

  9. Identification of a Golgi apparatus protein complex important for the asexual erythrocytic cycle of the malaria parasite Plasmodium falciparum.

    Science.gov (United States)

    Hallée, Stéphanie; Thériault, Catherine; Gagnon, Dominic; Kehrer, Jessica; Frischknecht, Friedrich; Mair, Gunnar R; Richard, Dave

    2018-03-26

    Compared with other eukaryotic cell types, malaria parasites appear to possess a more rudimentary Golgi apparatus being composed of dispersed, unstacked cis and trans-cisternae. Despite playing a central role in the secretory pathway of the parasite, few Plasmodium Golgi resident proteins have been characterised. We had previously identified a new Golgi resident protein of unknown function, which we had named Golgi Protein 1, and now show that it forms a complex with a previously uncharacterised transmembrane protein (Golgi Protein 2, GP2). The Golgi Protein complex localises to the cis-Golgi throughout the erythrocytic cycle and potentially also during the mosquito stages. Analysis of parasite strains where GP1 expression is conditionally repressed and/or the GP2 gene is inactivated reveals that though the Golgi protein complex is not essential at any stage of the parasite life cycle, it is important for optimal asexual development in the blood stages. © 2018 John Wiley & Sons Ltd.

  10. Natural antibody responses to Plasmodium falciparum MSP3 and GLURP(R0) antigens are associated with low parasite densities in malaria patients living in the Central Region of Ghana

    DEFF Research Database (Denmark)

    Amoah, L. E.; Nuvor, S. V.; Obboh, E. K.

    2017-01-01

    Background: Plasmodium falciparum genetic diversity and multiplicity of infection (MOI) are parasite features that have been suggested to influence the acquisition of protective immunity against malaria. This study sought to assess the relationship between MOI and parasite density (PD) in malaria...... and adults diagnosed with uncomplicated P. falciparum malaria. Microscopy was used to estimate P. falciparum parasite density and polymerase chain reaction (PCR) amplification of the polymorphic regions of msp1 (PF3D7-0930300) and msp2 (PF3D7-0206800) was used for parasite genotyping and MOI determination....... The geometric mean (GM) for MOI determined by both msp1 and msp2 genotyping was 1.3 for the entire population and was generally higher in children than in adults. Seropositivity was estimated at 67 and 63% for GLURP(R0) and MSP3 antibodies, respectively, and antibody titers were negatively correlated...

  11. Pitting of malaria parasites and spherocyte formation

    Directory of Open Access Journals (Sweden)

    Gichuki Charity W

    2006-07-01

    Full Text Available Abstract Background A high prevalence of spherocytes was detected in blood smears of children enrolled in a case control study conducted in the malaria holoendemic Lake Victoria basin. It was speculated that the spherocytes reflect intraerythrocytic removal of malarial parasites with a concurrent removal of RBC membrane through a process analogous to pitting of intraerythrocytic inclusion bodies. Pitting and re-circulation of RBCs devoid of malaria parasites could be a host mechanism for parasite clearance while minimizing the anaemia that would occur were the entire parasitized RBC removed. The prior demonstration of RBCs containing ring-infected erythrocyte surface antigen (pf 155 or RESA but no intracellular parasites, support the idea of pitting. Methods An in vitro model was developed to examine the phenomenon of pitting and spherocyte formation in Plasmodium falciparum infected RBCs (iRBC co-incubated with human macrophages. In vivo application of this model was evaluated using blood specimens from patients attending Kisumu Ditrict Hospital. RBCs were probed with anti-RESA monoclonal antibody and a DNA stain (propidium iodide. Flow cytometry and fluorescent microscopy was used to compare RBCs containing both the antigen and the parasites to those that were only RESA positive. Results Co-incubation of iRBC and tumor necrosis factor-alpha activated macrophages led to pitting (14% ± 1.31% macrophages with engulfed trophozoites as opposed to erythrophagocytosis (5.33% ± 0.95% (P Conclusion It is proposed that in malaria holoendemic areas where prevalence of asexual stage parasites approaches 100% in children, RBCs with pitted parasites are re-circulated and pitting may produce spherocytes.

  12. Plasmodium evasion of mosquito immunity and global malaria transmission: The lock-and-key theory.

    Science.gov (United States)

    Molina-Cruz, Alvaro; Canepa, Gaspar E; Kamath, Nitin; Pavlovic, Noelle V; Mu, Jianbing; Ramphul, Urvashi N; Ramirez, Jose Luis; Barillas-Mury, Carolina

    2015-12-08

    Plasmodium falciparum malaria originated in Africa and became global as humans migrated to other continents. During this journey, parasites encountered new mosquito species, some of them evolutionarily distant from African vectors. We have previously shown that the Pfs47 protein allows the parasite to evade the mosquito immune system of Anopheles gambiae mosquitoes. Here, we investigated the role of Pfs47-mediated immune evasion in the adaptation of P. falciparum to evolutionarily distant mosquito species. We found that P. falciparum isolates from Africa, Asia, or the Americas have low compatibility to malaria vectors from a different continent, an effect that is mediated by the mosquito immune system. We identified 42 different haplotypes of Pfs47 that have a strong geographic population structure and much lower haplotype diversity outside Africa. Replacement of the Pfs47 haplotypes in a P. falciparum isolate is sufficient to make it compatible to a different mosquito species. Those parasites that express a Pfs47 haplotype compatible with a given vector evade antiplasmodial immunity and survive. We propose that Pfs47-mediated immune evasion has been critical for the globalization of P. falciparum malaria as parasites adapted to new vector species. Our findings predict that this ongoing selective force by the mosquito immune system could influence the dispersal of Plasmodium genetic traits and point to Pfs47 as a potential target to block malaria transmission. A new model, the "lock-and-key theory" of P. falciparum globalization, is proposed, and its implications are discussed.

  13. The fitness of drug-resistant malaria parasites in a rodent model: multiplicity of infection

    OpenAIRE

    Huijben, Silvie; Sim, Derek G.; Nelson, William, A.; Read, Andrew F.

    2011-01-01

    Malaria infections normally consist of more than one clonally-replicating lineage. Within-host interactions between sensitive and resistant parasites can have profound effects on the evolution of drug resistance. Here, using the Plasmodium chabaudi mouse malaria model, we ask whether the costs and benefits of resistance are affected by the number of co-infecting strains competing with a resistant clone. We found strong competitive suppression of resistant parasites in untreated infections and...

  14. The Puf-family RNA-binding protein Puf2 controls sporozoite conversion to liver stages in the malaria parasite.

    Directory of Open Access Journals (Sweden)

    Katja Müller

    Full Text Available Malaria is a vector-borne infectious disease caused by unicellular, obligate intracellular parasites of the genus Plasmodium. During host switch the malaria parasite employs specialized latent stages that colonize the new host environment. Previous work has established that gametocytes, sexually differentiated stages that are taken up by the mosquito vector, control expression of genes required for mosquito colonization by translational repression. Sexual parasite development is controlled by a DEAD-box RNA helicase of the DDX6 family, termed DOZI. Latency of sporozoites, the transmission stage injected during an infectious blood meal, is controlled by the eIF2alpha kinase IK2, a general inhibitor of protein synthesis. Whether RNA-binding proteins participate in translational regulation in sporozoites remains to be studied. Here, we investigated the roles of two RNA-binding proteins of the Puf-family, Plasmodium Puf1 and Puf2, during sporozoite stage conversion. Our data reveal that, in the rodent malaria parasite P. berghei, Puf2 participates in the regulation of IK2 and inhibits premature sporozoite transformation. Inside mosquito salivary glands puf2⁻ sporozoites transform over time to round forms resembling early intra-hepatic stages. As a result, mutant parasites display strong defects in initiating a malaria infection. In contrast, Puf1 is dispensable in vivo throughout the entire Plasmodium life cycle. Our findings support the notion of a central role for Puf2 in parasite latency during switch between the insect and mammalian hosts.

  15. Evidence-based annotation of the malaria parasite's genome using comparative expression profiling.

    Directory of Open Access Journals (Sweden)

    Yingyao Zhou

    2008-02-01

    Full Text Available A fundamental problem in systems biology and whole genome sequence analysis is how to infer functions for the many uncharacterized proteins that are identified, whether they are conserved across organisms of different phyla or are phylum-specific. This problem is especially acute in pathogens, such as malaria parasites, where genetic and biochemical investigations are likely to be more difficult. Here we perform comparative expression analysis on Plasmodium parasite life cycle data derived from P. falciparum blood, sporozoite, zygote and ookinete stages, and P. yoelii mosquito oocyst and salivary gland sporozoites, blood and liver stages and show that type II fatty acid biosynthesis genes are upregulated in liver and insect stages relative to asexual blood stages. We also show that some universally uncharacterized genes with orthologs in Plasmodium species, Saccharomyces cerevisiae and humans show coordinated transcription patterns in large collections of human and yeast expression data and that the function of the uncharacterized genes can sometimes be predicted based on the expression patterns across these diverse organisms. We also use a comprehensive and unbiased literature mining method to predict which uncharacterized parasite-specific genes are likely to have roles in processes such as gliding motility, host-cell interactions, sporozoite stage, or rhoptry function. These analyses, together with protein-protein interaction data, provide probabilistic models that predict the function of 926 uncharacterized malaria genes and also suggest that malaria parasites may provide a simple model system for the study of some human processes. These data also provide a foundation for further studies of transcriptional regulation in malaria parasites.

  16. Análisis proteómico de Plasmodium, el agente causal de la malaria Proteomic analysis of Plasmodium, the causal agent of Malaria

    Directory of Open Access Journals (Sweden)

    Ivone Castro R

    2009-01-01

    Full Text Available Los plasmodios son protozoarios cuyo complejo ciclo de vida se lleva a cabo en dos hospederos, el vertebrado y el mosquito. La infección de los seres humanos produce la enfermedad conocida como malaria. La secuenciación del genoma de Plasmodium falciparum y el desarrollo de la proteómica han permitido un gran avance en el conocimiento de la biología de este letal parásito. La presente revisión se centra en describir los logros recientes en el estudio del proteoma de Plasmodium falciparum y algunas de las implicaciones en la búsqueda de nuevos fármacos antimaláricos, así como en la generación de vacunas para el control de la enfermedad.Plasmodia are protozoa whose complex life cycle takes place in two different hosts, the vertebrate and the mosquito. The human infection produces the malaria disease. The genome sequence of Plasmodium falciparum and the proteomic tools have enabled a huge advance in knowledge of the biology of this parasite. This review will focus on the recent advances in proteomic studies of Plasmodium falciparum and some implications for the search of new antimalarial drugs as well as vaccines for the control of the disease.

  17. Environmental Constraints Guide Migration of Malaria Parasites during Transmission

    Science.gov (United States)

    Hellmann, Janina Kristin; Münter, Sylvia; Kudryashev, Mikhail; Schulz, Simon; Heiss, Kirsten; Müller, Ann-Kristin; Matuschewski, Kai; Spatz, Joachim P.; Schwarz, Ulrich S.; Frischknecht, Friedrich

    2011-01-01

    Migrating cells are guided in complex environments mainly by chemotaxis or structural cues presented by the surrounding tissue. During transmission of malaria, parasite motility in the skin is important for Plasmodium sporozoites to reach the blood circulation. Here we show that sporozoite migration varies in different skin environments the parasite encounters at the arbitrary sites of the mosquito bite. In order to systematically examine how sporozoite migration depends on the structure of the environment, we studied it in micro-fabricated obstacle arrays. The trajectories observed in vivo and in vitro closely resemble each other suggesting that structural constraints can be sufficient to guide Plasmodium sporozoites in complex environments. Sporozoite speed in different environments is optimized for migration and correlates with persistence length and dispersal. However, this correlation breaks down in mutant sporozoites that show adhesion impairment due to the lack of TRAP-like protein (TLP) on their surfaces. This may explain their delay in infecting the host. The flexibility of sporozoite adaption to different environments and a favorable speed for optimal dispersal ensures efficient host switching during malaria transmission. PMID:21698220

  18. Identification and characterization of a liver stage-specific promoter region of the malaria parasite Plasmodium.

    Directory of Open Access Journals (Sweden)

    Susanne Helm

    Full Text Available During the blood meal of a Plasmodium-infected mosquito, 10 to 100 parasites are inoculated into the skin and a proportion of these migrate via the bloodstream to the liver where they infect hepatocytes. The Plasmodium liver stage, despite its clinical silence, represents a highly promising target for antimalarial drug and vaccine approaches. Successfully invaded parasites undergo a massive proliferation in hepatocytes, producing thousands of merozoites that are transported into a blood vessel to infect red blood cells. To successfully develop from the liver stage into infective merozoites, a tight regulation of gene expression is needed. Although this is a very interesting aspect in the biology of Plasmodium, little is known about gene regulation in Plasmodium parasites in general and in the liver stage in particular. We have functionally analyzed a novel promoter region of the rodent parasite Plasmodium berghei that is exclusively active during the liver stage of the parasite. To prove stage-specific activity of the promoter, GFP and luciferase reporter assays have been successfully established, allowing both qualitative and accurate quantitative analysis. To further characterize the promoter region, the transcription start site was mapped by rapid amplification of cDNA ends (5'-RACE. Using promoter truncation experiments and site-directed mutagenesis within potential transcription factor binding sites, we suggest that the minimal promoter contains more than one binding site for the recently identified parasite-specific ApiAP2 transcription factors. The identification of a liver stage-specific promoter in P. berghei confirms that the parasite is able to tightly regulate gene expression during its life cycle. The identified promoter region might now be used to study the biology of the Plasmodium liver stage, which has thus far proven problematic on a molecular level. Stage-specific expression of dominant-negative mutant proteins and

  19. Crystallization and preliminary crystallographic analysis of orotidine 5′-monophosphate decarboxylase from the human malaria parasite Plasmodium falciparum

    International Nuclear Information System (INIS)

    Krungkrai, Sudaratana R.; Tokuoka, Keiji; Kusakari, Yukiko; Inoue, Tsuyoshi; Adachi, Hiroaki; Matsumura, Hiroyoshi; Takano, Kazufumi; Murakami, Satoshi; Mori, Yusuke; Kai, Yasushi; Krungkrai, Jerapan; Horii, Toshihiro

    2006-01-01

    Orotidine 5′-monophosphate decarboxylase of human malaria parasite P. falciparum was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation. Orotidine 5′-monophosphate (OMP) decarboxylase (OMPDC; EC 4.1.1.23) catalyzes the final step in the de novo synthesis of uridine 5′-monophosphate (UMP) and defects in the enzyme are lethal in the malaria parasite Plasmodium falciparum. Active recombinant P. falciparum OMPDC (PfOMPDC) was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation at the Swiss Light Source. The crystal exhibits trigonal symmetry (space group R3), with hexagonal unit-cell parameters a = b = 201.81, c = 44.03 Å. With a dimer in the asymmetric unit, the solvent content is 46% (V M = 2.3 Å 3 Da −1 )

  20. Complete avian malaria parasite genomes reveal features associated with lineage-specific evolution in birds and mammals

    Science.gov (United States)

    Böhme, Ulrike; Otto, Thomas D.; Cotton, James A.; Steinbiss, Sascha; Sanders, Mandy; Oyola, Samuel O.; Nicot, Antoine; Gandon, Sylvain; Patra, Kailash P.; Herd, Colin; Bushell, Ellen; Modrzynska, Katarzyna K.; Billker, Oliver; Vinetz, Joseph M.; Rivero, Ana; Newbold, Chris I.; Berriman, Matthew

    2018-01-01

    Avian malaria parasites are prevalent around the world and infect a wide diversity of bird species. Here, we report the sequencing and analysis of high-quality draft genome sequences for two avian malaria species, Plasmodium relictum and Plasmodium gallinaceum. We identify 50 genes that are specific to avian malaria, located in an otherwise conserved core of the genome that shares gene synteny with all other sequenced malaria genomes. Phylogenetic analysis suggests that the avian malaria species form an outgroup to the mammalian Plasmodium species, and using amino acid divergence between species, we estimate the avian- and mammalian-infective lineages diverged in the order of 10 million years ago. Consistent with their phylogenetic position, we identify orthologs of genes that had previously appeared to be restricted to the clades of parasites containing Plasmodium falciparum and Plasmodium vivax, the species with the greatest impact on human health. From these orthologs, we explore differential diversifying selection across the genus and show that the avian lineage is remarkable in the extent to which invasion-related genes are evolving. The subtelomeres of the P. relictum and P. gallinaceum genomes contain several novel gene families, including an expanded surf multigene family. We also identify an expansion of reticulocyte binding protein homologs in P. relictum, and within these proteins, we detect distinct regions that are specific to nonhuman primate, humans, rodent, and avian hosts. For the first time in the Plasmodium lineage, we find evidence of transposable elements, including several hundred fragments of LTR-retrotransposons in both species and an apparently complete LTR-retrotransposon in the genome of P. gallinaceum. PMID:29500236

  1. Enhanced Transmission of Drug-Resistant Parasites to Mosquitoes following Drug Treatment in Rodent Malaria

    OpenAIRE

    Bell, Andrew S.; Huijben, Silvie; Paaijmans, Krijn P.; Sim, Derek G.; Chan, Brian H. K.; Nelson, William A.; Read, Andrew F.

    2012-01-01

    The evolution of drug resistant Plasmodium parasites is a major challenge to effective malaria control. In theory, competitive interactions between sensitive parasites and resistant parasites within infections are a major determinant of the rate at which parasite evolution undermines drug efficacy. Competitive suppression of resistant parasites in untreated hosts slows the spread of resistance; competitive release following treatment enhances it. Here we report that for the murine model Plasm...

  2. Short report: entomologic inoculation rates and Plasmodium falciparum malaria prevalence in Africa.

    Science.gov (United States)

    Beier, J C; Killeen, G F; Githure, J I

    1999-07-01

    Epidemiologic patterns of malaria infection are governed by environmental parameters that regulate vector populations of Anopheles mosquitoes. The intensity of malaria parasite transmission is normally expressed as the entomologic inoculation rate (EIR), the product of the vector biting rate times the proportion of mosquitoes infected with sporozoite-stage malaria parasites. Malaria transmission intensity in Africa is highly variable with annual EIRs ranging from 1,000 infective bites per person per year. Malaria control programs often seek to reduce morbidity and mortality due to malaria by reducing or eliminating malaria parasite transmission by mosquitoes. This report evaluates data from 31 sites throughout Africa to establish fundamental relationships between annual EIRs and the prevalence of Plasmodium falciparum malaria infection. The majority of sites fitted a linear relationship (r2 = 0.71) between malaria prevalence and the logarithm of the annual EIR. Some sites with EIRs 80%. The basic relationship between EIR and P. falciparum prevalence, which likely holds in east and west Africa, and across different ecologic zones, shows convincingly that substantial reductions in malaria prevalence are likely to be achieved only when EIRs are reduced to levels less than 1 infective bite per person per year. The analysis also highlights that the EIR is a more direct measure of transmission intensity than traditional measures of malaria prevalence or hospital-based measures of infection or disease incidence. As such, malaria field programs need to consider both entomologic and clinical assessments of the efficacy of transmission control measures.

  3. Plasmodial Hsp70s are functionally adapted to the malaria parasite life cycle

    Directory of Open Access Journals (Sweden)

    Jude M Przyborski

    2015-06-01

    Full Text Available The human malaria parasite, Plasmodium falciparum, encodes a minimal complement of six heat shock protein 70s (PfHSP70s, some of which are highly expressed and are thought to play an important role in the survival and pathology of the parasite. In addition to canonical features of molecular chaperones, these HSP70s possess properties that reflect functional adaptation to a parasitic life style, including resistance to thermal insult during fever periods and host-parasite interactions. The parasite even exports an HSP70 to the host cell where it is likely to be involved in host cell modification. This review focuses on the features of the PfHSP70s, particularly with respect to their adaptation to the malaria parasite life cycle.

  4. Malaria and intestinal parasites in pregnant and non-pregnant women

    African Journals Online (AJOL)

    In sub-Sahara African countries, both malaria and intestinal helminth infections are endemic and co-infection commonly occurs. It is estimated that over a third of the world's population, mainly in the tropics and sub-tropics are infected with parasitic helminths and Plasmodium species thus often leading to co-infections.

  5. The pathogenesis of Plasmodium falciparum malaria in humans: insights from splenic physiology

    Science.gov (United States)

    Safeukui, Innocent; Deplaine, Guillaume; Brousse, Valentine; Prendki, Virginie; Thellier, Marc; Turner, Gareth D.; Mercereau-Puijalon, Odile

    2011-01-01

    Clinical manifestations of Plasmodium falciparum infection are induced by the asexual stages of the parasite that develop inside red blood cells (RBCs). Because splenic microcirculatory beds filter out altered RBCs, the spleen can innately clear subpopulations of infected or uninfected RBC modified during falciparum malaria. The spleen appears more protective against severe manifestations of malaria in naïve than in immune subjects. The spleen-specific pitting function accounts for a large fraction of parasite clearance in artemisinin-treated patients. RBC loss contributes to malarial anemia, a clinical form associated with subacute progression, frequent splenomegaly, and relatively low parasitemia. Stringent splenic clearance of ring-infected RBCs and uninfected, but parasite-altered, RBCs, may altogether exacerbate anemia and reduce the risks of severe complications associated with high parasite loads, such as cerebral malaria. The age of the patient directly influences the risk of severe manifestations. We hypothesize that coevolution resulting in increased splenic clearance of P. falciparum–altered RBCs in children favors the survival of the host and, ultimately, sustained parasite transmission. This analysis of the RBC–spleen dynamic interactions during P falciparum infection reflects both data and hypotheses, and provides a framework on which a more complete immunologic understanding of malaria pathogenesis may be elaborated. PMID:20852127

  6. Transplacental Transmission of Plasmodium falciparum in a Highly Malaria Endemic Area of Burkina Faso

    Directory of Open Access Journals (Sweden)

    Alphonse Ouédraogo

    2012-01-01

    Full Text Available Malaria congenital infection constitutes a major risk in malaria endemic areas. In this study, we report the prevalence of transplacental malaria in Burkina Faso. In labour and delivery units, thick and thin blood films were made from maternal, placental, and umbilical cord blood to determine malaria infection. A total of 1,309 mother/baby pairs were recruited. Eighteen cord blood samples (1.4% contained malaria parasites (Plasmodium falciparum. Out of the 369 (28.2% women with peripheral positive parasitemia, 211 (57.2% had placental malaria and 14 (3.8% had malaria parasites in their umbilical cord blood. The umbilical cord parasitemia levels were statistically associated with the presence of maternal peripheral parasitemia (OR=9.24, ≪0.001, placental parasitemia (OR=10.74, ≪0.001, high-density peripheral parasitemia (OR=9.62, ≪0.001, and high-density placental parasitemia (OR=4.91, =0.03. In Burkina Faso, the mother-to-child transmission rate of malaria appears to be low.

  7. In-Silico detection of chokepoints enzymes in four plasmodium species

    African Journals Online (AJOL)

    Of the over 156 species of Plasmodium that infect vertebrates, only four infect man: Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale and Plasmodium malariae. Other species infect other animals including birds, reptiles and rodents. The rodent malaria parasites are Plasmodium berghei, Plasmodium yoelii, ...

  8. Plasmodium subtilisin-like protease 1 (SUB1): insights into the active-site structure, specificity and function of a pan-malaria drug target.

    Science.gov (United States)

    Withers-Martinez, Chrislaine; Suarez, Catherine; Fulle, Simone; Kher, Samir; Penzo, Maria; Ebejer, Jean-Paul; Koussis, Kostas; Hackett, Fiona; Jirgensons, Aigars; Finn, Paul; Blackman, Michael J

    2012-05-15

    Release of the malaria merozoite from its host erythrocyte (egress) and invasion of a fresh cell are crucial steps in the life cycle of the malaria pathogen. Subtilisin-like protease 1 (SUB1) is a parasite serine protease implicated in both processes. In the most dangerous human malarial species, Plasmodium falciparum, SUB1 has previously been shown to have several parasite-derived substrates, proteolytic cleavage of which is important both for egress and maturation of the merozoite surface to enable invasion. Here we have used molecular modelling, existing knowledge of SUB1 substrates, and recombinant expression and characterisation of additional Plasmodium SUB1 orthologues, to examine the active site architecture and substrate specificity of P. falciparum SUB1 and its orthologues from the two other major human malaria pathogens Plasmodium vivax and Plasmodium knowlesi, as well as from the rodent malaria species, Plasmodium berghei. Our results reveal a number of unusual features of the SUB1 substrate binding cleft, including a requirement to interact with both prime and non-prime side residues of the substrate recognition motif. Cleavage of conserved parasite substrates is mediated by SUB1 in all parasite species examined, and the importance of this is supported by evidence for species-specific co-evolution of protease and substrates. Two peptidyl alpha-ketoamides based on an authentic PfSUB1 substrate inhibit all SUB1 orthologues examined, with inhibitory potency enhanced by the presence of a carboxyl moiety designed to introduce prime side interactions with the protease. Our findings demonstrate that it should be possible to develop 'pan-reactive' drug-like compounds that inhibit SUB1 in all three major human malaria pathogens, enabling production of broad-spectrum antimalarial drugs targeting SUB1. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  9. Genome-wide functional analysis of plasmodium protein phosphatases reveals key regulators of parasite development and differentiation

    KAUST Repository

    Guttery, David  S.; Poulin, Benoit; Ramaprasad, Abhinay; Wall, Richard  J.; Ferguson, David  J.P.; Brady, Declan; Patzewitz, Eva-Maria; Whipple, Sarah; Straschil, Ursula; Wright, Megan  H.; Mohamed, Alyaa  M.A.H.; Radhakrishnan, Anand; Arold, Stefan T.; Tate, Edward  W.; Holder, Anthony  A.; Wickstead, Bill; Pain, Arnab; Tewari, Rita

    2014-01-01

    Reversible protein phosphorylation regulated by kinases and phosphatases controls many cellular processes. Although essential functions for the malaria parasite kinome have been reported, the roles of most protein phosphatases (PPs) during Plasmodium development are unknown. We report a functional analysis of the Plasmodium berghei protein phosphatome, which exhibits high conservation with the P. falciparum phosphatome and comprises 30 predicted PPs with differential and distinct expression patterns during various stages of the life cycle. Gene disruption analysis of P. berghei PPs reveals that half of the genes are likely essential for asexual blood stage development, whereas six are required for sexual development/sporogony in mosquitoes. Phenotypic screening coupled with transcriptome sequencing unveiled morphological changes and altered gene expression in deletion mutants of two N-myristoylated PPs. These findings provide systematic functional analyses of PPs in Plasmodium, identify how phosphatases regulate parasite development and differentiation, and can inform the identification of drug targets for malaria. © 2014 The Authors.

  10. Genome-wide functional analysis of plasmodium protein phosphatases reveals key regulators of parasite development and differentiation

    KAUST Repository

    Guttery, David S.

    2014-07-09

    Reversible protein phosphorylation regulated by kinases and phosphatases controls many cellular processes. Although essential functions for the malaria parasite kinome have been reported, the roles of most protein phosphatases (PPs) during Plasmodium development are unknown. We report a functional analysis of the Plasmodium berghei protein phosphatome, which exhibits high conservation with the P. falciparum phosphatome and comprises 30 predicted PPs with differential and distinct expression patterns during various stages of the life cycle. Gene disruption analysis of P. berghei PPs reveals that half of the genes are likely essential for asexual blood stage development, whereas six are required for sexual development/sporogony in mosquitoes. Phenotypic screening coupled with transcriptome sequencing unveiled morphological changes and altered gene expression in deletion mutants of two N-myristoylated PPs. These findings provide systematic functional analyses of PPs in Plasmodium, identify how phosphatases regulate parasite development and differentiation, and can inform the identification of drug targets for malaria. © 2014 The Authors.

  11. Pengembangan Mikroskop Dengan Mikrokontroler dan Cahaya Monokromatik Untuk Mendeteksi Parasit Malaria

    Directory of Open Access Journals (Sweden)

    Ida Susanti

    2017-10-01

    Full Text Available Malaria still become one of major health burden in Indonesia especially in remote areas of east Indonesia. Golden standard of malaria parasite detection is still microscopic technique using polychromatic light source whether from halogen or natural light source. A microscopic technique has a lot of benefits but still have weaknesses, such as time-consuming and bias on the reading by microscopist, because of artifact in the image. Aims of this study were to designed malaria parasites detection tool that is robust, fast, convenient and clear by minimizing artifact on the slide. Design of this study was laboratory experimental which modified simple microscope into an automatic microscope with table movement and webcam recording using a microcontroller and monochromatic light source. The wavelength of the light sources was 402nm(blue, 532 nm (green and 650 nm (red, the intensity of each source differed. The reading of the slide image was conducted by two certified microscopists, who read 60 images of a thick and thin slide with three different live stage of Plasmodium falciparum live, which wearing, trophozoite and schizont. This study showed that modification of microscope was succeeded with automatic movement and webcam recording, process time in one step movement and recording approximately 10 seconds or 17minutes for 100 fields of view as confirmation process. The monochromatic light source has proven to give a clear and contrast field of view when the intensities were higher than 40 mW and the certified microscopist able to identified Plasmodium falciparum parasites. Data analysis of microscopist reading used nonparametric statistic Friedman by SPSS showed that correlation between images using monochromatic and polychromatic lights have meaningless differences in a thick and thin slide. However, hemozoin as a marker of Plasmodium falciparum parasite was less detected by monochromatic light used in this study.

  12. The structural basis for CD36 binding by the malaria parasite

    DEFF Research Database (Denmark)

    Hsieh, Fu-Lien; Turner, Louise; Bolla, Jani Reddy

    2016-01-01

    CD36 is a scavenger receptor involved in fatty acid metabolism, innate immunity and angiogenesis. It interacts with lipoprotein particles and facilitates uptake of long chain fatty acids. It is also the most common target of the PfEMP1 proteins of the malaria parasite, Plasmodium falciparum...

  13. Malaria Parasite Metabolic Pathways (MPMP) Upgraded with Targeted Chemical Compounds

    KAUST Repository

    Ginsburg, Hagai

    2015-10-31

    Malaria Parasite Metabolic Pathways (MPMP) is the website for the functional genomics of intraerythrocytic Plasmodium falciparum. All the published information about targeted chemical compounds has now been added. Users can find the drug target and publication details linked to a drug database for further information about the medicinal properties of each compound.

  14. Malaria Parasite Metabolic Pathways (MPMP) Upgraded with Targeted Chemical Compounds

    KAUST Repository

    Ginsburg, Hagai; Abdel-Haleem, Alyaa M.

    2015-01-01

    Malaria Parasite Metabolic Pathways (MPMP) is the website for the functional genomics of intraerythrocytic Plasmodium falciparum. All the published information about targeted chemical compounds has now been added. Users can find the drug target and publication details linked to a drug database for further information about the medicinal properties of each compound.

  15. Reassessment of asymptomatic carriers of Plasmodium spp. in an endemic area with a very low incidence of malaria in extra-Amazonian Brazil.

    Science.gov (United States)

    de Alencar, Filomena E C; Malafronte, Rosely Dos Santos; Cerutti, Crispim; Natal Fernandes, Lícia; Buery, Julyana Cerqueira; Fux, Blima; Rezende, Helder Ricas; Miranda, Angelica Espinosa

    2017-11-09

    Regions with residual transmission are potential obstacles to the elimination of malaria. It is, therefore, essential to understand the factors associated with the maintenance of endemic malaria in these areas. The objective was to investigate whether the status of asymptomatic carriers of Plasmodium spp. DNA is maintained in the long term in an extra-Amazonian region of Brazil with low incidence, residual malaria transmission. Asymptomatic carriers of Plasmodium DNA detected in a survey carried out between 2001 and 2004 were reassessed between 2010 and 2011 using questionnaires, PCR and thick and thin blood smear tests three times at 3-month intervals. Of the 48 carriers detected between 2001 and 2004, 37 were located. Of these, only two had positive PCR results and, as in the first survey, Plasmodium malariae DNA was detected. The findings suggest that untreated dwellers from this extra-Amazonian region, who initially harbour malaria parasites, may become negative without ever developing apparent symptoms of the disease. Although the possibility of re-infection cannot be ruled out, the finding of two individuals harbouring P. malariae, both in the first and in the second survey, may be compatible with a long-term carrier state for this parasite. Since most clinical cases of malaria in the region are a consequence of infection by Plasmodium vivax, the epidemiological impact of such long-term carriage would be limited.

  16. Nested PCR detection of Plasmodium malariae from microscopy confirmed P. falciparum samples in endemic area of NE India.

    Science.gov (United States)

    Dhiman, Sunil; Goswami, Diganta; Kumar, Dinesh; Rabha, Bipul; Sharma, Dhirendra Kumar; Bhola, Rakesh Kumar; Baruah, Indra; Veer, Vijay

    2013-11-01

    The present study evaluates the performance of OptiMAL-IT test and nested PCR assay in detection of malaria parasites. A total of 76 randomly selected blood samples collected from two malaria endemic areas were tested for malaria parasites using microscopy and OptiMAL-IT test in the field. PCR assays were performed in the laboratory using DNA extracted from blood spots of the same samples collected on the FTA classic cards. Of the total of 61 field confirmed malaria positive samples, only 58 (95%) were detected positive using microscopy in the laboratory. Sensitivity, specificity, positive predictive value, negative predictive value and false discovery rate of OptiMal-IT in comparison to the microscopy were 93%, 83%, 95%, 79% and 5%, respectively. On the other hand, the sensitivity and specificity of PCR assay were 97% and 100%, respectively, whereas positive predictive value, negative predictive value and false discovery rate were 100%, 90% and 0%, respectively. The overall performance of OptiMal-IT and PCR assays for malaria diagnosis was 76% and 97%, respectively. PCR assay enabled the identification of infection with Plasmodium malariae Laveran, 1881 in four samples misidentified by microscopy and Plasmodium-specific antigen (PAN) identified by the OptiMAL-IT test. In addition to the standard methods, such PCR assay could be useful to obtain the real incidence of each malaria parasite species for epidemiological perspectives.

  17. An essential malaria protein defines the architecture of blood-stage and transmission-stage parasites.

    Science.gov (United States)

    Absalon, Sabrina; Robbins, Jonathan A; Dvorin, Jeffrey D

    2016-04-28

    Blood-stage replication of the human malaria parasite Plasmodium falciparum occurs via schizogony, wherein daughter parasites are formed by a specialized cytokinesis known as segmentation. Here we identify a parasite protein, which we name P. falciparum Merozoite Organizing Protein (PfMOP), as essential for cytokinesis of blood-stage parasites. We show that, following PfMOP knockdown, parasites undergo incomplete segmentation resulting in a residual agglomerate of partially divided cells. While organelles develop normally, the structural scaffold of daughter parasites, the inner membrane complex (IMC), fails to form in this agglomerate causing flawed segmentation. In PfMOP-deficient gametocytes, the IMC formation defect causes maturation arrest with aberrant morphology and death. Our results provide insight into the mechanisms of replication and maturation of malaria parasites.

  18. Rapid identification of genes controlling virulence and immunity in malaria parasites

    KAUST Repository

    Abkallo, Hussein M.

    2017-07-13

    Identifying the genetic determinants of phenotypes that impact disease severity is of fundamental importance for the design of new interventions against malaria. Here we present a rapid genome-wide approach capable of identifying multiple genetic drivers of medically relevant phenotypes within malaria parasites via a single experiment at single gene or allele resolution. In a proof of principle study, we found that a previously undescribed single nucleotide polymorphism in the binding domain of the erythrocyte binding like protein (EBL) conferred a dramatic change in red blood cell invasion in mutant rodent malaria parasites Plasmodium yoelii. In the same experiment, we implicated merozoite surface protein 1 (MSP1) and other polymorphic proteins, as the major targets of strain-specific immunity. Using allelic replacement, we provide functional validation of the substitution in the EBL gene controlling the growth rate in the blood stages of the parasites.

  19. Host scavenger receptor SR-BI plays a dual role in the establishment of malaria parasite liver infection

    NARCIS (Netherlands)

    Rodrigues, Cristina D.; Hannus, Michael; Prudencio, Miguel; Martin, Cecilie; Goncalves, Ligia A.; Portugal, Silvia; Epiphanio, Sabrina; Akinc, Akin; Hadwiger, Philipp; Jahn-Hofmann, Kerstin; Roehl, Ingo; van Gemert, Geert-Jan; Franetich, Jean-Francois; Luty, Adrian J. F.; Sauerwein, Robert; Mazier, Dominique; Koteliansky, Victor; Vornlocher, Hans-Peter; Echeverri, Christophe J.; Mota, Maria M.

    2008-01-01

    An obligatory step of malaria parasite infection is Plasmodium sporozoite invasion of host hepatocytes, and host lipoprotein clearance pathways have been linked to Plasmodium liver infection. By using RNA interference to screen lipoprotein-related host factors, we show here that the class B, type I

  20. Does Magnetic Field Affect Malaria Parasite Replication in Human Red Blood Cells?

    Science.gov (United States)

    Chanturiya, Alexandr N.; Glushakova, Svetlana; Yin, Dan; Zimmerberg, Joshua

    2004-01-01

    Digestion of red blood cell (RBC) hemoglobin by the malaria parasite results in the formation of paramagnetic hemazoin crystals inside the parasite body. A number of reports suggest that magnetic field interaction with hamazoin crystals significantly reduces the number of infected cells in culture, and thus magnetic field can be used to combat malaria. We studies the effects of magnetic filed on the Plasmodium falciparum asexual life cycle inside RBCs under various experimental conditions. No effect was found during prolonged exposure of infected RBCs to constant magnetic fields up to 6000 Gauss. Infected RBCs were also exposed, under temperature-controlled conditions, to oscillating magnetic fields with frequencies in the range of 500-20000 kHz, and field strength 30-600 Gauss. This exposure often changed the proportion of different parasite stages in treated culture compared to controls. However, no significant effect on parasitemia was observed in treated cultures. This result indicates that the magnetic field effect on Plasmodium falciparum is negligible, or that hypothetical negative and positive effects on different stages within one 48-hour compensate each other.

  1. Protocol for production of a genetic cross of the rodent malaria parasites.

    Science.gov (United States)

    Pattaradilokrat, Sittiporn; Li, Jian; Su, Xin-zhuan

    2011-01-03

    Variation in response to antimalarial drugs and in pathogenicity of malaria parasites is of biologic and medical importance. Linkage mapping has led to successful identification of genes or loci underlying various traits in malaria parasites of rodents and humans. The malaria parasite Plasmodium yoelii is one of many malaria species isolated from wild African rodents and has been adapted to grow in laboratories. This species reproduces many of the biologic characteristics of the human malaria parasites; genetic markers such as microsatellite and amplified fragment length polymorphism (AFLP) markers have also been developed for the parasite. Thus, genetic studies in rodent malaria parasites can be performed to complement research on Plasmodium falciparum. Here, we demonstrate the techniques for producing a genetic cross in P. yoelii that were first pioneered by Drs. David Walliker, Richard Carter, and colleagues at the University of Edinburgh. Genetic crosses in P. yoelii and other rodent malaria parasites are conducted by infecting mice Mus musculus with an inoculum containing gametocytes of two genetically distinct clones that differ in phenotypes of interest and by allowing mosquitoes to feed on the infected mice 4 days after infection. The presence of male and female gametocytes in the mouse blood is microscopically confirmed before feeding. Within 48 hrs after feeding, in the midgut of the mosquito, the haploid gametocytes differentiate into male and female gametes, fertilize, and form a diploid zygote (Fig. 1). During development of a zygote into an ookinete, meiosis appears to occur. If the zygote is derived through cross-fertilization between gametes of the two genetically distinct parasites, genetic exchanges (chromosomal reassortment and cross-overs between the non-sister chromatids of a pair of homologous chromosomes; Fig. 2) may occur, resulting in recombination of genetic material at homologous loci. Each zygote undergoes two successive nuclear

  2. Phenotypic dissection of a Plasmodium-refractory strain of malaria vector Anopheles stephensi: the reduced susceptibility to P. berghei and P. yoelii.

    Directory of Open Access Journals (Sweden)

    Naoaki Shinzawa

    Full Text Available Anopheline mosquitoes are the major vectors of human malaria. Parasite-mosquito interactions are a critical aspect of disease transmission and a potential target for malaria control. Current investigations into parasite-mosquito interactions frequently assume that genetically resistant and susceptible mosquitoes exist in nature. Therefore, comparisons between the Plasmodium susceptibility profiles of different mosquito species may contribute to a better understanding of vectorial capacity. Anopheles stephensi is an important malaria vector in central and southern Asia and is widely used as a laboratory model of parasite transmission due to its high susceptibility to Plasmodium infection. In the present study, we identified a rodent malaria-refractory strain of A. stephensi mysorensis (Ehime by comparative study of infection susceptibility. A very low number of oocysts develop in Ehime mosquitoes infected with P. berghei and P. yoelii, as determined by evaluation of developed oocysts on the basal lamina. A stage-specific study revealed that this reduced susceptibility was due to the impaired formation of ookinetes of both Plasmodium species in the midgut lumen and incomplete crossing of the midgut epithelium. There were no apparent abnormalities in the exflagellation of male parasites in the ingested blood or the maturation of oocysts after the rounding up of the ookinetes. Overall, these results suggest that invasive-stage parasites are eliminated in both the midgut lumen and epithelium in Ehime mosquitoes by strain-specific factors that remain unknown. The refractory strain newly identified in this report would be an excellent study system for investigations into novel parasite-mosquito interactions in the mosquito midgut.

  3. Increased eosinophil activity in acute Plasmodium falciparum infection - association with cerebral malaria

    DEFF Research Database (Denmark)

    Kurtzhals, J A; Reimert, C M; Tette, E

    1998-01-01

    To assess the eosinophil response to Plasmodium falciparum infection a cohort of initially parasite-free Ghanaian children was followed for 3 months. Seven of nine children who acquired an asymptomatic P. falciparum infection showed increase in eosinophil counts, while a decrease was found in seven...... of nine children with symptomatic malaria, and no change was observed in 14 children who remained parasite-free. In a hospital-based study, paediatric patients with cerebral malaria (CM), severe anaemia (SA), or uncomplicated malaria (UM) had uniformly low eosinophil counts during the acute illness...... followed by eosinophilia 30 days after cure. Plasma levels of eosinophil cationic protein (ECP) and eosinophil protein X (EPX) were measured as indicators of eosinophil activation. In spite of the low eosinophil counts, ECP levels were increased on day 0 and significantly higher in patients with CM...

  4. NSR-seq transcriptional profiling enables identification of a gene signature of Plasmodium falciparum parasites infecting children

    OpenAIRE

    Vignali, Marissa; Armour, Christopher D.; Chen, Jingyang; Morrison, Robert; Castle, John C.; Biery, Matthew C.; Bouzek, Heather; Moon, Wonjong; Babak, Tomas; Fried, Michal; Raymond, Christopher K.; Duffy, Patrick E.

    2011-01-01

    Malaria caused by Plasmodium falciparum results in approximately 1 million annual deaths worldwide, with young children and pregnant mothers at highest risk. Disease severity might be related to parasite virulence factors, but expression profiling studies of parasites to test this hypothesis have been hindered by extensive sequence variation in putative virulence genes and a prep...

  5. Robust inducible Cre recombinase activity in the human malaria parasite Plasmodium falciparum enables efficient gene deletion within a single asexual erythrocytic growth cycle.

    Science.gov (United States)

    Collins, Christine R; Das, Sujaan; Wong, Eleanor H; Andenmatten, Nicole; Stallmach, Robert; Hackett, Fiona; Herman, Jean-Paul; Müller, Sylke; Meissner, Markus; Blackman, Michael J

    2013-05-01

    Asexual blood stages of the malaria parasite, which cause all the pathology associated with malaria, can readily be genetically modified by homologous recombination, enabling the functional study of parasite genes that are not essential in this part of the life cycle. However, no widely applicable method for conditional mutagenesis of essential asexual blood-stage malarial genes is available, hindering their functional analysis. We report the application of the DiCre conditional recombinase system to Plasmodium falciparum, the causative agent of the most dangerous form of malaria. We show that DiCre can be used to obtain rapid, highly regulated site-specific recombination in P. falciparum, capable of excising loxP-flanked sequences from a genomic locus with close to 100% efficiency within the time-span of a single erythrocytic growth cycle. DiCre-mediated deletion of the SERA5 3' UTR failed to reduce expression of the gene due to the existence of alternative cryptic polyadenylation sites within the modified locus. However, we successfully used the system to recycle the most widely used drug resistance marker for P. falciparum, human dihydrofolate reductase, in the process producing constitutively DiCre-expressing P. falciparum clones that have broad utility for the functional analysis of essential asexual blood-stage parasite genes. © 2013 John Wiley & Sons Ltd.

  6. Phylogeographic Evidence for 2 Genetically Distinct Zoonotic Plasmodium knowlesi Parasites, Malaysia.

    Science.gov (United States)

    Yusof, Ruhani; Ahmed, Md Atique; Jelip, Jenarun; Ngian, Hie Ung; Mustakim, Sahlawati; Hussin, Hani Mat; Fong, Mun Yik; Mahmud, Rohela; Sitam, Frankie Anak Thomas; Japning, J Rovie-Ryan; Snounou, Georges; Escalante, Ananias A; Lau, Yee Ling

    2016-08-01

    Infections of humans with the zoonotic simian malaria parasite Plasmodium knowlesi occur throughout Southeast Asia, although most cases have occurred in Malaysia, where P. knowlesi is now the dominant malaria species. This apparently skewed distribution prompted an investigation of the phylogeography of this parasite in 2 geographically separated regions of Malaysia, Peninsular Malaysia and Malaysian Borneo. We investigated samples collected from humans and macaques in these regions. Haplotype network analyses of sequences from 2 P. knowlesi genes, type A small subunit ribosomal 18S RNA and cytochrome c oxidase subunit I, showed 2 genetically distinct divergent clusters, 1 from each of the 2 regions of Malaysia. We propose that these parasites represent 2 distinct P. knowlesi types that independently became zoonotic. These types would have evolved after the sea-level rise at the end of the last ice age, which separated Malaysian Borneo from Peninsular Malaysia.

  7. Proteomic profiling of Plasmodium sporozoite maturation identifies new proteins essential for parasite development and infectivity.

    NARCIS (Netherlands)

    Lasonder, E.; Janse, C.J.; Gemert, G.J.A. van; Mair, G.R.; Vermunt, A.M.W.; Douradinha, B.G.; Noort, V. van; Huynen, M.A.; Luty, A.J.F.; Kroeze, H.; Khan, S.M.; Sauerwein, R.W.; Waters, A.P.; Mann, M.; Stunnenberg, H.G.

    2008-01-01

    Plasmodium falciparum sporozoites that develop and mature inside an Anopheles mosquito initiate a malaria infection in humans. Here we report the first proteomic comparison of different parasite stages from the mosquito -- early and late oocysts containing midgut sporozoites, and the mature,

  8. PCR detection of malaria parasites in desiccated Anopheles mosquitoes is uninhibited by storage time and temperature

    Directory of Open Access Journals (Sweden)

    Rider Mark A

    2012-06-01

    Full Text Available Abstract Background Reliable methods to preserve mosquito vectors for malaria studies are necessary for detecting Plasmodium parasites. In field settings, however, maintaining a cold chain of storage from the time of collection until laboratory processing, or accessing other reliable means of sample preservation is often logistically impractical or cost prohibitive. As the Plasmodium infection rate of Anopheles mosquitoes is a central component of the entomological inoculation rate and other indicators of transmission intensity, storage conditions that affect pathogen detection may bias malaria surveillance indicators. This study investigated the effect of storage time and temperature on the ability to detect Plasmodium parasites in desiccated Anopheles mosquitoes by real-time polymerase chain reaction (PCR. Methods Laboratory-infected Anopheles stephensi mosquitoes were chloroform-killed and stored over desiccant for 0, 1, 3, and 6 months while being held at four different temperatures: 28, 37, -20 and -80°C. The detection of Plasmodium DNA was evaluated by real-time PCR amplification of a 111 base pair region of block 4 of the merozoite surface protein. Results Varying the storage time and temperature of desiccated mosquitoes did not impact the sensitivity of parasite detection. A two-way factorial analysis of variance suggested that storage time and temperature were not associated with a loss in the ability to detect parasites. Storage of samples at 28°C resulted in a significant increase in the ability to detect parasite DNA, though no other positive associations were observed between the experimental storage treatments and PCR amplification. Conclusions Cold chain maintenance of desiccated mosquito samples is not necessary for real-time PCR detection of parasite DNA. Though field-collected mosquitoes may be subjected to variable conditions prior to molecular processing, the storage of samples over an inexpensive and logistically

  9. Genome-wide diversity and differentiation in New World populations of the human malaria parasite Plasmodium vivax.

    Directory of Open Access Journals (Sweden)

    Thais C de Oliveira

    2017-07-01

    Full Text Available The Americas were the last continent colonized by humans carrying malaria parasites. Plasmodium falciparum from the New World shows very little genetic diversity and greater linkage disequilibrium, compared with its African counterparts, and is clearly subdivided into local, highly divergent populations. However, limited available data have revealed extensive genetic diversity in American populations of another major human malaria parasite, P. vivax.We used an improved sample preparation strategy and next-generation sequencing to characterize 9 high-quality P. vivax genome sequences from northwestern Brazil. These new data were compared with publicly available sequences from recently sampled clinical P. vivax isolates from Brazil (BRA, total n = 11 sequences, Peru (PER, n = 23, Colombia (COL, n = 31, and Mexico (MEX, n = 19.We found that New World populations of P. vivax are as diverse (nucleotide diversity π between 5.2 × 10-4 and 6.2 × 10-4 as P. vivax populations from Southeast Asia, where malaria transmission is substantially more intense. They display several non-synonymous nucleotide substitutions (some of them previously undescribed in genes known or suspected to be involved in antimalarial drug resistance, such as dhfr, dhps, mdr1, mrp1, and mrp-2, but not in the chloroquine resistance transporter ortholog (crt-o gene. Moreover, P. vivax in the Americas is much less geographically substructured than local P. falciparum populations, with relatively little between-population genome-wide differentiation (pairwise FST values ranging between 0.025 and 0.092. Finally, P. vivax populations show a rapid decline in linkage disequilibrium with increasing distance between pairs of polymorphic sites, consistent with very frequent outcrossing. We hypothesize that the high diversity of present-day P. vivax lineages in the Americas originated from successive migratory waves and subsequent admixture between parasite lineages from geographically

  10. Genome-wide diversity and differentiation in New World populations of the human malaria parasite Plasmodium vivax

    Science.gov (United States)

    de Oliveira, Thais C.; Rodrigues, Priscila T.; Menezes, Maria José; Gonçalves-Lopes, Raquel M.; Bastos, Melissa S.; Lima, Nathália F.; Barbosa, Susana; Gerber, Alexandra L.; Loss de Morais, Guilherme; Berná, Luisa; Phelan, Jody; Robello, Carlos; de Vasconcelos, Ana Tereza R.

    2017-01-01

    Background The Americas were the last continent colonized by humans carrying malaria parasites. Plasmodium falciparum from the New World shows very little genetic diversity and greater linkage disequilibrium, compared with its African counterparts, and is clearly subdivided into local, highly divergent populations. However, limited available data have revealed extensive genetic diversity in American populations of another major human malaria parasite, P. vivax. Methods We used an improved sample preparation strategy and next-generation sequencing to characterize 9 high-quality P. vivax genome sequences from northwestern Brazil. These new data were compared with publicly available sequences from recently sampled clinical P. vivax isolates from Brazil (BRA, total n = 11 sequences), Peru (PER, n = 23), Colombia (COL, n = 31), and Mexico (MEX, n = 19). Principal findings/Conclusions We found that New World populations of P. vivax are as diverse (nucleotide diversity π between 5.2 × 10−4 and 6.2 × 10−4) as P. vivax populations from Southeast Asia, where malaria transmission is substantially more intense. They display several non-synonymous nucleotide substitutions (some of them previously undescribed) in genes known or suspected to be involved in antimalarial drug resistance, such as dhfr, dhps, mdr1, mrp1, and mrp-2, but not in the chloroquine resistance transporter ortholog (crt-o) gene. Moreover, P. vivax in the Americas is much less geographically substructured than local P. falciparum populations, with relatively little between-population genome-wide differentiation (pairwise FST values ranging between 0.025 and 0.092). Finally, P. vivax populations show a rapid decline in linkage disequilibrium with increasing distance between pairs of polymorphic sites, consistent with very frequent outcrossing. We hypothesize that the high diversity of present-day P. vivax lineages in the Americas originated from successive migratory waves and subsequent admixture between

  11. Quantitative analysis of Plasmodium ookinete motion in three dimensions suggests a critical role for cell shape in the biomechanics of malaria parasite gliding motility.

    Science.gov (United States)

    Kan, Andrey; Tan, Yan-Hong; Angrisano, Fiona; Hanssen, Eric; Rogers, Kelly L; Whitehead, Lachlan; Mollard, Vanessa P; Cozijnsen, Anton; Delves, Michael J; Crawford, Simon; Sinden, Robert E; McFadden, Geoffrey I; Leckie, Christopher; Bailey, James; Baum, Jake

    2014-05-01

    Motility is a fundamental part of cellular life and survival, including for Plasmodium parasites--single-celled protozoan pathogens responsible for human malaria. The motile life cycle forms achieve motility, called gliding, via the activity of an internal actomyosin motor. Although gliding is based on the well-studied system of actin and myosin, its core biomechanics are not completely understood. Currently accepted models suggest it results from a specifically organized cellular motor that produces a rearward directional force. When linked to surface-bound adhesins, this force is passaged to the cell posterior, propelling the parasite forwards. Gliding motility is observed in all three life cycle stages of Plasmodium: sporozoites, merozoites and ookinetes. However, it is only the ookinetes--formed inside the midgut of infected mosquitoes--that display continuous gliding without the necessity of host cell entry. This makes them ideal candidates for invasion-free biomechanical analysis. Here we apply a plate-based imaging approach to study ookinete motion in three-dimensional (3D) space to understand Plasmodium cell motility and how movement facilitates midgut colonization. Using single-cell tracking and numerical analysis of parasite motion in 3D, our analysis demonstrates that ookinetes move with a conserved left-handed helical trajectory. Investigation of cell morphology suggests this trajectory may be based on the ookinete subpellicular cytoskeleton, with complementary whole and subcellular electron microscopy showing that, like their motion paths, ookinetes share a conserved left-handed corkscrew shape and underlying twisted microtubular architecture. Through comparisons of 3D movement between wild-type ookinetes and a cytoskeleton-knockout mutant we demonstrate that perturbation of cell shape changes motion from helical to broadly linear. Therefore, while the precise linkages between cellular architecture and actomyosin motor organization remain unknown, our

  12. Plasmodium falciparum: VAR2CSA expressed during pregnancy-associated malaria is partially resistant to proteolytic cleavage by trypsin

    DEFF Research Database (Denmark)

    Nielsen, Morten A; Resende, Mafalda; Alifrangis, Michael

    2007-01-01

    In areas of high Plasmodium falciparum transmission, immunity to malaria is acquired during childhood, so that adults in general are clinically immune. One exception is that first-time pregnant women are susceptible to pregnancy-associated malaria caused by accumulation of parasites in the placen...

  13. Genetic characterization of an epidemic of Plasmodium falciparum malaria among Yanomami Amerindians.

    Science.gov (United States)

    Laserson, K F; Petralanda, I; Almera, R; Barker, R H; Spielman, A; Maguire, J H; Wirth, D F

    1999-12-01

    Malaria parasites are genetically diverse at all levels of endemicity. In contrast, the merozoite surface protein (MSP) alleles in samples from 2 isolated populations of Yanomami Amerindians during an epidemic of Plasmodium falciparum were identical. The nonvariable restriction fragment length polymorphism patterns further suggested that the sequential outbreak comprised only a single P. falciparum genotype. By examination of serial samples from single human infections, the MSP characteristics were found to remain constant throughout the course of infection. An apparent clonal population structure of parasites seemed to cause outbreaks in small isolated villages. The use of standard molecular epidemiologic methods to measure genetic diversity in malaria revealed the occurrence of a genetically monomorphic population of P. falciparum within a human community.

  14. An Ancient Protein Phosphatase, SHLP1, Is Critical to Microneme Development in Plasmodium Ookinetes and Parasite Transmission

    Directory of Open Access Journals (Sweden)

    Eva-Maria Patzewitz

    2013-03-01

    Full Text Available Signaling pathways controlled by reversible protein phosphorylation (catalyzed by kinases and phosphatases in the malaria parasite Plasmodium are of great interest, for both increased understanding of parasite biology and identification of novel drug targets. Here, we report a functional analysis in Plasmodium of an ancient bacterial Shewanella-like protein phosphatase (SHLP1 found only in bacteria, fungi, protists, and plants. SHLP1 is abundant in asexual blood stages and expressed at all stages of the parasite life cycle. shlp1 deletion results in a reduction in ookinete (zygote development, microneme formation, and complete ablation of oocyst formation, thereby blocking parasite transmission. This defect is carried by the female gamete and can be rescued by direct injection of mutant ookinetes into the mosquito hemocoel, where oocysts develop. This study emphasizes the varied functions of SHLP1 in Plasmodium ookinete biology and suggests that it could be a novel drug target for blocking parasite transmission.

  15. Increased prevalence of Plasmodium falciparum malaria in Honduras, Central America Aumento de la prevalencia de malaria por Plasmodium falciparum en Honduras, Centroamerica

    Directory of Open Access Journals (Sweden)

    Carol J. Palmer

    1998-07-01

    Full Text Available We report on our investigation of a malaria outbreak in Honduras, Central America, in January 1997. We tested 202 patients with fever and chills using thin and thick blood film microscopy. Sixteen patients lived in the city and the rest lived in rural areas. A total of 95 samples (47% were positive for malaria parasites. Seventy-nine percent (63/80 of the rural patients were infected with Plasmodium vivax and 21% (17/80 were infected with P. falciparum. In the urban area, all 15 infected patients had P. vivax malaria and none showed evidence of P. falciparum. Since previous reports indicate that falciparum malaria accounts for only 2% of the overall malaria infections in Honduras, the results reported here suggest that there is a dramatic increase in falciparum malaria in the area of Honduras investigated in this study.Notificamos los resultados de un estudio de un brote de malaria que se produjo en Honduras, Centroamérica, en enero de 1997. Sometimos a examen microscópico frotis delgados y frotis gruesos de la sangre de 202 pacientes con fiebre y escalofríos. Dieciséis pacientes eran habitantes de la zona urbana y el resto de la zona rural. Un total de 95 especímenes (47% fueron positivos a parásitos de la malaria. Setenta y ocho por ciento (62/80 de los pacientes del área rural estaban infestados con Plasmodium vivax y 22% (17/80 con P. falciparum. En la zona urbana, todos los 15 pacientes que estaban infestados tenían P. vivax y en ninguno se detectó P. falciparum. Ya que según informes previos la malaria de tipo falciparum representa solamente 2% de todos los casos de malaria en Honduras, nuestros resultados sugieren que hay un gran incremento del número de casos de malaria falciparum en la zona de Honduras en que se llevó a cabo esta investigación.

  16. Long- and short-term selective forces on malaria parasite genomes

    KAUST Repository

    Nygaard, Sanne

    2010-09-09

    Plasmodium parasites, the causal agents of malaria, result in more than 1 million deaths annually. Plasmodium are unicellular eukaryotes with small ~23 Mb genomes encoding ~5200 protein-coding genes. The protein-coding genes comprise about half of these genomes. Although evolutionary processes have a significant impact on malaria control, the selective pressures within Plasmodium genomes are poorly understood, particularly in the non-protein-coding portion of the genome. We use evolutionary methods to describe selective processes in both the coding and non-coding regions of these genomes. Based on genome alignments of seven Plasmodium species, we show that protein-coding, intergenic and intronic regions are all subject to purifying selection and we identify 670 conserved non-genic elements. We then use genome-wide polymorphism data from P. falciparum to describe short-term selective processes in this species and identify some candidate genes for balancing (diversifying) selection. Our analyses suggest that there are many functional elements in the non-genic regions of these genomes and that adaptive evolution has occurred more frequently in the protein-coding regions of the genome. © 2010 Nygaard et al.

  17. Malaria Parasite Metabolic Pathways (MPMP) Upgraded with Targeted Chemical Compounds.

    Science.gov (United States)

    Ginsburg, Hagai; Abdel-Haleem, Alyaa M

    2016-01-01

    Malaria Parasite Metabolic Pathways (MPMP) is the website for the functional genomics of intraerythrocytic Plasmodium falciparum. All the published information about targeted chemical compounds has now been added. Users can find the drug target and publication details linked to a drug database for further information about the medicinal properties of each compound. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Compartmentation of redox metabolism in malaria parasites.

    Directory of Open Access Journals (Sweden)

    Sebastian Kehr

    Full Text Available Malaria, caused by the apicomplexan parasite Plasmodium, still represents a major threat to human health and welfare and leads to about one million human deaths annually. Plasmodium is a rapidly multiplying unicellular organism undergoing a complex developmental cycle in man and mosquito - a life style that requires rapid adaptation to various environments. In order to deal with high fluxes of reactive oxygen species and maintain redox regulatory processes and pathogenicity, Plasmodium depends upon an adequate redox balance. By systematically studying the subcellular localization of the major antioxidant and redox regulatory proteins, we obtained the first complete map of redox compartmentation in Plasmodium falciparum. We demonstrate the targeting of two plasmodial peroxiredoxins and a putative glyoxalase system to the apicoplast, a non-photosynthetic plastid. We furthermore obtained a complete picture of the compartmentation of thioredoxin- and glutaredoxin-like proteins. Notably, for the two major antioxidant redox-enzymes--glutathione reductase and thioredoxin reductase--Plasmodium makes use of alternative-translation-initiation (ATI to achieve differential targeting. Dual localization of proteins effected by ATI is likely to occur also in other Apicomplexa and might open new avenues for therapeutic intervention.

  19. Effectiveness of Gamma Rays in Attenuating Rodent Malaria Parasites of Plasmodium berghei in Blood of Mice

    International Nuclear Information System (INIS)

    Syaifudin, M.; Darlina; Rahardjo, T.; Tetriana, D.; Nurhayati, S.; Surniyantoro, H.N.E.; Kisnanto, T.

    2013-01-01

    Malaria is a major public health problem in Indonesia. Therefore, an effective vaccine against this disease is actively being sought by using gamma rays to attenuate the parasites. However, the safety and efficacy of the resulting vaccine are dependent on the precise irradiation dose. The aim of this research was to determine the exact time when the parasites are attenuated by gamma ray exposure. Mice blood containing Plasmodium berghei of 5,0 X 10 7 parasites/ml was irradiated with gamma rays at doses of 0, 150, 175 and 200 Gy (doses rate of 380 Gy/h) and then was injected intraperitoneally to mice at 0, 1, 2, 3, and 4 h post irradiation. The parasitemia (parasite density) in mouse blood was observed starting with day 2 and repeated every 2-4 days up to 28 days. The survival of the mice was also observed during the experiment. The results showed that the pre-patent period advanced with exposing infected blood to 150 and 175 Gy irradiations, suggesting some degree of attenuation. The amount of radiation required to render the parasites non-viable is about 175 Gy for an inoculum of a number of parasites, but a delay of 4 h resulted in the death of parasites. There was no difference in the infectivity of irradiated parasite injected 1 h and 2 h post irradiation in terms of parasitemia and the survival of mouse. For a dose of 200 Gy which was injected 2 h post irradiation, no parasitemia was found in the blood and animals which died after times varying from 1 to 4 weeks. We concluded that irradiated parasites should be injected into the host within 1 h after irradiation. (author)

  20. Plasmodium falciparum associated with severe childhood malaria preferentially expresses PfEMP1 encoded by group A var genes

    DEFF Research Database (Denmark)

    Jensen, Anja T R; Magistrado, Pamela; Sharp, Sarah

    2004-01-01

    Parasite-encoded variant surface antigens (VSAs) like the var gene-encoded Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family are responsible for antigenic variation and infected red blood cell (RBC) cytoadhesion in P. falciparum malaria. Parasites causing severe malaria in noni...... genes, such as PFD1235w/MAL7P1.1, appear to be involved in the pathogenesis of severe disease and are thus attractive candidates for a vaccine against life-threatening P. falciparum malaria....

  1. Gametocyte clearance in uncomplicated and severe Plasmodium falciparum malaria after artesunate-mefloquine treatment in Thailand.

    Science.gov (United States)

    Tangpukdee, Noppadon; Krudsood, Srivicha; Srivilairit, Siripan; Phophak, Nanthaporn; Chonsawat, Putza; Yanpanich, Wimon; Kano, Shigeyuki; Wilairatana, Polrat

    2008-06-01

    Artemisinin-based combination therapy (ACT) is currently promoted as a strategy for treating both uncomplicated and severe falciparum malaria, targeting asexual blood-stage Plasmodium falciparum parasites. However, the effect of ACT on sexual-stage parasites remains controversial. To determine the clearance of sexual-stage P. falciparum parasites from 342 uncomplicated, and 217 severe, adult malaria cases, we reviewed and followed peripheral blood sexual-stage parasites for 4 wk after starting ACT. All patients presented with both asexual and sexual stage parasites on admission, and were treated with artesunate-mefloquine as the standard regimen. The results showed that all patients were asymptomatic and negative for asexual forms before discharge from hospital. The percentages of uncomplicated malaria patients positive for gametocytes on days 3, 7, 14, 21, and 28 were 41.5, 13.1, 3.8, 2.0, and 2.0%, while the percentages of gametocyte positive severe malaria patients on days 3, 7, 14, 21, and 28 were 33.6, 8.2, 2.7, 0.9, and 0.9%, respectively. Although all patients were negative for asexual parasites by day 7 after completion of the artesunate-mefloquine course, gametocytemia persisted in some patients. Thus, a gametocytocidal drug, e.g., primaquine, may be useful in combination with an artesunate-mefloquine regimen to clear gametocytes, so blocking transmission more effectively than artesunate alone, in malaria transmission areas.

  2. High rate of adaptation of mammalian proteins that interact with Plasmodium and related parasites

    Science.gov (United States)

    Telis, Natalie; Petrov, Dmitri A.

    2017-01-01

    Plasmodium parasites, along with their Piroplasm relatives, have caused malaria-like illnesses in terrestrial mammals for millions of years. Several Plasmodium-protective alleles have recently evolved in human populations, but little is known about host adaptation to blood parasites over deeper evolutionary timescales. In this work, we analyze mammalian adaptation in ~500 Plasmodium- or Piroplasm- interacting proteins (PPIPs) manually curated from the scientific literature. We show that (i) PPIPs are enriched for both immune functions and pleiotropy with other pathogens, and (ii) the rate of adaptation across mammals is significantly elevated in PPIPs, compared to carefully matched control proteins. PPIPs with high pathogen pleiotropy show the strongest signatures of adaptation, but this pattern is fully explained by their immune enrichment. Several pieces of evidence suggest that blood parasites specifically have imposed selection on PPIPs. First, even non-immune PPIPs that lack interactions with other pathogens have adapted at twice the rate of matched controls. Second, PPIP adaptation is linked to high expression in the liver, a critical organ in the parasite life cycle. Finally, our detailed investigation of alpha-spectrin, a major red blood cell membrane protein, shows that domains with particularly high rates of adaptation are those known to interact specifically with P. falciparum. Overall, we show that host proteins that interact with Plasmodium and Piroplasm parasites have experienced elevated rates of adaptation across mammals, and provide evidence that some of this adaptation has likely been driven by blood parasites. PMID:28957326

  3. Modelling the incidence of Plasmodium vivax and Plasmodium falciparum malaria in Afghanistan 2006-2009.

    Science.gov (United States)

    Alegana, Victor A; Wright, Jim A; Nahzat, Sami M; Butt, Waqar; Sediqi, Amad W; Habib, Naeem; Snow, Robert W; Atkinson, Peter M; Noor, Abdisalan M

    2014-01-01

    Identifying areas that support high malaria risks and where populations lack access to health care is central to reducing the burden in Afghanistan. This study investigated the incidence of Plasmodium vivax and Plasmodium falciparum using routine data to help focus malaria interventions. To estimate incidence, the study modelled utilisation of the public health sector using fever treatment data from the 2012 national Malaria Indicator Survey. A probabilistic measure of attendance was applied to population density metrics to define the proportion of the population within catchment of a public health facility. Malaria data were used in a Bayesian spatio-temporal conditional-autoregressive model with ecological or environmental covariates, to examine the spatial and temporal variation of incidence. From the analysis of healthcare utilisation, over 80% of the population was within 2 hours' travel of the nearest public health facility, while 64.4% were within 30 minutes' travel. The mean incidence of P. vivax in 2009 was 5.4 (95% Crl 3.2-9.2) cases per 1000 population compared to 1.2 (95% Crl 0.4-2.9) cases per 1000 population for P. falciparum. P. vivax peaked in August while P. falciparum peaked in November. 32% of the estimated 30.5 million people lived in regions where annual incidence was at least 1 case per 1,000 population of P. vivax; 23.7% of the population lived in areas where annual P. falciparum case incidence was at least 1 per 1000. This study showed how routine data can be combined with household survey data to model malaria incidence. The incidence of both P. vivax and P. falciparum in Afghanistan remain low but the co-distribution of both parasites and the lag in their peak season provides challenges to malaria control in Afghanistan. Future improved case definition to determine levels of imported risks may be useful for the elimination ambitions in Afghanistan.

  4. Placental Malaria in Colombia: Histopathologic Findings in Plasmodium vivax and P. falciparum Infections

    Science.gov (United States)

    Carmona-Fonseca, Jaime; Arango, Eliana; Maestre, Amanda

    2013-01-01

    Studies on gestational malaria and placental malaria have been scarce in malaria-endemic areas of the Western Hemisphere. To describe the histopathology of placental malaria in Colombia, a longitudinal descriptive study was conducted. In this study, 179 placentas were studied by histologic analysis (112 with gestational malaria and 67 negative for malaria). Placental malaria was confirmed in 22.35%, 50.0% had previous infections, and 47.5% had acute infections. Typical malaria-associated changes were observed in 37%. The most common changes were villitis, intervillitis, deciduitis, increased fibrin deposition, increased syncytial knots, mononuclear (monocytes/macrophages and lymphocytes), polymorphonuclear cell infiltration, and trophozoites in fetal erythrocytes. No association was found between type of placental changes observed and histopathologic classification of placental malaria. The findings are consistent with those reported for placental malaria in other regions. Plasmodium vivax was the main parasite responsible for placental and gestational malaria, but its role in the pathogenesis of placental malaria was not conclusive. PMID:23546807

  5. Bioinformatics approaches to malaria

    DEFF Research Database (Denmark)

    Hansen, Daniel Aaen

    Malaria is a life threatening disease found in tropical and subtropical regions of the world. Each year it kills 781 000 individuals; most of them are children under the age of five in sub-Saharan Africa. The most severe form of malaria in humans is caused by the parasite Plasmodium falciparum......, which is the subject of the first part of this thesis. The PfEMP1 protein which is encoded by the highly variablevargene family is important in the pathogenesis and immune evasion of malaria parasites. We analyzed and classified these genes based on the upstream sequence in seven......Plasmodium falciparumclones. We show that the amount of nucleotide diversity is just as big within each clone as it is between the clones. DNA methylation is an important epigenetic mark in many eukaryotic species. We are studying DNA methylation in the malaria parasitePlasmodium falciparum. The work is still in progress...

  6. Malaria parasite carbonic anhydrase: inhibition of aromatic/heterocyclic sulfonamides and its therapeutic potential

    Science.gov (United States)

    Krungkrai, Sudaratana R; Krungkrai, Jerapan

    2011-01-01

    Plasmodium falciparum (P. falciparum) is responsible for the majority of life-threatening cases of human malaria, causing 1.5-2.7 million annual deaths. The global emergence of drug-resistant malaria parasites necessitates identification and characterization of novel drug targets and their potential inhibitors. We identified the carbonic anhydrase (CA) genes in P. falciparum. The pfCA gene encodes anα-carbonic anhydrase, a Zn2+-metalloenzme, possessing catalytic properties distinct from that of the human host CA enzyme. The amino acid sequence of the pfCA enzyme is different from the analogous protozoan and human enzymes. A library of aromatic/heterocyclic sulfonamides possessing a large diversity of scaffolds were found to be very good inhibitors for the malarial enzyme at moderate-low micromolar and submicromolar inhibitions. The structure of the groups substituting the aromatic-ureido- or aromatic-azomethine fragment of the molecule and the length of the parent sulfonamide were critical parameters for the inhibitory properties of the sulfonamides. One derivative, that is, 4- (3, 4-dichlorophenylureido)thioureido-benzenesulfonamide (compound 10) was the most effective in vitro Plasmodium falciparum CA inhibitor, and was also the most effective antimalarial compound on the in vitro P. falciparum growth inhibition. The compound 10 was also effective in vivo antimalarial agent in mice infected with Plasmodium berghei, an animal model of drug testing for human malaria infection. It is therefore concluded that the sulphonamide inhibitors targeting the parasite CA may have potential for the development of novel therapies against human malaria. PMID:23569766

  7. Plasmodium vivax associated severe malaria complications among children in some malaria endemic areas of Ethiopia.

    Science.gov (United States)

    Ketema, Tsige; Bacha, Ketema

    2013-07-08

    Although, Plasmodium vivax is a rare parasite in most parts of Africa, it has significant public health importance in Ethiopia. In some parts of the country, it is responsible for majority of malaria associated morbidity. Recently severe life threatening malaria syndromes, frequently associated to P. falciparum, has been reported from P. vivax mono-infections. This prompted designing of the current study to assess prevalence of severe malaria complications related to P. vivax malaria in Ethiopia. The study was conducted in two study sites, namely Kersa and Halaba Kulito districts, located in southwest and southern parts of Ethiopia, respectively. Children, aged ≤ 10 years, who visited the two health centers during the study period, were recruited to the study. Clinical and demographic characteristics such as age, sex, temperature, diarrhea, persistent vomiting, confusion, respiratory distress, hepatomegaly, splenomegaly, hemoglobinuria, and epitaxis were assessed for a total of 139 children diagnosed to have P. vivax mono-infection. Parasitological data were collected following standard procedures. Hemoglobin and glucose level were measured using portable hemocue instrument. Median age of children was 4.25 ± 2.95 years. Geometric mean parasite count and mean hemoglobin level were 4254.89 parasite/μl and 11.55 g/dl, respectively. Higher prevalence rate of malaria and severe malaria complications were observed among children enrolled in Halaba district (P infection (OR = 1.9, 95% CI, 1.08 to 3.34), while female had higher risk to anemia (OR = 1.91, 95% CI, 1.08 - 3.34). The observed number of anemic children was 43%, of which most of them were found in age range from 0-3 years. Furthermore, P. vivax malaria was a risk factor for incidence of anemia (P lower than those reported from other countries. However, incidence of severe malaria complications in one of the sites, Halaba district, where there is highest treatment failure to first line drug, could have

  8. Enhanced transmission of drug-resistant parasites to mosquitoes following drug treatment in rodent malaria.

    Directory of Open Access Journals (Sweden)

    Andrew S Bell

    Full Text Available The evolution of drug resistant Plasmodium parasites is a major challenge to effective malaria control. In theory, competitive interactions between sensitive parasites and resistant parasites within infections are a major determinant of the rate at which parasite evolution undermines drug efficacy. Competitive suppression of resistant parasites in untreated hosts slows the spread of resistance; competitive release following treatment enhances it. Here we report that for the murine model Plasmodium chabaudi, co-infection with drug-sensitive parasites can prevent the transmission of initially rare resistant parasites to mosquitoes. Removal of drug-sensitive parasites following chemotherapy enabled resistant parasites to transmit to mosquitoes as successfully as sensitive parasites in the absence of treatment. We also show that the genetic composition of gametocyte populations in host venous blood accurately reflects the genetic composition of gametocytes taken up by mosquitoes. Our data demonstrate that, at least for this mouse model, aggressive chemotherapy leads to very effective transmission of highly resistant parasites that are present in an infection, the very parasites which undermine the long term efficacy of front-line drugs.

  9. Plasmodium Apicoplast Gln-tRNA Gln Biosynthesis Utilizes a Unique GatAB Amidotransferase Essential for Erythrocytic Stage Parasites

    KAUST Repository

    Mailu, Boniface M.; Li, Ling; Arthur, Jen; Nelson, Todd M.; Ramasamy, Gowthaman; Fritz-Wolf, Karin; Becker, Katja; Gardner, Malcolm J.

    2015-01-01

    © 2015 by The American Society for Biochemistry and Molecular Biology, Inc. The malaria parasite Plasmodium falciparum apicoplast indirect aminoacylation pathway utilizes a non-discriminating glutamyl-tRNA synthetase to synthesize Glu-tRNAGln and a glutaminyl-tRNA amidotransferase to convert Glu-tRNAGln to Gln-tRNAGln. Here, we show that Plasmodium falciparum and other apicomplexans possess a unique heterodimeric glutamyltRNA amidotransferase consisting of GatA and GatB subunits (GatAB). We localized the P. falciparum GatA and GatB subunits to the apicoplast in blood stage parasites and demonstrated that recombinant GatAB converts Glu-tRNAGln to Gln-tRNAGln in vitro. We demonstrate that the apicoplast GatAB-catalyzed reaction is essential to the parasite blood stages because we could not delete the Plasmodium berghei gene encoding GatA in blood stage parasites in vivo. A phylogenetic analysis placed the split between Plasmodium GatB, archaeal GatE, and bacterial GatB prior to the phylogenetic divide between bacteria and archaea. Moreover, Plasmodium GatA also appears to have emerged prior to the bacterial-archaeal phylogenetic divide. Thus, although GatAB is found in Plasmodium, it emerged prior to the phylogenetic separation of archaea and bacteria.

  10. Plasmodium Apicoplast Gln-tRNA Gln Biosynthesis Utilizes a Unique GatAB Amidotransferase Essential for Erythrocytic Stage Parasites

    KAUST Repository

    Mailu, Boniface M.

    2015-08-28

    © 2015 by The American Society for Biochemistry and Molecular Biology, Inc. The malaria parasite Plasmodium falciparum apicoplast indirect aminoacylation pathway utilizes a non-discriminating glutamyl-tRNA synthetase to synthesize Glu-tRNAGln and a glutaminyl-tRNA amidotransferase to convert Glu-tRNAGln to Gln-tRNAGln. Here, we show that Plasmodium falciparum and other apicomplexans possess a unique heterodimeric glutamyltRNA amidotransferase consisting of GatA and GatB subunits (GatAB). We localized the P. falciparum GatA and GatB subunits to the apicoplast in blood stage parasites and demonstrated that recombinant GatAB converts Glu-tRNAGln to Gln-tRNAGln in vitro. We demonstrate that the apicoplast GatAB-catalyzed reaction is essential to the parasite blood stages because we could not delete the Plasmodium berghei gene encoding GatA in blood stage parasites in vivo. A phylogenetic analysis placed the split between Plasmodium GatB, archaeal GatE, and bacterial GatB prior to the phylogenetic divide between bacteria and archaea. Moreover, Plasmodium GatA also appears to have emerged prior to the bacterial-archaeal phylogenetic divide. Thus, although GatAB is found in Plasmodium, it emerged prior to the phylogenetic separation of archaea and bacteria.

  11. Plasmodium falciparum malaria

    African Journals Online (AJOL)

    Durrheim, Karen Barnes. Objectives. To assess the therapeutic efficacy of sulfadoxine- pyrimethamine (SP) after 5 years of use as first-line treatment of uncomplicated Plasmodium falciparum malaria, and thus guide the selection of artemisinin-based combination therapy in Mpumalanga, South Africa. Design. An open-label ...

  12. Increasing Incidence of Plasmodium knowlesi Malaria following Control of P. falciparum and P. vivax Malaria in Sabah, Malaysia

    Science.gov (United States)

    William, Timothy; Rahman, Hasan A.; Jelip, Jenarun; Ibrahim, Mohammad Y.; Menon, Jayaram; Grigg, Matthew J.; Yeo, Tsin W.; Anstey, Nicholas M.; Barber, Bridget E.

    2013-01-01

    Background The simian parasite Plasmodium knowlesi is a common cause of human malaria in Malaysian Borneo and threatens the prospect of malaria elimination. However, little is known about the emergence of P. knowlesi, particularly in Sabah. We reviewed Sabah Department of Health records to investigate the trend of each malaria species over time. Methods Reporting of microscopy-diagnosed malaria cases in Sabah is mandatory. We reviewed all available Department of Health malaria notification records from 1992–2011. Notifications of P. malariae and P. knowlesi were considered as a single group due to microscopic near-identity. Results From 1992–2011 total malaria notifications decreased dramatically, with P. falciparum peaking at 33,153 in 1994 and decreasing 55-fold to 605 in 2011, and P. vivax peaking at 15,857 in 1995 and decreasing 25-fold to 628 in 2011. Notifications of P. malariae/P. knowlesi also demonstrated a peak in the mid-1990s (614 in 1994) before decreasing to ≈100/year in the late 1990s/early 2000s. However, P. malariae/P. knowlesi notifications increased >10-fold between 2004 (n = 59) and 2011 (n = 703). In 1992 P. falciparum, P. vivax and P. malariae/P. knowlesi monoinfections accounted for 70%, 24% and 1% respectively of malaria notifications, compared to 30%, 31% and 35% in 2011. The increase in P. malariae/P. knowlesi notifications occurred state-wide, appearing to have begun in the southwest and progressed north-easterly. Conclusions A significant recent increase has occurred in P. knowlesi notifications following reduced transmission of the human Plasmodium species, and this trend threatens malaria elimination. Determination of transmission dynamics and risk factors for knowlesi malaria is required to guide measures to control this rising incidence. PMID:23359830

  13. Gene disruption of Plasmodium falciparum p52 results in attenuation of malaria liver stage development in cultured primary human hepatocytes.

    Directory of Open Access Journals (Sweden)

    Ben C L van Schaijk

    Full Text Available Difficulties with inducing sterile and long lasting protective immunity against malaria with subunit vaccines has renewed interest in vaccinations with attenuated Plasmodium parasites. Immunizations with sporozoites that are attenuated by radiation (RAS can induce strong protective immunity both in humans and rodent models of malaria. Recently, in rodent parasites it has been shown that through the deletion of a single gene, sporozoites can also become attenuated in liver stage development and, importantly, immunization with these sporozoites results in immune responses identical to RAS. The promise of vaccination using these genetically attenuated sporozoites (GAS depends on translating the results in rodent malaria models to human malaria. In this study, we perform the first essential step in this transition by disrupting, p52, in P. falciparum an ortholog of the rodent parasite gene, p36p, which we had previously shown can confer long lasting protective immunity in mice. These P. falciparum P52 deficient sporozoites demonstrate gliding motility, cell traversal and an invasion rate into primary human hepatocytes in vitro that is comparable to wild type sporozoites. However, inside the host hepatocyte development is arrested very soon after invasion. This study reveals, for the first time, that disrupting the equivalent gene in both P. falciparum and rodent malaria Plasmodium species generates parasites that become similarly arrested during liver stage development and these results pave the way for further development of GAS for human use.

  14. Limited influence of haemoglobin variants on Plasmodium falciparum msp1 and msp2 alleles in symptomatic malaria

    NARCIS (Netherlands)

    Mockenhaupt, Frank P.; Ehrhardt, Stephan; Otchwemah, Rowland; Eggelte, Teunis A.; Anemana, Sylvester D.; Stark, Klaus; Bienzle, Ulrich; Kohne, Elisabeth

    2004-01-01

    Haemoglobin (Hb) S, HbC, and alpha(+)-thalassaemia confer protection from malaria. Accordingly, these traits may influence the multiplicity of infection (MOI) of Plasmodium falciparum and the presence of distinct parasite genotypes. In 840 febrile children in northern Ghana, we typed the P.

  15. Does radical cure of asymptomatic Plasmodium falciparum place adults in endemic areas at increased risk of recurrent symptomatic malaria?

    Science.gov (United States)

    Owusu-Agyei, Seth; Binka, Fred; Koram, Kwadwo; Anto, Francis; Adjuik, Martin; Nkrumah, Francis; Smith, Tom

    2002-07-01

    A cohort of 197 adults in Kassena-Nankana District (northern Ghana) was radically cured of malaria parasites to study subsequent incidence of malaria infection. During the following 20 weeks of the malaria transmission season, 49% experienced clinical attacks associated with Plasmodium falciparum parasitaemia. In a group of 202 adults identically followed-up 1 year later without being treated, only 38% experienced such episodes (log-rank test for equality of survivor functions, P=0.035). Clinical attacks in radically cured individuals presented with lower parasite densities but more symptoms. Randomized studies are needed to test the hypothesis that radical cure of P. falciparum enhances the risk and severity of subsequent clinical malaria attacks.

  16. Plasmodium falciparum: characterization of toxin-associated proteins and identification of a hemoglobin containing parasite cytokine stimulator

    DEFF Research Database (Denmark)

    Kristensen, G; Jakobsen, P H

    1996-01-01

    ]-methionine and immunoprecipitated the labeled antigens with an antiserum against IMP which blocks malaria parasite-induced TNF production. We detected four proteins associated with IMP when the immunoprecipitates were separated by SDS-PAGE and analyzed by autoradiography. To evaluate the capacity of different P. falciparum......Previous studies have indicated the inositol monophosphate (IMP) is a component of the malaria parasite toxin that induces cytokines such as tumour necrosis factor (TNF). To further characterize the toxin we have labeled Plasmodium falciparum in vitro cultures with [14C]inositol or [35S...

  17. Melatonin-Induced Temporal Up-Regulation of Gene Expression Related to Ubiquitin/Proteasome System (UPS in the Human Malaria Parasite Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Fernanda C. Koyama

    2014-12-01

    Full Text Available There is an increasing understanding that melatonin and the ubiquitin/ proteasome system (UPS interact to regulate multiple cellular functions. Post-translational modifications such as ubiquitination are important modulators of signaling processes, cell cycle and many other cellular functions. Previously, we reported a melatonin-induced upregulation of gene expression related to ubiquitin/proteasome system (UPS in Plasmodium falciparum, the human malaria parasite, and that P. falciparum protein kinase 7 influences this process. This implies a role of melatonin, an indolamine, in modulating intraerythrocytic development of the parasite. In this report we demonstrate by qPCR analysis, that melatonin induces gene upregulation in nine out of fourteen genes of the UPS, consisting of the same set of genes previously reported, between 4 to 5 h after melatonin treatment. We demonstrate that melatonin causes a temporally controlled gene expression of UPS members.

  18. The Plasmodium PI(4)K inhibitor KDU691 selectively inhibits dihydroartemisinin-pretreated Plasmodium falciparum ring-stage parasites.

    Science.gov (United States)

    Dembele, L; Ang, X; Chavchich, M; Bonamy, G M C; Selva, J J; Lim, M Yi-Xiu; Bodenreider, C; Yeung, B K S; Nosten, F; Russell, B M; Edstein, M D; Straimer, J; Fidock, D A; Diagana, T T; Bifani, P

    2017-05-24

    Malaria control and elimination are threatened by the emergence and spread of resistance to artemisinin-based combination therapies (ACTs). Experimental evidence suggests that when an artemisinin (ART)-sensitive (K13 wild-type) Plasmodium falciparum strain is exposed to ART derivatives such as dihydroartemisinin (DHA), a small population of the early ring-stage parasites can survive drug treatment by entering cell cycle arrest or dormancy. After drug removal, these parasites can resume growth. Dormancy has been hypothesized to be an adaptive physiological mechanism that has been linked to recrudescence of parasites after monotherapy with ART and, possibly contributes to ART resistance. Here, we evaluate the in vitro drug sensitivity profile of normally-developing P. falciparum ring stages and DHA-pretreated dormant rings (DP-rings) using a panel of antimalarial drugs, including the Plasmodium phosphatidylinositol-4-OH kinase (PI4K)-specific inhibitor KDU691. We report that while KDU691 shows no activity against rings, it is highly inhibitory against DP-rings; a drug effect opposite to that of ART. Moreover, we provide evidence that KDU691 also kills DP-rings of P. falciparum ART-resistant strains expressing mutant K13.

  19. Plasmodium falciparum in vitro continuous culture conditions: A comparison of parasite susceptibility and tolerance to anti-malarial drugs throughout the asexual intra-erythrocytic life cycle.

    Science.gov (United States)

    Duffy, Sandra; Avery, Vicky M

    2017-12-01

    The continuous culture of Plasmodium falciparum is often seen as a means to an end, that end being to probe the biology of the parasite in question, and ultimately for many in the malaria drug discovery arena, to identify means of killing the parasite in order to treat malaria. In vitro continuous culture of Plasmodium falciparum is a fundamental requirement when undertaking malaria research where the primary objectives utilise viable parasites of a desired lifecycle stage. This investigation, and resulting data, compared the impact culturing Plasmodium falciparum long term (4 months) in different environmental conditions had on experimental outcomes and thus conclusions. The example presented here focused specifically on the effect culture conditions had on the in vitro tolerance of Plasmodium falciparum to standard anti-malarial drugs, including artemisinin and lumefantrine. Historical data from an independent experiment for 3D7-ALB (5% O 2 ) was also compared with that obtained from this study. We concluded that parasites cultured for several months in media supplemented with a serum substitute such as Albumax II ® or within hyperoxic conditions (21% O 2 ), demonstrate highly variable responses to artemisinin and lumefantrine but not all anti-malarial drugs, when compared to those cultured in human serum in combination with Albumax II ® under normoxic conditions (5% O 2 ) for the parasite. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Parasite threshold associated with clinical malaria in areas of different transmission intensities in north eastern Tanzania

    DEFF Research Database (Denmark)

    Mmbando, Bruno P; Lusingu, John P; Vestergaard, Lasse S

    2009-01-01

    BACKGROUND: In Sub-Sahara Africa, malaria due to Plasmodium falciparum is the main cause of ill health. Evaluation of malaria interventions, such as drugs and vaccines depends on clinical definition of the disease, which is still a challenge due to lack of distinct malaria specific clinical...... features. Parasite threshold is used in definition of clinical malaria in evaluation of interventions. This however, is likely to be influenced by other factors such as transmission intensity as well as individual level of immunity against malaria. METHODS: This paper describes step function and dose...... response model with threshold parameter as a tool for estimation of parasite threshold for onset of malaria fever in highlands (low transmission) and lowlands (high transmission intensity) strata. These models were fitted using logistic regression stratified by strata and age groups (0-1, 2-3, 4-5, 6...

  1. Gametogenesis in malaria parasites is mediated by the cGMP-dependent protein kinase.

    Directory of Open Access Journals (Sweden)

    Louisa McRobert

    2008-06-01

    Full Text Available Malaria parasite transmission requires differentiation of male and female gametocytes into gametes within a mosquito following a blood meal. A mosquito-derived molecule, xanthurenic acid (XA, can trigger gametogenesis, but the signalling events controlling this process in the human malaria parasite Plasmodium falciparum remain unknown. A role for cGMP was revealed by our observation that zaprinast (an inhibitor of phosphodiesterases that hydrolyse cGMP stimulates gametogenesis in the absence of XA. Using cGMP-dependent protein kinase (PKG inhibitors in conjunction with transgenic parasites expressing an inhibitor-insensitive mutant PKG enzyme, we demonstrate that PKG is essential for XA- and zaprinast-induced gametogenesis. Furthermore, we show that intracellular calcium (Ca2+ is required for differentiation and acts downstream of or in parallel with PKG activation. This work defines a key role for PKG in gametogenesis, elucidates the hierarchy of signalling events governing this process in P. falciparum, and demonstrates the feasibility of selective inhibition of a crucial regulator of the malaria parasite life cycle.

  2. Close relationship of Plasmodium sequences detected from South American pampas deer (Ozotoceros bezoarticus to Plasmodium spp. in North American white-tailed deer

    Directory of Open Access Journals (Sweden)

    Masahito Asada

    2018-04-01

    Full Text Available We report, for the first time, the presence of ungulate malaria parasites in South America. We conducted PCR-based surveys of blood samples of multiple deer species and water buffalo from Brazil and detected Plasmodium sequences from pampas deer (Ozotoceros bezoarticus samples. Phylogenic analysis revealed that the obtained sequences are closely related to the Plasmodium odocoilei clade 2 sequence from North American white-tailed deer (Odocoileus virginianus. Nucleotide differences suggest that malaria parasites in South American pampas deer and North American P. odocoilei clade 2 branched more recently than the Great American Interchange. Keywords: Malaria, Pampas deer, South America, Plasmodium odocoilei, Brazil

  3. NSR-seq transcriptional profiling enables identification of a gene signature of Plasmodium falciparum parasites infecting children.

    Science.gov (United States)

    Vignali, Marissa; Armour, Christopher D; Chen, Jingyang; Morrison, Robert; Castle, John C; Biery, Matthew C; Bouzek, Heather; Moon, Wonjong; Babak, Tomas; Fried, Michal; Raymond, Christopher K; Duffy, Patrick E

    2011-03-01

    Malaria caused by Plasmodium falciparum results in approximately 1 million annual deaths worldwide, with young children and pregnant mothers at highest risk. Disease severity might be related to parasite virulence factors, but expression profiling studies of parasites to test this hypothesis have been hindered by extensive sequence variation in putative virulence genes and a preponderance of host RNA in clinical samples. We report here the application of RNA sequencing to clinical isolates of P. falciparum, using not-so-random (NSR) primers to successfully exclude human ribosomal RNA and globin transcripts and enrich for parasite transcripts. Using NSR-seq, we confirmed earlier microarray studies showing upregulation of a distinct subset of genes in parasites infecting pregnant women, including that encoding the well-established pregnancy malaria vaccine candidate var2csa. We also describe a subset of parasite transcripts that distinguished parasites infecting children from those infecting pregnant women and confirmed this observation using quantitative real-time PCR and mass spectrometry proteomic analyses. Based on their putative functional properties, we propose that these proteins could have a role in childhood malaria pathogenesis. Our study provides proof of principle that NSR-seq represents an approach that can be used to study clinical isolates of parasites causing severe malaria syndromes as well other blood-borne pathogens and blood-related diseases.

  4. NSR-seq transcriptional profiling enables identification of a gene signature of Plasmodium falciparum parasites infecting children

    Science.gov (United States)

    Vignali, Marissa; Armour, Christopher D.; Chen, Jingyang; Morrison, Robert; Castle, John C.; Biery, Matthew C.; Bouzek, Heather; Moon, Wonjong; Babak, Tomas; Fried, Michal; Raymond, Christopher K.; Duffy, Patrick E.

    2011-01-01

    Malaria caused by Plasmodium falciparum results in approximately 1 million annual deaths worldwide, with young children and pregnant mothers at highest risk. Disease severity might be related to parasite virulence factors, but expression profiling studies of parasites to test this hypothesis have been hindered by extensive sequence variation in putative virulence genes and a preponderance of host RNA in clinical samples. We report here the application of RNA sequencing to clinical isolates of P. falciparum, using not-so-random (NSR) primers to successfully exclude human ribosomal RNA and globin transcripts and enrich for parasite transcripts. Using NSR-seq, we confirmed earlier microarray studies showing upregulation of a distinct subset of genes in parasites infecting pregnant women, including that encoding the well-established pregnancy malaria vaccine candidate var2csa. We also describe a subset of parasite transcripts that distinguished parasites infecting children from those infecting pregnant women and confirmed this observation using quantitative real-time PCR and mass spectrometry proteomic analyses. Based on their putative functional properties, we propose that these proteins could have a role in childhood malaria pathogenesis. Our study provides proof of principle that NSR-seq represents an approach that can be used to study clinical isolates of parasites causing severe malaria syndromes as well other blood-borne pathogens and blood-related diseases. PMID:21317536

  5. Emerging drug -resistance and guidelines for treatment of malaria

    International Nuclear Information System (INIS)

    Khan, M.A.; Smego Jr, R.A.; Razi, S.T.; Beg, M.A.

    2004-01-01

    The increasing prevalence of multi-resistant Plasmodium falciparum malaria worldwide is a serious public health threat to the global control of malaria, especially in poor countries like Pakistan. In many countries chloroquine-resistance is a huge problem, accounting for more than 90% of malaria cases. In Pakistan, resistance to chloroquine is on the rise and reported in up to 16- 62% of Plasmodium falciparum. Four to 25% of Plasmodium falciparum also reported to be resistant to sulfadoxine-pyrimethamine and several cases of delayed parasite clearance have been observed in patients with Plasmodium falciparum malaria treated with quinine. In this article we have introduced the concept of artemisinin- based combination therapy (ACT) and emphasize the use of empiric combination therapy for all patients with Plasmodium falciparum malaria to prevent development of drug resistance and to obtain additive and synergistic killing of parasite. (author)

  6. Spleen-dependent regulation of antigenic variation in malaria parasites: Plasmodium knowlesi SICAvar expression profiles in splenic and asplenic hosts.

    Directory of Open Access Journals (Sweden)

    Stacey A Lapp

    Full Text Available Antigenic variation by malaria parasites was first described in Plasmodium knowlesi, which infects humans and macaque monkeys, and subsequently in P. falciparum, the most virulent human parasite. The schizont-infected cell agglutination (SICA variant proteins encoded by the SICAvar multigene family in P. knowlesi, and Erythrocyte Membrane Protein-1 (EMP-1 antigens encoded by the var multigene family in P. falciparum, are expressed at the surface of infected erythrocytes, are associated with virulence, and serve as determinants of naturally acquired immunity. A parental P. knowlesi clone, Pk1(A+, and a related progeny clone, Pk1(B+1+, derived by an in vivo induced variant antigen switch, were defined by the expression of distinct SICA variant protein doublets of 210/190 and 205/200 kDa, respectively. Passage of SICA[+] infected erythrocytes through splenectomized rhesus monkeys results in the SICA[-] phenotype, defined by the lack of surface expression and agglutination with variant specific antisera.We have investigated SICAvar RNA and protein expression in Pk1(A+, Pk1(B+1+, and SICA[-] parasites. The Pk1(A+ and Pk1(B+1+ parasites express different distinct SICAvar transcript and protein repertoires. By comparison, SICA[-] parasites are characterized by a vast reduction in SICAvar RNA expression, the lack of full-length SICAvar transcript signals on northern blots, and correspondingly, the absence of any SICA protein detected by mass spectrometry.SICA protein expression may be under transcriptional as well as post-transcriptional control, and we show for the first time that the spleen, an organ central to blood-stage immunity in malaria, exerts an influence on these processes. Furthermore, proteomics has enabled the first in-depth characterization of SICA[+] protein phenotypes and we show that the in vivo switch from Pk1(A+ to Pk1(B+1+ parasites resulted in a complete change in SICA profiles. These results emphasize the importance of studying

  7. Apicomplexa-specific tRip facilitates import of exogenous tRNAs into malaria parasites.

    Science.gov (United States)

    Bour, Tania; Mahmoudi, Nassira; Kapps, Delphine; Thiberge, Sabine; Bargieri, Daniel; Ménard, Robert; Frugier, Magali

    2016-04-26

    The malaria-causing Plasmodium parasites are transmitted to vertebrates by mosquitoes. To support their growth and replication, these intracellular parasites, which belong to the phylum Apicomplexa, have developed mechanisms to exploit their hosts. These mechanisms include expropriation of small metabolites from infected host cells, such as purine nucleotides and amino acids. Heretofore, no evidence suggested that transfer RNAs (tRNAs) could also be exploited. We identified an unusual gene in Apicomplexa with a coding sequence for membrane-docking and structure-specific tRNA binding. This Apicomplexa protein-designated tRip (tRNA import protein)-is anchored to the parasite plasma membrane and directs import of exogenous tRNAs. In the absence of tRip, the fitness of the parasite stage that multiplies in the blood is significantly reduced, indicating that the parasite may need host tRNAs to sustain its own translation and/or as regulatory RNAs. Plasmodium is thus the first example, to our knowledge, of a cell importing exogenous tRNAs, suggesting a remarkable adaptation of this parasite to extend its reach into host cell biology.

  8. Encapsulation of metalloporphyrins improves their capacity to block the viability of the human malaria parasite Plasmodium falciparum.

    Science.gov (United States)

    Alves, Eduardo; Iglesias, Bernardo A; Deda, Daiana K; Budu, Alexandre; Matias, Tiago A; Bueno, Vânia B; Maluf, Fernando V; Guido, Rafael V C; Oliva, Glaucius; Catalani, Luiz H; Araki, Koiti; Garcia, Celia R S

    2015-02-01

    Several synthetic metallated protoporphyrins (M-PPIX) were tested for their ability to block the cell cycle of the lethal human malaria parasite Plasmodium falciparum. After encapsulating the porphyrin derivatives in micro- and nanocapsules of marine atelocollagen, their effects on cultures of red blood cells infected (RBC) with P. falciparum were verified. RBCs infected with synchronized P. falciparum incubated for 48 h showed a toxic effect over a micromolar range. Strikingly, the IC50 of encapsulated metalloporphyrins reached nanomolar concentrations, where Zn-PPIX showed the best antimalarial effect, with an IC50=330 nM. This value is an 80-fold increase in the antimalarial activity compared to the antimalarial effect of non-encapsulated Zn-PPIX. These findings reveal that the incubation of P. falciparum infected-RBCs with 20 μM Zn-PPIX reduced the size of hemozoin crystal by 34%, whereas a 28% reduction was noticed with chloroquine, confirming the importance of heme detoxification pathway in drug therapy. In this study, synthetic metalloporphyrins were tested as therapeutics that target Plasmodium falciparum. The IC50 of encapsulated metalloporphyrins was found to be in the nanomolar concentration range, with encapsulated Zn-PPIX showing an 80-fold increase in its antimalarial activity compared to the non-encapsulated form. Copyright © 2015. Published by Elsevier Inc.

  9. Structural basis of malaria parasite lysyl-tRNA synthetase inhibition by cladosporin.

    Science.gov (United States)

    Khan, Sameena; Sharma, Arvind; Belrhali, Hassan; Yogavel, Manickam; Sharma, Amit

    2014-06-01

    Malaria parasites inevitably develop drug resistance to anti-malarials over time. Hence the immediacy for discovering new chemical scaffolds to include in combination malaria drug therapy. The desirable attributes of new chemotherapeutic agents currently include activity against both liver and blood stage malaria parasites. One such recently discovered compound called cladosporin abrogates parasite growth via inhibition of Plasmodium falciparum lysyl-tRNA synthetase (PfKRS), an enzyme central to protein translation. Here, we present crystal structure of ternary PfKRS-lysine-cladosporin (PfKRS-K-C) complex that reveals cladosporin's remarkable ability to mimic the natural substrate adenosine and thereby colonize PfKRS active site. The isocoumarin fragment of cladosporin sandwiches between critical adenine-recognizing residues while its pyran ring fits snugly in the ribose-recognizing cavity. PfKRS-K-C structure highlights ample space within PfKRS active site for further chemical derivatization of cladosporin. Such derivatives may be useful against additional human pathogens that retain high conservation in cladosporin chelating residues within their lysyl-tRNA synthetase.

  10. Severe malaria is associated with parasite binding to endothelial protein C receptor

    DEFF Research Database (Denmark)

    Turner, Louise; Lavstsen, Thomas; Berger, Sanne S

    2013-01-01

    Sequestration of Plasmodium falciparum-infected erythrocytes in host blood vessels is a key triggering event in the pathogenesis of severe childhood malaria, which is responsible for about one million deaths every year. Sequestration is mediated by specific interactions between members of the P....... falciparum erythrocyte membrane protein 1 (PfEMP1) family and receptors on the endothelial lining. Severe childhood malaria is associated with expression of specific PfEMP1 subtypes containing domain cassettes (DCs) 8 and 13 (ref. 3), but the endothelial receptor for parasites expressing these proteins...

  11. Clinical and parasitological profiles of patients with non-complicated Plasmodium falciparum and Plasmodium vivax malaria in northwestern Colombia

    OpenAIRE

    Knudson-Ospina, Angélica; Sánchez-Pedraza, Ricardo; Pérez-Mazorra, Manuel Alberto; Cortés-Cortés, Liliana Jazmín; Guerra-Vega, Ángela Patricia; Nicholls-Orejuela, Rubén Santiago

    2015-01-01

    Antecedentes. En Colombia existen pocos estudios que buscan encontrar diferencias clínicas y parasitológicas en la malaria causada por Plasmodium falciparum y Plasmodium vivax. Objetivo. Describir el perfil clínico y parasitológico de las malarias por Plasmodium falciparum y Plasmodium vivax no complicadas en Tierralta, Córdoba, Colombia. Materiales y métodos. Se evaluaron pacientes con paludismo no complicado por Plasmodium falciparum y Plasmodium vivax según los protocolos estandarizados po...

  12. Expression of senescent antigen on erythrocytes infected with a knobby variant of the human malaria parasite Plasmodium falciparum

    International Nuclear Information System (INIS)

    Winograd, E.; Greenan, J.R.T.; Sherman, I.W.

    1987-01-01

    Erythrocytes infected with a knobby variant of Plasmodium falciparum selectively bind IgG autoantibodies in normal human serum. Quantification of membrane-bound IgG, by use of 125 I-labeled protein A, revealed that erythrocytes infected with the knobby variant bound 30 times more protein A than did noninfected erythrocytes; infection with a knobless variant resulted in less than a 2-fold difference compared with noninfected erythrocytes. IgG binding to knobby erythrocytes appeared to be related to parasite development, since binding of 125 I-labeled protein A to cells bearing young trophozoites (less than 20 hr after parasite invasion) was similar to binding to uninfected erythrocytes. By immunoelectron microscopy, the membrane-bound IgG on erythrocytes infected with the knobby variant was found to be preferentially associated with the protuberances (knobs) of the plasma membrane. The removal of aged or senescent erythrocytes from the peripheral circulation is reported to involve the binding of specific antibodies to an antigen (senescent antigen) related to the major erythrocyte membrane protein band 3. Since affinity-purified autoantibodies against band 3 specifically bound to the plasma membrane of erythrocytes infected with the knobby variant of P. falciparum, it is clear that the malaria parasite induces expression of senescent antigen

  13. PLASMODIUM KNOWLESI: DISTRIBUSI, GAMBARAN MIKROSKOPIS, GEJALA PENDERITA DAN VEKTOR POTENSIAL

    Directory of Open Access Journals (Sweden)

    Lasbudi Pertama Ambarita

    2016-07-01

    Full Text Available ABSTRACTMalaria in humans is caused by an infection of genus Plasmodium, especially P. falciparum, P. vivax.P.mulariae and P. ovate. Types of Plasmodium in animals that can inject humans is P. knowlesi. Animalswhich are found parasites in their body are long tailed macaques (Macaca fascicularis and pig-tailedmacaques (Macaca nemestrina. .There have been many cases with positive malaria knowlesi as ithappened in Malaysia, Singapore, Thailand, Philippines, Myanmar, China, Vietnam and Indonesia. Studyof P. knowlesi aims to give an overview of the • case distribution, microscopic. features, patient characteristic, potential vector, as well as potential spread of malaria knowlesi in Indonesia. The methodused in this study is study literature from various sources. The microscopic features of the parasite inpatient blood films is pretty similar to P. falciparum and P. malariae in certain stadium. Therefore more awareness are needed regarding the spread of this parasite, especially in border areas of malaria endemiccountries and newly arrived immigrants in endemic areas of P. knowlesi.Keywords: Plasmodium knowlesi, malaria, parasite, vector ABSTRAKMalaria pada manusia selama ini disebabkan oleh infeksi genusPlasmodiumkhususnyaP. falciparum, P.vivax, P. malariaedanP. ovate. JenisPlasmodiumpada hewan yang dapat menginfeksi manusia adalahP.knowlesi.Hewan yang banyak ditemukan parasit ini dalam tubuhnya adalah kera ekor panjang(Macacajascicularisdan kera ekor babi(Macaca nemestrina.Sudah banyak kasus penderita malaria yang positif parasit ini seperti yang terjadi di Malaysia, Singapura, Thailand, Filipina, Myanmar, Cina, Vietnam danIndonesia. Kajian tentangP. knowlesiini bertujuan untuk memberikan gambaran tentang penyebarankasus, gambaran mikroskopis, karakteristik penderita, vektor potensial serta potensi penyebaran malaria knowlesidi Indonesia. Metode yang digunakan dalam kajian ini adalah studi kepustakaan (literatur dariberbagai sumber. Secara

  14. Integrated malaria vector control in different agro-ecosystems in western Kenya

    NARCIS (Netherlands)

    Imbahale, S.S.

    2009-01-01

    Malaria is a complex disease and its transmission is a function of the interaction between the Anopheles mosquito vector, the Plasmodium parasite, the hosts and the environment. Malaria control has mainly targeted the Plasmodium parasite or the adult anopheline mosquitoes. However, development of

  15. The Plasmodium falciparum transcriptome in severe malaria reveals altered expression of genes involved in important processes including surface antigen–encoding var genes

    Science.gov (United States)

    Tonkin-Hill, Gerry Q.; Trianty, Leily; Noviyanti, Rintis; Nguyen, Hanh H. T.; Sebayang, Boni F.; Lampah, Daniel A.; Marfurt, Jutta; Cobbold, Simon A.; Rambhatla, Janavi S.; McConville, Malcolm J.; Rogerson, Stephen J.; Brown, Graham V.; Day, Karen P.; Price, Ric N.; Anstey, Nicholas M.

    2018-01-01

    Within the human host, the malaria parasite Plasmodium falciparum is exposed to multiple selection pressures. The host environment changes dramatically in severe malaria, but the extent to which the parasite responds to—or is selected by—this environment remains unclear. From previous studies, the parasites that cause severe malaria appear to increase expression of a restricted but poorly defined subset of the PfEMP1 variant, surface antigens. PfEMP1s are major targets of protective immunity. Here, we used RNA sequencing (RNAseq) to analyse gene expression in 44 parasite isolates that caused severe and uncomplicated malaria in Papuan patients. The transcriptomes of 19 parasite isolates associated with severe malaria indicated that these parasites had decreased glycolysis without activation of compensatory pathways; altered chromatin structure and probably transcriptional regulation through decreased histone methylation; reduced surface expression of PfEMP1; and down-regulated expression of multiple chaperone proteins. Our RNAseq also identified novel associations between disease severity and PfEMP1 transcripts, domains, and smaller sequence segments and also confirmed all previously reported associations between expressed PfEMP1 sequences and severe disease. These findings will inform efforts to identify vaccine targets for severe malaria and also indicate how parasites adapt to—or are selected by—the host environment in severe malaria. PMID:29529020

  16. Plasmodium vivax cerebral malaria complicated with venous sinus thrombosis in Colombia

    Institute of Scientific and Technical Information of China (English)

    Miguel A Pinzn; Juan C Pineda; Fernando Rosso; Masaru Shinchi; Fabio Bonilla-Abada

    2013-01-01

    Complicated malaria is usually due to Plasmodium falciparum. Nevertheless, Plasmodium vivax is infrequently related with life-threatening complications. Few cases have been reported of severe Plasmodium vivax infection, and most of them from Southeast Asia and India. We report the first case of cerebral malaria due to Plasmodium vivax in Latin America, complicated with sagittal sinus thrombosis and confirmed by a molecular method.

  17. Plasmodium strain determines dendritic cell function essential for survival from malaria.

    Directory of Open Access Journals (Sweden)

    Michelle N Wykes

    2007-07-01

    Full Text Available The severity of malaria can range from asymptomatic to lethal infections involving severe anaemia and cerebral disease. However, the molecular and cellular factors responsible for these differences in disease severity are poorly understood. Identifying the factors that mediate virulence will contribute to developing antiparasitic immune responses. Since immunity is initiated by dendritic cells (DCs, we compared their phenotype and function following infection with either a nonlethal or lethal strain of the rodent parasite, Plasmodium yoelii, to identify their contribution to disease severity. DCs from nonlethal infections were fully functional and capable of secreting cytokines and stimulating T cells. In contrast, DCs from lethal infections were not functional. We then transferred DCs from mice with nonlethal infections to mice given lethal infections and showed that these DCs mediated control of parasitemia and survival. IL-12 was necessary for survival. To our knowledge, our studies have shown for the first time that during a malaria infection, DC function is essential for survival. More importantly, the functions of these DCs are determined by the strain of parasite. Our studies may explain, in part, why natural malaria infections may have different outcomes.

  18. Vaccination with a Plasmodium chabaudi adami multivalent DNA vaccine cross-protects A/J mice against challenge with P. c. adami DK and virulent Plasmodium chabaudi chabaudi AS parasites.

    Science.gov (United States)

    Scorza, T; Grubb, K; Cambos, M; Santamaria, C; Tshikudi Malu, D; Spithill, T W

    2008-06-01

    A current goal of malaria vaccine research is the development of vaccines that will cross-protect against multiple strains of malaria. In the present study, the breadth of cross-reactivity induced by a 30K multivalent DNA vaccine has been evaluated in susceptible A/J mice (H-2a) against infection with the Plasmodium chabaudi adami DK strain and a virulent parasite subspecies, Plasmodium chabaudi chabaudi AS. Immunized A/J mice were significantly protected against infection with both P. c. adami DK (31-40% reduction in cumulative parasitemia) and P. c. chabaudi AS parasites, where a 30-39% reduction in cumulative parasitemia as well as enhanced survival was observed. The 30K vaccine-induced specific IFN-gamma production by splenocytes in response to native antigens from both P. c. chabaudi AS and P. c. adami DK. Specific antibodies reacting with surface antigens expressed on P. c. adami DS and P. c. chabaudi AS infected red blood cells, and with opsonizing properties, were detected. These results suggest that multivalent vaccines encoding conserved antigens can feasibly induce immune cross-reactivity that span Plasmodium strains and subspecies and can protect hosts of distinct major histocompatibility complex haplotypes.

  19. Plasmodium falciparum var genes expressed in children with severe malaria encode CIDRα1 domains

    DEFF Research Database (Denmark)

    Jespersen, Jakob S.; Wang, Christian W.; Mkumbaye, Sixbert I.

    2016-01-01

    Most severe Plasmodium falciparum infections are experienced by young children. Severe symptoms are precipitated by vascular sequestration of parasites expressing a particular subset of the polymorphic P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion molecules. Parasites binding hum...... the hypothesis that the CIDRα1-EPCR interaction is key to the pathogenesis of severe malaria and strengthen the rationale for pursuing a vaccine or adjunctive treatment aiming at inhibiting or reducing the damaging effects of this interaction....

  20. Malaria parasites: the great escape

    Directory of Open Access Journals (Sweden)

    Laurent Rénia

    2016-11-01

    Full Text Available Parasites of the genus Plasmodium have a complex life cycle. They alternate between their final mosquito host and their intermediate hosts. The parasite can be either extra- or intracellular, depending on the stage of development. By modifying their shape, motility, and metabolic requirements, the parasite adapts to the different environments in their different hosts. The parasite has evolved to escape the multiple immune mechanisms in the host that try to block parasite development at the different stages of their development. In this article, we describe the mechanisms reported thus far that allow the Plasmodium parasite to evade innate and adaptive immune responses.

  1. A new morphologically distinct avian malaria parasite that fails detection by established polymerase chain reaction-based protocols for amplification of the cytochrome B gene.

    Science.gov (United States)

    Zehtindjiev, Pavel; Križanauskienė, Asta; Bensch, Staffan; Palinauskas, Vaidas; Asghar, Muhammad; Dimitrov, Dimitar; Scebba, Sergio; Valkiūnas, Gediminas

    2012-06-01

    Plasmodium polymorphum n. sp. (Haemosporida, Plasmodiidae) was found in the skylark, Alauda arvensis (Passeriformes: Alaudidae), during autumnal migration in southern Italy. This organism is illustrated and described based on the morphology of its blood stages. The most distinctive feature of this malaria parasite is the clear preference of its blood stages (trophozoites, meronts, and gametocytes) for immature red blood cells, including erythroblasts. Based on preference of erythrocytic meronts for immature red blood cells, P. polymorphum is most similar to species of the subgenus Huffia . This parasite can be readily distinguished from all other bird malaria parasites, including Plasmodium ( Huffia ) spp., due to preferential development and maturation of its gametocytes in immature red blood cells, a unique character for avian Plasmodium spp. In addition, the margins of nuclei in blood stages of P. polymorphum are markedly smooth and distinct; this is also a distinct diagnostic feature of this parasite. Plasmodium polymorphum has been recorded only in the skylark; it is probably a rare parasite, whose host range and geographical distribution remain unclear. Microscopic examination detected a light infection of Plasmodium relictum (lineage GRW11, parasitemia of 50-fold higher than that of P. relictum and several different primers were tested, we suggest that the failure to amplify P. polymorphum is a more complex problem than why co-infections are commonly overlooked in PCR-based studies. We suggest possible explanations of these results and call for additional research on evolution of mitochondrial genome of hemosporidian parasites.

  2. Rapid, low dose X-ray diffractive imaging of the malaria parasite Plasmodium falciparum

    International Nuclear Information System (INIS)

    Jones, Michael W.M.; Dearnley, Megan K.; Riessen, Grant A. van; Abbey, Brian; Putkunz, Corey T.; Junker, Mark D.; Vine, David J.; McNulty, Ian; Nugent, Keith A.; Peele, Andrew G.; Tilley, Leann

    2014-01-01

    Phase-diverse X-ray coherent diffractive imaging (CDI) provides a route to high sensitivity and spatial resolution with moderate radiation dose. It also provides a robust solution to the well-known phase-problem, making on-line image reconstruction feasible. Here we apply phase-diverse CDI to a cellular sample, obtaining images of an erythrocyte infected by the sexual stage of the malaria parasite, Plasmodium falciparum, with a radiation dose significantly lower than the lowest dose previously reported for cellular imaging using CDI. The high sensitivity and resolution allow key biological features to be identified within intact cells, providing complementary information to optical and electron microscopy. This high throughput method could be used for fast tomographic imaging, or to generate multiple replicates in two-dimensions of hydrated biological systems without freezing or fixing. This work demonstrates that phase-diverse CDI is a valuable complementary imaging method for the biological sciences and ready for immediate application. - Highlights: • Phase-diverse coherent X-ray diffraction microscopy provides high-resolution and high-contrast images of intact biological samples. • Rapid nanoscale resolution imaging is demonstrated at orders of magnitude lower dose than previously possible. • Phase-diverse coherent X-ray diffraction microscopy is a robust technique for rapid, quantitative, and correlative X-ray phase imaging

  3. Rapid, low dose X-ray diffractive imaging of the malaria parasite Plasmodium falciparum

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Michael W.M., E-mail: michael.jones@latrobe.edu.au [ARC Centre of Excellence for Coherent X-Ray Science, Department of Physics, La Trobe University, Victoria 3086 (Australia); Dearnley, Megan K. [ARC Centre of Excellence for Coherent X-Ray Science, Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Victoria 3010 (Australia); Riessen, Grant A. van [ARC Centre of Excellence for Coherent X-Ray Science, Department of Physics, La Trobe University, Victoria 3086 (Australia); Abbey, Brian [ARC Centre of Excellence for Coherent X-Ray Science, Department of Physics, La Trobe University, Victoria 3086 (Australia); Melbourne Centre for Nanofabrication, Victoria 3168 (Australia); Putkunz, Corey T. [ARC Centre of Excellence for Coherent X-Ray Science, School of Physics, The University of Melbourne, Victoria 3010 (Australia); Junker, Mark D. [ARC Centre of Excellence for Coherent X-Ray Science, Department of Physics, La Trobe University, Victoria 3086 (Australia); Vine, David J. [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); McNulty, Ian [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Centre for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Nugent, Keith A. [ARC Centre of Excellence for Coherent X-Ray Science, Department of Physics, La Trobe University, Victoria 3086 (Australia); Peele, Andrew G. [ARC Centre of Excellence for Coherent X-Ray Science, Department of Physics, La Trobe University, Victoria 3086 (Australia); Australian Synchrotron, 800 Blackburn Road, Clayton 3168 (Australia); Tilley, Leann [ARC Centre of Excellence for Coherent X-Ray Science, Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Victoria 3010 (Australia)

    2014-08-01

    Phase-diverse X-ray coherent diffractive imaging (CDI) provides a route to high sensitivity and spatial resolution with moderate radiation dose. It also provides a robust solution to the well-known phase-problem, making on-line image reconstruction feasible. Here we apply phase-diverse CDI to a cellular sample, obtaining images of an erythrocyte infected by the sexual stage of the malaria parasite, Plasmodium falciparum, with a radiation dose significantly lower than the lowest dose previously reported for cellular imaging using CDI. The high sensitivity and resolution allow key biological features to be identified within intact cells, providing complementary information to optical and electron microscopy. This high throughput method could be used for fast tomographic imaging, or to generate multiple replicates in two-dimensions of hydrated biological systems without freezing or fixing. This work demonstrates that phase-diverse CDI is a valuable complementary imaging method for the biological sciences and ready for immediate application. - Highlights: • Phase-diverse coherent X-ray diffraction microscopy provides high-resolution and high-contrast images of intact biological samples. • Rapid nanoscale resolution imaging is demonstrated at orders of magnitude lower dose than previously possible. • Phase-diverse coherent X-ray diffraction microscopy is a robust technique for rapid, quantitative, and correlative X-ray phase imaging.

  4. Antigenic variation and the genetics and epigenetics of the PfEMP1 erythrocyte surface antigens in Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Arnot, David E; Jensen, Anja T R

    2011-01-01

    . Sterile immunity is not achieved and chronic parasitization of apparently healthy adults is the norm. In this article, we analyse the best understood malaria "antigenic variation" system, that based on Plasmodium falciparum's PfEMP1-type cytoadhesion antigens, and critically review recent literature...

  5. Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity.

    NARCIS (Netherlands)

    Silvie, O.; Rubinstein, E.; Franetich, J.F.; Prenant, M.; Belnoue, E.; Renia, L.; Hannoun, L.; Eling, W.M.C.; Levy, S.; Boucheix, C.; Mazier, D.

    2003-01-01

    Plasmodium sporozoites are transmitted through the bite of infected mosquitoes and first invade the liver of the mammalian host, as an obligatory step of the life cycle of the malaria parasite. Within hepatocytes, Plasmodium sporozoites reside in a membrane-bound vacuole, where they differentiate

  6. Heterologous Protection against Malaria after Immunization with Plasmodium falciparum Sporozoites.

    Directory of Open Access Journals (Sweden)

    Remko Schats

    Full Text Available Sterile protection in >90% of volunteers against homologous Plasmodium falciparum infection has been achieved only using the controlled human malaria infection (CHMI model. This efficient model involves whole parasite immunizations under chloroquine prophylaxis (CPS-immunization, requiring only 30-45 mosquitoes bites infected with P. falciparum-sporozoites. Given the large diversity of P. falciparum parasites, it is essential to assess protection against heterologous parasite strains.In an open-label follow-up study, 16 volunteers previously CPS-immunized and challenged with P. falciparum NF54 (West-Africa in a dose de-escalation and challenge trial were re-challenged with clone NF135.C10 (Cambodia at 14 months after the last immunization (NCT01660854.Two out of thirteen NF54 protected volunteers previously fully protected against NF54 were also fully protected against NF135.C10, while 11/13 showed a delayed patency (median prepatent period of 10.5 days (range 9.0-15.5 versus 8.5 days in 5 malaria-naïve controls (p = 0.0005. Analysis of patency by qPCR indicated a 91 to >99% estimated reduction of liver parasite load in 7/11 partially protected subjects. Three volunteers previously not protected against NF54, were also not protected against NF135.C10.This study shows that CPS-immunization can induce heterologous protection for a period of more than one year, which is a further impetus for clinical development of whole parasite vaccines.Clinicaltrials.gov NCT01660854.

  7. Malaria diagnosis by PCR revealed differential distribution of mono and mixed species infections by Plasmodium falciparum and P. vivax in India.

    Science.gov (United States)

    Siwal, Nisha; Singh, Upasana Shyamsunder; Dash, Manoswini; Kar, Sonalika; Rani, Swati; Rawal, Charu; Singh, Rajkumar; Anvikar, Anupkumar R; Pande, Veena; Das, Aparup

    2018-01-01

    Malaria is a vector-borne infectious disease, caused by five different species of the genus Plasmodium, and is endemic to many tropical and sub-tropical countries of the globe. At present, malaria diagnosis at the primary health care level in India is conducted by either microscopy or rapid diagnostic test (RDT). In recent years, molecular diagnosis (by PCR assay), has emerged as the most sensitive method for malaria diagnosis. India is highly endemic to malaria and shoulders the burden of two major malaria parasites, Plasmodium falciparum and P. vivax. Previous studies using PCR diagnostic assay had unraveled several interesting facts on distribution of malaria parasites in India. However, these studies had several limitations from small sample size to limited geographical areas of sampling. In order to mitigate these limitations, we have collected finger-prick blood samples from 2,333 malaria symptomatic individuals in nine states from 11 geographic locations, covering almost the entire malaria endemic regions of India and performed all the three diagnostic tests (microscopy, RDT and PCR assay) and also have conducted comparative assessment on the performance of the three diagnostic tests. Since PCR assay turned out to be highly sensitive (827 malaria positive cases) among the three types of tests, we have utilized data from PCR diagnostic assay for analyses and inferences. The results indicate varied distributional prevalence of P. vivax and P. falciparum according to locations in India, and also the mixed species infection due to these two species. The proportion of P. falciparum to P. vivax was found to be 49:51, and percentage of mixed species infections due to these two parasites was found to be 13% of total infections. Considering India is set for malaria elimination by 2030, the present malaria epidemiological information is of high importance.

  8. Description, molecular characterisation, diagnostics and life cycle of Plasmodium elongatum (lineage pERIRUB01), the virulent avian malaria parasite.

    Science.gov (United States)

    Palinauskas, Vaidas; Žiegytė, Rita; Iezhova, Tatjana A; Ilgūnas, Mikas; Bernotienė, Rasa; Valkiūnas, Gediminas

    2016-10-01

    Plasmodium elongatum causes severe avian malaria and is distributed worldwide. This parasite is of particular importance due to its ability to develop and cause lethal malaria not only in natural hosts, but also in non-adapted endemic birds such as the brown kiwi and different species of penguins. Information on vectors of this infection is available but is contradictory. PCR-based analysis indicated the possible existence of a cluster of closely related P. elongatum lineages which might differ in their ability to develop in certain mosquitoes and birds. This experimental study provides information about molecular and morphological characterisation of a virulent P. elongatum strain (lineage pERIRUB01) isolated from a naturally infected European robin, Erithacus rubecula. Phylogenetic analysis based on partial cytochrome b gene sequences showed that this parasite lineage is closely related to P. elongatum (lineage pGRW6). Blood stages of both parasite lineages are indistinguishable, indicating that they belong to the same species. Both pathogens develop in experimentally infected canaries, Serinus canaria, causing death of the hosts. In both these lineages, trophozoites and erythrocytic meronts develop in polychromatic erythrocytes and erythroblasts, gametocytes parasitize mature erythrocytes, exoerythrocytic stages develop in cells of the erythrocytic series in bone marrow and are occasionally reported in spleen and liver. Massive infestation of bone marrow cells is the main reason for bird mortality. We report here on syncytium-like remnants of tissue meronts, which slip out of the bone marrow into the peripheral circulation, providing evidence that the syncytia can be a template for PCR amplification. This finding contributes to better understanding positive PCR amplifications in birds when parasitemia is invisible and improved diagnostics of abortive haemosporidian infections. Sporogony of P. elongatum (pERIRUB01) completes the cycle and sporozoites develop in

  9. Molecular identification of the chitinase genes in Plasmodium relictum.

    Science.gov (United States)

    Garcia-Longoria, Luz; Hellgren, Olof; Bensch, Staffan

    2014-06-18

    Malaria parasites need to synthesize chitinase in order to go through the peritrophic membrane, which is created around the mosquito midgut, to complete its life cycle. In mammalian malaria species, the chitinase gene comprises either a large or a short copy. In the avian malaria parasites Plasmodium gallinaceum both copies are present, suggesting that a gene duplication in the ancestor to these extant species preceded the loss of either the long or the short copy in Plasmodium parasites of mammals. Plasmodium gallinaceum is not the most widespread and harmful parasite of birds. This study is the first to search for and identify the chitinase gene in one of the most prevalent avian malaria parasites, Plasmodium relictum. Both copies of P. gallinaceum chitinase were used as reference sequences for primer design. Different sequences of Plasmodium spp. were used to build the phylogenetic tree of chitinase gene. The gene encoding for chitinase was identified in isolates of two mitochondrial lineages of P. relictum (SGS1 and GRW4). The chitinase found in these two lineages consists both of the long (PrCHT1) and the short (PrCHT2) copy. The genetic differences found in the long copy of the chitinase gene between SGS1 and GRW4 were higher than the difference observed for the cytochrome b gene. The identification of both copies in P. relictum sheds light on the phylogenetic relationship of the chitinase gene in the genus Plasmodium. Due to its high variability, the chitinase gene could be used to study the genetic population structure in isolates from different host species and geographic regions.

  10. Bionomics of Anopheles latens in Kapit, Sarawak, Malaysian Borneo in relation to the transmission of zoonotic simian malaria parasite Plasmodium knowlesi

    Science.gov (United States)

    Tan, Cheong H; Vythilingam, Indra; Matusop, Asmad; Chan, Seng T; Singh, Balbir

    2008-01-01

    Background A large focus of human infections with Plasmodium knowlesi, a simian parasite naturally found in long-tailed and pig-tailed macaques was discovered in the Kapit Division of Sarawak, Malaysian Borneo. A study was initiated to identify the vectors of malaria, to elucidate where transmission is taking place and to understand the bionomics of the vectors in Kapit. Methods Three different ecological sites in the forest, farm and longhouse in the Kapit district were selected for the study. Mosquitoes were collected by human landing collection at all sites and at the forest also by monkey-baited-traps situated on three different levels. All mosquitoes were identified and salivary glands and midguts of anopheline mosquitoes were dissected to determine the presence of malaria parasites. Results and Discussions Over an 11-month period, a total of 2,504 Anopheles mosquitoes comprising 12 species were caught; 1,035 at the farm, 774 at the forest and 425 at the longhouse. Anopheles latens (62.3%) and Anopheles watsonii (30.6%) were the predominant species caught in the forested ecotypes, while in the farm Anopheles donaldi (49.9%) and An. latens (35.6%) predominated. In the long house, An. latens (29.6%) and An. donaldi (22.8%) were the major Anopheline species. However, An. latens was the only mosquito positive for sporozoites and it was found to be attracted to both human and monkey hosts. In monkey-baited net traps, it preferred to bite monkeys at the canopy level than at ground level. An. latens was found biting early as 18.00 hours. Conclusion Anopheles latens is the main vector for P. knowlesi malaria parasites in the Kapit District of Sarawak, Malaysian Borneo. The study underscores the relationship between ecology, abundance and bionomics of anopheline fauna. The simio-anthropophagic and acrodendrophilic behaviour of An. latens makes it an efficient vector for the transmission of P. knowlesi parasites to both human and monkey hosts. PMID:18377652

  11. Bionomics of Anopheles latens in Kapit, Sarawak, Malaysian Borneo in relation to the transmission of zoonotic simian malaria parasite Plasmodium knowlesi

    Directory of Open Access Journals (Sweden)

    Matusop Asmad

    2008-03-01

    Full Text Available Abstract Background A large focus of human infections with Plasmodium knowlesi, a simian parasite naturally found in long-tailed and pig-tailed macaques was discovered in the Kapit Division of Sarawak, Malaysian Borneo. A study was initiated to identify the vectors of malaria, to elucidate where transmission is taking place and to understand the bionomics of the vectors in Kapit. Methods Three different ecological sites in the forest, farm and longhouse in the Kapit district were selected for the study. Mosquitoes were collected by human landing collection at all sites and at the forest also by monkey-baited-traps situated on three different levels. All mosquitoes were identified and salivary glands and midguts of anopheline mosquitoes were dissected to determine the presence of malaria parasites. Results and Discussions Over an 11-month period, a total of 2,504 Anopheles mosquitoes comprising 12 species were caught; 1,035 at the farm, 774 at the forest and 425 at the longhouse. Anopheles latens (62.3% and Anopheles watsonii (30.6% were the predominant species caught in the forested ecotypes, while in the farm Anopheles donaldi (49.9% and An. latens (35.6% predominated. In the long house, An. latens (29.6% and An. donaldi (22.8% were the major Anopheline species. However, An. latens was the only mosquito positive for sporozoites and it was found to be attracted to both human and monkey hosts. In monkey-baited net traps, it preferred to bite monkeys at the canopy level than at ground level. An. latens was found biting early as 18.00 hours. Conclusion Anopheles latens is the main vector for P. knowlesi malaria parasites in the Kapit District of Sarawak, Malaysian Borneo. The study underscores the relationship between ecology, abundance and bionomics of anopheline fauna. The simio-anthropophagic and acrodendrophilic behaviour of An. latens makes it an efficient vector for the transmission of P. knowlesi parasites to both human and monkey hosts.

  12. Prevalence of Plasmodium spp. in malaria asymptomatic African migrants assessed by nucleic acid sequence based amplification

    Directory of Open Access Journals (Sweden)

    Schallig Henk DFH

    2009-01-01

    Full Text Available Abstract Background Malaria is one of the most important infectious diseases in the world. Although most cases are found distributed in the tropical regions of Africa, Asia, Central and South Americas, there is in Europe a significant increase in the number of imported cases in non-endemic countries, in particular due to the higher mobility in today's society. Methods The prevalence of a possible asymptomatic infection with Plasmodium species was assessed using Nucleic Acid Sequence Based Amplification (NASBA assays on clinical samples collected from 195 study cases with no clinical signs related to malaria and coming from sub-Saharan African regions to Southern Italy. In addition, base-line demographic, clinical and socio-economic information was collected from study participants who also underwent a full clinical examination. Results Sixty-two study subjects (31.8% were found positive for Plasmodium using a pan Plasmodium specific NASBA which can detect all four Plasmodium species causing human disease, based on the small subunit 18S rRNA gene (18S NASBA. Twenty-four samples (38% of the 62 18S NASBA positive study cases were found positive with a Pfs25 mRNA NASBA, which is specific for the detection of gametocytes of Plasmodium falciparum. A statistically significant association was observed between 18S NASBA positivity and splenomegaly, hepatomegaly and leukopaenia and country of origin. Conclusion This study showed that a substantial proportion of people originating from malaria endemic countries harbor malaria parasites in their blood. If transmission conditions are available, they could potentially be a reservoir. Thefore, health authorities should pay special attention to the health of this potential risk group and aim to improve their health conditions.

  13. SAM domain-dependent activity of PfTKL3, an essential tyrosine kinase-like kinase of the human malaria parasite Plasmodium falciparum.

    Science.gov (United States)

    Abdi, Abdirahman; Eschenlauer, Sylvain; Reininger, Luc; Doerig, Christian

    2010-10-01

    Over the last decade, several protein kinases inhibitors have reached the market for cancer chemotherapy. The kinomes of pathogens represent potentially attractive targets in infectious diseases. The functions of the majority of protein kinases of Plasmodium falciparum, the parasitic protist responsible for the most virulent form of human malaria, remain unknown. Here we present a thorough characterisation of PfTKL3 (PF13_0258), an enzyme that belongs to the tyrosine kinase-like kinase (TKL) group. We demonstrate by reverse genetics that PfTKL3 is essential for asexual parasite proliferation in human erythrocytes. PfTKL3 is expressed in both asexual and gametocytes stages, and in the latter the protein co-localises with cytoskeleton microtubules. Recombinant PfTKL3 displays in vitro autophosphorylation activity and is able to phosphorylate exogenous substrates, and both activities are dramatically dependent on the presence of an N-terminal "sterile alpha-motif" domain. This study identifies PfTKL3 as a validated drug target amenable to high-throughput screening.

  14. Genetic diversity of three surface protein genes in Plasmodium malariae from three Asian countries.

    Science.gov (United States)

    Srisutham, Suttipat; Saralamba, Naowarat; Sriprawat, Kanlaya; Mayxay, Mayfong; Smithuis, Frank; Nosten, Francois; Pukrittayakamee, Sasithon; Day, Nicholas P J; Dondorp, Arjen M; Imwong, Mallika

    2018-01-11

    Genetic diversity of the three important antigenic proteins, namely thrombospondin-related anonymous protein (TRAP), apical membrane antigen 1 (AMA1), and 6-cysteine protein (P48/45), all of which are found in various developmental stages of Plasmodium parasites is crucial for targeted vaccine development. While studies related to the genetic diversity of these proteins are available for Plasmodium falciparum and Plasmodium vivax, barely enough information exists regarding Plasmodium malariae. The present study aims to demonstrate the genetic variations existing among these three genes in P. malariae by analysing their diversity at nucleotide and protein levels. Three surface protein genes were isolated from 45 samples collected in Thailand (N = 33), Myanmar (N = 8), and Lao PDR (N = 4), using conventional polymerase chain reaction (PCR) assay. Then, the PCR products were sequenced and analysed using BioEdit, MEGA6, and DnaSP programs. The average pairwise nucleotide diversities (π) of P. malariae trap, ama1, and p48/45 were 0.00169, 0.00413, and 0.00029, respectively. The haplotype diversities (Hd) of P. malariae trap, ama1, and p48/45 were 0.919, 0.946, and 0.130, respectively. Most of the nucleotide substitutions were non-synonymous, which indicated that the genetic variations of these genes were maintained by positive diversifying selection, thus, suggesting their role as a potential target of protective immune response. Amino acid substitutions of P. malariae TRAP, AMA1, and P48/45 could be categorized to 17, 20, and 2 unique amino-acid variants, respectively. For further vaccine development, carboxyl terminal of P48/45 would be a good candidate according to conserved amino acid at low genetic diversity (π = 0.2-0.3). High mutational diversity was observed in P. malariae trap and ama1 as compared to p48/45 in P. malariae samples isolated from Thailand, Myanmar, and Lao PDR. Taken together, these results suggest that P48/45 might be a good vaccine

  15. Interactions between Asaia, Plasmodium and Anopheles: new insights into mosquito symbiosis and implications in malaria symbiotic control.

    Science.gov (United States)

    Capone, Aida; Ricci, Irene; Damiani, Claudia; Mosca, Michela; Rossi, Paolo; Scuppa, Patrizia; Crotti, Elena; Epis, Sara; Angeletti, Mauro; Valzano, Matteo; Sacchi, Luciano; Bandi, Claudio; Daffonchio, Daniele; Mandrioli, Mauro; Favia, Guido

    2013-06-18

    Malaria represents one of the most devastating infectious diseases. The lack of an effective vaccine and the emergence of drug resistance make necessary the development of new effective control methods. The recent identification of bacteria of the genus Asaia, associated with larvae and adults of malaria vectors, designates them as suitable candidates for malaria paratransgenic control.To better characterize the interactions between Asaia, Plasmodium and the mosquito immune system we performed an integrated experimental approach. Quantitative PCR analysis of the amount of native Asaia was performed on individual Anopheles stephensi specimens. Mosquito infection was carried out with the strain PbGFPCON and the number of parasites in the midgut was counted by fluorescent microscopy.The colonisation of infected mosquitoes was achieved using GFP or DsRed tagged-Asaia strains.Reverse transcriptase-PCR analysis, growth and phagocytosis tests were performed using An. stephensi and Drosophila melanogaster haemocyte cultures and DsRed tagged-Asaia and Escherichia coli strains. Using quantitative PCR we have quantified the relative amount of Asaia in infected and uninfected mosquitoes, showing that the parasite does not interfere with bacterial blooming. The correlation curves have confirmed the active replication of Asaia, while at the same time, the intense decrease of the parasite.The 'in vitro' immunological studies have shown that Asaia induces the expression of antimicrobial peptides, however, the growth curves in conditioned medium as well as a phagocytosis test, indicated that the bacterium is not an immune-target.Using fluorescent strains of Asaia and Plasmodium we defined their co-localisation in the mosquito midgut and salivary glands. We have provided important information about the relationship of Asaia with both Plasmodium and Anopheles. First, physiological changes in the midgut following an infected or uninfected blood meal do not negatively affect the

  16. A potential role for plasma uric acid in the endothelial pathology of Plasmodium falciparum malaria.

    Directory of Open Access Journals (Sweden)

    Neida K Mita-Mendoza

    Full Text Available BACKGROUND: Inflammatory cytokinemia and systemic activation of the microvascular endothelium are central to the pathogenesis of Plasmodium falciparum malaria. Recently, 'parasite-derived' uric acid (UA was shown to activate human immune cells in vitro, and plasma UA levels were associated with inflammatory cytokine levels and disease severity in Malian children with malaria. Since UA is associated with endothelial inflammation in non-malaria diseases, we hypothesized that elevated UA levels contribute to the endothelial pathology of P. falciparum malaria. METHODOLOGY/PRINCIPAL FINDINGS: We measured levels of UA and soluble forms of intercellular adhesion molecule-1 (sICAM-1, vascular cell adhesion molecule-1 (sVCAM-1, E-selectin (sE-Selectin, thrombomodulin (sTM, tissue factor (sTF and vascular endothelial growth factor (VEGF in the plasma of Malian children aged 0.5-17 years with uncomplicated malaria (UM, n = 487 and non-cerebral severe malaria (NCSM, n = 68. In 69 of these children, we measured these same factors once when they experienced a malaria episode and twice when they were healthy (i.e., before and after the malaria transmission season. We found that levels of UA, sICAM-1, sVCAM-1, sE-Selectin and sTM increase during a malaria episode and return to basal levels at the end of the transmission season (p<0.0001. Plasma levels of UA and these four endothelial biomarkers correlate with parasite density and disease severity. In children with UM, UA levels correlate with parasite density (r = 0.092, p = 0.043, sICAM-1 (r = 0.255, p<0.0001 and sTM (r = 0.175, p = 0.0001 levels. After adjusting for parasite density, UA levels predict sTM levels. CONCLUSIONS/SIGNIFICANCE: Elevated UA levels may contribute to malaria pathogenesis by damaging endothelium and promoting a procoagulant state. The correlation between UA levels and parasite densities suggests that parasitized erythrocytes are one possible source of excess UA. UA-induced shedding of

  17. Modelling the Incidence of Plasmodium vivax and Plasmodium falciparum Malaria in Afghanistan 2006–2009

    Science.gov (United States)

    Alegana, Victor A.; Wright, Jim A.; Nahzat, Sami M.; Butt, Waqar; Sediqi, Amad W.; Habib, Naeem; Snow, Robert W.; Atkinson, Peter M.; Noor, Abdisalan M.

    2014-01-01

    Background Identifying areas that support high malaria risks and where populations lack access to health care is central to reducing the burden in Afghanistan. This study investigated the incidence of Plasmodium vivax and Plasmodium falciparum using routine data to help focus malaria interventions. Methods To estimate incidence, the study modelled utilisation of the public health sector using fever treatment data from the 2012 national Malaria Indicator Survey. A probabilistic measure of attendance was applied to population density metrics to define the proportion of the population within catchment of a public health facility. Malaria data were used in a Bayesian spatio-temporal conditional-autoregressive model with ecological or environmental covariates, to examine the spatial and temporal variation of incidence. Findings From the analysis of healthcare utilisation, over 80% of the population was within 2 hours’ travel of the nearest public health facility, while 64.4% were within 30 minutes’ travel. The mean incidence of P. vivax in 2009 was 5.4 (95% Crl 3.2–9.2) cases per 1000 population compared to 1.2 (95% Crl 0.4–2.9) cases per 1000 population for P. falciparum. P. vivax peaked in August while P. falciparum peaked in November. 32% of the estimated 30.5 million people lived in regions where annual incidence was at least 1 case per 1,000 population of P. vivax; 23.7% of the population lived in areas where annual P. falciparum case incidence was at least 1 per 1000. Conclusion This study showed how routine data can be combined with household survey data to model malaria incidence. The incidence of both P. vivax and P. falciparum in Afghanistan remain low but the co-distribution of both parasites and the lag in their peak season provides challenges to malaria control in Afghanistan. Future improved case definition to determine levels of imported risks may be useful for the elimination ambitions in Afghanistan. PMID:25033452

  18. The epidemiology of Plasmodium vivax and Plasmodium falciparum malaria in China, 2004-2012: from intensified control to elimination.

    Science.gov (United States)

    Zhang, Qian; Lai, Shengjie; Zheng, Canjun; Zhang, Honglong; Zhou, Sheng; Hu, Wenbiao; Clements, Archie C A; Zhou, Xiao-Nong; Yang, Weizhong; Hay, Simon I; Yu, Hongjie; Li, Zhongjie

    2014-11-03

    In China, the national malaria elimination programme has been operating since 2010. This study aimed to explore the epidemiological changes in patterns of malaria in China from intensified control to elimination stages. Data on nationwide malaria cases from 2004 to 2012 were extracted from the Chinese national malaria surveillance system. The secular trend, gender and age features, seasonality, and spatial distribution by Plasmodium species were analysed. In total, 238,443 malaria cases were reported, and the proportion of Plasmodium falciparum increased drastically from population. The areas affected by Plasmodium vivax malaria shrunk, while areas affected by P. falciparum malaria expanded from 294 counties in 2004 to 600 counties in 2012. This study demonstrated that malaria has decreased dramatically in the last five years, especially since the Chinese government launched a malaria elimination programme in 2010, and areas with reported falciparum malaria cases have expanded over recent years. These findings suggest that elimination efforts should be improved to meet these changes, so as to achieve the nationwide malaria elimination goal in China in 2020.

  19. Initial characterization of the Pf-Int recombinase from the malaria parasite Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Mehdi Ghorbal

    Full Text Available Genetic variation is an essential means of evolution and adaptation in many organisms in response to environmental change. Certain DNA alterations can be carried out by site-specific recombinases (SSRs that fall into two families: the serine and the tyrosine recombinases. SSRs are seldom found in eukaryotes. A gene homologous to a tyrosine site-specific recombinase has been identified in the genome of Plasmodium falciparum. The sequence is highly conserved among five other members of Plasmodia.The predicted open reading frame encodes for a ∼57 kDa protein containing a C-terminal domain including the putative tyrosine recombinase conserved active site residues R-H-R-(H/W-Y. The N-terminus has the typical alpha-helical bundle and potentially a mixed alpha-beta domain resembling that of λ-Int. Pf-Int mRNA is expressed differentially during the P. falciparum erythrocytic life stages, peaking in the schizont stage. Recombinant Pf-Int and affinity chromatography of DNA from genomic or synthetic origin were used to identify potential DNA targets after sequencing or micro-array hybridization. Interestingly, the sequences captured also included highly variable subtelomeric genes such as var, rif, and stevor sequences. Electrophoretic mobility shift assays with DNA were carried out to verify Pf-Int/DNA binding. Finally, Pf-Int knock-out parasites were created in order to investigate the biological role of Pf-Int.Our data identify for the first time a malaria parasite gene with structural and functional features of recombinases. Pf-Int may bind to and alter DNA, either in a sequence specific or in a non-specific fashion, and may contribute to programmed or random DNA rearrangements. Pf-Int is the first molecular player identified with a potential role in genome plasticity in this pathogen. Finally, Pf-Int knock-out parasite is viable showing no detectable impact on blood stage development, which is compatible with such function.

  20. Regulatory hotspots in the malaria parasite genome dictate transcriptional variation.

    Directory of Open Access Journals (Sweden)

    Joseph M Gonzales

    2008-09-01

    Full Text Available The determinants of transcriptional regulation in malaria parasites remain elusive. The presence of a well-characterized gene expression cascade shared by different Plasmodium falciparum strains could imply that transcriptional regulation and its natural variation do not contribute significantly to the evolution of parasite drug resistance. To clarify the role of transcriptional variation as a source of stain-specific diversity in the most deadly malaria species and to find genetic loci that dictate variations in gene expression, we examined genome-wide expression level polymorphisms (ELPs in a genetic cross between phenotypically distinct parasite clones. Significant variation in gene expression is observed through direct co-hybridizations of RNA from different P. falciparum clones. Nearly 18% of genes were regulated by a significant expression quantitative trait locus. The genetic determinants of most of these ELPs resided in hotspots that are physically distant from their targets. The most prominent regulatory locus, influencing 269 transcripts, coincided with a Chromosome 5 amplification event carrying the drug resistance gene, pfmdr1, and 13 other genes. Drug selection pressure in the Dd2 parental clone lineage led not only to a copy number change in the pfmdr1 gene but also to an increased copy number of putative neighboring regulatory factors that, in turn, broadly influence the transcriptional network. Previously unrecognized transcriptional variation, controlled by polymorphic regulatory genes and possibly master regulators within large copy number variants, contributes to sweeping phenotypic evolution in drug-resistant malaria parasites.

  1. Atovaquone and proguanil hydrochloride followed by primaquine for treatment of Plasmodium vivax malaria in Thailand.

    Science.gov (United States)

    Looareesuwan, S; Wilairatana, P; Glanarongran, R; Indravijit, K A; Supeeranontha, L; Chinnapha, S; Scott, T R; Chulay, J D

    1999-01-01

    Chloroquine-resistant Plasmodium vivax malaria has been reported in several geographical areas. The P. vivax life-cycle includes dormant hepatic parasites (hypnozoites) that cause relapsing malaria weeks to years after initial infection. Curative therapy must therefore target both the erythrocytic and hepatic stages of infection. Between July 1997 and June 1998, we conducted an open-label study in Thailand to evaluate the efficacy and tolerability of a sequential regimen of combination atovaquone (1000 mg) and proguanil hydrochloride (400 mg), once daily for 3 days, followed by primaquine (30 mg daily for 14 days) for treatment of vivax malaria. All 46 patients who completed the 3-day course of atovaquone-proguanil cleared their parasitaemia within 2-6 days. During a 12-week follow-up period in 35 patients, recurrent parasitaemia occurred in 2. Both recurrent episodes occurred 8 weeks after the start of therapy, consistent with relapse from persistent hypnozoites rather than recrudescence of persistent blood-stage parasites. The dosing regimen was well tolerated. Results of this trial indicate that atovaquone-proguanil followed by primaquine is safe and effective for treatment of vivax malaria.

  2. Discovery of HDAC inhibitors with potent activity against multiple malaria parasite life cycle stages.

    Science.gov (United States)

    Hansen, Finn K; Sumanadasa, Subathdrage D M; Stenzel, Katharina; Duffy, Sandra; Meister, Stephan; Marek, Linda; Schmetter, Rebekka; Kuna, Krystina; Hamacher, Alexandra; Mordmüller, Benjamin; Kassack, Matthias U; Winzeler, Elizabeth A; Avery, Vicky M; Andrews, Katherine T; Kurz, Thomas

    2014-07-23

    In this work we investigated the antiplasmodial activity of a series of HDAC inhibitors containing an alkoxyamide connecting-unit linker region. HDAC inhibitor 1a (LMK235), previously shown to be a novel and specific inhibitor of human HDAC4 and 5, was used as a starting point to rapidly construct a mini-library of HDAC inhibitors using a straightforward solid-phase supported synthesis. Several of these novel HDAC inhibitors were found to have potent in vitro activity against asexual stage Plasmodium falciparum malaria parasites. Representative compounds were shown to hyperacetylate P. falciparum histones and to inhibit deacetylase activity of recombinant PfHDAC1 and P. falciparum nuclear extracts. All compounds were also screened in vitro for activity against Plasmodium berghei exo-erythrocytic stages and selected compounds were further tested against late stage (IV and V) P. falciparum gametocytes. Of note, some compounds showed nanomolar activity against all three life cycle stages tested (asexual, exo-erythrocytic and gametocyte stages) and several compounds displayed significantly increased parasite selectivity compared to the reference HDAC inhibitor suberoylanilide hydroxamic acid (SAHA). These data suggest that it may be possible to develop HDAC inhibitors that target multiple malaria parasite life cycle stages. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. The Plasmodium falciparum pseudoprotease SERA5 regulates the kinetics and efficiency of malaria parasite egress from host erythrocytes.

    Directory of Open Access Journals (Sweden)

    Christine R Collins

    2017-07-01

    Full Text Available Egress of the malaria parasite Plasmodium falciparum from its host red blood cell is a rapid, highly regulated event that is essential for maintenance and completion of the parasite life cycle. Egress is protease-dependent and is temporally associated with extensive proteolytic modification of parasite proteins, including a family of papain-like proteins called SERA that are expressed in the parasite parasitophorous vacuole. Previous work has shown that the most abundant SERA, SERA5, plays an important but non-enzymatic role in asexual blood stages. SERA5 is extensively proteolytically processed by a parasite serine protease called SUB1 as well as an unidentified cysteine protease just prior to egress. However, neither the function of SERA5 nor the role of its processing is known. Here we show that conditional disruption of the SERA5 gene, or of both the SERA5 and related SERA4 genes simultaneously, results in a dramatic egress and replication defect characterised by premature host cell rupture and the failure of daughter merozoites to efficiently disseminate, instead being transiently retained within residual bounding membranes. SERA5 is not required for poration (permeabilization or vesiculation of the host cell membrane at egress, but the premature rupture phenotype requires the activity of a parasite or host cell cysteine protease. Complementation of SERA5 null parasites by ectopic expression of wild-type SERA5 reversed the egress defect, whereas expression of a SERA5 mutant refractory to processing failed to rescue the phenotype. Our findings implicate SERA5 as an important regulator of the kinetics and efficiency of egress and suggest that proteolytic modification is required for SERA5 function. In addition, our study reveals that efficient egress requires tight control of the timing of membrane rupture.

  4. Malaria and blood transfusion: major issues of blood safety in malaria-endemic countries and strategies for mitigating the risk of Plasmodium parasites.

    Science.gov (United States)

    Abdullah, Saleh; Karunamoorthi, Kaliyaperumal

    2016-01-01

    Malaria inflicts humankind over centuries, and it remains as a major threat to both clinical medicine and public health worldwide. Though hemotherapy is a life-sustaining modality, it continues to be a possible source of disease transmission. Hence, hemovigilance is a matter of grave concern in the malaria-prone third-world countries. In order to pursue an effective research on hemovigilance, a comprehensive search has been conducted by using the premier academic-scientific databases, WHO documents, and English-language search engines. One hundred two appropriate articles were chosen for data extraction, with a particular reference to emerging pathogens transmitted through blood transfusion, specifically malaria. Blood donation screening is done through microscopic examination and immunological assays to improve the safety of blood products by detection major blood-borne pathogens, viz., HIV, HBV, HCV, syphilis, and malarial parasites. Transfusion therapy significantly dwindles the preventable morbidity and mortality attributed to various illnesses and diseases, particularly AIDS, tuberculosis, and malaria. Examination of thick and thin blood smears are performed to detect positivity and to identify the Plasmodium species, respectively. However, all of these existing diagnostic tools have their own limitations in terms of sensitivity, specificity, cost-effectiveness, and lack of resources and skilled personnel. Globally, despite the mandate need of screening blood and its components according to the blood-establishment protocols, it is seldom practiced in the low-income/poverty-stricken settings. In addition, each and every single phase of transfusion chain carries sizable inherent risks from donors to recipients. Interestingly, opportunities also lie ahead to enhance the safety of blood-supply chain and patients. It can be achieved through sustainable blood-management strategies like (1) appropriate usage of precise diagnostic tools/techniques, (2) promoting

  5. Nanomimics of host cell membranes block invasion and expose invasive malaria parasites.

    Science.gov (United States)

    Najer, Adrian; Wu, Dalin; Bieri, Andrej; Brand, Françoise; Palivan, Cornelia G; Beck, Hans-Peter; Meier, Wolfgang

    2014-12-23

    The fight against most infectious diseases, including malaria, is often hampered by the emergence of drug resistance and lack or limited efficacies of vaccines. Therefore, new drugs, vaccines, or other strategies to control these diseases are needed. Here, we present an innovative nanotechnological strategy in which the nanostructure itself represents the active substance with no necessity to release compounds to attain therapeutic effect and which might act in a drug- and vaccine-like dual function. Invasion of Plasmodium falciparum parasites into red blood cells was selected as a biological model for the initial validation of this approach. Stable nanomimics-polymersomes presenting receptors required for parasite attachment to host cells-were designed to efficiently interrupt the life cycle of the parasite by inhibiting invasion. A simple way to build nanomimics without postformation modifications was established. First, a block copolymer of the receptor with a hydrophobic polymer was synthesized and then mixed with a polymersome-forming block copolymer. The resulting nanomimics bound parasite-derived ligands involved in the initial attachment to host cells and they efficiently blocked reinvasion of malaria parasites after their egress from host cells in vitro. They exhibited efficacies of more than 2 orders of magnitude higher than the soluble form of the receptor, which can be explained by multivalent interactions of several receptors on one nanomimic with multiple ligands on the infective parasite. In the future, our strategy might offer interesting treatment options for severe malaria or a way to modulate the immune response.

  6. A re-assessment of gene-tag classification approaches for describing var gene expression patterns during human Plasmodium falciparum malaria parasite infections.

    Science.gov (United States)

    Githinji, George; Bull, Peter C

    2017-01-01

    PfEMP1 are variant parasite antigens that are inserted on the surface of Plasmodium falciparum infected erythrocytes (IE). Through interactions with various host molecules, PfEMP1 mediate IE sequestration in tissues and play a key role in the pathology of severe malaria. PfEMP1 is encoded by a diverse multi-gene family called var . Previous studies have shown that that expression of specific subsets of var genes are associated with low levels of host immunity and severe malaria. However, in most clinical studies to date, full-length var gene sequences were unavailable and various approaches have been used to make comparisons between var gene expression profiles in different parasite isolates using limited information. Several studies have relied on the classification of a 300 - 500 base-pair "DBLα tag" region in the DBLα domain located at the 5' end of most var genes. We assessed the relationship between various DBLα tag classification methods, and sequence features that are only fully assessable through full-length var gene sequences. We compared these different sequence features in full-length var gene from six fully sequenced laboratory isolates. These comparisons show that despite a long history of recombination,   DBLα sequence tag classification can provide functional information on important features of full-length var genes. Notably, a specific subset of DBLα tags previously defined as "group A-like" is associated with CIDRα1 domains proposed to bind to endothelial protein C receptor. This analysis helps to bring together different sources of data that have been used to assess var gene expression in clinical parasite isolates.

  7. Exo-erythrocytic development of avian malaria and related haemosporidian parasites.

    Science.gov (United States)

    Valkiūnas, Gediminas; Iezhova, Tatjana A

    2017-03-03

    Avian malaria parasites (Plasmodium spp.) and related haemosporidians (Haemosporida) are responsible for diseases which can be severe and even lethal in avian hosts. These parasites cause not only blood pathology, but also damage various organs due to extensive exo-erythrocytic development all over the body, which is not the case during Plasmodium infections in mammals. However, exo-erythrocytic development (tissue merogony or schizogony) remains the most poorly investigated part of life cycle in all groups of wildlife haemosporidian parasites. In spite of remarkable progress in studies of genetic diversity, ecology and evolutionary biology of avian haemosporidians during the past 20 years, there is not much progress in understanding patterns of exo-erythrocytic development in these parasites. The purpose of this review is to overview the main information on exo-erythrocytic development of avian Plasmodium species and related haemosporidian parasites as a baseline for assisting academic and veterinary medicine researchers in morphological identification of these parasites using tissue stages, and to define future research priorities in this field of avian malariology. The data were considered from peer-reviewed articles and histological material that was accessed in zoological collections in museums of Australia, Europe and the USA. Articles describing tissue stages of avian haemosporidians were included from 1908 to the present. Histological preparations of various organs infected with the exo-erythrocytic stages of different haemosporidian parasites were examined. In all, 229 published articles were included in this review. Exo-erythrocytic stages of avian Plasmodium, Fallisia, Haemoproteus, Leucocytozoon, and Akiba species were analysed, compared and illustrated. Morphological characters of tissue stages that can be used for diagnostic purposes were specified. Recent molecular studies combined with histological research show that avian haemosporidians are more

  8. Filarial worms reduce Plasmodium infectivity in mosquitoes.

    Directory of Open Access Journals (Sweden)

    Matthew T Aliota

    2011-02-01

    Full Text Available Co-occurrence of malaria and filarial worm parasites has been reported, but little is known about the interaction between filarial worm and malaria parasites with the same Anopheles vector. Herein, we present data evaluating the interaction between Wuchereria bancrofti and Anopheles punctulatus in Papua New Guinea (PNG. Our field studies in PNG demonstrated that An. punctulatus utilizes the melanization immune response as a natural mechanism of filarial worm resistance against invading W. bancrofti microfilariae. We then conducted laboratory studies utilizing the mosquitoes Armigeres subalbatus and Aedes aegypti and the parasites Brugia malayi, Brugia pahangi, Dirofilaria immitis, and Plasmodium gallinaceum to evaluate the hypothesis that immune activation and/or development by filarial worms negatively impact Plasmodium development in co-infected mosquitoes. Ar. subalbatus used in this study are natural vectors of P. gallinaceum and B. pahangi and they are naturally refractory to B. malayi (melanization-based refractoriness.Mosquitoes were dissected and Plasmodium development was analyzed six days after blood feeding on either P. gallinaceum alone or after taking a bloodmeal containing both P. gallinaceum and B. malayi or a bloodmeal containing both P. gallinaceum and B. pahangi. There was a significant reduction in the prevalence and mean intensity of Plasmodium infections in two species of mosquito that had dual infections as compared to those mosquitoes that were infected with Plasmodium alone, and was independent of whether the mosquito had a melanization immune response to the filarial worm or not. However, there was no reduction in Plasmodium development when filarial worms were present in the bloodmeal (D. immitis but midgut penetration was absent, suggesting that factors associated with penetration of the midgut by filarial worms likely are responsible for the observed reduction in malaria parasite infections.These results could have an

  9. Quantifying Transmission Investment in Malaria Parasites.

    Directory of Open Access Journals (Sweden)

    Megan A Greischar

    2016-02-01

    Full Text Available Many microparasites infect new hosts with specialized life stages, requiring a subset of the parasite population to forgo proliferation and develop into transmission forms. Transmission stage production influences infectivity, host exploitation, and the impact of medical interventions like drug treatment. Predicting how parasites will respond to public health efforts on both epidemiological and evolutionary timescales requires understanding transmission strategies. These strategies can rarely be observed directly and must typically be inferred from infection dynamics. Using malaria as a case study, we test previously described methods for inferring transmission stage investment against simulated data generated with a model of within-host infection dynamics, where the true transmission investment is known. We show that existing methods are inadequate and potentially very misleading. The key difficulty lies in separating transmission stages produced by different generations of parasites. We develop a new approach that performs much better on simulated data. Applying this approach to real data from mice infected with a single Plasmodium chabaudi strain, we estimate that transmission investment varies from zero to 20%, with evidence for variable investment over time in some hosts, but not others. These patterns suggest that, even in experimental infections where host genetics and other environmental factors are controlled, parasites may exhibit remarkably different patterns of transmission investment.

  10. Preferential transcription of conserved rif genes in two phenotypically distinct Plasmodium falciparum parasite lines

    DEFF Research Database (Denmark)

    Wang, Christian W; Magistrado, Pamela A; Nielsen, Morten A

    2009-01-01

    transcribed in the VAR2CSA-expressing parasite line. In addition, two rif genes were found transcribed at early and late intra-erythrocyte stages independently of var gene transcription. Rif genes are organised in groups and inter-genomic conserved gene families, suggesting that RIFIN sub-groups may have......Plasmodium falciparum variant surface antigens (VSA) are targets of protective immunity to malaria. Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) and repetitive interspersed family (RIFIN) proteins are encoded by the two variable multigene families, var and rif genes, respectively...... novel rif gene groups, rifA1 and rifA2, containing inter-genomic conserved rif genes, were identified. All rifA1 genes were orientated head-to-head with a neighbouring Group A var gene whereas rifA2 was present in all parasite genomes as a single copy gene with a unique 5' untranslated region. Rif...

  11. Asexual populations of the human malaria parasite, Plasmodium falciparum, use a two-step genomic strategy to acquire accurate, beneficial DNA amplifications.

    Directory of Open Access Journals (Sweden)

    Jennifer L Guler

    Full Text Available Malaria drug resistance contributes to up to a million annual deaths. Judicious deployment of new antimalarials and vaccines could benefit from an understanding of early molecular events that promote the evolution of parasites. Continuous in vitro challenge of Plasmodium falciparum parasites with a novel dihydroorotate dehydrogenase (DHODH inhibitor reproducibly selected for resistant parasites. Genome-wide analysis of independently-derived resistant clones revealed a two-step strategy to evolutionary success. Some haploid blood-stage parasites first survive antimalarial pressure through fortuitous DNA duplications that always included the DHODH gene. Independently-selected parasites had different sized amplification units but they were always flanked by distant A/T tracks. Higher level amplification and resistance was attained using a second, more efficient and more accurate, mechanism for head-to-tail expansion of the founder unit. This second homology-based process could faithfully tune DNA copy numbers in either direction, always retaining the unique DNA amplification sequence from the original A/T-mediated duplication for that parasite line. Pseudo-polyploidy at relevant genomic loci sets the stage for gaining additional mutations at the locus of interest. Overall, we reveal a population-based genomic strategy for mutagenesis that operates in human stages of P. falciparum to efficiently yield resistance-causing genetic changes at the correct locus in a successful parasite. Importantly, these founding events arise with precision; no other new amplifications are seen in the resistant haploid blood stage parasite. This minimizes the need for meiotic genetic cleansing that can only occur in sexual stage development of the parasite in mosquitoes.

  12. Profiling the anti-protozoal activity of anti-cancer HDAC inhibitors against Plasmodium and Trypanosoma parasites.

    Science.gov (United States)

    Engel, Jessica A; Jones, Amy J; Avery, Vicky M; Sumanadasa, Subathdrage D M; Ng, Susanna S; Fairlie, David P; Skinner-Adams, Tina; Andrews, Katherine T

    2015-12-01

    Histone deacetylase (HDAC) enzymes work together with histone acetyltransferases (HATs) to reversibly acetylate both histone and non-histone proteins. As a result, these enzymes are involved in regulating chromatin structure and gene expression as well as other important cellular processes. HDACs are validated drug targets for some types of cancer, with four HDAC inhibitors clinically approved. However, they are also showing promise as novel drug targets for other indications, including malaria and other parasitic diseases. In this study the in vitro activity of four anti-cancer HDAC inhibitors was examined against parasites that cause malaria and trypanosomiasis. Three of these inhibitors, suberoylanilide hydroxamic acid (SAHA; vorinostat(®)), romidepsin (Istodax(®)) and belinostat (Beleodaq(®)), are clinically approved for the treatment of T-cell lymphoma, while the fourth, panobinostat, has recently been approved for combination therapy use in certain patients with multiple myeloma. All HDAC inhibitors were found to inhibit the growth of asexual-stage Plasmodium falciparum malaria parasites in the nanomolar range (IC50 10-200 nM), while only romidepsin was active at sub-μM concentrations against bloodstream form Trypanosoma brucei brucei parasites (IC50 35 nM). The compounds were found to have some selectivity for malaria parasites compared with mammalian cells, but were not selective for trypanosome parasites versus mammalian cells. All compounds caused hyperacetylation of histone and non-histone proteins in P. falciparum asexual stage parasites and inhibited deacetylase activity in P. falciparum nuclear extracts in addition to recombinant PfHDAC1 activity. P. falciparum histone hyperacetylation data indicate that HDAC inhibitors may differentially affect the acetylation profiles of histone H3 and H4.

  13. Emerging Functions of Transcription Factors in Malaria Parasite

    Directory of Open Access Journals (Sweden)

    Renu Tuteja

    2011-01-01

    Full Text Available Transcription is a process by which the genetic information stored in DNA is converted into mRNA by enzymes known as RNA polymerase. Bacteria use only one RNA polymerase to transcribe all of its genes while eukaryotes contain three RNA polymerases to transcribe the variety of eukaryotic genes. RNA polymerase also requires other factors/proteins to produce the transcript. These factors generally termed as transcription factors (TFs are either associated directly with RNA polymerase or add in building the actual transcription apparatus. TFs are the most common tools that our cells use to control gene expression. Plasmodium falciparum is responsible for causing the most lethal form of malaria in humans. It shows most of its characteristics common to eukaryotic transcription but it is assumed that mechanisms of transcriptional control in P. falciparum somehow differ from those of other eukaryotes. In this article we describe the studies on the main TFs such as myb protein, high mobility group protein and ApiA2 family proteins from malaria parasite. These studies show that these TFs are slowly emerging to have defined roles in the regulation of gene expression in the parasite.

  14. Expression of variant surface antigens by Plasmodium falciparum parasites in the peripheral blood of clinically immune pregnant women indicates ongoing placental infection

    DEFF Research Database (Denmark)

    Ofori, Michael F; Staalsoe, Trine; Bam, Victoria

    2003-01-01

    Placenta-sequestered Plasmodium falciparum parasites that cause pregnancy-associated malaria (PAM) in otherwise clinically immune women express distinct variant surface antigens (VSA(PAM)) not expressed by parasites in nonpregnant individuals. We report here that parasites from the peripheral blood...... of clinically immune pregnant women also express VSA(PAM), making them a convenient source of VSA(PAM) expressors for PAM vaccine research....

  15. SHORT COMMUNICATION: Urban malaria in Dodoma and Iringa ...

    African Journals Online (AJOL)

    Cross sectional malaria parasitaemia and entomological surveys were carried out in urban Iringa and Dodoma in Tanzania. A total of 395 and 392 schoolchildren (age range= 6-15 years) were screened for malaria parasites in Iringa and Dodoma, respectively. Plasmodium falciparum was the predominant malaria parasite ...

  16. A role for fetal hemoglobin and maternal immune IgG in infant resistance to Plasmodium falciparum malaria.

    Directory of Open Access Journals (Sweden)

    Chanaki Amaratunga

    2011-04-01

    Full Text Available In Africa, infant susceptibility to Plasmodium falciparum malaria increases substantially as fetal hemoglobin (HbF and maternal immune IgG disappear from circulation. During the first few months of life, however, resistance to malaria is evidenced by extremely low parasitemias, the absence of fever, and the almost complete lack of severe disease. This resistance has previously been attributed in part to poor parasite growth in HbF-containing red blood cells (RBCs. A specific role for maternal immune IgG in infant resistance to malaria has been hypothesized but not yet identified.We found that P. falciparum parasites invade and develop normally in fetal (cord blood, CB RBCs, which contain up to 95% HbF. However, these parasitized CB RBCs are impaired in their binding to human microvascular endothelial cells (MVECs, monocytes, and nonparasitized RBCs--cytoadherence interactions that have been implicated in the development of high parasite densities and the symptoms of malaria. Abnormal display of the parasite's cytoadherence antigen P. falciparum erythrocyte membrane protein-1 (PfEMP-1 on CB RBCs accounts for these findings and is reminiscent of that on HbC and HbS RBCs. IgG purified from the plasma of immune Malian adults almost completely abolishes the adherence of parasitized CB RBCs to MVECs.Our data suggest a model of malaria protection in which HbF and maternal IgG act cooperatively to impair the cytoadherence of parasitized RBCs in the first few months of life. In highly malarious areas of Africa, an infant's contemporaneous expression of HbC or HbS and development of an immune IgG repertoire may effectively reconstitute the waning protective effects of HbF and maternal immune IgG, thereby extending the malaria resistance of infancy into early childhood.

  17. Exploring Anopheles gut bacteria for Plasmodium blocking activity

    Science.gov (United States)

    Bahia, Ana C; Dong, Yuemei; Blumberg, Benjamin J; Mlambo, Godfree; Tripathi, Abhai; BenMarzouk-Hidalgo, Omar J; Chandra, Ramesh; Dimopoulos, George

    2014-01-01

    SUMMARY Malaria parasite transmission requires the successful development of Plasmodium gametocytes into flagellated microgametes upon mosquito blood ingestion, and the subsequent fertilization of microgametes and macrogametes for the development of motile zygotes, called ookinetes, which invade and transverse the Anopheles vector mosquito midgut at around 18-36 h after blood ingestion. Within the mosquito midgut, the malaria parasite has to withstand the mosquito's innate immune response and the detrimental effect of its commensal bacterial flora. We have assessed the midgut colonization capacity of 5 gut bacterial isolates from field-derived, and 2 from laboratory colony, mosquitoes and their effect on Plasmodium development in vivo and in vitro, along with their impact on mosquito survival. Some bacterial isolates activated the mosquito's immune system, affected the mosquito's life span, and were capable of blocking Plasmodium development. We have also shown that the ability of these bacteria to inhibit the parasites is likely to involve different mechanisms and factors. A Serratia marcescens isolate was particularly efficient in colonizing the mosquitoes’ gut, compromising mosquito survival, and inhibiting both sexual- and asexual-stage Plasmodium through secreted factors, thereby rendering it a potential candidate for the development of a malaria transmission intervention strategy. PMID:24428613

  18. Evaluation of a novel magneto-optical method for the detection of malaria parasites.

    Directory of Open Access Journals (Sweden)

    Agnes Orbán

    Full Text Available Improving the efficiency of malaria diagnosis is one of the main goals of current malaria research. We have recently developed a magneto-optical (MO method which allows high-sensitivity detection of malaria pigment (hemozoin crystals in blood via the magnetically induced rotational motion of the hemozoin crystals. Here, we evaluate this MO technique for the detection of Plasmodium falciparum in infected erythrocytes using in-vitro parasite cultures covering the entire intraerythrocytic life cycle. Our novel method detected parasite densities as low as ∼ 40 parasites per microliter of blood (0.0008% parasitemia at the ring stage and less than 10 parasites/µL (0.0002% parasitemia in the case of the later stages. These limits of detection, corresponding to approximately 20 pg/µL of hemozoin produced by the parasites, exceed that of rapid diagnostic tests and compete with the threshold achievable by light microscopic observation of blood smears. The MO diagnosis requires no special training of the operator or specific reagents for parasite detection, except for an inexpensive lysis solution to release intracellular hemozoin. The devices can be designed to a portable format for clinical and in-field tests. Besides testing its diagnostic performance, we also applied the MO technique to investigate the change in hemozoin concentration during parasite maturation. Our preliminary data indicate that this method may offer an efficient tool to determine the amount of hemozoin produced by the different parasite stages in synchronized cultures. Hence, it could eventually be used for testing the susceptibility of parasites to antimalarial drugs.

  19. Altered immune responses in rhesus macaques co-infected with SIV and Plasmodium cynomolgi: an animal model for coincident AIDS and relapsing malaria.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Koehler

    2009-09-01

    Full Text Available Dual epidemics of the malaria parasite Plasmodium and HIV-1 in sub-Saharan Africa and Asia present a significant risk for co-infection in these overlapping endemic regions. Recent studies of HIV/Plasmodium falciparum co-infection have reported significant interactions of these pathogens, including more rapid CD4+ T cell loss, increased viral load, increased immunosuppression, and increased episodes of clinical malaria. Here, we describe a novel rhesus macaque model for co-infection that supports and expands upon findings in human co-infection studies and can be used to identify interactions between these two pathogens.Five rhesus macaques were infected with P. cynomolgi and, following three parasite relapses, with SIV. Compared to macaques infected with SIV alone, co-infected animals had, as a group, decreased survival time and more rapid declines in markers for SIV progression, including peripheral CD4+ T cells and CD4+/CD8+ T cell ratios. The naïve CD4+ T cell pool of the co-infected animals was depleted more rapidly than animals infected with SIV alone. The co-infected animals also failed to generate proliferative responses to parasitemia by CD4+ and CD8+ T cells as well as B cells while also having a less robust anti-parasite and altered anti-SIV antibody response.These data suggest that infection with both SIV and Plasmodium enhances SIV-induced disease progression and impairs the anti-Plasmodium immune response. These data support findings in HIV/Plasmodium co-infection studies. This animal model can be used to further define impacts of lentivirus and Plasmodium co-infection and guide public health and therapeutic interventions.

  20. Phylogenetic profiles of all membrane transport proteins of the malaria parasite highlight new drug targets

    Directory of Open Access Journals (Sweden)

    January Weiner 3rd

    2016-08-01

    Full Text Available In order to combat the on-going malaria epidemic, discovery of new drug targets remains vital. Proteins that are essential to survival and specific to malaria parasites are key candidates. To survive within host cells, the parasites need to acquire nutrients and dispose of waste products across multiple membranes. Additionally, like all eukaryotes, they must redistribute ions and organic molecules between their various internal membrane bound compartments. Membrane transport proteins mediate all of these processes and are considered important mediators of drug resistance as well as drug targets in their own right. Recently, using advanced experimental genetic approaches and streamlined life cycle profiling, we generated a large collection of Plasmodium berghei gene deletion mutants and assigned essential gene functions, highlighting potential targets for prophylactic, therapeutic, and transmission-blocking anti-malarial drugs. Here, we present a comprehensive orthology assignment of all Plasmodium falciparum putative membrane transport proteins and provide a detailed overview of the associated essential gene functions obtained through experimental genetics studies in human and murine model parasites. Furthermore, we discuss the phylogeny of selected potential drug targets identified in our functional screen. We extensively discuss the results in the context of the functional assignments obtained using gene targeting available to date.

  1. Plasmodium and mononuclear phagocytes.

    Science.gov (United States)

    Mac-Daniel, Laura; Ménard, Robert

    2015-01-01

    Plasmodium, the causative agent of malaria, initially multiplies inside liver cells and then in successive cycles inside erythrocytes, causing the symptoms of the disease. In this review, we discuss interactions between the extracellular and intracellular forms of the Plasmodium parasite and innate immune cells in the mammalian host, with a special emphasis on mononuclear phagocytes. We overview here what is known about the innate immune cells that interact with parasites, mechanisms used by the parasite to evade them, and the protective or detrimental contribution of these interactions on parasite progression through its life cycle and pathology in the host. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Motility precedes egress of malaria parasites from oocysts

    Science.gov (United States)

    Klug, Dennis; Frischknecht, Friedrich

    2017-01-01

    Malaria is transmitted when an infected Anopheles mosquito deposits Plasmodium sporozoites in the skin during a bite. Sporozoites are formed within oocysts at the mosquito midgut wall and are released into the hemolymph, from where they invade the salivary glands and are subsequently transmitted to the vertebrate host. We found that a thrombospondin-repeat containing sporozoite-specific protein named thrombospondin-releated protein 1 (TRP1) is important for oocyst egress and salivary gland invasion, and hence for the transmission of malaria. We imaged the release of sporozoites from oocysts in situ, which was preceded by active motility. Parasites lacking TRP1 failed to migrate within oocysts and did not egress, suggesting that TRP1 is a vital component of the events that precede intra-oocyst motility and subsequently sporozoite egress and salivary gland invasion. DOI: http://dx.doi.org/10.7554/eLife.19157.001 PMID:28115054

  3. The origin of malarial parasites in orangutans.

    Directory of Open Access Journals (Sweden)

    M Andreína Pacheco

    Full Text Available BACKGROUND: Recent findings of Plasmodium in African apes have changed our perspectives on the evolution of malarial parasites in hominids. However, phylogenetic analyses of primate malarias are still missing information from Southeast Asian apes. In this study, we report molecular data for a malaria parasite lineage found in orangutans. METHODOLOGY/PRINCIPAL FINDINGS: We screened twenty-four blood samples from Pongo pygmaeus (Kalimantan, Indonesia for Plasmodium parasites by PCR. For all the malaria positive orangutan samples, parasite mitochondrial genomes (mtDNA and two antigens: merozoite surface protein 1 42 kDa (MSP-1(42 and circumsporozoite protein gene (CSP were amplified, cloned, and sequenced. Fifteen orangutans tested positive and yielded 5 distinct mitochondrial haplotypes not previously found. The haplotypes detected exhibited low genetic divergence among them, indicating that they belong to one species. We report phylogenetic analyses using mitochondrial genomes, MSP-1(42 and CSP. We found that the orangutan malaria parasite lineage was part of a monophyletic group that includes all the known non-human primate malaria parasites found in Southeast Asia; specifically, it shares a recent common ancestor with P. inui (a macaque parasite and P. hylobati (a gibbon parasite suggesting that this lineage originated as a result of a host switch. The genetic diversity of MSP-1(42 in orangutans seems to be under negative selection. This result is similar to previous findings in non-human primate malarias closely related to P. vivax. As has been previously observed in the other Plasmodium species found in non-human primates, the CSP shows high polymorphism in the number of repeats. However, it has clearly distinctive motifs from those previously found in other malarial parasites. CONCLUSION: The evidence available from Asian apes indicates that these parasites originated independently from those found in Africa, likely as the result of host

  4. Efficacy of chloroquine for the treatment of uncomplicated Plasmodium falciparum malaria in Honduras.

    Science.gov (United States)

    Mejia Torres, Rosa Elena; Banegas, Engels Ilich; Mendoza, Meisy; Diaz, Cesar; Bucheli, Sandra Tamara Mancero; Fontecha, Gustavo A; Alam, Md Tauqeer; Goldman, Ira; Udhayakumar, Venkatachalam; Zambrano, Jose Orlinder Nicolas

    2013-05-01

    Chloroquine (CQ) is officially used for the primary treatment of Plasmodium falciparum malaria in Honduras. In this study, the therapeutic efficacy of CQ for the treatment of uncomplicated P. falciparum malaria in the municipality of Puerto Lempira, Gracias a Dios, Honduras was evaluated using the Pan American Health Organization-World Health Organization protocol with a follow-up of 28 days. Sixty-eight patients from 6 months to 60 years of age microscopically diagnosed with uncomplicated P. falciparum malaria were included in the final analysis. All patients who were treated with CQ (25 mg/kg over 3 days) cleared parasitemia by day 3 and acquired no new P. falciparum infection within 28 days of follow-up. All the parasite samples sequenced for CQ resistance mutations (pfcrt) showed only the CQ-sensitive genotype (CVMNK). This finding shows that CQ remains highly efficacious for the treatment of uncomplicated P. falciparum malaria in Gracias a Dios, Honduras.

  5. Effect of clinically approved HDAC inhibitors on Plasmodium, Leishmania and Schistosoma parasite growth.

    Science.gov (United States)

    Chua, Ming Jang; Arnold, Megan S J; Xu, Weijun; Lancelot, Julien; Lamotte, Suzanne; Späth, Gerald F; Prina, Eric; Pierce, Raymond J; Fairlie, David P; Skinner-Adams, Tina S; Andrews, Katherine T

    2017-04-01

    Malaria, schistosomiasis and leishmaniases are among the most prevalent tropical parasitic diseases and each requires new innovative treatments. Targeting essential parasite pathways, such as those that regulate gene expression and cell cycle progression, is a key strategy for discovering new drug leads. In this study, four clinically approved anti-cancer drugs (Vorinostat, Belinostat, Panobinostat and Romidepsin) that target histone/lysine deacetylase enzymes were examined for in vitro activity against Plasmodium knowlesi, Schistosoma mansoni, Leishmania amazonensis and L. donovani parasites and two for in vivo activity in a mouse malaria model. All four compounds were potent inhibitors of P. knowlesi malaria parasites (IC 50 9-370 nM), with belinostat, panobinostat and vorinostat having 8-45 fold selectivity for the parasite over human neonatal foreskin fibroblast (NFF) or human embryonic kidney (HEK 293) cells, while romidepsin was not selective. Each of the HDAC inhibitor drugs caused hyperacetylation of P. knowlesi histone H4. None of the drugs was active against Leishmania amastigote or promastigote parasites (IC 50  > 20 μM) or S. mansoni schistosomula (IC 50  > 10 μM), however romidepsin inhibited S. mansoni adult worm parings and egg production (IC 50 ∼10 μM). Modest in vivo activity was observed in P. berghei infected mice dosed orally with vorinostat or panobinostat (25 mg/kg twice daily for four days), with a significant reduction in parasitemia observed on days 4-7 and 4-10 after infection (P < 0.05), respectively. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Effect of clinically approved HDAC inhibitors on Plasmodium, Leishmania and Schistosoma parasite growth

    Directory of Open Access Journals (Sweden)

    Ming Jang Chua

    2017-04-01

    Full Text Available Malaria, schistosomiasis and leishmaniases are among the most prevalent tropical parasitic diseases and each requires new innovative treatments. Targeting essential parasite pathways, such as those that regulate gene expression and cell cycle progression, is a key strategy for discovering new drug leads. In this study, four clinically approved anti-cancer drugs (Vorinostat, Belinostat, Panobinostat and Romidepsin that target histone/lysine deacetylase enzymes were examined for in vitro activity against Plasmodium knowlesi, Schistosoma mansoni, Leishmania amazonensis and L. donovani parasites and two for in vivo activity in a mouse malaria model. All four compounds were potent inhibitors of P. knowlesi malaria parasites (IC50 9–370 nM, with belinostat, panobinostat and vorinostat having 8–45 fold selectivity for the parasite over human neonatal foreskin fibroblast (NFF or human embryonic kidney (HEK 293 cells, while romidepsin was not selective. Each of the HDAC inhibitor drugs caused hyperacetylation of P. knowlesi histone H4. None of the drugs was active against Leishmania amastigote or promastigote parasites (IC50 > 20 μM or S. mansoni schistosomula (IC50 > 10 μM, however romidepsin inhibited S. mansoni adult worm parings and egg production (IC50 ∼10 μM. Modest in vivo activity was observed in P. berghei infected mice dosed orally with vorinostat or panobinostat (25 mg/kg twice daily for four days, with a significant reduction in parasitemia observed on days 4–7 and 4–10 after infection (P < 0.05, respectively.

  7. Severe malaria - a case of fatal Plasmodium knowlesi infection with post-mortem findings: a case report

    Directory of Open Access Journals (Sweden)

    Adem Patricia

    2010-01-01

    Full Text Available Abstract Background Zoonotic malaria caused by Plasmodium knowlesi is an important, but newly recognized, human pathogen. For the first time, post-mortem findings from a fatal case of knowlesi malaria are reported here. Case presentation A formerly healthy 40 year-old male became symptomatic 10 days after spending time in the jungle of North Borneo. Four days later, he presented to hospital in a state of collapse and died within two hours. He was hyponatraemic and had elevated blood urea, potassium, lactate dehydrogenase and amino transferase values; he was also thrombocytopenic and eosinophilic. Dengue haemorrhagic shock was suspected and a post-mortem examination performed. Investigations for dengue virus were negative. Blood for malaria parasites indicated hyperparasitaemia and single species P. knowlesi infection was confirmed by nested-PCR. Macroscopic pathology of the brain and endocardium showed multiple petechial haemorrhages, the liver and spleen were enlarged and lungs had features consistent with ARDS. Microscopic pathology showed sequestration of pigmented parasitized red blood cells in the vessels of the cerebrum, cerebellum, heart and kidney without evidence of chronic inflammatory reaction in the brain or any other organ examined. Brain sections were negative for intracellular adhesion molecule-1. The spleen and liver had abundant pigment containing macrophages and parasitized red blood cells. The kidney had evidence of acute tubular necrosis and endothelial cells in heart sections were prominent. Conclusions The overall picture in this case was one of systemic malaria infection that fit the WHO classification for severe malaria. Post-mortem findings in this case were unexpectedly similar to those that define fatal falciparum malaria, including cerebral pathology. There were important differences including the absence of coma despite petechial haemorrhages and parasite sequestration in the brain. These results suggest that further

  8. South American Plasmodium falciparum after the malaria eradication era: clonal population expansion and survival of the fittest hybrids.

    Directory of Open Access Journals (Sweden)

    Sean M Griffing

    Full Text Available Malaria has reemerged in many regions where once it was nearly eliminated. Yet the source of these parasites, the process of repopulation, their population structure, and dynamics are ill defined. Peru was one of malaria eradication's successes, where Plasmodium falciparum was nearly eliminated for two decades. It reemerged in the 1990s. In the new era of malaria elimination, Peruvian P. falciparum is a model of malaria reinvasion. We investigated its population structure and drug resistance profiles. We hypothesized that only populations adapted to local ecological niches could expand and repopulate and originated as vestigial populations or recent introductions. We investigated the genetic structure (using microsatellites and drug resistant genotypes of 220 parasites collected from patients immediately after peak epidemic expansion (1999-2000 from seven sites across the country. The majority of parasites could be grouped into five clonal lineages by networks and AMOVA. The distribution of clonal lineages and their drug sensitivity profiles suggested geographic structure. In 2001, artesunate combination therapy was introduced in Peru. We tested 62 parasites collected in 2006-2007 for changes in genetic structure. Clonal lineages had recombined under selection for the fittest parasites. Our findings illustrate that local adaptations in the post-eradication era have contributed to clonal lineage expansion. Within the shifting confluence of drug policy and malaria incidence, populations continue to evolve through genetic outcrossing influenced by antimalarial selection pressure. Understanding the population substructure of P. falciparum has implications for vaccine, drug, and epidemiologic studies, including monitoring malaria during and after the elimination phase.

  9. A Novel ‘Gene Insertion/Marker Out’ (GIMO) Method for Transgene Expression and Gene Complementation in Rodent Malaria Parasites

    Science.gov (United States)

    Sajid, Mohammed; Chevalley-Maurel, Séverine; Ramesar, Jai; Klop, Onny; Franke-Fayard, Blandine M. D.; Janse, Chris J.; Khan, Shahid M.

    2011-01-01

    Research on the biology of malaria parasites has greatly benefited from the application of reverse genetic technologies, in particular through the analysis of gene deletion mutants and studies on transgenic parasites that express heterologous or mutated proteins. However, transfection in Plasmodium is limited by the paucity of drug-selectable markers that hampers subsequent genetic modification of the same mutant. We report the development of a novel ‘gene insertion/marker out’ (GIMO) method for two rodent malaria parasites, which uses negative selection to rapidly generate transgenic mutants ready for subsequent modifications. We have created reference mother lines for both P. berghei ANKA and P. yoelii 17XNL that serve as recipient parasites for GIMO-transfection. Compared to existing protocols GIMO-transfection greatly simplifies and speeds up the generation of mutants expressing heterologous proteins, free of drug-resistance genes, and requires far fewer laboratory animals. In addition we demonstrate that GIMO-transfection is also a simple and fast method for genetic complementation of mutants with a gene deletion or mutation. The implementation of GIMO-transfection procedures should greatly enhance Plasmodium reverse-genetic research. PMID:22216235

  10. A novel ENU-mutation in ankyrin-1 disrupts malaria parasite maturation in red blood cells of mice.

    Directory of Open Access Journals (Sweden)

    Andreas Greth

    Full Text Available The blood stage of the plasmodium parasite life cycle is responsible for the clinical symptoms of malaria. Epidemiological studies have identified coincidental malarial endemicity and multiple red blood cell (RBC disorders. Many RBC disorders result from mutations in genes encoding cytoskeletal proteins and these are associated with increased protection against malarial infections. However the mechanisms underpinning these genetic, host responses remain obscure. We have performed an N-ethyl-N-nitrosourea (ENU mutagenesis screen and have identified a novel dominant (haploinsufficient mutation in the Ank-1 gene (Ank1(MRI23420 of mice displaying hereditary spherocytosis (HS. Female mice, heterozygous for the Ank-1 mutation showed increased survival to infection by Plasmodium chabaudi adami DS with a concomitant 30% decrease in parasitemia compared to wild-type, isogenic mice (wt. A comparative in vivo red cell invasion and parasite growth assay showed a RBC-autonomous effect characterised by decreased proportion of infected heterozygous RBCs. Within approximately 6-8 hours post-invasion, TUNEL staining of intraerythrocytic parasites, showed a significant increase in dead parasites in heterozygotes. This was especially notable at the ring and trophozoite stages in the blood of infected heterozygous mutant mice compared to wt (p<0.05. We conclude that increased malaria resistance due to ankyrin-1 deficiency is caused by the intraerythrocytic death of P. chabaudi parasites.

  11. Plasmodium coatneyi in Rhesus Macaques Replicates the Multisystemic Dysfunction of Severe Malaria in Humans

    Science.gov (United States)

    Cabrera-Mora, Monica; Garcia, AnaPatricia; Orkin, Jack; Strobert, Elizabeth; Barnwell, John W.; Galinski, Mary R.

    2013-01-01

    Severe malaria, a leading cause of mortality among children and nonimmune adults, is a multisystemic disorder characterized by complex clinical syndromes that are mechanistically poorly understood. The interplay of various parasite and host factors is critical in the pathophysiology of severe malaria. However, knowledge regarding the pathophysiological mechanisms and pathways leading to the multisystemic disorders of severe malaria in humans is limited. Here, we systematically investigate infections with Plasmodium coatneyi, a simian malaria parasite that closely mimics the biological characteristics of P. falciparum, and develop baseline data and protocols for studying erythrocyte turnover and severe malaria in greater depth. We show that rhesus macaques (Macaca mulatta) experimentally infected with P. coatneyi develop anemia, coagulopathy, and renal and metabolic dysfunction. The clinical course of acute infections required suppressive antimalaria chemotherapy, fluid support, and whole-blood transfusion, mimicking the standard of care for the management of severe malaria cases in humans. Subsequent infections in the same animals progressed with a mild illness in comparison, suggesting that immunity played a role in reducing the severity of the disease. Our results demonstrate that P. coatneyi infection in rhesus macaques can serve as a highly relevant model to investigate the physiological pathways and molecular mechanisms of malaria pathogenesis in naïve and immune individuals. Together with high-throughput postgenomic technologies, such investigations hold promise for the identification of new clinical interventions and adjunctive therapies. PMID:23509137

  12. Cytoadhesion to gC1qR through Plasmodium falciparum erythrocyte membrane protein 1 in severe malaria

    DEFF Research Database (Denmark)

    Magallón-Tejada, Ariel; Machevo, Sónia; Cisteró, Pau

    2016-01-01

    Cytoadhesion of Plasmodium falciparum infected erythrocytes to gC1qR has been associated with severe malaria, but the parasite ligand involved is currently unknown. To assess if binding to gC1qR is mediated through the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family, we analyzed...

  13. Acute respiratory distress syndrome and acute renal failure from Plasmodium ovale infection with fatal outcome.

    Science.gov (United States)

    Lau, Yee-Ling; Lee, Wenn-Chyau; Tan, Lian-Huat; Kamarulzaman, Adeeba; Syed Omar, Sharifah Faridah; Fong, Mun-Yik; Cheong, Fei-Wen; Mahmud, Rohela

    2013-11-04

    Plasmodium ovale is one of the causative agents of human malaria. Plasmodium ovale infection has long been thought to be non-fatal. Due to its lower morbidity, P. ovale receives little attention in malaria research. Two Malaysians went to Nigeria for two weeks. After returning to Malaysia, they fell sick and were admitted to different hospitals. Plasmodium ovale parasites were identified from blood smears of these patients. The species identification was further confirmed with nested PCR. One of them was successfully treated with no incident of relapse within 12-month medical follow-up. The other patient came down with malaria-induced respiratory complication during the course of treatment. Although parasites were cleared off the circulation, the patient's condition worsened. He succumbed to multiple complications including acute respiratory distress syndrome and acute renal failure. Sequencing of the malaria parasite DNA from both cases, followed by multiple sequence alignment and phylogenetic tree construction suggested that the causative agent for both malaria cases was P. ovale curtisi. In this report, the differences between both cases were discussed, and the potential capability of P. ovale in causing severe complications and death as seen in this case report was highlighted. Plasmodium ovale is potentially capable of causing severe complications, if not death. Complete travel and clinical history of malaria patient are vital for successful diagnoses and treatment. Monitoring of respiratory and renal function of malaria patients, regardless of the species of malaria parasites involved is crucial during the course of hospital admission.

  14. Profiling the anti-protozoal activity of anti-cancer HDAC inhibitors against Plasmodium and Trypanosoma parasites

    Directory of Open Access Journals (Sweden)

    Jessica A. Engel

    2015-12-01

    Full Text Available Histone deacetylase (HDAC enzymes work together with histone acetyltransferases (HATs to reversibly acetylate both histone and non-histone proteins. As a result, these enzymes are involved in regulating chromatin structure and gene expression as well as other important cellular processes. HDACs are validated drug targets for some types of cancer, with four HDAC inhibitors clinically approved. However, they are also showing promise as novel drug targets for other indications, including malaria and other parasitic diseases. In this study the in vitro activity of four anti-cancer HDAC inhibitors was examined against parasites that cause malaria and trypanosomiasis. Three of these inhibitors, suberoylanilide hydroxamic acid (SAHA; vorinostat®, romidepsin (Istodax® and belinostat (Beleodaq®, are clinically approved for the treatment of T-cell lymphoma, while the fourth, panobinostat, has recently been approved for combination therapy use in certain patients with multiple myeloma. All HDAC inhibitors were found to inhibit the growth of asexual-stage Plasmodium falciparum malaria parasites in the nanomolar range (IC50 10–200 nM, while only romidepsin was active at sub-μM concentrations against bloodstream form Trypanosoma brucei brucei parasites (IC50 35 nM. The compounds were found to have some selectivity for malaria parasites compared with mammalian cells, but were not selective for trypanosome parasites versus mammalian cells. All compounds caused hyperacetylation of histone and non-histone proteins in P. falciparum asexual stage parasites and inhibited deacetylase activity in P. falciparum nuclear extracts in addition to recombinant PfHDAC1 activity. P. falciparum histone hyperacetylation data indicate that HDAC inhibitors may differentially affect the acetylation profiles of histone H3 and H4.

  15. Plasmodium falciparum Resistance to Artemisinin Derivatives and Piperaquine: A Major Challenge for Malaria Elimination in Cambodia

    Science.gov (United States)

    Duru, Valentine; Witkowski, Benoit; Ménard, Didier

    2016-01-01

    Artemisinin-based combination therapies (ACTs) are the cornerstone of current strategies for fighting malaria. Over the last decade, ACTs have played a major role in decreasing malaria burden. However, this progress is being jeopardized by the emergence of artemisinin-resistant Plasmodium falciparum parasites. Artemisinin resistance was first detected in western Cambodia in 2008 and has since been observed in neighboring countries in southeast Asia. The problem of antimalarial drug resistance has recently worsened in Cambodia, with reports of parasites resistant to piperaquine, the latest generation of partner drug used in combination with dihydroartemisinin, leading to worrying rates of clinical treatment failure. The monitoring and the comprehension of both types of resistance are crucial to prevent the spread of multidrug-resistant parasites outside southeast Asia, and particularly to Africa, where the public health consequences would be catastrophic. To this end, new tools are required for studying the biological and molecular mechanisms underlying resistance to antimalarial drugs and for monitoring the geographic distribution of the resistant parasites. In this review, we detail the major advances in our understanding of resistance to artemisinin and piperaquine and define the challenges that the malaria community will have to face in the coming years. PMID:27928074

  16. Elimination of Plasmodium falciparum malaria in Tajikistan.

    Science.gov (United States)

    Kondrashin, Anatoly V; Sharipov, Azizullo S; Kadamov, Dilshod S; Karimov, Saifuddin S; Gasimov, Elkhan; Baranova, Alla M; Morozova, Lola F; Stepanova, Ekaterina V; Turbabina, Natalia A; Maksimova, Maria S; Morozov, Evgeny N

    2017-05-30

    Malaria was eliminated in Tajikistan by the beginning of the 1960s. However, sporadic introduced cases of malaria occurred subsequently probably as a result of transmission from infected mosquito Anopheles flying over river the Punj from the border areas of Afghanistan. During the 1970s and 1980s local outbreaks of malaria were reported in the southern districts bordering Afghanistan. The malaria situation dramatically changed during the 1990s following armed conflict and civil unrest in the newly independent Tajikistan, which paralyzed health services including the malaria control activities and a large-scale malaria epidemic occurred with more than 400,000 malaria cases. The malaria epidemic was contained by 1999 as a result of considerable financial input from the Government and the international community. Although Plasmodium falciparum constituted only about 5% of total malaria cases, reduction of its incidence was slower than that of Plasmodium vivax. To prevent increase in P. falciparum malaria both in terms of incidence and territory, a P. falciparum elimination programme in the Republic was launched in 200, jointly supported by the Government and the Global Fund for control of AIDS, tuberculosis and malaria. The main activities included the use of pyrethroids for the IRS with determined periodicity, deployment of mosquito nets, impregnated with insecticides, use of larvivorous fishes as a biological larvicide, implementation of small-scale environmental management, and use of personal protection methods by population under malaria risk. The malaria surveillance system was strengthened by the use of ACD, PCD, RCD and selective use of mass blood surveys. All detected cases were timely epidemiologically investigated and treated based on the results of laboratory diagnosis. As a result, by 2009, P. falciparum malaria was eliminated from all of Tajikistan, one year ahead of the originally targeted date. Elimination of P. falciparum also contributed towards

  17. Recognition of Plasmodium falciparum mature gametocyte-infected erythrocytes by antibodies of semi-immune adults and malaria-exposed children from Gabon

    DEFF Research Database (Denmark)

    Gebru, Tamirat; Ajua, Anthony; Theisen, Michael

    2017-01-01

    BACKGROUND: Transmission of malaria from man to mosquito depends on the presence of gametocytes, the sexual stage of Plasmodium parasites in the infected host. Naturally acquired antibodies against gametocytes exist and may play a role in controlling transmission by limiting the gametocyte...... falciparum mature gametocytes were investigated in sera of semi-immune adults and malaria-exposed children. In addition, the effect of immunization with GMZ2, a blood stage malaria vaccine candidate, and the effect of intestinal helminth infection on the development of immunity to gametocytes of P...... was significantly higher after fixation and permeabilization of parasitized erythrocytes. Following vaccination with the malaria vaccine candidate GMZ2, anti-gametocyte Ab concentration decreased in adults compared to baseline. Ab response to whole asexual stage antigens had a significant but weak positive...

  18. Plasmodium malariae Infection Associated with a High Burden of Anemia: A Hospital-Based Surveillance Study.

    Directory of Open Access Journals (Sweden)

    Siobhan Langford

    2015-12-01

    Full Text Available Plasmodium malariae is a slow-growing parasite with a wide geographic distribution. Although generally regarded as a benign cause of malaria, it has been associated with nephrotic syndrome, particularly in young children, and can persist in the host for years. Morbidity associated with P. malariae infection has received relatively little attention, and the risk of P. malariae-associated nephrotic syndrome is unknown.We used data from a very large hospital-based surveillance system incorporating information on clinical diagnoses, blood cell parameters and treatment to describe the demographic distribution, morbidity and mortality associated with P. malariae infection in southern Papua, Indonesia. Between April 2004 and December 2013 there were 1,054,674 patient presentations to Mitra Masyarakat Hospital of which 196,380 (18.6% were associated with malaria and 5,097 were with P. malariae infection (constituting 2.6% of all malaria cases. The proportion of malaria cases attributable to P. malariae increased with age from 0.9% for patients under one year old to 3.1% for patients older than 15 years. Overall, 8.5% of patients with P. malariae infection required admission to hospital and the median length of stay for these patients was 2.5 days (Interquartile Range: 2.0-4.0 days. Patients with P. malariae infection had a lower mean hemoglobin concentration (9.0 g/dL than patients with P. falciparum (9.5 g/dL, P. vivax (9.6g/dL and mixed species infections (9.3g/dL. There were four cases of nephrotic syndrome recorded in patients with P. malariae infection, three of which were in children younger than 5 years old, giving a risk in this age group of 0.47% (95% Confidence Interval; 0.10% to 1.4%. Overall, 2.4% (n = 16 of patients hospitalized with P. malariae infection subsequently died in hospital, similar to the proportions for the other endemic Plasmodium species (range: 0% for P. ovale to 1.6% for P. falciparum.Plasmodium malariae infection is

  19. Plasmodium falciparum resistance to artemisinin-based combination therapies: A sword of Damocles in the path toward malaria elimination

    Directory of Open Access Journals (Sweden)

    Ouji Manel

    2018-01-01

    Full Text Available The use of artemisinin-based combination therapies (ACTs, which combine an artemisinin derivative with a partner drug, in the treatment of uncomplicated malaria has largely been responsible for the significant reduction in malaria-related mortality in tropical and subtropical regions. ACTs have also played a significant role in the 18% decline in the incidence of malaria cases from 2010 to 2016. However, this progress is seriously threatened by the reduced clinical efficacy of artemisinins, which is characterised by delayed parasitic clearance and a high rate of recrudescence, as reported in 2008 in Western Cambodia. Resistance to artemisinins has already spread to several countries in Southeast Asia. Furthermore, resistance to partner drugs has been shown in some instances to be facilitated by pre-existing decreased susceptibility to the artemisinin component of the ACT. A major concern is not only the spread of these multidrug-resistant parasites to the rest of Asia but also their possible appearance in Sub-Saharan Africa, the continent most affected by malaria, as has been the case in the past with parasite resistance to other antimalarial treatments. It is therefore essential to understand the acquisition of resistance to artemisinins by Plasmodium falciparum to adapt malaria treatment policies and to propose new therapeutic solutions.

  20. Understanding the population genetics of Plasmodium vivax is essential for malaria control and elimination

    Directory of Open Access Journals (Sweden)

    Arnott Alicia

    2012-01-01

    Full Text Available Abstract Traditionally, infection with Plasmodium vivax was thought to be benign and self-limiting, however, recent evidence has demonstrated that infection with P. vivax can also result in severe illness and death. Research into P. vivax has been relatively neglected and much remains unknown regarding the biology, pathogenesis and epidemiology of this parasite. One of the fundamental factors governing transmission and immunity is parasite diversity. An understanding of parasite population genetic structure is necessary to understand the epidemiology, diversity, distribution and dynamics of natural P. vivax populations. In addition, studying the population structure of genes under immune selection also enables investigation of the dynamic interplay between transmission and immunity, which is crucial for vaccine development. A lack of knowledge regarding the transmission and spread of P. vivax has been particularly highlighted in areas where malaria control and elimination programmes have made progress in reducing the burden of Plasmodium falciparum, yet P. vivax remains as a substantial obstacle. With malaria elimination back on the global agenda, mapping of global and local P. vivax population structure is essential prior to establishing goals for elimination and the roll-out of interventions. A detailed knowledge of the spatial distribution, transmission and clinical burden of P. vivax is required to act as a benchmark against which control targets can be set and measured. This paper presents an overview of what is known and what is yet to be fully understood regarding P. vivax population genetics, as well as the importance and application of P. vivax population genetics studies.

  1. Molecular inference of sources and spreading patterns of Plasmodium falciparum malaria parasites in internally displaced persons settlements in Myanmar-China border area.

    Science.gov (United States)

    Lo, Eugenia; Zhou, Guofa; Oo, Winny; Lee, Ming-Chieh; Baum, Elisabeth; Felgner, Philip L; Yang, Zhaoqing; Cui, Liwang; Yan, Guiyun

    2015-07-01

    In Myanmar, civil unrest and establishment of internally displaced persons (IDP) settlement along the Myanmar-China border have impacted malaria transmission. The growing IDP populations raise deep concerns about health impact on local communities. Microsatellite markers were used to examine the source and spreading patterns of Plasmodium falciparum between IDP settlement and surrounding villages in Myanmar along the China border. Genotypic structure of P. falciparum was compared over the past three years from the same area and the demographic history was inferred to determine the source of recent infections. In addition, we examined if border migration is a factor of P. falciparum infections in China by determining gene flow patterns across borders. Compared to local community, the IDP samples showed a reduced and consistently lower genetic diversity over the past three years. A strong signature of genetic bottleneck was detected in the IDP samples. P. falciparum infections from the border regions in China were genetically similar to Myanmar and parasite gene flow was not constrained by geographical distance. Reduced genetic diversity of P. falciparum suggested intense malaria control within the IDP settlement. Human movement was a key factor to the spread of malaria both locally in Myanmar and across the international border. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. High prevalence of Plasmodium falciparum malaria among Human ...

    African Journals Online (AJOL)

    Malaria and Human Immunodeficiency Virus (HIV) infections are major public health problems in Sub-Saharan Africa. Their overlapping geographical distribution and co-existence often result into high morbidity and mortality. This study was designed to establish the prevalence of Plasmodium falciparum malaria among HIV ...

  3. Genomics and epigenetics of sexual commitment in Plasmodium.

    Science.gov (United States)

    Bechtsi, D P; Waters, A P

    2017-06-01

    Malaria is the disease caused by the apicomplexan parasites belonging to the genus Plasmodium. Expanding our arsenal to include transmission-blocking agents in our fight against malaria is becoming increasingly important. Such an implementation requires detailed understanding of the biology of the Plasmodium life cycle stages that are transmissible. Plasmodium gametocytes are the only parasite stage that can be transmitted to the mosquito vector and are the product of sexual development in a small percentage of parasites that continually proliferate in host blood. The critical decision made by asexual erythrocytic stages to cease further proliferation and differentiate into gametocytes, as well as the first steps they take into maturity, have long remained unknown. Recent studies have contributed to a breakthrough in our understanding of this branch point in development. In this review, we will discuss the findings that have allowed us to make this major leap forward in our knowledge of sexual commitment in Plasmodium. We will further propose a model for the mechanism triggering the switch to sexual development, constructed around the proteins currently known to regulate this process. Further insight into sexual commitment and gametocyte development will help identify targets for the development of transmission-blocking malaria therapies. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  4. cGAS-mediated control of blood-stage malaria promotes Plasmodium-specific germinal center responses.

    Science.gov (United States)

    Hahn, William O; Butler, Noah S; Lindner, Scott E; Akilesh, Holly M; Sather, D Noah; Kappe, Stefan Hi; Hamerman, Jessica A; Gale, Michael; Liles, W Conrad; Pepper, Marion

    2018-01-25

    Sensing of pathogens by host pattern recognition receptors is essential for activating the immune response during infection. We used a nonlethal murine model of malaria (Plasmodium yoelii 17XNL) to assess the contribution of the pattern recognition receptor cyclic GMP-AMP synthase (cGAS) to the development of humoral immunity. Despite previous reports suggesting a critical, intrinsic role for cGAS in early B cell responses, cGAS-deficient (cGAS-/-) mice had no defect in the early expansion or differentiation of Plasmodium-specific B cells. As the infection proceeded, however, cGAS-/- mice exhibited higher parasite burdens and aberrant germinal center and memory B cell formation when compared with littermate controls. Antimalarial drugs were used to further demonstrate that the disrupted humoral response was not B cell intrinsic but instead was a secondary effect of a loss of parasite control. These findings therefore demonstrate that cGAS-mediated innate-sensing contributes to parasite control but is not intrinsically required for the development of humoral immunity. Our findings highlight the need to consider the indirect effects of pathogen burden in investigations examining how the innate immune system affects the adaptive immune response.

  5. The dangers of accepting a single diagnosis: case report of concurrent Plasmodium knowlesi malaria and dengue infection.

    Science.gov (United States)

    Chong, Soon Eu; Mohamad Zaini, Rhendra Hardy; Suraiya, Siti; Lee, Kok Tong; Lim, Jo Anne

    2017-01-03

    Dengue and malaria are two common, mosquito-borne infections, which may lead to mortality if not managed properly. Concurrent infections of dengue and malaria are rare due to the different habitats of its vectors and activities of different carrier mosquitoes. The first case reported was in 2005. Since then, several concurrent infections have been reported between the dengue virus (DENV) and the malaria protozoans, Plasmodium falciparum and Plasmodium vivax. Symptoms of each infection may be masked by a simultaneous second infection, resulting in late treatment and severe complications. Plasmodium knowlesi is also a common cause of malaria in Malaysia with one of the highest rates of mortality. This report is one of the earliest in literature of concomitant infection between DENV and P. knowlesi in which a delay in diagnosis had placed a patient in a life-threatening situation. A 59-year old man staying near the Belum-Temengor rainforest at the Malaysia-Thailand border was admitted with fever for 6 days, with respiratory distress. His non-structural protein 1 antigen and Anti-DENV Immunoglobulin M tests were positive. He was treated for severe dengue with compensated shock. Treating the dengue had so distracted the clinicians that a blood film for the malaria parasite was not done. Despite aggressive supportive treatment in the intensive care unit (ICU), the patient had unresolved acidosis as well as multi-organ failure involving respiratory, renal, liver, and haematological systems. It was due to the presentation of shivering in the ICU, that a blood film was done on the second day that revealed the presence of P. knowlesi with a parasite count of 520,000/μL. The patient was subsequently treated with artesunate-doxycycline and made a good recovery after nine days in ICU. This case contributes to the body of literature on co-infection between DENV and P. knowlesi and highlights the clinical consequences, which can be severe. Awareness should be raised among

  6. Plasmodium falciparum signal peptide peptidase cleaves malaria heat shock protein 101 (HSP101). Implications for gametocytogenesis

    International Nuclear Information System (INIS)

    Baldwin, Michael; Russo, Crystal; Li, Xuerong; Chishti, Athar H.

    2014-01-01

    Highlights: • PfSPP is an ER resident protease. • PfSPP is expressed both as a monomer and dimer. • The signal peptide of HSP101 is the first known substrate of PfSPP. • Reduced PfSPP activity may significantly affect ER homeostasis. - Abstract: Previously we described the identification of a Plasmodium falciparum signal peptide peptidase (PfSPP) functioning at the blood stage of malaria infection. Our studies also demonstrated that mammalian SPP inhibitors prevent malaria parasite growth at the late-ring/early trophozoite stage of intra-erythrocytic development. Consistent with its role in development, we tested the hypothesis that PfSPP functions at the endoplasmic reticulum of P.falciparum where it cleaves membrane-bound signal peptides generated following the enzyme activity of signal peptidase. The localization of PfSPP to the endoplasmic reticulum was confirmed by immunofluorescence microscopy and immunogold electron microscopy. Biochemical analysis indicated the existence of monomer and dimer forms of PfSPP in the parasite lysate. A comprehensive bioinformatics screen identified several candidate PfSPP substrates in the parasite genome. Using an established transfection based in vivo luminescence assay, malaria heat shock protein 101 (HSP101) was identified as a substrate of PfSPP, and partial inhibition of PfSPP correlated with the emergence of gametocytes. This finding unveils the first known substrate of PfSPP, and provides new perspectives for the function of intra-membrane proteolysis at the erythrocyte stage of malaria parasite life cycle

  7. Plasmodium falciparum signal peptide peptidase cleaves malaria heat shock protein 101 (HSP101). Implications for gametocytogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, Michael; Russo, Crystal; Li, Xuerong [Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States); Chishti, Athar H., E-mail: athar.chishti@tufts.edu [Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States); Sackler School of Graduate Biomedical Sciences, Programs in Physiology, Pharmacology, and Microbiology, Tufts University School of Medicine, Boston, MA 02111 (United States)

    2014-08-08

    Highlights: • PfSPP is an ER resident protease. • PfSPP is expressed both as a monomer and dimer. • The signal peptide of HSP101 is the first known substrate of PfSPP. • Reduced PfSPP activity may significantly affect ER homeostasis. - Abstract: Previously we described the identification of a Plasmodium falciparum signal peptide peptidase (PfSPP) functioning at the blood stage of malaria infection. Our studies also demonstrated that mammalian SPP inhibitors prevent malaria parasite growth at the late-ring/early trophozoite stage of intra-erythrocytic development. Consistent with its role in development, we tested the hypothesis that PfSPP functions at the endoplasmic reticulum of P.falciparum where it cleaves membrane-bound signal peptides generated following the enzyme activity of signal peptidase. The localization of PfSPP to the endoplasmic reticulum was confirmed by immunofluorescence microscopy and immunogold electron microscopy. Biochemical analysis indicated the existence of monomer and dimer forms of PfSPP in the parasite lysate. A comprehensive bioinformatics screen identified several candidate PfSPP substrates in the parasite genome. Using an established transfection based in vivo luminescence assay, malaria heat shock protein 101 (HSP101) was identified as a substrate of PfSPP, and partial inhibition of PfSPP correlated with the emergence of gametocytes. This finding unveils the first known substrate of PfSPP, and provides new perspectives for the function of intra-membrane proteolysis at the erythrocyte stage of malaria parasite life cycle.

  8. Submicroscopic malaria parasite carriage: how reproducible are polymerase chain reaction-based methods?

    Directory of Open Access Journals (Sweden)

    Daniela Camargos Costa

    2014-02-01

    Full Text Available The polymerase chain reaction (PCR-based methods for the diagnosis of malaria infection are expected to accurately identify submicroscopic parasite carriers. Although a significant number of PCR protocols have been described, few studies have addressed the performance of PCR amplification in cases of field samples with submicroscopic malaria infection. Here, the reproducibility of two well-established PCR protocols (nested-PCR and real-time PCR for the Plasmodium 18 small subunit rRNA gene were evaluated in a panel of 34 blood field samples from individuals that are potential reservoirs of malaria infection, but were negative for malaria by optical microscopy. Regardless of the PCR protocol, a large variation between the PCR replicates was observed, leading to alternating positive and negative results in 38% (13 out of 34 of the samples. These findings were quite different from those obtained from the microscopy-positive patients or the unexposed individuals; the diagnosis of these individuals could be confirmed based on the high reproducibility and specificity of the PCR-based protocols. The limitation of PCR amplification was restricted to the field samples with very low levels of parasitaemia because titrations of the DNA templates were able to detect < 3 parasites/µL in the blood. In conclusion, conventional PCR protocols require careful interpretation in cases of submicroscopic malaria infection, as inconsistent and false-negative results can occur.

  9. Aspidosperma (Apocynaceae plant cytotoxicity and activity towards malaria parasites. Part I: Aspidosperma nitidum (Benth used as a remedy to treat fever and malaria in the Amazon

    Directory of Open Access Journals (Sweden)

    Julia Penna Coutinho

    2013-12-01

    Full Text Available Infusions of Aspidosperma nitidum (Apocynaceae wood bark are used to treat fever and malaria in the Amazon Region. Several species of this family are known to possess indole alkaloids and other classes of secondary metabolites, whereas terpenoids, an inositol and the indole alkaloids harmane-3 acid and braznitidumine have been described in A. nitidum . In the present study, extracts from the wood bark, leaves and branches of this species were prepared for assays against malaria parasites and cytotoxicity testing using human hepatoma and normal monkey kidney cells. The wood bark extracts were active against Plasmodium falciparum and showed a low cytotoxicity in vitro, whereas the leaf and branch extracts and the pure alkaloid braznitidumine were inactive. A crude methanol extract was subjected to acid-base fractionation aimed at obtaining alkaloid-rich fractions, which were active at low concentrations against P. falciparum and in mice infected with and sensitive Plasmodium berghei parasites. Our data validate the antimalarial usefulness of A. nitidum wood bark, a remedy that can most likely help to control malaria. However, the molecules responsible for this antimalarial activity have not yet been identified. Considering their high selectivity index, the alkaloid-rich fractions from the plant bark might be useful in the development of new antimalarials.

  10. Factors contributing to delay in parasite clearance in uncomplicated falciparum malaria in children

    Directory of Open Access Journals (Sweden)

    Sijuade Abayomi

    2010-02-01

    Full Text Available Abstract Background Drug resistance in Plasmodium falciparum is common in many endemic and other settings but there is no clear recommendation on when to change therapy when there is delay in parasite clearance after initiation of therapy in African children. Methods The factors contributing to delay in parasite clearance, defined as a clearance time > 2 d, in falciparum malaria were characterized in 2,752 prospectively studied children treated with anti-malarial drugs between 1996 and 2008. Results 1,237 of 2,752 children (45% had delay in parasite clearance. Overall 211 children (17% with delay in clearance subsequently failed therapy and they constituted 72% of those who had drug failure, i.e., 211 of 291 children. The following were independent risk factors for delay in parasite clearance at enrolment: age less than or equal to 2 years (Adjusted odds ratio [AOR] = 2.13, 95% confidence interval [CI]1.44-3.15, P 50,000/ul (AOR = 2.21, 95% CI = 1.77-2.75, P 20000/μl a day after treatment began, were independent risk factors for delay in clearance. Non-artemisinin monotherapies were associated with delay in clearance and treatment failures, and in those treated with chloroquine or amodiaquine, with pfmdr 1/pfcrt mutants. Delay in clearance significantly increased gametocyte carriage (P Conclusion Delay in parasite clearance is multifactorial, is related to drug resistance and treatment failure in uncomplicated malaria and has implications for malaria control efforts in sub-Saharan Africa.

  11. Antisense long noncoding RNAs regulate var gene activation in the malaria parasite Plasmodium falciparum.

    Science.gov (United States)

    Amit-Avraham, Inbar; Pozner, Guy; Eshar, Shiri; Fastman, Yair; Kolevzon, Netanel; Yavin, Eylon; Dzikowski, Ron

    2015-03-03

    The virulence of Plasmodium falciparum, the causative agent of the deadliest form of human malaria, is attributed to its ability to evade human immunity through antigenic variation. These parasites alternate between expression of variable antigens, encoded by members of a multicopy gene family named var. Immune evasion through antigenic variation depends on tight regulation of var gene expression, ensuring that only a single var gene is expressed at a time while the rest of the family is maintained transcriptionally silent. Understanding how a single gene is chosen for activation is critical for understanding mutually exclusive expression but remains a mystery. Here, we show that antisense long noncoding RNAs (lncRNAs) initiating from var introns are associated with the single active var gene at the time in the cell cycle when the single var upstream promoter is active. We demonstrate that these antisense transcripts are incorporated into chromatin, and that expression of these antisense lncRNAs in trans triggers activation of a silent var gene in a sequence- and dose-dependent manner. On the other hand, interference with these lncRNAs using complement peptide nucleic acid molecules down-regulated the active var gene, erased the epigenetic memory, and induced expression switching. Altogether, our data provide evidence that these antisense lncRNAs play a key role in regulating var gene activation and mutually exclusive expression.

  12. Molecular Investigation into a Malaria Outbreak in Cusco, Peru: Plasmodium falciparum BV1 Lineage is Linked to a Second Outbreak in Recent Times

    Science.gov (United States)

    Okoth, Sheila Akinyi; Chenet, Stella M.; Arrospide, Nancy; Gutierrez, Sonia; Cabezas, Cesar; Matta, Jose Antonio; Udhayakumar, Venkatachalam

    2016-01-01

    In November 2013, a Plasmodium falciparum malaria outbreak of 11 cases occurred in Cusco, southern Peru, where falciparum malaria had not been reported since 1946. Although initial microscopic diagnosis reported only Plasmodium vivax infection in each of the specimens, subsequent examination by the national reference laboratory confirmed P. falciparum infection in all samples. Molecular typing of four available isolates revealed identity as the B-variant (BV1) strain that was responsible for a malaria outbreak in Tumbes, northern Peru, between 2010 and 2012. The P. falciparum BV1 strain is multidrug resistant, can escape detection by PfHRP2-based rapid diagnostic tests, and has contributed to two malaria outbreaks in Peru. This investigation highlights the importance of accurate species diagnosis given the potential for P. falciparum to be reintroduced to regions where it may have been absent. Similar molecular epidemiological investigations can track the probable source(s) of outbreak parasite strains for malaria surveillance and control purposes. PMID:26483121

  13. Plasmodium falciparum transcriptome analysis reveals pregnancy malaria associated gene expression

    DEFF Research Database (Denmark)

    Tuikue Ndam, Nicaise; Bischoff, Emmanuel; Proux, Caroline

    2008-01-01

    BACKGROUND: Pregnancy-associated malaria (PAM) causing maternal anemia and low birth weight is among the multiple manifestations of Plasmodium falciparum malaria. Infected erythrocytes (iEs) can acquire various adhesive properties that mediate the clinical severity of malaria. Recent advances...

  14. The ins and outs of phosphosignalling in Plasmodium: Parasite regulation and host cell manipulation.

    Science.gov (United States)

    Carvalho, Teresa Gil; Morahan, Belinda; John von Freyend, Simona; Boeuf, Philippe; Grau, Georges; Garcia-Bustos, Jose; Doerig, Christian

    2016-07-01

    Signal transduction and kinomics have been rapidly expanding areas of investigation within the malaria research field. Here, we provide an overview of phosphosignalling pathways that operate in all stages of the Plasmodium life cycle. We review signalling pathways in the parasite itself, in the cells it invades, and in other cells of the vertebrate host with which it interacts. We also discuss the potential of these pathways as novel targets for antimalarial intervention. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Plasmodium falciparum parasites expressing pregnancy-specific variant surface antigens adhere strongly to the choriocarcinoma cell line BeWo

    DEFF Research Database (Denmark)

    Haase, Rikke N; Megnekou, Rosette; Lundquist, Maja

    2006-01-01

    Placenta-sequestering Plasmodium falciparum parasites causing pregnancy-associated malaria express pregnancy-specific variant surface antigens (VSA(PAM)). We report here that VSA(PAM)-expressing patient isolates adhere strongly to the choriocarcinoma cell line BeWo and that the BeWo line can...... be used to efficiently select for VSA(PAM) expression in vitro....

  16. Estimating Geographical Variation in the Risk of Zoonotic Plasmodium knowlesi Infection in Countries Eliminating Malaria.

    Directory of Open Access Journals (Sweden)

    Freya M Shearer

    2016-08-01

    Full Text Available Infection by the simian malaria parasite, Plasmodium knowlesi, can lead to severe and fatal disease in humans, and is the most common cause of malaria in parts of Malaysia. Despite being a serious public health concern, the geographical distribution of P. knowlesi malaria risk is poorly understood because the parasite is often misidentified as one of the human malarias. Human cases have been confirmed in at least nine Southeast Asian countries, many of which are making progress towards eliminating the human malarias. Understanding the geographical distribution of P. knowlesi is important for identifying areas where malaria transmission will continue after the human malarias have been eliminated.A total of 439 records of P. knowlesi infections in humans, macaque reservoir and vector species were collated. To predict spatial variation in disease risk, a model was fitted using records from countries where the infection data coverage is high. Predictions were then made throughout Southeast Asia, including regions where infection data are sparse. The resulting map predicts areas of high risk for P. knowlesi infection in a number of countries that are forecast to be malaria-free by 2025 (Malaysia, Cambodia, Thailand and Vietnam as well as countries projected to be eliminating malaria (Myanmar, Laos, Indonesia and the Philippines.We have produced the first map of P. knowlesi malaria risk, at a fine-scale resolution, to identify priority areas for surveillance based on regions with sparse data and high estimated risk. Our map provides an initial evidence base to better understand the spatial distribution of this disease and its potential wider contribution to malaria incidence. Considering malaria elimination goals, areas for prioritised surveillance are identified.

  17. Local population structure of Plasmodium: impact on malaria control and elimination

    Directory of Open Access Journals (Sweden)

    Chenet Stella M

    2012-12-01

    Full Text Available Abstract Background Regardless of the growing interest in detecting population structures in malarial parasites, there have been limited discussions on how to use this concept in control programmes. In such context, the effects of the parasite population structures will depend on interventions’ spatial or temporal scales. This investigation explores the problem of identifying genetic markers, in this case microsatellites, to unveil Plasmodium genetic structures that could affect decisions in the context of elimination. The study was performed in a low-transmission area, which offers a good proxy to better understand problems associated with surveillance at the final stages of malaria elimination. Methods Plasmodium vivax samples collected in Tumeremo, Venezuela, between March 2003 and November 2004 were analysed. Since Plasmodium falciparum also circulates in many low endemic areas, P. falciparum samples from the same locality and time period were included for comparison. Plasmodium vivax samples were assayed for an original set of 25 microsatellites and P. falciparum samples were assayed for 12 microsatellites. Results Not all microsatellite loci assayed offered reliable local data. A complex temporal-cluster dynamics is found in both P. vivax and P. falciparum. Such dynamics affect the numbers and the type of microsatellites required for identifying individual parasites or parasite clusters when performing cross-sectional studies. The minimum number of microsatellites required to differentiate circulating P. vivax clusters differs from the minimum number of hyper-variable microsatellites required to distinguish individuals within these clusters. Regardless the extended number of microsatellites used in P. vivax, it was not possible to separate all individual infections. Conclusions Molecular surveillance has great potential; however, it requires preliminary local studies in order to properly interpret the emerging patterns in the context of

  18. Plasmodium falciparum infection in febrile Congolese children: prevalence of clinical malaria 10 years after introduction of artemisinin-combination therapies.

    Science.gov (United States)

    Etoka-Beka, Mandingha Kosso; Ntoumi, Francine; Kombo, Michael; Deibert, Julia; Poulain, Pierre; Vouvoungui, Christevy; Kobawila, Simon Charles; Koukouikila-Koussounda, Felix

    2016-12-01

    To investigate the proportion of malaria infection in febrile children consulting a paediatric hospital in Brazzaville, to determine the prevalence of submicroscopic malaria infection, to characterise Plasmodium falciparum infection and compare the prevalence of uncomplicated P. falciparum malaria according to haemoglobin profiles. Blood samples were collected from children aged <10 years with an axillary temperature ≥37.5 °C consulting the paediatric ward of Marien Ngouabi Hospital in Brazzaville. Parasite density was determined and all samples were screened for P. falciparum by nested polymerase chain reaction (PCR) using the P. falciparum msp-2 marker to detect submicroscopic infections and characterise P. falciparum infection. Sickle cell trait was screened by PCR. A total of 229 children with fever were recruited, of whom 10% were diagnosed with uncomplicated malaria and 21% with submicroscopic infection. The mean parasite density in children with uncomplicated malaria was 42 824 parasites/μl of blood. The multiplicity of infection (MOI) was 1.59 in children with uncomplicated malaria and 1.69 in children with submicroscopic infection. The mean haemoglobin level was 10.1 ± 1.7 for children with uncomplicated malaria and 12.0 ± 8.6 for children with submicroscopic infection. About 13% of the children harboured the sickle cell trait (HbAS); the rest had normal haemoglobin (HbAA). No difference in prevalence of uncomplicated malaria and submicroscopic infection, parasite density, haemoglobin level, MOI and P. falciparum genetic diversity was observed according to haemoglobin type. The low prevalence of uncomplicated malaria in febrile Congolese children indicates the necessity to investigate carefully other causes of fever. © 2016 John Wiley & Sons Ltd.

  19. Patterns of Plasmodium vivax and Plasmodium falciparum malaria underscore importance of data collection from private health care facilities in India.

    Science.gov (United States)

    Gupta, Sangeeta; Gunter, James T; Novak, Robert J; Regens, James L

    2009-10-12

    This study describes patterns of falciparum and vivax malaria in a private comprehensive-care, multi-specialty hospital in New Delhi from July 2006 to July 2008. Malarial morbidity by Plasmodium species (Plasmodium falciparum, Plasmodium vivax, or Plasmodium sp.) was confirmed using microscopy and antigen tests. The influence of seasonal factors and selected patient demographics on morbidity was evaluated. The proportions of malaria cases caused by P. falciparum at the private facility were compared to data from India's National Vector Borne Disease Control Programme (NVBDCP) during the same period for the Delhi region. In New Delhi, P. faciparum was the dominant cause of cases requiring treatment in the private hospital during the period examined. The national data reported a smaller proportion of malaria cases caused by P. falciparum in the national capital region than was observed in a private facility within the region. Plasmodium vivax also caused a large proportion of the cases presenting clinically at the private hospital during the summer and monsoon seasons. The proportion of P. falciparum malaria cases tends to be greatest during the post-monsoon season while the proportion of P. vivax malaria cases tends to be greatest in the monsoon season. Private hospital data demonstrate an under-reporting of malaria case incidences in the data from India's national surveillance programme during the same period for the national capital region.

  20. Perfil clínico y parasitológico de la malaria por Plasmodium falciparum y Plasmodium vivax no complicada en Córdoba, Colombia.

    OpenAIRE

    Angélica Knudson Ospina; Ricardo Sánchez Pedraza; Manuel Alberto Pérez Mazorra; Liliana Jazmín Cortés Cortés; Ángela Patricia Guerra Vega; Rubén Santiago Nicholls Orejuela

    2015-01-01

    Antecedentes. En Colombia existen pocos estudios que buscan encontrar diferencias clínicas y parasitológicas en la malaria causada por Plasmodium falciparum y Plasmodium vivax.  Objetivo. Describir el perfil clínico y parasitológico de las malarias por Plasmodium falciparum y Plasmodium vivax no complicadas en Tierralta, Córdoba, Colombia. Materiales y métodos. Se evaluaron pacientes con paludismo no complicado por Plasmodium falciparum y Plasmodium vivax según los protocolos estandariz...

  1. The Cytoplasmic Prolyl-tRNA Synthetase of the Malaria Parasite is a Dual-Stage Target for Drug Development

    Science.gov (United States)

    Herman, Jonathan D.; Pepper, Lauren R.; Cortese, Joseph F.; Estiu, Guillermina; Galinsky, Kevin; Zuzarte-Luis, Vanessa; Derbyshire, Emily R.; Ribacke, Ulf; Lukens, Amanda K.; Santos, Sofia A.; Patel, Vishal; Clish, Clary B.; Sullivan, William J.; Zhou, Huihao; Bopp, Selina E.; Schimmel, Paul; Lindquist, Susan; Clardy, Jon; Mota, Maria M.; Keller, Tracy L.; Whitman, Malcolm; Wiest, Olaf; Wirth, Dyann F.; Mazitschek, Ralph

    2015-01-01

    The emergence of drug resistance is a major limitation of current antimalarials. The discovery of new druggable targets and pathways including those that are critical for multiple life cycle stages of the malaria parasite is a major goal for the development of the next-generation of antimalarial drugs. Using an integrated chemogenomics approach that combined drug-resistance selection, whole genome sequencing and an orthogonal yeast model, we demonstrate that the cytoplasmic prolyl-tRNA synthetase (PfcPRS) of the malaria parasite Plasmodium falciparum is a biochemical and functional target of febrifugine and its synthetic derivatives such as halofuginone. Febrifugine is the active principle of a traditional Chinese herbal remedy for malaria. We show that treatment with febrifugine derivatives activated the amino acid starvation response in both P. falciparum and a transgenic yeast strain expressing PfcPRS. We further demonstrate in the P. berghei mouse model of malaria that halofuginol, a new halofuginone analog that we developed, is highly active against both liver and asexual blood stages of the malaria parasite. Halofuginol, unlike halofuginone and febrifugine, is well tolerated at efficacious doses, and represents a promising lead for the development of dual-stage next generation antimalarials. PMID:25995223

  2. Minocycline prevents cerebral malaria, confers neuroprotection and increases survivability of mice during Plasmodium berghei ANKA infection.

    Science.gov (United States)

    Apoorv, Thittayil Suresh; Babu, Phanithi Prakash

    2017-02-01

    Cerebral malaria (CM) is a neurological complication arising due to Plasmodium falciparum or Plasmodium vivax infection. Minocycline, a semi-synthetic tetracycline, has been earlier reported to have a neuroprotective role in several neurodegenerative diseases. In this study, we investigated the effect of minocycline treatment on the survivability of mice during experimental cerebral malaria (ECM). The currently accepted mouse model, C57BL/6 mice infected with Plasmodium berghei ANKA, was used for the study. Infected mice were treated with an intra-peritoneal dose of minocycline hydrochloride, 45mg/kg daily for ten days that led to parasite clearance in blood, brain, liver and spleen on 7th day post-infection; and the mice survived until experiment ended (90days) without parasite recrudescence. Evans blue extravasation assay showed that blood-brain barrier integrity was maintained by minocycline. The tumor necrosis factor-alpha protein level and caspase activity, which is related to CM pathogenesis, was significantly reduced in the minocycline-treated group. Fluoro-Jade® C and hematoxylin-eosin staining of the brains of minocycline group revealed a decrease in degenerating neurons and absence of hemorrhages respectively. Minocycline treatment led to decrease in gene expressions of inflammatory mediators like interferon-gamma, CXCL10, CCL5, CCL2; receptors CXCR3 and CCR2; and hence decrease in T-cell-mediated cerebral inflammation. We also proved that this reduction in gene expressions is irrespective of the anti-parasitic property of minocycline. The distinct ability of minocycline to modulate gene expressions of CXCL10 and CXCR3 makes it effective than doxycycline, a tetracycline used as chemoprophylaxis. Our study shows that minocycline is highly effective in conferring neuroprotection during ECM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Plasmodium falciparum malaria importation from Africa to China and its mortality: an analysis of driving factors

    Science.gov (United States)

    Lai, Shengjie; Wardrop, Nicola A.; Huang, Zhuojie; Bosco, Claudio; Sun, Junling; Bird, Tomas; Wesolowski, Amy; Zhou, Sheng; Zhang, Qian; Zheng, Canjun; Li, Zhongjie; Tatem, Andrew J.; Yu, Hongjie

    2016-12-01

    Plasmodium falciparum malaria importation from Africa to China is rising with increasing Chinese overseas investment and international travel. Identifying networks and drivers of this phenomenon as well as the contributors to high case-fatality rate is a growing public health concern to enable efficient response. From 2011-2015, 8653 P. falciparum cases leading to 98 deaths (11.3 per 1000 cases) were imported from 41 sub-Saharan countries into China, with most cases (91.3%) occurring in labour-related Chinese travellers. Four strongly connected groupings of origin African countries with destination Chinese provinces were identified, and the number of imported cases was significantly associated with the volume of air passengers to China (P = 0.006), parasite prevalence in Africa (P investment in resource extraction having the strongest relationship with parasite importation. Risk factors for deaths from imported cases were related to the capacity of malaria diagnosis and diverse socioeconomic factors. The spatial heterogeneity uncovered, principal drivers explored, and risk factors for mortality found in the rising rates of P. falciparum malaria importation to China can serve to refine malaria elimination strategies and the management of cases, and high risk groups and regions should be targeted.

  4. The malaria parasite RhopH protein complex interacts with erythrocyte calmyrin identified from a comprehensive erythrocyte protein library.

    Science.gov (United States)

    Miura, Toyokazu; Takeo, Satoru; Ntege, Edward H; Otsuki, Hitoshi; Sawasaki, Tatsuya; Ishino, Tomoko; Takashima, Eizo; Tsuboi, Takafumi

    2018-06-02

    Malaria merozoite apical organelles; microneme and rhoptry secreted proteins play functional roles during and following invasion of host erythrocytes. Among numerous proteins, the rhoptries discharge high molecular weight proteins known as RhopH complex. Recent reports suggest that the RhopH complex is essential for growth and survival of the malaria parasite within erythrocytes. However, an in-depth understanding of the host-parasite molecular interactions is indispensable. Here we utilized a comprehensive mouse erythrocyte protein library consisting of 443 proteins produced by a wheat germ cell-free system, combined with AlphaScreen technology to identify mouse erythrocyte calmyrin as an interacting molecule of the rodent malaria parasite Plasmodium yoelii RhopH complex (PyRhopH). The PyRhopH interaction was dependent on the calmyrin N-terminus and divalent cation capacity. The finding unveils a recommendable and invaluable usefulness of our comprehensive mouse erythrocyte protein library together with the AlphaScreen technology in investigating a wide-range of host-parasite molecular interactions. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Human T cell recognition of the blood stage antigen Plasmodium hypoxanthine guanine xanthine phosphoribosyl transferase (HGXPRT in acute malaria

    Directory of Open Access Journals (Sweden)

    Woodberry Tonia

    2009-06-01

    Full Text Available Abstract Background The Plasmodium purine salvage enzyme, hypoxanthine guanine xanthine phosphoribosyl transferase (HGXPRT can protect mice against Plasmodium yoelii pRBC challenge in a T cell-dependent manner and has, therefore, been proposed as a novel vaccine candidate. It is not known whether natural exposure to Plasmodium falciparum stimulates HGXPRT T cell reactivity in humans. Methods PBMC and plasma collected from malaria-exposed Indonesians during infection and 7–28 days after anti-malarial therapy, were assessed for HGXPRT recognition using CFSE proliferation, IFNγ ELISPOT assay and ELISA. Results HGXPRT-specific T cell proliferation was found in 44% of patients during acute infection; in 80% of responders both CD4+ and CD8+ T cell subsets proliferated. Antigen-specific T cell proliferation was largely lost within 28 days of parasite clearance. HGXPRT-specific IFN-γ production was more frequent 28 days after treatment than during acute infection. HGXPRT-specific plasma IgG was undetectable even in individuals exposed to malaria for at least two years. Conclusion The prevalence of acute proliferative and convalescent IFNγ responses to HGXPRT demonstrates cellular immunogenicity in humans. Further studies to determine minimal HGXPRT epitopes, the specificity of responses for Plasmodia and associations with protection are required. Frequent and robust T cell proliferation, high sequence conservation among Plasmodium species and absent IgG responses distinguish HGXPRT from other malaria antigens.

  6. Evolution of Resistance to Sulfadoxine-Pyrimethamine in Plasmodium falciparum

    OpenAIRE

    Gatton, Michelle L.; Martin, Laura B; Cheng, Qin

    2004-01-01

    The development of resistance to sulfadoxine-pyrimethamine by Plasmodium parasites is a major problem for the effective treatment of malaria, especially P. falciparum malaria. Although the molecular basis for parasite resistance is known, the factors promoting the development and transmission of these resistant parasites are less clear. This paper reports the results of a quantitative comparison of factors previously hypothesized as important for the development of drug resistance, drug dosag...

  7. Use of buffy coat thick films in detecting malaria parasites in patients with negative conventional thick films.

    Science.gov (United States)

    Duangdee, Chatnapa; Tangpukdee, Noppadon; Krudsood, Srivicha; Wilairatana, Polrat

    2012-04-01

    To determine the frequency of malaria parasite detection from the buffy coat blood films by using capillary tube in falciparum malaria patients with negative conventional thick films. Thirty six uncomplicated falciparum malaria patients confirmed by conventional thick and thin films were included in the study. The patients were treated with artemisinin combination therapy at Hospital for Tropical Diseases, Bangkok, Thailand for 28 day. Fingerpricks for conventional blood films were conducted every 6 hours until negative parasitemia, then daily fingerpricks for parasite checks were conducted until the patients were discharged from hospital. Blood samples were also concurrently collected in 3 heparinized capillary tubes at the same time of fingerpricks for conventional blood films when the prior parasitemia was negative on thin films and parasitemia was lower than 50 parasites/200 white blood cells by thick film. The first negative conventional thick films were compared with buffy coat thick films for parasite identification. Out of 36 patients with thick films showing negative for asexual forms of parasites, buffy coat films could detect remaining 10 patients (27.8%) with asexual forms of Plasmodium falciparum. The study shows that buffy coat thick films are useful and can detect malarial parasites in 27.8% of patients whose conventional thick films show negative parasitemia.

  8. Specific proliferative response of human lymphocytes to purified soluble antigens from Plasmodium falciparum in vitro cultures and to antigens from malaria patients' sera

    DEFF Research Database (Denmark)

    Bygbjerg, I C; Jepsen, S; Theander, T G

    1985-01-01

    Antigens of Plasmodium falciparum, in supernatants of in vitro cultures of the parasite were affinity purified on columns prepared with the IgG fraction of the serum of an immune individual. The purified antigens induced proliferation of lymphocytes from persons who had recently had malaria....... The responses were strongest with lymphocytes from individuals infected with falciparum and ovale malaria; vivax malaria infections induced a lower level of response and lymphocytes of unsensitized individuals were little affected. Lymphocytes from unsensitized individuals did not respond to the affinity...

  9. In Vivo Susceptibility of Plasmodium Vivax to Chloroquine in Southeastern Iran

    Directory of Open Access Journals (Sweden)

    S Dittrich

    2012-06-01

    Full Text Available Background: Plasmodium vivax is the predominant species causes of malaria with about 90% total annual reported malaria in Iran. This study conducted to determine the susceptibility of Plasmodium vivax isolates to chloroquine in Sistan and Balochistan Province, southeastern Iran.Methods: A total 270 subjects with symptomatic malaria and confirmed P. vivax infection completed the designed 28-day in vivo study. The thick and thin film blood smears were screened for malaria parasites by microscopy. The nested PCR was applied using the Plasmodium 18 subunit ribosomal ribonu­cleic (Ssr RNA genes for detecting mixed infections and diagnosis of parasites in the samples with low parasite on days 0, 5, 6, 7, and 28. Results: P. vivax was cleared in 15%, 50%, 95%, and 100% of patients on days 1, 2, 3, 4 respectively by microscopy assessment. Six patients were exhibited specific P. vivax band in nested PCR on day 5. No recurrence was observed on days 7, 14 and 28. Mean (±standard deviation parasite clearance time was 2.41 (±0.8 days. Conclusion: P. vivax is still susceptible to chloroquine in Southeatern Iran. This finding is compati­ble with results of neighboring countries Pakistan and Afghanistan.

  10. Culture adaptation of malaria parasites selects for convergent loss-of-function mutants.

    Science.gov (United States)

    Claessens, Antoine; Affara, Muna; Assefa, Samuel A; Kwiatkowski, Dominic P; Conway, David J

    2017-01-24

    Cultured human pathogens may differ significantly from source populations. To investigate the genetic basis of laboratory adaptation in malaria parasites, clinical Plasmodium falciparum isolates were sampled from patients and cultured in vitro for up to three months. Genome sequence analysis was performed on multiple culture time point samples from six monoclonal isolates, and single nucleotide polymorphism (SNP) variants emerging over time were detected. Out of a total of five positively selected SNPs, four represented nonsense mutations resulting in stop codons, three of these in a single ApiAP2 transcription factor gene, and one in SRPK1. To survey further for nonsense mutants associated with culture, genome sequences of eleven long-term laboratory-adapted parasite strains were examined, revealing four independently acquired nonsense mutations in two other ApiAP2 genes, and five in Epac. No mutants of these genes exist in a large database of parasite sequences from uncultured clinical samples. This implicates putative master regulator genes in which multiple independent stop codon mutations have convergently led to culture adaptation, affecting most laboratory lines of P. falciparum. Understanding the adaptive processes should guide development of experimental models, which could include targeted gene disruption to adapt fastidious malaria parasite species to culture.

  11. Supplementation with Abscisic Acid Reduces Malaria Disease Severity and Parasite Transmission

    Science.gov (United States)

    Glennon, Elizabeth K. K.; Adams, L. Garry; Hicks, Derrick R.; Dehesh, Katayoon; Luckhart, Shirley

    2016-01-01

    Nearly half of the world's population is at risk for malaria. Increasing drug resistance has intensified the need for novel therapeutics, including treatments with intrinsic transmission-blocking properties. In this study, we demonstrate that the isoprenoid abscisic acid (ABA) modulates signaling in the mammalian host to reduce parasitemia and the formation of transmissible gametocytes and in the mosquito host to reduce parasite infection. Oral ABA supplementation in a mouse model of malaria was well tolerated and led to reduced pathology and enhanced gene expression in the liver and spleen consistent with infection recovery. Oral ABA supplementation also increased mouse plasma ABA to levels that can signal in the mosquito midgut upon blood ingestion. Accordingly, we showed that supplementation of a Plasmodium falciparum-infected blood meal with ABA increased expression of mosquito nitric oxide synthase and reduced infection prevalence in a nitric oxide-dependent manner. Identification of the mechanisms whereby ABA reduces parasite growth in mammals and mosquitoes could shed light on the balance of immunity and metabolism across eukaryotes and provide a strong foundation for clinical translation. PMID:27001761

  12. Detection of avian malaria (Plasmodium spp.) in native land birds of American Samoa

    Science.gov (United States)

    Jarvi, S.I.; Farias, M.E.M.; Baker, H.; Freifeld, H.B.; Baker, P.E.; Van Gelder, E.; Massey, J.G.; Atkinson, C.T.

    2003-01-01

    This study documents the presence of Plasmodium spp. in landbirds of central Polynesia. Blood samples collected from eight native and introduced species from the island of Tutuila, American Samoa were evaluated for the presence of Plasmodium spp. by nested rDNA PCR, serology and/or microscopy. A total of 111/188 birds (59%) screened by nested PCR were positive. Detection of Plasmodium spp. was verified by nucleotide sequence comparisons of partial 18S ribosomal RNA and TRAP (thrombospondin-related anonymous protein) genes using phylogenetic analyses. All samples screened by immunoblot to detect antibodies that cross-react with Hawaiian isolates of Plasmodium relictum (153) were negative. Lack of cross-reactivity is probably due to antigenic differences between the Hawaiian and Samoan Plasmodium isolates. Similarly, all samples examined by microscopy (214) were negative. The fact that malaria is present, but not detectable by blood smear evaluation is consistent with low peripheral parasitemia characteristic of chronic infections. High prevalence of apparently chronic infections, the relative stability of the native land bird communities, and the presence of mosquito vectors which are considered endemic and capable of transmitting avian Plasmodia, suggest that these parasites are indigenous to Samoa and have a long coevolutionary history with their hosts.

  13. Review Article: Morphological Changes in Malaria | Buhari | African ...

    African Journals Online (AJOL)

    Malaria remains a global health problem. Several organs of the body are affected by the Plasmodium species which parasitized erythrocytes. The small blood vessels of all the major organs of the body are usually filled with parasitized red cells and this represents the major morphological changes seen in malaria.

  14. Plasmodium falciparum resistance to artemisinin-based combination therapies: A sword of Damocles in the path toward malaria elimination.

    Science.gov (United States)

    Ouji, Manel; Augereau, Jean-Michel; Paloque, Lucie; Benoit-Vical, Françoise

    2018-01-01

    The use of artemisinin-based combination therapies (ACTs), which combine an artemisinin derivative with a partner drug, in the treatment of uncomplicated malaria has largely been responsible for the significant reduction in malaria-related mortality in tropical and subtropical regions. ACTs have also played a significant role in the 18% decline in the incidence of malaria cases from 2010 to 2016. However, this progress is seriously threatened by the reduced clinical efficacy of artemisinins, which is characterised by delayed parasitic clearance and a high rate of recrudescence, as reported in 2008 in Western Cambodia. Resistance to artemisinins has already spread to several countries in Southeast Asia. Furthermore, resistance to partner drugs has been shown in some instances to be facilitated by pre-existing decreased susceptibility to the artemisinin component of the ACT. A major concern is not only the spread of these multidrug-resistant parasites to the rest of Asia but also their possible appearance in Sub-Saharan Africa, the continent most affected by malaria, as has been the case in the past with parasite resistance to other antimalarial treatments. It is therefore essential to understand the acquisition of resistance to artemisinins by Plasmodium falciparum to adapt malaria treatment policies and to propose new therapeutic solutions. © M. Ouji et al., published by EDP Sciences, 2018.

  15. A subset of group A-like var genes encodes the malaria parasite ligands for binding to human brain endothelial cells

    DEFF Research Database (Denmark)

    Claessens, Antoine; Adams, Yvonne; Ghumra, Ashfaq

    2012-01-01

    Cerebral malaria is the most deadly manifestation of infection with Plasmodium falciparum. The pathology of cerebral malaria is characterized by the accumulation of infected erythrocytes (IEs) in the microvasculature of the brain caused by parasite adhesins on the surface of IEs binding to human...... receptors on microvascular endothelial cells. The parasite and host molecules involved in this interaction are unknown. We selected three P. falciparum strains (HB3, 3D7, and IT/FCR3) for binding to a human brain endothelial cell line (HBEC-5i). The whole transcriptome of isogenic pairs of selected.......029) but not by antibodies from controls with uncomplicated malaria (Mann-Whitney test, P = 0.58). This work describes a binding phenotype for virulence-associated group A P. falciparum erythrocyte membrane protein 1 variants and identifies targets for interventions to treat or prevent cerebral malaria....

  16. Transgenic mosquitoes expressing a phospholipase A(2 gene have a fitness advantage when fed Plasmodium falciparum-infected blood.

    Directory of Open Access Journals (Sweden)

    Ryan C Smith

    Full Text Available Genetically modified mosquitoes have been proposed as an alternative strategy to reduce the heavy burden of malaria. In recent years, several proof-of-principle experiments have been performed that validate the idea that mosquitoes can be genetically modified to become refractory to malaria parasite development.We have created two transgenic lines of Anophelesstephensi, a natural vector of Plasmodium falciparum, which constitutively secrete a catalytically inactive phospholipase A2 (mPLA2 into the midgut lumen to interfere with Plasmodium ookinete invasion. Our experiments show that both transgenic lines expressing mPLA2 significantly impair the development of rodent malaria parasites, but only one line impairs the development of human malaria parasites. In addition, when fed on malaria-infected blood, mosquitoes from both transgenic lines are more fecund than non-transgenic mosquitoes. Consistent with these observations, cage experiments with mixed populations of transgenic and non-transgenic mosquitoes show that the percentage of transgenic mosquitoes increases when maintained on Plasmodium-infected blood.Our results suggest that the expression of an anti-Plasmodium effector gene gives transgenic mosquitoes a fitness advantage when fed malaria-infected blood. These findings have important implications for future applications of transgenic mosquito technology in malaria control.

  17. A review of malaria in pregnancy | Madziyire | Central African ...

    African Journals Online (AJOL)

    Malaria causes over 10000 maternal and 200000 neonatal deaths a year globally. Fifty million pregnant women are at risk of acquiring malaria of which half of them are in Sub-Saharan Africa. It is caused by the plasmodium parasite, which is transmitted by the vector female Anopheles mosquito. Plasmodium falciparum is ...

  18. Lysine acetylation in sexual stage malaria parasites is a target for antimalarial small molecules.

    Science.gov (United States)

    Trenholme, Katharine; Marek, Linda; Duffy, Sandra; Pradel, Gabriele; Fisher, Gillian; Hansen, Finn K; Skinner-Adams, Tina S; Butterworth, Alice; Ngwa, Che Julius; Moecking, Jonas; Goodman, Christopher D; McFadden, Geoffrey I; Sumanadasa, Subathdrage D M; Fairlie, David P; Avery, Vicky M; Kurz, Thomas; Andrews, Katherine T

    2014-07-01

    Therapies to prevent transmission of malaria parasites to the mosquito vector are a vital part of the global malaria elimination agenda. Primaquine is currently the only drug with such activity; however, its use is limited by side effects. The development of transmission-blocking strategies requires an understanding of sexual stage malaria parasite (gametocyte) biology and the identification of new drug leads. Lysine acetylation is an important posttranslational modification involved in regulating eukaryotic gene expression and other essential processes. Interfering with this process with histone deacetylase (HDAC) inhibitors is a validated strategy for cancer and other diseases, including asexual stage malaria parasites. Here we confirm the expression of at least one HDAC protein in Plasmodium falciparum gametocytes and show that histone and nonhistone protein acetylation occurs in this life cycle stage. The activity of the canonical HDAC inhibitors trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA; Vorinostat) and a panel of novel HDAC inhibitors on early/late-stage gametocytes and on gamete formation was examined. Several compounds displayed early/late-stage gametocytocidal activity, with TSA being the most potent (50% inhibitory concentration, 70 to 90 nM). In contrast, no inhibitory activity was observed in P. falciparum gametocyte exflagellation experiments. Gametocytocidal HDAC inhibitors caused hyperacetylation of gametocyte histones, consistent with a mode of action targeting HDAC activity. Our data identify HDAC inhibitors as being among a limited number of compounds that target both asexual and sexual stage malaria parasites, making them a potential new starting point for gametocytocidal drug leads and valuable tools for dissecting gametocyte biology. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  19. Plasmodium knowlesi: from severe zoonosis to animal model.

    Science.gov (United States)

    Cox-Singh, Janet; Culleton, Richard

    2015-06-01

    Plasmodium knowlesi malaria is a newly described zoonosis in Southeast Asia. Similarly to Plasmodium falciparum, P. knowlesi can reach high parasitaemia in the human host and both species cause severe and fatal illness. Interpretation of host-parasite interactions in studies of P. knowlesi malaria adds a counterpoint to studies on P. falciparum. However, there is no model system for testing the resulting hypotheses on malaria pathophysiology or for developing new interventions. Plasmodium knowlesi is amenable to genetic manipulation in vitro and several nonhuman primate species are susceptible to experimental infection. Here, we make a case for drawing on P. knowlesi as both a human pathogen and an experimental model to lift the roadblock between malaria research and its translation into human health benefits. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Gametocytes of the Malaria Parasite Plasmodium falciparum Interact With and Stimulate Bone Marrow Mesenchymal Cells to Secrete Angiogenetic Factors

    Directory of Open Access Journals (Sweden)

    Valeria Messina

    2018-03-01

    Full Text Available The gametocytes of Plasmodium falciparum, responsible for the transmission of this malaria parasite from humans to mosquitoes, accumulate and mature preferentially in the human bone marrow. In the 10 day long sexual development of P. falciparum, the immature gametocytes reach and localize in the extravascular compartment of this organ, in contact with several bone marrow stroma cell types, prior to traversing the endothelial lining and re-entering in circulation at maturity. To investigate the host parasite interplay underlying this still obscure process, we developed an in vitro tridimensional co-culture system in a Matrigel scaffold with P. falciparum gametocytes and self-assembling spheroids of human bone marrow mesenchymal cells (hBM-MSCs. Here we show that this co-culture system sustains the full maturation of the gametocytes and that the immature, but not the mature, gametocytes adhere to hBM-MSCs via trypsin-sensitive parasite ligands exposed on the erythrocyte surface. Analysis of a time course of gametocytogenesis in the co-culture system revealed that gametocyte maturation is accompanied by the parasite induced stimulation of hBM-MSCs to secrete a panel of 14 cytokines and growth factors, 13 of which have been described to play a role in angiogenesis. Functional in vitro assays on human bone marrow endothelial cells showed that supernatants from the gametocyte mesenchymal cell co-culture system enhance ability of endothelial cells to form vascular tubes. These results altogether suggest that the interplay between immature gametocytes and hBM-MSCs may induce functional and structural alterations in the endothelial lining of the human bone marrow hosting the P. falciparum transmission stages.

  1. Haemoglobin C and S role in acquired immunity against Plasmodium falciparum malaria.

    Directory of Open Access Journals (Sweden)

    Federica Verra

    2007-10-01

    Full Text Available A recently proposed mechanism of protection for haemoglobin C (HbC; beta6Glu-->Lys links an abnormal display of PfEMP1, an antigen involved in malaria pathogenesis, on the surface of HbC infected erythrocytes together with the observation of reduced cytoadhesion of parasitized erythrocytes and impaired rosetting in vitro. We investigated the impact of this hypothesis on the development of acquired immunity against Plasmodium falciparum variant surface antigens (VSA encoding PfEMP1 in HbC in comparison with HbA and HbS carriers of Burkina Faso. We measured: i total IgG against a single VSA, A4U, and against a panel of VSA from severe malaria cases in human sera from urban and rural areas of Burkina Faso of different haemoglobin genotypes (CC, AC, AS, SC, SS; ii total IgG against recombinant proteins of P. falciparum asexual sporozoite, blood stage antigens, and parasite schizont extract; iii total IgG against tetanus toxoid. Results showed that the reported abnormal cell-surface display of PfEMP1 on HbC infected erythrocytes observed in vitro is not associated to lower anti- PfEMP1 response in vivo. Higher immune response against the VSA panel and malaria antigens were observed in all adaptive genotypes containing at least one allelic variant HbC or HbS in the low transmission urban area whereas no differences were detected in the high transmission rural area. In both contexts the response against tetanus toxoid was not influenced by the beta-globin genotype. These findings suggest that both HbC and HbS affect the early development of naturally acquired immunity against malaria. The enhanced immune reactivity in both HbC and HbS carriers supports the hypothesis that the protection against malaria of these adaptive genotypes might be at least partially mediated by acquired immunity against malaria.

  2. Rodent Plasmodium-infected red blood cells: imaging their fates and interactions within their hosts.

    Science.gov (United States)

    Claser, Carla; Malleret, Benoit; Peng, Kaitian; Bakocevic, Nadja; Gun, Sin Yee; Russell, Bruce; Ng, Lai Guan; Rénia, Laurent

    2014-02-01

    Malaria, a disease caused by the Plasmodium parasite, remains one of the most deadly infectious diseases known to mankind. The parasite has a complex life cycle, of which only the erythrocytic stage is responsible for the diverse pathologies induced during infection. To date, the disease mechanisms that underlie these pathologies are still poorly understood. In the case of infections caused by Plasmodium falciparum, the species responsible for most malaria related deaths, pathogenesis is thought to be due to the sequestration of infected red blood cells (IRBCs) in deep tissues. Other human and rodent malaria parasite species are also known to exhibit sequestration. Here, we review the different techniques that allow researchers to study how rodent malaria parasites modify their host cells, the distribution of IRBCs in vivo as well as the interactions between IRBCs and host tissues. © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Plasmodium simium/Plasmodium vivax infections in southern brown howler monkeys from the Atlantic Forest

    Directory of Open Access Journals (Sweden)

    Daniela Camargos Costa

    2014-08-01

    Full Text Available Blood infection by the simian parasite, Plasmodium simium, was identified in captive (n = 45, 4.4% and in wild Alouatta clamitans monkeys (n = 20, 35% from the Atlantic Forest of southern Brazil. A single malaria infection was symptomatic and the monkey presented clinical and haematological alterations. A high frequency of Plasmodium vivax-specific antibodies was detected among these monkeys, with 87% of the monkeys testing positive against P. vivax antigens. These findings highlight the possibility of malaria as a zoonosis in the remaining Atlantic Forest and its impact on the epidemiology of the disease.

  4. Use of Malachite Green-Loop Mediated Isothermal Amplification for Detection of Plasmodium spp. Parasites

    Science.gov (United States)

    Lucchi, Naomi W.; Ljolje, Dragan; Silva-Flannery, Luciana; Udhayakumar, Venkatachalam

    2016-01-01

    Malaria elimination efforts are hampered by the lack of sensitive tools to detect infections with low-level parasitemia, usually below the threshold of standard diagnostic methods, microscopy and rapid diagnostic tests. Isothermal nucleic acid amplification assays such as the loop-mediated isothermal amplification (LAMP), are well suited for field use as they do not require thermal cyclers to run the test. However, the use of specialized equipment, as described by many groups, reduces the versatility of the LAMP technique as a simple tool for use in endemic countries. In this study, the use of the malachite green (MG) dye, as a visual endpoint readout, together with a simple mini heat block was evaluated for the detection of malaria parasites. The assay was performed for 1 hour at 63°C and the results scored by 3 independent human readers. The limit of detection of the assay was determined using well-quantified Plasmodium spp. infected reference samples and its utility in testing clinical samples was determined using 190 pre-treatment specimens submitted for reference diagnosis of imported malaria in the United States. Use of a simplified boil and spin methods of DNA extraction from whole blood and filter paper was also investigated. We demonstrate the accurate and sensitive detection of malaria parasites using this assay with a detection limit ranging between 1–8 parasites/μL, supporting its applicability for the detection of infections with low parasite burden. This assay is compatible with the use of a simple boil and spin sample preparation method from both whole blood and filter papers without a loss of sensitivity. The MG-LAMP assay described here has great potential to extend the reach of molecular tools to settings where they are needed. PMID:26967908

  5. Use of Malachite Green-Loop Mediated Isothermal Amplification for Detection of Plasmodium spp. Parasites.

    Directory of Open Access Journals (Sweden)

    Naomi W Lucchi

    Full Text Available Malaria elimination efforts are hampered by the lack of sensitive tools to detect infections with low-level parasitemia, usually below the threshold of standard diagnostic methods, microscopy and rapid diagnostic tests. Isothermal nucleic acid amplification assays such as the loop-mediated isothermal amplification (LAMP, are well suited for field use as they do not require thermal cyclers to run the test. However, the use of specialized equipment, as described by many groups, reduces the versatility of the LAMP technique as a simple tool for use in endemic countries. In this study, the use of the malachite green (MG dye, as a visual endpoint readout, together with a simple mini heat block was evaluated for the detection of malaria parasites. The assay was performed for 1 hour at 63°C and the results scored by 3 independent human readers. The limit of detection of the assay was determined using well-quantified Plasmodium spp. infected reference samples and its utility in testing clinical samples was determined using 190 pre-treatment specimens submitted for reference diagnosis of imported malaria in the United States. Use of a simplified boil and spin methods of DNA extraction from whole blood and filter paper was also investigated. We demonstrate the accurate and sensitive detection of malaria parasites using this assay with a detection limit ranging between 1-8 parasites/μL, supporting its applicability for the detection of infections with low parasite burden. This assay is compatible with the use of a simple boil and spin sample preparation method from both whole blood and filter papers without a loss of sensitivity. The MG-LAMP assay described here has great potential to extend the reach of molecular tools to settings where they are needed.

  6. A new world malaria map: Plasmodium falciparum endemicity in 2010.

    Science.gov (United States)

    Gething, Peter W; Patil, Anand P; Smith, David L; Guerra, Carlos A; Elyazar, Iqbal R F; Johnston, Geoffrey L; Tatem, Andrew J; Hay, Simon I

    2011-12-20

    Transmission intensity affects almost all aspects of malaria epidemiology and the impact of malaria on human populations. Maps of transmission intensity are necessary to identify populations at different levels of risk and to evaluate objectively options for disease control. To remain relevant operationally, such maps must be updated frequently. Following the first global effort to map Plasmodium falciparum malaria endemicity in 2007, this paper describes the generation of a new world map for the year 2010. This analysis is extended to provide the first global estimates of two other metrics of transmission intensity for P. falciparum that underpin contemporary questions in malaria control: the entomological inoculation rate (PfEIR) and the basic reproductive number (PfR). Annual parasite incidence data for 13,449 administrative units in 43 endemic countries were sourced to define the spatial limits of P. falciparum transmission in 2010 and 22,212 P. falciparum parasite rate (PfPR) surveys were used in a model-based geostatistical (MBG) prediction to create a continuous contemporary surface of malaria endemicity within these limits. A suite of transmission models were developed that link PfPR to PfEIR and PfR and these were fitted to field data. These models were combined with the PfPR map to create new global predictions of PfEIR and PfR. All output maps included measured uncertainty. An estimated 1.13 and 1.44 billion people worldwide were at risk of unstable and stable P. falciparum malaria, respectively. The majority of the endemic world was predicted with a median PfEIR of less than one and a median PfRc of less than two. Values of either metric exceeding 10 were almost exclusive to Africa. The uncertainty described in both PfEIR and PfR was substantial in regions of intense transmission. The year 2010 has a particular significance as an evaluation milestone for malaria global health policy. The maps presented here contribute to a rational basis for control and

  7. A new world malaria map: Plasmodium falciparum endemicity in 2010

    Directory of Open Access Journals (Sweden)

    Gething Peter W

    2011-12-01

    Full Text Available Abstract Background Transmission intensity affects almost all aspects of malaria epidemiology and the impact of malaria on human populations. Maps of transmission intensity are necessary to identify populations at different levels of risk and to evaluate objectively options for disease control. To remain relevant operationally, such maps must be updated frequently. Following the first global effort to map Plasmodium falciparum malaria endemicity in 2007, this paper describes the generation of a new world map for the year 2010. This analysis is extended to provide the first global estimates of two other metrics of transmission intensity for P. falciparum that underpin contemporary questions in malaria control: the entomological inoculation rate (PfEIR and the basic reproductive number (PfR. Methods Annual parasite incidence data for 13,449 administrative units in 43 endemic countries were sourced to define the spatial limits of P. falciparum transmission in 2010 and 22,212 P. falciparum parasite rate (PfPR surveys were used in a model-based geostatistical (MBG prediction to create a continuous contemporary surface of malaria endemicity within these limits. A suite of transmission models were developed that link PfPR to PfEIR and PfR and these were fitted to field data. These models were combined with the PfPR map to create new global predictions of PfEIR and PfR. All output maps included measured uncertainty. Results An estimated 1.13 and 1.44 billion people worldwide were at risk of unstable and stable P. falciparum malaria, respectively. The majority of the endemic world was predicted with a median PfEIR of less than one and a median PfRc of less than two. Values of either metric exceeding 10 were almost exclusive to Africa. The uncertainty described in both PfEIR and PfR was substantial in regions of intense transmission. Conclusions The year 2010 has a particular significance as an evaluation milestone for malaria global health policy. The

  8. Circulating Red Cell–derived Microparticles in Human Malaria

    Science.gov (United States)

    Nantakomol, Duangdao; Dondorp, Arjen M.; Krudsood, Srivicha; Udomsangpetch, Rachanee; Pattanapanyasat, Kovit; Combes, Valery; Grau, Georges E.; White, Nicholas J.; Viriyavejakul, Parnpen; Day, Nicholas P.J.

    2011-01-01

    In patients with falciparum malaria, plasma concentrations of cell-derived microparticles correlate with disease severity. Using flow cytometry, we quantified red blood cell–derived microparticles (RMPs) in patients with malaria and identified the source and the factors associated with production. RMP concentrations were increased in patients with Plasmodium falciparum (n = 29; median, 457 RMPs/μL [range, 13–4,342 RMPs/μL]), Plasmodium vivax (n = 5; median, 409 RMPs/μL [range, 281–503/μL]), and Plasmodium malariae (n = 2; median, 163 RMPs/μL [range, 127–200 RMPs/μL]) compared with those in healthy subjects (n = 11; median, 8 RMPs/μL [range, 3–166 RMPs/μL]; P = .01). RMP concentrations were highest in patients with severe falciparum malaria (P = .01). Parasitized red cells produced >10 times more RMPs than did unparasitized cells, but the overall majority of RMPs still derived from uninfected red blood cells (URBCs). In cultures, RMP production increased as the parasites matured. Hemin and parasite products induced RMP production in URBCs, which was inhibited by N-acetylcysteine, suggesting heme-mediated oxidative stress as a pathway for the generation of RMPs. PMID:21282195

  9. Circulating red cell-derived microparticles in human malaria.

    Science.gov (United States)

    Nantakomol, Duangdao; Dondorp, Arjen M; Krudsood, Srivicha; Udomsangpetch, Rachanee; Pattanapanyasat, Kovit; Combes, Valery; Grau, Georges E; White, Nicholas J; Viriyavejakul, Parnpen; Day, Nicholas P J; Chotivanich, Kesinee

    2011-03-01

    In patients with falciparum malaria, plasma concentrations of cell-derived microparticles correlate with disease severity. Using flow cytometry, we quantified red blood cell-derived microparticles (RMPs) in patients with malaria and identified the source and the factors associated with production. RMP concentrations were increased in patients with Plasmodium falciparum (n = 29; median, 457 RMPs/μL [range, 13-4,342 RMPs/μL]), Plasmodium vivax (n = 5; median, 409 RMPs/μL [range, 281-503/μL]), and Plasmodium malariae (n = 2; median, 163 RMPs/μL [range, 127-200 RMPs/μL]) compared with those in healthy subjects (n = 11; median, 8 RMPs/μL [range, 3-166 RMPs/μL]; P = .01). RMP concentrations were highest in patients with severe falciparum malaria (P = .01). Parasitized red cells produced >10 times more RMPs than did unparasitized cells, but the overall majority of RMPs still derived from uninfected red blood cells (URBCs). In cultures, RMP production increased as the parasites matured. Hemin and parasite products induced RMP production in URBCs, which was inhibited by N-acetylcysteine, suggesting heme-mediated oxidative stress as a pathway for the generation of RMPs.

  10. Lys48 ubiquitination during the intraerythrocytic cycle of the rodent malaria parasite, Plasmodium chabaudi.

    Science.gov (United States)

    González-López, Lorena; Carballar-Lejarazú, Rebeca; Arrevillaga Boni, Gerardo; Cortés-Martínez, Leticia; Cázares-Raga, Febe Elena; Trujillo-Ocampo, Abel; Rodríguez, Mario H; James, Anthony A; Hernández-Hernández, Fidel de la Cruz

    2017-01-01

    Ubiquitination tags proteins for different functions within the cell. One of the most abundant and studied ubiquitin modification is the Lys48 polyubiquitin chain that modifies proteins for their destruction by proteasome. In Plasmodium is proposed that post-translational regulation is fundamental for parasite development during its complex life-cycle; thus, the objective of this work was to analyze the ubiquitination during Plasmodium chabaudi intraerythrocytic stages. Ubiquitinated proteins were detected during intraerythrocytic stages of Plasmodium chabaudi by immunofluorescent microscopy, bidimensional electrophoresis (2-DE) combined with immunoblotting and mass spectrometry. All the studied stages presented protein ubiquitination and Lys48 polyubiquitination with more abundance during the schizont stage. Three ubiquitinated proteins were identified for rings, five for trophozoites and twenty for schizonts. Only proteins detected with a specific anti- Lys48 polyubiquitin antibody were selected for Mass Spectrometry analysis and two of these identified proteins were selected in order to detect the specific amino acid residues where ubiquitin is placed. Ubiquitinated proteins during the ring and trophozoite stages were related with the invasion process and in schizont proteins were related with nucleic acid metabolism, glycolysis and protein biosynthesis. Most of the ubiquitin detection was during the schizont stage and the Lys48 polyubiquitination during this stage was related to proteins that are expected to be abundant during the trophozoite stage. The evidence that these Lys48 polyubiquitinated proteins are tagged for destruction by the proteasome complex suggests that this type of post-translational modification is important in the regulation of protein abundance during the life-cycle and may also contribute to the parasite cell-cycle progression.

  11. Biodiversity can help prevent malaria outbreaks in tropical forests.

    Directory of Open Access Journals (Sweden)

    Gabriel Zorello Laporta

    Full Text Available BACKGROUND: Plasmodium vivax is a widely distributed, neglected parasite that can cause malaria and death in tropical areas. It is associated with an estimated 80-300 million cases of malaria worldwide. Brazilian tropical rain forests encompass host- and vector-rich communities, in which two hypothetical mechanisms could play a role in the dynamics of malaria transmission. The first mechanism is the dilution effect caused by presence of wild warm-blooded animals, which can act as dead-end hosts to Plasmodium parasites. The second is diffuse mosquito vector competition, in which vector and non-vector mosquito species compete for blood feeding upon a defensive host. Considering that the World Health Organization Malaria Eradication Research Agenda calls for novel strategies to eliminate malaria transmission locally, we used mathematical modeling to assess those two mechanisms in a pristine tropical rain forest, where the primary vector is present but malaria is absent. METHODOLOGY/PRINCIPAL FINDINGS: The Ross-Macdonald model and a biodiversity-oriented model were parameterized using newly collected data and data from the literature. The basic reproduction number ([Formula: see text] estimated employing Ross-Macdonald model indicated that malaria cases occur in the study location. However, no malaria cases have been reported since 1980. In contrast, the biodiversity-oriented model corroborated the absence of malaria transmission. In addition, the diffuse competition mechanism was negatively correlated with the risk of malaria transmission, which suggests a protective effect provided by the forest ecosystem. There is a non-linear, unimodal correlation between the mechanism of dead-end transmission of parasites and the risk of malaria transmission, suggesting a protective effect only under certain circumstances (e.g., a high abundance of wild warm-blooded animals. CONCLUSIONS/SIGNIFICANCE: To achieve biological conservation and to eliminate

  12. RIFINs are adhesins implicated in severe Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Goel, Suchi; Palmkvist, Mia; Moll, Kirsten

    2015-01-01

    Rosetting is a virulent Plasmodium falciparum phenomenon associated with severe malaria. Here we demonstrate that P. falciparum–encoded repetitive interspersed families of polypeptides (RIFINs) are expressed on the surface of infected red blood cells (iRBCs), where they bind to RBCs—preferentiall......Rosetting is a virulent Plasmodium falciparum phenomenon associated with severe malaria. Here we demonstrate that P. falciparum–encoded repetitive interspersed families of polypeptides (RIFINs) are expressed on the surface of infected red blood cells (iRBCs), where they bind to RBCs......—preferentially of blood group A—to form large rosettes and mediate microvascular binding of iRBCs. We suggest that RIFINs have a fundamental role in the development of severe malaria and thereby contribute to the varying global distribution of ABO blood groups in the human population....

  13. Rapid diagnostic tests for diagnosing uncomplicated non-falciparum or Plasmodium vivax malaria in endemic countries

    Science.gov (United States)

    Abba, Katharine; Kirkham, Amanda J; Olliaro, Piero L; Deeks, Jonathan J; Donegan, Sarah; Garner, Paul; Takwoingi, Yemisi

    2014-01-01

    specificities are presented alongside 95% confidence intervals (95% CI). Main results We included 47 studies enrolling 22,862 participants. Patient characteristics, sampling methods and reference standard methods were poorly reported in most studies. RDTs detecting 'non-falciparum' parasitaemia Eleven studies evaluated Type 2 tests compared with microscopy, 25 evaluated Type 3 tests, and 11 evaluated Type 4 tests. In meta-analyses, average sensitivities and specificities were 78% (95% CI 73% to 82%) and 99% (95% CI 97% to 99%) for Type 2 tests, 78% (95% CI 69% to 84%) and 99% (95% CI 98% to 99%) for Type 3 tests, and 89% (95% CI 79% to 95%) and 98% (95% CI 97% to 99%) for Type 4 tests, respectively. Type 4 tests were more sensitive than both Type 2 (P = 0.01) and Type 3 tests (P = 0.03). Five studies compared Type 3 tests with PCR; in meta-analysis, the average sensitivity and specificity were 81% (95% CI 72% to 88%) and 99% (95% CI 97% to 99%) respectively. RDTs detecting P.vivax parasitaemia Eight studies compared pLDH tests to microscopy; the average sensitivity and specificity were 95% (95% CI 86% to 99%) and 99% (95% CI 99% to 100%), respectively. Authors' conclusions RDTs designed to detect P. vivax specifically, whether alone or as part of a mixed infection, appear to be more accurate than older tests designed to distinguish P. falciparum malaria from non-falciparum malaria. Compared to microscopy, these tests fail to detect around 5% ofP. vivax cases. This Cochrane Review, in combination with other published information about in vitro test performance and stability in the field, can assist policy-makers to choose between the available RDTs. PLAIN LANGUAGE SUMMARY Rapid tests for diagnosing malaria caused by Plasmodium vivax or other less common parasites This review summarises trials evaluating the accuracy of rapid diagnostic tests (RDTs) for diagnosing malaria due to Plasmodium vivax or other non-falciparum species. After searching for relevant studies up to December

  14. Community Perception on the Cause of Malaria and Childhood ...

    African Journals Online (AJOL)

    Malaria is a life-threatening disease caused by protozoan parasites of the genus Plasmodium that are transmitted to people through the bites of infected mosquitoes. Plasmodium is by far the best known of all protozoan parasites, because of the life threatening nature of the disease it causes to both humans and other ...

  15. Maternally transmitted antibodies to pregnancy-associated variant antigens on the surface of erythrocytes infected with Plasmodium falciparum: relation to child susceptibility to malaria

    DEFF Research Database (Denmark)

    Cot, Michel; Le Hesran, Jean Yves; Staalsoe, Trine

    2003-01-01

    The consequences of pregnancy-associated malaria on a child's health have been poorly investigated. Malarial infection of the placenta seems to result in a higher susceptibility of children to the parasite during their first year of life. In 1993-1995, the authors investigated the role of antibod......The consequences of pregnancy-associated malaria on a child's health have been poorly investigated. Malarial infection of the placenta seems to result in a higher susceptibility of children to the parasite during their first year of life. In 1993-1995, the authors investigated the role......, Cameroon. These newborns were subsequently followed up for 2 years to determine the date of first occurrence of blood parasites and mean parasite density during follow-up. Maternally transmitted antibodies to VSA expressed by CSA-binding parasites, but not antibodies to any other specificity, were...... negatively related to time of first appearance of Plasmodium falciparum in a child's blood and were positively related to mean parasite density during the first 2 years of life. If maternal infection is thought to be the main mechanism influencing susceptibility of the newborn to malaria, antibodies to VSA...

  16. A geostatistical analysis of the association between armed conflicts and Plasmodium falciparum malaria in Africa, 1997-2010.

    Science.gov (United States)

    Sedda, Luigi; Qi, Qiuyin; Tatem, Andrew J

    2015-12-16

    The absence of conflict in a country has been cited as a crucial factor affecting the operational feasibility of achieving malaria control and elimination, yet mixed evidence exists on the influence that conflicts have had on malaria transmission. Over the past two decades, Africa has seen substantial numbers of armed conflicts of varying length and scale, creating conditions that can disrupt control efforts and impact malaria transmission. However, very few studies have quantitatively assessed the associations between conflicts and malaria transmission, particularly in a consistent way across multiple countries. In this analysis an explicit geostatistical, autoregressive, mixed model is employed to quantitatively assess the association between conflicts and variations in Plasmodium falciparum parasite prevalence across a 13-year period in sub-Saharan Africa. Analyses of geolocated, malaria prevalence survey variations against armed conflict data in general showed a wide, but short-lived impact of conflict events geographically. The number of countries with decreased P. falciparum parasite prevalence (17) is larger than the number of countries with increased transmission (12), and notably, some of the countries with the highest transmission pre-conflict were still found with lower transmission post-conflict. For four countries, there were no significant changes in parasite prevalence. Finally, distance from conflicts, duration of conflicts, violence of conflict, and number of conflicts were significant components in the model explaining the changes in P. falciparum parasite rate. The results suggest that the maintenance of intervention coverage and provision of healthcare in conflict situations to protect vulnerable populations can maintain gains in even the most difficult of circumstances, and that conflict does not represent a substantial barrier to elimination goals.

  17. Testing Local Adaptation in a Natural Great Tit-Malaria System: An Experimental Approach.

    Directory of Open Access Journals (Sweden)

    Tania Jenkins

    Full Text Available Finding out whether Plasmodium spp. are coevolving with their vertebrate hosts is of both theoretical and applied interest and can influence our understanding of the effects and dynamics of malaria infection. In this study, we tested for local adaptation as a signature of coevolution between malaria blood parasites, Plasmodium spp. and its host, the great tit, Parus major. We conducted a reciprocal transplant experiment of birds in the field, where we exposed birds from two populations to Plasmodium parasites. This experimental set-up also provided a unique opportunity to study the natural history of malaria infection in the wild and to assess the effects of primary malaria infection on juvenile birds. We present three main findings: i there was no support for local adaptation; ii there was a male-biased infection rate; iii infection occurred towards the end of the summer and differed between sites. There were also site-specific effects of malaria infection on the hosts. Taken together, we present one of the few experimental studies of parasite-host local adaptation in a natural malaria system, and our results shed light on the effects of avian malaria infection in the wild.

  18. Rapid and specific biotin labelling of the erythrocyte surface antigens of both cultured and ex-vivo Plasmodium parasites

    Directory of Open Access Journals (Sweden)

    Thompson Joanne

    2007-05-01

    Full Text Available Abstract Background Sensitive detection of parasite surface antigens expressed on erythrocyte membranes is necessary to further analyse the molecular pathology of malaria. This study describes a modified biotin labelling/osmotic lysis method which rapidly produces membrane extracts enriched for labelled surface antigens and also improves the efficiency of antigen recovery compared with traditional detergent extraction and surface radio-iodination. The method can also be used with ex-vivo parasites. Methods After surface labelling with biotin in the presence of the inhibitor furosemide, detergent extraction and osmotic lysis methods of enriching for the membrane fractions were compared to determine the efficiency of purification and recovery. Biotin-labelled proteins were identified on silver-stained SDS-polyacrylamide gels. Results Detergent extraction and osmotic lysis were compared for their capacity to purify biotin-labelled Plasmodium falciparum and Plasmodium chabaudi erythrocyte surface antigens. The pellet fraction formed after osmotic lysis of P. falciparum-infected erythrocytes is notably enriched in suface antigens, including PfEMP1, when compared to detergent extraction. There is also reduced co-extraction of host proteins such as spectrin and Band 3. Conclusion Biotinylation and osmotic lysis provides an improved method to label and purify parasitised erythrocyte surface antigen extracts from both in vitro and ex vivo Plasmodium parasite preparations.

  19. Melatonin effects on Plasmodium life cycle: new avenues for therapeutic approach.

    Science.gov (United States)

    Srinivasan, Venkataramanujam; Ahmad, Asma H; Mohamed, Mahaneem; Zakaria, Rahimah

    2012-05-01

    Malaria remains a global health problem affecting more than 515 million people all over the world including Malaysia. It is on the rise, even within unknown regions that previous to this were free of malaria. Although malaria eradication programs carried out by vector control programs are still effective, anti-malarial drugs are also used extensively for curtailing this disease. But resistance to the use of anti-malarial drugs is also increasing on a daily basis. With an increased understanding of mechanisms that cause growth, differentiation and development of malarial parasites in rodents and humans, new avenues of therapeutic approaches for controlling the growth, synchronization and development of malarial parasites are essential. Within this context, the recent discoveries related to IP3 interconnected signalling pathways, the release of Ca2+ from intracellular stores of Plasmodium, ubiquitin protease systems as a signalling pathway, and melatonin influencing the growth and differentiation of malarial parasites by its effects on these signalling pathways have opened new therapeutic avenues for arresting the growth and differentiation of malarial parasites. Indeed, the use of melatonin antagonist, luzindole, has inhibited the melatonin's effect on these signalling pathways and thereby has effectively reduced the growth and differentiation of malarial parasites. As Plasmodium has effective sensors which detect the nocturnal plasma melatonin concentrations, suppression of plasma melatonin levels with the use of bright light during the night or by anti-melatonergic drugs and by using anti-kinase drugs will help in eradicating malaria on a global level. A number of patients have been admitted with regards to the control and management of malarial growth. Patents related to the discovery of serpentine receptors on Plasmodium, essential for modulating intra parasitic melatonin levels, procedures for effective delivery of bright light to suppress plasma melatonin

  20. Avian Plasmodium in Eastern Austrian mosquitoes.

    Science.gov (United States)

    Schoener, Ellen; Uebleis, Sarah Susanne; Butter, Julia; Nawratil, Michaela; Cuk, Claudia; Flechl, Eva; Kothmayer, Michael; Obwaller, Adelheid G; Zechmeister, Thomas; Rubel, Franz; Lebl, Karin; Zittra, Carina; Fuehrer, Hans-Peter

    2017-09-29

    Insect vectors, namely mosquitoes (Diptera: Culicidae), are compulsory for malaria parasites (Plasmodium spp.) to complete their life cycle. Despite this, little is known about vector competence of different mosquito species for the transmission of avian malaria parasites. In this study, nested PCR was used to determine Plasmodium spp. occurrence in pools of whole individuals, as well as the diversity of mitochondrial cytochrome b gene sequences in wild-caught mosquitoes sampled across Eastern Austria in 2013-2015. A total of 45,749 mosquitoes in 2628 pools were collected, of which 169 pools (6.43%) comprising 9 mosquito species were positive for avian Plasmodium, with the majority of positives in mosquitoes of Culex pipiens s.l./Culex torrentium. Six different avian Plasmodium lineages were found, the most common were Plasmodium vaughani SYAT05, Plasmodium sp. Linn1 and Plasmodium relictum SGS1. In 2014, mosquitoes of the Culex pipiens complex were genetically identified and Culex pipiens f. pipiens presented with the highest number of avian Plasmodium positives (n = 37; 16.74%). Despite this, the minimum infection rate (MIR) was highest in Culex torrentium (5.36%) and Culex pipiens f. pipiens/f. molestus hybrids (5.26%). During 2014 and 2015, seasonal and annual changes in Plasmodium lineage distribution were also observed. In both years P. vaughani SYAT05 dominated at the beginning of the sampling period to be replaced later in the year by P. relictum SGS1 (2014) and Plasmodium sp. Linn1 (2015). This is the first large-scale study of avian Plasmodium parasites in Austrian mosquitoes. These results are of special interest, because molecular identification of the taxa of the Cx. pipiens complex and Cx. torrentium enabled the determination of Plasmodium prevalence in the different mosquito taxa and hybrids of this complex. Since pools of whole insects were used, it is not possible to assert any vector competence in any of the examined mosquitoes, but the results

  1. Characterisation and expression of a PP1 serine/threonine protein phosphatase (PfPP1 from the malaria parasite, Plasmodium falciparum: demonstration of its essential role using RNA interference

    Directory of Open Access Journals (Sweden)

    Musiyenko Alla

    2002-04-01

    Full Text Available Abstract Background Reversible protein phosphorylation is relatively unexplored in the intracellular protozoa of the Apicomplexa family that includes the genus Plasmodium, to which belong the causative agents of malaria. Members of the PP1 family represent the most highly conserved protein phosphatase sequences in phylogeny and play essential regulatory roles in various cellular pathways. Previous evidence suggested a PP1-like activity in Plasmodium falciparum, not yet identified at the molecular level. Results We have identified a PP1 catalytic subunit from P. falciparum and named it PfPP1. The predicted primary structure of the 304-amino acid long protein was highly similar to PP1 sequences of other species, and showed conservation of all the signature motifs. The purified recombinant protein exhibited potent phosphatase activity in vitro. Its sensitivity to specific phosphatase inhibitors was characteristic of the PP1 class. The authenticity of the PfPP1 cDNA was further confirmed by mutational analysis of strategic amino acid residues important in catalysis. The protein was expressed in all erythrocytic stages of the parasite. Abrogation of PP1 expression by synthetic short interfering RNA (siRNA led to inhibition of parasite DNA synthesis. Conclusions The high sequence similarity of PfPP1 with other PP1 members suggests conservation of function. Phenotypic gene knockdown studies using siRNA confirmed its essential role in the parasite. Detailed studies of PfPP1 and its regulation may unravel the role of reversible protein phosphorylation in the signalling pathways of the parasite, including glucose metabolism and parasitic cell division. The use of siRNA could be an important tool in the functional analysis of Apicomplexan genes.

  2. Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase.

    Science.gov (United States)

    Paquet, Tanya; Le Manach, Claire; Cabrera, Diego González; Younis, Yassir; Henrich, Philipp P; Abraham, Tara S; Lee, Marcus C S; Basak, Rajshekhar; Ghidelli-Disse, Sonja; Lafuente-Monasterio, María José; Bantscheff, Marcus; Ruecker, Andrea; Blagborough, Andrew M; Zakutansky, Sara E; Zeeman, Anne-Marie; White, Karen L; Shackleford, David M; Mannila, Janne; Morizzi, Julia; Scheurer, Christian; Angulo-Barturen, Iñigo; Martínez, María Santos; Ferrer, Santiago; Sanz, Laura María; Gamo, Francisco Javier; Reader, Janette; Botha, Mariette; Dechering, Koen J; Sauerwein, Robert W; Tungtaeng, Anchalee; Vanachayangkul, Pattaraporn; Lim, Chek Shik; Burrows, Jeremy; Witty, Michael J; Marsh, Kennan C; Bodenreider, Christophe; Rochford, Rosemary; Solapure, Suresh M; Jiménez-Díaz, María Belén; Wittlin, Sergio; Charman, Susan A; Donini, Cristina; Campo, Brice; Birkholtz, Lyn-Marie; Hanson, Kirsten K; Drewes, Gerard; Kocken, Clemens H M; Delves, Michael J; Leroy, Didier; Fidock, David A; Waterson, David; Street, Leslie J; Chibale, Kelly

    2017-04-26

    As part of the global effort toward malaria eradication, phenotypic whole-cell screening revealed the 2-aminopyridine class of small molecules as a good starting point to develop new antimalarial drugs. Stemming from this series, we found that the derivative, MMV390048, lacked cross-resistance with current drugs used to treat malaria. This compound was efficacious against all Plasmodium life cycle stages, apart from late hypnozoites in the liver. Efficacy was shown in the humanized Plasmodium falciparum mouse model, and modest reductions in mouse-to-mouse transmission were achieved in the Plasmodium berghei mouse model. Experiments in monkeys revealed the ability of MMV390048 to be used for full chemoprotection. Although MMV390048 was not able to eliminate liver hypnozoites, it delayed relapse in a Plasmodium cynomolgi monkey model. Both genomic and chemoproteomic studies identified a kinase of the Plasmodium parasite, phosphatidylinositol 4-kinase, as the molecular target of MMV390048. The ability of MMV390048 to block all life cycle stages of the malaria parasite suggests that this compound should be further developed and may contribute to malaria control and eradication as part of a single-dose combination treatment. Copyright © 2017, American Association for the Advancement of Science.

  3. Improving the malaria transmission-blocking activity of a Plasmodium falciparum 48/45 based vaccine antigen by SpyTag/SpyCatcher mediated virus-like display

    DEFF Research Database (Denmark)

    Singh, Susheel K; Thrane, Susan; Janitzek, Christoph M

    2017-01-01

    Malaria is a devastating disease caused by Plasmodium parasites, resulting in almost 0.5 million deaths per year. The Pfs48/45 protein exposed on the P. falciparum sexual stages is one of the most advanced antigen candidates for a transmission-blocking (TB) vaccine in the clinical pipeline. However...

  4. Malaria parasite-synthesized heme is essential in the mosquito and liver stages and complements host heme in the blood stages of infection.

    Directory of Open Access Journals (Sweden)

    Viswanathan Arun Nagaraj

    Full Text Available Heme metabolism is central to malaria parasite biology. The parasite acquires heme from host hemoglobin in the intraerythrocytic stages and stores it as hemozoin to prevent free heme toxicity. The parasite can also synthesize heme de novo, and all the enzymes in the pathway are characterized. To study the role of the dual heme sources in malaria parasite growth and development, we knocked out the first enzyme, δ-aminolevulinate synthase (ALAS, and the last enzyme, ferrochelatase (FC, in the heme-biosynthetic pathway of Plasmodium berghei (Pb. The wild-type and knockout (KO parasites had similar intraerythrocytic growth patterns in mice. We carried out in vitro radiolabeling of heme in Pb-infected mouse reticulocytes and Plasmodium falciparum-infected human RBCs using [4-(14C] aminolevulinic acid (ALA. We found that the parasites incorporated both host hemoglobin-heme and parasite-synthesized heme into hemozoin and mitochondrial cytochromes. The similar fates of the two heme sources suggest that they may serve as backup mechanisms to provide heme in the intraerythrocytic stages. Nevertheless, the de novo pathway is absolutely essential for parasite development in the mosquito and liver stages. PbKO parasites formed drastically reduced oocysts and did not form sporozoites in the salivary glands. Oocyst production in PbALASKO parasites recovered when mosquitoes received an ALA supplement. PbALASKO sporozoites could infect mice only when the mice received an ALA supplement. Our results indicate the potential for new therapeutic interventions targeting the heme-biosynthetic pathway in the parasite during the mosquito and liver stages.

  5. Description of the first cryptic avian malaria parasite, Plasmodium homocircumflexum n. sp., with experimental data on its virulence and development in avian hosts and mosquitoes.

    Science.gov (United States)

    Palinauskas, Vaidas; Žiegytė, Rita; Ilgūnas, Mikas; Iezhova, Tatjana A; Bernotienė, Rasa; Bolshakov, Casimir; Valkiūnas, Gediminas

    2015-01-01

    For over 100 years studies on avian haemosporidian parasite species have relied on similarities in their morphology to establish a species concept. Some exceptional cases have also included information about the life cycle and sporogonic development. More than 50 avian Plasmodium spp. have now been described. However, PCR-based studies show a much broader diversity of haemosporidian parasites, indicating the possible existence of a diverse group of cryptic species. In the present study, using both similarity and phylogenetic species definition concepts, we believe that we report the first characterised cryptic speciation case of an avian Plasmodium parasite. We used sequence information on the mitochondrial cytochrome b gene and constructed phylogenies of identified Plasmodium spp. to define their position in the phylogenetic tree. After analysis of blood stages, the morphology of the parasite was shown to be identical to Plasmodium circumflexum. However, the geographic distribution of the new parasite, the phylogenetic information, as well as patterns of development of infection, indicate that this parasite differs from P. circumflexum. Plasmodium homocircumflexum n. sp. was described based on information about genetic differences from described lineages, phylogenetic position and biological characters. This parasite develops parasitemia in experimentally infected birds - the domestic canary Serinus canaria domestica, siskin Carduelis spinus and crossbill Loxia curvirostra. Anaemia caused by high parasitemia, as well as cerebral paralysis caused by exoerythrocytic stages in the brain, are the main reasons for mortality. Exoerythrocytic stages also form in other organs (heart, kidneys, liver, lungs, spleen, intestines and pectoral muscles). DNA amplification was unsuccessful from faecal samples of heavily infected birds. The sporogonic development initiates, but is abortive, at the oocyst stage in two common European mosquito species, Culex pipiens pipiens (forms

  6. Unstable malaria in Sudan: the influence of the dry season. Malaria in areas of unstable and seasonal transmission. Lessons from Daraweesh

    DEFF Research Database (Denmark)

    Theander, T G

    1999-01-01

    Most studies of the natural history of Plasmodium falciparum infection have been performed in areas of stable malaria transmission and the acquisition of immunity to malaria in individuals who live in such areas is well documented. For the past 10 years, we have monitored host-parasite relationsh......Most studies of the natural history of Plasmodium falciparum infection have been performed in areas of stable malaria transmission and the acquisition of immunity to malaria in individuals who live in such areas is well documented. For the past 10 years, we have monitored host...

  7. Cross-reactive anti-PfCLAG9 antibodies in the sera of asymptomatic parasite carriers of Plasmodium vivax

    Science.gov (United States)

    Costa, Joana D'Arc Neves; Zanchi, Fernando Berton; Rodrigues, Francisco Lurdevanhe da Silva; Honda, Eduardo Rezende; Katsuragawa, Tony Hiroschi; Pereira, Dhélio Batista; Taborda, Roger Lafontaine Mesquita; Tada, Mauro Shugiro; Ferreira, Ricardo de Godoi Mattos; Pereira-da-Silva, Luiz Hildebrando

    2013-01-01

    The PfCLAG9 has been extensively studied because their immunogenicity. Thereby, the gene product is important for therapeutics interventions and a potential vaccine candidate. Antibodies against synthetic peptides corresponding to selected sequences of the Plasmodium falciparum antigen PfCLAG9 were found in sera of falciparum malaria patients from Rondônia, in the Brazilian Amazon. Much higher antibody titres were found in semi-immune and immune asymptomatic parasite carriers than in subjects suffering clinical infections, corroborating original findings in Papua Guinea. However, sera of Plasmodium vivax patients from the same Amazon area, in particular from asymptomatic vivax parasite carriers, reacted strongly with the same peptides. Bioinformatic analyses revealed regions of similarity between P. falciparum Pfclag9 and the P. vivax ortholog Pvclag7. Indirect fluorescent microscopy analysis showed that antibodies against PfCLAG9 peptides elicited in BALB/c mice react with human red blood cells (RBCs) infected with both P. falciparum and P. vivax parasites. The patterns of reactivity on the surface of the parasitised RBCs are very similar. The present observations support previous findings that PfCLAG9 may be a target of protective immune responses and raises the possibility that the cross reactive antibodies to PvCLAG7 in mixed infections play a role in regulate the fate of Plasmodium mixed infections. PMID:23440122

  8. A systematic review of transfusion-transmitted malaria in non-endemic areas.

    Science.gov (United States)

    Verra, Federica; Angheben, Andrea; Martello, Elisa; Giorli, Giovanni; Perandin, Francesca; Bisoffi, Zeno

    2018-01-16

    Transfusion-transmitted malaria (TTM) is an accidental Plasmodium infection caused by whole blood or a blood component transfusion from a malaria infected donor to a recipient. Infected blood transfusions directly release malaria parasites in the recipient's bloodstream triggering the development of high risk complications, and potentially leading to a fatal outcome especially in individuals with no previous exposure to malaria or in immuno-compromised patients. A systematic review was conducted on TTM case reports in non-endemic areas to describe the epidemiological characteristics of blood donors and recipients. Relevant articles were retrieved from Pubmed, EMBASE, Scopus, and LILACS. From each selected study the following data were extracted: study area, gender and age of blood donor and recipient, blood component associated with TTM, Plasmodium species, malaria diagnostic method employed, blood donor screening method, incubation period between the infected transfusion and the onset of clinical symptoms in the recipient, time elapsed between the clinical symptoms and the diagnosis of malaria, infection outcome, country of origin of the blood donor and time of the last potential malaria exposure. Plasmodium species were detected in 100 TTM case reports with a different frequency: 45% Plasmodium falciparum, 30% Plasmodium malariae, 16% Plasmodium vivax, 4% Plasmodium ovale, 2% Plasmodium knowlesi, 1% mixed infection P. falciparum/P. malariae. The majority of fatal outcomes (11/45) was caused by P. falciparum whilst the other fatalities occurred in individuals infected by P. malariae (2/30) and P. ovale (1/4). However, non P. falciparum fatalities were not attributed directly to malaria. The incubation time for all Plasmodium species TTM case reports was longer than what expected in natural infections. This difference was statistically significant for P. malariae (p = 0.006). A longer incubation time in the recipient together with a chronic infection at low

  9. Systematic analysis of FKBP inducible degradation domain tagging strategies for the human malaria parasite Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Mauro Ferreira de Azevedo

    Full Text Available Targeted regulation of protein levels is an important tool to gain insights into the role of proteins essential to cell function and development. In recent years, a method based on mutated forms of the human FKBP12 has been established and used to great effect in various cell types to explore protein function. The mutated FKBP protein, referred to as destabilization domain (DD tag when fused with a native protein at the N- or C-terminus targets the protein for proteosomal degradation. Regulated expression is achieved via addition of a compound, Shld-1, that stabilizes the protein and prevents degradation. A limited number of studies have used this system to provide powerful insight into protein function in the human malaria parasite Plasmodium falciparum. In order to better understand the DD inducible system in P. falciparum, we studied the effect of Shld-1 on parasite growth, demonstrating that although development is not impaired, it is delayed, requiring the appropriate controls for phenotype interpretation. We explored the quantified regulation of reporter Green Fluorescent Protein (GFP and luciferase constructs fused to three DD variants in parasite cells either via transient or stable transfection. The regulation obtained with the original FKBP derived DD domain was compared to two triple mutants DD24 and DD29, which had been described to provide better regulation for C-terminal tagging in other cell types. When cloned to the C-terminal of reporter proteins, DD24 provided the strongest regulation allowing reporter activity to be reduced to lower levels than DD and to restore the activity of stabilised proteins to higher levels than DD29. Importantly, DD24 has not previously been applied to regulate proteins in P. falciparum. The possibility of regulating an exported protein was addressed by targeting the Ring-Infected Erythrocyte Surface Antigen (RESA at its C-terminus. The tagged protein demonstrated an important modulation of its

  10. Plasmodium vivax hospitalizations in a monoendemic malaria region: severe vivax malaria?

    Science.gov (United States)

    Quispe, Antonio M; Pozo, Edwar; Guerrero, Edith; Durand, Salomón; Baldeviano, G Christian; Edgel, Kimberly A; Graf, Paul C F; Lescano, Andres G

    2014-07-01

    Severe malaria caused by Plasmodium vivax is no longer considered rare. To describe its clinical features, we performed a retrospective case control study in the subregion of Luciano Castillo Colonna, Piura, Peru, an area with nearly exclusive vivax malaria transmission. Severe cases and the subset of critically ill cases were compared with a random set of uncomplicated malaria cases (1:4). Between 2008 and 2009, 6,502 malaria cases were reported, including 106 hospitalized cases, 81 of which fit the World Health Organization definition for severe malaria. Of these 81 individuals, 28 individuals were critically ill (0.4%, 95% confidence interval = 0.2-0.6%) with severe anemia (57%), shock (25%), lung injury (21%), acute renal failure (14%), or cerebral malaria (11%). Two potentially malaria-related deaths occurred. Compared with uncomplicated cases, individuals critically ill were older (38 versus 26 years old, P < 0.001), but similar in other regards. Severe vivax malaria monoinfection with critical illness is more common than previously thought. © The American Society of Tropical Medicine and Hygiene.

  11. Protein O-fucosylation in Plasmodium falciparum ensures efficient infection of mosquito and vertebrate hosts.

    Science.gov (United States)

    Lopaticki, Sash; Yang, Annie S P; John, Alan; Scott, Nichollas E; Lingford, James P; O'Neill, Matthew T; Erickson, Sara M; McKenzie, Nicole C; Jennison, Charlie; Whitehead, Lachlan W; Douglas, Donna N; Kneteman, Norman M; Goddard-Borger, Ethan D; Boddey, Justin A

    2017-09-15

    O-glycosylation of the Plasmodium sporozoite surface proteins CSP and TRAP was recently identified, but the role of this modification in the parasite life cycle and its relevance to vaccine design remain unclear. Here, we identify the Plasmodium protein O-fucosyltransferase (POFUT2) responsible for O-glycosylating CSP and TRAP. Genetic disruption of POFUT2 in Plasmodium falciparum results in ookinetes that are attenuated for colonizing the mosquito midgut, an essential step in malaria transmission. Some POFUT2-deficient parasites mature into salivary gland sporozoites although they are impaired for gliding motility, cell traversal, hepatocyte invasion, and production of exoerythrocytic forms in humanized chimeric liver mice. These defects can be attributed to destabilization and incorrect trafficking of proteins bearing thrombospondin repeats (TSRs). Therefore, POFUT2 plays a similar role in malaria parasites to that in metazoans: it ensures the trafficking of Plasmodium TSR proteins as part of a non-canonical glycosylation-dependent endoplasmic reticulum protein quality control mechanism.The role of O-glycosylation in the malaria life cycle is largely unknown. Here, the authors identify a Plasmodium protein O-fucosyltransferase and show that it is important for normal trafficking of a subset of surface proteins, particularly CSP and TRAP, and efficient infection of mosquito and vertebrate hosts.

  12. Long-term pathogenic response to Plasmodium relictum infection in Culex pipiens mosquito.

    Science.gov (United States)

    Pigeault, Romain; Villa, Manon

    2018-01-01

    The transmission of Plasmodium within a vertebrate host population is strongly associated with the life history traits of its vector. Therefore the effect of malaria infection on mosquito fecundity and longevity has traditionally received a lot of attention. Several species of malaria parasites reduce mosquito fecundity, nevertheless almost all of the studies have focused only on the first gonotrophic cycle. Yet, during their lifetime, female mosquitoes go through several gonotrophic cycles, which raises the question of whether they are able to compensate the fecundity costs induced by the parasite. The impact of Plasmodium infection on female longevity is not so clear and has produced conflicting results. Here we measured the impact of Plasmodium relictum on its vector's longevity and fecundity during three consecutive gonotrophic cycles. In accordance with previous studies, we observed a negative impact of Plasmodium infection on mosquito (Culex pipiens) fecundity in the first gonotrophic cycle. Interestingly, despite having taken two subsequent uninfected blood meals, the negative impact of malaria parasite persisted. Nevertheless no impact of infection on mosquito longevity was observed. Our results are not in line with the hypothesis that the reduction of fecundity observed in infected mosquitoes is an adaptive strategy of Plasmodium to increase the longevity of its vector. We discuss the different underlying mechanisms that may explain our results.

  13. The persistence and oscillations of submicroscopic Plasmodium falciparum and Plasmodium vivax infections over time in Vietnam: an open cohort study.

    Science.gov (United States)

    Nguyen, Thuy-Nhien; von Seidlein, Lorenz; Nguyen, Tuong-Vy; Truong, Phuc-Nhi; Hung, Son Do; Pham, Huong-Thu; Nguyen, Tam-Uyen; Le, Thanh Dong; Dao, Van Hue; Mukaka, Mavuto; Day, Nicholas Pj; White, Nicholas J; Dondorp, Arjen M; Thwaites, Guy E; Hien, Tran Tinh

    2018-05-01

    A substantial proportion of Plasmodium species infections are asymptomatic with densities too low to be detectable with standard diagnostic techniques. The importance of such asymptomatic plasmodium infections in malaria transmission is probably related to their duration and density. To explore the duration of asymptomatic plasmodium infections and changes in parasite densities over time, a cohort of participants who were infected with Plasmodium parasites was observed over a 2-year follow-up period. In this open cohort study, inhabitants of four villages in Vietnam were invited to participate in baseline and subsequent 3-monthly surveys up to 24 months, which included the collection of venous blood samples. Samples were batch-screened using ultra-sensitive (u)PCR (lower limit of detection of 22 parasites per mL). Participants found to be infected by uPCR during any of these surveys were invited to join a prospective cohort and provide monthly blood samples. We estimated the persistence of Plasmodium falciparum and Plasmodium vivax infections and changes in parasite densities over a study period of 24 months. Between Dec 1, 2013, and Jan 8, 2016, 356 villagers participated in between one and 22 surveys. These study participants underwent 4248 uPCR evaluations (11·9 tests per participant). 1874 (32%) of 4248 uPCR tests indicated a plasmodium infection; 679 (36%) of 1874 tests were P falciparum monoinfections, 507 (27%) were P vivax monoinfections, 463 (25%) were co-infections with P falciparum and P vivax, and 225 (12%) were indeterminate species of Plasmodium. The median duration of P falciparum infection was 2 months (IQR 1-3); after accounting for censoring, participants had a 20% chance of having parasitaemia for 4 months or longer. The median duration of P vivax infection was 6 months (3-9), and participants had a 59% chance of having parasitaemia for 4 months or longer. The parasite densities of persistent infections oscillated; following ultralow

  14. Outbreak of avian malaria associated to multiple species of Plasmodium in magellanic penguins undergoing rehabilitation in southern Brazil.

    Directory of Open Access Journals (Sweden)

    Ralph Eric Thijl Vanstreels

    Full Text Available Avian malaria is a mosquito-borne disease caused by Plasmodium spp. Avian plasmodia are recognized conservation-threatening pathogens due to their potential to cause severe epizootics when introduced to bird populations with which they did not co-evolve. Penguins are considered particularly susceptible, as outbreaks in captive populations will often lead to high morbidity and rapid mortality. We used a multidisciplinary approach to investigate an outbreak of avian malaria in 28 Magellanic penguins (Spheniscus magellanicus at a rehabilitation center during summer 2009 in Florianópolis, Brazil. Hemosporidian infections were identified by microscopic and molecular characterization in 64% (18/28 of the penguins, including Plasmodium (Haemamoeba tejerai, Plasmodium (Huffia elongatum, a Plasmodium (Haemamoeba sp. lineage closely related to Plasmodium cathemerium, and a Haemoproteus (Parahaemoproteus sp. lineage closely related to Haemoproteus syrnii. P. tejerai played a predominant role in the studied outbreak and was identified in 72% (13/18 of the hemosporidian-infected penguins, and in 89% (8/9 of the penguins that died, suggesting that this is a highly pathogenic parasite for penguins; a detailed description of tissue meronts and lesions is provided. Mixed infections were identified in three penguins, and involved P. elongatum and either P. tejerai or P. (Haemamoeba sp. that were compatible with P. tejerai but could not be confirmed. In total, 32% (9/28 penguins died over the course of 16 days despite oral treatment with chloroquine followed by sulfadiazine-trimethoprim. Hemosporidian infections were considered likely to have occurred during rehabilitation, probably from mosquitoes infected while feeding on local native birds, whereas penguin-mosquito-penguin transmission may have played a role in later stages of the outbreak. Considering the seasonality of the infection, rehabilitation centers would benefit from narrowing their efforts to

  15. Reactive Case Detection for Plasmodium vivax Malaria Elimination in Rural Amazonia.

    Directory of Open Access Journals (Sweden)

    Pablo S Fontoura

    2016-12-01

    Full Text Available Malaria burden in Brazil has reached its lowest levels in 35 years and Plasmodium vivax now accounts for 84% of cases countrywide. Targeting residual malaria transmission entrenched in the Amazon is the next major challenge for ongoing elimination efforts. Better strategies are urgently needed to address the vast reservoir of asymptomatic P. vivax carriers in this and other areas approaching malaria elimination.We evaluated a reactive case detection (RCD strategy tailored for P. vivax transmission in farming settlements in the Amazon Basin of Brazil. Over six months, 41 cases detected by passive surveillance triggered four rounds of RCD (0, 30, 60, and 180 days after index case enrollment, using microscopy- and quantitative real-time polymerase chain reaction (qPCR-based diagnosis, comprising subjects sharing the household (HH with the index case (n = 163, those living in the 5 nearest HHs within 3 km (n = 878, and individuals from 5 randomly chosen control HHs located > 5 km away from index cases (n = 841. Correlates of infection were identified with mixed-effects logistic regression models. Molecular genotyping was used to infer local parasite transmission networks.Subjects in index and neighbor HHs were significantly more likely to be parasitemic than control HH members, after adjusting for potential confounders, and together harbored > 90% of the P. vivax biomass in study subjects. Clustering patterns were temporally stable. Four rounds of microscopy-based RCD would identify only 49.5% of the infections diagnosed by qPCR, but 76.8% of the total parasite biomass circulating in the proximity of index HHs. However, control HHs accounted for 27.6% of qPCR-positive samples, 92.6% of them from asymptomatic carriers beyond the reach of RCD. Molecular genotyping revealed high P. vivax diversity, consistent with complex transmission networks and multiple sources of infection within clusters, potentially complicating malaria elimination efforts.

  16. A malaria vaccine that elicits in humans antibodies able to kill Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Pierre Druilhe

    2005-11-01

    Full Text Available Plasmodium falciparum merozoite surface protein 3 is a malaria vaccine candidate that was identified, characterised, and developed based on a unique immuno-clinical approach. The vaccine construct was derived from regions fully conserved among various strains and containing B cell epitopes targeted by human antibodies (from malaria-immune adults that are able to mediate a monocyte-dependent parasite killing effect. The corresponding long synthetic peptide was administered to 36 volunteers, with either alum or Montanide ISA720 as adjuvant.Both formulations induced cellular and humoral immune responses. With alum, the responses lasted up to 12 mo. The vaccine-induced antibodies were predominantly of cytophilic classes, i.e., able to cooperate with effector cells. In vitro, the antibodies induced an inhibition of the P. falciparum erythrocytic growth in a monocyte-dependent manner, which was in most instances as high as or greater than that induced by natural antibodies from immune African adults. In vivo transfer of the volunteers' sera into P. falciparum-infected humanized SCID mice profoundly reduced or abrogated parasitaemia. These inhibitory effects were related to the antibody reactivity with the parasite native protein, which was seen in 60% of the volunteers, and remained in samples taken 12 mo postimmunisation.This is the first malaria vaccine clinical trial to clearly demonstrate antiparasitic activity by vaccine-induced antibodies by both in vitro and in vivo methods. The results, showing the induction of long-lasting antibodies directed to a fully conserved polypeptide, also challenge current concepts about malaria vaccines, such as unavoidable polymorphism, low antigenicity, and poor induction of immune memory.

  17. The distinct proteome of placental malaria parasites.

    Energy Technology Data Exchange (ETDEWEB)

    Fried, Michal; Hixson, Kim K.; Anderson, Lori; Ogata, Yuko; Mutabingwa, Theonest K.; Duffy, Patrick E.

    2007-09-01

    Malaria proteins expressed on the surface of Plasmodium falciparum infected erythrocytes (IE) mediate adhesion and are targeted by protective immune responses. During pregnancy, IE sequester in the placenta. Placental IE bind to the molecule chondroitin sulfate A (CSA) and preferentially transcribe the gene that encodes VAR2CSA, a member of the PfEMP1 variant surface antigen family. Over successive pregnancies women develop specific immunity to CSA-binding IE and antibodies to VAR2CSA. We used tandem mass spectrometry together with accurate mass and time tag technology to study IE membrane fractions of placental parasites. VAR2CSA peptides were detected in placental IE and in IE from children, but the MC variant of VAR2CSA was specifically associated with placental IE. We identified six conserved hypothetical proteins with putative TM or signal peptides that were exclusively expressed by the placental IE, and 11 such proteins that were significantly more abundant in placental IE. One of these hypothetical proteins, PFI1785w, is a 42kDa molecule detected by Western blot in parasites infecting pregnant women but not those infecting children.

  18. Relationship between the entomologic inoculation rate and the force of infection for Plasmodium falciparum malaria.

    Science.gov (United States)

    Smith, Thomas; Maire, Nicolas; Dietz, Klaus; Killeen, Gerry F; Vounatsou, Penelope; Molineaux, Louis; Tanner, Marcel

    2006-08-01

    We propose a stochastic model for the relationship between the entomologic inoculation rate (EIR) for Plasmodium falciparum malaria and the force of infection in endemic areas. The model incorporates effects of increased exposure to mosquito bites as a result of the growth in body surface area with the age of the host, naturally acquired pre-erythrocytic immunity, and the reduction in the proportion of entomologically assessed inoculations leading to infection, as the EIR increases. It is fitted to multiple datasets from field studies of the relationship between malaria infection and the EIR. We propose that this model can account for non-monotonic relationships between the age of the host and the parasite prevalence and incidence of disease. It provides a parsimonious explanation for the faster acquisition of natural immunity in adults than in children exposed to high EIRs. This forms one component of a new stochastic model for the entire transmission cycle of P. falciparum that we have derived to estimate the potential epidemiologic impact of malaria vaccines and other malaria control interventions.

  19. Re-assessing the relationship between sporozoite dose and incubation period in Plasmodium vivax malaria: a systematic re-analysis.

    Science.gov (United States)

    Lover, Andrew A; Coker, Richard J

    2014-05-01

    Infections with the malaria parasite Plasmodium vivax are noteworthy for potentially very long incubation periods (6-9 months), which present a major barrier to disease elimination. Increased sporozoite challenge has been reported to be associated with both shorter incubation and pre-patent periods in a range of human challenge studies. However, this evidence base has scant empirical foundation, as these historical analyses were limited by available analytic methods, and provides no quantitative estimates of effect size. Following a comprehensive literature search, we re-analysed all identified studies using survival and/or logistic models plus contingency tables. We have found very weak evidence for dose-dependence at entomologically plausible inocula levels. These results strongly suggest that sporozoite dosage is not an important driver of long-latency. Evidence presented suggests that parasite strain and vector species have quantitatively greater impacts, and the potential existence of a dose threshold for human dose-response to sporozoites. Greater consideration of the complex interplay between these aspects of vectors and parasites are important for human challenge experiments, vaccine trials, and epidemiology towards global malaria elimination.

  20. Selection of drug resistant mutants from random library of Plasmodium falciparum dihydrofolate reductase in Plasmodium berghei model

    OpenAIRE

    Tipsuwan, Wachiraporn; Srichairatanakool, Somdet; Kamchonwongpaisan, Sumalee; Yuthavong, Yongyuth; Uthaipibull, Chairat

    2011-01-01

    Abstract Background The prevalence of drug resistance amongst the human malaria Plasmodium species has most commonly been associated with genomic mutation within the parasites. This phenomenon necessitates evolutionary predictive studies of possible resistance mutations, which may occur when a new drug is introduced. Therefore, identification of possible new Plasmodium falciparum dihydrofolate reductase (PfDHFR) mutants that confer resistance to antifolate drugs is essential in the process of...

  1. Therapeutic principles of primaquine against relapse of Plasmodium vivax malaria

    Science.gov (United States)

    Baird, J. K.

    2018-03-01

    Plasmodium vivax causes tens of millions of clinical attacks annually all across the malarious globe. Unlike the other major cause of human malaria, Plasmodium falciparum, P. vivax places dormant stages called hypnozoites into the human liver that later awaken and provoke multiple clinical attacks in the weeks, months, and few years following the infectious anopheline mosquito bite. The only available treatment to prevent those recurrent attacks is primaquine (hypnozoitocide), and it must be administered with the drugs applied to end the acute attack (blood schizontocides). This paper reviews the therapeutic principles of applying primaquine to achieve radical cure of acute vivax malaria.

  2. Targeting the breeding sites of malaria mosquitoes: biological and physical control of malaria mosquito larvae

    NARCIS (Netherlands)

    Bukhari, S.T.

    2011-01-01


    Malaria causes an estimated 225 million cases and 781,000 deaths every year. About 85% of the deaths are in children under five years of age. Malaria is caused by the Plasmodium parasite which is transmitted by the Anopheles mosquito vector. Mainly two methods of intervention are used for

  3. Transgenic Parasites Stably Expressing Full-Length Plasmodium falciparum Circumsporozoite Protein as a Model for Vaccine Down-Selection in Mice Using Sterile Protection as an Endpoint

    Science.gov (United States)

    Porter, Michael D.; Nicki, Jennifer; Pool, Christopher D.; DeBot, Margot; Illam, Ratish M.; Brando, Clara; Bozick, Brooke; De La Vega, Patricia; Angra, Divya; Spaccapelo, Roberta; Crisanti, Andrea; Murphy, Jittawadee R.; Bennett, Jason W.; Schwenk, Robert J.; Ockenhouse, Christian F.

    2013-01-01

    Circumsporozoite protein (CSP) of Plasmodium falciparum is a protective human malaria vaccine candidate. There is an urgent need for models that can rapidly down-select novel CSP-based vaccine candidates. In the present study, the mouse-mosquito transmission cycle of a transgenic Plasmodium berghei malaria parasite stably expressing a functional full-length P. falciparum CSP was optimized to consistently produce infective sporozoites for protection studies. A minimal sporozoite challenge dose was established, and protection was defined as the absence of blood-stage parasites 14 days after intravenous challenge. The specificity of protection was confirmed by vaccinating mice with multiple CSP constructs of differing lengths and compositions. Constructs that induced high NANP repeat-specific antibody titers in enzyme-linked immunosorbent assays were protective, and the degree of protection was dependent on the antigen dose. There was a positive correlation between antibody avidity and protection. The antibodies in the protected mice recognized the native CSP on the parasites and showed sporozoite invasion inhibitory activity. Passive transfer of anti-CSP antibodies into naive mice also induced protection. Thus, we have demonstrated the utility of a mouse efficacy model to down-select human CSP-based vaccine formulations. PMID:23536694

  4. The severity of malarial anaemia in Plasmodium chabaudi infections of BALB/c mice is determined independently of the number of circulating parasites

    Directory of Open Access Journals (Sweden)

    Lamb Tracey J

    2008-04-01

    Full Text Available Abstract Background Severe malarial anaemia is a major complication of malaria infection and is multi-factorial resulting from loss of circulating red blood cells (RBCs from parasite replication, as well as immune-mediated mechanisms. An understanding of the causes of severe malarial anaemia is necessary to develop and implement new therapeutic strategies to tackle this syndrome of malaria infection. Methods Using analysis of variance, this work investigated whether parasite-destruction of RBCs always accounts for the severity of malarial anaemia during infections of the rodent malaria model Plasmodium chabaudi in mice of a BALB/c background. Differences in anaemia between two different clones of P. chabaudi were also examined. Results Circulating parasite numbers were not correlated with the severity of anaemia in either BALB/c mice or under more severe conditions of anaemia in BALB/c RAG2 deficient mice (lacking T and B cells. Mice infected with P. chabaudi clone CB suffered more severe anaemia than mice infected with clone AS, but this was not correlated with the number of parasites in the circulation. Instead, the peak percentage of parasitized RBCs was higher in CB-infected animals than in AS-infected animals, and was correlated with the severity of anaemia, suggesting that the availability of uninfected RBCs was impaired in CB-infected animals. Conclusion This work shows that parasite numbers are a more relevant measure of parasite levels in P. chabaudi infection than % parasitaemia, a measure that does not take anaemia into account. The lack of correlation between parasite numbers and the drop in circulating RBCs in this experimental model of malaria support a role for the host response in the impairment or destruction of uninfected RBC in P. chabaudi infections, and thus development of acute anaemia in this malaria model.

  5. T-cell responses in malaria

    DEFF Research Database (Denmark)

    Hviid, L; Jakobsen, P H; Abu-Zeid, Y A

    1992-01-01

    Malaria is caused by infection with protozoan parasites of the genus Plasmodium. It remains one of the most severe health problems in tropical regions of the world, and the rapid spread of resistance to drugs and insecticides has stimulated intensive research aimed at the development of a malaria...... vaccine. Despite this, no efficient operative vaccine is currently available. A large amount of information on T-cell responses to malaria antigens has been accumulated, concerning antigens derived from all stages of the parasite life cycle. The present review summarizes some of that information......, and discusses factors affecting the responses of T cells to malaria antigens....

  6. Impact of odour-baited mosquito traps for malaria control

    NARCIS (Netherlands)

    Homan, T.

    2016-01-01

    The parasites belonging to the genus Plasmodium are the cause of the second deadliest infectious disease in the world, malaria. Sub Saharan Africa harbours more than 90% of malaria attributable mortality and morbidity, and most deaths occur in children under 18 years old. Malaria is transmitted

  7. Genetics of refractoriness to Plasmodium falciparum in the mosquito Anopheles stephensi

    NARCIS (Netherlands)

    Feldmann, A.M.; Gemert, Geert-Jan van; Vegte-Bolmer, Marga G. van de; Jansen, Ritsert C.

    1998-01-01

    We previously selected a line of the malaria vector mosquito Anopheles stephensi refractory (resistant) to the human malaria parasite Plasmodium falciparum, using in vitro infections with P. falciparum gametocytes. This report presents data on the genetic background of refractoriness. The results of

  8. Towards clinical development of a Pfs48/45-based transmission blocking malaria vaccine

    NARCIS (Netherlands)

    Theisen, M.; Jore, M.M.; Sauerwein, R.

    2017-01-01

    INTRODUCTION: Malaria is a devastating vector-borne disease caused by the Plasmodium parasite, resulting in almost 0.5 million casualties per year. The parasite has a complex life-cycle that includes asexual replication in human red blood cells, causing symptomatic malaria, and sexual stages which

  9. A novel tetratricopeptide repeat (TPR containing PP5 serine/threonine protein phosphatase in the malaria parasite, Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Adams Brian

    2001-11-01

    Full Text Available Abstract Background The malarial parasite, Plasmodium falciparum (Pf, is responsible for nearly 2 million deaths worldwide. However, the mechanisms of cellular signaling in the parasite remain largely unknown. Recent discovery of a few protein kinases and phosphatases point to a thriving reversible phosphorylation system in the parasite, although their function and regulation need to be determined. Results We provide biochemical and sequence evidence for a protein serine/threonine phosphatase type PP5 in Plasmodium falciparum, and named it PfPP5. The 594-amino acid polypeptide was encoded by a 1785 nucleotide long intronless gene in the parasite. The recombinant protein, expressed in bacteria, was indistinguishable from native PfPP5. Sequencing comparison indicated that the extra-long N-terminus of PfPP5 outside the catalytic core contained four tetratricopeptide repeats (TPRs, compared to three such repeats in other PP5 phosphatases. The PfPP5 N-terminus was required for stimulation of the phosphatase activity by polyunsaturated fatty acids. Co-immunoprecipitation demonstrated an interaction between native PfPP5 and Pf heat shock protein 90 (hsp90. PfPP5 was expressed in all the asexual erythrocytic stages of the parasite, and was moderately sensitive to okadaic acid. Conclusions This is the first example of a TPR-domain protein in the Apicomplexa family of parasites. Since TPR domains play important roles in protein-protein interaction, especially relevant to the regulation of PP5 phosphatases, PfPP5 is destined to have a definitive role in parasitic growth and signaling pathways. This is exemplified by the interaction between PfPP5 and the cognate chaperone hsp90.

  10. The Strategy to Survive Primary Malaria Infection: An Experimental Study on Behavioural Changes in Parasitized Birds.

    Directory of Open Access Journals (Sweden)

    Andrey Mukhin

    Full Text Available Avian malaria parasites (Haemosporida, Plasmodium are of cosmopolitan distribution, and they have a significant impact on vertebrate host fitness. Experimental studies show that high parasitemia often develops during primary malaria infections. However, field studies only occasionally reveal high parasitemia in free-living birds sampled using the traditional methods of mist-netting or trapping, and light chronic infections predominate. The reason for this discrepancy between field observation and experimental data remains insufficiently understood. Since mist-netting is a passive capture method, two main parameters determine its success in sampling infected birds in wildlife, i. e. the presence of parasitized birds at a study site and their mobility. In other words, the trapping probability depends on the survival rate of birds and their locomotor activity during infection. Here we test (1 the mortality rate of wild birds infected with Plasmodium relictum (the lineage pSGS1, (2 the changes in their behaviour during presence of an aerial predator, and (3 the changes in their locomotor activity at the stage of high primary parasitemia.We show that some behavioural features which might affect a bird's survival during a predator attack (time of reaction, speed of flush flight and take off angle did not change significantly during primary infection. However, the locomotor activity of infected birds was almost halved compared to control (non-infected birds during the peak of parasitemia. We report (1 the markedly reduced mobility and (2 the 20% mortality rate caused by P. relictum and conclude that these factors are responsible for the underrepresentation of birds in mist nets and traps during the stage of high primary parasitemia in wildlife. This study indicates that the widespread parasite, P. relictum (pSGS1 influences the behaviour of birds during primary parasitemia. Experimental studies combined with field observations are needed to better

  11. The Strategy to Survive Primary Malaria Infection: An Experimental Study on Behavioural Changes in Parasitized Birds

    Science.gov (United States)

    Mukhin, Andrey; Palinauskas, Vaidas; Platonova, Elena; Kobylkov, Dmitry; Vakoliuk, Irina; Valkiūnas, Gediminas

    2016-01-01

    Avian malaria parasites (Haemosporida, Plasmodium) are of cosmopolitan distribution, and they have a significant impact on vertebrate host fitness. Experimental studies show that high parasitemia often develops during primary malaria infections. However, field studies only occasionally reveal high parasitemia in free-living birds sampled using the traditional methods of mist-netting or trapping, and light chronic infections predominate. The reason for this discrepancy between field observation and experimental data remains insufficiently understood. Since mist-netting is a passive capture method, two main parameters determine its success in sampling infected birds in wildlife, i. e. the presence of parasitized birds at a study site and their mobility. In other words, the trapping probability depends on the survival rate of birds and their locomotor activity during infection. Here we test (1) the mortality rate of wild birds infected with Plasmodium relictum (the lineage pSGS1), (2) the changes in their behaviour during presence of an aerial predator, and (3) the changes in their locomotor activity at the stage of high primary parasitemia.We show that some behavioural features which might affect a bird's survival during a predator attack (time of reaction, speed of flush flight and take off angle) did not change significantly during primary infection. However, the locomotor activity of infected birds was almost halved compared to control (non-infected) birds during the peak of parasitemia. We report (1) the markedly reduced mobility and (2) the 20% mortality rate caused by P. relictum and conclude that these factors are responsible for the underrepresentation of birds in mist nets and traps during the stage of high primary parasitemia in wildlife. This study indicates that the widespread parasite, P. relictum (pSGS1) influences the behaviour of birds during primary parasitemia. Experimental studies combined with field observations are needed to better understand the

  12. Mannose-binding lectin is a disease modifier in clinical malaria and may function as opsonin for Plasmodium falciparum-infected erythrocytes

    DEFF Research Database (Denmark)

    Garred, Peter; Nielsen, Morten A; Kurtzhals, Jørgen

    2003-01-01

    Variant alleles in the mannose-binding lectin (MBL) gene (mbl2) causing low levels of functional MBL are associated with susceptibility to different infections and are common in areas where malaria is endemic. Therefore, we investigated whether MBL variant alleles in 551 children from Ghana were...... associated with the occurrence and outcome parameters of Plasmodium falciparum malaria and asked whether MBL may function as an opsonin for P. falciparum. No difference in MBL genotype frequency was observed between infected and noninfected children or between children with cerebral malaria and/or severe...... malarial anemia and children with uncomplicated malaria. However, patients with complicated malaria who were homozygous for MBL variant alleles had significantly higher parasite counts and lower blood glucose levels than their MBL-competent counterparts. Distinct calcium-dependent binding of MBL...

  13. Combinatorial gene regulation in Plasmodium falciparum.

    NARCIS (Netherlands)

    Noort, V. van; Huynen, M.A.

    2006-01-01

    The malaria parasite Plasmodium falciparum has a complicated life cycle with large variations in its gene expression pattern, but it contains relatively few specific transcriptional regulators. To elucidate this paradox, we identified regulatory sequences, using an approach that integrates the

  14. A scalable pipeline for highly effective genetic modification of a malaria parasite

    KAUST Repository

    Pfander, Claudia

    2011-10-23

    In malaria parasites, the systematic experimental validation of drug and vaccine targets by reverse genetics is constrained by the inefficiency of homologous recombination and by the difficulty of manipulating adenine and thymine (A+T)-rich DNA of most Plasmodium species in Escherichia coli. We overcame these roadblocks by creating a high-integrity library of Plasmodium berghei genomic DNA (>77% A+T content) in a bacteriophage N15-based vector that can be modified efficiently using the lambda Red method of recombineering. We built a pipeline for generating P. berghei genetic modification vectors at genome scale in serial liquid cultures on 96-well plates. Vectors have long homology arms, which increase recombination frequency up to tenfold over conventional designs. The feasibility of efficient genetic modification at scale will stimulate collaborative, genome-wide knockout and tagging programs for P. berghei. © 2011 Nature America, Inc. All rights reserved.

  15. A scalable pipeline for highly effective genetic modification of a malaria parasite

    KAUST Repository

    Pfander, Claudia; Anar, Burcu; Schwach, Frank; Otto, Thomas D.; Brochet, Mathieu; Volkmann, Katrin; Quail, Michael A.; Pain, Arnab; Rosen, Barry; Skarnes, William; Rayner, Julian C.; Billker, Oliver

    2011-01-01

    In malaria parasites, the systematic experimental validation of drug and vaccine targets by reverse genetics is constrained by the inefficiency of homologous recombination and by the difficulty of manipulating adenine and thymine (A+T)-rich DNA of most Plasmodium species in Escherichia coli. We overcame these roadblocks by creating a high-integrity library of Plasmodium berghei genomic DNA (>77% A+T content) in a bacteriophage N15-based vector that can be modified efficiently using the lambda Red method of recombineering. We built a pipeline for generating P. berghei genetic modification vectors at genome scale in serial liquid cultures on 96-well plates. Vectors have long homology arms, which increase recombination frequency up to tenfold over conventional designs. The feasibility of efficient genetic modification at scale will stimulate collaborative, genome-wide knockout and tagging programs for P. berghei. © 2011 Nature America, Inc. All rights reserved.

  16. Standardizing estimates of the Plasmodium falciparum parasite rate

    Directory of Open Access Journals (Sweden)

    Smith David L

    2007-09-01

    Full Text Available Abstract Background The Plasmodium falciparum parasite rate (PfPR is a commonly reported index of malaria transmission intensity. PfPR rises after birth to a plateau before declining in older children and adults. Studies of populations with different age ranges generally report average PfPR, so age is an important source of heterogeneity in reported PfPR data. This confounds simple comparisons of PfPR surveys conducted at different times or places. Methods Several algorithms for standardizing PfPR were developed using 21 studies that stratify in detail PfPR by age. An additional 121 studies were found that recorded PfPR from the same population over at least two different age ranges; these paired estimates were used to evaluate these algorithms. The best algorithm was judged to be the one that described most of the variance when converting the PfPR pairs from one age-range to another. Results The analysis suggests that the relationship between PfPR and age is predictable across the observed range of malaria endemicity. PfPR reaches a peak after about two years and remains fairly constant in older children until age ten before declining throughout adolescence and adulthood. The PfPR pairs were poorly correlated; using one to predict the other would explain only 5% of the total variance. By contrast, the PfPR predicted by the best algorithm explained 72% of the variance. Conclusion The PfPR in older children is useful for standardization because it has good biological, epidemiological and statistical properties. It is also historically consistent with the classical categories of hypoendemic, mesoendemic and hyperendemic malaria. This algorithm provides a reliable method for standardizing PfPR for the purposes of comparing studies and mapping malaria endemicity. The scripts for doing so are freely available to all.

  17. The guanylhydrazone CNI-1493: an inhibitor with dual activity against malaria-inhibition of host cell pro-inflammatory cytokine release and parasitic deoxyhypusine synthase.

    Science.gov (United States)

    Specht, Sabine; Sarite, Salem Ramadan; Hauber, Ilona; Hauber, Joachim; Görbig, Ulf F; Meier, Chris; Bevec, Dorian; Hoerauf, Achim; Kaiser, Annette

    2008-05-01

    Malaria is still a major cause of death in the tropics. There is an urgent need for new anti-malarial drugs because drug-resistant plasmodia frequently occur. Over recent years, we elucidated the biosynthesis of hypusine, a novel amino acid contained in eukaryotic initiation factor 5A (eIF-5A) in Plasmodium. Hypusine biosynthesis involves catalysis of deoxyhypusine synthase (DHS) in the first step of post-translational modification. In a screen for new inhibitors of purified plasmodium DHS, CNI-1493, a novel selective pro-inflammatory cytokine inhibitor used in clinical phase II for the treatment of Crohn's disease, inhibited the enzyme of the parasite 3-fold at a concentration of 2 microM. In vitro experiments with 200 microM CNI-1493 in Plasmodium-infected erythrocytes, which lack nuclei and DHS protein, showed a parasite clearance within 2 days. This can presumably be attributed to an anti-proliferating effect because of the inhibition of DHS by the parasite. The determined IC50 of CNI-1493 was 135.79 microM after 72 h. In vivo application of this substance in Plasmodium berghei ANKA-infected C57BL/6 mice significantly reduced parasitemia after dosage of 1 mg/kg or 4 mg/kg/body weight and prevented death of mice with cerebral malaria. This effect was paralleled by a decrease in serum TNF levels of the mice. We suggest that the new mechanism of CNI-1493 is caused by a decrease in modified eIF-5A biosynthesis with a downstream effect on the TNF synthesis of the host. From the current data, we consider CNI-1493 to be a promising drug for anti-malarial therapy because of its combined action, i.e., the decrease in eIF-5A biosynthesis of the parasite and host cell TNF biosynthesis.

  18. Rodent malaria parasites : genome organization & comparative genomics

    NARCIS (Netherlands)

    Kooij, Taco W.A.

    2006-01-01

    The aim of the studies described in this thesis was to investigate the genome organization of rodent malaria parasites (RMPs) and compare the organization and gene content of the genomes of RMPs and the human malaria parasite P. falciparum. The release of the complete genome sequence of P.

  19. Identification of Protein Markers in Patients Infected with Plasmodium knowlesi, Plasmodium falciparum and Plasmodium vivax

    Directory of Open Access Journals (Sweden)

    Alan Kang-Wai Mu

    2014-11-01

    Full Text Available Malaria is caused by parasitic protozoans of the genus Plasmodium and is one of the most prevalent infectious diseases in tropical and subtropical regions. For this reason, effective and practical diagnostic methods are urgently needed to control the spread of malaria. The aim of the current study was to identify a panel of new malarial markers, which could be used to diagnose patients infected with various Plasmodium species, including P. knowlesi, P. vivax and P. falciparum. Sera from malaria-infected patients were pooled and compared to control sera obtained from healthy individuals using the isobaric tags for relative and absolute quantitation (iTRAQ technique. Mass spectrometry was used to identify serum proteins and quantify their relative abundance. We found that the levels of several proteins were increased in pooled serum from infected patients, including cell adhesion molecule-4 and C-reactive protein. In contrast, the serum concentration of haptoglobin was reduced in malaria-infected individuals, which we verified by western blot assay. Therefore, these proteins might represent infectious markers of malaria, which could be used to develop novel diagnostic tools for detecting P. knowlesi, P. vivax and P. falciparum. However, these potential malarial markers will need to be validated in a larger population of infected individuals.

  20. Structural Insight into Epitopes in the Pregnancy-Associated Malaria Protein VAR2CSA

    DEFF Research Database (Denmark)

    Andersen, P; Nielsen, MA; Resende, M

    2008-01-01

    Pregnancy-associated malaria is caused by Plasmodium falciparum malaria parasites binding specifically to chondroitin sulfate A in the placenta. This sequestration of parasites is a major cause of low birth weight in infants and anemia in the mothers. VAR2CSA, a polymorphic multi-domain protein o...

  1. Plasmodium vivax: modern strategies to study a persistent parasite's life cycle.

    Science.gov (United States)

    Galinski, Mary R; Meyer, Esmeralda V S; Barnwell, John W

    2013-01-01

    Plasmodium vivax has unique attributes to support its survival in varying ecologies and climates. These include hypnozoite forms in the liver, an invasion preference for reticulocytes, caveola-vesicle complex structures in the infected erythrocyte membrane and rapidly forming and circulating gametocytes. These characteristics make this species very different from P. falciparum. Plasmodium cynomolgi and other related simian species have identical biology and can serve as informative models of P. vivax infections. Plasmodium vivax and its model parasites can be grown in non-human primates (NHP), and in short-term ex vivo cultures. For P. vivax, in the absence of in vitro culture systems, these models remain highly relevant side by side with human clinical studies. While post-genomic technologies allow for greater exploration of P. vivax-infected blood samples from humans, these come with restrictions. Two advantages of NHP models are that infections can be experimentally tailored to address hypotheses, including genetic manipulation. Also, systems biology approaches can capitalise on computational biology combined with set experimental infection periods and protocols, which may include multiple sampling times, different types of samples, and the broad use of "omics" technologies. Opportunities for research on vivax malaria are increasing with the use of existing and new methodological strategies in combination with modern technologies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. A transgenic Plasmodium falciparum NF54 strain that expresses GFP-luciferase throughout the parasite life cycle.

    Science.gov (United States)

    Vaughan, Ashley M; Mikolajczak, Sebastian A; Camargo, Nelly; Lakshmanan, Viswanathan; Kennedy, Mark; Lindner, Scott E; Miller, Jessica L; Hume, Jen C C; Kappe, Stefan H I

    2012-12-01

    Plasmodium falciparum is the pathogenic agent of the most lethal of human malarias. Transgenic P. falciparum parasites expressing luciferase have been created to study drug interventions of both asexual and sexual blood stages but luciferase-expressing mosquito stage and liver stage parasites have not been created which has prevented the easy quantification of mosquito stage development (e.g. for transmission blocking interventions) and liver stage development (for interventions that prevent infection). To overcome this obstacle, we have created a transgenic P. falciparum NF54 parasite that expresses a GFP-luciferase transgene throughout the life cycle. Luciferase expression is robust and measurable at all life cycle stages, including midgut oocyst, salivary gland sporozoites and liver stages, where in vivo development is easily measurable using humanized mouse infections in conjunction with an in vivo imaging system. This parasite reporter strain will accelerate testing of interventions against pre-erythrocytic life cycle stages. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Malaria and helminth co-infections in outpatients of Alaba Kulito Health Center, southern Ethiopia: a cross sectional study

    Directory of Open Access Journals (Sweden)

    Legesse Mengistu

    2010-05-01

    Full Text Available Abstract Background Distribution of malaria and intestinal helminths is known to overlap in developing tropical countries of the world. Co-infections with helminth and malaria parasites cause a significant and additive problem against the host. The aim of this study was to asses the prevalence of malaria/helminth co-infection and the associated problems among febrile outpatients that attended Alaba Kulito Health Center, southern Ethiopia November and December 2007. A total of 1802 acute febrile patients were diagnosed for malaria. 458 Giemsa-stained thick and thin blood films were used for identification of Plasmodium species and Stool samples prepared using Kato-Katz technique were used to examine for intestinal helminths. Haemoglobin concentration was measured using a portable spectrophotometer (Hemocue HB 201. Anthropometry-based nutritional assessment of the study participants was done by measuring body weight to the nearest 0.1 kg and height to the nearest 0.1 cm. Findings 458 of the total febrile patients were positive for malaria. Co infection with Plasmodium and helminth parasites is associated with significantly (p Plasmodium parasites. And this difference was also significant for haemoglobin concentration (F = 10.18, p = 0.002, in which patients co infected with Plasmodium and helminth parasites showed lower mean haemoglobin concentration. More than one-third of the infected cases in both malaria infections and malaria/helminth co infections are undernourished. However the statistics for the difference is not significant. Conclusion Malaria and soil-transmitted helminthiasis obviously contribute to anaemia and low weight status and these conditions are more pronounced in individuals concurrently infected with malaria and soil-transmitted helminths. Hence, simultaneous combat against the two parasitic infections is very crucial to improve health of the affected communities.

  4. Complement Receptor 1 Is a Sialic Acid-Independent Erythrocyte Receptor of Plasmodium falciparum

    Science.gov (United States)

    2010-06-17

    Sciences, Bethesda, MD, ...... 14. ABSTRACT Plasmodium falciparum is a highly lethal malaria parasite of humans. A major portion of its life cycle is...parasite of humans. A major portion of its life cycle is dedicated to invading and multiplying inside erythrocytes. The molecular mechanisms of...Complement Receptor 1 Is a Sialic Acid-Independent Erythrocyte Receptor of Plasmodium falciparum Carmenza Spadafora1,2,3, Gordon A. Awandare4

  5. Prevalence of and risk factors for malaria, filariasis, and intestinal parasites as single infections or co-infections in different settlements of Gabon, Central Africa.

    Science.gov (United States)

    M'bondoukwé, Noé Patrick; Kendjo, Eric; Mawili-Mboumba, Denise Patricia; Koumba Lengongo, Jeanne Vanessa; Offouga Mbouoronde, Christelle; Nkoghe, Dieudonné; Touré, Fousseyni; Bouyou-Akotet, Marielle Karine

    2018-01-30

    Malaria, filariasis, and intestinal parasitic infections (IPIs) are common and frequently overlap in developing countries. The prevalence and predictors of these infections were investigated in three different settlements (rural, semi-urban, and urban) of Gabon. During cross-sectional surveys performed from September 2013 to June 2014, 451 individuals were interviewed. In addition, blood and stool samples were analysed for the presence of Plasmodium, filarial roundworm, intestinal protozoan, and helminth infections. Intestinal parasitic infections (61.1%), including intestinal protozoa (56.7%) and soil-transmitted helminths (STHs) (22.2%), predominated, whereas Plasmodium falciparum (18.8%), Loa loa (4.7%), and Mansonella perstans (1.1%) were less prevalent. Filariasis and STHs were mainly found in rural settlements, whereas a higher plasmodial infection prevalence rate was observed in the periurban area. The most common IPI was blastocystosis (48.6%), followed by ascaridiasis (13.7%), trichuriasis (11.8%), amoebiasis (9.3%), giardiasis (4.8%), and strongyloidiasis (3.7%). Hookworm was detected in one adult from rural Dienga. Adults had a higher prevalence of Blastocystis hominis and STHs, whereas Giardia duodenalis was more frequently observed among children aged below 5 years (P < 0.01). The polyparasitism rate was 41.5%, with 7.0% Plasmodium-IPIs and 1.8% Plasmodium-STH co-infections. The multivariate analysis showed that living in a suburban area, belonging to the age group of 5-15 years, having none or a secondary education, or having an open body water close to home were significant risk factors for malaria (P ≤ 0.01). For STH infections, identified risk factors were drinking untreated water and living in a rural area (P ≤ 0.04). No significant predictors were identified for IPIs and malaria-IPI co-infection. This study reports a high prevalence of IPIs and intestinal protozoa, but a low rate of malaria-IPI co-infections in the study sites

  6. A malaria vaccine that elicits in humans antibodies able to kill Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available BACKGROUND: Plasmodium falciparum merozoite surface protein 3 is a malaria vaccine candidate that was identified, characterised, and developed based on a unique immuno-clinical approach. The vaccine construct was derived from regions fully conserved among various strains and containing B cell epitopes targeted by human antibodies (from malaria-immune adults that are able to mediate a monocyte-dependent parasite killing effect. The corresponding long synthetic peptide was administered to 36 volunteers, with either alum or Montanide ISA720 as adjuvant. METHODS AND FINDINGS: Both formulations induced cellular and humoral immune responses. With alum, the responses lasted up to 12 mo. The vaccine-induced antibodies were predominantly of cytophilic classes, i.e., able to cooperate with effector cells. In vitro, the antibodies induced an inhibition of the P. falciparum erythrocytic growth in a monocyte-dependent manner, which was in most instances as high as or greater than that induced by natural antibodies from immune African adults. In vivo transfer of the volunteers' sera into P. falciparum-infected humanized SCID mice profoundly reduced or abrogated parasitaemia. These inhibitory effects were related to the antibody reactivity with the parasite native protein, which was seen in 60% of the volunteers, and remained in samples taken 12 mo postimmunisation. CONCLUSION: This is the first malaria vaccine clinical trial to clearly demonstrate antiparasitic activity by vaccine-induced antibodies by both in vitro and in vivo methods. The results, showing the induction of long-lasting antibodies directed to a fully conserved polypeptide, also challenge current concepts about malaria vaccines, such as unavoidable polymorphism, low antigenicity, and poor induction of immune memory.

  7. Humanized HLA-DR4.RagKO.IL2RγcKO.NOD (DRAG) mice sustain the complex vertebrate life cycle of Plasmodium falciparum malaria.

    Science.gov (United States)

    Wijayalath, Wathsala; Majji, Sai; Villasante, Eileen F; Brumeanu, Teodor D; Richie, Thomas L; Casares, Sofia

    2014-09-30

    Malaria is a deadly infectious disease affecting millions of people in tropical and sub-tropical countries. Among the five species of Plasmodium parasites that infect humans, Plasmodium falciparum accounts for the highest morbidity and mortality associated with malaria. Since humans are the only natural hosts for P. falciparum, the lack of convenient animal models has hindered the understanding of disease pathogenesis and prompted the need of testing anti-malarial drugs and vaccines directly in human trials. Humanized mice hosting human cells represent new pre-clinical models for infectious diseases that affect only humans. In this study, the ability of human-immune-system humanized HLA-DR4.RagKO.IL2RγcKO.NOD (DRAG) mice to sustain infection with P. falciparum was explored. Four week-old DRAG mice were infused with HLA-matched human haematopoietic stem cells (HSC) and examined for reconstitution of human liver cells and erythrocytes. Upon challenge with infectious P. falciparum sporozoites (NF54 strain) humanized DRAG mice were examined for liver stage infection, blood stage infection, and transmission to Anopheles stephensi mosquitoes. Humanized DRAG mice reconstituted human hepatocytes, Kupffer cells, liver endothelial cells, and erythrocytes. Upon intravenous challenge with P. falciparum sporozoites, DRAG mice sustained liver to blood stage infection (average 3-5 parasites/microlitre blood) and allowed transmission to An. stephensi mosquitoes. Infected DRAG mice elicited antibody and cellular responses to the blood stage parasites and self-cured the infection by day 45 post-challenge. DRAG mice represent the first human-immune-system humanized mouse model that sustains the complex vertebrate life cycle of P. falciparum without the need of exogenous injection of human hepatocytes/erythrocytes or P. falciparum parasite adaptation. The ability of DRAG mice to elicit specific human immune responses to P. falciparum parasites may help deciphering immune correlates

  8. Mechanisms of stage-transcending protection following immunization of mice with late liver stage-arresting genetically attenuated malaria parasites.

    Directory of Open Access Journals (Sweden)

    Brandon K Sack

    2015-05-01

    Full Text Available Malaria, caused by Plasmodium parasite infection, continues to be one of the leading causes of worldwide morbidity and mortality. Development of an effective vaccine has been encumbered by the complex life cycle of the parasite that has distinct pre-erythrocytic and erythrocytic stages of infection in the mammalian host. Historically, malaria vaccine development efforts have targeted each stage in isolation. An ideal vaccine, however, would target multiple life cycle stages with multiple arms of the immune system and be capable of eliminating initial infection in the liver, the subsequent blood stage infection, and would prevent further parasite transmission. We have previously shown that immunization of mice with Plasmodium yoelii genetically attenuated parasites (GAP that arrest late in liver stage development elicits stage-transcending protection against both a sporozoite challenge and a direct blood stage challenge. Here, we show that this immunization strategy engenders both T- and B-cell responses that are essential for stage-transcending protection, but the relative importance of each is determined by the host genetic background. Furthermore, potent anti-blood stage antibodies elicited after GAP immunization rely heavily on FC-mediated functions including complement fixation and FC receptor binding. These protective antibodies recognize the merozoite surface but do not appear to recognize the immunodominant merozoite surface protein-1. The antigen(s targeted by stage-transcending immunity are present in both the late liver stages and blood stage parasites. The data clearly show that GAP-engendered protective immune responses can target shared antigens of pre-erythrocytic and erythrocytic parasite life cycle stages. As such, this model constitutes a powerful tool to identify novel, protective and stage-transcending T and B cell targets for incorporation into a multi-stage subunit vaccine.

  9. Oligohydramnios in a pregnant Pakistani woman with Plasmodium vivax malaria.

    Science.gov (United States)

    Binello, Nicolò; Brunetti, Enrico; Cattaneo, Federico; Lissandrin, Raffaella; Malfitano, Antonello

    2014-04-23

    In the Western world, the diagnosis and management of Plasmodium vivax malaria in pregnant women can be challenging, and the pathogenesis of adverse outcomes for both the mother and the foetus is still poorly known. The authors describe the case of a 29-year-old Pakistani woman at the 29th week of her second pregnancy, who was admitted to the Hospital following the abrupt onset of fever. At the time of admission, she had been living in Italy without travelling to any malaria-endemic areas for eight months. She was diagnosed with vivax malaria after a thin blood smear revealed the presence of plasmodial trophozoites and gametocytes and treated accordingly. Due to the onset of oligohydramnios, she underwent caesarian section at the 31st week of pregnancy with no further complications. Histological examination of the placenta showed no evidence of plasmodial infection, but was inconclusive. It is unclear whether oligohydramnios is a complication of pregnancy-related Plasmodium vivax malaria. Given the long latency of hypnozoites, every febrile pregnant patient with a previous stay in an endemic area should be screened for malaria with a thick and a thin blood smear.

  10. More than just immune evasion: Hijacking complement by Plasmodium falciparum.

    Science.gov (United States)

    Schmidt, Christoph Q; Kennedy, Alexander T; Tham, Wai-Hong

    2015-09-01

    Malaria remains one of the world's deadliest diseases. Plasmodium falciparum is responsible for the most severe and lethal form of human malaria. P. falciparum's life cycle involves two obligate hosts: human and mosquito. From initial entry into these hosts, malaria parasites face the onslaught of the first line of host defence, the complement system. In this review, we discuss the complex interaction between complement and malaria infection in terms of hosts immune responses, parasite survival and pathogenesis of severe forms of malaria. We will focus on the role of complement receptor 1 and its associated polymorphisms in malaria immune complex clearance, as a mediator of parasite rosetting and as an entry receptor for P. falciparum invasion. Complement evasion strategies of P. falciparum parasites will also be highlighted. The sexual forms of the malaria parasites recruit the soluble human complement regulator Factor H to evade complement-mediated killing within the mosquito host. A novel evasion strategy is the deployment of parasite organelles to divert complement attack from infective blood stage parasites. Finally we outline the future challenge to understand the implications of these exploitation mechanisms in the interplay between successful infection of the host and pathogenesis observed in severe malaria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts

    KAUST Repository

    Otto, Thomas D.

    2014-09-09

    Plasmodium falciparum causes most human malaria deaths, having prehistorically evolved from parasites of African Great Apes. Here we explore the genomic basis of P. falciparum adaptation to human hosts by fully sequencing the genome of the closely related chimpanzee parasite species P. reichenowi, and obtaining partial sequence data from a more distantly related chimpanzee parasite (P. gaboni). The close relationship between P. reichenowi and P. falciparum is emphasized by almost complete conservation of genomic synteny, but against this strikingly conserved background we observe major differences at loci involved in erythrocyte invasion. The organization of most virulence-associated multigene families, including the hypervariable var genes, is broadly conserved, but P. falciparum has a smaller subset of rif and stevor genes whose products are expressed on the infected erythrocyte surface. Genome-wide analysis identifies other loci under recent positive selection, but a limited number of changes at the host–parasite interface may have mediated host switching.

  12. Seasonal variations in antibody response to a Plasmodium ...

    African Journals Online (AJOL)

    An Enzyme Linked Immunosorbent Assay (ELISA), employing a recombinant peptide capture antigen (R32tet32) was used to detect antibodies against the circumsporozoite protein (CSP) of the malaria parasite, Plasmodium falciparum in 169 ...

  13. HIGH-THROUGHPUT IDENTIFICATION OF THE PREDOMINANT MALARIA PARASITE CLONE IN COMPLEX BLOOD STAGE INFECTIONS USING A MULTI-SNP MOLECULAR HAPLOTYPING ASSAY

    Science.gov (United States)

    COLE-TOBIAN, JENNIFER L.; ZIMMERMAN, PETER A.; KING, CHRISTOPHER L.

    2013-01-01

    Individuals living in malaria endemic areas are often infected with multiple parasite clones. Currently used single nucleotide polymorphism (SNP) genotyping methods for malaria parasites are cumbersome; furthermore, few methods currently exist that can rapidly determine the most abundant clone in these complex infections. Here we describe an oligonucleotide ligation assay (OLA) to distinguish SNPs in the Plasmodium vivax Duffy binding protein gene (Pvdbp) at 14 polymorphic residues simultaneously. Allele abundance is determined by the highest mean fluorescent intensity of each allele. Using mixtures of plasmids encoding known haplotypes of the Pvdbp, single clones of P. vivax parasites from infected Aotus monkeys, and well-defined mixed infections from field samples, we were able to identify the predominant Pvdbp genotype with > 93% accuracy when the dominant clone is twice as abundant as a lesser genotype and > 97% of the time if the ratio was 5:1 or greater. Thus, the OLA can accurately, reproducibly, and rapidly determine the predominant parasite haplotype in complex blood stage infections. PMID:17255222

  14. Malaria problem in Afghanistan: malaria scanning results of the Turkish medical aid group after the war.

    Science.gov (United States)

    Oner, Yaşar Ali; Okutan, Salih Erkan; Artinyan, Elizabeth; Kocazeybek, Bekir

    2005-04-01

    Malaria is a parasitic infection caused by Plasmodium species and it is especially seen in tropical and subtropical areas. We aimed to evaluate the effects of the infection in Afghanistan, which is an endemic place for malaria and had severe socio-economical lost after the war. We also compared these data with the ones that were recorded before the war. Blood samples were taken from 376 malaria suspected patients who come to the health center, established by the medical group of Istanbul Medical Faculty in 2002, Afghanistan. Blood samples were screened using the OPTIMAL Rapid Malaria Test and Giemsa staining method. In 95 (25.3%) patients diagnosis was malaria. In 65 patients (17.3%) the agent of the infection was P. falciparum and in 30 patients (8%) agents were other Plasmodium species.

  15. Early gametocytes of the malaria parasite Plasmodium falciparum specifically remodel the adhesive properties of infected erythrocyte surface

    DEFF Research Database (Denmark)

    Tibúrcio, Marta; Silvestrini, Francesco; Bertuccini, Lucia

    2013-01-01

    to ultrastructurally and biochemically analyse parasite-induced modifications on the red blood cell surface and to measure their functional consequences on adhesion to human endothelial cells. This work revealed that stage I gametocytes are able to deform the infected erythrocytes like asexual parasites, but do...... not modify its surface with adhesive 'knob' structures and associated proteins. Reduced levels of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesins are exposed on the red blood cell surface bythese parasites, and the expression of the var gene family, which encodes 50-60 variants of PfEMP1......In Plasmodium falciparum infections the parasite transmission stages, the gametocytes, mature in 10 days sequestered in internal organs. Recent studies suggest that cell mechanical properties rather than adhesive interactions play a role in sequestration during gametocyte maturation. It remains...

  16. Malaria parasite cGMP-dependent protein kinase regulates blood stage merozoite secretory organelle discharge and egress.

    Directory of Open Access Journals (Sweden)

    Christine R Collins

    2013-05-01

    Full Text Available The malaria parasite replicates within an intraerythrocytic parasitophorous vacuole (PV. Eventually, in a tightly regulated process called egress, proteins of the PV and intracellular merozoite surface are modified by an essential parasite serine protease called PfSUB1, whilst the enclosing PV and erythrocyte membranes rupture, releasing merozoites to invade fresh erythrocytes. Inhibition of the Plasmodium falciparum cGMP-dependent protein kinase (PfPKG prevents egress, but the underlying mechanism is unknown. Here we show that PfPKG activity is required for PfSUB1 discharge into the PV, as well as for release of distinct merozoite organelles called micronemes. Stimulation of PfPKG by inhibiting parasite phosphodiesterase activity induces premature PfSUB1 discharge and egress of developmentally immature, non-invasive parasites. Our findings identify the signalling pathway that regulates PfSUB1 function and egress, and raise the possibility of targeting PfPKG or parasite phosphodiesterases in therapeutic approaches to dysregulate critical protease-mediated steps in the parasite life cycle.

  17. A world malaria map: Plasmodium falciparum endemicity in 2007.

    Directory of Open Access Journals (Sweden)

    Simon I Hay

    2009-03-01

    Full Text Available Efficient allocation of resources to intervene against malaria requires a detailed understanding of the contemporary spatial distribution of malaria risk. It is exactly 40 y since the last global map of malaria endemicity was published. This paper describes the generation of a new world map of Plasmodium falciparum malaria endemicity for the year 2007.A total of 8,938 P. falciparum parasite rate (PfPR surveys were identified using a variety of exhaustive search strategies. Of these, 7,953 passed strict data fidelity tests for inclusion into a global database of PfPR data, age-standardized to 2-10 y for endemicity mapping. A model-based geostatistical procedure was used to create a continuous surface of malaria endemicity within previously defined stable spatial limits of P. falciparum transmission. These procedures were implemented within a Bayesian statistical framework so that the uncertainty of these predictions could be evaluated robustly. The uncertainty was expressed as the probability of predicting correctly one of three endemicity classes; previously stratified to be an informative guide for malaria control. Population at risk estimates, adjusted for the transmission modifying effects of urbanization in Africa, were then derived with reference to human population surfaces in 2007. Of the 1.38 billion people at risk of stable P. falciparum malaria, 0.69 billion were found in Central and South East Asia (CSE Asia, 0.66 billion in Africa, Yemen, and Saudi Arabia (Africa+, and 0.04 billion in the Americas. All those exposed to stable risk in the Americas were in the lowest endemicity class (PfPR2-10 5 to or = 40% areas. High endemicity was widespread in the Africa+ region, where 0.35 billion people are at this level of risk. Most of the rest live at intermediate risk (0.20 billion, with a smaller number (0.11 billion at low stable risk.High levels of P. falciparum malaria endemicity are common in Africa. Uniformly low endemic levels are

  18. A world malaria map: Plasmodium falciparum endemicity in 2007.

    Science.gov (United States)

    Hay, Simon I; Guerra, Carlos A; Gething, Peter W; Patil, Anand P; Tatem, Andrew J; Noor, Abdisalan M; Kabaria, Caroline W; Manh, Bui H; Elyazar, Iqbal R F; Brooker, Simon; Smith, David L; Moyeed, Rana A; Snow, Robert W

    2009-03-24

    Efficient allocation of resources to intervene against malaria requires a detailed understanding of the contemporary spatial distribution of malaria risk. It is exactly 40 y since the last global map of malaria endemicity was published. This paper describes the generation of a new world map of Plasmodium falciparum malaria endemicity for the year 2007. A total of 8,938 P. falciparum parasite rate (PfPR) surveys were identified using a variety of exhaustive search strategies. Of these, 7,953 passed strict data fidelity tests for inclusion into a global database of PfPR data, age-standardized to 2-10 y for endemicity mapping. A model-based geostatistical procedure was used to create a continuous surface of malaria endemicity within previously defined stable spatial limits of P. falciparum transmission. These procedures were implemented within a Bayesian statistical framework so that the uncertainty of these predictions could be evaluated robustly. The uncertainty was expressed as the probability of predicting correctly one of three endemicity classes; previously stratified to be an informative guide for malaria control. Population at risk estimates, adjusted for the transmission modifying effects of urbanization in Africa, were then derived with reference to human population surfaces in 2007. Of the 1.38 billion people at risk of stable P. falciparum malaria, 0.69 billion were found in Central and South East Asia (CSE Asia), 0.66 billion in Africa, Yemen, and Saudi Arabia (Africa+), and 0.04 billion in the Americas. All those exposed to stable risk in the Americas were in the lowest endemicity class (PfPR2-10 5 to or = 40%) areas. High endemicity was widespread in the Africa+ region, where 0.35 billion people are at this level of risk. Most of the rest live at intermediate risk (0.20 billion), with a smaller number (0.11 billion) at low stable risk. High levels of P. falciparum malaria endemicity are common in Africa. Uniformly low endemic levels are found in the

  19. Plasmodium falciparum ookinetes require mosquito midgut chondroitin sulfate proteoglycans for cell invasion.

    NARCIS (Netherlands)

    Dinglasan, R.R.; Alaganan, A.; Ghosh, A.K.; Saito, A.; Kuppevelt, A.H.M.S.M. van; Jacobs-Lorena, M.

    2007-01-01

    Malaria transmission entails development of the Plasmodium parasite in its insect vector, the Anopheles mosquito. Parasite invasion of the mosquito midgut is the critical first step and involves adhesion to host epithelial cell ligands. Partial evidence suggests that midgut oligosaccharides are

  20. Remarkable stability in patterns of blood-stage gene expression during episodes of non-lethal Plasmodium yoelii malaria.

    Science.gov (United States)

    Cernetich-Ott, Amy; Daly, Thomas M; Vaidya, Akhil B; Bergman, Lawrence W; Burns, James M

    2012-08-06

    Microarray studies using in vitro cultures of synchronized, blood-stage Plasmodium falciparum malaria parasites have revealed a 'just-in-time' cascade of gene expression with some indication that these transcriptional patterns remain stable even in the presence of external stressors. However, direct analysis of transcription in P. falciparum blood-stage parasites obtained from the blood of infected patients suggests that parasite gene expression may be modulated by factors present in the in vivo environment of the host. The aim of this study was to examine changes in gene expression of the rodent malaria parasite, Plasmodium yoelii 17X, while varying the in vivo setting of replication. Using P. yoelii 17X parasites replicating in vivo, differential gene expression in parasites isolated from individual mice, from independent infections, during ascending, peak and descending parasitaemia and in the presence and absence of host antibody responses was examined using P. yoelii DNA microarrays. A genome-wide analysis to identify coordinated changes in groups of genes associated with specific biological pathways was a primary focus, although an analysis of the expression patterns of two multi-gene families in P. yoelii, the yir and pyst-a families, was also completed. Across experimental conditions, transcription was surprisingly stable with little evidence for distinct transcriptional states or for consistent changes in specific pathways. Differential gene expression was greatest when comparing differences due to parasite load and/or host cell availability. However, the number of differentially expressed genes was generally low. Of genes that were differentially expressed, many involved biologically diverse pathways. There was little to no differential expression of members of the yir and pyst-a multigene families that encode polymorphic proteins associated with the membrane of infected erythrocytes. However, a relatively large number of these genes were expressed during

  1. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes.

    Science.gov (United States)

    Roques, Magali; Wall, Richard J; Douglass, Alexander P; Ramaprasad, Abhinay; Ferguson, David J P; Kaindama, Mbinda L; Brusini, Lorenzo; Joshi, Nimitray; Rchiad, Zineb; Brady, Declan; Guttery, David S; Wheatley, Sally P; Yamano, Hiroyuki; Holder, Anthony A; Pain, Arnab; Wickstead, Bill; Tewari, Rita

    2015-11-01

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei.

  2. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes

    KAUST Repository

    Roques, Magali; Wall, Richard J.; Douglass, Alexander P.; Ramaprasad, Abhinay; Ferguson, David J. P.; Kaindama, Mbinda L.; Brusini, Lorenzo; Joshi, Nimitray; Rchiad, ‍ Zineb; Brady, Declan; Guttery, David S.; Wheatley, Sally P.; Yamano, Hiroyuki; Holder, Anthony A.; Pain, Arnab; Wickstead, Bill; Tewari, Rita

    2015-01-01

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei.

  3. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes

    Science.gov (United States)

    Ferguson, David J. P.; Kaindama, Mbinda L.; Brusini, Lorenzo; Joshi, Nimitray; Rchiad, Zineb; Brady, Declan; Guttery, David S.; Wheatley, Sally P.; Yamano, Hiroyuki; Holder, Anthony A.; Pain, Arnab; Wickstead, Bill; Tewari, Rita

    2015-01-01

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei. PMID:26565797

  4. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes

    KAUST Repository

    Roques, Magali

    2015-11-13

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei.

  5. Interleukin-10 regulates hepcidin in Plasmodium falciparum malaria

    KAUST Repository

    Huang, Honglei; Lamikanra, Abigail A.; Alkaitis, Matthew S.; Thé zé nas, Marie L.; Ramaprasad, Abhinay; Moussa, Ehab; Roberts, David J.; Casals-Pascual, Climent

    2014-01-01

    . falciparum malaria. Methods: We have measured secretion of hepcidin by primary macrophages and the hepatoma cell line HepG2 stimulated with IL-10, IL-6 and Plasmodium falciparum-infected erythrocytes. Findings: We have observed that IL-10 and IL-6 production

  6. The sick placenta - the role of malaria

    NARCIS (Netherlands)

    Brabin, B. J.; Romagosa, C.; Abdelgalil, S.; Menéndez, C.; Verhoeff, F. H.; McGready, R.; Fletcher, K. A.; Owens, S.; D'Alessandro, U.; Nosten, F.; Fischer, P. R.; Ordi, J.

    2004-01-01

    The human placenta is an ideal site for the accumulation of Plasmodium falciparum malaria parasites, and as a consequence serious health problems arise for the mother and her baby. The pathogenesis of placental malaria is only partially understood, but it is clear that it leads to a distinct

  7. Sequential, ordered acquisition of antibodies to Plasmodium falciparum erythrocyte membrane protein 1 domains

    DEFF Research Database (Denmark)

    Cham, Gerald K K; Turner, Louise; Lusingu, John

    2009-01-01

    The binding of erythrocytes infected with mature blood stage parasites to the vascular bed is key to the pathogenesis of malignant malaria. The binding is mediated by members of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family. PfEMP1s can be divided into groups, and it has pr....... The identification of PfEMP1 domains expressed by parasites causing disease in infants and young children is important for development of vaccines protecting against severe malaria.......The binding of erythrocytes infected with mature blood stage parasites to the vascular bed is key to the pathogenesis of malignant malaria. The binding is mediated by members of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family. PfEMP1s can be divided into groups, and it has...... previously been suggested that parasites expressing group A or B/A PfEMP1s are most pathogenic. To test the hypothesis that the first malaria infections in infants and young children are dominated by parasites expressing A and B/A PfEMP1s, we measured the plasma Ab level against 48 recombinant PfEMP1 domains...

  8. Outbreak of human malaria caused by Plasmodium simium in the Atlantic Forest in Rio de Janeiro: a molecular epidemiological investigation.

    Science.gov (United States)

    Brasil, Patrícia; Zalis, Mariano Gustavo; de Pina-Costa, Anielle; Siqueira, Andre Machado; Júnior, Cesare Bianco; Silva, Sidnei; Areas, André Luiz Lisboa; Pelajo-Machado, Marcelo; de Alvarenga, Denise Anete Madureira; da Silva Santelli, Ana Carolina Faria; Albuquerque, Hermano Gomes; Cravo, Pedro; Santos de Abreu, Filipe Vieira; Peterka, Cassio Leonel; Zanini, Graziela Maria; Suárez Mutis, Martha Cecilia; Pissinatti, Alcides; Lourenço-de-Oliveira, Ricardo; de Brito, Cristiana Ferreira Alves; de Fátima Ferreira-da-Cruz, Maria; Culleton, Richard; Daniel-Ribeiro, Cláudio Tadeu

    2017-10-01

    Malaria was eliminated from southern and southeastern Brazil over 50 years ago. However, an increasing number of autochthonous episodes attributed to Plasmodium vivax have recently been reported from the Atlantic Forest region of Rio de Janeiro state. As the P vivax-like non-human primate malaria parasite species Plasmodium simium is locally enzootic, we performed a molecular epidemiological investigation to determine whether zoonotic malaria transmission is occurring. We examined blood samples from patients presenting with signs or symptoms suggestive of malaria as well as from local howler monkeys by microscopy and PCR. Samples were included from individuals if they had a history of travel to or resided in areas within the Rio de Janeiro Atlantic Forest, but not if they had malaria prophylaxis, blood transfusion or tissue or organ transplantation, or had travelled to known malaria endemic areas in the preceding year. Additionally, we developed a molecular assay based on sequencing of the parasite mitochondrial genome to distinguish between P vivax and P simium, and applied this assay to 33 cases from outbreaks that occurred in 2015, and 2016. A total of 49 autochthonous malaria cases were reported in 2015-16. Most patients were male, with a mean age of 44 years (SD 14·6), and 82% lived in urban areas of Rio de Janeiro state and had visited the Atlantic Forest for leisure or work-related activities. 33 cases were used for mitochondrial DNA sequencing. The assay was successfully performed for 28 samples, and all were shown to be P simium, indicative of zoonotic transmission of this species to human beings in this region. Sequencing of the whole mitochondrial genome of three of these cases showed that P simium is most closely related to P vivax parasites from South America. The malaria outbreaks in this region were caused by P simium, previously considered to be a monkey-specific malaria parasite, related to but distinct from P vivax, and which has never

  9. Plasmodium vivax Biology: Insights Provided by Genomics, Transcriptomics and Proteomics

    Science.gov (United States)

    Bourgard, Catarina; Albrecht, Letusa; Kayano, Ana C. A. V.; Sunnerhagen, Per; Costa, Fabio T. M.

    2018-01-01

    During the last decade, the vast omics field has revolutionized biological research, especially the genomics, transcriptomics and proteomics branches, as technological tools become available to the field researcher and allow difficult question-driven studies to be addressed. Parasitology has greatly benefited from next generation sequencing (NGS) projects, which have resulted in a broadened comprehension of basic parasite molecular biology, ecology and epidemiology. Malariology is one example where application of this technology has greatly contributed to a better understanding of Plasmodium spp. biology and host-parasite interactions. Among the several parasite species that cause human malaria, the neglected Plasmodium vivax presents great research challenges, as in vitro culturing is not yet feasible and functional assays are heavily limited. Therefore, there are gaps in our P. vivax biology knowledge that affect decisions for control policies aiming to eradicate vivax malaria in the near future. In this review, we provide a snapshot of key discoveries already achieved in P. vivax sequencing projects, focusing on developments, hurdles, and limitations currently faced by the research community, as well as perspectives on future vivax malaria research. PMID:29473024

  10. Prevalence of malaria and typhoid co-infections in University of ...

    African Journals Online (AJOL)

    Mixed infection of malaria caused by Plasmodium species and typhoid fever caused by Salmonella species is often observed in areas where malaria is endemic, and the infection with Salmonella species has been considered by some medical and non-medical personnels to be associated with the malaria parasite infection ...

  11. GAMBARAN PENGGUNAAN RAPID DIAGNOSTIC TEST PARASIT MALARIA DI DESA PASIRMUKTI KECAMATAN CINEAM KABUPATEN TASIKMALAYA

    Directory of Open Access Journals (Sweden)

    Hubullah Fuadzy

    2013-12-01

    Full Text Available Abstract. High mobility amongst mining workers, demanding officer of Cineam Public Health Center can perform rapid diagnosis to the workers. Nowadays, many techniques are developed to detect the early transmission of malaria, begins from the clinical to the molecular, one of that techniques are Rapid Diagnostic Tests (RDTs. This research has been conducted in the village of Pasirmukti district Cineam, Tasikmalaya in 2012. Objective of this paper is description RDT utilities as rapid diagnosing efforts on families who have family members as mine worker malaria endemic areas. Inclusion criteria for this study were family who have and do not have family members were working as workers in malaria-endemic areas at 2011 or 2012. Respondents were willing to participate in this study would be taken for examination RDT. Respondents were willing to participate in this study amounted to 256 people, and 5 of them positive Plasmodium malaria based on RDTs screening. Respondents who positive for malaria on RDTs test were 4 women with lower education background and work as a housewife, then a men with a background of secondary school education and are currently still as student. RDT is one of the malaria parasite tools which suitable for use in the Pasirmukti Village district Cineam - Tasikmalaya. However, keep in mind on how to storage and use in order to avoid errors both false-positive and false negatives test results.   Keywords: rapid diagnostic tests, malaria, Tasikmalaya Abstrak. Mobilitas yang tinggi penduduk Cineam  menuju wilayah pertambangan emas diluar pulau Jawa, menuntut tenaga kesehatan di Puskesmas Cineam dapat melakukan diagnosa dini penyakit malaria terhadap para pekerja tambang tersebut. Saat ini, banyak dikembangkan teknik untuk mendeteksi penularan penyakit malaria secara dini, mulai dari yang bersifat klinis hingga molekuler, diantaranya adalah Rapid Diagnostic Tests (RDTs. Untuk mengetahui gambaran pemanfaatan RDT di Cineam perlu

  12. Randomized, placebo-controlled trial of atovaquone/proguanil for the prevention of Plasmodium falciparum or Plasmodium vivax malaria among migrants to Papua, Indonesia.

    Science.gov (United States)

    Ling, Judith; Baird, J Kevin; Fryauff, David J; Sismadi, Priyanto; Bangs, Michael J; Lacy, Mark; Barcus, Mazie J; Gramzinski, Robert; Maguire, Jason D; Kumusumangsih, Marti; Miller, Gerri B; Jones, Trevor R; Chulay, Jeffrey D; Hoffman, Stephen L

    2002-10-01

    The increasing prevalence of resistance to antimalarial drugs reduces options for malaria prophylaxis. Atovaquone/proguanil (Malarone; GlaxoSmithKline) has been >95% effective in preventing Plasmodium falciparum malaria in lifelong residents of areas of holoendemicity, but data from persons without clinical immunity or who are at risk for Plasmodium vivax malaria have not been described. We conducted a randomized, double-blinded study involving 297 people from areas of nonendemicity in Indonesia who migrated to Papua (where malaria is endemic) proguanil hydrochloride; n=148) or placebo (n=149) per day for 20 weeks. Hematologic and clinical chemistry values did not change significantly. The protective efficacy of atovaquone/proguanil was 84% (95% confidence interval [CI], 44%-95%) for P. vivax malaria, 96% (95% CI, 72%-99%) for P. falciparum malaria, and 93% (95% CI, 77%-98%) overall. Atovaquone/proguanil was well tolerated, safe, and effective for the prevention of drug-resistant P. vivax and P. falciparum malaria in individuals without prior malaria exposure who migrated to Papua, Indonesia.

  13. Full-length recombinant Plasmodium falciparum VAR2CSA binds specifically to CSPG and induces potent parasite adhesion blocking antibodies

    DEFF Research Database (Denmark)

    Khunrae, Pongsak; Dahlbäck, Madeleine; Nielsen, Morten A

    2010-01-01

    in the pathogenesis of severe P. falciparum infection. In pregnant women the parasites express a single and unique member of the PfEMP1 family named VAR2CSA, which is associated with the ability of the infected erythrocytes to adhere specifically to chondroitin sulphate A (CSA) in the placenta. Several DBL domains......Plasmodium falciparum malaria remains one of the world's leading causes of human suffering and poverty. Each year, the disease takes 1-3 million lives, mainly in sub-Saharan Africa. The adhesion of parasite-infected erythrocytes to the vascular endothelium or the placenta is the key event...

  14. Plasma uric acid levels correlate with inflammation and disease severity in Malian children with Plasmodium falciparum malaria.

    Directory of Open Access Journals (Sweden)

    Tatiana M Lopera-Mesa

    Full Text Available Plasmodium falciparum elicits host inflammatory responses that cause the symptoms and severe manifestations of malaria. One proposed mechanism involves formation of immunostimulatory uric acid (UA precipitates, which are released from sequestered schizonts into microvessels. Another involves hypoxanthine and xanthine, which accumulate in parasitized red blood cells (RBCs and may be converted by plasma xanthine oxidase to UA at schizont rupture. These two forms of 'parasite-derived' UA stimulate immune cells to produce inflammatory cytokines in vitro.We measured plasma levels of soluble UA and inflammatory cytokines and chemokines (IL-6, IL-10, sTNFRII, MCP-1, IL-8, TNFα, IP-10, IFNγ, GM-CSF, IL-1β in 470 Malian children presenting with uncomplicated malaria (UM, non-cerebral severe malaria (NCSM or cerebral malaria (CM. UA levels were elevated in children with NCSM (median 5.74 mg/dl, 1.21-fold increase, 95% CI 1.09-1.35, n = 23, p = 0.0007 and CM (median 5.69 mg/dl, 1.19-fold increase, 95% CI 0.97-1.41, n = 9, p = 0.0890 compared to those with UM (median 4.60 mg/dl, n = 438. In children with UM, parasite density and plasma creatinine levels correlated with UA levels. These UA levels correlated with the levels of seven cytokines [IL-6 (r = 0.259, p<0.00001, IL-10 (r = 0.242, p<0.00001, sTNFRII (r = 0.221, p<0.00001, MCP-1 (r = 0.220, p<0.00001, IL-8 (r = 0.147, p = 0.002, TNFα (r = 0.132, p = 0.006 and IP-10 (r = 0.120, p = 0.012]. In 39 children, UA levels were 1.49-fold (95% CI 1.34-1.65; p<0.0001 higher during their malaria episode [geometric mean titer (GMT 4.67 mg/dl] than when they were previously healthy and aparasitemic (GMT 3.14 mg/dl.Elevated UA levels may contribute to the pathogenesis of P. falciparum malaria by activating immune cells to produce inflammatory cytokines. While this study cannot identify the cause of elevated UA levels, their association with parasite density and creatinine levels suggest that parasite-derived UA

  15. Premunition in Plasmodium falciparum malaria

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-08

    Mar 8, 2010 ... antigenic polymorphism, shedding of parts of parasite proteins, cross-reactive epitopes of antigens of ... Due to the lack of HLA molecules on the surface of the .... Susceptibility and death rates in P. falciparum malaria are.

  16. The Plasmodium serine-type SERA proteases display distinct expression patterns and non-essential in vivo roles during life cycle progression of the malaria parasite.

    Science.gov (United States)

    Putrianti, Elyzana D; Schmidt-Christensen, Anja; Arnold, Iris; Heussler, Volker T; Matuschewski, Kai; Silvie, Olivier

    2010-06-01

    Parasite proteases play key roles in several fundamental steps of the Plasmodium life cycle, including haemoglobin degradation, host cell invasion and parasite egress. Plasmodium exit from infected host cells appears to be mediated by a class of papain-like cysteine proteases called 'serine repeat antigens' (SERAs). A SERA subfamily, represented by Plasmodium falciparum SERA5, contains an atypical active site serine residue instead of a catalytic cysteine. Members of this SERAser subfamily are abundantly expressed in asexual blood stages, rendering them attractive drug and vaccine targets. In this study, we show by antibody localization and in vivo fluorescent tagging with the red fluorescent protein mCherry that the two P. berghei serine-type family members, PbSERA1 and PbSERA2, display differential expression towards the final stages of merozoite formation. Via targeted gene replacement, we generated single and double gene knockouts of the P. berghei SERAser genes. These loss-of-function lines progressed normally through the parasite life cycle, suggesting a specialized, non-vital role for serine-type SERAs in vivo. Parasites lacking PbSERAser showed increased expression of the cysteine-type PbSERA3. Compensatory mechanisms between distinct SERA subfamilies may thus explain the absence of phenotypical defect in SERAser disruptants, and challenge the suitability to develop potent antimalarial drugs based on specific inhibitors of Plasmodium serine-type SERAs.

  17. Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing

    OpenAIRE

    Manske, Magnus; Miotto, Olivo; Campino, Susana; Auburn, Sarah; Almagro-Garcia, Jacob; Maslen, Gareth; O?Brien, Jack; Djimde, Abdoulaye; Doumbo, Ogobara; Zongo, Issaka; Ouedraogo, Jean-Bosco; Michon, Pascal; Mueller, Ivo; Siba, Peter; Nzila, Alexis

    2012-01-01

    : Malaria elimination strategies require surveillance of the parasite population for genetic changes that demand a public health response, such as new forms of drug resistance. Here we describe methods for the large-scale analysis of genetic variation in Plasmodium falciparum by deep sequencing of parasite DNA obtained from the blood of patients with malaria, either directly or after short-term culture. Analysis of 86,158 exonic single nucleotide polymorphisms that passed genotyping quality c...

  18. Nonobese Diabetic (NOD Mice Lack a Protective B-Cell Response against the “Nonlethal” Plasmodium yoelii 17XNL Malaria Protozoan

    Directory of Open Access Journals (Sweden)

    Mirian Mendoza

    2016-01-01

    Full Text Available Background. Plasmodium yoelii 17XNL is a nonlethal malaria strain in mice of different genetic backgrounds including the C57BL/6 mice (I-Ab/I-Enull used in this study as a control strain. We have compared the trends of blood stage infection with the nonlethal murine strain of P. yoelii 17XNL malaria protozoan in immunocompetent Nonobese Diabetic (NOD mice prone to type 1 diabetes (T1D and C57BL/6 mice (control mice that are not prone to T1D and self-cure the P. yoelii 17XNL infection. Prediabetic NOD mice could not mount a protective antibody response to the P. yoelii 17XNL-infected red blood cells (iRBCs, and they all succumbed shortly after infection. Our data suggest that the lack of anti-P. yoelii 17XNL-iRBCs protective antibodies in NOD mice is a result of parasite-induced, Foxp3+ T regulatory (Treg cells able to suppress the parasite-specific antibody secretion. Conclusions. The NOD mouse model may help in identifying new mechanisms of B-cell evasion by malaria parasites. It may also serve as a more accurate tool for testing antimalaria therapeutics due to the lack of interference with a preexistent self-curing mechanism present in other mouse strains.

  19. In vitro synergistic effect of fluoroquinolone analogues in combination with artemisinin against Plasmodium falciparum; their antiplasmodial action in rodent malaria model.

    Science.gov (United States)

    Agarwal, Drishti; Sharma, Manish; Dixit, Sandeep K; Dutta, Roshan K; Singh, Ashok K; Gupta, Rinkoo D; Awasthi, Satish K

    2015-02-05

    Emergence of drug-resistant parasite strains has surfaced as a major obstacle in attempts to ameliorate malaria. Current treatment regimen of malaria relies on the concept of artemisinin-based combination therapy (ACT). Fluoroquinolone analogues, compounds 10, 12 and 18 were investigated for their anti-malarial interaction in combination with artemisinin in vitro, against Plasmodium falciparum 3D7 strain, employing fixed-ratio combination isobologram method. In addition, the efficacy of these compounds was evaluated intraperitoneally in BALB/c mice infected with chloroquine-resistant Plasmodium berghei ANKA strain in the Peters' four-day suppressive test. Promising results were obtained in the form of synergistic or additive interactions. Compounds 10 and 12 were found to have highly synergistic interactions with artemisinin. Antiplasmodial effect was further verified by the convincing ED50 values of these compounds, which ranged between 2.31 and 3.09 (mg/kg BW). In vivo studies substantiated the potential of the fluoroquinolone derivatives to be developed as synergistic partners for anti-malarial drug combinations.

  20. Parasite prevalence corresponds to host life history in a diverse assemblage of afrotropical birds and haemosporidian parasites.

    Directory of Open Access Journals (Sweden)

    Holly L Lutz

    Full Text Available Avian host life history traits have been hypothesized to predict rates of infection by haemosporidian parasites. Using molecular techniques, we tested this hypothesis for parasites from three haemosporidian genera (Plasmodium, Haemoproteus, and Leucocytozoon collected from a diverse sampling of birds in northern Malawi. We found that host life history traits were significantly associated with parasitism rates by all three parasite genera. Nest type and nest location predicted infection probability for all three parasite genera, whereas flocking behavior is an important predictor of Plasmodium and Haemoproteus infection and habitat is an important predictor of Leucocytozoon infection. Parasite prevalence was 79.1% across all individuals sampled, higher than that reported for comparable studies from any other region of the world. Parasite diversity was also exceptionally high, with 248 parasite cytochrome b lineages identified from 152 host species. A large proportion of Plasmodium, Haemoproteus, and Leucocytozoon parasite DNA sequences identified in this study represent new, previously undocumented lineages (n = 201; 81% of total identified based on BLAST queries against the avian malaria database, MalAvi.

  1. cAMP-Signalling Regulates Gametocyte-Infected Erythrocyte Deformability Required for Malaria Parasite Transmission.

    Directory of Open Access Journals (Sweden)

    Ghania Ramdani

    2015-05-01

    Full Text Available Blocking Plasmodium falciparum transmission to mosquitoes has been designated a strategic objective in the global agenda of malaria elimination. Transmission is ensured by gametocyte-infected erythrocytes (GIE that sequester in the bone marrow and at maturation are released into peripheral blood from where they are taken up during a mosquito blood meal. Release into the blood circulation is accompanied by an increase in GIE deformability that allows them to pass through the spleen. Here, we used a microsphere matrix to mimic splenic filtration and investigated the role of cAMP-signalling in regulating GIE deformability. We demonstrated that mature GIE deformability is dependent on reduced cAMP-signalling and on increased phosphodiesterase expression in stage V gametocytes, and that parasite cAMP-dependent kinase activity contributes to the stiffness of immature gametocytes. Importantly, pharmacological agents that raise cAMP levels in transmissible stage V gametocytes render them less deformable and hence less likely to circulate through the spleen. Therefore, phosphodiesterase inhibitors that raise cAMP levels in P. falciparum infected erythrocytes, such as sildenafil, represent new candidate drugs to block transmission of malaria parasites.

  2. An impossible journey? The development of Plasmodium falciparum NF54 in Culex quinquefasciatus.

    Directory of Open Access Journals (Sweden)

    Julia Knöckel

    Full Text Available Although Anopheles mosquitoes are the vectors for human Plasmodium spp., there are also other mosquito species-among them culicines (Culex spp., Aedes spp.-present in malaria-endemic areas. Culicine mosquitoes transmit arboviruses and filarial worms to humans and are vectors for avian Plasmodium spp., but have never been observed to transmit human Plasmodium spp. When ingested by a culicine mosquito, parasites could either face an environment that does not allow development due to biologic incompatibility or be actively killed by the mosquito's immune system. In the latter case, the molecular mechanism of killing must be sufficiently powerful that Plasmodium is not able to overcome it. To investigate how human malaria parasites develop in culicine mosquitoes, we infected Culex quinquefasciatus with Plasmodium falciparum NF54 and monitored development of parasites in the blood bolus and midgut epithelium at different time points. Our results reveal that ookinetes develop in the midgut lumen of C. quinquefasciatus in slightly lower numbers than in Anopheles gambiae G3. After 30 hours, parasites have invaded the midgut and can be observed on the basal side of the midgut epithelium by confocal and transmission electron microscopy. Very few of the parasites in C. quinquefasciatus are alive, most of them are lysed. Eight days after the mosquito's blood meal, no oocysts can be found in C. quinquefasciatus. Our results suggest that the mosquito immune system could be involved in parasite killing early in development after ookinetes have crossed the midgut epithelium and come in contact with the mosquito hemolymph.

  3. Stress Response and Artemisinin Resistance in Malaria Parasite

    Science.gov (United States)

    2017-07-01

    AWARD NUMBER: W81XWH-16-1-0241 TITLE: Stress Response and Artemisinin Resistance in Malaria Parasite PRINCIPAL INVESTIGATOR: Juan C. Pizarro...SUBTITLE Stress Response and Artemisinin Resistance in Malaria Parasite 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-16-1-0241 5c. PROGRAM ELEMENT...13. SUPPLEMENTARY NOTES 14. ABSTRACT In malaria , drug resistance is a major treat to disease control efforts. Unfortunately, there is a significant

  4. A molecular survey of acute febrile illnesses reveals Plasmodium vivax infections in Kedougou, southeastern Senegal.

    Science.gov (United States)

    Niang, Makhtar; Thiam, Laty Gaye; Sow, Abdourahmane; Loucoubar, Cheikh; Bob, Ndeye Sakha; Diop, Fode; Diouf, Babacar; Niass, Oumy; Mansourou, Annick; Varela, Marie Louise; Perraut, Ronald; Sall, Amadou A; Toure-Balde, Aissatou

    2015-07-19

    Control efforts towards malaria due to Plasmodium falciparum significantly decreased the incidence of the disease in many endemic countries including Senegal. Surprisingly, in Kedougou (southeastern Senegal) P. falciparum malaria remains highly prevalent and the relative contribution of other Plasmodium species to the global malaria burden is very poorly documented, partly due to the low sensitivity of routine diagnostic tools. Molecular methods offer better estimate of circulating Plasmodium species in a given area. A molecular survey was carried out to document circulating malaria parasites in Kedougou region. A total of 263 long-term stored sera obtained from patients presenting with acute febrile illness in Kedougou between July 2009 and July 2013 were used for malaria parasite determination. Sera were withdrawn from a collection established as part of a surveillance programme of arboviruses infections in the region. Plasmodium species were characterized by a nested PCR-based approach targeting the 18S small sub-unit ribosomal RNA genes of Plasmodium spp. Of the 263 sera screened in this study, Plasmodium genomic DNA was amplifiable by nested PCR from 62.35% (164/263) of samples. P. falciparum accounted for the majority of infections either as single in 85.97% (141/164) of Plasmodium-positive samples or mixed with Plasmodium ovale (11.58%, 19/164) or Plasmodium vivax (1.21%, 2/164). All 19 (11.58%) P. ovale-infected patients were mixed with P. falciparum, while no Plasmodium malariae was detected in this survey. Four patients (2.43%) were found to be infected by P. vivax, two of whom were mixed with P. falciparum. P. vivax infections originated from Bandafassi and Ninefesha villages and concerned patients aged 4, 9, 10, and 15 years old, respectively. DNA sequences alignment and phylogenetic analysis demonstrated that sequences from Kedougou corresponded to P. vivax, therefore confirming the presence of P. vivax infections in Senegal. The results confirm the

  5. Individual-level factors associated with the risk of acquiring human Plasmodium knowlesi malaria in Malaysia: a case-control study.

    Science.gov (United States)

    Grigg, Matthew J; Cox, Jonathan; William, Timothy; Jelip, Jenarun; Fornace, Kimberly M; Brock, Patrick M; von Seidlein, Lorenz; Barber, Bridget E; Anstey, Nicholas M; Yeo, Tsin W; Drakeley, Christopher J

    2017-06-09

    The emergence of human malaria due to the monkey parasite Plasmodium knowlesi threatens elimination efforts in southeast Asia. Changes in land use are thought to be driving the rise in reported P knowlesi cases, but the role of individual-level factors is unclear. To address this knowledge gap we assessed human and environmental factors associated with zoonotic knowlesi malaria risk. We did this population-based case-control study over a 2 year period in the state of Sabah in Malaysia. We enrolled cases with microscopy-positive, PCR-confirmed malaria who presented to two primary referral hospitals serving the adjacent districts of Kudat and Kota Marudu. We randomly selected three malaria-negative community controls per case, who were matched by village within 2 weeks of case detection. We obtained questionnaire data on demographics, behaviour, and residential malaria risk factors, and we also assessed glucose-6-phosphate dehydrogenase (G6PD) enzyme activity. We used conditional logistic regression models to evaluate exposure risk between P knowlesi cases and controls, and between P knowlesi and human-only Plasmodium spp malaria cases. From Dec 5, 2012, to Jan 30, 2015, we screened 414 patients and subsequently enrolled 229 cases with P knowlesi malaria mono-infection and 91 cases with other Plasmodium spp infection. We enrolled 953 matched controls, including 683 matched to P knowlesi cases and 270 matched to non- P knowlesi cases. Age 15 years or older (adjusted odds ratio [aOR] 4·16, 95% CI 2·09-8·29, pwork (3·50, CI, 1·34-9·15, p=0·011), sleeping outside (3·61, 1·48-8·85, p=0·0049), travel (2·48, 1·45-4·23, p=0·0010), being aware of the presence of monkeys in the past 4 weeks (3·35, 1·91-5·88, pworking in agricultural areas were at highest risk of knowlesi malaria, although peri-domestic transmission also occurrs. Human behavioural factors associated with P knowlesi transmission could be targeted in future public health interventions. United

  6. Resistance of a rodent malaria parasite to a thymidylate synthase inhibitor induces an apoptotic parasite death and imposes a huge cost of fitness.

    Science.gov (United States)

    Muregi, Francis W; Ohta, Isao; Masato, Uchijima; Kino, Hideto; Ishih, Akira

    2011-01-01

    The greatest impediment to effective malaria control is drug resistance in Plasmodium falciparum, and thus understanding how resistance impacts on the parasite's fitness and pathogenicity may aid in malaria control strategy. To generate resistance, P. berghei NK65 was subjected to 5-fluoroorotate (FOA, an inhibitor of thymidylate synthase, TS) pressure in mice. After 15 generations of drug pressure, the 2% DT (the delay time for proliferation of parasites to 2% parasitaemia, relative to untreated wild-type controls) reduced from 8 days to 4, equalling the controls. Drug sensitivity studies confirmed that FOA-resistance was stable. During serial passaging in the absence of drug, resistant parasite maintained low growth rates (parasitaemia, 15.5%±2.9, 7 dpi) relative to the wild-type (45.6%±8.4), translating into resistance cost of fitness of 66.0%. The resistant parasite showed an apoptosis-like death, as confirmed by light and transmission electron microscopy and corroborated by oligonucleosomal DNA fragmentation. The resistant parasite was less fit than the wild-type, which implies that in the absence of drug pressure in the field, the wild-type alleles may expand and allow drugs withdrawn due to resistance to be reintroduced. FOA resistance led to depleted dTTP pools, causing thymineless parasite death via apoptosis. This supports the tenet that unicellular eukaryotes, like metazoans, also undergo apoptosis. This is the first report where resistance to a chemical stimulus and not the stimulus itself is shown to induce apoptosis in a unicellular parasite. This finding is relevant in cancer therapy, since thymineless cell death induced by resistance to TS-inhibitors can further be optimized via inhibition of pyrimidine salvage enzymes, thus providing a synergistic impact. We conclude that since apoptosis is a process that can be pharmacologically modulated, the parasite's apoptotic machinery may be exploited as a novel drug target in malaria and other protozoan

  7. Variant surface antigen-specific IgG and protection against clinical consequences of pregnancy-associated Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Staalsoe, Trine; Shulman, Caroline E; Bulmer, Judith N

    2004-01-01

    BACKGROUND: Pregnancy-associated malaria caused by Plasmodium falciparum adherence to chondroitin sulfate A in the placental intervillous space is a major cause of low birthweight and maternal anaemia in areas of endemic P falciparum transmission. Adhesion-blocking antibodies that specifically...... recognise parasite-encoded variant surface antigens (VSA) are associated with resistance to pregnancy-associated malaria. We looked for a possible relation between VSA-specific antibody concentrations, placental infection, and protection from low birthweight and maternal anaemia. METHODS: We used flow...... cytometry to measure VSA-specific IgG concentrations in plasma samples taken during child birth from 477 Kenyan women selected from a cohort of 910 women on the basis of HIV-1 status, gravidity, and placental histology. We measured VSA expressed by one placental P falciparum isolate and two isolates...

  8. Dynamics of malaria transmission and susceptibility to clinical malaria episodes following treatment of Plasmodium falciparum asymptomatic carriers: results of a cluster-randomized study of community-wide screening and treatment, and a parallel entomology study.

    Science.gov (United States)

    Tiono, Alfred B; Guelbeogo, Moussa W; Sagnon, N Falé; Nébié, Issa; Sirima, Sodiomon B; Mukhopadhyay, Amitava; Hamed, Kamal

    2013-11-12

    In malaria-endemic countries, large proportions of individuals infected with Plasmodium falciparum are asymptomatic and constitute a reservoir of parasites for infection of newly hatched mosquitoes. Two studies were run in parallel in Burkina Faso to evaluate the impact of systematic identification and treatment of asymptomatic carriers of P. falciparum, detected by rapid diagnostic test, on disease transmission and susceptibility to clinical malaria episodes. A clinical study assessed the incidence of symptomatic malaria episodes with a parasite density >5,000/μL after three screening and treatment campaigns ~1 month apart before the rainy season; and an entomological study determined the effect of these campaigns on malaria transmission as measured by entomological inoculation rate. The intervention arm had lower prevalence of asymptomatic carriers of asexual parasites and lower prevalence of gametocyte carriers during campaigns 2 and 3 as compared to the control arm. During the entire follow-up period, out of 13,767 at-risk subjects, 2,516 subjects (intervention arm 1,332; control arm 1,184) had symptomatic malaria. Kaplan-Meier analysis of the incidence of first symptomatic malaria episode with a parasite density >5,000/μL showed that, in the total population, the two treatment arms were similar until Week 11-12 after campaign 3, corresponding with the beginning of the malaria transmission season, after which the probability of being free of symptomatic malaria was lower in the intervention arm (logrank p entomological inoculation rate was comparable in both arms, with September peaks in both indices. Community screening and targeted treatment of asymptomatic carriers of P. falciparum had no effect on the dynamics of malaria transmission, but seemed to be associated with an increase in the treated community's susceptibility to symptomatic malaria episodes after the screening campaigns had finished. These results highlight the importance of further

  9. The Development of Plasmodium falciparum-Specific IL10 CD4 T Cells and Protection from Malaria in Children in an Area of High Malaria Transmission.

    Science.gov (United States)

    Boyle, Michelle J; Jagannathan, Prasanna; Bowen, Katherine; McIntyre, Tara I; Vance, Hilary M; Farrington, Lila A; Schwartz, Alanna; Nankya, Felistas; Naluwu, Kate; Wamala, Samuel; Sikyomu, Esther; Rek, John; Greenhouse, Bryan; Arinaitwe, Emmanuel; Dorsey, Grant; Kamya, Moses R; Feeney, Margaret E

    2017-01-01

    Cytokine-producing CD4 T cells have important roles in immunity against Plasmodium falciparum (Pf) malaria. However, the factors influencing functional differentiation of Pf- specific CD4 T cells in naturally exposed children are not well understood. Moreover, it is not known which CD4 T-cell cytokine-producing subsets are most critical for protection. We measured Pf- specific IFNγ-, IL10-, and TNFα-producing CD4 T-cell responses by multi-parametric flow cytometry in 265 children aged 6 months to 10 years enrolled in a longitudinal observational cohort in a high malaria transmission site in Uganda. We found that both age and parasite burden were independently associated with cytokine production by CD4 T cells. IL10 production by IFNγ + CD4 T cells was higher in younger children and in those with high-parasite burden during recent infection. To investigate the role of CD4 T cells in immunity to malaria, we measured associations of Pf -specific CD4 cytokine-producing cells with the prospective risk of Pf infection and clinical malaria, adjusting for household exposure to Pf -infected mosquitos. Overall, the prospective risk of infection was not associated with the total frequency of Pf- specific CD4 T cells, nor of any cytokine-producing CD4 subset. However, the frequency of CD4 cells producing IL10 but not inflammatory cytokines (IFNγ and TNFα) was associated with a decreased risk of clinical malaria once infected. These data suggest that functional polarization of the CD4 T-cell response may modulate the clinical manifestations of malaria and play a role in naturally acquired immunity.

  10. Molecular architecture of a complex between an adhesion protein from the malaria parasite and intracellular adhesion molecule 1

    DEFF Research Database (Denmark)

    Brown, Alan; Turner, Louise; Christoffersen, Stig

    2013-01-01

    The adhesion of Plasmodium falciparum-infected erythrocytes to human tissues or endothelium is central to the pathology caused by the parasite during malaria. It contributes to the avoidance of parasite clearance by the spleen and to the specific pathologies of cerebral and placental malaria....... The PfEMP1 family of adhesive proteins is responsible for this sequestration by mediating interactions with diverse human ligands. In addition, as the primary targets of acquired, protective immunity, the PfEMP1s are potential vaccine candidates. PfEMP1s contain large extracellular ectodomains made from......, intercellular adhesion molecule-1 (ICAM-1). We show through small angle x-ray scattering that IT4VAR13 is rigid, elongated, and monomeric. We also show that it interacts with ICAM-1 through the DBLß domain alone, forming a 1:1 complex. These studies provide a first low resolution structural view of a PfEMP1...

  11. Cell based assays for anti-Plasmodium activity evaluation.

    Science.gov (United States)

    Mokgethi-Morule, Thabang; N'Da, David D

    2016-03-10

    Malaria remains one of the most common and deadly infectious diseases worldwide. The severity of this global public health challenge is reflected by the approximately 198 million people, who were reportedly infected in 2013 and by the more than 584,000 related deaths in that same year. The rising emergence of drug resistance towards the once effective artemisinin combination therapies (ACTs) has become a serious concern and warrants more robust drug development strategies, with the objective of eradicating malaria infections. The intricate biology and life cycle of Plasmodium parasites complicate the understanding of the disease in such a way that would enhance the development of more effective chemotherapies that would achieve radical clinical cure and that would prevent disease relapse. Phenotypic cell based assays have for long been a valuable approach and involve the screening and analysis of diverse compounds with regards to their activities towards whole Plasmodium parasites in vitro. To achieve the Millennium Development Goal (MDG) of malaria eradication by 2020, new generation drugs that are active against all parasite stages (erythrocytic (blood), exo-erythrocytic (liver stages and gametocytes)) are needed. Significant advances are being made in assay development to overcome some of the practical challenges of assessing drug efficacy, particularly in the liver and transmission stage Plasmodium models. This review discusses primary screening models and the fundamental progress being made in whole cell based efficacy screens of anti-malarial activity. Ongoing challenges and some opportunities for improvements in assay development that would assist in the discovery of effective, safe and affordable drugs for malaria treatments are also discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Plasmodium falciparum erythrocyte invasion: combining function with immune evasion.

    Directory of Open Access Journals (Sweden)

    Gavin J Wright

    2014-03-01

    Full Text Available All the symptoms and pathology of malaria are caused by the intraerythrocytic stages of the Plasmodium parasite life cycle. Because Plasmodium parasites cannot replicate outside a host cell, their ability to recognize and invade erythrocytes is an essential step for both parasite survival and malaria pathogenesis. This makes invasion a conceptually attractive vaccine target, especially because it is one of the few stages when the parasite is directly exposed to the host humoral immune system. This apparent vulnerability, however, has been countered by the parasite, which has evolved sophisticated molecular mechanisms to evade the host immune response so that parasites asymptomatically replicate within immune individuals. These mechanisms include the expansion of parasite invasion ligands, resulting in multiple and apparently redundant invasion "pathways", highly polymorphic parasite surface proteins that are immunologically distinct, and parasite proteins which are poorly immunogenic. These formidable defences have so far thwarted attempts to develop an effective blood-stage vaccine, leading many to question whether there really is an exploitable chink in the parasite's immune evasion defences. Here, we review recent advances in the molecular understanding of the P. falciparum erythrocyte invasion field, discuss some of the challenges that have so far prevented the development of blood-stage vaccines, and conclude that the parasite invasion ligand RH5 represents an essential pinch point that might be vulnerable to vaccination.

  13. Ecology and diagnosis of introduced avian malaria in Hawaiian forest birds

    Science.gov (United States)

    Atkinson, Carter T.

    2005-01-01

    Avian malaria is a disease caused by species of protozoan parasites (Plasmodium) that infect birds. Related species commonly infect reptiles, birds and mammals in tropical and temperate regions of the world. Transmitted by mosquitoes, the parasites spend part of their lives in the red blood cells of birds (Figure 1). Avian malaria is common in continental areas, but is absent from the most isolated island archipelagos where mosquitoes do not naturally occur. More than 40 different species of avian Plasmodium have been described, but only one, P. relictum, has been introduced to the Hawaiian Islands. Because they evolved without natural exposure to avian malaria, native Hawaiian honeycreepers are extremely susceptible to this disease. Malaria currently limits the geographic distribution of native species, has population level impacts on survivorship, and is limiting the recovery of threatened and endangered species of forest birds.

  14. Plasmodium falciparum secretome in erythrocyte and beyond

    Directory of Open Access Journals (Sweden)

    Rani eSoni

    2016-02-01

    Full Text Available Plasmodium falciparum is the causative agent of deadly malaria disease. It is an intracellular eukaryote and completes its multi-stage life cycle spanning the two hosts viz, mosquito and human. In order to habituate within host environment, parasite conform several strategies to evade host immune responses such as surface antigen polymorphism or modulation of host immune system and it is mediated by secretion of proteins from parasite to the host erythrocyte and beyond, collectively known as, malaria secretome. In this review, we will discuss about the deployment of parasitic secretory protein in mechanism implicated for immune evasion, protein trafficking, providing virulence, changing permeability and cyto-adherence of infected erythrocyte. We will be covering the possibilities of developing malaria secretome as a drug/vaccine target. This gathered information will be worthwhile in depicting a well-organized picture for host-pathogen interplay during the malaria infection and may also provide some clues for development of novel anti-malarial therapies.

  15. BDA-410: a novel synthetic calpain inhibitor active against blood stage malaria.

    Science.gov (United States)

    Li, Xuerong; Chen, Huiqing; Jeong, Jong-Jin; Chishti, Athar H

    2007-09-01

    Falcipains, the papain-family cysteine proteases of the Plasmodium falciparum, are potential drug targets for malaria parasite. Pharmacological inhibition of falcipains can block the hydrolysis of hemoglobin, parasite development, and egress, suggesting that falcipains play a key role at the blood stage of parasite life cycle. In the present study, we evaluated the anti-malarial effects of BDA-410, a novel cysteine protease inhibitor as a potential anti-malarial drug. Recombinant falcipain (MBP-FP-2B) and P. falciparum trophozoite extract containing native falcipains were used for enzyme inhibition studies in vitro. The effect of BDA-410 on the malaria parasite development in vitro as well as its anti-malarial activity in vivo was evaluated using the Plasmodium chabaudi infection rodent model. The 50% inhibitory concentrations of BDA-410 were determined to be 628 and 534nM for recombinant falcipain-2B and parasite extract, respectively. BDA-410 inhibited the malaria parasite growth in vitro with an IC(50) value of 173nM causing irreversible damage to the intracellular parasite. In vivo, the BDA-410 delayed the progression of malaria infection significantly using a mouse model of malaria pathogenesis. The characterization of BDA-410 as a potent inhibitor of P. falciparum cysteine proteases, and the demonstration of its efficacy in blocking parasite growth both in vitro and in vivo assays identifies BDA-410 is an important lead compound for the development of novel anti-malarial drugs.

  16. Estimating sequestered parasite population dynamics in cerebral malaria

    NARCIS (Netherlands)

    Gravenor, M. B.; van Hensbroek, M. B.; Kwiatkowski, D.

    1998-01-01

    Clinical investigation of malaria is hampered by the lack of a method for estimating the number of parasites that are sequestered in the tissues, for it is these parasites that are thought to be crucial to the pathogenesis of life-threatening complications such as cerebral malaria. We present a

  17. Structural Studies on Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) Malaria Antigens Using Small Angle X-Ray Scattering (SAXS)

    DEFF Research Database (Denmark)

    Christoffersen, Stig

    Chemistry (App I) [1]. VAR2CSA binds specifically to CSA in the placental tissue of pregnant women hereby causing severe malaria symptoms endangering both mother and child. The minimal VAR2CSA region required to effectively bind CSA was determined to be the N-terminal DBL domain, DBL2X which we locate......Infection with the pathogenic Plasmodium falciparum parasite causes the potentially deadly Malaria disease which leads to over 1 million fatalities each year according to the WHO (World Health Organization). Individuals subjected to multiple infections gradually become immune to the disease...... symptoms and vaccine research is focused on trying to mimic or advance this immune acquisition. Immunity is primarily caused by acquisition of antibodies directed against a family of Plasmodium protein antigens called PfEMP1s located on the surface of infected erythrocytes. The PfEMP1 proteins are adhesive...

  18. In vivo effect of chronic nicotine exposure on outcome of Plasmodium berghei ANKA malaria

    Directory of Open Access Journals (Sweden)

    Tsige Ketema

    2017-04-01

    Full Text Available Objective: To assess effect of nicotine, major addictive component of tobacco smoke, on outcomes of the deadly malaria parasite using mice as animal model. Methods: Male Swiss albino mice were treated with 100 and 200 µg/mL of nicotine in drinking water daily for 6 weeks followed by Plasmodium berghei ANKA (PbA infection. On the seventh day of post infection (p.i., physical, clinical, histopathological, biochemical and hematological parameters were assessed. Data were analyzed using SPSS software. Results: Nicotine was significantly (P < 0.05 positively associated with lower levels of hemoglobin (Hb, hematocrit (HCT, red blood cells (RBCs, C-reactive protein (CRP and uric acid (UA, higher risk to incidence of pulmonary edema, elevated level of liver and kidney biomarkers. Also significant increment (P < 0.01 of monocyte-lymphocyte count ratio (MLCR was observed. Risk to high temperature, lower platelet count, high parastemia and cerebral malaria was lesser in mice treated with nicotine (100 and 200 µg/mL followed by PbA infection than the positive control. Lack of neurological symptoms might be accounted to the anti-inflammatory property of nicotine that could inhibit production of pro-inflammatory mediators responsible for occurrence of cerebral malaria. Conclusions: This study showed that despite down regulation of most cerebral malaria symptoms nicotine was strongly associated with increased risk to most clinical symptoms of malaria. Thus, like in respiratory infections, nicotine use might enhance susceptibility to malaria.

  19. Malaria, desnutrición y parasitosis intestinal en los niños colombianos: interrelaciones interrrelations between malaria, malnutrition and intestinal parasitism in colombian children

    Directory of Open Access Journals (Sweden)

    Jaime Carmona Fonseca

    2004-09-01

    . lamblia (20%; 9 el estrés oxidativo se ha encontrado en los pacientes adultos de Turbo con malaria no complicada, ya sea vivax o falciparum, sin diferencia por especie. This paper reviews Colombian data as well as Grupo Malaria (Universidad de Antioquia findings on the relationship between malaria, malnutrition and immune response, observed in children (4-11 year old of Turbo, El Bagre and Zaragoza. These results and interpretations articulate with other studies about such relationships, including intestinal parasites. Emphasis is made on the association of malaria, intestinal parasites and malnutrition (chronic malnutrition, vitamin A deficit, that is explored through its articulation with the immune system. Clinical application (individual and epidemiological (collective recommendations are formulated towards vitamin A supplementation and use of wide spectrum antihelmintic therapy. In Turbo and El Bagre-Zaragoza: 1 malaria frequency during 1996-2000 registered annual parasite indexes of 39 (Turbo and 156 (El Bagre- Zaragoza; 2 chronic malnutrition risk (height/ age index was 63% in children aged 3-11; 3 anemia was observed in 26% of malaric children and in 17% of the non-malaric ones; 4 retinol was low (<0,3 µg/ml in 65% of children with malaria and in 35% of children without malaria; 5 apoprotein A-1 values were abnormally low in non-malaric children but they were lower in malaric children; 6 interleukin 10 levels were significantly higher in 96% of the malaric children (4-9 year old when compared to non-malaric children and to normal values; 7 total and specific anti-Plasmodium IgE and TNF-α were abnormally high in children of both municipalities; 8 among healthy teachers and nursing students aged 18-44, intestinal parasites were observed in 97%, while intestinal pathogenic parasites were detected in 42%. In 5 year old children of Turbo presence of pathogenic intestinal parasites was detected in 30-35%, with predominance of G. lamblia (20%; 9 oxidative stress was

  20. Selection of drug resistant mutants from random library of Plasmodium falciparum dihydrofolate reductase in Plasmodium berghei model

    Directory of Open Access Journals (Sweden)

    Yuthavong Yongyuth

    2011-05-01

    Full Text Available Abstract Background The prevalence of drug resistance amongst the human malaria Plasmodium species has most commonly been associated with genomic mutation within the parasites. This phenomenon necessitates evolutionary predictive studies of possible resistance mutations, which may occur when a new drug is introduced. Therefore, identification of possible new Plasmodium falciparum dihydrofolate reductase (PfDHFR mutants that confer resistance to antifolate drugs is essential in the process of antifolate anti-malarial drug development. Methods A system to identify mutations in Pfdhfr gene that confer antifolate drug resistance using an animal Plasmodium parasite model was developed. By using error-prone PCR and Plasmodium transfection technologies, libraries of Pfdhfr mutant were generated and then episomally transfected to Plasmodium berghei parasites, from which pyrimethamine-resistant PfDHFR mutants were selected. Results The principal mutation found from this experiment was S108N, coincident with the first pyrimethamine-resistance mutation isolated from the field. A transgenic P. berghei, in which endogenous Pbdhfr allele was replaced with the mutant PfdhfrS108N, was generated and confirmed to have normal growth rate comparing to parental non-transgenic parasite and also confer resistance to pyrimethamine. Conclusion This study demonstrated the power of the transgenic P. berghei system to predict drug-resistant Pfdhfr mutations in an in vivo parasite/host setting. The system could be utilized for identification of possible novel drug-resistant mutants that could arise against new antifolate compounds and for prediction the evolution of resistance mutations.

  1. Disrupting Mosquito Reproduction and Parasite Development for Malaria Control.

    Directory of Open Access Journals (Sweden)

    Lauren M Childs

    2016-12-01

    Full Text Available The control of mosquito populations with insecticide treated bed nets and indoor residual sprays remains the cornerstone of malaria reduction and elimination programs. In light of widespread insecticide resistance in mosquitoes, however, alternative strategies for reducing transmission by the mosquito vector are urgently needed, including the identification of safe compounds that affect vectorial capacity via mechanisms that differ from fast-acting insecticides. Here, we show that compounds targeting steroid hormone signaling disrupt multiple biological processes that are key to the ability of mosquitoes to transmit malaria. When an agonist of the steroid hormone 20-hydroxyecdysone (20E is applied to Anopheles gambiae females, which are the dominant malaria mosquito vector in Sub Saharan Africa, it substantially shortens lifespan, prevents insemination and egg production, and significantly blocks Plasmodium falciparum development, three components that are crucial to malaria transmission. Modeling the impact of these effects on Anopheles population dynamics and Plasmodium transmission predicts that disrupting steroid hormone signaling using 20E agonists would affect malaria transmission to a similar extent as insecticides. Manipulating 20E pathways therefore provides a powerful new approach to tackle malaria transmission by the mosquito vector, particularly in areas affected by the spread of insecticide resistance.

  2. An overview of malaria transmission from the perspective of Amazon Anopheles vectors

    Directory of Open Access Journals (Sweden)

    Paulo FP Pimenta

    2015-02-01

    Full Text Available In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Ano- pheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence.

  3. An overview of malaria transmission from the perspective of Amazon Anopheles vectors

    Science.gov (United States)

    Pimenta, Paulo FP; Orfano, Alessandra S; Bahia, Ana C; Duarte, Ana PM; Ríos-Velásquez, Claudia M; Melo, Fabrício F; Pessoa, Felipe AC; Oliveira, Giselle A; Campos, Keillen MM; Villegas, Luis Martínez; Rodrigues, Nilton Barnabé; Nacif-Pimenta, Rafael; Simões, Rejane C; Monteiro, Wuelton M; Amino, Rogerio; Traub-Cseko, Yara M; Lima, José BP; Barbosa, Maria GV; Lacerda, Marcus VG; Tadei, Wanderli P; Secundino, Nágila FC

    2015-01-01

    In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Ano- pheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence. PMID:25742262

  4. Hierarchical, domain type-specific acquisition of antibodies to Plasmodium falciparum erythrocyte membrane protein 1 in Tanzanian children

    DEFF Research Database (Denmark)

    Cham, Gerald K K; Turner, Louise; Kurtis, Jonathan D

    2010-01-01

    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a variant antigen expressed on the surface of malaria-infected erythrocytes. PfEMP1 attaches to the vascular lining and allows infected erythrocytes to avoid filtration through the spleen. Each parasite genome encodes about 60 diffe...... and play a major role in limiting parasite multiplication in the blood.......Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a variant antigen expressed on the surface of malaria-infected erythrocytes. PfEMP1 attaches to the vascular lining and allows infected erythrocytes to avoid filtration through the spleen. Each parasite genome encodes about 60...... different PfEMP1 variants, each PfEMP1 comprises several domains in its extracellular region, and the PfEMP1 repertoire in different parasites contains domain types that are serologically cross-reactive. In this longitudinal study, we followed 672 children living in an area of high malaria transmission...

  5. Towards high-throughput molecular detection of Plasmodium: new approaches and molecular markers

    Directory of Open Access Journals (Sweden)

    Rogier Christophe

    2009-04-01

    Full Text Available Abstract Background Several strategies are currently deployed in many countries in the tropics to strengthen malaria control toward malaria elimination. To measure the impact of any intervention, there is a need to detect malaria properly. Mostly, decisions still rely on microscopy diagnosis. But sensitive diagnosis tools enabling to deal with a large number of samples are needed. The molecular detection approach offers a much higher sensitivity, and the flexibility to be automated and upgraded. Methods Two new molecular methods were developed: dot18S, a Plasmodium-specific nested PCR based on the 18S rRNA gene followed by dot-blot detection of species by using species-specific probes and CYTB, a Plasmodium-specific nested PCR based on cytochrome b gene followed by species detection using SNP analysis. The results were compared to those obtained with microscopic examination and the "standard" 18S rRNA gene based nested PCR using species specific primers. 337 samples were diagnosed. Results Compared to the microscopy the three molecular methods were more sensitive, greatly increasing the estimated prevalence of Plasmodium infection, including P. malariae and P. ovale. A high rate of mixed infections was uncovered with about one third of the villagers infected with more than one malaria parasite species. Dot18S and CYTB sensitivity outranged the "standard" nested PCR method, CYTB being the most sensitive. As a consequence, compared to the "standard" nested PCR method for the detection of Plasmodium spp., the sensitivity of dot18S and CYTB was respectively 95.3% and 97.3%. Consistent detection of Plasmodium spp. by the three molecular methods was obtained for 83% of tested isolates. Contradictory results were mostly related to detection of Plasmodium malariae and Plasmodium ovale in mixed infections, due to an "all-or-none" detection effect at low-level parasitaemia. Conclusion A large reservoir of asymptomatic infections was uncovered using the

  6. Inhibition of protein synthesis and malaria parasite development by drug targeting of methionyl-tRNA synthetases.

    Science.gov (United States)

    Hussain, Tahir; Yogavel, Manickam; Sharma, Amit

    2015-04-01

    Aminoacyl-tRNA synthetases (aaRSs) are housekeeping enzymes that couple cognate tRNAs with amino acids to transmit genomic information for protein translation. The Plasmodium falciparum nuclear genome encodes two P. falciparum methionyl-tRNA synthetases (PfMRS), termed PfMRS(cyt) and PfMRS(api). Phylogenetic analyses revealed that the two proteins are of primitive origin and are related to heterokonts (PfMRS(cyt)) or proteobacteria/primitive bacteria (PfMRS(api)). We show that PfMRS(cyt) localizes in parasite cytoplasm, while PfMRS(api) localizes to apicoplasts in asexual stages of malaria parasites. Two known bacterial MRS inhibitors, REP3123 and REP8839, hampered Plasmodium growth very effectively in the early and late stages of parasite development. Small-molecule drug-like libraries were screened against modeled PfMRS structures, and several "hit" compounds showed significant effects on parasite growth. We then tested the effects of the hit compounds on protein translation by labeling nascent proteins with (35)S-labeled cysteine and methionine. Three of the tested compounds reduced protein synthesis and also blocked parasite growth progression from the ring stage to the trophozoite stage. Drug docking studies suggested distinct modes of binding for the three compounds, compared with the enzyme product methionyl adenylate. Therefore, this study provides new targets (PfMRSs) and hit compounds that can be explored for development as antimalarial drugs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Malaria in South Asia: Prevalence and control

    Science.gov (United States)

    Kumar, Ashwani; Chery, Laura; Biswas, Chinmoy; Dubhashi, Nagesh; Dutta, Prafulla; Dua, Virendra Kumar; Kacchap, Mridula; Kakati, Sanjeeb; Khandeparkar, Anar; Kour, Dalip; Mahajanj, Satish N.; Maji, Ardhendu; Majumder, Partha; Mohanta, Jagadish; Mohapatra, Pradyumna K.; Narayanasamy, Krishnamoorthy; Roy, Krishnangshu; Shastri, Jayanthi; Valecha, Neena; Vikash, Rana; Wani, Reena; White, John; Rathod, Pradipsinh K

    2013-01-01

    The “Malaria Evolution in South Asia” (MESA) program project is an International Center of Excellence for Malaria Research (ICEMR) sponsored by the US National Institutes of Health. This US–India collaborative program will study the origin of genetic diversity of malaria parasites and their selection on the Indian subcontinent. This knowledge should contribute to a better understanding of unexpected disease outbreaks and unpredictable disease presentations from Plasmodium falciparum and Plasmodium vivax infections. In this first of two reviews, we highlight malaria prevalence in India. In particular, we draw attention to variations in distribution of different human-parasites and different vectors, variation in drug resistance traits, and multiple forms of clinical presentations. Uneven malaria severity in India is often attributed to large discrepancies in health care accessibility as well as human migrations within the country and across neighboring borders. Poor access to health care goes hand in hand with poor reporting from some of the same areas, combining to possibly distort disease prevalence and death from malaria in some parts of India. Corrections are underway in the form of increased resources for disease control, greater engagement of village-level health workers for early diagnosis and treatment, and possibly new public–private partnerships activities accompanying traditional national malaria control programs in the most severely affected areas. A second accompanying review raises the possibility that, beyond uneven health care, evolutionary pressures may alter malaria parasites in ways that contribute to severe disease in India, particularly in the NE corridor of India bordering Myanmar Narayanasamy et al., 2012. PMID:22248528

  8. Manual blood exchange transfusion does not significantly contribute to parasite clearance in artesunate-treated individuals with imported severe Plasmodium falciparum malaria

    NARCIS (Netherlands)

    Kreeftmeijer-Vegter, Annemarie R.; Melo, Mariana de Mendonça; de Vries, Peter J.; Koelewijn, Rob; van Hellemond, Jaap J.; van Genderen, Perry J. J.

    2013-01-01

    Exchange transfusion (ET) has remained a controversial adjunct therapy for the treatment of severe malaria. In order to assess the relative contribution of ET to parasite clearance in severe malaria, all patients receiving ET as an adjunct treatment to parenteral quinine or to artesunate were

  9. Manual blood exchange transfusion does not significantly contribute to parasite clearance in artesunate-treated individuals with imported severe Plasmodium falciparum malaria

    NARCIS (Netherlands)

    A.R. Kreeftmeijer-Vegter (Annemarie); M.M. de Melo (Mariana ); P.J. de Vries (Peter); R. Koelewijn (Rob); J.J. van Hellemond (Jaap); P.J.J. van Genderen (Perry)

    2013-01-01

    textabstractBackground: Exchange transfusion (ET) has remained a controversial adjunct therapy for the treatment of severe malaria. In order to assess the relative contribution of ET to parasite clearance in severe malaria, all patients receiving ET as an adjunct treatment to parenteral quinine or

  10. Molecular characterization of misidentified Plasmodium ovale imported cases in Singapore.

    Science.gov (United States)

    Chavatte, Jean-Marc; Tan, Sarah Bee Hui; Snounou, Georges; Lin, Raymond Tzer Pin Valentine

    2015-11-14

    Plasmodium ovale, considered the rarest of the malaria parasites of humans, consists of two morphologically identical but genetically distinct sympatric species, Plasmodium ovale curtisi and Plasmodium ovale wallikeri. These parasites resemble morphologically to Plasmodium vivax with which they also share a tertian periodicity and the ability to cause relapses, making them easily misidentified as P. vivax. Plasmodium ovale infections are rarely reported, but given the likelihood of misidentification, their prevalence might be underestimated. Morphological and molecular analysis of confirmed malaria cases admitted in Singapore in 2012-2014 detected nine imported P. ovale cases that had been misidentified as P. vivax. Since P. ovale had not been previously officially reported in Singapore, a retrospective analysis of available, frozen, archival blood samples was performed and returned two additional misidentified P. ovale cases in 2003 and 2006. These eleven P. ovale samples were characterized with respect to seven molecular markers (ssrRNA, Potra, Porbp2, Pog3p, dhfr-ts, cytb, cox1) used in recent studies to distinguish between the two sympatric species, and to a further three genes (tufa, clpC and asl). The morphological features of P. ovale and the differential diagnosis with P. vivax were reviewed and illustrated by microphotographs. The genetic dimorphism between P. ovale curtisi and P. ovale wallikeri was assessed by ten molecular markers distributed across the three genomes of the parasite (Genbank KP050361-KP050470). The data obtained for seven of these markers were compared with those published and confirmed that both P. ovale species were present. This dimorphism was also confirmed for the first time on: (1) two genes from the apicoplast genome (tufA and clpC genes); and, (2) the asl gene that was used for phylogenetic analyses of other Plasmodium species, and that was found to harbour the highest number of dimorphic loci between the two P. ovale species

  11. Malaria's Missing Number: Calculating the Human Component of R0 by a Within-Host Mechanistic Model of Plasmodium falciparum Infection and Transmission

    OpenAIRE

    Johnston, Geoffrey L.; Smith, David L.; Fidock, David A.

    2013-01-01

    Human infection by malarial parasites of the genus Plasmodium begins with the bite of an infected Anopheles mosquito. Current estimates place malaria mortality at over 650,000 individuals each year, mostly in African children. Efforts to reduce disease burden can benefit from the development of mathematical models of disease transmission. To date, however, comprehensive modeling of the parameters defining human infectivity to mosquitoes has remained elusive. Here, we describe a mechanistic wi...

  12. Flow cytometry-assisted rapid isolation of recombinant Plasmodium berghei parasites exemplified by functional analysis of aquaglyceroporin

    Science.gov (United States)

    Kenthirapalan, Sanketha; Waters, Andrew P.; Matuschewski, Kai; Kooij, Taco W.A.

    2012-01-01

    The most critical bottleneck in the generation of recombinant Plasmodium berghei parasites is the mandatory in vivo cloning step following successful genetic manipulation. This study describes a new technique for rapid selection of recombinant P. berghei parasites. The method is based on flow cytometry to isolate isogenic parasite lines and represents a major advance for the field, in that it will speed the generation of recombinant parasites as well as cut down on animal use significantly. High expression of GFP during blood infection, a prerequisite for robust separation of transgenic lines by flow cytometry, was achieved. Isogenic recombinant parasite populations were isolated even in the presence of a 100-fold excess of wild-type (WT) parasites. Aquaglyceroporin (AQP) loss-of-function mutants and parasites expressing a tagged AQP were generated to validate this approach. aqp− parasites grow normally within the WT phenotypic range during blood infection of NMRI mice. Similarly, colonization of the insect vector and establishment of an infection after mosquito transmission were unaffected, indicating that AQP is dispensable for life cycle progression in vivo under physiological conditions, refuting its use as a suitable drug target. Tagged AQP localized to perinuclear structures and not the parasite plasma membrane. We suggest that flow-cytometric isolation of isogenic parasites overcomes the major roadblock towards a genome-scale repository of mutant and transgenic malaria parasite lines. PMID:23137753

  13. Blockage of spontaneous Ca2+ oscillation causes cell death in intraerythrocitic Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Masahiro Enomoto

    Full Text Available Malaria remains one of the world's most important infectious diseases and is responsible for enormous mortality and morbidity. Resistance to antimalarial drugs is a challenging problem in malaria control. Clinical malaria is associated with the proliferation and development of Plasmodium parasites in human erythrocytes. Especially, the development into the mature forms (trophozoite and schizont of Plasmodium falciparum (P. falciparum causes severe malaria symptoms due to a distinctive property, sequestration which is not shared by any other human malaria. Ca(2+ is well known to be a highly versatile intracellular messenger that regulates many different cellular processes. Cytosolic Ca(2+ increases evoked by extracellular stimuli are often observed in the form of oscillating Ca(2+ spikes (Ca(2+ oscillation in eukaryotic cells. However, in lower eukaryotic and plant cells the physiological roles and the molecular mechanisms of Ca(2+ oscillation are poorly understood. Here, we showed the observation of the inositol 1,4,5-trisphospate (IP(3-dependent spontaneous Ca(2+ oscillation in P. falciparum without any exogenous extracellular stimulation by using live cell fluorescence Ca(2+ imaging. Intraerythrocytic P. falciparum exhibited stage-specific Ca(2+ oscillations in ring form and trophozoite stages which were blocked by IP(3 receptor inhibitor, 2-aminoethyl diphenylborinate (2-APB. Analyses of parasitaemia and parasite size and electron micrograph of 2-APB-treated P. falciparum revealed that 2-APB severely obstructed the intraerythrocytic maturation, resulting in cell death of the parasites. Furthermore, we confirmed the similar lethal effect of 2-APB on the chloroquine-resistant strain of P. falciparum. To our best knowledge, we for the first time showed the existence of the spontaneous Ca(2+ oscillation in Plasmodium species and clearly demonstrated that IP(3-dependent spontaneous Ca(2+ oscillation in P. falciparum is critical for the development

  14. Structure-guided identification of a family of dual receptor-binding PfEMP1 that is associated with cerebral malaria

    DEFF Research Database (Denmark)

    Lennartz, Frank; Adams, Yvonne; Bengtsson, Anja

    2017-01-01

    Cerebral malaria is a deadly outcome of infection by Plasmodium falciparum, occurring when parasite-infected erythrocytes accumulate in the brain. These erythrocytes display parasite proteins of the PfEMP1 family that bind various endothelial receptors. Despite the importance of cerebral malaria...

  15. Severe falciparum malaria: A case report

    Science.gov (United States)

    Arcelia, F.; Asymida, F.; Lubis, N. F. M.; Pasaribu, A. P.

    2018-03-01

    Plasmodium parasites caused Malaria. Indonesia is one of the countries in Southeast Asia that endemic to malaria. The burden of malaria is more in the eastern part of Indonesia than the Western part as well as the endemicity. Some cases of malaria will develop to severe form. Usually, the manifestation of children and adult are different. We reported a severe case of malaria in a 14-year-old boy who develops several manifestations such as anemia, hypoglycemia, sepsis and black water fever. We successfully treated the patient with Artesunate intravenous and continued with Dihydroartemisinin-piperaquine.

  16. Intra-specific diversity of Serratia marcescens in Anopheles mosquito midgut defines Plasmodium transmission capacity

    Science.gov (United States)

    Bando, Hironori; Okado, Kiyoshi; Guelbeogo, Wamdaogo M.; Badolo, Athanase; Aonuma, Hiroka; Nelson, Bryce; Fukumoto, Shinya; Xuan, Xuenan; Sagnon, N'Fale; Kanuka, Hirotaka

    2013-01-01

    A critical stage in malaria transmission occurs in the Anopheles mosquito midgut, when the malaria parasite, Plasmodium, ingested with blood, first makes contact with the gut epithelial surface. To understand the response mechanisms within the midgut environment, including those influenced by resident microbiota against Plasmodium, we focus on a midgut bacteria species' intra-specific variation that confers diversity to the mosquito's competency for malaria transmission. Serratia marcescens isolated from either laboratory-reared mosquitoes or wild populations in Burkina Faso shows great phenotypic variation in its cellular and structural features. Importantly, this variation is directly correlated with its ability to inhibit Plasmodium development within the mosquito midgut. Furthermore, this anti-Plasmodium function conferred by Serratia marcescens requires increased expression of the flagellum biosynthetic pathway that is modulated by the motility master regulatory operon, flhDC. These findings point to new strategies for controlling malaria through genetic manipulation of midgut bacteria within the mosquito. PMID:23571408

  17. Plasmodium falciparum multiplicity correlates with anaemia in symptomatic malaria

    NARCIS (Netherlands)

    Mockenhaupt, Frank P.; Ehrhardt, Stephan; Eggelte, Teunis A.; Markert, Miriam; Anemana, Sylvester; Otchwemah, Rowland; Bienzle, Ulrich

    2003-01-01

    In 366 Ghanaian children with symptomatic Plasmodium falciparum malaria, low haemoglobin levels and severe anaemia were associated with a high multiplicity of infection (MOI) and with distinct merozoite surface protein alleles. High MOI not only reflects premunition but may also contribute to

  18. Interleukin-10 regulates hepcidin in Plasmodium falciparum malaria

    KAUST Repository

    Huang, Honglei

    2014-02-10

    Background: Acute malarial anemia remains a major public health problem. Hepcidin, the major hormone controlling the availability of iron, is raised during acute and asymptomatic parasitemia. Understanding the role and mechanism of raised hepcidin and so reduced iron availability during infection is critical to establish evidence-based guidelines for management of malaria anemia. Our recent clinical evidence suggests a potential role of IL-10 in the regulation of hepcidin in patients with acute P. falciparum malaria. Methods: We have measured secretion of hepcidin by primary macrophages and the hepatoma cell line HepG2 stimulated with IL-10, IL-6 and Plasmodium falciparum-infected erythrocytes. Findings: We have observed that IL-10 and IL-6 production increased in primary macrophages when these cells were co-cultured with Plasmodium falciparum-infected erythrocytes. We found that IL-10 induced hepcidin secretion in primary macrophages in a dose-dependent manner but not in HepG2 cells. These effects were mediated through signal transducer and activator of transcription (STAT) 3-phosphorylation and completely abrogated by a specific STAT3 inhibitor. Conclusion: IL-10 can directly regulate hepcidin in primary macrophages but not in HepG2 cells. This effect can be modulated by Plasmodium falciparum. The results are consistent with a role for IL-10 in modulating iron metabolism during acute phase of infection. 2014 Huang et al.

  19. Avian malaria: a new lease of life for an old experimental model to study the evolutionary ecology of Plasmodium.

    Science.gov (United States)

    Pigeault, Romain; Vézilier, Julien; Cornet, Stéphane; Zélé, Flore; Nicot, Antoine; Perret, Philippe; Gandon, Sylvain; Rivero, Ana

    2015-08-19

    Avian malaria has historically played an important role as a model in the study of human malaria, being a stimulus for the development of medical parasitology. Avian malaria has recently come back to the research scene as a unique animal model to understand the ecology and evolution of the disease, both in the field and in the laboratory. Avian malaria is highly prevalent in birds and mosquitoes around the world and is amenable to laboratory experimentation at each stage of the parasite's life cycle. Here, we take stock of 5 years of experimental laboratory research carried out using Plasmodium relictum SGS1, the most prevalent avian malaria lineage in Europe, and its natural vector, the mosquito Culex pipiens. For this purpose, we compile and analyse data obtained in our laboratory in 14 different experiments. We provide statistical relationships between different infection-related parameters, including parasitaemia, gametocytaemia, host morbidity (anaemia) and transmission rates to mosquitoes. This analysis provides a wide-ranging picture of the within-host and between-host parameters that may bear on malaria transmission and epidemiology. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  20. Anti-phospholipid antibodies in patients with Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Jakobsen, P H; Morris-Jones, S D; Hviid, L

    1993-01-01

    Plasma levels of antibodies against phosphatidylinositol (PI), phosphatidylcholine (PC) and cardiolipin (CL) were measured by enzyme-linked immunosorbent assay (ELISA) in patients from malaria endemic area of Sudan and The Gambia. Some Sudanese adults produced IgM antibodies against all three types...... of phospholipids (PL) during an acute Plasmodium falciparum infection. The anti-PL antibody titre returned to preinfection levels in most of the donors 30 days after the disease episode. IgG titres against PI, PC and CL were low. In Gambian children with malaria, IgM antibody titres against PI and PC were...... significantly higher in those with severe malaria than in those with mild malaria. These results show that a proportion of malaria patients produce anti-PL antibodies during infection and that titres of these antibodies are associated with the severity of disease....

  1. A high parasite density environment induces transcriptional changes and cell death in Plasmodium falciparum blood stages.

    Science.gov (United States)

    Chou, Evelyn S; Abidi, Sabia Z; Teye, Marian; Leliwa-Sytek, Aleksandra; Rask, Thomas S; Cobbold, Simon A; Tonkin-Hill, Gerry Q; Subramaniam, Krishanthi S; Sexton, Anna E; Creek, Darren J; Daily, Johanna P; Duffy, Michael F; Day, Karen P

    2018-03-01

    Transient regulation of Plasmodium numbers below the density that induces fever has been observed in chronic malaria infections in humans. This species transcending control cannot be explained by immunity alone. Using an in vitro system we have observed density dependent regulation of malaria population size as a mechanism to possibly explain these in vivo observations. Specifically, Plasmodium falciparum blood stages from a high but not low-density environment exhibited unique phenotypic changes during the late trophozoite (LT) and schizont stages of the intraerythrocytic cycle. These included in order of appearance: failure of schizonts to mature and merozoites to replicate, apoptotic-like morphological changes including shrinking, loss of mitochondrial membrane potential, and blebbing with eventual release of aberrant parasites from infected erythrocytes. This unique death phenotype was triggered in a stage-specific manner by sensing of a high-density culture environment. Conditions of glucose starvation, nutrient depletion, and high lactate could not induce the phenotype. A high-density culture environment induced rapid global changes in the parasite transcriptome including differential expression of genes involved in cell remodeling, clonal antigenic variation, metabolism, and cell death pathways including an apoptosis-associated metacaspase gene. This transcriptional profile was also characterized by concomitant expression of asexual and sexual stage-specific genes. The data show strong evidence to support our hypothesis that density sensing exists in P. falciparum. They indicate that an apoptotic-like mechanism may play a role in P. falciparum density regulation, which, as in yeast, has features quite distinguishable from mammalian apoptosis. Gene expression data are available in the GEO databases under the accession number GSE91188. © 2017 Federation of European Biochemical Societies.

  2. Clinical and laboratory findings of Plasmodium vivax malaria in Colombia, 2001 Características clínicas y de laboratorio de la malaria por Plasmodium vivax, Colombia 2001

    Directory of Open Access Journals (Sweden)

    Marcela Echeverri

    2003-01-01

    Full Text Available A descriptive study was carried out in 104 patients with Plasmodium vivax malaria, from the region of Turbo (Antioquia, Colombia. Clinical features and levels of hemoglobin, glycemia, serum bilirubin, alanine-aminotransferase (ALT, aspartate-aminotransferase (AST, creatinine and complete blood cell profile were established. 65% of the studied individuals were men and their mean age was 23. Of all individuals 59% had lived in the region for > 1 year and 91% were resident in the rural area. 42% were farmers and 35% had a history of malaria. The mean parasitaemia was 5865 parasites/mm³. The evolution of the disease was short (average of 4.0 days. Fever, headache and chills were observed simultaneously in 91% of the cases while the most frequent signs were palmar pallor (46%, jaundice (15%, hepatomegaly (17%, and spleen enlargement (12%. Anemia was found in 39% of the women and in 51% of the men, 8% of individuals had thrombocytopaenia and 41% had hypoglycemia.Se realizó un estudio descriptivo con 104 enfermos de malaria por Plasmodium vivax, en Turbo (Antioquia, Colombia. Se evaluaron las características clínicas y los niveles de hemoglobina, glicemia, bilirrubina sérica, ALT, AST, creatinina y hemograma completo. Los hombres representaron el 65% del grupo, la edad promedio fue 23 años, el 59% tuvo más de un año de residir en el lugar, el 91% residían en zona rural, el 42% realizaba trabajos agrícolas y el 35% tenía antecedentes de malaria. La parasitemia promedio fue de 5865 parásitos/mm³. La evolución de la enfermedad fue corta (mediana de 4,0 días. Fiebre, cefalea y escalofrío estuvieron simultáneamente en 91% de los casos y los signos más frecuentes fueron palidez palmar (46%, ictericia (15%, hepatomegalia (17% y esplenomegalia (12%. La anemia se encontró en el 39% de las mujeres y en el 51% de los hombres, y el 8% presentó trombocitopenia. Los niveles séricos de bilirrubinas directa e indirecta, de enzimas ALT y AST y de

  3. Computational identification of signalling pathways in Plasmodium falciparum.

    Science.gov (United States)

    Oyelade, Jelili; Ewejobi, Itunu; Brors, Benedikt; Eils, Roland; Adebiyi, Ezekiel

    2011-06-01

    Malaria is one of the world's most common and serious diseases causing death of about 3 million people each year. Its most severe occurrence is caused by the protozoan Plasmodium falciparum. Reports have shown that the resistance of the parasite to existing drugs is increasing. Therefore, there is a huge and urgent need to discover and validate new drug or vaccine targets to enable the development of new treatments for malaria. The ability to discover these drug or vaccine targets can only be enhanced from our deep understanding of the detailed biology of the parasite, for example how cells function and how proteins organize into modules such as metabolic, regulatory and signal transduction pathways. It has been noted that the knowledge of signalling transduction pathways in Plasmodium is fundamental to aid the design of new strategies against malaria. This work uses a linear-time algorithm for finding paths in a network under modified biologically motivated constraints. We predicted several important signalling transduction pathways in Plasmodium falciparum. We have predicted a viable signalling pathway characterized in terms of the genes responsible that may be the PfPKB pathway recently elucidated in Plasmodium falciparum. We obtained from the FIKK family, a signal transduction pathway that ends up on a chloroquine resistance marker protein, which indicates that interference with FIKK proteins might reverse Plasmodium falciparum from resistant to sensitive phenotype. We also proposed a hypothesis that showed the FIKK proteins in this pathway as enabling the resistance parasite to have a mechanism for releasing chloroquine (via an efflux process). Furthermore, we also predicted a signalling pathway that may have been responsible for signalling the start of the invasion process of Red Blood Cell (RBC) by the merozoites. It has been noted that the understanding of this pathway will give insight into the parasite virulence and will facilitate rational vaccine design

  4. IgG antibodies to endothelial protein C receptor-binding Cysteine-rich interdomain region domains of Plasmodium falciparum erythrocyte membrane protein 1 are acquired early in life in individuals exposed to malaria

    DEFF Research Database (Denmark)

    Turner, Louise; Lavstsen, Thomas; Mmbando, Bruno P

    2015-01-01

    Severe malaria syndromes are precipitated by Plasmodium falciparum parasites binding to endothelial receptors on the vascular lining. This binding is mediated by members of the highly variant P. falciparum erythrocyte membrane protein 1 (PfEMP1) family. We have previously identified a subset of Pf...

  5. Paternal effect of the nuclear formin-like protein MISFIT on Plasmodium development in the mosquito vector.

    Directory of Open Access Journals (Sweden)

    Ellen S C Bushell

    2009-08-01

    Full Text Available Malaria parasites must undergo sexual and sporogonic development in mosquitoes before they can infect their vertebrate hosts. We report the discovery and characterization of MISFIT, the first protein with paternal effect on the development of the rodent malaria parasite Plasmodium berghei in Anopheles mosquitoes. MISFIT is expressed in male gametocytes and localizes to the nuclei of male gametocytes, zygotes and ookinetes. Gene disruption results in mutant ookinetes with reduced genome content, microneme defects and altered transcriptional profiles of putative cell cycle regulators, which yet successfully invade the mosquito midgut. However, developmental arrest ensues during the ookinete transformation to oocysts leading to malaria transmission blockade. Genetic crosses between misfit mutant parasites and parasites that are either male or female gamete deficient reveal a strict requirement for a male misfit allele. MISFIT belongs to the family of formin-like proteins, which are known regulators of the dynamic remodeling of actin and microtubule networks. Our data identify the ookinete-to-oocyst transition as a critical cell cycle checkpoint in Plasmodium development and lead us to hypothesize that MISFIT may be a regulator of cell cycle progression. This study offers a new perspective for understanding the male contribution to malaria parasite development in the mosquito vector.

  6. A switch in infected erythrocyte deformability at the maturation and blood circulation of Plasmodium falciparum transmission stages.

    NARCIS (Netherlands)

    Tiburcio, M.; Niang, M.; Deplaine, G.; Perrot, S.; Bischoff, E.; Ndour, P.A.; Silvestrini, F.; Khattab, A.; Milon, G.; David, P.H.; Hardeman, M.; Vernick, K.D.; Sauerwein, R.W.; Preiser, P.R.; Mercereau-Puijalon, O.; Buffet, P.; Alano, P.; Lavazec, C.

    2012-01-01

    Achievement of malaria elimination requires development of novel strategies interfering with parasite transmission, including targeting the parasite sexual stages (gametocytes). The formation of Plasmodium falciparum gametocytes in the human host takes several days during which immature

  7. A switch in infected erythrocyte deformability at the maturation and blood circulation of Plasmodium falciparum transmission stages

    NARCIS (Netherlands)

    Tibúrcio, Marta; Niang, Makhtar; Deplaine, Guillaume; Perrot, Sylvie; Bischoff, Emmanuel; Ndour, Papa Alioune; Silvestrini, Francesco; Khattab, Ayman; Milon, Geneviève; David, Peter H.; Hardeman, Max; Vernick, Kenneth D.; Sauerwein, Robert W.; Preiser, Peter R.; Mercereau-Puijalon, Odile; Buffet, Pierre; Alano, Pietro; Lavazec, Catherine

    2012-01-01

    Achievement of malaria elimination requires development of novel strategies interfering with parasite transmission, including targeting the parasite sexual stages (gametocytes). The formation of Plasmodium falciparum gametocytes in the human host takes several days during which immature

  8. Studies On the Incidence of Asymptomatic Plasmodium Infection ...

    African Journals Online (AJOL)

    The incidence of asymptomatic Plasmodium falciparum infection among orphans between age groups, gender and blood groups was investigated. Standard microscopic methods were used to screen for malaria parasites in the blood specimens obtained from eighty-five (85) subjects in three orphanages in Kaduna and ...

  9. The exported chaperone Hsp70-x supports virulence functions for Plasmodium falciparum blood stage parasites

    Science.gov (United States)

    Charnaud, Sarah C.; Dixon, Matthew W. A.; Nie, Catherine Q.; Chappell, Lia; Sanders, Paul R.; Nebl, Thomas; Hanssen, Eric; Berriman, Matthew; Chan, Jo-Anne; Blanch, Adam J.; Beeson, James G.; Rayner, Julian C.; Przyborski, Jude M.; Tilley, Leann; Crabb, Brendan S.

    2017-01-01

    Malaria is caused by five different Plasmodium spp. in humans each of which modifies the host erythrocyte to survive and replicate. The two main causes of malaria, P. falciparum and P. vivax, differ in their ability to cause severe disease, mainly due to differences in the cytoadhesion of infected erythrocytes (IE) in the microvasculature. Cytoadhesion of P. falciparum in the brain leads to a large number of deaths each year and is a consequence of exported parasite proteins, some of which modify the erythrocyte cytoskeleton while others such as PfEMP1 project onto the erythrocyte surface where they bind to endothelial cells. Here we investigate the effects of knocking out an exported Hsp70-type chaperone termed Hsp70-x that is present in P. falciparum but not P. vivax. Although the growth of Δhsp70-x parasites was unaffected, the export of PfEMP1 cytoadherence proteins was delayed and Δhsp70-x IE had reduced adhesion. The Δhsp70-x IE were also more rigid than wild-type controls indicating changes in the way the parasites modified their host erythrocyte. To investigate the cause of this, transcriptional and translational changes in exported and chaperone proteins were monitored and some changes were observed. We propose that PfHsp70-x is not essential for survival in vitro, but may be required for the efficient export and functioning of some P. falciparum exported proteins. PMID:28732045

  10. The exported chaperone Hsp70-x supports virulence functions for Plasmodium falciparum blood stage parasites.

    Directory of Open Access Journals (Sweden)

    Sarah C Charnaud

    Full Text Available Malaria is caused by five different Plasmodium spp. in humans each of which modifies the host erythrocyte to survive and replicate. The two main causes of malaria, P. falciparum and P. vivax, differ in their ability to cause severe disease, mainly due to differences in the cytoadhesion of infected erythrocytes (IE in the microvasculature. Cytoadhesion of P. falciparum in the brain leads to a large number of deaths each year and is a consequence of exported parasite proteins, some of which modify the erythrocyte cytoskeleton while others such as PfEMP1 project onto the erythrocyte surface where they bind to endothelial cells. Here we investigate the effects of knocking out an exported Hsp70-type chaperone termed Hsp70-x that is present in P. falciparum but not P. vivax. Although the growth of Δhsp70-x parasites was unaffected, the export of PfEMP1 cytoadherence proteins was delayed and Δhsp70-x IE had reduced adhesion. The Δhsp70-x IE were also more rigid than wild-type controls indicating changes in the way the parasites modified their host erythrocyte. To investigate the cause of this, transcriptional and translational changes in exported and chaperone proteins were monitored and some changes were observed. We propose that PfHsp70-x is not essential for survival in vitro, but may be required for the efficient export and functioning of some P. falciparum exported proteins.

  11. Plasmodium falciparum malaria challenge by the bite of aseptic Anopheles stephensi mosquitoes: results of a randomized infectivity trial.

    Directory of Open Access Journals (Sweden)

    Kirsten E Lyke

    2010-10-01

    Full Text Available Experimental infection of malaria-naïve volunteers by the bite of Plasmodium falciparum-infected mosquitoes is a preferred means to test the protective effect of malaria vaccines and drugs. The standard model relies on the bite of five infected mosquitoes to induce malaria. We examined the efficacy of malaria transmission using mosquitoes raised aseptically in compliance with current Good Manufacturing Practices (cGMPs.Eighteen adults aged 18-40 years were randomized to receive 1, 3 or 5 bites of Anopheles stephensi mosquitoes infected with the chloroquine-sensitive NF54 strain of P. falciparum. Seventeen participants developed malaria; fourteen occurring on Day 11. The mean prepatent period was 10.9 days (9-12 days. The geometric mean parasitemia was 15.7 parasites/µL (range: 4-70 by microscopy. Polymerase chain reaction (PCR detected parasites 3.1 (range: 0-4 days prior to microscopy. The geometric mean sporozoite load was 16,753 sporozoites per infected mosquito (range: 1,000-57,500. A 1-bite participant withdrew from the study on Day 13 post-challenge and was PCR and smear negative.The use of aseptic, cGMP-compliant P. falciparum-infected mosquitoes is safe, is associated with a precise prepatent period compared to the standard model and appears more efficient than the standard approach, as it led to infection in 100% (6/6 of volunteers exposed to three mosquito bites and 83% (5/6 of volunteers exposed to one mosquito bite.ClinicalTrials.gov NCT00744133.

  12. UK malaria treatment guidelines 2016.

    Science.gov (United States)

    Lalloo, David G; Shingadia, Delane; Bell, David J; Beeching, Nicholas J; Whitty, Christopher J M; Chiodini, Peter L

    2016-06-01

    1.Malaria is the tropical disease most commonly imported into the UK, with 1300-1800 cases reported each year, and 2-11 deaths. 2. Approximately three quarters of reported malaria cases in the UK are caused by Plasmodium falciparum, which is capable of invading a high proportion of red blood cells and rapidly leading to severe or life-threatening multi-organ disease. 3. Most non-falciparum malaria cases are caused by Plasmodium vivax; a few cases are caused by the other species of plasmodium: Plasmodium ovale, Plasmodium malariae or Plasmodium knowlesi. 4. Mixed infections with more than one species of parasite can occur; they commonly involve P. falciparum with the attendant risks of severe malaria. 5. There are no typical clinical features of malaria; even fever is not invariably present. Malaria in children (and sometimes in adults) may present with misleading symptoms such as gastrointestinal features, sore throat or lower respiratory complaints. 6. A diagnosis of malaria must always be sought in a feverish or sick child or adult who has visited malaria-endemic areas. Specific country information on malaria can be found at http://travelhealthpro.org.uk/. P. falciparum infection rarely presents more than six months after exposure but presentation of other species can occur more than a year after exposure. 7. Management of malaria depends on awareness of the diagnosis and on performing the correct diagnostic tests: the diagnosis cannot be excluded until more than one blood specimen has been examined. Other travel related infections, especially viral haemorrhagic fevers, should also be considered. 8. The optimum diagnostic procedure is examination of thick and thin blood films by an expert to detect and speciate the malarial parasites. P. falciparum and P. vivax (depending upon the product) malaria can be diagnosed almost as accurately using rapid diagnostic tests (RDTs) which detect plasmodial antigens. RDTs for other Plasmodium species are not as reliable. 9

  13. IL4 gene polymorphism and previous malaria experiences manipulate anti-Plasmodium falciparum antibody isotype profiles in complicated and uncomplicated malaria

    Directory of Open Access Journals (Sweden)

    Kalambaheti Thareerat

    2009-12-01

    Full Text Available Abstract Background The IL4-590 gene polymorphism has been shown to be associated with elevated levels of anti-Plasmodium falciparum IgG antibodies and parasite intensity in the malaria protected Fulani of West Africa. This study aimed to investigate the possible impact of IL4-590C/T polymorphism on anti-P. falciparum IgG subclasses and IgE antibodies levels and the alteration of malaria severity in complicated and uncomplicated malaria patients with or without previous malaria experiences. Methods Anti-P.falciparum IgG subclasses and IgE antibodies in plasma of complicated and uncomplicated malaria patients with or without previous malaria experiences were analysed using ELISA. IL4-590 polymorphisms were genotyped using RFLP-PCR. Statistical analyses of the IgG subclass levels were done by Oneway ANOVA. Genotype differences were tested by Chi-squared test. Results The IL4-590T allele was significantly associated with anti-P. falciparum IgG3 antibody levels in patients with complicated (P = 0.031, but not with uncomplicated malaria (P = 0.622. Complicated malaria patients with previous malaria experiences carrying IL4-590TT genotype had significantly lower levels of anti-P. falciparum IgG3 (P = 0.0156, while uncomplicated malaria patients with previous malaria experiences carrying the same genotype had significantly higher levels (P = 0.0206 compared to their IL4-590 counterparts. The different anti-P. falciparum IgG1 and IgG3 levels among IL4 genotypes were observed. Complicated malaria patients with previous malaria experiences tended to have lower IgG3 levels in individuals carrying TT when compared to CT genotypes (P = 0.075. In contrast, complicated malaria patients without previous malaria experiences carrying CC genotype had significantly higher anti-P. falciparum IgG1 than those carrying either CT or TT genotypes (P = 0.004, P = 0.002, respectively. Conclusion The results suggest that IL4-590C or T alleles participated differently in the

  14. Malaria and Vascular Endothelium

    Energy Technology Data Exchange (ETDEWEB)

    Alencar, Aristóteles Comte Filho de, E-mail: aristoteles.caf@gmail.com [Universidade Federal do Amazonas, Manaus, AM (Brazil); Lacerda, Marcus Vinícius Guimarães de [Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, AM (Brazil); Okoshi, Katashi; Okoshi, Marina Politi [Faculdade de Medicina de Botucatu (Unesp), Botucatu, SP (Brazil)

    2014-08-15

    Involvement of the cardiovascular system in patients with infectious and parasitic diseases can result from both intrinsic mechanisms of the disease and drug intervention. Malaria is an example, considering that the endothelial injury by Plasmodium-infected erythrocytes can cause circulatory disorders. This is a literature review aimed at discussing the relationship between malaria and endothelial impairment, especially its effects on the cardiovascular system. We discuss the implications of endothelial aggression and the interdisciplinarity that should guide the malaria patient care, whose acute infection can contribute to precipitate or aggravate a preexisting heart disease.

  15. Malaria and Vascular Endothelium

    International Nuclear Information System (INIS)

    Alencar, Aristóteles Comte Filho de; Lacerda, Marcus Vinícius Guimarães de; Okoshi, Katashi; Okoshi, Marina Politi

    2014-01-01

    Involvement of the cardiovascular system in patients with infectious and parasitic diseases can result from both intrinsic mechanisms of the disease and drug intervention. Malaria is an example, considering that the endothelial injury by Plasmodium-infected erythrocytes can cause circulatory disorders. This is a literature review aimed at discussing the relationship between malaria and endothelial impairment, especially its effects on the cardiovascular system. We discuss the implications of endothelial aggression and the interdisciplinarity that should guide the malaria patient care, whose acute infection can contribute to precipitate or aggravate a preexisting heart disease

  16. Disruption of Var2csa Gene Impairs Placental Malaria Associated Adhesion Phenotype

    OpenAIRE

    Viebig, Nicola K.; Levin, Emily; Dechavanne, Sébastien; Rogerson, Stephen J.; Gysin, Jürg; Smith, Joseph D.; Scherf, Artur; Gamain, Benoit

    2007-01-01

    Infection with Plasmodium falciparum during pregnancy is one of the major causes of malaria related morbidity and mortality in newborn and mothers. The complications of pregnancy-associated malaria result mainly from massive adhesion of Plasmodium falciparum-infected erythrocytes (IE) to chondroitin sulfate A (CSA) present in the placental intervillous blood spaces. Var2CSA, a member of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family is the predominant parasite ligand mediati...

  17. Small Molecule Screen for Candidate Antimalarials Targeting Plasmodium Kinesin-5*

    Science.gov (United States)

    Liu, Liqiong; Richard, Jessica; Kim, Sunyoung; Wojcik, Edward J.

    2014-01-01

    Plasmodium falciparum and vivax are responsible for the majority of malaria infections worldwide, resulting in over a million deaths annually. Malaria parasites now show measured resistance to all currently utilized drugs. Novel antimalarial drugs are urgently needed. The Plasmodium Kinesin-5 mechanoenzyme is a suitable “next generation” target. Discovered via small molecule screen experiments, the human Kinesin-5 has multiple allosteric sites that are “druggable.” One site in particular, unique in its sequence divergence across all homologs in the superfamily and even within the same family, exhibits exquisite drug specificity. We propose that Plasmodium Kinesin-5 shares this allosteric site and likewise can be targeted to uncover inhibitors with high specificity. To test this idea, we performed a screen for inhibitors selective for Plasmodium Kinesin-5 ATPase activity in parallel with human Kinesin-5. Our screen of nearly 2000 compounds successfully identified compounds that selectively inhibit both P. vivax and falciparum Kinesin-5 motor domains but, as anticipated, do not impact human Kinesin-5 activity. Of note is a candidate drug that did not biochemically compete with the ATP substrate for the conserved active site or disrupt the microtubule-binding site. Together, our experiments identified MMV666693 as a selective allosteric inhibitor of Plasmodium Kinesin-5; this is the first identified protein target for the Medicines of Malaria Venture validated collection of parasite proliferation inhibitors. This work demonstrates that chemical screens against human kinesins are adaptable to homologs in disease organisms and, as such, extendable to strategies to combat infectious disease. PMID:24737313

  18. Positive Selection of Plasmodium falciparum Parasites With Multiple var2csa-Type PfEMP1 Genes During the Course of Infection in Pregnant Women

    Science.gov (United States)

    Salanti, Ali; Lavstsen, Thomas; Nielsen, Morten A.; Theander, Thor G.; Leke, Rose G. F.; Lo, Yeung Y.; Bobbili, Naveen; Arnot, David E.; Taylor, Diane W.

    2011-01-01

    Placental malaria infections are caused by Plasmodium falciparum–infected red blood cells sequestering in the placenta by binding to chondroitin sulfate A, mediated by VAR2CSA, a variant of the PfEMP1 family of adhesion antigens. Recent studies have shown that many P. falciparum genomes have multiple genes coding for different VAR2CSA proteins, and parasites with >1 var2csa gene appear to be more common in pregnant women with placental malaria than in nonpregnant individuals. We present evidence that, in pregnant women, parasites containing multiple var2csa-type genes possess a selective advantage over parasites with a single var2csa gene. Accumulation of parasites with multiple copies of the var2csa gene during the course of pregnancy was also correlated with the development of antibodies involved in blocking VAR2CSA adhesion. The data suggest that multiplicity of var2csa-type genes enables P. falciparum parasites to persist for a longer period of time during placental infections, probably because of their greater capacity for antigenic variation and evasion of variant-specific immune responses. PMID:21592998

  19. Different apoptotic responses to Plasmodium chabaudi malaria in ...

    African Journals Online (AJOL)

    hope&shola

    2010-11-08

    Nov 8, 2010 ... The purpose of this study is to determine whether the apoptotic responses to Plasmodium chabaudi malaria in spleen and liver via mRNA expression of three genes involved in apoptosis (Bax, Bcl-2 and. Caspase-3) are similar or not and to detect if these genes could be a good marker for apoptosis due to.

  20. Increased detection of Plasmodium knowlesi in Sandakan division, Sabah as revealed by PlasmoNex?

    OpenAIRE

    Goh, Xiang Ting; Lim, Yvonne AL; Vythilingam, Indra; Chew, Ching Hoong; Lee, Ping Chin; Ngui, Romano; Tan, Tian Chye; Yap, Nan Jiun; Nissapatorn, Veeranoot; Chua, Kek Heng

    2013-01-01

    Background Plasmodium knowlesi is a simian malaria parasite that is widespread in humans in Malaysian Borneo. However, little is known about the incidence and distribution of this parasite in the Sandakan division, Malaysian Borneo. Therefore, the aim of the present epidemiological study was to investigate the incidence and distribution of P. knowlesi as well as other Plasmodium species in this division based on a most recent developed hexaplex PCR system (PlasmoNex?). Methods A total of 189 ...