WorldWideScience

Sample records for malaria blood-stage antigen

  1. Assessment of humoral immune responses to blood-stage malaria antigens following ChAd63-MVA immunization, controlled human malaria infection and natural exposure.

    Science.gov (United States)

    Biswas, Sumi; Choudhary, Prateek; Elias, Sean C; Miura, Kazutoyo; Milne, Kathryn H; de Cassan, Simone C; Collins, Katharine A; Halstead, Fenella D; Bliss, Carly M; Ewer, Katie J; Osier, Faith H; Hodgson, Susanne H; Duncan, Christopher J A; O'Hara, Geraldine A; Long, Carole A; Hill, Adrian V S; Draper, Simon J

    2014-01-01

    The development of protective vaccines against many difficult infectious pathogens will necessitate the induction of effective antibody responses. Here we assess humoral immune responses against two antigens from the blood-stage merozoite of the Plasmodium falciparum human malaria parasite--MSP1 and AMA1. These antigens were delivered to healthy malaria-naïve adult volunteers in Phase Ia clinical trials using recombinant replication-deficient viral vectors--ChAd63 to prime the immune response and MVA to boost. In subsequent Phase IIa clinical trials, immunized volunteers underwent controlled human malaria infection (CHMI) with P. falciparum to assess vaccine efficacy, whereby all but one volunteer developed low-density blood-stage parasitemia. Here we assess serum antibody responses against both the MSP1 and AMA1 antigens following i) ChAd63-MVA immunization, ii) immunization and CHMI, and iii) primary malaria exposure in the context of CHMI in unimmunized control volunteers. Responses were also assessed in a cohort of naturally-immune Kenyan adults to provide comparison with those induced by a lifetime of natural malaria exposure. Serum antibody responses against MSP1 and AMA1 were characterized in terms of i) total IgG responses before and after CHMI, ii) responses to allelic variants of MSP1 and AMA1, iii) functional growth inhibitory activity (GIA), iv) IgG avidity, and v) isotype responses (IgG1-4, IgA and IgM). These data provide the first in-depth assessment of the quality of adenovirus-MVA vaccine-induced antibody responses in humans, along with assessment of how these responses are modulated by subsequent low-density parasite exposure. Notable differences were observed in qualitative aspects of the human antibody responses against these malaria antigens depending on the means of their induction and/or exposure of the host to the malaria parasite. Given the continued clinical development of viral vectored vaccines for malaria and a range of other diseases

  2. Assessment of humoral immune responses to blood-stage malaria antigens following ChAd63-MVA immunization, controlled human malaria infection and natural exposure.

    Directory of Open Access Journals (Sweden)

    Sumi Biswas

    Full Text Available The development of protective vaccines against many difficult infectious pathogens will necessitate the induction of effective antibody responses. Here we assess humoral immune responses against two antigens from the blood-stage merozoite of the Plasmodium falciparum human malaria parasite--MSP1 and AMA1. These antigens were delivered to healthy malaria-naïve adult volunteers in Phase Ia clinical trials using recombinant replication-deficient viral vectors--ChAd63 to prime the immune response and MVA to boost. In subsequent Phase IIa clinical trials, immunized volunteers underwent controlled human malaria infection (CHMI with P. falciparum to assess vaccine efficacy, whereby all but one volunteer developed low-density blood-stage parasitemia. Here we assess serum antibody responses against both the MSP1 and AMA1 antigens following i ChAd63-MVA immunization, ii immunization and CHMI, and iii primary malaria exposure in the context of CHMI in unimmunized control volunteers. Responses were also assessed in a cohort of naturally-immune Kenyan adults to provide comparison with those induced by a lifetime of natural malaria exposure. Serum antibody responses against MSP1 and AMA1 were characterized in terms of i total IgG responses before and after CHMI, ii responses to allelic variants of MSP1 and AMA1, iii functional growth inhibitory activity (GIA, iv IgG avidity, and v isotype responses (IgG1-4, IgA and IgM. These data provide the first in-depth assessment of the quality of adenovirus-MVA vaccine-induced antibody responses in humans, along with assessment of how these responses are modulated by subsequent low-density parasite exposure. Notable differences were observed in qualitative aspects of the human antibody responses against these malaria antigens depending on the means of their induction and/or exposure of the host to the malaria parasite. Given the continued clinical development of viral vectored vaccines for malaria and a range of other

  3. Vaccines for preventing malaria (blood-stage).

    Science.gov (United States)

    Graves, P; Gelband, H

    2006-10-18

    A malaria vaccine is needed because of the heavy burden of mortality and morbidity due to this disease. This review describes the results of trials of blood (asexual)-stage vaccines. Several are under development, but only one (MSP/RESA, also known as Combination B) has been tested in randomized controlled trials. To assess the effect of blood-stage malaria vaccines in preventing infection, disease, and death. In March 2006, we searched the Cochrane Infectious Diseases Group Specialized Register, CENTRAL (The Cochrane Library 2006, Issue 1), MEDLINE, EMBASE, LILACS, and the Science Citation Index. We also searched conference proceedings and reference lists of articles, and contacted organizations and researchers in the field. Randomized controlled trials comparing blood-stage vaccines (other than SPf66) against P. falciparum, P. vivax, P. malariae, or P. ovale with placebo, control vaccine, or routine antimalarial control measures in people of any age receiving a challenge malaria infection. Both authors independently assessed trial quality and extracted data. Results for dichotomous data were expressed as relative risks (RR) with 95% confidence intervals (CI). Five trials of MSP/RESA vaccine with 217 participants were included; all five reported on safety, and two on efficacy. No severe or systemic adverse effects were reported at doses of 13 to 15 microg of each antigen (39 to 45 microg total). One small efficacy trial with 17 non-immune participants with blood-stage parasites showed no reduction or delay in parasite growth rates after artificial challenge. In the second efficacy trial in 120 children aged five to nine years in Papua New Guinea, episodes of clinical malaria were not reduced, but MSP/RESA significantly reduced parasite density only in children who had not been pretreated with an antimalarial drug (sulfadoxine-pyrimethamine). Infections with the 3D7 parasite subtype of MSP2 (the variant included in the vaccine) were reduced (RR 0.38, 95% CI 0.26 to

  4. Protection of Rhesus Monkeys by a DNA Prime/Poxvirus Boost Malaria Vaccine Depends on Optimal DNA Priming and Inclusion of Blood Stage Antigens

    Science.gov (United States)

    Weiss, Walter R.; Kumar, Anita; Jiang, George; Williams, Jackie; Bostick, Anthony; Conteh, Solomon; Fryauff, David; Aguiar, Joao; Singh, Manmohan; O'Hagan, Derek T.; Ulmer, Jeffery B.; Richie, Thomas L.

    2007-01-01

    Background We have previously described a four antigen malaria vaccine consisting of DNA plasmids boosted by recombinant poxviruses which protects a high percentage of rhesus monkeys against Plasmodium knowlesi (Pk) malaria. This is a multi-stage vaccine that includes two pre-erythrocytic antigens, PkCSP and PkSSP2(TRAP), and two erythrocytic antigens, PkAMA-1 and PkMSP-1(42kD). The present study reports three further experiments where we investigate the effects of DNA dose, timing, and formulation. We also compare vaccines utilizing only the pre-erythrocytic antigens with the four antigen vaccine. Methodology In three experiments, rhesus monkeys were immunized with malaria vaccines using DNA plasmid injections followed by boosting with poxvirus vaccine. A variety of parameters were tested, including formulation of DNA on poly-lactic co-glycolide (PLG) particles, varying the number of DNA injections and the amount of DNA, varying the interval between the last DNA injection to the poxvirus boost from 7 to 21 weeks, and using vaccines with from one to four malaria antigens. Monkeys were challenged with Pk sporozoites given iv 2 to 4 weeks after the poxvirus injection, and parasitemia was measured by daily Giemsa stained blood films. Immune responses in venous blood samples taken after each vaccine injection were measured by ELIspot production of interferon-γ, and by ELISA. Conclusions 1) the number of DNA injections, the formulation of the DNA plasmids, and the interval between the last DNA injection and the poxvirus injection are critical to vaccine efficacy. However, the total dose used for DNA priming is not as important; 2) the blood stage antigens PkAMA-1 and PkMSP-1 were able to protect against high parasitemias as part of a genetic vaccine where antigen folding is not well defined; 3) immunization with PkSSP2 DNA inhibited immune responses to PkCSP DNA even when vaccinations were given into separate legs; and 4) in a counter-intuitive result, higher

  5. The evolutionary consequences of blood-stage vaccination on the rodent malaria Plasmodium chabaudi.

    Directory of Open Access Journals (Sweden)

    Victoria C Barclay

    Full Text Available Malaria vaccine developers are concerned that antigenic escape will erode vaccine efficacy. Evolutionary theorists have raised the possibility that some types of vaccine could also create conditions favoring the evolution of more virulent pathogens. Such evolution would put unvaccinated people at greater risk of severe disease. Here we test the impact of vaccination with a single highly purified antigen on the malaria parasite Plasmodium chabaudi evolving in laboratory mice. The antigen we used, AMA-1, is a component of several candidate malaria vaccines currently in various stages of trials in humans. We first found that a more virulent clone was less readily controlled by AMA-1-induced immunity than its less virulent progenitor. Replicated parasites were then serially passaged through control or AMA-1 vaccinated mice and evaluated after 10 and 21 rounds of selection. We found no evidence of evolution at the ama-1 locus. Instead, virulence evolved; AMA-1-selected parasites induced greater anemia in naïve mice than both control and ancestral parasites. Our data suggest that recombinant blood stage malaria vaccines can drive the evolution of more virulent malaria parasites.

  6. ChAd63-MVA-vectored blood-stage malaria vaccines targeting MSP1 and AMA1: assessment of efficacy against mosquito bite challenge in humans.

    Science.gov (United States)

    Sheehy, Susanne H; Duncan, Christopher J A; Elias, Sean C; Choudhary, Prateek; Biswas, Sumi; Halstead, Fenella D; Collins, Katharine A; Edwards, Nick J; Douglas, Alexander D; Anagnostou, Nicholas A; Ewer, Katie J; Havelock, Tom; Mahungu, Tabitha; Bliss, Carly M; Miura, Kazutoyo; Poulton, Ian D; Lillie, Patrick J; Antrobus, Richard D; Berrie, Eleanor; Moyle, Sarah; Gantlett, Katherine; Colloca, Stefano; Cortese, Riccardo; Long, Carole A; Sinden, Robert E; Gilbert, Sarah C; Lawrie, Alison M; Doherty, Tom; Faust, Saul N; Nicosia, Alfredo; Hill, Adrian V S; Draper, Simon J

    2012-12-01

    The induction of cellular immunity, in conjunction with antibodies, may be essential for vaccines to protect against blood-stage infection with the human malaria parasite Plasmodium falciparum. We have shown that prime-boost delivery of P. falciparum blood-stage antigens by chimpanzee adenovirus 63 (ChAd63) followed by the attenuated orthopoxvirus MVA is safe and immunogenic in healthy adults. Here, we report on vaccine efficacy against controlled human malaria infection delivered by mosquito bites. The blood-stage malaria vaccines were administered alone, or together (MSP1+AMA1), or with a pre-erythrocytic malaria vaccine candidate (MSP1+ME-TRAP). In this first human use of coadministered ChAd63-MVA regimes, we demonstrate immune interference whereby responses against merozoite surface protein 1 (MSP1) are dominant over apical membrane antigen 1 (AMA1) and ME-TRAP. We also show that induction of strong cellular immunity against MSP1 and AMA1 is safe, but does not impact on parasite growth rates in the blood. In a subset of vaccinated volunteers, a delay in time to diagnosis was observed and sterilizing protection was observed in one volunteer coimmunized with MSP1+AMA1-results consistent with vaccine-induced pre-erythrocytic, rather than blood-stage, immunity. These data call into question the utility of T cell-inducing blood-stage malaria vaccines and suggest that the focus should remain on high-titer antibody induction against susceptible antigen targets.

  7. Antigen-driven focal inflammatory death of malaria liver stages

    Directory of Open Access Journals (Sweden)

    Ganchimeg eBayarsaikhan

    2015-02-01

    Full Text Available Multiple immunizations using live irradiated sporozoites, the infectious plasmodial stage delivered into the host skin during a mosquito bite, can elicit sterile immunity to malaria. CD8+ T cells seem to play an essential role in this protective immunity, since their depletion consistently abolishes sterilizing protection in several experimental models. So far, only a few parasite antigens are known to induce CD8+ T cell-dependent protection, but none of them can reach the levels of protection afforded by live attenuated parasites. Systematic attempts to identify novel antigens associated with this efficient cellular protection were so far unsuccessful. In addition, the precise mechanisms involved in the recognition and elimination of parasitized hepatocytes in vivo by CD8+ T cells still remain obscure. Recently, it has been shown that specific effector CD8+ T cells, after recognition of parasitized hepatocytes, recruit specific and non-specific activated CD8+ T cells to the site of infection, resulting in the formation of cellular clusters around and in the further elimination of intracellular parasites. The significance of this finding is discussed in the perspective of a general mechanism of antigen-dependent focalized inflammation and its consequences for the elimination of malaria liver stages.

  8. Profiling MHC II immunopeptidome of blood-stage malaria reveals that cDC1 control the functionality of parasite-specific CD4 T cells.

    Science.gov (United States)

    Draheim, Marion; Wlodarczyk, Myriam F; Crozat, Karine; Saliou, Jean-Michel; Alayi, Tchilabalo Dilezitoko; Tomavo, Stanislas; Hassan, Ali; Salvioni, Anna; Demarta-Gatsi, Claudia; Sidney, John; Sette, Alessandro; Dalod, Marc; Berry, Antoine; Silvie, Olivier; Blanchard, Nicolas

    2017-11-01

    In malaria, CD4 Th1 and T follicular helper (T FH ) cells are important for controlling parasite growth, but Th1 cells also contribute to immunopathology. Moreover, various regulatory CD4 T-cell subsets are critical to hamper pathology. Yet the antigen-presenting cells controlling Th functionality, as well as the antigens recognized by CD4 T cells, are largely unknown. Here, we characterize the MHC II immunopeptidome presented by DC during blood-stage malaria in mice. We establish the immunodominance hierarchy of 14 MHC II ligands derived from conserved parasite proteins. Immunodominance is shaped differently whether blood stage is preceded or not by liver stage, but the same ETRAMP-specific dominant response develops in both contexts. In naïve mice and at the onset of cerebral malaria, CD8α + dendritic cells (cDC1) are superior to other DC subsets for MHC II presentation of the ETRAMP epitope. Using in vivo depletion of cDC1, we show that cDC1 promote parasite-specific Th1 cells and inhibit the development of IL-10 + CD4 T cells. This work profiles the P. berghei blood-stage MHC II immunopeptidome, highlights the potency of cDC1 to present malaria antigens on MHC II, and reveals a major role for cDC1 in regulating malaria-specific CD4 T-cell responses. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  9. Examining the Reticulocyte Preference of Two Plasmodium berghei Strains during Blood-Stage Malaria Infection

    Directory of Open Access Journals (Sweden)

    Neha Thakre

    2018-02-01

    Full Text Available The blood-stage of the Plasmodium parasite is one of the key phases within its life cycle that influences disease progression during a malaria infection. The efficiency of the parasite in infecting red blood cells (RBC determines parasite load and parasite-induced hemolysis that is responsible for the development of anemia and potentially drives severe disease progression. However, the molecular factors defining the infectivity of Plasmodium parasites have not been completely identified so far. Using the Plasmodium berghei mouse model for malaria, we characterized and compared the blood-stage infection dynamics of PbANKA WT and a mutant parasite strain lacking a novel Plasmodium antigen, PbmaLS_05, that is well conserved in both human and animal Plasmodium parasite strains. Infection of mice with parasites lacking PbmaLS_05 leads to lower parasitemia levels and less severe disease progression in contrast to mice infected with the wildtype PbANKA strain. To specifically determine the effect of deleting PbmaLS_05 on parasite infectivity we developed a mathematical model describing erythropoiesis and malarial infection of RBC. By applying our model to experimental data studying infection dynamics under normal and drug-induced altered erythropoietic conditions, we found that both PbANKA and PbmaLS_05 (- parasite strains differed in their infectivity potential during the early intra-erythrocytic stage of infection. Parasites lacking PbmaLS_05 showed a decreased ability to infect RBC, and immature reticulocytes in particular that are usually a preferential target of the parasite. These altered infectivity characteristics limit parasite burden and affect disease progression. Our integrative analysis combining mathematical models and experimental data suggests that deletion of PbmaLS_05 affects productive infection of reticulocytes, which makes this antigen a useful target to analyze the actual processes relating RBC preferences to the development of

  10. Mother-Newborn Pairs in Malawi Have Similar Antibody Repertoires to Diverse Malaria Antigens.

    Science.gov (United States)

    Boudová, Sarah; Walldorf, Jenny A; Bailey, Jason A; Divala, Titus; Mungwira, Randy; Mawindo, Patricia; Pablo, Jozelyn; Jasinskas, Algis; Nakajima, Rie; Ouattara, Amed; Adams, Matthew; Felgner, Philip L; Plowe, Christopher V; Travassos, Mark A; Laufer, Miriam K

    2017-10-01

    Maternal antibodies may play a role in protecting newborns against malaria disease. Plasmodium falciparum parasite surface antigens are diverse, and protection from infection requires allele-specific immunity. Although malaria-specific antibodies have been shown to cross the placenta, the extent to which antibodies that respond to the full repertoire of diverse antigens are transferred from the mother to the infant has not been explored. Understanding the breadth of maternal antibody responses and to what extent these antibodies are transferred to the child can inform vaccine design and evaluation. We probed plasma from cord blood and serum from mothers at delivery using a customized protein microarray that included variants of malaria vaccine target antigens to assess the intensity and breadth of seroreactivity to three malaria vaccine candidate antigens in mother-newborn pairs in Malawi. Among the 33 paired specimens that were assessed, mothers and newborns had similar intensity and repertoire of seroreactivity. Maternal antibody levels against vaccine candidate antigens were the strongest predictors of infant antibody levels. Placental malaria did not significantly impair transplacental antibody transfer. However, mothers with placental malaria had significantly higher antibody levels against these blood-stage antigens than mothers without placental malaria. The repertoire and levels of infant antibodies against a wide range of malaria vaccine candidate antigen variants closely mirror maternal levels in breadth and magnitude regardless of evidence of placental malaria. Vaccinating mothers with an effective malaria vaccine during pregnancy may induce high and potentially protective antibody repertoires in newborns. Copyright © 2017 American Society for Microbiology.

  11. Liver-inherent immune system: its role in blood-stage malaria.

    Science.gov (United States)

    Wunderlich, Frank; Al-Quraishy, Saleh; Dkhil, Mohamed A

    2014-01-01

    The liver is well known as that organ which is obligately required for the intrahepatocyte development of the pre-erythrocytic stages of the malaria-causative agent Plasmodium. However, largely neglected is the fact that the liver is also a central player of the host defense against the morbidity- and mortality-causing blood stages of the malaria parasites. Indeed, the liver is equipped with a unique immune system that acts locally, however, with systemic impact. Its main "antipodal" functions are to recognize and to generate effective immunoreactivity against pathogens on the one hand, and to generate tolerance to avoid immunoreactivity with "self" and harmless substances as dietary compounds on the other hand. This review provides an introductory survey of the liver-inherent immune system: its pathogen recognition receptors including Toll-like receptors (TLRs) and its major cell constituents with their different facilities to fight and eliminate pathogens. Then, evidence is presented that the liver is also an essential organ to overcome blood-stage malaria. Finally, we discuss effector responses of the liver-inherent immune system directed against blood-stage malaria: activation of TLRs, acute phase response, phagocytic activity, cytokine-mediated pro- and anti-inflammatory responses, generation of "protective" autoimmunity by extrathymic T cells and B-1 cells, and T cell-mediated repair of liver injuries mainly produced by malaria-induced overreactions of the liver-inherent immune system.

  12. Prolonged antigen presentation is required for optimal CD8+ T cell responses against malaria liver stage parasites.

    Directory of Open Access Journals (Sweden)

    Ian A Cockburn

    2010-05-01

    Full Text Available Immunization with irradiated sporozoites is currently the most effective vaccination strategy against liver stages of malaria parasites, yet the mechanisms underpinning the success of this approach are unknown. Here we show that the complete development of protective CD8+ T cell responses requires prolonged antigen presentation. Using TCR transgenic cells specific for the malaria circumsporozoite protein, a leading vaccine candidate, we found that sporozoite antigen persists for over 8 weeks after immunization--a remarkable finding since irradiated sporozoites are incapable of replication and do not differentiate beyond early liver stages. Persisting antigen was detected in lymphoid organs and depends on the presence of CD11c+ cells. Prolonged antigen presentation enhanced the magnitude of the CD8+ T cell response in a number of ways. Firstly, reducing the time primed CD8+ T cells were exposed to antigen in vivo severely reduced the final size of the developing memory population. Secondly, fully developed memory cells expanded in previously immunized mice but not when transferred to naïve animals. Finally, persisting antigen was able to prime naïve cells, including recent thymic emigrants, to become functional effector cells capable of eliminating parasites in the liver. Together these data show that the optimal development of protective CD8+ T cell immunity against malaria liver stages is dependent upon the prolonged presentation of sporozoite-derived antigen.

  13. Antibody responses to a panel of Plasmodium falciparum malaria blood-stage antigens in relation to clinical disease outcome in Sudan

    DEFF Research Database (Denmark)

    Iriemenam, Nnaemeka C; Khirelsied, Atif H; Nasr, Amre

    2009-01-01

    Despite many intervention programmes aimed at curtailing the scourge, malaria remains a formidable problem of human health. Immunity to asexual blood-stage of Plasmodium falciparum malaria is thought to be associated with protective antibodies of certain immunoglobulin classes and subclasses. We ...

  14. Effect of the pre-erythrocytic candidate malaria vaccine RTS,S/AS01E on blood stage immunity in young children

    DEFF Research Database (Denmark)

    Bejon, Philip; Cook, Jackie; Bergmann-Leitner, Elke

    2011-01-01

    (See the article by Greenhouse et al, on pages 19-26.) Background. RTS,S/AS01(E) is the lead candidate malaria vaccine and confers pre-erythrocytic immunity. Vaccination may therefore impact acquired immunity to blood-stage malaria parasites after natural infection. Methods. We measured, by enzyme......, MSP-1(42), and MSP-3 antibody concentrations and no significant change in GIA. Increasing anti-merozoite antibody concentrations and GIA were prospectively associated with increased risk of clinical malaria. Conclusions. Vaccination with RTS,S/AS01E reduces exposure to blood-stage parasites and, thus......-linked immunosorbent assay, antibodies to 4 Plasmodium falciparum merozoite antigens (AMA-1, MSP-1(42), EBA-175, and MSP-3) and by growth inhibitory activity (GIA) using 2 parasite clones (FV0 and 3D7) at 4 times on 860 children who were randomized to receive with RTS,S/AS01(E) or a control vaccine. Results. Antibody...

  15. Mechanisms of stage-transcending protection following immunization of mice with late liver stage-arresting genetically attenuated malaria parasites.

    Directory of Open Access Journals (Sweden)

    Brandon K Sack

    2015-05-01

    Full Text Available Malaria, caused by Plasmodium parasite infection, continues to be one of the leading causes of worldwide morbidity and mortality. Development of an effective vaccine has been encumbered by the complex life cycle of the parasite that has distinct pre-erythrocytic and erythrocytic stages of infection in the mammalian host. Historically, malaria vaccine development efforts have targeted each stage in isolation. An ideal vaccine, however, would target multiple life cycle stages with multiple arms of the immune system and be capable of eliminating initial infection in the liver, the subsequent blood stage infection, and would prevent further parasite transmission. We have previously shown that immunization of mice with Plasmodium yoelii genetically attenuated parasites (GAP that arrest late in liver stage development elicits stage-transcending protection against both a sporozoite challenge and a direct blood stage challenge. Here, we show that this immunization strategy engenders both T- and B-cell responses that are essential for stage-transcending protection, but the relative importance of each is determined by the host genetic background. Furthermore, potent anti-blood stage antibodies elicited after GAP immunization rely heavily on FC-mediated functions including complement fixation and FC receptor binding. These protective antibodies recognize the merozoite surface but do not appear to recognize the immunodominant merozoite surface protein-1. The antigen(s targeted by stage-transcending immunity are present in both the late liver stages and blood stage parasites. The data clearly show that GAP-engendered protective immune responses can target shared antigens of pre-erythrocytic and erythrocytic parasite life cycle stages. As such, this model constitutes a powerful tool to identify novel, protective and stage-transcending T and B cell targets for incorporation into a multi-stage subunit vaccine.

  16. An essential malaria protein defines the architecture of blood-stage and transmission-stage parasites.

    Science.gov (United States)

    Absalon, Sabrina; Robbins, Jonathan A; Dvorin, Jeffrey D

    2016-04-28

    Blood-stage replication of the human malaria parasite Plasmodium falciparum occurs via schizogony, wherein daughter parasites are formed by a specialized cytokinesis known as segmentation. Here we identify a parasite protein, which we name P. falciparum Merozoite Organizing Protein (PfMOP), as essential for cytokinesis of blood-stage parasites. We show that, following PfMOP knockdown, parasites undergo incomplete segmentation resulting in a residual agglomerate of partially divided cells. While organelles develop normally, the structural scaffold of daughter parasites, the inner membrane complex (IMC), fails to form in this agglomerate causing flawed segmentation. In PfMOP-deficient gametocytes, the IMC formation defect causes maturation arrest with aberrant morphology and death. Our results provide insight into the mechanisms of replication and maturation of malaria parasites.

  17. Blood stage malaria vaccine eliciting high antigen-specific antibody concentrations confers no protection to young children in Western Kenya.

    Directory of Open Access Journals (Sweden)

    Bernhards R Ogutu

    Full Text Available The antigen, falciparum malaria protein 1 (FMP1, represents the 42-kDa C-terminal fragment of merozoite surface protein-1 (MSP-1 of the 3D7 clone of P. falciparum. Formulated with AS02 (a proprietary Adjuvant System, it constitutes the FMP1/AS02 candidate malaria vaccine. We evaluated this vaccine's safety, immunogenicity, and efficacy in African children.A randomised, double-blind, Phase IIb, comparator-controlled trial.The trial was conducted in 13 field stations of one mile radii within Kombewa Division, Nyanza Province, Western Kenya, an area of holoendemic transmission of P. falciparum. We enrolled 400 children aged 12-47 months in general good health.Children were randomised in a 1ratio1 fashion to receive either FMP1/AS02 (50 microg or Rabipur(R rabies vaccine. Vaccinations were administered on a 0, 1, and 2 month schedule. The primary study endpoint was time to first clinical episode of P. falciparum malaria (temperature >/=37.5 degrees C with asexual parasitaemia of >/=50,000 parasites/microL of blood occurring between 14 days and six months after a third dose. Case detection was both active and passive. Safety and immunogenicity were evaluated for eight months after first immunisations; vaccine efficacy (VE was measured over a six-month period following third vaccinations.374 of 400 children received all three doses and completed six months of follow-up. FMP1/AS02 had a good safety profile and was well-tolerated but more reactogenic than the comparator. Geometric mean anti-MSP-1(42 antibody concentrations increased from1.3 microg/mL to 27.3 microg/mL in the FMP1/AS02 recipients, but were unchanged in controls. 97 children in the FMP1/AS02 group and 98 controls had a primary endpoint episode. Overall VE was 5.1% (95% CI: -26% to +28%; p-value = 0.7.FMP1/AS02 is not a promising candidate for further development as a monovalent malaria vaccine. Future MSP-1(42 vaccine development should focus on other formulations and antigen constructs

  18. Malaria resistance genes are associated with the levels of IgG subclasses directed against Plasmodium falciparum blood-stage antigens in Burkina Faso

    Directory of Open Access Journals (Sweden)

    Afridi Sarwat

    2012-09-01

    Full Text Available Abstract Background HBB, IL4, IL12, TNF, LTA, NCR3 and FCGR2A polymorphisms have been associated with malaria resistance in humans, whereas cytophilic immunoglobulin G (IgG antibodies are thought to play a critical role in immune protection against asexual blood stages of the parasite. Furthermore, HBB, IL4, TNF, and FCGR2A have been associated with both malaria resistance and IgG levels. This suggests that some malaria resistance genes influence the levels of IgG subclass antibodies. Methods In this study, the effect of HBB, IL4, IL12, TNF, LTA, NCR3 and FCGR2A polymorphisms on the levels of IgG responses against Plasmodium falciparum blood-stage extract was investigated in 220 individuals living in Burkina Faso. The Pearson’s correlation coefficient among IgG subclasses was determined. A family-based approach was used to assess the association of polymorphisms with anti-P. falciparum IgG, IgG1, IgG2, IgG3 and IgG4 levels. Results After applying a multiple test correction, several polymorphisms were associated with IgG subclass or IgG levels. There was an association of i haemoglobin C with IgG levels; ii the FcγRIIa H/R131 with IgG2 and IgG3 levels; iii TNF-863 with IgG3 levels; iv TNF-857 with IgG levels; and, v TNF1304 with IgG3, IgG4, and IgG levels. Conclusion Taken together, the results support the hypothesis that some polymorphisms affect malaria resistance through their effect on the acquired immune response, and pave the way towards further comprehension of genetic control of an individual’s humoral response against malaria.

  19. [Blood groups - minuses and pluses. Do the blood group antigens protect us from infectious diseases?].

    Science.gov (United States)

    Czerwiński, Marcin

    2015-06-25

    Human blood can be divided into groups, which is a method of blood classification based on the presence or absence of inherited erythrocyte surface antigens that can elicit immune response. According to the International Society of Blood Transfusion, there are 341 blood group antigens collected in 35 blood group systems. These antigens can be proteins, glycoproteins or glycosphingolipids, and function as transmembrane transporters, ion channels, adhesion molecules or receptors for other proteins. The majority of blood group antigens is present also on another types of cells. Due to their localization on the surface of cells, blood group antigens can act as receptors for various pathogens or their toxins, such as protozoa (malaria parasites), bacteria (Helicobacter pylori, Vibrio cholerae and Shigella dysenteriae) and viruses (Noroviruses, Parvoviruses, HIV). If the presence of group antigen (or its variant which arised due to mutation) is beneficial for the host (e.g. because pathogens are not able to bind to the cells), the blood group may become a selection trait, leading to its dissemination in the population exposed to that pathogen. There are thirteen blood group systems that can be related to pathogen resistance, and it seems that the particular influence was elicit by malaria parasites. It is generally thought that the high incidence of blood groups such as O in the Amazon region, Fy(a-b-) in Africa and Ge(-) in Papua-New Guinea is the result of selective pressure from malaria parasite. This review summarizes the data about relationship between blood groups and resistance to pathogens.

  20. Analysis of a Multi-component Multi-stage Malaria Vaccine Candidate--Tackling the Cocktail Challenge.

    Directory of Open Access Journals (Sweden)

    Alexander Boes

    Full Text Available Combining key antigens from the different stages of the P. falciparum life cycle in the context of a multi-stage-specific cocktail offers a promising approach towards the development of a malaria vaccine ideally capable of preventing initial infection, the clinical manifestation as well as the transmission of the disease. To investigate the potential of such an approach we combined proteins and domains (11 in total from the pre-erythrocytic, blood and sexual stages of P. falciparum into a cocktail of four different components recombinantly produced in plants. After immunization of rabbits we determined the domain-specific antibody titers as well as component-specific antibody concentrations and correlated them with stage specific in vitro efficacy. Using purified rabbit immune IgG we observed strong inhibition in functional in vitro assays addressing the pre-erythrocytic (up to 80%, blood (up to 90% and sexual parasite stages (100%. Based on the component-specific antibody concentrations we calculated the IC50 values for the pre-erythrocytic stage (17-25 μg/ml, the blood stage (40-60 μg/ml and the sexual stage (1.75 μg/ml. While the results underline the feasibility of a multi-stage vaccine cocktail, the analysis of component-specific efficacy indicates significant differences in IC50 requirements for stage-specific antibody concentrations providing valuable insights into this complex scenario and will thereby improve future approaches towards malaria vaccine cocktail development regarding the selection of suitable antigens and the ratios of components, to fine tune overall and stage-specific efficacy.

  1. A comparative study of blood smear, QBC and antigen detection for diagnosis of malaria.

    Science.gov (United States)

    Parija, S C; Dhodapkar, Rahul; Elangovan, Subashini; Chaya, D R

    2009-01-01

    Rapid diagnosis is prerequisite for effective treatment and reducing mortality and morbidity of malaria. This study was taken up to compare the efficacy of various methods available, i.e., thick and thin smear, quantitative buffy coat (QBC), plasmodium lactate dehydrogenase and aldolase in blood of patient. A total of 411 samples were collected from patients presenting with classic symptoms of malaria. For traditional microscopy; thick and thin smears were prepared and stained with Leishman's stain, taking thick smear as gold standard, thin smear had a sensitivity and specificity of 54.8% and 100%, respectively. QBC and antigen detection was done using commercially available kits; out of 411 samples, QBC and Malariagen were positive in 66 and 62 cases, with a sensitivity of 78% and 75%, respectively. Leishman's thick smear, although cost effective, is difficult to interpret for inexperienced microscopists; so if facilities are available, QBC should be used for routine diagnosis. In places where facilities are not available, rapid, simple and easy to interpret antigen detection test can be used despite low sensitivity.

  2. A comparative study of blood smear, QBC and antigen detection for diagnosis of malaria

    Directory of Open Access Journals (Sweden)

    Parija S

    2009-04-01

    Full Text Available Rapid diagnosis is prerequisite for effective treatment and reducing mortality and morbidity of malaria. This study was taken up to compare the efficacy of various methods available, i.e., thick and thin smear, quantitative buffy coat (QBC, plasmodium lactate dehydrogenase and aldolase in blood of patient. A total of 411 samples were collected from patients presenting with classic symptoms of malaria. For traditional microscopy; thick and thin smears were prepared and stained with Leishman′s stain, taking thick smear as gold standard, thin smear had a sensitivity and specificity of 54.8% and 100%, respectively. QBC and antigen detection was done using commercially available kits; out of 411 samples, QBC and Malariagen were positive in 66 and 62 cases, with a sensitivity of 78% and 75%, respectively. Leishman′s thick smear, although cost effective, is difficult to interpret for inexperienced microscopists; so if facilities are available, QBC should be used for routine diagnosis. In places where facilities are not available, rapid, simple and easy to interpret antigen detection test can be used despite low sensitivity.

  3. Seroprevalence of Antibodies against Plasmodium falciparum Sporozoite Antigens as Predictive Disease Transmission Markers in an Area of Ghana with Seasonal Malaria Transmission.

    Directory of Open Access Journals (Sweden)

    Kwadwo A Kusi

    Full Text Available As an increasing number of malaria-endemic countries approach the disease elimination phase, sustenance of control efforts and effective monitoring are necessary to ensure success. Mathematical models that estimate anti-parasite antibody seroconversion rates are gaining relevance as more sensitive transmission intensity estimation tools. Models however estimate yearly seroconversion and seroreversion rates and usually predict long term changes in transmission, occurring years before the time of sampling. Another challenge is the identification of appropriate antigen targets since specific antibody levels must directly reflect changes in transmission patterns. We therefore investigated the potential of antibodies to sporozoite and blood stage antigens for detecting short term differences in malaria transmission in two communities in Northern Ghana with marked, seasonal transmission.Cross-sectional surveys were conducted during the rainy and dry seasons in two communities, one in close proximity to an irrigation dam and the other at least 20 Km away from the dam. Antibodies against the sporozoite-specific antigens circumsporozoite protein (CSP and Cell traversal for ookinetes and sporozoites (CelTOS and the classical blood stage antigen apical membrane antigen 1 (AMA1 were measured by indirect ELISA. Antibody levels and seroprevalence were compared between surveys and between study communities. Antibody seroprevalence data were fitted to a modified reversible catalytic model to estimate the seroconversion and seroreversion rates.Changes in sporozoite-specific antibody levels and seroprevalence directly reflected differences in parasite prevalence between the rainy and dry seasons and hence the extent of malaria transmission. Seroconversion rate estimates from modelled seroprevalence data did not however support the above observation.The data confirms the potential utility of sporozoite-specific antigens as useful markers for monitoring short term

  4. Overview of Plant-Made Vaccine Antigens against Malaria

    Directory of Open Access Journals (Sweden)

    Marina Clemente

    2012-01-01

    Full Text Available This paper is an overview of vaccine antigens against malaria produced in plants. Plant-based expression systems represent an interesting production platform due to their reduced manufacturing costs and high scalability. At present, different Plasmodium antigens and expression strategies have been optimized in plants. Furthermore, malaria antigens are one of the few examples of eukaryotic proteins with vaccine value expressed in plants, making plant-derived malaria antigens an interesting model to analyze. Up to now, malaria antigen expression in plants has allowed the complete synthesis of these vaccine antigens, which have been able to induce an active immune response in mice. Therefore, plant production platforms offer wonderful prospects for improving the access to malaria vaccines.

  5. Polymorphism in liver-stage malaria vaccine candidate proteins: immune evasion and implications for vaccine design.

    Science.gov (United States)

    Flanagan, Katie L; Wilson, Kirsty L; Plebanski, Magdalena

    2016-01-01

    The pre-erythrocytic stage of infection by malaria parasites represents a key target for vaccines that aim to eradicate malaria. Two important broad immune evasion strategies that can interfere with vaccine efficacy include the induction of dendritic cell (DC) dysfunction and regulatory T cells (Tregs) by blood-stage malaria parasites, leading to inefficient priming of T cells targeting liver-stage infections. The parasite also uses 'surgical strike' strategies, whereby polymorphism in pre-erythrocytic antigens can interfere with host immunity. Specifically, we review how even single amino acid changes in T cell epitopes can lead to loss of binding to major histocompatibility complex (MHC), lack of cross-reactivity, or antagonism and immune interference, where simultaneous or sequential stimulation with related variants of the same T cell epitope can cause T cell anergy or the conversion of effector to immunosuppressive T cell phenotypes.

  6. Human T cell recognition of the blood stage antigen Plasmodium hypoxanthine guanine xanthine phosphoribosyl transferase (HGXPRT in acute malaria

    Directory of Open Access Journals (Sweden)

    Woodberry Tonia

    2009-06-01

    Full Text Available Abstract Background The Plasmodium purine salvage enzyme, hypoxanthine guanine xanthine phosphoribosyl transferase (HGXPRT can protect mice against Plasmodium yoelii pRBC challenge in a T cell-dependent manner and has, therefore, been proposed as a novel vaccine candidate. It is not known whether natural exposure to Plasmodium falciparum stimulates HGXPRT T cell reactivity in humans. Methods PBMC and plasma collected from malaria-exposed Indonesians during infection and 7–28 days after anti-malarial therapy, were assessed for HGXPRT recognition using CFSE proliferation, IFNγ ELISPOT assay and ELISA. Results HGXPRT-specific T cell proliferation was found in 44% of patients during acute infection; in 80% of responders both CD4+ and CD8+ T cell subsets proliferated. Antigen-specific T cell proliferation was largely lost within 28 days of parasite clearance. HGXPRT-specific IFN-γ production was more frequent 28 days after treatment than during acute infection. HGXPRT-specific plasma IgG was undetectable even in individuals exposed to malaria for at least two years. Conclusion The prevalence of acute proliferative and convalescent IFNγ responses to HGXPRT demonstrates cellular immunogenicity in humans. Further studies to determine minimal HGXPRT epitopes, the specificity of responses for Plasmodia and associations with protection are required. Frequent and robust T cell proliferation, high sequence conservation among Plasmodium species and absent IgG responses distinguish HGXPRT from other malaria antigens.

  7. Long-term Maintenance of CD4 T Cell Memory Responses to Malaria Antigens in Malian Children Coinfected with Schistosoma haematobium

    Directory of Open Access Journals (Sweden)

    Kirsten E. Lyke

    2018-02-01

    Full Text Available Polyparasitism is common in the developing world. We have previously demonstrated that schistosomiasis-positive (SP Malian children, aged 4–8 years, are protected from malaria compared to matched schistosomiasis-negative (SN children. The effect of concomitant schistosomiasis upon acquisition of T cell memory is unknown. We examined antigen-specific T cell frequencies in 48 Malian children aged 4–14 to a pool of malaria blood stage antigens, and a pool of schistosomal antigens, at a time point during a malaria episode and at a convalescent time point ~6 months later, following cessation of malaria transmission. CD4+ T cell-derived memory responses, defined as one or more significant cytokine (IFN-γ, TNF-α, IL-2, and/or IL-17A responses, was measured to schistoma antigens in 18/23 SP children at one or both time points, compared to 4/23 SN children (P < 0.0001. At the time of malaria infection, 12/24 SN children and 15/23 SP children (P = 0.29 stimulated with malaria antigens demonstrated memory recall as defined by CD4-derived cytokine production. This compares to 7/23 SN children and 16/23 SP children (P = 0.009 at the convalescent timepoint. 46.2% of cytokine-producing CD4+ T cells expressed a single cytokine after stimulation with malaria antigen during the malaria episode. This fell to 40.9% at follow-up with a compensatory rise of multifunctional cytokine secretion over time, a phenomenon consistent with memory maturation. The majority (53.2–59.5% of responses derived from CD45RA−CD62L− effector memory T cells with little variation in the phenotype depending upon the time point or the study cohort. We conclude that detectable T cell memory responses can be measured against both malaria and schistosoma antigens and that the presence of Schistosoma haematobium may be associated with long-term maintenance of T memory to malaria.

  8. Strain-specific Plasmodium falciparum growth inhibition among Malian children immunized with a blood-stage malaria vaccine.

    Directory of Open Access Journals (Sweden)

    Matthew B Laurens

    Full Text Available The blood-stage malaria vaccine FMP2.1/AS02A, comprised of recombinant Plasmodium falciparum apical membrane antigen 1 (AMA1 and the adjuvant system AS02A, had strain-specific efficacy against clinical malaria caused by P. falciparum with the vaccine strain 3D7 AMA1 sequence. To evaluate a potential correlate of protection, we measured the ability of participant sera to inhibit growth of 3D7 and FVO strains in vitro using high-throughput growth inhibition assay (GIA testing. Sera from 400 children randomized to receive either malaria vaccine or a control rabies vaccine were assessed at baseline and over two annual malaria transmission seasons after immunization. Baseline GIA against vaccine strain 3D7 and FVO strain was similar in both groups, but more children in the malaria vaccine group than in the control group had 3D7 and FVO GIA activity ≥15% 30 days after the last vaccination (day 90 (49% vs. 16%, p<0.0001; and 71.8% vs. 60.4%, p = 0.02. From baseline to day 90, 3D7 GIA in the vaccine group was 7.4 times the mean increase in the control group (p<0.0001. In AMA1 vaccinees, 3D7 GIA activity subsequently returned to baseline one year after vaccination (day 364 and did not correlate with efficacy in the extended efficacy time period to day 730. In Cox proportional hazards regression models with time-varying covariates, there was a slight suggestion of an association between 3D7 GIA activity and increased risk of clinical malaria between day 90 and day 240. We conclude that vaccination with this AMA1-based malaria vaccine increased inhibition of parasite growth, but this increase was not associated with allele-specific efficacy in the first malaria season. These results provide a framework for testing functional immune correlates of protection against clinical malaria in field trials, and will help to guide similar analyses for next-generation malaria vaccines. Clinical trials registry: This clinical trial was registered on clinicaltrials

  9. Proliferation induced by Plasmodium falciparum antigen and interleukin-2 production by lymphocytes isolated from malaria-immune individuals

    DEFF Research Database (Denmark)

    Theander, T G; Bygbjerg, I C; Jepsen, S

    1986-01-01

    Affinity-purified Plasmodium falciparum soluble antigens (SPAg) isolated from in vitro cultures of the parasite were shown to be relatively free of nonspecific polyclonal activators. To determine the presence of lymphocytes with specificity against SPAg in the peripheral blood of malaria-immune i......Affinity-purified Plasmodium falciparum soluble antigens (SPAg) isolated from in vitro cultures of the parasite were shown to be relatively free of nonspecific polyclonal activators. To determine the presence of lymphocytes with specificity against SPAg in the peripheral blood of malaria...

  10. Novel approaches to identify protective malaria vaccine candidates

    Directory of Open Access Journals (Sweden)

    Wan Ni eChia

    2014-11-01

    Full Text Available Efforts to develop vaccines against malaria have been the focus of substantial research activities for decades. Several categories of candidate vaccines are currently being developed for protection against malaria, based on antigens corresponding to the pre-erythrocytic, blood-stage or sexual stages of the parasite. Long lasting sterile protection from Plasmodium falciparum sporozoite challenge has been observed in human following vaccination with whole parasite formulations, clearly demonstrating that a protective immune response targeting predominantly the pre-erythrocytic stages can develop against malaria. However, most of vaccine candidates currently being investigated, which are mostly subunits vaccines, have not been able to induce substantial (>50% protection thus far. This is due to the fact that the antigens responsible for protection against the different parasite stages are still yet to be known and relevant correlates of protection have remained elusive. For a vaccine to be developed in a timely manner, novel approaches are required. In this article, we review the novel approaches that have been developed to identify the antigens for the development of an effective malaria vaccine.

  11. Duffy blood group system and the malaria adaptation process in humans

    Directory of Open Access Journals (Sweden)

    Gledson Barbosa de Carvalho

    2011-02-01

    Full Text Available Malaria is an acute infectious disease caused by the protozoa of the genus Plasmodium. The antigens of the Duffy Blood Group System, in addition to incompatibilities in transfusions and hemolytic disease of the newborn, are of great interest in medicine due to their association with the invasion of red blood cells by the parasite Plasmodium vivax. For invasions to occur an interaction between the parasites and antigens of the Duffy Blood Group System is necessary. In Caucasians six antigens are produced by the Duffy locus (Fya, Fyb, F3, F4, F5 and F6. It has been observed that Fy(a-b- individuals are resistant to Plasmodium knowlesi and P. vivax infection, because the invasion requires at least one of these antigens. The P. vivax Duffy Binding Protein (PvDBP is functionally important in the invasion process of these parasites in Duffy / DARC positive humans. The proteins or fractions may be considered, therefore, an important and potential inoculum to be used in immunization against malaria.

  12. Laboratory diagnostics of malaria

    Science.gov (United States)

    Siahaan, L.

    2018-03-01

    Even now, malaria treatment should only be administered after laboratory confirmation. There are several principal methods for diagnosing malaria. All these methods have their disadvantages.Presumptive treatment of malaria is widely practiced where laboratory tests are not readily available. Microscopy of Giemsa-stained thick and thin blood films remains the gold standard for the diagnosis of malaria infection. The technique of slide preparation, staining and reading are well known and standardized, and so is the estimate of the parasite density and parasite stages. Microscopy is not always available or feasible at primary health services in limited resource settings due to cost, lack of skilled manpower, accessories and reagents required. Rapid diagnostic tests (RDTs) are potential tools for parasite-based diagnosis since the tests are accurate in detecting malaria infections and are easy to use. The test is based on the capture of parasite antigen that released from parasitized red blood cells using monoclonal antibodies prepared against malaria antigen target. Polymerase Chain Reaction (PCR), depend on DNA amplification approaches and have higher sensitivity than microscopy. PCR it is not widely used due to the lack of a standardized methodology, high costs, and the need for highly-trained staff.

  13. Proteins involved in invasion of human red blood cells by malaria parasites

    Directory of Open Access Journals (Sweden)

    Ewa Jaśkiewicz

    2010-11-01

    Full Text Available Malaria is a disease caused by parasites of Plasmodium species. It is responsible for around 1-2 million deaths annually, mainly children under the age of 5. It occurs mainly in tropical and subtropical areas.Malaria is caused by five Plasmodium species:[i] P. falciparum, P. malariae, P. vivax, P. knowlesi[/i] and [i]P. ovale[/i]. Mosquitoes spread the disease by biting humans. The malaria parasite has two stages of development: the human stage and the mosquito stage. The first stage occurs in the human body and is divided into two phases: the liver phase and the blood phase.The invasion of erythrocytes by [i]Plasmodium[/i] merozoites is a multistep process of specific protein interactions between the parasite and red blood cell. The first step is the reversible merozoite attachment to the erythrocyte followed by its apical reorientation, then formation of an irreversible “tight” junction and finally entry into the red cell in a parasitophorous vacuole.The blood phase is supported by a number of proteins produced by the parasite. The merozoite surface GPI-anchored proteins (MSP-1, 2, 4, 5, 8 and 10 assist in the process of recognition of susceptible erythrocytes, apical membrane antigen (AMA-1 may be directly responsible for apical reorientation of the merozoite and apical proteins which function in tight junction formation. These ligands are members of two families: Duffy binding-like (DBL and reticulocyte binding-like (RBL proteins. In [i]Plasmodium[/i] [i]falciparum[/i] the DBL family includes: EBA-175, EBA-140 (BAEBL, EBA-181 (JESEBL, EBA-165 (PEBL and EBL-1 ligands.To date, no effective antimalarial vaccine has been developed, but there are several studies for this purpose. Therefore, it is crucial to understand the molecular basis of host cells invasion by parasites. Major efforts are focused on developing a multiantigenic and multiepitope vaccine preventing all steps of [i]Plasmodium[/i] invasion.

  14. Phase 1b randomized trial and follow-up study in Uganda of the blood-stage malaria vaccine candidate BK-SE36.

    Science.gov (United States)

    Palacpac, Nirianne Marie Q; Ntege, Edward; Yeka, Adoke; Balikagala, Betty; Suzuki, Nahoko; Shirai, Hiroki; Yagi, Masanori; Ito, Kazuya; Fukushima, Wakaba; Hirota, Yoshio; Nsereko, Christopher; Okada, Takuya; Kanoi, Bernard N; Tetsutani, Kohhei; Arisue, Nobuko; Itagaki, Sawako; Tougan, Takahiro; Ishii, Ken J; Ueda, Shigeharu; Egwang, Thomas G; Horii, Toshihiro

    2013-01-01

    Up to now a malaria vaccine remains elusive. The Plasmodium falciparum serine repeat antigen-5 formulated with aluminum hydroxyl gel (BK-SE36) is a blood-stage malaria vaccine candidate that has undergone phase 1a trial in malaria-naive Japanese adults. We have now assessed the safety and immunogenicity of BK-SE36 in a malaria endemic area in Northern Uganda. We performed a two-stage, randomized, single-blinded, placebo-controlled phase 1b trial (Current Controlled trials ISRCTN71619711). A computer-generated sequence randomized healthy subjects for 2 subcutaneous injections at 21-day intervals in Stage1 (21-40 year-olds) to 1-mL BK-SE36 (BKSE1.0) (n = 36) or saline (n = 20) and in Stage2 (6-20 year-olds) to BKSE1.0 (n = 33), 0.5-mL BK-SE36 (BKSE0.5) (n = 33), or saline (n = 18). Subjects and laboratory personnel were blinded. Safety and antibody responses 21-days post-second vaccination (Day42) were assessed. Post-trial, to compare the risk of malaria episodes 130-365 days post-second vaccination, Stage2 subjects were age-matched to 50 control individuals. Nearly all subjects who received BK-SE36 had induration (Stage1, n = 33, 92%; Stage2, n = 63, 96%) as a local adverse event. No serious adverse event related to BK-SE36 was reported. Pre-existing anti-SE36 antibody titers negatively correlated with vaccination-induced antibody response. At Day42, change in antibody titers was significant for seronegative adults (1.95-fold higher than baseline [95% CI, 1.56-2.43], p = 0.004) and 6-10 year-olds (5.71-fold [95% CI, 2.38-13.72], p = 0.002) vaccinated with BKSE1.0. Immunogenicity response to BKSE0.5 was low and not significant (1.55-fold [95% CI, 1.24-1.94], p = 0.75). In the ancillary analysis, cumulative incidence of first malaria episodes with ≥5000 parasites/µL was 7 cases/33 subjects in BKSE1.0 and 10 cases/33 subjects in BKSE0.5 vs. 29 cases/66 subjects in the control group. Risk ratio for BKSE1.0 was 0.48 (95% CI, 0

  15. The dog that did not bark: malaria vaccines without antibodies.

    NARCIS (Netherlands)

    Heppner, D.G.; Schwenk, R.J.; Arnot, D.; Sauerwein, R.W.; Luty, A.J.F.

    2007-01-01

    To date, the only pre-blood stage vaccine to confer protection against malaria in field trials elicits both antigen-specific antibody and T-cell responses. Recent clinical trials of new heterologous prime-boost malaria vaccine regimens using DNA, fowlpox or MVA, have chiefly elicited T-cell

  16. BDA-410: a novel synthetic calpain inhibitor active against blood stage malaria.

    Science.gov (United States)

    Li, Xuerong; Chen, Huiqing; Jeong, Jong-Jin; Chishti, Athar H

    2007-09-01

    Falcipains, the papain-family cysteine proteases of the Plasmodium falciparum, are potential drug targets for malaria parasite. Pharmacological inhibition of falcipains can block the hydrolysis of hemoglobin, parasite development, and egress, suggesting that falcipains play a key role at the blood stage of parasite life cycle. In the present study, we evaluated the anti-malarial effects of BDA-410, a novel cysteine protease inhibitor as a potential anti-malarial drug. Recombinant falcipain (MBP-FP-2B) and P. falciparum trophozoite extract containing native falcipains were used for enzyme inhibition studies in vitro. The effect of BDA-410 on the malaria parasite development in vitro as well as its anti-malarial activity in vivo was evaluated using the Plasmodium chabaudi infection rodent model. The 50% inhibitory concentrations of BDA-410 were determined to be 628 and 534nM for recombinant falcipain-2B and parasite extract, respectively. BDA-410 inhibited the malaria parasite growth in vitro with an IC(50) value of 173nM causing irreversible damage to the intracellular parasite. In vivo, the BDA-410 delayed the progression of malaria infection significantly using a mouse model of malaria pathogenesis. The characterization of BDA-410 as a potent inhibitor of P. falciparum cysteine proteases, and the demonstration of its efficacy in blocking parasite growth both in vitro and in vivo assays identifies BDA-410 is an important lead compound for the development of novel anti-malarial drugs.

  17. The diagnosis of malaria infection using a solid-phase radioimmunoassay for the detection of malaria antigens

    International Nuclear Information System (INIS)

    Mackey, L.; Perrin, L.; Leemans, E.; Lambert, P.H.

    1980-01-01

    A method was devised to show that malaria parasites can be detected serologically in infected blood with a high degree of sensitivity. Using a murine malaria model, parasites were demonstrated in a solid-phase radio-immunoassay which measured antibody-binding inhibition. Lysed red blood cells (r.b.c.) were incubated with labelled specific antibody and were then reacted in antigen-coated tubes. The degree of inhibition of antibody binding in the tubes correlated with the level of parasitaemia in the test blood. Using homologous antisera the test detected infection at a level of 1 parasite/million r.b.c.. The specificity of the method was shown by comparison of antibody-binding inhibition in normal and infected r.b.c. and in r.b.c. from non-infected mice with induced reticulocytosis. The sensitivity was shown in vitro in tests of serially diluted blood of high parasitaemia and in vivo for the detection of early infection. The presence of antibody in the test blood did not significantly affect the sensitivity of parasite detection. (author)

  18. The influence of Maloprim chemoprophylaxis on cellular and humoral immune responses to Plasmodium falciparum asexual blood stage antigens in schoolchildren living in a malaria endemic area of Mozambique

    DEFF Research Database (Denmark)

    Hogh, B; Thompson, R; Lobo, V

    1994-01-01

    responses to the GLURP molecule and partly to the Pf155/RESA antigen in this study population were shortlived and dependent on frequent boostering, but whether these antigens play a role in the development of natural clinical immunity remains open. In the experimental group of schoolchildren weekly...... chemoprophylaxis successfully reduced the parasite rate during the rainy season from 43% to 4%, and during the dry season from 18% to 0%. Chemoprophylaxis may therefore have a useful role in combination with another partially effective malaria control measure such as insecticide-impregnated bed nets or a malaria...

  19. Comparative testing of six antigen-based malaria vaccine candidates directed toward merozoite-stage Plasmodium falciparum

    DEFF Research Database (Denmark)

    Arnot, David E; Cavanagh, David R; Remarque, Edmond J

    2008-01-01

    Immunogenicity testing of Plasmodium falciparum antigens being considered as malaria vaccine candidates was undertaken in rabbits. The antigens compared were recombinant baculovirus MSP-1(19) and five Pichia pastoris candidates, including two versions of MSP-1(19), AMA-1 (domains I and II), AMA-1......G concentrations. The two P. pastoris-produced MSP-1(19)-induced IgGs conferred the lowest growth inhibition. Comparative analysis of immunogenicity of vaccine antigens can be used to prioritize candidates before moving to expensive GMP production and clinical testing. The assays used have given discriminating...

  20. In vivo approaches reveal a key role for DCs in CD4+ T cell activation and parasite clearance during the acute phase of experimental blood-stage malaria.

    Directory of Open Access Journals (Sweden)

    Henrique Borges da Silva

    2015-02-01

    Full Text Available Dendritic cells (DCs are phagocytes that are highly specialized for antigen presentation. Heterogeneous populations of macrophages and DCs form a phagocyte network inside the red pulp (RP of the spleen, which is a major site for the control of blood-borne infections such as malaria. However, the dynamics of splenic DCs during Plasmodium infections are poorly understood, limiting our knowledge regarding their protective role in malaria. Here, we used in vivo experimental approaches that enabled us to deplete or visualize DCs in order to clarify these issues. To elucidate the roles of DCs and marginal zone macrophages in the protection against blood-stage malaria, we infected DTx (diphtheria toxin-treated C57BL/6.CD11c-DTR mice, as well as C57BL/6 mice treated with low doses of clodronate liposomes (ClLip, with Plasmodium chabaudi AS (Pc parasites. The first evidence suggesting that DCs could contribute directly to parasite clearance was an early effect of the DTx treatment, but not of the ClLip treatment, in parasitemia control. DCs were also required for CD4+ T cell responses during infection. The phagocytosis of infected red blood cells (iRBCs by splenic DCs was analyzed by confocal intravital microscopy, as well as by flow cytometry and immunofluorescence, at three distinct phases of Pc malaria: at the first encounter, at pre-crisis concomitant with parasitemia growth and at crisis when the parasitemia decline coincides with spleen closure. In vivo and ex vivo imaging of the spleen revealed that DCs actively phagocytize iRBCs and interact with CD4+ T cells both in T cell-rich areas and in the RP. Subcapsular RP DCs were highly efficient in the recognition and capture of iRBCs during pre-crisis, while complete DC maturation was only achieved during crisis. These findings indicate that, beyond their classical role in antigen presentation, DCs also contribute to the direct elimination of iRBCs during acute Plasmodium infection.

  1. In vivo approaches reveal a key role for DCs in CD4+ T cell activation and parasite clearance during the acute phase of experimental blood-stage malaria.

    Science.gov (United States)

    Borges da Silva, Henrique; Fonseca, Raíssa; Cassado, Alexandra Dos Anjos; Machado de Salles, Érika; de Menezes, Maria Nogueira; Langhorne, Jean; Perez, Katia Regina; Cuccovia, Iolanda Midea; Ryffel, Bernhard; Barreto, Vasco M; Marinho, Cláudio Romero Farias; Boscardin, Silvia Beatriz; Álvarez, José Maria; D'Império-Lima, Maria Regina; Tadokoro, Carlos Eduardo

    2015-02-01

    Dendritic cells (DCs) are phagocytes that are highly specialized for antigen presentation. Heterogeneous populations of macrophages and DCs form a phagocyte network inside the red pulp (RP) of the spleen, which is a major site for the control of blood-borne infections such as malaria. However, the dynamics of splenic DCs during Plasmodium infections are poorly understood, limiting our knowledge regarding their protective role in malaria. Here, we used in vivo experimental approaches that enabled us to deplete or visualize DCs in order to clarify these issues. To elucidate the roles of DCs and marginal zone macrophages in the protection against blood-stage malaria, we infected DTx (diphtheria toxin)-treated C57BL/6.CD11c-DTR mice, as well as C57BL/6 mice treated with low doses of clodronate liposomes (ClLip), with Plasmodium chabaudi AS (Pc) parasites. The first evidence suggesting that DCs could contribute directly to parasite clearance was an early effect of the DTx treatment, but not of the ClLip treatment, in parasitemia control. DCs were also required for CD4+ T cell responses during infection. The phagocytosis of infected red blood cells (iRBCs) by splenic DCs was analyzed by confocal intravital microscopy, as well as by flow cytometry and immunofluorescence, at three distinct phases of Pc malaria: at the first encounter, at pre-crisis concomitant with parasitemia growth and at crisis when the parasitemia decline coincides with spleen closure. In vivo and ex vivo imaging of the spleen revealed that DCs actively phagocytize iRBCs and interact with CD4+ T cells both in T cell-rich areas and in the RP. Subcapsular RP DCs were highly efficient in the recognition and capture of iRBCs during pre-crisis, while complete DC maturation was only achieved during crisis. These findings indicate that, beyond their classical role in antigen presentation, DCs also contribute to the direct elimination of iRBCs during acute Plasmodium infection.

  2. Transformation of the rodent malaria parasite Plasmodium chabaudi

    OpenAIRE

    Spence, Philip J; Cunningham, Deirdre; Jarra, William; Lawton, Jennifer; Langhorne, Jean; Thompson, Joanne

    2011-01-01

    The rodent malaria parasite Plasmodium chabaudi chabaudi shares many features with human malaria species, including P. falciparum, and is the in vivo model of choice for many aspects of malaria research in the mammalian host, from sequestration of parasitized erythrocytes, to antigenic variation and host immunity and immunopathology. this protocol describes an optimized method for the transformation of mature blood-stage P.c. chabaudi and a description of a vector that targets efficient, sing...

  3. Kinetics of antigen specific and non-specific polyclonal B-cell responses during lethal Plasmodium yoelii malaria

    Directory of Open Access Journals (Sweden)

    Laurence Rolland

    1992-06-01

    Full Text Available In order to study the kinetics and composition of the polyclonal B-cell activation associated to malaria infection, antigen-specific and non-specific B-cell responses were evaluated in the spleens of mice infected with Plasmodium yoelii 17 XL or injected with lysed erythrocytes or plasma from P. yoelii infected mice or with P. falciparum culture supernatants. Spleen/body weigth ratio, numbers of nucleated spleen cells and Immunoglobulin-containing and Immunoglobulin-secreting cells increased progressively during the course of infection,in parallel to the parasitemia. A different pattern of kinetics was observed when anti-sheep red blood cell and anti-trinitrophenylated-sheep red blood cell plaque forming cells response were studied: maximum values were observed at early stages of infection, whereas the number of total Immunoglobulin-containing and Immunoglobulin-secreting cells were not yet altered. Conversely, at the end of infection, when these latter values reached their maximum, the anti-sheep red blood cell and anti-trinitrophenylated-sheep red blood cell specific responses were normal or even infranormal. In mice injected with Plasmodium-derived material, a higher increase in antigen-specific PFC was observed, as compared to the increase of Immunoglobulin-containing and Immunoglobulin-secreting cell numbers. This suggested a "preferential" (antigen-plus mitogen-induced stimulation of antigen-specific cells rather than a generalized non-specific (mitogen-induced triggering of B-lymphocytes. On the basis of these and previous results, it is suggested that polyclonal B-cell activation that takes place during the course of infection appears as a result of successive waves of antigen-specific B-cell activation.

  4. [Prevention of post-transfusional malaria by sero-detection of latent Plasmodium carriers among blood donors].

    Science.gov (United States)

    Ambroise-Thomas, P

    1976-06-01

    The risks of post-transfusion malaria are becoming a worry and the sero-investigation of latent carriers of plasmodium, among donors, is certainly the only efficient prophylactic measure. This is the result of an investigation carried out between October 1973 and February 1975 in 18 Blood Tranfusion Centres in France. Out of 2.997 sera studied in immuno-fluorescence of malaria, 3 to 5.2% of sero-positivity have been noticed, depending on the antigen used (P. falciparum, P. malariae and P. cynomolgi bastianellii). If the presence of fluorescent antibodies -- especially at weak titers --, does not mean compulsorily that the parasitemia persists, the serologic negativity leads to a diagnosis of exclusion. In this manner, the idea of a latent malaria is eliminated and one can determine precisely which bloods will be transfused without danger. But the required condition is that the sero-diagnosis of malaria be done on homologous antigens, which is, in spite of various technical difficulties, realizable in specialized laboratories. For material reasons, these tests cannot applied to all donors who have lived overseas. In return, it would be indubitably desired that these tests be done, among these donors, on subjects belonging to rare blood groups.

  5. Antibodies against PfEMP1, RIFIN, MSP3 and GLURP are acquired during controlled Plasmodium falciparum malaria infections in naïve volunteers

    DEFF Research Database (Denmark)

    Turner, Louise; Wang, Christian W; Lavstsen, Thomas

    2011-01-01

    Antibodies to polymorphic antigens expressed during the parasites erythrocytic stages are important mediators of protective immunity against P. falciparum malaria. Therefore, polymorphic blood stage antigens like MSP3, EBA-175 and GLURP and variant surface antigens PfEMP1 and RIFIN are considered...

  6. CD8+ T cells from a novel T cell receptor transgenic mouse induce liver-stage immunity that can be boosted by blood-stage infection in rodent malaria.

    Directory of Open Access Journals (Sweden)

    Lei Shong Lau

    2014-05-01

    Full Text Available To follow the fate of CD8+ T cells responsive to Plasmodium berghei ANKA (PbA infection, we generated an MHC I-restricted TCR transgenic mouse line against this pathogen. T cells from this line, termed PbT-I T cells, were able to respond to blood-stage infection by PbA and two other rodent malaria species, P. yoelii XNL and P. chabaudi AS. These PbT-I T cells were also able to respond to sporozoites and to protect mice from liver-stage infection. Examination of the requirements for priming after intravenous administration of irradiated sporozoites, an effective vaccination approach, showed that the spleen rather than the liver was the main site of priming and that responses depended on CD8α+ dendritic cells. Importantly, sequential exposure to irradiated sporozoites followed two days later by blood-stage infection led to augmented PbT-I T cell expansion. These findings indicate that PbT-I T cells are a highly versatile tool for studying multiple stages and species of rodent malaria and suggest that cross-stage reactive CD8+ T cells may be utilized in liver-stage vaccine design to enable boosting by blood-stage infections.

  7. Novel Plasmodium falciparum malaria vaccines: evidence-based searching for variant surface antigens as candidates for vaccination against pregnancy-associated malaria

    DEFF Research Database (Denmark)

    Staalsoe, Trine; Jensen, Anja T R; Theander, Thor G

    2002-01-01

    Malaria vaccine development has traditionally concentrated on careful molecular, biochemical, and immunological characterisation of candidate antigens. In contrast, evidence of the importance of identified antigens in immunity to human infection and disease has generally been limited to statistic......Malaria vaccine development has traditionally concentrated on careful molecular, biochemical, and immunological characterisation of candidate antigens. In contrast, evidence of the importance of identified antigens in immunity to human infection and disease has generally been limited...... to statistically significant co-variation with protection rather than on demonstration of causal relationships. We have studied the relationship between variant surface antigen-specific antibodies and clinical protection from Plasmodium falciparum malaria in general, and from pregnancy-associated malaria (PAM......) in particular, to provide robust evidence of a causal link between the two in order to allow efficient and evidence-based identification of candidate antigens for malaria vaccine development....

  8. Solid phase radioimmunoassay for detection of malaria antigen. Comparison of monoclonal and polyclonal antibodies

    International Nuclear Information System (INIS)

    Khusmith, S.; Tharavanij, S.; Patarapotikul, J.; Kasemsuth, R.; Bunnag, D.

    1986-01-01

    A solid phase competitive binding radioimmunoassay (RIA) was developed for the detection of Plasmodium falciparum in infected blood. A suspension of NP40 treated red blood cells was mixed with labelled antimalarial IgG, incubated and then added to malarial antigen coated microtitre plate. Antimalarial IgGs were purified either from high titre sera from individuals living in a malaria endemic area in Thailand or from a locally produced monoclonal antibody (MAB) which showed a bright generalized immunofluorescent staining pattern against all blood stages of P. falciparum, including gametocytes. This MAB reacted with 27 of 31 P. falciparum isolates from Thailand. Using dilution of red blood cells from in vitro cultures of P. falciparum, the test was found to detect parasites at levels equivalent to 13 and 2.2 parasites/10 6 red blood cells with labelled polyclonal IgG (PIgG) and labelled monoclonal IgG (MIgG), respectively. No false positive results were obtained among samples from non-malarial subjects. Of the samples that gave negative results upon microscopic examination, 50 and 35% were still positive with RIA using MIgG and PIgG, respectively. There was a correlation between RIA and the number of parasites, especially when MIgG was used. The results indicate that the IgG fraction of sera from individuals with natural acquired immunity to malaria showed a lower degree of sensitivity in parasite detection than the IgG from monoclonal antibody. (author)

  9. Lea blood group antigen on human platelets

    International Nuclear Information System (INIS)

    Dunstan, R.A.; Simpson, M.B.; Rosse, W.F.

    1985-01-01

    One- and two-stage radioligand assays were used to determine if human platelets possess the Lea antigen. Goat IgG anti-Lea antibody was purified by multiple adsorptions with Le(a-b-) human red blood cells, followed by affinity chromatography with synthetic Lea substance and labeling with 125 I. Human IgG anti-Lea antibody was used either in a two stage radioassay with 125 I-labeled mouse monoclonal IgG anti-human IgG as the second antibody or, alternatively, purified by Staph protein A chromatography, labeled with 125 I, and used in a one-stage radioassay. Platelets from donors of appropriate red blood cell phenotypes were incubated with the antisera, centrifuged through phthalate esters, and assayed in a gamma scintillation counter. Dose response and saturation curve analysis demonstrate the presence of Lewis a antigen on platelets from Lea+ donors. Furthermore, platelets from an Le(a-b-) donor incubated in Le (a+b-) plasma adsorb Lea antigen in a similar manner to red blood cells. The clinical significance of these antigens in platelet transfusion remains undefined

  10. The Malaria Parasite Cyclin H Homolog PfCyc1 Is Required for Efficient Cytokinesis in Blood-Stage Plasmodium falciparum.

    Science.gov (United States)

    Robbins, Jonathan A; Absalon, Sabrina; Streva, Vincent A; Dvorin, Jeffrey D

    2017-06-13

    All well-studied eukaryotic cell cycles are driven by cyclins, which activate cyclin-dependent kinases (CDKs), and these protein kinase complexes are viable drug targets. The regulatory control of the Plasmodium falciparum cell division cycle remains poorly understood, and the roles of the various CDKs and cyclins remain unclear. The P. falciparum genome contains multiple CDKs, but surprisingly, it does not contain any sequence-identifiable G 1 -, S-, or M-phase cyclins. We demonstrate that P. falciparum Cyc1 (PfCyc1) complements a G 1 cyclin-depleted Saccharomyces cerevisiae strain and confirm that other identified malaria parasite cyclins do not complement this strain. PfCyc1, which has the highest sequence similarity to the conserved cyclin H, cannot complement a temperature-sensitive yeast cyclin H mutant. Coimmunoprecipitation of PfCyc1 from P. falciparum parasites identifies PfMAT1 and PfMRK as specific interaction partners and does not identify PfPK5 or other CDKs. We then generate an endogenous conditional allele of PfCyc1 in blood-stage P. falciparum using a destabilization domain (DD) approach and find that PfCyc1 is essential for blood-stage proliferation. PfCyc1 knockdown does not impede nuclear division, but it prevents proper cytokinesis. Thus, we demonstrate that PfCyc1 has a functional divergence from bioinformatic predictions, suggesting that the malaria parasite cell division cycle has evolved to use evolutionarily conserved proteins in functionally novel ways. IMPORTANCE Human infection by the eukaryotic parasite Plasmodium falciparum causes malaria. Most well-studied eukaryotic cell cycles are driven by cyclins, which activate cyclin-dependent kinases (CDKs) to promote essential cell division processes. Remarkably, there are no identifiable cyclins that are predicted to control the cell cycle in the malaria parasite genome. Thus, our knowledge regarding the basic mechanisms of the malaria parasite cell cycle remains unsatisfactory. We

  11. Malaria prevalence defined by microscopy, antigen detection, DNA amplification and total nucleic acid amplification in a malaria-endemic region during the peak malaria transmission season.

    Science.gov (United States)

    Waitumbi, John N; Gerlach, Jay; Afonina, Irina; Anyona, Samuel B; Koros, Joseph N; Siangla, Joram; Ankoudinova, Irina; Singhal, Mitra; Watts, Kate; Polhemus, Mark E; Vermeulen, Nicolaas M; Mahoney, Walt; Steele, Matt; Domingo, Gonzalo J

    2011-07-01

    To determine the malaria prevalence by microscopy, antigen detection and nucleic acid detection in a defined subpopulation in a Plasmodium falciparum-endemic region during the peak transmission season. Blood specimens were collected in a cross-sectional study involving children aged 5-10 years (n = 195) presenting with acute fever to two clinics in Western Kenya. All specimens underwent microscopy, HRP2 and aldolase antigen detection by enzyme immunoassay (EIA), parasite-specific DNA and total nucleic acid (RNA and DNA) by real-time PCR (qPCR) and reverse-transcriptase PCR (qRT-PCR). Microscopy detected 65/195 cases of malaria infection [95% confidence interval (CI) 52-78]. HRP2 and aldolase EIA had similar sensitivity levels detecting antigen in 65/195 (95% CI, 52-78) and 57/195 (95% CI, 45-70) cases. Discordants in antigen detection vs. microscopy occurred at Detection of total nucleic acid allowed a 3 log lower limit of detection than just DNA detection by real-time PCR in vitro. In clinical specimens, 114/195 (95% CI, 100-127) were qPCR positive (DNA), and 187/195 (95% CI, 179-191) were qRT-PCR positive (DNA plus RNA). The prevalence of submicroscopic malaria infection was significantly higher when detecting total nucleic acid than just DNA in this outpatient population during the high transmission season. Defining standards for submicroscopic infection will be important for control programmes, diagnostics development efforts and molecular epidemiology studies. © 2011 Blackwell Publishing Ltd.

  12. The antibody response to well-defined malaria antigens after acute malaria in individuals living under continuous malaria transmission

    DEFF Research Database (Denmark)

    Petersen, E; Høgh, B; Dziegiel, M

    1992-01-01

    , and a synthetic peptide (EENV)6 representing the C-terminal repeats from Pf155/RESA, were investigated longitudinally in 13 children and 7 adults living under conditions of continuous, intense malaria transmission. Some subjects did not recognize the antigens after malaria infection, and in subjects recognizing...... elicited by natural malaria infection in previously primed donors....

  13. Caveolins and flotillin-2 are present in the blood stages of Plasmodium vivax.

    Science.gov (United States)

    Bracho, Carmen; Dunia, Irene; Romano, Mirtha; Raposo, Graça; De La Rosa, Mercedes; Benedetti, Ennio-Lucio; Pérez, Hilda A

    2006-07-01

    Blood stages of Plasmodium vivax induce the development of caveolae and caveola-vesicle complexes (CVC) in the membrane of their host erythrocyte. Caveolae are found in almost all types of cells and are involved in endogenous processes as calcium and cholesterol homeostasis, cell signalling, transporting, ligand internalization and transcytosis of serum components. Major structural components of caveolae are the proteins caveolins and flotillins. The functional role of caveolae in the P. vivax-infected erythrocyte is not properly understood. As these organelles have been shown to contain malaria antigens, it has been suggested that they are involved in the transport and release of specific parasite antigens from the infected erythrocyte and in the uptake of plasma proteins. Using specific antibodies to classical caveolae proteins and an immunolocalization approach, we found caveolin-2, caveolin-3, and flotillin-2 in the vesicle profiles and some CVC of P. vivax-infected erythrocytes. Caveolin-1-3 were not found in uninfected erythrocytes. This is the first report of identification and localization of caveolins in the CVC present in erythrocytes infected with P. vivax, thereby providing evidence of the role of this particular organelle in the protein-trafficking pathway that connect parasite-encoded proteins with the erythrocyte cytoplasm and the cell surface throughout the asexual blood cycle of vivax malaria parasite.

  14. Phase 1 trial of AMA1-C1/Alhydrogel plus CPG 7909: an asexual blood-stage vaccine for Plasmodium falciparum malaria.

    Directory of Open Access Journals (Sweden)

    Gregory E D Mullen

    2008-08-01

    Full Text Available Apical Membrane Antigen 1 (AMA1, a polymorphic merozoite surface protein, is a leading blood-stage malaria vaccine candidate. This is the first reported use in humans of an investigational vaccine, AMA1-C1/Alhydrogel, with the novel adjuvant CPG 7909.A phase 1 trial was conducted at the University of Rochester with 75 malaria-naive volunteers to assess the safety and immunogenicity of the AMA1-C1/Alhydrogel+CPG 7909 malaria vaccine. Participants were sequentially enrolled and randomized within dose escalating cohorts to receive three vaccinations on days 0, 28 and 56 of either 20 microg of AMA1-C1/Alhydrogel+564 microg CPG 7909 (n = 15, 80 microg of AMA1-C1/Alhydrogel (n = 30, or 80 microg of AMA1-C1/Alhydrogel+564 microg CPG 7909 (n = 30.Local and systemic adverse events were significantly more likely to be of higher severity with the addition of CPG 7909. Anti-AMA1 immunoglobulin G (IgG were detected by enzyme-linked immunosorbent assay (ELISA, and the immune sera of volunteers that received 20 microg or 80 microg of AMA1-C1/Alhydrogel+CPG 7909 had up to 14 fold significant increases in anti-AMA1 antibody concentration compared to 80 microg of AMA1-C1/Alhydrogel alone. The addition of CPG 7909 to the AMA1-C1/Alhydrogel vaccine in humans also elicited AMA1 specific immune IgG that significantly and dramatically increased the in vitro growth inhibition of homologous parasites to levels as high as 96% inhibition.The safety profile of the AMA1-C1/Alhydrogel+CPG 7909 malaria vaccine is acceptable, given the significant increase in immunogenicity observed. Further clinical development is ongoing.ClinicalTrials.gov NCT00344539.

  15. Roles of IFN-γ and γδ T cells in protective immunity against blood-stage malaria

    Directory of Open Access Journals (Sweden)

    Shin-Ichi eInoue

    2013-08-01

    Full Text Available Malaria is caused by infection with Plasmodium parasites. Various studies with knockout mice have indicated that IFN-γ plays essential roles in protective immunity against blood-stage Plasmodium infection. However, after Plasmodium infection, increased IFN-γ production by various types of cells is involved not only in protective immunity, but also in immunopathology. Recent reports have shown that IFN-γ acts as a pro-inflammatory cytokine to induce not only the activation of macrophages, but also the generation of uncommon myelolymphoid progenitor cells after Plasmodium infection. However, the effects of IFN-γ on hematopoietic stem cells and progenitor cells are unclear. Therefore, the regulation of hematopoiesis by IFN-γ during Plasmodium infection remains to be clarified. Although there are conflicting reports concerning the significance of γδ T cells in protective immunity against Plasmodium infection, γδ T cells may respond to infection and produce IFN-γ as innate immune cells in the early phase of blood-stage malaria. Our recent studies have shown that γδ T cells express CD40 ligand and produce IFN-γ after Plasmodium infection, resulting in the enhancement of dendritic cell activation as part of the immune response to eliminate Plasmodium parasites. These data suggest that the function of γδ T cells is similar to that of NK cells. Although several reports suggest that γδ T cells have the potential to act as memory cells for various infections, it remains to be determined whether memory γδ T cells are generated by Plasmodium infection and whether memory γδ T cells can contribute to the host defense against re-infection with Plasmodium. Here, we summarize and discuss the effects of IFN-γ and the various functions of γδ T cells in blood-stage Plasmodium infection.

  16. Transformation of the rodent malaria parasite Plasmodium chabaudi.

    Science.gov (United States)

    Spence, Philip J; Cunningham, Deirdre; Jarra, William; Lawton, Jennifer; Langhorne, Jean; Thompson, Joanne

    2011-04-01

    The rodent malaria parasite Plasmodium chabaudi chabaudi shares many features with human malaria species, including P. falciparum, and is the in vivo model of choice for many aspects of malaria research in the mammalian host, from sequestration of parasitized erythrocytes, to antigenic variation and host immunity and immunopathology. This protocol describes an optimized method for the transformation of mature blood-stage P.c. chabaudi and a description of a vector that targets efficient, single crossover integration into the P.c. chabaudi genome. Transformed lines are reproducibly generated and selected within 14-20 d, and show stable long-term protein expression even in the absence of drug selection. This protocol, therefore, provides the scientific community with a robust and reproducible method to generate transformed P.c. chabaudi parasites expressing fluorescent, bioluminescent and model antigens that can be used in vivo to dissect many of the fundamental principles of malaria infection.

  17. The antibody response to well-defined malaria antigens after acute malaria in individuals living under continuous malaria transmission

    DEFF Research Database (Denmark)

    Petersen, E; Høgh, B; Dziegiel, M

    1992-01-01

    The IgG and IgM antibody responses to the C-terminal 783 amino acids of the P. falciparum glutamate-rich protein, GLURP489-1271, expressed as an E. coli fusion protein, the IgG response to a 18-mer synthetic peptide EDKNEKGQHEIVEVEEIL (GLURP899-916) representing the C-terminal repeats of GLURP......, and a synthetic peptide (EENV)6 representing the C-terminal repeats from Pf155/RESA, were investigated longitudinally in 13 children and 7 adults living under conditions of continuous, intense malaria transmission. Some subjects did not recognize the antigens after malaria infection, and in subjects recognizing...... the antigens, the responses were often short-lived. In adults, the antibody responses to the GLURP489-1271 fusion protein and the (EENV)6 peptide peaked after 2 weeks, and not all individuals responded to all antigens. The antibody response, even against large fragments of conserved antigens, is not uniformly...

  18. Observation of Blood Donor-Recipient Malaria Parasitaemia Patterns in a Malaria Endemic Region.

    Science.gov (United States)

    Faruk, Jamilu Abdullahi; Ogunrinde, Gboye Olufemi; Mamman, Aisha Indo

    2017-01-01

    Asymptomatic malaria parasitaemia has been documented in donor blood in West Africa. However, donated blood is not routinely screened for malaria parasites (MPs). The present study therefore aimed to document the frequency of blood transfusion-induced donor-recipient malaria parasitaemia patterns, in children receiving blood transfusion in a tertiary health-centre. A cross-sectional, observational study involving 140 children receiving blood transfusion was carried out. Blood donor units and patients' blood samples were obtained, for the determination of malaria parasites (MPs). Giemsa staining technique was used to determine the presence of malaria parasitaemia. Malaria parasites were detected in 7% of donor blood and in 8.3% of the recipients' pretransfusion blood. The incidence of posttransfusion MPs was 3%, but none of these were consistent with blood transfusion-induced malaria, as no child with posttransfusion parasitaemia was transfused with parasitized donor blood. Majority of the blood transfusions (89.4%) had no MPs in either donors or recipients, while 6.8% had MPs in both donors and recipients, with the remaining 3.8% showing MPs in recipients alone. In conclusion, the incidence of posttransfusion malaria parasitaemia appears low under the prevailing circumstances.

  19. Induction and maintenance of protective CD8+ T cells against malaria liver stages: implications for vaccine development

    Directory of Open Access Journals (Sweden)

    Sze-Wah Tse

    2011-08-01

    Full Text Available CD8+ T cells against malaria liver stages represent a major protective immune mechanism against infection. Following induction in the peripheral lymph nodes by dendritic cells (DCs, these CD8+ T cells migrate to the liver and eliminate parasite infected hepatocytes. The processing and presentation of sporozoite antigen requires TAP mediated transport of major histocompatibility complex class I epitopes to the endoplasmic reticulum. Importantly, in DCs this process is also dependent on endosome-mediated cross presentation while this mechanism is not required for epitope presentation on hepatocytes. Protective CD8+ T cell responses are strongly dependent on the presence of CD4+ T cells and the capacity of sporozoite antigen to persist for a prolonged period of time. While human trials with subunit vaccines capable of inducing antibodies and CD4+ T cell responses have yielded encouraging results, an effective anti-malaria vaccine will likely require vaccine constructs designed to induce protective CD8+ T cells against malaria liver stages.

  20. Phase 1 trial of the Plasmodium falciparum blood stage vaccine MSP1(42-C1/Alhydrogel with and without CPG 7909 in malaria naïve adults.

    Directory of Open Access Journals (Sweden)

    Ruth D Ellis

    2010-01-01

    Full Text Available Merozoite surface protein 1(42 (MSP1(42 is a leading blood stage malaria vaccine candidate. In order to induce immune responses that cover the major antigenic polymorphisms, FVO and 3D7 recombinant proteins of MSP1(42 were mixed (MSP1(42-C1. To improve the level of antibody response, MSP1(42-C1 was formulated with Alhydrogel plus the novel adjuvant CPG 7909.A Phase 1 clinical trial was conducted in healthy malaria-naïve adults at the Center for Immunization Research in Washington, D.C., to evaluate the safety and immunogenicity of MSP1(42-C1/Alhydrogel +/- CPG 7909. Sixty volunteers were enrolled in dose escalating cohorts and randomized to receive three vaccinations of either 40 or 160 microg protein adsorbed to Alhydrogel +/- 560 microg CPG 7909 at 0, 1 and 2 months.Vaccinations were well tolerated, with only one related adverse event graded as severe (Grade 3 injection site erythema and all other vaccine related adverse events graded as either mild or moderate. Local adverse events were more frequent and severe in the groups receiving CPG. The addition of CPG enhanced anti-MSP1(42 antibody responses following vaccination by up to 49-fold two weeks after second immunization and 8-fold two weeks after the third immunization when compared to MSP1(42-C1/Alhydrogel alone (p<0.0001. After the third immunization, functionality of the antibody was tested by an in vitro growth inhibition assay. Inhibition was a function of antibody titer, with an average of 3% (range -2 to 10% in the non CPG groups versus 14% (3 to 32% in the CPG groups.The favorable safety profile and high antibody responses induced with MSP1(42-C1/Alhydrogel + CPG 7909 are encouraging. MSP1(42-C1/Alhydrogel is being combined with other blood stage antigens and will be taken forward in a formulation adjuvanted with CPG 7909.ClinicalTrials.gov Identifier: NCT00320658.

  1. [Investigation on current situation of malaria blood examinations in township-level hospitals of Nantong City].

    Science.gov (United States)

    Gui-Sheng, Ding; Cai-Qun, Cao; Ping, Miao; Mei-Fang, Gu; Xiao-Bin, Cao

    2016-11-18

    To understand the quality of malaria blood examinations in township-level hospitals, so as to provide the evidence for continuing the malaria blood examinations in the stage of post-malaria elimination. A total of 64 township hospitals were investigated and 640 negative malaria blood slides were scored individually according to 10 indicators in "Malaria Elimination Technical Scheme" in 2013 and 2014. The single and multiple indicators were calculated, and the work of blood examinations and situation of technicians were investigated. The data of malaria blood examinations and patient discovery in township hospitals of Nantong City were collected and analyzed during the period of 2011-2014. For the single indicator, 29.5% of the thick blood films did not reach the standard, and 35.8% of thin blood films did not reach the standard. For the multiple indicators, blood slides with more than 4 indicators below the standard (poor quality) accounted for 32.5%. From malaria blood examinations and malaria situation, the number of slides was 194 635 during the period of 2011-2014, and there were no local vivax malaria casesin 4 consecutive years from 2011 to 2014, and local malaria has been effectively controlled in Nantong City. For health facilities where malaria patients initially presented, the township and village level accounted for 16.3%, and county and higher level accounted for 83.7%. The quality of malaria blood examinations in township level hospitals of Nantong City is not high and the microscopic examination has a relatively low efficiency in the discovery of malaria cases. A new model for malaria blood examinations needs to be further explored.

  2. T-cell responses in malaria

    DEFF Research Database (Denmark)

    Hviid, L; Jakobsen, P H; Abu-Zeid, Y A

    1992-01-01

    Malaria is caused by infection with protozoan parasites of the genus Plasmodium. It remains one of the most severe health problems in tropical regions of the world, and the rapid spread of resistance to drugs and insecticides has stimulated intensive research aimed at the development of a malaria...... vaccine. Despite this, no efficient operative vaccine is currently available. A large amount of information on T-cell responses to malaria antigens has been accumulated, concerning antigens derived from all stages of the parasite life cycle. The present review summarizes some of that information......, and discusses factors affecting the responses of T cells to malaria antigens....

  3. Observation of Blood Donor-Recipient Malaria Parasitaemia Patterns in a Malaria Endemic Region

    OpenAIRE

    Jamilu Abdullahi Faruk; Gboye Olufemi Ogunrinde; Aisha Indo Mamman

    2017-01-01

    Background. Asymptomatic malaria parasitaemia has been documented in donor blood in West Africa. However, donated blood is not routinely screened for malaria parasites (MPs). The present study therefore aimed to document the frequency of blood transfusion-induced donor-recipient malaria parasitaemia patterns, in children receiving blood transfusion in a tertiary health-centre. Methodology. A cross-sectional, observational study involving 140 children receiving blood transfusion was carried ou...

  4. Identification of pre-erythrocytic malaria antigens that target hepatocytes for killing in vivo and contribute to protection elicited by whole-parasite vaccination.

    Directory of Open Access Journals (Sweden)

    Lin Chen

    Full Text Available Pre-erythrocytic malaria vaccines, including those based on whole-parasite approaches, have shown protective efficacy in animal and human studies. However few pre-erythocytic antigens other than the immunodominant circumsporozoite protein (CSP have been studied in depth with the goal of developing potent subunit malaria vaccines that are suited for use in endemic areas. Here we describe a novel technique to identify pre-erythrocytic malaria antigens that contribute to protection elicited by whole-parasite vaccination in the mouse model. Our approach combines immunization with genetically attenuated parasites and challenge with DNA plasmids encoding for potential protective pre-erythrocytic malaria antigens as luciferase fusions by hydrodynamic tail vein injection. After optimizing the technique, we first showed that immunization with Pyfabb/f-, a P. yoelii genetically attenuated parasite, induces killing of CSP-presenting hepatocytes. Depletion of CD8+ but not CD4+ T cells diminished the killing of CSP-expressing hepatocytes, indicating that killing is CD8+ T cell-dependent. Finally we showed that the use of heterologous prime/boost immunization strategies that use genetically attenuated parasites and DNA vaccines enabled the characterization of a novel pre-erythrocytic antigen, Tmp21, as a contributor to Pyfabb/f- induced protection. This technique will be valuable for identification of potentially protective liver stage antigens and has the potential to contribute to the understanding of immunity elicited by whole parasite vaccination, as well as the development of effective subunit malaria vaccines.

  5. Remarkable stability in patterns of blood-stage gene expression during episodes of non-lethal Plasmodium yoelii malaria.

    Science.gov (United States)

    Cernetich-Ott, Amy; Daly, Thomas M; Vaidya, Akhil B; Bergman, Lawrence W; Burns, James M

    2012-08-06

    Microarray studies using in vitro cultures of synchronized, blood-stage Plasmodium falciparum malaria parasites have revealed a 'just-in-time' cascade of gene expression with some indication that these transcriptional patterns remain stable even in the presence of external stressors. However, direct analysis of transcription in P. falciparum blood-stage parasites obtained from the blood of infected patients suggests that parasite gene expression may be modulated by factors present in the in vivo environment of the host. The aim of this study was to examine changes in gene expression of the rodent malaria parasite, Plasmodium yoelii 17X, while varying the in vivo setting of replication. Using P. yoelii 17X parasites replicating in vivo, differential gene expression in parasites isolated from individual mice, from independent infections, during ascending, peak and descending parasitaemia and in the presence and absence of host antibody responses was examined using P. yoelii DNA microarrays. A genome-wide analysis to identify coordinated changes in groups of genes associated with specific biological pathways was a primary focus, although an analysis of the expression patterns of two multi-gene families in P. yoelii, the yir and pyst-a families, was also completed. Across experimental conditions, transcription was surprisingly stable with little evidence for distinct transcriptional states or for consistent changes in specific pathways. Differential gene expression was greatest when comparing differences due to parasite load and/or host cell availability. However, the number of differentially expressed genes was generally low. Of genes that were differentially expressed, many involved biologically diverse pathways. There was little to no differential expression of members of the yir and pyst-a multigene families that encode polymorphic proteins associated with the membrane of infected erythrocytes. However, a relatively large number of these genes were expressed during

  6. Malaria vaccines: the case for a whole-organism approach.

    Science.gov (United States)

    Pinzon-Charry, Alberto; Good, Michael F

    2008-04-01

    Malaria is a significant health problem causing morbidity and mortality worldwide. Vaccine development has been an imperative for decades. However, the intricacy of the parasite's lifecycle coupled with the lack of evidence for robust infection-induced immunity has made vaccine development exceptionally difficult. To review some of the key advances in the field and discuss potential ways forward for a whole-organism vaccine. The authors searched PubMed using the words 'malaria and vaccine'. We searched for manuscripts detailing antigen characterisation and vaccine strategies with emphasis on subunit versus whole-parasite approaches. Abstracts were selected and relevant articles are discussed. The searches were not restricted by language or date. The early cloning of malaria antigens has fuelled rapid development of subunit vaccines. However, the disappointing results of clinical trials have resulted in reappraisal of current strategies. Whole-parasite approaches have re-emerged as an alternative strategy. Immunization using radiation or genetically attenuated sporozoites has been shown to result in sterile immunity and immunization with blood-stage parasites curtailed by antimalarials has demonstrated delayed parasitemia in rodent models as well as in human malaria.

  7. Immunochromatographic antigen testing alone is sufficient to identify asymptomatic refugees at risk of severe malaria presenting to a single health service in Victoria.

    Science.gov (United States)

    Fedele, Pasquale L; Wheeler, Michael; Lemoh, Christopher; Chunilal, Sanjeev

    2014-10-01

    Current screening guidelines for malaria in new refugees include a combination of thick and thin film examination and immunochromatographic antigen test (ICT). However, as the prevalence of malaria in our population has decreased due to changing refugee demographics, we sought to determine if an ICT alone can reliably exclude malaria in our asymptomatic refugee population.A retrospective analysis was conducted of all investigations for malaria performed from 1 August 2011 to 31 July 2013, including thick and thin blood film examination, BinaxNOW ICT, and external morphological and polymerase chain reaction (PCR) validation where applicable.Malaria was diagnosed in 45 of 1248 (3.6%) patients investigated, all of whom were symptomatic and the majority (71.1%) returned travellers. All 599 asymptomatic refugees screened were negative. Overall, 42 of 45 malaria cases were detected by the ICT; sensitivity 93.3% (95% CI 80.7-98.3%) and negative predictive value (NPV) 99.8% (99.2-99.9%). All 21 cases of Plasmodium falciparum and 20 of 22 cases of Plasmodium vivax were detected, giving a sensitivity of 100% (80.8-100%) and 90.9% (69.4-98.4%) respectively. Too few cases of Plasmodium malariae and no cases of Plasmodium ovale or Plasmodium knowlesi were diagnosed for adequate assessment to be carried out.These data suggest that full malaria screening in all asymptomatic refugees with the combination of thick and thin blood films and rapid antigen test may not be warranted. Alternative screening approaches should be considered, including the use of ICT alone, or limiting screening of asymptomatic refugees to only those originating from countries with high incidence of malaria.

  8. Do the venous blood samples replicate malaria parasite densities found in capillary blood? A field study performed in naturally-infected asymptomatic children in Cameroon.

    Science.gov (United States)

    Sandeu, Maurice M; Bayibéki, Albert N; Tchioffo, Majoline T; Abate, Luc; Gimonneau, Geoffrey; Awono-Ambéné, Parfait H; Nsango, Sandrine E; Diallo, Diadier; Berry, Antoine; Texier, Gaétan; Morlais, Isabelle

    2017-08-17

    The measure of new drug- or vaccine-based approaches for malaria control is based on direct membrane feeding assays (DMFAs) where gametocyte-infected blood samples are offered to mosquitoes through an artificial feeder system. Gametocyte donors are identified by the microscopic detection and quantification of malaria blood stages on blood films prepared using either capillary or venous blood. However, parasites are known to sequester in the microvasculature and this phenomenon may alter accurate detection of parasites in blood films. The blood source may then impact the success of mosquito feeding experiments and investigations are needed for the implementation of DMFAs under natural conditions. Thick blood smears were prepared from blood obtained from asymptomatic children attending primary schools in the vicinity of Mfou (Cameroon) over four transmission seasons. Parasite densities were determined microscopically from capillary and venous blood for 137 naturally-infected gametocyte carriers. The effect of the blood source on gametocyte and asexual stage densities was then assessed by fitting cumulative link mixed models (CLMM). DMFAs were performed to compare the infectiousness of gametocytes from the different blood sources to mosquitoes. Prevalence of Plasmodium falciparum asexual stages among asymptomatic children aged from 4 to 15 years was 51.8% (2116/4087). The overall prevalence of P. falciparum gametocyte carriage was 8.9% and varied from one school to another. No difference in the density of gametocyte and asexual stages was found between capillary and venous blood. Attempts to perform DMFAs with capillary blood failed. Plasmodium falciparum malaria parasite densities do not differ between capillary and venous blood in asymptomatic subjects for both gametocyte and trophozoite stages. This finding suggests that the blood source should not interfere with transmission efficiency in DMFAs.

  9. Towards A Malaria Vaccine?

    Directory of Open Access Journals (Sweden)

    B S GARG

    1990-12-01

    Full Text Available The last few years have seen a marked change in the understanding of malaria mmunology.We have very little knowledge on immunity of Malaria based on experiments in humanbeings due to ethical reasons. Whatsoever our knowledge exists at present is based onexperimentas in mice and monkey. However it is clear that it is sporzoite or merozoitewhich is directly exposed to our immune system in the life cycle of Malaria parasite. On thebasis of human experiments we can draw inference that immunity to malaria is species.specific (on cross immunity, stage specific and strain specific as well acquired in the response to surface antigen and relapsed antigen although the parasite also demonstrates escape machanism to immune system.So the host system kills or elimi nate the parasite by means of (a Antbody to extracell~ular form of parasite with the help of mechanism of Block invasion, Agglutination or opsonization and/or (b Cellular machanism-either by phago-cytosis of parasite or by antibody dependent cellular cytotoxicity ABCC (? or by effects of mediators like tumor necrosis fJ.ctor (TNF in cerebaral malaria or crisis forming factor as found in sudan or by possible role of lysis mechanism.However, inspite of all these theories the parasite has been able to invade the immunesystem by virtue of its intracellular development stage specificity, sequestration in capillaries and also by its unusual characteristics of antigenic diversity and antigenic variation.

  10. Specific proliferative response of human lymphocytes to purified soluble antigens from Plasmodium falciparum in vitro cultures and to antigens from malaria patients' sera

    DEFF Research Database (Denmark)

    Bygbjerg, I C; Jepsen, S; Theander, T G

    1985-01-01

    Antigens of Plasmodium falciparum, in supernatants of in vitro cultures of the parasite were affinity purified on columns prepared with the IgG fraction of the serum of an immune individual. The purified antigens induced proliferation of lymphocytes from persons who had recently had malaria....... The responses were strongest with lymphocytes from individuals infected with falciparum and ovale malaria; vivax malaria infections induced a lower level of response and lymphocytes of unsensitized individuals were little affected. Lymphocytes from unsensitized individuals did not respond to the affinity...

  11. Asymptomatic malaria and associated factors among blood donors ...

    African Journals Online (AJOL)

    Background: Blood transfusion saves life of patients with severe anaemia. However, blood transfusion can transmit blood-borne parasites. Despite malaria being endemic in Tanzania, there is limited information on asymptomatic malaria among blood donors. This study determined the prevalence and associated factors of ...

  12. IgG isotypic antibodies to crude Plasmodium falciparum blood-stage ...

    African Journals Online (AJOL)

    Methods: Levels of IgG (IgG1-IgG4) and IgM to crude P. falciparum blood stage antigen ... dosage influenced P. falciparum-specific isotypic antibody responses to blood stage .... exposed Swedish donors. ..... with adverse pregnancy outcomes.

  13. Antigenic variation and the genetics and epigenetics of the PfEMP1 erythrocyte surface antigens in Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Arnot, David E; Jensen, Anja T R

    2011-01-01

    . Sterile immunity is not achieved and chronic parasitization of apparently healthy adults is the norm. In this article, we analyse the best understood malaria "antigenic variation" system, that based on Plasmodium falciparum's PfEMP1-type cytoadhesion antigens, and critically review recent literature...

  14. Plasmodium falciparum malaria associated with ABO blood ...

    African Journals Online (AJOL)

    The present study was carried out to investigate the relationship between blood group types and P. falciparum malaria, as well as malaria preventive measures. The venous blood specimens were collected, processed, Giemsa-stained and examined microscopically. ABO groups were determined by agglutination test using ...

  15. Recent advances in recombinant protein-based malaria vaccines

    DEFF Research Database (Denmark)

    Draper, Simon J; Angov, Evelina; Horii, Toshihiro

    2015-01-01

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito...... vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard......, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite...

  16. Therapeutic PD-L1 and LAG-3 blockade rapidly clears established blood-stage Plasmodium infection

    Science.gov (United States)

    Butler, Noah S.; Moebius, Jacqueline; Pewe, Lecia L.; Traore, Boubacar; Doumbo, Ogobara K.; Tygrett, Lorraine T.; Waldschmidt, Thomas J.; Crompton, Peter D.; Harty, John T.

    2011-01-01

    Plasmodium infection of erythrocytes induces clinical malaria. Parasite-specific CD4+ T cells correlate with reduced parasite burdens and severity of human malaria, and are required to control blood-stage infection in mice. However, the characteristics of CD4+ T cells that determine protection or parasite persistence remain unknown. Here we show that P. falciparum infection of humans increased expression of an inhibitory receptor (PD-1) associated with T cell dysfunction. In vivo blockade of PD-L1 and LAG-3 restored CD4+ T cell function, amplified T follicular helper cell and germinal center B cell and plasmablast numbers, enhanced protective antibodies and rapidly cleared blood-stage malaria in mice. Thus, chronic malaria drives specific T cell dysfunction, which can be rescued to enhance parasite control using inhibitory therapies. PMID:22157630

  17. The genome of the simian and human malaria parasite Plasmodium knowlesi

    DEFF Research Database (Denmark)

    Pain, A; Böhme, U; Berry, A E

    2008-01-01

    Plasmodium knowlesi is an intracellular malaria parasite whose natural vertebrate host is Macaca fascicularis (the 'kra' monkey); however, it is now increasingly recognized as a significant cause of human malaria, particularly in southeast Asia. Plasmodium knowlesi was the first malaria parasite...... species in which antigenic variation was demonstrated, and it has a close phylogenetic relationship to Plasmodium vivax, the second most important species of human malaria parasite (reviewed in ref. 4). Despite their relatedness, there are important phenotypic differences between them, such as host blood...... cell preference, absence of a dormant liver stage or 'hypnozoite' in P. knowlesi, and length of the asexual cycle (reviewed in ref. 4). Here we present an analysis of the P. knowlesi (H strain, Pk1(A+) clone) nuclear genome sequence. This is the first monkey malaria parasite genome to be described...

  18. Enhanced acquired antibodies to a chimeric Plasmodium falciparum antigen; UB05-09 is associated with protective immunity against malaria.

    Science.gov (United States)

    Dinga, J N; Gamua, S D; Titanji, V P K

    2017-08-01

    It has been shown that covalently linking two antigens could enhance the immunogenicity of the chimeric construct. To prioritize such a chimera for malaria vaccine development, it is necessary to demonstrate that naturally acquired antibodies against the chimera are associated with protection from malaria. Here, we probe the ability of a chimeric construct of UB05 and UB09 antigens (UB05-09) to better differentiate between acquired immune protection and susceptibility to malaria. In a cross-sectional study, recombinant UB05-09 chimera and the constituent antigens were used to probe for specific antibodies in the plasma from children and adults resident in a malaria-endemic zone, using the enzyme-linked immunosorbent assay (ELISA). Anti-UB05-09 antibody levels doubled that of its constituent antigens, UB09 and UB05, and this correlated with protection against malaria. The presence of enhanced UB05-09-specific antibody correlated with the absence of fever and parasitaemia, which are the main symptoms of malaria infection. The chimera is more effective in detecting and distinguishing acquired protective immunity against malaria than any of its constituents taken alone. Online B-cell epitope prediction tools confirmed the presence of B-cell epitopes in the study antigens. UB05-09 chimera is a marker of protective immunity against malaria that needs to be studied further. © 2017 John Wiley & Sons Ltd.

  19. Phase 1 study in malaria naïve adults of BSAM2/Alhydrogel®+CPG 7909, a blood stage vaccine against P. falciparum malaria.

    Directory of Open Access Journals (Sweden)

    Ruth D Ellis

    Full Text Available A Phase 1 dose escalating study was conducted in malaria naïve adults to assess the safety, reactogenicity, and immunogenicity of the blood stage malaria vaccine BSAM2/Alhydrogel®+ CPG 7909. BSAM2 is a combination of the FVO and 3D7 alleles of recombinant AMA1 and MSP1(42, with equal amounts by weight of each of the four proteins mixed, bound to Alhydrogel®, and administered with the adjuvant CPG 7909. Thirty (30 volunteers were enrolled in two dose groups, with 15 volunteers receiving up to three doses of 40 µg total protein at Days 0, 56, and 180, and 15 volunteers receiving up to three doses of 160 µg protein on the same schedule. Most related adverse events were mild or moderate, but 4 volunteers experienced severe systemic reactions and two were withdrawn from vaccinations due to adverse events. Geometric mean antibody levels after two vaccinations with the high dose formulation were 136 µg/ml for AMA1 and 78 µg/ml for MSP1(42. Antibody responses were not significantly different in the high dose versus low dose groups and did not further increase after third vaccination. In vitro growth inhibition was demonstrated and was closely correlated with anti-AMA1 antibody responses. A Phase 1b trial in malaria-exposed adults is being conducted.Clinicaltrials.gov NCT00889616.

  20. Pattern of pre-existing IgG subclass responses to a panel of asexual stage malaria antigens reported during the lengthy dry season in Daraweesh, Sudan

    DEFF Research Database (Denmark)

    Nasr, A; Iriemenam, N C; Troye-Blomberg, M

    2011-01-01

    The anti-malarial IgG immune response during the lengthy and dry season in areas of low malaria transmission as in Eastern Sudan is largely unknown. In this study, ELISA was used for the measurement of pre-existing total IgG and IgG subclasses to a panel of malaria antigens, MSP2-3D7, MSP2-FC27, ...

  1. P. falciparum malaria prevalence among blood donors in Bamako, Mali.

    Science.gov (United States)

    Kouriba, B; Diarra, A B; Douyon, I; Diabaté, D T; Kamissoko, F; Guitteye, H; Baby, M; Guindo, M A; Doumbo, O K

    2017-06-01

    Malaria parasite is usually transmitted to humans by Anopheles mosquitoes but it can also be transmitted through blood transfusion. Usually malaria transmission is low in African urban settings. In West Africa where the P. falciparum is the most predominant malaria species, there are limited measures to reduce the risk of blood transfusion malaria. The aim of this study was to evaluate the prevalence of P. falciparum malaria carriage among blood donors in the National Blood Center of Bamako, capital city of Mali. The study was conducted using a random sample of 946 blood donors in Bamako, Mali, from January to December 2011. Screening for malaria was performed by thick smear and rapid diagnostic test (RDT). Blood group was typed by Beth-Vincent and Simonin techniques. The frequency of malaria infection was 1.4% by thick smear and 0.8% by the RDT. The pick prevalence of P. falciparum malaria was in rainy season, indicating a probable high seasonal risk of malaria by blood transfusion, in Mali. The prevalence of P. falciparum infection was 2% among donors of group O the majority being in this group. There is a seasonal prevalence of malaria among blood donors in Bamako. A prevention strategy of transfusion malaria based on the combination of selection of blood donors through the medical interview, promoting a voluntary low-risk blood donation and screening all blood bags intended to be transfused to children under 5, pregnant women and immune-compromised patients during transmission season using thick smear will reduce the risk of transfusion malaria in Mali. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Recognition of Plasmodium falciparum mature gametocyte-infected erythrocytes by antibodies of semi-immune adults and malaria-exposed children from Gabon

    DEFF Research Database (Denmark)

    Gebru, Tamirat; Ajua, Anthony; Theisen, Michael

    2017-01-01

    BACKGROUND: Transmission of malaria from man to mosquito depends on the presence of gametocytes, the sexual stage of Plasmodium parasites in the infected host. Naturally acquired antibodies against gametocytes exist and may play a role in controlling transmission by limiting the gametocyte...... falciparum mature gametocytes were investigated in sera of semi-immune adults and malaria-exposed children. In addition, the effect of immunization with GMZ2, a blood stage malaria vaccine candidate, and the effect of intestinal helminth infection on the development of immunity to gametocytes of P...... was significantly higher after fixation and permeabilization of parasitized erythrocytes. Following vaccination with the malaria vaccine candidate GMZ2, anti-gametocyte Ab concentration decreased in adults compared to baseline. Ab response to whole asexual stage antigens had a significant but weak positive...

  3. Spleen-dependent regulation of antigenic variation in malaria parasites: Plasmodium knowlesi SICAvar expression profiles in splenic and asplenic hosts.

    Directory of Open Access Journals (Sweden)

    Stacey A Lapp

    Full Text Available Antigenic variation by malaria parasites was first described in Plasmodium knowlesi, which infects humans and macaque monkeys, and subsequently in P. falciparum, the most virulent human parasite. The schizont-infected cell agglutination (SICA variant proteins encoded by the SICAvar multigene family in P. knowlesi, and Erythrocyte Membrane Protein-1 (EMP-1 antigens encoded by the var multigene family in P. falciparum, are expressed at the surface of infected erythrocytes, are associated with virulence, and serve as determinants of naturally acquired immunity. A parental P. knowlesi clone, Pk1(A+, and a related progeny clone, Pk1(B+1+, derived by an in vivo induced variant antigen switch, were defined by the expression of distinct SICA variant protein doublets of 210/190 and 205/200 kDa, respectively. Passage of SICA[+] infected erythrocytes through splenectomized rhesus monkeys results in the SICA[-] phenotype, defined by the lack of surface expression and agglutination with variant specific antisera.We have investigated SICAvar RNA and protein expression in Pk1(A+, Pk1(B+1+, and SICA[-] parasites. The Pk1(A+ and Pk1(B+1+ parasites express different distinct SICAvar transcript and protein repertoires. By comparison, SICA[-] parasites are characterized by a vast reduction in SICAvar RNA expression, the lack of full-length SICAvar transcript signals on northern blots, and correspondingly, the absence of any SICA protein detected by mass spectrometry.SICA protein expression may be under transcriptional as well as post-transcriptional control, and we show for the first time that the spleen, an organ central to blood-stage immunity in malaria, exerts an influence on these processes. Furthermore, proteomics has enabled the first in-depth characterization of SICA[+] protein phenotypes and we show that the in vivo switch from Pk1(A+ to Pk1(B+1+ parasites resulted in a complete change in SICA profiles. These results emphasize the importance of studying

  4. Blood Groups in Infection and Host Susceptibility.

    Science.gov (United States)

    Cooling, Laura

    2015-07-01

    Blood group antigens represent polymorphic traits inherited among individuals and populations. At present, there are 34 recognized human blood groups and hundreds of individual blood group antigens and alleles. Differences in blood group antigen expression can increase or decrease host susceptibility to many infections. Blood groups can play a direct role in infection by serving as receptors and/or coreceptors for microorganisms, parasites, and viruses. In addition, many blood group antigens facilitate intracellular uptake, signal transduction, or adhesion through the organization of membrane microdomains. Several blood groups can modify the innate immune response to infection. Several distinct phenotypes associated with increased host resistance to malaria are overrepresented in populations living in areas where malaria is endemic, as a result of evolutionary pressures. Microorganisms can also stimulate antibodies against blood group antigens, including ABO, T, and Kell. Finally, there is a symbiotic relationship between blood group expression and maturation of the gastrointestinal microbiome. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Blood Groups in Infection and Host Susceptibility

    Science.gov (United States)

    2015-01-01

    SUMMARY Blood group antigens represent polymorphic traits inherited among individuals and populations. At present, there are 34 recognized human blood groups and hundreds of individual blood group antigens and alleles. Differences in blood group antigen expression can increase or decrease host susceptibility to many infections. Blood groups can play a direct role in infection by serving as receptors and/or coreceptors for microorganisms, parasites, and viruses. In addition, many blood group antigens facilitate intracellular uptake, signal transduction, or adhesion through the organization of membrane microdomains. Several blood groups can modify the innate immune response to infection. Several distinct phenotypes associated with increased host resistance to malaria are overrepresented in populations living in areas where malaria is endemic, as a result of evolutionary pressures. Microorganisms can also stimulate antibodies against blood group antigens, including ABO, T, and Kell. Finally, there is a symbiotic relationship between blood group expression and maturation of the gastrointestinal microbiome. PMID:26085552

  6. Development of malaria transmission-blocking vaccines: from concept to product.

    Science.gov (United States)

    Wu, Yimin; Sinden, Robert E; Churcher, Thomas S; Tsuboi, Takafumi; Yusibov, Vidadi

    2015-06-01

    Despite decades of effort battling against malaria, the disease is still a major cause of morbidity and mortality. Transmission-blocking vaccines (TBVs) that target sexual stage parasite development could be an integral part of measures for malaria elimination. In the 1950s, Huff et al. first demonstrated the induction of transmission-blocking immunity in chickens by repeated immunizations with Plasmodium gallinaceum-infected red blood cells. Since then, significant progress has been made in identification of parasite antigens responsible for transmission-blocking activity. Recombinant technologies accelerated evaluation of these antigens as vaccine candidates, and it is possible to induce effective transmission-blocking immunity in humans both by natural infection and now by immunization with recombinant vaccines. This chapter reviews the efforts to produce TBVs, summarizes the current status and advances and discusses the remaining challenges and approaches. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. A Large Size Chimeric Highly Immunogenic Peptide Presents Multistage Plasmodium Antigens as a Vaccine Candidate System against Malaria.

    Science.gov (United States)

    Lozano, José Manuel; Varela, Yahson; Silva, Yolanda; Ardila, Karen; Forero, Martha; Guasca, Laura; Guerrero, Yuly; Bermudez, Adriana; Alba, Patricia; Vanegas, Magnolia; Patarroyo, Manuel Elkin

    2017-11-01

    Rational strategies for obtaining malaria vaccine candidates should include not only a proper selection of target antigens for antibody stimulation, but also a versatile molecular design based on ordering the right pieces from the complex pathogen molecular puzzle towards more active and functional immunogens. Classical Plasmodium falciparum antigens regarded as vaccine candidates have been selected as model targets in this study. Among all possibilities we have chosen epitopes of Pf CSP, STARP; MSA1 and Pf 155/RESA from pre- and erythrocyte stages respectively for designing a large 82-residue chimeric immunogen. A number of options aimed at diminishing steric hindrance for synthetic procedures were assessed based on standard Fmoc chemistry such as building block orthogonal ligation; pseudo-proline and microwave-assisted procedures, therefore the large-chimeric target was produced, characterized and immunologically tested. Antigenicity and functional in vivo efficacy tests of the large-chimera formulations administered alone or as antigen mixtures have proven the stimulation of high antibody titers, showing strong correlation with protection and parasite clearance of vaccinated BALB/c mice after being lethally challenged with both P. berghei -ANKA and P. yoelii 17XL malaria strains. Besides, 3D structure features shown by the large-chimera encouraged as to propose using these rational designed large synthetic molecules as reliable vaccine candidate-presenting systems.

  8. A Large Size Chimeric Highly Immunogenic Peptide Presents Multistage Plasmodium Antigens as a Vaccine Candidate System against Malaria

    Directory of Open Access Journals (Sweden)

    José Manuel Lozano

    2017-11-01

    Full Text Available Rational strategies for obtaining malaria vaccine candidates should include not only a proper selection of target antigens for antibody stimulation, but also a versatile molecular design based on ordering the right pieces from the complex pathogen molecular puzzle towards more active and functional immunogens. Classical Plasmodium falciparum antigens regarded as vaccine candidates have been selected as model targets in this study. Among all possibilities we have chosen epitopes of PfCSP, STARP; MSA1 and Pf155/RESA from pre- and erythrocyte stages respectively for designing a large 82-residue chimeric immunogen. A number of options aimed at diminishing steric hindrance for synthetic procedures were assessed based on standard Fmoc chemistry such as building block orthogonal ligation; pseudo-proline and microwave-assisted procedures, therefore the large-chimeric target was produced, characterized and immunologically tested. Antigenicity and functional in vivo efficacy tests of the large-chimera formulations administered alone or as antigen mixtures have proven the stimulation of high antibody titers, showing strong correlation with protection and parasite clearance of vaccinated BALB/c mice after being lethally challenged with both P. berghei-ANKA and P. yoelii 17XL malaria strains. Besides, 3D structure features shown by the large-chimera encouraged as to propose using these rational designed large synthetic molecules as reliable vaccine candidate-presenting systems.

  9. Modeling the impact of Plasmodium falciparum sexual stage immunity on the composition and dynamics of the human infectious reservoir for malaria in natural settings.

    Directory of Open Access Journals (Sweden)

    André Lin Ouédraogo

    2018-05-01

    Full Text Available Malaria transmission remains high in Sub-Saharan Africa despite large-scale implementation of malaria control interventions. A comprehensive understanding of the transmissibility of infections to mosquitoes may guide the design of more effective transmission reducing strategies. The impact of P. falciparum sexual stage immunity on the infectious reservoir for malaria has never been studied in natural settings. Repeated measurements were carried out at start-wet, peak-wet and dry season, and provided data on antibody responses against gametocyte/gamete antigens Pfs48/45 and Pfs230 as anti-gametocyte immunity. Data on high and low-density infections and their infectiousness to anopheline mosquitoes were obtained using quantitative molecular methods and mosquito feeding assays, respectively. An event-driven model for P. falciparum sexual stage immunity was developed and fit to data using an agent based malaria model infrastructure. We found that Pfs48/45 and Pfs230 antibody densities increased with increasing concurrent gametocyte densities; associated with 55-70% reduction in oocyst intensity and achieved up to 44% reduction in proportions of infected mosquitoes. We showed that P. falciparum sexual stage immunity significantly reduces transmission of microscopic (p < 0.001 but not submicroscopic (p = 0.937 gametocyte infections to mosquitoes and that incorporating sexual stage immunity into mathematical models had a considerable impact on the contribution of different age groups to the infectious reservoir of malaria. Human antibody responses to gametocyte antigens are likely to be dependent on recent and concurrent high-density gametocyte exposure and have a pronounced impact on the likelihood of onward transmission of microscopic gametocyte densities compared to low density infections. Our mathematical simulations indicate that anti-gametocyte immunity is an important factor for predicting and understanding the composition and dynamics of the

  10. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route.

    Science.gov (United States)

    Carey, John B; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V S; Draper, Simon J; Moore, Anne C

    2014-08-21

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP1₄₂, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP1₄₂ also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP1₄₂ using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies.

  11. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route

    Science.gov (United States)

    Carey, John B.; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V. S.; Draper, Simon J.; Moore, Anne C.

    2014-01-01

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP142, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP142 also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP142 using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies. PMID:25142082

  12. Malaria parasitaemia among blood donors in Ilorin, Nigeria ...

    African Journals Online (AJOL)

    Background: The prevalence of malaria parasitaemia among blood donors in Ilorin has not been documented. In this study, we determined the prevalence of malaria parasitaemia among blood donors in Ilorin, as well as, the sociodemographic and other factors associated with it. Method: This was a hospital- based cross ...

  13. Accuracy of PfHRP2 versus Pf-pLDH antigen detection by malaria rapid diagnostic tests in hospitalized children in a seasonal hyperendemic malaria transmission area in Burkina Faso.

    Science.gov (United States)

    Maltha, Jessica; Guiraud, Issa; Lompo, Palpouguini; Kaboré, Bérenger; Gillet, Philippe; Van Geet, Chris; Tinto, Halidou; Jacobs, Jan

    2014-01-13

    In most sub-Saharan African countries malaria rapid diagnostic tests (RDTs) are now used for the diagnosis of malaria. Most RDTs used detect Plasmodium falciparum histidine-rich protein-2 (PfHRP2), though P. falciparum-specific parasite lactate dehydrogenase (Pf-pLDH)-detecting RDTs may have advantages over PfHRP2-detecting RDTs. Only few data are available on the use of RDTs in severe illness and the present study compared Pf-pLDH to PfHRP2-detection. Hospitalized children aged one month to 14 years presenting with fever or severe illness were included over one year. Venous blood samples were drawn for malaria diagnosis (microscopy and RDT), culture and complete blood count. Leftovers were stored at -80 °C and used for additional RDT analysis and PCR. An RDT targeting both PfHRP2 and Pf-pLDH was performed on all samples for direct comparison of diagnostic accuracy with microscopy as reference method. PCR was performed to explore false-positive RDT results. In 376 of 694 (54.2%) included children, malaria was microscopically confirmed. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value were 100.0, 70.9, 69.4 and 100.0%, respectively for PfHRP2-detection and 98.7, 94.0, 91.6 and 99.1%, respectively for Pf-pLDH-detection. Specificity and PPV were significantly lower for PfHRP2-detection (p <0.001). For both detection antigens, specificity was lowest for children one to five years and in the rainy season. PPV for both antigens was highest in the rainy season, because of higher malaria prevalence. False positive PfHRP2 results were associated with prior anti-malarial treatment and positive PCR results (98/114 (86.0%) samples tested). Among children presenting with severe febrile illness in a seasonal hyperendemic malaria transmission area, the present study observed similar sensitivity but lower specificity and PPV of PfHRP2 compared to Pf-pLDH-detection. Further studies should assess the diagnostic accuracy and safety of an

  14. Multiple essential functions of Plasmodium falciparum actin-1 during malaria blood-stage development.

    Science.gov (United States)

    Das, Sujaan; Lemgruber, Leandro; Tay, Chwen L; Baum, Jake; Meissner, Markus

    2017-08-15

    The phylum Apicomplexa includes intracellular parasites causing immense global disease burden, the deadliest of them being the human malaria parasite Plasmodium falciparum, which invades and replicates within erythrocytes. The cytoskeletal protein actin is well conserved within apicomplexans but divergent from mammalian actins, and was primarily reported to function during host cell invasion. However, novel invasion mechanisms have been described for several apicomplexans, and specific functions of the acto-myosin system are being reinvestigated. Of the two actin genes in P. falciparum, actin-1 (pfact1) is ubiquitously expressed in all life-cycle stages and is thought to be required for erythrocyte invasion, although its functions during parasite development are unknown, and definitive in vivo characterisation during invasion is lacking. Here we have used a conditional Cre-lox system to investigate the functions of PfACT1 during P. falciparum blood-stage development and host cell invasion. We demonstrate that PfACT1 is crucially required for segregation of the plastid-like organelle, the apicoplast, and for efficient daughter cell separation during the final stages of cytokinesis. Surprisingly, we observe that egress from the host cell is not an actin-dependent process. Finally, we show that parasites lacking PfACT1 are capable of microneme secretion, attachment and formation of a junction with the erythrocyte, but are incapable of host cell invasion. This study provides important mechanistic insights into the definitive essential functions of PfACT1 in P. falciparum, which are not only of biological interest, but owing to functional divergence from mammalian actins, could also form the basis for the development of novel therapeutics against apicomplexans.

  15. Improving the malaria transmission-blocking activity of a Plasmodium falciparum 48/45 based vaccine antigen by SpyTag/SpyCatcher mediated virus-like display

    DEFF Research Database (Denmark)

    Singh, Susheel K; Thrane, Susan; Janitzek, Christoph M

    2017-01-01

    Malaria is a devastating disease caused by Plasmodium parasites, resulting in almost 0.5 million deaths per year. The Pfs48/45 protein exposed on the P. falciparum sexual stages is one of the most advanced antigen candidates for a transmission-blocking (TB) vaccine in the clinical pipeline. However...

  16. Tissue distribution of histo-blood group antigens

    DEFF Research Database (Denmark)

    Ravn, V; Dabelsteen, Erik

    2000-01-01

    carrier carbohydrate chains. Histo-blood group antigens are found in most epithelial tissues. Meanwhile, several factors influence the type, the amount, and the histological distribution of histoblood group antigens, i.e. the ABO, Lewis, and saliva-secretor type of the individual, and the cell- and tissue......The introduction of immunohistochemical techniques and monoclonal antibodies to specific carbohydrate epitopes has made it possible to study in detail the tissue distribution of histo-blood group antigens and related carbohydrate structures. The present paper summarizes the available data...... concerning the histological distribution of histo-blood group antigens and their precursor structures in normal human tissues. Studies performed have concentrated on carbohydrate antigens related to the ABO, Lewis, and TTn blood group systems, i.e. histo-blood group antigens carried by type 1, 2, and 3 chain...

  17. Determinants of variant surface antigen antibody response in severe Plasmodium falciparum malaria in an area of low and unstable malaria transmission

    DEFF Research Database (Denmark)

    A-Elgadir, T M E; Theander, T G; Elghazali, G

    2006-01-01

    The variant surface antigens (VSA) of infected erythrocytes are important pathogenic markers, a set of variants (VSA(SM)), were assumed to be associated with severe malaria (SM), while SM constitutes clinically diverse forms, such as, severe malarial anemia (SMA) and cerebral malaria (CM). This s...

  18. Transfusion transmitted malaria in three major blood banks of ...

    African Journals Online (AJOL)

    This study estimates the risk of acquiring malaria from a single unit of blood in North of Pakistan. A prospective study was conducted to investigate transfusion transmitted malaria in three major blood banks of Peshawar, Pakistan. A total of 1558 (1534 males and 24 females) healthy volunteer blood donors were screened for ...

  19. Prevalence of malaria and human blood factors among patients in ...

    African Journals Online (AJOL)

    Background: Malaria has been and is still a major protozoan disease affecting the human population. Erythrocyte polymorphisms (mainly in blood groups and genotypes) influence the susceptibility to severe malaria. Aim: This study is aimed at assessing the prevalence malaria in relation to human blood factor and to ...

  20. Recurrent Plasmodium falciparum malaria infections in Kenyan children diminish T-cell immunity to Epstein Barr virus lytic but not latent antigens.

    Directory of Open Access Journals (Sweden)

    Cynthia J Snider

    Full Text Available Plasmodium falciparum malaria (Pf-malaria and Epstein Barr Virus (EBV infections coexist in children at risk for endemic Burkitt's lymphoma (eBL; yet studies have only glimpsed the cumulative effect of Pf-malaria on EBV-specific immunity. Using pooled EBV lytic and latent CD8+ T-cell epitope-peptides, IFN-γ ELISPOT responses were surveyed three times among children (10 months to 15 years in Kenya from 2002-2004. Prevalence ratios (PR and 95% confidence intervals (CI were estimated in association with Pf-malaria exposure, defined at the district-level (Kisumu: holoendemic; Nandi: hypoendemic and the individual-level. We observed a 46% decrease in positive EBV lytic antigen IFN-γ responses among 5-9 year olds residing in Kisumu compared to Nandi (PR: 0.54; 95% CI: 0.30-0.99. Individual-level analysis in Kisumu revealed further impairment of EBV lytic antigen responses among 5-9 year olds consistently infected with Pf-malaria compared to those never infected. There were no observed district- or individual-level differences between Pf-malaria exposure and EBV latent antigen IFN-γ response. The gradual decrease of EBV lytic antigen but not latent antigen IFN-γ responses after primary infection suggests a specific loss in immunological control over the lytic cycle in children residing in malaria holoendemic areas, further refining our understanding of eBL etiology.

  1. Novel adenovirus encoded virus-like particles displaying the placental malaria associated VAR2CSA antigen

    DEFF Research Database (Denmark)

    Andersson, Anne-Marie C; dos Santos Marques Resende, Mafalda; Salanti, Ali

    2017-01-01

    The malaria parasite Plasmodium falciparum presents antigens on the infected erythrocyte surface that bind human receptors expressed on the vascular endothelium. The VAR2CSA mediated binding to a distinct chondroitin sulphate A (CSA) is a crucial step in the pathophysiology of placental malaria a...

  2. CD8+ T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature.

    Directory of Open Access Journals (Sweden)

    Phillip A Swanson

    2016-12-01

    Full Text Available Cerebral malaria (CM is a severe complication of Plasmodium falciparum infection that results in thousands of deaths each year, mostly in African children. The in vivo mechanisms underlying this fatal condition are not entirely understood. Using the animal model of experimental cerebral malaria (ECM, we sought mechanistic insights into the pathogenesis of CM. Fatal disease was associated with alterations in tight junction proteins, vascular breakdown in the meninges / parenchyma, edema, and ultimately neuronal cell death in the brainstem, which is consistent with cerebral herniation as a cause of death. At the peak of ECM, we revealed using intravital two-photon microscopy that myelomonocytic cells and parasite-specific CD8+ T cells associated primarily with the luminal surface of CNS blood vessels. Myelomonocytic cells participated in the removal of parasitized red blood cells (pRBCs from cerebral blood vessels, but were not required for the disease. Interestingly, the majority of disease-inducing parasite-specific CD8+ T cells interacted with the lumen of brain vascular endothelial cells (ECs, where they were observed surveying, dividing, and arresting in a cognate peptide-MHC I dependent manner. These activities were critically dependent on IFN-γ, which was responsible for activating cerebrovascular ECs to upregulate adhesion and antigen-presenting molecules. Importantly, parasite-specific CD8+ T cell interactions with cerebral vessels were impaired in chimeric mice rendered unable to present EC antigens on MHC I, and these mice were in turn resistant to fatal brainstem pathology. Moreover, anti-adhesion molecule (LFA-1 / VLA-4 therapy prevented fatal disease by rapidly displacing luminal CD8+ T cells from cerebrovascular ECs without affecting extravascular T cells. These in vivo data demonstrate that parasite-specific CD8+ T cell-induced fatal vascular breakdown and subsequent neuronal death during ECM is associated with luminal, antigen

  3. Haemoglobin C and S role in acquired immunity against Plasmodium falciparum malaria.

    Directory of Open Access Journals (Sweden)

    Federica Verra

    2007-10-01

    Full Text Available A recently proposed mechanism of protection for haemoglobin C (HbC; beta6Glu-->Lys links an abnormal display of PfEMP1, an antigen involved in malaria pathogenesis, on the surface of HbC infected erythrocytes together with the observation of reduced cytoadhesion of parasitized erythrocytes and impaired rosetting in vitro. We investigated the impact of this hypothesis on the development of acquired immunity against Plasmodium falciparum variant surface antigens (VSA encoding PfEMP1 in HbC in comparison with HbA and HbS carriers of Burkina Faso. We measured: i total IgG against a single VSA, A4U, and against a panel of VSA from severe malaria cases in human sera from urban and rural areas of Burkina Faso of different haemoglobin genotypes (CC, AC, AS, SC, SS; ii total IgG against recombinant proteins of P. falciparum asexual sporozoite, blood stage antigens, and parasite schizont extract; iii total IgG against tetanus toxoid. Results showed that the reported abnormal cell-surface display of PfEMP1 on HbC infected erythrocytes observed in vitro is not associated to lower anti- PfEMP1 response in vivo. Higher immune response against the VSA panel and malaria antigens were observed in all adaptive genotypes containing at least one allelic variant HbC or HbS in the low transmission urban area whereas no differences were detected in the high transmission rural area. In both contexts the response against tetanus toxoid was not influenced by the beta-globin genotype. These findings suggest that both HbC and HbS affect the early development of naturally acquired immunity against malaria. The enhanced immune reactivity in both HbC and HbS carriers supports the hypothesis that the protection against malaria of these adaptive genotypes might be at least partially mediated by acquired immunity against malaria.

  4. The prevalence of malaria parasitaemia in blood donors in a Nigerian teaching hospital.

    Science.gov (United States)

    Okocha, E C; Ibeh, C C; Ele, P U; Ibeh, N C

    2005-03-01

    The present study was undertaken to assess the prevalence of malaria parasitaemia among blood donors and to determine the possible risk of transmission of malaria parasite to recipients of blood in Nnamdi Azikiwe University Teaching Hospital, Nnewi, Anambra State. Four hundred and forty-four subjects were selected randomly and EDTA added blood was collected for screening malaria parasites using Giemsa stain. The data were subjected to chi2 analysis. Prevalence of malaria was 30.2% among blood donors and showed bimodal distribution with significant variation in different months. Due to high prevalence of asymptomatic malaria parasitaemia in this region, all blood samples should be screened for malaria parasites (post-donor screening) and administered with a curative dose of antimalarials prophylactically to all patients transfused with malaria parasite positive blood.

  5. Relative Susceptibilities of ABO Blood Groups to Plasmodium falciparum Malaria in Ghana.

    Science.gov (United States)

    Afoakwah, Richmond; Aubyn, Edmond; Prah, James; Nwaefuna, Ekene Kwabena; Boampong, Johnson N

    2016-01-01

    The clinical outcome of falciparum malaria in endemic areas is influenced by erythrocyte polymorphisms including the ABO blood groups. Studies have reported association of ABO blood group to resistance, susceptibility, and severity of P. falciparum malaria infection. Individuals with blood group "A" have been found to be highly susceptible to falciparum malaria whereas blood group "O" is said to confer protection against complicated cases. We analyzed samples from 293 young children less than six years old with malaria in the Korle-Bu Teaching Hospital in Accra, Ghana. It was observed that group O was present in about 16.1% of complicated cases weighed against 40.9% of uncomplicated controls. Individuals with complicated malaria were about twice likely to be of blood groups A and B compared to group O (A versus O, OR = 1.90, 95% CI = 1.59-2.26, P Blood group O participants with complicated diseases had low parasitaemia compared to the other blood groups (P blood group O individuals a survival advantage over the other groups in complicated malaria as suggested. Participants with complicated falciparum malaria were generally anaemic and younger than those with uncomplicated disease.

  6. HIGH-THROUGHPUT IDENTIFICATION OF THE PREDOMINANT MALARIA PARASITE CLONE IN COMPLEX BLOOD STAGE INFECTIONS USING A MULTI-SNP MOLECULAR HAPLOTYPING ASSAY

    Science.gov (United States)

    COLE-TOBIAN, JENNIFER L.; ZIMMERMAN, PETER A.; KING, CHRISTOPHER L.

    2013-01-01

    Individuals living in malaria endemic areas are often infected with multiple parasite clones. Currently used single nucleotide polymorphism (SNP) genotyping methods for malaria parasites are cumbersome; furthermore, few methods currently exist that can rapidly determine the most abundant clone in these complex infections. Here we describe an oligonucleotide ligation assay (OLA) to distinguish SNPs in the Plasmodium vivax Duffy binding protein gene (Pvdbp) at 14 polymorphic residues simultaneously. Allele abundance is determined by the highest mean fluorescent intensity of each allele. Using mixtures of plasmids encoding known haplotypes of the Pvdbp, single clones of P. vivax parasites from infected Aotus monkeys, and well-defined mixed infections from field samples, we were able to identify the predominant Pvdbp genotype with > 93% accuracy when the dominant clone is twice as abundant as a lesser genotype and > 97% of the time if the ratio was 5:1 or greater. Thus, the OLA can accurately, reproducibly, and rapidly determine the predominant parasite haplotype in complex blood stage infections. PMID:17255222

  7. Effects of Malaria on Blood Pressure, Heart Rate, Electrocardiogram ...

    African Journals Online (AJOL)

    The effect of malaria on blood pressure, heart rate, electrocardiogram and the cardiovascular responses to postural change were studied in malaria patients. Blood pressure was measured by the sphygmomanometric-auscultatory method. Standard ECG machine was used to record the electrocardiogram. Heart rate was ...

  8. Assessing ABO/Rh Blood Group Frequency and Association with Asymptomatic Malaria among Blood Donors Attending Arba Minch Blood Bank, South Ethiopia

    Directory of Open Access Journals (Sweden)

    Getaneh Alemu

    2016-01-01

    Full Text Available Background. Determination of the various ABO/Rh blood group distributions and their association with malaria infection has paramount importance in the context of transfusion medicine and malaria control. Methods. Facility based cross-sectional study was conducted from February to June, 2015, to assess ABO/Rh blood groups distribution and their association with asymptomatic malaria. A structured questionnaire was used to collect data. Blood grouping was done using monoclonal antibodies. Thin and thick blood films were examined for Plasmodium parasites. Data were analyzed using SPSS version 20.0. Results. A total of 416 blood donors participated with median age of 22±0.29 (median ± standard error of the mean. Distribution of ABO phenotypes, in decreasing order, was O (175, 42.1%, A (136, 32.7%, B (87, 20.9%, and AB (18, 4.3%. Most of them were Rh+ (386, 92.8%. The overall malaria prevalence was 4.1% (17/416. ABO blood group is significantly associated with malaria infection (P=0.022. High rate of parasitemia was seen in blood group O donors (6.899, P=0.003 compared to those with other ABO blood groups. Conclusion. Blood groups O and AB phenotypes are the most and the least ABO blood groups, respectively. There is significant association between ABO blood group and asymptomatic malaria parasitemia.

  9. Pitting of malaria parasites and spherocyte formation

    Directory of Open Access Journals (Sweden)

    Gichuki Charity W

    2006-07-01

    Full Text Available Abstract Background A high prevalence of spherocytes was detected in blood smears of children enrolled in a case control study conducted in the malaria holoendemic Lake Victoria basin. It was speculated that the spherocytes reflect intraerythrocytic removal of malarial parasites with a concurrent removal of RBC membrane through a process analogous to pitting of intraerythrocytic inclusion bodies. Pitting and re-circulation of RBCs devoid of malaria parasites could be a host mechanism for parasite clearance while minimizing the anaemia that would occur were the entire parasitized RBC removed. The prior demonstration of RBCs containing ring-infected erythrocyte surface antigen (pf 155 or RESA but no intracellular parasites, support the idea of pitting. Methods An in vitro model was developed to examine the phenomenon of pitting and spherocyte formation in Plasmodium falciparum infected RBCs (iRBC co-incubated with human macrophages. In vivo application of this model was evaluated using blood specimens from patients attending Kisumu Ditrict Hospital. RBCs were probed with anti-RESA monoclonal antibody and a DNA stain (propidium iodide. Flow cytometry and fluorescent microscopy was used to compare RBCs containing both the antigen and the parasites to those that were only RESA positive. Results Co-incubation of iRBC and tumor necrosis factor-alpha activated macrophages led to pitting (14% ± 1.31% macrophages with engulfed trophozoites as opposed to erythrophagocytosis (5.33% ± 0.95% (P Conclusion It is proposed that in malaria holoendemic areas where prevalence of asexual stage parasites approaches 100% in children, RBCs with pitted parasites are re-circulated and pitting may produce spherocytes.

  10. Glycophorin C (Gerbich Antigen Blood Group) and Band 3 Polymorphisms in Two Malaria Holoendemic Regions of Papua New Guinea

    Science.gov (United States)

    Patel, Sheral S.; King, Christopher L.; Mgone, Charles S.; Kazura, James W.; Zimmerman, Peter A.

    2013-01-01

    The geographic overlap between the prevalence of erythrocyte polymorphisms and malaria endemicity is thought to be an example of natural selection on human populations. In Papua New Guinea (PNG), the Gerbich-negative phenotype is caused by an exon 3 deletion in the glycophorin C gene (GYPCΔex3) while heterozygosity for a 27-base pair deletion in the SLC4A1 gene (anion exchanger 1 or erythrocyte membrane protein, band 3), SLC4A1Δ27, results in Southeast Asian ovalocytosis. Two geographically and ethnically distinct malaria endemic regions of PNG (the Wosera [East Sepik Province] and Liksul [Madang Province]) were studied to illustrate the distribution of two prominent deletion polymorphisms (GYPCΔex3 and SLC4A1Δ27) and to determine if the genetic load associated with SLC4A1Δ27 would constrain independent assortment of GYPCΔex3 heterozygous and homozygous genotypes. The frequency of the GYPCΔex3 allele was higher in the Wosera (0.463) than Liksul (0.176) (χ2; P < 0.0001). Conversely, the frequency of the SLC4A1Δ27 allele was higher in Liksul (0.0740) than the Wosera (0.0005) (χ2; P < 0.0001). No individuals were homozygous for SLC4A1Δ27. In 355 Liksul residents, independent assortment of these two deletion polymorphisms resulted in 14 SLC4A1Δ27 carriers heterozygous for GYPCΔex3 and one SLC4A1Δ27 carrier homozygous for GYPCΔex3 (Fisher’s exact test; P = 0.8040). While homozygosity for SLC4A1Δ27 appears to be nonviable, the GYPCΔex3 allele is not lethal when combined with SLC4A1Δ27. Neither mutation was associated with altered susceptibility to asymptomatic Plasmodium falciparum or P. vivax infection. While these erythrocyte polymorphisms apparently have no effect on blood-stage malaria infection, their contribution to susceptibility to clinical malaria morbidity requires further study. PMID:14695625

  11. The Cytoplasmic Prolyl-tRNA Synthetase of the Malaria Parasite is a Dual-Stage Target for Drug Development

    Science.gov (United States)

    Herman, Jonathan D.; Pepper, Lauren R.; Cortese, Joseph F.; Estiu, Guillermina; Galinsky, Kevin; Zuzarte-Luis, Vanessa; Derbyshire, Emily R.; Ribacke, Ulf; Lukens, Amanda K.; Santos, Sofia A.; Patel, Vishal; Clish, Clary B.; Sullivan, William J.; Zhou, Huihao; Bopp, Selina E.; Schimmel, Paul; Lindquist, Susan; Clardy, Jon; Mota, Maria M.; Keller, Tracy L.; Whitman, Malcolm; Wiest, Olaf; Wirth, Dyann F.; Mazitschek, Ralph

    2015-01-01

    The emergence of drug resistance is a major limitation of current antimalarials. The discovery of new druggable targets and pathways including those that are critical for multiple life cycle stages of the malaria parasite is a major goal for the development of the next-generation of antimalarial drugs. Using an integrated chemogenomics approach that combined drug-resistance selection, whole genome sequencing and an orthogonal yeast model, we demonstrate that the cytoplasmic prolyl-tRNA synthetase (PfcPRS) of the malaria parasite Plasmodium falciparum is a biochemical and functional target of febrifugine and its synthetic derivatives such as halofuginone. Febrifugine is the active principle of a traditional Chinese herbal remedy for malaria. We show that treatment with febrifugine derivatives activated the amino acid starvation response in both P. falciparum and a transgenic yeast strain expressing PfcPRS. We further demonstrate in the P. berghei mouse model of malaria that halofuginol, a new halofuginone analog that we developed, is highly active against both liver and asexual blood stages of the malaria parasite. Halofuginol, unlike halofuginone and febrifugine, is well tolerated at efficacious doses, and represents a promising lead for the development of dual-stage next generation antimalarials. PMID:25995223

  12. Automated image processing method for the diagnosis and classification of malaria on thin blood smears.

    Science.gov (United States)

    Ross, Nicholas E; Pritchard, Charles J; Rubin, David M; Dusé, Adriano G

    2006-05-01

    Malaria is a serious global health problem, and rapid, accurate diagnosis is required to control the disease. An image processing algorithm to automate the diagnosis of malaria on thin blood smears is developed. The image classification system is designed to positively identify malaria parasites present in thin blood smears, and differentiate the species of malaria. Images are acquired using a charge-coupled device camera connected to a light microscope. Morphological and novel threshold selection techniques are used to identify erythrocytes (red blood cells) and possible parasites present on microscopic slides. Image features based on colour, texture and the geometry of the cells and parasites are generated, as well as features that make use of a priori knowledge of the classification problem and mimic features used by human technicians. A two-stage tree classifier using backpropogation feedforward neural networks distinguishes between true and false positives, and then diagnoses the species (Plasmodium falciparum, P. vivax, P. ovale or P. malariae) of the infection. Malaria samples obtained from the Department of Clinical Microbiology and Infectious Diseases at the University of the Witwatersrand Medical School are used for training and testing of the system. Infected erythrocytes are positively identified with a sensitivity of 85% and a positive predictive value (PPV) of 81%, which makes the method highly sensitive at diagnosing a complete sample provided many views are analysed. Species were correctly determined for 11 out of 15 samples.

  13. Current status of malaria parasite among blood donors in Port ...

    African Journals Online (AJOL)

    This study was carried out to determine the prevalence of malaria parasite among blood donors at the Police Clinic Port Harcourt, Rivers State, Nigeria. The standard parasitological techniques using both thick and thin blood films from the donors for the detection of malaria parasite was followed. Venous blood was ...

  14. Comparison of allele frequencies of Plasmodium falciparum merozoite antigens in malaria infections sampled in different years in a Kenyan population.

    Science.gov (United States)

    Ochola-Oyier, Lynette Isabella; Okombo, John; Wagatua, Njoroge; Ochieng, Jacob; Tetteh, Kevin K; Fegan, Greg; Bejon, Philip; Marsh, Kevin

    2016-05-06

    Plasmodium falciparum merozoite antigens elicit antibody responses in malaria-endemic populations, some of which are clinically protective, which is one of the reasons why merozoite antigens are the focus of malaria vaccine development efforts. Polymorphisms in several merozoite antigen-encoding genes are thought to arise as a result of selection by the human immune system. The allele frequency distribution of 15 merozoite antigens over a two-year period, 2007 and 2008, was examined in parasites obtained from children with uncomplicated malaria. In the same population, allele frequency changes pre- and post-anti-malarial treatment were also examined. Any gene which showed a significant shift in allele frequencies was also assessed longitudinally in asymptomatic and complicated malaria infections. Fluctuating allele frequencies were identified in codons 147 and 148 of reticulocyte-binding homologue (Rh) 5, with a shift from HD to YH haplotypes over the two-year period in uncomplicated malaria infections. However, in both the asymptomatic and complicated malaria infections YH was the dominant and stable haplotype over the two-year and ten-year periods, respectively. A logistic regression analysis of all three malaria infection populations between 2007 and 2009 revealed, that the chance of being infected with the HD haplotype decreased with time from 2007 to 2009 and increased in the uncomplicated and asymptomatic infections. Rh5 codons 147 and 148 showed heterogeneity at both an individual and population level and may be under some degree of immune selection.

  15. IgG responses to Anopheles gambiae salivary antigen gSG6 detect variation in exposure to malaria vectors and disease risk

    DEFF Research Database (Denmark)

    Stone, Will; Bousema, Teun; Jones, Sophie

    2012-01-01

    as the basis of an immuno-assay determining exposure to Afrotropical malaria vectors. In the present study, IgG responses to gSG6 and 6 malaria antigens (CSP, AMA-1, MSP-1, MSP-3, GLURP R1, and GLURP R2) were compared to Anopheles exposure and malaria incidence in a cohort of children from Korogwe district...... with subsequent malaria incidence (test for trend p¿=¿0.004), comparable to malaria antigens MSP-1 and GLURP R2. Our results show that the gSG6 assay is sensitive to micro-epidemiological variations in exposure to Anopheles mosquitoes, and provides a correlate of malaria risk that is unrelated to immune...

  16. [Assessment of malaria screening management in blood donation control in the French Military Blood Institute].

    Science.gov (United States)

    Pouget, T; Garcia-Hejl, C; Bouzard, S; Roche, C; Sailliol, A; Martinaud, C

    2014-06-01

    The French Military Blood Institute is responsible for the entire blood supply chain in the French Armed Forces. Considering, the high exposition rate of military to malaria risk, blood donation screening of plasmodium infection must be as efficient as possible. The main aim of our study was to assess our malaria testing strategy based on a single Elisa test compared with a two-step strategy implying immunofluorescence testing as confirmation test. The second goal was to describe characteristic of malaria Elisa positive donors. We conducted a prospective study: every malaria Elisa positive test was implemented by immunofluorescence testing and demographical data were recorded as usual by our medical software. We showed a significant risk of malaria ELISA positive tests among donor born in endemic area and we estimate the number of abusively 3-year rejected donors. However, based on our estimations, the two-step strategy is not relevant since the number of additionally collected blood products will be low. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Relative Susceptibilities of ABO Blood Groups to Plasmodium falciparum Malaria in Ghana

    Directory of Open Access Journals (Sweden)

    Richmond Afoakwah

    2016-01-01

    Full Text Available The clinical outcome of falciparum malaria in endemic areas is influenced by erythrocyte polymorphisms including the ABO blood groups. Studies have reported association of ABO blood group to resistance, susceptibility, and severity of P. falciparum malaria infection. Individuals with blood group “A” have been found to be highly susceptible to falciparum malaria whereas blood group “O” is said to confer protection against complicated cases. We analyzed samples from 293 young children less than six years old with malaria in the Korle-Bu Teaching Hospital in Accra, Ghana. It was observed that group O was present in about 16.1% of complicated cases weighed against 40.9% of uncomplicated controls. Individuals with complicated malaria were about twice likely to be of blood groups A and B compared to group O (A versus O, OR = 1.90, 95% CI = 1.59–2.26, P<0.0001; B versus O, OR = 1.82. 95% CI = 1.57–2.23, P<0.0001. Blood group O participants with complicated diseases had low parasitaemia compared to the other blood groups (P<0.0001. This may give blood group O individuals a survival advantage over the other groups in complicated malaria as suggested. Participants with complicated falciparum malaria were generally anaemic and younger than those with uncomplicated disease.

  18. Heritability of antibody isotype and subclass responses to Plasmodium falciparum antigens.

    Directory of Open Access Journals (Sweden)

    Nancy O Duah

    2009-10-01

    Full Text Available It is important to understand the extent to which genetic factors regulate acquired immunity to common infections. A classical twin study design is useful to estimate the heritable component of variation in measurable immune parameters.This study assessed the relative heritability of different plasma antibody isotypes and subclasses (IgG1, IgG2, IgG3, IgG4, IgM, IgA and IgE naturally acquired to P. falciparum blood stage antigens AMA1, MSP1-19, MSP2 (two allelic types and MSP3 (two allelic types. Separate analyses were performed on plasma from 213 pairs of Gambian adult twins, 199 child twin pairs sampled in a dry season when there was little malaria transmission, and another set of 107 child twin pairs sampled at the end of the annual wet season when malaria was common. There were significantly positive heritability (h(2 estimates for 48% (20/42 of the specific antibody assays (for the seven isotypes and subclasses to the six antigens tested among the adults, 48% (20/42 among the children in the dry season and 31% (13/42 among the children in the wet season. In children, there were significant heritability estimates for IgG4 reactivity against each of the antigens, and this subclass had higher heritability than the other subclasses and isotypes. In adults, 75% (15/20 of the significantly heritable antigen-specific isotype responses were attributable to non-HLA class II genetic variation, whereas none showed a significant HLA contribution.Genome-wide approaches are now warranted to map the major genetic determinants of variable antibody isotype and subclass responses to malaria, alongside evaluation of their impact on infection and disease. Although plasma levels of IgG4 to malaria antigens are generally low, the exceptionally high heritability of levels of this subclass in children deserves particular investigation.

  19. Immunization with the Malaria Diversity-Covering Blood-Stage Vaccine Candidate Plasmodium falciparum Apical Membrane Antigen 1 DiCo in Complex with Its Natural Ligand PfRon2 Does Not Improve the In Vitro Efficacy

    Directory of Open Access Journals (Sweden)

    Holger Spiegel

    2017-06-01

    Full Text Available The blood-stage malaria vaccine candidate Plasmodium falciparum apical membrane antigen 1 (PfAMA1 can induce strong parasite growth-inhibitory antibody responses in animals but has not achieved the anticipated efficacy in clinical trials. Possible explanations in humans are the insufficient potency of the elicited antibody responses, as well as the high degree of sequence polymorphisms found in the field. Several strategies have been developed to improve the cross-strain coverage of PfAMA1-based vaccines, whereas innovative concepts to increase the potency of PfAMA1-specific IgG responses have received little attention even though this may be an essential requirement for protective efficacy. A previous study has demonstrated that immunization with a complex of PyAMA1 and PyRON2, a ligand with an essential functional role in erythrocyte invasion, leads to protection from lethal Plasmodium yoelli challenge in an animal model and suggested to extend this strategy toward improved strain coverage by using multiple PfAMA1 alleles in combination with PfRon2L. As an alternative approach along this line, we decided to use PfRon2L in combination with three PfAMA1 diversity covering variants (DiCo to investigate the potential of this complex to induce more potent parasite growth inhibitory immune response in combination with better cross-strain-specific efficacy. Within the limits of the study design, the ability of the PfAMA1 DiCo-Mix to induce cross-strain-specific antibodies was not affected in all immunization groups, but the DiCo–PfRon2L complexes did not improve the potency of PfAMA1-specific IgG responses.

  20. Application of molecular methods for monitoring transmission stages of malaria parasites

    International Nuclear Information System (INIS)

    Babiker, Hamza A; Schneider, Petra

    2008-01-01

    Recent technical advances in malaria research have allowed specific detection of mRNA of genes that are expressed exclusively in sexual stages (gametocytes) of malaria parasites. The specificity and sensitivity of these techniques were validated on cultured laboratory clones of both human malaria parasites (Plasmodium falciparum) and rodent parasites (P. chabaudi). More recently, quantitative molecular techniques have been developed to quantify these sexual stages and used to monitor gametocyte dynamics and their transmission to mosquitoes. Molecular techniques showed that the infectious reservoir for malaria is larger than expected from previous microscopic studies; individual parasite genotypes within an infection can simultaneously produce infectious gametocytes; gametocyte production can be sustained for several months, and is modulated by environmental factors. The above techniques have empowered approaches for in-depth analysis of the biology of the transmission stages of the parasite and epidemiology of malaria transmission

  1. Comparison of Real Time Polymerase Chain Reaction with Microscopy and Antigen Detection Assay for the Diagnosis of Malaria

    International Nuclear Information System (INIS)

    Khan, S. A.; Ahmed, S.; Khan, F. A.; Shamshad, G. U.; Joyia, Z.; Mushahid, N.; Saeed, S.

    2013-01-01

    Objective: To determine the sensitivity of a real time polymerase chain reaction (PCR) for malaria diagnosis and to compare its accuracy with microscopy and an antigen based rapid diagnostic test (OptiMal). Study Design: Cross-sectional analytical study. Place and Duration of Study: Military Hospital, Armed Forces Institute of Transfusion and Armed Forces Institute of Pathology, Rawalpindi, from July to December 2011. Methodology: Venous blood samples of 300 clinically suspected patients of malaria were tested for malaria parasite by microscopy and OptiMal; and malaria parasite index was calculated for the positive samples. Plasmodium genus specific real time PCR was performed on all specimens, targeting small subunit rRNA gene. Diagnostic accuracy of three tests was compared and cost analysis was done. Results: Out of 300 patients, malaria parasite was detected in 110, 106 and 123 patients by microscopy, OptiMAL and PCR respectively. Real time PCR was 100% sensitive while microscopy and OptiMal had sensitivity of 89.4% and 86.2% respectively. All methods were 100% specific. The cost per test was calculated to be 0.2, 2.75 and 3.30 US dollar by microscopy, OptiMal and PCR respectively, excluding the once capital cost on PCR equipment. Conclusion: Genus specific real time PCR for the diagnosis of malaria was successfully established as a highly sensitive and affordable technology that should be incorporated in the diagnostic algorithm in this country. (author)

  2. Malaria and blood transfusion: major issues of blood safety in malaria-endemic countries and strategies for mitigating the risk of Plasmodium parasites.

    Science.gov (United States)

    Abdullah, Saleh; Karunamoorthi, Kaliyaperumal

    2016-01-01

    Malaria inflicts humankind over centuries, and it remains as a major threat to both clinical medicine and public health worldwide. Though hemotherapy is a life-sustaining modality, it continues to be a possible source of disease transmission. Hence, hemovigilance is a matter of grave concern in the malaria-prone third-world countries. In order to pursue an effective research on hemovigilance, a comprehensive search has been conducted by using the premier academic-scientific databases, WHO documents, and English-language search engines. One hundred two appropriate articles were chosen for data extraction, with a particular reference to emerging pathogens transmitted through blood transfusion, specifically malaria. Blood donation screening is done through microscopic examination and immunological assays to improve the safety of blood products by detection major blood-borne pathogens, viz., HIV, HBV, HCV, syphilis, and malarial parasites. Transfusion therapy significantly dwindles the preventable morbidity and mortality attributed to various illnesses and diseases, particularly AIDS, tuberculosis, and malaria. Examination of thick and thin blood smears are performed to detect positivity and to identify the Plasmodium species, respectively. However, all of these existing diagnostic tools have their own limitations in terms of sensitivity, specificity, cost-effectiveness, and lack of resources and skilled personnel. Globally, despite the mandate need of screening blood and its components according to the blood-establishment protocols, it is seldom practiced in the low-income/poverty-stricken settings. In addition, each and every single phase of transfusion chain carries sizable inherent risks from donors to recipients. Interestingly, opportunities also lie ahead to enhance the safety of blood-supply chain and patients. It can be achieved through sustainable blood-management strategies like (1) appropriate usage of precise diagnostic tools/techniques, (2) promoting

  3. APPLICATION OF MALARIA DETECTION OF DRAWING BLOOD CELLS USING MICROSCOPIC OpenCV

    Directory of Open Access Journals (Sweden)

    Antonius Herusutopo

    2011-10-01

    Full Text Available The goal of the research is to produce an application, which can detect malaria on patient through microscopic digital image of blood sample. The research methods are data collection, design analysis, testing and evaluation. The used application methods are image pre-processing, morphology and image segmentation using OpenCV. The expected result is a creation of application, which can be able to detect malaria on a microscopic digital image of patient blood sample. The conclusion is that the application can detect malaria from young trophozoites stadium and gametesocytes from the picture.Keywords: Detection; Malaria; Computer Vision; OpenCVINTRODUCTIONSystem technology of computer-based with artificial intelligence already can be used in medicine field, for example, to resolve the problems: detecting specific disease and its symptoms, analyzing the content of a sample, monitoring the condition of an organ, and others. Nevertheless, the medical field is very wide, so for detecting diseases problems, not yet much disease that detection can be done with a computer-based system. One example of the issues is well-known disease detection, which is malaria. Malaria is classified as a serious disease because it can cause death if it is not treated properly. Malaria has various types and can affect anyone anywhere. The symptoms of malaria is really common as it may appear in daily life, but cannot always indicate that a person infected with malaria. Indications, which can show that a person infected with malaria, are the clinical examination and blood tests.With the blood test, the treatment of malaria can be implemented correctly and precisely. It needs technology that can detect malaria correctly and precisely. The solution is the method of support vector machine that can detect malaria in humans by viewing image of appearance blood cells.METHODThe methods used in this research are data collection, analysis and design. The data collection includes

  4. ABO blood groups and malaria related clinical outcome.

    Science.gov (United States)

    Deepa; Alwar, Vanamala A; Rameshkumar, Karuna; Ross, Cecil

    2011-03-01

    The study was undertaken to correlate the blood groups and clinical presentations in malaria patients and to understand the differential host susceptibility in malaria. From October 2007 to September 2008, malaria positive patients' samples were evaluated in this study. Hemoglobin, total leukocyte count, and platelet count of each patient were done on an automated cell counter. After determining the blood groups, malarial species and the severity of clinical course were correlated. A total of 100 patients were included in the study, of which 63 cases were positive for Plasmodium falciparum and 37 cases were positive for P. vivax infection and 11 patients had mixed infection. The results of the blood groups showed 22 - 'A' group, 42 - 'B' group, 35 - 'O' group and 1 was 'AB' group. When the clinical courses between different groups were compared using the following parameters for severe infection--a parasitic load of >10/1000 RBCs, severe anemia with hemoglobin 101°F and other organ involvement, it was observed that 'O' group had an advantage over other the groups. The difference in rosetting ability between red blood cells of different 'ABO' blood groups with a diminished rosetting potential in blood group 'O' red blood cells was due to the differential host susceptibility. 'O' group had an advantage over the other three blood groups. Based on literature and the results of this study, the diminished rosetting potential in blood group 'O' red blood cells is suggested as the basis for the differential host susceptibility.

  5. A high parasite density environment induces transcriptional changes and cell death in Plasmodium falciparum blood stages.

    Science.gov (United States)

    Chou, Evelyn S; Abidi, Sabia Z; Teye, Marian; Leliwa-Sytek, Aleksandra; Rask, Thomas S; Cobbold, Simon A; Tonkin-Hill, Gerry Q; Subramaniam, Krishanthi S; Sexton, Anna E; Creek, Darren J; Daily, Johanna P; Duffy, Michael F; Day, Karen P

    2018-03-01

    Transient regulation of Plasmodium numbers below the density that induces fever has been observed in chronic malaria infections in humans. This species transcending control cannot be explained by immunity alone. Using an in vitro system we have observed density dependent regulation of malaria population size as a mechanism to possibly explain these in vivo observations. Specifically, Plasmodium falciparum blood stages from a high but not low-density environment exhibited unique phenotypic changes during the late trophozoite (LT) and schizont stages of the intraerythrocytic cycle. These included in order of appearance: failure of schizonts to mature and merozoites to replicate, apoptotic-like morphological changes including shrinking, loss of mitochondrial membrane potential, and blebbing with eventual release of aberrant parasites from infected erythrocytes. This unique death phenotype was triggered in a stage-specific manner by sensing of a high-density culture environment. Conditions of glucose starvation, nutrient depletion, and high lactate could not induce the phenotype. A high-density culture environment induced rapid global changes in the parasite transcriptome including differential expression of genes involved in cell remodeling, clonal antigenic variation, metabolism, and cell death pathways including an apoptosis-associated metacaspase gene. This transcriptional profile was also characterized by concomitant expression of asexual and sexual stage-specific genes. The data show strong evidence to support our hypothesis that density sensing exists in P. falciparum. They indicate that an apoptotic-like mechanism may play a role in P. falciparum density regulation, which, as in yeast, has features quite distinguishable from mammalian apoptosis. Gene expression data are available in the GEO databases under the accession number GSE91188. © 2017 Federation of European Biochemical Societies.

  6. Interferon-Mediated Innate Immune Responses against Malaria Parasite Liver Stages

    Directory of Open Access Journals (Sweden)

    Jessica L. Miller

    2014-04-01

    Full Text Available Mosquito-transmitted malaria parasites infect hepatocytes and asymptomatically replicate as liver stages. Using RNA sequencing, we show that a rodent malaria liver-stage infection stimulates a robust innate immune response including type I interferon (IFN and IFNγ pathways. Liver-stage infection is suppressed by these infection-engendered innate responses. This suppression was abrogated in mice deficient in IFNγ, the type I IFN α/β receptor (IFNAR, and interferon regulatory factor 3. Natural killer and CD49b+CD3+ natural killer T (NKT cells increased in the liver after a primary infection, and CD1d-restricted NKT cells, which secrete IFNγ, were critical in reducing liver-stage burden of a secondary infection. Lack of IFNAR signaling abrogated the increase in NKT cell numbers in the liver, showing a link between type I IFN signaling, cell recruitment, and subsequent parasite elimination. Our findings demonstrate innate immune sensing of malaria parasite liver-stage infection and that the ensuing innate responses can eliminate the parasite.

  7. Suppression of adaptive immunity to heterologous antigens during Plasmodium infection through hemozoin-induced failure of dendritic cell function

    Directory of Open Access Journals (Sweden)

    Phillips R

    2006-04-01

    Full Text Available Abstract Background Dendritic cells (DCs are central to the initiation and regulation of the adaptive immune response during infection. Modulation of DC function may therefore allow evasion of the immune system by pathogens. Significant depression of the host's systemic immune response to both concurrent infections and heterologous vaccines has been observed during malaria infection, but the mechanisms underlying this immune hyporesponsiveness are controversial. Results Here, we demonstrate that the blood stages of malaria infection induce a failure of DC function in vitro and in vivo, causing suboptimal activation of T cells involved in heterologous immune responses. This effect on T-cell activation can be transferred to uninfected recipients by DCs isolated from infected mice. Significantly, T cells activated by these DCs subsequently lack effector function, as demonstrated by a failure to migrate to lymphoid-organ follicles, resulting in an absence of B-cell responses to heterologous antigens. Fractionation studies show that hemozoin, rather than infected erythrocyte (red blood cell membranes, reproduces the effect of intact infected red blood cells on DCs. Furthermore, hemozoin-containing DCs could be identified in T-cell areas of the spleen in vivo. Conclusion Plasmodium infection inhibits the induction of adaptive immunity to heterologous antigens by modulating DC function, providing a potential explanation for epidemiological studies linking endemic malaria with secondary infections and reduced vaccine efficacy.

  8. Risk of malaria transmission through blood transfusion and its detection by serological method

    International Nuclear Information System (INIS)

    Rahman, M.; Akhtar, G.N.; Rashid, S.; Lodhi, Y.

    2003-01-01

    Objective: To assess the risk of transmission of malaria through blood transfusion, and compare efficacy of testing by immuno chromatographic (ICT) devices vis a vis peripheral blood film (PBF). Results: Amongst healthy blood donors we did not find even a single case of malaria and there was no report of persistent post transfusion pyrexia. We are unable to comment on species frequency in blood donors. However, amongst known patients of malaria we found a higher frequency of Plasmodium viax(P.v) as compared to Plasmodium falciparum(P.f). Testing by serological method, helped us to diagnose 5% of our patients who were missed by peripheral blood films. Conclusion: Between properly selected voluntary non-remunerated blood donors the incidence of malaria transmission is zero and the blood is safe for transfusion. Serological testing shows good correlation with peripheral blood film detection. In fact, it can detect the disease even when film detection has been unsuccessful. If proper donor selection criteria are observed there is little risk of transmitting malaria through transfusion. However, as the donor pool in the Service is not necessarily totally the of voluntary non-remunerated donors and substantive numbers of replacement/first time, occasionally uneducated/unaware donors, are being bled, screening for malaria will not be totally unrewarding. (author)

  9. Reduced prevalence of placental malaria in primiparae with blood group O

    NARCIS (Netherlands)

    Bedu-Addo, George; Gai, Prabhanjan P.; Meese, Stefanie; Eggelte, Teunis A.; Thangaraj, Kumarasamy; Mockenhaupt, Frank P.

    2014-01-01

    Blood group O protects African children against severe malaria and has reached high prevalence in malarious regions. However, its role in malaria in pregnancy is ambiguous. In 839 delivering Ghanaian women, associations of ABO blood groups with Plasmodium falciparum infection were examined.

  10. Acquired Antibody Responses against Plasmodium vivax Infection Vary with Host Genotype for Duffy Antigen Receptor for Chemokines (DARC)

    Science.gov (United States)

    Maestre, Amanda; Muskus, Carlos; Duque, Victoria; Agudelo, Olga; Liu, Pu; Takagi, Akihide; Ntumngia, Francis B.; Adams, John H.; Sim, Kim Lee; Hoffman, Stephen L.; Corradin, Giampietro; Velez, Ivan D.; Wang, Ruobing

    2010-01-01

    Background Polymorphism of the Duffy Antigen Receptor for Chemokines (DARC) is associated with susceptibility to and the severity of Plasmodium vivax malaria in humans. P. vivax uses DARC to invade erythrocytes. Individuals lacking DARC are ‘resistant’ to P. vivax erythrocytic infection. However, susceptibility to P. vivax in DARC+ individuals is reported to vary between specific DARC genotypes. We hypothesized that the natural acquisition of antibodies to P. vivax blood stages may vary with the host genotype and the level of DARC expression. Furthermore, high parasitemia has been reported to effect the acquisition of immunity against pre-erythrocytic parasites. We investigated the correlation between host DARC genotypes and the frequency and magnitude of antibodies against P. vivax erythrocytic stage antigens. Methodology/Findings We assessed the frequencies and magnitudes of antibody responses against P. vivax and P. falciparum sporozoite and erythrocytic antigens in Colombian donors from malaria-endemic regions. The frequency and level of naturally-acquired antibodies against the P. vivax erythrocytic antigens merozoite surface protein 1 (PvMSP1) and Duffy binding protein (PvDBP) varied with the host DARC genotypes. Donors with one negative allele (FY*B/FY*Bnull and FY*A/FY*Bnull) were more likely to have anti-PvMSP1 and anti-PvDBP antibodies than those with two positive alleles (FY*B/FY*B and FY*A/FY*B). The lower IgG3 and IgG1 components of the total IgG response may account for the decreased responses to P. vivax erythrocytic antigens with FY*A/FY*B and FY*B/FY*B genotypes. No such association was detected with P. falciparum erythrocytic antigens, which does not use DARC for erythrocyte invasion. Conclusion/Significance Individuals with higher DARC expression, which is associated with higher susceptibility to P. vivax infection, exhibited low frequencies and magnitudes of P. vivax blood-stage specific antibody responses. This may indicate that one of the

  11. Acquired antibody responses against Plasmodium vivax infection vary with host genotype for duffy antigen receptor for chemokines (DARC.

    Directory of Open Access Journals (Sweden)

    Amanda Maestre

    2010-07-01

    Full Text Available Polymorphism of the Duffy Antigen Receptor for Chemokines (DARC is associated with susceptibility to and the severity of Plasmodium vivax malaria in humans. P. vivax uses DARC to invade erythrocytes. Individuals lacking DARC are 'resistant' to P. vivax erythrocytic infection. However, susceptibility to P. vivax in DARC+ individuals is reported to vary between specific DARC genotypes. We hypothesized that the natural acquisition of antibodies to P. vivax blood stages may vary with the host genotype and the level of DARC expression. Furthermore, high parasitemia has been reported to effect the acquisition of immunity against pre-erythrocytic parasites. We investigated the correlation between host DARC genotypes and the frequency and magnitude of antibodies against P. vivax erythrocytic stage antigens.We assessed the frequencies and magnitudes of antibody responses against P. vivax and P. falciparum sporozoite and erythrocytic antigens in Colombian donors from malaria-endemic regions. The frequency and level of naturally-acquired antibodies against the P. vivax erythrocytic antigens merozoite surface protein 1 (PvMSP1 and Duffy binding protein (PvDBP varied with the host DARC genotypes. Donors with one negative allele (FY*B/FY*Bnull and FY*A/FY*Bnull were more likely to have anti-PvMSP1 and anti-PvDBP antibodies than those with two positive alleles (FY*B/FY*B and FY*A/FY*B. The lower IgG3 and IgG1 components of the total IgG response may account for the decreased responses to P. vivax erythrocytic antigens with FY*A/FY*B and FY*B/FY*B genotypes. No such association was detected with P. falciparum erythrocytic antigens, which does not use DARC for erythrocyte invasion.Individuals with higher DARC expression, which is associated with higher susceptibility to P. vivax infection, exhibited low frequencies and magnitudes of P. vivax blood-stage specific antibody responses. This may indicate that one of the primary mechanisms by which P. vivax evades

  12. Una prueba de captura rápida de antígenos con tiras reactivas para el diagnóstico de malaria por P. falciparum A rapid dipstick antigen capture assay for the diagnosis of falciparum malaria

    Directory of Open Access Journals (Sweden)

    1997-01-01

    Full Text Available Los avances recientes en el diagnóstico de infecciones causadas por Plasmodium falciparum han permitido considerar la posibilidad de complementar la microscopia óptica con una prueba estandarizada de captura de antígenos con tiras reactivas basada en la detección de una proteína específica del parásito, que es segregada por los estadios sanguíneos asexuados y los gametocitos inmaduros, pero no por otros estadios. Los ensayos de campo indican que esta prueba proporciona resultados replicables con un umbral de detección de parasitemia de P. falciparum similar al obtenido con microscopia habitual de alta calidad para malaria y una especificidad y sensibilidad de alrededor de 90% en comparación con la microscopia habitual con extensión de sangre en capa gruesa. La estabilidad, reproducibilidad y facilidad de uso de la prueba indican claramente sus posibilidades de aplicación en el tratamiento de la malaria, particularmente en el nivel de atención de salud periférico, siempre y cuando se pueda garantizar su precisión y su costo sea módico. También debe considerarse la posibilidad de usarla más ampliamente donde lo justifiquen los requisitos operativos y los recursos y donde las decisiones se basen en una evaluación adecuada de los sistemas de prestación de asistencia de salud existentes.Recent advances in the diagnosis of Plasmodium falciparum infections have made it possible to consider supplementing light microscopy with a standardized dipstick antigen capture assay based on the detection of a parasite-specific protein, which is secreted by the asexual blood stages and immature gametocytes but not by the other stages. Field trials indicate that this dipstick assay provides consistently reproducible results, with a threshold of detection of P. falciparum parasitaemia similar to that obtained by high quality routine malaria microscopy and a specificity and sensitivity of around 90% compared with standard thick blood film

  13. The Puf-family RNA-binding protein Puf2 controls sporozoite conversion to liver stages in the malaria parasite.

    Directory of Open Access Journals (Sweden)

    Katja Müller

    Full Text Available Malaria is a vector-borne infectious disease caused by unicellular, obligate intracellular parasites of the genus Plasmodium. During host switch the malaria parasite employs specialized latent stages that colonize the new host environment. Previous work has established that gametocytes, sexually differentiated stages that are taken up by the mosquito vector, control expression of genes required for mosquito colonization by translational repression. Sexual parasite development is controlled by a DEAD-box RNA helicase of the DDX6 family, termed DOZI. Latency of sporozoites, the transmission stage injected during an infectious blood meal, is controlled by the eIF2alpha kinase IK2, a general inhibitor of protein synthesis. Whether RNA-binding proteins participate in translational regulation in sporozoites remains to be studied. Here, we investigated the roles of two RNA-binding proteins of the Puf-family, Plasmodium Puf1 and Puf2, during sporozoite stage conversion. Our data reveal that, in the rodent malaria parasite P. berghei, Puf2 participates in the regulation of IK2 and inhibits premature sporozoite transformation. Inside mosquito salivary glands puf2⁻ sporozoites transform over time to round forms resembling early intra-hepatic stages. As a result, mutant parasites display strong defects in initiating a malaria infection. In contrast, Puf1 is dispensable in vivo throughout the entire Plasmodium life cycle. Our findings support the notion of a central role for Puf2 in parasite latency during switch between the insect and mammalian hosts.

  14. Malaria PCR Detection in Cambodian Low-Transmission Settings: Dried Blood Spots versus Venous Blood Samples

    Science.gov (United States)

    Canier, Lydie; Khim, Nimol; Kim, Saorin; Eam, Rotha; Khean, Chanra; Loch, Kaknika; Ken, Malen; Pannus, Pieter; Bosman, Philippe; Stassijns, Jorgen; Nackers, Fabienne; Alipon, SweetC; Char, Meng Chuor; Chea, Nguon; Etienne, William; De Smet, Martin; Kindermans, Jean-Marie; Ménard, Didier

    2015-01-01

    In the context of malaria elimination, novel strategies for detecting very low malaria parasite densities in asymptomatic individuals are needed. One of the major limitations of the malaria parasite detection methods is the volume of blood samples being analyzed. The objective of the study was to compare the diagnostic accuracy of a malaria polymerase chain reaction assay, from dried blood spots (DBS, 5 μL) and different volumes of venous blood (50 μL, 200 μL, and 1 mL). The limit of detection of the polymerase chain reaction assay, using calibrated Plasmodium falciparum blood dilutions, showed that venous blood samples (50 μL, 200 μL, 1 mL) combined with Qiagen extraction methods gave a similar threshold of 100 parasites/mL, ∼100-fold lower than 5 μL DBS/Instagene method. On a set of 521 field samples, collected in two different transmission areas in northern Cambodia, no significant difference in the proportion of parasite carriers, regardless of the methods used was found. The 5 μL DBS method missed 27% of the samples detected by the 1 mL venous blood method, but most of the missed parasites carriers were infected by Plasmodium vivax (84%). The remaining missed P. falciparum parasite carriers (N = 3) were only detected in high-transmission areas. PMID:25561570

  15. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif.

    Directory of Open Access Journals (Sweden)

    Nora Céspedes

    Full Text Available Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Plasmodium falciparum were identified in the P. vivax genome. The peptides identified in silico were chemically synthesized; circular dichroism studies indicated partial or high α-helical content. Antigenicity was evaluated using human sera samples from malaria-endemic areas of Colombia and Papua New Guinea. Eight of these fragments were selected and used to assess immunogenicity in BALB/c mice. ELISA assays indicated strong reactivity of serum samples from individuals residing in malaria-endemic regions and sera of immunized mice, with the α-helical coiled coil structures. In addition, ex vivo production of IFN-γ by murine mononuclear cells confirmed the immunogenicity of these structures and the presence of T-cell epitopes in the peptide sequences. Moreover, sera of mice immunized with four of the eight antigens recognized native proteins on blood-stage P. vivax parasites, and antigenic cross-reactivity with three of the peptides was observed when reacted with both the P. falciparum orthologous fragments and whole parasites. Results here point to the α-helical coiled coil peptides as possible P. vivax malaria vaccine candidates as were observed for P. falciparum. Fragments selected here warrant further study in humans and non-human primate models to assess their protective efficacy as single components or assembled as hybrid linear epitopes.

  16. White Blood Cell Counts and Malaria

    National Research Council Canada - National Science Library

    McKenzie, F. E; Prudhomme, Wendy A; Magill, Alan J; Forney, J. R; Permpanich, Barnyen; Lucas, Carmen; Gasser, Jr., Robert A; Wongsrichanalai, Chansuda

    2005-01-01

    White blood cells (WBCs) were counted in 4697 individuals who presented to outpatient malaria clinics in Maesod, Tak Province, Thailand, and Iquitos, Peru, between 28 May and 28 August 1998 and between 17 May and 9 July 1999...

  17. Synthetic TLR4 agonists enhance functional antibodies and CD4+ T-cell responses against the Plasmodium falciparum GMZ2.6C multi-stage vaccine antigen

    DEFF Research Database (Denmark)

    Baldwin, Susan L; Roeffen, Will; Singh, Susheel K

    2016-01-01

    A subunit vaccine targeting both transmission and pathogenic asexual blood stages of Plasmodium falciparum, i.e., a multi-stage vaccine, could be a powerful tool to combat malaria. Here, we report production and characterization of the recombinant protein GMZ2.6C, which contains a fragment of the......-γ and TNF in response to GMZ2.6C. Both of these agonists have good safety records in humans....... of the sexual-stage protein Pfs48/45-6C genetically fused to GMZ2, an asexual vaccine antigen in advanced clinical development. To select the most suitable vaccine formulation for downstream clinical studies, GMZ2.6C was tested with various immune modulators in different adjuvant formulations (stable emulsions......, liposomes, and alum) in C57BL/6 mice. Some, but not all, formulations containing either the synthetic TLR4 agonist GLA or SLA elicited the highest parasite-specific antibody titers, the greatest IFN-γ responses in CD4+ TH1 cells, and the highest percentage of multifunctional CD4+ T cells expressing IFN...

  18. Reduced antibody responses against Plasmodium falciparum vaccine candidate antigens in the presence of Trichuris trichiura

    DEFF Research Database (Denmark)

    Esen, Meral; Mordmüller, Benjamin; de Salazar, Pablo Martinez

    2012-01-01

    BACKGROUND: Helminth infections are highly prevalent in the tropics and may have an effect on immune responses to vaccines due to their immunomodulatory effect. The prevalence of helminth infections in young children, the target group for malaria and most other vaccines, is high. Therefore we...... assessed the influence of helminth infection on vaccine-induced immune responses in a phase I clinical trial of the malaria vaccine candidate GMZ2. METHODS: Twenty Gabonese preschool-age children were vaccinated with GMZ2, a blood stage malaria vaccine candidate. Humoral immune response against the vaccine...... antigens and parasitological status were assessed. Vaccine-specific antibody concentrations and memory B-cell numbers were compared in worm infected and non-infected participants. RESULTS: Antibody response to GMZ2 was 3.4-fold (95% confidence interval: 1.6, 7.4) higher in Trichuris trichiura negative...

  19. The reliability of blood film examination for malaria at the peripheral ...

    African Journals Online (AJOL)

    Background: Malaria is a common and serious problem in Ethiopia. Blood film examination is the best tool for diagnosing malaria where feasible. Objective: To assess the reliability of blood film examination at the primary health care level. Method: Two specimens were taken from all suspected patients in five health center ...

  20. Sickle cell protection from malaria.

    Science.gov (United States)

    Eridani, Sandro

    2011-10-19

    A linkage between presence of Sickle Haemoglobin (HbS) and protection from malaria infection and clinical manifestations in certain areas was suspected from early observations and progressively elucidated by more recent studies. Research has confirmed the abovementioned connection, but also clarified how such protection may be abolished by coexistence of sickle cell trait (HbS trait) and alpha thalassemia, which may explain the relatively low incidence of HbS trait in the Mediterranean. The mechanisms of such protective effect are now being investigated: factors of genetic, molecular and immunological nature are prominent. As for genetic factors attention is given to the role of the red blood cell (RBC) membrane complement regulatory proteins as polymorphisms of these components seem to be associated with resistance to severe malaria; genetic ligands like the Duffy group blood antigen, necessary for erythrocytic invasion, and human protein CD36, a major receptor for P. falciparum-infected RBC's, are also under scrutiny: attention is focused also on plasmodium erythrocyte-binding antigens, which bind to RBC surface components. Genome-wide linkage and association studies are now carried out too, in order to identify genes associated with malaria resistance. Only a minor role is attributed to intravascular sickling, phagocytosis and haemolysis, while specific molecular mechanisms are the object of intensive research: among these a decisive role is played by a biochemical sequence, involving activation of haeme oxygenase (HMO-1), whose effect appears mediated by carbon monoxide (CO). A central role in protection from malaria is also played by immunological factors, which may stimulate antibody production to plasmodium antigens in the early years of life; the role of agents like pathogenic CD8 T-cells has been suggested while the effects of molecular actions on the immunity mechanism are presently investigated. It thus appears that protection from malaria can be

  1. Enhancing blockade of Plasmodium falciparum erythrocyte invasion: assessing combinations of antibodies against PfRH5 and other merozoite antigens.

    Directory of Open Access Journals (Sweden)

    Andrew R Williams

    Full Text Available No vaccine has yet proven effective against the blood-stages of Plasmodium falciparum, which cause the symptoms and severe manifestations of malaria. We recently found that PfRH5, a P. falciparum-specific protein expressed in merozoites, is efficiently targeted by broadly-neutralizing, vaccine-induced antibodies. Here we show that antibodies against PfRH5 efficiently inhibit the in vitro growth of short-term-adapted parasite isolates from Cambodia, and that the EC(50 values of antigen-specific antibodies against PfRH5 are lower than those against PfAMA1. Since antibody responses elicited by multiple antigens are speculated to improve the efficacy of blood-stage vaccines, we conducted detailed assessments of parasite growth inhibition by antibodies against PfRH5 in combination with antibodies against seven other merozoite antigens. We found that antibodies against PfRH5 act synergistically with antibodies against certain other merozoite antigens, most notably with antibodies against other erythrocyte-binding antigens such as PfRH4, to inhibit the growth of a homologous P. falciparum clone. A combination of antibodies against PfRH4 and basigin, the erythrocyte receptor for PfRH5, also potently inhibited parasite growth. This methodology provides the first quantitative evidence that polyclonal vaccine-induced antibodies can act synergistically against P. falciparum antigens and should help to guide the rational development of future multi-antigen vaccines.

  2. Translational repression of the cpw-wpc gene family in the malaria parasite Plasmodium

    KAUST Repository

    Rao, Pavitra N.

    2016-06-14

    The technical challenges of working with the sexual stages of the malaria parasite Plasmodium have hindered the characterization of sexual stage antigens in the quest for a successful malaria transmission-blocking vaccine. One such predicted and largely uncharacterized group of sexual stage candidate antigens is the CPW-WPC family of proteins. CPW-WPC proteins are named for a characteristic domain that contains two conserved motifs, CPxxW and WPC. Conserved across Apicomplexa, this family is also present earlier in the Alveolata in the free-living, non-parasitophorous, photosynthetic chromerids, Chromera and Vitrella. In P. falciparum and P. berghei blood stage parasites the transcripts of all nine cpw-wpc genes have been detected in gametocytes. RNA immunoprecipitation followed by reverse transcriptase-PCR reveals all P. berghei cpw-wpc transcripts to be bound by the translational repressors DOZI and CITH, and thus are likely under translational control prior to transmission from the rodent host to the mosquito vector in P. berghei. The GFP tagging of two endogenous P. berghei genes confirmed translational silencing in the gametocyte and translation in ookinetes. Establishing a luciferase transgene assay we show that the 3′ untranslated region of PF3D7_1331400 controls protein expression of this reporter in P. falciparum gametocytes. Our analyses suggest that cpw-wpc genes are translationally silenced in gametocytes across Plasmodium spp. and activated during ookinete formation and thus may have a role in transmission to the mosquito.

  3. Translational repression of the cpw-wpc gene family in the malaria parasite Plasmodium

    KAUST Repository

    Rao, Pavitra N.; Santos, Jorge M.; Pain, Arnab; Templeton, Thomas J.; Mair, Gunnar R.

    2016-01-01

    The technical challenges of working with the sexual stages of the malaria parasite Plasmodium have hindered the characterization of sexual stage antigens in the quest for a successful malaria transmission-blocking vaccine. One such predicted and largely uncharacterized group of sexual stage candidate antigens is the CPW-WPC family of proteins. CPW-WPC proteins are named for a characteristic domain that contains two conserved motifs, CPxxW and WPC. Conserved across Apicomplexa, this family is also present earlier in the Alveolata in the free-living, non-parasitophorous, photosynthetic chromerids, Chromera and Vitrella. In P. falciparum and P. berghei blood stage parasites the transcripts of all nine cpw-wpc genes have been detected in gametocytes. RNA immunoprecipitation followed by reverse transcriptase-PCR reveals all P. berghei cpw-wpc transcripts to be bound by the translational repressors DOZI and CITH, and thus are likely under translational control prior to transmission from the rodent host to the mosquito vector in P. berghei. The GFP tagging of two endogenous P. berghei genes confirmed translational silencing in the gametocyte and translation in ookinetes. Establishing a luciferase transgene assay we show that the 3′ untranslated region of PF3D7_1331400 controls protein expression of this reporter in P. falciparum gametocytes. Our analyses suggest that cpw-wpc genes are translationally silenced in gametocytes across Plasmodium spp. and activated during ookinete formation and thus may have a role in transmission to the mosquito.

  4. Does Magnetic Field Affect Malaria Parasite Replication in Human Red Blood Cells?

    Science.gov (United States)

    Chanturiya, Alexandr N.; Glushakova, Svetlana; Yin, Dan; Zimmerberg, Joshua

    2004-01-01

    Digestion of red blood cell (RBC) hemoglobin by the malaria parasite results in the formation of paramagnetic hemazoin crystals inside the parasite body. A number of reports suggest that magnetic field interaction with hamazoin crystals significantly reduces the number of infected cells in culture, and thus magnetic field can be used to combat malaria. We studies the effects of magnetic filed on the Plasmodium falciparum asexual life cycle inside RBCs under various experimental conditions. No effect was found during prolonged exposure of infected RBCs to constant magnetic fields up to 6000 Gauss. Infected RBCs were also exposed, under temperature-controlled conditions, to oscillating magnetic fields with frequencies in the range of 500-20000 kHz, and field strength 30-600 Gauss. This exposure often changed the proportion of different parasite stages in treated culture compared to controls. However, no significant effect on parasitemia was observed in treated cultures. This result indicates that the magnetic field effect on Plasmodium falciparum is negligible, or that hypothetical negative and positive effects on different stages within one 48-hour compensate each other.

  5. The Heme Biosynthesis Pathway Is Essential for Plasmodium falciparum Development in Mosquito Stage but Not in Blood Stages*

    Science.gov (United States)

    Ke, Hangjun; Sigala, Paul A.; Miura, Kazutoyo; Morrisey, Joanne M.; Mather, Michael W.; Crowley, Jan R.; Henderson, Jeffrey P.; Goldberg, Daniel E.; Long, Carole A.; Vaidya, Akhil B.

    2014-01-01

    Heme is an essential cofactor for aerobic organisms. Its redox chemistry is central to a variety of biological functions mediated by hemoproteins. In blood stages, malaria parasites consume most of the hemoglobin inside the infected erythrocytes, forming nontoxic hemozoin crystals from large quantities of heme released during digestion. At the same time, the parasites possess a heme de novo biosynthetic pathway. This pathway in the human malaria parasite Plasmodium falciparum has been considered essential and is proposed as a potential drug target. However, we successfully disrupted the first and last genes of the pathway, individually and in combination. These knock-out parasite lines, lacking 5-aminolevulinic acid synthase and/or ferrochelatase (FC), grew normally in blood-stage culture and exhibited no changes in sensitivity to heme-related antimalarial drugs. We developed a sensitive LC-MS/MS assay to monitor stable isotope incorporation into heme from its precursor 5-[13C4]aminolevulinic acid, and this assay confirmed that de novo heme synthesis was ablated in FC knock-out parasites. Disrupting the FC gene also caused no defects in gametocyte generation or maturation but resulted in a greater than 70% reduction in male gamete formation and completely prevented oocyst formation in female Anopheles stephensi mosquitoes. Our data demonstrate that the heme biosynthesis pathway is not essential for asexual blood-stage growth of P. falciparum parasites but is required for mosquito transmission. Drug inhibition of pathway activity is therefore unlikely to provide successful antimalarial therapy. These data also suggest the existence of a parasite mechanism for scavenging host heme to meet metabolic needs. PMID:25352601

  6. PD-1 Dependent Exhaustion of CD8+ T Cells Drives Chronic Malaria

    Directory of Open Access Journals (Sweden)

    Joshua M. Horne-Debets

    2013-12-01

    Full Text Available Malaria is a highly prevalent disease caused by infection by Plasmodium spp., which infect hepatocytes and erythrocytes. Blood-stage infections cause devastating symptoms and can persist for years. Antibodies and CD4+ T cells are thought to protect against blood-stage infections. However, there has been considerable difficulty in developing an efficacious malaria vaccine, highlighting our incomplete understanding of immunity against this disease. Here, we used an experimental rodent malaria model to show that PD-1 mediates up to a 95% reduction in numbers and functional capacity of parasite-specific CD8+ T cells. Furthermore, in contrast to widely held views, parasite-specific CD8+ T cells are required to control both acute and chronic blood-stage disease even when parasite-specific antibodies and CD4+ T cells are present. Our findings provide a molecular explanation for chronic malaria that will be relevant to future malaria-vaccine design and may need consideration when vaccine development for other infections is problematic.

  7. History of the discovery of the malaria parasites and their vectors

    Directory of Open Access Journals (Sweden)

    Cox Francis EG

    2010-02-01

    Full Text Available Abstract Malaria is caused by infection with protozoan parasites belonging to the genus Plasmodium transmitted by female Anopheles species mosquitoes. Our understanding of the malaria parasites begins in 1880 with the discovery of the parasites in the blood of malaria patients by Alphonse Laveran. The sexual stages in the blood were discovered by William MacCallum in birds infected with a related haematozoan, Haemoproteus columbae, in 1897 and the whole of the transmission cycle in culicine mosquitoes and birds infected with Plasmodium relictum was elucidated by Ronald Ross in 1897. In 1898 the Italian malariologists, Giovanni Battista Grassi, Amico Bignami, Giuseppe Bastianelli, Angelo Celli, Camillo Golgi and Ettore Marchiafava demonstrated conclusively that human malaria was also transmitted by mosquitoes, in this case anophelines. The discovery that malaria parasites developed in the liver before entering the blood stream was made by Henry Shortt and Cyril Garnham in 1948 and the final stage in the life cycle, the presence of dormant stages in the liver, was conclusively demonstrated in 1982 by Wojciech Krotoski. This article traces the main events and stresses the importance of comparative studies in that, apart from the initial discovery of parasites in the blood, every subsequent discovery has been based on studies on non-human malaria parasites and related organisms.

  8. Malaria parasite-synthesized heme is essential in the mosquito and liver stages and complements host heme in the blood stages of infection.

    Directory of Open Access Journals (Sweden)

    Viswanathan Arun Nagaraj

    Full Text Available Heme metabolism is central to malaria parasite biology. The parasite acquires heme from host hemoglobin in the intraerythrocytic stages and stores it as hemozoin to prevent free heme toxicity. The parasite can also synthesize heme de novo, and all the enzymes in the pathway are characterized. To study the role of the dual heme sources in malaria parasite growth and development, we knocked out the first enzyme, δ-aminolevulinate synthase (ALAS, and the last enzyme, ferrochelatase (FC, in the heme-biosynthetic pathway of Plasmodium berghei (Pb. The wild-type and knockout (KO parasites had similar intraerythrocytic growth patterns in mice. We carried out in vitro radiolabeling of heme in Pb-infected mouse reticulocytes and Plasmodium falciparum-infected human RBCs using [4-(14C] aminolevulinic acid (ALA. We found that the parasites incorporated both host hemoglobin-heme and parasite-synthesized heme into hemozoin and mitochondrial cytochromes. The similar fates of the two heme sources suggest that they may serve as backup mechanisms to provide heme in the intraerythrocytic stages. Nevertheless, the de novo pathway is absolutely essential for parasite development in the mosquito and liver stages. PbKO parasites formed drastically reduced oocysts and did not form sporozoites in the salivary glands. Oocyst production in PbALASKO parasites recovered when mosquitoes received an ALA supplement. PbALASKO sporozoites could infect mice only when the mice received an ALA supplement. Our results indicate the potential for new therapeutic interventions targeting the heme-biosynthetic pathway in the parasite during the mosquito and liver stages.

  9. Whole blood angiopoietin-1 and -2 levels discriminate cerebral and severe (non-cerebral malaria from uncomplicated malaria

    Directory of Open Access Journals (Sweden)

    Tangpukdee Noppadon

    2009-12-01

    Full Text Available Abstract Background Severe and cerebral malaria are associated with endothelial activation. Angiopoietin-1 (ANG-1 and angiopoietin-2 (ANG-2 are major regulators of endothelial activation and integrity. The aim of this study was to investigate the clinical utility of whole blood angiopoietin (ANG levels as biomarkers of disease severity in Plasmodium falciparum malaria. Methods The utility of whole blood ANG levels was examined in Thai patients to distinguish cerebral (CM; n = 87 and severe (non-cerebral malaria (SM; n = 36 from uncomplicated malaria (UM; n = 70. Comparative statistics are reported using a non-parametric univariate analysis (Kruskal-Wallis test or Chi-squared test, as appropriate. Multivariate binary logistic regression was used to examine differences in whole blood protein levels between groups (UM, SM, CM, adjusting for differences due to ethnicity, age, parasitaemia and sex. Receiver operating characteristic curve analysis was used to assess the diagnostic accuracy of the ANGs in their ability to distinguish between UM, SM and CM. Cumulative organ injury scores were obtained for patients with severe disease based on the presence of acute renal failure, jaundice, severe anaemia, circulatory collapse or coma. Results ANG-1 and ANG-2 were readily detectable in whole blood. Compared to UM there were significant decreases in ANG-1 (p Conclusions These results suggest that whole blood ANG-1/2 levels are promising clinically informative biomarkers of disease severity in malarial syndromes.

  10. Expression of variant surface antigens by Plasmodium falciparum parasites in the peripheral blood of clinically immune pregnant women indicates ongoing placental infection

    DEFF Research Database (Denmark)

    Ofori, Michael F; Staalsoe, Trine; Bam, Victoria

    2003-01-01

    Placenta-sequestered Plasmodium falciparum parasites that cause pregnancy-associated malaria (PAM) in otherwise clinically immune women express distinct variant surface antigens (VSA(PAM)) not expressed by parasites in nonpregnant individuals. We report here that parasites from the peripheral blood...... of clinically immune pregnant women also express VSA(PAM), making them a convenient source of VSA(PAM) expressors for PAM vaccine research....

  11. Asymptomatic malaria and associated factors among blood donors ...

    African Journals Online (AJOL)

    Dr.Mirambo

    use of malaria rapid diagnostic test (MRDT). Results: A total of 150 blood donors participated in this study. The median age of ... transfusion, the World Health Organization (WHO) recommends the blood collected for transfusion to be screened for presence of Hepatitis B Virus (HBV), Hepatitis C Virus (HBV), Syphilis.

  12. Naturally acquired immune responses to malaria vaccine candidate antigens MSP3 and GLURP in Guahibo and Piaroa indigenous communities of the Venezuelan Amazon

    DEFF Research Database (Denmark)

    Baumann, Andreas; Magris, Magda M; Urbaez, Marie-Luz

    2012-01-01

    ABSTRACT: BACKGROUND: Malaria transmission in most of Latin America can be considered as controlled. In such a scenario, parameters of baseline immunity to malaria antigens are of specific interest with respect to future malaria eradication efforts. METHODS: A cross-sectional study was carried ou...

  13. Plasmodium falciparum associated with severe childhood malaria preferentially expresses PfEMP1 encoded by group A var genes

    DEFF Research Database (Denmark)

    Jensen, Anja T R; Magistrado, Pamela; Sharp, Sarah

    2004-01-01

    Parasite-encoded variant surface antigens (VSAs) like the var gene-encoded Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family are responsible for antigenic variation and infected red blood cell (RBC) cytoadhesion in P. falciparum malaria. Parasites causing severe malaria in noni...... genes, such as PFD1235w/MAL7P1.1, appear to be involved in the pathogenesis of severe disease and are thus attractive candidates for a vaccine against life-threatening P. falciparum malaria....

  14. Prevalence of malaria parasitaemia among blood donors in Owerri ...

    African Journals Online (AJOL)

    A study of the prevalence of malaria parasitaemia among blood donors in the Federal Medical Centre, Owerri, Imo State, was carried out between December, 2003 and April, 2004. A total of 500 blood samples were collected from blood donors consisting of 262 commercial donors and 238 relation-donors, using ...

  15. Generation of genetically attenuated blood-stage malaria parasites; characterizing growth and virulence in a rodent model of malaria

    NARCIS (Netherlands)

    Lin, Jingwen

    2013-01-01

    Despite intense efforts over the past 50 years to develop a vaccine, there is currently no licensed malaria vaccine available. The limited success in inducing sufficient protection against malaria with subunit-vaccines has renewed an interest in whole-parasite vaccination strategies. While

  16. Age-dependent association between IgG2 and IgG3 subclasses to Pf332-C231 antigen and protection from malaria, and induction of protective antibodies by sub-patent malaria infections, in Daraweesh

    DEFF Research Database (Denmark)

    Giha, Hayder A; Nasr, Amre; Iriemenam, Nnaemeka C

    2010-01-01

    The certainty of the protective role of acquired immunity in malaria is the major drive for malaria vaccine development. In this study, we measured the levels of total IgG and IgG subclasses to four candidate malaria vaccine antigens; MSP2-3D7, MSP2-FC27, AMA-1 and Pf332-C231, in plasma obtained ...

  17. Schistosomiasis coinfection in children influences acquired immune response against Plasmodium falciparum malaria antigens.

    Directory of Open Access Journals (Sweden)

    Tamsir O Diallo

    Full Text Available BACKGROUND: Malaria and schistosomiasis coinfection frequently occurs in tropical countries. This study evaluates the influence of Schistosoma haematobium infection on specific antibody responses and cytokine production to recombinant merozoite surface protein-1-19 (MSP1-(19 and schizont extract of Plasmodium falciparum in malaria-infected children. METHODOLOGY: Specific IgG1 to MSP1-(19, as well as IgG1 and IgG3 to schizont extract were significantly increased in coinfected children compared to P. falciparum mono-infected children. Stimulation with MSP1-(19 lead to a specific production of both interleukin-10 (IL-10 and interferon-γ (IFN-γ, whereas the stimulation with schizont extract produced an IL-10 response only in the coinfected group. CONCLUSIONS: Our study suggests that schistosomiasis coinfection favours anti-malarial protective antibody responses, which could be associated with the regulation of IL-10 and IFN-γ production and seems to be antigen-dependent. This study demonstrates the importance of infectious status of the population in the evaluation of acquired immunity against malaria and highlights the consequences of a multiple infection environment during clinical trials of anti-malaria vaccine candidates.

  18. Distribution of ABO and Rh-Hr blood group antigens, alleles and ...

    African Journals Online (AJOL)

    ABO and Rh-Hr blood group antigens represent a genetically stably determined trait with many-sided biological and clinical significance. The indigenous Ajarian population (105 subjects) was investigated for ABO Rh-Hr red cell blood group antigens. Using immunoserologic methods, seven blood group antigens (A, B, C, c, ...

  19. Sickle cell protection from malaria: a review

    Directory of Open Access Journals (Sweden)

    Sandro Eridani

    2011-11-01

    Full Text Available A linkage between presence of Sickle Haemoglobin (HbS and protection from malaria infection and clinical manifestations in certain areas was suspected from early observations and progressively elucidated by more recent studies. Research has confirmed the abovementioned connection, but also clarified how such protection may be abolished by coexistence of sickle cell trait (HbS trait and alpha thalassemia, which may explain the relatively low incidence of HbS trait in the Mediterranean. The mechanisms of such protective effect are now being investigated: factors of genetic, molecular and immunological nature are prominent. As for genetic factors attention is given to the role of the red blood cell (RBC membrane complement regulatory proteins as polymorphisms of these components seem to be associated with resistance to severe malaria; genetic ligands like the Duffy group blood antigen, necessary for erythrocytic invasion, and human protein CD36, a major receptor for P. falciparum-infected RBC‘s, are also under scrutiny: attention is focused also on plasmodium erythrocyte-binding antigens, which bind to RBC surface components. Genome-wide linkage and association studies are now carried out too, in order to identify genes associated with malaria resistance. Only a minor role is attributed to intravascular sickling, phagocytosis and haemolysis, while specific molecular mechanisms are the object of intensive research: among these a decisive role is played by a biochemical sequence, involving activation of haeme oxygenase (HMO-1, whose effect appears mediated by carbon monoxide (CO. A central role in protection from malaria is also played by immunological factors, which may stimulate antibody production to plasmodium antigens in the early years of life; the role of agents like pathogenic CD8 T-cells has been suggested while the effects of molecular actions on the immunity mechanism are presently investigated. It thus appears that protection from

  20. Synthetic TLR4 agonists enhance functional antibodies and CD4+ T-cell responses against the Plasmodium falciparum GMZ2.6C multi-stage vaccine antigen

    NARCIS (Netherlands)

    Baldwin, S.L.; Roeffen, W.; Singh, S.K; Tiendrebeogo, R.W.; Christiansen, M.; Beebe, E.; Carter, D.; Fox, C.B.; Howard, R.F.; Reed, S.G.; Sauerwein, R.; Theisen, M.

    2016-01-01

    A subunit vaccine targeting both transmission and pathogenic asexual blood stages of Plasmodium falciparum, i.e., a multi-stage vaccine, could be a powerful tool to combat malaria. Here, we report production and characterization of the recombinant protein GMZ2.6C, which contains a fragment of the

  1. New insight-guided approaches to detect, cure, prevent and eliminate malaria.

    Science.gov (United States)

    Kumar, Sushil; Kumari, Renu; Pandey, Richa

    2015-05-01

    New challenges posed by the development of resistance against artemisinin-based combination therapies (ACTs) as well as previous first-line therapies, and the continuing absence of vaccine, have given impetus to research in all areas of malaria control. This review portrays the ongoing progress in several directions of malaria research. The variants of RTS,S and apical membrane antigen 1 (AMA1) are being developed and test adapted as multicomponent and multistage malaria control vaccines, while many other vaccine candidates and methodologies to produce antigens are under experimentation. To track and prevent the spread of artemisinin resistance from Southeast Asia to other parts of the world, rolling circle-enhanced enzyme activity detection (REEAD), a time- and cost-effective malaria diagnosis in field conditions, and a DNA marker associated with artemisinin resistance have become available. Novel mosquito repellents and mosquito trapping and killing techniques much more effective than the prevalent ones are undergoing field testing. Mosquito lines stably infected with their symbiotic wild-type or genetically engineered bacteria that kill sympatric malaria parasites are being constructed and field tested for stopping malaria transmission. A complementary approach being pursued is the addition of ivermectin-like drug molecules to ACTs to cure malaria and kill mosquitoes. Experiments are in progress to eradicate malaria mosquito by making it genetically male sterile. High-throughput screening procedures are being developed and used to discover molecules that possess long in vivo half life and are active against liver and blood stages for the fast cure of malaria symptoms caused by simple or relapsing and drug-sensitive and drug-resistant types of varied malaria parasites, can stop gametocytogenesis and sporogony and could be given in one dose. Target-based antimalarial drug designing has begun. Some of the putative next-generation antimalarials that possess in their

  2. Comparison of Rapid Malaria Test and Laboratory Microscopy ...

    African Journals Online (AJOL)

    Michael Horsfall

    ABSTRACT: Blood samples collected from 272 volunteers in two communities of Bayelsa State in the Niger. Delta area were investigated for falciparum malaria parasite using the rapid test based on the detection of soluble antigen and laboratory microscopy test. The data showed that out of the 272 samples collected, ...

  3. Plasmodium falciparum malaria in children at a tertiary teaching ...

    African Journals Online (AJOL)

    raoul

    2011-09-06

    Sep 6, 2011 ... Background: ABO blood group antigens are formed by terminal glycosylation of glycoproteins and glycolipid chains present on cell surfaces. Glycosylation modulates all kinds of cell-to-cell interactions and this may be relevant in malaria pathophysiology, in which adhesion has been increasingly implicated ...

  4. Human genetic polymorphisms in the Knops blood group are not associated with a protective advantage against Plasmodium falciparum malaria in Southern Ghana.

    Science.gov (United States)

    Hansson, Helle H; Kurtzhals, Jørgen A; Goka, Bamenla Q; Rodriques, Onike P; Nkrumah, Francis N; Theander, Thor G; Bygbjerg, Ib Christian; Alifrangis, Michael

    2013-11-07

    The complex interactions between the human host and the Plasmodium falciparum parasite and the factors influencing severity of disease are still not fully understood. Human single nucleotide polymorphisms SNPs associated with Knops blood group system; carried by complement receptor 1 may be associated with the pathology of P. falciparum malaria, and susceptibility to disease. The objective of this study was to determine the genotype and haplotype frequencies of the SNPs defining the Knops blood group antigens; Kna/b, McCoya/b, Swain-Langley1/2 and KCAM+/- in Ghanaian patients with malaria and determine possible associations between these polymorphisms and the severity of the disease. Study participants were patients (n = 267) admitted to the emergency room at the Department of Child Health, Korle-Bu Teaching Hospital, Accra, Ghana during the malaria season from June to August in 1995, 1996 and 1997, classified as uncomplicated malaria (n = 89), severe anaemia (n = 57) and cerebral malaria (n = 121) and controls who did not have a detectable Plasmodium infection or were symptomless carriers of the parasite (n = 275). The frequencies were determined using a post-PCR ligation detection reaction-fluorescent microsphere assay, developed to detect the SNPs defining the antigens. Chi-square/Fisher's exact test and logistic regression models were used to analyse the data. As expected, high frequencies of the alleles Kna, McCb, Sl2 and KCAM- were found in the Ghanaian population. Apart from small significant differences between the groups at the Sl locus, no significant allelic or genotypic differences were found between the controls and the disease groups or between the disease groups. The polymorphisms define eight different haplotypes H1(2.4%), H2(9.4%), H3(59.8%), H4(0%), H5(25.2%), H6(0.33%), H7(2.8%) and H8(0%). Investigating these haplotypes, no significant differences between any of the groups were found. The results confirm earlier findings of high frequencies of

  5. Prevalence of Rh, Duffy, Kell, Kidd & MNSs blood group antigens in the Indian blood donor population.

    Science.gov (United States)

    Makroo, R N; Bhatia, Aakanksha; Gupta, Richa; Phillip, Jessy

    2013-03-01

    Little data are available regarding the frequencies of the blood group antigens other than ABO and RhD in the Indian population. Knowledge of the antigen frequencies is important to assess risk of antibody formation and to guide the probability of finding antigen-negative donor blood, which is especially useful when blood is required for a patient who has multiple red cell alloantibodies. This study was carried out to determine the frequencies of the D, C, c, E, e, K, k, Fy(a), Fy(b), Jk(a), Jk(b), M, N, S and s antigens in over 3,000 blood donors. Samples from randomly selected blood donors from Delhi and nearby areas (both voluntary and replacement) were collected for extended antigen typing during the period January 2009 to January 2010. Antigens were typed via automated testing on the Galileo instrument using commercial antisera. A total of 3073 blood samples from donors were phenotyped. The prevalence of these antigens was found to be as follows in %: D: 93.6, C: 87, c: 58, E: 20, e: 98, K: 3.5, k: 99.97, F(a) : 87.4, Fy(b) : 57.6, Jk(a) : 81.5, Jk(b) : 67.4, M: 88.7, N: 65.4, S: 54.8 and s: 88.7. This study found the prevalence of the typed antigens among Indian blood donors to be statistically different to those in the Caucasian, Black and Chinese populations, but more similar to Caucasians than to the other racial groups.

  6. Potential Impact of Seasonal Malaria Chemoprevention on the Acquisition of Antibodies Against Glutamate-Rich Protein and Apical Membrane Antigen 1 in Children Living in Southern Senegal

    DEFF Research Database (Denmark)

    Ndiaye, Magatte; Sylla, Khadime; Sow, Doudou

    2015-01-01

    Seasonal malaria chemoprevention (SMC) is defined as the intermittent administration of full treatment courses of an antimalarial drug to children during the peak of malaria transmission season with the aim of preventing malaria-associated mortality and morbidity. SMC using sulfadoxine-pyrimetham......Seasonal malaria chemoprevention (SMC) is defined as the intermittent administration of full treatment courses of an antimalarial drug to children during the peak of malaria transmission season with the aim of preventing malaria-associated mortality and morbidity. SMC using sulfadoxine......-pyrimethamine (SP) combined with amodiaquine (AQ) is a promising strategy to control malaria morbidity in areas of highly seasonal malaria transmission. However, a concern is whether SMC can delay the natural acquisition of immunity toward malaria parasites in areas with intense SMC delivery. To investigate this......, total IgG antibody (Ab) responses to Plasmodium falciparum antigens glutamate-rich protein R0 (GLURP-R0) and apical membrane antigen 1 (AMA-1) were measured by enzyme-linked immunosorbent assay in Senegalese children under the age of 10 years in 2010 living in Saraya and Velingara districts (with SMC...

  7. Red blood cell antigen genotype analysis for 9087 Asian, Asian American, and Native American blood donors.

    Science.gov (United States)

    Delaney, Meghan; Harris, Samantha; Haile, Askale; Johnsen, Jill; Teramura, Gayle; Nelson, Karen

    2015-10-01

    There has yet to be a comprehensive analysis of blood group antigen prevalence in Asian Americans and Native Americans. There may be ethnic differences in blood group frequencies that would result in clinically important mismatches through transfusion. Blood donors who self-identified as Asian or Native American were tested using a single-nucleotide polymorphism (SNP) DNA array (HEA BeadChip kit, Bioarray Solutions Ltd) that predicts expression of 38 human erythrocyte antigens (HEAs) and by serology for ABO, D, C, M, N, Jk(a) , and Jk(b) . The prevalence of blood group antigens was compared to published European prevalence. Discrepancies between SNP-predicted and serology-detected antigens were tallied. A total of 9087 blood donors were tested from nine Asian and Native American heritages. The predicted prevalence of selected antigens in the RHCE, JK, FY, MNS, LU, CO, and DO blood group systems were variable between Asian populations, but overall not significantly different than Europeans. Compared to European frequencies, Kell blood group allele frequencies were significantly different in the Chinese, Native American, Hawaiian/Pacific Islander, South Asian, and Southeast Asian heritage blood donors; Diego antigens Di(a) and Di(b) were different in donors of Native American and South Asian ancestries (p Asian and Native Americans donors. Several ethnic groups exhibited differences in HEA frequencies compared to Europeans. Genotype-serotype discrepancies were detected in all systems studied. © 2015 AABB.

  8. Mechanics of extracellular vesicles derived from malaria parasiteinfected Red Blood Cells

    NARCIS (Netherlands)

    Sorkin, Raya; Vorselen, Daan; Ofir-Birin, Yifat; Roos, Wouter H.; MacKintosh, Fred C.; Regev-Rudzki, Neta; Wuite, Gijs J. L.

    2016-01-01

    Malaria is a life-threatening disease caused by parasites that are transmitted through the bites of infected mosquitoes, with Plasmodium falciparum (Pf) causing the most severe form of malaria (1). Very recently it was discovered that Pf infected red blood cells (iRBC) directly transfer information

  9. A novel genetic technique in Plasmodium berghei allows liver stage analysis of genes required for mosquito stage development and demonstrates that de novo heme synthesis is essential for liver stage development in the malaria parasite.

    Directory of Open Access Journals (Sweden)

    Upeksha L Rathnapala

    2017-06-01

    Full Text Available The combination of drug resistance, lack of an effective vaccine, and ongoing conflict and poverty means that malaria remains a major global health crisis. Understanding metabolic pathways at all parasite life stages is important in prioritising and targeting novel anti-parasitic compounds. The unusual heme synthesis pathway of the rodent malaria parasite, Plasmodium berghei, requires eight enzymes distributed across the mitochondrion, apicoplast and cytoplasm. Deletion of the ferrochelatase (FC gene, the final enzyme in the pathway, confirms that heme synthesis is not essential in the red blood cell stages of the life cycle but is required to complete oocyst development in mosquitoes. The lethality of FC deletions in the mosquito stage makes it difficult to study the impact of these mutations in the subsequent liver stage. To overcome this, we combined locus-specific fluorophore expression with a genetic complementation approach to generate viable, heterozygous oocysts able to produce a mix of FC expressing and FC deficient sporozoites. These sporozoites show normal motility and can invade liver cells, where FC deficient parasites can be distinguished by fluorescence and phenotyped. Parasites lacking FC exhibit a severe growth defect within liver cells, with development failure detectable in the early to mid stages of liver development in vitro. FC deficient parasites could not complete liver stage development in vitro nor infect naïve mice, confirming liver stage arrest. These results validate the heme pathway as a potential target for prophylactic drugs targeting liver stage parasites. In addition, we demonstrate that our simple genetic approach can extend the phenotyping window beyond the insect stages, opening considerable scope for straightforward reverse genetic analysis of genes that are dispensable in blood stages but essential for completing mosquito development.

  10. A novel genetic technique in Plasmodium berghei allows liver stage analysis of genes required for mosquito stage development and demonstrates that de novo heme synthesis is essential for liver stage development in the malaria parasite.

    Science.gov (United States)

    Rathnapala, Upeksha L; Goodman, Christopher D; McFadden, Geoffrey I

    2017-06-01

    The combination of drug resistance, lack of an effective vaccine, and ongoing conflict and poverty means that malaria remains a major global health crisis. Understanding metabolic pathways at all parasite life stages is important in prioritising and targeting novel anti-parasitic compounds. The unusual heme synthesis pathway of the rodent malaria parasite, Plasmodium berghei, requires eight enzymes distributed across the mitochondrion, apicoplast and cytoplasm. Deletion of the ferrochelatase (FC) gene, the final enzyme in the pathway, confirms that heme synthesis is not essential in the red blood cell stages of the life cycle but is required to complete oocyst development in mosquitoes. The lethality of FC deletions in the mosquito stage makes it difficult to study the impact of these mutations in the subsequent liver stage. To overcome this, we combined locus-specific fluorophore expression with a genetic complementation approach to generate viable, heterozygous oocysts able to produce a mix of FC expressing and FC deficient sporozoites. These sporozoites show normal motility and can invade liver cells, where FC deficient parasites can be distinguished by fluorescence and phenotyped. Parasites lacking FC exhibit a severe growth defect within liver cells, with development failure detectable in the early to mid stages of liver development in vitro. FC deficient parasites could not complete liver stage development in vitro nor infect naïve mice, confirming liver stage arrest. These results validate the heme pathway as a potential target for prophylactic drugs targeting liver stage parasites. In addition, we demonstrate that our simple genetic approach can extend the phenotyping window beyond the insect stages, opening considerable scope for straightforward reverse genetic analysis of genes that are dispensable in blood stages but essential for completing mosquito development.

  11. Insights on Heme Synthesis in the Malaria Parasite.

    Science.gov (United States)

    Nagaraj, Viswanathan A; Padmanaban, Govindarajan

    2017-08-01

    The malaria parasite has a functional heme-biosynthetic pathway, although it can access host hemoglobin-heme. The heme pathway is dispensable for blood stages, but essential in the mosquito stages which do not acquire hemoglobin-heme. We propose that the blood stage parasites maintain a dynamic heme pool through multiple back-up mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Subcompartmentalisation of proteins in the rhoptries correlates with ordered events of erythrocyte invasion by the blood stage malaria parasite.

    Directory of Open Access Journals (Sweden)

    Elizabeth S Zuccala

    Full Text Available Host cell infection by apicomplexan parasites plays an essential role in lifecycle progression for these obligate intracellular pathogens. For most species, including the etiological agents of malaria and toxoplasmosis, infection requires active host-cell invasion dependent on formation of a tight junction - the organising interface between parasite and host cell during entry. Formation of this structure is not, however, shared across all Apicomplexa or indeed all parasite lifecycle stages. Here, using an in silico integrative genomic search and endogenous gene-tagging strategy, we sought to characterise proteins that function specifically during junction-dependent invasion, a class of proteins we term invasins to distinguish them from adhesins that function in species specific host-cell recognition. High-definition imaging of tagged Plasmodium falciparum invasins localised proteins to multiple cellular compartments of the blood stage merozoite. This includes several that localise to distinct subcompartments within the rhoptries. While originating from the same organelle, however, each has very different dynamics during invasion. Apical Sushi Protein and Rhoptry Neck protein 2 release early, following the junction, whilst a novel rhoptry protein PFF0645c releases only after invasion is complete. This supports the idea that organisation of proteins within a secretory organelle determines the order and destination of protein secretion and provides a localisation-based classification strategy for predicting invasin function during apicomplexan parasite invasion.

  13. A preliminary study of placental umbilical cord whole blood transfusion in under resourced patients with malaria in the background of anaemia.

    Science.gov (United States)

    Bhattacharya, Niranjan

    2006-03-23

    Malaria is an annual killer of over one million people globally and its essential co-morbidity is anaemia. Cord blood, because of its rich mix of foetal and adult haemoglobin, high platelet and WBC counts, hypo-antigenic nature, altered metabolic profile and high affinity for oxygen as well as its anti-malarial effect, is an ideal choice in malaria with anaemia, necessitating blood transfusion. This paper presents an alternative protocol for fresh whole blood/packed cell transfusion from the hospital's biological waste resources, i.e., the placenta, after the birth of a healthy baby from a healthy mother. This collected blood was routinely transfused to patients admitted in our hospital with severe anaemia in the background of confirmed malaria. 94 units of placental umbilical cord whole blood were collected after lower uterine caesarean section (LUCS) from consenting mothers (from 1st April 1999 to April 2005), and safely transfused to 39 informed, consenting patients (age varying from 8 to 72 years). The collected volume of cord blood from each placenta (Unit) varied from 52 ml to 143 ml, with a mean packed cell volume of 48.9 +/- 4.1 SD and a mean haemoglobin concentration of 16.4 Gm percent +/- 1.6 Gm percent SD. The blood was immediately transfused after following the standard adult blood transfusion protocol of screening and cross-matching between the donor and the recipient. On occasion, the collected cord blood was preserved in the refrigerator, if no volunteer was readily available, and transfused within 72 hours of collection. Cord blood transfusion was tested on twenty two patients infected with Plasmodium falciparum and 17 patients with Plasmodium vivax. For inclusion in this study, the patient's plasma haemoglobin had to be 8 gm percent or less (the pre-transfusion haemoglobin in the malaria-infected patients in this series varied from 5.4 gm/dl to 7.9 gm/dl). The rise of haemoglobin within 72 hours of two units of freshly collected cord blood

  14. A preliminary study of placental umbilical cord whole blood transfusion in under resourced patients with malaria in the background of anaemia

    Directory of Open Access Journals (Sweden)

    Bhattacharya Niranjan

    2006-03-01

    Full Text Available Abstract Background Malaria is an annual killer of over one million people globally and its essential co-morbidity is anaemia. Cord blood, because of its rich mix of foetal and adult haemoglobin, high platelet and WBC counts, hypo-antigenic nature, altered metabolic profile and high affinity for oxygen as well as its anti-malarial effect, is an ideal choice in malaria with anaemia, necessitating blood transfusion. Methods This paper presents an alternative protocol for fresh whole blood/packed cell transfusion from the hospital's biological waste resources, i.e., the placenta, after the birth of a healthy baby from a healthy mother. This collected blood was routinely transfused to patients admitted in our hospital with severe anaemia in the background of confirmed malaria. 94 units of placental umbilical cord whole blood were collected after lower uterine caesarean section (LUCS from consenting mothers (from 1st April 1999 to April 2005, and safely transfused to 39 informed, consenting patients (age varying from 8 to 72 years. The collected volume of cord blood from each placenta (Unit varied from 52 ml to 143 ml, with a mean packed cell volume of 48.9 ± 4.1 SD and a mean haemoglobin concentration of 16.4 Gm percent ± 1.6 Gm percent SD. The blood was immediately transfused after following the standard adult blood transfusion protocol of screening and cross-matching between the donor and the recipient. On occasion, the collected cord blood was preserved in the refrigerator, if no volunteer was readily available, and transfused within 72 hours of collection. Results Cord blood transfusion was tested on twenty two patients infected with Plasmodium falciparum and 17 patients with Plasmodium vivax. For inclusion in this study, the patient's plasma haemoglobin had to be 8 gm percent or less (the pre-transfusion haemoglobin in the malaria-infected patients in this series varied from 5.4 gm/dl to 7.9 gm/dl. The rise of haemoglobin within 72 hours of

  15. PREVALENCE OF LYMPHATIC FILARIASIS, MALARIA AND SOIL TRANSMITTED HELMINTHIASIS IN A COMMUNITY OF BARDIYA DISTRICT, WESTERN NEPAL.

    Science.gov (United States)

    Ranjitkar, Samir; Alifrangis, Michael; Adhikari, Madhav; Olsen, Annette; Simonsen, Paul E; Meyrowitsch, Dan Wolf

    2014-11-01

    Lymphatic filariasis (LF), malaria and soil transmitted helminthiasis (STH) cause major health problems in Nepal, but in spite of this very few stud- ies have been carried out on these parasitic infections in Nepal. A cross sectional survey of all three categories of parasitic infections was carried out in Deuda- kala Village of Bardiya District, western Nepal. A total of 510 individuals aged 5 years and above were examined from finger prick blood for circulating filarial antigen (CFA), malaria antigen using a rapid diagnostic test (RDT), and malaria DNA using a PCR-based assay. In addition, 317 individuals were examined for soil-transmitted helminth (STH) eggs by the Kato-Katz technique. Prevalence of LF, malaria (antigen) and STH infection was 25.1%, 0.6% and 18.3%, respectively. PCR analysis did not detect any additional malaria cases. The prevalence of LF and STH infections differ significantly among different age groups and ethnic communities. The high prevalence of LF in the community studied indicates an immediate need for implementing a mass drug administration program for its control in this particular geographical area of Nepal.

  16. Controlled Human Malaria Infection: Applications, Advances, and Challenges.

    Science.gov (United States)

    Stanisic, Danielle I; McCarthy, James S; Good, Michael F

    2018-01-01

    Controlled human malaria infection (CHMI) entails deliberate infection with malaria parasites either by mosquito bite or by direct injection of sporozoites or parasitized erythrocytes. When required, the resulting blood-stage infection is curtailed by the administration of antimalarial drugs. Inducing a malaria infection via inoculation with infected blood was first used as a treatment (malariotherapy) for neurosyphilis in Europe and the United States in the early 1900s. More recently, CHMI has been applied to the fields of malaria vaccine and drug development, where it is used to evaluate products in well-controlled early-phase proof-of-concept clinical studies, thus facilitating progression of only the most promising candidates for further evaluation in areas where malaria is endemic. Controlled infections have also been used to immunize against malaria infection. Historically, CHMI studies have been restricted by the need for access to insectaries housing infected mosquitoes or suitable malaria-infected individuals. Evaluation of vaccine and drug candidates has been constrained in these studies by the availability of a limited number of Plasmodium falciparum isolates. Recent advances have included cryopreservation of sporozoites, the manufacture of well-characterized and genetically distinct cultured malaria cell banks for blood-stage infection, and the availability of Plasmodium vivax -specific reagents. These advances will help to accelerate malaria vaccine and drug development by making the reagents for CHMI more widely accessible and also enabling a more rigorous evaluation with multiple parasite strains and species. Here we discuss the different applications of CHMI, recent advances in the use of CHMI, and ongoing challenges for consideration. Copyright © 2017 American Society for Microbiology.

  17. A novel ENU-mutation in ankyrin-1 disrupts malaria parasite maturation in red blood cells of mice.

    Directory of Open Access Journals (Sweden)

    Andreas Greth

    Full Text Available The blood stage of the plasmodium parasite life cycle is responsible for the clinical symptoms of malaria. Epidemiological studies have identified coincidental malarial endemicity and multiple red blood cell (RBC disorders. Many RBC disorders result from mutations in genes encoding cytoskeletal proteins and these are associated with increased protection against malarial infections. However the mechanisms underpinning these genetic, host responses remain obscure. We have performed an N-ethyl-N-nitrosourea (ENU mutagenesis screen and have identified a novel dominant (haploinsufficient mutation in the Ank-1 gene (Ank1(MRI23420 of mice displaying hereditary spherocytosis (HS. Female mice, heterozygous for the Ank-1 mutation showed increased survival to infection by Plasmodium chabaudi adami DS with a concomitant 30% decrease in parasitemia compared to wild-type, isogenic mice (wt. A comparative in vivo red cell invasion and parasite growth assay showed a RBC-autonomous effect characterised by decreased proportion of infected heterozygous RBCs. Within approximately 6-8 hours post-invasion, TUNEL staining of intraerythrocytic parasites, showed a significant increase in dead parasites in heterozygotes. This was especially notable at the ring and trophozoite stages in the blood of infected heterozygous mutant mice compared to wt (p<0.05. We conclude that increased malaria resistance due to ankyrin-1 deficiency is caused by the intraerythrocytic death of P. chabaudi parasites.

  18. Effect of seasonal malaria chemoprevention on the acquisition of antibodies to Plasmodium falciparum antigens in Ouelessebougou, Mali.

    Science.gov (United States)

    Mahamar, Almahamoudou; Issiaka, Djibrilla; Barry, Amadou; Attaher, Oumar; Dembele, Adama B; Traore, Tiangoua; Sissoko, Adama; Keita, Sekouba; Diarra, Bacary Soumana; Narum, David L; Duffy, Patrick E; Dicko, Alassane; Fried, Michal

    2017-07-18

    Seasonal malaria chemoprevention (SMC) is a new strategy to reduce malaria burden in young children in Sahelian countries. It consists of the administration of full treatment courses of sulfadoxine-pyrimethamine plus amodiaquine to children at monthly intervals during the malaria season. However, it is not clear if there is a cumulative effect of SMC over time on acquisition of antibodies to malaria antigens. A cross-sectional serosurvey was carried out 1 month after the last dose of SMC in 2016. Children aged 3-4 years were randomly selected from areas where SMC was given for 1, 2 or 3 years during the malaria season. Children in the areas where SMC had been implemented for 1 year but who failed to receive SMC were used as comparison group. Antibody extracted from dry blood spots was used to measure IgG levels to CSP, MSP-1 42 and AMA1. The prevalence of antibodies to AMA-1 were high and similar in children who received SMC for 1, 2 or 3 years and also when compared to those who never received SMC (96.3 vs 97.5%, adjusted OR = 0.99, 95% CI 0.33-2.97, p = 0.99). The prevalence of antibodies to MSP-1 42 and to CSP were similar in children that received SMC for 1, 2 or 3 years, but were lower in these children compared to those who did not receive SMC (87.1 vs 91.2%, adjusted OR = 0.55, 95% CI 0.29-1.01, p = 0.05 for MSP-1 42 ; 79.8 vs 89.2%, adjusted OR = 0.52, 95% CI 0.30-0.90, p = 0.019 for CSP). SMC reduced seropositivity to MSP-1 42 and CSP, but the duration of SMC did not further reduce seropositivity. Exposure to SMC did not reduce the seropositivity to AMA1.

  19. Cellular responses to modified Plasmodium falciparum MSP119 antigens in individuals previously exposed to natural malaria infection

    Directory of Open Access Journals (Sweden)

    Awobode Henrietta O

    2009-11-01

    Full Text Available Abstract Background MSP1 processing-inhibitory antibodies bind to epitopes on the 19 kDa C-terminal region of the Plasmodium falciparum merozoite surface protein 1 (MSP119, inhibiting erythrocyte invasion. Blocking antibodies also bind to this antigen but prevent inhibitory antibodies binding, allowing invasion to proceed. Recombinant MSP119 had been modified previously to allow inhibitory but not blocking antibodies to continue to bind. Immunization with these modified proteins, therefore, has the potential to induce more effective protective antibodies. However, it was unclear whether the modification of MSP119 would affect critical T-cell responses to epitopes in this antigen. Methods The cellular responses to wild-type MSP119 and a panel of modified MSP119 antigens were measured using an in-vitro assay for two groups of individuals: the first were malaria-naïve and the second had been naturally exposed to Plasmodium falciparum infection. The cellular responses to the modified proteins were examined using cells from malaria-exposed infants and adults. Results Interestingly, stimulation indices (SI for responses induced by some of the modified proteins were at least two-fold higher than those elicited by the wild-type MSP119. A protein with four amino acid substitutions (Glu27→Tyr, Leu31→Arg, Tyr34→Ser and Glu43→Leu had the highest stimulation index (SI up to 360 and induced large responses in 64% of the samples that had significant cellular responses to the modified proteins. Conclusion This study suggests that specific MSP119 variants that have been engineered to improve their antigenicity for inhibitory antibodies, retain T-cell epitopes and the ability to induce cellular responses. These proteins are candidates for the development of MSP1-based malaria vaccines.

  20. Acute Malaria Induces PD1+CTLA4+ Effector T Cells with Cell-Extrinsic Suppressor Function.

    Directory of Open Access Journals (Sweden)

    Maria Sophia Mackroth

    2016-11-01

    Full Text Available In acute Plasmodium falciparum (P. falciparum malaria, the pro- and anti-inflammatory immune pathways must be delicately balanced so that the parasitemia is controlled without inducing immunopathology. An important mechanism to fine-tune T cell responses in the periphery is the induction of coinhibitory receptors such as CTLA4 and PD1. However, their role in acute infections such as P. falciparum malaria remains poorly understood. To test whether coinhibitory receptors modulate CD4+ T cell functions in malaria, blood samples were obtained from patients with acute P. falciparum malaria treated in Germany. Flow cytometric analysis showed a more frequent expression of CTLA4 and PD1 on CD4+ T cells of malaria patients than of healthy control subjects. In vitro stimulation with P. falciparum-infected red blood cells revealed a distinct population of PD1+CTLA4+CD4+ T cells that simultaneously produced IFNγ and IL10. This antigen-specific cytokine production was enhanced by blocking PD1/PDL1 and CTLA4. PD1+CTLA4+CD4+ T cells were further isolated based on surface expression of PD1 and their inhibitory function investigated in-vitro. Isolated PD1+CTLA4+CD4+ T cells suppressed the proliferation of the total CD4+ population in response to anti-CD3/28 and plasmodial antigens in a cell-extrinsic manner. The response to other specific antigens was not suppressed. Thus, acute P. falciparum malaria induces P. falciparum-specific PD1+CTLA4+CD4+ Teffector cells that coproduce IFNγ and IL10, and inhibit other CD4+ T cells. Transient induction of regulatory Teffector cells may be an important mechanism that controls T cell responses and might prevent severe inflammation in patients with malaria and potentially other acute infections.

  1. The effect of daily co-trimoxazole prophylaxis on natural development of antibody-mediated immunity against P. falciparum malaria infection in HIV-exposed uninfected Malawian children.

    Science.gov (United States)

    Longwe, Herbert; Jambo, Kondwani C; Phiri, Kamija S; Mbeye, Nyanyiwe; Gondwe, Thandile; Hall, Tom; Tetteh, Kevin K A; Drakeley, Chris; Mandala, Wilson L

    2015-01-01

    Co-trimoxazole prophylaxis, currently recommended in HIV-exposed, uninfected (HEU) children as protection against opportunistic infections, also has some anti-malarial efficacy. We determined whether daily co-trimoxazole prophylaxis affects the natural development of antibody-mediated immunity to blood-stage Plasmodium falciparum malaria infection. Using an enzyme-linked immunosorbent assay, we measured antibodies to 8 Plasmodium falciparum antigens (AMA-1, MSP-119, MSP-3, PfSE, EBA-175RII, GLURP R0, GLURP R2 and CSP) in serum samples from 33 HEU children and 31 HIV-unexposed, uninfected (HUU) children, collected at 6, 12 and 18 months of age. Compared to HIV-uninfected children, HEU children had significantly lower levels of specific IgG against AMA-1 at 6 months (p = 0.001), MSP-119 at 12 months (p = 0.041) and PfSE at 6 months (p = 0.038), 12 months (p = 0.0012) and 18 months (p = 0.0097). No differences in the IgG antibody responses against the rest of the antigens were observed between the two groups at all time points. The breadth of specificity of IgG response was reduced in HEU children compared to HUU children during the follow up period. Co-trimoxazole prophylaxis seems to reduce IgG antibody responses to P. falciparum blood stage antigens, which could be as a result of a reduction in exposure of those children under this regime. Although antibody responses were regarded as markers of exposure in this study, further studies are required to establish whether these responses are correlated in any way to clinical immunity to malaria.

  2. ABO blood group phenotypes influence parity specific immunity to Plasmodium falciparum malaria in Malawian women

    NARCIS (Netherlands)

    Senga, Edward; Loscertales, Maria-Paz; Makwakwa, K. E. B.; Liomba, George N.; Dzamalala, Charles; Kazembe, Peter N.; Brabin, Bernard J.

    2007-01-01

    BACKGROUND: Blood group O has been significantly associated with increased placental malaria infection in primiparae and reduced risk of infection in multiparae in the Gambia, an area with markedly seasonal malaria transmission. This study analyses the association between ABO blood group phenotypes

  3. Humanized HLA-DR4.RagKO.IL2RγcKO.NOD (DRAG) mice sustain the complex vertebrate life cycle of Plasmodium falciparum malaria.

    Science.gov (United States)

    Wijayalath, Wathsala; Majji, Sai; Villasante, Eileen F; Brumeanu, Teodor D; Richie, Thomas L; Casares, Sofia

    2014-09-30

    Malaria is a deadly infectious disease affecting millions of people in tropical and sub-tropical countries. Among the five species of Plasmodium parasites that infect humans, Plasmodium falciparum accounts for the highest morbidity and mortality associated with malaria. Since humans are the only natural hosts for P. falciparum, the lack of convenient animal models has hindered the understanding of disease pathogenesis and prompted the need of testing anti-malarial drugs and vaccines directly in human trials. Humanized mice hosting human cells represent new pre-clinical models for infectious diseases that affect only humans. In this study, the ability of human-immune-system humanized HLA-DR4.RagKO.IL2RγcKO.NOD (DRAG) mice to sustain infection with P. falciparum was explored. Four week-old DRAG mice were infused with HLA-matched human haematopoietic stem cells (HSC) and examined for reconstitution of human liver cells and erythrocytes. Upon challenge with infectious P. falciparum sporozoites (NF54 strain) humanized DRAG mice were examined for liver stage infection, blood stage infection, and transmission to Anopheles stephensi mosquitoes. Humanized DRAG mice reconstituted human hepatocytes, Kupffer cells, liver endothelial cells, and erythrocytes. Upon intravenous challenge with P. falciparum sporozoites, DRAG mice sustained liver to blood stage infection (average 3-5 parasites/microlitre blood) and allowed transmission to An. stephensi mosquitoes. Infected DRAG mice elicited antibody and cellular responses to the blood stage parasites and self-cured the infection by day 45 post-challenge. DRAG mice represent the first human-immune-system humanized mouse model that sustains the complex vertebrate life cycle of P. falciparum without the need of exogenous injection of human hepatocytes/erythrocytes or P. falciparum parasite adaptation. The ability of DRAG mice to elicit specific human immune responses to P. falciparum parasites may help deciphering immune correlates

  4. Prognostic value of determination of carcinoembryonic antigen and α-fetoprotein level in blood plasma in patients with cancer stomach

    International Nuclear Information System (INIS)

    Smyslova, V.N.; Vygonnyj, I.I.

    1986-01-01

    60 donors and 129 patients with cancer stomach were examined. Tumor antigens were determined in blood plasma by the method of radioimmunoassay. The upper boundary of the norm of alpha-fetoprotein (AFP) and carcino-embryonic antigen (CEA) is 12 ng/ml. Increased concentration of antigens studied is detected in most patients. It is established that the level of antigens increases depending on generalization of the process, cancer stage, tumor propagation in the stomach wall, patient's age. High volumes of AFP and CEA after operation give evidence about non-radicality of operation and bad prognosis

  5. Lysine acetylation in sexual stage malaria parasites is a target for antimalarial small molecules.

    Science.gov (United States)

    Trenholme, Katharine; Marek, Linda; Duffy, Sandra; Pradel, Gabriele; Fisher, Gillian; Hansen, Finn K; Skinner-Adams, Tina S; Butterworth, Alice; Ngwa, Che Julius; Moecking, Jonas; Goodman, Christopher D; McFadden, Geoffrey I; Sumanadasa, Subathdrage D M; Fairlie, David P; Avery, Vicky M; Kurz, Thomas; Andrews, Katherine T

    2014-07-01

    Therapies to prevent transmission of malaria parasites to the mosquito vector are a vital part of the global malaria elimination agenda. Primaquine is currently the only drug with such activity; however, its use is limited by side effects. The development of transmission-blocking strategies requires an understanding of sexual stage malaria parasite (gametocyte) biology and the identification of new drug leads. Lysine acetylation is an important posttranslational modification involved in regulating eukaryotic gene expression and other essential processes. Interfering with this process with histone deacetylase (HDAC) inhibitors is a validated strategy for cancer and other diseases, including asexual stage malaria parasites. Here we confirm the expression of at least one HDAC protein in Plasmodium falciparum gametocytes and show that histone and nonhistone protein acetylation occurs in this life cycle stage. The activity of the canonical HDAC inhibitors trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA; Vorinostat) and a panel of novel HDAC inhibitors on early/late-stage gametocytes and on gamete formation was examined. Several compounds displayed early/late-stage gametocytocidal activity, with TSA being the most potent (50% inhibitory concentration, 70 to 90 nM). In contrast, no inhibitory activity was observed in P. falciparum gametocyte exflagellation experiments. Gametocytocidal HDAC inhibitors caused hyperacetylation of gametocyte histones, consistent with a mode of action targeting HDAC activity. Our data identify HDAC inhibitors as being among a limited number of compounds that target both asexual and sexual stage malaria parasites, making them a potential new starting point for gametocytocidal drug leads and valuable tools for dissecting gametocyte biology. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Immunogenicity of a virosomally-formulated Plasmodium falciparum GLURP-MSP3 chimeric protein-based malaria vaccine candidate in comparison to adjuvanted formulations

    Directory of Open Access Journals (Sweden)

    Tamborrini Marco

    2011-12-01

    Full Text Available Abstract Background In clinical trials, immunopotentiating reconstituted influenza virosomes (IRIVs have shown great potential as a versatile antigen delivery platform for synthetic peptides derived from Plasmodium falciparum antigens. This study describes the immunogenicity of a virosomally-formulated recombinant fusion protein comprising domains of the two malaria vaccine candidate antigens MSP3 and GLURP. Methods The highly purified recombinant protein GMZ2 was coupled to phosphatidylethanolamine and the conjugates incorporated into the membrane of IRIVs. The immunogenicity of this adjuvant-free virosomal formulation was compared to GMZ2 formulated with the adjuvants Montanide ISA 720 and Alum in three mouse strains with different genetic backgrounds. Results Intramuscular injections of all three candidate vaccine formulations induced GMZ2-specific antibody responses in all mice tested. In general, the humoral immune response in outbred NMRI mice was stronger than that in inbred BALB/c and C57BL/6 mice. ELISA with the recombinant antigens demonstrated immunodominance of the GLURP component over the MSP3 component. However, compared to the Al(OH3-adjuvanted formulation the two other formulations elicited in NMRI mice a larger proportion of anti-MSP3 antibodies. Analyses of the induced GMZ2-specific IgG subclass profiles showed for all three formulations a predominance of the IgG1 isotype. Immune sera against all three formulations exhibited cross-reactivity with in vitro cultivated blood-stage parasites. Immunofluorescence and immunoblot competition experiments showed that both components of the hybrid protein induced IgG cross-reactive with the corresponding native proteins. Conclusion A virosomal formulation of the chimeric protein GMZ2 induced P. falciparum blood stage parasite cross-reactive IgG responses specific for both MSP3 and GLURP. GMZ2 thus represents a candidate component suitable for inclusion into a multi-valent virosomal

  7. Vital and dispensable roles of Plasmodium multidrug resistance transporters during blood- and mosquito-stage development.

    Science.gov (United States)

    Rijpma, Sanna R; van der Velden, Maarten; Annoura, Takeshi; Matz, Joachim M; Kenthirapalan, Sanketha; Kooij, Taco W A; Matuschewski, Kai; van Gemert, Geert-Jan; van de Vegte-Bolmer, Marga; Siebelink-Stoter, Rianne; Graumans, Wouter; Ramesar, Jai; Klop, Onny; Russel, Frans G M; Sauerwein, Robert W; Janse, Chris J; Franke-Fayard, Blandine M; Koenderink, Jan B

    2016-07-01

    Multidrug resistance (MDR) proteins belong to the B subfamily of the ATP Binding Cassette (ABC) transporters, which export a wide range of compounds including pharmaceuticals. In this study, we used reverse genetics to study the role of all seven Plasmodium MDR proteins during the life cycle of malaria parasites. Four P. berghei genes (encoding MDR1, 4, 6 and 7) were refractory to deletion, indicating a vital role during blood stage multiplication and validating them as potential targets for antimalarial drugs. Mutants lacking expression of MDR2, MDR3 and MDR5 were generated in both P. berghei and P. falciparum, indicating a dispensable role for blood stage development. Whereas P. berghei mutants lacking MDR3 and MDR5 had a reduced blood stage multiplication in vivo, blood stage growth of P. falciparum mutants in vitro was not significantly different. Oocyst maturation and sporozoite formation in Plasmodium mutants lacking MDR2 or MDR5 was reduced. Sporozoites of these P. berghei mutants were capable of infecting mice and life cycle completion, indicating the absence of vital roles during liver stage development. Our results demonstrate vital and dispensable roles of MDR proteins during blood stages and an important function in sporogony for MDR2 and MDR5 in both Plasmodium species. © 2016 John Wiley & Sons Ltd.

  8. Anemia Offers Stronger Protection Than Sickle Cell Trait Against the Erythrocytic Stage of Falciparum Malaria and This Protection Is Reversed by Iron Supplementation.

    Science.gov (United States)

    Goheen, M M; Wegmüller, R; Bah, A; Darboe, B; Danso, E; Affara, M; Gardner, D; Patel, J C; Prentice, A M; Cerami, C

    2016-12-01

    Iron deficiency causes long-term adverse consequences for children and is the most common nutritional deficiency worldwide. Observational studies suggest that iron deficiency anemia protects against Plasmodium falciparum malaria and several intervention trials have indicated that iron supplementation increases malaria risk through unknown mechanism(s). This poses a major challenge for health policy. We investigated how anemia inhibits blood stage malaria infection and how iron supplementation abrogates this protection. This observational cohort study occurred in a malaria-endemic region where sickle-cell trait is also common. We studied fresh RBCs from anemic children (135 children; age 6-24months; hemoglobin Anemia substantially reduced the invasion and growth of both laboratory and field strains of P. falciparum in vitro (~10% growth reduction per standard deviation shift in hemoglobin). The population level impact against erythrocytic stage malaria was 15.9% from anemia compared to 3.5% for sickle-cell trait. Parasite growth was 2.4 fold higher after 49days of iron supplementation relative to baseline (panemia protects African children against falciparum malaria, an effect that is substantially greater than the protection offered by sickle-cell trait. Iron supplementation completely reversed the observed protection and hence should be accompanied by malaria prophylaxis. Lower hemoglobin levels typically seen in populations of African descent may reflect past genetic selection by malaria. National Institute of Child Health and Development, Bill and Melinda Gates Foundation, UK Medical Research Council (MRC) and Department for International Development (DFID) under the MRC/DFID Concordat. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  9. Circulation of HIV antigen in blood according to stage of infection, risk group, age and geographic origin

    NARCIS (Netherlands)

    Goudsmit, J.; Paul, D. A.

    1987-01-01

    Human immunodeficiency virus antigen (HIV-ag) was determined by enzyme immunoassay (EIA) in HIV-antibody (anti-HIV) positive as well as pre-anti-HIV seroconversion sera and the results analysed according to stage of infection, risk group, age and geographic origin. Eleven (19%) of 58 homosexual men

  10. Pattern of distribution of blood group antigens on human epidermal cells during maturation

    DEFF Research Database (Denmark)

    Dabelsteen, Erik; Buschard, Karsten; Hakomori, Sen-Itiroh

    1984-01-01

    The distribution in human epidermis of A, B, and H blood group antigens and of a precursor carbohydrate chain, N-acetyl-lactosamine, was examined using immunofluorescence staining techniques. The material included tissue from 10 blood group A, 4 blood group B, and 9 blood group O persons. Murine...... on the lower spinous cells whereas H antigen was seen predominantly on upper spinous cells or on the granular cells. Epithelia from blood group A or B persons demonstrated A or B antigens, respectively, but only if the tissue sections were trypsinized before staining. In such cases A or B antigens were found...... monoclonal antibodies were used to identify H antigen (type 2 chain) and N-acetyl-lactosamine. Human antisera were used to identify A and B antigens. In all groups N-acetyl-lactosamine and H antigen were found on the cell membranes of the spinous cell layer. N-acetyl-lactosamine was present mainly...

  11. Probing the cytoadherence of malaria infected red blood cells under flow.

    Directory of Open Access Journals (Sweden)

    Xiaofeng Xu

    Full Text Available Malaria is one of the most widespread and deadly human parasitic diseases caused by the Plasmodium (P. species with the P. falciparum being the most deadly. The parasites are capable of invading red blood cells (RBCs during infection. At the late stage of parasites' development, the parasites export proteins to the infected RBCs (iRBC membrane and bind to receptors of surface proteins on the endothelial cells that line microvasculature walls. Resulting adhesion of iRBCs to microvasculature is one of the main sources of most complications during malaria infection. Therefore, it is important to develop a versatile and simple experimental method to quantitatively investigate iRBCs cytoadhesion and binding kinetics. Here, we developed an advanced flow based adhesion assay to demonstrate that iRBC's adhesion to endothelial CD36 receptor protein coated channels is a bistable process possessing a hysteresis loop. This finding confirms a recently developed model of cell adhesion which we used to fit our experimental data. We measured the contact area of iRBC under shear flow at different stages of infection using Total Internal Reflection Fluorescence (TIRF, and also adhesion receptor and ligand binding kinetics using Atomic Force Microscopy (AFM. With these parameters, we reproduced in our model the experimentally observed changes in adhesion properties of iRBCs accompanying parasite maturation and investigated the main mechanisms responsible for these changes, which are the contact area during the shear flow as well as the rupture area size.

  12. Molecular definition of multiple sites of antibody inhibition of malaria transmission-blocking vaccine antigen Pfs25.

    Science.gov (United States)

    Scally, Stephen W; McLeod, Brandon; Bosch, Alexandre; Miura, Kazutoyo; Liang, Qi; Carroll, Sean; Reponen, Sini; Nguyen, Ngan; Giladi, Eldar; Rämisch, Sebastian; Yusibov, Vidadi; Bradley, Allan; Lemiale, Franck; Schief, William R; Emerling, Daniel; Kellam, Paul; King, C Richter; Julien, Jean-Philippe

    2017-11-16

    The Plasmodium falciparum Pfs25 protein (Pfs25) is a leading malaria transmission-blocking vaccine antigen. Pfs25 vaccination is intended to elicit antibodies that inhibit parasite development when ingested by Anopheles mosquitoes during blood meals. The Pfs25 three-dimensional structure has remained elusive, hampering a molecular understanding of its function and limiting immunogen design. We report six crystal structures of Pfs25 in complex with antibodies elicited by immunization via Pfs25 virus-like particles in human immunoglobulin loci transgenic mice. Our structural findings reveal the fine specificities associated with two distinct immunogenic sites on Pfs25. Importantly, one of these sites broadly overlaps with the epitope of the well-known 4B7 mouse antibody, which can be targeted simultaneously by antibodies that target a non-overlapping site to additively increase parasite inhibition. Our molecular characterization of inhibitory antibodies informs on the natural disposition of Pfs25 on the surface of ookinetes and provides the structural blueprints to design next-generation immunogens.

  13. Antibodies to variable Plasmodium falciparum-infected erythrocyte surface antigens are associated with protection from novel malaria infections

    DEFF Research Database (Denmark)

    Giha, H A; Staalsoe, T; Dodoo, D

    2000-01-01

    is maintained at low densities. Here, we test the hypothesis that the presence or absence of antibodies against variant antigens on the surface of P. falciparum-infected erythrocytes protect individuals against some infectious challenges and render them susceptible to others. Plasma collected in Daraweesh...... susceptible and protected individuals. Together, the results indicate that pre-existing anti-PfEMP1 antibodies can reduce the risk of contracting clinical malaria when challenged by novel parasite clones expressing homologous, but not heterologous variable surface antigens. The results also confirm...

  14. Extended safety, immunogenicity and efficacy of a blood-stage malaria vaccine in malian children: 24-month follow-up of a randomized, double-blinded phase 2 trial.

    Directory of Open Access Journals (Sweden)

    Matthew B Laurens

    Full Text Available The FMP2.1/AS02A candidate malaria vaccine was tested in a Phase 2 study in Mali. Based on results from the first eight months of follow-up, the vaccine appeared well-tolerated and immunogenic. It had no significant efficacy based on the primary endpoint, clinical malaria, but marginal efficacy against clinical malaria in secondary analyses, and high allele-specific efficacy. Extended follow-up was conducted to evaluate extended safety, immunogenicity and efficacy.A randomized, double-blinded trial of safety, immunogenicity and efficacy of the candidate Plasmodium falciparum apical membrane antigen 1 (AMA1 vaccine FMP2.1/AS02A was conducted in Bandiagara, Mali. Children aged 1-6 years were randomized in a 1∶1 ratio to receive FMP2.1/AS02A or control rabies vaccine on days 0, 30 and 60. Using active and passive surveillance, clinical malaria and adverse events as well as antibodies against P. falciparum AMA1 were monitored for 24 months after the first vaccination, spanning two malaria seasons.400 children were enrolled. Serious adverse events occurred in nine participants in the FMP2.1/AS02A group and three in the control group; none was considered related to study vaccination. After two years, anti-AMA1 immune responses remained significantly higher in the FMP2.1/AS02A group than in the control group. For the entire 24-month follow-up period, vaccine efficacy was 7.6% (p = 0.51 against first clinical malaria episodes and 9.9% (p = 0.19 against all malaria episodes. For the final 16-month follow-up period, vaccine efficacy was 0.9% (p = 0.98 against all malaria episodes. Allele-specific efficacy seen in the first malaria season did not extend into the second season of follow-up.Allele-specific vaccine efficacy was not sustained in the second malaria season, despite continued high levels of anti-AMA1 antibodies. This study presents an opportunity to evaluate correlates of partial protection against clinical malaria that waned during

  15. Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery.

    Science.gov (United States)

    Davoodi-Semiromi, Abdoreza; Schreiber, Melissa; Nalapalli, Samson; Verma, Dheeraj; Singh, Nameirakpam D; Banks, Robert K; Chakrabarti, Debopam; Daniell, Henry

    2010-02-01

    Cholera and malaria are major diseases causing high mortality. The only licensed cholera vaccine is expensive; immunity is lost in children within 3 years and adults are not fully protected. No vaccine is yet available for malaria. Therefore, in this study, the cholera toxin-B subunit (CTB) of Vibrio cholerae fused to malarial vaccine antigens apical membrane antigen-1 (AMA1) and merozoite surface protein-1 (MSP1) was expressed in lettuce and tobacco chloroplasts. Southern blot analysis confirmed homoplasmy and stable integration of transgenes. CTB-AMA1 and CTB-MSP1 fusion proteins accumulated up to 13.17% and 10.11% (total soluble protein, TSP) in tobacco and up to 7.3% and 6.1% (TSP) in lettuce, respectively. Nine groups of mice (n = 10/group) were immunized subcutaneously (SQV) or orally (ORV) with purified antigens or transplastomic tobacco leaves. Significant levels of antigen-specific antibody titres of immunized mice completely inhibited proliferation of the malarial parasite and cross-reacted with the native parasite proteins in immunoblots and immunofluorescence studies. Protection against cholera toxin challenge in both ORV (100%) and SQV (89%) mice correlated with CTB-specific titres of intestinal, serum IgA and IgG1 in ORV and only IgG1 in SQV mice, but no other immunoglobulin. Increasing numbers of interleukin-10(+) T cell but not Foxp3(+) regulatory T cells, suppression of interferon-gamma and absence of interleukin-17 were observed in protected mice, suggesting that immunity is conferred via the Tr1/Th2 immune response. Dual immunity against two major infectious diseases provided by chloroplast-derived vaccine antigens for long-term (>300 days, 50% of mouse life span) offers a realistic platform for low cost vaccines and insight into mucosal and systemic immunity.

  16. N-cinnamoylated chloroquine analogues as dual-stage antimalarial leads.

    Science.gov (United States)

    Pérez, Bianca C; Teixeira, Cátia; Albuquerque, Inês S; Gut, Jiri; Rosenthal, Philip J; Gomes, José R B; Prudêncio, Miguel; Gomes, Paula

    2013-01-24

    The control of malaria is challenged by drug resistance, and new antimalarial drugs are needed. New drug discovery efforts include consideration of hybrid compounds as potential multitarget antimalarials. Previous work from our group has demonstrated that hybrid structures resulting from cinnamic acid conjugation with heterocyclic moieties from well-known antimalarials present improved antimalarial activity. Now, we report the synthesis and SAR analysis of an expanded series of cinnamic acid derivatives displaying remarkably high activities against both blood- and liver-stage malaria parasites. Two compounds judged most promising, based on their in vitro activity and druglikeness according to the Lipinski rules and Veber filter, were active in vivo against blood-stage rodent malaria parasites. Therefore, the compounds reported represent a new entry as promising dual-stage antimalarial leads.

  17. Diagnostic comparison of malaria infection in peripheral blood, placental blood and placental biopsies in Cameroonian parturient women

    Directory of Open Access Journals (Sweden)

    Anchang-Kimbi Judith K

    2009-06-01

    Full Text Available Abstract Background In sub-Saharan Africa, Plasmodium falciparum malaria in pregnancy presents an enormous diagnostic challenge. The epidemiological and clinical relevance of the different types of malaria diagnosis as well as risk factors associated with malaria infection at delivery were investigated. Method In a cross-sectional survey, 306 women reporting for delivery in the Mutenegene maternity clinic, Fako division, South West province, Cameroon were screened for P. falciparum in peripheral blood, placental blood and placental tissue sections by microscopy. Information relating to the use of intermittent preventive treatment in pregnancy with sulphadoxine/pyrimethamine, history of fever attack, infant birth weights and maternal anaemia were recorded. Results Among these women, P. falciparum infection was detected in 5.6%, 25.5% and 60.5% of the cases in peripheral blood, placental blood and placental histological sections respectively. Placental histology was more sensitive (97.4% than placental blood film (41.5% and peripheral blood (8.0% microscopy. In multivariate analysis, age (≤ 20 years old (OR = 4.61, 95% CI = 1.47 – 14.70, history of fever attack (OR = 2.98, 95% CI = 1.58 – 5.73 were significant risk factors associated with microscopically detected parasitaemia. The use of ≥ 2 SP doses (OR = 0.18, 95% CI = 0.06 – 0.52 was associated with a significant reduction in the prevalence of microscopic parasitaemia at delivery. Age (>20 years (OR = 0.34, 95% CI = 0.15 – 0.75 was the only significant risk factor associated with parasitaemia diagnosed by histology only in univariate analysis. Microscopic parasitaemia (OR = 2.74, 95% CI = 1.33–5.62 was a significant risk factor for maternal anaemia at delivery, but neither infection detected by histology only, nor past infection were associated with increased risk of anaemia. Conclusion Placenta histological examination was the most sensitive indicator of malaria infection at

  18. The effect of daily co-trimoxazole prophylaxis on natural development of antibody-mediated immunity against P. falciparum malaria infection in HIV-exposed uninfected Malawian children.

    Directory of Open Access Journals (Sweden)

    Herbert Longwe

    Full Text Available Co-trimoxazole prophylaxis, currently recommended in HIV-exposed, uninfected (HEU children as protection against opportunistic infections, also has some anti-malarial efficacy. We determined whether daily co-trimoxazole prophylaxis affects the natural development of antibody-mediated immunity to blood-stage Plasmodium falciparum malaria infection.Using an enzyme-linked immunosorbent assay, we measured antibodies to 8 Plasmodium falciparum antigens (AMA-1, MSP-119, MSP-3, PfSE, EBA-175RII, GLURP R0, GLURP R2 and CSP in serum samples from 33 HEU children and 31 HIV-unexposed, uninfected (HUU children, collected at 6, 12 and 18 months of age.Compared to HIV-uninfected children, HEU children had significantly lower levels of specific IgG against AMA-1 at 6 months (p = 0.001, MSP-119 at 12 months (p = 0.041 and PfSE at 6 months (p = 0.038, 12 months (p = 0.0012 and 18 months (p = 0.0097. No differences in the IgG antibody responses against the rest of the antigens were observed between the two groups at all time points. The breadth of specificity of IgG response was reduced in HEU children compared to HUU children during the follow up period.Co-trimoxazole prophylaxis seems to reduce IgG antibody responses to P. falciparum blood stage antigens, which could be as a result of a reduction in exposure of those children under this regime. Although antibody responses were regarded as markers of exposure in this study, further studies are required to establish whether these responses are correlated in any way to clinical immunity to malaria.

  19. Maternal malaria status and metabolic profiles in pregnancy and in cord blood: relationships with birth size in Nigerian infants

    Directory of Open Access Journals (Sweden)

    Ayoola Omolola O

    2012-03-01

    Full Text Available Abstract Background Malaria is more common in pregnant than in non-pregnant Nigerian women, and is associated with small birth size and the attendant short- and long-term health risks. The influence of malaria on maternal metabolic status in pregnancy and in cord blood and how this relates to birth size has not been studied. The study objective was to define relationships between maternal and cord serum metabolic markers, maternal malaria status and birth size. Methods During pregnancy, anthropometric measurements, blood film for malaria parasites and assays for lipids, glucose, insulin and TNF were obtained from 467 mothers and these analytes and insulin-like growth factor-I (IGF-I were obtained from cord blood of 187 babies. Results Overall prevalence of maternal malaria was 52%, associated with younger age, anaemia and smaller infant birth size. Mothers with malaria had significantly lower cholesterol (total, HDL and LDL and higher TNF, but no difference in triglyceride. In contrast, there was no effect of maternal malaria on cord blood lipids, but the median (range cord IGF-I was significantly lower in babies whose mothers had malaria: 60.4 (24,145μg/L, versus no malaria: 76.5 (24, 150μg/L, p = 0.03. On regression analysis, the key determinants of birth weight included maternal total cholesterol, malarial status and cord insulin and IGF-I. Conclusions Malaria in pregnancy was common and associated with reduced birth size, lower maternal lipids and higher TNF. In the setting of endemic malaria, maternal total cholesterol during pregnancy and cord blood insulin and IGF-I levels are potential biomarkers of foetal growth and birth size.

  20. Modern immunological approaches to assess malaria transmission and immunity and to diagnose plasmodial infection

    Directory of Open Access Journals (Sweden)

    C. T. Daniel-Ribeiro

    1992-01-01

    Full Text Available The present paper reviews our recent data concerning the use of immunological methods employing monoclonal antibodies and synthetic peptides to study malaria transmission and immunity and to diagnose plasmodial infection. As concerns malaria transmission, we studied the main vectors of human malaria and the plasmodial species transmitted in endemic areas of Rondônia state, Brazil. The natural infection on anopheline was evaluated by immunoradiometric assay (IRMA using monoclonal antibodies to an immunodominant sporozoite surface antigen (CS protein demonstrated to be species specific. Our results showed that among six species of Anopheles found infected, An. darlingi was the main vector transmitting Plasmodium falciparum and P. vivax malaria in the immediate vicinity of houses. In order to assess the level of anti-CS antibodies we studied, by IRMA using the synthetic peptide corresponding to the repetitive epitope of the sporozoite CS protein, sera of individuals living in the same areas where the entomological survey has been performed. In this assay the prevalence of anti-CS antibodies was very low and did not reflect the malaria transmission rate in the studied areas. In relation to malaria diagnosis, a monoclonal antibody specific to an epitope of a 50 kDa exoantigen, the major component of supernatant collected at the time of schizont rupture, was used as a probe for the detection of P. falciparum antigens. This assay seemed to be more sensitive than parasitological examination for malaria diagnosis since it was able to detect plasmodial antigens in both symptomatic and asymtomatic individuals with negative thick blood smear at different intervals after a last parasitologically confirmed confirmed attack of malaria.

  1. The position of mefloquine as a 21st century malaria chemoprophylaxis

    OpenAIRE

    Regep Loredana; Adamcova Miriam; Schlagenhauf Patricia; Schaerer Martin T; Rhein Hans-Georg

    2010-01-01

    Abstract Background Malaria chemoprophylaxis prevents the occurrence of the symptoms of malaria. Travellers to high-risk Plasmodium falciparum endemic areas need an effective chemoprophylaxis. Methods A literature search to update the status of mefloquine as a malaria chemoprophylaxis. Results Except for clearly defined regions with multi-drug resistance, mefloquine is effective against the blood stages of all human malaria species, including the recently recognized fifth species, Plasmodium ...

  2. A T-cell response to a liver-stage Plasmodium antigen is not boosted by repeated sporozoite immunizations

    Science.gov (United States)

    Murphy, Sean C.; Kas, Arnold; Stone, Brad C.; Bevan, Michael J.

    2013-01-01

    Development of an antimalarial subunit vaccine inducing protective cytotoxic T lymphocyte (CTL)-mediated immunity could pave the way for malaria eradication. Experimental immunization with sporozoites induces this type of protective response, but the extremely large number of proteins expressed by Plasmodium parasites has so far prohibited the identification of sufficient discrete T-cell antigens to develop subunit vaccines that produce sterile immunity. Here, using mice singly immunized with Plasmodium yoelii sporozoites and high-throughput screening, we identified a unique CTL response against the parasite ribosomal L3 protein. Unlike CTL responses to the circumsporozoite protein (CSP), the population of L3-specific CTLs was not expanded by multiple sporozoite immunizations. CSP is abundant in the sporozoite itself, whereas L3 expression does not increase until the liver stage. The response induced by a single immunization with sporozoites reduces the parasite load in the liver so greatly during subsequent immunizations that L3-specific responses are only generated during the primary exposure. Functional L3-specific CTLs can, however, be expanded by heterologous prime-boost regimens. Thus, although repeat sporozoite immunization expands responses to preformed antigens like CSP that are present in the sporozoite itself, this immunization strategy may not expand CTLs targeting parasite proteins that are synthesized later. Heterologous strategies may be needed to increase CTL responses across the entire spectrum of Plasmodium liver-stage proteins. PMID:23530242

  3. The role of vitamin D in malaria.

    Science.gov (United States)

    Lương, Khanh Vinh Quốc; Nguyễn, Lan Thi Hoàng

    2015-01-15

    An abnormal calcium-parathyroid hormone (PTH)-vitamin D axis has been reported in patients with malaria infection. A role for vitamin D in malaria has been suggested by many studies. Genetic studies have identified numerous factors that link vitamin D to malaria, including human leukocyte antigen genes, toll-like receptors, heme oxygenase-1, angiopoietin-2, cytotoxic T lymphocyte antigen-4, nucleotide-binding oligomerization domain-like receptors, and Bcl-2. Vitamin D has also been implicated in malaria via its effects on the Bacillus Calmette-Guerin (BCG) vaccine, matrix metalloproteinases, mitogen-activated protein kinase pathways, prostaglandins, reactive oxidative species, and nitric oxide synthase. Vitamin D may be important in malaria; therefore, additional research on its role in malaria is needed.

  4. Blood donors screening for malaria in non-endemic area in the Kingdom of Saudi Arabia: Is it necessary to introduce immunological testing?

    Science.gov (United States)

    Elyamany, Ghaleb; Al Gharawi, Ali; Alrasheed, Mohammed; Alsuhaibani, Omar

    2016-02-01

    In Saudi Arabia, where malaria is not endemic, the incidence is very low. However, malaria transmission cases have been reported, mainly in Asir and Jazan provinces along the Southwestern border with Yemen. Imported cases also have been reported. The aims of this study were to determine the prevalence of malaria in blood donors in a tertiary care hospital in the central area of Saudi Arabia and to assess the effectiveness of malaria screening methods used by transfusion services in Prince Sultan Military Medical City. This study was conducted on 180,000 people who donated blood during 2006-2015. All blood smears from blood donors were screened for malaria infection using Giemsa staining, low power and high power microscopic examinations, and using oil immersion lens. The data were analyzed and reported in descriptive statistics and prevalence. From the total of 180,000 blood donors who were screened for malaria, 156,000 (87%) and 23.400 (13%) were Saudi Arabia citizens and non-Saudi residents, respectively. The mean age of the blood donors was 32 (ranging from 18 to 65), 97% and 3% were male and female, respectively. Using our current method for malaria screening, the prevalence of malaria in the study population was zero. The current methods of malaria screening in blood donors is not suitable for screening low-level parasiotemia. Adding the immunoassay and molecular screening methods is suggested.

  5. Antigen-displaying lipid-enveloped PLGA nanoparticles as delivery agents for a Plasmodium vivax malaria vaccine.

    Science.gov (United States)

    Moon, James J; Suh, Heikyung; Polhemus, Mark E; Ockenhouse, Christian F; Yadava, Anjali; Irvine, Darrell J

    2012-01-01

    The parasite Plasmodium vivax is the most frequent cause of malaria outside of sub-Saharan Africa, but efforts to develop viable vaccines against P. vivax so far have been inadequate. We recently developed pathogen-mimicking polymeric vaccine nanoparticles composed of the FDA-approved biodegradable polymer poly(lactide-co-glycolide) acid (PLGA) "enveloped" by a lipid membrane. In this study, we sought to determine whether this vaccine delivery platform could be applied to enhance the immune response against P. vivax sporozoites. A candidate malaria antigen, VMP001, was conjugated to the lipid membrane of the particles, and an immunostimulatory molecule, monophosphoryl lipid A (MPLA), was incorporated into the lipid membranes, creating pathogen-mimicking nanoparticle vaccines (VMP001-NPs). Vaccination with VMP001-NPs promoted germinal center formation and elicited durable antigen-specific antibodies with significantly higher titers and more balanced Th1/Th2 responses in vivo, compared with vaccines composed of soluble protein mixed with MPLA. Antibodies raised by NP vaccinations also exhibited enhanced avidity and affinity toward the domains within the circumsporozoite protein implicated in protection and were able to agglutinate live P. vivax sporozoites. These results demonstrate that these VMP001-NPs are promising vaccines candidates that may elicit protective immunity against P. vivax sporozoites.

  6. Antigen-displaying lipid-enveloped PLGA nanoparticles as delivery agents for a Plasmodium vivax malaria vaccine.

    Directory of Open Access Journals (Sweden)

    James J Moon

    Full Text Available The parasite Plasmodium vivax is the most frequent cause of malaria outside of sub-Saharan Africa, but efforts to develop viable vaccines against P. vivax so far have been inadequate. We recently developed pathogen-mimicking polymeric vaccine nanoparticles composed of the FDA-approved biodegradable polymer poly(lactide-co-glycolide acid (PLGA "enveloped" by a lipid membrane. In this study, we sought to determine whether this vaccine delivery platform could be applied to enhance the immune response against P. vivax sporozoites. A candidate malaria antigen, VMP001, was conjugated to the lipid membrane of the particles, and an immunostimulatory molecule, monophosphoryl lipid A (MPLA, was incorporated into the lipid membranes, creating pathogen-mimicking nanoparticle vaccines (VMP001-NPs. Vaccination with VMP001-NPs promoted germinal center formation and elicited durable antigen-specific antibodies with significantly higher titers and more balanced Th1/Th2 responses in vivo, compared with vaccines composed of soluble protein mixed with MPLA. Antibodies raised by NP vaccinations also exhibited enhanced avidity and affinity toward the domains within the circumsporozoite protein implicated in protection and were able to agglutinate live P. vivax sporozoites. These results demonstrate that these VMP001-NPs are promising vaccines candidates that may elicit protective immunity against P. vivax sporozoites.

  7. Transmission of hepatitis-B virus through salivary blood group antigens in saliva

    International Nuclear Information System (INIS)

    Meo, S.A.; Abdo, A.A.; Baksh, N.D.; Sanie, F.M.

    2010-01-01

    To determine an association between transmission of hepatitis B virus and secretor and non-secretor status of salivary blood group antigens. Study Design: Cross-sectional, analytical study. Place and Duration of Study: The Department of Physiology and Division of Hepatology, College of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Kingdom of Saudi Arabia, from 2007 to 2009. Methodology: Eighty eight known patients, who were positive for Hepatitis B Surface Antigen [HBsAg] were recruited. Saliva was collected for investigating the secretor and non-secretor status by using blood typing kit number Kemtec Educational Science USA. Hepatitis B Surface antigen test was performed on Enzyme Linked Immunosorbent Assay technique. Polymerase chain reaction [PCR] on saliva was also carried out in High Performance Thermal Cycler-Palm- Cycler [Corbett Life Science, Sydney, Australia] and enzymatic amplification of extracted viral DNA was performed using primers covering the promoter of the core region of HBV. Results: Out of the 88 subjects, 61 belong to blood group O, 20 to A and 7 subjects to blood group B. Fifty subjects were secretors [salivary blood group antigens positive] and 38 subjects were non-secretors [salivary blood group antigens negative]. Among core gene positive 25 (69.4%) were secretors and 11 (30.6%) were non-secretors. However, in core gene negative 25 (48.1%) were secretors and 27 (51.9%) were non-secretors. Conclusion: The result shows an association [p=0.047] between secretor and non-secretors status of the salivary blood group antigens with core gene positive and core gene negative. (author)

  8. Humoral immune response to Plasmodium falciparum vaccine candidate GMZ2 and its components in populations naturally exposed to seasonal malaria in Ethiopia

    DEFF Research Database (Denmark)

    Mamo, Hassen; Esen, Meral; Ajua, Anthony

    2013-01-01

    for malaria infection microscopically and by the rapid diagnostic test (RDT). Sera were tested by using enzyme-linked immunosorbent assay (ELISA) for total immunoglobulin (Ig) G against P. falciparum blood-stage vaccine candidate GMZ2 and its subunits (Glutamate-rich protein (GLURP-R0), merozoite surface...... transmission in the two localities and/or genetic differences between the two populations in their response to the antigens. In both study sites, IgG subclass levels to GLURP-R0 were significantly higher than that to MSP3 for all corresponding subclasses in most individuals, indicating the higher relative...

  9. Targeting Plasmodium PI(4)K to eliminate malaria

    Science.gov (United States)

    McNamara, Case W.; Lee, Marcus C. S.; Lim, Chek Shik; Lim, Siau Hoi; Roland, Jason; Nagle, Advait; Simon, Oliver; Yeung, Bryan K. S.; Chatterjee, Arnab K.; McCormack, Susan L.; Manary, Micah J.; Zeeman, Anne-Marie; Dechering, Koen J.; Kumar, T. R. Santha; Henrich, Philipp P.; Gagaring, Kerstin; Ibanez, Maureen; Kato, Nobutaka; Kuhen, Kelli L.; Fischli, Christoph; Rottmann, Matthias; Plouffe, David M.; Bursulaya, Badry; Meister, Stephan; Rameh, Lucia; Trappe, Joerg; Haasen, Dorothea; Timmerman, Martijn; Sauerwein, Robert W.; Suwanarusk, Rossarin; Russell, Bruce; Renia, Laurent; Nosten, Francois; Tully, David C.; Kocken, Clemens H. M.; Glynne, Richard J.; Bodenreider, Christophe; Fidock, David A.; Diagana, Thierry T.; Winzeler, Elizabeth A.

    2013-12-01

    Achieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here we identify a lipid kinase, phosphatidylinositol-4-OH kinase (PI(4)K), as the target of imidazopyrazines, a new antimalarial compound class that inhibits the intracellular development of multiple Plasmodium species at each stage of infection in the vertebrate host. Imidazopyrazines demonstrate potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models, are active against blood-stage field isolates of the major human pathogens P. falciparum and P. vivax, and inhibit liver-stage hypnozoites in the simian parasite P. cynomolgi. We show that imidazopyrazines exert their effect through inhibitory interaction with the ATP-binding pocket of PI(4)K, altering the intracellular distribution of phosphatidylinositol-4-phosphate. Collectively, our data define PI(4)K as a key Plasmodium vulnerability, opening up new avenues of target-based discovery to identify drugs with an ideal activity profile for the prevention, treatment and elimination of malaria.

  10. Plasmodium species differentiation by non-expert on-line volunteers for remote malaria field diagnosis.

    Science.gov (United States)

    Ortiz-Ruiz, Alejandra; Postigo, María; Gil-Casanova, Sara; Cuadrado, Daniel; Bautista, José M; Rubio, José Miguel; Luengo-Oroz, Miguel; Linares, María

    2018-01-30

    Routine field diagnosis of malaria is a considerable challenge in rural and low resources endemic areas mainly due to lack of personnel, training and sample processing capacity. In addition, differential diagnosis of Plasmodium species has a high level of misdiagnosis. Real time remote microscopical diagnosis through on-line crowdsourcing platforms could be converted into an agile network to support diagnosis-based treatment and malaria control in low resources areas. This study explores whether accurate Plasmodium species identification-a critical step during the diagnosis protocol in order to choose the appropriate medication-is possible through the information provided by non-trained on-line volunteers. 88 volunteers have performed a series of questionnaires over 110 images to differentiate species (Plasmodium falciparum, Plasmodium ovale, Plasmodium vivax, Plasmodium malariae, Plasmodium knowlesi) and parasite staging from thin blood smear images digitalized with a smartphone camera adapted to the ocular of a conventional light microscope. Visual cues evaluated in the surveys include texture and colour, parasite shape and red blood size. On-line volunteers are able to discriminate Plasmodium species (P. falciparum, P. malariae, P. vivax, P. ovale, P. knowlesi) and stages in thin-blood smears according to visual cues observed on digitalized images of parasitized red blood cells. Friendly textual descriptions of the visual cues and specialized malaria terminology is key for volunteers learning and efficiency. On-line volunteers with short-training are able to differentiate malaria parasite species and parasite stages from digitalized thin smears based on simple visual cues (shape, size, texture and colour). While the accuracy of a single on-line expert is far from perfect, a single parasite classification obtained by combining the opinions of multiple on-line volunteers over the same smear, could improve accuracy and reliability of Plasmodium species

  11. Expression of blood group antigens A and B in pancreas of vertebrates

    Directory of Open Access Journals (Sweden)

    ELENKA GEORGIEVA

    2012-01-01

    Full Text Available The biological role of blood group antigens (BGA A and B in tissues of different vertebrates is still controversial. There are few investigations on vertebrate pancreas and no obvious explanation of their tissue expression. The aim of the present study is to follow and compare the pancreatic expression of BGA A and B in representatives of five vertebrate classes. The biotin-streptavidin-proxidase labeling system was used for immunohistochemical detection of BGA by monoclonal antibodies to human A and B antigens. The present study reveals specific immunoreactivity in acinar and epithelial cells of pancreatic efferent ducts in species free-living vertebrates. The immunoperoxidase staining shows antigenic heterogeneity in the cellular localization. The number of positive cells and the intensity of expression vary in different species. Endothelial cells are positive only in the pancreas of Emys orbicularis. The lack of BGA A and B in some species suggests that the expression of these antigens is dependent not only on the evolutionary level of the species, but mainly on some genetic control mechanisms. The production of BGA A and B and the variability in their cellular localization probably reflect the stage of cell differentiation and the mechanisms of pancreatic secretor function. The presence of histo BGA in endodermal acinar pancreatic cells confirms the assumption for the high antigenic stability and conservatism of these molecules in vertebrate histogenesis and evolution.

  12. Blood monocyte oxidative burst activity in acute P. falciparum malaria

    DEFF Research Database (Denmark)

    Nielsen, H; Theander, T G

    1989-01-01

    The release of superoxide anion from blood monocytes was studied in eight patients with acute primary attack P. falciparum malaria. Before treatment a significant enhancement of the oxidative burst prevailed, which contrasts with previous findings of a depressed monocyte chemotactic responsiveness...

  13. Evidence-based annotation of the malaria parasite's genome using comparative expression profiling.

    Directory of Open Access Journals (Sweden)

    Yingyao Zhou

    2008-02-01

    Full Text Available A fundamental problem in systems biology and whole genome sequence analysis is how to infer functions for the many uncharacterized proteins that are identified, whether they are conserved across organisms of different phyla or are phylum-specific. This problem is especially acute in pathogens, such as malaria parasites, where genetic and biochemical investigations are likely to be more difficult. Here we perform comparative expression analysis on Plasmodium parasite life cycle data derived from P. falciparum blood, sporozoite, zygote and ookinete stages, and P. yoelii mosquito oocyst and salivary gland sporozoites, blood and liver stages and show that type II fatty acid biosynthesis genes are upregulated in liver and insect stages relative to asexual blood stages. We also show that some universally uncharacterized genes with orthologs in Plasmodium species, Saccharomyces cerevisiae and humans show coordinated transcription patterns in large collections of human and yeast expression data and that the function of the uncharacterized genes can sometimes be predicted based on the expression patterns across these diverse organisms. We also use a comprehensive and unbiased literature mining method to predict which uncharacterized parasite-specific genes are likely to have roles in processes such as gliding motility, host-cell interactions, sporozoite stage, or rhoptry function. These analyses, together with protein-protein interaction data, provide probabilistic models that predict the function of 926 uncharacterized malaria genes and also suggest that malaria parasites may provide a simple model system for the study of some human processes. These data also provide a foundation for further studies of transcriptional regulation in malaria parasites.

  14. Development of replication-deficient adenovirus malaria vaccines.

    Science.gov (United States)

    Hollingdale, Michael R; Sedegah, Martha; Limbach, Keith

    2017-03-01

    Malaria remains a major threat to endemic populations and travelers, including military personnel to these areas. A malaria vaccine is feasible, as radiation attenuated sporozoites induce nearly 100% efficacy. Areas covered: This review covers current malaria clinical trials using adenoviruses and pre-clinical research. Heterologous prime-boost regimens, including replication-deficient human adenovirus 5 (HuAd5) carrying malaria antigens, are efficacious. However, efficacy appears to be adversely affected by pre-existing anti-HuAd5 antibodies. Current strategies focus on replacing HuAd5 with rarer human adenoviruses or adenoviruses isolated from non-human primates (NHPs). The chimpanzee adenovirus ChAd63 is undergoing evaluation in clinical trials including infants in malaria-endemic areas. Key antigens have been identified and are being used alone, in combination, or with protein subunit vaccines. Gorilla adenoviruses carrying malaria antigens are also currently being evaluated in preclinical models. These replacement adenovirus vectors will be successfully used to develop vaccines against malaria, as well as other infectious diseases. Expert commentary: Simplified prime-boost single shot regimens, dry-coated live vector vaccines or silicon microneedle arrays could be developed for malaria or other vaccines. Replacement vectors with similar or superior immunogenicity have rapidly advanced, and several are now in extensive Phase 2 and beyond in malaria as well as other diseases, notably Ebola.

  15. A single point in protein trafficking by Plasmodium falciparum determines the expression of major antigens on the surface of infected erythrocytes targeted by human antibodies.

    Science.gov (United States)

    Chan, Jo-Anne; Howell, Katherine B; Langer, Christine; Maier, Alexander G; Hasang, Wina; Rogerson, Stephen J; Petter, Michaela; Chesson, Joanne; Stanisic, Danielle I; Duffy, Michael F; Cooke, Brian M; Siba, Peter M; Mueller, Ivo; Bull, Peter C; Marsh, Kevin; Fowkes, Freya J I; Beeson, James G

    2016-11-01

    Antibodies to blood-stage antigens of Plasmodium falciparum play a pivotal role in human immunity to malaria. During parasite development, multiple proteins are trafficked from the intracellular parasite to the surface of P. falciparum-infected erythrocytes (IEs). However, the relative importance of different proteins as targets of acquired antibodies, and key pathways involved in trafficking major antigens remain to be clearly defined. We quantified antibodies to surface antigens among children, adults, and pregnant women from different malaria-exposed regions. We quantified the importance of antigens as antibody targets using genetically engineered P. falciparum with modified surface antigen expression. Genetic deletion of the trafficking protein skeleton-binding protein-1 (SBP1), which is involved in trafficking the surface antigen PfEMP1, led to a dramatic reduction in antibody recognition of IEs and the ability of human antibodies to promote opsonic phagocytosis of IEs, a key mechanism of parasite clearance. The great majority of antibody epitopes on the IE surface were SBP1-dependent. This was demonstrated using parasite isolates with different genetic or phenotypic backgrounds, and among antibodies from children, adults, and pregnant women in different populations. Comparisons of antibody reactivity to parasite isolates with SBP1 deletion or inhibited PfEMP1 expression suggest that PfEMP1 is the dominant target of acquired human antibodies, and that other P. falciparum IE surface proteins are minor targets. These results establish SBP1 as part of a critical pathway for the trafficking of major surface antigens targeted by human immunity, and have key implications for vaccine development, and quantifying immunity in populations.

  16. Evidence for significant influence of host immunity on changes in differential blood count during malaria.

    Science.gov (United States)

    Berens-Riha, Nicole; Kroidl, Inge; Schunk, Mirjam; Alberer, Martin; Beissner, Marcus; Pritsch, Michael; Kroidl, Arne; Fröschl, Günter; Hanus, Ingrid; Bretzel, Gisela; von Sonnenburg, Frank; Nothdurft, Hans Dieter; Löscher, Thomas; Herbinger, Karl-Heinz

    2014-04-23

    Malaria has been shown to change blood counts. Recently, a few studies have investigated the alteration of the peripheral blood monocyte-to-lymphocyte count ratio (MLCR) and the neutrophil-to-lymphocyte count ratio (NLCR) during infection with Plasmodium falciparum. Based on these findings this study investigates the predictive values of blood count alterations during malaria across different sub-populations. Cases and controls admitted to the Department of Infectious Diseases and Tropical Medicine from January 2000 through December 2010 were included in this comparative analysis. Blood count values and other variables at admission controlled for age, gender and immune status were statistically investigated. The study population comprised 210 malaria patients, infected with P. falciparum (68%), Plasmodium vivax (21%), Plasmodium ovale (7%) and Plasmodium malariae (4%), and 210 controls. A positive correlation of parasite density with NLCR and neutrophil counts, and a negative correlation of parasite density with thrombocyte, leucocyte and lymphocyte counts were found. An interaction with semi-immunity was observed; ratios were significantly different in semi-immune compared to non-immune patients (P value of the ratios was fair but limited. However, these changes were less pronounced in patients with semi-immunity. The ratios might constitute easily applicable surrogate biomarkers for immunity.

  17. Towards clinical development of a Pfs48/45-based transmission blocking malaria vaccine

    NARCIS (Netherlands)

    Theisen, M.; Jore, M.M.; Sauerwein, R.

    2017-01-01

    INTRODUCTION: Malaria is a devastating vector-borne disease caused by the Plasmodium parasite, resulting in almost 0.5 million casualties per year. The parasite has a complex life-cycle that includes asexual replication in human red blood cells, causing symptomatic malaria, and sexual stages which

  18. A malaria diagnostic tool based on computer vision screening and visualization of Plasmodium falciparum candidate areas in digitized blood smears.

    Directory of Open Access Journals (Sweden)

    Nina Linder

    Full Text Available INTRODUCTION: Microscopy is the gold standard for diagnosis of malaria, however, manual evaluation of blood films is highly dependent on skilled personnel in a time-consuming, error-prone and repetitive process. In this study we propose a method using computer vision detection and visualization of only the diagnostically most relevant sample regions in digitized blood smears. METHODS: Giemsa-stained thin blood films with P. falciparum ring-stage trophozoites (n = 27 and uninfected controls (n = 20 were digitally scanned with an oil immersion objective (0.1 µm/pixel to capture approximately 50,000 erythrocytes per sample. Parasite candidate regions were identified based on color and object size, followed by extraction of image features (local binary patterns, local contrast and Scale-invariant feature transform descriptors used as input to a support vector machine classifier. The classifier was trained on digital slides from ten patients and validated on six samples. RESULTS: The diagnostic accuracy was tested on 31 samples (19 infected and 12 controls. From each digitized area of a blood smear, a panel with the 128 most probable parasite candidate regions was generated. Two expert microscopists were asked to visually inspect the panel on a tablet computer and to judge whether the patient was infected with P. falciparum. The method achieved a diagnostic sensitivity and specificity of 95% and 100% as well as 90% and 100% for the two readers respectively using the diagnostic tool. Parasitemia was separately calculated by the automated system and the correlation coefficient between manual and automated parasitemia counts was 0.97. CONCLUSION: We developed a decision support system for detecting malaria parasites using a computer vision algorithm combined with visualization of sample areas with the highest probability of malaria infection. The system provides a novel method for blood smear screening with a significantly reduced need for

  19. Automated typing of red blood cell and platelet antigens: a whole-genome sequencing study.

    Science.gov (United States)

    Lane, William J; Westhoff, Connie M; Gleadall, Nicholas S; Aguad, Maria; Smeland-Wagman, Robin; Vege, Sunitha; Simmons, Daimon P; Mah, Helen H; Lebo, Matthew S; Walter, Klaudia; Soranzo, Nicole; Di Angelantonio, Emanuele; Danesh, John; Roberts, David J; Watkins, Nick A; Ouwehand, Willem H; Butterworth, Adam S; Kaufman, Richard M; Rehm, Heidi L; Silberstein, Leslie E; Green, Robert C

    2018-06-01

    There are more than 300 known red blood cell (RBC) antigens and 33 platelet antigens that differ between individuals. Sensitisation to antigens is a serious complication that can occur in prenatal medicine and after blood transfusion, particularly for patients who require multiple transfusions. Although pre-transfusion compatibility testing largely relies on serological methods, reagents are not available for many antigens. Methods based on single-nucleotide polymorphism (SNP) arrays have been used, but typing for ABO and Rh-the most important blood groups-cannot be done with SNP typing alone. We aimed to develop a novel method based on whole-genome sequencing to identify RBC and platelet antigens. This whole-genome sequencing study is a subanalysis of data from patients in the whole-genome sequencing arm of the MedSeq Project randomised controlled trial (NCT01736566) with no measured patient outcomes. We created a database of molecular changes in RBC and platelet antigens and developed an automated antigen-typing algorithm based on whole-genome sequencing (bloodTyper). This algorithm was iteratively improved to address cis-trans haplotype ambiguities and homologous gene alignments. Whole-genome sequencing data from 110 MedSeq participants (30 × depth) were used to initially validate bloodTyper through comparison with conventional serology and SNP methods for typing of 38 RBC antigens in 12 blood-group systems and 22 human platelet antigens. bloodTyper was further validated with whole-genome sequencing data from 200 INTERVAL trial participants (15 × depth) with serological comparisons. We iteratively improved bloodTyper by comparing its typing results with conventional serological and SNP typing in three rounds of testing. The initial whole-genome sequencing typing algorithm was 99·5% concordant across the first 20 MedSeq genomes. Addressing discordances led to development of an improved algorithm that was 99·8% concordant for the remaining 90 Med

  20. Blood-feeding patterns of Anopheles mosquitoes in a malaria-endemic area of Bangladesh

    Directory of Open Access Journals (Sweden)

    Bashar Kabirul

    2012-02-01

    Full Text Available Abstract Background Blood-feeding patterns of mosquitoes are crucial for incriminating malaria vectors. However, little information is available on the host preferences of Anopheles mosquitoes in Bangladesh. Therefore, the objective of the present study was to determine the hematophagic tendencies of the anophelines inhabiting a malaria-endemic area of Bangladesh. Methods Adult Anopheles mosquitoes were collected using light traps (LTs, pyrethrum spray (PS, and human bait (HB from a malaria-endemic village (Kumari, Bandarban, Bangladesh during the peak months of malaria transmission (August-September. Enzyme-linked immunosorbent assay (ELISA and polymerase chain reaction (PCR were performed to identify the host blood meals of Anopheles mosquitoes. Results In total, 2456 female anopheline mosquitoes representing 21 species were collected from the study area. Anopheles vagus Doenitz (35.71% was the dominant species followed by An. philippinensis Ludlow (26.67% and An. minimus s.l. Theobald (5.78%. All species were collected by LTs set indoors (n = 1094, 19 species were from outdoors (n = 784, whereas, six by PS (n = 549 and four species by HB (n = 29. Anopheline species composition significantly differed between every possible combination of the three collection methods (χ2 test, P Anopheles samples belonging to 17 species. Values of the human blood index (HBI of anophelines collected from indoors and outdoors were 6.96% and 11.73%, respectively. The highest values of HBI were found in An. baimai Baimaii (80%, followed by An. minimus s.l. (43.64% and An. annularis Van den Wulp (37.50%. Anopheles baimai (Bi = 0.63 and An. minimus s.l. (Bi = 0.24 showed strong relative preferences (Bi for humans among all hosts (human, bovine, goats/sheep, and others. Anopheles annularis, An. maculatus s.l. Theobald, and An. pallidus Theobald exhibited opportunistic blood-feeding behavior, in that they fed on either humans or animals, depending on whichever was

  1. Possible biochemical impact of malaria infection in subjects with HIV co-infection in Anambra state, Nigeria.

    Science.gov (United States)

    Onyenekwe, C C; Ukibe, N; Meludu, S C; Ifeanyi, M; Ezeani, M; Onochie, A; Ofiaeli, N; Aboh, N; Ilika, A

    2008-06-01

    The present study was designed to determine possible contributory impact of malaria infection on some biochemical markers in subjects with HIV co-infection in order to know if they are adverse or protective. Participants were recruited at the Voluntary Counseling and Testing Unit, Nnamdi Azikiwe University Teaching Hospital, Nnewi, Nigeria and grouped into: (i) Malaria and HIV co-infection group (n = 45); and (ii) HIV infected group without concurrent malaria infection (n = 57). Standard laboratory methods were used for the HIV and Plasmodium falciparum antigen screening, malaria parasite density, CD4+ T-cell count, packed cell volume, white blood cell count, serum iron and albumin concentrations. The results showed that serum iron and albumin were significantly reduced and raised respectively in 'Malaria-HIV co-infection group' compared with 'HIV infection group' (p < 0.05 and p < 0.05). A positive association was observed between age and serum iron concentration in malaria and HIV co-infected group (r = 0.580; p < 0.05) while negative associations were observed between PCV and serum iron (r = - 0.388; p < 0.05) and between CD4+ T-cells and serum iron concentration (r = -0.362; p < 0.05) in malaria and HIV co-infected group. The CD4+ T-cell count, WBC count, PCV were not significantly different between the Malaria-HIV co-infection group and HIV infection group. In the present study serum iron and albumin concentrations were the most sensitive indicators that showed the contributory impact of malaria infection on biochemical index in HIV co-infected subjects. The findings suggest that at the defined stage of HIV infection in the present study, malaria co-infection may moderate the impact of HIV infection on iron metabolism and hepatic synthesis of albumin.

  2. Prevalence and intensity of malaria in blood donors at Nnamdi ...

    African Journals Online (AJOL)

    Prevalence and intensity of malaria in blood donors at Nnamdi Azikiwe University Teaching Hospital (NAUTH) Nnewi, Anambra State, Nigeria. ... Apprentices and primary school dropouts constituted the most frequent donors. These differences were between the two donor-groups statistically significant (p<0.05). Screening ...

  3. Gametocyte clearance in uncomplicated and severe Plasmodium falciparum malaria after artesunate-mefloquine treatment in Thailand.

    Science.gov (United States)

    Tangpukdee, Noppadon; Krudsood, Srivicha; Srivilairit, Siripan; Phophak, Nanthaporn; Chonsawat, Putza; Yanpanich, Wimon; Kano, Shigeyuki; Wilairatana, Polrat

    2008-06-01

    Artemisinin-based combination therapy (ACT) is currently promoted as a strategy for treating both uncomplicated and severe falciparum malaria, targeting asexual blood-stage Plasmodium falciparum parasites. However, the effect of ACT on sexual-stage parasites remains controversial. To determine the clearance of sexual-stage P. falciparum parasites from 342 uncomplicated, and 217 severe, adult malaria cases, we reviewed and followed peripheral blood sexual-stage parasites for 4 wk after starting ACT. All patients presented with both asexual and sexual stage parasites on admission, and were treated with artesunate-mefloquine as the standard regimen. The results showed that all patients were asymptomatic and negative for asexual forms before discharge from hospital. The percentages of uncomplicated malaria patients positive for gametocytes on days 3, 7, 14, 21, and 28 were 41.5, 13.1, 3.8, 2.0, and 2.0%, while the percentages of gametocyte positive severe malaria patients on days 3, 7, 14, 21, and 28 were 33.6, 8.2, 2.7, 0.9, and 0.9%, respectively. Although all patients were negative for asexual parasites by day 7 after completion of the artesunate-mefloquine course, gametocytemia persisted in some patients. Thus, a gametocytocidal drug, e.g., primaquine, may be useful in combination with an artesunate-mefloquine regimen to clear gametocytes, so blocking transmission more effectively than artesunate alone, in malaria transmission areas.

  4. Bedside diagnosis of imported malaria using the Binax Now malaria antigen detection test

    DEFF Research Database (Denmark)

    Wiese, Lothar; Bruun, Brita; Baek, Leif

    2006-01-01

    Malaria may be misdiagnosed in non-endemic countries when the necessary experience for rapid expert microscopy is lacking. Rapid diagnostic tests may improve the diagnosis and may play a role as a bedside diagnostic tool. In a multicentre study we recruited patients suspected of malaria over...... a period of 14 months. The Binax Now Malaria rapid test was used at the bedside and in the clinical microbiology laboratory. The training of clinical staff was monitored and their experience with the use of the test was recorded. 542 patients were included, 80 of whom had malaria diagnosed by microscopy...... be useful for the diagnosis of P. falciparum malaria when used by routine laboratory staff, but could lead to misdiagnoses when used at the bedside. Microscopy is still essential in order to identify the few missed diagnoses, to determine the degree of parasitaemia, and to ensure species diagnosis...

  5. Inducible Costimulator Expressing T Cells Promote Parasitic Growth During Blood Stage Plasmodium berghei ANKA Infection

    Directory of Open Access Journals (Sweden)

    Gajendra M. Jogdand

    2018-05-01

    Full Text Available The lethality of blood stage Plasmodium berghei ANKA (PbA infection is associated with the expression of T-bet and production of cytokine IFN-γ. Expression of inducible costimulator (ICOS and its downstream signaling has been shown to play a critical role in the T-bet expression and IFN-γ production. Although earlier studies have examined the role of ICOS in the control of acute blood-stage infection of Plasmodium chabaudi chabaudi AS (a non-lethal model of malaria infection, its significance in the lethal blood-stage of PbA infection remains unclear. Thus, to address the seminal role of ICOS in lethal blood-stage of PbA infection, we treated PbA-infected mice with anti-ICOS antibody and observed that these mice survived longer than their infected counterparts with significantly lower parasitemia. Anti-ICOS treatment notably depleted ICOS expressing CD4+ and CD8+ T cells with a concurrent reduction in plasma IFN-γ, which strongly indicated that ICOS expressing T cells are major IFN-γ producers. Interestingly, we observed that while ICOS expressing CD4+ and CD8+ T cells produced IFN-γ, ICOS−CD8+ T cells were also found to be producers of IFN-γ. However, we report that ICOS+CD8+ T cells were higher producers of IFN-γ than ICOS−CD8+ T cells. Moreover, correlation of ICOS expression with IFN-γ production in ICOS+IFN-γ+ T cell population (CD4+ and CD8+ T cells suggested that ICOS and IFN-γ could positively regulate each other. Further, master transcription factor T-bet importantly involved in regulating IFN-γ production was also found to be expressed by ICOS expressing CD4+ and CD8+ T cells during PbA infection. As noted above with IFN-γ and ICOS, a positive correlation of expression of ICOS with the transcription factor T-bet suggested that both of them could regulate each other. Taken together, our results depicted the importance of ICOS expressing CD4+ and CD8+ T cells in malaria parasite growth and lethality through IFN

  6. Population genetic structure and natural selection of apical membrane antigen-1 in Plasmodium vivax Korean isolates.

    Science.gov (United States)

    Kang, Jung-Mi; Lee, Jinyoung; Cho, Pyo-Yun; Moon, Sung-Ung; Ju, Hye-Lim; Ahn, Seong Kyu; Sohn, Woon-Mok; Lee, Hyeong-Woo; Kim, Tong-Soo; Na, Byoung-Kuk

    2015-11-16

    Plasmodium vivax apical membrane antigen-1 (PvAMA-1) is a leading candidate antigen for blood stage malaria vaccine. However, antigenic variation is a major obstacle in the development of an effective vaccine based on this antigen. In this study, the genetic structure and the effect of natural selection of PvAMA-1 among Korean P. vivax isolates were analysed. Blood samples were collected from 66 Korean patients with vivax malaria. The entire PvAMA-1 gene was amplified by polymerase chain reaction and cloned into a TA cloning vector. The PvAMA-1 sequence of each isolate was sequenced and the polymorphic characteristics and effect of natural selection were analysed using the DNASTAR, MEGA4, and DnaSP programs. Thirty haplotypes of PvAMA-1, which were further classified into seven different clusters, were identified in the 66 Korean P. vivax isolates. Domain II was highly conserved among the sequences, but substantial nucleotide diversity was observed in domains I and III. The difference between the rates of non-synonymous and synonymous mutations suggested that the gene has evolved under natural selection. No strong evidence indicating balancing or positive selection on PvAMA-1 was identified. Recombination may also play a role in the resulting genetic diversity of PvAMA-1. This study is the first comprehensive analysis of nucleotide diversity across the entire PvAMA-1 gene using a single population sample from Korea. Korean PvAMA-1 had limited genetic diversity compared to PvAMA-1 in global isolates. The overall pattern of genetic polymorphism of Korean PvAMA-1 differed from other global isolates and novel amino acid changes were also identified in Korean PvAMA-1. Evidences for natural selection and recombination event were observed, which is likely to play an important role in generating genetic diversity across the PvAMA-1. These results provide useful information for the understanding the population structure of P. vivax circulating in Korea and have important

  7. Stem Cell Physics. Laser Manipulation of Blood Types: Laser-Stripping-Away of Red Blood Cell Surface Antigens

    Science.gov (United States)

    Stefan, V. Alexander

    2014-03-01

    A novel mechanism of importance for the transfusion medicine[2] is proposed. The interaction of ultrashort wavelength multilaser beams with the flowing blood thin films can lead to a conversion of blood types A, B, and AB into O type.[3] The stripping away of antigens is done by the scanning-multiple-lasers of a high repetition rate in the blue-purple frequency domain. The guiding-lasers are in the red-green frequency domain. The laser force, (parametric interaction with the antigen eigen-oscillation),[4] upon the antigen protein molecule must exceed its weight. Supported by Nikola Tesla Labs, La Jolla, CA.

  8. The role of immunity in mosquito-induced attenuation of malaria virulence.

    Science.gov (United States)

    Mackinnon, Margaret J

    2014-01-21

    A recent study found that mosquito-transmitted (MT) lines of rodent malaria parasites elicit a more effective immune response than non-transmitted lines maintained by serial blood passage (non-MT), thereby causing lower parasite densities in the blood and less pathology to the host. The authors attribute these changes to higher diversity in expression of antigen-encoding genes in MT cf. non-MT lines. Alternative explanations that are equally parsimonious with these new data, and results from previous studies, suggest that this conclusion may be premature.

  9. Signalling in malaria parasites. The MALSIG consortium.

    NARCIS (Netherlands)

    Doerig, C.; Baker, D.; Billker, O.; Blackman, M.J.; Chitnis, C.; Dhar Kumar, S.; Heussler, V.; Holder, A.A.; Kocken, C.; Krishna, S.; Langsley, G.; Lasonder, E.; Menard, R.; Meissner, M.; Pradel, G.; Ranford-Cartwright, L.; Sharma, A.; Sharma, P.; Tardieux, T.; Tatu, U.; Alano, P.

    2009-01-01

    Depending on their developmental stage in the life cycle, malaria parasites develop within or outside host cells, and in extremely diverse contexts such as the vertebrate liver and blood circulation, or the insect midgut and hemocoel. Cellular and molecular mechanisms enabling the parasite to sense

  10. The distribution of blood group antigens in experimentally produced carcinomas of rat palate

    DEFF Research Database (Denmark)

    Reibel, J; Philipsen, H P; Fisker, A V

    1986-01-01

    palate induced by a chemical carcinogen (4NQO). The H antigen, normally expressed on spinous cells in rats, was absent in malignant epithelium, whereas staining for the B antigen, normally expressed on basal cells, was variable. These changes are equivalent to those seen in human squamous cell carcinomas....... The blood group antigen staining pattern in experimentally produced verrucous carcinomas showed an almost normal blood group antigen expression. This may have diagnostic significance. Localized areas of hyperplastic palatal epithelium with slight dysplasia revealed loss of H antigen and the presence of B...... antigen in suprabasal strata equivalent to the pattern seen in human premalignant epithelium. We conclude from these findings, that the rat model is well suited to study changes in cell surface carbohydrates during chemical carcinogenesis....

  11. Evasion of Immunity to Plasmodium falciparum: Rosettes of Blood Group A Impair Recognition of PfEMP1

    Science.gov (United States)

    Moll, Kirsten; Palmkvist, Mia; Ch'ng, Junhong; Kiwuwa, Mpungu Steven; Wahlgren, Mats

    2015-01-01

    The ABO blood group antigens are expressed on erythrocytes but also on endothelial cells, platelets and serum proteins. Notably, the ABO blood group of a malaria patient determines the development of the disease given that blood group O reduces the probability to succumb in severe malaria, compared to individuals of groups A, B or AB. P. falciparum rosetting and sequestration are mediated by PfEMP1, RIFIN and STEVOR, expressed at the surface of the parasitized red blood cell (pRBC). Antibodies to these antigens consequently modify the course of a malaria infection by preventing sequestration and promoting phagocytosis of pRBC. Here we have studied rosetting P. falciparum and present evidence of an immune evasion mechanism not previously recognized. We find the accessibility of antibodies to PfEMP1 at the surface of the pRBC to be reduced when P. falciparum forms rosettes in blood group A RBC, as compared to group O RBC. The pRBC surrounds itself with tightly bound normal RBC that makes PfEMP1 inaccessible to antibodies and clearance by the immune system. Accordingly, pRBC of in vitro cloned P. falciparum devoid of ABO blood group dependent rosetting were equally well detected by anti-PfEMP1 antibodies, independent of the blood group utilized for their propagation. The pathogenic mechanisms underlying the severe forms of malaria may in patients of blood group A depend on the ability of the parasite to mask PfEMP1 from antibody recognition, in so doing evading immune clearance. PMID:26714011

  12. Population genetic structure and natural selection of Plasmodium falciparum apical membrane antigen-1 in Myanmar isolates.

    Science.gov (United States)

    Kang, Jung-Mi; Lee, Jinyoung; Moe, Mya; Jun, Hojong; Lê, Hương Giang; Kim, Tae Im; Thái, Thị Lam; Sohn, Woon-Mok; Myint, Moe Kyaw; Lin, Khin; Shin, Ho-Joon; Kim, Tong-Soo; Na, Byoung-Kuk

    2018-02-07

    Plasmodium falciparum apical membrane antigen-1 (PfAMA-1) is one of leading blood stage malaria vaccine candidates. However, genetic variation and antigenic diversity identified in global PfAMA-1 are major hurdles in the development of an effective vaccine based on this antigen. In this study, genetic structure and the effect of natural selection of PfAMA-1 among Myanmar P. falciparum isolates were analysed. Blood samples were collected from 58 Myanmar patients with falciparum malaria. Full-length PfAMA-1 gene was amplified by polymerase chain reaction and cloned into a TA cloning vector. PfAMA-1 sequence of each isolate was sequenced. Polymorphic characteristics and effect of natural selection were analysed with using DNASTAR, MEGA4, and DnaSP programs. Polymorphic nature and natural selection in 459 global PfAMA-1 were also analysed. Thirty-seven different haplotypes of PfAMA-1 were identified in 58 Myanmar P. falciparum isolates. Most amino acid changes identified in Myanmar PfAMA-1 were found in domains I and III. Overall patterns of amino acid changes in Myanmar PfAMA-1 were similar to those in global PfAMA-1. However, frequencies of amino acid changes differed by country. Novel amino acid changes in Myanmar PfAMA-1 were also identified. Evidences for natural selection and recombination event were observed in global PfAMA-1. Among 51 commonly identified amino acid changes in global PfAMA-1 sequences, 43 were found in predicted RBC-binding sites, B-cell epitopes, or IUR regions. Myanmar PfAMA-1 showed similar patterns of nucleotide diversity and amino acid polymorphisms compared to those of global PfAMA-1. Balancing natural selection and intragenic recombination across PfAMA-1 are likely to play major roles in generating genetic diversity in global PfAMA-1. Most common amino acid changes in global PfAMA-1 were located in predicted B-cell epitopes where high levels of nucleotide diversity and balancing natural selection were found. These results highlight the

  13. Do ABO blood group antigens hamper the therapeutic efficacy of mesenchymal stromal cells?

    Science.gov (United States)

    Moll, Guido; Hult, Annika; von Bahr, Lena; Alm, Jessica J; Heldring, Nina; Hamad, Osama A; Stenbeck-Funke, Lillemor; Larsson, Stella; Teramura, Yuji; Roelofs, Helene; Nilsson, Bo; Fibbe, Willem E; Olsson, Martin L; Le Blanc, Katarina

    2014-01-01

    Investigation into predictors for treatment outcome is essential to improve the clinical efficacy of therapeutic multipotent mesenchymal stromal cells (MSCs). We therefore studied the possible harmful impact of immunogenic ABO blood groups antigens - genetically governed antigenic determinants - at all given steps of MSC-therapy, from cell isolation and preparation for clinical use, to final recipient outcome. We found that clinical MSCs do not inherently express or upregulate ABO blood group antigens after inflammatory challenge or in vitro differentiation. Although antigen adsorption from standard culture supplements was minimal, MSCs adsorbed small quantities of ABO antigen from fresh human AB plasma (ABP), dependent on antigen concentration and adsorption time. Compared to cells washed in non-immunogenic human serum albumin (HSA), MSCs washed with ABP elicited stronger blood responses after exposure to blood from healthy O donors in vitro, containing high titers of ABO antibodies. Clinical evaluation of hematopoietic stem cell transplant (HSCT) recipients found only very low titers of anti-A/B agglutination in these strongly immunocompromised patients at the time of MSC treatment. Patient analysis revealed a trend for lower clinical response in blood group O recipients treated with ABP-exposed MSC products, but not with HSA-exposed products. We conclude, that clinical grade MSCs are ABO-neutral, but the ABP used for washing and infusion of MSCs can contaminate the cells with immunogenic ABO substance and should therefore be substituted by non-immunogenic HSA, particularly when cells are given to immunocompentent individuals.

  14. Recognition of Human Erythrocyte Receptors by the Tryptophan-Rich Antigens of Monkey Malaria Parasite Plasmodium knowlesi.

    Directory of Open Access Journals (Sweden)

    Kriti Tyagi

    Full Text Available The monkey malaria parasite Plasmodium knowlesi also infect humans. There is a lack of information on the molecular mechanisms that take place between this simian parasite and its heterologous human host erythrocytes leading to this zoonotic disease. Therefore, we investigated here the binding ability of P. knowlesi tryptophan-rich antigens (PkTRAgs to the human erythrocytes and sharing of the erythrocyte receptors between them as well as with other commonly occurring human malaria parasites.Six PkTRAgs were cloned and expressed in E.coli as well as in mammalian CHO-K1 cell to determine their human erythrocyte binding activity by cell-ELISA, and in-vitro rosetting assay, respectively.Three of six PkTRAgs (PkTRAg38.3, PkTRAg40.1, and PkTRAg67.1 showed binding to human erythrocytes. Two of them (PkTRAg40.1 and PkTRAg38.3 showed cross-competition with each other as well as with the previously described P.vivax tryptophan-rich antigens (PvTRAgs for human erythrocyte receptors. However, the third protein (PkTRAg67.1 utilized the additional but different human erythrocyte receptor(s as it did not cross-compete for erythrocyte binding with either of these two PkTRAgs as well as with any of the PvTRAgs. These three PkTRAgs also inhibited the P.falciparum parasite growth in in-vitro culture, further indicating the sharing of human erythrocyte receptors by these parasite species and the biological significance of this receptor-ligand interaction between heterologous host and simian parasite.Recognition and sharing of human erythrocyte receptor(s by PkTRAgs with human parasite ligands could be part of the strategy adopted by the monkey malaria parasite to establish inside the heterologous human host.

  15. Recognition of Human Erythrocyte Receptors by the Tryptophan-Rich Antigens of Monkey Malaria Parasite Plasmodium knowlesi.

    Science.gov (United States)

    Tyagi, Kriti; Gupta, Deepali; Saini, Ekta; Choudhary, Shilpa; Jamwal, Abhishek; Alam, Mohd Shoeb; Zeeshan, Mohammad; Tyagi, Rupesh K; Sharma, Yagya D

    2015-01-01

    The monkey malaria parasite Plasmodium knowlesi also infect humans. There is a lack of information on the molecular mechanisms that take place between this simian parasite and its heterologous human host erythrocytes leading to this zoonotic disease. Therefore, we investigated here the binding ability of P. knowlesi tryptophan-rich antigens (PkTRAgs) to the human erythrocytes and sharing of the erythrocyte receptors between them as well as with other commonly occurring human malaria parasites. Six PkTRAgs were cloned and expressed in E.coli as well as in mammalian CHO-K1 cell to determine their human erythrocyte binding activity by cell-ELISA, and in-vitro rosetting assay, respectively. Three of six PkTRAgs (PkTRAg38.3, PkTRAg40.1, and PkTRAg67.1) showed binding to human erythrocytes. Two of them (PkTRAg40.1 and PkTRAg38.3) showed cross-competition with each other as well as with the previously described P.vivax tryptophan-rich antigens (PvTRAgs) for human erythrocyte receptors. However, the third protein (PkTRAg67.1) utilized the additional but different human erythrocyte receptor(s) as it did not cross-compete for erythrocyte binding with either of these two PkTRAgs as well as with any of the PvTRAgs. These three PkTRAgs also inhibited the P.falciparum parasite growth in in-vitro culture, further indicating the sharing of human erythrocyte receptors by these parasite species and the biological significance of this receptor-ligand interaction between heterologous host and simian parasite. Recognition and sharing of human erythrocyte receptor(s) by PkTRAgs with human parasite ligands could be part of the strategy adopted by the monkey malaria parasite to establish inside the heterologous human host.

  16. Timing of in utero malaria exposure influences fetal CD4 T cell regulatory versus effector differentiation

    Directory of Open Access Journals (Sweden)

    Mary Prahl

    2016-10-01

    Full Text Available Abstract Background In malaria-endemic areas, the first exposure to malaria antigens often occurs in utero when the fetal immune system is poised towards the development of tolerance. Children exposed to placental malaria have an increased risk of clinical malaria in the first few years of life compared to unexposed children. Recent work has suggested the potential of pregnancy-associated malaria to induce immune tolerance in children living in malaria-endemic areas. A study was completed to evaluate the effect of malaria exposure during pregnancy on fetal immune tolerance and effector responses. Methods Using cord blood samples from a cohort of mother-infant pairs followed from early in pregnancy until delivery, flow cytometry analysis was completed to assess the relationship between pregnancy-associated malaria and fetal cord blood CD4 and dendritic cell phenotypes. Results Cord blood FoxP3+ Treg counts were higher in infants born to mothers with Plasmodium parasitaemia early in pregnancy (12–20 weeks of gestation; p = 0.048, but there was no association between Treg counts and the presence of parasites in the placenta at the time of delivery (by loop-mediated isothermal amplification (LAMP; p = 0.810. In contrast, higher frequencies of activated CD4 T cells (CD25+FoxP3−CD127+ were observed in the cord blood of neonates with active placental Plasmodium infection at the time of delivery (p = 0.035. This population exhibited evidence of effector memory differentiation, suggesting priming of effector T cells in utero. Lastly, myeloid dendritic cells were higher in the cord blood of infants with histopathologic evidence of placental malaria (p < 0.0001. Conclusion Together, these data indicate that in utero exposure to malaria drives expansion of both regulatory and effector T cells in the fetus, and that the timing of this exposure has a pivotal role in determining the polarization of the fetal immune response.

  17. Moessbauer studies of blood diseases: thalassemia and malaria

    International Nuclear Information System (INIS)

    Bauminger, E.R.

    1988-01-01

    In 57 F Moessbauer studies of blood samples obtained from patients with thalassemia large amounts of iron, yielding a well defined spectrum, different from that obtained in oxy - or deoxy-hemoglobin, were found. The additional iron component was identified as due to ferritin - the iron storage protein. The amounts of ferritin-like iron were comparable to those of hemoglobin iron and were especially large in reticulocytes. Desferral was found to remove ferritin-like iron from serum, but not from red blood cells. In malaria, a parasite induced blood disease, the iron containing compound in the malarial pigment in rats infected by Plasmodium berghei was found to be trivalent high spin, different from any known iron porphyrin, yet was found to be similar to hemin in human blood cells infected by P. falciparum. The difference in the spectra obtained in RBC infected with drug sensitive and drug resistance strains and the effect of medication on the spectra is discussed. (author)

  18. Variant surface antigen-specific IgG and protection against clinical consequences of pregnancy-associated Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Staalsoe, Trine; Shulman, Caroline E; Bulmer, Judith N

    2004-01-01

    BACKGROUND: Pregnancy-associated malaria caused by Plasmodium falciparum adherence to chondroitin sulfate A in the placental intervillous space is a major cause of low birthweight and maternal anaemia in areas of endemic P falciparum transmission. Adhesion-blocking antibodies that specifically...... recognise parasite-encoded variant surface antigens (VSA) are associated with resistance to pregnancy-associated malaria. We looked for a possible relation between VSA-specific antibody concentrations, placental infection, and protection from low birthweight and maternal anaemia. METHODS: We used flow...... cytometry to measure VSA-specific IgG concentrations in plasma samples taken during child birth from 477 Kenyan women selected from a cohort of 910 women on the basis of HIV-1 status, gravidity, and placental histology. We measured VSA expressed by one placental P falciparum isolate and two isolates...

  19. Liver or blood-stage arrest during malaria sporozoite immunization: the later the better?

    NARCIS (Netherlands)

    Nganou Makamdop, C.K.; Sauerwein, R.W.

    2013-01-01

    So far, the best immunization strategies to achieve high levels of protection against malaria are based on whole parasites. Complete sterile protection can be obtained in rodent models after immunization with sporozoites and chemoprophylaxis, or with sporozoites attenuated either genetically or by

  20. Application of a scalable plant transient gene expression platform for malaria vaccine development

    Directory of Open Access Journals (Sweden)

    Holger eSpiegel

    2015-12-01

    Full Text Available Despite decades of intensive research efforts there is currently no vaccine that provides sustained sterile immunity against malaria. In this context, a large number of targets from the different stages of the Plasmodium falciparum life cycle have been evaluated as vaccine candidates. None of these candidates has fulfilled expectations, and as long as we lack a single target that induces strain-transcending protective immune responses, combining key antigens from different life cycle stages seems to be the most promising route towards the development of efficacious malaria vaccines. After the identification of potential targets using approaches such as omics-based technology and reverse immunology, the rapid expression, purification and characterization of these proteins, as well as the generation and analysis of fusion constructs combining different promising antigens or antigen domains before committing to expensive and time consuming clinical development, represents one of the bottlenecks in the vaccine development pipeline. The production of recombinant proteins by transient gene expression in plants is a robust and versatile alternative to cell-based microbial and eukaryotic production platforms. The transfection of plant tissues and/or whole plants using Agrobacterium tumefaciens offers a low technical entry barrier, low costs and a high degree of flexibility embedded within a rapid and scalable workflow. Recombinant proteins can easily be targeted to different subcellular compartments according to their physicochemical requirements, including post-translational modifications, to ensure optimal yields of high quality product, and to support simple and economical downstream processing. Here we demonstrate the use of a plant transient expression platform based on transfection with A. tumefaciens as essential component of a malaria vaccine development workflow involving screens for expression, solubility and stability using fluorescent fusion

  1. A multi-stage malaria vaccine candidate targeting both transmission and asexual parasite life-cycle stages

    DEFF Research Database (Denmark)

    Theisen, Michael; Roeffen, Will; Singh, Susheel K

    2014-01-01

    that combine antigens from both stages may provide direct protection and indirect benefit by reducing the force of infection. We constructed a chimeric antigen composed of a fragment of the Plasmodium falciparum (Pf) glutamate-rich protein fused in frame to a correctly folded fragment of Pfs48/45. The chimera...... dependent cellular inhibition assay. The combined data provide a strong rationale for entering the next phase of clinical grade production and testing....

  2. Distinct kinetics of memory B-cell and plasma-cell responses in peripheral blood following a blood-stage Plasmodium chabaudi infection in mice.

    Directory of Open Access Journals (Sweden)

    Eunice W Nduati

    2010-11-01

    Full Text Available B cell and plasma cell responses take place in lymphoid organs, but because of the inaccessibility of these organs, analyses of human responses are largely performed using peripheral blood mononuclear cells (PBMC. To determine whether PBMC are a useful source of memory B cells and plasma cells in malaria, and whether they reflect Plasmodium-specific B cell responses in spleen or bone marrow, we have investigated these components of the humoral response in PBMC using a model of Plasmodium chabaudi blood-stage infections in C57BL/6 mice. We detected memory B cells, defined as isotype-switched IgD(- IgM(- CD19(+ B cells, and low numbers of Plasmodium chabaudi Merozoite Surface Protein-1 (MSP1-specific memory B cells, in PBMC at all time points sampled for up to 90 days following primary or secondary infection. By contrast, we only detected CD138(+ plasma cells and MSP1-specific antibody-secreting cells within a narrow time frame following primary (days 10 to 25 or secondary (day 10 infection. CD138(+ plasma cells in PBMC at these times expressed CD19, B220 and MHC class II, suggesting that they were not dislodged bone-marrow long-lived plasma cells, but newly differentiated migratory plasmablasts migrating to the bone marrow; thus reflective of an ongoing or developing immune response. Our data indicates that PBMC can be a useful source for malaria-specific memory B cells and plasma cells, but extrapolation of the results to human malaria infections suggests that timing of sampling, particularly for plasma cells, may be critical. Studies should therefore include multiple sampling points, and at times of infection/immunisation when the B-cell phenotypes of interest are likely to be found in peripheral blood.

  3. Premunition in Plasmodium falciparum malaria

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-08

    Mar 8, 2010 ... antigenic polymorphism, shedding of parts of parasite proteins, cross-reactive epitopes of antigens of ... Due to the lack of HLA molecules on the surface of the .... Susceptibility and death rates in P. falciparum malaria are.

  4. ABO Blood Groups Influence Macrophage-mediated Phagocytosis of Plasmodium falciparum-infected Erythrocytes

    Science.gov (United States)

    Branch, Donald R.; Hult, Annika K.; Olsson, Martin L.; Liles, W. Conrad; Cserti-Gazdewich, Christine M.; Kain, Kevin C.

    2012-01-01

    Erythrocyte polymorphisms associated with a survival advantage to Plasmodium falciparum infection have undergone positive selection. There is a predominance of blood group O in malaria-endemic regions, and several lines of evidence suggest that ABO blood groups may influence the outcome of P. falciparum infection. Based on the hypothesis that enhanced innate clearance of infected polymorphic erythrocytes is associated with protection from severe malaria, we investigated whether P. falciparum-infected O erythrocytes are more efficiently cleared by macrophages than infected A and B erythrocytes. We show that human macrophages in vitro and mouse monocytes in vivo phagocytose P. falciparum-infected O erythrocytes more avidly than infected A and B erythrocytes and that uptake is associated with increased hemichrome deposition and high molecular weight band 3 aggregates in infected O erythrocytes. Using infected A1, A2, and O erythrocytes, we demonstrate an inverse association of phagocytic capacity with the amount of A antigen on the surface of infected erythrocytes. Finally, we report that enzymatic conversion of B erythrocytes to type as O before infection significantly enhances their uptake by macrophages to observed level comparable to that with infected O wild-type erythrocytes. These data provide the first evidence that ABO blood group antigens influence macrophage clearance of P. falciparum-infected erythrocytes and suggest an additional mechanism by which blood group O may confer resistance to severe malaria. PMID:23071435

  5. ABO blood groups of residents and the ABO host choice of malaria vectors in southern Iran.

    Science.gov (United States)

    Anjomruz, Mehdi; Oshaghi, Mohammad A; Sedaghat, Mohammad M; Pourfatollah, Ali A; Raeisi, Ahmad; Vatandoost, Hassan; Mohtarami, Fatemeh; Yeryan, Mohammad; Bakhshi, Hassan; Nikpoor, Fatemeh

    2014-01-01

    Recent epidemiological evidences revealed the higher prevalence of 'O' blood group in the residents of malaria-endemic areas. Also some data indicated preference of mosquitoes to 'O' group. The aim of this study was to determine ABO group ratio in the residents as well as ABO group preference of Anopheles in two malaria endemic areas in south of Iran. Agglutination method was used for ABO typing of residents. Field blood fed Anopheles specimens were tested against vertebrate DNA using mtDNA-cytB PCR-RFLP and then the human fed specimens were tested for ABO groups using multiplex allele-specific PCR. A total of 409 human blood samples were identified, of which 150(36.7%) were 'O' group followed by 113(27.6%), 109(26.7%), and 37(9.0%) of A, B, and AB groups respectively. Analyzing of 95 blood fed mosquitoes revealed that only four Anopheles stephensi had fed human blood with A(1), B(1), and AB(2) groups. Result of this study revealed high prevalence of O group in south of Iran. To our knowledge, it is the first ABO molecular typing of blood meal in mosquitoes; however, due to low number of human blood fed specimens, ABO host choice of the mosquitoes remains unknown. This study revealed that ABO blood preference of malaria vectors and other arthropod vectors deserves future research. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Antibodies to malaria vaccine candidates are associated with chloroquine or sulphadoxine/pyrimethamine treatment efficacy in children in an endemic area of Burkina Faso

    DEFF Research Database (Denmark)

    Diarra, Amidou; Nebie, Issa; Tiono, Alfred

    2012-01-01

    ABSTRACT: BACKGROUND: Patient immune status is thought to affect the efficacy of anti-malarial chemotherapy. This is a subject of some importance, since evidence of immunity-related interactions may influence our use of chemotherapy in populations with drug resistance, as well as assessment...... of the value of suboptimal vaccines. The study aim was to investigate relationship between antibodies and anti-malarial drug treatment outcomes. METHODS: Some 248 children aged 0.5 and 15 years were recruited prior to the high malaria transmission season. Venous blood (5 ml) was obtained from each child...... to measure antibody levels to selected malaria antigens, using ELISA. Blood smears were also performed to assess drug efficacy and malaria infection prevalence. Children were actively followed up to record clinical malaria cases. RESULTS: IgG levels to MSP3 were always higher in the successfully treated...

  7. Falciparum malaria transmitted by a thick blood smear negative kidney donor

    NARCIS (Netherlands)

    Bemelman, Frederike; de Blok, Koen; de Vries, Peter; Surachno, S.; ten Berge, Ineke

    2004-01-01

    This report describes a case of P. falciparum transmission by a recent-immigrant renal donor. The donor tested negative upon microscopy of a thick blood smear. The diagnosis was made after analysis of a Quantified Buffy Coat(R). In our opinion, a renal donor from a malaria endemic country should be

  8. Duffy blood group antigens: structure, serological properties and function

    Directory of Open Access Journals (Sweden)

    Ewa Łukasik

    2016-03-01

    Full Text Available Duffy (Fy blood group antigens are located on seven-transmembrane glycoprotein expressed on erythrocytes and endothelial cells, which acts as atypical chemokine receptor (ACKR1 and malarial receptor. The biological role of the Duffy glycoprotein has not been explained yet. It is suggested that Duffy protein modulate the intensity of the inflammatory response. The Duffy blood group system consists of two major antigens, Fya and Fyb, encoded by two codominant alleles designated FY*A and FY*B which differ by a single nucleotide polymorphism (SNP at position 125G>A of the FY gene that results in Gly42Asp amino acid change in the Fya and Fyb antigens, respectively. The presence of antigen Fya and/or Fyb on the erythrocytes determine three Duffy-positive phenotypes: Fy(a+b-, Fy(a-b+ and Fy(a+b+, identified in Caucasian population. The Duffy-negative phenotype Fy(a-b-, frequent in Africans, but very rare in Caucasians, is defined by the homozygous state of FY*B-33 alleles. The FY*B-33 allele is associated with a SNP -33T>C in the promoter region of the FY gene, which suppresses erythroid expression of this gene without affecting its expression in other tissues. The FY*X allele, found in Caucasians, is correlated with weak expression of Fyb antigen. Fyx antigen differs from the native Fyb by the Arg89Cys and Ala100Thr amino acid substitutions due to SNPs: 265C>T and 298G>A in FY*B allele. The frequency of the FY alleles shows marked geographic disparities, the FY*B-33 allele is predominant in Africans, the FY*B in Caucasians, while the FY*A allele is dominant in Asians and it is the most prevalent allele globally.

  9. Mosquito blood-meal analysis for avian malaria study in wild bird communities: laboratory verification and application to Culex sasai (Diptera: Culicidae) collected in Tokyo, Japan.

    Science.gov (United States)

    Kim, Kyeong Soon; Tsuda, Yoshio; Sasaki, Toshinori; Kobayashi, Mutsuo; Hirota, Yoshikazu

    2009-10-01

    We conducted laboratory experiments to verify molecular techniques of avian malaria parasite detection distinguishing between an infected mosquito (oocysts on midgut wall) and infective mosquito (sporozoites in salivary glands) in parallel with blood-meal identification from individual blood-fed mosquitoes prior to application to field survey for avian malaria. Domestic fowl infected with Plasmodium gallinaceum was exposed to a vector and non-vector mosquito species, Aedes aegypti and Culex pipiens pallens, respectively, to compare the time course of polymerase chain reaction (PCR) detection for parasite between competent and refractory mosquitoes. DNA of the domestic fowl was detectable for at least 3 days after blood feeding. The PCR-based detection of P. gallinaceum from the abdomen and thorax of A. aegypti corresponded to the microscopic observation of oocysts and sporozoites. Therefore, this PCR-based method was considered useful as one of the criteria to assess developmental stages of Plasmodium spp. in mosquito species collected in the field. We applied the same PCR-based method to 21 blood-fed C. sasai mosquitoes collected in Rinshi-no-mori Park in urban Tokyo, Japan. Of 15 blood meals of C. sasai successfully identified, 86.7% were avian-derived, 13.3% were bovine-derived. Plasmodium DNA was amplified from the abdomen of three C. sasai specimens having an avian blood meal from the Great Tit (Parus major), Pale Thrush (Turdus pallidus), and Jungle Crow (Corvus macrorhynchos). This is the first field study on host-feeding habits of C. sasai in relation to the potential role as a vector for avian malaria parasites transmitted in the Japanese wild bird community.

  10. Native Mass Spectrometry, Ion mobility, and Collision-Induced Unfolding Categorize Malaria Antigen/Antibody Binding

    Science.gov (United States)

    Huang, Yining; Salinas, Nichole D.; Chen, Edwin; Tolia, Niraj H.; Gross, Michael L.

    2017-09-01

    Plasmodium vivax Duffy Binding Protein (PvDBP) is a promising vaccine candidate for P. vivax malaria. Recently, we reported the epitopes on PvDBP region II (PvDBP-II) for three inhibitory monoclonal antibodies (2D10, 2H2, and 2C6). In this communication, we describe the combination of native mass spectrometry and ion mobility (IM) with collision induced unfolding (CIU) to study the conformation and stabilities of three malarial antigen-antibody complexes. These complexes, when collisionally activated, undergo conformational changes that depend on the location of the epitope. CIU patterns for PvDBP-II in complex with antibody 2D10 and 2H2 are highly similar, indicating comparable binding topology and stability. A different CIU fingerprint is observed for PvDBP-II/2C6, indicating that 2C6 binds to PvDBP-II on an epitope different from 2D10 and 2H2. This work supports the use of CIU as a means of classifying antigen-antibody complexes by their epitope maps in a high throughput screening workflow. [Figure not available: see fulltext.

  11. Discovery of HDAC inhibitors with potent activity against multiple malaria parasite life cycle stages.

    Science.gov (United States)

    Hansen, Finn K; Sumanadasa, Subathdrage D M; Stenzel, Katharina; Duffy, Sandra; Meister, Stephan; Marek, Linda; Schmetter, Rebekka; Kuna, Krystina; Hamacher, Alexandra; Mordmüller, Benjamin; Kassack, Matthias U; Winzeler, Elizabeth A; Avery, Vicky M; Andrews, Katherine T; Kurz, Thomas

    2014-07-23

    In this work we investigated the antiplasmodial activity of a series of HDAC inhibitors containing an alkoxyamide connecting-unit linker region. HDAC inhibitor 1a (LMK235), previously shown to be a novel and specific inhibitor of human HDAC4 and 5, was used as a starting point to rapidly construct a mini-library of HDAC inhibitors using a straightforward solid-phase supported synthesis. Several of these novel HDAC inhibitors were found to have potent in vitro activity against asexual stage Plasmodium falciparum malaria parasites. Representative compounds were shown to hyperacetylate P. falciparum histones and to inhibit deacetylase activity of recombinant PfHDAC1 and P. falciparum nuclear extracts. All compounds were also screened in vitro for activity against Plasmodium berghei exo-erythrocytic stages and selected compounds were further tested against late stage (IV and V) P. falciparum gametocytes. Of note, some compounds showed nanomolar activity against all three life cycle stages tested (asexual, exo-erythrocytic and gametocyte stages) and several compounds displayed significantly increased parasite selectivity compared to the reference HDAC inhibitor suberoylanilide hydroxamic acid (SAHA). These data suggest that it may be possible to develop HDAC inhibitors that target multiple malaria parasite life cycle stages. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. Normative evaluation of blood banks in the Brazilian Amazon region in respect to the prevention of transfusion-transmitted malaria

    Directory of Open Access Journals (Sweden)

    Daniel Roberto Coradi Freitas

    2014-12-01

    Full Text Available Objective:To evaluate blood banks in the Brazilian Amazon region with regard to structure and procedures directed toward the prevention of transfusion-transmitted malaria (TTM.Methods:This was a normative evaluation based on the Brazilian National Health Surveillance Agency (ANVISA Resolution RDC No. 153/2004. Ten blood banks were included in the study and classified as 'adequate' (≥80 points, 'partially adequate' (from 50 to 80 points, or 'inadequate' (<50 points. The following components were evaluated: 'donor education' (5 points, 'clinical screening' (40 points, 'laboratory screening' (40 points and 'hemovigilance' (15 points.Results:The overall median score was 49.8 (minimum = 16; maximum = 78. Five blood banks were classified as 'inadequate' and five as 'partially adequate'. The median clinical screening score was 26 (minimum = 16; maximum = 32. The median laboratory screening score was 20 (minimum = 0; maximum = 32. Eight blood banks performed laboratory tests for malaria; six tested all donations. Seven used thick smears, but only one performed this procedure in accordance with Ministry of Health requirements. One service had a Program of External Quality Evaluation for malaria testing. With regard to hemovigilance, two institutions reported having procedures to detect cases of transfusion-transmitted malaria.Conclusion:Malaria is neglected as a blood–borne disease in the blood banks of the Brazilian Amazon region. None of the institutions were classified as 'adequate' in the overall classification or with regard to clinical screening and laboratory screening. Blood bank professionals, the Ministry of Health and Health Surveillance service managers need to pay more attention to this matter so that the safety procedures required by law are complied with.

  13. Safety and immunogenicity of GMZ2 - a MSP3-GLURP fusion protein malaria vaccine candidate

    DEFF Research Database (Denmark)

    Esen, Meral; Kremsner, Peter G; Schleucher, Regina

    2009-01-01

    Malaria is a major public health problem in Sub-Saharan Africa. In highly endemic regions infants, children and pregnant women are mostly affected. An effective malaria vaccine would complement existing malaria control strategies because it can be integrated in existing immunization programs easily....... Here we present the results of the first phase Ia clinical trial of GMZ2 adjuvanted in aluminium hydroxide. GMZ2 is a malaria vaccine candidate, designed upon the rationale to induce immune responses against asexual blood stages of Plasmodium falciparum similar to those encountered in semi...... is a safe and immunogenic malaria vaccine candidate suitable for further clinical development....

  14. Timing of the human prenatal antibody response to Plasmodium falciparum antigens.

    Directory of Open Access Journals (Sweden)

    Samuel Tassi Yunga

    Full Text Available Plasmodium falciparum (Pf-specific T- and B-cell responses may be present at birth; however, when during fetal development antibodies are produced is unknown. Accordingly, cord blood samples from 232 preterm (20-37 weeks of gestation and 450 term (≥37 weeks babies were screened for IgM to Pf blood-stage antigens MSP1, MSP2, AMA1, EBA175 and RESA. Overall, 25% [95% CI = 22-28%] of the 682 newborns were positive for IgM to ≥1 Pf antigens with the earliest response occurring at 22 weeks. Interestingly, the odds of being positive for cord blood Pf IgM decreased with gestational age (adjusted OR [95% CI] at 20-31 weeks = 2.55 [1.14-5.85] and at 32-36 weeks = 1.97 [0.92-4.29], with ≥37 weeks as reference; however, preterm and term newborns had similar levels of Pf IgM and recognized a comparable breadth of antigens. Having cord blood Pf IgM was associated with placental malaria (adjusted OR [95% CI] = 2.37 [1.25-4.54]. To determine if in utero exposure occurred via transplacental transfer of Pf-IgG immune complexes (IC, IC containing MSP1 and MSP2 were measured in plasma of 242 mother-newborn pairs. Among newborns of IC-positive mothers (77/242, the proportion of cord samples with Pf IC increased with gestational age but was not associated with Pf IgM, suggesting that fetal B cells early in gestation had not been primed by IC. Finally, when cord mononuclear cells from 64 term newborns were cultured in vitro, only 11% (7/64 of supernatants had Pf IgM; whereas, 95% (61/64 contained secreted Pf IgG. These data suggest fetal B cells are capable of making Pf-specific IgM from early in the second trimester and undergo isotype switching to IgG towards term.

  15. A Novel Virus-Like Particle Based Vaccine Platform Displaying the Placental Malaria Antigen VAR2CSA.

    Directory of Open Access Journals (Sweden)

    Susan Thrane

    Full Text Available Placental malaria caused by Plasmodium falciparum is a major cause of mortality and severe morbidity. Clinical testing of a soluble protein-based vaccine containing the parasite ligand, VAR2CSA, has been initiated. VAR2CSA binds to the human receptor chondroitin sulphate A (CSA and is responsible for sequestration of Plasmodium falciparum infected erythrocytes in the placenta. It is imperative that a vaccine against malaria in pregnancy, if administered to women before they become pregnant, can induce a strong and long lasting immune response. While most soluble protein-based vaccines have failed during clinical testing, virus-like particle (VLP based vaccines (e.g., the licensed human papillomavirus vaccines have demonstrated high efficacy, suggesting that the spatial assembly of the vaccine antigen is a critical parameter for inducing an optimal long-lasting protective immune response. We have developed a VLP vaccine display platform by identifying regions of the HPV16 L1 coat protein where a biotin acceptor site (AviTagTM can be inserted without compromising VLP-assembly. Subsequent biotinylation of Avi-L1 VLPs allow us to anchor monovalent streptavidin (mSA-fused proteins to the biotin, thereby obtaining a dense and repetitive VLP-display of the vaccine antigen. The mSA-VAR2CSA antigen was delivered on the Avi-L1 VLP platform and tested in C57BL/6 mice in comparison to two soluble protein-based vaccines consisting of naked VAR2CSA and mSA-VAR2CSA. The mSA-VAR2CSA Avi-L1 VLP and soluble mSA-VAR2CSA vaccines induced higher antibody titers than the soluble naked VAR2CSA vaccine after three immunizations. The VAR2CSA Avi-L1 VLP vaccine induced statistically significantly higher endpoint titres compared to the soluble mSA-VAR2CSA vaccine, after 1st and 2nd immunization; however, this difference was not statistically significant after 3rd immunization. Importantly, the VLP-VAR2CSA induced antibodies were functional in inhibiting the binding of

  16. Effect of schistosoma infection on malaria immune response: A systematic review.

    Science.gov (United States)

    Yesuf, Elias Ali; Dejene, Tariku

    2011-01-01

    Background Worldwide an estimated 225 million cases and about 800, 000 deaths due to malaria were documented in 2009. Malaria vaccines have been developed as a malaria control strategy. Immune response to these vaccines might be affected by the blood fluke schistosoma which is often co-endemic with malaria in Sub-Saharan Africa where most of phase II and Phase III malaria vaccine trials were conducted.Objectives To systematically search, appraise and synthesize the best available evidence on the effect of schistosoma infection on the immune response to malaria antigens and provide direction to future malaria vaccination trials.Types of participants The review considered studies with above 5 year old individuals as participants.Phenomenon of interest The phenomenon of interest was the presence of schistosoma infectionTypes of outcomes Blood serum levels of Th1 and Th2 specific to Merozoite Surface Proteins 1, 2, and 3 of malaria were considered as primary outcomes. While blood serum levels of IgG1, IgG2, IgG3, IFN-γ, IL-10 and TGF-β directed against Merozoite Surface Proteins were considered as secondary outcomes.Types of studies Studies with any quantitative study designs were considered for inclusion.Search Strategy Any quantitative English language articles published between 1994 and April 2011 were sought using a comprehensive search strategy.Assessment of methodological quality It was done using Joanna Briggs Institutes' Meta Analysis of Statistical Assessment and Review Instrument critical appraisal tools.Data extraction Data extraction was carried out using the Joanna Briggs Institute Meta Analysis of Statistical Assessment and Review Instrument data extraction tool.Data synthesis Meta- analysis was conducted using random effects model with an inverse variance method with RevMan5 software. Heterogeneity between the studies was assessed using ξ test at a p-value of SMD (95% CI), 0.15 (-2.00, 2.31), p=0.89.Similarly a small and statistically not significant

  17. The Malaria System MicroApp: A New, Mobile Device-Based Tool for Malaria Diagnosis.

    Science.gov (United States)

    Oliveira, Allisson Dantas; Prats, Clara; Espasa, Mateu; Zarzuela Serrat, Francesc; Montañola Sales, Cristina; Silgado, Aroa; Codina, Daniel Lopez; Arruda, Mercia Eliane; I Prat, Jordi Gomez; Albuquerque, Jones

    2017-04-25

    Malaria is a public health problem that affects remote areas worldwide. Climate change has contributed to the problem by allowing for the survival of Anopheles in previously uninhabited areas. As such, several groups have made developing news systems for the automated diagnosis of malaria a priority. The objective of this study was to develop a new, automated, mobile device-based diagnostic system for malaria. The system uses Giemsa-stained peripheral blood samples combined with light microscopy to identify the Plasmodium falciparum species in the ring stage of development. The system uses image processing and artificial intelligence techniques as well as a known face detection algorithm to identify Plasmodium parasites. The algorithm is based on integral image and haar-like features concepts, and makes use of weak classifiers with adaptive boosting learning. The search scope of the learning algorithm is reduced in the preprocessing step by removing the background around blood cells. As a proof of concept experiment, the tool was used on 555 malaria-positive and 777 malaria-negative previously-made slides. The accuracy of the system was, on average, 91%, meaning that for every 100 parasite-infected samples, 91 were identified correctly. Accessibility barriers of low-resource countries can be addressed with low-cost diagnostic tools. Our system, developed for mobile devices (mobile phones and tablets), addresses this by enabling access to health centers in remote communities, and importantly, not depending on extensive malaria expertise or expensive diagnostic detection equipment. ©Allisson Dantas Oliveira, Clara Prats, Mateu Espasa, Francesc Zarzuela Serrat, Cristina Montañola Sales, Aroa Silgado, Daniel Lopez Codina, Mercia Eliane Arruda, Jordi Gomez i Prat, Jones Albuquerque. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 25.04.2017.

  18. Prevalence of Hepatitis-B Surface Antigen among Blood Donors in ...

    African Journals Online (AJOL)

    Information is scarce on the prevalence of Hepatitis-B Virus (HBV) infection among blood donors in Taraba State. Hepatitis-B surface antigen (HBsAg) ELISA [Gudans Industrial Hong 2 Kou, China] was used to determine the prevalence of HBsAg among 804 blood donors aged between 11 and 65 years in Federal Medical ...

  19. Effect of placental malaria on birth weight of babies in Nnewi, Anambra state, Nigeria.

    Science.gov (United States)

    Oraneli, Boniface U; Okeke, Ogochukwu C; Ubachukwu, Patience O

    2013-03-01

    In malaria-endemic countries, one adverse consequence of placental malaria on infants is low birth weight (LBW) caused by intra-uterine growth retardation and pre-term delivery. The effect of placental malaria on birth weight of babies was investigated in Nnamdi Azikiwe University Teaching Hospital (NAUTH), Nnewi, Anambra state, Nigeria. Placental blood was collected from 364 women who gave birth in NAUTH. Thin and thick placental blood smears were made and checked for the presence of malaria parasites. Plasmodium falciparum antigen rapid kit was used to confirm the presence of P. falciparum. New-borns were weighed and classified as normal birth weight (≥2500 g) or LBW (<2500 g). Analysis of variance (ANOVA), Student's t and Pearson chi-square tests were used to compare means and percentages. Risk factors for LBW were also determined. Placental malaria was found in 55.2% (n = 201) of the women. Placental malaria was associated with gravidity while age was not. In all the age groups, primigravidae and secundigravidae were mostly infected. Women with placental malaria delivered more LBW babies (32.1%) than their uninfected counterparts (5.5%), with primigravidae having more LBW babies. Similarly, weight of babies born by infected women was significantly different from that of uninfected women (p <0.0001). In multivariate analysis, placental malaria was associated with LBW (OR 0.1, 95% CI 0.06-0.17, p <0.0001). The result suggests a high prevalence of placental malaria and its close association with LBW in pregnant women attending antenatal clinic in NAUTH. It was also found that the percentage of LBW was highest in primigravidae.

  20. Suppressed peripheral and placental blood lymphoproliferative responses in first pregnancies: relevance to malaria

    DEFF Research Database (Denmark)

    Rasheed, F N; Bulmer, J N; Dunn, D T

    1993-01-01

    protein derivative [PPD]) were examined in the peripheral and placental blood of 102 Gambian women at the time of delivery. The lymphoproliferative responses of placental cells were poor to all antigens compared with those of peripheral blood (Candida P PPD P ....003, and 190N P = 0.10). Reduced proliferative capacity of placental mononuclear cells may contribute to heavy parasite colonization of this organ. Proliferation to malarial and PPD but not Candida antigens was selectively suppressed in peripheral and placental blood of primiparae relative to multiparae (F32 P...... = 0.07, 190L P = 0.09, 190N P = 0.007, PPD P = 0.09). Autologous plasma contained factors that suppressed lymphoproliferative responses to the same series of antigens to which the primiparae responded poorly (F32 P PPD P = 0.03). Malarial antibody levels were...

  1. Maternal malaria, birth size and blood pressure in Nigerian newborns: insights into the developmental origins of hypertension from the Ibadan growth cohort.

    Directory of Open Access Journals (Sweden)

    Omolola O Ayoola

    Full Text Available Hypertension is an increasing health issue in sub-Saharan Africa where malaria remains common in pregnancy. We established a birth cohort in Nigeria to evaluate the early impact of maternal malaria on newborn blood pressure (BP.Anthropometric measurements, BP, blood films for malaria parasites and haematocrit were obtained in 436 mother-baby pairs. Women were grouped to distinguish between the timing of malaria parasitaemia as 'No Malaria', 'Malaria during pregnancy only' or 'Malaria at delivery', and parasite density as low (<1000 parasites/µl of blood and high (≥ 1000/µl.Prevalence of maternal malaria parasitaemia was 48%, associated with younger maternal age (p<0.001, being primigravid (p = 0.022, lower haematocrit (p = 0.028. High parasite density through pregnancy had the largest effect on mean birth indices so that weight, length, head and mid-upper arm circumferences were smaller by 300 g, 1.1 cm, 0.7 cm and 0.4 cm respectively compared with 'No malaria' (all p ≤ 0.005. In babies of mothers who had 'malaria at delivery', their SBPs adjusted for other confounders were lower respectively by 4.3 and 5.7 mmHg/kg compared with 'malaria during pregnancy only' or 'none'. In contrast the mean newborn systolic (SBP and diastolic BPs (DBP adjusted for birth weight were higher by 1.7 and 1.4 mmHg/kg respectively in babies whose mothers had high compared with low parasitaemia.As expected, prenatal malarial exposure had a significant impact on fetal growth rates. Malaria at delivery was associated with the lowest newborn BPs while malaria through pregnancy, which may attenuate growth of the vascular network, generated higher newborn BPs adjusted for size. These neonatal findings have potential implications for cardiovascular health in sub-Saharan Africa.

  2. Equine peripheral blood mononuclear cells proliferate in response to tetanus toxoid antigen.

    Science.gov (United States)

    McKelvie, J; Little, S; Foster, A P; Cunningham, F M; Hamblin, A

    1998-01-01

    It has been reported that equine peripheral blood mononuclear cells (PBMNs) do not proliferate in response to tetanus toxoid (TT) (Frayne and Stokes 1995, Research in Veterinary Science 59, 79-81). Here we demonstrate that lymphocyte proliferation responses to TT, which are characteristic of a recall antigen, may be achieved under certain culture conditions. Given that TT vaccination is routinely applied to many horses, TT is a suitable antigen for the investigation of cellular immune responses by peripheral blood mononuclear cells in the horse.

  3. A Global Survey of ATPase Activity in Plasmodium falciparum Asexual Blood Stages and Gametocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Corrie; Frando, Andrew; Webb-Robertson, Bobbie-Jo; Anderson, Lindsey N.; Fleck, Neil; Flannery, Erika L.; Fishbaugher, Matthew; Murphree, Taylor A.; Hansen, Joshua R.; Smith, Richard D.; Kappe, Stefan H. I.; Wright, Aaron T.; Grundner, Christoph

    2017-10-27

    Effective malaria control and elimination in hyperendemic areas of the world will require treatment of disease-causing Plasmodium falciparum (Pf) blood stage infection but also blocking parasite transmission from humans to mosquito to prevent disease spread. Numerous antimalarial drugs have become ineffective due to parasite drug resistance and many currently used therapies do not kill gametocytes, highly specialized sexual parasite stages with distinct physiology that are necessary for transmission from the human host to the mosquito vector. Further confounding next generation drug development against Pf is the lack of known biochemical activity for most parasite gene products as well as the unknown metabolic needs of non-replicating gametocyte. Here, we take a systematic activity-based proteomics approach to survey the large and druggable ATPase family that is associated with replicating blood stage asexual parasites and transmissible gametocytes. We experimentally confirm existing annotation and predict ATPase function for 38 uncharacterized proteins. ATPase activity broadly changes during the transition from asexual schizonts to gametocytes, indicating altered metabolism and regulatory roles of ATPases specific for each lifecycle stage. By mapping the activity of ATPases associated with gametocytogenesis, we assign biochemical activity to a large number of uncharacterized proteins and identify new candidate transmission blocking targets.

  4. The disruption of GDP-fucose de novo biosynthesis suggests the presence of a novel fucose-containing glycoconjugate in Plasmodium asexual blood stages.

    Science.gov (United States)

    Sanz, Sílvia; López-Gutiérrez, Borja; Bandini, Giulia; Damerow, Sebastian; Absalon, Sabrina; Dinglasan, Rhoel R; Samuelson, John; Izquierdo, Luis

    2016-11-16

    Glycosylation is an important posttranslational protein modification in all eukaryotes. Besides glycosylphosphatidylinositol (GPI) anchors and N-glycosylation, O-fucosylation has been recently reported in key sporozoite proteins of the malaria parasite. Previous analyses showed the presence of GDP-fucose (GDP-Fuc), the precursor for all fucosylation reactions, in the blood stages of Plasmodium falciparum. The GDP-Fuc de novo pathway, which requires the action of GDP-mannose 4,6-dehydratase (GMD) and GDP-L-fucose synthase (FS), is conserved in the parasite genome, but the importance of fucose metabolism for the parasite is unknown. To functionally characterize the pathway we generated a PfGMD mutant and analyzed its phenotype. Although the labelling by the fucose-binding Ulex europaeus agglutinin I (UEA-I) was completely abrogated, GDP-Fuc was still detected in the mutant. This unexpected result suggests the presence of an alternative mechanism for maintaining GDP-Fuc in the parasite. Furthermore, PfGMD null mutant exhibited normal growth and invasion rates, revealing that the GDP-Fuc de novo metabolic pathway is not essential for the development in culture of the malaria parasite during the asexual blood stages. Nonetheless, the function of this metabolic route and the GDP-Fuc pool that is generated during this stage may be important for gametocytogenesis and sporogonic development in the mosquito.

  5. The disruption of GDP-fucose de novo biosynthesis suggests the presence of a novel fucose-containing glycoconjugate in Plasmodium asexual blood stages

    Science.gov (United States)

    Sanz, Sílvia; López-Gutiérrez, Borja; Bandini, Giulia; Damerow, Sebastian; Absalon, Sabrina; Dinglasan, Rhoel R.; Samuelson, John; Izquierdo, Luis

    2016-01-01

    Glycosylation is an important posttranslational protein modification in all eukaryotes. Besides glycosylphosphatidylinositol (GPI) anchors and N-glycosylation, O-fucosylation has been recently reported in key sporozoite proteins of the malaria parasite. Previous analyses showed the presence of GDP-fucose (GDP-Fuc), the precursor for all fucosylation reactions, in the blood stages of Plasmodium falciparum. The GDP-Fuc de novo pathway, which requires the action of GDP-mannose 4,6-dehydratase (GMD) and GDP-L-fucose synthase (FS), is conserved in the parasite genome, but the importance of fucose metabolism for the parasite is unknown. To functionally characterize the pathway we generated a PfGMD mutant and analyzed its phenotype. Although the labelling by the fucose-binding Ulex europaeus agglutinin I (UEA-I) was completely abrogated, GDP-Fuc was still detected in the mutant. This unexpected result suggests the presence of an alternative mechanism for maintaining GDP-Fuc in the parasite. Furthermore, PfGMD null mutant exhibited normal growth and invasion rates, revealing that the GDP-Fuc de novo metabolic pathway is not essential for the development in culture of the malaria parasite during the asexual blood stages. Nonetheless, the function of this metabolic route and the GDP-Fuc pool that is generated during this stage may be important for gametocytogenesis and sporogonic development in the mosquito. PMID:27849032

  6. Changes in lipid composition during sexual development of the malaria parasite Plasmodium falciparum.

    Science.gov (United States)

    Tran, Phuong N; Brown, Simon H J; Rug, Melanie; Ridgway, Melanie C; Mitchell, Todd W; Maier, Alexander G

    2016-02-06

    The development of differentiated sexual stages (gametocytes) within human red blood cells is essential for the propagation of the malaria parasite, since only mature gametocytes will survive in the mosquito's midgut. Hence gametocytogenesis is a pre-requisite for transmission of the disease. Physiological changes involved in sexual differentiation are still enigmatic. In particular the lipid metabolism-despite being central to cellular regulation and development-is not well explored. Here the lipid profiles of red blood cells infected with the five different sexual stages of Plasmodium falciparum were analysed by mass spectrometry and compared to those from uninfected and asexual trophozoite infected erythrocytes. Fundamental differences between erythrocytes infected with the different parasite stages were revealed. In mature gametocytes many lipids that decrease in the trophozoite and early gametocyte infected red blood cells are regained. In particular, regulators of membrane fluidity, cholesterol and sphingomyelin, increased significantly during gametocyte maturation. Neutral lipids (serving mainly as caloriometric reserves) increased from 3 % of total lipids in uninfected to 27 % in stage V gametocyte infected red blood cells. The major membrane lipid class (phospholipids) decreased during gametocyte development. The lipid profiles of infected erythrocytes are characteristic for the particular parasite life cycle and maturity stages of gametocytes. The obtained lipid profiles are crucial in revealing the lipid metabolism of malaria parasites and identifying targets to interfere with this deadly disease.

  7. Endemic Burkitt lymphoma is associated with strength and diversity of Plasmodium falciparum malaria stage-specific antigen antibody response.

    Science.gov (United States)

    Aka, Peter; Vila, Maria Candida; Jariwala, Amar; Nkrumah, Francis; Emmanuel, Benjamin; Yagi, Masanori; Palacpac, Nirianne Marie Q; Periago, Maria V; Neequaye, Janet; Kiruthu, Christine; Tougan, Takahiro; Levine, Paul H; Biggar, Robert J; Pfeiffer, Ruth M; Bhatia, Kishor; Horii, Toshihiro; Bethony, Jeffrey M; Mbulaiteye, Sam M

    2013-08-01

    Endemic Burkitt lymphoma (eBL) is linked to Plasmodium falciparum (Pf) infection geographically, but evidence from individual-level studies is limited. We investigated this issue among 354 childhood eBL cases and 384 age-, sex-, and location-matched controls enrolled in Ghana from 1965 to 1994. Immunoglobulin G1 (IgG1) and immunoglobulin G3 (IgG3) antibodies to antigens diagnostic of recent infection Pf histidine-rich protein-II (HRP-II) and 6NANP, Pf-vaccine candidates SE36 and 42-kDa region of the 3D7 Pf merozoite surface protein-1 (MSP-1), and tetanus toxoid were measured by indirect enzyme-linked immunoassay. Odds ratios (ORs) and 95% confidence intervals (CIs) for association with eBL were estimated using unconditional logistic regression. After adjustments, eBL was positively associated with HRP-IIIgG3 seropositivity (adjusted OR: 1.60; 95% CI 1.08-2.36) and inversely associated with SE36IgG1 seropositivity (adjusted OR: 0.37; 95% CI 0.21-0.64) and with tetanus toxoidIgG3 levels equal or higher than the mean (adjusted OR: 0.46; 95% CI 0.32-0.66). Anti-MSP-1IgG3 and anti-6NANPIgG3 were indeterminate. eBL risk was potentially 21 times higher (95% CI 5.8-74) in HRP-IIIgG3-seropositive and SE36IgG1-seronegative responders compared with HRP-IIIgG3-seronegative and SE36IgG1-seropositive responders. Our results suggest that recent malaria may be associated with risk of eBL but long-term infection may be protective.

  8. Nested PCR detection of Plasmodium malariae from microscopy confirmed P. falciparum samples in endemic area of NE India.

    Science.gov (United States)

    Dhiman, Sunil; Goswami, Diganta; Kumar, Dinesh; Rabha, Bipul; Sharma, Dhirendra Kumar; Bhola, Rakesh Kumar; Baruah, Indra; Veer, Vijay

    2013-11-01

    The present study evaluates the performance of OptiMAL-IT test and nested PCR assay in detection of malaria parasites. A total of 76 randomly selected blood samples collected from two malaria endemic areas were tested for malaria parasites using microscopy and OptiMAL-IT test in the field. PCR assays were performed in the laboratory using DNA extracted from blood spots of the same samples collected on the FTA classic cards. Of the total of 61 field confirmed malaria positive samples, only 58 (95%) were detected positive using microscopy in the laboratory. Sensitivity, specificity, positive predictive value, negative predictive value and false discovery rate of OptiMal-IT in comparison to the microscopy were 93%, 83%, 95%, 79% and 5%, respectively. On the other hand, the sensitivity and specificity of PCR assay were 97% and 100%, respectively, whereas positive predictive value, negative predictive value and false discovery rate were 100%, 90% and 0%, respectively. The overall performance of OptiMal-IT and PCR assays for malaria diagnosis was 76% and 97%, respectively. PCR assay enabled the identification of infection with Plasmodium malariae Laveran, 1881 in four samples misidentified by microscopy and Plasmodium-specific antigen (PAN) identified by the OptiMAL-IT test. In addition to the standard methods, such PCR assay could be useful to obtain the real incidence of each malaria parasite species for epidemiological perspectives.

  9. Naturally acquired immunity to Plasmodium falciparum malaria in Africa

    DEFF Research Database (Denmark)

    Hviid, Lars

    2005-01-01

    Infection by Plasmodium falciparum parasites can lead to substantial protective immunity to malaria, and available evidence suggest that acquisition of protection against some severe malaria syndromes can be fairly rapid. Although these facts have raised hopes that the development of effective...... protective immunity to P. falciparum malaria is acquired following natural exposure to the parasites is beginning to emerge, not least thanks to studies that have combined clinical and epidemiological data with basic immunological research. This framework involves IgG with specificity for clonally variant...... antigens on the surface of the infected erythrocytes, can explain some of the difficulties in relating particular immune responses with specificity for well-defined antigenic targets to clinical protection, and suggests a radically new approach to controlling malaria-related morbidity and mortality...

  10. Immunogenicity and in vitro Protective Efficacy of a Recombinant Multistage Plasmodium falciparum Candidate Vaccine

    Science.gov (United States)

    Shi, Ya Ping; Hasnain, Seyed E.; Sacci, John B.; Holloway, Brian P.; Fujioka, Hisashi; Kumar, Nirbhay; Wohlhueter, Robert; Hoffman, Stephen L.; Collins, William E.; Lal, Altaf A.

    1999-02-01

    Compared with a single-stage antigen-based vaccine, a multistage and multivalent Plasmodium falciparum vaccine would be more efficacious by inducing "multiple layers" of immunity. We have constructed a synthetic gene that encodes for 12 B cell, 6 T cell proliferative, and 3 cytotoxic T lymphocyte epitopes derived from 9 stage-specific P. falciparum antigens corresponding to the sporozoite, liver, erythrocytic asexual, and sexual stages. The gene was expressed in the baculovirus system, and a 41-kDa antigen, termed CDC/NIIMALVAC-1, was purified. Immunization in rabbits with the purified protein in the presence of different adjuvants generated antibody responses that recognized vaccine antigen, linear peptides contained in the vaccine, and all stages of P. falciparum. In vitro assays of protection revealed that the vaccine-elicited antibodies strongly inhibited sporozoite invasion of hepatoma cells and growth of blood-stage parasites in the presence of monocytes. These observations demonstrate that a multicomponent, multistage malaria vaccine can induce immune responses that inhibit parasite development at multiple stages. The rationale and approach used in the development of a multicomponent P. falciparum vaccine will be useful in the development of a multispecies human malaria vaccine and vaccines against other infectious diseases.

  11. Prospective identification of malaria parasite genes under balancing selection.

    Directory of Open Access Journals (Sweden)

    Kevin K A Tetteh

    Full Text Available Endemic human pathogens are subject to strong immune selection, and interrogation of pathogen genome variation for signatures of balancing selection can identify important target antigens. Several major antigen genes in the malaria parasite Plasmodium falciparum have shown such signatures in polymorphism-versus-divergence indices (comparing with the chimpanzee parasite P. reichenowi, and in allele frequency based indices.To compare methods for prospective identification of genes under balancing selection, 26 additional genes known or predicted to encode surface-exposed proteins of the invasive blood stage merozoite were first sequenced from a panel of 14 independent P. falciparum cultured lines and P. reichenowi. Six genes at the positive extremes of one or both of the Hudson-Kreitman-Aguade (HKA and McDonald-Kreitman (MK indices were identified. Allele frequency based analysis was then performed on a Gambian P. falciparum population sample for these six genes and three others as controls. Tajima's D (TjD index was most highly positive for the msp3/6-like PF10_0348 (TjD = 1.96 as well as the positive control ama1 antigen gene (TjD = 1.22. Across the genes there was a strong correlation between population TjD values and the relative HKA indices (whether derived from the population or the panel of cultured laboratory isolates, but no correlation with the MK indices.Although few individual parasite genes show significant evidence of balancing selection, analysis of population genomic and comparative sequence data with the HKA and TjD indices should discriminate those that do, and thereby identify likely targets of immunity.

  12. Antibodies to malaria vaccine candidates are associated with chloroquine or sulphadoxine/pyrimethamine treatment efficacy in children in an endemic area of Burkina Faso

    Directory of Open Access Journals (Sweden)

    Diarra Amidou

    2012-03-01

    Full Text Available Abstract Background Patient immune status is thought to affect the efficacy of anti-malarial chemotherapy. This is a subject of some importance, since evidence of immunity-related interactions may influence our use of chemotherapy in populations with drug resistance, as well as assessment of the value of suboptimal vaccines. The study aim was to investigate relationship between antibodies and anti-malarial drug treatment outcomes. Methods Some 248 children aged 0.5 and 15 years were recruited prior to the high malaria transmission season. Venous blood (5 ml was obtained from each child to measure antibody levels to selected malaria antigens, using ELISA. Blood smears were also performed to assess drug efficacy and malaria infection prevalence. Children were actively followed up to record clinical malaria cases. Results IgG levels to MSP3 were always higher in the successfully treated group than in the group with treatment failure. The same observation was made for GLURP but the reverse observation was noticed for MSP1-19. Cytophilic and non-cytophilic antibodies were significantly associated with protection against all three antigens, except for IgG4 to MSP1-19 and GLURP. Conclusion Acquired anti-malarial antibodies may play an important role in the efficacy of anti-malarial drugs in younger children more susceptible to the disease.

  13. Lysophosphatidylcholine Regulates Sexual Stage Differentiation in the Human Malaria Parasite Plasmodium falciparum.

    Science.gov (United States)

    Brancucci, Nicolas M B; Gerdt, Joseph P; Wang, ChengQi; De Niz, Mariana; Philip, Nisha; Adapa, Swamy R; Zhang, Min; Hitz, Eva; Niederwieser, Igor; Boltryk, Sylwia D; Laffitte, Marie-Claude; Clark, Martha A; Grüring, Christof; Ravel, Deepali; Blancke Soares, Alexandra; Demas, Allison; Bopp, Selina; Rubio-Ruiz, Belén; Conejo-Garcia, Ana; Wirth, Dyann F; Gendaszewska-Darmach, Edyta; Duraisingh, Manoj T; Adams, John H; Voss, Till S; Waters, Andrew P; Jiang, Rays H Y; Clardy, Jon; Marti, Matthias

    2017-12-14

    Transmission represents a population bottleneck in the Plasmodium life cycle and a key intervention target of ongoing efforts to eradicate malaria. Sexual differentiation is essential for this process, as only sexual parasites, called gametocytes, are infective to the mosquito vector. Gametocyte production rates vary depending on environmental conditions, but external stimuli remain obscure. Here, we show that the host-derived lipid lysophosphatidylcholine (LysoPC) controls P. falciparum cell fate by repressing parasite sexual differentiation. We demonstrate that exogenous LysoPC drives biosynthesis of the essential membrane component phosphatidylcholine. LysoPC restriction induces a compensatory response, linking parasite metabolism to the activation of sexual-stage-specific transcription and gametocyte formation. Our results reveal that malaria parasites can sense and process host-derived physiological signals to regulate differentiation. These data close a critical knowledge gap in parasite biology and introduce a major component of the sexual differentiation pathway in Plasmodium that may provide new approaches for blocking malaria transmission. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Abnormal expression of blood group-related antigens in uterine endometrial cancers.

    Science.gov (United States)

    Tsukazaki, K; Sakayori, M; Arai, H; Yamaoka, K; Kurihara, S; Nozawa, S

    1991-08-01

    The expression of A, B, and H group antigens, Lewis group antigens (Lewis(a), Lewis(b), Lewis(x), and Lewis(y)), and Lc4 and nLc4 antigens, the precursor antigens of both groups, was examined immunohistochemically with monoclonal antibodies in 9 normal endometria, 6 endometrial hyperplasias, and 31 endometrial cancers. 1) A, B and/or H antigens were detected in endometrial cancers at an incidence of 51.6%, while no distinct localization of these antigens was observed in normal endometria. H antigen, the precursor of A and B antigens, was particularly frequently detected in endometrial cancers. 2) An increased rate of expression of Lewis group antigens, particularly Lewis(b) antigen, was observed in endometrial cancers compared with its expression in normal endometria. 3) Lc4 and nLc4 antigens were detected in endometrial cancers at rates of 41.9% and 38.7%, respectively, these expressions being increased compared with those in normal endometria. 4) These results suggest that a highly abnormal expression of blood group-related antigens in endometrial cancers occurs not only at the level of A, B, and H antigens and Lewis group antigens, but also at the level of their precursor Lc4 and nLc4 antigens. 5) Lewis(a), Lewis(b), and Lc4 antigens, built on the type-1 chain, are more specific to endometrial cancers than their respective positional isomers, Lewis(x), Lewis(y), and nLc4 antigens, built on the type-2 chain.

  15. Plasmodium cysteine repeat modular proteins 1-4: complex proteins with roles throughout the malaria parasite life cycle.

    Science.gov (United States)

    Thompson, Joanne; Fernandez-Reyes, Delmiro; Sharling, Lisa; Moore, Sally G; Eling, Wijnand M; Kyes, Sue A; Newbold, Christopher I; Kafatos, Fotis C; Janse, Chris J; Waters, Andrew P

    2007-06-01

    The Cysteine Repeat Modular Proteins (PCRMP1-4) of Plasmodium, are encoded by a small gene family that is conserved in malaria and other Apicomplexan parasites. They are very large, predicted surface proteins with multipass transmembrane domains containing motifs that are conserved within families of cysteine-rich, predicted surface proteins in a range of unicellular eukaryotes, and a unique combination of protein-binding motifs, including a >100 kDa cysteine-rich modular region, an epidermal growth factor-like domain and a Kringle domain. PCRMP1 and 2 are expressed in life cycle stages in both the mosquito and vertebrate. They colocalize with PfEMP1 (P. falciparum Erythrocyte Membrane Antigen-1) during its export from P. falciparum blood-stage parasites and are exposed on the surface of haemolymph- and salivary gland-sporozoites in the mosquito, consistent with a role in host tissue targeting and invasion. Gene disruption of pcrmp1 and 2 in the rodent malaria model, P. berghei, demonstrated that both are essential for transmission of the parasite from the mosquito to the mouse and has established their discrete and important roles in sporozoite targeting to the mosquito salivary gland. The unprecedented expression pattern and structural features of the PCRMPs thus suggest a variety of roles mediating host-parasite interactions throughout the parasite life cycle.

  16. Pregnancy malaria: cryptic disease, apparent solution

    Directory of Open Access Journals (Sweden)

    Patrick Emmet Duffy

    2011-08-01

    Full Text Available Malaria during pregnancy can be severe in non-immune women, but in areas of stable transmission, where women are semi-immune and often asymptomatic during infection, malaria is an insidious cause of disease and death for mothers and their offspring. Sequelae, such as severe anaemia and hypertension in the mother and low birth weight and infant mortality in the offspring, are often not recognised as consequences of infection. Pregnancy malaria, caused by Plasmodium falciparum, is mediated by infected erythrocytes (IEs that bind to chondroitin sulphate A and are sequestered in the placenta. These parasites have a unique adhesion phenotype and distinct antigenicity, which indicates that novel targets may be required for development of an effective vaccine. Women become resistant to malaria as they acquire antibodies against placental IE, which leads to higher haemoglobin levels and heavier babies. Proteins exported from the placental parasites have been identified, including both variant and conserved antigens, and some of these are in preclinical development for vaccines. A vaccine that prevents P. falciparum malaria in pregnant mothers is feasible and would potentially save hundreds of thousands of lives each year.

  17. Identification of Salivary Gland Proteins Depleted after Blood Feeding in the Malaria Vector Anopheles campestris-like Mosquitoes (Diptera: Culicidae)

    OpenAIRE

    Sor-suwan, Sriwatapron; Jariyapan, Narissara; Roytrakul, Sittiruk; Paemanee, Atchara; Phumee, Atchara; Phattanawiboon, Benjarat; Intakhan, Nuchpicha; Chanmol, Wetpisit; Bates, Paul A.; Saeung, Atiporn; Choochote, Wej

    2014-01-01

    Malaria sporozoites must invade the salivary glands of mosquitoes for maturation before transmission to vertebrate hosts. The duration of the sporogonic cycle within the mosquitoes ranges from 10 to 21 days depending on the parasite species and temperature. During blood feeding salivary gland proteins are injected into the vertebrate host, along with malaria sporozoites in the case of an infected mosquito. To identify salivary gland proteins depleted after blood feeding of female Anopheles ca...

  18. Malaria drives T cells to exhaustion

    Directory of Open Access Journals (Sweden)

    Michelle N Wykes

    2014-05-01

    Full Text Available Malaria is a significant global burden but after >30 years of effort there is no vaccine on the market. While the complex life cycle of the parasite presents several challenges, many years of research have also identified several mechanisms of immune evasion by Plasmodium spp.. Recent research on malaria, has investigated the Programmed cell death-1 (PD-1 pathway which mediates exhaustion of T cells, characterized by poor effector functions and recall responses and in some cases loss of the cells by apoptosis. Such studies have shown exhaustion of CD4+ T cells and an unappreciated role for CD8+ T cells in promoting sterile immunity against blood stage malaria. This is because PD-1 mediates up to a 95% reduction in numbers and functional capacity of parasite-specific CD8+ T cells, thus masking their role in protection. The role of T cell exhaustion during malaria provides an explanation for the absence of sterile immunity following the clearance of acute disease which will be relevant to future malaria-vaccine design and suggests the need for novel therapeutic solutions. This review will thus examine the role of PD-1-mediated T cell exhaustion in preventing lasting immunity against malaria.

  19. Multiplex serology for impact evaluation of bed net distribution on burden of lymphatic filariasis and four species of human malaria in northern Mozambique.

    Science.gov (United States)

    Plucinski, Mateusz M; Candrinho, Baltazar; Chambe, Geraldo; Muchanga, João; Muguande, Olinda; Matsinhe, Graça; Mathe, Guidion; Rogier, Eric; Doyle, Timothy; Zulliger, Rose; Colborn, James; Saifodine, Abu; Lammie, Patrick; Priest, Jeffrey W

    2018-02-01

    Universal coverage with long-lasting insecticidal nets (LLINs) is a primary control strategy against Plasmodium falciparum malaria. However, its impact on the three other main species of human malaria and lymphatic filariasis (LF), which share the same vectors in many co-endemic areas, is not as well characterized. The recent development of multiplex antibody detection provides the opportunity for simultaneous evaluation of the impact of control measures on the burden of multiple diseases. Two cross-sectional household surveys at baseline and one year after a LLIN distribution campaign were implemented in Mecubúri and Nacala-a-Velha Districts in Nampula Province, Mozambique. Both districts were known to be endemic for LF; both received mass drug administration (MDA) with antifilarial drugs during the evaluation period. Access to and use of LLINs was recorded, and household members were tested with P. falciparum rapid diagnostic tests (RDTs). Dried blood spots were collected and analyzed for presence of antibodies to three P. falciparum antigens, P. vivax MSP-119, P. ovale MSP-119, P. malariae MSP-119, and three LF antigens. Seroconversion rates were calculated and the association between LLIN use and post-campaign seropositivity was estimated using multivariate regression. The campaign covered 68% (95% CI: 58-77) of the population in Nacala-a-Velha and 46% (37-56) in Mecubúri. There was no statistically significant change in P. falciparum RDT positivity between the two surveys. Population seropositivity at baseline ranged from 31-81% for the P. falciparum antigens, 3-4% for P. vivax MSP-119, 41-43% for P. ovale MSP-119, 46-56% for P. malariae MSP-119, and 37-76% for the LF antigens. The seroconversion rate to the LF Bm33 antigen decreased significantly in both districts. The seroconversion rate to P. malariae MSP-119 and the LF Wb123 and Bm14 antigens each decreased significantly in one of the two districts. Community LLIN use was associated with a decreased risk

  20. Reduction in malaria prevalence and increase in malaria awareness in endemic districts of Bangladesh.

    Science.gov (United States)

    Alam, Mohammad Shafiul; Kabir, Mohammad Moktadir; Hossain, Mohammad Sharif; Naher, Shamsun; Ferdous, Nur E Naznin; Khan, Wasif Ali; Mondal, Dinesh; Karim, Jahirul; Shamsuzzaman, A K M; Ahmed, Be-Nazir; Islam, Akramul; Haque, Rashidul

    2016-11-11

    Malaria is endemic in 13 districts of Bangladesh. A baseline malaria prevalence survey across the endemic districts of Bangladesh was conducted in 2007, when the prevalence was reported around 39.7 per 1000 population. After two rounds of Global Fund to Fight AIDS, Tuberculosis and Malaria (GFATM)-funded intervention by the National Malaria Control Programme (NMCP) and a BRAC-led NGO consortium, a follow-up survey was conducted across the malaria-endemic districts of Bangladesh to measure the change in prevalence rate and in people's knowledge of malaria. The survey was carried out from August to November 2013 in 70 upazilas (sub-districts) of 13 malaria-endemic districts of Bangladesh, following the same multi-stage cluster sampling design and the same number of households enrolled during the baseline prevalence survey in 2007, to collect 9750 randomly selected blood samples. For on-the-spot diagnosis of malaria, a rapid diagnostic test was used. The household head or eldest person available was interviewed using a pre-coded structured questionnaire to collect data on the knowledge and awareness of malaria in the household. Based on a weighted calculation, the overall malaria prevalence was found to be 1.41 per 1000 population. The proportion of Plasmodium falciparum mono-infection was 77.78% while both Plasmodium vivax mono-infection and mixed infection of the two species were found to be 11.11%. Bandarban had the highest prevalence (6.67 per 1000 population). Knowledge of malaria signs, symptoms and mode of transmission were higher in the follow-up survey (97.26%) than the baseline survey. Use of bed nets for prevention of malaria was found to be high (90.15%) at respondent level. People's knowledge of selected parameters increased significantly during the follow-up survey compared to the baseline survey conducted in 2007. A reduced prevalence rate of malaria and increased level of knowledge were observed in the present malaria prevalence survey in Bangladesh.

  1. ELISA with double antigen sandwich for screening specific serum anti-TP antibody in blood donors

    International Nuclear Information System (INIS)

    Wang Yiqing; Shi Zhixu

    2002-01-01

    Objective: To select a sensitive and specific laboratory examination suitable for screening serum anti-TP antibody in blood donors. Methods: The serum anti-TP antibody in 11271 blood donors were detected using ELISA with double antigen sandwich and the outcomes were compared with those using RPR assay. The conflicting specimen were confirmed by repeating the test with TPHA assay. Results: The positive rates of serum anti-TP antibody by ELISA with double antigen sandwich and RPR was 0.36% (41/11271) and 0.26% (29/11271), respectively. The coincidence of the detecting outcomes by ELISA with double antigen sandwich and RPR with TPHA was 97.5% (40/41) and 63.41%(26/41) respectively. Conclusion: Compared with RPR assay, ELISA with double antigen sandwich has higher sensibility and specificity for screening serum anti-TP antibody in blood donors

  2. Clinical malaria case definition and malaria attributable fraction in the highlands of western Kenya.

    Science.gov (United States)

    Afrane, Yaw A; Zhou, Guofa; Githeko, Andrew K; Yan, Guiyun

    2014-10-15

    In African highland areas where endemicity of malaria varies greatly according to altitude and topography, parasitaemia accompanied by fever may not be sufficient to define an episode of clinical malaria in endemic areas. To evaluate the effectiveness of malaria interventions, age-specific case definitions of clinical malaria needs to be determined. Cases of clinical malaria through active case surveillance were quantified in a highland area in Kenya and defined clinical malaria for different age groups. A cohort of over 1,800 participants from all age groups was selected randomly from over 350 houses in 10 villages stratified by topography and followed for two-and-a-half years. Participants were visited every two weeks and screened for clinical malaria, defined as an individual with malaria-related symptoms (fever [axillary temperature≥37.5°C], chills, severe malaise, headache or vomiting) at the time of examination or 1-2 days prior to the examination in the presence of a Plasmodium falciparum positive blood smear. Individuals in the same cohort were screened for asymptomatic malaria infection during the low and high malaria transmission seasons. Parasite densities and temperature were used to define clinical malaria by age in the population. The proportion of fevers attributable to malaria was calculated using logistic regression models. Incidence of clinical malaria was highest in valley bottom population (5.0% cases per 1,000 population per year) compared to mid-hill (2.2% cases per 1,000 population per year) and up-hill (1.1% cases per 1,000 population per year) populations. The optimum cut-off parasite densities through the determination of the sensitivity and specificity showed that in children less than five years of age, 500 parasites per μl of blood could be used to define the malaria attributable fever cases for this age group. In children between the ages of 5-14, a parasite density of 1,000 parasites per μl of blood could be used to define the

  3. 9 CFR 147.3 - The stained-antigen, rapid, whole-blood test. 3

    Science.gov (United States)

    2010-01-01

    ...-blood test. 3 147.3 Section 147.3 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... Blood Testing Procedures § 147.3 The stained-antigen, rapid, whole-blood test. 3 3 The procedure described is a modification of the method reported by Schaffer, MacDonald, Hall, and Bunyea, Jour. Amer. Vet...

  4. Operational trial of ParaSight-F (dipstick) in the diagnosis of falciparum malaria at the primary health care level.

    Science.gov (United States)

    Banchongaksorn, T; Prajakwong, S; Rooney, W; Vickers, P

    1997-06-01

    The rapid manual ParaSight-F test of Plasmodium falciparum malaria, an antigen capture test for detecting trophozoite-derived histidine rich protein-2 (PF HRP-2), is simple to perform and provides a definite diagnosis within 10 minutes. During an operational trial at health centers and mobile malaria units where microscopical diagnosis is not available and using defined symptom screening criteria, 3,361 subjects were tested yielding 618 positives (18.4%) for PF-HRP-2 by ParaSight-F. Microscopic examination of the same subjects by thick blood film examined 7 days later at a malaria clinic showed 578 falciparum, and 349 vivax and mixed infection (F+V) 41. The technology proved highly effective in detecting falciparum malaria at the peripheral levels where access to malaria laboratory services are difficult, thus allowing immediate administration of a complete course of treatment in the absence of a microscopic examination.

  5. Diagnosis of malaria by acridine orange fluorescent microscopy in an endemic area of Venezuela

    Directory of Open Access Journals (Sweden)

    Irene Bosch

    1996-02-01

    Full Text Available Fluorescent (acridine orange microscopical examination of capillary centrifuged blood (quantitative buffy coat [QBC®] analysis and Giemsa stained thick blood smears (GTS were compared for diagnosis of malaria in blood specimens from adults living in malaria transmission areas of the States of Bolivar and Amazonas in southeastern and south Venezuela, respectively. Of a total of 198 GTS examined, 95 subjects (48% showed parasitaemia. Among the 95 blood films with a positive GTS, 94 were judged positive by the QBC. However, positive QBC tubes were found in 29 out of 103 blood specimens with a negative GTS. Thus, relative to a GTS standard, the sensitivity and specificity of the QBC-test was 99.2% and 72%, respectively. Young trophozoites of Plasmodium vivax and P. falciparum could not be distinguished with certainty. It is confirmed that the QBC offers many advantages compared with the standard diagnosis of malaria parasites, specifically in the speed of staining and ease of interpretation. However, in places where P. falciparum and P. vivax occur, species and stage differentiation should be confirmed with the GTS.

  6. Biochemical and functional analysis of two Plasmodium falciparum blood-stage 6-cys proteins: P12 and P41.

    Directory of Open Access Journals (Sweden)

    Tana Taechalertpaisarn

    Full Text Available The genomes of Plasmodium parasites that cause malaria in humans, other primates, birds, and rodents all encode multiple 6-cys proteins. Distinct 6-cys protein family members reside on the surface at each extracellular life cycle stage and those on the surface of liver infective and sexual stages have been shown to play important roles in hepatocyte growth and fertilization respectively. However, 6-cys proteins associated with the blood-stage forms of the parasite have no known function. Here we investigate the biochemical nature and function of two blood-stage 6-cys proteins in Plasmodium falciparum, the most pathogenic species to afflict humans. We show that native P12 and P41 form a stable heterodimer on the infective merozoite surface and are secreted following invasion, but could find no evidence that this complex mediates erythrocyte-receptor binding. That P12 and P41 do not appear to have a major role as adhesins to erythrocyte receptors was supported by the observation that antisera to these proteins did not substantially inhibit erythrocyte invasion. To investigate other functional roles for these proteins their genes were successfully disrupted in P. falciparum, however P12 and P41 knockout parasites grew at normal rates in vitro and displayed no other obvious phenotypic changes. It now appears likely that these blood-stage 6-cys proteins operate as a pair and play redundant roles either in erythrocyte invasion or in host-immune interactions.

  7. Rapid identification of genes controlling virulence and immunity in malaria parasites

    KAUST Repository

    Abkallo, Hussein M.

    2017-07-13

    Identifying the genetic determinants of phenotypes that impact disease severity is of fundamental importance for the design of new interventions against malaria. Here we present a rapid genome-wide approach capable of identifying multiple genetic drivers of medically relevant phenotypes within malaria parasites via a single experiment at single gene or allele resolution. In a proof of principle study, we found that a previously undescribed single nucleotide polymorphism in the binding domain of the erythrocyte binding like protein (EBL) conferred a dramatic change in red blood cell invasion in mutant rodent malaria parasites Plasmodium yoelii. In the same experiment, we implicated merozoite surface protein 1 (MSP1) and other polymorphic proteins, as the major targets of strain-specific immunity. Using allelic replacement, we provide functional validation of the substitution in the EBL gene controlling the growth rate in the blood stages of the parasites.

  8. Insights into long-lasting protection induced by RTS,S/AS02A malaria vaccine: further results from a phase IIb trial in Mozambican children.

    Directory of Open Access Journals (Sweden)

    Caterina Guinovart

    Full Text Available The pre-erythrocytic malaria vaccine RTS,S/AS02A has shown to confer protection against clinical malaria for at least 21 months in a trial in Mozambican children. Efficacy varied between different endpoints, such as parasitaemia or clinical malaria; however the underlying mechanisms that determine efficacy and its duration remain unknown. We performed a new, exploratory analysis to explore differences in the duration of protection among participants to better understand the protection afforded by RTS,S.The study was a Phase IIb double-blind, randomized controlled trial in 2022 children aged 1 to 4 years. The trial was designed with two cohorts to estimate vaccine efficacy against two different endpoints: clinical malaria (cohort 1 and infection (cohort 2. Participants were randomly allocated to receive three doses of RTS,S/AS02A or control vaccines. We did a retrospective, unplanned sub-analysis of cohort 2 data using information collected for safety through the health facility-based passive case detection system. Vaccine efficacy against clinical malaria was estimated over the first six-month surveillance period (double-blind phase and over the following 12 months (single-blind phase, and analysis was per-protocol. Adjusted vaccine efficacy against first clinical malaria episodes in cohort 2 was of 35.4% (95% CI 4.5-56.3; p = 0.029 over the double-blind phase and of 9.0% (-30.6-36.6; p = 0.609 during the single-blind phase.Contrary to observations in cohort 1, where efficacy against clinical malaria did not wane over time, in cohort 2 the efficacy decreases with time. We hypothesize that this reduced duration of protection is a result of the early diagnosis and treatment of infections in cohort 2 participants, preventing sufficient exposure to asexual-stage antigens. On the other hand, the long-term protection against clinical disease observed in cohort 1 may be a consequence of a prolonged exposure to low-dose blood-stage asexual parasitaemia

  9. Antingens for a Vaccine that Prevents Severe Malaria

    Science.gov (United States)

    2009-03-01

    3,210,682 220,620 sum 6,076,570 4,845,314 Table 3: Number of sequencing reads for uninfected blood and blood with cultured parasites o determine if the...Trends Parasitol, 22(3):99-101 2. Kappe SHI, Duffy PE. 2006. Malaria liver stage culture : in Hyg, 74(5):706-7 3. Duffy PE, Muta 367(9528):2037-9. 4...classified as the short (S) allele. SNPs that flanked the dinucleotide repeat region and that varied in frequency between Caucasian and Yoruba

  10. Safety and immunogenicity of an AMA-1 malaria vaccine in Malian adults: results of a phase 1 randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Mahamadou A Thera

    2008-01-01

    Full Text Available The objective was to evaluate the safety, reactogenicity and immunogenicity of the AMA-1-based blood-stage malaria vaccine FMP2.1/AS02A in adults exposed to seasonal malaria.A phase 1 double blind randomized controlled dose escalation trial was conducted in Bandiagara, Mali, West Africa, a rural town with intense seasonal transmission of Plasmodium falciparum malaria. The malaria vaccine FMP2.1/AS02A is a recombinant protein (FMP2.1 based on apical membrane antigen-1 (AMA-1 from the 3D7 clone of P. falciparum, adjuvanted with AS02A. The comparator vaccine was a cell-culture rabies virus vaccine (RabAvert. Sixty healthy, malaria-experienced adults aged 18-55 y were recruited into 2 cohorts and randomized to receive either a half dose or full dose of the malaria vaccine (FMP2.1 25 microg/AS02A 0.25 mL or FMP2.1 50 microg/AS02A 0.5 mL or rabies vaccine given in 3 doses at 0, 1 and 2 mo, and were followed for 1 y. Solicited symptoms were assessed for 7 d and unsolicited symptoms for 30 d after each vaccination. Serious adverse events were assessed throughout the study. Titers of anti-AMA-1 antibodies were measured by ELISA and P. falciparum growth inhibition assays were performed on sera collected at pre- and post-vaccination time points. Transient local pain and swelling were common and more frequent in both malaria vaccine dosage groups than in the comparator group. Anti-AMA-1 antibodies increased significantly in both malaria vaccine groups, peaking at nearly 5-fold and more than 6-fold higher than baseline in the half-dose and full-dose groups, respectively.The FMP2.1/AS02A vaccine had a good safety profile, was well-tolerated, and was highly immunogenic in malaria-exposed adults. This malaria vaccine is being evaluated in Phase 1 and 2 trials in children at this site.

  11. Effect of antenatal parasitic infections on anti-vaccine IgG levels in children: a prospective birth cohort study in Kenya.

    Directory of Open Access Journals (Sweden)

    Indu Malhotra

    2015-01-01

    Full Text Available Parasitic infections are prevalent among pregnant women in sub-Saharan Africa. We investigated whether prenatal exposure to malaria and/or helminths affects the pattern of infant immune responses to standard vaccinations against Haemophilus influenzae (Hib, diphtheria (DT, hepatitis B (Hep B and tetanus toxoid (TT.450 Kenyan women were tested for malaria, schistosomiasis, lymphatic filariasis (LF, and intestinal helminths during pregnancy. After three standard vaccinations at 6, 10 and 14 weeks, their newborns were followed biannually to age 36 months and tested for absolute levels of IgG against Hib, DT, Hep B, and TT at each time point. Newborns' cord blood (CB lymphocyte responses to malaria blood-stage antigens, soluble Schistosoma haematobium worm antigen (SWAP, and filaria antigen (BMA were also assessed. Three immunophenotype categories were compared: i tolerant (those having Plasmodium-, Schistosoma-, or Wuchereria-infected mothers but lacking respective Th1/Th2-type recall responses at birth to malaria antigens, SWAP, or BMA; ii sensitized (those with infected/uninfected mothers and detectable Th1/Th2-type CB recall response to respective parasite antigen; or iii unexposed (no evidence of maternal infection or CB recall response. Overall, 78.9% of mothers were infected with LF (44.7%, schistosomiasis (32.4%, malaria (27.6% or hookworm (33.8%. Antenatal maternal malaria, LF, and hookworm were independently associated with significantly lower Hib-specific IgG. Presence of multiple maternal infections was associated with lower infant IgG levels against Hib and DT antigens post-vaccination. Post-vaccination IgG levels were also significantly associated with immunophenotype: malaria-tolerized infants had reduced response to DT, whereas filaria-tolerized infants showed reduced response to Hib.There is an impaired ability to develop IgG antibody responses to key protective antigens of Hib and diphtheria in infants of mothers infected with

  12. Variation in the immune responses against Plasmodium falciparum merozoite surface protein-1 and apical membrane antigen-1 in children residing in the different epidemiological strata of malaria in Cameroon.

    Science.gov (United States)

    Kwenti, Tebit Emmanuel; Moye, Adzemye Linus; Wiylanyuy, Adzemye Basil; Njunda, Longdoh Anna; Nkuo-Akenji, Theresa

    2017-11-09

    Studies to assess the immune responses against malaria in Cameroonian children are limited. The purpose of this study was to assess the immune responses against Plasmodium falciparum merozoite surface protein-1 (MSP-1 19 ) and apical membrane antigen-1 (AMA-1) in children residing in the different epidemiological strata of malaria in Cameroon. In a cross-sectional survey performed between April and July 2015, 602 children between 2 and 15 years (mean ± SD = 5.7 ± 3.7), comprising 319 (53%) males were enrolled from five epidemiological strata of malaria in Cameroon including: the sudano-sahelian (SS) strata, the high inland plateau (HIP) strata, the south Cameroonian equatorial forest (SCEF) strata, the high western plateau (HWP) strata, and the coastal (C) strata. The children were screened for clinical malaria (defined by malaria parasitaemia ≥ 5000 parasites/µl plus axillary temperature ≥ 37.5 °C). Their antibody responses were measured against P. falciparum MSP-1 19 and AMA-1 vaccine candidate antigens using standard ELISA technique. A majority of the participants were IgG responders 72.1% (95% CI 68.3-75.6). The proportion of responders was higher in females (p = 0.002) and in children aged 10 years and above (p = 0.005). The proportion of responders was highest in Limbe (C strata) and lowest in Ngaoundere (HIP strata) (p malaria (p malaria parasites. The immune responses varied considerably across the different strata: the highest levels observed in the C strata and the lowest in the HIP strata. Furthermore, malaria transmission in Cameroon could be categorized into two major groups based on the serological reaction of the children: the southern (comprising C and SCEF strata) and northern (comprising HWP, HIP and SS strata) groups. These findings may have significant implications in the design of future trials for evaluating malaria vaccine candidates in Cameroon.

  13. Evaluation of concurrent malaria and dengue infections among febrile patients

    Directory of Open Access Journals (Sweden)

    Parul D Shah

    2017-01-01

    Full Text Available Context: Despite a wide overlap between endemic areas for two important vector-borne infections, malaria and dengue, published reports of co-infections are scarce till date. Aims: To find the incidence of dengue and malaria co-infection as well as to ascertain the severity of such dengue and malaria co-infection based on clinical and haematological parameters. Setting and Design: Observational, retrospective cross-sectional study was designed including patients who consulted the tertiary care hospital of Ahmedabad seeking treatment for fever compatible with malaria and/or dengue. Subjects and Methods: A total of 8364 serum samples from clinically suspected cases of fever compatible with malaria and/or dengue were collected. All samples were tested for dengue NS-1 antigen before 5 days of onset of illness and for dengue IgM after 5 days of onset of illness. In all samples, malaria diagnosis was based on the identification of Plasmodium parasites on a thin and thick blood films microscopy. Results: Only 10.27% (859 patients with fever were tested positive for dengue and 5.1% (434 were tested positive for malaria. 3.14% (27 dengue cases show concurrent infection with malarial parasites. Hepatomegaly and jaundice 37.03% (10, haemorrhagic manifestations 18.51% (5 and kidney failure 3.7% (1, haemoglobin <12 g/dl 100% (27 and thrombocytopenia (platelet count <150,000/cmm 96.29% (26 were common in malaria and dengue co-infections and were much more common in Plasmodium falciparum infections. Conclusion: All febrile patients must be tested for malaria and dengue, both otherwise one of them will be missed in case of concurrent infections which could lead to severe diseases with complications.

  14. Complete Plasmodium falciparum liver-stage development in liver-chimeric mice

    Science.gov (United States)

    Vaughan, Ashley M.; Mikolajczak, Sebastian A.; Wilson, Elizabeth M.; Grompe, Markus; Kaushansky, Alexis; Camargo, Nelly; Bial, John; Ploss, Alexander; Kappe, Stefan H.I.

    2012-01-01

    Plasmodium falciparum, which causes the most lethal form of human malaria, replicates in the host liver during the initial stage of infection. However, in vivo malaria liver-stage (LS) studies in humans are virtually impossible, and in vitro models of LS development do not reconstitute relevant parasite growth conditions. To overcome these obstacles, we have adopted a robust mouse model for the study of P. falciparum LS in vivo: the immunocompromised and fumarylacetoacetate hydrolase–deficient mouse (Fah–/–, Rag2–/–, Il2rg–/–, termed the FRG mouse) engrafted with human hepatocytes (FRG huHep). FRG huHep mice supported vigorous, quantifiable P. falciparum LS development that culminated in complete maturation of LS at approximately 7 days after infection, providing a relevant model for LS development in humans. The infections allowed observations of previously unknown expression of proteins in LS, including P. falciparum translocon of exported proteins 150 (PTEX150) and exported protein-2 (EXP-2), components of a known parasite protein export machinery. LS schizonts exhibited exoerythrocytic merozoite formation and merosome release. Furthermore, FRG mice backcrossed to the NOD background and repopulated with huHeps and human red blood cells supported reproducible transition from LS infection to blood-stage infection. Thus, these mice constitute reliable models to study human LS directly in vivo and demonstrate utility for studies of LS–to–blood-stage transition of a human malaria parasite. PMID:22996664

  15. Protein modeling of apical membrane antigen-1(AMA-1) of ...

    African Journals Online (AJOL)

    Apical membrane Antigen-1(AMA-1), an asexual blood stage antigen of Plasmodium cynomolgi, is an important candidate for testing as a component of malarial vaccine. The degree of conservation of. AMA-1 sequences implies a conserved function for this molecule across different species of Plasmodium. Since the AMA-1 ...

  16. Hematological changes in complete blood picture in paedriatric patients of malaria caused by plasmodium vivax and falciparum

    International Nuclear Information System (INIS)

    Latif, I.; Jamal, A.

    2015-01-01

    Malaria is a major health problem and one of the major killers in paediatric population particularly in the developing world. High mortality is usually compounded by various haematological complications if left untreated. Their identification as risk factors for progression to severe disease may make the basis for optimal management of malaria. This study was conducted to determine various changes in the complete blood picture caused by malaria and to compare the severity of these changes among the prevalent species of plasmodia. Methods: It was cross sectional study conducted in paediatric ward of Civil Hospital, Dow University of Health Sciences, Karachi over a period of six months. Children aged >2 months to 15 years, of either sex, with fever above 101 degree F in the preceding 72 hours with positive malaria parasite on peripheral blood smear were included in the study. Children already on anti-malarial treatment and long standing antibiotics, having co-morbidities like immune-compromised states, haemolytic disease or with any other haematological disorder were excluded from the study. Blood was tested for anaemia, leukopenia, leukocytosis, and thrombocytopenia. Data analysis was done via SPSS-15.0. Results: Out of 374 children half were under 5 years of age with mean age of 66.7 ± 46.8 months, 50.8% were female with male to female ratio of 1:1.03. Overall 364 (97.3%) children had anaemia with mean haemoglobin level of 11.7 ± 6 g/dl. Overall mean WBC count was 10443 ± 154 per cubic millimetre. Leukopenia was found in 39% cases. Mean platelets count of enrolled children was 69451 ± 648 cubic millimetre and 51.3% cases had mild thrombocytopenia. Anaemia (p=0.012), leukopenia (p=0.001) and thrombocytopenia (p=0.004) were significantly more common in falciparum as compared to vivax malaria. Conclusion: We concluded that malaria frequently causes severe anaemia, leukopenia and thrombocytopenia in children. P. falciparum is the species more responsible for these

  17. Alternative transmission routes in the malaria elimination era: an overview of transfusion-transmitted malaria in the Americas.

    Science.gov (United States)

    Alho, Regina M; Machado, Kim Vinícius Amaral; Val, Fernando F A; Fraiji, Nelson A; Alexandre, Marcia A A; Melo, Gisely C; Recht, Judith; Siqueira, André M; Monteiro, Wuelton M; Lacerda, Marcus V G

    2017-02-15

    Transfusion-transmitted (TT) malaria is an alternative infection route that has gained little attention from authorities, despite representing a life-threatening condition. There has been no systematic review of this health problem in American countries. The aim of this study was to describe the clinical and epidemiological characteristics of TT malaria in the Americas and identify factors associated with lethality based on the studies published in the literature. Potentially relevant papers in all languages were retrieved from MEDLINE and LILACS. Additional articles were obtained from reviews and original papers. Publications on screening of candidate blood donors and on surveillance of TT malaria cases were included. Odds ratios with respective 95% confidence intervals (95% CI) were calculated. Epidemiological characteristics of blood donors of TT malaria cases, including a pooled positivity of different tests for malaria diagnosis, were retrieved. A total of 63 publications regarding TT malaria from seven countries were included, from 1971 to 2016. A total of 422 cases of TT malaria were recorded. Most TT malaria cases were in females (62.0%) and 39.5% were in the ≥61 years-old age group. About half of all cases were from Mexico (50.7%), 40.3% from the United States of America (USA) and 6.6% from Brazil. Gyneco-obstetrical conditions (67.3%), surgical procedures (20.6%) and complications from neoplasias (6.1%) were the most common indications of transfusion. Packed red blood cells (RBCs) (50.7%) and whole blood (43.3%) were the blood products mostly associated with TT malaria. Cases were mostly caused by Plasmodium malariae (58.4%), followed by Plasmodium vivax (20.7%) and Plasmodium falciparum (17.9%). A total of 66.6% of cases were diagnosed by microscopy. Incubation period of 2-3 weeks was the most commonly observed (28.6%). Lethality was seen in 5.3% of cases and was associated with living in non-endemic countries, P. falciparum infection and concomitant

  18. Red cell antigen prevalence predicted by molecular testing in ethnic groups of South Texas blood donors.

    Science.gov (United States)

    Aranda, Lorena I; Smith, Linda A; Jones, Scott; Beddard, Rachel

    2015-01-01

    Alloimmunization to red blood cell antigens is seen in patients receiving chronic blood transfusion. Knowing the prevalence of blood group antigens of the different ethnicities of South Texas donors can provide better management of rare blood inventory for patients in this geographical area. A total of 4369 blood donors were tested and analyzed for various antigens in the following blood group systems: ABO, Rh, Kell, Duffy, Kidd, MNS, Lutheran, Dombrock, Landsteiner-Wiener, Diego, Colton, and Scianna. Donors tested to be group 0 or A were serologically tested for the Rh (C, E, c, e) antigens. Those that tested as presumably R1R1, R2R2, or Ror were then genotyped. Donors constituted three major ethnicities: black (18.3%), Hispanic (36.3%), and Caucasian (41.1%); ethnicities comprised of Asian, American Indian, multiracial, and other accounted for the remaining donors (4.3%). The most likely common Rh phenotype for each ethnicity is as follows: black -Ror (44.4%), Hispanic -R1R1 (59.0%), and Caucasian -R1R1 (38.9%). The prevalence of Kell, Duffy, and Kidd blood group system antigens in black and Caucasian donors is comparable with published reports for the entire U.S. The black South Texas donor population had an 8.8 percent increase in prevalence of the Fy(a+b-) phenotype as compared with these published reports; the Hispanic South Texas donor population had a prevalence of 36.1 percent of the Fy(a+b-) phenotype. Regarding the Diego blood group system, the Hispanic donor population in South Texas had a prevalence of 93.5 percent for the Di(a-b+) phenotype as compared with published reports for the entire U.S. (>99.9%). The Hispanic population had a prevalence of 7.9 percent of donors testing as M-N+S-s+ as compared with 20.2 percent and 15.6 percent for black and Caucasian donors, respectively. This study helped us determine the prevalence of each of the blood group antigens in the South Texas donor population to establish and maintain adequate rare inventory of

  19. [Congenital malaria due to Plasmodium falciparum and Plasmodium malariae].

    Science.gov (United States)

    Zenz, W; Trop, M; Kollaritsch, H; Reinthaler, F

    2000-05-19

    Increasing tourism and growing numbers of immigrants from malaria-endemic countries are leading to a higher importation rate of rare tropical disorders in European countries. We describe, to the best of our knowledge, the first case of connatal malaria in Austria. The patient is the first child of a 24 year old mother who was born in Ghana and immigrated to Austria one and a half years before delivery. She did not stay in an endemic region during this period and did not show fever or any other signs of malaria. The boy was healthy for the first six weeks of his life. In the 8th week of life he was admitted to our hospital due to persistent fever of unknown origin. On physical examination he showed only mild splenomegaly. Routine laboratory testing revealed mild hemolytic anemia with a hemoglobin value of 8.3 g/l. In the blood smear Plasmodium falciparum and Plasmodium malariae were detected. Oral therapy with quinine hydrochloride was successful and blood smears became negative for Plasmodia within 6 days. This case shows that congenital malaria can occur in children of clinically healthy women who were born in malaria-endemic areas even one and a half year after they have immigrated to non-endemic regions.

  20. Malaria

    Science.gov (United States)

    ... bites you, the parasite can get into your blood. The parasite lays eggs, which develop into more parasites. They ... cells until you get very sick. Because the parasites live in the blood, malaria can also be spread through other ways. ...

  1. High prevalence of HIV p24 antigen among HIV antibody negative prospective blood donors in Ile-Ife, Nigeria.

    Science.gov (United States)

    Japhet, Margaret Oluwatoyin; Adewumi, Moses Olubusuyi; Adesina, Olufisayo Adeyemi; Donbraye, Emmanuel

    2016-01-01

    Blood transfusion service centers in Nigeria screen donated blood for markers of HIV infection using antibody- (Ab) based rapid test and in some centers, positives are re-tested using Ab-based ELISA. Paucity of data exists on p24 antigen prevalence among HIV Ab-negative donors in Nigeria. This study aims at detecting HIV p24 antigen among prospective blood donors in Osun State, Nigeria. Prospective blood donors negative for HIV antibodies using Determine test kit were re-tested using BIORAD GENSCREEN Ultra Ag-Ab ELISA kit, a fourth-generation ELISA kit that detects HIV antibodies/p24 antigen. Of the 169 HIV Ab-negative prospective donors, 10 (5.9%) were positive for HIV p24 antigen and 70% (7/10) of them were in the age range 18-30 years. Results of this study show that blood transfusion is still one of the major routes of HIV transmission in Nigeria and a higher proportion is among youth. Inclusion of p24 antigen testing into the blood donor screening will help reduce transfusion associated HIV in Nigeria if Nucleic Acid Testing (NAT) of all blood donor samples is not affordable; also, HIV enlightenment programs tailored toward youth may help reduce this rate among donors since more young people donate blood in low/middle-income countries than in high-income countries.

  2. Epidemiology of blood collection in France

    International Nuclear Information System (INIS)

    Lawson-Ayayi, S.; Salmi, L.R.

    1999-01-01

    The objectives of the cross-sectional study (EpiCoS) were to describe, at different stages, volunteers offering their blood, and to characterize various ways of collecting blood. From 15 September 1996 to 31 December 1996, individuals presenting at fixed or mobile sessions in one of 11 randomly selected blood banks were included after they had a medical examination. Variables studied were relative to type of collection, individuals, medical examination, patterns of blood letting, use of collected donations and if unused, reasons for discarding. Sixty four thousand and ninety two volunteers, aged 17-66 years old were included. The proportion of exclusion during medical examination was 10.8% (95% confidence interval (CI): 10.6-11.0%). Exclusions were more frequent among new volunteers and were mostly related to the safety of recipients. Most of the 57,003 donations were whole blood (94.0%) and collected in mobile sessions (89.9%). Five percent of collected donations were discarded; 3.5% (95% CI: 3.4-3.7%) of donations discarded for biological abnormalities, including 1.5% only for initial screen reactions to infectious disease markers (HBs antigen, anti-HBc antibodies, anti-HCV antibodies, anti-HIV antibodies, anti-HTLV antibodies, malaria antibodies and anti-syphilitic antibodies). The most frequent biological abnormality was a high alanine aminotransferase level. A follow-up of these indicators, within the French haemovigilance system, should allow further identification of risk factors and high-risk contexts, and planning means of optimizing blood collection in France

  3. Evaluation of the Secretor Status of ABO Blood Group Antigens in Saliva among Southern Rajasthan Population Using Absorption Inhibition Method.

    Science.gov (United States)

    Metgud, Rashmi; Khajuria, Nidhi; Mamta; Ramesh, Gayathri

    2016-02-01

    The ABO blood group system was the significant element for forensic serological examination of blood and body fluids in the past before the wide adaptation of DNA typing. A significant proportion of individuals (80%) are secretors, meaning that antigens present in the blood are also found in other body fluids such as saliva. Absorption inhibition is one such method that works by reducing strength of an antiserum based on type and amount of antigen present in the stains. To check the efficacy of identifying the blood group antigens in saliva and to know the secretor status using absorption inhibition method among southern Rajasthan population. Blood and saliva samples were collected from 80 individuals comprising 20 individuals in each blood group. The absorption inhibition method was used to determine the blood group antigens in the saliva and then the results were correlated with the blood group of the collected blood sample. The compiled data was statistically analysed using chi-square test. Blood groups A & O revealed 100% secretor status for both males and females. While blood groups B and AB revealed 95% secretor status. Secretor status evaluation of the ABO blood group antigen in saliva using absorption inhibition method can be a useful tool in forensic examination.

  4. Expression, Purification and Characterization of GMZ2'.10C, a Complex Disulphide-Bonded Fusion Protein Vaccine Candidate against the Asexual and Sexual Life-Stages of the Malaria-Causing Plasmodium falciparum Parasite.

    Science.gov (United States)

    Mistarz, Ulrik H; Singh, Susheel K; Nguyen, Tam T T N; Roeffen, Will; Yang, Fen; Lissau, Casper; Madsen, Søren M; Vrang, Astrid; Tiendrebeogo, Régis W; Kana, Ikhlaq H; Sauerwein, Robert W; Theisen, Michael; Rand, Kasper D

    2017-09-01

    Production and characterization of a chimeric fusion protein (GMZ2'.10C) which combines epitopes of key malaria parasite antigens: glutamate-rich protein (GLURP), merozoite surface protein 3 (MSP3), and the highly disulphide bonded Pfs48/45 (10C). GMZ2'.10C is a potential candidate for a multi-stage malaria vaccine that targets both transmission and asexual life-cycle stages of the parasite. GMZ2'.10C was produced in Lactococcus lactis and purified using either an immunoaffinity purification (IP) or a conventional purification (CP) method. Protein purity and stability was analysed by RP-HPLC, SEC-HPLC, 2-site ELISA, gel-electrophoresis and Western blotting. Structural characterization (mass analysis, peptide mapping and cysteine connectivity mapping) was performed by LC-MS/MS. CP-GMZ2'.10C resulted in similar purity, yield, structure and stability as compared to IP-GMZ2'.10C. CP-GMZ2'.10C and IP-GMZ2'.10C both elicited a high titer of transmission blocking (TB) antibodies in rodents. The intricate disulphide-bond connectivity of C-terminus Pfs48/45 was analysed by tandem mass spectrometry and was established for GMZ2'.10C and two reference fusion proteins encompassing similar parts of Pfs48/45. GMZ2'.10C, combining GMZ2' and correctly-folded Pfs48/45 can be produced by the Lactoccus lactis P170 based expression system in purity and quality for pharmaceutical development and elicit high level of TB antibodies. The cysteine connectivity for the 10C region of Pfs48/45 was revealed experimentally, providing an important guideline for employing the Pfs48/45 antigen in vaccine design.

  5. Hexahydroquinolines are antimalarial candidates with potent blood-stage and transmission-blocking activity.

    Science.gov (United States)

    Vanaerschot, Manu; Lucantoni, Leonardo; Li, Tao; Combrinck, Jill M; Ruecker, Andrea; Kumar, T R Santha; Rubiano, Kelly; Ferreira, Pedro E; Siciliano, Giulia; Gulati, Sonia; Henrich, Philipp P; Ng, Caroline L; Murithi, James M; Corey, Victoria C; Duffy, Sandra; Lieberman, Ori J; Veiga, M Isabel; Sinden, Robert E; Alano, Pietro; Delves, Michael J; Lee Sim, Kim; Winzeler, Elizabeth A; Egan, Timothy J; Hoffman, Stephen L; Avery, Vicky M; Fidock, David A

    2017-10-01

    Antimalarial compounds with dual therapeutic and transmission-blocking activity are desired as high-value partners for combination therapies. Here, we report the identification and characterization of hexahydroquinolines (HHQs) that show low nanomolar potency against both pathogenic and transmissible intra-erythrocytic forms of the malaria parasite Plasmodium falciparum. This activity translates into potent transmission-blocking potential, as shown by in vitro male gamete formation assays and reduced oocyst infection and prevalence in Anopheles mosquitoes. In vivo studies illustrated the ability of lead HHQs to suppress Plasmodium berghei blood-stage parasite proliferation. Resistance selection studies, confirmed by CRISPR-Cas9-based gene editing, identified the digestive vacuole membrane-spanning transporter PfMDR1 (P. falciparum multidrug resistance gene-1) as a determinant of parasite resistance to HHQs. Haemoglobin and haem fractionation assays suggest a mode of action that results in reduced haemozoin levels and might involve inhibition of host haemoglobin uptake into intra-erythrocytic parasites. Furthermore, parasites resistant to HHQs displayed increased susceptibility to several first-line antimalarial drugs, including lumefantrine, confirming that HHQs have a different mode of action to other antimalarials drugs for which PfMDR1 is known to confer resistance. This work evokes therapeutic strategies that combine opposing selective pressures on this parasite transporter as an approach to countering the emergence and transmission of multidrug-resistant P. falciparum malaria.

  6. Hexahydroquinolines are Antimalarial Candidates with Potent Blood Stage and Transmission-Blocking Activity

    Science.gov (United States)

    Vanaerschot, Manu; Lucantoni, Leonardo; Li, Tao; Combrinck, Jill M.; Ruecker, Andrea; Kumar, T.R. Santha; Rubiano, Kelly; Ferreira, Pedro E.; Siciliano, Giulia; Gulati, Sonia; Henrich, Philipp P.; Ng, Caroline L.; Murithi, James M.; Corey, Victoria C.; Duffy, Sandra; Lieberman, Ori J.; Veiga, M. Isabel; Sinden, Robert E.; Alano, Pietro; Delves, Michael J.; Sim, Kim Lee; Winzeler, Elizabeth A.; Egan, Timothy J.; Hoffman, Stephen L.; Avery, Vicky M.; Fidock, David A.

    2017-01-01

    Antimalarial compounds with dual therapeutic and transmission-blocking activity are desired as high-value partners for combination therapies. Here, we report the identification and characterization of hexahydroquinolines (HHQs) that show low nanomolar potency against both pathogenic and transmissible intra-erythrocytic forms of the malaria parasite Plasmodium falciparum. This activity translates into potent transmission-blocking potential, as shown by in vitro male gamete formation assays and reduced oocyst infection and prevalence in Anopheles mosquitoes. In vivo studies illustrated the ability of lead HHQs to suppress P. berghei blood-stage parasite proliferation. Resistance selection studies, confirmed by CRISPR/Cas9-based gene editing, identified the digestive vacuole membrane-spanning transporter PfMDR1 as a determinant of parasite resistance to HHQs. Hemoglobin and heme fractionation assays suggest a mode of action that results in reduced hemozoin levels and might involve inhibition of host hemoglobin uptake into intra-erythrocytic parasites. Furthermore, parasites resistant to HHQs displayed increased susceptibility to several first-line antimalarial drugs including lumefantrine, confirming that HHQs have a different mode of action than other antimalarials drugs for which PfMDR1 is known to confer resistance. This work evokes therapeutic strategies that combine opposing selective pressures on this parasite transporter as an approach to countering the emergence and transmission of multidrug-resistant P. falciparum malaria. PMID:28808258

  7. UK malaria treatment guidelines 2016.

    Science.gov (United States)

    Lalloo, David G; Shingadia, Delane; Bell, David J; Beeching, Nicholas J; Whitty, Christopher J M; Chiodini, Peter L

    2016-06-01

    1.Malaria is the tropical disease most commonly imported into the UK, with 1300-1800 cases reported each year, and 2-11 deaths. 2. Approximately three quarters of reported malaria cases in the UK are caused by Plasmodium falciparum, which is capable of invading a high proportion of red blood cells and rapidly leading to severe or life-threatening multi-organ disease. 3. Most non-falciparum malaria cases are caused by Plasmodium vivax; a few cases are caused by the other species of plasmodium: Plasmodium ovale, Plasmodium malariae or Plasmodium knowlesi. 4. Mixed infections with more than one species of parasite can occur; they commonly involve P. falciparum with the attendant risks of severe malaria. 5. There are no typical clinical features of malaria; even fever is not invariably present. Malaria in children (and sometimes in adults) may present with misleading symptoms such as gastrointestinal features, sore throat or lower respiratory complaints. 6. A diagnosis of malaria must always be sought in a feverish or sick child or adult who has visited malaria-endemic areas. Specific country information on malaria can be found at http://travelhealthpro.org.uk/. P. falciparum infection rarely presents more than six months after exposure but presentation of other species can occur more than a year after exposure. 7. Management of malaria depends on awareness of the diagnosis and on performing the correct diagnostic tests: the diagnosis cannot be excluded until more than one blood specimen has been examined. Other travel related infections, especially viral haemorrhagic fevers, should also be considered. 8. The optimum diagnostic procedure is examination of thick and thin blood films by an expert to detect and speciate the malarial parasites. P. falciparum and P. vivax (depending upon the product) malaria can be diagnosed almost as accurately using rapid diagnostic tests (RDTs) which detect plasmodial antigens. RDTs for other Plasmodium species are not as reliable. 9

  8. The value of F-18 fluorodeoxyglucose positron emission tomography/computed tomography in asymptomatic examinees with unexplained elevated blood carcinoembryonic antigen levels

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenfeng [The First Affiliated Hospital of Wenzhou Medical University, Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, Wenzhou (China); The First Affiliated Hospital of Wenzhou Medical University, Department of Radiation Oncology, Wenzhou (China); Yin, Weiwei [The First Affiliated Hospital of Wenzhou Medical University, Division of PET/CT, Department of Radiology, Wenzhou (China); Ou, Rongying [The First Affiliated Hospital of Wenzhou Medical University, Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, Wenzhou (China); The First Affiliated Hospital of Wenzhou Medical University, Department of Gynaecology and Obstetrics, Wenzhou (China); Chen, Ting; Xiong, Lingling; Xu, Yunsheng [The First Affiliated Hospital of Wenzhou Medical University, Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, Wenzhou (China); The First Affiliated Hospital of Wenzhou Medical University, Department of Dermatovenereology, Wenzhou (China); Cheng, Dezhi; Xie, Deyao [The First Affiliated Hospital of Wenzhou Medical University, Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, Wenzhou (China); The First Affiliated Hospital of Wenzhou Medical University, Department of Cardiothoracic Surgery, Wenzhou (China); Zheng, Xiangwu; Zhao, Liang [The First Affiliated Hospital of Wenzhou Medical University, Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, Wenzhou (China); The First Affiliated Hospital of Wenzhou Medical University, Division of PET/CT, Department of Radiology, Wenzhou (China); The First Affiliated Hospital of Wenzhou Medical University, Institutes of Intelligent and Molecular Imaging, Wenzhou (China)

    2016-04-15

    Cancer is still a clinical challenge, with many efforts invested in order to achieve timely detection. Unexplained elevated blood carcinoembryonic antigen levels are occasionally observed in an asymptomatic population and considered as a risk factor of cancers. The purpose of this study was to determine the validity of 18 F-fluorodeoxyglucose-positron emission tomography/computed tomography (F-18 FDG-PET/CT) for detecting cancer in an asymptomatic population with an unexplained elevation in blood carcinoembryonic antigen (CEA) levels. This retrospective study included a total of 1920 asymptomatic examinees conducted from August 2011 through September 2013. The participants underwent CEA assay and conventional medical imaging (CEA-conventional), or CEA assay and F-18 FDG-PET/CT (CEA-PET/CT). The validity of conventional medical imaging and CEA-PET/CT scanning for detecting cancer and early-stage cancer in an asymptomatic population with an unexplained elevation in blood CEA levels were evaluated. Sensitivity, specificity, cancer detection rate, missed cancer detection rate, early-stage cancer detection rate, and early-stage cancer ratio using the CEA-PET/CT scanning were 96.6 %, 100 %, 10.4 %, 0.4 %, 3.7 %, and 34.5 %, respectively. In contrast, the corresponding values obtained using the conventional medical imaging were 50.6 % (P < 0.0001), 100 % (P > 0.9999), 50.6 % (P < 0.0001), 99.9 % (P = 0.055), 2.6 % (P < 0.0001), 2.5 % (P = 0.04), 0.7 % (P = 0.0004), and 14.5 % (P = 0.002), respectively. The F-18 FDG-PET/CT scanning significantly improved the validity of the cancer detection program in the asymptomatic population with an unexplained elevation in CEA levels. (orig.)

  9. Evaluation of a novel magneto-optical method for the detection of malaria parasites.

    Directory of Open Access Journals (Sweden)

    Agnes Orbán

    Full Text Available Improving the efficiency of malaria diagnosis is one of the main goals of current malaria research. We have recently developed a magneto-optical (MO method which allows high-sensitivity detection of malaria pigment (hemozoin crystals in blood via the magnetically induced rotational motion of the hemozoin crystals. Here, we evaluate this MO technique for the detection of Plasmodium falciparum in infected erythrocytes using in-vitro parasite cultures covering the entire intraerythrocytic life cycle. Our novel method detected parasite densities as low as ∼ 40 parasites per microliter of blood (0.0008% parasitemia at the ring stage and less than 10 parasites/µL (0.0002% parasitemia in the case of the later stages. These limits of detection, corresponding to approximately 20 pg/µL of hemozoin produced by the parasites, exceed that of rapid diagnostic tests and compete with the threshold achievable by light microscopic observation of blood smears. The MO diagnosis requires no special training of the operator or specific reagents for parasite detection, except for an inexpensive lysis solution to release intracellular hemozoin. The devices can be designed to a portable format for clinical and in-field tests. Besides testing its diagnostic performance, we also applied the MO technique to investigate the change in hemozoin concentration during parasite maturation. Our preliminary data indicate that this method may offer an efficient tool to determine the amount of hemozoin produced by the different parasite stages in synchronized cultures. Hence, it could eventually be used for testing the susceptibility of parasites to antimalarial drugs.

  10. Therapeutic principles of primaquine against relapse of Plasmodium vivax malaria

    Science.gov (United States)

    Baird, J. K.

    2018-03-01

    Plasmodium vivax causes tens of millions of clinical attacks annually all across the malarious globe. Unlike the other major cause of human malaria, Plasmodium falciparum, P. vivax places dormant stages called hypnozoites into the human liver that later awaken and provoke multiple clinical attacks in the weeks, months, and few years following the infectious anopheline mosquito bite. The only available treatment to prevent those recurrent attacks is primaquine (hypnozoitocide), and it must be administered with the drugs applied to end the acute attack (blood schizontocides). This paper reviews the therapeutic principles of applying primaquine to achieve radical cure of acute vivax malaria.

  11. Identification of a Novel CD8 T Cell Epitope Derived from Plasmodium berghei Protective Liver-Stage Antigen

    Directory of Open Access Journals (Sweden)

    Alexander Pichugin

    2018-01-01

    Full Text Available We recently identified novel Plasmodium berghei (Pb liver stage (LS genes that as DNA vaccines significantly reduce Pb LS parasite burden (LPB in C57Bl/6 (B6 mice through a mechanism mediated, in part, by CD8 T cells. In this study, we sought to determine fine antigen (Ag specificities of CD8 T cells that target LS malaria parasites. Guided by algorithms for predicting MHC class I-restricted epitopes, we ranked sequences of 32 Pb LS Ags and selected ~400 peptides restricted by mouse H-2Kb and H-2Db alleles for analysis in the high-throughput method of caged MHC class I-tetramer technology. We identified a 9-mer H-2Kb restricted CD8 T cell epitope, Kb-17, which specifically recognized and activated CD8 T cell responses in B6 mice immunized with Pb radiation-attenuated sporozoites (RAS and challenged with infectious sporozoites (spz. The Kb-17 peptide is derived from the recently described novel protective Pb LS Ag, PBANKA_1031000 (MIF4G-like protein. Notably, immunization with the Kb-17 epitope delivered in the form of a minigene in the adenovirus serotype 5 vector reduced LPB in mice infected with spz. On the basis of our results, Kb-17 peptide was available for CD8 T cell activation and recall following immunization with Pb RAS and challenge with infectious spz. The identification of a novel MHC class I-restricted epitope from the protective Pb LS Ag, MIF4G-like protein, is crucial for advancing our understanding of immune responses to Plasmodium and by extension, toward vaccine development against malaria.

  12. Population genomic scan for candidate signatures of balancing selection to guide antigen characterization in malaria parasites.

    Science.gov (United States)

    Amambua-Ngwa, Alfred; Tetteh, Kevin K A; Manske, Magnus; Gomez-Escobar, Natalia; Stewart, Lindsay B; Deerhake, M Elizabeth; Cheeseman, Ian H; Newbold, Christopher I; Holder, Anthony A; Knuepfer, Ellen; Janha, Omar; Jallow, Muminatou; Campino, Susana; Macinnis, Bronwyn; Kwiatkowski, Dominic P; Conway, David J

    2012-01-01

    Acquired immunity in vertebrates maintains polymorphisms in endemic pathogens, leading to identifiable signatures of balancing selection. To comprehensively survey for genes under such selection in the human malaria parasite Plasmodium falciparum, we generated paired-end short-read sequences of parasites in clinical isolates from an endemic Gambian population, which were mapped to the 3D7 strain reference genome to yield high-quality genome-wide coding sequence data for 65 isolates. A minority of genes did not map reliably, including the hypervariable var, rifin, and stevor families, but 5,056 genes (90.9% of all in the genome) had >70% sequence coverage with minimum read depth of 5 for at least 50 isolates, of which 2,853 genes contained 3 or more single nucleotide polymorphisms (SNPs) for analysis of polymorphic site frequency spectra. Against an overall background of negatively skewed frequencies, as expected from historical population expansion combined with purifying selection, the outlying minority of genes with signatures indicating exceptionally intermediate frequencies were identified. Comparing genes with different stage-specificity, such signatures were most common in those with peak expression at the merozoite stage that invades erythrocytes. Members of clag, PfMC-2TM, surfin, and msp3-like gene families were highly represented, the strongest signature being in the msp3-like gene PF10_0355. Analysis of msp3-like transcripts in 45 clinical and 11 laboratory adapted isolates grown to merozoite-containing schizont stages revealed surprisingly low expression of PF10_0355. In diverse clonal parasite lines the protein product was expressed in a minority of mature schizonts (<1% in most lines and ∼10% in clone HB3), and eight sub-clones of HB3 cultured separately had an intermediate spectrum of positive frequencies (0.9 to 7.5%), indicating phase variable expression of this polymorphic antigen. This and other identified targets of balancing selection are now

  13. Population genomic scan for candidate signatures of balancing selection to guide antigen characterization in malaria parasites.

    Directory of Open Access Journals (Sweden)

    Alfred Amambua-Ngwa

    Full Text Available Acquired immunity in vertebrates maintains polymorphisms in endemic pathogens, leading to identifiable signatures of balancing selection. To comprehensively survey for genes under such selection in the human malaria parasite Plasmodium falciparum, we generated paired-end short-read sequences of parasites in clinical isolates from an endemic Gambian population, which were mapped to the 3D7 strain reference genome to yield high-quality genome-wide coding sequence data for 65 isolates. A minority of genes did not map reliably, including the hypervariable var, rifin, and stevor families, but 5,056 genes (90.9% of all in the genome had >70% sequence coverage with minimum read depth of 5 for at least 50 isolates, of which 2,853 genes contained 3 or more single nucleotide polymorphisms (SNPs for analysis of polymorphic site frequency spectra. Against an overall background of negatively skewed frequencies, as expected from historical population expansion combined with purifying selection, the outlying minority of genes with signatures indicating exceptionally intermediate frequencies were identified. Comparing genes with different stage-specificity, such signatures were most common in those with peak expression at the merozoite stage that invades erythrocytes. Members of clag, PfMC-2TM, surfin, and msp3-like gene families were highly represented, the strongest signature being in the msp3-like gene PF10_0355. Analysis of msp3-like transcripts in 45 clinical and 11 laboratory adapted isolates grown to merozoite-containing schizont stages revealed surprisingly low expression of PF10_0355. In diverse clonal parasite lines the protein product was expressed in a minority of mature schizonts (<1% in most lines and ∼10% in clone HB3, and eight sub-clones of HB3 cultured separately had an intermediate spectrum of positive frequencies (0.9 to 7.5%, indicating phase variable expression of this polymorphic antigen. This and other identified targets of balancing

  14. The search for new antimalarial drugs from plants used to treat fever and malaria or plants ramdomly selected: a review

    Directory of Open Access Journals (Sweden)

    Krettli Antoniana U

    2001-01-01

    Full Text Available In this review we discuss the ongoing situation of human malaria in the Brazilian Amazon, where it is endemic causing over 610,000 new acute cases yearly, a number which is on the increase. This is partly a result of drug resistant parasites and new antimalarial drugs are urgently needed. The approaches we have used in the search of new drugs during decades are now reviewed and include ethnopharmocology, plants randomly selected, extracts or isolated substances from plants shown to be active against the blood stage parasites in our previous studies. Emphasis is given on the medicinal plant Bidens pilosa, proven to be active against the parasite blood stages in tests using freshly prepared plant extracts. The anti-sporozoite activity of one plant used in the Brazilian endemic area to prevent malaria is also described, the so called "Indian beer" (Ampelozizyphus amazonicus, Rhamnaceae. Freshly prepared extracts from the roots of this plant were totally inactive against blood stage parasites, but active against sporozoites of Plasmodium gallinaceum or the primary exoerythrocytic stages reducing tissue parasitism in inoculated chickens. This result will be of practical importance if confirmed in mammalian malaria. Problems and perspectives in the search for antimalarial drugs are discussed as well as the toxicological and clinical trials to validate some of the active plants for public health use in Brazil.

  15. The relationship between oral Candida carriage and the secretor status of blood group antigens in saliva.

    Science.gov (United States)

    Shin, Eun-Seop; Chung, Sung-Chang; Kim, Young-Ku; Lee, Sung-Woo; Kho, Hong-Seop

    2003-07-01

    The aim of the study was to investigate the relationship between oral Candida carriage and the secretor status of blood group antigens. Unstimulated whole saliva and oral rinse samples were obtained from 180 healthy subjects. These samples were plated on Sabouraud's dextrose agar media to determine oral Candida carriage. Sodium dodecylsulfate polyacrylamide gel electrophoresis and immunoblotting were performed on whole saliva samples to determine the secretor status of blood group antigens. The oral Candida carriage rate was found to be 45.0%. The sensitivity of the concentrated rinse culture proved to be superior. Oral Candida carriage was not significantly related to the blood group or secretor status of ABH or Lewis antigens. No significant relationship was found between oral Candida carriage and salivary flow rate. However, smoking affected oral Candida carriage. Oral Candida carriage in healthy individuals is not significantly related to blood group or secretor status.

  16. Variant Exported Blood-Stage Proteins Encoded by Plasmodium Multigene Families Are Expressed in Liver Stages Where They Are Exported into the Parasitophorous Vacuole.

    Directory of Open Access Journals (Sweden)

    Aurélie Fougère

    2016-11-01

    Full Text Available Many variant proteins encoded by Plasmodium-specific multigene families are exported into red blood cells (RBC. P. falciparum-specific variant proteins encoded by the var, stevor and rifin multigene families are exported onto the surface of infected red blood cells (iRBC and mediate interactions between iRBC and host cells resulting in tissue sequestration and rosetting. However, the precise function of most other Plasmodium multigene families encoding exported proteins is unknown. To understand the role of RBC-exported proteins of rodent malaria parasites (RMP we analysed the expression and cellular location by fluorescent-tagging of members of the pir, fam-a and fam-b multigene families. Furthermore, we performed phylogenetic analyses of the fam-a and fam-b multigene families, which indicate that both families have a history of functional differentiation unique to RMP. We demonstrate for all three families that expression of family members in iRBC is not mutually exclusive. Most tagged proteins were transported into the iRBC cytoplasm but not onto the iRBC plasma membrane, indicating that they are unlikely to play a direct role in iRBC-host cell interactions. Unexpectedly, most family members are also expressed during the liver stage, where they are transported into the parasitophorous vacuole. This suggests that these protein families promote parasite development in both the liver and blood, either by supporting parasite development within hepatocytes and erythrocytes and/or by manipulating the host immune response. Indeed, in the case of Fam-A, which have a steroidogenic acute regulatory-related lipid transfer (START domain, we found that several family members can transfer phosphatidylcholine in vitro. These observations indicate that these proteins may transport (host phosphatidylcholine for membrane synthesis. This is the first demonstration of a biological function of any exported variant protein family of rodent malaria parasites.

  17. Identification, characterization and antigenicity of the Plasmodium vivax rhoptry neck protein 1 (PvRON1

    Directory of Open Access Journals (Sweden)

    Patarroyo Manuel E

    2011-10-01

    Full Text Available Abstract Background Plasmodium vivax malaria remains a major health problem in tropical and sub-tropical regions worldwide. Several rhoptry proteins which are important for interaction with and/or invasion of red blood cells, such as PfRONs, Pf92, Pf38, Pf12 and Pf34, have been described during the last few years and are being considered as potential anti-malarial vaccine candidates. This study describes the identification and characterization of the P. vivax rhoptry neck protein 1 (PvRON1 and examine its antigenicity in natural P. vivax infections. Methods The PvRON1 encoding gene, which is homologous to that encoding the P. falciparum apical sushi protein (ASP according to the plasmoDB database, was selected as our study target. The pvron1 gene transcription was evaluated by RT-PCR using RNA obtained from the P. vivax VCG-1 strain. Two peptides derived from the deduced P. vivax Sal-I PvRON1 sequence were synthesized and inoculated in rabbits for obtaining anti-PvRON1 antibodies which were used to confirm the protein expression in VCG-1 strain schizonts along with its association with detergent-resistant microdomains (DRMs by Western blot, and its localization by immunofluorescence assays. The antigenicity of the PvRON1 protein was assessed using human sera from individuals previously exposed to P. vivax malaria by ELISA. Results In the P. vivax VCG-1 strain, RON1 is a 764 amino acid-long protein. In silico analysis has revealed that PvRON1 shares essential characteristics with different antigens involved in invasion, such as the presence of a secretory signal, a GPI-anchor sequence and a putative sushi domain. The PvRON1 protein is expressed in parasite's schizont stage, localized in rhoptry necks and it is associated with DRMs. Recombinant protein recognition by human sera indicates that this antigen can trigger an immune response during a natural infection with P. vivax. Conclusions This study shows the identification and characterization of

  18. Nested PCR detection of malaria directly using blood filter paper samples from epidemiological surveys.

    Science.gov (United States)

    Li, Peipei; Zhao, Zhenjun; Wang, Ying; Xing, Hua; Parker, Daniel M; Yang, Zhaoqing; Baum, Elizabeth; Li, Wenli; Sattabongkot, Jetsumon; Sirichaisinthop, Jeeraphat; Li, Shuying; Yan, Guiyun; Cui, Liwang; Fan, Qi

    2014-05-08

    Nested PCR is considered a sensitive and specific method for detecting malaria parasites and is especially useful in epidemiological surveys. However, the preparation of DNA templates for PCR is often time-consuming and costly. A simplified PCR method was developed to directly use a small blood filter paper square (2 × 2 mm) as the DNA template after treatment with saponin. This filter paper-based nested PCR method (FP-PCR) was compared to microscopy and standard nested PCR with DNA extracted by using a Qiagen DNA mini kit from filter paper blood spots of 204 febrile cases. The FP-PCR technique was further applied to evaluate malaria infections in 1,708 participants from cross-sectional epidemiological surveys conducted in Myanmar and Thailand. The FP-PCR method had a detection limit of ~0.2 parasites/μL blood, estimated using cultured Plasmodium falciparum parasites. With 204 field samples, the sensitivity of the FP-PCR method was comparable to that of the standard nested PCR method, which was significantly higher than that of microscopy. Application of the FP-PCR method in large cross-sectional studies conducted in Myanmar and Thailand detected 1.9% (12/638) and 6.2% (66/1,070) asymptomatic Plasmodium infections, respectively, as compared to the detection rates of 1.3% (8/638) and 0.04% (4/1,070) by microscopy. This FP-PCR method was much more sensitive than microscopy in detecting Plasmodium infections. It drastically increased the detection sensitivity of asymptomatic infections in cross-sectional surveys conducted in Thailand and Myanmar, suggesting that this FP-PCR method has a potential for future applications in malaria epidemiology studies.

  19. Endothelial cell markers in vascular neoplasms: an immunohistochemical study comparing factor VIII-related antigen, blood group specific antigens, 6-keto-PGF1 alpha, and Ulex europaeus 1 lectin.

    Science.gov (United States)

    Little, D; Said, J W; Siegel, R J; Fealy, M; Fishbein, M C

    1986-06-01

    Markers for endothelial cells including Ulex europaeus 1 lectin, blood group A, B, and H, and the prostaglandin metabolite 6-keto-PGF1 alpha were evaluated in paraffin secretions from formalin-fixed benign and malignant vascular neoplasms using a variety of immunohistochemical techniques, and results compared with staining for factor VIII-related antigen. Staining for Ulex appeared more sensitive than factor VIII-related antigen in identifying poorly differentiated neoplasms including haemangiosarcomas and spindle cell proliferations in Kaposi's sarcoma. Staining for blood group related antigens correlated with blood group in all cases. Ulex europaeus 1 lectin was the only marker for endothelial cells in lymphangiomas.

  20. Ecology of urban malaria vectors in Niamey, Republic of Niger.

    Science.gov (United States)

    Labbo, Rabiou; Fandeur, Thierry; Jeanne, Isabelle; Czeher, Cyril; Williams, Earle; Arzika, Ibrahim; Soumana, Amadou; Lazoumar, Ramatoulaye; Duchemin, Jean-Bernard

    2016-06-08

    Urbanization in African cities has major impact on malaria risk. Niamey, the capital of the Republic of Niger, is situated in the West African Sahel zone. The short rainy season and human activities linked with the Niger River influence mosquito abundance. This study aimed at deciphering the factors of distribution of urban malaria vectors in Niamey. The distribution of mosquito aquatic stages was investigated monthly from December 2002 to November 2003, at up to 84 breeding sites, throughout Niamey. An exploratory analysis of association between mosquito abundance and environmental factors was performed by a Principal Component Analysis and confirmed by Kruskall-Wallis non-parametric test. To assess the relative importance of significant factors, models were built for Anopheles and Culicinae. In a second capture session, adult mosquitoes were collected weekly with pyrethrum sprays and CDC light-traps from June 2008 to June 2009 in two differentiated urban areas chosen after the study's first step. Members of the Anopheles gambiae complex were genotyped and Anopheles females were tested for the presence of Plasmodium falciparum circumsporozoite antigens using ELISA. In 2003, 29 % of 8420 mosquitoes collected as aquatic stages were Anopheles. They were significantly more likely to be found upstream, relatively close to the river and highly productive in ponds. These factors remained significant in regression and generalized linear models. The Culicinae were found significantly more likely close to the river, and in the main temporary affluent stream. In 2009, Anopheles specimens, including Anopheles gambiae s.l. (95 %), but also Anopheles funestus (0.6 %) accounted for 18 % of the adult mosquito fauna, with a large difference between the two sampled zones. Three members of the An. gambiae complex were found: Anopheles arabiensis, Anopheles coluzzii, and An. gambiae. Nineteen (1.3 %) out of 1467 females tested for P. falciparum antigen were found positive. The

  1. Glioblastoma and ABO blood groups: further evidence of an association between the distribution of blood group antigens and brain tumours.

    Science.gov (United States)

    Allouh, Mohammed Z; Al Barbarawi, Mohammed M; Hiasat, Mohammad Y; Al-Qaralleh, Mohammed A; Ababneh, Emad I

    2017-10-01

    Glioblastoma is a highly malignant brain tumour that usually leads to death. Several studies have reported a link between the distribution of ABO blood group antigens and a risk of developing specific types of cancer, although no consensus has been reached. This study aims to investigate the relationship between the distribution of ABO blood group antigens and the incidence of glioblastoma. The study cohort consisted of 115 glioblastoma patients who were diagnosed at King Abdullah University Hospital, Jordan, between 2004 and 2015. Three different patient populations made up three control groups and these were selected from among patients at the same institution between 2014 and 2015 as follows: 3,847 healthy blood donors, 654 accidental trauma patients admitted to the Departments of Neurosurgery and Orthopaedics, and 230 age- and sex-matched control subjects recruited blindly from the Departments of Paediatrics and Internal Medicine. There was a significant association between the distribution of ABO blood group antigens and the incidence of glioblastoma. Post hoc residual analysis revealed that individuals with group A had a higher than expected chance of developing glioblastoma, while individuals with group O had a lower than expected chance. Furthermore, individuals with group A were found to be at a 1.62- to 2.28-fold increased risk of developing glioblastoma compared to individuals with group O. In the present study, we demonstrate that, in Jordan, individuals with group A have an increased risk of developing glioblastoma, while individuals with group O have a reduced risk. These findings suggest that the distribution of ABO blood group antigens is associated with a risk of brain tumours and may play an important role in their development. However, further clinical and experimental investigations are required to confirm this association.

  2. Malaria vaccines and their potential role in the elimination of malaria

    Directory of Open Access Journals (Sweden)

    Greenwood Brian M

    2008-12-01

    Full Text Available Abstract Research on malaria vaccines is currently directed primarily towards the development of vaccines that prevent clinical malaria. Malaria elimination, now being considered seriously in some epidemiological situations, requires a different vaccine strategy, since success will depend on killing all parasites in the community in order to stop transmission completely. The feature of the life-cycles of human malarias that presents the greatest challenge to an elimination programme is the persistence of parasites as asymptomatic infections. These are an important source from which transmission to mosquitoes can occur. Consequently, an elimination strategy requires a community-based approach covering all individuals and not just those who are susceptible to clinical malaria. The progress that has been made in development of candidate malaria vaccines is reviewed. It is unlikely that many of these will have the efficacy required for complete elimination of parasites, though they may have an important role to play as part of future integrated control programmes. Vaccines for elimination must have a high level of efficacy in order to stop transmission to mosquitoes. This might be achieved with some pre-erythrocytic stage candidate vaccines or by targeting the sexual stages directly with transmission-blocking vaccines. An expanded malaria vaccine programme with such objectives is now a priority.

  3. Automated detection of malaria pigment: feasibility for malaria diagnosing in an area with seasonal malaria in northern Namibia

    NARCIS (Netherlands)

    de Langen, Adrianus J.; van Dillen, Jeroen; de Witte, Piet; Mucheto, Samson; Nagelkerke, Nico; Kager, Piet

    2006-01-01

    OBJECTIVE: To evaluate the feasibility of automated malaria detection with the Cell-Dyn 3700 (Abbott Diagnostics, Santa Clara, CA, USA) haematology analyser for diagnosing malaria in northern Namibia. METHODS: From April to June 2003, all patients with a positive blood smear result and a subset of

  4. DNA prime/Adenovirus boost malaria vaccine encoding P. falciparum CSP and AMA1 induces sterile protection associated with cell-mediated immunity.

    Directory of Open Access Journals (Sweden)

    Ilin Chuang

    Full Text Available BACKGROUND: Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection. METHODOLOGY/PRINCIPAL FINDINGS: The vaccine regimen was three monthly doses of two DNA plasmids (DNA followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad. The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP and apical membrane antigen-1 (AMA1. The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea, possibly related to immunization, was severe (Grade 3, preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27% were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44-817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5-102 and were not associated with protection. Ex vivo IFN-γ ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13-408; AMA1 348, range 88-1270 and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019. Flow cytometry identified predominant IFN-γ mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant. SIGNIFICANCE: The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%. Protection

  5. Phase 1/2a study of the malaria vaccine candidate apical membrane antigen-1 (AMA-l) administered in adjuvant system AS01B or AS02A

    NARCIS (Netherlands)

    M.D. Spring (Michele Donna); J.F. Cummings (James); C.F. Ockenhouse (Christian); S. Dutta (Shantanu); R. Reidler (Randall); E. Angov (Evelina); E. Bergmann-Leitner (Elke); V.A. Stewart (Ann); S. Bittner (Stacey); L. Juompan (Laure); M.G. Kortepeter (Mark); R. Nielsen (Robin); U. Krzych (Urszula); E. Tierney (Ev); L.A. Ware (Lisa); M. Dowler (Megan); C.C. Hermsen (Cornelus); R.W. Sauerwein (Robert); S.J. de Vlas (Sake); O. Ofori-Anyinam (Opokua); D.E. Lanar (David); J.L. Williams (Jack); K.E. Kester (Kent); K. Tucker (Kathryn); M. Shi (Meng); E. Malkin (Elissa); C. Long (Carole); C.L. Diggs (Carter); L. Soisson (Lorraine Amory); M.C. Dubois; W.R. Ballou (Ripley); J. Cohen (Joe); D.G. Heppner (Gray)

    2009-01-01

    textabstractBackground: This Phase 1/2a study evaluated the safety, immunogenicity, and efficacy of an experimental malaria vaccine comprised of the recombinant Plasmodium falciparum protein apical membrane antigen-1 (AMA-1) representing the 3D7 allele formulated with either the AS01B or AS02A

  6. Stabilization of Transfected Cells Expressing Low-Incidence Blood Group Antigens: Novel Methods Facilitating Their Use as Reagent-Cells.

    Directory of Open Access Journals (Sweden)

    Cecilia González

    Full Text Available The identification of erythrocyte antibodies in the serum of patients rely on panels of human red blood cells (RBCs, which coexpress many antigens and are not easily available for low-incidence blood group phenotypes. These problems have been addressed by generating cell lines expressing unique blood group antigens, which may be used as an alternative to human RBCs. However, the use of cell lines implies several drawbacks, like the requirement of cell culture facilities and the high cost of cryopreservation. The application of cell stabilization methods could facilitate their use as reagent cells in clinical laboratories.We generated stably-transfected cells expressing low-incidence blood group antigens (Dia and Lua. High-expresser clones were used to assess the effect of TransFix® treatment and lyophilization as cell preservation methods. Cells were kept at 4°C and cell morphology, membrane permeability and antigenic properties were evaluated at several time-points after treatment.TransFix® addition to cell suspensions allows cell stabilization and proper antigen detection for at least 120 days, despite an increase in membrane permeability and a reduction in antigen expression levels. Lyophilized cells showed minor morphological changes and antigen expression levels were rather conserved at days 1, 15 and 120, indicating a high stability of the freeze-dried product. These stabilized cells have been proved to react specifically with human sera containing alloantibodies.Both stabilization methods allow long-term preservation of the transfected cells antigenic properties and may facilitate their distribution and use as reagent-cells expressing low-incidence antigens, overcoming the limited availability of such rare RBCs.

  7. Antigen Uptake during Different Life Stages of Zebrafish (Danio rerio Using a GFP-Tagged Yersinia ruckeri.

    Directory of Open Access Journals (Sweden)

    Rozalia Korbut

    Full Text Available Immersion-vaccines (bacterins are routinely used for aquacultured rainbow trout to protect against Yersinia ruckeri (Yr. During immersion vaccination, rainbow trout take up and process the antigens, which induce protection. The zebrafish was used as a model organism to study uptake mechanisms and subsequent antigen transport in fish. A genetically modified Yr was developed to constitutively express green fluorescent protein (GFP and was used for bacterin production. Larval, juvenile and adult transparent zebrafish (tra:nac mutant received a bath in the bacterin for up to 30 minutes. Samples were taken after 1 min, 15 min, 30 min, 2 h, 12 h and 24 h. At each sampling point fish were used for live imaging of the uptake using a fluorescence stereomicroscope and for immunohistochemistry (IHC. In adult fish, the bacterin could be traced within 30 min in scale pockets, skin, oesophagus, intestine and fins. Within two hours post bath (pb Yr-antigens were visible in the spleen and at 24 h in liver and kidney. Bacteria were associated with the gills, but uptake at this location was limited. Antigens were rarely detected in the blood and never in the nares. In juvenile fish uptake of the bacterin was seen in the intestine 30 min pb and in the nares 2 hpb but never in scale pockets. Antigens were detected in the spleen 12 hpb. Zebrafish larvae exhibited major Yr uptake only in the mid-intestine enterocytes 24 hpb. The different life stages of zebrafish varied with regard to uptake locations, however the gut was consistently a major uptake site. Zebrafish and rainbow trout tend to have similar uptake mechanisms following immersion or bath vaccination, which points towards zebrafish as a suitable model organism for this aquacultured species.

  8. Impact of antigenic exposures and role of molecular blood grouping in enhancing transfusion safety in chronically transfused thalassemics.

    Science.gov (United States)

    Makroo, Raj Nath; Agrawal, Soma; Bhatia, Aakanksha; Chowdhry, Mohit; Thakur, Uday Kumar

    2016-01-01

    Red cell alloimmunization is an acknowledged complication of blood transfusion. Current transfusion practices for thalassemia do not cater to this risk. Serological phenotyping is usually not reliable in these cases unless performed before the first transfusion. Under such circumstances, molecular blood grouping is an effective alternative. To perform molecular blood group genotyping in chronically transfused thalassemia patients and assess the risk of antigenic exposure and incidence of alloimmunization with current transfusion protocols. Molecular blood group genotyping was performed for 47 chronically transfused thalassemia patients. Their 1-year transfusion records were retrieved to assess the antigenic exposure and the frequency thereof. Of 47 patients, 6 were already alloimmunized (3 with anti-E and 3 with anti-K) and were receiving the corresponding antigen negative units. We observed that random selection of ABO and Rh D matched units resulted in 57.7% ±8.26% chance of Rh and Kell phenotype matching also. Forty-four patients had received one or more antigenic exposures at least once. The 6 already alloimmunized patients were further exposed to antigens other than the ones they were immunized to. During the study period, only one patient developed an alloantibody, anti-E with exposure to antigens C (92%) and/or E (32%) at each transfusion. Several factors apart from mere antigen exposure may influence the development of alloimmunization as most of our patients received antigenic exposures but not alloimmunized. Our data provide an impetus for future large-scale studies to understand the development of alloimmunization in such patients.

  9. Impact of antigenic exposures and role of molecular blood grouping in enhancing transfusion safety in chronically transfused thalassemics

    Directory of Open Access Journals (Sweden)

    Raj Nath Makroo

    2016-01-01

    Full Text Available Background: Red cell alloimmunization is an acknowledged complication of blood transfusion. Current transfusion practices for thalassemia do not cater to this risk. Serological phenotyping is usually not reliable in these cases unless performed before the first transfusion. Under such circumstances, molecular blood grouping is an effective alternative. Aim: To perform molecular blood group genotyping in chronically transfused thalassemia patients and assess the risk of antigenic exposure and incidence of alloimmunization with current transfusion protocols. Materials and Methods: Molecular blood group genotyping was performed for 47 chronically transfused thalassemia patients. Their 1-year transfusion records were retrieved to assess the antigenic exposure and the frequency thereof. Results: Of 47 patients, 6 were already alloimmunized (3 with anti-E and 3 with anti-K and were receiving the corresponding antigen negative units. We observed that random selection of ABO and Rh D matched units resulted in 57.7% ±8.26% chance of Rh and Kell phenotype matching also. Forty-four patients had received one or more antigenic exposures at least once. The 6 already alloimmunized patients were further exposed to antigens other than the ones they were immunized to. During the study period, only one patient developed an alloantibody, anti-E with exposure to antigens C (92% and/or E (32% at each transfusion. Conclusion: Several factors apart from mere antigen exposure may influence the development of alloimmunization as most of our patients received antigenic exposures but not alloimmunized. Our data provide an impetus for future large-scale studies to understand the development of alloimmunization in such patients.

  10. Role of Activins in Hepcidin Regulation during Malaria.

    Science.gov (United States)

    Spottiswoode, Natasha; Armitage, Andrew E; Williams, Andrew R; Fyfe, Alex J; Biswas, Sumi; Hodgson, Susanne H; Llewellyn, David; Choudhary, Prateek; Draper, Simon J; Duffy, Patrick E; Drakesmith, Hal

    2017-12-01

    Epidemiological observations have linked increased host iron with malaria susceptibility, and perturbed iron handling has been hypothesized to contribute to the potentially life-threatening anemia that may accompany blood-stage malaria infection. To improve our understanding of these relationships, we examined the pathways involved in regulation of the master controller of iron metabolism, the hormone hepcidin, in malaria infection. We show that hepcidin upregulation in Plasmodium berghei murine malaria infection was accompanied by changes in expression of bone morphogenetic protein (BMP)/sons of mothers against decapentaplegic (SMAD) pathway target genes, a key pathway involved in hepcidin regulation. We therefore investigated known agonists of the BMP/SMAD pathway and found that Bmp gene expression was not increased in infection. In contrast, activin B, which can signal through the BMP/SMAD pathway and has been associated with increased hepcidin during inflammation, was upregulated in the livers of Plasmodium berghei -infected mice; hepatic activin B was also upregulated at peak parasitemia during infection with Plasmodium chabaudi Concentrations of the closely related protein activin A increased in parallel with hepcidin in serum from malaria-naive volunteers infected in controlled human malaria infection (CHMI) clinical trials. However, antibody-mediated neutralization of activin activity during murine malaria infection did not affect hepcidin expression, suggesting that these proteins do not stimulate hepcidin upregulation directly. In conclusion, we present evidence that the BMP/SMAD signaling pathway is perturbed in malaria infection but that activins, although raised in malaria infection, may not have a critical role in hepcidin upregulation in this setting. Copyright © 2017 Spottiswoode et al.

  11. Antibody responses to two new Lactococcus lactis-produced recombinant Pfs48/45 and Pfs230 proteins increase with age in malaria patients living in the Central Region of Ghana.

    Science.gov (United States)

    Acquah, Festus K; Obboh, Evans K; Asare, Kwame; Boampong, Johnson N; Nuvor, Samuel Victor; Singh, Susheel K; Theisen, Michael; Williamson, Kim C; Amoah, Linda Eva

    2017-08-01

    Recent advances in malaria control efforts have led to an increased number of national malaria control programmes implementing pre-elimination measures and demonstrated the need to develop new tools to track and control malaria transmission. Key to understanding transmission is monitoring the prevalence and immune response against the sexual stages of the parasite, known as gametocytes, which are responsible for transmission. Sexual-stage specific antigens, Pfs230 and Pfs48/45, have been identified and shown to be targets for transmission blocking antibodies, but they have been difficult to produce recombinantly in the absence of a fusion partner. Regions of Pfs48/45 and Pfs230 known to contain transmission blocking epitopes, 6C and C0, respectively, were produced in a Lactococcus lactis expression system and used in enzyme linked immunosorbent assays to determine the seroreactivity of 95 malaria patients living in the Central Region of Ghana. Pfs48/45.6C and Pfs230.C0 were successfully produced in L. lactis in the absence of a fusion partner using a simplified purification scheme. Seroprevalence for L. lactis-produced Pfs48/45.6C and Pfs230.C0 in the study population was 74.7 and 72.8%, respectively. A significant age-dependent increase in antibody titers was observed, which suggests a vaccine targeting these antigens could be boosted during a natural infection in the field.

  12. Mucosal Blood Group Antigen Expression Profiles and HIV Infections: A Study among Female Sex Workers in Kenya.

    Directory of Open Access Journals (Sweden)

    Nadia Musimbi Chanzu

    Full Text Available The ABO blood group antigens are carbohydrate moieties expressed on human red blood cells however; these antigens can also be expressed on some other cells particularly the surface of epithelial cells and may be found in mucosal secretions. In many human populations 80% secrete ABO antigens (termed 'secretors' while 20% do not (termed 'non-secretors'. Furthermore, there are disease conditions that are associated with secretor status.To investigate correlations between secretor status and HIV infection among female sex workers in Nairobi, Kenya.This cross-sectional study recruited 280 female sex workers aged 18-65 years from the Pumwani Majengo cohort, Kenya. Blood typing was determined by serological techniques using monoclonal antibodies to the ABO blood group antigens. Secretor phenotyping was determined using anti-H specific lectins specific to salivary, vaginal and cervical blood group H antigen using the agglutination inhibition technique and correlated to individual HIV sero-status. Participants were additionally screened for Bacterial vaginosis, Neisseria gonorrhoea and Trichomonas vaginalis.Out of the 280 participants, 212 (75.7% were secretors and 68 (24.3% were non-secretors. The incidence of all infections: HIV, Bacterial vaginosis, Neisseria gonorrhoea and Trichomonas vaginalis was higher among secretors compared to non-secretors. However, this difference was only statistically significant for HIV infection incidence rates: HIV infected secretors (83.7% versus HIV un-infected secretors (71.8% (p = 0.029 Based on ABO phenotype stratification, the incidence of HIV infection was higher among blood group A secretors (26/52 = 50%, in comparison to B (12/39 = 33.3%: p = 0.066, AB (3/9 = 33.3%: p = 0.355, and O secretors (36/112 = 32.1%: p = 0.028.This is the first report to document the variable expression of the ABH blood group antigens profiling secretor and non-secretor phenotypes in the female genital tract among a high-risk population

  13. Expression of senescent antigen on erythrocytes infected with a knobby variant of the human malaria parasite Plasmodium falciparum

    International Nuclear Information System (INIS)

    Winograd, E.; Greenan, J.R.T.; Sherman, I.W.

    1987-01-01

    Erythrocytes infected with a knobby variant of Plasmodium falciparum selectively bind IgG autoantibodies in normal human serum. Quantification of membrane-bound IgG, by use of 125 I-labeled protein A, revealed that erythrocytes infected with the knobby variant bound 30 times more protein A than did noninfected erythrocytes; infection with a knobless variant resulted in less than a 2-fold difference compared with noninfected erythrocytes. IgG binding to knobby erythrocytes appeared to be related to parasite development, since binding of 125 I-labeled protein A to cells bearing young trophozoites (less than 20 hr after parasite invasion) was similar to binding to uninfected erythrocytes. By immunoelectron microscopy, the membrane-bound IgG on erythrocytes infected with the knobby variant was found to be preferentially associated with the protuberances (knobs) of the plasma membrane. The removal of aged or senescent erythrocytes from the peripheral circulation is reported to involve the binding of specific antibodies to an antigen (senescent antigen) related to the major erythrocyte membrane protein band 3. Since affinity-purified autoantibodies against band 3 specifically bound to the plasma membrane of erythrocytes infected with the knobby variant of P. falciparum, it is clear that the malaria parasite induces expression of senescent antigen

  14. Malaria problem in Afghanistan: malaria scanning results of the Turkish medical aid group after the war.

    Science.gov (United States)

    Oner, Yaşar Ali; Okutan, Salih Erkan; Artinyan, Elizabeth; Kocazeybek, Bekir

    2005-04-01

    Malaria is a parasitic infection caused by Plasmodium species and it is especially seen in tropical and subtropical areas. We aimed to evaluate the effects of the infection in Afghanistan, which is an endemic place for malaria and had severe socio-economical lost after the war. We also compared these data with the ones that were recorded before the war. Blood samples were taken from 376 malaria suspected patients who come to the health center, established by the medical group of Istanbul Medical Faculty in 2002, Afghanistan. Blood samples were screened using the OPTIMAL Rapid Malaria Test and Giemsa staining method. In 95 (25.3%) patients diagnosis was malaria. In 65 patients (17.3%) the agent of the infection was P. falciparum and in 30 patients (8%) agents were other Plasmodium species.

  15. Identification of salivary gland proteins depleted after blood feeding in the malaria vector Anopheles campestris-like mosquitoes (Diptera: Culicidae.

    Directory of Open Access Journals (Sweden)

    Sriwatapron Sor-suwan

    Full Text Available Malaria sporozoites must invade the salivary glands of mosquitoes for maturation before transmission to vertebrate hosts. The duration of the sporogonic cycle within the mosquitoes ranges from 10 to 21 days depending on the parasite species and temperature. During blood feeding salivary gland proteins are injected into the vertebrate host, along with malaria sporozoites in the case of an infected mosquito. To identify salivary gland proteins depleted after blood feeding of female Anopheles campestris-like, a potential malaria vector of Plasmodium vivax in Thailand, two-dimensional gel electrophoresis and nano-liquid chromatography-mass spectrometry techniques were used. Results showed that 19 major proteins were significantly depleted in three to four day-old mosquitoes fed on a first blood meal. For the mosquitoes fed the second blood meal on day 14 after the first blood meal, 14 major proteins were significantly decreased in amount. The significantly depleted proteins in both groups included apyrase, 5'-nucleotidase/apyrase, D7, D7-related 1, short form D7r1, gSG6, anti-platelet protein, serine/threonine-protein kinase rio3, putative sil1, cyclophilin A, hypothetical protein Phum_PHUM512530, AGAP007618-PA, and two non-significant hit proteins. To our knowledge, this study presents for the first time the salivary gland proteins that are involved in the second blood feeding on the day corresponding to the transmission period of the sporozoites to new mammalian hosts. This information serves as a basis for future work concerning the possible role of these proteins in the parasite transmission and the physiological processes that occur during the blood feeding.

  16. Identification of salivary gland proteins depleted after blood feeding in the malaria vector Anopheles campestris-like mosquitoes (Diptera: Culicidae).

    Science.gov (United States)

    Sor-suwan, Sriwatapron; Jariyapan, Narissara; Roytrakul, Sittiruk; Paemanee, Atchara; Phumee, Atchara; Phattanawiboon, Benjarat; Intakhan, Nuchpicha; Chanmol, Wetpisit; Bates, Paul A; Saeung, Atiporn; Choochote, Wej

    2014-01-01

    Malaria sporozoites must invade the salivary glands of mosquitoes for maturation before transmission to vertebrate hosts. The duration of the sporogonic cycle within the mosquitoes ranges from 10 to 21 days depending on the parasite species and temperature. During blood feeding salivary gland proteins are injected into the vertebrate host, along with malaria sporozoites in the case of an infected mosquito. To identify salivary gland proteins depleted after blood feeding of female Anopheles campestris-like, a potential malaria vector of Plasmodium vivax in Thailand, two-dimensional gel electrophoresis and nano-liquid chromatography-mass spectrometry techniques were used. Results showed that 19 major proteins were significantly depleted in three to four day-old mosquitoes fed on a first blood meal. For the mosquitoes fed the second blood meal on day 14 after the first blood meal, 14 major proteins were significantly decreased in amount. The significantly depleted proteins in both groups included apyrase, 5'-nucleotidase/apyrase, D7, D7-related 1, short form D7r1, gSG6, anti-platelet protein, serine/threonine-protein kinase rio3, putative sil1, cyclophilin A, hypothetical protein Phum_PHUM512530, AGAP007618-PA, and two non-significant hit proteins. To our knowledge, this study presents for the first time the salivary gland proteins that are involved in the second blood feeding on the day corresponding to the transmission period of the sporozoites to new mammalian hosts. This information serves as a basis for future work concerning the possible role of these proteins in the parasite transmission and the physiological processes that occur during the blood feeding.

  17. Thrombocytopenia in malaria: can platelet counts differentiate malaria from other infections

    International Nuclear Information System (INIS)

    Arshad, A.R.

    2015-01-01

    To determine the accuracy of thrombocytopenia as a diagnostic marker for malaria. Study Design: Cross-sectional study. Place and Duration of Study: Department of Medicine, 1 Mountain Medical Battalion (Bagh, Azad Kashmir) from July to September 2013. Methodology: Adult patients presenting with a short history of fever without any localizing symptoms or signs were included. Exclusion criteria included patients with fever of > 7 days duration, those in whom an underlying diagnosis could be easily confirmed on the basis of history and physical examination, those on antibiotics/ antimalarials or antiplatelet agents and patients with Dengue fever. Platelet counts in venous whole blood samples were analysed with Sysmex KX-21 Haematology analyzer. Thick and thin peripheral blood smears were then prepared and examined for malarial parasites. Diagnosis of malaria was established on the basis of smear findings. Results: There were 245 patients in total. Out of the 109 patients with thrombocytopenia, 61 had vivax malaria. Platelets count was normal in 136 patients, including 4 with vivax malaria. Falciparum malaria was not seen in any patient. All cases with malaria were uncomplicated. Various measures of accuracy thus calculated were sensitivity 93.85%, specificity 73.33%, positive predictive value 55.96%, negative predictive value 97.06%, positive likelihood ratio of 3.52, negative likelihood ratio of 0.08, diagnostic odds ratio 41.94 and diagnostic accuracy of 78.78%. Conclusion: Thrombocytopenia has an excellent sensitivity and a very good specificity for vivax malaria. Normal platelet counts provide very strong evidence against malaria as the etiology of fever without a focus. (author)

  18. Inhibitors of plasmodial serine hydroxymethyltransferase (SHMT): cocrystal structures of pyrazolopyrans with potent blood- and liver-stage activities.

    Science.gov (United States)

    Witschel, Matthias C; Rottmann, Matthias; Schwab, Anatol; Leartsakulpanich, Ubolsree; Chitnumsub, Penchit; Seet, Michael; Tonazzi, Sandro; Schwertz, Geoffrey; Stelzer, Frank; Mietzner, Thomas; McNamara, Case; Thater, Frank; Freymond, Céline; Jaruwat, Aritsara; Pinthong, Chatchadaporn; Riangrungroj, Pinpunya; Oufir, Mouhssin; Hamburger, Matthias; Mäser, Pascal; Sanz-Alonso, Laura M; Charman, Susan; Wittlin, Sergio; Yuthavong, Yongyuth; Chaiyen, Pimchai; Diederich, François

    2015-04-09

    Several of the enzymes related to the folate cycle are well-known for their role as clinically validated antimalarial targets. Nevertheless for serine hydroxymethyltransferase (SHMT), one of the key enzymes of this cycle, efficient inhibitors have not been described so far. On the basis of plant SHMT inhibitors from an herbicide optimization program, highly potent inhibitors of Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) SHMT with a pyrazolopyran core structure were identified. Cocrystal structures of potent inhibitors with PvSHMT were solved at 2.6 Å resolution. These ligands showed activity (IC50/EC50 values) in the nanomolar range against purified PfSHMT, blood-stage Pf, and liver-stage P. berghei (Pb) cells and a high selectivity when assayed against mammalian cell lines. Pharmacokinetic limitations are the most plausible explanation for lack of significant activity of the inhibitors in the in vivo Pb mouse malaria model.

  19. A systematic review of transfusion-transmitted malaria in non-endemic areas.

    Science.gov (United States)

    Verra, Federica; Angheben, Andrea; Martello, Elisa; Giorli, Giovanni; Perandin, Francesca; Bisoffi, Zeno

    2018-01-16

    Transfusion-transmitted malaria (TTM) is an accidental Plasmodium infection caused by whole blood or a blood component transfusion from a malaria infected donor to a recipient. Infected blood transfusions directly release malaria parasites in the recipient's bloodstream triggering the development of high risk complications, and potentially leading to a fatal outcome especially in individuals with no previous exposure to malaria or in immuno-compromised patients. A systematic review was conducted on TTM case reports in non-endemic areas to describe the epidemiological characteristics of blood donors and recipients. Relevant articles were retrieved from Pubmed, EMBASE, Scopus, and LILACS. From each selected study the following data were extracted: study area, gender and age of blood donor and recipient, blood component associated with TTM, Plasmodium species, malaria diagnostic method employed, blood donor screening method, incubation period between the infected transfusion and the onset of clinical symptoms in the recipient, time elapsed between the clinical symptoms and the diagnosis of malaria, infection outcome, country of origin of the blood donor and time of the last potential malaria exposure. Plasmodium species were detected in 100 TTM case reports with a different frequency: 45% Plasmodium falciparum, 30% Plasmodium malariae, 16% Plasmodium vivax, 4% Plasmodium ovale, 2% Plasmodium knowlesi, 1% mixed infection P. falciparum/P. malariae. The majority of fatal outcomes (11/45) was caused by P. falciparum whilst the other fatalities occurred in individuals infected by P. malariae (2/30) and P. ovale (1/4). However, non P. falciparum fatalities were not attributed directly to malaria. The incubation time for all Plasmodium species TTM case reports was longer than what expected in natural infections. This difference was statistically significant for P. malariae (p = 0.006). A longer incubation time in the recipient together with a chronic infection at low

  20. Differential induction of functional IgG using the Plasmodium falciparum placental malaria vaccine candidate VAR2CSA

    DEFF Research Database (Denmark)

    Pinto, Vera V; Ditlev, Sisse B; Jensen, Kamilla E

    2011-01-01

    In Plasmodium falciparum malaria endemic areas placental malaria (PM) is an important complication of malaria. The recurrence of malaria in primigravidae women irrespective of acquired protection during childhood is caused by the interaction between the parasite-expressed VAR2CSA antigen and chon...

  1. cAMP-Signalling Regulates Gametocyte-Infected Erythrocyte Deformability Required for Malaria Parasite Transmission.

    Directory of Open Access Journals (Sweden)

    Ghania Ramdani

    2015-05-01

    Full Text Available Blocking Plasmodium falciparum transmission to mosquitoes has been designated a strategic objective in the global agenda of malaria elimination. Transmission is ensured by gametocyte-infected erythrocytes (GIE that sequester in the bone marrow and at maturation are released into peripheral blood from where they are taken up during a mosquito blood meal. Release into the blood circulation is accompanied by an increase in GIE deformability that allows them to pass through the spleen. Here, we used a microsphere matrix to mimic splenic filtration and investigated the role of cAMP-signalling in regulating GIE deformability. We demonstrated that mature GIE deformability is dependent on reduced cAMP-signalling and on increased phosphodiesterase expression in stage V gametocytes, and that parasite cAMP-dependent kinase activity contributes to the stiffness of immature gametocytes. Importantly, pharmacological agents that raise cAMP levels in transmissible stage V gametocytes render them less deformable and hence less likely to circulate through the spleen. Therefore, phosphodiesterase inhibitors that raise cAMP levels in P. falciparum infected erythrocytes, such as sildenafil, represent new candidate drugs to block transmission of malaria parasites.

  2. Genetic diversity of three surface protein genes in Plasmodium malariae from three Asian countries.

    Science.gov (United States)

    Srisutham, Suttipat; Saralamba, Naowarat; Sriprawat, Kanlaya; Mayxay, Mayfong; Smithuis, Frank; Nosten, Francois; Pukrittayakamee, Sasithon; Day, Nicholas P J; Dondorp, Arjen M; Imwong, Mallika

    2018-01-11

    Genetic diversity of the three important antigenic proteins, namely thrombospondin-related anonymous protein (TRAP), apical membrane antigen 1 (AMA1), and 6-cysteine protein (P48/45), all of which are found in various developmental stages of Plasmodium parasites is crucial for targeted vaccine development. While studies related to the genetic diversity of these proteins are available for Plasmodium falciparum and Plasmodium vivax, barely enough information exists regarding Plasmodium malariae. The present study aims to demonstrate the genetic variations existing among these three genes in P. malariae by analysing their diversity at nucleotide and protein levels. Three surface protein genes were isolated from 45 samples collected in Thailand (N = 33), Myanmar (N = 8), and Lao PDR (N = 4), using conventional polymerase chain reaction (PCR) assay. Then, the PCR products were sequenced and analysed using BioEdit, MEGA6, and DnaSP programs. The average pairwise nucleotide diversities (π) of P. malariae trap, ama1, and p48/45 were 0.00169, 0.00413, and 0.00029, respectively. The haplotype diversities (Hd) of P. malariae trap, ama1, and p48/45 were 0.919, 0.946, and 0.130, respectively. Most of the nucleotide substitutions were non-synonymous, which indicated that the genetic variations of these genes were maintained by positive diversifying selection, thus, suggesting their role as a potential target of protective immune response. Amino acid substitutions of P. malariae TRAP, AMA1, and P48/45 could be categorized to 17, 20, and 2 unique amino-acid variants, respectively. For further vaccine development, carboxyl terminal of P48/45 would be a good candidate according to conserved amino acid at low genetic diversity (π = 0.2-0.3). High mutational diversity was observed in P. malariae trap and ama1 as compared to p48/45 in P. malariae samples isolated from Thailand, Myanmar, and Lao PDR. Taken together, these results suggest that P48/45 might be a good vaccine

  3. Overview of revised measures to prevent malaria transmission by blood transfusion in France.

    Science.gov (United States)

    Garraud, O; Assal, A; Pelletier, B; Danic, B; Kerleguer, A; David, B; Joussemet, M; de Micco, P

    2008-10-01

    Plasmodial transmission by blood donation is rare in non-endemic countries, but a very serious complication of blood transfusion. The French national blood service (Etablissement Français du Sang and Centre de Transfusion sanguine des Armees) intended to revise the measures to strengthen blood safety with regard to Plasmodiae as transmissible pathogens. To limit the risk of transmission during infusion, serious additive measures have been taken for more than a decade in France, which is the European country with the highest rate of exposure to imported plasmodial infections or malaria. These measures were revised and strengthened after the occurrence of a lethal transfusion-transmitted infection in 2002, but did not prevent another occurrence in 2006. This report examines the weaknesses of the systems and aims at emphasizing the safety measures already taken and addresses issues to best respond to that risk.

  4. Flow Cytometric Analysis of T, B, and NK Cells Antigens in Patients with Mycosis Fungoides

    Directory of Open Access Journals (Sweden)

    Serkan Yazıcı

    2015-01-01

    Full Text Available We retrospectively analyzed the clinicopathological correlation and prognostic value of cell surface antigens expressed by peripheral blood mononuclear cells in patients with mycosis fungoides (MF. 121 consecutive MF patients were included in this study. All patients had peripheral blood flow cytometry as part of their first visit. TNMB and histopathological staging of the cases were retrospectively performed in accordance with International Society for Cutaneous Lymphomas/European Organization of Research and Treatment of Cancer (ISCL/EORTC criteria at the time of flow cytometry sampling. To determine prognostic value of cell surface antigens, cases were divided into two groups as stable and progressive disease. 17 flow cytometric analyses of 17 parapsoriasis (PP and 11 analyses of 11 benign erythrodermic patients were included as control groups. Fluorescent labeled monoclonal antibodies were used to detect cell surface antigens: T cells (CD3+, CD4+, CD8+, TCRαβ+, TCRγδ+, CD7+, CD4+CD7+, CD4+CD7−, and CD71+, B cells (HLA-DR+, CD19+, and HLA-DR+CD19+, NKT cells (CD3+CD16+CD56+, and NK cells (CD3−CD16+CD56+. The mean value of all cell surface antigens was not statistically significant between parapsoriasis and MF groups. Along with an increase in cases of MF stage statistically significant difference was found between the mean values of cell surface antigens. Flow cytometric analysis of peripheral blood cell surface antigens in patients with mycosis fungoides may contribute to predicting disease stage and progression.

  5. Satisfactory safety and immunogenicity of MSP3 malaria vaccine candidate in Tanzanian children aged 12–24 months

    Directory of Open Access Journals (Sweden)

    Segeja Method D

    2009-07-01

    Full Text Available Abstract Background Development and deployment of an effective malaria vaccine would complement existing malaria control measures. A blood stage malaria vaccine candidate, Merozoite Surface Protein-3 (MSP3, produced as a long synthetic peptide, has been shown to be safe in non-immune and semi-immune adults. A phase Ib dose-escalating study was conducted to assess the vaccine's safety and immunogenicity in children aged 12 to 24 months in Korogwe, Tanzania (ClinicalTrials.gov number: NCT00469651. Methods This was a double-blind, randomized, controlled, dose escalation phase Ib trial, in which children were given one of two different doses of the MSP3 antigen (15 μg or 30 μg or a control vaccine (Engerix B. Children were randomly allocated either to the MSP3 candidate malaria vaccine or the control vaccine administered at a schedule of 0, 1, and 2 months. Immunization with lower and higher doses was staggered for safety reasons starting with the lower dose. The primary endpoint was safety and reactogenicity within 28 days post-vaccination. Blood samples were obtained at different time points to measure immunological responses. Results are presented up to 84 days post-vaccination. Results A total of 45 children were enrolled, 15 in each of the two MSP3 dose groups and 15 in the Engerix B group. There were no important differences in reactogenicity between the two MSP3 groups and Engerix B. Grade 3 adverse events were infrequent; only five were detected throughout the study, all of which were transient and resolved without sequelae. No serious adverse event reported was considered to be related to MSP3 vaccine. Both MSP3 dose regimens elicited strong cytophilic IgG responses (subclasses IgG1 and IgG3, the isotypes involved in the monocyte-dependant mechanism of Plasmodium falciparum parasite-killing. The titers reached are similar to those from African adults having reached a state of premunition. Furthermore, vaccination induced seroconversion in

  6. Filariasis attenuates anemia and proinflammatory responses associated with clinical malaria: a matched prospective study in children and young adults.

    Directory of Open Access Journals (Sweden)

    Housseini Dolo

    Full Text Available Wuchereria bancrofti (Wb and Mansonella perstans (Mp are blood-borne filarial parasites that are endemic in many countries of Africa, including Mali. The geographic distribution of Wb and Mp overlaps considerably with that of malaria, and coinfection is common. Although chronic filarial infection has been shown to alter immune responses to malaria parasites, its effect on clinical and immunologic responses in acute malaria is unknown.To address this question, 31 filaria-positive (FIL+ and 31 filaria-negative (FIL- children and young adults, matched for age, gender and hemoglobin type, were followed prospectively through a malaria transmission season. Filarial infection was defined by the presence of Wb or Mp microfilariae on calibrated thick smears performed between 10 pm and 2 am and/or by the presence of circulating filarial antigen in serum. Clinical malaria was defined as axillary temperature ≥37.5°C or another symptom or sign compatible with malaria infection plus the presence of asexual malaria parasites on a thick blood smear. Although the incidence of clinical malaria, time to first episode, clinical signs and symptoms, and malaria parasitemia were comparable between the two groups, geometric mean hemoglobin levels were significantly decreased in FIL- subjects at the height of the transmission season compared to FIL+ subjects (11.4 g/dL vs. 12.5 g/dL, p<0.01. Plasma levels of IL-1ra, IP-10 and IL-8 were significantly decreased in FIL+ subjects at the time of presentation with clinical malaria (99, 2145 and 49 pg/ml, respectively as compared to 474, 5522 and 247 pg/ml in FIL- subjects.These data suggest that pre-existent filarial infection attenuates immune responses associated with severe malaria and protects against anemia, but has little effect on susceptibility to or severity of acute malaria infection. The apparent protective effect of filarial infection against anemia is intriguing and warrants further study in a larger cohort.

  7. Atovaquone and proguanil hydrochloride followed by primaquine for treatment of Plasmodium vivax malaria in Thailand.

    Science.gov (United States)

    Looareesuwan, S; Wilairatana, P; Glanarongran, R; Indravijit, K A; Supeeranontha, L; Chinnapha, S; Scott, T R; Chulay, J D

    1999-01-01

    Chloroquine-resistant Plasmodium vivax malaria has been reported in several geographical areas. The P. vivax life-cycle includes dormant hepatic parasites (hypnozoites) that cause relapsing malaria weeks to years after initial infection. Curative therapy must therefore target both the erythrocytic and hepatic stages of infection. Between July 1997 and June 1998, we conducted an open-label study in Thailand to evaluate the efficacy and tolerability of a sequential regimen of combination atovaquone (1000 mg) and proguanil hydrochloride (400 mg), once daily for 3 days, followed by primaquine (30 mg daily for 14 days) for treatment of vivax malaria. All 46 patients who completed the 3-day course of atovaquone-proguanil cleared their parasitaemia within 2-6 days. During a 12-week follow-up period in 35 patients, recurrent parasitaemia occurred in 2. Both recurrent episodes occurred 8 weeks after the start of therapy, consistent with relapse from persistent hypnozoites rather than recrudescence of persistent blood-stage parasites. The dosing regimen was well tolerated. Results of this trial indicate that atovaquone-proguanil followed by primaquine is safe and effective for treatment of vivax malaria.

  8. A viral vectored prime-boost immunization regime targeting the malaria Pfs25 antigen induces transmission-blocking activity.

    Directory of Open Access Journals (Sweden)

    Anna L Goodman

    Full Text Available The ookinete surface protein Pfs25 is a macrogamete-to-ookinete/ookinete stage antigen of Plasmodium falciparum, capable of exerting high-level anti-malarial transmission-blocking activity following immunization with recombinant protein-in-adjuvant formulations. Here, this antigen was expressed in recombinant chimpanzee adenovirus 63 (ChAd63, human adenovirus serotype 5 (AdHu5 and modified vaccinia virus Ankara (MVA viral vectored vaccines. Two immunizations were administered to mice in a heterologous prime-boost regime. Immunization of mice with AdHu5 Pfs25 at week 0 and MVA Pfs25 at week 10 (Ad-MVA Pfs25 resulted in high anti-Pfs25 IgG titers, consisting of predominantly isotypes IgG1 and IgG2a. A single priming immunization with ChAd63 Pfs25 was as effective as AdHu5 Pfs25 with respect to ELISA titers at 8 weeks post-immunization. Sera from Ad-MVA Pfs25 immunized mice inhibited the transmission of P. falciparum to the mosquito both ex vivo and in vivo. In a standard membrane-feeding assay using NF54 strain P. falciparum, oocyst intensity in Anopheles stephensi mosquitoes was significantly reduced in an IgG concentration-dependent manner when compared to control feeds (96% reduction of intensity, 78% reduction in prevalence at a 1 in 5 dilution of sera. In addition, an in vivo transmission-blocking effect was also demonstrated by direct feeding of immunized mice infected with Pfs25DR3, a chimeric P. berghei line expressing Pfs25 in place of endogenous Pbs25. In this assay the density of Pfs25DR3 oocysts was significantly reduced when mosquitoes were fed on vaccinated as compared to control mice (67% reduction of intensity, 28% reduction in prevalence and specific IgG titer correlated with efficacy. These data confirm the utility of the adenovirus-MVA vaccine platform for the induction of antibodies with transmission-blocking activity, and support the continued development of this alternative approach to transmission-blocking malaria subunit

  9. Prospects and Pitfalls of Pregnancy-Associated Malaria Vaccination Based on the Natural Immune Response to Plasmodium falciparum VAR2CSA-Expressing Parasites

    Directory of Open Access Journals (Sweden)

    Elizabeth G. Kane

    2011-01-01

    Full Text Available Pregnancy-associated malaria, a manifestation of severe malaria, is the cause of up to 200,000 infant deaths a year, through the effects of placental insufficiency leading to growth restriction and preterm delivery. Development of a vaccine is one strategy for control. Plasmodium falciparum-infected red blood cells accumulate in the placenta through specific binding of pregnancy-associated parasite variants that express the VAR2CSA antigen to chondroitin sulphate A on the surface of syncytiotrophoblast cells. Parasite accumulation, accompanied by an inflammatory infiltrate, disrupts the cytokine balance of pregnancy with the potential to cause placental damage and compromise foetal growth. Multigravid women develop immunity towards VAR2CSA-expressing parasites in a gravidity-dependent manner which prevents unfavourable pregnancy outcomes. Although current vaccine design, targeting VAR2CSA antigens, has succeeded in inducing antibodies artificially, this candidate may not provide protection during the first trimester and may only protect those women living in areas endemic for malaria. It is concluded that while insufficient information about placental-parasite interactions is presently available to produce an effective vaccine, incremental progress is being made towards achieving this goal.

  10. Total and antigen-specific Ige levels in umbilical cord blood

    Directory of Open Access Journals (Sweden)

    Sybilski AJ

    2009-12-01

    Full Text Available Abstract The present study was conducted to learn whether the perinatal and environmental factors could influence the total and antigen-specific IgE levels in umbilical cord blood. Retrospective data were obtained from 173 mother-infant pairs. Total and specific (for children's food, wheat/grass and house dust mite-HDM cord blood IgE levels were determined using the immunoassay test. The total cord blood IgE was between 0.0-23.08 IU/ml (mean 0.55 ± 2.07 IU/ml; median 0.16 IU/ml. Total IgE levels were significantly higher in boys compared with girls (OR = 2.2; P = 0.007, and in newborns with complicated pregnancy (OR = 2.7; P = 0.003. A greater number of siblings correlated with increases in the total cord blood IgE (P

  11. Robust inducible Cre recombinase activity in the human malaria parasite Plasmodium falciparum enables efficient gene deletion within a single asexual erythrocytic growth cycle.

    Science.gov (United States)

    Collins, Christine R; Das, Sujaan; Wong, Eleanor H; Andenmatten, Nicole; Stallmach, Robert; Hackett, Fiona; Herman, Jean-Paul; Müller, Sylke; Meissner, Markus; Blackman, Michael J

    2013-05-01

    Asexual blood stages of the malaria parasite, which cause all the pathology associated with malaria, can readily be genetically modified by homologous recombination, enabling the functional study of parasite genes that are not essential in this part of the life cycle. However, no widely applicable method for conditional mutagenesis of essential asexual blood-stage malarial genes is available, hindering their functional analysis. We report the application of the DiCre conditional recombinase system to Plasmodium falciparum, the causative agent of the most dangerous form of malaria. We show that DiCre can be used to obtain rapid, highly regulated site-specific recombination in P. falciparum, capable of excising loxP-flanked sequences from a genomic locus with close to 100% efficiency within the time-span of a single erythrocytic growth cycle. DiCre-mediated deletion of the SERA5 3' UTR failed to reduce expression of the gene due to the existence of alternative cryptic polyadenylation sites within the modified locus. However, we successfully used the system to recycle the most widely used drug resistance marker for P. falciparum, human dihydrofolate reductase, in the process producing constitutively DiCre-expressing P. falciparum clones that have broad utility for the functional analysis of essential asexual blood-stage parasite genes. © 2013 John Wiley & Sons Ltd.

  12. Surface antigen-negative hepatitis B virus infection in Dutch blood donors

    NARCIS (Netherlands)

    Lieshout-Krikke, R. W.; Molenaar-de Backer, M. W. A.; van Swieten, P.; Zaaijer, H. L.

    2014-01-01

    Hepatitis B virus (HBV) surface antigen (HBsAg) is a reliable marker for HBV infection, but HBsAg-negative forms of HBV infection occur. The introduction of HBV DNA screening of Dutch blood donors, which were not preselected for absence of HBV core antibodies, enabled the characterization of

  13. Predictors of childhood severe malaria in a densely populated area ...

    African Journals Online (AJOL)

    Coma, convulsions and unconsciousness were more indicative of cerebral malaria. Hemoglobin and blood glucose levels decreased significantly in severe malaria patients compared with uncomplicated malaria patients or controls (P < 0.001). On the contrary, blood transaminases and CRP levels increased significantly in ...

  14. Using an improved phagocytosis assay to evaluate the effect of HIV on specific antibodies to pregnancy-associated malaria.

    Science.gov (United States)

    Ataíde, Ricardo; Hasang, Wina; Wilson, Danny W; Beeson, James G; Mwapasa, Victor; Molyneux, Malcolm E; Meshnick, Steven R; Rogerson, Stephen J

    2010-05-25

    Pregnant women residing in malaria endemic areas are highly susceptible to Plasmodium falciparum malaria, particularly during their first pregnancy, resulting in low birth weight babies and maternal anaemia. This susceptibility is associated with placental sequestration of parasitised red blood cells expressing pregnancy-specific variant surface antigens. Acquisition of antibodies against these variant surface antigens may protect women and their offspring. Functions of such antibodies may include prevention of placental sequestration or opsonisation of parasitised cells for phagocytic clearance. Here we report the development and optimisation of a new high-throughput flow cytometry-based phagocytosis assay using undifferentiated Thp-1 cells to quantitate the amount of opsonizing antibody in patient sera, and apply this assay to measure the impact of HIV on the levels of antibodies to a pregnancy malaria-associated parasite line in a cohort of Malawian primigravid women. The assay showed high reproducibility, with inter-experimental correlation of r(2) = 0.99. In primigravid women, concurrent malaria infection was associated with significantly increased antibodies, whereas HIV decreased the ability to acquire opsonising antibodies (Mann-Whitney ranksum: p = 0.013). This decrease was correlated with HIV-induced immunosuppression, with women with less than 350 x 10(6) CD4+ T- cells/L having less opsonising antibodies (coef: -11.95,P = 0.002). Levels of antibodies were not associated with protection from low birth weight or anaemia. This flow cytometry-based phagocytosis assay proved to be efficient and accurate for the measurement of Fc-receptor mediated phagocytosis-inducing antibodies in large cohorts. HIV was found to affect mainly the acquisition of antibodies to pregnancy-specific malaria in primigravidae. Further studies of the relationship between opsonising antibodies to malaria in pregnancy and HIV are indicated.

  15. Gene disruption of Plasmodium falciparum p52 results in attenuation of malaria liver stage development in cultured primary human hepatocytes.

    Directory of Open Access Journals (Sweden)

    Ben C L van Schaijk

    Full Text Available Difficulties with inducing sterile and long lasting protective immunity against malaria with subunit vaccines has renewed interest in vaccinations with attenuated Plasmodium parasites. Immunizations with sporozoites that are attenuated by radiation (RAS can induce strong protective immunity both in humans and rodent models of malaria. Recently, in rodent parasites it has been shown that through the deletion of a single gene, sporozoites can also become attenuated in liver stage development and, importantly, immunization with these sporozoites results in immune responses identical to RAS. The promise of vaccination using these genetically attenuated sporozoites (GAS depends on translating the results in rodent malaria models to human malaria. In this study, we perform the first essential step in this transition by disrupting, p52, in P. falciparum an ortholog of the rodent parasite gene, p36p, which we had previously shown can confer long lasting protective immunity in mice. These P. falciparum P52 deficient sporozoites demonstrate gliding motility, cell traversal and an invasion rate into primary human hepatocytes in vitro that is comparable to wild type sporozoites. However, inside the host hepatocyte development is arrested very soon after invasion. This study reveals, for the first time, that disrupting the equivalent gene in both P. falciparum and rodent malaria Plasmodium species generates parasites that become similarly arrested during liver stage development and these results pave the way for further development of GAS for human use.

  16. Prevalence of human immunodeficiency virus type 1 p24 antigen in U.S. blood donors--an assessment of the efficacy of testing in donor screening. The HIV-Antigen Study Group.

    Science.gov (United States)

    Alter, H J; Epstein, J S; Swenson, S G; VanRaden, M J; Ward, J W; Kaslow, R A; Menitove, J E; Klein, H G; Sandler, S G; Sayers, M H

    1990-11-08

    We performed a multicenter study in 1989 to determine whether screening whole-blood donors for human immunodeficiency virus type 1 (HIV-1) p24 antigen would improve transfusion safety by identifying carriers of the virus who are seronegative for HIV-1 antibody. More than 500,000 donations were tested at 13 U.S. blood centers with test kits from two manufacturers. Units found repeatedly reactive were retested in a central laboratory; if the results were positive, they were confirmed by a neutralization assay. A subgroup of units was also tested for HIV-1 by the polymerase chain reaction. Selected donors confirmed or not confirmed as having p24 antigen were contacted for follow-up interviews to identify risk factors and undergo retesting for HIV-1 markers. Positive tests for p24 antigen were confirmed by neutralization in five donors (0.001 percent of all donations tested), all of whom were also positive for HIV-1 antibody and HIV-1 by polymerase chain reaction. Three of the antigen-positive donors had other markers of infectious disease that would have resulted in the exclusion of their blood; two had risk factors for HIV-1 that should have led to self-exclusion. Of 220 blood units with repeatedly reactive p24 antigen whose presence could not be confirmed by neutralization (0.04 percent of the donations studied), none were positive for HIV-1 antibody, HIV-1 by polymerase chain reaction (120 units tested), or virus culture (76 units tested)--attesting to the specificity of confirmatory neutralization. The finding that no donation studied was positive for p24 antigen and negative for HIV-1 antibody suggests that screening donors for p24 antigen with tests of the current level of sensitivity would not add substantially to the safety of the U.S. blood supply.

  17. Distribution of red blood cell antigens in drug-resistant and drug ...

    African Journals Online (AJOL)

    sofo

    Frequency distribution of ABO, Rh-Hr, MN, Kell blood group system antigens were studied in 277 TB patients (151-drug-sensitive and 126 drug-resistant) of pulmonary tuberculosis to know whether there was any association between them, and also between drug resistance and sensitiveness. They were compared with 485 ...

  18. A method for reducing the sloughing of thick blood films for malaria diagnosis.

    Science.gov (United States)

    Norgan, Andrew P; Arguello, Heather E; Sloan, Lynne M; Fernholz, Emily C; Pritt, Bobbi S

    2013-07-08

    The gold standard for malaria diagnosis is the examination of thick and thin blood films. Thick films contain 10 to 20 times more blood than thin films, correspondingly providing increased sensitivity for malaria screening. A potential complication of thick film preparations is sloughing of the blood droplet from the slide during staining or rinsing, resulting in the loss of sample. In this work, two methods for improving thick film slide adherence ('scratch' (SCM) and 'acetone dip' (ADM) methods) were compared to the 'standard method' (SM) of thick film preparation. Standardized blood droplets from 26 previously examined EDTA whole blood specimens (22 positive and four negative) were concurrently spread on glass slides using the SM, ADM, and SCM. For the SM and ADM prepared slides, the droplet was gently spread to an approximate 22 millimeters in diameter spot on the slide using the edge of a second glass slide. For the SCM, the droplet was spread by carefully grinding (or scratching) it into the slide with the point of a second glass slide. Slides were dried for one hour in a laminar flow hood. For the ADM, slides were dipped once in an acetone filled Coplin jar and allowed to air dry. All slides were then Giemsa-stained and examined in a blinded manner. Adherence was assessed by blinded reviewers. No significant or severe defects were observed for slides prepared with the SCM. In contrast, 8 slides prepared by the ADM and 3 prepared using the SM displayed significant or severe defects. Thick films prepared by the three methods were microscopically indistinguishable and concordant results (positive or negative) were obtained for the three methods. Estimated parasitaemia of the blood samples ranged from 25 to 429,169 parasites/μL of blood. The SCM is an inexpensive, rapid, and simple method that improves the adherence of thick blood films to standard glass slides without altering general slide preparation, microscopic appearance or interpretability. Using the SCM

  19. INKRIMINASI VEKTOR MALARIA DAN IDENTIFIKASI PAKAN DARAH PADA NYAMUK AnopHELEs SPP DI KECAMATAN BOROBUDUR, KABUPATEN MAGELANG

    Directory of Open Access Journals (Sweden)

    Umi Widyastuti

    2013-12-01

    Full Text Available AbstrakMalaria masih merupakan masalah kesehatan di Kabupaten Magelang, khususnya di Kecamatan Borobudur. Annual Parasite Incidence (API dua tahun terakhir sebesar 0,19 pada tahun 2004 dan meningkat 0,34 pada tahun 2005, menunjukkan status Low Case Incidence (LCI. Kasus malaria di daerah tersebut sehubungan dengan  adanya  beberapa  spesies  nyamuk  Anopheles  yang  potensial  sebagai  vektor  malaria.  Kompetensi vektorial  nyamuk  Anopheles  di  Kecamatan  Borobudur  belum  banyak  dilaporkan,  khususnya  halam  hal kerentanannya terhadap Plasmodium dan sifat antropofilik (kesukaan menghisap darah manusia. Berbagai spesies seperti Anopheles aconitus, An maculatus, dan An. balabacensis merupakan tersangka vektor malaria di daerah tersebut. Tujuan penelitian ini adalah: a. mendeteksi antigen protein circum sporozoit P. falciparum atau P. vivax pada nyamuk Anopheles sp dengan teknik Enzyme Linked Immunosarbant Assay (Elisa dan b.  mengidentifikasi  pakan  darah  manusia  pada  nyamuk  Anopheles  spp  dengan  teknik  Elisa.  Penelitian dilaksanakan pada bulan Januari-Mei 2006 di 2 desa HCI yaitu di Giripurno dan Giritengah, Kecamatan Borobudur. Penelitian dilakukan dengan menangkap nyamuk yang istirahat di dalam dan luar rumah pada malam hari (18.00-12.00 dan pagi hari (06.00-08.00 sesuai dengan metode WHO, 2003. Nyamuk Anopheles spp dipisahkan berdasarkan spesies untuk dihitung kepadatannya. Selanjutnya dilakukan pembedahan ovarium untuk  mengetahui  paritasnya  (parous  atau  nulliparous. Anopheles  spp  parous  (4  spesies  yaitu Anopheles aconitus, An maculatus, An. balabacensis dan An. barbirostris diperiksa kondisi abdomennya untuk kepentingan pengujian dengan ELISA. Keempat spesies nyamuk parous (semua kondisi abdomen yaitu unfed, blood fed, half gravid dan gravid diambil bagian dada-kepala untuk kepentingan Elisa sporozoit. Nyamuk parous dengan kondisi blood fed dan half gravid diambil bagian

  20. B and T lymphocyte attenuator restricts the protective immune response against experimental malaria.

    Science.gov (United States)

    Adler, Guido; Steeg, Christiane; Pfeffer, Klaus; Murphy, Theresa L; Murphy, Kenneth M; Langhorne, Jean; Jacobs, Thomas

    2011-11-15

    The immune response against the blood stage of malaria has to be tightly regulated to allow for vigorous antiplasmodial activity while restraining potentially lethal immunopathologic damage to the host like cerebral malaria. Coinhibitory cell surface receptors are important modulators of immune activation. B and T lymphocyte attenuator (BTLA) (CD272) is a coinhibitory receptor expressed by most leukocytes, with the highest expression levels on T and B cells, and is involved in the maintenance of peripheral tolerance by dampening the activation of lymphocytes. The function of BTLA is described in several models of inflammatory disorders and autoimmunity, but its function in infectious diseases is less well characterized. Also, little is known about the influence of BTLA on non-T cells. In this study, we analyzed the function of BTLA during blood-stage malaria infection with the nonlethal Plasmodium yoelii strain 17NL. We show that BTLA knockout mice exhibit strongly reduced parasitemia and clear the infection earlier compared with wild-type mice. This increased resistance was seen before the onset of adaptive immune mechanisms and even in the absence of T and B cells but was more pronounced at later time points when activation of T and B cells was observed. We demonstrate that BTLA regulates production of proinflammatory cytokines in a T cell-intrinsic way and B cell intrinsically regulates the production of P. yoelii 17NL-specific Abs. These results indicate that the coinhibitory receptor BTLA plays a critical role during experimental malaria and attenuates the innate as well as the subsequent adaptive immune response.

  1. Measurement of ex vivo ELISpot interferon-gamma recall responses to Plasmodium falciparum AMA1 and CSP in Ghanaian adults with natural exposure to malaria.

    Science.gov (United States)

    Ganeshan, Harini; Kusi, Kwadwo A; Anum, Dorothy; Hollingdale, Michael R; Peters, Bjoern; Kim, Yohan; Tetteh, John K A; Ofori, Michael F; Gyan, Ben A; Koram, Kwadwo A; Huang, Jun; Belmonte, Maria; Banania, Jo Glenna; Dodoo, Daniel; Villasante, Eileen; Sedegah, Martha

    2016-02-01

    Malaria eradication requires a concerted approach involving all available control tools, and an effective vaccine would complement these efforts. An effective malaria vaccine should be able to induce protective immune responses in a genetically diverse population. Identification of immunodominant T cell epitopes will assist in determining if candidate vaccines will be immunogenic in malaria-endemic areas. This study therefore investigated whether class I-restricted T cell epitopes of two leading malaria vaccine antigens, Plasmodium falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1), could recall T cell interferon-γ responses from naturally exposed subjects using ex vivo ELISpot assays. Thirty-five subjects aged between 24 and 43 years were recruited from a malaria-endemic urban community of Ghana in 2011, and their peripheral blood mononuclear cells (PBMCs) were tested in ELISpot IFN-γ assays against overlapping 15mer peptide pools spanning the entire CSP and AMA1 antigens, and 9-10mer peptide epitope mixtures that included previously identified and/or predicted human leukocyte antigen (HLA) class 1-restricted epitopes from same two antigens. For CSP, 26 % of subjects responded to at least one of the nine 15mer peptide pools whilst 17 % responded to at least one of the five 9-10mer HLA-restricted epitope mixtures. For AMA1, 63 % of subjects responded to at least one of the 12 AMA1 15mer peptide pools and 51 % responded to at least one of the six 9-10mer HLA-restricted epitope mixtures. Following analysis of data from the two sets of peptide pools, along with bioinformatics predictions of class I-restricted epitopes and the HLA supertypes expressed by a subset of study subjects, peptide pools that may contain epitopes recognized by multiple HLA supertypes were identified. Collectively, these results suggest that natural transmission elicits ELISpot IFN-γ activities to class 1-restricted epitopes that are largely HLA-promiscuous. These

  2. Impact on malaria parasite multiplication rates in infected volunteers of the protein-in-adjuvant vaccine AMA1-C1/Alhydrogel+CPG 7909.

    Directory of Open Access Journals (Sweden)

    Christopher J A Duncan

    Full Text Available Inhibition of parasite growth is a major objective of blood-stage malaria vaccines. The in vitro assay of parasite growth inhibitory activity (GIA is widely used as a surrogate marker for malaria vaccine efficacy in the down-selection of candidate blood-stage vaccines. Here we report the first study to examine the relationship between in vivo Plasmodium falciparum growth rates and in vitro GIA in humans experimentally infected with blood-stage malaria.In this phase I/IIa open-label clinical trial five healthy malaria-naive volunteers were immunised with AMA1/C1-Alhydrogel+CPG 7909, and together with three unvaccinated controls were challenged by intravenous inoculation of P. falciparum infected erythrocytes.A significant correlation was observed between parasite multiplication rate in 48 hours (PMR and both vaccine-induced growth-inhibitory activity (Pearson r = -0.93 [95% CI: -1.0, -0.27] P = 0.02 and AMA1 antibody titres in the vaccine group (Pearson r = -0.93 [95% CI: -0.99, -0.25] P = 0.02. However immunisation failed to reduce overall mean PMR in the vaccine group in comparison to the controls (vaccinee 16 fold [95% CI: 12, 22], control 17 fold [CI: 0, 65] P = 0.70. Therefore no impact on pre-patent period was observed (vaccine group median 8.5 days [range 7.5-9], control group median 9 days [range 7-9].Despite the first observation in human experimental malaria infection of a significant association between vaccine-induced in vitro growth inhibitory activity and in vivo parasite multiplication rate, this did not translate into any observable clinically relevant vaccine effect in this small group of volunteers.ClinicalTrials.gov [NCT00984763].

  3. Prevalence of Weak D Antigen In Western Indian Population

    Directory of Open Access Journals (Sweden)

    Tanvi Sadaria

    2015-12-01

    Full Text Available Introduction: Discovery of Rh antigens in 1939 by Landsteiner and Weiner was the revolutionary stage in blood banking. Of these antigens, D, which decides Rh positivity or negativity, is the most antigenic. A problem is encountered when an individual has a weakened expression of D (Du, i.e., fewer numbers of D antigens on red cell membrane. Aims and Objectives: To know the prevalence of weak D in Indian population because incidence varies in different population. To determine the risk of alloimmunization among Rh D negative patients who receives the blood of weak D positive donors. Material and Methods: Rh grouping of 38,962 donors who came to The Department of Immunohematology and Blood Transfusion of Civil Hospital, Ahmedabad from 1st January 2013 to 30th September 2014 was done using the DIAGAST (Automated Grouping. The samples that tested negative for D antigen were further analysed for weak D (Du by indirect antiglobulin test using blend of Ig G and Ig M Anti D. This was done using Column agglutination method in ID card (gel card. Results: The total number of donors studied was 38,962. Out of these 3360(8.6% were tested Rh D negative. All Rh D negative donors were tested for weak D (Du. 22 (0.056% of total donors and 0.65% of Rh negative donors turned out to be weak D (Du positive. Conclusion: The prevalence of weak D (Du in Western Indian population is 0.056 %, So the risk of alloimmunization in our setting due to weak D (Du antigen is marginal. But, testing of weak D antigen is necessary in blood bank because weak D antigen is immunogenic and can produce alloimmunization if transfused to Rh D negative subjects.

  4. Engineering the chloroplast targeted malarial vaccine antigens in Chlamydomonas starch granules.

    Directory of Open Access Journals (Sweden)

    David Dauvillée

    2010-12-01

    Full Text Available Malaria, an Anopheles-borne parasitic disease, remains a major global health problem causing illness and death that disproportionately affects developing countries. Despite the incidence of malaria, which remains one of the most severe infections of human populations, there is no licensed vaccine against this life-threatening disease. In this context, we decided to explore the expression of Plasmodium vaccine antigens fused to the granule bound starch synthase (GBSS, the major protein associated to the starch matrix in all starch-accumulating plants and algae such as Chlamydomonas reinhardtii.We describe the development of genetically engineered starch granules containing plasmodial vaccine candidate antigens produced in the unicellular green algae Chlamydomonas reinhardtii. We show that the C-terminal domains of proteins from the rodent Plasmodium species, Plasmodium berghei Apical Major Antigen AMA1, or Major Surface Protein MSP1 fused to the algal granule bound starch synthase (GBSS are efficiently expressed and bound to the polysaccharide matrix. Mice were either immunized intraperitoneally with the engineered starch particles and Freund adjuvant, or fed with the engineered particles co-delivered with the mucosal adjuvant, and challenged intraperitoneally with a lethal inoculum of P. Berghei. Both experimental strategies led to a significantly reduced parasitemia with an extension of life span including complete cure for intraperitoneal delivery as assessed by negative blood thin smears. In the case of the starch bound P. falciparum GBSS-MSP1 fusion protein, the immune sera or purified immunoglobulin G of mice immunized with the corresponding starch strongly inhibited in vitro the intra-erythrocytic asexual development of the most human deadly plasmodial species.This novel system paves the way for the production of clinically relevant plasmodial antigens as algal starch-based particles designated herein as amylosomes, demonstrating that

  5. Engineering the chloroplast targeted malarial vaccine antigens in Chlamydomonas starch granules.

    Science.gov (United States)

    Dauvillée, David; Delhaye, Stéphane; Gruyer, Sébastien; Slomianny, Christian; Moretz, Samuel E; d'Hulst, Christophe; Long, Carole A; Ball, Steven G; Tomavo, Stanislas

    2010-12-15

    Malaria, an Anopheles-borne parasitic disease, remains a major global health problem causing illness and death that disproportionately affects developing countries. Despite the incidence of malaria, which remains one of the most severe infections of human populations, there is no licensed vaccine against this life-threatening disease. In this context, we decided to explore the expression of Plasmodium vaccine antigens fused to the granule bound starch synthase (GBSS), the major protein associated to the starch matrix in all starch-accumulating plants and algae such as Chlamydomonas reinhardtii. We describe the development of genetically engineered starch granules containing plasmodial vaccine candidate antigens produced in the unicellular green algae Chlamydomonas reinhardtii. We show that the C-terminal domains of proteins from the rodent Plasmodium species, Plasmodium berghei Apical Major Antigen AMA1, or Major Surface Protein MSP1 fused to the algal granule bound starch synthase (GBSS) are efficiently expressed and bound to the polysaccharide matrix. Mice were either immunized intraperitoneally with the engineered starch particles and Freund adjuvant, or fed with the engineered particles co-delivered with the mucosal adjuvant, and challenged intraperitoneally with a lethal inoculum of P. Berghei. Both experimental strategies led to a significantly reduced parasitemia with an extension of life span including complete cure for intraperitoneal delivery as assessed by negative blood thin smears. In the case of the starch bound P. falciparum GBSS-MSP1 fusion protein, the immune sera or purified immunoglobulin G of mice immunized with the corresponding starch strongly inhibited in vitro the intra-erythrocytic asexual development of the most human deadly plasmodial species. This novel system paves the way for the production of clinically relevant plasmodial antigens as algal starch-based particles designated herein as amylosomes, demonstrating that efficient production

  6. Burden of asymptomatic malaria among a tribal population in a forested village of central India: a hidden challenge for malaria control in India.

    Science.gov (United States)

    Chourasia, M K; Raghavendra, K; Bhatt, R M; Swain, D K; Valecha, N; Kleinschmidt, I

    2017-06-01

    Chhattisgarh in India is a malaria-endemic state with seven southern districts that contributes approximately 50-60% of the reported malaria cases in the state every year. The problem is further complicated due to asymptomatic malaria cases which are largely responsible for persistent transmission. This study was undertaken in one of the forested villages of the Keshkal subdistrict in Kondagaon district to ascertain the proportion of the population harbouring subclinical malarial infections. Community-based cross-sectional study. Mass blood surveys were undertaken of the entire population of the village in the post-monsoon seasons of 2013 and 2014. Fingerprick blood smears were prepared from individuals of all ages to detect malaria infections in their blood. Individuals with fever at the time of the survey were tested with rapid diagnostic tests, and parasitaemia in thick blood smears was confirmed by microscopy. Malaria-positive cases were treated with anti-malarials in accordance with the national drug policy. Peripheral blood smears of 134 and 159 individuals, including children, were screened for malaria infection in 2013 and 2014, respectively. Overall, the malaria slide positivity rates were 27.6% and 27.7% in 2013 and 2014, respectively, and the prevalence rates of asymptomatic malaria were 20% and 22.8%. This study showed that, for two consecutive years, the prevalence of asymptomatic malaria infection was significantly higher among children aged ≤14 years (34.4% and 34.1% for 2013 and 2014, respectively) compared with adults (15.2% and 18.2% for 2013 and 2014, respectively; P = 0.023 and 0.04, respectively). The number of asymptomatic malaria cases, especially Plasmodium falciparum, is significant, reinforcing the underlying challenge facing the malaria elimination programme in India. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route

    OpenAIRE

    Carey, John B.; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V. S.; Draper, Simon J.; Moore, Anne C.

    2014-01-01

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP142, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delive...

  8. Utility of health facility-based malaria data for malaria surveillance.

    Directory of Open Access Journals (Sweden)

    Yaw A Afrane

    Full Text Available Currently, intensive malaria control programs are being implemented in Africa to reduce the malaria burden. Clinical malaria data from hospitals are valuable for monitoring trends in malaria morbidity and for evaluating the impacts of these interventions. However, the reliability of hospital-based data for true malaria incidence is often questioned because of diagnosis accuracy issues and variation in access to healthcare facilities among sub-groups of the population. This study investigated how diagnosis and treatment practices of malaria cases in hospitals affect reliability of hospital malaria data.The study was undertaken in health facilities in western Kenya. A total of 3,569 blood smears were analyzed after being collected from patients who were requested by clinicians to go to the hospital's laboratory for malaria testing. We applied several quality control measures for clinical malaria diagnosis. We compared our slide reading results with those from the hospital technicians. Among the 3,390 patients whose diagnoses were analyzed, only 36% had clinical malaria defined as presence of any level of parasitaemia and fever. Sensitivity and specificity of clinicians' diagnoses were 60.1% (95% CI: 61.1-67.5 and 75.0% (95% CI: 30.8-35.7, respectively. Among the 980 patients presumptively treated with an anti-malarial by the clinicians without laboratory diagnosis, only 47% had clinical malaria.These findings revealed substantial over-prescription of anti-malarials and misdiagnosis of clinical malaria. More than half of the febrile cases were not truly clinical malaria, but were wrongly diagnosed and treated as such. Deficiency in malaria diagnosis makes health facility data unreliable for monitoring trends in malaria morbidity and for evaluating impacts of malaria interventions. Improving malaria diagnosis should be a top priority in rural African health centers.

  9. Specific T-cell recognition of the merozoite proteins rhoptry-associated protein 1 and erythrocyte-binding antigen 1 of Plasmodium falciparum

    DEFF Research Database (Denmark)

    Jakobsen, P H; Hviid, L; Theander, T G

    1993-01-01

    The merozoite proteins merozoite surface protein 1 (MSP-1) and rhoptry-associated protein 1 (RAP-1) and synthetic peptides containing sequences of MSP-1, RAP-1, and erythrocyte-binding antigen 1, induced in vitro proliferative responses of lymphocytes collected from Ghanaian blood donors living i...... by individuals living in an area with a high transmission rate of malaria. Most of the donor plasma samples tested contained immunoglobulin G (IgG) and IgM antibodies recognizing the merozoite proteins, while only a minority showed high IgG reactivity to the synthetic peptides.......The merozoite proteins merozoite surface protein 1 (MSP-1) and rhoptry-associated protein 1 (RAP-1) and synthetic peptides containing sequences of MSP-1, RAP-1, and erythrocyte-binding antigen 1, induced in vitro proliferative responses of lymphocytes collected from Ghanaian blood donors living...

  10. Prevalence of malaria infection in Butajira area, south-central Ethiopia

    Directory of Open Access Journals (Sweden)

    Woyessa Adugna

    2012-03-01

    Full Text Available Abstract Background In 2005, the Ethiopian government launched a massive expansion of the malaria prevention and control programme. The programme was aimed mainly at the reduction of malaria in populations living below 2,000 m above sea level. Global warming has been implicated in the increase in the prevalence of malaria in the highlands. However, there is still a paucity of information on the occurrence of malaria at higher altitudes. The objective of this study was to estimate malaria prevalence in highland areas of south-central Ethiopia, designated as the Butajira area. Methods Using a multi-stage sampling technique, 750 households were selected. All consenting family members were examined for malaria parasites in thick and thin blood smears. The assessment was repeated six times for two years (October 2008 to June 2010. Results In total, 19,207 persons were examined in the six surveys. From those tested, 178 slides were positive for malaria, of which 154 (86.5% were positive for Plasmodium vivax and 22 (12.4% for Plasmodium falciparum; the remaining two (1.1% showed mixed infections of Plasmodium falciparum and Plasmodium vivax. The incidence of malaria was higher after the main rainy season, both in lower lying and in highland areas. The incidence in the highlands was low and similar for all age groups, whereas in the lowlands, malaria occurred mostly in those of one to nine years of age. Conclusion This study documented a low prevalence of malaria that varied with season and altitudinal zone in a highland-fringe area of Ethiopia. Most of the malaria infections were attributable to Plasmodium vivax.

  11. Sharing of antigens between Plasmodium falciparum and Anopheles albimanus Antígenos compartidos entre Plasmodium falciparum y Anopheles albimanus

    Directory of Open Access Journals (Sweden)

    Albina Wide

    2006-12-01

    Full Text Available The presence of common antigens between Plasmodium falciparum and Anopheles albimanus was demonstrated. Different groups of rabbits were immunized with: crude extract from female An. albimanus (EAaF, red blood cells infected with Plasmodium falciparum (EPfs, and the SPf66 synthetic malaria vaccine. The rabbit's polyclonal antibodies were evaluated by ELISA, Multiple Antigen Blot Assay (MABA, and immunoblotting. All extracts were immunogenic in rabbits according to these three techniques, when they were evaluated against the homologous antigens. Ten molecules were identified in female mosquitoes and also in P. falciparum antigens by the autologous sera. The electrophoretic pattern by SDS-PAGE was different for the three antigens evaluated. Cross-reactions between An. albimanus and P. falciparum were found by ELISA, MABA, and immunoblotting. Anti-P. falciparum and anti-SPf66 antibodies recognized ten and five components in the EAaF crude extract, respectively. Likewise, immune sera against female An. albimanus identified four molecules in the P. falciparum extract antigen. As far as we know, this is the first work that demonstrates shared antigens between anophelines and malaria parasites. This finding could be useful for diagnosis, vaccines, and the study of physiology of the immune response to malaria.Epítopes de antígenos compartidos entre Plasmodium falciparum y Anopheles albimanus fueron identificados. Diferentes grupos de conejos fueron inmunizados con: extracto crudo de mosquito hembra de An. albimanus (EAaH, glóbulos rojos infectados con P. falciparum (EPfs y la vacuna antimalárica sintética SPf66. Los anticuerpos policlonales producidos en conejos fueron evaluados por ELISA, inmunoensayo simultáneo de múltiples antígenos (MABA e Immunoblotting. Todos los extractos resultaron inmunogénicos cuando se evaluaron por ELISA, MABA e Immunoblotting. Diez moléculas fueron identificadas en los mosquitos hembras y diez en los antígenos de

  12. Merozoite surface protein-1 genetic diversity in Plasmodium malariae and Plasmodium brasilianum from Brazil.

    Science.gov (United States)

    Guimarães, Lilian O; Wunderlich, Gerhard; Alves, João M P; Bueno, Marina G; Röhe, Fabio; Catão-Dias, José L; Neves, Amanda; Malafronte, Rosely S; Curado, Izilda; Domingues, Wilson; Kirchgatter, Karin

    2015-11-16

    The merozoite surface protein 1 (MSP1) gene encodes the major surface antigen of invasive forms of the Plasmodium erythrocytic stages and is considered a candidate vaccine antigen against malaria. Due to its polymorphisms, MSP1 is also useful for strain discrimination and consists of a good genetic marker. Sequence diversity in MSP1 has been analyzed in field isolates of three human parasites: P. falciparum, P. vivax, and P. ovale. However, the extent of variation in another human parasite, P. malariae, remains unknown. This parasite shows widespread, uneven distribution in tropical and subtropical regions throughout South America, Asia, and Africa. Interestingly, it is genetically indistinguishable from P. brasilianum, a parasite known to infect New World monkeys in Central and South America. Specific fragments (1 to 5) covering 60 % of the MSP1 gene (mainly the putatively polymorphic regions), were amplified by PCR in isolates of P. malariae and P. brasilianum from different geographic origin and hosts. Sequencing of the PCR-amplified products or cloned PCR fragments was performed and the sequences were used to construct a phylogenetic tree by the maximum likelihood method. Data were computed to give insights into the evolutionary and phylogenetic relationships of these parasites. Except for fragment 4, sequences from all other fragments consisted of unpublished sequences. The most polymorphic gene region was fragment 2, and in samples where this region lacks polymorphism, all other regions are also identical. The low variability of the P. malariae msp1 sequences of these isolates and the identification of the same haplotype in those collected many years apart at different locations is compatible with a low transmission rate. We also found greater diversity among P. brasilianum isolates compared with P. malariae ones. Lastly, the sequences were segregated according to their geographic origins and hosts, showing a strong genetic and geographic structure. Our data

  13. Comparison of clinical and parasitological data from controlled human malaria infection trials.

    Directory of Open Access Journals (Sweden)

    Meta Roestenberg

    Full Text Available Exposing healthy human volunteers to Plasmodium falciparum-infected mosquitoes is an accepted tool to evaluate preliminary efficacy of malaria vaccines. To accommodate the demand of the malaria vaccine pipeline, controlled infections are carried out in an increasing number of centers worldwide. We assessed their safety and reproducibility.We reviewed safety and parasitological data from 128 malaria-naïve subjects participating in controlled malaria infection trials conducted at the University of Oxford, UK, and the Radboud University Nijmegen Medical Center, The Netherlands. Results were compared to a report from the US Military Malaria Vaccine Program.We show that controlled human malaria infection trials are safe and demonstrate a consistent safety profile with minor differences in the frequencies of arthralgia, fatigue, chills and fever between institutions. But prepatent periods show significant variation. Detailed analysis of Q-PCR data reveals highly synchronous blood stage parasite growth and multiplication rates.Procedural differences can lead to some variation in safety profile and parasite kinetics between institutions. Further harmonization and standardization of protocols will be useful for wider adoption of these cost-effective small-scale efficacy trials. Nevertheless, parasite growth rates are highly reproducible, illustrating the robustness of controlled infections as a valid tool for malaria vaccine development.

  14. Blood Group Antigens C, Lub and P1 May Have a Role in HIV Infection in Africans.

    Science.gov (United States)

    Motswaledi, Modisa Sekhamo; Kasvosve, Ishmael; Oguntibeju, Oluwafemi Omoniyi

    2016-01-01

    Botswana is among the world's countries with the highest rates of HIV infection. It is not known whether or not this susceptibility to infection is due to genetic factors in the population. Accumulating evidence, however, points to the role of erythrocytes as potential mediators of infection. We therefore sought to establish the role, if any, of some erythrocyte antigens in HIV infection in a cross-section of the population. 348 (346 HIV-negative and 2 HIV-positive) samples were obtained from the National Blood Transfusion Service as residual samples, while 194 HIV-positive samples were obtained from the Botswana-Harvard HIV Reference Laboratory. Samples were grouped for twenty three antigens. Chi-square or Fischer Exact analyses were used to compare the frequencies of the antigens in the two groups. A stepwise, binary logistic regression was used to study the interaction of the various antigens in the light of HIV-status. The Rh antigens C and E were associated with HIV-negative status, while blood group Jka, P1 and Lub were associated with HIV-positive status. A stepwise binary logistic regression analysis yielded group C as the most significant protective blood group while Lub and P1 were associated with significantly higher odds ratio in favor of HIV-infection. The lower-risk-associated group C was significantly lower in Africans compared to published data for Caucasians and might partially explain the difference in susceptibility to HIV-1. The most influential antigen C, which also appears to be protective, is significantly lower in Africans than published data for Caucasians or Asians. On the other hand, there appear to be multiple antigens associated with increased risk that may override the protective role of C. A study of the distribution of these antigens in other populations may shed light on their roles in the HIV pandemic.

  15. Novel association of ABO histo-blood group antigen with soluble ICAM-1: results of a genome-wide association study of 6,578 women.

    Directory of Open Access Journals (Sweden)

    Guillaume Paré

    2008-07-01

    Full Text Available While circulating levels of soluble Intercellular Adhesion Molecule 1 (sICAM-1 have been associated with diverse conditions including myocardial infarction, stroke, malaria, and diabetes, comprehensive analysis of the common genetic determinants of sICAM-1 is not available. In a genome-wide association study conducted among 6,578 participants in the Women's Genome Health Study, we find that three SNPs at the ICAM1 (19p13.2 locus (rs1799969, rs5498 and rs281437 are non-redundantly associated with plasma sICAM-1 concentrations at a genome-wide significance level (P<5x10(-8, thus extending prior results from linkage and candidate gene studies. We also find that a single SNP (rs507666, P = 5.1x10(-29 at the ABO (9q34.2 locus is highly correlated with sICAM-1 concentrations. The novel association at the ABO locus provides evidence for a previously unknown regulatory role of histo-blood group antigens in inflammatory adhesion processes.

  16. Clinical diagnosis of uncomplicated malaria in Sri Lanka.

    Science.gov (United States)

    van der Hoek, W; Premasiri, D A; Wickremasinghe, A R

    1998-06-01

    To assess the possibility of developing a protocol for the clinical diagnosis of malaria, a study was done at the regional laboratory of the Anti-Malaria Campaign in Puttalam, Sri Lanka. Of a group of 502 patients, who suspected they were suffering from malaria, 97 had a positive blood film for malaria parasites (71 Plasmodium vivax and 26 P. falciparum). There were no important differences in signs and symptoms between those with positive and those with negative blood films. It is argued that it is unlikely that health workers can improve on the diagnosis of malaria made by the patients themselves, if laboratory facilities are not available. For Sri Lanka the best option is to expand the number of facilities where microscopic examination for malaria parasites can take place.

  17. The role of Plasmodium falciparum variant surface antigens in protective immunity and vaccine development

    DEFF Research Database (Denmark)

    Hviid, Lars

    2010-01-01

    There is substantial immuno-epidemiological evidence that the parasite-encoded, so-called variant surface antigens (VSAs) such as PfEMP1 on the surface of infected erythrocytes (IEs) are important-in some cases probably decisive-determinants of clinical outcome of P. falciparum malaria. The evide...... of VSAs, and how vaccines based on this type of antigens fit into the current global strategy to reduce, eliminate and eventually eradicate the burden of malaria....

  18. Enhanced vaccine-induced CD8+ T cell responses to malaria antigen ME-TRAP by fusion to MHC class ii invariant chain.

    Directory of Open Access Journals (Sweden)

    Alexandra J Spencer

    Full Text Available The orthodox role of the invariant chain (CD74; Ii is in antigen presentation to CD4+ T cells, but enhanced CD8+ T cells responses have been reported after vaccination with vectored viral vaccines encoding a fusion of Ii to the antigen of interest. In this study we assessed whether fusion of the malarial antigen, ME-TRAP, to Ii could increase the vaccine-induced CD8+ T cell response. Following single or heterologous prime-boost vaccination of mice with a recombinant chimpanzee adenovirus vector, ChAd63, or recombinant modified vaccinia virus Ankara (MVA, higher frequencies of antigen-specific CD4+ and CD8+ T cells were observed, with the largest increases observed following a ChAd63-MVA heterologous prime-boost regimen. Studies in non-human primates confirmed the ability of Ii-fusion to augment the T cell response, where a 4-fold increase was maintained up to 11 weeks after the MVA boost. Of the numerous different approaches explored to increase vectored vaccine induced immunogenicity over the years, fusion to the invariant chain showed a consistent enhancement in CD8+ T cell responses across different animal species and may therefore find application in the development of vaccines against human malaria and other diseases where high levels of cell-mediated immunity are required.

  19. Maternally transmitted antibodies to pregnancy-associated variant antigens on the surface of erythrocytes infected with Plasmodium falciparum: relation to child susceptibility to malaria

    DEFF Research Database (Denmark)

    Cot, Michel; Le Hesran, Jean Yves; Staalsoe, Trine

    2003-01-01

    The consequences of pregnancy-associated malaria on a child's health have been poorly investigated. Malarial infection of the placenta seems to result in a higher susceptibility of children to the parasite during their first year of life. In 1993-1995, the authors investigated the role of antibod......The consequences of pregnancy-associated malaria on a child's health have been poorly investigated. Malarial infection of the placenta seems to result in a higher susceptibility of children to the parasite during their first year of life. In 1993-1995, the authors investigated the role......, Cameroon. These newborns were subsequently followed up for 2 years to determine the date of first occurrence of blood parasites and mean parasite density during follow-up. Maternally transmitted antibodies to VSA expressed by CSA-binding parasites, but not antibodies to any other specificity, were...... negatively related to time of first appearance of Plasmodium falciparum in a child's blood and were positively related to mean parasite density during the first 2 years of life. If maternal infection is thought to be the main mechanism influencing susceptibility of the newborn to malaria, antibodies to VSA...

  20. Important advances in malaria vaccine research

    Directory of Open Access Journals (Sweden)

    Priyanka Jadhav

    2012-01-01

    Full Text Available Malaria is one of the most widespread parasitic infection in Asian countries affecting the poor of the poor. In an effort to develop an effective vaccine for the treatment of malaria, various attempts are being made worldwide. If successful, such a vaccine can be effective for treatment of both Plasmodium vivax and Plasmodium falciparum. This would also be able to avoid complications such as drug resistance, resistance to insecticides, nonadherence to the treatment schedule, and eventually high cost of treatment in the resource-limited settings. In the current compilation, the details from the literature were collected by using PubMed and Medline as search engines and searched for terms such as malaria, vaccine, and malaria treatment. This review collates and provides glimpses of the information on the recent malaria vaccine development. The reader will be taken through the historical perspective followed by the approaches to the malaria vaccine development from pre-erythrocytic stage vaccines, asexual stage vaccines, transmission blocking vaccines, etc. Looking at the current scenario of the malaria and treatment strategies, it is an absolute need of an hour that an effective malaria vaccine should be developed. This would bring a revolutionary breakthrough in the treatment modalities especially when there is increasing emergence of resistance to existing drug therapy. It would be of great purpose to serve those living in malaria endemic region and also for travelers which are nonimmune and coming to malaria endemic region. As infection by P. vivax is more prevalent in India and other Asian subcontinent and is often prominent in areas where elimination is being attempted, special consideration is required of the role of vaccines in blocking transmission, regardless of the stages being targeted. Development of vaccines is feasible but with the support of private sector and government organization in terms of regulatory and most importantly

  1. Structural Studies on Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) Malaria Antigens Using Small Angle X-Ray Scattering (SAXS)

    DEFF Research Database (Denmark)

    Christoffersen, Stig

    Chemistry (App I) [1]. VAR2CSA binds specifically to CSA in the placental tissue of pregnant women hereby causing severe malaria symptoms endangering both mother and child. The minimal VAR2CSA region required to effectively bind CSA was determined to be the N-terminal DBL domain, DBL2X which we locate......Infection with the pathogenic Plasmodium falciparum parasite causes the potentially deadly Malaria disease which leads to over 1 million fatalities each year according to the WHO (World Health Organization). Individuals subjected to multiple infections gradually become immune to the disease...... symptoms and vaccine research is focused on trying to mimic or advance this immune acquisition. Immunity is primarily caused by acquisition of antibodies directed against a family of Plasmodium protein antigens called PfEMP1s located on the surface of infected erythrocytes. The PfEMP1 proteins are adhesive...

  2. A high force of plasmodium vivax blood-stage infection drives the rapid acquisition of immunity in papua new guinean children.

    Directory of Open Access Journals (Sweden)

    Cristian Koepfli

    Full Text Available When both parasite species are co-endemic, Plasmodium vivax incidence peaks in younger children compared to P. falciparum. To identify differences in the number of blood stage infections of these species and its potential link to acquisition of immunity, we have estimated the molecular force of blood-stage infection of P. vivax ((molFOB, i.e. the number of genetically distinct blood-stage infections over time, and compared it to previously reported values for P. falciparum.P. vivax (molFOB was estimated by high resolution genotyping parasites in samples collected over 16 months in a cohort of 264 Papua New Guinean children living in an area highly endemic for P. falciparum and P. vivax. In this cohort, P. vivax episodes decreased three-fold over the age range of 1-4.5 years.On average, children acquired 14.0 new P. vivax blood-stage clones/child/year-at-risk. While the incidence of clinical P. vivax illness was strongly associated with mol FOB (incidence rate ratio (IRR = 1.99, 95% confidence interval (CI95 [1.80, 2.19], (molFOB did not change with age. The incidence of P. vivax showed a faster decrease with age in children with high (IRR = 0.49, CI95 [0.38, 0.64] p<0.001 compared to those with low exposure (IRR = 0.63, CI95[0.43, 0.93] p = 0.02.P. vivax (molFOB is considerably higher than P. falciparum (molFOB (5.5 clones/child/year-at-risk. The high number of P. vivax clones that infect children in early childhood contribute to the rapid acquisition of immunity against clinical P. vivax malaria.

  3. Plasmodium knowlesi Sporozoite Antigen: Expression by Infectious Recombinant Vaccinia Virus

    Science.gov (United States)

    Smith, Geoffrey L.; Godson, G. Nigel; Nussenzweig, Victor; Nussenzweig, Ruth S.; Barnwell, John; Moss, Bernard

    1984-04-01

    The gene coding for the circumsporozoite antigen of the malaria parasite Plasmodium knowlesi was inserted into the vaccinia virus genome under the control of a defined vaccinia virus promoter. Cells infected with the recombinant virus synthesized polypeptides of 53,000 to 56,000 daltons that reacted with monoclonal antibody against the repeating epitope of the malaria protein. Furthermore, rabbits vaccinated with the recombinant virus produced antibodies that bound specifically to sporozoites. These data provide evidence for expression of a cloned malaria gene in mammalian cells and illustrate the potential of vaccinia virus recombinants as live malaria vaccines.

  4. Blood group antigen A type 3 expression is a favorable prognostic factor in advanced NSCLC.

    Science.gov (United States)

    Schmidt, L H; Kuemmel, A; Schliemann, C; Schulze, A; Humberg, J; Mohr, M; Görlich, D; Hartmann, W; Bröckling, S; Marra, A; Hillejan, L; Goletz, S; Karsten, U; Berdel, W E; Spieker, T; Wiewrodt, R

    2016-02-01

    Several blood group-related carbohydrate antigens are prognosis-relevant markers of tumor tissues. A type 3 (repetitive A) is a blood group antigen specific for A1 erythrocytes. Its potential expression in tumor tissues has so far not been examined. We have evaluated its expression in normal lung and in lung cancer using a novel antibody (A69-A/E8). For comparison an anti-A antibody specific to A types 1 and 2 was used, because its expression on lung cancer tissue has been previously reported to be of prognostic relevance. Resected tissue samples of 398 NSCLC patients were analyzed in immunohistochemistry using tissue microarrays. Expression of A type 3 was not observed in non-malignant lung tissues. A type 3 was expressed on tumor cells of around half of NSCLC patients of blood group A1 (ptype 1/2 antigen was observed (p=0.562), the expression of A type 3 by tumor cells indicated a highly significant favorable prognosis among advanced NSCLC patients (p=0.011) and in NSCLC patients with lymphatic spread (p=0.014). Univariate prognostic results were confirmed in a Cox proportional hazards model. In this study we present for the first time prognostic data for A type 3 antigen expression in lung cancer patients. Prospective studies should be performed to confirm the prognostic value of A type 3 expression for an improved risk stratification in NSCLC patients. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Laboratory indicators of the diagnosis and course of imported malaria

    DEFF Research Database (Denmark)

    Gjørup, Ida E; Vestergaard, Lasse S; Møller, Kirsten

    2007-01-01

    When travellers return from malaria-endemic areas and present to hospital with fever, microscopy of blood smears remains the leading method to verify a suspected diagnosis of malaria. Additional laboratory abnormalities may, however, also be indicative of acute malaria infection. We monitored....... For comparison, admission values of a group of febrile patients with suspected malaria, but with negative blood slides, were also assessed (n=66). The thrombocyte, leucocyte counts and coagulation factor II-VII-X were significantly lower in the malaria group compared to the non-malaria group, whereas the C......-reactive protein, lactate dehydrogenase and bilirubin were significantly higher in the malaria group. The differences were particularly strong with falciparum malaria. By contrast, haemoglobin levels were not affected. In conclusion, our study emphasizes the role of a few commonly analysed laboratory parameters...

  6. A role for fetal hemoglobin and maternal immune IgG in infant resistance to Plasmodium falciparum malaria.

    Directory of Open Access Journals (Sweden)

    Chanaki Amaratunga

    2011-04-01

    Full Text Available In Africa, infant susceptibility to Plasmodium falciparum malaria increases substantially as fetal hemoglobin (HbF and maternal immune IgG disappear from circulation. During the first few months of life, however, resistance to malaria is evidenced by extremely low parasitemias, the absence of fever, and the almost complete lack of severe disease. This resistance has previously been attributed in part to poor parasite growth in HbF-containing red blood cells (RBCs. A specific role for maternal immune IgG in infant resistance to malaria has been hypothesized but not yet identified.We found that P. falciparum parasites invade and develop normally in fetal (cord blood, CB RBCs, which contain up to 95% HbF. However, these parasitized CB RBCs are impaired in their binding to human microvascular endothelial cells (MVECs, monocytes, and nonparasitized RBCs--cytoadherence interactions that have been implicated in the development of high parasite densities and the symptoms of malaria. Abnormal display of the parasite's cytoadherence antigen P. falciparum erythrocyte membrane protein-1 (PfEMP-1 on CB RBCs accounts for these findings and is reminiscent of that on HbC and HbS RBCs. IgG purified from the plasma of immune Malian adults almost completely abolishes the adherence of parasitized CB RBCs to MVECs.Our data suggest a model of malaria protection in which HbF and maternal IgG act cooperatively to impair the cytoadherence of parasitized RBCs in the first few months of life. In highly malarious areas of Africa, an infant's contemporaneous expression of HbC or HbS and development of an immune IgG repertoire may effectively reconstitute the waning protective effects of HbF and maternal immune IgG, thereby extending the malaria resistance of infancy into early childhood.

  7. The location of splenic NKT cells favours their rapid activation by blood-borne antigen

    Science.gov (United States)

    Barral, Patricia; Sánchez-Niño, María Dolores; van Rooijen, Nico; Cerundolo, Vincenzo; Batista, Facundo D

    2012-01-01

    Natural killer T (NKT) cells play an important role in mounting protective responses to blood-borne infections. However, though the spleen is the largest blood filter in the body, the distribution and dynamics of NKT cells within this organ are not well characterized. Here we show that the majority of NKT cells patrol around the marginal zone (MZ) and red pulp (RP) of the spleen. In response to lipid antigen, these NKT cells become arrested and rapidly produce cytokines, while the small proportion of NKT cells located in the white pulp (WP) exhibit limited activation. Importantly, disruption of the splenic MZ by chemical or genetic approaches results in a severe reduction in NKT cell activation indicating the need of cooperation between both MZ macrophages and dendritic cells for efficient NKT cell responses. Thus, the location of splenic NKT cells in the MZ and RP facilitates their access to blood-borne antigen and enables the rapid initiation of protective immune responses. PMID:22505026

  8. The location of splenic NKT cells favours their rapid activation by blood-borne antigen.

    Science.gov (United States)

    Barral, Patricia; Sánchez-Niño, María Dolores; van Rooijen, Nico; Cerundolo, Vincenzo; Batista, Facundo D

    2012-05-16

    Natural killer T (NKT) cells play an important role in mounting protective responses to blood-borne infections. However, though the spleen is the largest blood filter in the body, the distribution and dynamics of NKT cells within this organ are not well characterized. Here we show that the majority of NKT cells patrol around the marginal zone (MZ) and red pulp (RP) of the spleen. In response to lipid antigen, these NKT cells become arrested and rapidly produce cytokines, while the small proportion of NKT cells located in the white pulp (WP) exhibit limited activation. Importantly, disruption of the splenic MZ by chemical or genetic approaches results in a severe reduction in NKT cell activation indicating the need of cooperation between both MZ macrophages and dendritic cells for efficient NKT cell responses. Thus, the location of splenic NKT cells in the MZ and RP facilitates their access to blood-borne antigen and enables the rapid initiation of protective immune responses.

  9. A randomized controlled Phase Ib trial of the malaria vaccine candidate GMZ2 in African children

    DEFF Research Database (Denmark)

    Bélard, Sabine; Issifou, Saadou; Hounkpatin, Aurore B

    2011-01-01

    GMZ2 is a fusion protein of Plasmodium falciparum merozoite surface protein 3 (MSP3) and glutamate rich protein (GLURP) that mediates an immune response against the blood stage of the parasite. Two previous phase I clinical trials, one in naïve European adults and one in malaria-exposed Gabonese ...... adults showed that GMZ2 was well tolerated and immunogenic. Here, we present data on safety and immunogenicity of GMZ2 in one to five year old Gabonese children, a target population for future malaria vaccine efficacy trials....

  10. The Babesia bovis hap2 gene is not required for blood stage replication, but expressed upon in vitro sexual stage induction

    Science.gov (United States)

    Hussein, Hala E.; Bastos, Reginaldo G.; Schneider, David A.; Johnson, Wendell C.; Adham, Fatma K.; Davis, William C.; Laughery, Jacob M.; Herndon, David R.; Alzan, Heba F.

    2017-01-01

    Babesia bovis, is a tick borne apicomplexan parasite responsible for important cattle losses globally. Babesia parasites have a complex life cycle including asexual replication in the mammalian host and sexual reproduction in the tick vector. Novel control strategies aimed at limiting transmission of the parasite are needed, but transmission blocking vaccine candidates remain undefined. Expression of HAP2 has been recognized as critical for the fertilization of parasites in the Babesia-related Plasmodium, and is a leading candidate for a transmission blocking vaccine against malaria. Hereby we identified the B. bovis hap2 gene and demonstrated that it is widely conserved and differentially transcribed during development within the tick midgut, but not by blood stage parasites. The hap2 gene was disrupted by transfecting B. bovis with a plasmid containing the flanking regions of the hap2 gene and the GPF-BSD gene under the control of the ef-1α-B promoter. Comparison of in vitro growth between a hap2-KO B. bovis clonal line and its parental wild type strain showed that HAP2 is not required for the development of B. bovis in erythrocytes. However, xanthurenic acid-in vitro induction experiments of sexual stages of parasites recovered after tick transmission resulted in surface expression of HAP2 exclusively in sexual stage induced parasites. In addition, hap2-KO parasites were not able to develop such sexual stages as defined both by morphology and by expression of the B. bovis sexual marker genes 6-Cys A and B. Together, the data strongly suggests that tick midgut stage differential expression of hap2 is associated with the development of B. bovis sexual forms. Overall these studies are consistent with a role of HAP2 in tick stages of the parasite and suggest that HAP2 is a potential candidate for a transmission blocking vaccine against bovine babesiosis. PMID:28985216

  11. Multiple Antigen Peptide Vaccines against Plasmodium falciparum Malaria

    Science.gov (United States)

    2010-01-01

    Robert A. Boykins/ Victoria Majam,l Hong Zheng,1 Rana Chattopadhyay,l Patricia de Ia Vcga,3 J. Kathleen Moch ,J J. David Hayncs,3 Igor M. Belyakov,2...K. Moch , and D. S. Smoot. 2002. Erythroc-ytic malaria growth or invasion inhibition assays with emphasis on suspension culture GIA. Methods Mol. Med

  12. Metabolomic Profiling of the Malaria Box Reveals Antimalarial Target Pathways

    Science.gov (United States)

    Allman, Erik L.; Painter, Heather J.; Samra, Jasmeet; Carrasquilla, Manuela

    2016-01-01

    The threat of widespread drug resistance to frontline antimalarials has renewed the urgency for identifying inexpensive chemotherapeutic compounds that are effective against Plasmodium falciparum, the parasite species responsible for the greatest number of malaria-related deaths worldwide. To aid in the fight against malaria, a recent extensive screening campaign has generated thousands of lead compounds with low micromolar activity against blood stage parasites. A subset of these leads has been compiled by the Medicines for Malaria Venture (MMV) into a collection of structurally diverse compounds known as the MMV Malaria Box. Currently, little is known regarding the activity of these Malaria Box compounds on parasite metabolism during intraerythrocytic development, and a majority of the targets for these drugs have yet to be defined. Here we interrogated the in vitro metabolic effects of 189 drugs (including 169 of the drug-like compounds from the Malaria Box) using ultra-high-performance liquid chromatography–mass spectrometry (UHPLC-MS). The resulting metabolic fingerprints provide information on the parasite biochemical pathways affected by pharmacologic intervention and offer a critical blueprint for selecting and advancing lead compounds as next-generation antimalarial drugs. Our results reveal several major classes of metabolic disruption, which allow us to predict the mode of action (MoA) for many of the Malaria Box compounds. We anticipate that future combination therapies will be greatly informed by these results, allowing for the selection of appropriate drug combinations that simultaneously target multiple metabolic pathways, with the aim of eliminating malaria and forestalling the expansion of drug-resistant parasites in the field. PMID:27572391

  13. Cytokine expression in malaria-infected non-human primate placentas

    Directory of Open Access Journals (Sweden)

    M.M. Gicheru

    2012-06-01

    Full Text Available Malaria parasites are known to mediate the induction of inflammatory immune responses at the maternal-foetal interface during placental malaria (PM leading to adverse consequences like pre-term deliveries and abortions. Immunological events that take place within the malaria-infected placental micro-environment leading to retarded foetal growth and disruption of pregnancies are among the critical parameters that are still in need of further elucidation. The establishment of more animal models for studying placental malaria can provide novel ways of circumventing problems experienced during placental malaria research in humans such as inaccurate estimation of gestational ages. Using the newly established olive baboon (Papio anubis-Plasmodium knowlesi (P. knowlesi H strain model of placental malaria, experiments were carried out to determine placental cytokine profiles underlying the immunopathogenesis of placental malaria. Four pregnant olive baboons were infected with blood stage P. knowlesi H strain parasites on the one fiftieth day of gestation while four other uninfected pregnant olive baboons were maintained as uninfected controls. After nine days of infection, placentas were extracted from all the eight baboons through cesarean surgery and used for the processing of placental plasma and sera samples for cytokine sandwich enzyme linked immunosorbent assays (ELISA. Results indicated that the occurrence of placental malaria was associated with elevated concentrations of tumour necrosis factor alpha (TNF-α and interleukin 12 (IL-12. Increased levels of IL-4, IL-6 and IL-10 and interferon gamma (IFN-γ levels were detected in uninfected placentas. These findings match previous reports regarding immunity during PM thereby demonstrating the reliability of the olive baboon-P. knowlesi model for use in further studies.

  14. Fiber array based hyperspectral Raman imaging for chemical selective analysis of malaria-infected red blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Brückner, Michael [Leibniz Institute of Photonic Technology, 07745 Jena (Germany); Becker, Katja [Justus Liebig University Giessen, Biochemistry and Molecular Biology, 35392 Giessen (Germany); Popp, Jürgen [Leibniz Institute of Photonic Technology, 07745 Jena (Germany); Friedrich Schiller University Jena, Institute for Physical Chemistry, 07745 Jena (Germany); Friedrich Schiller University Jena, Abbe Centre of Photonics, 07745 Jena (Germany); Frosch, Torsten, E-mail: torsten.frosch@uni-jena.de [Leibniz Institute of Photonic Technology, 07745 Jena (Germany); Friedrich Schiller University Jena, Institute for Physical Chemistry, 07745 Jena (Germany); Friedrich Schiller University Jena, Abbe Centre of Photonics, 07745 Jena (Germany)

    2015-09-24

    A new setup for Raman spectroscopic wide-field imaging is presented. It combines the advantages of a fiber array based spectral translator with a tailor-made laser illumination system for high-quality Raman chemical imaging of sensitive biological samples. The Gaussian-like intensity distribution of the illuminating laser beam is shaped by a square-core optical multimode fiber to a top-hat profile with very homogeneous intensity distribution to fulfill the conditions of Koehler. The 30 m long optical fiber and an additional vibrator efficiently destroy the polarization and coherence of the illuminating light. This homogeneous, incoherent illumination is an essential prerequisite for stable quantitative imaging of complex biological samples. The fiber array translates the two-dimensional lateral information of the Raman stray light into separated spectral channels with very high contrast. The Raman image can be correlated with a corresponding white light microscopic image of the sample. The new setup enables simultaneous quantification of all Raman spectra across the whole spatial area with very good spectral resolution and thus outperforms other Raman imaging approaches based on scanning and tunable filters. The unique capabilities of the setup for fast, gentle, sensitive, and selective chemical imaging of biological samples were applied for automated hemozoin analysis. A special algorithm was developed to generate Raman images based on the hemozoin distribution in red blood cells without any influence from other Raman scattering. The new imaging setup in combination with the robust algorithm provides a novel, elegant way for chemical selective analysis of the malaria pigment hemozoin in early ring stages of Plasmodium falciparum infected erythrocytes. - Highlights: • Raman hyperspectral imaging allows for chemical selective analysis of biological samples with spatial heterogeneity. • A homogeneous, incoherent illumination is essential for reliable

  15. Fiber array based hyperspectral Raman imaging for chemical selective analysis of malaria-infected red blood cells

    International Nuclear Information System (INIS)

    Brückner, Michael; Becker, Katja; Popp, Jürgen; Frosch, Torsten

    2015-01-01

    A new setup for Raman spectroscopic wide-field imaging is presented. It combines the advantages of a fiber array based spectral translator with a tailor-made laser illumination system for high-quality Raman chemical imaging of sensitive biological samples. The Gaussian-like intensity distribution of the illuminating laser beam is shaped by a square-core optical multimode fiber to a top-hat profile with very homogeneous intensity distribution to fulfill the conditions of Koehler. The 30 m long optical fiber and an additional vibrator efficiently destroy the polarization and coherence of the illuminating light. This homogeneous, incoherent illumination is an essential prerequisite for stable quantitative imaging of complex biological samples. The fiber array translates the two-dimensional lateral information of the Raman stray light into separated spectral channels with very high contrast. The Raman image can be correlated with a corresponding white light microscopic image of the sample. The new setup enables simultaneous quantification of all Raman spectra across the whole spatial area with very good spectral resolution and thus outperforms other Raman imaging approaches based on scanning and tunable filters. The unique capabilities of the setup for fast, gentle, sensitive, and selective chemical imaging of biological samples were applied for automated hemozoin analysis. A special algorithm was developed to generate Raman images based on the hemozoin distribution in red blood cells without any influence from other Raman scattering. The new imaging setup in combination with the robust algorithm provides a novel, elegant way for chemical selective analysis of the malaria pigment hemozoin in early ring stages of Plasmodium falciparum infected erythrocytes. - Highlights: • Raman hyperspectral imaging allows for chemical selective analysis of biological samples with spatial heterogeneity. • A homogeneous, incoherent illumination is essential for reliable

  16. Bionomics of Anopheline species and malaria transmission dynamics along an altitudinal transect in Western Cameroon

    Directory of Open Access Journals (Sweden)

    Toto Jean-Claude

    2010-05-01

    Full Text Available Abstract Background Highland areas of Africa are mostly malaria hypoendemic, due to climate which is not appropriate for anophelines development and their reproductive fitness. In view of designing a malaria control strategy in Western Cameroon highlands, baseline data on anopheline species bionomics were collected. Methods Longitudinal entomological surveys were conducted in three localities at different altitudinal levels. Mosquitoes were captured when landing on human volunteers and by pyrethrum spray catches. Sampled Anopheles were tested for the presence of Plasmodium circumsporozoite proteins and their blood meal origin with ELISA. Entomological parameters of malaria epidemiology were assessed using Mac Donald's formula. Results Anopheline species diversity and density decreased globally from lowland to highland. The most aggressive species along the altitudinal transect was Anopheles gambiae s.s. of S molecular form, followed in the lowland and on the plateau by An. funestus, but uphill by An. hancocki. An. gambiae and An. ziemanni exhibited similar seasonal biting patterns at the different levels, whereas different features were observed for An. funestus. Only indoor resting species could be captured uphill; it is therefore likely that endophilic behaviour is necessary for anophelines to climb above a certain threshold. Of the ten species collected along the transect, only An. gambiae and An. funestus were responsible for malaria transmission, with entomological inoculation rates (EIR of 90.5, 62.8 and zero infective bites/human/year in the lowland, on the plateau and uphill respectively. The duration of gonotrophic cycle was consistently one day shorter for An. gambiae as compared to An. funestus at equal altitude. Altitudinal climate variations had no effect on the survivorship and the subsequent life expectancy of the adult stage of these malaria vectors, but most probably on aquatic stages. On the contrary increasing altitude

  17. Performance of rapid diagnostic test, blood-film microscopy and PCR for the diagnosis of malaria infection among febrile children from Korogwe District, Tanzania

    DEFF Research Database (Denmark)

    Mahende, Coline; Ngasala, Billy; Lusingu, John

    2016-01-01

    with fever and/or history of fever in the previous 48 h attending outpatient clinics. Blood samples were collected for identification of Plasmodium falciparum infection using histidine-rich-protein-2 (HRP-2)-based malaria RDT, light microscopy and conventional PCR. Results: A total of 867 febrile patients......Background: Rapid diagnostic tests (RDT) and light microscopy are still recommended for diagnosis to guide the clinical management of malaria despite difficult challenges in rural settings. The performance of these tests may be affected by several factors, including malaria prevalence and intensity...... of transmission. The study evaluated the diagnostic performance of malaria RDT, light microscopy and polymerase chain reaction (PCR) in detecting malaria infections among febrile children at outpatient clinic in Korogwe District, northeastern Tanzania. Methods: The study enrolled children aged 2-59 months...

  18. Antibody isotype analysis of malaria-nematode co-infection: problems and solutions associated with cross-reactivity

    Directory of Open Access Journals (Sweden)

    Graham Andrea L

    2010-02-01

    Full Text Available Abstract Background Antibody isotype responses can be useful as indicators of immune bias during infection. In studies of parasite co-infection however, interpretation of immune bias is complicated by the occurrence of cross-reactive antibodies. To confidently attribute shifts in immune bias to the presence of a co-infecting parasite, we suggest practical approaches to account for antibody cross-reactivity. The potential for cross-reactive antibodies to influence disease outcome is also discussed. Results Utilising two murine models of malaria-helminth co-infection we analysed antibody responses of mice singly- or co-infected with Plasmodium chabaudi chabaudi and Nippostrongylus brasiliensis or Litomosoides sigmodontis. We observed cross-reactive antibody responses that recognised antigens from both pathogens irrespective of whether crude parasite antigen preparations or purified recombinant proteins were used in ELISA. These responses were not apparent in control mice. The relative strength of cross-reactive versus antigen-specific responses was determined by calculating antibody titre. In addition, we analysed antibody binding to periodate-treated antigens, to distinguish responses targeted to protein versus carbohydrate moieties. Periodate treatment affected both antigen-specific and cross-reactive responses. For example, malaria-induced cross-reactive IgG1 responses were found to target the carbohydrate component of the helminth antigen, as they were not detected following periodate treatment. Interestingly, periodate treatment of recombinant malaria antigen Merozoite Surface Protein-119 (MSP-119 resulted in increased detection of antigen-specific IgG2a responses in malaria-infected mice. This suggests that glycosylation may have been masking protein epitopes and that periodate-treated MSP-119 may more closely reflect the natural non-glycosylated antigen seen during infection. Conclusions In order to utilize antibody isotypes as a measure of

  19. Characterization of a 14,000 dalton antigen of Dirofilaria immitis infective third stage larvae

    International Nuclear Information System (INIS)

    Fuller, S.A.; Cachia, P.J.; Wong, M.M.; Hurrell, J.G.R.

    1986-01-01

    Immunogenic proteins of Dirofilaria immitis (canine heartworm) were identified by probing extracts of adult worms or their excretory-secretory proteins (ESP) blotted to nitrocellulose following SDS-PAGE with control or infected dog sera. A 14,000 dalton antigen (a prominent component of ESP by protein staining) was consistently recognized both in extracts and ESP by dog sera as early as three months post infection. This indicates a larval origin for the antigen since no adult worms are present until approximately five months post infection. Monoclonal antibodies (MAbs) prepared against the 14,000 dalton antigen confirmed by immunoblotting that this antigen is expressed by infective third stage larvae, adults and microfilariae and is present intact in the sera of infected dogs. Surface-labelling of whole adult D. immitis with Na 125 I produced radiolabelled antigens closely corresponding to those of ESP. An anti-14,000 dalton MAb was able to immunoprecipitate radiolabelled antigen which strongly suggest a surface or membrane location in the intact organism. Gel filtration data suggests that the protein is a native monomer. A MAb-affinity column has been used to purify the 14,000 dalton antigen to at least 98% homogeneity in one step from crude worm extracts. Further fractionation by HPLC yields a homogeneous preparation. Amino acid analysis and the N-terminal amino acid sequence data will be presented

  20. Antimalarial Activity of KAF156 in Falciparum and Vivax Malaria.

    Science.gov (United States)

    White, Nicholas J; Duong, Tran T; Uthaisin, Chirapong; Nosten, François; Phyo, Aung P; Hanboonkunupakarn, Borimas; Pukrittayakamee, Sasithon; Jittamala, Podjanee; Chuthasmit, Kittiphum; Cheung, Ming S; Feng, Yiyan; Li, Ruobing; Magnusson, Baldur; Sultan, Marc; Wieser, Daniela; Xun, Xiaolei; Zhao, Rong; Diagana, Thierry T; Pertel, Peter; Leong, F Joel

    2016-09-22

    KAF156 belongs to a new class of antimalarial agents (imidazolopiperazines), with activity against asexual and sexual blood stages and the preerythrocytic liver stages of malarial parasites. We conducted a phase 2, open-label, two-part study at five centers in Thailand and Vietnam to assess the antimalarial efficacy, safety, and pharmacokinetic profile of KAF156 in adults with acute Plasmodium vivax or P. falciparum malaria. Assessment of parasite clearance rates in cohorts of patients with vivax or falciparum malaria who were treated with multiple doses (400 mg once daily for 3 days) was followed by assessment of the cure rate at 28 days in a separate cohort of patients with falciparum malaria who received a single dose (800 mg). Median parasite clearance times were 45 hours (interquartile range, 42 to 48) in 10 patients with falciparum malaria and 24 hours (interquartile range, 20 to 30) in 10 patients with vivax malaria after treatment with the multiple-dose regimen and 49 hours (interquartile range, 42 to 54) in 21 patients with falciparum malaria after treatment with the single dose. Among the 21 patients who received the single dose and were followed for 28 days, 1 had reinfection and 7 had recrudescent infections (cure rate, 67%; 95% credible interval, 46 to 84). The mean (±SD) KAF156 terminal elimination half-life was 44.1±8.9 hours. There were no serious adverse events in this small study. The most common adverse events included sinus bradycardia, thrombocytopenia, hypokalemia, anemia, and hyperbilirubinemia. Vomiting of grade 2 or higher occurred in 2 patients, 1 of whom discontinued treatment because of repeated vomiting after receiving the single 800-mg dose. More adverse events were reported in the single-dose cohort, which had longer follow-up, than in the multiple-dose cohorts. KAF156 showed antimalarial activity without evident safety concerns in a small number of adults with uncomplicated P. vivax or P. falciparum malaria. (Funded by Novartis and

  1. Carcinoma-associated antigens

    International Nuclear Information System (INIS)

    Bartorelli, A.; Accinni, R.

    1981-01-01

    This invention relates to novel antigens associated with breast carcinoma, anti-sera specific to said antigens, 125 I-labeled forms of said antigens and methods of detecting said antigens in serum or plasma. The invention also relates to a diagnostic kit containing standardised antigens or antisera or marked forms thereof for the detection of said antigens in human blood, serum or plasma. (author)

  2. Transplacental Transmission of Plasmodium falciparum in a Highly Malaria Endemic Area of Burkina Faso

    Directory of Open Access Journals (Sweden)

    Alphonse Ouédraogo

    2012-01-01

    Full Text Available Malaria congenital infection constitutes a major risk in malaria endemic areas. In this study, we report the prevalence of transplacental malaria in Burkina Faso. In labour and delivery units, thick and thin blood films were made from maternal, placental, and umbilical cord blood to determine malaria infection. A total of 1,309 mother/baby pairs were recruited. Eighteen cord blood samples (1.4% contained malaria parasites (Plasmodium falciparum. Out of the 369 (28.2% women with peripheral positive parasitemia, 211 (57.2% had placental malaria and 14 (3.8% had malaria parasites in their umbilical cord blood. The umbilical cord parasitemia levels were statistically associated with the presence of maternal peripheral parasitemia (OR=9.24, ≪0.001, placental parasitemia (OR=10.74, ≪0.001, high-density peripheral parasitemia (OR=9.62, ≪0.001, and high-density placental parasitemia (OR=4.91, =0.03. In Burkina Faso, the mother-to-child transmission rate of malaria appears to be low.

  3. The activities of current antimalarial drugs on the life cycle stages of Plasmodium: a comparative study with human and rodent parasites.

    Science.gov (United States)

    Delves, Michael; Plouffe, David; Scheurer, Christian; Meister, Stephan; Wittlin, Sergio; Winzeler, Elizabeth A; Sinden, Robert E; Leroy, Didier

    2012-02-01

    Malaria remains a disease of devastating global impact, killing more than 800,000 people every year-the vast majority being children under the age of 5. While effective therapies are available, if malaria is to be eradicated a broader range of small molecule therapeutics that are able to target the liver and the transmissible sexual stages are required. These new medicines are needed both to meet the challenge of malaria eradication and to circumvent resistance. Little is known about the wider stage-specific activities of current antimalarials that were primarily designed to alleviate symptoms of malaria in the blood stage. To overcome this critical gap, we developed assays to measure activity of antimalarials against all life stages of malaria parasites, using a diverse set of human and nonhuman parasite species, including male gamete production (exflagellation) in Plasmodium falciparum, ookinete development in P. berghei, oocyst development in P. berghei and P. falciparum, and the liver stage of P. yoelii. We then compared 50 current and experimental antimalarials in these assays. We show that endoperoxides such as OZ439, a stable synthetic molecule currently in clinical phase IIa trials, are strong inhibitors of gametocyte maturation/gamete formation and impact sporogony; lumefantrine impairs development in the vector; and NPC-1161B, a new 8-aminoquinoline, inhibits sporogony. These data enable objective comparisons of the strengths and weaknesses of each chemical class at targeting each stage of the lifecycle. Noting that the activities of many compounds lie within achievable blood concentrations, these results offer an invaluable guide to decisions regarding which drugs to combine in the next-generation of antimalarial drugs. This study might reveal the potential of life-cycle-wide analyses of drugs for other pathogens with complex life cycles.

  4. The Activities of Current Antimalarial Drugs on the Life Cycle Stages of Plasmodium: A Comparative Study with Human and Rodent Parasites

    Science.gov (United States)

    Delves, Michael; Plouffe, David; Scheurer, Christian; Meister, Stephan; Wittlin, Sergio; Winzeler, Elizabeth A.; Sinden, Robert E.; Leroy, Didier

    2012-01-01

    Background Malaria remains a disease of devastating global impact, killing more than 800,000 people every year—the vast majority being children under the age of 5. While effective therapies are available, if malaria is to be eradicated a broader range of small molecule therapeutics that are able to target the liver and the transmissible sexual stages are required. These new medicines are needed both to meet the challenge of malaria eradication and to circumvent resistance. Methods and Findings Little is known about the wider stage-specific activities of current antimalarials that were primarily designed to alleviate symptoms of malaria in the blood stage. To overcome this critical gap, we developed assays to measure activity of antimalarials against all life stages of malaria parasites, using a diverse set of human and nonhuman parasite species, including male gamete production (exflagellation) in Plasmodium falciparum, ookinete development in P. berghei, oocyst development in P. berghei and P. falciparum, and the liver stage of P. yoelii. We then compared 50 current and experimental antimalarials in these assays. We show that endoperoxides such as OZ439, a stable synthetic molecule currently in clinical phase IIa trials, are strong inhibitors of gametocyte maturation/gamete formation and impact sporogony; lumefantrine impairs development in the vector; and NPC-1161B, a new 8-aminoquinoline, inhibits sporogony. Conclusions These data enable objective comparisons of the strengths and weaknesses of each chemical class at targeting each stage of the lifecycle. Noting that the activities of many compounds lie within achievable blood concentrations, these results offer an invaluable guide to decisions regarding which drugs to combine in the next-generation of antimalarial drugs. This study might reveal the potential of life-cycle–wide analyses of drugs for other pathogens with complex life cycles. Please see later in the article for the Editors' Summary PMID

  5. Cerebral malaria: susceptibility weighted MRI

    Directory of Open Access Journals (Sweden)

    Vinit Baliyan

    2015-03-01

    Full Text Available Cerebral malaria is one of the fatal complications of Plasmodium falciparum infection. Pathogenesis involves cerebral microangiopathy related to microvascular plugging by infected red blood cells. Conventional imaging with MRI and CT do not reveal anything specific in case of cerebral malaria. Susceptibility weighted imaging, a recent advance in the MRI, is very sensitive to microbleeds related to microangiopathy. Histopathological studies in cerebral malaria have revealed microbleeds in brain parenchyma secondary to microangiopathy. Susceptibility weighted imaging, being exquisitely sensitive to microbleeds may provide additional information and improve the diagnostic accuracy of MRI in cerebral malaria.

  6. Human peripheral blood monocytes display surface antigens recognized by monoclonal antinuclear antibodies

    International Nuclear Information System (INIS)

    Holers, V.M.; Kotzin, B.L.

    1985-01-01

    The authors used monoclonal anti-nuclear autoantibodies and indirect immunofluorescence to examine normal human peripheral blood mononuclear leukocytes for the presence of cell surface nuclear antigens. Only one monoclonal anti-histone antibody (MH-2) was found to bind to freshly isolated PBL, staining approximately 10% of large cells. However, after cells were placed into culture for 16-24 h, a high percentage (up to 60%) of large-sized cells were recognized by an anti-DNA (BWD-1) and several different antihistone monoclonal antibodies (BWH-1, MH-1, and MH-2). These antibodies recognize separate antigenic determinants on chromatin and histones extracted from chromatin. The histone antigen-positive cells were viable, and the monoclonal antibodies could be shown to be binding to the cell surface and not to the nucleus. Using monoclonal antibodies specific for monocytes and T cells, and complement-mediated cytotoxicity, the cells bearing histone antigens were shown to be primarily monocytes. The appearance of histone and DNA antigen-positive cells was nearly completely inhibited by the addition of low concentrations of cycloheximide at initiation of the cultures. In contrast, little effect on the percentage of positive cells was detected if cells were exposed to high doses of gamma irradiation before culture. These data further support the existence of cell surface nuclear antigens on selected cell subsets, which may provide insight into the immunopathogenesis of systemic lupus erythematosus and related autoimmune diseases

  7. Vascular expression of endothelial antigen PAL-E indicates absence of blood-ocular barriers in the normal eye

    NARCIS (Netherlands)

    Schlingemann, R. O.; Hofman, P.; Anderson, L.; Troost, D.; van der Gaag, R.

    1997-01-01

    The endothelium-specific antigen PAL-E is expressed in capillaries and veins throughout the body with the exception of the brain, where the antigen is absent from anatomical sites with a patent blood-brain barrier. In this study we determined vascular endothelial staining for PAL-E in the normal eye

  8. Multi-epitope chimeric antigen used as a serological marker to estimate Plasmodium falciparum transmission intensity in the border area of China-Myanmar.

    Science.gov (United States)

    Yao, Mei-Xue; Sun, Xiao-Dong; Gao, Yu-Hui; Cheng, Zhi-Bin; Deng, Wei-Wei; Zhang, Jia-Jia; Wang, Heng

    2016-09-07

    Following the decline of malaria transmission in many countries and regions, serological parameters have become particularly useful for estimating malaria transmission in low-intensity areas. This study evaluated a novel serological marker, Malaria Random Constructed Antigen-1 (M.RCAg-1), which contains 11 epitopes from eight Plasmodium falciparum antigens, as a tool for assessing malaria transmission intensity along the border area of China-Myanmar. Serum from Plasmodium falciparum and P. vivax patients was used to detect the properties of M.RCAg-1 and antibody responses. Cross-sectional surveys were conducted at the China-Myanmar border and in Hainan province in 2012 and 2013 using cluster sampling. Filter blood spot papers were collected from all participants. Antibodies against M.RCAg-1 were detected using indirect ELISA. The Mann-Whitney test and Spearman's rank correlation test were performed to analyze antibody data. P. falciparum malaria transmission intensity was estimated using a catalytic conversion model based on the maximum likelihood of generating a community seroconversion rate (SCR). M.RCAg-1 was well-recognized by the naturally acquired anti-malaria antibodies in P. falciparum patients and had very limited cross-reactivity with P. vivax infection. The total amount of IgG antibodies was decreased with the decrease in parasitemia after taking medication and lasted several weeks. In a population survey, the antibody levels were higher in residents living close to the China-Myanmar border than those living in non-epidemic areas (P < 0.0001), but no significant difference was observed between residents from Hainan and non-epidemic areas. The calculated SCR was 0.0128 for Jieyangka, 0.004 for Susuzhai, 0.0047 for Qiushan, and 0.043 for Kayahe. The estimated exposure rate obtained from the anti-M.RCAg-1 antibody level correlated with traditional measures of transmission intensity derived from altitude. Our study demonstrates that M.RCAg-1 is

  9. Radioimmunological test for the cancero-embryonal antigen in evaluation of stomach neoplasm treatment efficiency

    International Nuclear Information System (INIS)

    Klimenkov, A.A.; Tkacheva, G.A.; Gladikov, Yu.V.; Blokhina, N.G.; Ozherel'ev, A.V.

    1979-01-01

    The results of a dynamic determination of the level of the cancero-embryonic antigen are analysed in 30 patients with stomach neoplasm of the 1-3 stages subjected to a radical operation and 22 patients with stage 4 given polychemotherapy. It is shown that information on the nature of the change in the level of the cancero-embryonal antigen in the blood serves as an important criterion for evaluation of the completeness of the tumour mass removal, detection of the disease relapse and comparison of the efficiency of various combinations of antitumor drugs

  10. Incidence of Severe Malaria Syndromes and Status of Immune Responses among Khat Chewer Malaria Patients in Ethiopia.

    Directory of Open Access Journals (Sweden)

    Tsige Ketema

    Full Text Available Although more emphasis has been given to the genetic and environmental factors that determine host vulnerability to malaria, other factors that might have a crucial role in burdening the disease have not been evaluated yet. Therefore, this study was designed to assess the effect of khat chewing on the incidence of severe malaria syndromes and immune responses during malaria infection in an area where the two problems co-exist. Clinical, physical, demographic, hematological, biochemical and immunological data were collected from Plasmodium falciparum mono-infected malaria patients (age ≥ 10 years seeking medication in Halaba Kulito and Jimma Health Centers. In addition, incidences of severe malaria symptoms were assessed. The data were analyzed using SPSS (version 20 software. Prevalence of current khat chewer malaria patients was 57.38% (95%CI =53-61.56%. Malaria symptoms such as hyperpyrexia, prostration and hyperparasitemia were significantly lower (P0.05, IgG3 antibody was significantly higher (P<0.001 among khat chewer malaria patients. Moreover, IgM, IgG, IgG1and IgG3 antibodies had significant negative association (P<0.001 with parasite burden and clinical manifestations of severe malaria symptoms, but not with severe anemia and hypoglycemia. Additionally, a significant increment (P<0.05 in CD4+ T-lymphocyte population was observed among khat users. Khat might be an important risk factor for incidence of some severe malaria complications. Nevertheless, it can enhance induction of humoral immune response and CD4+ T-lymphocyte population during malaria infection. This calls for further investigation on the effect of khat on parasite or antigen-specifc protective malaria immunity and analysis of cytokines released upon malaria infection among khat chewers.

  11. An analytical approach to reduce between-plate variation in multiplex assays that measure antibodies to Plasmodium falciparum antigens.

    Science.gov (United States)

    Fang, Rui; Wey, Andrew; Bobbili, Naveen K; Leke, Rose F G; Taylor, Diane Wallace; Chen, John J

    2017-07-17

    Antibodies play an important role in immunity to malaria. Recent studies show that antibodies to multiple antigens, as well as, the overall breadth of the response are associated with protection from malaria. Yet, the variability and reliability of antibody measurements against a combination of malarial antigens using multiplex assays have not been well characterized. A normalization procedure for reducing between-plate variation using replicates of pooled positive and negative controls was investigated. Sixty test samples (30 from malaria-positive and 30 malaria-negative individuals), together with five pooled positive-controls and two pooled negative-controls, were screened for antibody levels to 9 malarial antigens, including merozoite antigens (AMA1, EBA175, MSP1, MSP2, MSP3, MSP11, Pf41), sporozoite CSP, and pregnancy-associated VAR2CSA. The antibody levels were measured in triplicate on each of 3 plates, and the experiments were replicated on two different days by the same technician. The performance of the proposed normalization procedure was evaluated with the pooled controls for the test samples on both the linear and natural-log scales. Compared with data on the linear scale, the natural-log transformed data were less skewed and reduced the mean-variance relationship. The proposed normalization procedure using pooled controls on the natural-log scale significantly reduced between-plate variation. For malaria-related research that measure antibodies to multiple antigens with multiplex assays, the natural-log transformation is recommended for data analysis and use of the normalization procedure with multiple pooled controls can improve the precision of antibody measurements.

  12. Analyzing actual risk in malaria-deferred donors through selective serologic testing.

    Science.gov (United States)

    Nguyen, Megan L; Goff, Tami; Gibble, Joan; Steele, Whitney R; Leiby, David A

    2013-08-01

    Approximately 150,000 US blood donors are deferred annually for travel to malaria-endemic areas. However, the majority do not travel to the high-risk areas of Africa associated with transfusion-transmitted malaria (TTM) but visit low-risk areas such as Mexico. This study tests for Plasmodium infection among malaria-deferred donors, particularly those visiting Mexico. Blood donors deferred for malaria risk (travel, residence, or previous infection) provided blood samples and completed a questionnaire. Plasma was tested for Plasmodium antibodies by enzyme immunoassay (EIA); repeat-reactive (RR) samples were considered positive and tested by real-time polymerase chain reaction (PCR). Accepted donors provided background testing data. During 2005 to 2011, a total of 5610 malaria-deferred donors were tested by EIA, including 5412 travel deferrals. Overall, 88 (1.6%) were EIA RR; none were PCR positive. Forty-nine (55.7%) RR donors previously had malaria irrespective of deferral category, including 34 deferred for travel. Among 1121 travelers to Mexico, 90% visited Quintana Roo (no or very low risk), but just 2.2% visited Oaxaca/Chiapas (moderate or high risk). Only two Mexican travelers tested RR; both previously had malaria not acquired in Mexico. Travel to Mexico represents a large percentage of US donors deferred for malaria risk; however, these donors primarily visit no- or very-low-risk areas. No malaria cases acquired in Mexico were identified thereby supporting previous risk estimates. Consideration should be given to allowing blood donations from U.S. donors who travel to Quintana Roo and other low-risk areas in Mexico. A more effective approach to preventing TTM would be to defer all donors with a history of malaria, even if remote. © 2012 American Association of Blood Banks.

  13. Comparative evaluation of two rapid field tests for malaria diagnosis: Partec Rapid Malaria Test® and Binax Now® Malaria Rapid Diagnostic Test.

    Science.gov (United States)

    Nkrumah, Bernard; Acquah, Samuel Ek; Ibrahim, Lukeman; May, Juergen; Brattig, Norbert; Tannich, Egbert; Nguah, Samuel Blay; Adu-Sarkodie, Yaw; Huenger, Frank

    2011-05-23

    About 90% of all malaria deaths in sub-Saharan Africa occur in children under five years. Fast and reliable diagnosis of malaria requires confirmation of the presence of malaria parasites in the blood of patients with fever or history suggestive of malaria; hence a prompt and accurate diagnosis of malaria is the key to effective disease management. Confirmation of malaria infection requires the availability of a rapid, sensitive, and specific testing at an affordable cost. We compared two recent methods (the novel Partec Rapid Malaria Test® (PT) and the Binax Now® Malaria Rapid Diagnostic Test (BN RDT) with the conventional Giemsa stain microscopy (GM) for the diagnosis of malaria among children in a clinical laboratory of a hospital in a rural endemic area of Ghana. Blood samples were collected from 263 children admitted with fever or a history of fever to the pediatric clinic of the Agogo Presbyterian Hospital. The three different test methods PT, BN RDT and GM were performed independently by well trained and competent laboratory staff to assess the presence of malaria parasites. Results were analyzed and compared using GM as the reference standard. In 107 (40.7%) of 263 study participants, Plasmodium sp. was detected by GM. PT and BN RDT showed positive results in 111 (42.2%) and 114 (43.4%), respectively. Compared to GM reference standard, the sensitivities of the PT and BN RDT were 100% (95% CI: 96.6-100) and 97.2% (95% CI: 92.0-99.4), respectively, specificities were 97.4% (95% CI: 93.6-99.3) and 93.6% (95% CI: 88.5-96.9), respectively. There was a strong agreement (kappa) between the applied test methods (GM vs PT: 0.97; p < 0.001 and GM vs BN RDT: 0.90; p < 0.001). The average turnaround time per tests was 17 minutes. In this study two rapid malaria tests, PT and BN RDT, demonstrated a good quality of their performance compared to conventional GM. Both methods require little training, have short turnaround times, are applicable as well as affordable and

  14. Deconstructing the risk for malaria in United States donors deferred for travel to Mexico.

    Science.gov (United States)

    Spencer, Bryan; Kleinman, Steven; Custer, Brian; Cable, Ritchard; Wilkinson, Susan L; Steele, Whitney; High, Patrick M; Wright, David

    2011-11-01

    More than 66,000 blood donors are deferred annually in the United States due to travel to malaria-endemic areas of Mexico. Mexico accounts for the largest share of malaria travel deferrals, yet it has extremely low risk for malaria transmission throughout most of its national territory, suggesting a suboptimal balance between blood safety and availability. This study sought to determine whether donor deferral requirements might be relaxed for parts of Mexico without compromising blood safety. Travel destination was recorded from a representative sample of presenting blood donors deferred for malaria travel from six blood centers during 2006. We imputed to these donors reporting Mexican travel a risk for acquiring malaria equivalent to Mexican residents in the destination location, adjusted for length of stay. We extrapolated these results to the overall US blood donor population. Risk for malaria in Mexico varies significantly across endemic areas and is greatest in areas infrequently visited by study donors. More than 70% of blood donor deferrals were triggered by travel to the state of Quintana Roo on the Yucatán Peninsula, an area of very low malaria transmission. Eliminating the travel deferral requirement for all areas except the state of Oaxaca might result in the recovery of almost 65,000 blood donors annually at risk of approximately one contaminated unit collected every 20 years. Deferral requirements should be relaxed for presenting donors who traveled to areas within Mexico that confer exceptionally small risks for malaria, such as Quintana Roo. © 2011 American Association of Blood Banks.

  15. Alanine metabolism in acute falciparum malaria

    NARCIS (Netherlands)

    Pukrittayakamee, S.; Krishna, S.; ter Kuile, F.; Wilaiwan, O.; Williamson, D. H.; White, N. J.

    2002-01-01

    We investigated the integrity of the gluconeogenic pathway in severe malaria using alanine metabolism as a measure. Alanine disposition and liver blood flow, assessed by indocyanine green (ICG) clearance, were measured simultaneously in 10 patients with falciparum malaria (six severe and four

  16. Malaria cerebral Cerebral malaria

    Directory of Open Access Journals (Sweden)

    Carlos Hugo Zapata Zapata

    2003-03-01

    Full Text Available La malaria Cerebral (MC es la complicación más frecuente de la malaria por P. falciparum; aproximadamente el 90% de las personas que la han padecido se recuperan completamente sin secuelas neurológicas. Aún no se conoce con claridad su patogénesis pero se han postulado cuatro hipótesis o mecanismos posibles: 1 citoadherencia y secuestro de glóbulos rojos parasitados en la microvasculatura cerebral; 2 formación de rosetas y aglutinación de glóbulos rojos parasitados; 3 producción de citoquinas y activación de segundos mensajeros y, 4 apertura de la barrera hematoencefálica. Sin embargo, queda un interrogante sin resolver aún: ¿qué proceso se lleva a cabo para que el parásito, desde el espacio microvascular, pueda interferir transitoriamente con la función cerebral? Recientemente se ha utilizado el precursor de la proteína b-Amiloide como un marcador de daño neuronal en MC; este precursor será de gran ayuda en futuras investigaciones realizadas en nuestro medio que aporten información para comprender la patogénesis de la MC. Is the most common complication of P. falciparum malaria; nearly 90% of people who have suffered CM can recover without neurological problems. Currently there are four hypotheses that explain pathogenesis of CM: cytoadherence and sequestering of parasitized red blood cells to cerebral capillaries; rosette formation and parasitized red blood cells agglutination; production of cytokines and activation of second messengers and opening of the blood-brain barrier. However the main question remains to be answered; how the host-parasite interaction in the vascular space interferes transiently with cerebral function? Recently, the beta amyloid precursor peptide has been employed as marker of neural injury in CM. It is expected that the beta amyloid precursor peptide will help to understand the pathogenesis of CM in complicated patients of endemic areas of Colombia.

  17. PREVENTION OF BLOOD LOSS IN THIRD STAGE OF LABOUR BY PLACENTAL BLOOD DRAINAGE- A CLINICAL STUDY

    Directory of Open Access Journals (Sweden)

    B. K. Dutta

    2017-12-01

    Full Text Available BACKGROUND Placental cord drainage is a simple, safe and non-invasive method which reduces the duration and blood loss in the third stage of labour thereby preventing PPH. This method is of great use in day to day obstetric practices not requiring any extra effort, cost or equipment, so this type of practice is more relevant in rural areas. The objectives of the study were1. To evaluate the effectiveness of placental blood drainage via umbilical cord in reducing duration and blood loss in third stage of labour. 2. Reducing the incidence of postpartum haemorrhage. 3. Decreasing the complications in third stage of labour and reduce maternal mortality. MATERIALS AND METHODS This study was carried out in 100 full term pregnant women admitted in the labour room in Gauhati medical college and hospital in the department of obstetrics and gynaecology since 1st August 2007 to 30th August 2008. Cases were divided into two. Study group and control group. RESULTS In control group the average duration of third stage was 7.41 minutes and in study group 5.57 minutes and p value was <0.001 which is very highly significant. The blood loss in third stage of labour was more in case of control group, the mean blood loss in control was 169.48 ml and study group was 110.38 ml after delivery of placenta. The post-partum haemorrhage was present in 2% of cases in control group while in study group it was present in 0% case. CONCLUSION Placental blood drainage is one of the additional components in active management of third stage of labour, which is safe, simple and non-invasive method. It reduces the duration of third stage of labour, amount of blood loss and decreases the duration of placental separation time.

  18. Antigen specific T-cell responses against tumor antigens are controlled by regulatory T cells in patients with prostate cancer.

    Science.gov (United States)

    Hadaschik, Boris; Su, Yun; Huter, Eva; Ge, Yingzi; Hohenfellner, Markus; Beckhove, Philipp

    2012-04-01

    Immunotherapy is a promising approach in an effort to control castration resistant prostate cancer. We characterized tumor antigen reactive T cells in patients with prostate cancer and analyzed the suppression of antitumor responses by regulatory T cells. Peripheral blood samples were collected from 57 patients with histologically confirmed prostate cancer, 8 patients with benign prostatic hyperplasia and 16 healthy donors. Peripheral blood mononuclear cells were isolated and antigen specific interferon-γ secretion of isolated T cells was analyzed by enzyme-linked immunospot assay. T cells were functionally characterized and T-cell responses before and after regulatory T-cell depletion were compared. As test tumor antigens, a panel of 11 long synthetic peptides derived from a total of 8 tumor antigens was used, including prostate specific antigen and prostatic acid phosphatase. In patients with prostate cancer we noted a 74.5% effector T-cell response rate compared with only 25% in patients with benign prostatic hyperplasia and 31% in healthy donors. In most patients 2 or 3 tumor antigens were recognized. Comparing various disease stages there was a clear increase in the immune response against prostate specific antigens from intermediate to high risk tumors and castration resistant disease. Regulatory T-cell depletion led to a significant boost in effector T-cell responses against prostate specific antigen and prostatic acid phosphatase. Tumor specific effector T cells were detected in most patients with prostate cancer, especially those with castration resistant prostate cancer. Since effector T-cell responses against prostate specific antigens strongly increased after regulatory T-cell depletion, our results indicate that immunotherapy efficacy could be enhanced by decreasing regulatory T cells. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  19. Biodiversity can help prevent malaria outbreaks in tropical forests.

    Directory of Open Access Journals (Sweden)

    Gabriel Zorello Laporta

    Full Text Available BACKGROUND: Plasmodium vivax is a widely distributed, neglected parasite that can cause malaria and death in tropical areas. It is associated with an estimated 80-300 million cases of malaria worldwide. Brazilian tropical rain forests encompass host- and vector-rich communities, in which two hypothetical mechanisms could play a role in the dynamics of malaria transmission. The first mechanism is the dilution effect caused by presence of wild warm-blooded animals, which can act as dead-end hosts to Plasmodium parasites. The second is diffuse mosquito vector competition, in which vector and non-vector mosquito species compete for blood feeding upon a defensive host. Considering that the World Health Organization Malaria Eradication Research Agenda calls for novel strategies to eliminate malaria transmission locally, we used mathematical modeling to assess those two mechanisms in a pristine tropical rain forest, where the primary vector is present but malaria is absent. METHODOLOGY/PRINCIPAL FINDINGS: The Ross-Macdonald model and a biodiversity-oriented model were parameterized using newly collected data and data from the literature. The basic reproduction number ([Formula: see text] estimated employing Ross-Macdonald model indicated that malaria cases occur in the study location. However, no malaria cases have been reported since 1980. In contrast, the biodiversity-oriented model corroborated the absence of malaria transmission. In addition, the diffuse competition mechanism was negatively correlated with the risk of malaria transmission, which suggests a protective effect provided by the forest ecosystem. There is a non-linear, unimodal correlation between the mechanism of dead-end transmission of parasites and the risk of malaria transmission, suggesting a protective effect only under certain circumstances (e.g., a high abundance of wild warm-blooded animals. CONCLUSIONS/SIGNIFICANCE: To achieve biological conservation and to eliminate

  20. Full blood count and haemozoin-containing leukocytes in children with malaria: diagnostic value and association with disease severity

    Directory of Open Access Journals (Sweden)

    Lell Bertrand

    2008-06-01

    Full Text Available Abstract Background Diligent and correct laboratory diagnosis and up-front identification of risk factors for progression to severe disease are the basis for optimal management of malaria. Methods Febrile children presenting to the Medical Research Unit at the Albert Schweitzer Hospital (HAS in Lambaréné, Gabon, were assessed for malaria. Giemsa-stained thick films for qualitative and quantitative diagnosis and enumeration of malaria pigment, or haemozoin (Hz-containing leukocytes (PCL were performed, and full blood counts (FBC were generated with a Cell Dyn 3000® instrument. Results Compared to standard light microscopy of Giemsa-stained thick films, diagnosis by platelet count only, by malaria pigment-containing monocytes (PCM only, or by pigment-containing granulocytes (PCN only yielded sensitivities/specificities of 92%/93%; 96%/96%; and 85%/96%, respectively. The platelet count was significantly lower in children with malaria compared to those without (p ® instrument detected significantly more patients with PCL (p Conclusion In the age group examined in the Lambaréné area, platelets are an excellent adjuvant tool to diagnose malaria. Pigment-containing leukocytes (PCL are more readily detected by automated scatter flow cytometry than by microscopy. Automated Hz detection by an instrument as used here is a reliable diagnostic tool and correlates with disease severity. However, clinical usefulness as a prognostic tool is limited due to an overlap of PCL numbers recorded in severe versus non-severe malaria. However, this is possibly because of the instrument detection algorithm was not geared towards this task, and data lost during processing; and thus adjusting the instrument's algorithm may allow to establish a meaningful cut-off value.

  1. Rapid diagnostic tests for diagnosing uncomplicated non-falciparum or Plasmodium vivax malaria in endemic countries

    Science.gov (United States)

    Abba, Katharine; Kirkham, Amanda J; Olliaro, Piero L; Deeks, Jonathan J; Donegan, Sarah; Garner, Paul; Takwoingi, Yemisi

    2014-01-01

    2013, we included 47 studies, enrolling 22,862 adults and children. What are rapid tests and why do they need to be able to distinguish Plasmodium vivax malaria RDTs are simple to use, point of care tests, suitable for use in rural settings by primary healthcare workers. RDTs work by using antibodies to detect malaria antigens in the patient's blood. A drop of blood is placed on the test strip where the antibodies and antigen combine to create a distinct line indicating a positive test. Malaria can be caused any one of five species of Plasmodium parasite, but P. falciparum and P. vivax are the most common. In some areas, RDTs need to be able to distinguish which species is causing the malaria symptoms as different species may require different treatments. Unlike P. falciparum, P. vivax has a liver stage which can cause repeated illness every few months unless it is treated with primaquine. The most common types of RDTs for P. vivax use two test lines in combination; one line specific to P. falciparum, and one line which can detect any species of Plasmodium. If the P. falciparum line is negative and the 'any species' line is positive, the illness is presumed to be due to P. vivax (but could also be caused by P. malariae, or P. ovale). More recently, RDTs have been developed which specifically test for P. vivax. What does the research say RDTs testing for non-falciparum malaria were very specific (range 98% to 100%) meaning that only 1% to 2% of patients who test positive would actually not have the disease. However, they were less sensitive (range 78% to 89%), meaning between 11% and 22% of people with non-falciparum malaria would actually get a negative test result. RDTs which specifically tested for P. vivax were more accurate with a specificity of 99% and a sensitivity of 95%, meaning that only 5% of people with P. vivax malaria would have a negative test result. PMID:25519857

  2. Submicroscopic malaria cases play role in local transmission in Trenggalek district, East Java Province, Indonesia.

    Science.gov (United States)

    Arwati, Heny; Yotopranoto, Subagyo; Rohmah, Etik Ainun; Syafruddin, Din

    2018-01-05

    Trenggalek district is a hypoendemic malaria area with mainly imported cases brought by migrant workers from islands outside Java. During malaria surveillance in 2015, no malaria cases were found microscopically, but some cases were positive by PCR. Therefore, a study was conducted to prove that local malaria transmission still occur. The adult villagers were invited to the house of the head of this village to be screened for malaria using aseptic venipuncture of 1 mL blood upon informed consent. Thin and thick blood films as well as blood spots on filter paper were made for each subject. The blood films were stained with Giemsa and the blood spots were used to extract DNA for polymerase chain reaction (PCR) amplification to determine the malaria infection. In addition, the history of malaria infection and travel to malaria endemic areas were recorded. Entomologic survey to detect the existence of anopheline vector was also conducted. Of the total 64 subjects that participated in the survey, no malaria parasites were found through microscopic examination of the blood films. The PCR analysis found six positive cases (two Plasmodium falciparum, one Plasmodium vivax and two mixed infection of both species), and two of them had no history of malaria and have never travelled to malaria endemic area. Entomologic survey using human bait trap detected the existence of Anopheles indefinitus that was found to be positive for P. vivax by PCR. The results indicated that although we did not find any microscopically slide positive cases, six PCR positive subjects were found. The fact that 2 of the 6 malaria positive subjects have never travelled to malaria endemic area together with the existence of the vector confirm the occurence of local transmission of malaria in the area.

  3. Buffer substitution in malaria rapid diagnostic tests causes false-positive results

    Directory of Open Access Journals (Sweden)

    Van den Ende Jef

    2010-07-01

    Full Text Available Abstract Background Malaria rapid diagnostic tests (RDTs are kits that generally include 20 to 25 test strips or cassettes, but only a single buffer vial. In field settings, laboratory staff occasionally uses saline, distilled water (liquids for parenteral drugs dilution or tap water as substitutes for the RDT kit's buffer to compensate for the loss of a diluent bottle. The present study assessed the effect of buffer substitution on the RDT results. Methods Twenty-seven RDT brands were run with EDTA-blood samples of five malaria-free subjects, who were negative for rheumatoid factor and antinuclear antibodies. Saline, distilled water and tap water were used as substitute liquids. RDTs were also run with distilled water, without adding blood. Results were compared to those obtained with the RDT kit's buffer and Plasmodium positive samples. Results Only eight cassettes (in four RDT brands showed no control line and were considered invalid. Visible test lines occurred for at least one malaria-free sample and one of the substitutes in 20/27 (74% RDT brands (saline: n = 16; distilled water: n = 17; and tap water: n = 20, and in 15 RDTs which were run with distilled water only. They occurred for all Plasmodium antigens and RDT formats (two-, three- and four-band RDTs. Clearance of the background of the strip was excellent except for saline. The aspects (colour, intensity and crispness of the control and the false-positive test lines were similar to those obtained with the RDT kits' buffer and Plasmodium positive samples. Conclusion Replacement of the RDT kit's dedicated buffer by saline, distilled water and tap water can cause false-positive test results.

  4. Changes in malaria epidemiology in a rural area of Cubal, Angola.

    Science.gov (United States)

    Salvador, Fernando; Cossio, Yolima; Riera, Marta; Sánchez-Montalvá, Adrián; Bocanegra, Cristina; Mendioroz, Jacobo; Eugenio, Arlette N; Sulleiro, Elena; Meredith, Warren; López, Teresa; Moreno, Milagros; Molina, Israel

    2015-01-21

    Scarce information about malaria epidemiology in Angola has been published. The objective of this study is to describe the epidemiology of malaria at the Hospital Nossa Senhora da Paz (Cubal, Angola) and the fatality rate due to malaria (total and in children under five years) in the last five years. A retrospective, observational study was performed at the Hospital Nossa Senhora da Paz, a 400-bed rural hospital located in Benguela Province of Angola. The study population included all patients who attended the hospital from January 2009 to December 2013. Outcome variables were calculated as follows: the percentage of malaria cases (number of positive thick blood films, divided by the total thick blood films performed); the percentage of in-patients for malaria (number of in-patients diagnosed with malaria, divided by the total number of in-patients); and, the fatality rate (number of deaths due to malaria divided by the number of positive thick blood films). Overall, 23,106 thick blood films were performed, of which 3,279 (14.2%) were positive for Plasmodium falciparum infection. During this five-year period, a reduction of 40% (95% CI 37-43%, p < 0.001) in the malaria-positive slides was detected. Distribution of positive-malaria slides showed a seasonal distribution with a peak from December to March (rainy season). An average annual reduction of 52% (95% CI 50-54%, p < 0.001) in the admissions due to malaria was observed. The overall fatality rate due to malaria was 8.3%, and no significant differences in the annual fatality rate were found (p = 0.553). A reduction in the number of malaria cases and the number of admissions due to malaria has been observed at the Hospital Nossa Senhora da Paz, during the last five years, and incidence along the study period showed a seasonal distribution. All this information could be useful when deciding which malaria control strategies have to be implemented in this area.

  5. Effects of blood-feeding on olfactory sensitivity of the malaria mosquito Anopheles gambiae: application of mixed linear models to account for repeated measurements

    NARCIS (Netherlands)

    Qiu, Y.T.; Gort, G.; Torricelli, A.; Takken, W.; Loon, van J.J.A.

    2013-01-01

    Olfaction plays an important role in the host-seeking behavior of the malaria mosquito Anopheles gambiae. After a complete blood meal, female mosquitoes will not engage in host-seeking behavior until oviposition has occurred. We investigated if peripheral olfactory sensitivity changed after a blood

  6. Uncovering the Role of Erythrocyte-Derived Extracellular Vesicles in Malaria: From Immune Regulation to Cell Communication

    Directory of Open Access Journals (Sweden)

    Johan Ankarklev

    2014-05-01

    Full Text Available Investigation of the involvement of extracellular vesicles (EVs in parasite biology has burgeoned in recent years. Human infecting protozoan parasites, such as Trypanosoma cruzi, Lesihmania sp . and Trichomonas vaginalis , have all demonstrated the utilization of EVs as virulence factors in order to activate or hamper host immunity. Novel findings have provided evidence that the deployment of EVs by Plasmodium sp . has a major impact in disease outcomes and serves as an integral part in controlling stage switching in its life cycle. Clinical studies have highlighted elevated levels of EVs in patients with severe malaria disease and EVs have been linked to increased sequestration of infected red blood cells to the endothelium, causing obstruction of blood flow. It has also been found that EVs produced during malaria disease activate innate immunity. Intriguingly, recent discoveries indicate that Plasmodium sp . “highjack” the erythrocyte microvesiculation system in order to cross-communicate. Both the transfer of DNA and parasite density regulation has been suggested as key mechanisms of EVs in malaria biology.

  7. MIGRATION AND MALARIA IN EUROPE

    Directory of Open Access Journals (Sweden)

    Begoña Monge-Maillo

    2012-03-01

    Full Text Available The proportion of imported malaria cases due to immigrants in Europe has increased during the lasts decades, being the higher rates for those settled immigrants who travel to visit friends and relatives (VFRs at their country of origin. Cases are mainly due to P. falciparum and Sub-Saharan Africa is the most common origin. Clinically, malaria in immigrants is characterized by a mild clinical presentation with even asymptomatic o delayed malaria cases and low parasitemic level. These characteristics may be explained by a semi-immunity acquired after long periods of time exposed to stable transmission of malaria. Malaria cases among immigrants, even those asymptomatic patients with sub-microscopic parasitemia, could increase the risk of transmission and reintroduction of malaria in certain areas with the adequate vectors and climate conditions. Moreover imported malaria cases by immigrants can also play an important role in the non-vectorial transmission out of endemic area, by blood transfusions, organ transplantation or congenital or occupational exposures. Probably, out of endemic areas, screening of malaria among recent arrived immigrants coming from malaria endemic countries should be performed. These aim to reduce the risk of clinical malaria in the individual as well as to prevent autochthonous transmission of malaria in areas where it had been eradicated.

  8. Prevalence of malaria parasitaemia and malaria related anaemia among pregnant women in Abakaliki, South East Nigeria.

    Science.gov (United States)

    Nwonwu, E U; Ibekwe, P C; Ugwu, J I; Obarezi, H C; Nwagbara, O C

    2009-06-01

    Malaria currently is regarded as the most common and potentially the most serious infection occurring in pregnancy in many sub Saharan African countries. This study was undertaken to evaluate the prevalence of malaria parasitaemia and malaria related anaemia among pregnant women in Abakaliki, South East, Nigeria. This is a cross sectional, descriptive study conducted in two tertiary health institutions in Abakaliki, South East, Nigeria (Ebonyi State University Teaching Hospital And Federal Medical Centre). Using systematic sampling method, 193 pregnant women were selected from the health institutions for the study. Their blood were analysed for haemoglobin status and malaria parasite. Data were also collected using an interviewer administered questionnaire. All the data were analysed using Epi info version 6 statistical software. Response rate was 100%. Twenty nine percent prevalence of malaria parasitaemia was detected, more common among primigravidae. Women with higher parity had higher frequency of anaemia in pregnancy. More than half of the pregnant women (51%) were in their second trimester at the time of booking. There was no case of severe anaemia requiring blood transfusion. Our pregnant women register late for antenatal care. Prevalence of malaria parasitaemia is high in our environment as well as anaemia in pregnancy, using the standard WHO definition. It is suggested that effort should be intensified to make our women register early for antenatal care in order to identify complications early. Intermittent preventive treatment for malaria should be incorporated into routine drugs for antenatal women.

  9. A phase 2b randomized, controlled trial of the efficacy of the GMZ2 malaria vaccine in African children

    DEFF Research Database (Denmark)

    Sirima, Sodiomon B; Mordmüller, Benjamin; Milligan, Paul

    2016-01-01

    randomized to receive three injections of either 100μg GMZ2 adjuvanted with aluminum hydroxide or a control vaccine (rabies) four weeks apart and were followed up for six months to measure the incidence of malaria defined as fever or history of fever and a parasite density ⩾5000/μL. RESULTS: A cohort of 1849...... in the rabies vaccine group and 14 in the GMZ2 group), VE 27% (95% CI -44%, 63%). CONCLUSIONS: GMZ2 is the first blood-stage malaria vaccine to be evaluated in a large multicenter trial. GMZ2 was well tolerated and immunogenic, and reduced the incidence of malaria, but efficacy would need to be substantially...

  10. Pregnancy-associated malaria in a rural community of Ghana

    DEFF Research Database (Denmark)

    Ofori, Mf; Ansah, E; Agyepong, I

    2009-01-01

    OBJECTIVES: Pregnant women in malaria-endemic communities are susceptible to Plasmodium falciparum infections, with adverse consequences including maternal anaemia, placental malaria parasitaemia and infant low birth weight (LBW). We sought to assess the prevalence, incidence, and clinical markers...... of pregnancy-associated malaria (PAM) in a rural district of Ghana. METHODS: A total of 294 pregnant women were enrolled and followed passively and actively, monthly and weekly until delivery. Haemoglobin levels, malaria parasitaemia and Hb electrophoresis were done from peripheral blood samples. At delivery......, placental smears were examined for malaria parasites. RESULTS: Prevalence of peripheral blood P. falciparum parasitaemia at enrolment was 19.7% and related to parity. Incidence rate of parasitaemia was 0.06 infections/ person/month [95% confidence interval (CI): 0.04 to 0.08]. Symptomatic infections rose...

  11. Enhancement of human natural cytotoxicity by Plasmodium falciparum antigen activated lymphocytes

    DEFF Research Database (Denmark)

    Theander, T G; Pedersen, B K; Bygbjerg, I C

    1987-01-01

    Mononuclear cells (MNC) isolated from malaria immune donors and from donors never exposed to malaria were stimulated in vitro with soluble purified Plasmodium falciparum antigens (SPag) or PPD. After 7 days of culture the proliferative response and the cytotoxic activity against the natural killer...... were preincubated with interleukin 2 (IL-2) for one hour before the start of the cytotoxic assay. SPag activation did not enhance the cytotoxic activity of MNC which did not respond to the antigen in the proliferation assay, and preincubation of these cells with IL-2 did not increase the activity. PPD...

  12. Towards a vaccine against pregnancy-associated malaria

    Directory of Open Access Journals (Sweden)

    Tuikue Ndam N.

    2008-09-01

    Full Text Available The consequences of pregnancy-associated malaria on pregnant women (anaemia, their babies (birth weight reduction, and infants (increased morbidity and mortality are well documented. Field observations during the last decade have underlined the key role of the interactions between P. falciparum variable surface antigens expressed on infected erythrocytes and a novel receptor: chondroitin sulfate A (CSA for the placental sequestration of infected erythrocytes. Identification of a distinct P. falciparum erythrocyte membrane protein 1 (PfEMP1 variant, VAR2CSA, as the dominant variant surface antigen and as a clinically important target for protective immune response to pregnancy-associated malaria has raised hope for developing a new preventive strategy based on inducing these immune responses by vaccination. However, despite particular structure and interclonal conservation of VAR2CSA among other PfEMP1, significant challenges still exist concerning the development of a VAR2CSA-based vaccine with profound efficacy.

  13. MalHaploFreq: A computer programme for estimating malaria haplotype frequencies from blood samples

    Directory of Open Access Journals (Sweden)

    Smith Thomas A

    2008-07-01

    Full Text Available Abstract Background Molecular markers, particularly those associated with drug resistance, are important surveillance tools that can inform policy choice. People infected with falciparum malaria often contain several genetically-distinct clones of the parasite; genotyping the patients' blood reveals whether or not the marker is present (i.e. its prevalence, but does not reveal its frequency. For example a person with four malaria clones may contain both mutant and wildtype forms of a marker but it is not possible to distinguish the relative frequencies of the mutant and wildtypes i.e. 1:3, 2:2 or 3:1. Methods An appropriate method for obtaining frequencies from prevalence data is by Maximum Likelihood analysis. A computer programme has been developed that allows the frequency of markers, and haplotypes defined by up to three codons, to be estimated from blood phenotype data. Results The programme has been fully documented [see Additional File 1] and provided with a user-friendly interface suitable for large scale analyses. It returns accurate frequencies and 95% confidence intervals from simulated dataset sets and has been extensively tested on field data sets. Additional File 1 User manual for MalHaploFreq. Click here for file Conclusion The programme is included [see Additional File 2] and/or may be freely downloaded from 1. It can then be used to extract molecular marker and haplotype frequencies from their prevalence in human blood samples. This should enhance the use of frequency data to inform antimalarial drug policy choice. Additional File 2 executable programme compiled for use on DOS or windows Click here for file

  14. Of mice and women: rodent models of placental malaria

    DEFF Research Database (Denmark)

    Hviid, Lars; Marinho, Claudio R F; Staalsoe, Trine

    2010-01-01

    Pregnant women are at increased malaria risk. The infections are characterized by placental accumulation of infected erythrocytes (IEs) with adverse consequences for mother and baby. Placental IE sequestration in the intervillous space is mediated by variant surface antigens (VSAs) selectively...... expressed in placental malaria (PM) and specific for chondroitin sulfate A (CSA). In Plasmodium falciparum, these VSA(PM) appear largely synonymous with the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family variant VAR2CSA. As rodent malaria parasites do not possess PfEMP1 homologs......, the usefulness of experimental mouse PM models remains controversial. However, many features of murine and human PM are similar, including involvement of VSAs analogous to PfEMP1. It thus appears that rodent model studies can further the understanding of VSA-dependent malaria pathogenesis and immunity....

  15. Using a genomic assay for the detection of SNPs of Knops blood group antigens leads to the identification of two caucasians homozygous for the SNP associated with the knops SL3 antigen

    DEFF Research Database (Denmark)

    Jakobsen, M. A.; Sprogoe, U.

    2015-01-01

    designed a genomic assay based on sequencing targeting the SNPs underlying the antigens of the Knops system. Study Design/Methods: Samples from a total of 105 blood donors and 2 patients were examined for polymorphisms in CR1 exon 29 by using PCR and subsequent Sanger sequencing. Results......Background/Case Studies: The antigens of the Knops (Kn) blood group system are associated with SNPs located on exon 29 and (to lesser extent) on exon 26 of the complement receptor 1 (CR1) gene. Because of a lack of proper typing antibodies, serologic detection of Kn antigens is not feasible. We....../Findings: With regard to Kn a and b antigens, we found SNP frequencies to be 90.5% for G/G (4681)* associated with Kn(a+b-) and 9.5% for G/A associated with Kn(a+b+). None of the 107 patients/donors were found to be homozygous for A/A associated with Kn(ab+). The frequencies of SNPs associated with the KCAM antigen...

  16. Correlation between 'H' blood group antigen and Plasmodium falciparum invasion.

    Science.gov (United States)

    Pathak, Vrushali; Colah, Roshan; Ghosh, Kanjaksha

    2016-06-01

    The ABO blood group system is the most important blood group system in clinical practice. The relationship between Plasmodium falciparum and ABO blood groups has been studied for many years. This study was undertaken to investigate the abilities of different blood group erythrocytes to support in vitro growth of P. falciparum parasites. P. falciparum parasites of four different strains (3D7, 7G8, Dd2 and RKL9) were co-cultured with erythrocytes of blood group 'A', 'B', 'O' (n = 10 for each) and 'O(h)' (Bombay group) (n = 7) for 5 days. Statistically significant differences were observed on the fourth day among the mean percent parasitemias of 'O', non-'O' ('A' and 'B') and 'O(h)' group cultures. The parasitemias of four strains ranged from 12.23 to 14.66, 11.68 to 13.24, 16.89 to 22.3, and 7.37 to 11.27 % in 'A', 'B', 'O' and Bombay group cultures, respectively. As the expression of H antigen decreased from 'O' blood group to 'A' and 'B' and then to Bombay blood group, parasite invasion (percent parasitemia) also decreased significantly (p Ulex europaeus seeds. Mean percent parasitemia of lectin-treated cultures on the fourth day was significantly lower (p < 0.05) than that of non-treated cultures and was found to be similar with the mean percent parasitemia demonstrated by the Bombay group erythrocyte cultures, thus further strengthening the hypothesis.

  17. Molecular typing for blood group antigens within 40 minutes by direct PCR from plasma or serum

    Science.gov (United States)

    Wagner, Franz Friedrich; Flegel, Willy Albert; Bittner, Rita; Döscher, Andrea

    2016-01-01

    Determining blood group antigens by serological methods may be unreliable in certain situations, such as in patients after chronic or massive transfusion. Red cell genotyping offers a complementary approach, but current methods may take much longer than conventional serological typing, limiting their utility in urgent situations. To narrow this gap, we devised a rapid method using direct polymerase chain reaction (PCR) amplification while avoiding the DNA extraction step. DNA was amplified by PCR directly from plasma or serum of blood donors followed by a melting curve analysis in a capillary rapid-cycle PCR assay. We evaluated the single nucleotide polymorphisms underlying the clinically relevant Fya, Fyb, Jka and Jkb antigens, with our analysis being completed within 40 min of receiving a plasma or serum sample. The positive predictive value was 100% and the negative predictive value at least 84%. Direct PCR with melting point analysis allowed faster red cell genotyping to predict blood group antigens than any previous molecular method. Our assay may be used as a screening tool with subsequent confirmatory testing, within the limitations of the false-negative rate. With fast turnaround times, the rapid-cycle PCR assay may eventually be developed and applied to red cell genotyping in the hospital setting. PMID:27991657

  18. Hari Malaria Sedunia 2013 Investasi Di Masa Depan. Taklukkan Malaria

    Directory of Open Access Journals (Sweden)

    Hotnida Sitorus

    2017-02-01

    Full Text Available Abstract Malaria is still the global health problems, World Health Organization estimates that malaria causes death of approximately 660.000 in 2010, most of the age of the children in the region of sub-Saharan Africa. World Malaria Day 2013 assigned the theme “Invest in the future. Defeat malaria”. It takes political will and collective action to jointly combat malaria through malaria elimination. Needed more new donors to be involved in global partnerships against malaria. These partnerships exist, one of which is support of funding or facility for malaria endemic countries which do not have sufficient resources to control malaria. A lot of effort has been done or is still in the development stage. The use of long-lasting insecticidal nets appropriately can reduce malaria cases. The use of rapid diagnostic test, especially in remote areas and health facility with no microscopy, is very beneficial for patients to get prompt treatment. The control of malaria through integrated vector management is a rational decision making process to optimize the use of resources in the control of vector. Sterile insect technique has a promising prospect and expected to replace the role of chemical insecticides that have negative impact both on the environment and target vector (resistance. Keywords: Malaria, long-lasting insecticidal nets, rapid diagnostic test Abstrak Malaria masih menjadi masalah kesehatan dunia, Organisasi Kesehatan Dunia (WHO memperkirakan malaria menyebabkan kurang lebih 660.000 kematian pada tahun 2010, kebanyakan usia anak-anak di wilayah Sub-Sahara Afrika. Pada peringatan hari malaria dunia tahun 2013 ditetapkan tema “Investasi di masa depan. Taklukkan malaria”. Dibutuhkan kemauan politik dan tindakan kolektif untuk bersama-sama memerangi malaria melalui gerakan eliminasi malaria. Diperlukan lebih banyak donor baru untuk turut terlibat dalam kemitraan global melawan malaria. Wujud kemitraan tersebut salah satunya adalah

  19. Developing Plasmodium vivax Resources for Liver Stage Study in the Peruvian Amazon Region.

    Science.gov (United States)

    Orjuela-Sanchez, Pamela; Villa, Zaira Hellen; Moreno, Marta; Tong-Rios, Carlos; Meister, Stephan; LaMonte, Gregory M; Campo, Brice; Vinetz, Joseph M; Winzeler, Elizabeth A

    2018-04-13

    To develop new drugs and vaccines for malaria elimination, it will be necessary to discover biological interventions, including small molecules that act against Plasmodium vivax exoerythrocytic forms. However, a robust in vitro culture system for P. vivax is still lacking. Thus, to study exoerythrocytic forms, researchers must have simultaneous access to fresh, temperature-controlled patient blood samples, as well as an anopheline mosquito colony. In addition, researchers must rely on native mosquito species to avoid introducing a potentially dangerous invasive species into a malaria-endemic region. Here, we report an in vitro culture system carried out on site in a malaria-endemic region for liver stage parasites of P. vivax sporozoites obtained from An. darlingi, the main malaria vector in the Americas. P. vivax sporozoites were obtained by dissection of salivary glands from infected An. darlingi mosquitoes and purified by Accudenz density gradient centrifugation. HC04 liver cells were exposed to P. vivax sporozoites and cultured up to 9 days. To overcome low P. vivax patient parasitemias, potentially lower mosquito vectorial capacity, and humid, nonsterile environmental conditions, a new antibiotic cocktail was included in tissue culture to prevent contamination. Culturing conditions supported exoerythrocytic (EEF) P. vivax liver stage growth up to 9 days and allowed for maturation into intrahepatocyte merosomes. Some of the identified small forms were resistant to atovaquone (1 μM) but sensitive to the phosphatidylinositol 4-kinase inhibitor, KDU691 (1 μM). This study reports a field-accessible EEF production process for drug discovery in a malaria-endemic site in which viable P. vivax sporozoites are used for drug studies using hepatocyte infection. Our data demonstrate that the development of meaningful, field-based resources for P. vivax liver stage drug screening and liver stage human malaria experimentation in the Amazon region is feasible.

  20. RIFINs are adhesins implicated in severe Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Goel, Suchi; Palmkvist, Mia; Moll, Kirsten

    2015-01-01

    Rosetting is a virulent Plasmodium falciparum phenomenon associated with severe malaria. Here we demonstrate that P. falciparum–encoded repetitive interspersed families of polypeptides (RIFINs) are expressed on the surface of infected red blood cells (iRBCs), where they bind to RBCs—preferentiall......Rosetting is a virulent Plasmodium falciparum phenomenon associated with severe malaria. Here we demonstrate that P. falciparum–encoded repetitive interspersed families of polypeptides (RIFINs) are expressed on the surface of infected red blood cells (iRBCs), where they bind to RBCs......—preferentially of blood group A—to form large rosettes and mediate microvascular binding of iRBCs. We suggest that RIFINs have a fundamental role in the development of severe malaria and thereby contribute to the varying global distribution of ABO blood groups in the human population....

  1. Prevalence of Diego blood group antigen and the antibody in three ethnic population groups in Klang valley of Malaysia

    OpenAIRE

    Cheong Tar Wei; Faisal Muti Al-Hassan; Norris Naim; Aishah Knight; Sanmukh R Joshi

    2013-01-01

    Background: Diego blood group antigen, Di(a), is very rare among Caucasians and Blacks, but relatively common among the South American Indians and Asians of Mongolian origin. The antibody to Di(a) is clinically significant to cause hemolytic disease in a new-born or hemolytic transfusion reaction. Objectives: This study was designed to determine the prevalence of Di(a) antigen among the blood donors from the three major ethnic groups in Klang Valley of Malaysia as well as to find an incidence...

  2. Malaria Surveillance - United States, 2015.

    Science.gov (United States)

    Mace, Kimberly E; Arguin, Paul M; Tan, Kathrine R

    2018-05-04

    Malaria in humans is caused by intraerythrocytic protozoa of the genus Plasmodium. These parasites are transmitted by the bite of an infective female Anopheles species mosquito. The majority of malaria infections in the United States occur among persons who have traveled to regions with ongoing malaria transmission. However, malaria is occasionally acquired by persons who have not traveled out of the country through exposure to infected blood products, congenital transmission, laboratory exposure, or local mosquitoborne transmission. Malaria surveillance in the United States is conducted to provide information on its occurrence (e.g., temporal, geographic, and demographic), guide prevention and treatment recommendations for travelers and patients, and facilitate transmission control measures if locally acquired cases are identified. This report summarizes confirmed malaria cases in persons with onset of illness in 2015 and summarizes trends in previous years. Malaria cases diagnosed by blood film microscopy, polymerase chain reaction, or rapid diagnostic tests are reported to local and state health departments by health care providers or laboratory staff members. Case investigations are conducted by local and state health departments, and reports are transmitted to CDC through the National Malaria Surveillance System (NMSS), the National Notifiable Diseases Surveillance System (NNDSS), or direct CDC consultations. CDC reference laboratories provide diagnostic assistance and conduct antimalarial drug resistance marker testing on blood samples submitted by health care providers or local or state health departments. This report summarizes data from the integration of all NMSS and NNDSS cases, CDC reference laboratory reports, and CDC clinical consultations. CDC received reports of 1,517 confirmed malaria cases, including one congenital case, with an onset of symptoms in 2015 among persons who received their diagnoses in the United States. Although the number of

  3. Over-diagnosis of malaria is not a lost cause

    Directory of Open Access Journals (Sweden)

    Chandramohan Daniel

    2006-12-01

    Full Text Available Abstract Background Recent studies have highlighted the over-diagnosis of malaria in clinical settings in Africa. This study assessed the impact of a training programme implemented as part of an intervention trial on diagnostic behaviour of clinicians in a rural district hospital in a low-moderate malaria transmission setting. Methods From the beginning of 2005, a randomized controlled trial (RCT of intermittent preventive treatment for malaria in infants (IPTi has been conducted at the study hospital. As part of the RCT, the study team offered laboratory quality assurance, and supervision and training of paediatric ward staff using information on malaria epidemiology in the community. Data on clinical and blood slide confirmed cases of malaria from 2001 to 2005 were extracted from the hospital records. Results The proportion of blood slides positive for malaria parasites had decreased from 21% in 2001 to 7% in 2005 (p Conclusion It may be possible to change the diagnostic behaviour of clinicians by rigorous training using local malaria epidemiology data and supportive supervision.

  4. Evidence of endothelial inflammation, T cell activation, and T cell reallocation in uncomplicated Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Elhassan, I M; Hviid, L; Satti, G

    1994-01-01

    endothelium. We measured plasma levels of soluble markers of endothelial inflammation and T cell activation in 32 patients suffering from acute, uncomplication P. falciparum malaria, as well as in 10 healthy, aparasitemic control donors. All donors were residents of a malaria-endemic area of Eastern State...... Sudan. In addition, we measured the T cell surface expression of the interleukin-2 receptor (CD25) and the lymphocyte function-associated antigen (LFA-1; CD11a/CD18). We found that the plasma levels of all inflammation and activation markers were significantly increased in the malaria patients compared...... with the control donors. In addition, we found a disease-induced depletion of T cells with high expression of the LFA-1 antigen, particularly in the CD4+ subset. The results obtained provide further support for the hypothesis of T cell reallocation to inflamed endothelium in acute P. falciparum malaria....

  5. [Reality and importance of transfusion-transmitted malaria in a stable endemic context: Cotonou case in Benin].

    Science.gov (United States)

    Anani, L Y; Bigot, A; Latoundji, S; Ahlonsou, F; de Souza, J; Akplogan, S; Lawson, J; Py, J Y; Zohoun, I

    2014-03-01

    Malaria endemic status of our countries supports avoiding malaria screening for the blood qualification. But this attitude makes young children, pregnant women and people without semi-immunity incur a high risk of malaria. The goal of the survey was to value the reality and the importance of transfusion-transmitted malaria and to assess its determining factors. The study included 141 packed-red-cells units transfused to 77 hospitalized recipients, not suffering from malaria and not having been transfused the last two weeks. Every packed-red-cells assigned to a patient was tested for malaria before use. Thick and thin blood film were performed 96hours after transfusion. A clinical follow-up was undertaken as well as in the hospital and at home after release. In all, 13.47% of the transfused packed-red-cells were positive for the thick blood film. Plasmodium research in patients was negative 96hours after transfusion, even in the 19 patients who had received parasitized blood units! The home follow-up had permitted to note that 15.78% of blood recipients had developed clinical malaria. Parasitic density ≥240 parasites/mm(3) seems to be a determining factor. Transfusion-transmitted malaria is a reality we ought to consider. Introduction of malaria screening in donated blood qualification testings simultaneously with a framing of the blood donors appear the lasting solution to hope in the future to limit the waited excessive blood evictions. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  6. Plasmodium falciparum signal peptide peptidase cleaves malaria heat shock protein 101 (HSP101). Implications for gametocytogenesis

    International Nuclear Information System (INIS)

    Baldwin, Michael; Russo, Crystal; Li, Xuerong; Chishti, Athar H.

    2014-01-01

    Highlights: • PfSPP is an ER resident protease. • PfSPP is expressed both as a monomer and dimer. • The signal peptide of HSP101 is the first known substrate of PfSPP. • Reduced PfSPP activity may significantly affect ER homeostasis. - Abstract: Previously we described the identification of a Plasmodium falciparum signal peptide peptidase (PfSPP) functioning at the blood stage of malaria infection. Our studies also demonstrated that mammalian SPP inhibitors prevent malaria parasite growth at the late-ring/early trophozoite stage of intra-erythrocytic development. Consistent with its role in development, we tested the hypothesis that PfSPP functions at the endoplasmic reticulum of P.falciparum where it cleaves membrane-bound signal peptides generated following the enzyme activity of signal peptidase. The localization of PfSPP to the endoplasmic reticulum was confirmed by immunofluorescence microscopy and immunogold electron microscopy. Biochemical analysis indicated the existence of monomer and dimer forms of PfSPP in the parasite lysate. A comprehensive bioinformatics screen identified several candidate PfSPP substrates in the parasite genome. Using an established transfection based in vivo luminescence assay, malaria heat shock protein 101 (HSP101) was identified as a substrate of PfSPP, and partial inhibition of PfSPP correlated with the emergence of gametocytes. This finding unveils the first known substrate of PfSPP, and provides new perspectives for the function of intra-membrane proteolysis at the erythrocyte stage of malaria parasite life cycle

  7. Plasmodium falciparum signal peptide peptidase cleaves malaria heat shock protein 101 (HSP101). Implications for gametocytogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, Michael; Russo, Crystal; Li, Xuerong [Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States); Chishti, Athar H., E-mail: athar.chishti@tufts.edu [Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States); Sackler School of Graduate Biomedical Sciences, Programs in Physiology, Pharmacology, and Microbiology, Tufts University School of Medicine, Boston, MA 02111 (United States)

    2014-08-08

    Highlights: • PfSPP is an ER resident protease. • PfSPP is expressed both as a monomer and dimer. • The signal peptide of HSP101 is the first known substrate of PfSPP. • Reduced PfSPP activity may significantly affect ER homeostasis. - Abstract: Previously we described the identification of a Plasmodium falciparum signal peptide peptidase (PfSPP) functioning at the blood stage of malaria infection. Our studies also demonstrated that mammalian SPP inhibitors prevent malaria parasite growth at the late-ring/early trophozoite stage of intra-erythrocytic development. Consistent with its role in development, we tested the hypothesis that PfSPP functions at the endoplasmic reticulum of P.falciparum where it cleaves membrane-bound signal peptides generated following the enzyme activity of signal peptidase. The localization of PfSPP to the endoplasmic reticulum was confirmed by immunofluorescence microscopy and immunogold electron microscopy. Biochemical analysis indicated the existence of monomer and dimer forms of PfSPP in the parasite lysate. A comprehensive bioinformatics screen identified several candidate PfSPP substrates in the parasite genome. Using an established transfection based in vivo luminescence assay, malaria heat shock protein 101 (HSP101) was identified as a substrate of PfSPP, and partial inhibition of PfSPP correlated with the emergence of gametocytes. This finding unveils the first known substrate of PfSPP, and provides new perspectives for the function of intra-membrane proteolysis at the erythrocyte stage of malaria parasite life cycle.

  8. The Babesia bovis hap2 gene is not required for blood stage replication, but expressed upon in vitro sexual stage induction.

    Directory of Open Access Journals (Sweden)

    Hala E Hussein

    2017-10-01

    Full Text Available Babesia bovis, is a tick borne apicomplexan parasite responsible for important cattle losses globally. Babesia parasites have a complex life cycle including asexual replication in the mammalian host and sexual reproduction in the tick vector. Novel control strategies aimed at limiting transmission of the parasite are needed, but transmission blocking vaccine candidates remain undefined. Expression of HAP2 has been recognized as critical for the fertilization of parasites in the Babesia-related Plasmodium, and is a leading candidate for a transmission blocking vaccine against malaria. Hereby we identified the B. bovis hap2 gene and demonstrated that it is widely conserved and differentially transcribed during development within the tick midgut, but not by blood stage parasites. The hap2 gene was disrupted by transfecting B. bovis with a plasmid containing the flanking regions of the hap2 gene and the GPF-BSD gene under the control of the ef-1α-B promoter. Comparison of in vitro growth between a hap2-KO B. bovis clonal line and its parental wild type strain showed that HAP2 is not required for the development of B. bovis in erythrocytes. However, xanthurenic acid-in vitro induction experiments of sexual stages of parasites recovered after tick transmission resulted in surface expression of HAP2 exclusively in sexual stage induced parasites. In addition, hap2-KO parasites were not able to develop such sexual stages as defined both by morphology and by expression of the B. bovis sexual marker genes 6-Cys A and B. Together, the data strongly suggests that tick midgut stage differential expression of hap2 is associated with the development of B. bovis sexual forms. Overall these studies are consistent with a role of HAP2 in tick stages of the parasite and suggest that HAP2 is a potential candidate for a transmission blocking vaccine against bovine babesiosis.

  9. Temporal stability of naturally acquired immunity to Merozoite Surface Protein-1 in Kenyan Adults

    Directory of Open Access Journals (Sweden)

    Crabb Brendan S

    2009-07-01

    Full Text Available Abstract Background Naturally acquired immunity to blood-stage Plasmodium falciparum infection develops with age and after repeated infections. In order to identify immune surrogates that can inform vaccine trials conducted in malaria endemic populations and to better understand the basis of naturally acquired immunity it is important to appreciate the temporal stability of cellular and humoral immune responses to malaria antigens. Methods Blood samples from 16 adults living in a malaria holoendemic region of western Kenya were obtained at six time points over the course of 9 months. T cell immunity to the 42 kDa C-terminal fragment of Merozoite Surface Protein-1 (MSP-142 was determined by IFN-γ ELISPOT. Antibodies to the 42 kDa and 19 kDa C-terminal fragments of MSP-1 were determined by serology and by functional assays that measure MSP-119 invasion inhibition antibodies (IIA to the E-TSR (3D7 allele and growth inhibitory activity (GIA. The haplotype of MSP-119 alleles circulating in the population was determined by PCR. The kappa test of agreement was used to determine stability of immunity over the specified time intervals of 3 weeks, 6 weeks, 6 months, and 9 months. Results MSP-1 IgG antibodies determined by serology were most consistent over time, followed by MSP-1 specific T cell IFN-γ responses and GIA. MSP-119 IIA showed the least stability over time. However, the level of MSP-119 specific IIA correlated with relatively higher rainfall and higher prevalence of P. falciparum infection with the MSP-119 E-TSR haplotype. Conclusion Variation in the stability of cellular and humoral immune responses to P. falciparum blood stage antigens needs to be considered when interpreting the significance of these measurements as immune endpoints in residents of malaria endemic regions.

  10. Bat Caliciviruses and Human Noroviruses Are Antigenically Similar and Have Overlapping Histo-Blood Group Antigen Binding Profiles.

    Science.gov (United States)

    Kocher, Jacob F; Lindesmith, Lisa C; Debbink, Kari; Beall, Anne; Mallory, Michael L; Yount, Boyd L; Graham, Rachel L; Huynh, Jeremy; Gates, J Edward; Donaldson, Eric F; Baric, Ralph S

    2018-05-22

    Emerging zoonotic viral diseases remain a challenge to global public health. Recent surveillance studies have implicated bats as potential reservoirs for a number of viral pathogens, including coronaviruses and Ebola viruses. Caliciviridae represent a major viral family contributing to emerging diseases in both human and animal populations and have been recently identified in bats. In this study, we blended metagenomics, phylogenetics, homology modeling, and in vitro assays to characterize two novel bat calicivirus (BtCalV) capsid sequences, corresponding to strain BtCalV/A10/USA/2009, identified in Perimyotis subflavus near Little Orleans, MD, and bat norovirus. We observed that bat norovirus formed virus-like particles and had epitopes and receptor-binding patterns similar to those of human noroviruses. To determine whether these observations stretch across multiple bat caliciviruses, we characterized a novel bat calicivirus, BtCalV/A10/USA/2009. Phylogenetic analysis revealed that BtCalV/A10/USA/2009 likely represents a novel Caliciviridae genus and is most closely related to "recoviruses." Homology modeling revealed that the capsid sequences of BtCalV/A10/USA/2009 and bat norovirus resembled human norovirus capsid sequences and retained host ligand binding within the receptor-binding domains similar to that seen with human noroviruses. Both caliciviruses bound histo-blood group antigens in patterns that overlapped those seen with human and animal noroviruses. Taken together, our results indicate the potential for bat caliciviruses to bind histo-blood group antigens and overcome a significant barrier to cross-species transmission. Additionally, we have shown that bat norovirus maintains antigenic epitopes similar to those seen with human noroviruses, providing further evidence of evolutionary descent. Our results reiterate the importance of surveillance of wild-animal populations, especially of bats, for novel viral pathogens. IMPORTANCE Caliciviruses are

  11. Developing a spatial-statistical model and map of historical malaria prevalence in Botswana using a staged variable selection procedure

    Directory of Open Access Journals (Sweden)

    Mabaso Musawenkosi LH

    2007-09-01

    produced a highly plausible and parsimonious model of historical malaria risk for Botswana from point-referenced data from a 1961/2 prevalence survey of malaria infection in 1–14 year old children. After starting with a list of 50 potential variables we ended with three highly plausible predictors, by applying a systematic and repeatable staged variable selection procedure that included a spatial analysis, which has application for other environmentally determined infectious diseases. All this was accomplished using general-purpose statistical software.

  12. The CD3-zeta chimeric antigen receptor overcomes TCR Hypo-responsiveness of human terminal late-stage T cells.

    Directory of Open Access Journals (Sweden)

    Gunter Rappl

    Full Text Available Adoptive therapy of malignant diseases with tumor-specific cytotoxic T cells showed remarkable efficacy in recent trials. Repetitive T cell receptor (TCR engagement of target antigen, however, inevitably ends up in hypo-responsive cells with terminally differentiated KLRG-1(+ CD57(+ CD7(- phenotype limiting their therapeutic efficacy. We here revealed that hypo-responsiveness of CMV-specific late-stage CD8(+ T cells is due to reduced TCR synapse formation compared to younger cells. Membrane anchoring of TCR components contributes to T cell hypo-responsiveness since dislocation of galectin-3 from the synapse by swainsonine restored both TCR synapse formation and T cell response. Transgenic expression of a CD3-zeta signaling chimeric antigen receptor (CAR recovered hypo-responsive T cells to full effector functions indicating that the defect is restricted to TCR membrane components while synapse formation of the transgenic CAR was not blocked. CAR engineered late-stage T cells released cytokines and mediated redirected cytotoxicity as efficiently as younger effector T cells. Our data provide a rationale for TCR independent, CAR mediated activation in the adoptive cell therapy to avoid hypo-responsiveness of late-stage T cells upon repetitive antigen encounter.

  13. Paraneoplastic antigen Ma2 autoantibodies as specific blood biomarkers for detection of early recurrence of small intestine neuroendocrine tumors.

    Directory of Open Access Journals (Sweden)

    Tao Cui

    Full Text Available BACKGROUND: Small intestine neuroendocrine tumors (SI-NETs belong to a rare group of cancers. Most patients have developed metastatic disease at the time of diagnosis, for which there is currently no cure. The delay in diagnosis is a major issue in the clinical management of the patients and new markers are urgently needed. We have previously identified paraneoplastic antigen Ma2 (PNMA2 as a novel SI-NET tissue biomarker. Therefore, we evaluated whether Ma2 autoantibodies detection in the blood stream is useful for the clinical diagnosis and recurrence of SI-NETs. METHODOLOGY/PRINCIPAL FINDINGS: A novel indirect ELISA was set up to detect Ma2 autoantibodies in blood samples of patients with SI-NET at different stages of disease. The analysis was extended to include typical and atypical lung carcinoids (TLC and ALC, to evaluate whether Ma2 autoantibodies in the blood stream become a general biomarker for NETs. In total, 124 blood samples of SI-NET patients at different stages of disease were included in the study. The novel Ma2 autoantibody ELISA showed high sensitivity, specificity and accuracy with ROC curve analysis underlying an area between 0.734 and 0.816. Ma2 autoantibodies in the blood from SI-NET patients were verified by western blot and sequential immunoprecipitation. Serum antibodies of patients stain Ma2 in the tumor tissue and neurons. We observed that SI-NET patients expressing Ma2 autoantibody levels below the cutoff had a longer progression and recurrence-free survival compared to those with higher titer. We also detected higher levels of Ma2 autoantibodies in blood samples from TLC and ALC patients than from healthy controls, as previously shown in small cell lung carcinoma samples. CONCLUSION: Here we show that high Ma2 autoantibody titer in the blood of SI-NET patients is a sensitive and specific biomarker, superior to chromogranin A (CgA for the risk of recurrence after radical operation of these tumors.

  14. Paraneoplastic antigen Ma2 autoantibodies as specific blood biomarkers for detection of early recurrence of small intestine neuroendocrine tumors.

    Science.gov (United States)

    Cui, Tao; Hurtig, Monica; Elgue, Graciela; Li, Su-Chen; Veronesi, Giulia; Essaghir, Ahmed; Demoulin, Jean-Baptiste; Pelosi, Giuseppe; Alimohammadi, Mohammad; Öberg, Kjell; Giandomenico, Valeria

    2010-12-30

    Small intestine neuroendocrine tumors (SI-NETs) belong to a rare group of cancers. Most patients have developed metastatic disease at the time of diagnosis, for which there is currently no cure. The delay in diagnosis is a major issue in the clinical management of the patients and new markers are urgently needed. We have previously identified paraneoplastic antigen Ma2 (PNMA2) as a novel SI-NET tissue biomarker. Therefore, we evaluated whether Ma2 autoantibodies detection in the blood stream is useful for the clinical diagnosis and recurrence of SI-NETs. A novel indirect ELISA was set up to detect Ma2 autoantibodies in blood samples of patients with SI-NET at different stages of disease. The analysis was extended to include typical and atypical lung carcinoids (TLC and ALC), to evaluate whether Ma2 autoantibodies in the blood stream become a general biomarker for NETs. In total, 124 blood samples of SI-NET patients at different stages of disease were included in the study. The novel Ma2 autoantibody ELISA showed high sensitivity, specificity and accuracy with ROC curve analysis underlying an area between 0.734 and 0.816. Ma2 autoantibodies in the blood from SI-NET patients were verified by western blot and sequential immunoprecipitation. Serum antibodies of patients stain Ma2 in the tumor tissue and neurons. We observed that SI-NET patients expressing Ma2 autoantibody levels below the cutoff had a longer progression and recurrence-free survival compared to those with higher titer. We also detected higher levels of Ma2 autoantibodies in blood samples from TLC and ALC patients than from healthy controls, as previously shown in small cell lung carcinoma samples. Here we show that high Ma2 autoantibody titer in the blood of SI-NET patients is a sensitive and specific biomarker, superior to chromogranin A (CgA) for the risk of recurrence after radical operation of these tumors.

  15. Serological markers suggest heterogeneity of effectiveness of malaria control interventions on Bioko Island, equatorial Guinea.

    Directory of Open Access Journals (Sweden)

    Jackie Cook

    Full Text Available In order to control and eliminate malaria, areas of on-going transmission need to be identified and targeted for malaria control interventions. Immediately following intense interventions, malaria transmission can become more heterogeneous if interventions are more successful in some areas than others. Bioko Island, Equatorial Guinea, has been subject to comprehensive malaria control interventions since 2004. This has resulted in substantial reductions in the parasite burden, although this drop has not been uniform across the island.In 2008, filter paper blood samples were collected from 7387 people in a cross-sectional study incorporating 18 sentinel sites across Bioko, Equatorial Guinea. Antibodies were measured to P. falciparum Apical Membrane Antigen-1 (AMA-1 by Enzyme Linked Immunosorbent Assay (ELISA. Age-specific seropositivity rates were used to estimate seroconversion rates (SCR. Analysis indicated there had been at least a 60% decline in SCR in four out of five regions on the island. Changes in SCR showed a high degree of congruence with changes in parasite rate (PR and with regional reductions in all cause child mortality. The mean age adjusted concentration of anti-AMA-1 antibodies was mapped to identify areas where individual antibody responses were higher than expected. This approach confirmed the North West of the island as a major focus of continuing infection and an area where control interventions need to be concentrated or re-evaluated.Both SCR and PR revealed heterogeneity in malaria transmission and demonstrated the variable effectiveness of malaria control measures. This work confirms the utility of serological analysis as an adjunct measure for monitoring transmission. Age-specific seroprevalence based evidence of changes in transmission over time will be of particular value when no baseline data are available. Importantly, SCR data provide additional evidence to link malaria control activities to contemporaneous

  16. Use of Capillary Blood Samples Leads to Higher Parasitemia Estimates and Higher Diagnostic Sensitivity of Microscopic and Molecular Diagnostics of Malaria than Venous Blood Samples.

    Science.gov (United States)

    Mischlinger, Johannes; Pitzinger, Paul; Veletzky, Luzia; Groger, Mirjam; Zoleko-Manego, Rella; Adegnika, Ayola A; Agnandji, Selidji T; Lell, Bertrand; Kremsner, Peter G; Tannich, Egbert; Mombo-Ngoma, Ghyslain; Mordmüller, Benjamin; Ramharter, Michael

    2018-05-25

    Diagnosis of malaria is usually based on samples of peripheral blood. However, it is unclear whether capillary (CAP) or venous (VEN) blood samples provide better diagnostic performance. Quantitative differences of parasitemia between CAP and VEN blood and diagnostic performance characteristics were investigated. Patients were recruited between September 2015 and February 2016 in Gabon. Light microscopy and qPCR quantified parasitemia of paired CAP and VEN samples, whose preparation followed the exact same methodology. CAP and VEN performance characteristics using microscopy were evaluated against a qPCR gold-standard. Microscopy revealed a median (IQR) parasites/L of 495 (853,243) in CAP and 429 (524,074) in VEN samples manifesting in a +16.6% (p=0.04) higher CAPparasitemia compared with VENparasitemia. Concordantly, qPCR demonstrated that -0.278 (p=0.006) cycles were required for signal detection in CAP samples. CAPsensitivity of microscopy relative to the gold-standard was 81.5% (77.485.6%) versus VENsensitivity of 73.4% (68.878.1%), while CAPspecificity and VENspecificity were 91%. CAPsensitivity and VENsensitivity dropped to 63.3% and 45.9%, respectively for a sub-population of low-level parasitemias while specificities were 92%. CAP sampling leads to higher parasitemias compared to VEN sampling and improves diagnostic sensitivity. These findings may have important implications for routine diagnostics, research and elimination campaigns of malaria.

  17. The GMZ2 malaria vaccine: from concept to efficacy in humans

    DEFF Research Database (Denmark)

    Theisen, Michael; Adu, Bright; Mordmueller, Benjamin

    2017-01-01

    Introduction: GMZ2 is a recombinant protein consisting of conserved domains of GLURP and MSP3, two asexual blood-stage antigens of Plasmodium falciparum, and is designed with the aim of mimicking naturally acquired anti-malarial immunity. The rationale for combining these two antigens is based...... to review the progress and future prospects for clinical development of GMZ2 sub-unit vaccine. We will focus on discovery, naturally acquired immunity, functional activity of specific antibodies, sequence diversity, production, pre-clinical and clinical studies. Expert commentary: GMZ2 is well tolerated...

  18. Malaria Surveillance - United States, 2014.

    Science.gov (United States)

    Mace, Kimberly E; Arguin, Paul M

    2017-05-26

    Malaria in humans is caused by intraerythrocytic protozoa of the genus Plasmodium. These parasites are transmitted by the bite of an infective female Anopheles mosquito. The majority of malaria infections in the United States occur among persons who have traveled to regions with ongoing malaria transmission. However, malaria is occasionally acquired by persons who have not traveled out of the country through exposure to infected blood products, congenital transmission, laboratory exposure, or local mosquitoborne transmission. Malaria surveillance in the United States is conducted to identify episodes of local transmission and to guide prevention recommendations for travelers. This report summarizes cases in persons with onset of illness in 2014 and trends during previous years. Malaria cases diagnosed by blood film, polymerase chain reaction, or rapid diagnostic tests are reported to local and state health departments by health care providers or laboratory staff. Case investigations are conducted by local and state health departments, and reports are transmitted to CDC through the National Malaria Surveillance System, National Notifiable Diseases Surveillance System, or direct CDC consultations. CDC conducts antimalarial drug resistance marker testing on blood samples submitted by health care providers or local or state health departments. Data from these reporting systems serve as the basis for this report. CDC received reports of 1,724 confirmed malaria cases, including one congenital case and two cryptic cases, with onset of symptoms in 2014 among persons in the United States. The number of confirmed cases in 2014 is consistent with the number of confirmed cases reported in 2013 (n = 1,741; this number has been updated from a previous publication to account for delayed reporting for persons with symptom onset occurring in late 2013). Plasmodium falciparum, P. vivax, P. ovale, and P. malariae were identified in 66.1%, 13.3%, 5.2%, and 2.7% of cases, respectively

  19. Effect of malaria transmission reduction by insecticide-treated bed nets (ITNs) on the genetic diversity of Plasmodium falciparum merozoite surface protein (MSP-1) and circumsporozoite (CSP) in western Kenya.

    Science.gov (United States)

    Kariuki, Simon K; Njunge, James; Muia, Ann; Muluvi, Geofrey; Gatei, Wangeci; Ter Kuile, Feiko; Terlouw, Dianne J; Hawley, William A; Phillips-Howard, Penelope A; Nahlen, Bernard L; Lindblade, Kim A; Hamel, Mary J; Slutsker, Laurence; Shi, Ya Ping

    2013-08-27

    Although several studies have investigated the impact of reduced malaria transmission due to insecticide-treated bed nets (ITNs) on the patterns of morbidity and mortality, there is limited information on their effect on parasite diversity. Sequencing was used to investigate the effect of ITNs on polymorphisms in two genes encoding leading Plasmodium falciparum vaccine candidate antigens, the 19 kilodalton blood stage merozoite surface protein-1 (MSP-1(19kDa)) and the Th2R and Th3R T-cell epitopes of the pre-erythrocytic stage circumsporozoite protein (CSP) in a large community-based ITN trial site in western Kenya. The number and frequency of haplotypes as well as nucleotide and haplotype diversity were compared among parasites obtained from children diversity of > 0.7. No MSP-1(19kDa) 3D7 sequence-types were detected in 1996 and the frequency was less than 4% in 2001. The CSP Th2R and Th3R domains were highly polymorphic with a total of 26 and 14 haplotypes, respectively detected in 1996 and 34 and 13 haplotypes in 2001, with an overall haplotype diversity of > 0.9 and 0.75 respectively. The frequency of the most predominant Th2R and Th3R haplotypes was 14 and 36%, respectively. The frequency of Th2R and Th3R haplotypes corresponding to the 3D7 parasite strain was less than 4% at both time points. There was no significant difference in nucleotide and haplotype diversity in parasite isolates collected at both time points. High diversity in these two genes has been maintained overtime despite marked reductions in malaria transmission due to ITNs use. The frequency of 3D7 sequence-types was very low in this area. These findings provide information that could be useful in the design of future malaria vaccines for deployment in endemic areas with high ITN coverage and in interpretation of efficacy data for malaria vaccines based on 3D7 parasite strains.

  20. A new morphologically distinct avian malaria parasite that fails detection by established polymerase chain reaction-based protocols for amplification of the cytochrome B gene.

    Science.gov (United States)

    Zehtindjiev, Pavel; Križanauskienė, Asta; Bensch, Staffan; Palinauskas, Vaidas; Asghar, Muhammad; Dimitrov, Dimitar; Scebba, Sergio; Valkiūnas, Gediminas

    2012-06-01

    Plasmodium polymorphum n. sp. (Haemosporida, Plasmodiidae) was found in the skylark, Alauda arvensis (Passeriformes: Alaudidae), during autumnal migration in southern Italy. This organism is illustrated and described based on the morphology of its blood stages. The most distinctive feature of this malaria parasite is the clear preference of its blood stages (trophozoites, meronts, and gametocytes) for immature red blood cells, including erythroblasts. Based on preference of erythrocytic meronts for immature red blood cells, P. polymorphum is most similar to species of the subgenus Huffia . This parasite can be readily distinguished from all other bird malaria parasites, including Plasmodium ( Huffia ) spp., due to preferential development and maturation of its gametocytes in immature red blood cells, a unique character for avian Plasmodium spp. In addition, the margins of nuclei in blood stages of P. polymorphum are markedly smooth and distinct; this is also a distinct diagnostic feature of this parasite. Plasmodium polymorphum has been recorded only in the skylark; it is probably a rare parasite, whose host range and geographical distribution remain unclear. Microscopic examination detected a light infection of Plasmodium relictum (lineage GRW11, parasitemia of 50-fold higher than that of P. relictum and several different primers were tested, we suggest that the failure to amplify P. polymorphum is a more complex problem than why co-infections are commonly overlooked in PCR-based studies. We suggest possible explanations of these results and call for additional research on evolution of mitochondrial genome of hemosporidian parasites.

  1. [Role of primaquine in malaria control and elimination in French-speaking Africa].

    Science.gov (United States)

    Briolant, S; Pradines, B; Basco, L K

    2017-08-01

    Primaquine, an 8-aminoquinoline, is a relatively unknown and underutilized drug in French-speaking African countries. It acts against the liver stage parasites of all human malaria species, asexual blood stages of Plasmodium vivax and, to a lesser degree, Plasmodium falciparum; P. falciparum mature gametocytes, and P. vivax and Plasmodium ovale hypnozoites. Gastrointestinal disturbances are its most common side effects. The clinical utility of primaquine is limited due to its hematological side effects in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency and other contraindications (pregnant woman, breastfeeding woman, infants less than 6 months old). In the light of the recent recommendations of the World Health Organization (WHO), we propose to examine how primaquine can be used in French-speaking Africa to improve malaria control and move towards malaria elimination. Two indications supported by the WHO are of relevance in Africa. First, artemisinin-based combination therapies and primaquine given as a single low dose (0.25 mg base/kg) are effective to kill asexual and sexual parasites of P. falciparum, are well-tolerated, and have very little risk even in mild to moderate G6PD-deficient patients. This strategy may be helpful to contain transmission in an area in Africa where P. falciparum malaria incidence has decreased considerably. There is an ethical concern in administering primaquine as a gametocytocide as it does not confer any direct benefit to the treated patient. However, the single low-dose primaquine is most likely associated with very low risk for adverse hematological effects, and WHO recommends its use even without prior G6PD testing. In our opinion, clinical studies including G6PD test should be conducted to assess the safety of low-dose primaquine in African patients. Second, primaquine is effective and necessary for radical treatment of P. vivax and P. ovale, but the standard 14-day treatment (0.25-0.5 mg base/kg/day) is not

  2. A switch in infected erythrocyte deformability at the maturation and blood circulation of Plasmodium falciparum transmission stages.

    NARCIS (Netherlands)

    Tiburcio, M.; Niang, M.; Deplaine, G.; Perrot, S.; Bischoff, E.; Ndour, P.A.; Silvestrini, F.; Khattab, A.; Milon, G.; David, P.H.; Hardeman, M.; Vernick, K.D.; Sauerwein, R.W.; Preiser, P.R.; Mercereau-Puijalon, O.; Buffet, P.; Alano, P.; Lavazec, C.

    2012-01-01

    Achievement of malaria elimination requires development of novel strategies interfering with parasite transmission, including targeting the parasite sexual stages (gametocytes). The formation of Plasmodium falciparum gametocytes in the human host takes several days during which immature

  3. A switch in infected erythrocyte deformability at the maturation and blood circulation of Plasmodium falciparum transmission stages

    NARCIS (Netherlands)

    Tibúrcio, Marta; Niang, Makhtar; Deplaine, Guillaume; Perrot, Sylvie; Bischoff, Emmanuel; Ndour, Papa Alioune; Silvestrini, Francesco; Khattab, Ayman; Milon, Geneviève; David, Peter H.; Hardeman, Max; Vernick, Kenneth D.; Sauerwein, Robert W.; Preiser, Peter R.; Mercereau-Puijalon, Odile; Buffet, Pierre; Alano, Pietro; Lavazec, Catherine

    2012-01-01

    Achievement of malaria elimination requires development of novel strategies interfering with parasite transmission, including targeting the parasite sexual stages (gametocytes). The formation of Plasmodium falciparum gametocytes in the human host takes several days during which immature

  4. Osteoclasts Are Required for Hematopoietic Stem and Progenitor Cell Mobilization but Not for Stress Erythropoiesis in Plasmodium chabaudi adami Murine Malaria

    Directory of Open Access Journals (Sweden)

    Hugo Roméro

    2016-01-01

    Full Text Available The anemia and inflammation concurrent with blood stage malaria trigger stress haematopoiesis and erythropoiesis. The activity of osteoclasts seems required for the mobilization of hematopoietic stem and progenitor cells (HSPC from the bone marrow to the periphery. Knowing that BALB/c mice with acute Plasmodium chabaudi adami malaria have profound alterations in bone remodelling cells, we evaluated the extent to which osteoclasts influence their hematopoietic response to infection. For this, mice were treated with osteoclast inhibiting hormone calcitonin prior to parasite inoculation, and infection as well as hematological parameters was studied. In agreement with osteoclast-dependent HSPC mobilization, administration of calcitonin led to milder splenomegaly, reduced numbers of HSPC in the spleen, and their retention in the bone marrow. Although C-terminal telopeptide (CTX levels, indicative of bone resorption, were lower in calcitonin-treated infected mice, they remained comparable in naive and control infected mice. Calcitonin-treated infected mice conveniently responded to anemia but generated less numbers of splenic macrophages and suffered from exacerbated infection; interestingly, calcitonin also decreased the number of macrophages generated in vitro. Globally, our results indicate that although osteoclast-dependent HSC mobilization from bone marrow to spleen is triggered in murine blood stage malaria, this activity is not essential for stress erythropoiesis.

  5. A VAR2CSA:CSP conjugate capable of inducing dual specificity ...

    African Journals Online (AJOL)

    Background: Vaccine antigens targeting specific P. falciparum parasite stages are under pre-clinical ... against individual antigen components in a dual stage anti-malaria vaccine. ..... (D8428, Sigma Aldrich) was prepared in Dulbecco's PBS.

  6. Hepatitis C virus infection may lead to slower emergence of P. falciparum in blood.

    Directory of Open Access Journals (Sweden)

    Odile Ouwe-Missi-Oukem-Boyer

    Full Text Available BACKGROUND: Areas endemic for Plasmodium falciparum, hepatitis B virus (HBV and hepatitis C virus (HCV overlap in many parts of sub-Saharan Africa. HBV and HCV infections develop in the liver, where takes place the first development stage of P. falciparum before its further spread in blood. The complex mechanisms involved in the development of hepatitis may potentially influence the development of the liver stage of malaria parasites. Understanding the molecular mechanisms of these interactions could provide new pathophysiological insights for treatment strategies in Malaria. METHODOLOGY: We studied a cohort of 319 individuals living in a village where the three infections are prevalent. The patients were initially given a curative antimalarial treatment and were then monitored for the emergence of asexual P. falciparum forms in blood, fortnightly for one year, by microscopy and polymerase chain reaction. PRINCIPAL FINDINGS: At inclusion, 65 (20.4% subjects had detectable malaria parasites in blood, 36 (11.3% were HBV chronic carriers, and 61 (18.9% were HCV chronic carriers. During follow-up, asexual P. falciparum forms were detected in the blood of 203 patients. The median time to P. falciparum emergence in blood was respectively 140 and 120 days in HBV- and HBV+ individuals, and 135 and 224 days in HCV- and HCV+ individuals. HCV carriage was associated with delayed emergence of asexual P. falciparum forms in blood relative to patients without HCV infection. CONCLUSIONS: This pilot study represents first tentative evidence of a potential epidemiological interaction between HBV, HCV and P. falciparum infections. Age is an important confounding factor in this setting however multivariate analysis points to an interaction between P. falciparum and HCV at the hepatic level with a slower emergence of P. falciparum in HCV chronic carriers. More in depth analysis are necessary to unravel the basis of hepatic interactions between these two pathogens

  7. Expression, Purification and Characterization of GMZ2'.10C, a Complex Disulphide-Bonded Fusion Protein Vaccine Candidate against the Asexual and Sexual Life-Stages of the Malaria-Causing Plasmodium falciparum Parasite

    NARCIS (Netherlands)

    Mistarz, U.H.; Singh, S.K; Nguyen, T.; Roeffen, W.; Lissau, C.; Madsen, S.M.; Vrang, A.; Tiendrebeogo, R.W.; Kana, I.H.; Sauerwein, R.W.; Theisen, M.; Rand, K.D.

    2017-01-01

    PURPOSE: Production and characterization of a chimeric fusion protein (GMZ2'.10C) which combines epitopes of key malaria parasite antigens: glutamate-rich protein (GLURP), merozoite surface protein 3 (MSP3), and the highly disulphide bonded Pfs48/45 (10C). GMZ2'.10C is a potential candidate for a

  8. Amplification of the spleen macrophage population in malaria: possible role of a factor chemotactic for blood mononuclear cells

    International Nuclear Information System (INIS)

    Wyler, D.J.; Gallin, J.I.

    1976-01-01

    The mechanism of amplification of the splenic macrophages' population was investigated using mice infected with malaria as a model of an obligate intravascular infection. It was observed that these macrophages derived from blood monocytes rather than by local proliferation in the spleen. A factor, chemotactic for blood mononuclear cells, was present in spleen cells shortly after infection and preceded detectable increases in spleen macrophage number by 48 hours. This factor, in concert with spleen derived macrophage migration inhibition factor, may be important in the amplification of splenic macrophage population in intravascular infections

  9. [Erythrocyte blood groups and geographic pathology (author's transl)].

    Science.gov (United States)

    Salmon, C

    1979-01-01

    Blood groups are an obstacle to reproduction, transfusion and transplantation. There are immunological abortions due to the antibodies of "p" phenotype women; and Rh haemolytic disease of the new-born is in direct proportion to the frequency of the "r" gene in a given population; the problem of transfusional allo-immunisation is completely parallel. Certain membrane anomalies (due to exceptional erythrocyte blood groups--Rh null, Rh mod or McLeod, for example), can provoke hemolytic anaemias, but in these cases the subjects are scattered throughout the world. An important problem is that of the relationships between Duffy antigens and malaria: from what is known about plasmodium Knowlesi, Fya and Fyb antigens are related to the erythrocyte receptors for this plasmodium: the Fy(a-b-) red cells, even of exceptional non-blacks, are not infested with parasites. Two kinds of receptors are postulated: one for adherence and another for penetration. In contrast, plasmodium falciparum does not recognise the same receptors as plasmodium Knowlesi. Experiments carried out on man have led to the conclusion that plasmodium vivax also used Fya and Fyb antigens to penetrate the red cell. These recent facts give rise to the problem of a possible natural selection by plasmodium vivax, which would eradicate polymorphism, whilst until now, the facts concerning plasmodium falciparum have explained the balance of polymorphism.

  10. Analysis of GAGE, NY-ESO-1 and SP17 cancer/testis antigen expression in early stage non-small cell lung carcinoma

    International Nuclear Information System (INIS)

    Gjerstorff, Morten F; Pøhl, Mette; Olsen, Karen E; Ditzel, Henrik J

    2013-01-01

    The unique expression pattern and immunogenic properties of cancer/testis antigens make them ideal targets for immunotherapy of cancer. The MAGE-A3 cancer/testis antigen is frequently expressed in non-small cell lung cancer (NSCLC) and vaccination with MAGE-A3 in patients with MAGE-A3-positive NSCLC has shown promising results. However, little is known about the expression of other cancer/testis antigens in NSCLC. In the present study the expression of cancer/testis antigens GAGE, NY-ESO-1 and SP17 was investigated in patients with completely resected, early stage, primary NSCLC. Tumor biopsies from normal lung tissue and from a large cohort (n = 169) of NSCLC patients were examined for GAGE, NY-ESO-1 and SP17 protein expression by immunohistochemical analysis. The expression of these antigens was further matched to clinical and pathological features using univariate cox regression analysis. GAGE and NY-ESO-1 cancer/testis antigens were not expressed in normal lung tissue, while SP17 was expressed in ciliated lung epithelia. The frequency of GAGE, NY-ESO-1 and SP17 expression in NSCLC tumors were 26.0% (44/169), 11.8% (20/169) and 4.7% (8/169), respectively, and 33.1% (56/169) of the tumors expressed at least one of these antigens. In general, the expression of GAGE, NY-ESO-1 and SP17 was not significantly associated with a specific histotype (adenocarcinoma vs. squamous cell carcinoma), but high-level GAGE expression (>50%) was more frequent in squamous cell carcinoma (p = 0.02). Furthermore, the frequency of GAGE expression was demonstrated to be significantly higher in stage II-IIIa than stage I NSCLC (17.0% vs. 35.8%; p = 0.02). Analysis of the relation between tumor expression of GAGE and NY-ESO-1 and survival endpoints revealed no significant associations. Our study demonstrates that GAGE, NY-ESO-1 and SP17 cancer/testis antigens are candidate targets for immunotherapy of NSCLC and further suggest that multi-antigen vaccines may be beneficial

  11. The prevalence of malarial parasitaemia among blood donors in ...

    African Journals Online (AJOL)

    BACKGROUND: Blood serves as a vehicle for transmission of blood-borne pathogens and transfusion-associated malaria is a major concern in malaria endemic countries. The study was conducted to determine the prevalence of malaria parasite among blood donors in Zaria, Nigeria. METHODS: A total of 160 venous ...

  12. Self-diagnosis of malaria by travelers and expatriates: assessment of malaria rapid diagnostic tests available on the internet.

    Science.gov (United States)

    Maltha, Jessica; Gillet, Philippe; Heutmekers, Marloes; Bottieau, Emmanuel; Van Gompel, Alfons; Jacobs, Jan

    2013-01-01

    In the past malaria rapid diagnostic tests (RDTs) for self-diagnosis by travelers were considered suboptimal due to poor performance. Nowadays RDTs for self-diagnosis are marketed and available through the internet. The present study assessed RDT products marketed for self-diagnosis for diagnostic accuracy and quality of labeling, content and instructions for use (IFU). Diagnostic accuracy of eight RDT products was assessed with a panel of stored whole blood samples comprising the four Plasmodium species (n = 90) as well as Plasmodium negative samples (n = 10). IFUs were assessed for quality of description of procedure and interpretation and for lay-out and readability level. Errors in packaging and content were recorded. Two products gave false-positive test lines in 70% and 80% of Plasmodium negative samples, precluding their use. Of the remaining products, 4/6 had good to excellent sensitivity for the diagnosis of Plasmodium falciparum (98.2%-100.0%) and Plasmodium vivax (93.3%-100.0%). Sensitivity for Plasmodium ovale and Plasmodium malariae diagnosis was poor (6.7%-80.0%). All but one product yielded false-positive test lines after reading beyond the recommended reading time. Problems with labeling (not specifying target antigens (n = 3), and content (desiccant with no humidity indicator (n = 6)) were observed. IFUs had major shortcomings in description of test procedure and interpretation, poor readability and lay-out and user-unfriendly typography. Strategic issues (e.g. the need for repeat testing and reasons for false-negative tests) were not addressed in any of the IFUs. Diagnostic accuracy of RDTs for self-diagnosis was variable, with only 4/8 RDT products being reliable for the diagnosis of P. falciparum and P. vivax, and none for P. ovale and P. malariae. RDTs for self-diagnosis need improvements in IFUs (content and user-friendliness), labeling and content before they can be considered for self-diagnosis by the traveler.

  13. Blood group antigen studies using CdTe quantum dots and flow cytometry

    Directory of Open Access Journals (Sweden)

    Cabral Filho PE

    2015-07-01

    Full Text Available Paulo E Cabral Filho,1 Maria IA Pereira,1 Heloise P Fernandes,2 Andre A de Thomaz,3 Carlos L Cesar,3 Beate S Santos,4 Maria L Barjas-Castro,2 Adriana Fontes1 1Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, 2Centro de Hematologia e Hemoterapia, Universidade Estadual de Campinas, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, 3Departamento de Eletrônica Quântica, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, São Paulo, 4Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil Abstract: New methods of analysis involving semiconductor nanocrystals (quantum dots [QDs] as fluorescent probes have been highlighted in life science. QDs present some advantages when compared to organic dyes, such as size-tunable emission spectra, broad absorption bands, and principally exceptional resistance to photobleaching. Methods applying QDs can be simple, not laborious, and can present high sensibility, allowing biomolecule identification and quantification with high specificity. In this context, the aim of this work was to apply dual-color CdTe QDs to quantify red blood cell (RBC antigen expression on cell surface by flow cytometric analysis. QDs were conjugated to anti-A or anti-B monoclonal antibodies, as well as to the anti-H (Ulex europaeus I lectin, to investigate RBCs of A1, B, A1B, O, A2, and Aweak donors. Bioconjugates were capable of distinguishing the different expressions of RBC antigens, both by labeling efficiency and by flow cytometry histogram profile. Furthermore, results showed that RBCs from Aweak donors present fewer amounts of A antigens and higher amounts of H, when compared to A1 RBCs. In the A group, the amount of A antigens decreased as A1 > A3 > AX = Ael, while H antigens were AX = Ael > A1. Bioconjugates presented stability and remained active for at least 6 months. In conclusion

  14. Dual stage synthesis and crucial role of cytoadherence-linked asexual gene 9 in the surface expression of malaria parasite var proteins

    DEFF Research Database (Denmark)

    Goel, Suchi; Valiyaveettil, Manojkumar; Achur, Rajeshwara N

    2010-01-01

    adherence. However, how CLAG9 influences this process remains unknown. In this study, we show that CLAG9 interacts with VAR2CSA, a PfEMP1 that mediates IRBC adherence to chondroitin 4-sulfate in the placenta. Importantly, our results show that the adherent parasites synthesize CLAG9 at two stages--the early......Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family members mediate the adherence of parasite-infected red blood cells (IRBCs) to various host receptors. A previous study has shown that the parasite protein, cytoadherence-linked asexual gene 9 (CLAG9), is also essential for IRBC...... within the parasite. Based on these findings, we propose that CLAG9 plays a critical role in the trafficking of PfEMP1s onto the IRBC surface. These results have important implications for the development of therapeutics for cerebral, placental, and other cytoadherence-associated malaria illnesses....

  15. Anopheles (Kerteszia cruzii (DIPTERA: CULICIDAE IN PERIDOMICILIARY AREA DURING ASYMPTOMATIC MALARIA TRANSMISSION IN THE ATLANTIC FOREST: MOLECULAR IDENTIFICATION OF BLOOD-MEAL SOURCES INDICATES HUMANS AS PRIMARY INTERMEDIATE HOSTS

    Directory of Open Access Journals (Sweden)

    Karin Kirchgatter

    2014-09-01

    Full Text Available Anopheles (Kerteszia cruzii has been implicated as the primary vector of human and simian malarias out of the Brazilian Amazon and specifically in the Atlantic Forest regions. The presence of asymptomatic human cases, parasite-positive wild monkeys and the similarity between the parasites infecting them support the discussion whether these infections can be considered as a zoonosis. Although many aspects of the biology of An. cruzii have already been addressed, studies conducted during outbreaks of malaria transmission, aiming at the analysis of blood feeding and infectivity, are missing in the Atlantic Forest. This study was conducted in the location of Palestina, Juquitiba, where annually the majority of autochthonous human cases are notified in the Atlantic Forest of the state of São Paulo. Peridomiciliary sites were selected for collection of mosquitoes in a perimeter of up to 100 m around the residences of human malaria cases. The mosquitoes were analyzed with the purpose of molecular identification of blood-meal sources and to examine the prevalence of Plasmodium. A total of 13,441 females of An. (Ker. cruzii were collected. The minimum infection rate was calculated at 0.03% and 0.01%, respectively, for P. vivax and P. malariae and only human blood was detected in the blood-fed mosquitoes analyzed. This data reinforce the hypothesis that asymptomatic human carriers are the main source of anopheline infection in the peridomiciliary area, making the probability of zoonotic transmission less likely to happen.

  16. Anopheles (Kerteszia) cruzii (Diptera: Culicidae) in peridomiciliary area during asymptomatic malaria transmission in the Atlantic Forest: molecular identification of blood-meal sources indicates humans as primary intermediate hosts.

    Science.gov (United States)

    Kirchgatter, Karin; Tubaki, Rosa Maria; Malafronte, Rosely dos Santos; Alves, Isabel Cristina; Lima, Giselle Fernandes Maciel de Castro; Guimarães, Lilian de Oliveira; Zampaulo, Robson de Almeida; Wunderlich, Gerhard

    2014-01-01

    Anopheles (Kerteszia) cruzii has been implicated as the primary vector of human and simian malarias out of the Brazilian Amazon and specifically in the Atlantic Forest regions. The presence of asymptomatic human cases, parasite-positive wild monkeys and the similarity between the parasites infecting them support the discussion whether these infections can be considered as a zoonosis. Although many aspects of the biology of An. cruzii have already been addressed, studies conducted during outbreaks of malaria transmission, aiming at the analysis of blood feeding and infectivity, are missing in the Atlantic Forest. This study was conducted in the location of Palestina, Juquitiba, where annually the majority of autochthonous human cases are notified in the Atlantic Forest of the state of São Paulo. Peridomiciliary sites were selected for collection of mosquitoes in a perimeter of up to 100 m around the residences of human malaria cases. The mosquitoes were analyzed with the purpose of molecular identification of blood-meal sources and to examine the prevalence of Plasmodium. A total of 13,441 females of An. (Ker.) cruzii were collected. The minimum infection rate was calculated at 0.03% and 0.01%, respectively, for P. vivax and P. malariae and only human blood was detected in the blood-fed mosquitoes analyzed. This data reinforce the hypothesis that asymptomatic human carriers are the main source of anopheline infection in the peridomiciliary area, making the probability of zoonotic transmission less likely to happen.

  17. Malaria, Epstein-Barr virus infection and the pathogenesis of Burkitt's lymphoma.

    Science.gov (United States)

    Mawson, Anthony R; Majumdar, Suvankar

    2017-11-01

    A geographical and causal connection has long been recognized between malaria, Epstein-Barr virus (EBV) infection and Burkitt's lymphoma (BL), but the underlying mechanisms remain obscure. Potential clues are that the malaria parasite Plasmodium falciparum selectively absorbs vitamin A from the host and depends on it for its biological activities; secondly, alterations in vitamin A (retinoid) metabolism have been implicated in many forms of cancer, including BL. The first author has proposed that the merozoite-stage malaria parasite, emerging from the liver, uses its absorbed vitamin A as a cell membrane destabilizer to invade the red blood cells, causing anemia and other signs and symptoms of the disease as manifestations of an endogenous form of hypervitaminosis A (Mawson AR, Path Global Health 2013;107(3):122-9). Repeated episodes of malaria would therefore be expected to expose the tissues of affected individuals to potentially toxic doses of vitamin A. It is proposed that such episodes activate latent EBV infection, which in turn activates retinoid-responsive genes. Expression of these genes enhances viral replication and induces germinal center (GC) B cell expansion, activation-induced cytidine deaminase (AID) expression, and c-myc translocation, which in turn predisposes to BL. Thus, an endogenous form of retinoid toxicity related to malaria infection may be the common factor linking frequent malaria, EBV infection and BL, whereby prolonged exposure of lymphatic tissues to high concentrations of retinoids may combine to induce B-cell translocation and increase the risk of Burkitt's lymphoma. © 2017 UICC.

  18. Multiple surface antigen mutations in five blood donors with occult hepatitis B virus infection

    NARCIS (Netherlands)

    Zaaijer, H. L.; Torres, P.; Ontañón, A.; Ponte, L. González; Koppelman, M. H. G. M.; Lelie, P. N.; Hemert, F. J. van; Boot, H. J.

    2008-01-01

    Occult hepatitis B virus (HBV) infection is characterized by the presence of HBV DNA while the HBV surface antigen (HBsAg) remains undetectable. The HBV genomes in five asymptomatic blood donors with occult HBV infection and low viremia ( <10 to 1,000 HBV DNA copies/mL, genotype D) were studied. An

  19. Prevalence of Diego blood group antigen and the antibody in three ethnic population groups in Klang valley of Malaysia

    Directory of Open Access Journals (Sweden)

    Cheong Tar Wei

    2013-01-01

    Full Text Available Background: Diego blood group antigen, Di(a, is very rare among Caucasians and Blacks, but relatively common among the South American Indians and Asians of Mongolian origin. The antibody to Di(a is clinically significant to cause hemolytic disease in a new-born or hemolytic transfusion reaction. Objectives: This study was designed to determine the prevalence of Di(a antigen among the blood donors from the three major ethnic groups in Klang Valley of Malaysia as well as to find an incidence of an antibody of the Diego antigen, anti-Di(a, in a tertiary care hospital to ascertain the need to include Di(a+ red cells for an antibody screen cell panel. Materials and Methods: Serological tests were performed by column agglutination technique using commercial reagents and following instruction as per kit insert. Results: Di(a antigen was found with a frequency of 2.1% among the Malaysians donors in three ethnic groups viz, Malay, Chinese and Indian. It was present among 1.25% of 401 Malay, 4.01% of Chinese and 0.88% of 114 Indian origin donors. None of the 1442 patients, including 703 antenatal outpatients, had anti-Di(a in serum. Conclusion: The prevalence of Di(a antigen was found among the donors of all the three ethnic background with varying frequency. Inclusion of Di(a+ red cells in routine antibody screening program would certainly help in detection of this clinically significant antibody and to provide safe blood transfusion in the Klang Valley, though the incidence of antibody appears to be very low in the region.

  20. Prevalence of Diego blood group antigen and the antibody in three ethnic population groups in Klang valley of Malaysia.

    Science.gov (United States)

    Wei, Cheong Tar; Al-Hassan, Faisal Muti; Naim, Norris; Knight, Aishah; Joshi, Sanmukh R

    2013-01-01

    Diego blood group antigen, Di(a), is very rare among Caucasians and Blacks, but relatively common among the South American Indians and Asians of Mongolian origin. The antibody to Di(a) is clinically significant to cause hemolytic disease in a new-born or hemolytic transfusion reaction. This study was designed to determine the prevalence of Di(a) antigen among the blood donors from the three major ethnic groups in Klang Valley of Malaysia as well as to find an incidence of an antibody of the Diego antigen, anti-Di(a), in a tertiary care hospital to ascertain the need to include Di(a+) red cells for an antibody screen cell panel. Serological tests were performed by column agglutination technique using commercial reagents and following instruction as per kit insert. Di(a) antigen was found with a frequency of 2.1% among the Malaysians donors in three ethnic groups viz, Malay, Chinese and Indian. It was present among 1.25% of 401 Malay, 4.01% of Chinese and 0.88% of 114 Indian origin donors. None of the 1442 patients, including 703 antenatal outpatients, had anti-Di(a) in serum. The prevalence of Di(a) antigen was found among the donors of all the three ethnic background with varying frequency. Inclusion of Di(a+) red cells in routine antibody screening program would certainly help in detection of this clinically significant antibody and to provide safe blood transfusion in the Klang Valley, though the incidence of antibody appears to be very low in the region.

  1. Advances and challenges in malaria vaccine development.

    Science.gov (United States)

    Crompton, Peter D; Pierce, Susan K; Miller, Louis H

    2010-12-01

    Malaria caused by Plasmodium falciparum remains a major public health threat, especially among children and pregnant women in Africa. An effective malaria vaccine would be a valuable tool to reduce the disease burden and could contribute to elimination of malaria in some regions of the world. Current malaria vaccine candidates are directed against human and mosquito stages of the parasite life cycle, but thus far, relatively few proteins have been studied for potential vaccine development. The most advanced vaccine candidate, RTS,S, conferred partial protection against malaria in phase II clinical trials and is currently being evaluated in a phase III trial in Africa. New vaccine targets need to be identified to improve the chances of developing a highly effective malaria vaccine. A better understanding of the mechanisms of naturally acquired immunity to malaria may lead to insights for vaccine development.

  2. Diagnostic and prognostic utility of an inexpensive rapid on site malaria diagnostic test (ParaHIT f) among ethnic tribal population in areas of high, low and no transmission in central India

    Science.gov (United States)

    Singh, Neeru; Mishra, AK; Shukla, MM; Chand, SK; Bharti, Praveen Kumar

    2005-01-01

    Background Malaria presents a diagnostic challenge in most tropical countries. Rapid detection of the malaria parasite and early treatment of infection still remain the most important goals of disease management. Therefore, performance characteristics of the new indigenous ParaHIT f test (Span diagnostic Ltd, Surat, India) was determined among ethnic tribal population in four districts of different transmission potential in central India to assess whether this rapid diagnostic test (RDT) could be widely applied as a diagnostic tool to control malaria. Beyond diagnosis, the logical utilization of RDTs is to monitor treatment outcome. Methods A finger prick blood sample was collected from each clinically suspected case of malaria to prepare blood smear and for testing with the RDT after taking informed consent. The blood smears were read by an experienced technician blinded to the RDT results and clinical status of the subjects. The figures for specificity, sensitivity, accuracy and predictive values were calculated using microscopy as gold standard. Results The prevalence of malaria infection estimated by RDT in parallel with microscopy provide evidence of the type of high, low or no transmission in the study area. Analysis revealed (pooled data of all four epidemiological settings) that overall sensitivity, specificity and accuracy of the RDT were >90% in areas of different endemicity. While, RDT is useful to confirm the diagnosis of new symptomatic cases of suspected P. falciparum infection, the persistence of parasite antigen leading to false positives even after clearance of asexual parasitaemia has limited its utility as a prognostic tool. Conclusion The study showed that the ParaHIT f test was easy to use, reliable and cheap. Thus this RDT is an appropriate test for the use in the field by paramedical staff when laboratory facilities are not available and thus likely to contribute greatly to an effective control of malaria in resource poor countries. PMID

  3. Structural basis of malaria parasite lysyl-tRNA synthetase inhibition by cladosporin.

    Science.gov (United States)

    Khan, Sameena; Sharma, Arvind; Belrhali, Hassan; Yogavel, Manickam; Sharma, Amit

    2014-06-01

    Malaria parasites inevitably develop drug resistance to anti-malarials over time. Hence the immediacy for discovering new chemical scaffolds to include in combination malaria drug therapy. The desirable attributes of new chemotherapeutic agents currently include activity against both liver and blood stage malaria parasites. One such recently discovered compound called cladosporin abrogates parasite growth via inhibition of Plasmodium falciparum lysyl-tRNA synthetase (PfKRS), an enzyme central to protein translation. Here, we present crystal structure of ternary PfKRS-lysine-cladosporin (PfKRS-K-C) complex that reveals cladosporin's remarkable ability to mimic the natural substrate adenosine and thereby colonize PfKRS active site. The isocoumarin fragment of cladosporin sandwiches between critical adenine-recognizing residues while its pyran ring fits snugly in the ribose-recognizing cavity. PfKRS-K-C structure highlights ample space within PfKRS active site for further chemical derivatization of cladosporin. Such derivatives may be useful against additional human pathogens that retain high conservation in cladosporin chelating residues within their lysyl-tRNA synthetase.

  4. Origin of malaria cases: a 7-year audit of global trends in indigenous and imported cases in relation to malaria elimination

    Directory of Open Access Journals (Sweden)

    Mar Velarde-Rodríguez

    2015-10-01

    Full Text Available Background: Countries in the different stages of pre-elimination, elimination, and prevention of reintroduction are required to report the number of indigenous and imported malaria cases to the World Health Organization (WHO. However, these data have not been systematically analysed at the global level. Objective: For the period 2007 to 2013, we aimed to report on 1 the proportion of countries providing data on the origin of malaria cases and 2 the origin of malaria cases in countries classified as being in the stages of pre-elimination, elimination and prevention of reintroduction. Design: An observational study using annual data reported through routine health information systems to the WHO Global Malaria Programme between 2007 and 2013. Results: For all countries classified as being in pre-elimination, elimination, and prevention of reintroduction in the year 2013, there has been a substantial decrease in the total number of indigenous malaria cases, from more than 15,000 cases reported in 2007 to less than 4,000 cases reported in 2013. However, the total number of imported malaria cases has increased over that time period, from 5,600 imported cases in 2007 to approximately 6,800 in 2013. Conclusions: Vigilant monitoring of the numbers of imported and indigenous malaria cases at national and global levels as well as appropriate strategies to target these cases will be critical to achieve malaria eradication.

  5. Acanthocheilonema viteae: Vaccination of jirds with irradiation-attenuated stage-3 larvae and with exported larval antigens

    International Nuclear Information System (INIS)

    Lucius, R.; Textor, G.; Kern, A.; Kirsten, C.

    1991-01-01

    Jirds (Meriones unguiculatus) were immunized with irradiated (35 krad) stage-3 larvae (L3) of Acanthocheilonema viteae. The induced resistance against homologous challenge infection and the antibody response of the animals were studied. Immunization with 3, 2, or 1 dose of 50 irradiated L3 induced approximately 90% resistance. Immunization with a single dose of only 5 irradiated L3 resulted in 60.8% protection while immunization with a single dose of 25 L3 induced 94.1% protection. The protection induced with 3 doses of 50 irradiated L3 did not decrease significantly during a period of 6 months. Sera of a proportion, but not all resistant jirds, contained antibodies against the surface of vector derived L3 as defined by IFAT. No surface antigens of microfilariae or adult worms were recognized by the sera. Vaccinated animals had antibody responses against antigens in the inner organs of L3 and in the cuticle and reproductive organs of adult worms as shown by IFAT. Immunoblotting with SDS-PAGE-separated L3 antigens and L3-CSN revealed that all sera contained antibodies against two exported antigens of 205 and 68 kDa, and against a nonexported antigen of 18 kDa. The 205-kDa antigen easily degraded into fragments of 165, 140, 125, and 105 kDa which were recognized by resistant jird sera. Various antigens of adult worms, but relatively few antigens of microfilariae, were also recognized. To test the relevance of exported antigens of L3 to resistance, jirds were immunized with L3-CSN together with a mild adjuvant. This immunization induced 67.7% resistance against challenge infection and sera of the immunized animals recognized the 205- and 68-kDa antigens of L3

  6. Cytokine balance in human malaria: does Plasmodium vivax elicit more inflammatory responses than Plasmodium falciparum?

    Directory of Open Access Journals (Sweden)

    Raquel M Gonçalves

    Full Text Available BACKGROUND: The mechanisms by which humans regulate pro- and anti-inflammatory responses on exposure to different malaria parasites remains unclear. Although Plasmodium vivax usually causes a relatively benign disease, this parasite has been suggested to elicit more host inflammation per parasitized red blood cell than P. falciparum. METHODOLOGY/PRINCIPAL FINDINGS: We measured plasma concentrations of seven cytokines and two soluble tumor necrosis factor (TNF-α receptors, and evaluated clinical and laboratory outcomes, in Brazilians with acute uncomplicated infections with P. vivax (n = 85, P. falciparum (n = 30, or both species (n = 12, and in 45 asymptomatic carriers of low-density P. vivax infection. Symptomatic vivax malaria patients, compared to those infected with P. falciparum or both species, had more intense paroxysms, but they had no clear association with a pro-inflammatory imbalance. To the contrary, these patients had higher levels of the regulatory cytokine interleukin (IL-10, which correlated positively with parasite density, and elevated IL-10/TNF-α, IL-10/interferon (IFN-γ, IL-10/IL-6 and sTNFRII/TNF-α ratios, compared to falciparum or mixed-species malaria patient groups. Vivax malaria patients had the highest levels of circulating soluble TNF-α receptor sTNFRII. Levels of regulatory cytokines returned to normal values 28 days after P. vivax clearance following chemotherapy. Finally, asymptomatic carriers of low P. vivax parasitemias had substantially lower levels of both inflammatory and regulatory cytokines than did patients with clinical malaria due to either species. CONCLUSIONS: Controlling fast-multiplying P. falciparum blood stages requires a strong inflammatory response to prevent fulminant infections, while reducing inflammation-related tissue damage with early regulatory cytokine responses may be a more cost-effective strategy in infections with the less virulent P. vivax parasite. The early induction

  7. Prevalence Of Malaria Parasitaemia In Pregnant Women Attending ...

    African Journals Online (AJOL)

    The prevalence of malaria parasitaemia in 200 pregnant women attending the antenatal clinic (ANC) of Jos University Teaching Hospital (JUTH) between April and June 2003 was determined. Geimsa-stained thick and thin blood films were examined microscopically for malaria parasites; the parasite densities were ...

  8. Flow cytometric readout based on Mitotracker Red CMXRos staining of live asexual blood stage malarial parasites reliably assesses antibody dependent cellular inhibition

    DEFF Research Database (Denmark)

    Jogdand, Prajakta S; Singh, Susheel K; Christiansen, Michael

    2012-01-01

    asynchronous and tightly synchronized asexual blood stage cultures of Plasmodium falciparum were stained with CMXRos and subjected to detection by flow cytometry and fluorescence microscopy. The parasite counts obtained by flow cytometry were compared to standard microscopic counts obtained through examination......ABSTRACT: BACKGROUND: Functional in vitro assays could provide insights into the efficacy of malaria vaccine candidates. For estimating the anti-parasite effect induced by a vaccine candidate, an accurate determination of live parasite count is an essential component of most in vitro bioassays....... Although traditionally parasites are counted microscopically, a faster, more accurate and less subjective method for counting parasites is desirable. In this study mitochondrial dye (Mitotracker Red CMXRos) was used for obtaining reliable live parasite counts through flow cytometry. METHODS: Both...

  9. Spectrophotometric characterization of hemozoin as a malaria biomarker

    Science.gov (United States)

    Silva, Ivo; Lima, Rui; Minas, Graça.; Catarino, Susana O.

    2017-08-01

    Malaria is a parasitic disease with more than a billion people worldwide at risk of contraction. The disease is predominantly widespread in regions with precarious healthcare conditions and resources. Despite the several available malaria diagnostic methods, only two are predominantly used in the field in malaria-endemic countries: microscopy and rapid diagnostic tests. In this work, an alternative diagnostic system is proposed, based on optical absorption spectrophotometry. The main objective of this paper is the spectrophotometric study of hemozoin as a malaria biomarker, since it is a sub-product of the malaria infection. The optical absorbance of hemoglobin and hemozoin solutions in purified water was measured in the visible spectrum range using a spectrophotometric setup. The results showed main absorbance peaks at 540 nm and 574 nm for hemoglobin, and at 672 nm for hemozoin. The tests performed in aqueous solutions have shown that both hemoglobin and synthetic hemozoin, when alone in solution, were detected by absorbance, with sensitivity of 0.05 g/L, and with a high linearity (R2> 0.92 for all wavelength peaks). Furthermore, it was found that the whole blood and the hemoglobin spectra have similar absorption peaks. By combining whole blood and synthetic hemozoin solutions, it was proved that both the hemozoin and the hemoglobin absorbance peaks could still be detected by spectrophotometry. For instance, in polydimethylsiloxane wells, the proposed method was able to detect hemozoin in whole blood samples for optical paths as low as 3 mm in cylindrical wells, thus proving the capability for this method's miniaturization. With this work, it is possible to conclude that hemozoin is a viable candidate as a biomarker for malaria detection by optical absorption spectrophotometry and also, that an autonomous, fully integrated and low cost miniaturized system, based on such a principle, could provide an efficient diagnosis of malaria.

  10. Aotus infulatus monkey is susceptible to Plasmodium falciparum infection and may constitute an alternative experimental model for malaria

    Directory of Open Access Journals (Sweden)

    Carvalho Leonardo JM

    2000-01-01

    Full Text Available Aotus is one of the WHO-recommended primate models for studies in malaria, and several species can be infected with Plasmodium falciparum or P. vivax. Here we describe the successful infection of the species A. infulatus from eastern Amazon with blood stages of P. falciparum. Both intact and splenectomized animals were susceptible to infection; the intact ones were able to keep parasitemias at lower levels for several days, but developed complications such as severe anemia; splenectomized monkeys developed higher parasitemias but no major complications. We conclude that A. infulatus is susceptible to P. falciparum infection and may represent an alternative model for studies in malaria.

  11. Host-parasite interactions and ecology of the malaria parasite-a bioinformatics approach.

    Science.gov (United States)

    Izak, Dariusz; Klim, Joanna; Kaczanowski, Szymon

    2018-04-25

    Malaria remains one of the highest mortality infectious diseases. Malaria is caused by parasites from the genus Plasmodium. Most deaths are caused by infections involving Plasmodium falciparum, which has a complex life cycle. Malaria parasites are extremely well adapted for interactions with their host and their host's immune system and are able to suppress the human immune system, erase immunological memory and rapidly alter exposed antigens. Owing to this rapid evolution, parasites develop drug resistance and express novel forms of antigenic proteins that are not recognized by the host immune system. There is an emerging need for novel interventions, including novel drugs and vaccines. Designing novel therapies requires knowledge about host-parasite interactions, which is still limited. However, significant progress has recently been achieved in this field through the application of bioinformatics analysis of parasite genome sequences. In this review, we describe the main achievements in 'malarial' bioinformatics and provide examples of successful applications of protein sequence analysis. These examples include the prediction of protein functions based on homology and the prediction of protein surface localization via domain and motif analysis. Additionally, we describe PlasmoDB, a database that stores accumulated experimental data. This tool allows data mining of the stored information and will play an important role in the development of malaria science. Finally, we illustrate the application of bioinformatics in the development of population genetics research on malaria parasites, an approach referred to as reverse ecology.

  12. Structure-activity-based design of a synthetic malaria peptide eliciting sporozoite inhibitory antibodies in a virosomal formulation.

    NARCIS (Netherlands)

    Okitsu, S.L.; Kienzl, U.; Moehle, K.; Silvie, O.; Peduzzi, E.; Mueller, M.S.; Sauerwein, R.W.; Matile, H.; Zurbriggen, R.; Mazier, D.; Robinson, J.A.; Pluschke, G.

    2007-01-01

    The circumsporozoite protein (CSP) of Plasmodium falciparum is a leading candidate antigen for inclusion in a malaria subunit vaccine. We describe here the design of a conformationally constrained synthetic peptide, designated UK-39, which has structural and antigenic similarity to the NPNA-repeat

  13. Translational Repression in Malaria Sporozoites

    Science.gov (United States)

    Turque, Oliver; Tsao, Tiffany; Li, Thomas; Zhang, Min

    2016-01-01

    Malaria is a mosquito-borne infectious disease of humans and other animals. It is caused by the parasitic protozoan, Plasmodium. Sporozoites, the infectious form of malaria parasites, are quiescent when they remain in the salivary glands of the Anopheles mosquito until transmission into a mammalian host. Metamorphosis of the dormant sporozoite to its active form in the liver stage requires transcriptional and translational regulations. Here, we summarize recent advances in the translational repression of gene expression in the malaria sporozoite. In sporozoites, many mRNAs that are required for liver stage development are translationally repressed. Phosphorylation of eukaryotic Initiation Factor 2α (eIF2α) leads to a global translational repression in sporozoites. The eIF2α kinase, known as Upregulated in Infectious Sporozoite 1 (UIS1), is dominant in the sporozoite. The eIF2α phosphatase, UIS2, is translationally repressed by the Pumilio protein Puf2. This translational repression is alleviated when sporozoites are delivered into the mammalian host. PMID:28357358

  14. Translational repression in malaria sporozoites

    Directory of Open Access Journals (Sweden)

    Oliver Turque

    2016-04-01

    Full Text Available Malaria is a mosquito-borne infectious disease of humans and other animals. It is caused by the parasitic protozoan, Plasmodium. Sporozoites, the infectious form of malaria parasites, are quiescent when they remain in the salivary glands of the Anopheles mosquito until transmission into a mammalian host. Metamorphosis of the dormant sporozoite to its active form in the liver stage requires transcriptional and translational regulations. Here, we summarize recent advances in the translational repression of gene expression in the malaria sporozoite. In sporozoites, many mRNAs that are required for liver stage development are translationally repressed. Phosphorylation of eukaryotic Initiation Factor 2α (eIF2α leads to a global translational repression in sporozoites. The eIF2α kinase, known as Upregulated in Infectious Sporozoite 1 (UIS1, is dominant in the sporozoite. The eIF2α phosphatase, UIS2, is translationally repressed by the Pumilio protein Puf2. This translational repression is alleviated when sporozoites are delivered into the mammalian host.

  15. DNA Sensors for Malaria Diagnosis

    DEFF Research Database (Denmark)

    Hede, Marianne Smedegaard; Fjelstrup, Søren; Knudsen, Birgitta R.

    2015-01-01

    In the field of malaria diagnosis much effort is put into the development of faster and easier alternatives to the gold standard, blood smear microscopy. Nucleic acid amplification based techniques pose some of the most promising upcoming diagnostic tools due to their potential for high sensitivity......, robustness and user-friendliness. In the current review, we will discuss some of the different DNA-based sensor systems under development for the diagnosis of malaria....

  16. A nonintegrative lentiviral vector-based vaccine provides long-term sterile protection against malaria.

    Directory of Open Access Journals (Sweden)

    Frédéric Coutant

    Full Text Available Trials testing the RTS,S candidate malaria vaccine and radiation-attenuated sporozoites (RAS have shown that protective immunity against malaria can be induced and that an effective vaccine is not out of reach. However, longer-term protection and higher protection rates are required to eradicate malaria from the endemic regions. It implies that there is still a need to explore new vaccine strategies. Lentiviral vectors are very potent at inducing strong immunological memory. However their integrative status challenges their safety profile. Eliminating the integration step obviates the risk of insertional oncogenesis. Providing they confer sterile immunity, nonintegrative lentiviral vectors (NILV hold promise as mass pediatric vaccine by meeting high safety standards. In this study, we have assessed the protective efficacy of NILV against malaria in a robust pre-clinical model. Mice were immunized with NILV encoding Plasmodium yoelii Circumsporozoite Protein (Py CSP and challenged with sporozoites one month later. In two independent protective efficacy studies, 50% (37.5-62.5 of the animals were fully protected (p = 0.0072 and p = 0.0008 respectively when compared to naive mice. The remaining mice with detectable parasitized red blood cells exhibited a prolonged patency and reduced parasitemia. Moreover, protection was long-lasting with 42.8% sterile protection six months after the last immunization (p = 0.0042. Post-challenge CD8+ T cells to CSP, in contrast to anti-CSP antibodies, were associated with protection (r = -0.6615 and p = 0.0004 between the frequency of IFN-g secreting specific T cells in spleen and parasitemia. However, while NILV and RAS immunizations elicited comparable immunity to CSP, only RAS conferred 100% of sterile protection. Given that a better protection can be anticipated from a multi-antigen vaccine and an optimized vector design, NILV appear as a promising malaria vaccine.

  17. The pathogenesis of Plasmodium falciparum malaria in humans: insights from splenic physiology

    Science.gov (United States)

    Safeukui, Innocent; Deplaine, Guillaume; Brousse, Valentine; Prendki, Virginie; Thellier, Marc; Turner, Gareth D.; Mercereau-Puijalon, Odile

    2011-01-01

    Clinical manifestations of Plasmodium falciparum infection are induced by the asexual stages of the parasite that develop inside red blood cells (RBCs). Because splenic microcirculatory beds filter out altered RBCs, the spleen can innately clear subpopulations of infected or uninfected RBC modified during falciparum malaria. The spleen appears more protective against severe manifestations of malaria in naïve than in immune subjects. The spleen-specific pitting function accounts for a large fraction of parasite clearance in artemisinin-treated patients. RBC loss contributes to malarial anemia, a clinical form associated with subacute progression, frequent splenomegaly, and relatively low parasitemia. Stringent splenic clearance of ring-infected RBCs and uninfected, but parasite-altered, RBCs, may altogether exacerbate anemia and reduce the risks of severe complications associated with high parasite loads, such as cerebral malaria. The age of the patient directly influences the risk of severe manifestations. We hypothesize that coevolution resulting in increased splenic clearance of P. falciparum–altered RBCs in children favors the survival of the host and, ultimately, sustained parasite transmission. This analysis of the RBC–spleen dynamic interactions during P falciparum infection reflects both data and hypotheses, and provides a framework on which a more complete immunologic understanding of malaria pathogenesis may be elaborated. PMID:20852127

  18. Recent Advances of Malaria Parasites Detection Systems Based on Mathematical Morphology

    Directory of Open Access Journals (Sweden)

    Andrea Loddo

    2018-02-01

    Full Text Available Malaria is an epidemic health disease and a rapid, accurate diagnosis is necessary for proper intervention. Generally, pathologists visually examine blood stained slides for malaria diagnosis. Nevertheless, this kind of visual inspection is subjective, error-prone and time-consuming. In order to overcome the issues, numerous methods of automatic malaria diagnosis have been proposed so far. In particular, many researchers have used mathematical morphology as a powerful tool for computer aided malaria detection and classification. Mathematical morphology is not only a theory for the analysis of spatial structures, but also a very powerful technique widely used for image processing purposes and employed successfully in biomedical image analysis, especially in preprocessing and segmentation tasks. Microscopic image analysis and particularly malaria detection and classification can greatly benefit from the use of morphological operators. The aim of this paper is to present a review of recent mathematical morphology based methods for malaria parasite detection and identification in stained blood smears images.

  19. Recent Advances of Malaria Parasites Detection Systems Based on Mathematical Morphology.

    Science.gov (United States)

    Loddo, Andrea; Di Ruberto, Cecilia; Kocher, Michel

    2018-02-08

    Malaria is an epidemic health disease and a rapid, accurate diagnosis is necessary for proper intervention. Generally, pathologists visually examine blood stained slides for malaria diagnosis. Nevertheless, this kind of visual inspection is subjective, error-prone and time-consuming. In order to overcome the issues, numerous methods of automatic malaria diagnosis have been proposed so far. In particular, many researchers have used mathematical morphology as a powerful tool for computer aided malaria detection and classification. Mathematical morphology is not only a theory for the analysis of spatial structures, but also a very powerful technique widely used for image processing purposes and employed successfully in biomedical image analysis, especially in preprocessing and segmentation tasks. Microscopic image analysis and particularly malaria detection and classification can greatly benefit from the use of morphological operators. The aim of this paper is to present a review of recent mathematical morphology based methods for malaria parasite detection and identification in stained blood smears images.

  20. Artemether-lumefantrine treatment of uncomplicated Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Kofoed, Poul-Erik

    2015-01-01

    BACKGROUND: Achieving adequate antimalarial drug exposure is essential for curing malaria. Day 7 blood or plasma lumefantrine concentrations provide a simple measure of drug exposure that correlates well with artemether-lumefantrine efficacy. However, the 'therapeutic' day 7 lumefantrine concentr......BACKGROUND: Achieving adequate antimalarial drug exposure is essential for curing malaria. Day 7 blood or plasma lumefantrine concentrations provide a simple measure of drug exposure that correlates well with artemether-lumefantrine efficacy. However, the 'therapeutic' day 7 lumefantrine......-lumefantrine for uncomplicated Plasmodium falciparum malaria, to define therapeutic day 7 lumefantrine concentrations and identify patient factors that substantially alter these concentrations. A systematic review of PubMed, Embase, Google Scholar, ClinicalTrials.gov and conference proceedings identified all relevant studies...... lumefantrine concentrations ≥200 ng/ml and high cure rates in most uncomplicated malaria patients. Three groups are at increased risk of treatment failure: very young children (particularly those underweight-for-age); patients with high parasitemias; and patients in very low transmission intensity areas...