WorldWideScience

Sample records for making dihedral angles

  1. Predicting dihedral angle probability distributions for protein coil residues from primary sequence using neural networks

    Helles, Glennie; Fonseca, Rasmus

    2009-01-01

    residue in the input-window. The trained neural network shows a significant improvement (4-68%) in predicting the most probable bin (covering a 30°×30° area of the dihedral angle space) for all amino acids in the data set compared to first order statistics. An accuracy comparable to that of secondary...... seem to have a significant influence on the dihedral angles adopted by the individual amino acids in coil segments. In this work we attempt to predict a probability distribution of these dihedral angles based on the flanking residues. While attempts to predict dihedral angles of coil segments have been...... done previously, none have, to our knowledge, presented comparable results for the probability distribution of dihedral angles. Results: In this paper we develop an artificial neural network that uses an input-window of amino acids to predict a dihedral angle probability distribution for the middle...

  2. Prediction of backbone dihedral angles and protein secondary structure using support vector machines

    Hirst Jonathan D

    2009-12-01

    Full Text Available Abstract Background The prediction of the secondary structure of a protein is a critical step in the prediction of its tertiary structure and, potentially, its function. Moreover, the backbone dihedral angles, highly correlated with secondary structures, provide crucial information about the local three-dimensional structure. Results We predict independently both the secondary structure and the backbone dihedral angles and combine the results in a loop to enhance each prediction reciprocally. Support vector machines, a state-of-the-art supervised classification technique, achieve secondary structure predictive accuracy of 80% on a non-redundant set of 513 proteins, significantly higher than other methods on the same dataset. The dihedral angle space is divided into a number of regions using two unsupervised clustering techniques in order to predict the region in which a new residue belongs. The performance of our method is comparable to, and in some cases more accurate than, other multi-class dihedral prediction methods. Conclusions We have created an accurate predictor of backbone dihedral angles and secondary structure. Our method, called DISSPred, is available online at http://comp.chem.nottingham.ac.uk/disspred/.

  3. Electric Dipole-Magnetic Dipole Polarizability and Anapole Magnetizability of Hydrogen Peroxide as Functions of the HOOH Dihedral Angle.

    Pelloni, S; Provasi, P F; Pagola, G I; Ferraro, M B; Lazzeretti, P

    2017-12-07

    The trace of tensors that account for chiroptical response of the H 2 O 2 molecule is a function of the HO-OH dihedral angle. It vanishes at 0° and 180°, due to the presence of molecular symmetry planes, but also for values in the range 90-100° of this angle, in which the molecule is unquestionably chiral. Such an atypical effect is caused by counterbalancing contributions of diagonal tensor components with nearly maximal magnitude but opposite sign, determined by electron flow in open or closed helical paths, and associated with induced electric and magnetic dipole moments and anapole moments. For values of dihedral angle external to the 90-100° interval, the helical paths become smaller in size, thus reducing the amount of cancellation among diagonal components. Shrinking of helical paths determines the appearance of extremum values of tensor traces approximately at 50° and 140° dihedral angles.

  4. Predicting beta-turns and their types using predicted backbone dihedral angles and secondary structures.

    Kountouris, Petros; Hirst, Jonathan D

    2010-07-31

    Beta-turns are secondary structure elements usually classified as coil. Their prediction is important, because of their role in protein folding and their frequent occurrence in protein chains. We have developed a novel method that predicts beta-turns and their types using information from multiple sequence alignments, predicted secondary structures and, for the first time, predicted dihedral angles. Our method uses support vector machines, a supervised classification technique, and is trained and tested on three established datasets of 426, 547 and 823 protein chains. We achieve a Matthews correlation coefficient of up to 0.49, when predicting the location of beta-turns, the highest reported value to date. Moreover, the additional dihedral information improves the prediction of beta-turn types I, II, IV, VIII and "non-specific", achieving correlation coefficients up to 0.39, 0.33, 0.27, 0.14 and 0.38, respectively. Our results are more accurate than other methods. We have created an accurate predictor of beta-turns and their types. Our method, called DEBT, is available online at http://comp.chem.nottingham.ac.uk/debt/.

  5. Dihedral angle control to improve the charge transport properties of conjugated polymers in organic field effect transistors

    Dharmapurikar, Satej S.; Chithiravel, Sundaresan; Mane, Manoj V.; Deshmukh, Gunvant; Krishnamoorthy, Kothandam

    2018-03-01

    Diketopyrrolopyrrole (DPP) and i-Indigo (i-Ind) are two monomers that are widely explored as active materials in organic field effect transistor and solar cells. These two molecules showed impressive charge carrier mobility due to better packing that are facilitated by quadrupoles. We hypothesized that the copolymers of these monomers would also exhibit high charge carrier mobility. However, we envisioned that the dihedral angle at the connecting point between the monomers will play a crucial role in packing as well as charge transport. To understand the impact of dihedral angle on charge transport, we synthesized three copolymers, wherein the DPP was sandwiched between benzenes, thiophenes and furans. The copolymer of i-Indigo and furan comprising DPP showed a band gap of 1.4 eV with a very high dihedral angle of 179°. The polymer was found to pack better and the coherence length was found to be 112 Å. The hole carrier mobility of these polymer was found to be highest among the synthesized polymer i.e. 0.01 cm2/vs. The copolymer comprising benzene did not transport hole and electrons. The dihedral angle at the connecting point between i and Indigo and benzene DPP was 143 Å, which the packing and consequently charge transport properties.

  6. Effects of Dihedral Angle on Pool Boiling Heat Transfer from Two Tubes in Vertical Alignment

    Kang, Myeong-Gie [Andong National University, Andong (Korea, Republic of)

    2014-10-15

    to study the effects of the dihedral angle (α) and the heat flux of the lower tube on heat transfer enhancement of the upper tube, arranged one above the other in the same vertical plane. The combined effects of the dihedral angle and the heat flux of the lower tube on heat transfer enhancement of the upper tube were investigated. The increase in α eventually increases h{sub r} . When α changes from 2 .deg. to 18 .deg. the value of h{sub r} increases about 20.3% for q″{sub L}=10kW/m{sup 2}. The enhancement is clearly observed at the heat fluxes where the convective effect is dominant.

  7. Pairwise NMR experiments for the determination of protein backbone dihedral angle Φ based on cross-correlated spin relaxation

    Takahashi, Hideo; Shimada, Ichio

    2007-01-01

    Novel cross-correlated spin relaxation (CCR) experiments are described, which measure pairwise CCR rates for obtaining peptide dihedral angles Φ. The experiments utilize intra-HNCA type coherence transfer to refocus 2-bond J NCα coupling evolution and generate the N (i)-C α (i) or C'(i-1)-C α (i) multiple quantum coherences which are required for measuring the desired CCR rates. The contribution from other coherences is also discussed and an appropriate setting of the evolution delays is presented. These CCR experiments were applied to 15 N- and 13 C-labeled human ubiquitin. The relevant CCR rates showed a high degree of correlation with the Φ angles observed in the X-ray structure. By utilizing these CCR experiments in combination with those previously established for obtaining dihedral angle Ψ, we can determine high resolution structures of peptides that bind weakly to large target molecules

  8. Disequilibrium dihedral angles in layered intrusions: the microstructural record of fractionation

    Holness, Marian; Namur, Olivier; Cawthorn, Grant

    2013-04-01

    The dihedral angle formed at junctions between two plagioclase grains and a grain of augite is only rarely in textural equilibrium in gabbros from km-scale crustal layered intrusions. The median of a population of these disequilibrium angles, Θcpp, varies systematically within individual layered intrusions, remaining constant over large stretches of stratigraphy with significant increases or decreases associated with the addition or reduction respectively of the number of phases on the liquidus of the bulk magma. The step-wise changes in Θcpp are present in Upper Zone of the Bushveld Complex, the Megacyclic Unit I of the Sept Iles Intrusion, and the Layered Series of the Skaergaard Intrusion. The plagioclase-bearing cumulates of Rum have a bimodal distribution of Θcpp, dependent on whether the cumulus assemblage includes clinopyroxene. The presence of the step-wise changes is independent of the order of arrival of cumulus phases and of the composition of either the cumulus phases or the interstitial liquid inferred to be present in the crystal mush. Step-wise changes in the rate of change in enthalpy with temperature (ΔH) of the cooling and crystallizing magma correspond to the observed variation of Θcpp, with increases of both ΔH and Θcpp associated with the addition of another liquidus phase, and decreases of both associated with the removal of a liquidus phase. The replacement of one phase by another (e.g. olivine ⇔ orthpyroxene) has little effect on ΔH and no discernible effect on Θcpp. An increase of ΔH is manifest by an increase in the fraction of the total enthalpy budget that is the latent heat of crystallization (the fractional latent heat). It also results in an increase in the amount crystallized in each incremental temperature drop (the crystal productivity). An increased fractional latent heat and crystal productivity result in an increased rate of plagioclase growth compared to that of augite during the final stages of solidification

  9. Predicting backbone Cα angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network.

    Lyons, James; Dehzangi, Abdollah; Heffernan, Rhys; Sharma, Alok; Paliwal, Kuldip; Sattar, Abdul; Zhou, Yaoqi; Yang, Yuedong

    2014-10-30

    Because a nearly constant distance between two neighbouring Cα atoms, local backbone structure of proteins can be represented accurately by the angle between C(αi-1)-C(αi)-C(αi+1) (θ) and a dihedral angle rotated about the C(αi)-C(αi+1) bond (τ). θ and τ angles, as the representative of structural properties of three to four amino-acid residues, offer a description of backbone conformations that is complementary to φ and ψ angles (single residue) and secondary structures (>3 residues). Here, we report the first machine-learning technique for sequence-based prediction of θ and τ angles. Predicted angles based on an independent test have a mean absolute error of 9° for θ and 34° for τ with a distribution on the θ-τ plane close to that of native values. The average root-mean-square distance of 10-residue fragment structures constructed from predicted θ and τ angles is only 1.9Å from their corresponding native structures. Predicted θ and τ angles are expected to be complementary to predicted ϕ and ψ angles and secondary structures for using in model validation and template-based as well as template-free structure prediction. The deep neural network learning technique is available as an on-line server called Structural Property prediction with Integrated DEep neuRal network (SPIDER) at http://sparks-lab.org. Copyright © 2014 Wiley Periodicals, Inc.

  10. The power of hard-sphere models: explaining side-chain dihedral angle distributions of Thr and Val.

    Zhou, Alice Qinhua; O'Hern, Corey S; Regan, Lynne

    2012-05-16

    The energy functions used to predict protein structures typically include both molecular-mechanics and knowledge-based terms. In contrast, our approach is to develop robust physics- and geometry-based methods. Here, we investigate to what extent simple hard-sphere models can be used to predict side-chain conformations. The distributions of the side-chain dihedral angle χ(1) of Val and Thr in proteins of known structure show distinctive features: Val side chains predominantly adopt χ(1) = 180°, whereas Thr side chains typically adopt χ(1) = 60° and 300° (i.e., χ(1) = ±60° or g- and g(+) configurations). Several hypotheses have been proposed to explain these differences, including interresidue steric clashes and hydrogen-bonding interactions. In contrast, we show that the observed side-chain dihedral angle distributions for both Val and Thr can be explained using only local steric interactions in a dipeptide mimetic. Our results emphasize the power of simple physical approaches and their importance for future advances in protein engineering and design. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. A Bayesian-probability-based method for assigning protein backbone dihedral angles based on chemical shifts and local sequences

    Wang Jun; Liu Haiyan [University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at the Microscale, and Key Laboratory of Structural Biology, School of Life Sciences (China)], E-mail: hyliu@ustc.edu.cn

    2007-01-15

    Chemical shifts contain substantial information about protein local conformations. We present a method to assign individual protein backbone dihedral angles into specific regions on the Ramachandran map based on the amino acid sequences and the chemical shifts of backbone atoms of tripeptide segments. The method uses a scoring function derived from the Bayesian probability for the central residue of a query tripeptide segment to have a particular conformation. The Ramachandran map is partitioned into representative regions at two levels of resolution. The lower resolution partitioning is equivalent to the conventional definitions of different secondary structure regions on the map. At the higher resolution level, the {alpha} and {beta} regions are further divided into subregions. Predictions are attempted at both levels of resolution. We compared our method with TALOS using the original TALOS database, and obtained comparable results. Although TALOS may produce the best results with currently available databases which are much enlarged, the Bayesian-probability-based approach can provide a quantitative measure for the reliability of predictions.

  12. Normal mode analysis based on an elastic network model for biomolecules in the Protein Data Bank, which uses dihedral angles as independent variables.

    Wako, Hiroshi; Endo, Shigeru

    2013-06-01

    We have developed a computer program, named PDBETA, that performs normal mode analysis (NMA) based on an elastic network model that uses dihedral angles as independent variables. Taking advantage of the relatively small number of degrees of freedom required to describe a molecular structure in dihedral angle space and a simple potential-energy function independent of atom types, we aimed to develop a program applicable to a full-atom system of any molecule in the Protein Data Bank (PDB). The algorithm for NMA used in PDBETA is the same as the computer program FEDER/2, developed previously. Therefore, the main challenge in developing PDBETA was to find a method that can automatically convert PDB data into molecular structure information in dihedral angle space. Here, we illustrate the performance of PDBETA with a protein-DNA complex, a protein-tRNA complex, and some non-protein small molecules, and show that the atomic fluctuations calculated by PDBETA reproduce the temperature factor data of these molecules in the PDB. A comparison was also made with elastic-network-model based NMA in a Cartesian-coordinate system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. CACA-TOCSY with alternate 13C–12C labeling: a 13Cα direct detection experiment for mainchain resonance assignment, dihedral angle information, and amino acid type identification

    Takeuchi, Koh; Frueh, Dominique P.; Sun, Zhen-Yu J.; Hiller, Sebastian

    2010-01-01

    We present a 13C direct detection CACA-TOCSY experiment for samples with alternate 13C–12C labeling. It provides inter-residue correlations between 13Cα resonances of residue i and adjacent Cαs at positions i − 1 and i + 1. Furthermore, longer mixing times yield correlations to Cα nuclei separated by more than one residue. The experiment also provides Cα-to-sidechain correlations, some amino acid type identifications and estimates for ψ dihedral angles. The power of the experiment derives from the alternate 13C–12C labeling with [1,3-13C] glycerol or [2-13C] glycerol, which allows utilizing the small scalar 3JCC couplings that are masked by strong 1JCC couplings in uniformly 13C labeled samples. PMID:20383561

  14. CACA-TOCSY with alternate 13C-12C labeling: a 13Cα direct detection experiment for mainchain resonance assignment, dihedral angle information, and amino acid type identification

    Takeuchi, Koh; Frueh, Dominique P.; Sun, Zhen-Yu J.; Hiller, Sebastian; Wagner, Gerhard

    2010-01-01

    We present a 13 C direct detection CACA-TOCSY experiment for samples with alternate 13 C- 12 C labeling. It provides inter-residue correlations between 13 C α resonances of residue i and adjacent C α s at positions i - 1 and i + 1. Furthermore, longer mixing times yield correlations to C α nuclei separated by more than one residue. The experiment also provides C α -to-sidechain correlations, some amino acid type identifications and estimates for ψ dihedral angles. The power of the experiment derives from the alternate 13 C- 12 C labeling with [1,3- 13 C] glycerol or [2- 13 C] glycerol, which allows utilizing the small scalar 3 J CC couplings that are masked by strong 1 J CC couplings in uniformly 13 C labeled samples.

  15. CACA-TOCSY with alternate 13C-12C labeling: a 13Calpha direct detection experiment for mainchain resonance assignment, dihedral angle information, and amino acid type identification.

    Takeuchi, Koh; Frueh, Dominique P; Sun, Zhen-Yu J; Hiller, Sebastian; Wagner, Gerhard

    2010-05-01

    We present a (13)C direct detection CACA-TOCSY experiment for samples with alternate (13)C-(12)C labeling. It provides inter-residue correlations between (13)C(alpha) resonances of residue i and adjacent C(alpha)s at positions i - 1 and i + 1. Furthermore, longer mixing times yield correlations to C(alpha) nuclei separated by more than one residue. The experiment also provides C(alpha)-to-sidechain correlations, some amino acid type identifications and estimates for psi dihedral angles. The power of the experiment derives from the alternate (13)C-(12)C labeling with [1,3-(13)C] glycerol or [2-(13)C] glycerol, which allows utilizing the small scalar (3)J(CC) couplings that are masked by strong (1)J(CC) couplings in uniformly (13)C labeled samples.

  16. Tuning cofactor redox potentials: the 2-methoxy dihedral angle generates a redox potential difference of >160 mV between the primary (Q(A)) and secondary (Q(B)) quinones of the bacterial photosynthetic reaction center.

    Taguchi, Alexander T; Mattis, Aidas J; O'Malley, Patrick J; Dikanov, Sergei A; Wraight, Colin A

    2013-10-15

    Only quinones with a 2-methoxy group can act simultaneously as the primary (QA) and secondary (QB) electron acceptors in photosynthetic reaction centers from Rhodobacter sphaeroides. (13)C hyperfine sublevel correlation measurements of the 2-methoxy in the semiquinone states, SQA and SQB, were compared with quantum mechanics calculations of the (13)C couplings as a function of the dihedral angle. X-ray structures support dihedral angle assignments corresponding to a redox potential gap (ΔEm) between QA and QB of ~180 mV. This is consistent with the failure of a ubiquinone analogue lacking the 2-methoxy to function as QB in mutant reaction centers with a ΔEm of ≈160-195 mV.

  17. Dihedral flavor symmetries

    Blum, Alexander Simon

    2009-06-10

    This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D{sub 4}, the other describing quarks and employing the symmetry D{sub 14}. In the latter model it is the quark mixing matrix element V{sub ud} - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)

  18. Dihedral flavor symmetries

    Blum, Alexander Simon

    2009-01-01

    This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D 4 , the other describing quarks and employing the symmetry D 14 . In the latter model it is the quark mixing matrix element V ud - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)

  19. CACA-TOCSY with alternate {sup 13}C-{sup 12}C labeling: a {sup 13}C{sup {alpha}} direct detection experiment for mainchain resonance assignment, dihedral angle information, and amino acid type identification

    Takeuchi, Koh [National Institute of Advanced Industrial Science and Technology (AIST), Biomedicinal Information Research Center (BIRC) (Japan); Frueh, Dominique P.; Sun, Zhen-Yu J.; Hiller, Sebastian; Wagner, Gerhard, E-mail: gerhard_wagner@hms.harvard.ed [Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology (United States)

    2010-05-15

    We present a {sup 13}C direct detection CACA-TOCSY experiment for samples with alternate {sup 13}C-{sup 12}C labeling. It provides inter-residue correlations between {sup 13}C{sup {alpha}} resonances of residue i and adjacent C{sup {alpha}s} at positions i - 1 and i + 1. Furthermore, longer mixing times yield correlations to C{sup {alpha}} nuclei separated by more than one residue. The experiment also provides C{sup {alpha}}-to-side chain correlations, some amino acid type identifications and estimates for {psi} dihedral angles. The power of the experiment derives from the alternate {sup 13}C-{sup 12}C labeling with [1,3-{sup 13}C] glycerol or [2-{sup 13}C] glycerol, which allows utilizing the small scalar {sup 3}J{sub CC} couplings that are masked by strong {sup 1}J{sub CC} couplings in uniformly {sup 13}C labeled samples.

  20. Accurate Analysis of Target Characteristic in Bistatic SAR Images: A Dihedral Corner Reflectors Case.

    Ao, Dongyang; Li, Yuanhao; Hu, Cheng; Tian, Weiming

    2017-12-22

    The dihedral corner reflectors are the basic geometric structure of many targets and are the main contributions of radar cross section (RCS) in the synthetic aperture radar (SAR) images. In stealth technologies, the elaborate design of the dihedral corners with different opening angles is a useful approach to reduce the high RCS generated by multiple reflections. As bistatic synthetic aperture sensors have flexible geometric configurations and are sensitive to the dihedral corners with different opening angles, they specially fit for the stealth target detections. In this paper, the scattering characteristic of dihedral corner reflectors is accurately analyzed in bistatic synthetic aperture images. The variation of RCS with the changing opening angle is formulated and the method to design a proper bistatic radar for maximizing the detection capability is provided. Both the results of the theoretical analysis and the experiments show the bistatic SAR could detect the dihedral corners, under a certain bistatic angle which is related to the geometry of target structures.

  1. A fast and accurate dihedral interpolation loop subdivision scheme

    Shi, Zhuo; An, Yalei; Wang, Zhongshuai; Yu, Ke; Zhong, Si; Lan, Rushi; Luo, Xiaonan

    2018-04-01

    In this paper, we propose a fast and accurate dihedral interpolation Loop subdivision scheme for subdivision surfaces based on triangular meshes. In order to solve the problem of surface shrinkage, we keep the limit condition unchanged, which is important. Extraordinary vertices are handled using modified Butterfly rules. Subdivision schemes are computationally costly as the number of faces grows exponentially at higher levels of subdivision. To address this problem, our approach is to use local surface information to adaptively refine the model. This is achieved simply by changing the threshold value of the dihedral angle parameter, i.e., the angle between the normals of a triangular face and its adjacent faces. We then demonstrate the effectiveness of the proposed method for various 3D graphic triangular meshes, and extensive experimental results show that it can match or exceed the expected results at lower computational cost.

  2. Exact Solutions for Internuclear Vectors and Backbone Dihedral Angles from NH Residual Dipolar Couplings in Two Media, and their Application in a Systematic Search Algorithm for Determining Protein Backbone Structure

    Wang Lincong; Donald, Bruce Randall

    2004-01-01

    We have derived a quartic equation for computing the direction of an internuclear vector from residual dipolar couplings (RDCs) measured in two aligning media, and two simple trigonometric equations for computing the backbone (φ,ψ) angles from two backbone vectors in consecutive peptide planes. These equations make it possible to compute, exactly and in constant time, the backbone (φ,ψ) angles for a residue from RDCs in two media on any single backbone vector type. Building upon these exact solutions we have designed a novel algorithm for determining a protein backbone substructure consisting of α-helices and β-sheets. Our algorithm employs a systematic search technique to refine the conformation of both α-helices and β-sheets and to determine their orientations using exclusively the angular restraints from RDCs. The algorithm computes the backbone substructure employing very sparse distance restraints between pairs of α-helices and β-sheets refined by the systematic search. The algorithm has been demonstrated on the protein human ubiquitin using only backbone NH RDCs, plus twelve hydrogen bonds and four NOE distance restraints. Further, our results show that both the global orientations and the conformations of α-helices and β-strands can be determined with high accuracy using only two RDCs per residue. The algorithm requires, as its input, backbone resonance assignments, the identification of α-helices and β-sheets as well as sparse NOE distance and hydrogen bond restraints.Abbreviations: NMR - nuclear magnetic resonance; RDC - residual dipolar coupling; NOE - nuclear Overhauser effect; SVD - singular value decomposition; DFS - depth-first search; RMSD - root mean square deviation; POF - principal order frame; PDB - protein data bank; SA - simulated annealing; MD - molecular dynamics

  3. Accurate Analysis of Target Characteristic in Bistatic SAR Images: A Dihedral Corner Reflectors Case

    Dongyang Ao

    2017-12-01

    Full Text Available The dihedral corner reflectors are the basic geometric structure of many targets and are the main contributions of radar cross section (RCS in the synthetic aperture radar (SAR images. In stealth technologies, the elaborate design of the dihedral corners with different opening angles is a useful approach to reduce the high RCS generated by multiple reflections. As bistatic synthetic aperture sensors have flexible geometric configurations and are sensitive to the dihedral corners with different opening angles, they specially fit for the stealth target detections. In this paper, the scattering characteristic of dihedral corner reflectors is accurately analyzed in bistatic synthetic aperture images. The variation of RCS with the changing opening angle is formulated and the method to design a proper bistatic radar for maximizing the detection capability is provided. Both the results of the theoretical analysis and the experiments show the bistatic SAR could detect the dihedral corners, under a certain bistatic angle which is related to the geometry of target structures.

  4. Accurate Analysis of Target Characteristic in Bistatic SAR Images: A Dihedral Corner Reflectors Case

    Ao, Dongyang; Hu, Cheng; Tian, Weiming

    2017-01-01

    The dihedral corner reflectors are the basic geometric structure of many targets and are the main contributions of radar cross section (RCS) in the synthetic aperture radar (SAR) images. In stealth technologies, the elaborate design of the dihedral corners with different opening angles is a useful approach to reduce the high RCS generated by multiple reflections. As bistatic synthetic aperture sensors have flexible geometric configurations and are sensitive to the dihedral corners with different opening angles, they specially fit for the stealth target detections. In this paper, the scattering characteristic of dihedral corner reflectors is accurately analyzed in bistatic synthetic aperture images. The variation of RCS with the changing opening angle is formulated and the method to design a proper bistatic radar for maximizing the detection capability is provided. Both the results of the theoretical analysis and the experiments show the bistatic SAR could detect the dihedral corners, under a certain bistatic angle which is related to the geometry of target structures. PMID:29271917

  5. Automorphic Lie algebras with dihedral symmetry

    Knibbeler, V; Lombardo, S; A Sanders, J

    2014-01-01

    The concept of automorphic Lie algebras arises in the context of reduction groups introduced in the early 1980s in the field of integrable systems. automorphic Lie algebras are obtained by imposing a discrete group symmetry on a current algebra of Krichever–Novikov type. Past work shows remarkable uniformity between algebras associated to different reduction groups. For example, if the base Lie algebra is sl 2 (C) and the poles of the automorphic Lie algebra are restricted to an exceptional orbit of the symmetry group, changing the reduction group does not affect the Lie algebra structure. In this research we fix the reduction group to be the dihedral group and vary the orbit of poles as well as the group action on the base Lie algebra. We find a uniform description of automorphic Lie algebras with dihedral symmetry, valid for poles at exceptional and generic orbits. (paper)

  6. Teaching Molecular Symmetry of Dihedral Point Groups by Drawing Useful 2D Projections

    Chen, Lan; Sun, Hongwei; Lai, Chengming

    2015-01-01

    There are two main difficulties in studying molecular symmetry of dihedral point groups. One is locating the C[subscript 2] axes perpendicular to the C[subscript n] axis, while the other is finding the s[subscript]d planes which pass through the C[subscript n] axis and bisect the angles formed by adjacent C[subscript 2] axes. In this paper, a…

  7. Integral pentavalent Cayley graphs on abelian or dihedral groups

    MOHSEN GHASEMI

    ghasemi@urmia.ac.ir. MS received 8 July 2015; revised 10 July 2016. Abstract. A graph is called integral, if all of its eigenvalues are integers. In this paper, we give some results about integral pentavalent Cayley graphs on abelian or dihedral.

  8. Registration of Images with N-fold Dihedral Blur

    Pedone, M.; Flusser, Jan; Heikkila, J.

    2015-01-01

    Roč. 24, č. 3 (2015), s. 1036-1045 ISSN 1057-7149 R&D Projects: GA ČR GA13-29225S; GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Image registration * blurred images * N-fold rotational symmetry * dihedral symmetry * phase correlation Subject RIV: JD - Computer Applications, Robotics Impact factor: 3.735, year: 2015 http://library.utia.cas.cz/separaty/2015/ZOI/flusser-0441247.pdf

  9. Modeling Bottom-Up Visual Attention Using Dihedral Group D4 §

    Puneet Sharma

    2016-08-01

    Full Text Available In this paper, first, we briefly describe the dihedral group D 4 that serves as the basis for calculating saliency in our proposed model. Second, our saliency model makes two major changes in a latest state-of-the-art model known as group-based asymmetry. First, based on the properties of the dihedral group D 4 , we simplify the asymmetry calculations associated with the measurement of saliency. This results is an algorithm that reduces the number of calculations by at least half that makes it the fastest among the six best algorithms used in this research article. Second, in order to maximize the information across different chromatic and multi-resolution features, the color image space is de-correlated. We evaluate our algorithm against 10 state-of-the-art saliency models. Our results show that by using optimal parameters for a given dataset, our proposed model can outperform the best saliency algorithm in the literature. However, as the differences among the (few best saliency models are small, we would like to suggest that our proposed model is among the best and the fastest among the best. Finally, as a part of future work, we suggest that our proposed approach on saliency can be extended to include three-dimensional image data.

  10. How to make sticky surfaces slippery: Contact angle hysteresis in electrowetting with alternating voltage

    Li, F.; Li, F.; Mugele, Friedrich Gunther

    2008-01-01

    Contact angle hysteresis caused by random pinning forces is a major obstacle in moving small quantities of liquid on solid surfaces. Here, we demonstrate that the contact angle hysteresis for sessile drops in electrowetting almost disappears with increasing alternating voltage, whereas for direct

  11. Design and Polarization Characteristics Analysis of Dihedral Based on Salisbury Screen

    Zhang Ran

    2016-12-01

    Full Text Available Salisbury screens have a number of unique electromagnetic scattering characteristics. When appropriately designed, the Salisbury screen can reach the radar target signature transform. Based on the electromagnetic scattering characteristics of the Salisbury screen, we designed a novel dihedral corner, and theoretically analyzed and simulated its electromagnetic scattering characteristics in this study. The results reveal the monostatic radar cross section curves of the 90°and 60° Salisbury screen dihedral and metal dihedral, respectively. Taking an orthogonal dihedral corner as an example, we obtained the polarization scattering matrixes for different incident degrees. In addition, we investigated the influence of illumination frequency, target gestures, and other key factors on the polarization characteristics of the Salisbury screen dihedral corner. The theoretical and simulation analysis results show that compared with the conventional metal dihedral corner, the Salisbury screen dihedral corner significantly influences the scattering characteristics and will have potential application in electronic warfare.

  12. Using a Simulation Game to Make Learning about Angles Meaningful. An Exploratory Study in Primary School

    Piu, Angela; Fregola, Cesare; Santoro, Anna

    2016-01-01

    As indicated in numerous research studies, schoolchildren encounter many difficulties and obstacles in learning the multifaceted concept of the angle. In order to explore the possibility of enhancing schoolchildren's understanding of such a concept, the authors present a study that aims at investigating some structural characteristics of…

  13. Freeman-Durden Decomposition with Oriented Dihedral Scattering

    Yan Jian

    2014-10-01

    Full Text Available In this paper, when the azimuth direction of polarimetric Synthetic Aperature Radars (SAR differs from the planting direction of crops, the double bounce of the incident electromagnetic waves from the terrain surface to the growing crops is investigated and compared with the normal double bounce. Oriented dihedral scattering model is developed to explain the investigated double bounce and is introduced into the Freeman-Durden decomposition. The decomposition algorithm corresponding to the improved decomposition is then proposed. The airborne polarimetric SAR data for agricultural land covering two flight tracks are chosen to validate the algorithm; the decomposition results show that for agricultural vegetated land, the improved Freeman-Durden decomposition has the advantage of increasing the decomposition coherency among the polarimetric SAR data along the different flight tracks.

  14. Unique interplay between electronic states and dihedral angle for the molecular rotor of diphenyldiacetylene

    Thulstrup, Peter Waaben; Hoffmann, Søren Vrønning; Hansen, Bjarke Knud Vilster

    2011-01-01

    A new analysis of the optical properties of the molecular rotor 1,4-diphenyl-1,3-butadiyne (diphenyl-diacetylene, DPDA) is presented, taking account of the conformational dynamics. The absorption spectra are interpreted in terms of simultaneous contributions from planar as well as non-planar rota......A new analysis of the optical properties of the molecular rotor 1,4-diphenyl-1,3-butadiyne (diphenyl-diacetylene, DPDA) is presented, taking account of the conformational dynamics. The absorption spectra are interpreted in terms of simultaneous contributions from planar as well as non...

  15. High-pressure, high-temperature magic angle spinning nuclear magnetic resonance devices and processes for making and using same

    Hu, Jian Zhi; Hu, Mary Y.; Townsend, Mark R.; Lercher, Johannes A.; Peden, Charles H. F.

    2015-10-06

    Re-usable ceramic magic angle spinning (MAS) NMR rotors constructed of high-mechanic strength ceramics are detailed that include a sample compartment that maintains high pressures up to at least about 200 atmospheres (atm) and high temperatures up to about least about 300.degree. C. during operation. The rotor designs minimize pressure losses stemming from penetration over an extended period of time. The present invention makes possible a variety of in-situ high pressure, high temperature MAS NMR experiments not previously achieved in the prior art.

  16. Scoliosis angle

    Marklund, T.

    1978-01-01

    The most commonly used methods of assessing the scoliotic deviation measure angles that are not clearly defined in relation to the anatomy of the patient. In order to give an anatomic basis for such measurements it is proposed to define the scoliotic deviation as the deviation the vertebral column makes with the sagittal plane. Both the Cobb and the Ferguson angles may be based on this definition. The present methods of measurement are then attempts to measure these angles. If the plane of these angles is parallel to the film, the measurement will be correct. Errors in the measurements may be incurred by the projection. A hypothetical projection, called a 'rectified orthogonal projection', is presented, which correctly represents all scoliotic angles in accordance with these principles. It can be constructed in practice with the aid of a computer and by performing measurements on two projections of the vertebral column; a scoliotic curve can be represented independent of the kyphosis and lordosis. (Auth.)

  17. Torsion angle dependence of the rectifying performance in molecular device with asymmetrical anchoring groups

    Wang, L.H.; Guo, Y.; Tian, C.F.; Song, X.P.; Ding, B.J.

    2010-01-01

    Using first-principles density functional theory and nonequilibrium Green's function formalism, we investigate the effect of torsion angle on the rectifying characteristics of 4'-thiolate-biphenyl-4-dithiocarboxylate sandwiched between two Au(111) electrodes. The results show that the torsion angle has an evident influence on rectifying performance of such devices. By increasing the dihedral angle between two phenyl rings, namely changing the magnitude of the intermolecular coupling effect, a different rectifying behavior can be observed in these systems. Our findings highlight that the rectifying characteristics are intimately related to dihedral angles and can provide fundamental guidelines for the design of functional molecular devices.

  18. Femoral neck-shaft angle in extra-capsular proximal femoral fracture fixation; does it make a TAD of difference?

    Walton, N P; Wynn-Jones, H; Ward, M S; Wimhurst, J A

    2005-11-01

    The effect of femoral neck-shaft angle and implant type on the accuracy of lag screw placement in extra-capsular proximal femoral fracture fixation was investigated. Radiographs of all extra-capsular proximal femoral fractures seen in one unit over 18 months were reviewed. Of 399 cases, 307 (237 female, 70 male) were included in the study as they had no contra-lateral proximal femoral metal work. Femoral neck-shaft angle (NSA) of the uninjured hip and magnification adjusted tip-apex distance (TAD) of femoral head lag screw were measured. Type of fixation implant was 135 degrees classic hip screw (CHS) (n=144) or 130 degrees intra-medullary hip screw (IMHS) (n=163). Mean contra-lateral NSA was 130.2 degrees (112.9--148 degrees ) and 64 patients (58 female, 6 male) had a NSA TAD was 18.7 mm (5.8--43.8mm) and 88.9% of cases had a TAD of less than 25 mm. TAD values were significantly greater using an IMHS if NSA was 125 degrees (p=0.028). This was not the case with the CHS. The use of the 130 degrees -IMHS in patients with a NSA 125 degrees and caution is advocated when using this device in such cases.

  19. Electronic Transitions in Conformationally Controlled Tetrasilanes with a Wide Range of SiSiSiSi Dihedral Angles

    Tsuji, H.; Fogarty, H. A.; Ehara, M.; Fukuda, R.; Casher, D. L.; Tamao, K.; Nakatsuji, H.; Michl, Josef

    2014-01-01

    Roč. 20, č. 30 (2014), s. 9431-9441 ISSN 0947-6539 Institutional support: RVO:61388963 Keywords : conformational effects * electronic spectra * SAC-CI calculations * silicon * UV/Vis spectroscopy Subject RIV: CC - Organic Chemistry Impact factor: 5.731, year: 2014

  20. Classification Formula and Generation Algorithm of Cycle Decomposition Expression for Dihedral Groups

    Dakun Zhang

    2013-01-01

    Full Text Available The necessary of classification research on common formula of group (dihedral group cycle decomposition expression is illustrated. It includes the reflection and rotation conversion, which derived six common formulae on cycle decomposition expressions of group; it designed the generation algorithm on the cycle decomposition expressions of group, which is based on the method of replacement conversion and the classification formula; algorithm analysis and the results of the process show that the generation algorithm which is based on the classification formula is outperformed by the general algorithm which is based on replacement conversion; it has great significance to solve the enumeration of the necklace combinational scheme, especially the structural problems of combinational scheme, by using group theory and computer.

  1. On some homological functors of Bieberbach group of dimension four with dihedral point group of order eight

    Mohammad, Siti Afiqah; Ali, Nor Muhainiah Mohd; Sarmin, Nor Haniza; Idrus, Nor'ashiqin Mohd; Masri, Rohaidah

    2014-06-01

    A Bieberbach group is a torsion free crystallographic group, which is an extension of a free abelian group of finite rank by a finite point group, while homological functors of a group include nonabelian tensor square, exterior square and Schur Multiplier. In this paper, some homological functors of a Bieberbach group of dimension four with dihedral point group of order eight are computed.

  2. Make

    Frauenfelder, Mark

    2012-01-01

    The first magazine devoted entirely to do-it-yourself technology projects presents its 29th quarterly edition for people who like to tweak, disassemble, recreate, and invent cool new uses for technology. MAKE Volume 29 takes bio-hacking to a new level. Get introduced to DIY tracking devices before they hit the consumer electronics marketplace. Learn how to build an EKG machine to study your heartbeat, and put together a DIY bio lab to study athletic motion using consumer grade hardware.

  3. Optimal reconstruction angles

    Cook, G.O. Jr.; Knight, L.

    1979-07-01

    The question of optimal projection angles has recently become of interest in the field of reconstruction from projections. Here, studies are concentrated on the n x n pixel space, where literative algorithms such as ART and direct matrix techniques due to Katz are considered. The best angles are determined in a Gauss--Markov statistical sense as well as with respect to a function-theoretical error bound. The possibility of making photon intensity a function of angle is also examined. Finally, the best angles to use in an ART-like algorithm are studied. A certain set of unequally spaced angles was found to be preferred in several contexts. 15 figures, 6 tables

  4. The nonabelian tensor square of Bieberbach group of dimension five with dihedral point group of order eight

    Fauzi, Wan Nor Farhana Wan Mohd; Idrus, Nor'ashiqin Mohd; Masri, Rohaidah; Sarmin, Nor Haniza

    2014-07-01

    The nonabelian tensor product was originated in homotopy theory as well as in algebraic K-theory. The nonabelian tensor square is a special case of the nonabelian tensor product where the product is defined if the two groups act on each other in a compatible way and their action are taken to be conjugation. In this paper, the computation of nonabelian tensor square of a Bieberbach group, which is a torsion free crystallographic group, of dimension five with dihedral point group of order eight is determined. Groups, Algorithms and Programming (GAP) software has been used to assist and verify the results.

  5. Small angle neutron scattering

    Bernardini, G.; Cherubini, G.; Fioravanti, A.; Olivi, A.

    1976-09-01

    A method for the analysis of the data derived from neutron small angle scattering measurements has been accomplished in the case of homogeneous particles, starting from the basic theory without making any assumption on the form of particle size distribution function. The experimental scattering curves are interpreted with the aid the computer by means of a proper routine. The parameters obtained are compared with the corresponding ones derived from observations at the transmission electron microscope

  6. Deep learning methods for protein torsion angle prediction.

    Li, Haiou; Hou, Jie; Adhikari, Badri; Lyu, Qiang; Cheng, Jianlin

    2017-09-18

    Deep learning is one of the most powerful machine learning methods that has achieved the state-of-the-art performance in many domains. Since deep learning was introduced to the field of bioinformatics in 2012, it has achieved success in a number of areas such as protein residue-residue contact prediction, secondary structure prediction, and fold recognition. In this work, we developed deep learning methods to improve the prediction of torsion (dihedral) angles of proteins. We design four different deep learning architectures to predict protein torsion angles. The architectures including deep neural network (DNN) and deep restricted Boltzmann machine (DRBN), deep recurrent neural network (DRNN) and deep recurrent restricted Boltzmann machine (DReRBM) since the protein torsion angle prediction is a sequence related problem. In addition to existing protein features, two new features (predicted residue contact number and the error distribution of torsion angles extracted from sequence fragments) are used as input to each of the four deep learning architectures to predict phi and psi angles of protein backbone. The mean absolute error (MAE) of phi and psi angles predicted by DRNN, DReRBM, DRBM and DNN is about 20-21° and 29-30° on an independent dataset. The MAE of phi angle is comparable to the existing methods, but the MAE of psi angle is 29°, 2° lower than the existing methods. On the latest CASP12 targets, our methods also achieved the performance better than or comparable to a state-of-the art method. Our experiment demonstrates that deep learning is a valuable method for predicting protein torsion angles. The deep recurrent network architecture performs slightly better than deep feed-forward architecture, and the predicted residue contact number and the error distribution of torsion angles extracted from sequence fragments are useful features for improving prediction accuracy.

  7. Solutions of the Yang-Baxter equation: Descendants of the six-vertex model from the Drinfeld doubles of dihedral group algebras

    Finch, P.E.; Dancer, K.A.; Isaac, P.S.; Links, J.

    2011-01-01

    The representation theory of the Drinfeld doubles of dihedral groups is used to solve the Yang-Baxter equation. Use of the two-dimensional representations recovers the six-vertex model solution. Solutions in arbitrary dimensions, which are viewed as descendants of the six-vertex model case, are then obtained using tensor product graph methods which were originally formulated for quantum algebras. Connections with the Fateev-Zamolodchikov model are discussed.

  8. Glaucoma, Open-Angle

    ... Home » Statistics and Data » Glaucoma, Open-angle Listen Glaucoma, Open-angle Open-angle Glaucoma Defined In open-angle glaucoma, the fluid passes ... 2010 2010 U.S. Age-Specific Prevalence Rates for Glaucoma by Age and Race/Ethnicity The prevalence of ...

  9. Small angle spectrometers: Summary

    Courant, E.; Foley, K.J.; Schlein, P.E.

    1986-01-01

    Aspects of experiments at small angles at the Superconducting Super Collider are considered. Topics summarized include a small angle spectrometer, a high contingency spectrometer, dipole and toroid spectrometers, and magnet choices

  10. Contact Angle Goniometer

    Federal Laboratory Consortium — Description:The FTA32 goniometer provides video-based contact angle and surface tension measurement. Contact angles are measured by fitting a mathematical expression...

  11. Variable angle asymmetric cut monochromator

    Smither, R.K.; Fernandez, P.B.

    1993-09-01

    A variable incident angle, asymmetric cut, double crystal monochromator was tested for use on beamlines at the Advanced Photon Source (APS). For both undulator and wiggler beams the monochromator can expand area of footprint of beam on surface of the crystals to 50 times the area of incident beam; this will reduce the slope errors by a factor of 2500. The asymmetric cut allows one to increase the acceptance angle for incident radiation and obtain a better match to the opening angle of the incident beam. This can increase intensity of the diffracted beam by a factor of 2 to 5 and can make the beam more monochromatic, as well. The monochromator consists of two matched, asymmetric cut (18 degrees), silicon crystals mounted so that they can be rotated about three independent axes. Rotation around the first axis controls the Bragg angle. The second rotation axis is perpendicular to the diffraction planes and controls the increase of the area of the footprint of the beam on the crystal surface. Rotation around the third axis controls the angle between the surface of the crystal and the wider, horizontal axis for the beam and can make the footprint a rectangle with a minimum. length for this area. The asymmetric cut is 18 degrees for the matched pair of crystals, which allows one to expand the footprint area by a factor of 50 for Bragg angles up to 19.15 degrees (6 keV for Si[111] planes). This monochromator, with proper cooling, will be useful for analyzing the high intensity x-ray beams produced by both undulators and wigglers at the APS

  12. Assessing protein conformational sampling methods based on bivariate lag-distributions of backbone angles

    Maadooliat, Mehdi; Gao, Xin; Huang, Jianhua Z.

    2012-01-01

    Despite considerable progress in the past decades, protein structure prediction remains one of the major unsolved problems in computational biology. Angular-sampling-based methods have been extensively studied recently due to their ability to capture the continuous conformational space of protein structures. The literature has focused on using a variety of parametric models of the sequential dependencies between angle pairs along the protein chains. In this article, we present a thorough review of angular-sampling-based methods by assessing three main questions: What is the best distribution type to model the protein angles? What is a reasonable number of components in a mixture model that should be considered to accurately parameterize the joint distribution of the angles? and What is the order of the local sequence-structure dependency that should be considered by a prediction method? We assess the model fits for different methods using bivariate lag-distributions of the dihedral/planar angles. Moreover, the main information across the lags can be extracted using a technique called Lag singular value decomposition (LagSVD), which considers the joint distribution of the dihedral/planar angles over different lags using a nonparametric approach and monitors the behavior of the lag-distribution of the angles using singular value decomposition. As a result, we developed graphical tools and numerical measurements to compare and evaluate the performance of different model fits. Furthermore, we developed a web-tool (http://www.stat.tamu. edu/~madoliat/LagSVD) that can be used to produce informative animations. © The Author 2012. Published by Oxford University Press.

  13. Assessing protein conformational sampling methods based on bivariate lag-distributions of backbone angles

    Maadooliat, Mehdi

    2012-08-27

    Despite considerable progress in the past decades, protein structure prediction remains one of the major unsolved problems in computational biology. Angular-sampling-based methods have been extensively studied recently due to their ability to capture the continuous conformational space of protein structures. The literature has focused on using a variety of parametric models of the sequential dependencies between angle pairs along the protein chains. In this article, we present a thorough review of angular-sampling-based methods by assessing three main questions: What is the best distribution type to model the protein angles? What is a reasonable number of components in a mixture model that should be considered to accurately parameterize the joint distribution of the angles? and What is the order of the local sequence-structure dependency that should be considered by a prediction method? We assess the model fits for different methods using bivariate lag-distributions of the dihedral/planar angles. Moreover, the main information across the lags can be extracted using a technique called Lag singular value decomposition (LagSVD), which considers the joint distribution of the dihedral/planar angles over different lags using a nonparametric approach and monitors the behavior of the lag-distribution of the angles using singular value decomposition. As a result, we developed graphical tools and numerical measurements to compare and evaluate the performance of different model fits. Furthermore, we developed a web-tool (http://www.stat.tamu. edu/~madoliat/LagSVD) that can be used to produce informative animations. © The Author 2012. Published by Oxford University Press.

  14. Contact angles on stretched solids

    Mensink, Liz; Snoeijer, Jacco

    2017-11-01

    The surface energy of solid interfaces plays a central role in wetting, as they dictate the liquid contact angle. Yet, it has been challenging to measure the solid surface energies independently, without making use of Young's law. Here we present Molecular Dynamics (MD) simulations by which we measure the surface properties for all interfaces, including the solids. We observe change in contact angles upon stretching the solid substrates, showing that the surface energy is actually strain dependent. This is clear evidence of the so-called Shuttleworth effect, making it necessary to distinguish surface energy from surface tension. We discuss how this effect gives rise to a new class of elasto-capillary phenomena. ERC Consolidator Grant No. 616918.

  15. A thermodynamic model of contact angle hysteresis.

    Makkonen, Lasse

    2017-08-14

    When a three-phase contact line moves along a solid surface, the contact angle no longer corresponds to the static equilibrium angle but is larger when the liquid is advancing and smaller when the liquid is receding. The difference between the advancing and receding contact angles, i.e., the contact angle hysteresis, is of paramount importance in wetting and capillarity. For example, it determines the magnitude of the external force that is required to make a drop slide on a solid surface. Until now, fundamental origin of the contact angle hysteresis has been controversial. Here, this origin is revealed and a quantitative theory is derived. The theory is corroborated by the available experimental data for a large number of solid-liquid combinations. The theory is applied in modelling the contact angle hysteresis on a textured surface, and these results are also in quantitative agreement with the experimental data.

  16. Small angle neutron scattering

    Cousin Fabrice

    2015-01-01

    Full Text Available Small Angle Neutron Scattering (SANS is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ∼ 1 nm up to ∼ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ∼ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area… through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer, form factor analysis (I(q→0, Guinier regime, intermediate regime, Porod regime, polydisperse system, structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates, and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast. It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of

  17. Scoliosis angle. Conceptual basis and proposed definition

    Marklund, T [Linkoepings Hoegskola (Sweden)

    1978-01-01

    The most commonly used methods of assessing the scoliotic deviation measure angles that are not clearly defined in relation to the anatomy of the patient. In order to give an anatomic basis for such measurements it is proposed to define the scoliotic deviation as the deviation the vertebral column makes with the sagittal plane. Both the Cobb and the Ferguson angles may be based on this definition. The present methods of measurement are then attempts to measure these angles. If the plane of these angles is parallel to the film, the measurement will be correct. Errors in the measurements may be incurred by the projection. A hypothetical projection, called a 'rectified orthogonal projection', is presented, which correctly represents all scoliotic angles in accordance with these principles. It can be constructed in practice with the aid of a computer and by performing measurements on two projections of the vertebral column; a scoliotic curve can be represented independent of the kyphosis and lordosis.

  18. Lateral displacement in small angle multiple scattering

    Bichsel, H.; Hanson, K.M.; Schillaci, K.M. (Los Alamos National Lab., NM (USA))

    1982-07-01

    Values have been calculated for the average lateral displacement in small angle multiple scattering of protons with energies of several hundred MeV. The calculations incorporate the Moliere distribution which does not make the gaussian approximations of the distribution in projected angle and lateral deflections. Compared to other published data, such approximations can lead to errors in the lateral displacement of up to 10% in water.

  19. Angles in hyperbolic lattices

    Risager, Morten S.; Södergren, Carl Anders

    2017-01-01

    It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior of the den......It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior...... of the density function in both the small and large variable limits. This extends earlier results by Boca, Pasol, Popa and Zaharescu and Kelmer and Kontorovich in dimension 2 to general dimension n . Our proofs use the decay of matrix coefficients together with a number of careful estimates, and lead...

  20. From lattice BF gauge theory to area-angle Regge calculus

    Bonzom, Valentin

    2009-01-01

    We consider Riemannian 4D BF lattice gauge theory, on a triangulation of spacetime. Introducing the simplicity constraints which turn BF theory into simplicial gravity, some geometric quantities of Regge calculus, areas, and 3D and 4D dihedral angles, are identified. The parallel transport conditions are taken care of to ensure a consistent gluing of simplices. We show that these gluing relations, together with the simplicity constraints, contain the constraints of area-angle Regge calculus in a simple way, via the group structure of the underlying BF gauge theory. This provides a precise road from constrained BF theory to area-angle Regge calculus. Doing so, a framework combining variables of lattice BF theory and Regge calculus is built. The action takes a form a la Regge and includes the contribution of the Immirzi parameter. In the absence of simplicity constraints, the standard spin foam model for BF theory is recovered. Insertions of local observables are investigated, leading to Casimir insertions for areas and reproducing for 3D angles known results obtained through angle operators on spin networks. The present formulation is argued to be suitable for deriving spin foam models from discrete path integrals and to unravel their geometric content.

  1. The quadriceps angle

    Miles, James Edward; Frederiksen, Jane V.; Jensen, Bente Rona

    2012-01-01

    : Pelvic limbs from red foxes (Vulpes vulpes). METHODS: Q angles were measured on hip dysplasia (HD) and whole limb (WL) view radiographs of each limb between the acetabular rim, mid-point (Q1: patellar center, Q2: femoral trochlea), and tibial tuberosity. Errors of 0.5-2.0 mm at measurement landmarks...

  2. open angle glaucoma (poag)?

    there is a build up of pressure due to poor outflow of aqueous humor. The outflow obstruction could occur at the trabecular meshwork of the anterior chamber angle or subsequently in the episcleral vein due to raised venous pressure. Such build up of pressure results in glaucoma . Elevated intraocular pressure remains the ...

  3. The lateral angle revisited

    Morgan, Jeannie; Lynnerup, Niels; Hoppa, R.D.

    2013-01-01

    measurements taken from computed tomography (CT) scans. Previous reports have observed that the lateral angle size in females is significantly larger than in males. The method was applied to an independent series of 77 postmortem CT scans (42 males, 35 females) to validate its accuracy and reliability...... method appears to be of minimal practical use in forensic anthropology and archeology....

  4. At Right Angles

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 9. At Right Angles. Shailesh A Shirali. Information and Announcements Volume 17 Issue 9 September 2012 pp 920-920. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/017/09/0920-0920 ...

  5. Wide angle isotope separator

    Kantrowitz, A.

    1976-01-01

    A method and apparatus is described for particle separation. The method uses a wide angle radially expanding vapor of a particle mixture. In particular, selective ionization of one isotope type in the particle mixture is produced in a multichamber separator and the ionized isotope type is accelerated out of the path of the vapor expansion for separate collection

  6. Determination of solid angle

    Qiu, S.; Amano, H.; Kasai, A.

    1988-01-01

    The solid angle in extended alpha source measurement for a series of counting geometries has been obtained by two methods: (1) calculated by means of the Nelson Blachmen series; (2) interpolated from the data table given by Gardner. A particular consequence of the application of the Nelson Blachmen series was deduced which was different from that given by the original author. The applicability of these two methods, as well as an experimentally measured method, is also evaluated. (author)

  7. Neutron spin echo scattering angle measurement (SESAME)

    Pynn, R.; Fitzsimmons, M.R.; Fritzsche, H.; Gierlings, M.; Major, J.; Jason, A.

    2005-01-01

    We describe experiments in which the neutron spin echo technique is used to measure neutron scattering angles. We have implemented the technique, dubbed spin echo scattering angle measurement (SESAME), using thin films of Permalloy electrodeposited on silicon wafers as sources of the magnetic fields within which neutron spins precess. With 30-μm-thick films we resolve neutron scattering angles to about 0.02 deg. with neutrons of 4.66 A wavelength. This allows us to probe correlation lengths up to 200 nm in an application to small angle neutron scattering. We also demonstrate that SESAME can be used to separate specular and diffuse neutron reflection from surfaces at grazing incidence. In both of these cases, SESAME can make measurements at higher neutron intensity than is available with conventional methods because the angular resolution achieved is independent of the divergence of the neutron beam. Finally, we discuss the conditions under which SESAME might be used to probe in-plane structure in thin films and show that the method has advantages for incident neutron angles close to the critical angle because multiple scattering is automatically accounted for

  8. The influence of flip angle on the magic angle effect

    Zurlo, J.V.; Blacksin, M.F.; Karimi, S.

    2000-01-01

    Objective. To assess the impact of flip angle with gradient sequences on the ''magic angle effect''. We characterized the magic angle effect in various gradient echo sequences and compared the signal- to-noise ratios present on these sequences with the signal-to-noise ratios of spin echo sequences.Design. Ten normal healthy volunteers were positioned such that the flexor hallucis longus tendon remained at approximately at 55 to the main magnetic field (the magic angle). The tendon was imaged by a conventional spin echo T1- and T2-weighted techniques and by a series of gradient techniques. Gradient sequences were altered by both TE and flip angle. Signal-to-noise measurements were obtained at segments of the flexor hallucis longus tendon demonstrating the magic angle effect to quantify the artifact. Signal-to-noise measurements were compared and statistical analysis performed. Similar measurements were taken of the anterior tibialis tendon as an internal control.Results and conclusions. We demonstrated the magic angle effect on all the gradient sequences. The intensity of the artifact was affected by both the TE and flip angle. Low TE values and a high flip angle demonstrated the greatest magic angle effect. At TE values less than 30 ms, a high flip angle will markedly increase the magic angle effect. (orig.)

  9. Precision measurements of the CKM angle gamma

    CERN. Geneva

    2016-01-01

    The level of CP-violation permitted within the Standard Model cannot account for the matter dominated universe in which we live. Within the Standard Model the CKM matrix, which describes the quark couplings, is expected to be unitary. By making precise measurements of the CKM matrix parameters new physics models can be constrained, or with sufficient precision the effects of physics beyond the standard model might become apparent. The CKM angle gamma is the least well known angle of the unitarity triangle. It is the only angle easily accessible at tree-level, and furthermore has almost no theoretical uncertainties. Therefore it provides an invaluable Standard Model benchmark against which other new physics sensitive tests of the CP-violation can be made. I will discuss recent measurements of gamma using the the Run 1 LHCb dataset, which improve our knowledge of this key parameter.

  10. Variable angle correlation spectroscopy

    Lee, Y.K.; Lawrence Berkeley Lab., CA

    1994-05-01

    In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with 13 C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system

  11. Equilibrium contact angle or the most-stable contact angle?

    Montes Ruiz-Cabello, F J; Rodríguez-Valverde, M A; Cabrerizo-Vílchez, M A

    2014-04-01

    It is well-established that the equilibrium contact angle in a thermodynamic framework is an "unattainable" contact angle. Instead, the most-stable contact angle obtained from mechanical stimuli of the system is indeed experimentally accessible. Monitoring the susceptibility of a sessile drop to a mechanical stimulus enables to identify the most stable drop configuration within the practical range of contact angle hysteresis. Two different stimuli may be used with sessile drops: mechanical vibration and tilting. The most stable drop against vibration should reveal the changeless contact angle but against the gravity force, it should reveal the highest resistance to slide down. After the corresponding mechanical stimulus, once the excited drop configuration is examined, the focus will be on the contact angle of the initial drop configuration. This methodology needs to map significantly the static drop configurations with different stable contact angles. The most-stable contact angle, together with the advancing and receding contact angles, completes the description of physically realizable configurations of a solid-liquid system. Since the most-stable contact angle is energetically significant, it may be used in the Wenzel, Cassie or Cassie-Baxter equations accordingly or for the surface energy evaluation. © 2013 Elsevier B.V. All rights reserved.

  12. Mapping of low flip angles in magnetic resonance

    Balezeau, Fabien; Saint-Jalmes, Herve; Eliat, Pierre-Antoine; Cayamo, Alejandro Bordelois

    2011-01-01

    Errors in the flip angle have to be corrected in many magnetic resonance imaging applications, especially for T1 quantification. However, the existing methods of B1 mapping fail to measure lower values of the flip angle despite the fact that these are extensively used in dynamic acquisition and 3D imaging. In this study, the nonlinearity of the radiofrequency (RF) transmit chain, especially for very low flip angles, is investigated and a simple method is proposed to accurately determine both the gain of the RF transmitter and the B1 field map for low flip angles. The method makes use of the spoiled gradient echo sequence with long repetition time (TR), such as applied in the double-angle method. It uses an image acquired with a flip angle of 90 0 as a reference image that is robust to B1 inhomogeneity. The ratio of the image at flip angle alpha to the image at a flip angle of 90 0 enables us to calculate the actual value of alpha. This study was carried out at 1.5 and 4.7 T, showing that the linearity of the RF supply system is highly dependent on the hardware. The method proposed here allows us to measure the flip angle from 1 0 to 60 0 with a maximal uncertainty of 10% and to correct T1 maps based on the variable flip angle method.

  13. The double Brewster angle effect

    Thirion-Lefevre, Laetitia; Guinvarc'h, Régis

    2018-01-01

    The Double Brewster angle effect (DBE) is an extension of the Brewster angle to double reflection on two orthogonal dielectric surfaces. It results from the combination of two pseudo-Brewster angles occurring in complementary incidence angles domains. It can be observed for a large range of incidence angles provided that double bounces mechanism is present. As a consequence of this effect, we show that the reflection coefficient at VV polarization can be at least 10 dB lower than the reflection coefficient at HH polarization over a wide range of incidence angle - typically from 20 to 70∘. It is experimentally demonstrated using a Synthetic Aperture Radar (SAR) image that this effect can be seen on buildings and forests. For large buildings, the difference can reach more than 20 dB. xml:lang="fr"

  14. Angle Performance on Optima XE

    David, Jonathan; Satoh, Shu

    2011-01-01

    Angle control on high energy implanters is important due to shrinking device dimensions, and sensitivity to channeling at high beam energies. On Optima XE, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through a series of narrow slits, and any angle adjustment is made by steering the beam with the corrector magnet. In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightly tilting the wafer platen during implant.Using a sensitive channeling condition, we were able to quantify the angle repeatability of Optima XE. By quantifying the sheet resistance sensitivity to both horizontal and vertical angle variation, the total angle variation was calculated as 0.04 deg. (1σ). Implants were run over a five week period, with all of the wafers selected from a single boule, in order to control for any crystal cut variation.

  15. Automated analysis of angle closure from anterior chamber angle images.

    Baskaran, Mani; Cheng, Jun; Perera, Shamira A; Tun, Tin A; Liu, Jiang; Aung, Tin

    2014-10-21

    To evaluate a novel software capable of automatically grading angle closure on EyeCam angle images in comparison with manual grading of images, with gonioscopy as the reference standard. In this hospital-based, prospective study, subjects underwent gonioscopy by a single observer, and EyeCam imaging by a different operator. The anterior chamber angle in a quadrant was classified as closed if the posterior trabecular meshwork could not be seen. An eye was classified as having angle closure if there were two or more quadrants of closure. Automated grading of the angle images was performed using customized software. Agreement between the methods was ascertained by κ statistic and comparison of area under receiver operating characteristic curves (AUC). One hundred forty subjects (140 eyes) were included, most of whom were Chinese (102/140, 72.9%) and women (72/140, 51.5%). Angle closure was detected in 61 eyes (43.6%) with gonioscopy in comparison with 59 eyes (42.1%, P = 0.73) using manual grading, and 67 eyes (47.9%, P = 0.24) with automated grading of EyeCam images. The agreement for angle closure diagnosis between gonioscopy and both manual (κ = 0.88; 95% confidence interval [CI), 0.81-0.96) and automated grading of EyeCam images was good (κ = 0.74; 95% CI, 0.63-0.85). The AUC for detecting eyes with gonioscopic angle closure was comparable for manual and automated grading (AUC 0.974 vs. 0.954, P = 0.31) of EyeCam images. Customized software for automated grading of EyeCam angle images was found to have good agreement with gonioscopy. Human observation of the EyeCam images may still be needed to avoid gross misclassification, especially in eyes with extensive angle closure. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  16. Off-Angle Iris Correction Methods

    Santos-Villalobos, Hector J [ORNL; Thompson, Joseph T [ORNL; Karakaya, Mahmut [ORNL; Boehnen, Chris Bensing [ORNL

    2016-01-01

    In many real world iris recognition systems obtaining consistent frontal images is problematic do to inexperienced or uncooperative users, untrained operators, or distracting environments. As a result many collected images are unusable by modern iris matchers. In this chapter we present four methods for correcting off-angle iris images to appear frontal which makes them compatible with existing iris matchers. The methods include an affine correction, a retraced model of the human eye, measured displacements, and a genetic algorithm optimized correction. The affine correction represents a simple way to create an iris image that appears frontal but it does not account for refractive distortions of the cornea. The other method account for refraction. The retraced model simulates the optical properties of the cornea. The other two methods are data driven. The first uses optical flow to measure the displacements of the iris texture when compared to frontal images of the same subject. The second uses a genetic algorithm to learn a mapping that optimizes the Hamming Distance scores between off-angle and frontal images. In this paper we hypothesize that the biological model presented in our earlier work does not adequately account for all variations in eye anatomy and therefore the two data-driven approaches should yield better performance. Results are presented using the commercial VeriEye matcher that show that the genetic algorithm method clearly improves over prior work and makes iris recognition possible up to 50 degrees off-angle.

  17. Measurement of the angle gamma

    Aleksan, R.; Sphicas, P.; Massachusetts Inst. of Tech., Cambridge, MA

    1993-12-01

    The angle γ as defined in the Wolfenstein approximation is not completely out of reach of current or proposed dedicated B experiments. This work represents but a first step in the direction of extracting the third angle of the unitarity triangle by study the feasibility of using new decay modes in a hadronic machine. (A.B.). 11 refs., 1 fig., 7 tabs

  18. Nucleation of small angle boundaries

    Nabarro, FRN

    1996-12-01

    Full Text Available The internal stresses induced by the strain gradients in an array of lattice cells delineated by low-angle dislocation boundaries are partially relieved by the creation of new low-angle boundaries. This is shown to be a first-order transition...

  19. Analyzing the installation angle error of a SAW torque sensor

    Fan, Yanping; Ji, Xiaojun; Cai, Ping

    2014-01-01

    When a torque is applied to a shaft, normal strain oriented at ±45° direction to the shaft axis is at its maximum, which requires two one-port SAW resonators to be bonded to the shaft at ±45° to the shaft axis. In order to make the SAW torque sensitivity high enough, the installation angle error of two SAW resonators must be confined within ±5° according to our design requirement. However, there are few studies devoted to the installation angle analysis of a SAW torque sensor presently and the angle error was usually obtained by a manual method. Hence, we propose an approximation method to analyze the angle error. First, according to the sensitive mechanism of the SAW device to torque, the SAW torque sensitivity is deduced based on the linear piezoelectric constitutive equation and the perturbation theory. Then, when a torque is applied to the tested shaft, the stress condition of two SAW resonators mounted with an angle deviating from ±45° to the shaft axis, is analyzed. The angle error is obtained by means of the torque sensitivities of two orthogonal SAW resonators. Finally, the torque measurement system is constructed and the loading and unloading experiments are performed twice. The torque sensitivities of two SAW resonators are obtained by applying average and least square method to the experimental results. Based on the derived angle error estimation function, the angle error is estimated about 3.447°, which is close to the actual angle error 2.915°. The difference between the estimated angle and the actual angle is discussed. The validity of the proposed angle error analysis method is testified to by the experimental results. (technical design note)

  20. The Effects of Word-Learning Biases on Children's Concept of Angle

    Gibson, Dominic J.; Congdon, Eliza L.; Levine, Susan C.

    2015-01-01

    Despite evidence that young children are sensitive to differences in angle measure, older students frequently struggle to grasp this important mathematical concept. When making judgments about the size of angles, children often rely on erroneous dimensions such as the length of the angles' sides. The present study tested the possibility that…

  1. Relating Trp-Glu dipeptide fluorescence to molecular conformation: the role of the discrete Chi 1 and Chi 2 angles.

    Eisenberg, Azaria Solomon; Juszczak, Laura J

    2013-07-05

    Molecular dynamics (MD), coupled with fluorescence data for charged dipeptides of tryptophanyl glutamic acid (Trp-Glu), reveal a detailed picture of how specific conformation affects fluorescence. Fluorescence emission spectra and time-resolved emission measurements have been collected for all four charged species. MD simulations 20 to 30 ns in length have also been carried out for the Trp-Glu species, as simulation provides aqueous phase conformational data that can be correlated with the fluorescence data. The calculations show that each dipeptide species is characterized by a similar set of six, discrete Chi 1, Chi 2 dihedral angle pairs. The preferred Chi 1 angles--60°, 180°, and 300°--play the significant role in positioning the terminal amine relative to the indole ring. A Chi 1 angle of 60° results in the arching of the backbone over the indole ring and no interaction of the ring with the terminal amine. Chi 1 values of 180° and 300° result in an extension of the backbone away from the indole ring and a NH3 cation-π interaction with indole. This interaction is believed responsible for charge transfer quenching. Two fluorescence lifetimes and their corresponding amplitudes correlate with the Chi 1 angle probability distribution for all four charged Trp-Glu dipeptides. Fluorescence emission band maxima are also consistent with the proposed pattern of terminal amine cation quenching of fluorescence. Copyright © 2013 Wiley Periodicals, Inc.

  2. Relationship between the Angle of Repose and Angle of Internal ...

    ). The angle of internal friction ... compression chambers. Lorenzen, 1957 (quoted by Mohsenin,. 1986), reported that the design of deep ... tiongiven for lateral pressure in deep bins as presented by Mohsenin. (1986). The presence of moisture ...

  3. Ring magnet firing angle control

    Knott, M.J.; Lewis, L.G.; Rabe, H.H.

    1975-01-01

    A device is provided for controlling the firing angles of thyratrons (rectifiers) in a ring magnet power supply. A phase lock loop develops a smooth ac signal of frequency equal to and in phase with the frequency of the voltage wave developed by the main generator of the power supply. A counter that counts from zero to a particular number each cycle of the main generator voltage wave is synchronized with the smooth AC signal of the phase lock loop. Gates compare the number in the counter with predetermined desired firing angles for each thyratron and with coincidence the proper thyratron is fired at the predetermined firing angle

  4. Viewing angle switching of patterned vertical alignment liquid crystal display

    Lim, Young Jin; Jeong, Eun; Chin, Mi Hyung; Lee, Seung Hee; Ji, Seunghoon; Lee, Gi-Dong

    2008-01-01

    Viewing angle control of a patterned vertical alignment (PVA) liquid crystal display using only one panel is investigated. In conventional PVA modes, a vertically aligned liquid crystal (LC) director tilts down in four directions making 45 deg. with respect to crossed polarizers to exhibit a wide viewing angle. In the viewing angle control device, one pixel was divided into two sub-pixels such that the LC director in the main pixel is controlled to be tilted down in multiple directions making an angle with the polarizer, playing the role of main display with the wide viewing angle, while the LC director in the sub-pixel is controlled to be tilted down to the polarizer axis, playing the role of sub-pixel to the viewing angle control for the narrow viewing angle. Using sub-pixel control, light leakage or any type of information such as characters and image can be generated in oblique viewing directions without distorting the image quality in the normal direction, which will prevent others from peeping at the displayed image by overlapping the displayed image with the made image

  5. Indoor Measurement of Angle Resolved Light Absorption by Black Silicon

    Amdemeskel, Mekbib Wubishet; Iandolo, Beniamino; Davidsen, Rasmus Schmidt

    2017-01-01

    Angle resolved optical spectroscopy of photovoltaic (PV) samples gives crucial information on PV panels under realistic working conditions. Here, we introduce measurements of angle resolved light absorption by PV cells, performed indoors using a collimated high radiance broadband light source. Our...... indoor method offers a significant simplification as compared to measurements by solar trackers. As a proof-of-concept demonstration, we show characterization of black silicon solar cells. The experimental results showed stable and reliable optical responses that makes our setup suitable for indoor......, angle resolved characterization of solar cells....

  6. Two Comments on Bond Angles

    Glaister, P.

    1997-09-01

    Tetrahedral Bond Angle from Elementary Trigonometry The alternative approach of using the scalar (or dot) product of vectors enables the determination of the bond angle in a tetrahedral molecule in a simple way. There is, of course, an even more straightforward derivation suitable for students who are unfamiliar with vectors, or products thereof, but who do know some elementary trigonometry. The starting point is the figure showing triangle OAB. The point O is the center of a cube, and A and B are at opposite corners of a face of that cube in which fits a regular tetrahedron. The required bond angle alpha = AÔB; and using Pythagoras' theorem, AB = 2(square root 2) is the diagonal of a face of the cube. Hence from right-angled triangle OEB, tan(alpha/2) = (square root 2) and therefore alpha = 2tan-1(square root 2) is approx. 109° 28' (see Fig. 1).

  7. 12-Benzoyl-2-methylnaphtho[2,3-b]indolizine-6,11-dione

    Yun Liu

    2011-06-01

    Full Text Available In the title compound, C24H15NO3, the fused naphthaquinone–pyrrole unit is approximately planar, the naphthaquinone ring system making a dihedral angle of 2.91 (10° with the pyrrole ring. The plane of the pyrrole ring makes a dihedral angle 61.64 (14° with that of the benzene ring of the benzoylmethylene group. The crystal structure is stablized by intramolecular C—H...O interactions.

  8. Frequency scaling for angle gathers

    Zuberi, M. A H; Alkhalifah, Tariq Ali

    2014-01-01

    Angle gathers provide an extra dimension to analyze the velocity after migration. Space-shift and time shift-imaging conditions are two methods used to obtain angle gathers, but both are reasonably expensive. By scaling the time-lag axis of the time-shifted images, the computational cost of the time shift imaging condition can be considerably reduced. In imaging and more so Full waveform inversion, frequencydomain Helmholtz solvers are used more often to solve for the wavefields than conventional time domain extrapolators. In such cases, we do not need to extend the image, instead we scale the frequency axis of the frequency domain image to obtain the angle gathers more efficiently. Application on synthetic data demonstrate such features.

  9. Angle imaging: Advances and challenges

    Quek, Desmond T L; Nongpiur, Monisha E; Perera, Shamira A; Aung, Tin

    2011-01-01

    Primary angle closure glaucoma (PACG) is a major form of glaucoma in large populous countries in East and South Asia. The high visual morbidity from PACG is related to the destructive nature of the asymptomatic form of the disease. Early detection of anatomically narrow angles is important and the subsequent prevention of visual loss from PACG depends on an accurate assessment of the anterior chamber angle (ACA). This review paper discusses the advantages and limitations of newer ACA imaging technologies, namely ultrasound biomicroscopy, Scheimpflug photography, anterior segment optical coherence tomography and EyeCam, highlighting the current clinical evidence comparing these devices with each other and with clinical dynamic indentation gonioscopy, the current reference standard. PMID:21150037

  10. Angle independent velocity spectrum determination

    2014-01-01

    An ultrasound imaging system (100) includes a transducer array (102) that emits an ultrasound beam and produces at least one transverse pulse-echo field that oscillates in a direction transverse to the emitted ultrasound beam and that receive echoes produced in response thereto and a spectral vel...... velocity estimator (110) that determines a velocity spectrum for flowing structure, which flows at an angle of 90 degrees and flows at angles less than 90 degrees with respect to the emitted ultrasound beam, based on the received echoes....

  11. Temperature dependence of Brewster's angle.

    Guo, Wei

    2018-01-01

    In this work, a dielectric at a finite temperature is modeled as an ensemble of identical atoms moving randomly around where they are trapped. Light reflection from the dielectric is then discussed in terms of atomic radiation. Specific calculation demonstrates that because of the atoms' thermal motion, Brewster's angle is, in principle, temperature-dependent, and the dependence is weak in the low-temperature limit. What is also found is that the Brewster's angle is nothing but a result of destructive superposition of electromagnetic radiation from the atoms.

  12. Multi-angle compound imaging

    Jespersen, Søren Kragh; Wilhjelm, Jens Erik; Sillesen, Henrik

    1998-01-01

    This paper reports on a scanning technique, denoted multi-angle compound imaging (MACI), using spatial compounding. The MACI method also contains elements of frequency compounding, as the transmit frequency is lowered for the highest beam angles in order to reduce grating lobes. Compared to conve......This paper reports on a scanning technique, denoted multi-angle compound imaging (MACI), using spatial compounding. The MACI method also contains elements of frequency compounding, as the transmit frequency is lowered for the highest beam angles in order to reduce grating lobes. Compared...... to conventional B-mode imaging MACI offers better defined tissue boundaries and lower variance of the speckle pattern, resulting in an image with reduced random variations. Design and implementation of a compound imaging system is described, images of rubber tubes and porcine aorta are shown and effects...... on visualization are discussed. The speckle reduction is analyzed numerically and the results are found to be in excellent agreement with existing theory. An investigation of detectability of low-contrast lesions shows significant improvements compared to conventional imaging. Finally, possibilities for improving...

  13. Femoral varus: what's the angle

    Miles, James Edward; Svalastoga, Eiliv Lars; Eriksen, Thomas

    angles were calculated using Microsoft Excel for the three previously reported techniques and a novel method, which we believed would be more reliable. Reliability between readings was assessed using the within-subject standard deviation and repeatability coefficient, and the effect of angulation...

  14. Metrology concept design of the GAIA basic angle monitoring system

    Veggel, van A.A.; Vink, H.J.P.; Rosielle, P.C.J.N.; Nijmeijer, H.; Wielders, A.A.; Antebi, J.; Lemke, D.

    2004-01-01

    The GAIA satellite, scheduled for launch in 2010, will make a highly accurate map of our Galaxy. It will measure the position of stars with an accuracy of 50 prad using two telescopes, which are positioned under a 'basic' angle between the the lines-of-sight of the telescopes of 106°. With a Basic

  15. Anomalous and resonance small-angle scattering

    Epperson, J.E.; Thiyagarajan, P.

    1988-01-01

    Significant changes in the small-angle scattered intensity can be induced by making measurements with radiation close to an absorption edge of an appropriate atomic species contained in the sample. These changes can be related quantitatively to the real and imaginary anomalous-dispersion terms for the scattering factor (X-rays) or scattering length (neutrons). The physics inherent in these anomalous-dispersion terms is first discussed before consideration of how they enter the relevant scattering theory. Two major areas of anomalous-scattering research have emerged; macromolecules in solution and unmixing of metallic alloys. Research in each area is reviewed, illustrating both the feasibility and potential of these techniques. All the experimental results reported to date have been obtained with X-rays. However, it is pointed out that the formalism is the same for the analog experiment with neutrons, and a number of suitable isotopes exist which exhibit resonance in an accessible range of energy. Potential applications of resonance small-angle neutron scattering are discussed. (orig.)

  16. Disorders of the cerebellopontine angle

    Block, F.

    2006-01-01

    Disorders of the cerebellopontine angle may present by symptoms like vertigo, hearing problems, affection of the trigeminal or facial nerve. Ipsilateral ataxia and contralateral hemiparesis develop in case of a rather large tumor in this region and display an involvement of the cerebellum and/or brainstem. However, some of these typical symptoms are not recognized by the patient. Thus, in case of a suspicion of a disorder of the cerebellopontine angle the relevant functions have to be tested clinically. In addition, electrophysiology can confirm dysfunction of these cranial nerves. Mainstay of the therapy should be the treatment of the underlying cause. Nevertheless, not seldom it is necessary to treat symptoms like vertigo or facial pain. (orig.) [de

  17. Measurement of the angle gamma

    Aleksan, R.; Kayser, B.; Sphicas, P.

    1993-01-01

    The angle γ at least as defined in the Wolfenstein approximation is not completely out of reach of current or proposed dedicated B experiments. This conclusion certainly depends crucially on the assumed trigger and tagging efficiencies and also on the expected backgrounds. The work summarized here represents but a first step in the direction of extracting the third angle of the unitarity triangle. The theoretical developments during the workshop have resulted in a clearer understanding of the quantities studied. On the experimental side, new decay modes (i.e. in addition to the traditional ρK s decay) have resulted in expections for observing CP violation in B s decays which are not unreasonable. It is conceivable that a dedicated B experiment can probe a fundamental aspect of the Standard Model, the CKM matrix, in multiple ways. In the process, new physics can appear anywhere along the line

  18. LHC Report: playing with angles

    Mike Lamont for the LHC team

    2016-01-01

    Ready (after a machine development period), steady (running), go (for a special run)!   The crossing angles are an essential feature of the machine set-up. They have to be big enough to reduce the long-range beam-beam effect. The LHC has recently enjoyed a period of steady running and managed to set a new record for “Maximum Stable Luminosity Delivered in 7 days” of 3.29 fb-1 between 29 August and 4 September. The number of bunches per beam remains pegged at 2220 because of the limitations imposed by the SPS beam dump. The bunch population is also somewhat reduced due to outgassing near one of the injection kickers at point 8. Both limitations will be addressed during the year-end technical stop, opening the way for increased performance in 2017. On 10 and 11 September, a two day machine development (MD) period took place. The MD programme included a look at the possibility of reducing the crossing angle at the high-luminosity interaction points. The crossing angles are an ess...

  19. Light Scattering at Various Angles

    Latimer, Paul; Pyle, B. E.

    1972-01-01

    The Mie theory of scattering is used to provide new information on how changes in particle volume, with no change in dry weight, should influence light scattering for various scattering angles and particle sizes. Many biological cells (e.g., algal cells, erythrocytes) and large subcellular structures (e.g., chloroplasts, mitochondria) in suspension undergo this type of reversible volume change, a change which is related to changes in the rates of cellular processes. A previous study examined the effects of such volume changes on total scattering. In this paper scattering at 10° is found to follow total scattering closely, but scattering at 45°, 90°, 135°, and 170° behaves differently. Small volume changes can cause very large observable changes in large angle scattering if the sample particles are uniform in size; however, the natural particle size heterogeneity of most samples would mask this effect. For heterogeneous samples of most particle size ranges, particle shrink-age is found to increase large angle scattering. PMID:4556610

  20. Angle comparison using an autocollimator

    Geckeler, Ralf D.; Just, Andreas; Vasilev, Valentin; Prieto, Emilio; Dvorácek, František; Zelenika, Slobodan; Przybylska, Joanna; Duta, Alexandru; Victorov, Ilya; Pisani, Marco; Saraiva, Fernanda; Salgado, Jose-Antonio; Gao, Sitian; Anusorn, Tonmueanwai; Leng Tan, Siew; Cox, Peter; Watanabe, Tsukasa; Lewis, Andrew; Chaudhary, K. P.; Thalmann, Ruedi; Banreti, Edit; Nurul, Alfiyati; Fira, Roman; Yandayan, Tanfer; Chekirda, Konstantin; Bergmans, Rob; Lassila, Antti

    2018-01-01

    Autocollimators are versatile optical devices for the contactless measurement of the tilt angles of reflecting surfaces. An international key comparison (KC) on autocollimator calibration, EURAMET.L-K3.2009, was initiated by the European Association of National Metrology Institutes (EURAMET) to provide information on the capabilities in this field. The Physikalisch-Technische Bundesanstalt (PTB) acted as the pilot laboratory, with a total of 25 international participants from EURAMET and from the Asia Pacific Metrology Programme (APMP) providing measurements. This KC was the first one to utilise a high-resolution electronic autocollimator as a standard. In contrast to KCs in angle metrology which usually involve the full plane angle, it focused on relatively small angular ranges (+/-10 arcsec and +/-1000 arcsec) and step sizes (10 arcsec and 0.1 arcsec, respectively). This document represents the approved final report on the results of the KC. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCL, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  1. Double field theory at SL(2) angles

    Ciceri, Franz [Nikhef Theory Group,Science Park 105, 1098 XG Amsterdam (Netherlands); Dibitetto, Giuseppe [Institutionen för fysik och astronomi, University of Uppsala, Box 803, SE-751 08 Uppsala (Sweden); Fernandez-Melgarejo, J.J. [Yukawa Institute for Theoretical Physics, Kyoto University,Kyoto 606-8502 (Japan); Jefferson Physical Laboratory, Harvard University,Cambridge, MA 02138 (United States); Guarino, Adolfo [Physique Théorique et Mathématique, Université Libre de Bruxellesand International Solvay Institutes,ULB-Campus Plaine CP231, B-1050 Brussels (Belgium); Inverso, Gianluca [Center for Mathematical Analysis, Geometry and Dynamical Systems,Department of Mathematics, Instituto Superior Tecnico,Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2017-05-05

    An extended field theory is presented that captures the full SL(2)×O(6,6+n) duality group of four-dimensional half-maximal supergravities. The theory has section constraints whose two inequivalent solutions correspond to minimal D=10 supergravity and chiral half-maximal D=6 supergravity, respectively coupled to vector and tensor multiplets. The relation with O(6,6+n) (heterotic) double field theory is thoroughly discussed. Non-Abelian interactions as well as background fluxes are captured by a deformation of the generalised diffeomorphisms. Finally, making use of the SL(2) duality structure, it is shown how to generate gaugings with non-trivial de Roo-Wagemans angles via generalised Scherk-Schwarz ansätze. Such gaugings allow for moduli stabilisation including the SL(2) dilaton.

  2. Forefoot angle at initial contact determines the amplitude of forefoot and rearfoot eversion during running.

    Monaghan, Gail M; Hsu, Wen-Hao; Lewis, Cara L; Saltzman, Elliot; Hamill, Joseph; Holt, Kenneth G

    2014-09-01

    Clinically, foot structures are assessed intrinsically - relation of forefoot to rearfoot and rearfoot to leg. We have argued that, from a biomechanical perspective, the interaction of the foot with the ground may influence forces and torques that are propagated through the lower extremity. We proposed that a more appropriate measure is an extrinsic one that may predict the angle the foot makes with ground at contact. The purposes of this study were to determine if the proposed measure predicts contact angles of the forefoot and rearfoot and assess if the magnitude of those angles influences amplitude and duration of foot eversion during running. With the individual in prone, extrinsic clinical forefoot and rearfoot angles were measured relative to the caudal edge of the examination table. Participants ran over ground while frontal plane forefoot and rearfoot contact angles, forefoot and rearfoot eversion amplitude and duration were measured. Participants were grouped twice, once based on forefoot contact inversion angle (moderatemedian) and once based on rearfoot contact inversion angle (moderatemedian). The forefoot and rearfoot extrinsic clinical angles predicted, respectively, the forefoot and rearfoot angles at ground contact. Large forefoot contact angles were associated with greater amplitudes (but not durations) of forefoot and rearfoot eversion during stance. Rearfoot contact angles, however, were associated with neither amplitudes nor durations of forefoot and rearfoot eversion. Possible mechanisms for the increased risk of running injuries associated with large forefoot angles are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Phenyl N-(2-methylphenylcarbamate

    Durre Shahwar

    2009-07-01

    Full Text Available In the title compound, C14H13NO2, the aromatic rings attached to the O and N atoms make dihedral angles of 62.65 (9 and 38.28 (11°, respectively, with the central carbamate group. The benzene rings are oriented at a dihedral angle of 39.22 (10°. In the crystal, a very weak C—H...π interaction occurs.

  4. 4-Chloro-N-o-tolylbenzamide

    Hiroyuki Ishida

    2008-10-01

    Full Text Available In the molecule of the title compound, C14H12ClNO, the two benzene rings are close to coplanar [dihedral angle = 7.85 (4°]. The amide N—C=O plane makes dihedral angles of 34.04 (4 and 39.90 (3°, respectively, with the 4-chloro- and 2-methylphenyl rings. In the crystal structure, intermolecular N—H...O hydrogen bonds link the molecules into chains.

  5. Mathematical simulation of gamma-radiation angle distribution measurements

    Batij, V.G.; Batij, E.V.; Egorov, V.V.; Fedorchenko, D.V.; Kochnev, N.A.

    2008-01-01

    We developed mathematical model of the facility for gamma-radiation angle distribution measurement and calculated response functions for gamma-radiation intensities. We developed special software for experimental data processing, the 'Shelter' object radiation spectra unfolding and Sphere detector (ShD) angle resolution estimation. Neuronet method using for detection of the radiation directions is given. We developed software based on the neuronet algorithm, that allows obtaining reliable distribution of gamma-sources that make impact on the facility detectors at the measurement point. 10 refs.; 15 figs.; 4 tab

  6. Decision Making

    Pier Luigi Baldi

    2006-06-01

    Full Text Available This article points out some conditions which significantly exert an influence upon decision and compares decision making and problem solving as interconnected processes. Some strategies of decision making are also examined.

  7. Small angle scattering and polymers

    Cotton, J.P.

    1996-01-01

    The determination of polymer structure is a problem of interest for both statistical physics and industrial applications. The average polymer structure is defined. Then, it is shown why small angle scattering, associated with isotopic substitution, is very well suited to the measurement of the chain conformation. The corresponding example is the old, but pedagogic, measurement of the chain form factor in the polymer melt. The powerful contrast variation method is illustrated by a recent determination of the concentration profile of a polymer interface. (author) 12 figs., 48 refs

  8. A restraint molecular dynamics and simulated annealing approach for protein homology modeling utilizing mean angles

    Maurer Till

    2005-04-01

    Full Text Available Abstract Background We have developed the program PERMOL for semi-automated homology modeling of proteins. It is based on restrained molecular dynamics using a simulated annealing protocol in torsion angle space. As main restraints defining the optimal local geometry of the structure weighted mean dihedral angles and their standard deviations are used which are calculated with an algorithm described earlier by Döker et al. (1999, BBRC, 257, 348–350. The overall long-range contacts are established via a small number of distance restraints between atoms involved in hydrogen bonds and backbone atoms of conserved residues. Employing the restraints generated by PERMOL three-dimensional structures are obtained using standard molecular dynamics programs such as DYANA or CNS. Results To test this modeling approach it has been used for predicting the structure of the histidine-containing phosphocarrier protein HPr from E. coli and the structure of the human peroxisome proliferator activated receptor γ (Ppar γ. The divergence between the modeled HPr and the previously determined X-ray structure was comparable to the divergence between the X-ray structure and the published NMR structure. The modeled structure of Ppar γ was also very close to the previously solved X-ray structure with an RMSD of 0.262 nm for the backbone atoms. Conclusion In summary, we present a new method for homology modeling capable of producing high-quality structure models. An advantage of the method is that it can be used in combination with incomplete NMR data to obtain reasonable structure models in accordance with the experimental data.

  9. Joint Angle and Frequency Estimation Using Multiple-Delay Output Based on ESPRIT

    Xudong, Wang

    2010-12-01

    This paper presents a novel ESPRIT algorithm-based joint angle and frequency estimation using multiple-delay output (MDJAFE). The algorithm can estimate the joint angles and frequencies, since the use of multiple output makes the estimation accuracy greatly improved when compared with a conventional algorithm. The useful behavior of the proposed algorithm is verified by simulations.

  10. An Angle Criterion for Riesz Bases

    Lindner, Alexander M; Bittner, B.

    1999-01-01

    We present a characterization of Riesz bases in terms ofthe angles between certain finite dimensional subspaces. Correlationsbetween the bounds of the Riesz basis and the size of the angles arederived....

  11. Model : making

    Bottle, Neil

    2013-01-01

    The Model : making exhibition was curated by Brian Kennedy in collaboration with Allies & Morrison in September 2013. For the London Design Festival, the Model : making exhibition looked at the increased use of new technologies by both craft-makers and architectural model makers. In both practices traditional ways of making by hand are increasingly being combined with the latest technologies of digital imaging, laser cutting, CNC machining and 3D printing. This exhibition focussed on ...

  12. The Influence of Dynamic Contact Angle on Wetting Dynamics

    Rame, Enrique; Garoff, Steven

    2005-01-01

    When surface tension forces dominate, and regardless of whether the situation is static or dynamic, the contact angle (the angle the interface between two immiscible fluids makes when it contacts a solid) is the key parameter that determines the shape of a fluid-fluid interface. The static contact angle is easy to measure and implement in models predicting static capillary surface shapes and such associated quantities as pressure drops. By contrast, when the interface moves relative to the solid (as in dynamic wetting processes) the dynamic contact angle is not identified unambiguously because it depends on the geometry of the system Consequently, its determination becomes problematic and measurements in one geometry cannot be applied in another for prediction purposes. However, knowing how to measure and use the dynamic contact angle is crucial to determine such dynamics as a microsystem throughput reliably. In this talk we will present experimental and analytical efforts aimed at resolving modeling issues present in dynamic wetting. We will review experiments that show the inadequacy of the usual hydrodynamic model when a fluid-fluid meniscus moves over a solid surface such as the wall of a small tube or duct. We will then present analytical results that show how to parametrize these problems in a predictive manner. We will illustrate these ideas by showing how to implement the method in numerical fluid mechanical calculations.

  13. Study of the Correlation Between Contact Angle Values with the Polarity of Liquids

    Syahara, Muhammad Alwi; Kurniawan, Fredy; Anggriawan, Wahyu

    2015-01-01

    Contact angle measurement is a technique which can be used to determine the surface properties of a substance and observe the interaction of surfaces. When polar liquid dropped on a non-polar solid, it will make an interaction that can observed from the contact angle. In simple way, the different polarity of the solid and the liquid sample will affect to the contact angle obtained. In this work the value of contact angle will be correlated to the polarity of the sample. The results showed tha...

  14. Application and development of non contact angle-wide viewing system in vitreous retinal surgery

    Rong-Hua He

    2016-07-01

    Full Text Available Wide-angle viewing system as an important auxiliary device can clearly observe the whole fundus field of vision in vitreous surgery, which enable vitreoretinal surgery more efficient, safer and more effective. So it has very high application value in ophthalmologic operation. In this paper, we studied the development and application of wide-angle viewing system in vitreoretinal surgery in recent years, from which we summed up the advantage of non-contact wide-angle viewing system in clinical field, and pointed out the shortcomings. The ultimate goal is to make the non-contact wide-angle viewing system better applied in vitreous surgery.

  15. Steel making

    Chakrabarti, A K

    2014-01-01

    "Steel Making" is designed to give students a strong grounding in the theory and state-of-the-art practice of production of steels. This book is primarily focused to meet the needs of undergraduate metallurgical students and candidates for associate membership examinations of professional bodies (AMIIM, AMIE). Besides, for all engineering professionals working in steel plants who need to understand the basic principles of steel making, the text provides a sound introduction to the subject.Beginning with a brief introduction to the historical perspective and current status of steel making together with the reasons for obsolescence of Bessemer converter and open hearth processes, the book moves on to: elaborate the physiochemical principles involved in steel making; explain the operational principles and practices of the modern processes of primary steel making (LD converter, Q-BOP process, and electric furnace process); provide a summary of the developments in secondary refining of steels; discuss principles a...

  16. The Q-angle and sport

    Hahn, Thomas; Foldspang, Anders

    1997-01-01

    Quadriceps muscle contraction tends to straighten the Q angle. We expected that sports comprising a high amount of quadriceps training could be associated with low Q angles. The aim of the present study was to estimate the Q angle in athletes and to investigate its potential associations with par......Quadriceps muscle contraction tends to straighten the Q angle. We expected that sports comprising a high amount of quadriceps training could be associated with low Q angles. The aim of the present study was to estimate the Q angle in athletes and to investigate its potential associations...... with participation in sport. Three hundred and thirty-nine athletes had their Q angle measured. The mean of right-side Q angles was higher than left side, and the mean Q angle was higher in women than in men. The Q angle was positively associated with years of jogging, and negatively with years of soccer, swimming...... and sports participation at all. It is concluded that the use of Q angle measurements is questionable....

  17. Wafer scale oblique angle plasma etching

    Burckel, David Bruce; Jarecki, Jr., Robert L.; Finnegan, Patrick Sean

    2017-05-23

    Wafer scale oblique angle etching of a semiconductor substrate is performed in a conventional plasma etch chamber by using a fixture that supports a multiple number of separate Faraday cages. Each cage is formed to include an angled grid surface and is positioned such that it will be positioned over a separate one of the die locations on the wafer surface when the fixture is placed over the wafer. The presence of the Faraday cages influences the local electric field surrounding each wafer die, re-shaping the local field to be disposed in alignment with the angled grid surface. The re-shaped plasma causes the reactive ions to follow a linear trajectory through the plasma sheath and angled grid surface, ultimately impinging the wafer surface at an angle. The selected geometry of the Faraday cage angled grid surface thus determines the angle at with the reactive ions will impinge the wafer.

  18. Evaluation of blotchy pigments in the anterior chamber angle as a sign of angle closure

    Harsha L Rao

    2012-01-01

    Full Text Available Background: Blotchy pigments in the anterior chamber (AC angle are considered diagnostic of primary angle closure (PAC. But there are no reports either on the prevalence of blotchy pigments in AC angles or the validity of this sign. Aims: To determine the prevalence of blotchy pigments in AC angles and to evaluate their relationship with glaucomatous optic neuropathy (GON in eyes with occludable angles. Setting and Design: Cross-sectional, comparative study. Materials and Methods: Gonioscopy was performed in 1001 eyes of 526 subjects (245 eyes of 148 consecutive, occludable angle subjects and 756 eyes of 378 non-consecutive, open angle subjects, above 35 years of age. Quadrant-wise location of blotchy pigments was documented. Statistical Analysis: Odds of blotchy pigments in occludable angles against that in open angles were evaluated. Relationship of GON with blotchy pigments in occludable angle eyes was evaluated using a multivariate model. Results: Prevalence of blotchy pigments in occludable angles was 28.6% (95% CI, 22.9-34.3 and in open angles was 4.7% (95% CI, 3.2-6.3. Blotchy pigments were more frequently seen in inferior (16% and superior quadrants (15% of occludable angles, and inferior quadrant of open angles (4%. Odds of superior quadrant blotchy pigments in occludable angles were 33 times that in open angles. GON was seen in 107 occludable angle eyes. Blotchy pigments were not significantly associated with GON (odds ratio = 0.5; P = 0.1. Conclusions: Blotchy pigments were seen in 28.6% of occludable angle eyes and 4.7% of open angles eyes. Presence of blotchy pigments in the superior quadrant is more common in occludable angles. Presence of GON in occludable angle eyes was not associated with blotchy pigments.

  19. Evaluation of blotchy pigments in the anterior chamber angle as a sign of angle closure

    Rao, Harsha L; Mungale, Sachin C; Kumbar, Tukaram; Parikh, Rajul S; Garudadri, Chandra S

    2012-01-01

    Background: Blotchy pigments in the anterior chamber (AC) angle are considered diagnostic of primary angle closure (PAC). But there are no reports either on the prevalence of blotchy pigments in AC angles or the validity of this sign. Aims: To determine the prevalence of blotchy pigments in AC angles and to evaluate their relationship with glaucomatous optic neuropathy (GON) in eyes with occludable angles. Setting and Design: Cross-sectional, comparative study. Materials and Methods: Gonioscopy was performed in 1001 eyes of 526 subjects (245 eyes of 148 consecutive, occludable angle subjects and 756 eyes of 378 non-consecutive, open angle subjects), above 35 years of age. Quadrant-wise location of blotchy pigments was documented. Statistical Analysis: Odds of blotchy pigments in occludable angles against that in open angles were evaluated. Relationship of GON with blotchy pigments in occludable angle eyes was evaluated using a multivariate model. Results: Prevalence of blotchy pigments in occludable angles was 28.6% (95% CI, 22.9-34.3) and in open angles was 4.7% (95% CI, 3.2-6.3). Blotchy pigments were more frequently seen in inferior (16%) and superior quadrants (15%) of occludable angles, and inferior quadrant of open angles (4%). Odds of superior quadrant blotchy pigments in occludable angles were 33 times that in open angles. GON was seen in 107 occludable angle eyes. Blotchy pigments were not significantly associated with GON (odds ratio = 0.5; P = 0.1). Conclusions: Blotchy pigments were seen in 28.6% of occludable angle eyes and 4.7% of open angles eyes. Presence of blotchy pigments in the superior quadrant is more common in occludable angles. Presence of GON in occludable angle eyes was not associated with blotchy pigments. PMID:23202393

  20. Computer Simulation of Angle-measuring System of Photoelectric Theodolite

    Zeng, L; Zhao, Z W; Song, S L; Wang, L T

    2006-01-01

    In this paper, a virtual test platform based on malfunction phenomena is designed, using the methods of computer simulation and numerical mask. It is used in the simulation training of angle-measuring system of photoelectric theodolite. Actual application proves that this platform supplies good condition for technicians making deep simulation training and presents a useful approach for the establishment of other large equipment simulation platforms

  1. Performance of the upgraded small angle tile calorimeter at LEP

    Alvsvaag, S J; Barreira, G; Benvenuti, Alberto C; Bigi, M; Bonesini, M; Bozzo, M; Camporesi, T; Carling, H; Cassio, V; Castellani, L; Cereseto, R; Chignoli, F; Della Ricca, G; Dharmasiri, D R; Espirito-Santo, M C; Falk, E; Fenyuk, A; Ferrari, P; Gamba, D; Giordano, V; Guz, Yu; Guerzoni, M; Gumenyuk, S A; Hedberg, V; Jarlskog, G; Karyukhin, A N; Klovning, A; Konoplyannikov, A K; Kronkvist, I J; Lanceri, L; Leoni, R; Maeland, O A; Maio, A; Mazza, R; Migliore, E; Navarria, Francesco Luigi; Nossum, B; Obraztsov, V F; Onofre, A; Paganoni, M; Pegoraro, M; Peralta, L; Petrovykh, L P; Pimenta, M; Poropat, P; Prest, M; Read, A L; Romero, A; Shalanda, N A; Simonetti, L; Skaali, T B; Stugu, B; Terranova, F; Tomé, B; Torassa, E; Trapani, P P; Verardi, M G; Vallazza, E; Vlasov, E; Zaitsev, A

    1998-01-01

    The small angle tile calorimeter (STIC) provides calorimetric coverage in the very forward region of the DELPHI experiment at the CERN LEP collider. The structure of the calorimeters, built with so- called "shashlik" technique, $9 allows the insertion of tracking detectors within the sampling structure, in order to make it possible to determine the direction of the showering particle. Presented here are some results demonstrating the performance of the $9 calorimeter and of these tracking detectors at LEP. (5 refs).

  2. Make Sense?

    Gyrd-Jones, Richard; Törmälä, Minna

    Purpose: An important part of how we sense a brand is how we make sense of a brand. Sense-making is naturally strongly connected to how we cognize about the brand. But sense-making is concerned with multiple forms of knowledge that arise from our interpretation of the brand-related stimuli......: Declarative, episodic, procedural and sensory. Knowledge is given meaning through mental association (Keller, 1993) and / or symbolic interaction (Blumer, 1969). These meanings are centrally related to individuals’ sense of identity or “identity needs” (Wallpach & Woodside, 2009). The way individuals make...... sense of brands is related to who people think they are in their context and this shapes what they enact and how they interpret the brand (Currie & Brown, 2003; Weick, Sutcliffe, & Obstfeld, 2005; Weick, 1993). Our subject of interest in this paper is how stakeholders interpret and ascribe meaning...

  3. The paediatric Bohler's angle and crucial angle of Gissane: a case series

    Crawford Haemish A

    2011-01-01

    Full Text Available Abstract Background Bohler's angle and the crucial angle of Gissane can be used to assess calcaneal fractures. While the normal adult values of these angles are widely known, the normal paediatric values have not yet been established. Our aim is to investigate Bohler's angle and the crucial angle of Gissane in a paediatric population and establish normal paediatric reference values. Method We measured Bohler's angle and the crucial angle of Gissane using normal plain ankle radiographs of 763 patients from birth to 14 years of age completed over a five year period from July 2003 to June 2008. Results In our paediatric study group, the mean Bohler's angle was 35.2 degrees and the mean crucial angle of Gissane was 111.3 degrees. In an adult comparison group, the mean Bohler's angle was 39.2 degrees and the mean crucial angle of Gissane was 113.8 degrees. The differences in Bohler's angle and the crucial angle of Gissane between these two groups were statistically significant. Conclusion We have presented the normal values of Bohler's angle and the crucial angle of Gissane in a paediatric population. These values may provide a useful comparison to assist with the management of the paediatric calcaneal fracture.

  4. Longitudinal changes of angle configuration in primary angle-closure suspects: the Zhongshan Angle-Closure Prevention Trial.

    Jiang, Yuzhen; Chang, Dolly S; Zhu, Haogang; Khawaja, Anthony P; Aung, Tin; Huang, Shengsong; Chen, Qianyun; Munoz, Beatriz; Grossi, Carlota M; He, Mingguang; Friedman, David S; Foster, Paul J

    2014-09-01

    To determine longitudinal changes in angle configuration in the eyes of primary angle-closure suspects (PACS) treated by laser peripheral iridotomy (LPI) and in untreated fellow eyes. Longitudinal cohort study. Primary angle-closure suspects aged 50 to 70 years were enrolled in a randomized, controlled clinical trial. Each participant was treated by LPI in 1 randomly selected eye, with the fellow eye serving as a control. Angle width was assessed in a masked fashion using gonioscopy and anterior segment optical coherence tomography (AS-OCT) before and at 2 weeks, 6 months, and 18 months after LPI. Angle width in degrees was calculated from Shaffer grades assessed under static gonioscopy. Angle configuration was also evaluated using angle opening distance (AOD250, AOD500, AOD750), trabecular-iris space area (TISA500, TISA750), and angle recess area (ARA) measured in AS-OCT images. No significant difference was found in baseline measures of angle configuration between treated and untreated eyes. At 2 weeks after LPI, the drainage angle on gonioscopy widened from a mean of 13.5° at baseline to a mean of 25.7° in treated eyes, which was also confirmed by significant increases in all AS-OCT angle width measures (Pgonioscopy (P = 0.18), AOD250 (P = 0.167) and ARA (P = 0.83). In untreated eyes, angle width consistently decreased across all follow-up visits after LPI, with a more rapid longitudinal decrease compared with treated eyes (P values for all variables ≤0.003). The annual rate of change in angle width was equivalent to 1.2°/year (95% confidence interval [CI], 0.8-1.6) in treated eyes and 1.6°/year (95% CI, 1.3-2.0) in untreated eyes (P<0.001). Angle width of treated eyes increased markedly after LPI, remained stable for 6 months, and then decreased significantly by 18 months after LPI. Untreated eyes experienced a more consistent and rapid decrease in angle width over the same time period. Copyright © 2014 American Academy of Ophthalmology. Published by

  5. Behavior of Tilted Angle Shear Connectors

    Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.

    2015-01-01

    According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type. PMID:26642193

  6. Behavior of Tilted Angle Shear Connectors.

    Koosha Khorramian

    Full Text Available According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type.

  7. The qualitative criterion of transient angle stability

    Lyu, R.; Xue, Y.; Xue, F.

    2015-01-01

    In almost all the literatures, the qualitative assessment of transient angle stability extracts the angle information of generators based on the swing curve. As the angle (or angle difference) of concern and the threshold value rely strongly on the engineering experience, the validity and robust...... of these criterions are weak. Based on the stability mechanism from the extended equal area criterion (EEAC) theory and combining with abundant simulations of real system, this paper analyzes the criterions in most literatures and finds that the results could be too conservative or too optimistic. It is concluded...

  8. Decision making.

    Chambers, David W

    2011-01-01

    A decision is a commitment of resources under conditions of risk in expectation of the best future outcome. The smart decision is always the strategy with the best overall expected value-the best combination of facts and values. Some of the special circumstances involved in decision making are discussed, including decisions where there are multiple goals, those where more than one person is involved in making the decision, using trigger points, framing decisions correctly, commitments to lost causes, and expert decision makers. A complex example of deciding about removal of asymptomatic third molars, with and without an EBD search, is discussed.

  9. Making Connections

    Pien, Cheng Lu; Dongsheng, Zhao

    2011-01-01

    Effective teaching includes enabling learners to make connections within mathematics. It is easy to accord with this statement, but how often is it a reality in the mathematics classroom? This article describes an approach in "connecting equivalent" fractions and whole number operations. The authors illustrate how a teacher can combine a common…

  10. Optimum Tilt Angle at Tropical Region

    S Soulayman

    2015-02-01

    Full Text Available : One of the important parameters that affect the performance of a solar collector is its tilt angle with the horizon. This is because of the variation of tilt angle changes the amount of solar radiation reaching the collector surface. Meanwhile, is the rule of thumb, which says that solar collector Equator facing position is the best, is valid for tropical region? Thus, it is required to determine the optimum tilt as for Equator facing and for Pole oriented collectors. In addition, the question that may arise: how many times is reasonable for adjusting collector tilt angle for a definite value of surface azimuth angle? A mathematical model was used for estimating the solar radiation on a tilted surface, and to determine the optimum tilt angle and orientation (surface azimuth angle for the solar collector at any latitude. This model was applied for determining optimum tilt angle and orientation in the tropical zones, on a daily basis, as well as for a specific period. The optimum angle was computed by searching for the values for which the radiation on the collector surface is a maximum for a particular day or a specific period. The results reveal that changing the tilt angle 12 times in a year (i.e. using the monthly optimum tilt angle maintains approximately the total amount of solar radiation near the maximum value that is found by changing the tilt angle daily to its optimum value. This achieves a yearly gain in solar radiation of 11% to 18% more than the case of a solar collector fixed on a horizontal surface.

  11. Sharper angle, higher risk? The effect of cutting angle on knee mechanics in invasion sport athletes.

    Schreurs, Mervin J; Benjaminse, Anne; Lemmink, Koen A P M

    2017-10-03

    Cutting is an important skill in team-sports, but unfortunately is also related to non-contact ACL injuries. The purpose was to examine knee kinetics and kinematics at different cutting angles. 13 males and 16 females performed cuts at different angles (45°, 90°, 135° and 180°) at maximum speed. 3D kinematics and kinetics were collected. To determine differences across cutting angles (45°, 90°, 135° and 180°) and sex (female, male), a 4×2 repeated measures ANOVA was conducted followed by post hoc comparisons (Bonferroni) with alpha level set at α≤0.05a priori. At all cutting angles, males showed greater knee flexion angles than females (pcutting angles with no differences in the amount of knee flexion -42.53°±8.95°, females decreased their knee flexion angle from -40.6°±7.2° when cutting at 45° to -36.81°±9.10° when cutting at 90°, 135° and 180° (pcutting towards sharper angles (pcutting angles and then stabilized compared to the 45° cutting angle (pcutting to sharper angles (pcutting angles demand different knee kinematics and kinetics. Sharper cutting angles place the knee more at risk. However, females and males handle this differently, which has implications for injury prevention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Page 1 '---------------------------- Presenting features ofprimary angle ...

    coma were assessed. The diagnosis of primary angle-closure glaucoma was made on presentation if the intra-ocular pressure was > 21 mmHg, or if a glaucomatous visual field was found, in the presence of a partially or totally closed angle or peripheral anterior synechiae. Provocation tests were not performed. Patients ...

  13. Gaugings at angles from orientifold reductions

    Roest, Diederik

    2009-01-01

    We consider orientifold reductions to N= 4 gauged supergravity in four dimensions. A special feature of this theory is that different factors of the gauge group can have relative angles with respect to the electro-magnetic SL(2) symmetry. These are crucial for moduli stabilization and de Sitter vacua. We show how such gaugings at angles generically arise in orientifold reductions.

  14. Automatic Cobb Angle Determination From Radiographic Images

    Sardjono, Tri Arief; Wilkinson, Michael H. F.; Veldhuizen, Albert G.; van Ooijen, Peter M. A.; Purnama, Ketut E.; Verkerke, Gijsbertus J.

    2013-01-01

    Study Design. Automatic measurement of Cobb angle in patients with scoliosis. Objective. To test the accuracy of an automatic Cobb angle determination method from frontal radiographical images. Summary of Background Data. Thirty-six frontal radiographical images of patients with scoliosis. Methods.

  15. Practical evaluation of action-angle variables

    Boozer, A.H.

    1984-02-01

    A practical method is described for establishing action-angle variables for a Hamiltonian system. That is, a given nearly integrable Hamiltonian is divided into an exactly integrable system plus a perturbation in action-angle form. The transformation of variables, which is carried out using a few short trajectory integrations, permits a rapid determination of trajectory properties throughout a phase space volume

  16. Apparent contact angle and contact angle hysteresis on liquid infused surfaces.

    Semprebon, Ciro; McHale, Glen; Kusumaatmaja, Halim

    2016-12-21

    We theoretically investigate the apparent contact angle and contact angle hysteresis of a droplet placed on a liquid infused surface. We show that the apparent contact angle is not uniquely defined by material parameters, but also has a dependence on the relative size between the droplet and its surrounding wetting ridge formed by the infusing liquid. We derive a closed form expression for the contact angle in the limit of vanishing wetting ridge, and compute the correction for small but finite ridge, which corresponds to an effective line tension term. We also predict contact angle hysteresis on liquid infused surfaces generated by the pinning of the contact lines by the surface corrugations. Our analytical expressions for both the apparent contact angle and contact angle hysteresis can be interpreted as 'weighted sums' between the contact angles of the infusing liquid relative to the droplet and surrounding gas phases, where the weighting coefficients are given by ratios of the fluid surface tensions.

  17. A lattice determination of gA and left angle x right angle from overlap fermions

    Guertler, M.; Schiller, A.; Streuer, T.; Freie Univ. Berlin

    2004-10-01

    We present results for the nucleon's axial charge g A and the first moment left angle x right angle of the unpolarized parton distribution function from a simulation of quenched overlap fermions. (orig.)

  18. Laser peripheral iridoplasty for angle-closure.

    Ng, Wai Siene; Ang, Ghee Soon; Azuara-Blanco, Augusto

    2012-02-15

    Angle-closure glaucoma is a leading cause of irreversible blindness in the world. Treatment is aimed at opening the anterior chamber angle and lowering the IOP with medical and/or surgical treatment (e.g. trabeculectomy, lens extraction). Laser iridotomy works by eliminating pupillary block and widens the anterior chamber angle in the majority of patients. When laser iridotomy fails to open the anterior chamber angle, laser iridoplasty may be recommended as one of the options in current standard treatment for angle-closure. Laser peripheral iridoplasty works by shrinking and pulling the peripheral iris tissue away from the trabecular meshwork. Laser peripheral iridoplasty can be used for crisis of acute angle-closure and also in non-acute situations.   To assess the effectiveness of laser peripheral iridoplasty in the treatment of narrow angles (i.e. primary angle-closure suspect), primary angle-closure (PAC) or primary angle-closure glaucoma (PACG) in non-acute situations when compared with any other intervention. In this review, angle-closure will refer to patients with narrow angles (PACs), PAC and PACG. We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (The Cochrane Library 2011, Issue 12), MEDLINE (January 1950 to January 2012), EMBASE (January 1980 to January 2012), Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to January 2012), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). There were no date or language restrictions in the electronic searches for trials. The electronic databases were last searched on 5 January 2012. We included only randomised controlled trials (RCTs) in this review. Patients with narrow angles, PAC or PACG were eligible. We excluded studies that included only patients with acute presentations

  19. The resection angle in apical surgery

    von Arx, Thomas; Janner, Simone F M; Jensen, Simon S

    2016-01-01

    OBJECTIVES: The primary objective of the present radiographic study was to analyse the resection angle in apical surgery and its correlation with treatment outcome, type of treated tooth, surgical depth and level of root-end filling. MATERIALS AND METHODS: In the context of a prospective clinical...... study, cone beam computed tomography (CBCT) scans were taken before and 1 year after apical surgery to measure the angle of the resection plane relative to the longitudinal axis of the root. Further, the surgical depth (distance from the buccal cortex to the most lingual/palatal point of the resection...... or with the retrofilling length. CONCLUSIONS: Statistically significant differences were observed comparing resection angles of different tooth groups. However, the angle had no significant effect on treatment outcome. CLINICAL RELEVANCE: Contrary to common belief, the resection angle in maxillary anterior teeth...

  20. Experimental study of crossing angle collision

    Chen, T.; Rice, D.; Rubin, D.; Sagan, D.; Tigner, M.

    1993-01-01

    The non-linear coupling due to the beam-beam interaction with crossing angle has been studied. The major effect of a small (∼12mrad) crossing angle is to excite 5Q x ±Q s =integer coupling resonance family on large amplitude particles, which results in bad lifetime. On the CESR, a small crossing angle (∼2.4mr) was created at the IP and a reasonable beam-beam tune-shift was achieved. The decay rate of the beam is measured as a function of horizontal tune with and without crossing angle. The theoretical analysis, simulation and experimental measurements have a good agreement. The resonance strength as a function of crossing angle is also measured

  1. Apparent Contact Angle and Contact Angle Hysteresis on Liquid Infused Surfaces

    Semprebon, Ciro; McHale, Glen; Kusumaatmaja, Halim

    2016-01-01

    We theoretically investigate the apparent contact angle and contact angle hysteresis of a droplet placed on a liquid infused surface. We show that the apparent contact angle is not uniquely defined by material parameters, but also has a strong dependence on the relative size between the droplet and its surrounding wetting ridge formed by the infusing liquid. We derive a closed form expression for the contact angle in the limit of vanishing wetting ridge, and compute the correction for small b...

  2. Viewing India from Religious Angle

    Qiu Yonghui

    2004-01-01

    @@ It would be impossible to understand India without any knowledge about the religions of this country. India is a developing country with many religions, nationalities and languages. This nation has long been noted for its democratic politics and multiculture. India was founded on the principle of secularism, but at the same time it has suffered from religions. Therefore, to have a clear idea about the basic conditions of India's multiple religious beliefs is the foundation for studies of its religions of the country, and is also one key to grasping Indian social politics. In early September 2004, the Indian government published religious data from the 2001 census. Accordingly, we can make some basic judgments about the religions in today's India.

  3. Trajectory reshaping based guidance with impact time and angle constraints

    Zhao Yao

    2016-08-01

    Full Text Available This study presents a novel impact time and angle constrained guidance law for homing missiles. The guidance law is first developed with the prior-assumption of a stationary target, which is followed by the practical extension to a maneuvering target scenario. To derive the closed-form guidance law, the trajectory reshaping technique is utilized and it results in defining a specific polynomial function with two unknown coefficients. These coefficients are determined to satisfy the impact time and angle constraints as well as the zero miss distance. Furthermore, the proposed guidance law has three additional guidance gains as design parameters which make it possible to adjust the guided trajectory according to the operational conditions and missile’s capability. Numerical simulations are presented to validate the effectiveness of the proposed guidance law.

  4. On the Impact Angle of Hurricane Sandy's New Jersey Landfall

    Hall, Timothy M.; Sobel, Adam H.

    2013-01-01

    Hurricane Sandy's track crossed the New Jersey coastline at an angle closer to perpendicular than any previous hurricane in the historic record, one of the factors contributing to recordsetting peak-water levels in parts of New Jersey and New York. To estimate the occurrence rate of Sandy-like tracks, we use a stochastic model built on historical hurricane data from the entire North Atlantic to generate a large sample of synthetic hurricanes. From this synthetic set we calculate that under long-term average climate conditions, a hurricane of Sandy's intensity or greater (category 1+) makes NJ landfall at an angle at least as close to perpendicular as Sandy's at an average annual rate of 0.0014 yr-1 (95% confidence range 0.0007 to 0.0023); i.e., a return period of 714 years (95% confidence range 435 to 1429).

  5. Survival and Growth of Cottonwood Clones After Angle Planting and Base Angle Treatments

    W.K. Randall; Harvey E. Kennedy

    1976-01-01

    Presently, commercial cottonwood plantations in the lower Mississippi Valley are established using vertically planted, unrooted cuttings with a flat (90°) base. Neither survival nor first-year growth of a group of six Stoneville clones was improved by angle planting or cutting base angles diagonally. For one clone, survival was significantly better when base angle was...

  6. Creation of the {pi} angle standard for the flat angle measurements

    Giniotis, V; Rybokas, M, E-mail: gi@ap.vtu.l, E-mail: MRybokas@gama.l [Department of Information Technologies, Vilnius Gediminas Technical University, Sauletekio al. 11, 10223 Vilnius-40 (Lithuania)

    2010-07-01

    Angle measurements are based mainly on multiangle prisms - polygons with autocollimators, rotary encoders for high accuracy and circular scales as the standards of the flat angle. Traceability of angle measurements is based on the standard of the plane angle - prism (polygon) calibrated at an appropriate accuracy. Some metrological institutions have established their special test benches (comparators) equipped with circular scales or rotary encoders of high accuracy and polygons with autocollimators for angle calibration purposes. Nevertheless, the standard (etalon) of plane angle - polygon has many restrictions for the transfer of angle unit - radian (rad) and other units of angle. It depends on the number of angles formed by the flat sides of the polygon that is restricted by technological and metrological difficulties related to the production and accuracy determination of the polygon. A possibility to create the standard of the angle equal to {pi} rad or half the circle or the full angle is proposed. It can be created by the circular scale with the rotation axis of very high accuracy and two precision reading instruments, usually, photoelectric microscopes (PM), placed on the opposite sides of the circular scale using the special alignment steps. A great variety of angle units and values can be measured and its traceability ensured by applying the third PM on the scale. Calibration of the circular scale itself and other scale or rotary encoder as well is possible using the proposed method with an implementation of {pi} rad as the primary standard angle. The method proposed enables to assure a traceability of angle measurements at every laboratory having appropriate environment and reading instruments of appropriate accuracy together with a rotary table with the rotation axis of high accuracy - rotation trajectory (runout) being in the range of 0.05 {mu}m. Short information about the multipurpose angle measurement test bench developed is presented.

  7. Angle closure glaucoma in congenital ectropion uvea

    Grace M. Wang

    2018-06-01

    Full Text Available Purpose: Congenital ectropion uvea is a rare anomaly, which is associated with open, but dysplastic iridocorneal angles that cause childhood glaucoma. Herein, we present 3 cases of angle-closure glaucoma in children with congenital ectropion uvea. Observations: Three children were initially diagnosed with unilateral glaucoma secondary to congenital ectropion uvea at 7, 8 and 13 years of age. The three cases showed 360° of ectropion uvea and iris stromal atrophy in the affected eye. In one case, we have photographic documentation of progression to complete angle closure, which necessitated placement of a glaucoma drainage device 3 years after combined trabeculotomy and trabeculectomy. The 2 other cases, which presented as complete angle closure, also underwent glaucoma drainage device implantation. All three cases had early glaucoma drainage device encapsulation (within 4 months and required additional surgery (cycloablation or trabeculectomy. Conclusions and importance: Congenital ectropion uvea can be associated with angle-closure glaucoma, and placement of glaucoma drainage devices in all 3 of our cases showed early failure due to plate encapsulation. Glaucoma in congenital ectropion uvea requires attention to angle configuration and often requires multiple surgeries to obtain intraocular pressure control. Keywords: Congenital ectropion uvea, Juvenile glaucoma, Angle-closure glaucoma, Glaucoma drainage device

  8. Modified Angle's Classification for Primary Dentition.

    Chandranee, Kaushik Narendra; Chandranee, Narendra Jayantilal; Nagpal, Devendra; Lamba, Gagandeep; Choudhari, Purva; Hotwani, Kavita

    2017-01-01

    This study aims to propose a modification of Angle's classification for primary dentition and to assess its applicability in children from Central India, Nagpur. Modification in Angle's classification has been proposed for application in primary dentition. Small roman numbers i/ii/iii are used for primary dentition notation to represent Angle's Class I/II/III molar relationships as in permanent dentition, respectively. To assess applicability of modified Angle's classification a cross-sectional preschool 2000 children population from central India; 3-6 years of age residing in Nagpur metropolitan city of Maharashtra state were selected randomly as per the inclusion and exclusion criteria. Majority 93.35% children were found to have bilateral Class i followed by 2.5% bilateral Class ii and 0.2% bilateral half cusp Class iii molar relationships as per the modified Angle's classification for primary dentition. About 3.75% children had various combinations of Class ii relationships and 0.2% children were having Class iii subdivision relationship. Modification of Angle's classification for application in primary dentition has been proposed. A cross-sectional investigation using new classification revealed various 6.25% Class ii and 0.4% Class iii molar relationships cases in preschool children population in a metropolitan city of Nagpur. Application of the modified Angle's classification to other population groups is warranted to validate its routine application in clinical pediatric dentistry.

  9. Modified angle's classification for primary dentition

    Kaushik Narendra Chandranee

    2017-01-01

    Full Text Available Aim: This study aims to propose a modification of Angle's classification for primary dentition and to assess its applicability in children from Central India, Nagpur. Methods: Modification in Angle's classification has been proposed for application in primary dentition. Small roman numbers i/ii/iii are used for primary dentition notation to represent Angle's Class I/II/III molar relationships as in permanent dentition, respectively. To assess applicability of modified Angle's classification a cross-sectional preschool 2000 children population from central India; 3–6 years of age residing in Nagpur metropolitan city of Maharashtra state were selected randomly as per the inclusion and exclusion criteria. Results: Majority 93.35% children were found to have bilateral Class i followed by 2.5% bilateral Class ii and 0.2% bilateral half cusp Class iii molar relationships as per the modified Angle's classification for primary dentition. About 3.75% children had various combinations of Class ii relationships and 0.2% children were having Class iii subdivision relationship. Conclusions: Modification of Angle's classification for application in primary dentition has been proposed. A cross-sectional investigation using new classification revealed various 6.25% Class ii and 0.4% Class iii molar relationships cases in preschool children population in a metropolitan city of Nagpur. Application of the modified Angle's classification to other population groups is warranted to validate its routine application in clinical pediatric dentistry.

  10. Preferred nasolabial angle in Middle Eastern population.

    Alharethy, Sami

    2017-05-01

    To define the preferred nasolabial angle measurement in Middle Eastern population. An observational study was conducted from January 2012 to January 2016 at the Department of Otolaryngology, Head and Neck Surgery, King Abdulaziz University Hospital, King Saud University, Riyadh, Kingdom of Saudi Arabia. A total of 1027 raters, 506 males, and 521 females were asked to choose the most ideal nasolabial angle for 5 males and 5 females lateral photographs whose nasolabial angle were modified with Photoshop into the following angles (85°, 90°, 95°, 100°, 105°, and 110°). Male raters preferred the angle of 89.5° ± 3.5° (mean ± SD) for males and 90.8° ± 5.6° for females. While female raters preferred the angle of 89.3° ± 3.8° for males and 90.5° ± 4.8° for females. ANOVA test compare means among groups: p: 0.342, and there is no statistically significant difference between groups. The results of our study showed an even more acute angles than degrees found in the literature. It shows that what young generation in our region prefers and clearly reflects that what could be explained as under rotation of the nasal tip in other cultures is just the ideal for some Middle Eastern population.

  11. Iridescence: views from many angles.

    Meadows, Melissa G; Butler, Michael W; Morehouse, Nathan I; Taylor, Lisa A; Toomey, Matthew B; McGraw, Kevin J; Rutowski, Ronald L

    2009-04-06

    Iridescent colours have been fascinating to humans throughout history; they are flashy, shimmering, dynamic, and examples surround us, from the commonly seen iridescent sheen of oily street puddles to the exotic, gaudy displays of birds-of-paradise featured in nature documentaries. Iridescent colours and the structures that produce them have unique properties in comparison with other types of colourants found in nature. Scientists from a variety of disciplines study the optics, development, heritability, chemical make-up, origin, evolution, functions and biomimetic technological applications of naturally occurring iridescent colours. For the first time, graduate students at Arizona State University brought together these scientists, along with educators and artists, at 'Iridescence: more than meets the eye', a conference to promote interdisciplinary communication and collaboration in the study of iridescent coloration from all of these perspectives. Here, we summarize the outcomes of this conference, introduce the papers that follow in this special journal issue and briefly review the current status of our understanding of iridescence.

  12. Making Yugoslavs

    Nielsen, Christian Axboe

    . By the time Aleksandar was killed by an assassin’s bullet five years later, he not only had failed to create a unified Yugoslav nation but his dictatorship had also contributed to an increase in interethnic tensions.   In Making Yugoslavs, Christian Axboe Nielsen uses extensive archival research to explain...... the failure of the dictatorship’s program of forced nationalization. Focusing on how ordinary Yugoslavs responded to Aleksandar’s nationalization project, the book illuminates an often-ignored era of Yugoslav history whose lessons remain relevant not just for the study of Balkan history but for many...

  13. A noise-resistant ADSA-PH algorithm for superhydrophobic surface’s static contact angle evaluation

    Z. N. Xu

    2017-01-01

    The blur around the contact points significantly decreases the evaluated static contact angle for superhydrophobic surface which is clearly presented in the paper. To improve the accuracy in the evaluated static contact angle for superhydrophobic surface, an accurate static contact angle algorithm, namely ADSA-PH (axisymmetric drop shape analysis-profile and height), is proposed. It discards the extracted drop edge points close to the contact points and makes use of the residual points and th...

  14. THE MAKING OF DECISION MAKING

    Leonardo Yuji Tamura

    2016-04-01

    Full Text Available Quantum Electronics was a Brazilian startup in the 1990's that was acquired by an American equity fund in 2012. They are currently the largest manufacturer of vehicle tracking and infotainment systems. The company was founded by three college friends, who are currently executives at the company: Camilo Santos, Pedro Barbosa and Luana Correa. Edward Hutter was sent by the equity fund to take over the company’s finances, but is having trouble making organizational decisions with his colleagues. As a consultant, I was called to help them improve their decision making process and project prioritization. I adapted and deployed our firm's methodology, but, in the end, its adequacy is shown to be very much in question. The author of this case study intends to explore how actual organizational decisions rely on different decision models and their assumptions, .as well as demonstrate that a decision model is neither absolutely good nor bad as its quality is context dependent.

  15. Computing angle of arrival of radio signals

    Borchardt, John J.; Steele, David K.

    2017-11-07

    Various technologies pertaining to computing angle of arrival of radio signals are described. A system that is configured for computing the angle of arrival of a radio signal includes a cylindrical sheath wrapped around a cylindrical object, where the cylindrical sheath acts as a ground plane. The system further includes a plurality of antennas that are positioned about an exterior surface of the cylindrical sheath, and receivers respectively coupled to the antennas. The receivers output measurements pertaining to the radio signal. A processing circuit receives the measurements and computes the angle of arrival of the radio signal based upon the measurements.

  16. Optical fibre angle sensor used in MEMS

    Golebiowski, J; Milcarz, Sz; Rybak, M

    2014-01-01

    There is a need for displacement and angle measurements in many movable MEMS structures. The use of fibre optical sensors helps to measure micrometre displacements and small rotation angles. Advantages of this type of transducers are their simple design, high precision of processing, low costs and ability of a non-contact measurement. The study shows an analysis of a fibre-optic intensity sensor used for MEMS movable structure rotation angle measurement. An intensity of the light in the photodetector is basically dependent on a distance between a reflecting surface and a head surface of the fibre transmitting arm, and the deflection angle. Experimental tests were made for PMMA 980/1000 plastic fibres, Θ NA =33°. The study shows both analytical and practical results. It proves that calculated and experimental characteristics for the analysed transducers are similar.

  17. Gonioscopy in primary angle closure glaucoma.

    Bruno, Christina A; Alward, Wallace L M

    2002-06-01

    Primary angle closure is a condition characterized by obstruction to aqueous humor outflow by the peripheral iris, and results in changes in the iridocorneal angle that are visible through gonioscopic examination. Gonioscopy in these eyes, however, can be difficult. This chapter discusses techniques that might help in the examination. These include beginning the examination with the inferior angle, methods to help in looking over the iris, cycloplegia, locating the corneal wedge, indentation, van Herick estimation, examining the other eye, and topical glycerin. Finally, there is a discussion about the pathology associated with the closed angle, with emphasis on the appearance of iris bombé, plateau iris, and the distinction between iris processes and peripheral anterior synechiae.

  18. Low angle X-ray scattering

    Torrianni, I.L.

    1983-01-01

    The theoretical and experimental problems appearing in diffraction experiments at very low angles by several kinds of materials are discussed. The importance of synchrotron radiation in such problems is shown. (L.C.) [pt

  19. Directional Wide-Angle Range Finder (DWARF)

    National Aeronautics and Space Administration — The proposed innovation, the Directional Wide-Angle Range Finder (DWARF) is the creation of a laser range-finder with a wide field-of-view (FOV) and a directional...

  20. Angle measurement with laser feedback instrument.

    Chen, Wenxue; Zhang, Shulian; Long, Xingwu

    2013-04-08

    An instrument for angle measurement based on laser feedback has been designed. The measurement technique is based on the principle that when a wave plate placed into a feedback cavity rotates, its phase retardation varies. Phase retardation is a function of the rotating angle of the wave plate. Hence, the angle can be converted to phase retardation. The phase retardation is measured at certain characteristic points identified in the laser outputting curve that are then modulated by laser feedback. The angle of a rotating object can be measured if it is connected to the wave plate. The main advantages of this instrument are: high resolution, compact, flexible, low cost, effective power, and fast response.

  1. Precision Guidance with Impact Angle Requirements

    Ford, Jason

    2001-01-01

    This paper examines a weapon system precision guidance problem in which the objective is to guide a weapon onto a non-manoeuvring target so that a particular desired angle of impact is achieved using...

  2. The small angle tile calorimeter in the DELPHI experiment

    Alvsvaag, S.J.; Bari, M.; Barreira, G.; Benvenuti, A.C.; Bigi, M.; Bonesini, M.; Bozzo, M.; Camporesi, T.; Carling, H.; Cassio, V.; Castellani, L.; Cereseto, R.; Chignoli, F.; Della Ricca, G.; Dharmasiri, D.R.; Santo, M.C. Espirito; Falk, E.; Fenyuk, A.; Ferrari, P.; Gamba, D.; Giordano, V.; Gouz, Yu.; Guerzoni, M.; Gumenyuk, S.; Hedberg, V.; Jarlskog, G.; Karyukhin, A.; Klovning, A.; Konoplyannikov, A.; Kronkvist, I.; Lanceri, L.; Leoni, R.; Maeland, O.A.; Maio, A.; Mazza, R.; Migliore, E.; Navarria, F.L.; Negri, P.; Nossum, B.; Obraztsov, V.; Onofre, A.; Paganoni, M.; Pegoraro, M.; Peralta, L.; Petrovykh, L.; Pimenta, M.; Poropat, P.; Prest, M.; Read, A.L.; Romero, A.; Shalanda, N.; Simonetti, L.; Skaali, T.B.; Stugu, B.; Terranova, F.; Tome, B.; Torassa, E.; Trapani, P.P.; Verardi, M.G.; Vallazza, E.; Vlasov, E.; Zaitsev, A.

    1999-01-01

    The Small angle TIle Calorimeter (STIC) provides calorimetric coverage in the very forward region of the DELPHI experiment at the CERN LEP collider. The structure of the calorimeters, built with a so-called 'shashlik' technique, gives a perfectly hermetic calorimeter and still allows for the insertion of tracking detectors within the sampling structure to measure the direction of the showering particle. A charged-particle veto system, composed of two scintillator layers, makes it possible to trigger on single photon events and provides e-γ separation. Results are presented from the extensive studies of these detectors in the CERN testbeams prior of installation and of the detector performance at LEP

  3. Axial vector mass spectrum and mixing angles

    Caffarelli, R.V.; Kang, K.

    1976-01-01

    Spectral sum rules of the axial-vector current and axial-vector current-pseudoscalar field are used to study the axial-vector mass spectrum and mixing angles, as well as the decay constants and mixing angles of the pseudoscalar mesons. In general, the result is quite persuasive for the existence of the Jsup(PC) = 1 ++ multiplet in which one has a canonical D-E mixing. (Auth.)

  4. Contact angle hysteresis on superhydrophobic stripes.

    Dubov, Alexander L; Mourran, Ahmed; Möller, Martin; Vinogradova, Olga I

    2014-08-21

    We study experimentally and discuss quantitatively the contact angle hysteresis on striped superhydrophobic surfaces as a function of a solid fraction, ϕS. It is shown that the receding regime is determined by a longitudinal sliding motion of the deformed contact line. Despite an anisotropy of the texture the receding contact angle remains isotropic, i.e., is practically the same in the longitudinal and transverse directions. The cosine of the receding angle grows nonlinearly with ϕS. To interpret this we develop a theoretical model, which shows that the value of the receding angle depends both on weak defects at smooth solid areas and on the strong defects due to the elastic energy of the deformed contact line, which scales as ϕS(2)lnϕS. The advancing contact angle was found to be anisotropic, except in a dilute regime, and its value is shown to be determined by the rolling motion of the drop. The cosine of the longitudinal advancing angle depends linearly on ϕS, but a satisfactory fit to the data can only be provided if we generalize the Cassie equation to account for weak defects. The cosine of the transverse advancing angle is much smaller and is maximized at ϕS ≃ 0.5. An explanation of its value can be obtained if we invoke an additional energy due to strong defects in this direction, which is shown to be caused by the adhesion of the drop on solid sectors and is proportional to ϕS(2). Finally, the contact angle hysteresis is found to be quite large and generally anisotropic, but it becomes isotropic when ϕS ≤ 0.2.

  5. Small-angle neutron-scattering experiments

    Hardy, A.D.; Thomas, M.W.; Rouse, K.D.

    1981-04-01

    A brief introduction to the technique of small-angle neutron scattering is given. The layout and operation of the small-angle scattering spectrometer, mounted on the AERE PLUTO reactor, is also described. Results obtained using the spectrometer are presented for three materials (doped uranium dioxide, Magnox cladding and nitrided steel) of interest to Springfields Nuclear Power Development Laboratories. The results obtained are discussed in relation to other known data for these materials. (author)

  6. Radiodiagnosis of Cerebellopontine-angle tumors

    Weyer, K.H. van de

    1979-01-01

    The most important radiodiagnostic signs of cerebellopontine-angle tumors are demonstrated. The value of plain films and special projections is discussed. The use of recent diagnostic procedures like scintography, CT and cisternography with oily contrast medium is critically analyzed. The advantage and disadvantages of these procedures are discussed according to their usefullness in evaluating size, route of spread and localisation of cerebellopontine-angle tumors. (orig.) [de

  7. Estimating Elevation Angles From SAR Crosstalk

    Freeman, Anthony

    1994-01-01

    Scheme for processing polarimetric synthetic-aperture-radar (SAR) image data yields estimates of elevation angles along radar beam to target resolution cells. By use of estimated elevation angles, measured distances along radar beam to targets (slant ranges), and measured altitude of aircraft carrying SAR equipment, one can estimate height of target terrain in each resolution cell. Monopulselike scheme yields low-resolution topographical data.

  8. Expressions for the Total Yaw Angle

    2016-09-01

    1. Introduction 1 2. Mathematical Notation 1 3. Total Yaw Expression Derivations 2 3.1 First Derivation 2 3.2 Second Derivation 4 3.3 Other...4 iv Approved for public release; distribution is unlimited. 1. Introduction The total yaw angle, γt , of a ballistic projectile is... elevation angles from spherical coordinates.∗ We again place point A at the end point of V. Now imagine a plane parallel to the y-z plane that includes

  9. Angle closure glaucoma in congenital ectropion uvea.

    Wang, Grace M; Thuente, Daniel; Bohnsack, Brenda L

    2018-06-01

    Congenital ectropion uvea is a rare anomaly, which is associated with open, but dysplastic iridocorneal angles that cause childhood glaucoma. Herein, we present 3 cases of angle-closure glaucoma in children with congenital ectropion uvea. Three children were initially diagnosed with unilateral glaucoma secondary to congenital ectropion uvea at 7, 8 and 13 years of age. The three cases showed 360° of ectropion uvea and iris stromal atrophy in the affected eye. In one case, we have photographic documentation of progression to complete angle closure, which necessitated placement of a glaucoma drainage device 3 years after combined trabeculotomy and trabeculectomy. The 2 other cases, which presented as complete angle closure, also underwent glaucoma drainage device implantation. All three cases had early glaucoma drainage device encapsulation (within 4 months) and required additional surgery (cycloablation or trabeculectomy). Congenital ectropion uvea can be associated with angle-closure glaucoma, and placement of glaucoma drainage devices in all 3 of our cases showed early failure due to plate encapsulation. Glaucoma in congenital ectropion uvea requires attention to angle configuration and often requires multiple surgeries to obtain intraocular pressure control.

  10. Undetected angle closure in patients with a diagnosis of open-angle glaucoma.

    Varma, Devesh K; Simpson, Sarah M; Rai, Amandeep S; Ahmed, Iqbal Ike K

    2017-08-01

    The aim of this study was to identify the proportion of patients referred to a tertiary glaucoma centre with a diagnosis of open-angle glaucoma (OAG) who were found to have angle closure glaucoma. Retrospective chart review. Consecutive new patients referred for glaucoma management to a tertiary centre between July 2010 and December 2011 were reviewed. Patients whose referrals for glaucoma assessment specified angle status as "open" were included. The data collected included glaucoma specialist's angle assessment, diagnosis, and glaucoma severity. The status of those with 180 degrees or more Shaffer angle grading of 0 was classified as "closed." From 1234 glaucoma referrals, 179 cases were specified to have a diagnosis of OAG or when angles were known to be open. Of these, 16 (8.9%) were found on examination by the glaucoma specialist to have angle closure. Pseudoexfoliation was present in 4 of 16 patients (25%) in the missed angle-closure glaucoma (ACG) group and 22 of 108 patients (13.5%) in the remaining OAG group. There was no difference found in demographic or ocular biometric parameters between those with confirmed OAG versus those with missed ACG. Almost 1 in 11 patients referred by ophthalmologists to a tertiary glaucoma centre with a diagnosis of OAG were in fact found to have angle closure. Given the different treatment approaches for ACG versus OAG, this study suggests a need to strengthen angle evaluations. Copyright © 2017 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  11. Controlling the crossing angle in the SSC [Superconducting Super Collider

    Garren, A.A.; Johnson, D.E.

    1989-04-01

    The colliding beams in the SSC must cross at a small angle, so that when the bunches pass each other away from the interaction point (IP), they are sufficiently separated to avoid disruptive beam-beam forces. However, the crossing angle is so small that the adjacent quadrupoles must be common to both beams. Only after passing through four common quadrupoles on each side of the IP, are the beams split by vertical dipoles into separate beamlines. In order to make the closed orbits of the two beams cross at a definite angle at the IP (within a range up to 150 μrad), a series of correction dipoles are placed in the insertions. If these dipoles are excited in such a way as to control the closed orbits alone, the dispersion will be mismatched, reaching values of up to 50 cm in the arcs. This mismatch is due to the closed orbit displacements in the interaction region (IR) quadrupoles, causing them to act as bending magnets. Therefore, both the closed orbit and dispersion must be matched simultaneously. Solutions to this problem are presented. 6 figs

  12. Quantification of Finger-Tapping Angle Based on Wearable Sensors.

    Djurić-Jovičić, Milica; Jovičić, Nenad S; Roby-Brami, Agnes; Popović, Mirjana B; Kostić, Vladimir S; Djordjević, Antonije R

    2017-01-25

    We propose a novel simple method for quantitative and qualitative finger-tapping assessment based on miniature inertial sensors (3D gyroscopes) placed on the thumb and index-finger. We propose a simplified description of the finger tapping by using a single angle, describing rotation around a dominant axis. The method was verified on twelve subjects, who performed various tapping tasks, mimicking impaired patterns. The obtained tapping angles were compared with results of a motion capture camera system, demonstrating excellent accuracy. The root-mean-square (RMS) error between the two sets of data is, on average, below 4°, and the intraclass correlation coefficient is, on average, greater than 0.972. Data obtained by the proposed method may be used together with scores from clinical tests to enable a better diagnostic. Along with hardware simplicity, this makes the proposed method a promising candidate for use in clinical practice. Furthermore, our definition of the tapping angle can be applied to all tapping assessment systems.

  13. Compensatory canine angulation in angle Class II and III patients

    Mauro Carlos Agner Busato

    2009-09-01

    Full Text Available The aim of this study was to evaluate the occurence of compensation in mesiodistal axial inclinations of canines in skeletal malocclusions patients. The sample consisted of 25 Angle Class II, division 1 malocclusion (group 1 and 19 Angle Class III malocclusion patients (group 2. After measurement of dental angulations through a method that associates plaster model photography and AutoCad software, comparisons between the groups were performed by T-test for independent samples. Results showed that there was no statistically significant difference (p < 0.05 between groups, when maxillary canine angulations were compared. Regarding the mandibular canines, there was a statistically significant difference in dental angulation, expressed by 3.2° for group 1 and 0.15° for group 2. An upright position tendency for mandibular canines was observed in the Angle Class III sample. This configures a pattern of compensatory coronary positioning, since the angulation of these teeth makes them occupy less space in the dental arch and consequently mandibular incisors can be in a more retracted position in the sagittal plane.

  14. Solar cell angle of incidence corrections

    Burger, Dale R.; Mueller, Robert L.

    1995-01-01

    Literature on solar array angle of incidence corrections was found to be sparse and contained no tabular data for support. This lack along with recent data on 27 GaAs/Ge 4 cm by 4 cm cells initiated the analysis presented in this paper. The literature cites seven possible contributors to angle of incidence effects: cosine, optical front surface, edge, shadowing, UV degradation, particulate soiling, and background color. Only the first three are covered in this paper due to lack of sufficient data. The cosine correction is commonly used but is not sufficient when the incident angle is large. Fresnel reflection calculations require knowledge of the index of refraction of the coverglass front surface. The absolute index of refraction for the coverglass front surface was not known nor was it measured due to lack of funds. However, a value for the index of refraction was obtained by examining how the prediction errors varied with different assumed indices and selecting the best fit to the set of measured values. Corrections using front surface Fresnel reflection along with the cosine correction give very good predictive results when compared to measured data, except there is a definite trend away from predicted values at the larger incident angles. This trend could be related to edge effects and is illustrated by a use of a box plot of the errors and by plotting the deviation of the mean against incidence angle. The trend is for larger deviations at larger incidence angles and there may be a fourth order effect involved in the trend. A chi-squared test was used to determine if the measurement errors were normally distributed. At 10 degrees the chi-squared test failed, probably due to the very small numbers involved or a bias from the measurement procedure. All other angles showed a good fit to the normal distribution with increasing goodness-of-fit as the angles increased which reinforces the very small numbers hypothesis. The contributed data only went to 65 degrees

  15. Biometric gonioscopy and the effects of age, race, and sex on the anterior chamber angle

    Congdon, N G; Foster, P J; Wamsley, S; Gutmark, J; Nolan, W; Seah, S K; Johnson, G J; Broman, A T

    2002-01-01

    Aim: To utilise a novel method for making measurements in the anterior chamber in order to compare the anterior chamber angles of people of European, African, and east Asian descent aged 40 years and over. Methods: A cross sectional study on 15 people of each sex from each decade from the 40s to the 70s, from each of three racial groups—black, white, and Chinese Singaporeans. Biometric gonioscopy (BG) utilises a slit lamp mounted reticule to make measurements from the apparent iris insertion to Schwalbe's line through a Goldmann one mirror goniolens. The main outcome measures were BG measurements of the anterior chamber angle as detailed above. Results: There was no significant difference in angle measurement between black, white, and Chinese races in this study. However, at younger ages people of Chinese race appeared to have deeper angles than white or black people, whereas the angles of older Chinese were significantly narrower (p = 0.004 for the difference in slope of BG by age between Chinese and both black and white people). Conclusion: The failure to detect a difference in angle measurements between these groups was surprising, given the much higher prevalence of angle closure among Chinese. It appears that the overall apparent similarity of BG means between Chinese and Western populations may mask very different trends with age. The apparently more rapid decline in angle width measurements with age among Chinese may be due to the higher prevalence of cataract or “creeping angle closure.” However, longitudinal inferences from cross sectional data are problematic, and this may represent a cohort phenomenon caused by the increasing prevalence of myopia in the younger Singaporean population. PMID:11801496

  16. Contact angle of unset elastomeric impression materials.

    Menees, Timothy S; Radhakrishnan, Rashmi; Ramp, Lance C; Burgess, John O; Lawson, Nathaniel C

    2015-10-01

    Some elastomeric impression materials are hydrophobic, and it is often necessary to take definitive impressions of teeth coated with some saliva. New hydrophilic materials have been developed. The purpose of this in vitro study was to compare contact angles of water and saliva on 7 unset elastomeric impression materials at 5 time points from the start of mixing. Two traditional polyvinyl siloxane (PVS) (Aquasil, Take 1), 2 modified PVS (Imprint 4, Panasil), a polyether (Impregum), and 2 hybrid (Identium, EXA'lence) materials were compared. Each material was flattened to 2 mm and a 5 μL drop of distilled water or saliva was dropped on the surface at 25 seconds (t0) after the start of mix. Contact angle measurements were made with a digital microscope at initial contact (t0), t1=2 seconds, t2=5 seconds, t3=50% working time, and t4=95% working time. Data were analyzed with a generalized linear mixed model analysis, and individual 1-way ANOVA and Tukey HSD post hoc tests (α=.05). For water, materials grouped into 3 categories at all time-points: the modified PVS and one hybrid material (Identium) produced the lowest contact angles, the polyether material was intermediate, and the traditional PVS materials and the other hybrid (EXA'lence) produced the highest contact angles. For saliva, Identium, Impregum, and Imprint 4 were in the group with the lowest contact angle at most time points. Modified PVS materials and one of the hybrid materials are more hydrophilic than traditional PVS materials when measured with water. Saliva behaves differently than water in contact angle measurement on unset impression material and produces a lower contact angle on polyether based materials. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  17. Estimation of continuous thumb angle and force using electromyogram classification

    Abdul Rahman Siddiqi

    2016-09-01

    Full Text Available Human hand functions range from precise minute handling to heavy and robust movements. Remarkably, 50% of all hand functions are made possible by the thumb. Therefore, developing an artificial thumb that can mimic the actions of a real thumb precisely is a major achievement. Despite many efforts dedicated to this area of research, control of artificial thumb movements in resemblance to our natural movement still poses as a challenge. Most of the development in this area is based on discontinuous thumb position control, which makes it possible to recreate several of the most important functions of the thumb but does not result in total imitation. This work looks into the classification of electromyogram signals from thumb muscles for the prediction of thumb angle and force during flexion motion. For this purpose, an experimental setup is developed to measure the thumb angle and force throughout the range of flexion and simultaneously gather the electromyogram signals. Further, various features are extracted from these signals for classification and the most suitable feature set is determined and applied to different classifiers. A “piecewise discretization” approach is used for continuous angle prediction. Breaking away from previous research studies, the frequency-domain features performed better than the time-domain features, with the best feature combination turning out to be median frequency–mean frequency–mean power. As for the classifiers, the support vector machine proved to be the most accurate classifier giving about 70% accuracy for both angle and force classification and close to 50% for joint angle–force classification.

  18. Portable mini-chamber for temperature dependent studies using small angle and wide angle x-ray scattering

    Dev, Arun Singh; Kumar, Dileep; Potdar, Satish; Pandit, Pallavi; Roth, Stephan V.; Gupta, Ajay

    2018-04-01

    The present work describes the design and performance of a vacuum compatible portable mini chamber for temperature dependent GISAXS and GIWAXS studies of thin films and multilayer structures. The water cooled body of the chamber allows sample annealing up to 900 K using ultra high vacuum compatible (UHV) pyrolytic boron nitride heater, thus making it possible to study the temperature dependent evolution of structure and morphology of two-dimensional nanostructured materials. Due to its light weight and small size, the chamber is portable and can be accommodated at synchrotron facilities worldwide. A systematic illustration of the versatility of the chamber has been demonstrated at beamline P03, PETRA-III, DESY, Hamburg, Germany. Temperature dependent grazing incidence small angle x-ray scattering (GISAXS) and grazing incidence wide angle x-ray scattering (GIWAXS) measurements were performed on oblique angle deposited Co/Ag multilayer structure, which jointly revealed that the surface diffusion in Co columns in Co/Ag multilayer enhances by increasing temperature from RT to ˜573 K. This results in a morphology change from columnar tilted structure to densely packed morphological isotropic multilayer.

  19. Uncertainty in T1 mapping using the variable flip angle method with two flip angles

    Schabel, Matthias C; Morrell, Glen R

    2009-01-01

    Propagation of errors, in conjunction with the theoretical signal equation for spoiled gradient echo pulse sequences, is used to derive a theoretical expression for uncertainty in quantitative variable flip angle T 1 mapping using two flip angles. This expression is then minimized to derive a rigorous expression for optimal flip angles that elucidates a commonly used empirical result. The theoretical expressions for uncertainty and optimal flip angles are combined to derive a lower bound on the achievable uncertainty for a given set of pulse sequence parameters and signal-to-noise ratio (SNR). These results provide a means of quantitatively determining the effect of changing acquisition parameters on T 1 uncertainty. (note)

  20. Energy and angle resolved ion scattering spectroscopy: new possibilities for surface analysis

    Hellings, G.J.A.

    1986-01-01

    In this thesis the design and development of a novel, very sensitive and high-resolving spectrometer for surface analysis is described. This spectrometer is designed for Energy and Angle Resolved Ion Scattering Spectroscopy (EARISS). There are only a few techniques that are sensitive enough to study the outermost atomic layer of surfaces. One of these techniques, Low-Energy Ion Scattering (LEIS), is discussed in chapter 2. Since LEIS is destructive, it is important to make a very efficient use of the scattered ions. This makes it attractive to simultaneously carry out energy and angle dependent measurements (EARISS). (Auth.)

  1. Corresponding Angle Feedback in an innovative weighted transportation system

    Dong Chuanfei; Ma Xu

    2010-01-01

    The optimal information feedback has a significant effect on many socioeconomic systems like stock market and traffic systems aiming to make full use of resources. In this Letter, we study dynamics of traffic flow with real-time information. The influence of a feedback strategy named Corresponding Angle Feedback Strategy (CAFS) is introduced, based on a two-route scenario in which dynamic information can be generated and displayed on the board to guide road users to make a choice. Our model incorporates the effects of adaptability into the cellular automaton models of traffic flow and simulation results adopting this optimal information feedback strategy have demonstrated high efficiency in controlling spatial distribution of traffic patterns compared with the other three information feedback strategies, i.e., vehicle number and flux.

  2. Complications and Reoperations in Mandibular Angle Fractures.

    Chen, Collin L; Zenga, Joseph; Patel, Ruchin; Branham, Gregory

    2018-05-01

    Mandible angle fractures can be repaired in a variety of ways, with no consensus on the outcomes of complications and reoperation rates. To analyze patient, injury, and surgical factors, including approach to the angle and plating technique, associated with postoperative complications, as well as the rate of reoperation with regard to mandible angle fractures. Retrospective cohort study analyzing the surgical outcomes of patients with mandible angle fractures between January 1, 2000, and December 31, 2015, who underwent open reduction and internal fixation. Patients were eligible if they were aged 18 years or older, had 3 or less mandible fractures with 1 involving the mandibular angle, and had adequate follow-up data. Patients with comminuted angle fractures, bilateral angle fractures, and multiple surgical approaches were excluded. A total of 135 patients were included in the study. All procedures were conducted at a single, large academic hospital located in an urban setting. Major complications and reoperation rates. Major complications included in this study were nonunion, malunion, severe malocclusion, severe infection, and exposed hardware. Of 135 patients 113 (83.7%) were men; median age was 29 years (range, 18-82 years). Eighty-seven patients (64.4%) underwent the transcervical approach and 48 patients (35.6%) received the transoral approach. Fifteen (17.2%) patients in the transcervical group and 9 (18.8%) patients in the transoral group experienced major complications (difference, 1%; 95% CI, -8% to 10%). Thirteen (14.9%) patients in the transcervical group and 8 (16.7%) patients in the transoral group underwent reoperations (difference, 2%; 95% CI, -13% to 17%). Active smoking had a significant effect on the rate of major complications (odds ratio, 4.04; 95% CI, 1.07 to 15.34; P = .04). During repair of noncomminuted mandibular angle fractures, both of the commonly used approaches-transcervical and transoral-can be used during treatment with equal

  3. Graphene spin valve: An angle sensor

    Iqbal, Muhammad Zahir, E-mail: zahir.upc@gmail.com [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Hussain, Ghulam [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Siddique, Salma [Department of Bioscience & Biotechnology, Sejong University, Seoul 143-747 (Korea, Republic of); Iqbal, Muhammad Waqas [Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, Lahore (Pakistan)

    2017-06-15

    Graphene spin valves can be optimized for various spintronic applications by tuning the associated experimental parameters. In this work, we report the angle dependent magnetoresistance (MR) in graphene spin valve for different orientations of applied magnetic field (B). The switching points of spin valve signals show a clear shift towards higher B for each increasing angle of the applied field, thus sensing the response for respective orientation of the magnetic field. The angular variation of B shifts the switching points from ±95 G to ±925 G as the angle is varied from 0° to 90° at 300 K. The observed shifts in switching points become more pronounced (±165 G to ±1450 G) at 4.2 K for similar orientation. A monotonic increase in MR ratio is observed as the angle of magnetic field is varied in the vertical direction at 300 K and 4.2 K temperatures. This variation of B (from 0° to 90°) increases the magnitude of MR ratio from ∼0.08% to ∼0.14% at 300 K, while at 4.2 K it progresses to ∼0.39% from ∼0.14%. The sensitivity related to angular variation of such spin valve structure can be employed for angle sensing applications.

  4. A Viewpoint on the Quantity "Plane Angle"

    Eder, W. E.

    1982-01-01

    Properties of the quantity "plane angle" are explored under the hypothesis that it is a dimensional quantity. The exploration proceeds especially with respect to the physical concept, its mathematical treatment, vector concepts, measurement theory, units of related quantities, engineering pragmatism, and SI. An attempt is made to bring these different relations into a rational, logical and consistent framework, and thus to justify the hypothesis. Various types of vectorial quantities are recognized, and their properties described with an outline of the necessary algebraic manipulations. The concept of plane angle is amplified, and its interdependence with the circular arc is explored. The resulting units of plane angle form a class of similar scales of measurement. Consequences of the confirmed hypothesis are developed for mathematical expressions involving trigonometric functions, rotational volumes and areas, mathematical limits, differentiation and series expansion. Consequences for mechanical rotational quantities are developed, with proposals for revisions to a number of expressions for derived units within SI. A revised definition for the quantity "plane angle" is stated to take account of the developed insights. There is a clear need to reconsider the status of plane angle and some other quantities within the international framework of SI.

  5. Longitudinal Changes of Angle Configuration in Primary Angle-Closure Suspects

    Jiang, Yuzhen; Chang, Dolly S.; Zhu, Haogang; Khawaja, Anthony P.; Aung, Tin; Huang, Shengsong; Chen, Qianyun; Munoz, Beatriz; Grossi, Carlota M.

    2015-01-01

    Objective To determine longitudinal changes in angle configuration in the eyes of primary angle-closure suspects (PACS) treated by laser peripheral iridotomy (LPI) and in untreated fellow eyes. Design Longitudinal cohort study. Participants Primary angle-closure suspects aged 50 to 70 years were enrolled in a randomized, controlled clinical trial. Methods Each participant was treated by LPI in 1 randomly selected eye, with the fellow eye serving as a control. Angle width was assessed in a masked fashion using gonioscopy and anterior segment optical coherence tomography (AS-OCT) before and at 2 weeks, 6 months, and 18 months after LPI. Main Outcome Measures Angle width in degrees was calculated from Shaffer grades assessed under static gonioscopy. Angle configuration was also evaluated using angle opening distance (AOD250, AOD500, AOD750), trabecular-iris space area (TISA500, TISA750), and angle recess area (ARA) measured in AS-OCT images. Results No significant difference was found in baseline measures of angle configuration between treated and untreated eyes. At 2 weeks after LPI, the drainage angle on gonioscopy widened from a mean of 13.5° at baseline to a mean of 25.7° in treated eyes, which was also confirmed by significant increases in all AS-OCT angle width measures (Pgonioscopy (P = 0.18), AOD250 (P = 0.167) and ARA (P = 0.83). In untreated eyes, angle width consistently decreased across all follow-up visits after LPI, with a more rapid longitudinal decrease compared with treated eyes (P values for all variables ≤0.003). The annual rate of change in angle width was equivalent to 1.2°/year (95% confidence interval [CI], 0.8–1.6) in treated eyes and 1.6°/year (95% CI, 1.3–2.0) in untreated eyes (P<0.001). Conclusions Angle width of treated eyes increased markedly after LPI, remained stable for 6 months, and then decreased significantly by 18 months after LPI. Untreated eyes experienced a more consistent and rapid decrease in angle width over the

  6. N-{4-[4-(4-Fluorophenyl-1-(2-methoxyethyl-2-methylsulfanyl-1H-imidazol-5-yl]-2-pyridyl}-2-methyl-3-phenylpropionamide

    Stefan Laufer

    2009-12-01

    Full Text Available In the crystal structure of the title compound, C28H29FN4O2S, the imidazole ring makes dihedral angles of 11.85 (7, 73.33 (7 and 22.83 (8° with the 4-fluorophenyl, pyridine and phenyl rings, respectively. The 4-fluorophenyl ring makes dihedral angles of 77.91 (7 and 26.93 (8° with the pyridine and phenyl rings, respectively. The phenyl and pyridine rings are nearly perpendicular, making a dihedral angle of 86.47 (9°. The crystal packing shows an intermolecular N—H...O hydrogen-bonding interaction between the N—H and carbonyl groups of the amide functions.

  7. Angle-averaged Compton cross sections

    Nickel, G.H.

    1983-01-01

    The scattering of a photon by an individual free electron is characterized by six quantities: α = initial photon energy in units of m 0 c 2 ; α/sub s/ = scattered photon energy in units of m 0 c 2 ; β = initial electron velocity in units of c; phi = angle between photon direction and electron direction in the laboratory frame (LF); theta = polar angle change due to Compton scattering, measured in the electron rest frame (ERF); and tau = azimuthal angle change in the ERF. We present an analytic expression for the average of the Compton cross section over phi, theta, and tau. The lowest order approximation to this equation is reasonably accurate for photons and electrons with energies of many keV

  8. Flocking and invariance of velocity angles.

    Liu, Le; Huang, Lihong; Wu, Jianhong

    2016-04-01

    Motsch and Tadmor considered an extended Cucker-Smale model to investigate the flocking behavior of self-organized systems of interacting species. In this extended model, a cone of the vision was introduced so that outside the cone the influence of one agent on the other is lost and hence the corresponding influence function takes the value zero. This creates a problem to apply the Motsch-Tadmor and Cucker-Smale method to prove the flocking property of the system. Here, we examine the variation of the velocity angles between two arbitrary agents, and obtain a monotonicity property for the maximum cone of velocity angles. This monotonicity permits us to utilize existing arguments to show the flocking property of the system under consideration, when the initial velocity angles satisfy some minor technical constraints.

  9. Angle-averaged Compton cross sections

    Nickel, G.H.

    1983-01-01

    The scattering of a photon by an individual free electron is characterized by six quantities: ..cap alpha.. = initial photon energy in units of m/sub 0/c/sup 2/; ..cap alpha../sub s/ = scattered photon energy in units of m/sub 0/c/sup 2/; ..beta.. = initial electron velocity in units of c; phi = angle between photon direction and electron direction in the laboratory frame (LF); theta = polar angle change due to Compton scattering, measured in the electron rest frame (ERF); and tau = azimuthal angle change in the ERF. We present an analytic expression for the average of the Compton cross section over phi, theta, and tau. The lowest order approximation to this equation is reasonably accurate for photons and electrons with energies of many keV.

  10. Does the Angle of the Nail Matter for Pertrochanteric Fracture Reduction? Matching Nail Angle and Native Neck-Shaft Angle.

    Parry, Joshua A; Barrett, Ian; Schoch, Bradley; Yuan, Brandon; Cass, Joseph; Cross, William

    2018-04-01

    To determine whether fixation of pertrochanteric hip fractures with cephalomedullary nails (CMNs) with a neck-shaft angle (NSA) less than the native NSA affects reduction and lag screw cutout. Retrospective comparative study. Level I trauma center. Patients treated with a CMN for unstable pertrochanteric femur fractures (OTA/AO 31-A2.2 and 31-A2.3) between 2005 and 2014. CMN fixation. NSA reduction and lag screw cutout. Patients fixed with a nail angle less than their native NSA were less likely to have good reductions [17% vs. 60%, 95% confidence interval (CI), -63% to -18%; P = 0.0005], secondary to more varus reductions (41% vs. 10%, 95% CI, 9%-46%; P = 0.01) and more fractures with ≥4 mm of displacement (63% vs. 35%, 95% CI, 3%-49%; P = 0.03). The cutout was not associated with the use of a nail angle less than the native NSA (60% vs. 76%, 95% CI, -56% to 18%; P = 0.5), varus reductions (60% vs. 32%, 95% CI, -13% to 62%; P = 0.3), or poor reductions (20% vs. 17%, 95% CI, -24% to 44%; P = 1.0). The fixation of unstable pertrochanteric hip fractures with a nail angle less than the native NSA was associated with more varus reductions and fracture displacement but did not affect the lag screw cutout. Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence.

  11. Contact angle studies on anodic porous alumina.

    Redón, Rocío; Vázquez-Olmos, A; Mata-Zamora, M E; Ordóñez-Medrano, A; Rivera-Torres, F; Saniger, J M

    2005-07-15

    The preparation of nanostructures using porous anodic aluminum oxide (AAO) as templates involves the introduction of dissolved materials into the pores of the membranes; one way to determine which materials are preferred to fill the pores involves the measurement of the contact angles (theta) of different solvents or test liquids on the AAOs. Thus, we present measurements of contact angles of nine solvents on four different AAO sheets by tensiometric and goniometric methods. From the solvents tested, we found dimethyl sulfoxide (DMSO) and N,N(')-dimethylformamide (DMF) to interact with the AAOs, the polarity of the solvents and the surfaces being the driving force.

  12. Understanding Angle and Angle Measure: A Design-Based Research Study Using Context Aware Ubiquitous Learning

    Crompton, Helen

    2015-01-01

    Mobile technologies are quickly becoming tools found in the educational environment. The researchers in this study use a form of mobile learning to support students in learning about angle concepts. Design-based research is used in this study to develop an empirically-substantiated local instruction theory about students' develop of angle and…

  13. Small angle neutron scattering and small angle X-ray scattering ...

    Abstract. The morphology of carbon nanofoam samples comprising platinum nanopar- ticles dispersed in the matrix was characterized by small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS) techniques. Results show that the structure of pores of carbon matrix exhibits a mass (pore) fractal nature ...

  14. Using Digital Technology to See Angles from Different Angles. Part 2: Openings and Turns

    Host, Erin; Baynham, Emily; McMaster, Heather

    2015-01-01

    Ever wondered how to use technology to teach angles? This article follows on from an earlier article published last year, providing a range of ideas for integrating technology and concrete materials with the teaching of angle concepts. The authors also provide a comprehensive list of free online games and learning objects that can be used to teach…

  15. Sharper angle, higher risk? The effect of cutting angle on knee mechanics in invasion sport athletes

    Schreurs, Mervin J.; Benjaminse, Anne; Lemmink, Koen A. P. M.

    2017-01-01

    Introduction: Cutting is an important skill in team-sports, but unfortunately is also related to non-contact ACL injuries. The purpose was to examine knee kinetics and kinematics at different cutting angles. Material and methods: 13 males and 16 females performed cuts at different angles (45°, 90°,

  16. Contact angles on a soft solid: from Young's law to Neumann's law.

    Marchand, Antonin; Das, Siddhartha; Snoeijer, Jacco H; Andreotti, Bruno

    2012-12-07

    The contact angle that a liquid drop makes on a soft substrate does not obey the classical Young's relation, since the solid is deformed elastically by the action of the capillary forces. The finite elasticity of the solid also renders the contact angles differently from those predicted by Neumann's law, which applies when the drop is floating on another liquid. Here, we derive an elastocapillary model for contact angles on a soft solid by coupling a mean-field model for the molecular interactions to elasticity. We demonstrate that the limit of a vanishing elastic modulus yields Neumann's law or a variation thereof, depending on the force transmission in the solid surface layer. The change in contact angle from the rigid limit to the soft limit appears when the length scale defined by the ratio of surface tension to elastic modulus γ/E reaches the range of molecular interactions.

  17. Disordered porous solids : from chord distributions to small angle scattering

    Levitz, P.; Tchoubar, D.

    1992-06-01

    Disordered biphasic porous solids are examples of complex interfacial media. Small angle scattering strongly depends on the geometrical properties of the internal surface partitioning a porous system. Properties of the second derivative of the bulk autocorrelation function quantitatively defines the level of connection between the small angle scattering and the statistical properties of this interface. A tractable expression of this second derivative, involving the pore and the mass chord distribution functions, was proposed by Mering and Tchoubar (MT). Based on the present possibility to make a quantitative connection between imaging techniques and the small angle scattering, this paper tries to complete and to extend the MT approach. We first discuss how chord distribution functions can be used as fingerprints of the structural disorder. An explicit relation between the small angle scattering and these chord distributions is then proposed. In a third part, the application to different types of disorder is critically discussed and predictions are compared to available experimental data. Using image processing, we will consider three types of disorder : the long-range Debye randomness, the “ correlated " disorder with a special emphasis on the structure of a porous glass (the vycor), and, finally, complex structures where length scale invariance properties can be observed. Les solides poreux biphasiques sont des exemples de milieux interfaciaux complexes. La diffusion aux petits angles (SAS) dépend fortement des propriétés géométriques de l'interface partitionant le milieu poreux. Les propriétés de la dérivée seconde de la fonction d'autocorrélation de densité définit quantitativement le niveau de connection entre la diffusion aux petits angles et les caractéristiques statistiques de cette interface. Une expression utilisable de cette seconde dérivée, impliquant les distributions de cordes associées à la phase massique et au réseau de pores, fut

  18. Trabectome surgery for primary and secondary open angle glaucomas.

    Jordan, Jens F; Wecker, Thomas; van Oterendorp, Christian; Anton, Alexandra; Reinhard, Thomas; Boehringer, Daniel; Neuburger, Matthias

    2013-12-01

    In most forms of open angle glaucoma, the trabecular meshwork is the main barrier for aqueous humor outflow, causing elevated intraocular pressure (IOP). The Trabectome is a minimal invasive device for the surgical treatment of open angle glaucoma, particularly eliminating the juxtacanalicular meshwork. This study was conducted to compare the effectiveness and complication profile among different glaucoma subgroups. Single center prospective observational study. There were 557 consecutive eyes of 487 patients included in this study. Trabectome surgery was performed either alone or in combination with cataract surgery. Intraoperative and postoperative complications were documented systematically. Main outcome measures were IOP reduction over time and the preoperative and postoperative number of IOP-lowering medications. Due to subgroup sizes, only data from eyes with primary open angle glaucoma and pseudoexfoliation glaucoma were processed for statistical analysis. For the 261 eyes classified as primary open angle glaucoma, preoperative IOP was 24 ± 5.5 mmHg (mean ± SD) under 2.1 ± 1.3 IOP-lowering medications. After a mean follow-up of 204 ± 238 days, IOP was reduced to 18 ± 6.1 mmHg, and medication was reduced to 1.2 ± 1.1. For the 173 eyes classified as pseudoexfoliation glaucoma, after a mean follow-up of 200 ± 278 days, IOP was reduced from 25 ± 5.9 mmHg to 18 ± 8.2 mmHg, and medication was reduced from 2.0 ± 1.2 to 1.1 ± 1.1. A Cox proportional hazards model hinted forward superiority of the combined surgery cases (Trabectome + Phaco + intraocular lens) in comparison to Trabectome surgery only in phakic or pseudophakic eyes. No serious complications were observed. Minimal invasive glaucoma surgery with the Trabectome seems to be safe and effective. The subgroup analysis of different kinds of open angle glaucomas presented in this study may help in first-line patient selection. The lack of ocular surface alterations makes it a valuable addition to

  19. Pitch Angle Scattering of Energetic Electrons by Plasmaspheric Hiss Emissions

    Tobita, M.; Omura, Y.; Summers, D.

    2017-12-01

    We study scattering of energetic electrons in pitch angles and kinetic energies through their resonance with plasmaspheric hiss emissions consisting of many coherent discrete whistler-mode wave packets with rising and falling frequencies [1,2,3]. Using test particle simulations, we evaluate the efficiency of scattering, which depends on the inhomogeneity ratio S of whistler mode wave-particle interaction [4]. The value of S is determined by the wave amplitude, frequency sweep rate, and the gradient of the background magnetic field. We first modulate those parameters and observe variations of pitch angles and kinetic energies of electrons with a single wave under various S values so as to obtain basic understanding. We then include many waves into the system to simulate plasmaspheric hiss emissions. As the wave packets propagate away from the magnetic equator, the nonlinear trapping potential at the resonance velocity is deformed, making a channel of gyrophase for untrapped electrons to cross the resonance velocity, and causing modulations in their pitch angles and kinetic energies. We find efficient scattering of pitch angles and kinetic energies because of coherent nonlinear wave-particle interaction, resulting in electron precipitations into the polar atmosphere. We compare the results with the bounce averaged pitch angle diffusion coefficient based on quasi-linear theory, and show that the nonlinear wave model with many coherent packets can cause scattering of resonant electrons much faster than the quasi-linear diffusion process. [1] Summers, D., Omura, Y., Nakamura, S., and C. A. Kletzing (2014), Fine structure of plasmaspheric hiss, J. Geophys. Res., 119, 9134-9149. [2] Omura, Y., Y. Miyashita, M. Yoshikawa, D. Summers, M. Hikishima, Y. Ebihara, and Y. Kubota (2015), Formation process of relativistic electron flux through interaction with chorus emissions in the Earth's inner magnetosphere, J. Geophys. Res. Space Physics, 120, 9545-9562. [3] Nakamura, S., Y

  20. Contact angle measurement with a smartphone.

    Chen, H; Muros-Cobos, Jesus L; Amirfazli, A

    2018-03-01

    In this study, a smartphone-based contact angle measurement instrument was developed. Compared with the traditional measurement instruments, this instrument has the advantage of simplicity, compact size, and portability. An automatic contact point detection algorithm was developed to allow the instrument to correctly detect the drop contact points. Two different contact angle calculation methods, Young-Laplace and polynomial fitting methods, were implemented in this instrument. The performance of this instrument was tested first with ideal synthetic drop profiles. It was shown that the accuracy of the new system with ideal synthetic drop profiles can reach 0.01% with both Young-Laplace and polynomial fitting methods. Conducting experiments to measure both static and dynamic (advancing and receding) contact angles with the developed instrument, we found that the smartphone-based instrument can provide accurate and practical measurement results as the traditional commercial instruments. The successful demonstration of use of a smartphone (mobile phone) to conduct contact angle measurement is a significant advancement in the field as it breaks the dominate mold of use of a computer and a bench bound setup for such systems since their appearance in 1980s.

  1. Camber Angle Inspection for Vehicle Wheel Alignments.

    Young, Jieh-Shian; Hsu, Hong-Yi; Chuang, Chih-Yuan

    2017-02-03

    This paper introduces an alternative approach to the camber angle measurement for vehicle wheel alignment. Instead of current commercial approaches that apply computation vision techniques, this study aims at realizing a micro-control-unit (MCU)-based camber inspection system with a 3-axis accelerometer. We analyze the precision of the inspection system for the axis misalignments of the accelerometer. The results show that the axes of the accelerometer can be aligned to the axes of the camber inspection system imperfectly. The calibrations that can amend these axis misalignments between the camber inspection system and the accelerometer are also originally proposed since misalignments will usually happen in fabrications of the inspection systems. During camber angle measurements, the x -axis or z -axis of the camber inspection system and the wheel need not be perfectly aligned in the proposed approach. We accomplished two typical authentic camber angle measurements. The results show that the proposed approach is applicable with a precision of ± 0.015 ∘ and therefore facilitates the camber measurement process without downgrading the precision by employing an appropriate 3-axis accelerometer. In addition, the measured results of camber angles can be transmitted via the medium such as RS232, Bluetooth, and Wi-Fi.

  2. Wind Turbine Blade with Angled Girders

    2011-01-01

    The present invention relates to a reinforced blade for a wind turbine, particularly to a blade having a new arrangement of two or more girders in the blade, wherein each of the girders is connected to the upper part and the lower part of the shell and forms an angle with another girder thereby...

  3. Solid angle subtended by two circular discs

    Gilly, Louis.

    1978-09-01

    Methods of calculation of solid angles, subtended by two circular discs are analysed. Calculus are methodically classified as follow: series development Legendre polynomes, defined integral, elliptic integrals, Bessel integrals, multiple integrals, Monte Carlo method, electrostatic analogy. Applications in Nuclear Physics are added as examples. List of numeric tables completes bibliography [fr

  4. Improved Beam Angle Control with SPV Metrology

    Steeples, K.; Tsidilkovski, E.; Bertuch, A.; Ishida, E.; Agarwal, A.

    2008-01-01

    A method of real-time monitoring of implant angle for state-of-the-art ion implant doping in integrated circuit manufacturing has been developed using Surface Photo Voltage measurements on conventional monitor wafers. Measurement results are analyzed and compared to other techniques.

  5. Direct angle resolved photoemission spectroscopy and ...

    Since 1997 we systematically perform direct angle resolved photoemission spectroscopy (ARPES) on in-situ grown thin (< 30 nm) cuprate films. Specifically, we probe low-energy electronic structure and properties of high-c superconductors (HTSC) under different degrees of epitaxial (compressive vs. tensile) strain.

  6. Contact angle measurement with a smartphone

    Chen, H.; Muros-Cobos, Jesus L.; Amirfazli, A.

    2018-03-01

    In this study, a smartphone-based contact angle measurement instrument was developed. Compared with the traditional measurement instruments, this instrument has the advantage of simplicity, compact size, and portability. An automatic contact point detection algorithm was developed to allow the instrument to correctly detect the drop contact points. Two different contact angle calculation methods, Young-Laplace and polynomial fitting methods, were implemented in this instrument. The performance of this instrument was tested first with ideal synthetic drop profiles. It was shown that the accuracy of the new system with ideal synthetic drop profiles can reach 0.01% with both Young-Laplace and polynomial fitting methods. Conducting experiments to measure both static and dynamic (advancing and receding) contact angles with the developed instrument, we found that the smartphone-based instrument can provide accurate and practical measurement results as the traditional commercial instruments. The successful demonstration of use of a smartphone (mobile phone) to conduct contact angle measurement is a significant advancement in the field as it breaks the dominate mold of use of a computer and a bench bound setup for such systems since their appearance in 1980s.

  7. Partitioning Pythagorean Triangles Using Pythagorean Angles

    Swenson, Carl E.; Yandl, Andre L.

    2012-01-01

    Inside any Pythagorean right triangle, it is possible to find a point M so that drawing segments from M to each vertex of the triangle yields angles whose sines and cosines are all rational. This article describes an algorithm that generates an infinite number of such points.

  8. Gaugings at angles from orientifold reductions

    Roest, D.

    2009-01-01

    We consider orientifold reductions to N = 4 gauged supergravity in four dimensions. A special feature of this theory is that different factors of the gauge group can have relative angles with respect to the electro-magnetic SL(2) symmetry. These are crucial for moduli stabilization and de Sitter

  9. Incidence angle normalization of radar backscatter data

    NASA’s Soil Moisture Passive Active (SMAP) satellite (~2014) will include a radar system that will provide L-band multi-polarization backscatter at a constant incidence angle of 40º. During the pre-launch phase of the project there is a need for observations that will support the radar-based soil mo...

  10. Labelling Angles: Care, Indifference and Mathematical Symbols

    Long, Julie

    2011-01-01

    In this article, I explore tensions of care in the context of school mathematics by examining two accounts of a classroom moment involving labelling an angle. In particular, I draw attention to how caring for students and caring for mathematical ideas interplay in complex ways by inquiring into the two accounts through ideas of care and…

  11. Large solid angle detectors (low energy)

    L'Hote, D.

    1988-01-01

    This lecture deals with large solid angle detectors used in low energy experiments (mainly in Nuclear Physics). The reasons for using such detectors are discussed, and several basic principles of their design are presented. Finally, two examples of data analysis from such detectors are given [fr

  12. Experimental technique of small angle neutron scattering

    Xia Qingzhong; Chen Bo

    2006-03-01

    The main parts of Small Angle Neutron Scattering (SANS) spectrometer, and their function and different parameters are introduced from experimental aspect. Detailed information is also introduced for SANS spectrometer 'Membrana-2'. Based on practical experiments, the fundamental requirements and working condition for SANS experiments, including sample preparation, detector calibration, standard sample selection and data preliminary process are described. (authors)

  13. Camber Angle Inspection for Vehicle Wheel Alignments

    Jieh-Shian Young

    2017-02-01

    Full Text Available This paper introduces an alternative approach to the camber angle measurement for vehicle wheel alignment. Instead of current commercial approaches that apply computation vision techniques, this study aims at realizing a micro-control-unit (MCU-based camber inspection system with a 3-axis accelerometer. We analyze the precision of the inspection system for the axis misalignments of the accelerometer. The results show that the axes of the accelerometer can be aligned to the axes of the camber inspection system imperfectly. The calibrations that can amend these axis misalignments between the camber inspection system and the accelerometer are also originally proposed since misalignments will usually happen in fabrications of the inspection systems. During camber angle measurements, the x-axis or z-axis of the camber inspection system and the wheel need not be perfectly aligned in the proposed approach. We accomplished two typical authentic camber angle measurements. The results show that the proposed approach is applicable with a precision of ± 0.015 ∘ and therefore facilitates the camber measurement process without downgrading the precision by employing an appropriate 3-axis accelerometer. In addition, the measured results of camber angles can be transmitted via the medium such as RS232, Bluetooth, and Wi-Fi.

  14. Measurement of the angle alpha at BABAR

    Perez, A.

    2009-01-01

    The authors present recent measurements of the CKM angle α using data collected by the BABAR detector at the PEP-II asymmetric-energy e + e - collider at the SLAC National Accelerator Laboratory, operating at the Υ(4S) resonance. They present constraints on α from B → ππ, B → ρρ and B → ρπ decays.

  15. Center edge angle measurement for hip preservation surgery: technique and caveats.

    Anderson, Lucas A; Gililland, Jeremy; Pelt, Christopher; Linford, Samuel; Stoddard, Gregory J; Peters, Christopher L

    2011-01-01

    Anterior and lateral center edge angles have traditionally been used to determine acetabular coverage, and thereby strongly influence the decision to perform acetabular reorientation versus osteochondroplasty in patients with dysplasia and/or femoroacetabular impingement. We propose templating the center of the contained articular femoral head in aspherical hips to provide reliable assessment of acetabular coverage. Digital radiographs of 30 patients with various combinations of femoral and acetabular morphologies were evaluated using 2 methods to identify the anterior center edge angle and lateral center edge angle. The control method used an estimated femoral head center for angle apex. The study technique determined the center of the femoral head by templating the congruent aspect of the femoral head contained by the acetabulum while ignoring the increasing lateral and anterior radius associated with cam deformities. Four readers measured lateral center edge angles on anteroposterior radiographs and anterior center edge angles on false-profile radiographs. Two reads were performed by each reader using both the estimated and the templated methods for a total of 4 reads. Interobserver reliability using the proposed method compared to the standard was much improved for anterior center edge angles (intraclass correlation coefficient of 0.76 vs 0.55) as well as with lateral center edge angles (ICC of 0.80 vs 0.42). Decreased correlation was most commonly associated with abnormal sourcil morphology, posterior wall deficiency combined with calcified labra, and os acetabuli. Including the anterolateral cam deformity in identifying the center of the femoral head for measuring center edge angles leads to an underestimation of acetabular coverage, which may negatively affect hip preservation surgical decision making. Copyright 2011, SLACK Incorporated.

  16. Small angle neutron scattering analysis programs on the Rutherford Laboratory IBM 360/195 computers

    Knowles, K.J.; Johnson, M.W.

    1980-06-01

    The implementation and operation of the suite of programs used for the analysis of small angle neutron scattering data originally written at the ILL (Grenoble) is described. The programs make use of a circulating data file which is also described and may be used by a variety of data analysis programs. (author)

  17. Light refraction in sapphire plates with a variable angle of crystal optical axis to the surface

    Vetrov, V. N.; Ignatenkov, B. A.

    2013-01-01

    The modification of sapphire by inhomogeneous plastic deformation makes it possible to obtain plates with a variable angle of inclination of the crystal optical axis to the plate surface. The refraction of light in this plate at perpendicular and oblique incidence of a parallel beam of rays is considered. The algorithm of calculating the refractive index of extraordinary ray and the birefringence is proposed.

  18. Outside corner and method of making in the making lead brick (plain brick) using rotary table

    Muhammad Awwaluddin; Samuel Praptoyo

    2009-01-01

    It has been developed a tool that can be used for defining angles on the fabrication of lead bricks. The angles are both outside of the lead bricks that correspond to male and female shape respectively. The lead bricks should be in accordance to ISO 7212-1986 standard which has angle tolerance 90° 0 +15 for male and 90° 0 -15 for female. The accuracy of these angles is very important to maintain the equilibrium position of the bricks so that their arrangement will not lining or collapse. A rotary table is used for the fabrication to make easier in setting up any related working apparatus and to have precision measurement result. However, a lot of operator do not know yet how to operate such a rotary table to produce angle with such an eligible tolerance. Therefore, a method of measurement in machining lead brick process using a rotary table is necessarily required. This method will be used as a reference to have angle accuracy of 0,03° in producing outside and inside angles or male and female lead bricks. (author)

  19. Experimental Validation of the Invariance of Electrowetting Contact Angle Saturation

    Chevalliot, S.; Dhindsa, M.; Kuiper, S.; Heikenfeld, J.

    2011-01-01

    Basic electrowetting theory predicts that a continued increase in applied voltage will allow contact angle modulation to zero degrees. In practice, the effect of contact angle saturation has always been observed to limit the contact angle modulation, often only down to a contact angle of 60 to 70°.

  20. Cosmic ray zenith angle distribution at low geomagnetic latitude

    Aragon, G [Instituto de Astronomia y Fisica del Espacio, Buenos Aires, Argentina; Gagliardini, A; Ghielmetti, H S

    1977-12-01

    The intensity of secondary charged cosmic rays at different zenith angles was measured by narrow angle Geiger-Mueller telescopes up to an atmospheric depth of 2 g cm/sup -2/. The angular distribution observed at high altitudes is nearly flat at small angles around the vertical and suggests that the particle intensity peaks at large zenith angles, close to the horizon.

  1. 4-{(E-[2-(4-Iodobutoxybenzylidene]amino}-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H-one

    Hoong-Kun Fun

    2010-07-01

    Full Text Available The title Schiff base compound, C22H24IN3O2, adopts an E configuration about the central C=N bond. The pyrazolone ring makes a dihedral angle of 49.68 (10° with its attached phenyl ring. The phenolate plane makes dihedral angles of 16.78 (9 and 50.54 (9°, respectively, with the pyrazolone ring and the terminal phenyl ring. An intramolecular C—H...O hydrogen bond generates an S(6 ring motif. In the crystal structure, an intermolecular C—H...O hydrogen bond is also observed.

  2. (R-[(R-3-Benzyl-2-oxooxazolidin-4-yl][4-(methylsulfonylphenyl]methyl acetate

    Feng Li

    2014-05-01

    Full Text Available The structure of the title compound, C20H21NO6S, is of interest with respect to its antibacterial properties. The oxazolidine ring makes dihedral angles of 79.63 (14 and 56.16 (12° with the phenyl and benzene rings, respectively, while the phenyl and benzene rings make a dihedral angle of 64.37 (13°. In the crystal, non-classical C—H...O hydrogen bonds link adjacent molecules along the c axis.

  3. 2,4,8,10,13-Pentamethyl-6-phenyl-13,14-dihydro-12H-6λ5-dibenzo[d,i][1,3,7,2]dioxazaphosphecin-6-thione

    M. Krishnaiah

    2010-01-01

    Full Text Available In the title compound, C25H28NO2PS, the cyclodecene ring exhibits a crown conformation. The two dimethylbenzene rings which are fused symmetrically on either side of the ten-membered ring, make dihedral angles of 20.2 (1 and 18.0 (1°. The phenyl ring substituted at P is perpendicular to the heterocyclic ring, making a dihedral angle of 88.4 (1°. The crystal structure is stabilized by very weak intramolecular C—H...O hydrogen bonding.

  4. t-3-Benzyl-r-2,c-6-diphenylpiperidin-4-one oxime

    R. Arulraj

    2016-12-01

    Full Text Available In the title compound, C24H24N2O [systematic name: (E-3-benzyl-2,6-diphenylpiperidin-4-one oxime], the piperidine ring adopts a slightly distorted chair conformation and the phenyl rings and the benzyl group substituents are attached equatorially. The oxime group makes a dihedral angle of 42.88 (12° with the piperidine ring. The dihedral angle between the phenyl rings is 71.96 (8°. The benzyl ring makes dihedral angles of 63.01 (8 and 59.35 (8° with the two phenyl rings. In the crystal, molecules are linked by O—H...N hydrogen bonds, forming C(7 chains along the c axis. The chains are linked by C—H...π interactions, forming slabs lying parallel to the bc plane.

  5. Methyl 2-(2,2-dimethyl-3a,6a-dihydrofuro[3,2-d][1,3]dioxol-5-yl-4-oxo-4H-chromene-3-carboxylate

    Devadasan Velmurugan

    2013-08-01

    Full Text Available In the title molecule, C18H16O7, the dioxolane ring adopts an envelope conformation with the dimethyl-substituted C atom as the flap. The furan ring is almost coplanar with the pyran ring, with a dihedral angle of 1.04 (10° between the planes, and it makes a dihedral angle of 67.97 (11° with the mean plane of the dioxolane ring. The latter makes a dihedral angle of 67.15 (10° with the pyran ring. The O atom attached to the pyran ring deviates by −0.009 (1 Å. The crystal packing features C—H...O hydrogen bonds, forming a three-dimensional structure. The methoxycarbonyl atoms are disordered over two positions, with a refined occupancy ratio of 0.508 (18:0.492 (18.

  6. Dancing droplets: Contact angle, drag, and confinement

    Benusiglio, Adrien; Cira, Nate; Prakash, Manu

    2015-11-01

    When deposited on a clean glass slide, a mixture of water and propylene glycol forms a droplet of given contact angle, when both pure liquids spread. (Cira, Benusiglio, Prakash: Nature, 2015). The droplet is stabilized by a gradient of surface tension due to evaporation that induces a Marangoni flow from the border to the apex of the droplets. The apparent contact angle of the droplets depends on both their composition and the external humidity as captured by simple models. These droplets present remarkable properties such as lack of a large pinning force. We discuss the drag on these droplets as a function of various parameters. We show theoretical and experimental results of how various confinement geometries change the vapor gradient and the dynamics of droplet attraction.

  7. Exclusive Backward-Angle Omega Meson Electroproduction

    Wenliang, Li [Univ. of Regina, Regina, SK (Canada)

    2017-10-01

    Exclusive meson electroproduction at different squared four-momenta of the exchanged virtual photon, Q2 , and at different four-momentum transfers, t and u, can be used to probe QCD's transition from hadronic degrees of freedom at the long distance scale to quark-gluon degrees of freedom at the short distance scale. Backward-angle meson electroproduction was previously ignored, but is anticipated to offer complimentary information to conventional forward-angle meson electroproduction studies on nucleon structure. This work is a pioneering study of backward-angle ω cross sections through the exclusive 1H(e, e'p)ω reaction using the missing mass reconstruction technique. The extracted cross sections are separated into the transverse (T), longitudinal (L), and LT, TT interference terms. The analyzed data were part of experiment E01-004 (Fπ-2), which used 2.6-5.2 GeV electron beams and HMS+SOS spectrometers in Jefferson Lab Hall C. The primary objective was to detect coincidence π in the forward-angle, where the backward-angle omega events were fortuitously detected. The experiment has central Q2 values of 1.60 and 2.45 GeV2 , at W = 2.21 GeV. There was significant coverage in phi and epsilon, which allowed separation of σT,L,LT,TT . The data set has a unique u coverage of -u ~ 0, which corresponds to -t > 4 GeV2 . The separated σT result suggest a flat ~ 1/Q1.33±1.21 dependence, whereas sigma_L seems to hold a stronger 1/Q9.43±6.28 dependence. The σL/σT ratio indicate σT dominance at Q2 = 2.45 GeV2 at the ~90% confidence level. After translating the results into the -t space of the published CLAS data, our data show evidence of a backward-angle omega electroproduction peak at both Q2 settings. Previously, this phenomenon showing both forward and backward-angle peaks was only observed in the meson

  8. The small angle diffractometer SANS at PSI

    Wagner, W [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    With the start-up of SINQ an instrument for small angle neutron scattering will be operational which compares well with the world`s largest and most powerful facilities of this kind. Following the classical principle of the D11-instrument of ILL, it is equipped with state-of-the-art components as are nowadays available, including options for further upgrading. Great emphasis was laid upon providing a flexible, universal multi-user facility which guarantees a comfortable and reliable operation. In the present paper, the principle layout of the instrument is presented, and the individual components are described in detail. The paper concludes with model application of small angle scattering to a system of dilute CuCo alloys which undergo a phase separation under thermal treatment, forming spherical Co-precipitates dispersed in a Cu-rich matrix. (author) 3 figs., 1 tab., 14 refs.

  9. Modeling small angle scattering data using FISH

    Elliott, T.; Buckely, C.E.

    2002-01-01

    Full text: Small angle neutron scattering (SANS) and small angle x-ray scattering (SAXS) are important techniques for the characterisation of samples on the nanometer scale. From the scattered intensity pattern information about the sample such as particle size distribution, concentration and particle interaction can be determined. Since the experimental data is in reciprocal space and information is needed about real space, modeling of the scattering data to obtain parameters is extremely important and several paradigms are available. The use of computer programs to analyze the data is imperative for a robust description of the sample to be obtained. This presentation gives an overview of the SAS process and describes the data-modeling program FISH, written by R. Heenan 1983-2000. The results of using FISH to obtain the particle size distribution of bubbles in the aluminum hydrogen system and other systems of interest are described. Copyright (2002) Australian X-ray Analytical Association Inc

  10. Weak mixing angle measurements at hadron colliders

    Di Simone, Andrea; The ATLAS collaboration

    2015-01-01

    The Talk will cover weak mixing angle measurements at hadron colliders ATLAS and CMS in particular. ATLAS has measured the forward-backward asymmetry for the neutral current Drell Yan process in a wide mass range around the Z resonance region using dielectron and dimuon final states with $\\sqrt{s}$ =7 TeV data. For the dielectron channel, the measurement includes electrons detected in the forward calorimeter which extends the covered phase space. The result is then used to extract a measurement of the effective weak mixing angle. Uncertainties from the limited knowledge on the parton distribution functions in the proton constitute a significant part of the uncertainty and a dedicated study is performed to obtain a PDF set describing W and Z data measured previously by ATLAS. Similar studies from CMS will be reported.

  11. Didactical Design Enrichment of Angle in Geometry

    Setiadi, D. R.; Suryadi, D.; Mulyana, E.

    2017-09-01

    The underlying problem of this research is the lack of student’s competencies in understanding the concept of angle in geometry as the results of the teaching and learning pattern that only to receive the topic rather than to construct the topic and has not paid attention to the learning trajectory. The purpose of this research is to develop the didactical design of angle in space learning activity. The used research method is a method of qualitative research in the form of a didactical design research through three phases of analysis i.e. didactical situation analysis, metapedadidactical analysis, and retrospective analysis, which conducted in students from 10th grade at one of private schools in Bandung. Based on the results of research and discussion, the didactical design that has been made, is capable to change student’s learning habit and quite capable to develop student’s competencies although not optimal.

  12. Fan Stagger Angle for Dirt Rejection

    Gallagher, Edward J. (Inventor); Rose, Becky E. (Inventor); Brilliant, Lisa I. (Inventor)

    2015-01-01

    A gas turbine engine includes a spool, a turbine coupled to drive the spool, a propulsor coupled to be rotated about an axis by the turbine through the spool, and a gear assembly coupled between the propulsor and the spool such that rotation of the turbine drives the propulsor at a different speed than the spool. The propulsor includes a hub and a row of propulsor blades that extend from the hub. Each of the propulsor blades has a span between a root at the hub and a tip, and a chord between a leading edge and a trailing edge. The chord forms a stagger angle alpha with the axis, and the stagger angle alpha is less than 15 deg. at a position along the propulsor blade that is within an inboard 20% of the span.

  13. Implant Angle Monitor System of MC3-II

    Sato, Fumiaki; Sano, Makoto; Nakaoka, Hiroaki; Fujii, Yoshito; Kudo, Tetuya; Nakanishi, Makoto; Koike, Masazumi; Fujino, Yasushi

    2008-01-01

    Precise implant angle control is required for the latest generation of ion implanters to meet further shrink semiconductor device requirements. Especially, the highest angle accuracy is required for Halo implant process of Logic devices. The Halo implant angle affects the device performance, because slight differences of beam divergence change the overlap profile towards the extension. Additionally, twist angle accuracy is demanded in case of channeling angle implant. Therefore monitoring beam angles and wafer twist angles is important. A new monitoring system for the MC3-II, SEN Corp.'s single wafer type medium current implanter has been developed. This paper describes the angle control performance and monitoring system of the MC3-II. For the twist angle control, we developed a wafer notch angle monitor. The system monitors the wafer notch image on the platen. And the notch angle variation is calculated by using image processing method. It is also able to adjust the notch angle according to the angle error. For the tilt angle control, we developed a vertical beam profile monitor. The monitor system can detect beam profile of vertical directions with horizontally scanning beam. It also measures beam angles of a tilt direction to a wafer. The system configuration and sample beam data are presented.

  14. Tool Indicates Contact Angles In Bearing Raceways

    Akian, Richard A.; Butner, Myles F.

    1995-01-01

    Tool devised for use in measuring contact angles between balls and races in previously operated ball bearings. Used on both inner and outer raceways of bearings having cross-sectional widths between approximately 0.5 and 2.0 in. Consists of integral protractor mounted in vertical plane on bracket equipped with leveling screws and circular level indicator. Protractor includes rotatable indicator needle and set of disks of various sizes to fit various raceway curvatures.

  15. On accurate determination of contact angle

    Concus, P.; Finn, R.

    1992-01-01

    Methods are proposed that exploit a microgravity environment to obtain highly accurate measurement of contact angle. These methods, which are based on our earlier mathematical results, do not require detailed measurement of a liquid free-surface, as they incorporate discontinuous or nearly-discontinuous behavior of the liquid bulk in certain container geometries. Physical testing is planned in the forthcoming IML-2 space flight and in related preparatory ground-based experiments.

  16. Wireless Orbiter Hang-Angle Inclinometer System

    Lucena, Angel; Perotti, Jose; Green, Eric; Byon, Jonathan; Burns, Bradley; Mata, Carlos; Randazzo, John; Blalock, Norman

    2011-01-01

    A document describes a system to reliably gather the hang-angle inclination of the orbiter. The system comprises a wireless handheld master station (which contains the main station software) and a wireless remote station (which contains the inclinometer sensors, the RF transceivers, and the remote station software). The remote station is designed to provide redundancy to the system. It includes two RF transceivers, two power-management boards, and four inclinometer sensors.

  17. Small angle neutron scattering by polymer solutions

    Farnoux, B.; Jannink, G.

    1980-08-01

    Small angle neutron scattering is an experimental technique introduced since about 10 years for the observation of the polymer conformation in all the concentration range from dilute solution to the melt. After a brief recall of the elementary relations between scattering amplitude, index of refraction and scattered intensity, two concepts related to this last quantity (the contrast and the pair correlation function) are discussed in details

  18. Dynamic contact angle cycling homogenizes heterogeneous surfaces.

    Belibel, R; Barbaud, C; Mora, L

    2016-12-01

    In order to reduce restenosis, the necessity to develop the appropriate coating material of metallic stent is a challenge for biomedicine and scientific research over the past decade. Therefore, biodegradable copolymers of poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) were prepared in order to develop a new coating exhibiting different custom groups in its side chain and being able to carry a drug. This material will be in direct contact with cells and blood. It consists of carboxylic acid and hexylic groups used for hydrophilic and hydrophobic character, respectively. The study of this material wettability and dynamic surface properties is of importance due to the influence of the chemistry and the potential motility of these chemical groups on cell adhesion and polymer kinetic hydrolysis. Cassie theory was used for the theoretical correction of contact angles of these chemical heterogeneous surfaces coatings. Dynamic Surface Analysis was used as practical homogenizer of chemical heterogeneous surfaces by cycling during many cycles in water. In this work, we confirmed that, unlike receding contact angle, advancing contact angle is influenced by the difference of only 10% of acidic groups (%A) in side-chain of polymers. It linearly decreases with increasing acidity percentage. Hysteresis (H) is also a sensitive parameter which is discussed in this paper. Finally, we conclude that cycling provides real information, thus avoiding theoretical Cassie correction. H(10)is the most sensible parameter to %A. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Effect of impact angle on vaporization

    Schultz, Peter H.

    1996-09-01

    Impacts into easily vaporized targets such as dry ice and carbonates generate a rapidly expanding vapor cloud. Laboratory experiments performed in a tenuous atmosphere allow deriving the internal energy of this cloud through well-established and tested theoretical descriptions. A second set of experiments under near-vacuum conditions provides a second measure of energy as the internal energy converts to kinetic energy of expansion. The resulting data allow deriving the vaporized mass as a function of impact angle and velocity. Although peak shock pressures decrease with decreasing impact angle (referenced to horizontal), the amount of impact-generated vapor is found to increase and is derived from the upper surface. Moreover, the temperature of the vapor cloud appears to decrease with decreasing angle. These unexpected results are proposed to reflect the increasing roles of shear heating and downrange hypervelocity ricochet impacts created during oblique impacts. The shallow provenance, low temperature, and trajectory of such vapor have implications for larger-scale events, including enhancement of atmospheric and biospheric stress by oblique terrestrial impacts and impact recycling of the early atmosphere of Mars.

  20. Small Angle X-Ray Scattering Detector

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., qmax/qmin approx=lO0.

  1. Internal Friction Angle of Metal Powders

    Jiri Zegzulka

    2018-04-01

    Full Text Available Metal powders are components with multidisciplinary usage as their application is very broad. Their consistent characterization across all disciplines is important for ensuring repeatable and trouble-free processes. Ten metal powders were tested in the study. In all cases, the particle size distribution and morphology (scanning electron microscope—SEM photos were determined. The aim of this work was to inspect the flow behavior of metal powders through another measured characteristic, namely the angle of internal friction. The measured values of the effective internal friction angle in the range 28.6–32.9°, together with the spherical particle shape and the particle size distribution, revealed the likely dominant mode of the metal particle transfer mechanism for stainless steel 316L, zinc and aluminum powder. This third piston flow mechanism is described and illustrated in detail. The angle of internal friction is mentioned as another suitable parameter for the characterization of metal powders, not only for the relative simplicity of the determination but also for gaining insight into the method of the movement of individual particles during the flow.

  2. Renal artery origins: best angiographic projection angles.

    Verschuyl, E J; Kaatee, R; Beek, F J; Patel, N H; Fontaine, A B; Daly, C P; Coldwell, D M; Bush, W H; Mali, W P

    1997-10-01

    To determine the best projection angles for imaging the renal artery origins in profile. A mathematical model of the anatomy at the renal artery origins in the transverse plane was used to analyze the amount of aortic lumen that projects over the renal artery origins at various projection angles. Computed tomographic (CT) angiographic data about the location of 400 renal artery origins in 200 patients were statistically analyzed. In patients with an abdominal aortic diameter no larger than 3.0 cm, approximately 0.5 mm of the proximal part of the renal artery and origin may be hidden from view if there is a projection error of +/-10 degrees from the ideal image. A combination of anteroposterior and 20 degrees and 40 degrees left anterior oblique projections resulted in a 92% yield of images that adequately profiled the renal artery origins. Right anterior oblique projections resulted in the least useful images. An error in projection angle of +/-10 degrees is acceptable for angiographic imaging of the renal artery origins. Patients sex, site of interest (left or right artery), and local diameter of the abdominal aorta are important factors to consider.

  3. Anomalous polymer collapse winding angle distributions

    Narros, A.; Owczarek, A. L.; Prellberg, T.

    2018-03-01

    In two dimensions polymer collapse has been shown to be complex with multiple low temperature states and multi-critical points. Recently, strong numerical evidence has been provided for a long-standing prediction of universal scaling of winding angle distributions, where simulations of interacting self-avoiding walks show that the winding angle distribution for N-step walks is compatible with the theoretical prediction of a Gaussian with a variance growing asymptotically as Clog N . Here we extend this work by considering interacting self-avoiding trails which are believed to be a model representative of some of the more complex behaviour. We provide robust evidence that, while the high temperature swollen state of this model has a winding angle distribution that is also Gaussian, this breaks down at the polymer collapse point and at low temperatures. Moreover, we provide some evidence that the distributions are well modelled by stretched/compressed exponentials, in contradistinction to the behaviour found in interacting self-avoiding walks. Dedicated to Professor Stu Whittington on the occasion of his 75th birthday.

  4. Broken symmetries and the Cabibbo angle

    Lanik, J.

    1975-04-01

    Under the assumption that the SU(3) symmetry is broken down by the strong and electromagnetic interactions, a phenomenological theory of the Cabibbo angle theta is proposed. In this theory the angle theta is fixed, linking together the Cabibbo rotation in the SU(3) space and complete SU(3) breaking consisting of both the SU(3) Hamiltonian and vacuum non-invariances. Assuming that the value of theta is zero in the soft-pion limit and that, in this limit, the only forces responsible for the isotopic symmetry breaking are the usual photonic forces it is shown that the usual electromagnetic interactions can contribute for the value of theta only through the non-vanishing vacuum expectation value of a certain scalar field. Within the framework of the (3,average3)+(3,average3) chiral symmetry-breaking model and through the use of the experimental value of the ratio GAMMA (K→μν)/GAMMA(π→μν), the presented Cabibbo angle theory predicts the value sintheta=0.25 which is in good agreement with experiment. (Lanik, J.)

  5. Pair creation at large inherent angles

    Chen, P.; Tauchi, T.; Schroeder, D.V.

    1992-01-01

    In the next-generation linear colliders, the low-energy e + e - pairs created during the collision of high-energy e + e - beams would cause potential deleterious background problems to the detectors. At low collider energies, the pairs are made essentially by the incoherent process, where the pair is created by the interaction of beamstrahlung photons on the individual particles in the oncoming beam. This problem was first identified by Zolotarev, et al. At energies where the beamstrahlung parameter Υ lies approximately in the range 0.6 approx-lt Υ approx-lt 100, pair creation from the beamstrahlung photons is dominated by a coherent process, first noted by Chen. The seriousness of this pair creation problem lies in the transverse momenta that the pair particles carry when leaving the interaction point (IP) with large angles. Since the central issue is the transverse momentum for particles with large angles, the authors notice that there is another source for it. Namely, when the pair particles are created at low energies, the intrinsic angles of these pairs when produced may already be large. In this paper they reinvestigate the problem, following essentially the same equivalent photon approach, but with changes in specific details including the virtual photon spectrum. In addition, various assumptions are made more explicit. The formulas derived are then applied to the collider parameters designed by Palmer

  6. Head flexion angle while using a smartphone.

    Lee, Sojeong; Kang, Hwayeong; Shin, Gwanseob

    2015-01-01

    Repetitive or prolonged head flexion posture while using a smartphone is known as one of risk factors for pain symptoms in the neck. To quantitatively assess the amount and range of head flexion of smartphone users, head forward flexion angle was measured from 18 participants when they were conducing three common smartphone tasks (text messaging, web browsing, video watching) while sitting and standing in a laboratory setting. It was found that participants maintained head flexion of 33-45° (50th percentile angle) from vertical when using the smartphone. The head flexion angle was significantly larger (p smartphone, could be a main contributing factor to the occurrence of neck pain of heavy smartphone users. Practitioner Summary: In this laboratory study, the severity of head flexion of smartphone users was quantitatively evaluated when conducting text messaging, web browsing and video watching while sitting and standing. Study results indicate that text messaging while sitting caused the largest head flexion than that of other task conditions.

  7. Angle sensitive single photon avalanche diode

    Lee, Changhyuk, E-mail: cl678@cornell.edu; Johnson, Ben, E-mail: bcj25@cornell.edu; Molnar, Alyosha, E-mail: am699@cornell.edu [Electrical and Computer Engineering, Cornell University, Ithaca, New York 14850 (United States)

    2015-06-08

    An ideal light sensor would provide exact information on intensity, timing, location, and angle of incoming photons. Single photon avalanche diodes (SPADs) provide such desired high (single photon) sensitivity with precise time information and can be implemented at a pixel-scale to form an array to extract spatial information. Furthermore, recent work has demonstrated photodiode-based structures (combined with micro-lenses or diffraction gratings) that are capable of encoding both spatial and angular information of incident light. In this letter, we describe the implementation of such a grating structure on SPADs to realize a pixel-scale angle-sensitive single photon avalanche diode (A-SPAD) built in a standard CMOS process. While the underlying SPAD structure provides high sensitivity, the time information of the two layers of diffraction gratings above offers angle-sensitivity. Such a unique combination of SPAD and diffraction gratings expands the sensing dimensions to pave a path towards lens-less 3-D imaging and light-field time-of-flight imaging.

  8. Multi-Angle Snowflake Camera Instrument Handbook

    Stuefer, Martin [Univ. of Alaska, Fairbanks, AK (United States); Bailey, J. [Univ. of Alaska, Fairbanks, AK (United States)

    2016-07-01

    The Multi-Angle Snowflake Camera (MASC) takes 9- to 37-micron resolution stereographic photographs of free-falling hydrometers from three angles, while simultaneously measuring their fall speed. Information about hydrometeor size, shape orientation, and aspect ratio is derived from MASC photographs. The instrument consists of three commercial cameras separated by angles of 36º. Each camera field of view is aligned to have a common single focus point about 10 cm distant from the cameras. Two near-infrared emitter pairs are aligned with the camera’s field of view within a 10-angular ring and detect hydrometeor passage, with the lower emitters configured to trigger the MASC cameras. The sensitive IR motion sensors are designed to filter out slow variations in ambient light. Fall speed is derived from successive triggers along the fall path. The camera exposure times are extremely short, in the range of 1/25,000th of a second, enabling the MASC to capture snowflake sizes ranging from 30 micrometers to 3 cm.

  9. Studies in small angle scattering techniques

    Moellenbach, K.

    1980-03-01

    Small angle scattering of neutrons, X-rays and γ-rays are found among the spectroscopic methods developed in the recent years. Although these techniques differ from each other in many respects, e.g. radiation sources and technical equipment needed, their power to resolve physical phenomena and areas of application can be discussed in a general scheme. Selected examples are given illustrating the use of specific technical methods. Jahn-Teller driven structural phase transitions in Rare Earth zircons were studied with neutron scattering as well as small angle γ-ray diffraction. The study of neutron scattering from formations of magnetic domains in the Ising ferromagnet LiTbF 4 is a second example. Both these examples represent more than experimental test cases since the theoretical interpretations of the data obtained are discussed as well. As a last example the use of small angle scattering methods for the study of molecular biological samples is discussed. In particular the experimental procedures used in connection with scattering from aqueous solutions of proteins and protein complexes are given. (Auth.)

  10. Effect of laser peripheral iridotomy on anterior chamber angle anatomy in primary angle closure spectrum eyes

    Kansara, Seema; Blieden, Lauren S.; Chuang, Alice Z.; Baker, Laura A.; Bell, Nicholas P.; Mankiewicz, Kimberly A.; Feldman, Robert M.

    2015-01-01

    Purpose To evaluate the change in trabecular-iris circumference volume (TICV) after laser peripheral iridotomy (LPI) in primary angle closure (PAC) spectrum eyes Patients and Methods Forty-two chronic PAC spectrum eyes from 24 patients were enrolled. Eyes with anterior chamber abnormalities affecting angle measurement were excluded. Intraocular pressure, slit lamp exam, and gonioscopy were recorded at each visit. Anterior segment optical coherence tomography (ASOCT) with 3D mode angle analysis scans were taken with the CASIA SS-1000 (Tomey Corp., Nagoya, Japan) before and after LPI. Forty-two pre-LPI ASOCT scans and 34 post-LPI ASOCT scans were analyzed using the Anterior Chamber Analysis and Interpretation (ACAI, Houston, TX) software. A mixed-effect model analysis was used to compare the trabecular-iris space area (TISA) changes among 4 quadrants, as well as to identify potential factors affecting TICV. Results There was a significant increase in all average angle parameters after LPI (TISA500, TISA750, TICV500, and TICV750). The magnitude of change in TISA500 in the superior angle was significantly less than the other angles. The changes in TICV500 and TICV750 were not associated with any demographic or ocular characteristics. Conclusion TICV is a useful parameter to quantitatively measure the effectiveness of LPI in the treatment of eyes with PAC spectrum disease. PMID:26066504

  11. Wide-angle light-trapping electrode for photovoltaic cells.

    Omelyanovich, Mikhail M; Simovski, Constantin R

    2017-10-01

    In this Letter, we experimentally show that a submicron layer of a transparent conducting oxide that may serve a top electrode of a photovoltaic cell based on amorphous silicon when properly patterned by notches becomes an efficient light-trapping structure. This is so for amorphous silicon thin-film solar cells with properly chosen thicknesses of the active layers (p-i-n structure with optimal thicknesses of intrinsic and doped layers). The nanopatterned layer of transparent conducting oxide reduces both the light reflectance from the photovoltaic cell and transmittance through the photovoltaic layers for normal incidence and for all incidence angles. We explain the physical mechanism of our light-trapping effect, prove that this mechanism is realized in our structure, and show that the nanopatterning is achievable in a rather easy and affordable way that makes our method of solar cell enhancement attractive for industrial adaptations.

  12. Project study of a small-angle neutron scattering apparatus

    Schedler, E.; Pollet, J.L.

    1979-03-01

    This design study deals with the set up of a low angle scattering apparatus in the HMI reactor hall in Berlin. The experiences of other institutes with facilities of a similar type, - especially with D11 and D17 of the ILL in Grenoble, the set up the KFA in Juelich and of the PTB in Braunschweig -, are included to a large extend. The aim of this paper is - to define the necessary boundary conditions for the construction (including: installation of a cold source, the beam line, the neutron guide pipe and an extention of the reactor hall), -to determine the properties of the planned apparatus, especially in comparison with D11, probably the most versatile instrument, - to make desitions for the design of the components, - to work out the detailed drawings for construction - to estimate the costs and the time necessary for construction, if industrial manufacturers set up the project. (orig.) [de

  13. The small angle tile calorimeter in the DELPHI experiment

    Alvsvaag, S J; Barreira, G; Benvenuti, Alberto C; Bigi, M; Bonesini, M; Bozzo, M; Camporesi, T; Carling, H; Cassio, V; Castellani, L; Cereseto, R; Chignoli, F; Della Ricca, G; Dharmasiri, D R; Espirito-Santo, M C; Falk, E; Fenyuk, A; Ferrari, P; Gamba, D; Giordano, V; Guz, Yu; Guerzoni, M; Gumenyuk, S A; Hedberg, V; Jarlskog, G; Karyukhin, A N; Klovning, A; Konoplyannikov, A K; Kronkvist, I J; Lanceri, L; Leoni, R; Maeland, O A; Maio, A; Mazza, R; Migliore, E; Navarria, Francesco Luigi; Negri, P; Nossum, B; Obraztsov, V F; Onofre, A; Paganoni, M; Pegoraro, M; Peralta, L; Petrovykh, L P; Pimenta, M; Poropat, P; Prest, M; Read, A L; Romero, A; Shalanda, N A; Simonetti, L; Skaali, T B; Stugu, B; Terranova, F; Tomé, B; Torassa, E; Trapani, P P; Verardi, M G; Vallazza, E; Vlasov, E; Zaitsev, A

    1999-01-01

    The {\\bf S}mall angle {\\bf TI}le {\\bf C}alorimeter ({\\bf STIC}) provides calorimetric coverage in the very forward region of the DELPHI experiment at the CERN LEP collider. The structure of the calorimeters, built with a so-called ``shashlik'' technique, gives a perfectly hermetic calorimeter and still allows for the insertion of tracking detectors within the sampling structure to measure the direction of the showering particle. A charged-particle veto system, composed of two scintillator layers, makes it possible to trigger on single photon events and provides e-$\\gamma$ separat ion. Results are presented from the extensive studies of these detectors in the CERN testbeams prior to installation and of the detector performance at LEP.

  14. Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase

    Schmidt, A. E.; Shvetsov, A. V.; Kuklin, A. I.; Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V.

    2016-01-01

    Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å

  15. Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase

    Schmidt, A. E.; Shvetsov, A. V.; Kuklin, A. I.; Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V.

    2016-01-01

    Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å.

  16. The small angle neutron scattering study on the segmented polyurethane

    Sudirman; Gunawan; Prasetyo, S.M.; Karo Karo, A.; Lahagu, I.M.; Darwinto, Tri

    1999-01-01

    The distance between hard segment (HS) and soft segment (SS) of segmented polyurethane have been determined using the Small Angle Neutron Scattering (SANS) technique. The segmented Polyurethanes (SPU) are linear multiblock copolymers, which include elastomer thermoplastic. SPU consist of hard segment and soft segment, each has tendency to make a group with similar type to form a domain. The soft segments used were polypropylene glycol (PPG) and 4,4 diphenylmethane diisocyanate (MDI), while l,4 butanediol (BD) was used as hard segment. The characteristic of SPU depends on its phase structure which is affected by several factors, such as type of chemical formula and the composition of the HS and SS, solvent as well as the synthesizing process. The samples used in this study were SPU56 and SPU68. Based on the appearance of SANS profile, it was obtained that domain distances are 12.32 nm for the SPU56 and 19 nm for the SPU68. (author)

  17. Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase

    Schmidt, A. E., E-mail: schmidt@omrb.pnpi.spb.ru; Shvetsov, A. V. [National Research Center “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute (Russian Federation); Kuklin, A. I. [Joint Institute for Nuclear Research (Russian Federation); Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V. [National Research Center “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute (Russian Federation)

    2016-01-15

    Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å.

  18. WAMDII: The Wide Angle Michelson Doppler Imaging Interferometer

    1992-01-01

    As part of an effort to learn more about the upper atmosphere and how it is linked to the weather experienced each day, NASA and NRCC are jointly sponsoring the Wide Angle Michelson Doppler Imaging Interferometer (WAMDII) Mission. WAMDII will measure atmospheric temperature and wind speed in the upper atmosphere. In addition to providing data on the upper atmosphere, the wind speed and temperature readings WAMDII takes will also be highly useful in developing and updating computer simulated models of the upper atmosphere. These models are used in the design and testing of equipment and software for Shuttles, satellites, and reentry vehicles. In making its wind speed and temperature measurements, WAMDII examines the Earth's airglow, a faint photochemical luminescence caused by the influx of solar ultraviolet energy into the upper atmosphere. During periods of high solar flare activity, the amount of this UV energy entering the upper atmosphere increases, and this increase may effect airglow emissions.

  19. Research on recognition of ramp angle based on transducer

    Wenhao GU

    2015-12-01

    Full Text Available Focusing on the recognition of ramp angle, the relationship between the signal of vehicle transducer and real ramp angle is studied. The force change of vehicle on the ramp, and the relationship between the body tilt angle and front and rear suspension scale is discussed. According to the suspension and tire deformation, error angle of the ramp angle is deduced. A mathematical model is established with Matlab/Simulink and used for simulation to generate error curve of ramp angle. The results show that the error angle increases with the increasing of the ramp angle, and the limit value can reach 6.5%, while the identification method can effectively eliminate this error, and enhance the accuracy of ramp angle recognition.

  20. Effect of injection angle, density ratio, and viscosity on droplet formation in a microfluidic T-junction

    Mohammad Yaghoub Abdollahzadeh Jamalabadi

    2017-07-01

    Full Text Available The T-junction microchannel device makes available a sharp edge to form micro-droplets from bio-material solutions. This article investigates the effects of injection angle, flow rate ratio, density ratio, viscosity ratio, contact angle, and slip length in the process of formation of uniform droplets in microfluidic T-junctions. The governing equations were solved by the commercial software. The results show that contact angle, slip length, and injection angles near the perpendicular and parallel conditions have an increasing effect on the diameter of generated droplets, while flow rate, density and viscosity ratios, and other injection angles had a decreasing effect on the diameter. Keywords: Microfluidics, Droplet formation, Flow rate ratio, Density ratio

  1. Super-mercuryphobic and hydrophobic diamond surfaces with hierarchical structures: Vanishment of the contact angle hysteresis with mercury

    Escobar, Juan V.; Garza, Cristina; Alonso, Juan Carlos; Castillo, Rolando

    2013-01-01

    Increased roughness is known to enhance the natural wetting properties of surfaces, making them either more hydrophobic or more hydrophilic. In this work we study the wetting properties of water and mercury drops in contact with boron doped diamond films with progressively increased surface roughnesses. We show how thermal oxidation of a microcrystalline film creates pyramids decorated with sub-micron protrusions that turn its naturally mercuryphobic surface into super-mercuryphobic. With this liquid, we observe the vanishment of the contact angle hysteresis that is expected for rough surfaces as the contact angle approaches 180, making small drops of mercury roll along out of the surface at an apparent zero tilt-angle. In contrast, the incorporation of nano-globules on the oxidized surface through a silanization process is necessary to increase the hydrophobic properties of the film for which the contact angle with water reaches 138°. The wetting states that dominate in each case are discussed.

  2. Super-mercuryphobic and hydrophobic diamond surfaces with hierarchical structures: Vanishment of the contact angle hysteresis with mercury

    Escobar, Juan V., E-mail: escobar@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, PO Box 20-364, DF, México, 01000 (Mexico); Garza, Cristina, E-mail: cgarza@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, PO Box 20-364, DF, México, 01000 (Mexico); Alonso, Juan Carlos, E-mail: alonso@unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, PO Box 70-360, DF, México, 04510 (Mexico); Castillo, Rolando, E-mail: rolandoc@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, PO Box 20-364, DF, México, 01000 (Mexico)

    2013-05-15

    Increased roughness is known to enhance the natural wetting properties of surfaces, making them either more hydrophobic or more hydrophilic. In this work we study the wetting properties of water and mercury drops in contact with boron doped diamond films with progressively increased surface roughnesses. We show how thermal oxidation of a microcrystalline film creates pyramids decorated with sub-micron protrusions that turn its naturally mercuryphobic surface into super-mercuryphobic. With this liquid, we observe the vanishment of the contact angle hysteresis that is expected for rough surfaces as the contact angle approaches 180, making small drops of mercury roll along out of the surface at an apparent zero tilt-angle. In contrast, the incorporation of nano-globules on the oxidized surface through a silanization process is necessary to increase the hydrophobic properties of the film for which the contact angle with water reaches 138°. The wetting states that dominate in each case are discussed.

  3. Estimates of md-mu and left-angle bar dd right-angle -left-angle bar uu right-angle from QCD sum rules for D and D* isospin mass differences

    Eletsky, V.L.; Ioffe, B.L.

    1993-01-01

    The recent experimental data on D +- D0 and D *+- D*0 mass differences are used as inputs in the QCD sum rules to obtain new estimates on the mass difference of light quarks and on the difference of their condensates: m d -m u =3±1 MeV, left-angle bar dd right-angle -left-angle bar uu right-angle=-(2.5±1)x10 -3 left-angle bar uu right-angle (at a standard normalization point, μ=0.5 GeV)

  4. A variable angle slant-hole collimator

    Moore, R.H.; Alpert, N.M.; Strauss, H.W.

    1983-01-01

    A variable-angle slant-hole (VASH) collimator was constructed to show the feasibility of using multiple sliding plates to achieve a range of collimator channel inclinations. One hundred and sixty tungsten plates, 0.125 mm thick and 14 cm square, were photoetched to produce 3025 1.5-mm2 holes in each plate, separated by 0.8-mm septa. Along with the collimator holes, registration holes and positioning grooves were also etched. The plates were placed in a holder and stacked to form a collimator 2.0 cm high. The holder permitted the plates to be sheared to achieve viewing angles from 0 to 40 degrees from the vertical. Resolution and sensitivity were determined both across and along the shear directions. Resolution of a thin /sup 99m/Tc source, 1.24 mm diam and 7 cm long, located 5 cm from the collimator face in air, was 1.1 cm FWHM at 0 degree shear and remained unchanged with increasing slant. The resolution was similar both across and along the shear plane. Sensitivity was determined with a point source placed 7 cm from the collimator face. At 0 degree slant the sensitivity was 169 cps/MBq (6.24 csp/mu Ci). A general all purpose (GAP) collimator had a FWHM of 1 cm for the line source in air at 5 cm, and a sensitivity of 205 cps/MBq (7.58 cps/mu Ci) for the point source at 7 cm. The data suggest that a variable-angle slant-hole collimator can be constructed of laminated plates

  5. Angle parameter changes of phacoemulsification and combined phacotrabeculectomy for acute primary angle closure

    Shi-Wei Li

    2015-08-01

    Full Text Available AIM: To evaluate the difference in angle parameters and clinical outcome following phacoemulsification and combined phacotrabeculectomy in patients with acute primary angle closure (APAC using ultrasound biomicroscopy (UBM.METHODS: Patients (n=23, 31 eyes were randomized to receive phacoemulsification or combined phacotrabeculectomy (n=24, 31 eyes. Best-corrected visual acuity (BCVA, intraocular pressure (IOP, the main complications following surgery, and indentation gonioscopy and angle parameters measured using UBM were documented preoperatively and postoperatively.RESULTS:The improvement in BCVA in the phacoemulsification group was significantly greater than in the combined group (P<0.05. IOP in the phacoemulsification group was slightly higher than in the combined group following 1wk of follow-up (P<0.05, whereas there was no significant difference between the two groups at the latter follow-up (P>0.05. Phacoemulsification alone resulted in a slight increase in the trabecular ciliary processes distance compared with the combined surgery (P<0.05, whereas the other angle parameters showed no significant difference between the groups. Complications in combined group were greater than phacoemulsification only group.CONCLUSION:Both surgeries effectively opened the drainage angle and deepened the anterior chamber, and IOP was well controlled postoperatively. However, phacoemulsification showed better efficacy in improving visual function and showed reduced complications following surgery.

  6. Weak mixing angles and heavy flavours

    Jarlskog, C.

    1984-05-01

    The present status of the weak mixing angles, in the standard six quark model, is reviewed. The implications of the recent measurements of the beauty lifetime and branching ratios are discussed, in the framework of the Kobayashi-Maskawa and the Wolfenstein parametrizations. Expectations for B(sup)o - B(sup)-o mixing and consequences for the collider data are given. Other topics briefly reviewed are CP-violation, top quark mass and possible implications of the existence of a fourth family. (author)

  7. Simple map in action-angle coordinates

    Kerwin, Olivia; Punjabi, Alkesh; Ali, Halima

    2008-07-01

    A simple map [A. Punjabi, A. Verma, and A. Boozer, Phys. Rev. Lett. 69, 3322 (1992)] is the simplest map that has the topology of divertor tokamaks [A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys. Lett. A 364, 140 (2007)]. Here, action-angle coordinates, the safety factor, and the equilibrium generating function for the simple map are calculated analytically. The simple map in action-angle coordinates is derived from canonical transformations. This map cannot be integrated across the separatrix surface because of the singularity in the safety factor there. The stochastic broadening of the ideal separatrix surface in action-angle representation is calculated by adding a perturbation to the simple map equilibrium generating function. This perturbation represents the spatial noise and field errors typical of the DIII-D [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)] tokamak. The stationary Fourier modes of the perturbation have poloidal and toroidal mode numbers (m,n,)={(3,1),(4,1),(6,2),(7,2),(8,2),(9,3),(10,3),(11,3)} with amplitude δ =0.8×10-5. Near the X-point, about 0.12% of toroidal magnetic flux inside the separatrix, and about 0.06% of the poloidal flux inside the separatrix is lost. When the distance from the O-point to the X-point is 1m, the width of stochastic layer near the X-point is about 1.4cm. The average value of the action on the last good surface is 0.19072 compared to the action value of 3/5π on the separatrix. The average width of stochastic layer in action coordinate is 2.7×10-4, while the average area of the stochastic layer in action-angle phase space is 1.69017×10-3. On average, about 0.14% of action or toroidal flux inside the ideal separatrix is lost due to broadening. Roughly five times more toroidal flux is lost in the simple map than in DIII-D for the same perturbation [A. Punjabi, H. Ali, A. Boozer, and T. Evans, Bull. Amer. Phys. Soc. 52, 124 (2007)].

  8. Pair production in small angle Bhabha scattering

    Arbuzov, A.B.; Kuraev, Eh.A.; Merenkov, N.P.; Trentadue, L.

    1995-01-01

    The radiative corrections due to a pair production in the small angle high energy e + e - Bhabha scattering are considered. The corrections due to the production of virtual pairs as well as real soft and hard ones are calculated analytically. The collinear and semi-collinear kinematical regions of the hard pair production are taken into account. The results in the leading and next-to-leading logarithmic approximations provide the accuracy of Ο (0.1%). The results of numerical calculations show that the effects of pairs production are to be taken into account in the precise luminosity determination at LEP. 9 refs., 3 figs., 2 tabs

  9. Constraining CKM $\\gamma$ angle at LHCb

    Vallier, Alexis Roger Louis

    2015-01-01

    The current combination of all available tree-level measurements of the CKM angle gamma at LHCb is reported. It includes results obtained from time independent analyses of B+ -> DK+ and of B0 -> DK∗0 decays; and from a time-dependent analysis of Bs0 -> DsK decays. The results represent the world's best single-experiment determination of gamma. The first observation of the Bs->Ds*K decay and the first observation and amplitude analysis of B- -> D+K-pi- are also reported. In addition to these tree measurements, the estimation of gamma from charmless B meson decay, sensitive to loops contribution, is presented.

  10. GPS synchronized power system phase angle measurements

    Wilson, Robert E.; Sterlina, Patrick S.

    1994-09-01

    This paper discusses the use of Global Positioning System (GPS) synchronized equipment for the measurement and analysis of key power system quantities. Two GPS synchronized phasor measurement units (PMU) were installed before testing. It was indicated that PMUs recorded the dynamic response of the power system phase angles when the northern California power grid was excited by the artificial short circuits. Power system planning engineers perform detailed computer generated simulations of the dynamic response of the power system to naturally occurring short circuits. The computer simulations use models of transmission lines, transformers, circuit breakers, and other high voltage components. This work will compare computer simulations of the same event with field measurement.

  11. The Sphaleron at finite mixing angle

    Klinkhamer, F.R.; Laterveer, R.

    1990-01-01

    The exact Sphaleron solution in the bosonic sector of the electro-weak standard model is only known for weak mixing angle θ W =0. To investigate the behaviour closer to the experimental value θ W exp approx 30 deg a non-contractible loop in configuration space which is sensitive to θ W is constructed. The numerical results for the energy and the magnetic dipole moment indicate that the dependence on θ W is rather weak. (author). 8 refs.; 4 figs.; 1 tab

  12. Angle of arrival estimation using spectral interferometry

    Barber, Z.W.; Harrington, C.; Thiel, C.W.; Babbitt, W.R.; Krishna Mohan, R.

    2010-01-01

    We have developed a correlative signal processing concept based on a Mach-Zehnder interferometer and spatial-spectral (S2) materials that enables direct mapping of RF spectral phase as well as power spectral recording. This configuration can be used for precise frequency resolved time delay estimation between signals received by a phased antenna array system that in turn could be utilized to estimate the angle of arrival. We present an analytical theoretical model and a proof-of-principle demonstration of the concept of time difference of arrival estimation with a cryogenically cooled Tm:YAG crystal that operates on microwave signals modulated onto a stabilized optical carrier at 793 nm.

  13. Angle of arrival estimation using spectral interferometry

    Barber, Z.W.; Harrington, C.; Thiel, C.W.; Babbitt, W.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Krishna Mohan, R., E-mail: krishna@spectrum.montana.ed [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States)

    2010-09-15

    We have developed a correlative signal processing concept based on a Mach-Zehnder interferometer and spatial-spectral (S2) materials that enables direct mapping of RF spectral phase as well as power spectral recording. This configuration can be used for precise frequency resolved time delay estimation between signals received by a phased antenna array system that in turn could be utilized to estimate the angle of arrival. We present an analytical theoretical model and a proof-of-principle demonstration of the concept of time difference of arrival estimation with a cryogenically cooled Tm:YAG crystal that operates on microwave signals modulated onto a stabilized optical carrier at 793 nm.

  14. Two consistent calculations of the Weinberg angle

    Fairlie, D.B.

    1979-01-01

    The Weinberg-Salam theory is reformulated as a pure Yang-Mills theory in a six-dimensional space, the Higgs field being interpreted as gauge potentials in the additional dimensions. Viewed in this way, the condition that the Higgs field transforms as a U(1) representation of charge one is equivalent to requiring a value of 30 0 C for the Weinberg angle. A second consistent determination comes from the idea borrowed from monopole theory that the electromagnetic field is in the direction of the Higgs field. (Author)

  15. Lateral angle and cranial base sexual dimorphism

    Duquesnel Mana, Mathilde; Adalian, Pascal; Lynnerup, Niels

    2016-01-01

    SUMMARY: Previous studies have yielded very different results in sex estimation based on measurements of the lateral angle (LA) of the temporal bone. The purpose of this study was to, first, investigate if the bad results obtained by the LA method could be due to the methodology and then, second......, and by use of a new method, using a "virtual cast". The cranial base was quantified by placing 12 landmarks in the posterior fossa. Procrustes analysis, principal component analysis, discriminant analysis and cross-validation test were performed. The "cast method" was found to be less accurate than...

  16. Simple map in action-angle coordinates

    Kerwin, Olivia; Punjabi, Alkesh; Ali, Halima

    2008-01-01

    A simple map [A. Punjabi, A. Verma, and A. Boozer, Phys. Rev. Lett. 69, 3322 (1992)] is the simplest map that has the topology of divertor tokamaks [A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys. Lett. A 364, 140 (2007)]. Here, action-angle coordinates, the safety factor, and the equilibrium generating function for the simple map are calculated analytically. The simple map in action-angle coordinates is derived from canonical transformations. This map cannot be integrated across the separatrix surface because of the singularity in the safety factor there. The stochastic broadening of the ideal separatrix surface in action-angle representation is calculated by adding a perturbation to the simple map equilibrium generating function. This perturbation represents the spatial noise and field errors typical of the DIII-D [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)] tokamak. The stationary Fourier modes of the perturbation have poloidal and toroidal mode numbers (m,n,)=((3,1),(4,1),(6,2),(7,2),(8,2),(9,3),(10,3),(11,3)) with amplitude δ=0.8x10 -5 . Near the X-point, about 0.12% of toroidal magnetic flux inside the separatrix, and about 0.06% of the poloidal flux inside the separatrix is lost. When the distance from the O-point to the X-point is 1 m, the width of stochastic layer near the X-point is about 1.4 cm. The average value of the action on the last good surface is 0.19072 compared to the action value of 3/5π on the separatrix. The average width of stochastic layer in action coordinate is 2.7x10 -4 , while the average area of the stochastic layer in action-angle phase space is 1.69017x10 -3 . On average, about 0.14% of action or toroidal flux inside the ideal separatrix is lost due to broadening. Roughly five times more toroidal flux is lost in the simple map than in DIII-D for the same perturbation [A. Punjabi, H. Ali, A. Boozer, and T. Evans, Bull. Amer. Phys. Soc. 52, 124 (2007)].

  17. Spin Valve Systems for Angle Sensor Applications

    Johnson, Andrew

    2004-01-01

    A contact-less sensor with the ability to measure over a 360° range has been long sought after in the automotive industry. Such a sensor could be realized by utilizing the angle dependence of the Giant Magneto Resistance (GMR) Effect in a special type of magnetic multilayer called a spin valve arranged in a wheatstone bridge circuit [Spo96]. A spin valve consists of two ferromagnetic layers separated by nonmagnetic spacer layer where the magnetization of one of the ferromagnetic layers is pin...

  18. Joining by plating: optimization of occluded angle

    Dini, J.W.; Johnson, H.R.; Kan, Y.R.

    1978-11-01

    An empirical method has been developed for predicting the minimum angle required for maximum joint strength for materials joined by plating. This is done through a proposed power law failure function, whose coefficients are taken from ring shear and conical head tensile data for plating/substrate combinations and whose exponent is determined from one set of plated-joint data. Experimental results are presented for Al-Ni-Al (7075-T6) and AM363-Ni-AM363 joints, and the failure function is used to predict joint strengths for Al-Ni-Al (2024-T6), UTi-Ni-UTi, and Be-Ti-Be

  19. left-angle 100 right-angle Burgers vector in single phase γ' material verified by image simulation

    Link, T.; Knobloch, C.; Glatzel, U.

    1998-01-01

    The deformation mechanisms of Ni 3 Al, an ordered L1 2 or γ' phase, is under intense research since Westbrook showed the increase of its hardness with temperature in 1957. The super dislocations of this ordered phase normally have Burgers vectors rvec b = a left-angle 110 right-angle, disassociated in either two a/2 left-angle 110 right-angle or two rvec b = a/3 left-angle 112 right-angle, depending on deformation temperature and rate. Recent observations in [111] oriented γ' specimens suggest that additional dislocations with the shorter Burgers vector rvec b = a left-angle 100 right-angle might be active. Dislocations with rvec b = a left-angle 110 right-angle on cube glide planes have a Schmidt factor of 0.47 and on octahedral planes of 0.27. Dislocations with rvec b = a left-angle 100 right-angle have a Schmidt factor of 0.47 for {110} glide planes and 0.33 for cube glide planes. The a left-angle 100 right-angle Burgers vector is the shortest of all complete dislocations of the L1 2 structure and creates no planar fault like antiphase boundaries or stacking faults. Due to the [111] oriented stress axis, which is used in this contribution, plastic deformation by a left-angle 100 right-angle dislocations as well as cube glide planes for left-angle 110 right-angle dislocations is encouraged. These dislocations could be reaction products, but will soon after contribute to deformation

  20. Anterior chamber angle assessment using gonioscopy and ultrasound biomicroscopy.

    Narayanaswamy, Arun; Vijaya, Lingam; Shantha, B; Baskaran, Mani; Sathidevi, A V; Baluswamy, Sukumar

    2004-01-01

    Comparison of anterior chamber angle measurements using ultrasound biomicroscopy (UBM) and gonioscopy. Five hundred subjects were evaluated for grading of angle width by the Shaffer method. UBM was done in the same group to document angle width, angle opening distance (AOD 500), and anterior chamber depth. Biometric parameters were documented in all subjects. UBM and gonioscopic findings were compared. A study was conducted in 282 men and 218 women with a mean age of 57.32 +/- 12.48 years. Gonioscopic grading was used to segregate occludable (slit-like, grades 1 and 2) from nonoccludable (grades 3 and 4) angles. Subjective assessment by gonioscopy resulted in an overestimation of angle width within the occludable group when compared with values obtained by UBM. This did not affect the segregation of occludable versus nonoccludable angles by gonioscopy. Biometric parameters in eyes with occludable angles were significantly lower in comparison with eyes with nonoccludable angles, except for lens thickness. AOD 500 correlated well with angle width. We concluded that clinical segregation into occludable and nonoccludable angles by an experienced observer using gonioscopy is fairly accurate. However, UBM is required for objective quantification of angles, and AOD 500 can be a reliable and standard parameter to grade angle width.

  1. Pellet ablation and cloud flow characteristics in the JIPP T-IIU plasma with the injection-angle controllable system

    Sakakita, H.; Sato, K.N.; Liang, R.; Hamada, Y.; Ando, A.; Kano, Y.; Sakamoto, M.

    1994-01-01

    Pellet ablation and flow characteristics of ablation cloud have been studied in the JIPP T-IIU plasma by using an injection-angle controllable system. A new technique for an ice pellet injection system with controllability of injection angle has been developed and installed to the JIPP T-IIU tokamak in order to vary deposition profile of ice pellets within a plasma. Injection angle can be varied easily and successfully during an interval of two plasma shots in the course of an experiment, so that one can carry out various basic experiments by varying the pellet deposition profile. The injection angle has been varied poloidally from -6 to 6 degree by changing the angle of the last stage drift tube. This situation makes possible for pellets to aim at from about r = -2a/3 to r = 2a/3 of the plasma. From two dimensional observations by CCD cameras, details of the pellet ablation structures with various injection angles have been studied, and a couple of interesting phenomena have been found. In the case of an injection angle (θ) larger than a certain value (θ ≥ 4 o ), a pellet penetrates straightly through the plasma with a trace of straight ablation cloud, which has been expected from usual theoretical consideration. On the other hand, a long helical tail of ablation light has been observed in the case of the angle smaller than the certain value (θ ≤ 4 o ). (author) 4 refs., 4 figs

  2. Universal shift of the Brewster angle and disorder-enhanced delocalization of p waves in stratified random media.

    Lee, Kwang Jin; Kim, Kihong

    2011-10-10

    We study theoretically the propagation and the Anderson localization of p-polarized electromagnetic waves incident obliquely on randomly stratified dielectric media with weak uncorrelated Gaussian disorder. Using the invariant imbedding method, we calculate the localization length and the disorder-averaged transmittance in a numerically precise manner. We find that the localization length takes an extremely large maximum value at some critical incident angle, which we call the generalized Brewster angle. The disorder-averaged transmittance also takes a maximum very close to one at the same incident angle. Even in the presence of an arbitrarily weak disorder, the generalized Brewster angle is found to be substantially different from the ordinary Brewster angle in uniform media. It is a rapidly increasing function of the average dielectric permittivity and approaches 90° when the average relative dielectric permittivity is slightly larger than two. We make a remarkable observation that the dependence of the generalized Brewster angle on the average dielectric permittivity is universal in the sense that it is independent of the strength of disorder. We also find, surprisingly, that when the average relative dielectric permittivity is less than one and the incident angle is larger than the generalized Brewster angle, both the localization length and the disorder-averaged transmittance increase substantially as the strength of disorder increases in a wide range of the disorder parameter. In other words, the Anderson localization of incident p waves can be weakened by disorder in a certain parameter regime.

  3. Multi-angle VECSEL cavities for dispersion control and multi-color operation

    Baker, Caleb; Scheller, Maik; Laurain, Alexandre; Yang, Hwang-Jye; Ruiz Perez, Antje; Stolz, Wolfgang; Addamane, Sadhvikas J.; Balakrishnan, Ganesh; Jones, R. Jason; Moloney, Jerome V.

    2017-02-01

    We present a novel Vertical External Cavity Surface Emitting Laser (VECSEL) cavity design which makes use of multiple interactions with the gain region under different angles of incidence in a single round trip. This design allows for optimization of the net, round-trip Group Delay Dispersion (GDD) by shifting the GDD of the gain via cavity fold angle while still maintaining the high gain of resonant structures. The effectiveness of this scheme is demonstrated with femtosecond-regime pulses from a resonant structure and record pulse energies for the VECSEL gain medium. In addition, we show that the interference pattern of the intracavity mode within the active region, resulting from the double-angle multifold, is advantageous for operating the laser in CW on multiple wavelengths simultaneously. Power, noise, and mode competition characterization is presented.

  4. Videodefaecography combined with measurement of the anorectal angle and of perineal descent

    Skomorowska, E.; Henrichsen, S.; Christiansen, J.; Hegedues, V.; Glostrup Sygehus, Copenhagen

    1987-01-01

    Cineradiographic defaecography combined with measurement of the anorectal angle and descent of the pelvic floor is proposed. The method used in 73 women gave valuable information in 48 patients who complained of anal incompetence, rectal tenesmus, and chronic constipation. In these patients, high and low rectal intussusception, rectocele, and pathologic movement of the pelvic floor were detected. Some of these phenomena could only be diagnosed by the radiologic method here described. Quantitations of the anorectal angle and descent of the pelvic floor placed the group with constipation halfway between normal individuals and those with anal incompetence. The value of this finding is discussed. Recent improvements in anorectal surgery often make videodefaecography decisive for the choice of the optimal operative method. Therefore, videodefaecography together with measurement of the anorectal angle and pelvic floor descent is recommended whenever anorectal surgery for correction of functional disturbances is contemplated. (orig.)

  5. NORMAL AXIAL ANGLES OF THE KNEE JOINT IN ADULT ...

    hi-tech

    2003-08-01

    Aug 1, 2003 ... Conclusion: Our study has demonstrated comparative variations in means and ranges of normal axial angles .... population was significantly different from the mean ... case, however, the angle also exhibits racial variations.

  6. Apparatus and method for variable angle slant hole collimator

    Lee, Seung Joon; Kross, Brian J.; McKisson, John E.

    2017-07-18

    A variable angle slant hole (VASH) collimator for providing collimation of high energy photons such as gamma rays during radiological imaging of humans. The VASH collimator includes a stack of multiple collimator leaves and a means of quickly aligning each leaf to provide various projection angles. Rather than rotate the detector around the subject, the VASH collimator enables the detector to remain stationary while the projection angle of the collimator is varied for tomographic acquisition. High collimator efficiency is achieved by maintaining the leaves in accurate alignment through the various projection angles. Individual leaves include unique angled cuts to maintain a precise target collimation angle. Matching wedge blocks driven by two actuators with twin-lead screws accurately position each leaf in the stack resulting in the precise target collimation angle. A computer interface with the actuators enables precise control of the projection angle of the collimator.

  7. Measurement of Angle Kappa Using Ultrasound Biomicroscopy and Corneal Topography.

    Yeo, Joon Hyung; Moon, Nam Ju; Lee, Jeong Kyu

    2017-06-01

    To introduce a new convenient and accurate method to measure the angle kappa using ultrasound biomicroscopy (UBM) and corneal topography. Data from 42 eyes (13 males and 29 females) were analyzed in this study. The angle kappa was measured using Orbscan II and calculated with UBM and corneal topography. The angle kappa of the dominant eye was compared with measurements by Orbscan II. The mean patient age was 36.4 ± 13.8 years. The average angle kappa measured by Orbscan II was 3.98° ± 1.12°, while the average angle kappa calculated with UBM and corneal topography was 3.19° ± 1.15°. The difference in angle kappa measured by the two methods was statistically significant (p topography to calculate the angle kappa. This method is convenient to use and allows for measurement of the angle kappa without an expensive device. © 2017 The Korean Ophthalmological Society

  8. RF sheaths for arbitrary B field angles

    D'Ippolito, Daniel; Myra, James

    2014-10-01

    RF sheaths occur in tokamaks when ICRF waves encounter conducting boundaries and accelerate electrons out of the plasma. Sheath effects reduce the efficiency of ICRF heating, cause RF-specific impurity influxes from the edge plasma, and increase the plasma-facing component damage. The rf sheath potential is sensitive to the angle between the B field and the wall, the ion mobility and the ion magnetization. Here, we obtain a numerical solution of the non-neutral rf sheath and magnetic pre-sheath equations (for arbitrary values of these parameters) and attempt to infer the parametric dependences of the Child-Langmuir law. This extends previous work on the magnetized, immobile ion regime. An important question is how the rf sheath voltage distributes itself between sheath and pre-sheath for various B field angles. This will show how generally previous estimates of the rf sheath voltage and capacitance were reasonable, and to improve the RF sheath BC. Work supported by US DOE grants DE-FC02-05ER54823 and DE-FG02-97ER54392.

  9. Lasers in primary open angle glaucoma

    Sihota Ramanjit

    2011-12-01

    Full Text Available Lasers have been used in the treatment of primary open angle glaucoma (POAG over the years, with the hope that they would eventually replace medical and surgical therapy. Laser trabeculoplasty (LT is an application of argon, diode, or selective laser energy to the surface of the trabecular meshwork to increase the aqueous outflow. The mechanisms by which intraocular pressure (IOP is lowered could be mechanical, biologic, or by division of adjacent cells. It is commonly used as an adjunct to medical therapy, but is contraindicated if the angle is obstructed, e.g., peripheral anterior synechia (PAS or developmental glaucomas. About 75% of individuals will show a significant fall in IOP after argon laser trabeculoplasty (ALT, and the response is similar with selective laser trabeculoplasty (SLT. The effects of LT are not always long lasting, with about 10% of individuals showing a rise in IOP with every passing year. Laser thermal sclerostomy, ab interno or externo, is an alternative to other full-thickness filtration procedures. Longer wavelengths in the infrared range have water-absorptive characteristics that facilitate perforation of the sclera. These lasers can be used to avoid intraocular instrumentation and minimize conjunctival trauma.

  10. Contact angles of liquid metals on quasicrystals

    Bergman, Claire; Girardeaux, Christophe; Perrin-Pellegrino, Carine; Gas, Patrick; Dubois, Jean-Marie; Rivier, Nicolas

    2008-01-01

    Wetting with μm-sized Pb droplets on thin polycrystalline films of decagonal Al 13 Co 4 is reported. The films were prepared under high vacuum conditions in order to have Pb droplets lying on a clean surface. The method used is sequential deposition and annealing of specific stackings of Al and Co layers of nanometric thicknesses. A 300 nm thick Pb slab was then deposited on top of the films and dewetting experiments were followed in situ in a scanning Auger microprobe. The contact angle between the Pb droplet and the surface of the film is measured to be 49 deg. ± 7 deg. Further investigation performed by cross section transmission electron microscopy allows us to better characterize the interface. Taking into account the rugosity of the film, it is concluded that there is partial wetting of the film, which corresponds to a smaller contact angle. The comparison with other results obtained either with pure metals or with a cubic AlCo compound leads to the conclusion that the wetting behaviour of Pb on the surface of a decagonal compound is close to that of a metal with a high melting point and not significantly different from that of a crystalline compound with a small unit cell

  11. A LEGO Mindstorms Brewster angle microscope

    Fernsler, Jonathan; Nguyen, Vincent; Wallum, Alison; Benz, Nicholas; Hamlin, Matthew; Pilgram, Jessica; Vanderpoel, Hunter; Lau, Ryan

    2017-09-01

    A Brewster Angle Microscope (BAM) built from a LEGO Mindstorms kit, additional LEGO bricks, and several standard optics components, is described. The BAM was built as part of an undergraduate senior project and was designed, calibrated, and used to image phospholipid, cholesterol, soap, and oil films on the surface of water. A BAM uses p-polarized laser light reflected off a surface at the Brewster angle, which ideally yields zero reflectivity. When a film of different refractive index is added to the surface a small amount of light is reflected, which can be imaged in a microscope camera. Films of only one molecule (approximately 1 nm) thick, a monolayer, can be observed easily in the BAM. The BAM was used in a junior-level Physical Chemistry class to observe phase transitions of a monolayer and the collapse of a monolayer deposited on the water surface in a Langmuir trough. Using a photometric calculation, students observed a change in thickness of a monolayer during a phase transition of 7 Å, which was accurate to within 1 Å of the value determined by more advanced methods. As supplementary material, we provide a detailed manual on how to build the BAM, software to control the BAM and camera, and image processing software.

  12. Metasurface Enabled Wide-Angle Fourier Lens.

    Liu, Wenwei; Li, Zhancheng; Cheng, Hua; Tang, Chengchun; Li, Junjie; Zhang, Shuang; Chen, Shuqi; Tian, Jianguo

    2018-06-01

    Fourier optics, the principle of using Fourier transformation to understand the functionalities of optical elements, lies at the heart of modern optics, and it has been widely applied to optical information processing, imaging, holography, etc. While a simple thin lens is capable of resolving Fourier components of an arbitrary optical wavefront, its operation is limited to near normal light incidence, i.e., the paraxial approximation, which puts a severe constraint on the resolvable Fourier domain. As a result, high-order Fourier components are lost, resulting in extinction of high-resolution information of an image. Other high numerical aperture Fourier lenses usually suffer from the bulky size and costly designs. Here, a dielectric metasurface consisting of high-aspect-ratio silicon waveguide array is demonstrated experimentally, which is capable of performing 1D Fourier transform for a large incident angle range and a broad operating bandwidth. Thus, the device significantly expands the operational Fourier space, benefitting from the large numerical aperture and negligible angular dispersion at large incident angles. The Fourier metasurface will not only facilitate efficient manipulation of spatial spectrum of free-space optical wavefront, but also be readily integrated into micro-optical platforms due to its compact size. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The impact of inlet angle and outlet angle of guide vane on pump in reversal based hydraulic turbine performance

    Shi, F X; Yang, J H; Wang, X H; Zhang, R H; Li, C E

    2012-01-01

    In this paper, in order to research the impact of inlet angle and outlet angle of guide vane on hydraulic turbine performance, a centrifugal pump in reversal is adopted as turbine. A numerical simulation method is adopted for researching outer performance and flow field of turbine. The results show: inlet angle has a crucial role to turbine, to the same flow, there is a noticeable decline for the efficiency and head of turbine with the inlet angle increases. At the best efficiency point(EFP),to a same inlet angle, when the inlet angle greater than inlet angle, velocity circulation in guide vane outlet decreases, which lead the efficiency of turbine to reduce, Contrarily, the efficiency rises. With the increase of inlet angle and outlet angle, the EFP moves to the big flow area and the uniformity of pressure distribution becomes worse. The paper indicates that the inlet angle and outlet angle have great impact on the turbine performance, and the best combination exists for the inlet angle and outlet angle of the guide vane.

  14. 5-(2,4-Dichlorophenoxy-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde

    S. Madan Kumar

    2016-07-01

    Full Text Available In the crystal structure of the title compound, C17H12Cl2N2O2, the pyrazole ring makes dihedral angles of 65.0 (2 and 43.9 (2° with the dichlorophenyl and phenyl rings, respectively. The dihedral angle between the chlorophenyl and phenyl rings is 59.1 (2°. In the crystal, the molecules are linked by C—H...O hydrogen bonds and weak C—Cl...π and C—H...π interactions, generating a three-dimensional network.

  15. 5,6-Dipropylphthalazino[2,3-a]cinnoline-8,13-dione

    G. Vimala

    2016-04-01

    Full Text Available In the title compound, C22H22N2O2, the two central fused pyridazine rings have screw-boat conformations and the dihedral angle between their mean planes is 36.22 (8°. The mean plane of the cinnoline ring system makes a dihedral angle of 46.56 (5° with the mean plane of the phthalazine ring to which it is fused. In the crystal, molecules are linked via C—H...O hydrogen bonds, forming chains along the b axis. The chains are reinforced by C—H...π interactions.

  16. (1E,2E-1,2-Bis(2,2-diphenylhydrazin-1-ylideneethane

    Angel Mendoza

    2010-09-01

    Full Text Available In the crystal structure of the title compound, C26H22N4, the molecule is located on an inversion centre and shows an E configuration with respect to each C=N bond. The dihedral angle between the phenyl rings in the diphenylhydrazone group is 83.69 (11°. These two rings make dihedral angles of 30.53 (15 and 84.53 (16° with the central N—N=C—C=N—N dihydrazonoethane plane. Intermolecular C—H...π interactions are observed.

  17. 5-[(1-Benzyl-1H-1,2,3-triazol-4-ylmethyl]-5H-dibenzo[b,f]azepine

    N. K. Lokanath

    2013-12-01

    Full Text Available In the title compound, C24H20N4, the azepine ring adopts a boat conformation. The dihedral angle between the benzene rings fused to the azepine ring is 49.40 (9°. The triazole ring makes a dihedral angle of 77.88 (9° with the terminal phenyl ring. In the crystal, molecules are linked via C—H...π interactions and a parallel slipped π–π interaction [centroid–centroid distance = 3.7324 (9, normal distance = 3.4060 (6 and slippage = 1.526 Å], forming a three-dimensional network.

  18. 3,5-Bis(4-methoxyphenyl-1-phenyl-4,5-dihydro-1H-pyrazole

    Zeliha Baktır

    2011-02-01

    Full Text Available In the title compound, C23H22N2O2, the central pyrazole ring is nearly planar (r.m.s. deviation = 0.046 Å and it makes a dihedral angle of 18.5 (2° with the phenyl ring. The dihedral angles between the phenyl and the two methoxy-substituted phenyl rings are 26.2 (2 and 80.6 (2°. The crystal structure is stabilized by C—H...π stacking interactions and weak π–π interactions [centriod–centroid distance = 3.891 (2 Å].

  19. 3,5-Bis(4-meth­oxy­phen­yl)-1-phenyl-4,5-dihydro-1H-pyrazole

    Baktır, Zeliha; Akkurt, Mehmet; Samshuddin, S.; Narayana, B.; Yathirajan, H. S.

    2011-01-01

    In the title compound, C23H22N2O2, the central pyrazole ring is nearly planar (r.m.s. deviation = 0.046 Å) and it makes a dihedral angle of 18.5 (2)° with the phenyl ring. The dihedral angles between the phenyl and the two methoxy-substituted phenyl rings are 26.2 (2) and 80.6 (2)°. The crystal structure is stabilized by C—H...π stacking interactions and weak π–π interactions [cen...

  20. 3,5-Bis(4-meth-oxy-phen-yl)-1-phenyl-4,5-dihydro-1H-pyrazole.

    Baktır, Zeliha; Akkurt, Mehmet; Samshuddin, S; Narayana, B; Yathirajan, H S

    2011-01-12

    In the title compound, C(23)H(22)N(2)O(2), the central pyrazole ring is nearly planar (r.m.s. deviation = 0.046 Å) and it makes a dihedral angle of 18.5 (2)° with the phenyl ring. The dihedral angles between the phenyl and the two meth-oxy-substituted phenyl rings are 26.2 (2) and 80.6 (2)°. The crystal structure is stabilized by C-H⋯π stacking inter-actions and weak π-π inter-actions [centriod-centroid distance = 3.891 (2) Å].

  1. 3-Ethyl-5-(4-methoxyphenoxy-2-(pyridin-4-yl-3H-imidazo[4,5-b]pyridine

    S. Ranjith

    2011-07-01

    Full Text Available In the title compound, C20H18N4O2, the imidazopyridine fused ring system is almost perpendicular to the benzene ring [dihedral angle = 87.6 (5°]. The pyridine ring makes a dihedral angle of 35.5 (5° with the mean plane of the imidazopyridine fragment. The crystal structure is stabilized by an aromatic π–π stacking interaction between the phenyl rings of neighbouring molecules [centroid–centroid distance = 3.772 (2 Å, interplanar distance = 3.546 (2 Å and slippage = 1.286 (2 Å].

  2. 3-Fluoro-N-(p-tolylbenzamide

    Aamer Saeed

    2008-11-01

    Full Text Available In the crystal structure of the title compound, C14H12FNO, the amide –NHCO– mean plane makes dihedral angles of 28.6 (2 and 37.5 (2° with the mean planes through the fluorobenzene and methylbenzene units, respectively. The dihedral angle between the two benzene ring mean planes is 65.69 (10°. In the crystal structure, molecules are linked through N—H...O hydrogen bonds and stack along the b axis.

  3. 2-(Diphenylmethylidene-2,3-dihydro-1H-inden-1-one

    Helen Sheridan

    2013-08-01

    Full Text Available In the title molecule, C22H16O, the indanone ring system is approximately planar with a dihedral angle between the fused rings of 5.13 (14°. Two benzene rings are linked together at one side of a double bond, sitting on either side of the indanone ring system and making dihedral angles of 70.30 (12 and 44.74 (13° with it. In the crystal, hydrogen bonding is not present, but weak C—H...π or π–π interactions occur and molecules form a sheet-like structure in the bc plane.

  4. Hong's grading for evaluating anterior chamber angle width.

    Kim, Seok Hwan; Kang, Ja Heon; Park, Ki Ho; Hong, Chul

    2012-11-01

    To compare Hong's grading method with anterior segment optical coherence tomography (AS-OCT), gonioscopy, and the dark-room prone-position test (DRPT) for evaluating anterior chamber width. The anterior chamber angle was graded using Hong's grading method, and Hong's angle width was calculated from the arctangent of Hong's grades. The correlation between Hong's angle width and AS-OCT parameters was analyzed. The area under the receiver operating characteristic curve (AUC) for Hong's grading method when discriminating between narrow and open angles as determined by gonioscopy was calculated. Correlation analysis was performed between Hong's angle width and intraocular pressure (IOP) changes determined by DRPT. A total of 60 subjects were enrolled. Of these subjects, 53.5 % had a narrow angle. Hong's angle width correlated significantly with the AS-OCT parameters (r = 0.562-0.719, P < 0.01). A Bland-Altman plot showed relatively good agreement between Hong's angle width and the angle width obtained by AS-OCT. The ability of Hong's grading method to discriminate between open and narrow angles was good (AUC = 0.868, 95 % CI 0.756-0.942). A significant linear correlation was found between Hong's angle width and IOP change determined by DRPT (r = -0.761, P < 0.01). Hong's grading method is useful for detecting narrow angles. Hong's grading correlated well with AS-OCT parameters and DRPT.

  5. Objectifying the Adjacent and Opposite Angles: A Cultural Historical Analysis

    Daher, Wajeeh; Musallam, Nadera

    2018-01-01

    The angle topic is central to the development of geometric knowledge. Two of the basic concepts associated with this topic are the adjacent and opposite angles. It is the goal of the present study to analyze, based on the cultural historical semiotics framework, how high-achieving seventh grade students objectify the adjacent and opposite angles'…

  6. Goniodysgenesis in familial primary open-angle glaucoma

    Verbraak, F. D.; vd Berg, W.; Delleman, J. W.; Greve, E. L.

    1994-01-01

    Results of a pilot study to evaluate goniodysgenesis as a cause of familial open-angle glaucoma are reported. Patients with a familial high tension open-angle glaucoma and a goniodysgenetic chamber angle (n = 11), a number of their relatives with glaucoma (n = 12), and their relatives without

  7. Optimal angle reduction - a behavioral approach to linear system appromixation

    Roorda, B.; Weiland, S.

    2001-01-01

    We investigate the problem of optimal state reduction under minimization of the angle between system behaviors. The angle is defined in a worst-case sense, as the largest angle that can occur between a system trajectory and its optimal approximation in the reduced-order model. This problem is

  8. Direct Measurement of Static and Dynamic Contact Angles Using a Random Micromodel Considering Geological CO2 Sequestration

    Mohammad Jafari

    2017-12-01

    Full Text Available The pore-level two-phase fluids flow mechanism needs to be understood for geological CO2 sequestration as a solution to mitigate anthropogenic emission of carbon dioxide. Capillary pressure at the interface of water–CO2 influences CO2 injectability, capacity, and safety of the storage system. Wettability usually measured by contact angle is always a major uncertainty source among important parameters affecting capillary pressure. The contact angle is mostly determined on a flat surface as a representative of the rock surface. However, a simple and precise method for determining in situ contact angle at pore-scale is needed to simulate fluids flow in porous media. Recent progresses in X-ray tomography technique has provided a robust way to measure in situ contact angle of rocks. However, slow imaging and complicated image processing make it impossible to measure dynamic contact angle. In the present paper, a series of static and dynamic contact angles as well as contact angles on flat surface were measured inside a micromodel with random pattern of channels under high pressure condition. Our results showed a wide range of pore-scale contact angles, implying complexity of the pore-scale contact angle even in a highly smooth and chemically homogenous glass micromodel. Receding contact angle (RCA showed more reproducibility compared to advancing contact angle (ACA and static contact angle (SCA for repeating tests and during both drainage and imbibition. With decreasing pore size, RCA was increased. The hysteresis of the dynamic contact angle (ACA–RCA was higher at pressure of one megapascal in comparison with that at eight megapascals. The CO2 bubble had higher mobility at higher depths due to lower hysteresis which is unfavorable. CO2 bubbles resting on the flat surface of the micromodel channel showed a wide range of contact angles. They were much higher than reported contact angle values observed with sessile drop or captive bubble tests on a

  9. Bayesian Estimator for Angle Recovery: Event Classification and Reconstruction in Positron Emission Tomography

    Foudray, Angela M K; Levin, Craig S

    2007-01-01

    PET at the highest level is an inverse problem: reconstruct the location of the emission (which localize biological function) from detected photons. Ideally, one would like to directly measure an annihilation photon's incident direction on the detector. In the developed algorithm, Bayesian Estimation for Angle Recovery (BEAR), we utilized the increased information gathered from localizing photon interactions in the detector and developed a Bayesian estimator for a photon's incident direction. Probability distribution functions (PDFs) were filled using an interaction energy weighted mean or center of mass (COM) reference space, which had the following computational advantages: (1) a significant reduction in the size of the data in measurement space, making further manipulation and searches faster (2) the construction of COM space does not depend on measurement location, it takes advantage of measurement symmetries, and data can be added to the training set without knowledge and recalculation of prior training data, (3) calculation of posterior probability map is fully parallelizable, it can scale to any number of processors. These PDFs were used to estimate the point spread function (PSF) in incident angle space for (i) algorithm assessment and (ii) to provide probability selection criteria for classification. The algorithm calculates both the incident θ and φ angle, with ∼16 degrees RMS in both angles, limiting the incoming direction to a narrow cone. Feature size did not improve using the BEAR algorithm as an angle filter, but the contrast ratio improved 40% on average

  10. Retcam fluorescein gonioangiography: a new modality for early detection of angle neovascularization in diabetic retinopathy.

    Azad, Rajvardhan; Arora, Tarun; Sihota, Ramanjit; Chandra, Parijat; Mahajan, Deepankur; Sain, Siddarth; Sharma, Yograj

    2013-10-01

    To evaluate the role of Retcam fluorescein gonioangiography in detecting neovascularization of the angle and correlate the same with gonioscopy in diabetic retinopathy. One hundred and fifty eyes of 150 patients (25 each of mild, moderate, severe, very severe nonproliferative diabetic retinopathy (NPDR) proliferative diabetic retinopathy (PDR); and PDR with high-risk characteristics) were recruited. They underwent complete ocular examination including applanation tonometry, gonioscopy, Retcam fluorescein gonioangiography, and fundus fluorescein angiography. Using Retcam fluorescein gonioangiography, of 150 eyes neovascularization of the angle was detected in 37 eyes (24.66%) compared with 22 eyes (14.66%) on gonioscopy (P = 0.04). Small newly formed vessels were evident only with Retcam fluorescein gonioangiography. In 10 of 50 patients (20%) with severe/very severe NPDR, angle neovascularization was appreciable on Retcam fluorescein angiography compared with 5 patients (10%) on gonioscopy. Similarly, 25 of 50 patients (50%) with PDR/PDR with high-risk characteristics had neovascularization of the angle on Retcam gonioangiography compared with 17 (34%) on gonioscopy. Retcam fluorescein gonioangiography is a novel technique for early detection of angle neovascularization in diabetic retinopathy and hence preventing progression to neovascular glaucoma. The objective nature of this test helps in precise decision making compared with gonioscopy for early intervention especially in cases of pre-PDR.

  11. A unified model for transfer alignment at random misalignment angles based on second-order EKF

    Cui, Xiao; Qin, Yongyuan; Yan, Gongmin; Liu, Zhenbo; Mei, Chunbo

    2017-01-01

    In the transfer alignment process of inertial navigation systems (INSs), the conventional linear error model based on the small misalignment angle assumption cannot be applied to large misalignment situations. Furthermore, the nonlinear model based on the large misalignment angle suffers from redundant computation with nonlinear filters. This paper presents a unified model for transfer alignment suitable for arbitrary misalignment angles. The alignment problem is transformed into an estimation of the relative attitude between the master INS (MINS) and the slave INS (SINS), by decomposing the attitude matrix of the latter. Based on the Rodriguez parameters, a unified alignment model in the inertial frame with the linear state-space equation and a second order nonlinear measurement equation are established, without making any assumptions about the misalignment angles. Furthermore, we employ the Taylor series expansions on the second-order nonlinear measurement equation to implement the second-order extended Kalman filter (EKF2). Monte-Carlo simulations demonstrate that the initial alignment can be fulfilled within 10 s, with higher accuracy and much smaller computational cost compared with the traditional unscented Kalman filter (UKF) at large misalignment angles. (paper)

  12. A unified model for transfer alignment at random misalignment angles based on second-order EKF

    Cui, Xiao; Mei, Chunbo; Qin, Yongyuan; Yan, Gongmin; Liu, Zhenbo

    2017-04-01

    In the transfer alignment process of inertial navigation systems (INSs), the conventional linear error model based on the small misalignment angle assumption cannot be applied to large misalignment situations. Furthermore, the nonlinear model based on the large misalignment angle suffers from redundant computation with nonlinear filters. This paper presents a unified model for transfer alignment suitable for arbitrary misalignment angles. The alignment problem is transformed into an estimation of the relative attitude between the master INS (MINS) and the slave INS (SINS), by decomposing the attitude matrix of the latter. Based on the Rodriguez parameters, a unified alignment model in the inertial frame with the linear state-space equation and a second order nonlinear measurement equation are established, without making any assumptions about the misalignment angles. Furthermore, we employ the Taylor series expansions on the second-order nonlinear measurement equation to implement the second-order extended Kalman filter (EKF2). Monte-Carlo simulations demonstrate that the initial alignment can be fulfilled within 10 s, with higher accuracy and much smaller computational cost compared with the traditional unscented Kalman filter (UKF) at large misalignment angles.

  13. The Effect of Suture Anchor Insertion Angle on Calcaneus Pullout Strength: Challenging the Deadman's Angle.

    Weiss, William M; Saucedo, Ramon P; Robinson, John D; Lo, Chung-Chieh Jason; Morris, Randal P; Panchbhavi, Vinod K

    2017-10-01

    Refractory cases of Achilles tendinopathy amenable to surgery may include reattachment of the tendon using suture anchors. However, there is paucity of information describing the optimal insertion angle to maximize the tendon footprint and anchor stability in the calcaneus. The purpose of this investigation is to compare the fixation strength of suture anchors inserted at 90° and 45° (the Deadman's angle) relative to the primary compressive trabeculae of the calcaneus. A total of 12 matched pairs of adult cadaveric calcanei were excised and potted to approximate their alignment in vivo. Each pair was implanted with 5.5-mm bioabsorbable suture anchors placed either perpendicular (90°) or oblique (45°) to the primary compressive trabeculae. A tensile load was applied until failure of anchor fixation. Differences in failure load and stiffness between anchor fixation angles were determined by paired t-tests. No significant differences were detected between perpendicular and oblique suture anchor insertion relative to primary compressive trabeculae in terms of load to failure or stiffness. This investigation suggests that the fixation strength of suture anchors inserted perpendicular to the primary compression trabeculae and at the Deadman's angle are possibly comparable. Biomechanical comparison study.

  14. Using Digital Technology to See Angles from Different Angles. Part 1: Corners

    Host, Erin; Baynham, Emily; McMaster, Heather

    2014-01-01

    In Part 1 of their article, Erin Host, Emily Baynham and Heather McMaster use a combination of digital technology and concrete materials to explore the concept of "corners". They provide a practical, easy to follow sequence of activities that builds on students' understandings. [For "Using Digital Technology to See Angles from…

  15. Junior High School Students’ Understanding and Problem Solving Skills on the Topics of Line and Angles

    Irsal, I. L.; Jupri, A.; Prabawanto, S.

    2017-09-01

    Line and angles is important topics to learn to develop the geometry skills and also mathematics skills such as understanding and problem solving skills. But, the fact was given by Indonesian researcher show that Indonesian students’ understanding and problem solving skills still low in this topics. This fact be a background to investigate students’ understanding and problem solving skills in line and angles topics. To investigate these skills, this study used descriptive-qualitative approach. Individual written test (essay) and interview was used in this study. 72 students grade 8th from one of Junior High School in Lembang, worked the written test and 18 of them were interviewed. Based on result, almost of student were have a good instrumental understanding in line and angles topic in same area, but almost all student have a low instrumental understanding in line and angles topic in different area. Almost all student have a low relational understanding. Also, almost all student have a low problem solving skills especially in make and use strategy to solve the problem and looking back their answer. Based on result there is need a meaningfulness learning strategy, which can make students build their understanding and develop their problem solving skill independently.

  16. Transmission-type angle deviation microscopy

    Chiu, M.-H.; Lai, C.-W.; Tan, C.-T.; Lai, C.-F.

    2008-01-01

    We present a new microscopy technique that we call transmission angle deviation microscopy (TADM). It is based on common-path heterodyne interferometry and geometrical optics. An ultrahigh sensitivity surface plasmon resonance (SPR) angular sensor is used to expand dynamic measurement ranges and to improve the axial resolution in three-dimensional optical microscopy. When transmitted light is incident upon a specimen, the beam converges or diverges because of refractive and/or surface height variations. Advantages include high axial resolution (∼32 nm), nondestructive and noncontact measurement, and larger measurement ranges (± 80 μm) for a numerical aperture of 0.21in a transparent measurement medium. The technique can be used without conductivity and pretreatment

  17. ESPRIT with multiple-angle subarray beamforming

    Xu, Wen; Jiang, Ying; Zhang, Huiquan

    2012-12-01

    This article presents a new approach of implementing signal direction-of-arrival estimation, in which subarray beamforming is applied prior to estimation of signal parameters via rotational invariance techniques (ESPRIT). Different from the previous approaches, the beam-domain data from multiple adjacent pointing angles are combined in a way that the displacement invariance structure required by ESPRIT is maintained. It is intended to further obtain a sub-beamwidth resolution for a conventional multi-beam system already having small beamwidths. Computer simulations show that for typical multi-beam system applications the new approach provides improved estimation mean-square errors over the original ESPRIT, on top of reduced requirements for signal-to-noise ratio, number of snapshots, and computational time.

  18. Small-angle scattering in materials science

    Paris, O.; Fratzl, P.

    1999-01-01

    Small-angle scattering (SAS) of X-rays (SAXS) or neutrons (SANS) are a powerful tools to investigate inhomogeneities in the size range from ∼ 1 nm to ∼ 100 nm. Typical examples in materials science are pores, precipitates in metal alloys or nano-particles in composites. Frequently, these inhomogeneities are not spherical and their alignment is not random, quite in contrast to many other applications of SAS. This requires the use of pinhole geometry and area detectors for the experimental set-up. The present paper focuses on evaluation techniques of two-dimensional (2D) SAS-patterns from some materials investigated by the authors, i.e. metal alloys, carbon composites, wood and bone. Although the examples shown are derived exclusively from SAXS measurements, most of them could stem from SANS measurements as well. (author)

  19. Foreign Body Embedded in Anterior Chamber Angle

    Shmuel Graffi

    2012-01-01

    Full Text Available Introduction. We present a case of a metallic foreign body embedded in the anterior chamber angle. After standing in close proximity to a construction worker breaking a tile, a 26-year-old woman using soft contact lens for the correction of mild myopia presented to emergency department for evaluation of a foreign body sensation of her right eye. Methods and Results. Diagnosis was confirmed by gonioscopic examination and a noncontrast CT scan of head and orbits. The foreign body was removed by an external approach without utilizing a magnet. The patient's final outcome was favorable. Discussion. The above is a rare clinical situation, which is impossible to detect on slit-lamp examination without a gonioscopic view. Proper imaging and a specific management are mandatory in order to achieve favorable outcome.

  20. Sinusoidal Order Estimation Using Angles between Subspaces

    Søren Holdt Jensen

    2009-01-01

    Full Text Available We consider the problem of determining the order of a parametric model from a noisy signal based on the geometry of the space. More specifically, we do this using the nontrivial angles between the candidate signal subspace model and the noise subspace. The proposed principle is closely related to the subspace orthogonality property known from the MUSIC algorithm, and we study its properties and compare it to other related measures. For the problem of estimating the number of complex sinusoids in white noise, a computationally efficient implementation exists, and this problem is therefore considered in detail. In computer simulations, we compare the proposed method to various well-known methods for order estimation. These show that the proposed method outperforms the other previously published subspace methods and that it is more robust to the noise being colored than the previously published methods.

  1. Angle-independent structural colors of silicon

    Højlund-Nielsen, Emil; Weirich, Johannes; Nørregaard, Jesper

    2014-01-01

    Structural colors are optical phenomena of physical origin, where microscale and nanoscale structures determine the reflected spectrum of light. Artificial structural colors have been realized within recent years. However, multilayer structures require substantial fabrication. Instead we considered...... one-layer surface textures of silicon.We explored four patterns of square structures in a square lattice with periods of 500, 400, 300, and 200 nm. The reflectivity and daylight-colors were measured and compared with simulations based on rigorously coupledwave analysis with excellent agreement. Based...... on the 200-nm periodic pattern, it was found that angle-independent specular colors up to 60 deg of incidence may be provided. The underlying mechanisms include (1) the suppression of diffraction and (2) a strong coupling of light to localized surface states. The strong coupling yields absorption anomalies...

  2. Angle-resolved photoemission extended fine structure

    Barton, J.J.

    1985-03-01

    Measurements of the Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) from the S(1s) core level of a c(2 x 2)S/Ni(001) are analyzed to determine the spacing between the S overlayer and the first and second Ni layers. ARPEFS is a type of photoelectron diffraction measurement in which the photoelectron kinetic energy is swept typically from 100 to 600 eV. By using this wide range of intermediate energies we add high precision and theoretical simplification to the advantages of the photoelectron diffraction technique for determining surface structures. We report developments in the theory of photoelectron scattering in the intermediate energy range, measurement of the experimental photoemission spectra, their reduction to ARPEFS, and the surface structure determination from the ARPEFS by combined Fourier and multiple-scattering analyses. 202 refs., 67 figs., 2 tabs

  3. Wide Angle Michelson Doppler Imaging Interferometer (WAMDII)

    Roberts, B.

    1986-01-01

    The wide angle Michelson Doppler imaging interferometer (WAMDII) is a specialized type of optical Michelson interferometer working at sufficiently long path difference to measure Doppler shifts and to infer Doppler line widths of naturally occurring upper atmospheric Gaussian line emissions. The instrument is intended to measure vertical profiles of atmospheric winds and temperatures within the altitude range of 85 km to 300 km. The WAMDII consists of a Michelson interferometer followed by a camera lens and an 85 x 106 charge coupled device photodiode array. Narrow band filters in a filter wheel are used to isolate individual line emissions and the lens forms an image of the emitting region on the charge coupled device array.

  4. Chuck for machining armature casings and angles

    Tashlitskii, A.I.; Matskevich, A.I.

    1984-01-01

    When machining T-joints and angles, the test specimen must be fixed before being placed in the desired position. This is quite a complex operation and is achieved in a few stages. At the Scientific Production Combine ''Kislorodmash,'' a new chuck was designed which in one pressing of the jaws seats and fixes the specimen. In the clamped condition, the chuck helps rotate and fix the specimen in one of the four positions. Rotating and fixing are manual. The chuck developed ensured a distinct interdependence of the axes of the branches being machined as the specimen remains fixed throughout the period of machining, and provides reliable fixing of the specimen, and there are no clearances when the specimen is fixed with a special wedge. When using the chuck, the ancillary movements of the operator are reduced to a minimum thus increasing the labor productivity

  5. Vascular anomalies of the cerebellopontine angle

    Papanagiotou, P.; Grunwald, I.Q.; Politi, M.; Struffert, T.; Ahlhelm, F.; Reith, W.

    2006-01-01

    Vascular anomalies of the cerebellopontine angle are rare compared to tumors in this area. Irritation of the trigeminal, facial, or vestibulocochlear nerve may cause trigeminal neuralgia, hemifacial spasm and vertigo, or tinnitus accordingly. Vessel loops in the cerebellopontine cisterns may cause compression at the root entry or exit zone of the cranial nerves V, VII, and VIII, a phenomenon which is called ''vascular loop syndrome.'' Megadolichobasilar artery and aneurysms of the vertebrobasilar system can also lead to dislocation and compression of the cranial nerves and brain stem. Three-dimensional CISS MR imaging and MR angiography are useful in the detection of neurovascular compression. Microvascular decompression is an effective surgical procedure in the management of compression syndromes of the cranial nerves V, VII, and VIII. (orig.) [de

  6. Scattering angle-based filtering via extension in velocity

    Kazei, Vladimir; Tessmer, Ekkehart; Alkhalifah, Tariq

    2016-01-01

    The scattering angle between the source and receiver wavefields can be utilized in full-waveform inversion (FWI) and in reverse-time migration (RTM) for regularization and quality control or to remove low frequency artifacts. The access to the scattering angle information is costly as the relation between local image features and scattering angles has non-stationary nature. For the purpose of a more efficient scattering angle information extraction, we develop techniques that utilize the simplicity of the scattering angle based filters for constantvelocity background models. We split the background velocity model into several domains with different velocity ranges, generating an

  7. Spondylolysis and the sacro-horizontal angle in athletes

    Swaerd, L.; Hellstroem, M.; Jacobsson, B.; Peterson, L.; Sahlgrenska Sjukhuset, Goeteborg; King Faisal Specialist Hospital and Research Centre, Riyadh

    1989-01-01

    The frequency of spondylolysis and the relationship between spondylolysis and the sacro-horizontal angle in 143 athletes and 30 non-athletes is reported. Athletes had a larger sacro-horizontal angle than non-athletes. The sacro-horizontal angle was larger in athletes with spondylolysis as compared with those without. An increased incidence of spondylolysis with an increased angle was demonstrated. It is suggested that an increased sacro-horizontal angle may predispose to spondylolysis, especially in combination with the high mechanical loads sustained in certain sports. (orig.)

  8. Spondylolysis and the sacro-horizontal angle in athletes

    Swaerd, L.; Hellstroem, M.; Jacobsson, B.; Peterson, L. (Oestra Sjukhuset, Goeteborg (Sweden). Dept. of Orthopaedics; Sahlgrenska Sjukhuset, Goeteborg (Sweden). Dept. of Diagnostic Radiology; King Faisal Specialist Hospital and Research Centre, Riyadh (Saudi Arabia). Dept. of Radiology)

    The frequency of spondylolysis and the relationship between spondylolysis and the sacro-horizontal angle in 143 athletes and 30 non-athletes is reported. Athletes had a larger sacro-horizontal angle than non-athletes. The sacro-horizontal angle was larger in athletes with spondylolysis as compared with those without. An increased incidence of spondylolysis with an increased angle was demonstrated. It is suggested that an increased sacro-horizontal angle may predispose to spondylolysis, especially in combination with the high mechanical loads sustained in certain sports. (orig.).

  9. Scattering angle-based filtering via extension in velocity

    Kazei, Vladimir

    2016-09-06

    The scattering angle between the source and receiver wavefields can be utilized in full-waveform inversion (FWI) and in reverse-time migration (RTM) for regularization and quality control or to remove low frequency artifacts. The access to the scattering angle information is costly as the relation between local image features and scattering angles has non-stationary nature. For the purpose of a more efficient scattering angle information extraction, we develop techniques that utilize the simplicity of the scattering angle based filters for constantvelocity background models. We split the background velocity model into several domains with different velocity ranges, generating an

  10. Shared decision making

    ... page: //medlineplus.gov/ency/patientinstructions/000877.htm Shared decision making To use the sharing features on this page, ... treatment you both support. When to use Shared Decision Making Shared decision making is often used when you ...

  11. Dilemma of gonial angle measurement: Panoramic radiograph or lateral cephalogram

    Radhakrishnan, Pillai Devu; Varma, Nilambur Kovilakam Sapna; Ajith, Vallikat Velath [Dept. of Orthodontics, Amrita School of Dentistry, Kochi (India)

    2017-06-15

    The purpose of this study was to evaluate the accuracy of panoramic imaging in measuring the right and left gonial angles by comparing the measured angles with the angles determined using a lateral cephalogram of adult patients with class I malocclusion. The gonial angles of 50 class I malocclusion patients (25 males and 25 females; mean age: 23 years) were measured using both a lateral cephalogram and a panoramic radiograph. In the lateral cephalograms, the gonial angle was measured at the point of intersection of the ramus plane and the mandibular plane. In the panoramic radiographs, the gonial angle was measured by drawing a line tangent to the lower border of the mandible and another line tangent to the distal border of the ascending ramus and the condyle on both sides. The data obtained from both radiographs were statistically compared. No statistically significant difference was observed between the gonial angle measured using the lateral cephalograms and that determined using the panoramic radiographs. Further, there was no statistically significant difference in the measured gonial angle with respect to gender. The results also showed a statistically insignificant difference in the mean of the right and the left gonial angles measured using the panoramic radiographs. As the gonial angle measurements using panoramic radiographs and lateral cephalograms showed no statistically significant difference, panoramic radiography can be considered in orthodontics for measuring the gonial angle without any interference due to superimposed images.

  12. Angle Kappa and its importance in refractive surgery

    Majid Moshirfar

    2013-01-01

    Full Text Available Angle kappa is the difference between the pupillary and visual axis. This measurement is of paramount consideration in refractive surgery, as proper centration is required for optimal results. Angle kappa may contribute to MFIOL decentration and its resultant photic phenomena. Adjusting placement of MFIOLs for angle kappa is not supported by the literature but is likely to help reduce glare and haloes. Centering LASIK in angle kappa patients over the corneal light reflex is safe, efficacious, and recommended. Centering in-between the corneal reflex and the entrance pupil is also safe and efficacious. The literature regarding PRK in patients with an angle kappa is sparse but centering on the corneal reflex is assumed to be similar to centering LASIK on the corneal reflex. Thus, centration of MFIOLs, LASIK, and PRK should be focused on the corneal reflex for patients with a large angle kappa. More research is needed to guide surgeons′ approach to angle kappa.

  13. Ten helical twist angles of B-DNA

    Kabsch, W; Sander, C; Trifonov, E N

    1982-01-01

    On the assumption that the twist angles between adjacent base-pairs in the DNA molecule are additive a linear system of 40 equations was derived from experimental measurements of the total twist angles for different pieces of DNA of known sequences. This system of equations is found to be statistically consistent providing a solution for all ten possible twist angles of B-DNA by a least squares fitting procedure. Four of the calculated twist angles were not known before. The other six twist angles calculated are very close to the experimentally measured ones. The data used were obtained by the electrophoretic band-shift method, crystallography and nuclease digestion of DNA adsorbed to mica or Ca-phosphate surface. The validity of the principle of additivity of the twist angles implies that the angle between any particular two base-pairs is a function of only these base-pairs, independent of nearest neighbors.

  14. Multi-angle Imaging SpectroRadiometer

    Diner, David J. (Principal Investigator)

    MISR views the sunlit Earth simultaneously at nine widely spaced angles and provides ongoing global coverage with high spatial detail. Its imagery is carefully calibrated to provide accurate measures of the brightness, contrast, and color of reflected sunlight. MISR provides new types of information for scientists studying Earth's climate, such as the regional and global distribution of different types of atmospheric particles and aerosols. The change in reflection at different view angles provides the means to distinguish aerosol types, cloud forms, and land surface cover. Combined with stereoscopic techniques, this enables construction of 3-D cloud models and estimation of the total amount of sunlight reflected by Earth's diverse environments. MISR was built for NASA by the Jet Propulsion Laboratory (JPL) in Pasadena, California. It is part of NASA's first Earth Observing System (EOS) spacecraft, the Terra spacecraft, which was launched into polar orbit from Vandenberg Air Force Base on December 18, 1999. MISR has been continuously providing data since February 24, 2000. [Mission Objectives] The MISR instrument acquires systematic multi-angle measurements for global monitoring of top-of-atmosphere and surface albedos and for measuring the shortwave radiative properties of aerosols, clouds, and surface scenes in order to characterize their impact on the Earth's climate. The Earth's climate is constantly changing -- as a consequence of both natural processes and human activities. Scientists care a great deal about even small changes in Earth's climate, since they can affect our comfort and well-being, and possibly our survival. A few years of below-average rainfall, an unusually cold winter, or a change in emissions from a coal-burning power plant, can influence the quality of life of people, plants, and animals in the region involved. The goal of NASA's Earth Observing System (EOS) is to increase our understanding of the climate changes that are occurring on our

  15. On the equilibrium contact angle of sessile liquid drops from molecular dynamics simulations.

    Ravipati, Srikanth; Aymard, Benjamin; Kalliadasis, Serafim; Galindo, Amparo

    2018-04-28

    We present a new methodology to estimate the contact angles of sessile drops from molecular simulations by using the Gaussian convolution method of Willard and Chandler [J. Phys. Chem. B 114, 1954-1958 (2010)] to calculate the coarse-grained density from atomic coordinates. The iso-density contour with average coarse-grained density value equal to half of the bulk liquid density is identified as the average liquid-vapor (LV) interface. Angles between the unit normal vectors to the average LV interface and unit normal vector to the solid surface, as a function of the distance normal to the solid surface, are calculated. The cosines of these angles are extrapolated to the three-phase contact line to estimate the sessile drop contact angle. The proposed methodology, which is relatively easy to implement, is systematically applied to three systems: (i) a Lennard-Jones (LJ) drop on a featureless LJ 9-3 surface; (ii) an SPC/E water drop on a featureless LJ 9-3 surface; and (iii) an SPC/E water drop on a graphite surface. The sessile drop contact angles estimated with our methodology for the first two systems are shown to be in good agreement with the angles predicted from Young's equation. The interfacial tensions required for this equation are computed by employing the test-area perturbation method for the corresponding planar interfaces. Our findings suggest that the widely adopted spherical-cap approximation should be used with caution, as it could take a long time for a sessile drop to relax to a spherical shape, of the order of 100 ns, especially for water molecules initiated in a lattice configuration on a solid surface. But even though a water drop can take a long time to reach the spherical shape, we find that the contact angle is well established much faster and the drop evolves toward the spherical shape following a constant-contact-angle relaxation dynamics. Making use of this observation, our methodology allows a good estimation of the sessile drop contact

  16. Medical decision making

    Stiggelbout, A.M.; Vries, M. de; Scherer, L.; Keren, G.; Wu, G.

    2016-01-01

    This chapter presents an overview of the field of medical decision making. It distinguishes the levels of decision making seen in health-care practice and shows how research in judgment and decision making support or improve decision making. Most of the research has been done at the micro level,

  17. 5-Ethyl-3-(2-fluorophenylsulfonyl-2-methyl-1-benzofuran

    Hong Dae Choi

    2012-10-01

    Full Text Available In the title compound, C17H15FO3S, the 2-fluorophenyl ring makes a dihedral angle of 89.12 (8° with the mean plane of the benzofuran fragment. In the crystal, molecules are linked by weak C—H...O and C—H...π interactions.

  18. 3-Methoxy-4-(4-nitrobenzyloxybenzaldehyde

    Xin Chen

    2008-12-01

    Full Text Available In the title compound, C15H13NO5, the vanillin group makes a dihedral angle of 4.95 (8° with the benzene ring of the nitrobenzene group. The packing is stabilized by weak, non-classical intermolecular C—H...O interactions which link molecules into chains running along the c axis.

  19. 9-Butyl-9H-carbazole

    2009-03-01

    Full Text Available The title compound, C16H17N, is a carbazole derivative that has been designed and synthesized as a potential organic electronic device, such as an OLED. The tricyclic aromatic ring system is essentially planar, the two outer rings making a dihedral angle of 4.8 (1°. No classical hydrogen bonds are observed in the crystal structure.

  20. 4-[(E-(4-Fluorobenzylideneamino]benzoic acid

    Blanca M. Muñoz-Flores

    2012-01-01

    Full Text Available In the title compound, C14H10FNO2, the benzene rings make a dihedral angle of 57.50 (13°, and the molecule has an E configuration about the C=N bond. In the crystal, molecules are linked via pairs of O—H...O hydrogen bonds, forming inversion dimers.

  1. Crystal structure of (E-N-phenyl-N′-[1-(thiophen-2-ylethylidene]formohydrazide

    C. S. Dileep

    2014-09-01

    Full Text Available In the title compound, C13H12N2OS, the planes of the thiophene and phenyl rings are nearly perpendicular to each other, making a dihedral angle of 86.42 (12°. In the crystal, molecules are linked by C—H...O hydrogen bonds, forming a helical chain along the b-axis direction.

  2. 2-Isopropyl-5-methylcyclohexyl quinoline-2-carboxylate

    E. Fazal

    2014-01-01

    Full Text Available In the title compound, C20H25NO2, the cyclohexyl ring adopts a slightly disordered chair conformation. The dihedral angle between the mean planes of the quinoline ring and the carboxylate group is 22.2 (6°. In the crystal, weak C—H...N interactions make chains along [010].

  3. Realistic roofs over a rectilinear polygon

    Ahn, Heekap; Bae, Sangwon; Knauer, Christian; Lee, Mira; Shin, Chansu; Vigneron, Antoine E.

    2013-01-01

    Given a simple rectilinear polygon P in the xy-plane, a roof over P is a terrain over P whose faces are supported by planes through edges of P that make a dihedral angle π/4 with the xy-plane. According to this definition, some roofs may have faces

  4. Generating realistic roofs over a rectilinear polygon

    Ahn, Heekap; Bae, Sangwon; Knauer, Christian; Lee, Mira; Shin, Chansu; Vigneron, Antoine E.

    2011-01-01

    Given a simple rectilinear polygon P in the xy-plane, a roof over P is a terrain over P whose faces are supported by planes through edges of P that make a dihedral angle π/4 with the xy-plane. In this paper, we introduce realistic roofs by imposing

  5. Trabecular Meshwork Height in Primary Open-Angle Glaucoma Versus Primary Angle-Closure Glaucoma.

    Masis, Marisse; Chen, Rebecca; Porco, Travis; Lin, Shan C

    2017-11-01

    To determine if trabecular meshwork (TM) height differs between primary open-angle glaucoma (POAG) and primary angle-closure glaucoma (PACG) eyes. Prospective, cross-sectional clinical study. Adult patients were consecutively recruited from glaucoma clinics at the University of California, San Francisco, from January 2012 to July 2015. Images were obtained from spectral-domain optical coherence tomography (Cirrus OCT; Carl Zeiss Meditec, Inc, Dublin, California, USA). Univariate and multivariate linear mixed models comparing TM height and glaucoma type were performed to assess the relationship between TM height and glaucoma subtype. Mixed-effects regression was used to adjust for the use of both eyes in some subjects. The study included 260 eyes from 161 subjects, composed of 61 men and 100 women. Mean age was 70 years (SD 11.77). There were 199 eyes (123 patients) in the POAG group and 61 eyes (38 patients) in the PACG group. Mean TM heights in the POAG and PACG groups were 812 ± 13 μm and 732 ± 27 μm, respectively, and the difference was significant in univariate analysis (P = .004) and in multivariate analysis (β = -88.7 [24.05-153.5]; P = .008). In this clinic-based population, trabecular meshwork height is shorter in PACG patients compared to POAG patients. This finding may provide insight into the pathophysiology of angle closure and provide assistance in future diagnosis, prevention, and management of the angle-closure spectrum of disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Dosimetric Comparison of Manual and Beam Angle Optimization of Gantry Angles in IMRT

    Srivastava, Shiv P.; Das, Indra J.; Kumar, Arvind; Johnstone, Peter A.S.

    2011-01-01

    Dosimetric comparison of manual beam angle selection (MBS) and beam angle optimization (BAO) for IMRT plans is investigated retrospectively for 15 head and neck and prostate patients. The head and neck and prostate had planning target volumes (PTVs) ranging between 96.0 and 319.9 cm 3 and 153.6 and 321.3 cm 3 , whereas OAR ranged between 8.3 and 47.8 cm 3 and 68.3 and 469.2 cm 3 , respectively. In MBS, a standard coplanar 7-9 fields equally spaced gantry angles were used. In BAO, the selection of gantry angle was optimized by the algorithm for the same number of beams. The optimization and dose-volume constraints were kept the same for both techniques. Treatment planning was performed on the Eclipse treatment planning system. Our results showed that the dose-volume histogram for PTV are nearly identical in both techniques but BAO provided superior sparing of the organs at risk compared with the MBS. Also, MBS produced statistically significant higher monitor units (MU) and segments than the BAO; 13.1 ± 6.6% (p = 0.012) and 10.4 ± 13.6% (p = 0.140), and 14.6 ± 5.6% (p = 1.003E-5) and 12.6 ± 7.4% (p = 0.76E-3) for head and neck and prostate cases, respectively. The reduction in MU translates into the reduction in total body and integral dose. It is concluded that BAO provides advantage over MBS for most intenisty-modulated radiation therapy cases.

  7. Initial angle resolved measurements of fast neutrals using a multichannel linear AXUV detector system on LHD

    Veshchev, E. A.; Ozaki, T.; Goncharov, P. R.; Sudo, S.

    2006-01-01

    A new multichannel diagnostic for fast ion distribution studies has been developed and successfully tested on the Large Helical Device (LHD) in different plasma heating conditions. The diagnostic is based on a linear array AXUV detector consisting of 20 segments, charge sensitive preamplifiers, and a set of pulse height analysis channels. The main advantage of this system is the possibility to make time, energy, and angle-resolved measurements of charge exchange neutral particles in a single plasma discharge. This feature makes the new diagnostic a very helpful and powerful tool intended to contribute to the understanding of fast ion behavior in a complex helical plasma geometry like the one of LHD

  8. Decision Making and Cancer

    Reyna, Valerie F.; Nelson, Wendy L.; Han, Paul K.; Pignone, Michael P.

    2015-01-01

    We review decision-making along the cancer continuum in the contemporary context of informed and shared decision making, in which patients are encouraged to take a more active role in their health care. We discuss challenges to achieving informed and shared decision making, including cognitive limitations and emotional factors, but argue that understanding the mechanisms of decision making offers hope for improving decision support. Theoretical approaches to decision making that explain cogni...

  9. Neutron elastic scattering at very small angles

    2002-01-01

    This experiment will measure neutron-proton elastic scattering at very small angles and hence very small four-momentum transfer, |t|. The range of |t| depends on the incident neutron momentum of the events but the geometrical acceptance will cover the angular range 0.025 < $\\Theta_{lab}$ < 1.9 mrad. The higher figure could be extended to 8.4 mrad by changing the geometry of the experiment in a later phase. \\\\ \\\\ The neutron beam will be highly collimated and will be derived from a 400 GeV external proton beam of up to $4 \\times 10^{10}$ protons per pulse in the SPS North Area Hall 1. The hydrogen target will be gaseous, operating at 40 atm. pressure and acts as a multiwire proportional chamber to detect the recoil protons. The forward neutron will be detected and located by interaction in a neutron vertex detector and its energy measured by a conventional steel plate calorimeter. \\\\ \\\\ The experiment will cover the angular region of nucleon-nucleon scattering which is dominated by Coulomb scattering ...

  10. Soller collimators for small angle neutron scattering

    Crawford, R.K.; Epperson, J.E.; Thiyagarajan, P.

    1989-01-01

    The neutron beam transmitted through the soller collimators on the SAD (Small Angle Diffractometer) instrument at IPNS (Intense Pulsed Neutron Source) showed wings about the main beam. These wings were quite weak, but were sufficient to interfere with the low-Q scattering data. General considerations of the theory of reflection from homogeneous absorbing media, combined with the results from a Monte Carlo simulation, suggested that these wings were due to specular reflection of neutrons from the absorbing material on the surfaces of the collimator blades. The simulations showed that roughness of the surface was extremely important, with wing background variations of three orders of magnitude being observed with the range of roughness values used in the simulations. Based on the results of these simulations, new collimators for SAD were produced with a much rougher 10 B-binder surface coating on the blades. These new collimators were determined to be significantly better than the original SAD collimators. This work suggests that any soller collimators designed for use with long wavelengths should be fabricated with such a rough surface coating, in order to eliminate (or at least minimize) the undesirable reflection effects which otherwise seem certain to occur. 4 refs., 6 figs

  11. Substorm onset location and dipole tilt angle

    J. Wanliss

    2006-03-01

    Full Text Available From an initial data set of over 200 substorms we have studied a subset of 30 magnetospheric substorms close to magnetic midnight to investigate, in a statistical fashion, the source region of the auroral arc that brightens at the onset of expansive phase. This arc is usually identified as the ionospheric signature of the expansive phase onset that occurs in the magnetotail. All the substorm onsets were identified via ground-based magnetometer and photometer data from the CANOPUS array. Various Tsyganenko global magnetic field models were used to map magnetic field lines from the location of the onset arc out to its greatest radial distance in the magnetotail. The results appear to favour the current disruption model of substorms since the average onset location has an average of 14.1 Earth radii (RE and is therefore more consistent with theories that place the onset location in the inner magnetotail. For the narrow range of tilts available our modeling indicates the parameter that appears to strongly influence the location of the substorm onset is the dipole tilt angle; as tilt becomes less negative onsets occur further downtail.

  12. Hadron elastic scattering at small angles

    2002-01-01

    This experiment is an extension of the measurements of the WA9 experiment up to the highest energies available in the North Area. It will measure the differential cross-section for hadron elastic scattering in the t-range 0.002-0.05 (GeV/c)$^{2}$ using an ionization chamber for the measurement of the energy and the angle of the recoil and a magnet-WC spectrometer to measure the momentum and direction of the forward particle. From these measurements will be obtained the ratio $\\rho$ of the real to imaginary parts of the forward elastic amplitude and the exponential slope parameter b of the hadronic amplitude at small t. The precision expected in these measurements is $\\Delta \\rho \\approx \\pm 0.01$ and $\\Delta$b $\\approx \\pm 0.2$ (GeV/c)$^{-2}$. \\\\ \\\\ The experimental programme includes: \\\\\\\\ i) measurements of $\\rho$ and b for $\\pi$p elastic scattering at incident momenta between 150 GeV/c and 300 GeV/c; \\\\ ii) measurements of $\\rho$ and b for $\\pi^{+}$p and pp elastic scattering at incident momenta between 5...

  13. Rubber hand illusion affects joint angle perception.

    Martin V Butz

    Full Text Available The Rubber Hand Illusion (RHI is a well-established experimental paradigm. It has been shown that the RHI can affect hand location estimates, arm and hand motion towards goals, the subjective visual appearance of the own hand, and the feeling of body ownership. Several studies also indicate that the peri-hand space is partially remapped around the rubber hand. Nonetheless, the question remains if and to what extent the RHI can affect the perception of other body parts. In this study we ask if the RHI can alter the perception of the elbow joint. Participants had to adjust an angular representation on a screen according to their proprioceptive perception of their own elbow joint angle. The results show that the RHI does indeed alter the elbow joint estimation, increasing the agreement with the position and orientation of the artificial hand. Thus, the results show that the brain does not only adjust the perception of the hand in body-relative space, but it also modifies the perception of other body parts. In conclusion, we propose that the brain continuously strives to maintain a consistent internal body image and that this image can be influenced by the available sensory information sources, which are mediated and mapped onto each other by means of a postural, kinematic body model.

  14. Design and optimization of mixed flow pump impeller blades by varying semi-cone angle

    Dash, Nehal; Roy, Apurba Kumar; Kumar, Kaushik

    2018-03-01

    The mixed flow pump is a cross between the axial and radial flow pump. These pumps are used in a large number of applications in modern fields. For the designing of these mixed flow pump impeller blades, a lot number of design parameters are needed to be considered which makes this a tedious task for which fundamentals of turbo-machinery and fluid mechanics are always prerequisites. The semi-cone angle of mixed flow pump impeller blade has a specified range of variations generally between 45o to 60o. From the literature review done related to this topic researchers have considered only a particular semi-cone angle and all the calculations are based on this very same semi-cone angle. By varying this semi-cone angle in the specified range, it can be verified if that affects the designing of the impeller blades for a mixed flow pump. Although a lot of methods are available for designing of mixed flow pump impeller blades like inverse time marching method, the pseudo-stream function method, Fourier expansion singularity method, free vortex method, mean stream line theory method etc. still the optimized design of the mixed flow pump impeller blade has been a cumbersome work. As stated above since all the available research works suggest or propose the blade designs with constant semi-cone angle, here the authors have designed the impeller blades by varying the semi-cone angle in a particular range with regular intervals for a Mixed-Flow pump. Henceforth several relevant impeller blade designs are obtained and optimization is carried out to obtain the optimized design (blade with optimal geometry) of impeller blade.

  15. Anterior Segment Imaging Predicts Incident Gonioscopic Angle Closure.

    Baskaran, Mani; Iyer, Jayant V; Narayanaswamy, Arun K; He, Yingke; Sakata, Lisandro M; Wu, Renyi; Liu, Dianna; Nongpiur, Monisha E; Friedman, David S; Aung, Tin

    2015-12-01

    To investigate the incidence of gonioscopic angle closure after 4 years in subjects with gonioscopically open angles but varying degrees of angle closure detected on anterior segment optical coherence tomography (AS OCT; Visante; Carl Zeiss Meditec, Dublin, CA) at baseline. Prospective, observational study. Three hundred forty-two subjects, mostly Chinese, 50 years of age or older, were recruited, of whom 65 were controls with open angles on gonioscopy and AS OCT at baseline, and 277 were cases with baseline open angles on gonioscopy but closed angles (1-4 quadrants) on AS OCT scans. All subjects underwent gonioscopy and AS OCT at baseline (horizontal and vertical single scans) and after 4 years. The examiner performing gonioscopy was masked to the baseline and AS OCT data. Angle closure in a quadrant was defined as nonvisibility of the posterior trabecular meshwork by gonioscopy and visible iridotrabecular contact beyond the scleral spur in AS OCT scans. Gonioscopic angle closure in 2 or 3 quadrants after 4 years. There were no statistically significant differences in age, ethnicity, or gender between cases and controls. None of the control subjects demonstrated gonioscopic angle closure after 4 years. Forty-eight of the 277 subjects (17.3%; 95% confidence interval [CI], 12.8-23; P < 0.0001) with at least 1 quadrant of angle closure on AS OCT at baseline demonstrated gonioscopic angle closure in 2 or more quadrants, whereas 28 subjects (10.1%; 95% CI, 6.7-14.6; P < 0.004) demonstrated gonioscopic angle closure in 3 or more quadrants after 4 years. Individuals with more quadrants of angle closure on baseline AS OCT scans had a greater likelihood of gonioscopic angle closure developing after 4 years (P < 0.0001, chi-square test for trend for both definitions of angle closure). Anterior segment OCT imaging at baseline predicts incident gonioscopic angle closure after 4 years among subjects who have gonioscopically open angles and iridotrabecular contact on AS OCT at

  16. Variable-flip-angle spin-echo imaging (VFSE)

    Kasai, Toshifumi; Sugimura, Kazuro; Kawamitsu, Hideaki; Yasui, Kiyoshi; Ishida, Tetsuya; Tsukamoto, Tetsuji.

    1990-01-01

    T 2 weighted imaging provides images with high object contrast for pathologic conditions in which the water content of tissues is increased. The authors predicted theoretical analysis of the effects of changing flip angle, and analyzed the effects in MR imaging of both phantoms and humans. Variable flip angle spin echo MR imaging (VFSE) with a 1,000/80 (repetition time msec/echo time msec) can obtain T 2 weighted image when flip angle is smaller than 80 degrees. VFSE with 40 to 60 degrees flip angle have higher contrast than other flip angle images. Signal to noise ratio (S/N) of VFSE are 55% at a 30 degree, 76% at a 45 degree, 92% at a 60 degree respectively as compared with conventional spin echo image (2000/80, flip angle 90 degree). VFSE is applicable to obtain T 2 weighted image reduced imaging time. (author)

  17. Non-contact measurement of rotation angle with solo camera

    Gan, Xiaochuan; Sun, Anbin; Ye, Xin; Ma, Liqun

    2015-02-01

    For the purpose to measure a rotation angle around the axis of an object, a non-contact rotation angle measurement method based on solo camera was promoted. The intrinsic parameters of camera were calibrated using chessboard on principle of plane calibration theory. The translation matrix and rotation matrix between the object coordinate and the camera coordinate were calculated according to the relationship between the corners' position on object and their coordinates on image. Then the rotation angle between the measured object and the camera could be resolved from the rotation matrix. A precise angle dividing table (PADT) was chosen as the reference to verify the angle measurement error of this method. Test results indicated that the rotation angle measurement error of this method did not exceed +/- 0.01 degree.

  18. Perturbative estimates of lepton mixing angles in unified models

    Antusch, Stefan; King, Stephen F.; Malinsky, Michal

    2009-01-01

    Many unified models predict two large neutrino mixing angles, with the charged lepton mixing angles being small and quark-like, and the neutrino masses being hierarchical. Assuming this, we present simple approximate analytic formulae giving the lepton mixing angles in terms of the underlying high energy neutrino mixing angles together with small perturbations due to both charged lepton corrections and renormalisation group (RG) effects, including also the effects of third family canonical normalization (CN). We apply the perturbative formulae to the ubiquitous case of tri-bimaximal neutrino mixing at the unification scale, in order to predict the theoretical corrections to mixing angle predictions and sum rule relations, and give a general discussion of all limiting cases. We also discuss the implications for the sum rule relations of the measurement of a non-zero reactor angle, as hinted at by recent experimental measurements.

  19. Luminosity Anti-leveling with Crossing Angle (MD 1669)

    Gorzawski, Arkadiusz; Ponce, Laurette; Salvachua Ferrando, Belen Maria; Wenninger, Jorg; CERN. Geneva. ATS Department

    2016-01-01

    A significant fraction of the LHC luminosity ($\\sim$30\\% in 2016) is lost due to the presence (and necessity) of the crossing angles at the IPs. At the LHC the crossing angle is typically set to a value that provides sufficient separation of the beams at the start of fills for the peak bunch intensities. As the bunch intensity decays during a fill, it is possible to reduce the crossing angle and recover some luminosity. A smooth crossing angle reduction procedure must be developed to take advantage of this option during stable beam operation. During this MD a smooth procedure for luminosity leveling with crossing angle was tested. It was demonstrated that the orbit was well controlled, beam losses were low and the offset leveled experiments ALICE and LHCb were not affected by crossing angle leveling in ATLAS and CMS.

  20. Steering Angle Function Algorithm of Morphing of Residential Area

    XIE Tian

    2015-07-01

    Full Text Available A residential area feature morphing method based on steering angle function is presented. To residential area with the same representation under two different scales,transforming the representation of the residential area polygon from vector coordinates to steering angle function,then using the steering angle function to match,and finding out the similarity and the differences between the residential areas under different scale to get the steering angle function of the the residential areas under any middle scale,the final,transforming the middle scale steering angle function to vector coordinates form,and get the middle shape interpolation of the the residential area polygon.Experimental results show:the residential area morphing method by using steering angle function presented can realize the continuous multi-scale representation under the premise of keeping in shape for the residential area with the rectangular boundary features.

  1. Local beam angle optimization with linear programming and gradient search

    Craft, David

    2007-01-01

    The optimization of beam angles in IMRT planning is still an open problem, with literature focusing on heuristic strategies and exhaustive searches on discrete angle grids. We show how a beam angle set can be locally refined in a continuous manner using gradient-based optimization in the beam angle space. The gradient is derived using linear programming duality theory. Applying this local search to 100 random initial angle sets of a phantom pancreatic case demonstrates the method, and highlights the many-local-minima aspect of the BAO problem. Due to this function structure, we recommend a search strategy of a thorough global search followed by local refinement at promising beam angle sets. Extensions to nonlinear IMRT formulations are discussed. (note)

  2. Multimodal image registration based on binary gradient angle descriptor.

    Jiang, Dongsheng; Shi, Yonghong; Yao, Demin; Fan, Yifeng; Wang, Manning; Song, Zhijian

    2017-12-01

    Multimodal image registration plays an important role in image-guided interventions/therapy and atlas building, and it is still a challenging task due to the complex intensity variations in different modalities. The paper addresses the problem and proposes a simple, compact, fast and generally applicable modality-independent binary gradient angle descriptor (BGA) based on the rationale of gradient orientation alignment. The BGA can be easily calculated at each voxel by coding the quadrant in which a local gradient vector falls, and it has an extremely low computational complexity, requiring only three convolutions, two multiplication operations and two comparison operations. Meanwhile, the binarized encoding of the gradient orientation makes the BGA more resistant to image degradations compared with conventional gradient orientation methods. The BGA can extract similar feature descriptors for different modalities and enable the use of simple similarity measures, which makes it applicable within a wide range of optimization frameworks. The results for pairwise multimodal and monomodal registrations between various images (T1, T2, PD, T1c, Flair) consistently show that the BGA significantly outperforms localized mutual information. The experimental results also confirm that the BGA can be a reliable alternative to the sum of absolute difference in monomodal image registration. The BGA can also achieve an accuracy of [Formula: see text], similar to that of the SSC, for the deformable registration of inhale and exhale CT scans. Specifically, for the highly challenging deformable registration of preoperative MRI and 3D intraoperative ultrasound images, the BGA achieves a similar registration accuracy of [Formula: see text] compared with state-of-the-art approaches, with a computation time of 18.3 s per case. The BGA improves the registration performance in terms of both accuracy and time efficiency. With further acceleration, the framework has the potential for

  3. Argon laser trabeculoplasty as primary therapy in open angle glaucoma

    Mahar, P.S.; Jamali, K.K.

    2008-01-01

    To determine the effect of Argon Laser Trabeculoplasty (ALT) as a primary mode of therapy in reducing the intraocular Pressure (IOP) of patients diagnosed with Primary Open Angle Glaucoma (POAG). A total of 35 eyes of 35 patients with the gender distribution of 27 men and 8 women who were newly diagnosed with POAG, were included in this study. Mean age of the patients was 55.2 years with the range of 32 to 76 years. All of them were treated with argon laser trabeculoplasty as a primary mode of therapy. Intra ocular pressure was measured objectively using Goldman applanation tonometer, pre-and-post laser therapy. The pre-laser mean IOP was 27.63 mmHg (range 21-40 mmHg). The post-laser mean IOP measured at 6 months follow up was 15.5 mmHg (range 11 - 33 mmHg) with mean decrease of 12.1 mmHg. The decrease in IOP was seen in 32 eyes (95%) with no change observed in 3 (5%) eyes. The result shows a marked decline in IOP in patients with POAG who underwent ALT as a primary mode of treatment. Further studies with large sample size and longer follow-up will help in making future recommendations. (author)

  4. Angles and Daemons: Spin Correlations at the LHC

    Tran, Nhan V. [Johns Hopkins Univ., Baltimore, MD (United States)

    2011-09-01

    The Large Hadron Collider has recently started collecting data, opening a new energy regime. This will allow us to probe further than ever before many of the current mysteries of the field. New physics beyond the Standard Model, the field's current paradigm, could manifest itself via new particles. In addition, the Higgs boson, hypothesized as a consequence of electroweak symmetry breaking, remains undiscovered. At the time of discovery, the properties of such particles will be unknown. In order to understand the nature of any new physics, it will be important to understand the properties of that new particle. Methods are presented for measuring its spin, parity and coupling to the Standard Model particles. These methods are implemented at the Compact Muon Solenoid experiment and an analysis is presented with the data collected during 2010 and 2011 running at the Large Hadron Collider. An application of these techniques is used to make a measurement of the weak mixing angle. A current status of the search for the Higgs boson is also presented.

  5. Hospice decision making: diagnosis makes a difference.

    Waldrop, Deborah P; Meeker, Mary Ann

    2012-10-01

    This study explored the process of decision making about hospice enrollment and identified factors that influence the timing of that decision. This study employed an exploratory, descriptive, cross-sectional design and was conducted using qualitative methods. In-depth in-person semistructured interviews were conducted with 36 hospice patients and 55 caregivers after 2 weeks of hospice care. The study was guided by Janis and Mann's conflict theory model (CTM) of decision making. Qualitative data analysis involved a directed content analysis using concepts from the CTM. A model of hospice enrollment decision making is presented. Concepts from the CTM (appraisal, surveying and weighing the alternatives, deliberations, adherence) were used as an organizing framework to illustrate the dynamics. Distinct differences were found by diagnosis (cancer vs. other chronic illness, e.g., heart and lung diseases) during the pre-encounter phase or before the hospice referral but no differences emerged during the post-encounter phase. Differences in decision making by diagnosis suggest the need for research about effective means for tailored communication in end-of-life decision making by type of illness. Recognition that decision making about hospice admission varies is important for clinicians who aim to provide person-centered and family-focused care.

  6. Making Pythagoras Count

    Turner, Paul

    2006-01-01

    This article discusses Pythagoras' theorem, typically, it is introduce to students in the junior years of secondary school. Students consolidate their understanding of the theorem by using it for finding missing sides of triangles and for checking whether a given triangle has a right angle. But the topic often seems to dry up rapidly once these…

  7. Rotating Shaft Tilt Angle Measurement Using an Inclinometer

    Luo Jun; Wang Zhiqian; Shen Chengwu; Wen Zhuoman; Liu Shaojin; Cai Sheng; Li Jianrong

    2015-01-01

    This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendic...

  8. Heterodyne Angle Deviation Interferometry in Vibration and Bubble Measurements

    Ming-Hung Chiu; Jia-Ze Shen; Jian-Ming Huang

    2016-01-01

    We proposed heterodyne angle deviation interferometry (HADI) for angle deviation measurements. The phase shift of an angular sensor (which can be a metal film or a surface plasmon resonance (SPR) prism) is proportional to the deviation angle of the test beam. The method has been demonstrated in bubble and speaker’s vibration measurements in this paper. In the speaker’s vibration measurement, the voltage from the phase channel of a lock-in amplifier includes the vibration level and frequency. ...

  9. ASSESSMENT OF LENS THICKNESS IN ANGLE CLOSURE DISEASE

    Nishat Sultana Khayoom

    2016-08-01

    Full Text Available BACKGROUND Anterior chamber depth and lens thickness have been considered as important biometric determinants in primary angle-closure glaucoma. Patients with primary narrow angle may be classified as a primary angle closure suspect (PACS, or as having primary angle closure (PAC or primary angle closure glaucoma (PACG. 23.9% of patients with primary angle closure disease are in India, which highlights the importance of understanding the disease, its natural history, and its underlying pathophysiology, so that we may try to establish effective methods of treatment and preventative measures to delay, or even arrest, disease progression, thereby reducing visual morbidity. AIM To determine the lens thickness using A-scan biometry and its significance in various stages of angle closure disease. MATERIALS AND METHODS Patients attending outpatient department at Minto Ophthalmic Hospital between October 2013 to May 2015 were screened for angle closure disease and subsequently evaluated at glaucoma department. In our study, lens thickness showed a direct correlation with shallowing of the anterior chamber by determining the LT/ ACD ratio. A decrease in anterior chamber depth is proportional to the narrowing of the angle which contributes to the progression of the angle closure disease from just apposition to occlusion enhancing the risk for optic nerve damage and visual field loss. Hence, if the lens thickness values are assessed earlier in the disease process, appropriate intervention can be planned. CONCLUSION Determination of lens changes along with anterior chamber depth and axial length morphometrically can aid in early detection of angle closure. The role of lens extraction for PACG is a subject of increased interest. Lens extraction promotes the benefits of anatomical opening of the angle, IOP reduction and improved vision. This potential intervention may be one among the armamentarium of approaches for PACG. Among the current treatment modalities

  10. Angle Stability Analysis for Voltage-Controlled Converters

    Lin, Hengwei; Jia, Chenxi; Guerrero, Josep M.

    2017-01-01

    a criterion to analyze the quasi-steady angle stability and the direct current (DC) side stability for VSCs. The operating limit and the angle instability mechanism are revealed, which is generally applicable to the voltage-controlled converters. During the analysis, the influence of the parameters on angle...... stability is studied. Further, the difference on instability mechanism between power electronic converters and synchronous generators are explained in detail. Finally, experiment results with corrective actions verify the analysis....

  11. Glancing angle x-ray studies of oxide films

    Davenport, A.J.; Isaacs, H.S.

    1989-01-01

    High brightness synchrotron radiation incident at glancing angles has been used to study inhibiting species present in low concentrations in oxide films on aluminum. Glancing incident angle fluorescence measurements give surface-sensitive information on the valence state of elements from the shape of the x-ray absorption edge. Angle-resolved measurements show the depth distribution of the species present. 15 refs., 4 figs

  12. Angle-specific transparent conducting electrodes with metallic gratings

    Rivolta, N. X. A., E-mail: nicolas.rivolta@umons.ac.be; Maes, B. [Micro- and Nanophotonic Materials Group, Faculty of Science, University of Mons, Avenue Maistriau 19, B-7000 Mons (Belgium)

    2014-08-07

    Transparent conducting electrodes, which are not made from indium tin oxide, and which display a strong angular dependence are useful for various technologies. Here, we introduce a tilted silver grating that combines a large conductance with a strong and angle-specific transmittance. When the light incidence angle matches the tilt angle of the grating, transmittance is close to the maximum along a very broadband range. We explain the behavior through simulations that show in detail the plasmonic and interference effects at play.

  13. In Situ Local Contact Angle Measurement in a CO2-Brine-Sand System Using Microfocused X-ray CT.

    Lv, Pengfei; Liu, Yu; Wang, Zhe; Liu, Shuyang; Jiang, Lanlan; Chen, Junlin; Song, Yongchen

    2017-04-11

    The wettability of porous media is of major interest in a broad range of natural and engineering applications. The wettability of a fluid on a solid surface is usually evaluated by the contact angle between them. While in situ local contact angle measurements are complicated by the topology of porous media, which can make it difficult to use traditional methods, recent advances in microfocused X-ray computed tomography (micro-CT) and image processing techniques have made it possible to measure contact angles on the scale of the pore sizes in such media. However, the effects of ionic strength, CO 2 phase, and flow pattern (drainage or imbibition) on pore-scale contact angle distribution are still not clear and have not been reported in detail in previous studies. In this study, we employed a micro-CT scanner for in situ investigation of local contact angles in a CO 2 -brine-sand system under various conditions. The effects of ionic strength, CO 2 phase, and flow pattern on the local contact-angle distribution were examined in detail. The results showed that the local contact angles vary over a wide range as a result of the interaction of surface contaminants, roughness, pore topology, and capillarity. The wettability of a porous surface could thus slowly weaken with increasing ionic strength, and the average contact angle could significantly increase when gaseous CO 2 (gCO 2 ) turns into supercritical CO 2 (scCO 2 ). Contact angle hysteresis also occurred between drainage and imbibition procedures, and the hysteresis was more significant under gCO 2 condition.

  14. Contact angle distribution of particles at fluid interfaces.

    Snoeyink, Craig; Barman, Sourav; Christopher, Gordon F

    2015-01-27

    Recent measurements have implied a distribution of interfacially adsorbed particles' contact angles; however, it has been impossible to measure statistically significant numbers for these contact angles noninvasively in situ. Using a new microscopy method that allows nanometer-scale resolution of particle's 3D positions on an interface, we have measured the contact angles for thousands of latex particles at an oil/water interface. Furthermore, these measurements are dynamic, allowing the observation of the particle contact angle with high temporal resolution, resulting in hundreds of thousands of individual contact angle measurements. The contact angle has been found to fit a normal distribution with a standard deviation of 19.3°, which is much larger than previously recorded. Furthermore, the technique used allows the effect of measurement error, constrained interfacial diffusion, and particle property variation on the contact angle distribution to be individually evaluated. Because of the ability to measure the contact angle noninvasively, the results provide previously unobtainable, unique data on the dynamics and distribution of the adsorbed particles' contact angle.

  15. Design of Virtual Crank Angle Sensor based on Torque Estimation

    Roswall, Tobias

    2016-01-01

    The topic of thesis is estimation of the crank angle based on pulse signals from an induction sensor placed on the flywheel. The engine management system performs many calculations in the crank angle domain which means that a good accuracy is needed for this measurement. To estimate the crank angle degree the torque balance on the crankshaft based on Newtons 2nd law is used. The resulting acceleration is integrated to give engine speed and crank angle. This approach is made for two crankshaft ...

  16. Ocular Biometrics of Myopic Eyes With Narrow Angles.

    Chong, Gabriel T; Wen, Joanne C; Su, Daniel Hsien-Wen; Stinnett, Sandra; Asrani, Sanjay

    2016-02-01

    The purpose of this study was to compare the ocular biometrics between myopic patients with and without narrow angles. Patients with a stable myopic refraction (myopia worse than -1.00 D spherical equivalent) were prospectively recruited. Angle status was assessed using gonioscopy and biometric measurements were performed using an anterior segment optical coherence tomography and an IOLMaster. A total of 29 patients (58 eyes) were enrolled with 13 patients (26 eyes) classified as having narrow angles and 16 patients (32 eyes) classified as having open angles. Baseline demographics of age, sex, and ethnicity did not differ significantly between the 2 groups. The patients with narrow angles were on average older than those with open angles but the difference did not reach statistical significance (P=0.12). The central anterior chamber depth was significantly less in the eyes with narrow angles (P=0.05). However, the average lens thickness, although greater in the eyes with narrow angles, did not reach statistical significance (P=0.10). Refractive error, axial lengths, and iris thicknesses did not differ significantly between the 2 groups (P=0.32, 0.47, 0.15). Narrow angles can occur in myopic eyes. Routine gonioscopy is therefore recommended for all patients regardless of refractive error.

  17. Small-angle neutron scattering technique in liquid crystal studies

    Shahidan Radiman

    2005-01-01

    The following topics discussed: general principles of SAS (Small-angle Neutron Scattering), liquid crystals, nanoparticle templating on liquid crystals, examples of SAS results, prospects of this studies

  18. Flow tilt angles near forest edges - Part 1: Sonic anemometry

    Dellwik, Ebba; Mann, Jakob; Larsen, Klaus Steenberg

    2010-01-01

    distortion and vertical alignment, it was only possible to a limited extent to relate sonic anemometer flow tilt angles to upwind forest edges, but the results by the lidar indicated that an internal boundary layer affect flow tilt angles at 21m above the forest. This is in accordance with earlier studies......-flow angles were assumed for neutral flow, the data was interpreted in relation to upstream and downstream forest edges. Uncertainties caused by flow distortion, vertical misalignment and limited sampling time (statistical uncertainty) were evaluated and found to be highly significant. Since the attack angle...... balance, unless all terms in the carbon dioxide conservation equation can be precisely estimated....

  19. Beam-beam collisions and crossing angles in RHIC

    Peggs, S.

    1999-01-01

    This paper evaluates the strength of head on and parasitic beam-beam collisions in RHIC when the crossing angle is zero. A non-zero crossing angle is not required in normal operation with 120 bunches, thanks to the early separation of the two beams. The RHIC lattice is shown to easily accommodate even conservatively large crossing angles, for example in beam dynamics studies, or in future operational upgrades to as many as 360 bunches per ring. A modest loss in luminosity is incurred when gold ions collide at an angle after 10 hours of storage

  20. Thumb rule of visual angle: a new confirmation.

    Groot, C; Ortega, F; Beltran, F S

    1994-02-01

    The classical thumb rule of visual angle was reexamined. Hence, the visual angle was measured as a function of a thumb's width and the distance between eye and thumb. The measurement of a thumb's width when held at arm's length was taken on 67 second-year students of psychology. The visual angle was about 2 degrees as R. P. O'Shea confirmed in 1991. Also, we confirmed a linear relationship between the size of a thumb's width at arm's length and the visual angle.

  1. Tibial and fibular angles in homozygous sickle cell disease

    Akamaguna, A.I.; Odita, J.C.; Ugbodaga, C.I.; Okafor, L.A.

    1986-01-01

    Measurements of the tibial and fibular angles made on ankle radiographs of 34 patients with sickle cell disease were compared with those of 36 normal Nigerians. Widening of the fibular angle, which is an indication of tibiotalar slant, was demonstrated in about 79% of sickle cell disease patients. By using fibular angle measurements as an objective method of assessing subtle tibiotalar slant, it is concluded that the incidence of this deformity is much higher among sickle cell disease patients than previously reported. The mean values of tibial and fibular angles in normal Nigerians are higher than has been reported amongst Caucasians. (orig.)

  2. Characterizing the combinatorial beam angle selection problem

    Bangert, Mark; Ziegenhein, Peter; Oelfke, Uwe

    2012-10-01

    The beam angle selection (BAS) problem in intensity-modulated radiation therapy is often interpreted as a combinatorial optimization problem, i.e. finding the best combination of η beams in a discrete set of candidate beams. It is well established that the combinatorial BAS problem may be solved efficiently with metaheuristics such as simulated annealing or genetic algorithms. However, the underlying parameters of the optimization process, such as the inclusion of non-coplanar candidate beams, the angular resolution in the space of candidate beams, and the number of evaluated beam ensembles as well as the relative performance of different metaheuristics have not yet been systematically investigated. We study these open questions in a meta-analysis of four strategies for combinatorial optimization in order to provide a reference for future research related to the BAS problem in intensity-modulated radiation therapy treatment planning. We introduce a high-performance inverse planning engine for BAS. It performs a full fluence optimization for ≈3600 treatment plans per hour while handling up to 50 GB of dose influence data (≈1400 candidate beams). For three head and neck patients, we compare the relative performance of a genetic, a cross-entropy, a simulated annealing and a naive iterative algorithm. The selection of ensembles with 5, 7, 9 and 11 beams considering either only coplanar or all feasible candidate beams is studied for an angular resolution of 5°, 10°, 15° and 20° in the space of candidate beams. The impact of different convergence criteria is investigated in comparison to a fixed termination after the evaluation of 10 000 beam ensembles. In total, our simulations comprise a full fluence optimization for about 3000 000 treatment plans. All four combinatorial BAS strategies yield significant improvements of the objective function value and of the corresponding dose distributions compared to standard beam configurations with equi

  3. Characterizing the combinatorial beam angle selection problem

    Bangert, Mark; Ziegenhein, Peter; Oelfke, Uwe

    2012-01-01

    The beam angle selection (BAS) problem in intensity-modulated radiation therapy is often interpreted as a combinatorial optimization problem, i.e. finding the best combination of η beams in a discrete set of candidate beams. It is well established that the combinatorial BAS problem may be solved efficiently with metaheuristics such as simulated annealing or genetic algorithms. However, the underlying parameters of the optimization process, such as the inclusion of non-coplanar candidate beams, the angular resolution in the space of candidate beams, and the number of evaluated beam ensembles as well as the relative performance of different metaheuristics have not yet been systematically investigated. We study these open questions in a meta-analysis of four strategies for combinatorial optimization in order to provide a reference for future research related to the BAS problem in intensity-modulated radiation therapy treatment planning. We introduce a high-performance inverse planning engine for BAS. It performs a full fluence optimization for ≈3600 treatment plans per hour while handling up to 50 GB of dose influence data (≈1400 candidate beams). For three head and neck patients, we compare the relative performance of a genetic, a cross-entropy, a simulated annealing and a naive iterative algorithm. The selection of ensembles with 5, 7, 9 and 11 beams considering either only coplanar or all feasible candidate beams is studied for an angular resolution of 5°, 10°, 15° and 20° in the space of candidate beams. The impact of different convergence criteria is investigated in comparison to a fixed termination after the evaluation of 10 000 beam ensembles. In total, our simulations comprise a full fluence optimization for about 3000 000 treatment plans. All four combinatorial BAS strategies yield significant improvements of the objective function value and of the corresponding dose distributions compared to standard beam configurations with equi

  4. The Effect of Gap Angle on Tensile Strength of Preceramic Base Metal Solder Joints.

    Fattahi, Farnaz; Hashemi Ardakani, Zahra; Hashemi Ardakani, Maryam

    2015-12-01

    Soldering is a process commonly used in fabricating dental prosthesis. Since most soldered prosthesis fail at the solder joints; the joint strength is of utmost importance. The purpose of this study was to evaluate the effect of gap angle on the tensile strength of base metal solder joints. A total number of 40 Ni-Cr samples were fabricated according to ADA/ISO 9693 specifications for tensile test. Samples were cut at the midpoint of the bar, and were placed at the considered angles by employing an explicitly designed device. They were divided into 4 groups regarding the gap angle; Group C (control group) with parallel gap on steady distance of 0.2mm, Group 1: 10°, Group 2: 20°, and Group3: 30° gap angles. When soldered, the specimens were all tested for tensile strength using a universal testing machine at a cross-head speed of 0.5 mm/min with a preload of 10N. Kruskal-Wallis H test was used to compare tensile strength among the groups (ptensile strength values obtained from the study groups were respectively 307.84, 391.50, 365.18, and 368.86 MPa. The tensile strength was not statistically different among the four groups in general (p≤ 0.490). Making the gap angular at the solder joints and the subsequent unsteady increase of the gap distance would not change the tensile strength of the joint.

  5. Formation mechanisms for the dominant kinks with different angles in InP nanowires.

    Zhang, Minghuan; Wang, Fengyun; Wang, Chao; Wang, Yiqian; Yip, SenPo; Ho, Johnny C

    2014-01-01

    The morphologies and microstructures of kinked InP nanowires (NWs) prepared by solid-source chemical vapor deposition method were examined using scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). Statistical analysis and structural characterization reveal that four different kinds of kinks are dominant in the grown InP NWs with a bending angle of approximately 70°, 90°, 110°, and 170°, respectively. The formation mechanisms of these kinks are discussed. Specifically, the existence of kinks with bending angles of approximately 70° and 110° are mainly attributed to the occurrence of stacking faults and nanotwins in the NWs, which could easily form by the glide of {111} planes, while approximately 90° kinks result from the local amorphorization of InP NWs. Also, approximately 170° kinks are mainly caused by small-angle boundaries, where the insertion of extra atomic planes could make the NWs slightly bent. In addition, multiple kinks with various angles are also observed. Importantly, all these results are beneficial to understand the formation mechanisms of kinks in compound semiconductor NWs, which could guide the design of nanostructured materials, morphologies, microstructures, and/or enhanced mechanical properties.

  6. Flow tilt angles near forest edges – Part 1: Sonic anemometry

    E. Dellwik

    2010-05-01

    Full Text Available An analysis of flow tilt angles from a fetch-limited beech forest site with clearings is presented in the context of vertical advection of carbon dioxide. Flow angles and vertical velocities from two sonic anemometers by different manufacturers were analyzed. Instead of using rotations, where zero-flow angles were assumed for neutral flow, the data was interpreted in relation to upstream and downstream forest edges.

    Uncertainties caused by flow distortion, vertical misalignment and limited sampling time (statistical uncertainty were evaluated and found to be highly significant. Since the attack angle distribution of the wind on the sonic anemometer is a function of atmospheric stratification, an instrumental error caused by imperfect flow distortion correction is also a function of the atmospheric stratification. In addition, it is discussed that the sonic anemometers have temperature dependent off-sets. These features of the investigated sonic anemometers make them unsuitable for measuring vertical velocities over highly turbulent forested terrain. By comparing the sonic anemometer results to that of a conically scanning Doppler lidar (Dellwik et al., 2010b, sonic anemometer accuracy for measuring mean flow tilt angles was estimated to between 2° and 3°. Use of planar fit algorithms, where the mean vertical velocity is calculated as the difference between the neutral and non-neutral flow, does not solve this problem of low accuracy and is not recommended.

    Because of the large uncertainties caused by flow distortion and vertical alignment, it was only possible to a limited extent to relate sonic anemometer flow tilt angles to upwind forest edges, but the results by the lidar indicated that an internal boundary layer affect flow tilt angles at 21m above the forest. This is in accordance with earlier studies at the site.

    Since the mean flow tilt angles do not follow the terrain, an estimate of the vertical advection

  7. Make Better Food Choices

    10 tips Nutrition Education Series make better food choices 10 tips for women’s health Fruits Grains Dairy Vegetables Protein Make yourself a priority and take time to care for yourself. ChooseMyPlate. gov ...

  8. Categorization = Decision Making + Generalization

    Seger, Carol A; Peterson, Erik J.

    2013-01-01

    We rarely, if ever, repeatedly encounter exactly the same situation. This makes generalization crucial for real world decision making. We argue that categorization, the study of generalizable representations, is a type of decision making, and that categorization learning research would benefit from approaches developed to study the neuroscience of decision making. Similarly, methods developed to examine generalization and learning within the field of categorization may enhance decision making research. We first discuss perceptual information processing and integration, with an emphasis on accumulator models. We then examine learning the value of different decision making choices via experience, emphasizing reinforcement learning modeling approaches. Next we discuss how value is combined with other factors in decision making, emphasizing the effects of uncertainty. Finally, we describe how a final decision is selected via thresholding processes implemented by the basal ganglia and related regions. We also consider how memory related functions in the hippocampus may be integrated with decision making mechanisms and contribute to categorization. PMID:23548891

  9. Phacoemulsification with intraocular lens implantation in primary angle-closure suspect, primary angle-closure and primary angle-closure glaucoma with cataract

    Kun Zeng

    2013-08-01

    Full Text Available AIM: To evaluate the features and clinical outcomes of cataract extraction by phacoemulsification with intraocular lens implantation in primary angle-closure suspect(PACS, primary angle-closure(PACand primary angle-closure glaucoma(PACGwith cataract.METHODS:Phacoemulsification with intraocular lens implantation was performed on 86 cases(86 eyesdiagnosed as PACS, PAC and PACG co-existing cataract from January to December 2012. All cases were followed up for 3 months to 1 year. Pre-operative and post-operative visual acuity, intraocular pressure(IOP, gonioscopy, ultrasound biomicroscopy(UBM, visual field and usage of anti-glaucomaous eye drops were recorded.RESULTS:Zonular dialysis existed in 19 eyes(22%. The post-operative visual acuity improved in 84 eyes(98%. The post-operative visual acuity was CONCLUSION: PACS, PAC and PACG co-existing zonular dialysis is common. Phacoemulsification with IOL implantation can reduce IOP, deepen anterior chamber and open angle.

  10. Teachers' Grading Decision Making

    Isnawati, Ida; Saukah, Ali

    2017-01-01

    This study investigated teachers' grading decision making, focusing on their beliefs underlying their grading decision making, their grading practices and assessment types, and factors they considered in grading decision making. Two teachers from two junior high schools applying different curriculum policies in grade reporting in Indonesian…

  11. I: Making Art

    Rosenfeld, Malke; Johnson, Marquetta; Plemons, Anna; Makol, Suzanne; Zanskas, Meghan; Dzula, Mark; Mahoney, Meg Robson

    2014-01-01

    Writing about the teaching artist practice should mean writing about art making. As both teacher and artist, the authors are required to be cognizant of their own art-making processes, both how it works and why it is important to them, in order to make this process visible to their students. They also need the same skills to write about how and…

  12. Elements of Making

    Rodriguez, Shelly; Harron, Jason; Fletcher, Steven; Spock, Hannah

    2018-01-01

    While there is no official definition, making is generally thought of as turning ideas into products through design, invention, and building. Support is growing for integrating making into science, technology, engineering, and mathematics (STEM) education. Making can help high school students explore science concepts and phenomena, yet, lacking…

  13. Glioneuronal Heterotopia Presenting As a Cerebellopontine angle Tumor of the cranial Nerve VIII, Case Report.

    Peris-Celda, M; Giannini, C; Diehn, F E; Eckel, L J; Neff, B A; Van Gompel, J J

    2018-04-03

    Vestibular schwannomas and meningiomas account for the great majority of lesions arising in the cerebellopontine angle (CPA). In this report, we present a case of glioneuronal heterotopia, also known as glioneuronal hamartoma, arising from the VIII cranial nerve, which is an extremely uncommon lesion. Important radiologic and surgical aspects are reviewed, which may help in early recognition and intraoperative decision making when these lesions are encountered. A healthy 29-year-old female presented with intermittent right facial numbness. Magnetic resonance imaging (MRI) showed an incidental minimally enhancing cerebellopontine angle lesion on the right VII-VIII cranial nerve complex. The patient declined serial observation and opted for operative intervention for resection. Intraoperatively, the lesion resembled neural tissue and was continuous with the VIII cranial nerve. Pathological analysis demonstrated mature glioneuronal tissue consistent with hamartomatous brain tissue. The patient maintained normal hearing and facial nerve function after surgery. Radiologic, surgical and pathological characteristics are described. Ectopic glioneuronal tissue of the VIII cranial nerve is a rare non-neoplastic lesion, and should be considered in the differential diagnosis of unusual appearing intracanalicular and cerebellopontine angle lesions. The congenital and benign nature of this entity makes observation a valid option for these cases, although they are so infrequent that they are often presumptively managed as vestibular schwannomas. Attempts to radically resect these lesions may result in higher rates of hearing loss or facial palsy due to their continuity with the cranial nerves. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Contact angle hysteresis: a review of fundamentals and applications

    Eral, Burak; 't Mannetje, Dieter; Oh, J.M.

    2013-01-01

    Contact angle hysteresis is an important physical phenomenon. It is omnipresent in nature and also plays a crucial role in various industrial processes. Despite its relevance, there is a lack of consensus on how to incorporate a description of contact angle hysteresis into physical models. To

  15. Optimum tilt angle and orientation for solar collectors in Syria

    Skeiker, Kamal

    2009-01-01

    One of the important parameters that affect the performance of a solar collector is its tilt angle with the horizon. This is because of the variation of tilt angle changes the amount of solar radiation reaching the collector surface. A mathematical model was used for estimating the solar radiation on a tilted surface, and to determine the optimum tilt angle and orientation (surface azimuth angle) for the solar collector in the main Syrian zones, on a daily basis, as well as for a specific period. The optimum angle was computed by searching for the values for which the radiation on the collector surface is a maximum for a particular day or a specific period. The results reveal that changing the tilt angle 12 times in a year (i.e. using the monthly optimum tilt angle) maintains approximately the total amount of solar radiation near the maximum value that is found by changing the tilt angle daily to its optimum value. This achieves a yearly gain in solar radiation of approximately 30% more than the case of a solar collector fixed on a horizontal surface.

  16. Escape angles in bulk chi((2)) soliton interactions

    Johansen, Steffen Kjær; Bang, Ole; Sørensen, Mads Peter

    2002-01-01

    We develop a theory for nonplanar interaction between two identical type I spatial solitons propagating at opposite, but arbitrary transverse angles in quadratic nonlinear (or so-called chi((2))) bulk, media. We predict quantitatively the outwards escape angle, below which the solitons turn around...

  17. Gradient angle estimation by uniform directional simulation on a cone

    Ditlevsen, Ove Dalager

    1997-01-01

    approximation to a locally most central limit state point. Moreover, the estimated angle can be used to correct the geometric reliability index.\\bfseries Keywords: Directional simulation, effectivity factor, gradient angle estimation, maximum likelihood, model-correction-factor method, Monte Carlo simulation...

  18. Complete 360° circumferential SSOCT gonioscopy of the iridocorneal angle

    McNabb, Ryan P.; Kuo, Anthony N.; Izatt, Joseph A.

    2014-02-01

    The ocular iridocorneal angle is generally an optically inaccessible area when viewed directly through the cornea due to the high angle of incidence required and the large index of refraction difference between air and cornea (nair = 1.000 and ncornea = 1.376) resulting in total internal reflection. Gonioscopy allows for viewing of the angle by removing the aircornea interface through the use of a special contact lens on the eye. Gonioscopy is used clinically to visualize the angle directly but only en face. Optical coherence tomography (OCT) has been used to image the angle and deeper structures via an external approach. Typically, this imaging technique is performed by utilizing a conventional anterior segment OCT scanning system. However, instead of imaging the apex of the cornea, either the scanner or the subject is tilted such that the corneoscleral limbus is orthogonal to the optical axis of the scanner requiring multiple volumes to obtain complete circumferential coverage of the ocular angle. We developed a novel gonioscopic OCT (GOCT) system that images the entire ocular angle within a single volume via an "internal" approach through the use of a custom radially symmetric gonioscopic contact lens. We present, to our knowledge, the first complete 360° circumferential volumes of the iridocorneal angle from a direct, internal approach.

  19. Y Is for Yacht Race: A Game of Angles.

    Butzow, John W.

    1986-01-01

    Describes an activity approach for teaching upper elementary school students the concept of angles. In the interdisciplinary activity, students practice reading and drawing angles from 0 to 360 degrees as they simulate the behaviors used to navigate a sailboat. Includes list of equipment needed and procedures used. (JN)

  20. Physiological response to angling of Africa's premier freshwater ...

    Blood plasma was analysed for glucose, cortisol and lactate concentrations to assess the effects of angling duration, fish size and fish condition. Larger fish were angled for a longer duration. Plasma glucose concentrations decreased with greater lactate concentrations, an indication of the aerobic and anaerobic work done ...

  1. 47 CFR 25.205 - Minimum angle of antenna elevation.

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Minimum angle of antenna elevation. 25.205 Section 25.205 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.205 Minimum angle of antenna elevation. (a) Earth station...

  2. Solar electricity potentials and optimal angles for mounting solar ...

    The need for harnessing solar energy using solar panels mounted at optimal inclination angles in the six geopolitical zones of Nigeria is presented. The optimal angle for mounting solar panels as presented by Photovoltaic Geographic Information System (PVGIS) ranges from 11º to 14º in the Southern zone and 13º to 16º ...

  3. Presentation of Primary Open Angle Glaucoma (POAG) at Lions ...

    Objective Primary open angle glaucoma (POAG) is the most common type of glaucoma in Africa. We carried out a study to determine the clinical presentation pattern of patients with primary open angle glaucoma (POAG) at a tertiary hospital in Malawi. Design A cross-sectional study. Setting Lions Sight First Eye Hospital—a ...

  4. A new uncertainty relation for angular momentum and angle

    Kranold, H.U.

    1984-01-01

    An uncertainty relation of the form ΔL 2 ΔSo >=sup(h/2π)/sub(2) is derived for angular momentum and angle. The non-linear operator So measures angles and has a simple interpretation. Subject to very general conditions of rotational invariance the above relation is unique. Radial momentum is not quantized

  5. A gallery approach for off-angle iris recognition

    Karakaya, Mahmut; Yoldash, Rashiduddin; Boehnen, Christopher

    2015-05-01

    It has been proven that hamming distance score between frontal and off-angle iris images of same eye differs in iris recognition system. The distinction of hamming distance score is caused by many factors such as image acquisition angle, occlusion, pupil dilation, and limbus effect. In this paper, we first study the effect of the angle variations between iris plane and the image acquisition systems. We present how hamming distance changes for different off-angle iris images even if they are coming from the same iris. We observe that increment in acquisition angle of compared iris images causes the increment in hamming distance. Second, we propose a new technique in off-angle iris recognition system that includes creating a gallery of different off-angle iris images (such as, 0, 10, 20, 30, 40, and 50 degrees) and comparing each probe image with these gallery images. We will show the accuracy of the gallery approach for off-angle iris recognition.

  6. Focused Science Delivery makes science make sense.

    Rachel W. Scheuering; Jamie. Barbour

    2004-01-01

    Science does not exist in a vacuum, but reading scientific publications might make you think it does. Although the policy and management implications of their findings could often touch a much wider audience, many scientists write only for the few people in the world who share their area of expertise. In addition, most scientific publications provide information that...

  7. Making detailed predictions makes (some) predictions worse

    Kelly, Theresa F.

    In this paper, we investigate whether making detailed predictions about an event makes other predictions worse. Across 19 experiments, 10,895 participants, and 415,960 predictions about 724 professional sports games, we find that people who made detailed predictions about sporting events (e.g., how many hits each baseball team would get) made worse predictions about more general outcomes (e.g., which team would win). We rule out that this effect is caused by inattention or fatigue, thinking too hard, or a differential reliance on holistic information about the teams. Instead, we find that thinking about game-relevant details before predicting winning teams causes people to give less weight to predictive information, presumably because predicting details makes information that is relatively useless for predicting the winning team more readily accessible in memory and therefore incorporated into forecasts. Furthermore, we show that this differential use of information can be used to predict what kinds of games will and will not be susceptible to the negative effect of making detailed predictions.

  8. Making and Changing Wills

    Cheryl Tilse

    2016-02-01

    Full Text Available Wills are important social, economic, and legal documents. Yet little is known about current will making practices and intentions. A comprehensive national database on the prevalence of will making in Australia was developed to identify who is or is not most likely to draw up a will and triggers for making and changing wills. A national survey of 2,405 adults aged above 18 years was administered by telephone in August and September 2012. Fifty-nine percent of the Australian adult population has a valid will, and the likelihood of will making increases with age and estate value. Efforts to get organized, especially in combination with life stage and asset changes trigger will making; procrastination, rather than a strong resistance, appears to explain not making a will. Understanding will making is timely in the context of predicted significant intergenerational transfers of wealth, changing demographics, and a renewed emphasis on retirement planning.

  9. Demonstration of angle widening using EyeCam after laser peripheral iridotomy in eyes with angle closure.

    Perera, Shamira A; Quek, Desmond T; Baskaran, Mani; Tun, Tin A; Kumar, Rajesh S; Friedman, David S; Aung, Tin

    2010-06-01

    To evaluate EyeCam in detecting changes in angle configuration after laser peripheral iridotomy (LPI) in comparison to gonioscopy, the reference standard. Prospective comparative study. Twenty-four subjects (24 eyes) with primary angle-closure glaucoma (PACG) were recruited. Gonioscopy and EyeCam (Clarity Medical Systems) imaging of all 4 angle quadrants were performed, before and 2 weeks after LPI. Images were graded according to angle structures visible by an observer masked to clinical data or the status of LPI, and were performed in a random order. Angle closure in a quadrant was defined as the inability to visualize the posterior trabecular meshwork. We determined the number of quadrants with closed angles and the mean number of clock hours of angle closure before and after LPI in comparison to gonioscopy. Using EyeCam, all 24 eyes showed at least 1 quadrant of angle widening after LPI. The mean number of clock hours of angle closure decreased significantly, from 8.15 +/- 3.47 clock hours before LPI to 1.75 +/- 2.27 clock hours after LPI (P gonioscopy showed 1.0 +/- 1.41 (95% CI, 0.43-1.57) quadrants opening from closed to open after LPI compared to 2.0 +/- 1.28 (95% CI, 1.49-2.51, P = .009) quadrants with EyeCam. Intra-observer reproducibility of grading the extent of angle closure in clock hours in EyeCam images was moderate to good (intraclass correlation coefficient 0.831). EyeCam may be used to document changes in angle configuration after LPI in eyes with PACG. Copyright 2010 Elsevier Inc. All rights reserved.

  10. Lateral angle: a method for sexing using the petrous bone

    Norén, Anna; Lynnerup, Niels; Czarnetzki, Alfred

    2005-01-01

    skeletal remains or cremated bones, where the petrous bone may still be readily recognizable. The method was tested using a forensic sample of 113 petrous bones with known sex. Intra- and interobserver testing was also performed. We found a statistically significant difference in angle size between males...... and females (mean angle size of males, 39.3 degrees ; mean angle size of females, 48.2 degrees ; P tested the lateral angle method against an archaeological skeletal...... of the proximal part of the internal acoustic canal and determining the angle at which the canal opens up to the surface of the petrous bone. The method has the great advantage of utilizing one of the sturdiest bone elements of the human skeleton, and may thus be especially suited for analyses of very fragmented...

  11. Does Sacrococcygeal Angle Play a Role on Pilonidal Sinus Etiology?

    Ramazan Eryilmaz

    2015-01-01

    Full Text Available The predisposing factors for the development of sacrococcygeal pilonidal disease (SPD still remain undetermined. Here, we investigate the sacrococcygeal angle as a possible predisposing factor for the development of disease. Consecutive male patients admitted to our clinic with the diagnosis of SPD were included. Sex, age and BMI matched healthy controls without SPD were enrolled to the study. The predefined sacrococcygeal angles of patients and controls were measured on lateral pelvic radiographs by a single experienced radiologist. Thirty patients were included in each group. Sacrococcygeal angles of patients and control group were measured as 37.3 ± 14.5 and 36.81 ± 10.23 in patients and controls, respectively. The difference with respect to sacrococcygeal angle was not statistically significant between two groups. Sacrococcygeal angle which is the main skeletal determinant of intergluteal sulcus is not a predisposing factor for the development of sacrococcygeal pilonidal disease.

  12. Preferred viewing distance and screen angle of electronic paper displays.

    Shieh, Kong-King; Lee, Der-Song

    2007-09-01

    This study explored the viewing distance and screen angle for electronic paper (E-Paper) displays under various light sources, ambient illuminations, and character sizes. Data analysis showed that the mean viewing distance and screen angle were 495 mm and 123.7 degrees. The mean viewing distances for Kolin Chlorestic Liquid Crystal display was 500 mm, significantly longer than Sony electronic ink display, 491 mm. Screen angle for Kolin was 127.4 degrees, significantly greater than that of Sony, 120.0 degrees. Various light sources revealed no significant effect on viewing distances; nevertheless, they showed significant effect on screen angles. The screen angle for sunlight lamp (D65) was similar to that of fluorescent lamp (TL84), but greater than that of tungsten lamp (F). Ambient illumination and E-paper type had significant effects on viewing distance and screen angle. The higher the ambient illumination was, the longer the viewing distance and the lesser the screen angle. Character size had significant effect on viewing distances: the larger the character size, the longer the viewing distance. The results of this study indicated that the viewing distance for E-Paper was similar to that of visual display terminal (VDT) at around 500 mm, but greater than normal paper at about 360 mm. The mean screen angle was around 123.7 degrees, which in terms of viewing angle is 29.5 degrees below horizontal eye level. This result is similar to the general suggested viewing angle between 20 degrees and 50 degrees below the horizontal line of sight.

  13. Fall speed measurement and high-resolution multi-angle photography of hydrometeors in free fall

    T. J. Garrett

    2012-11-01

    Full Text Available We describe here a new instrument for imaging hydrometeors in free fall. The Multi-Angle Snowflake Camera (MASC captures high-resolution photographs of hydrometeors from three angles while simultaneously measuring their fall speed. Based on the stereoscopic photographs captured over the two months of continuous measurements obtained at a high altitude location within the Wasatch Front in Utah, we derive statistics for fall speed, hydrometeor size, shape, orientation and aspect ratio. From a selection of the photographed hydrometeors, an illustration is provided for how the instrument might be used for making improved microwave scattering calculations. Complex, aggregated snowflake shapes appear to be more strongly forward scattering, at the expense of reduced back-scatter, than heavily rimed graupel particles of similar size.

  14. Root-MUSIC Based Angle Estimation for MIMO Radar with Unknown Mutual Coupling

    Jianfeng Li

    2014-01-01

    Full Text Available Direction of arrival (DOA estimation problem for multiple-input multiple-output (MIMO radar with unknown mutual coupling is studied, and an algorithm for the DOA estimation based on root multiple signal classification (MUSIC is proposed. Firstly, according to the Toeplitz structure of the mutual coupling matrix, output data of some specified sensors are selected to eliminate the influence of the mutual coupling. Then the reduced-dimension transformation is applied to make the computation burden lower as well as obtain a Vandermonde structure of the direction matrix. Finally, Root-MUSIC can be adopted for the angle estimation. The angle estimation performance of the proposed algorithm is better than that of estimation of signal parameters via rotational invariance techniques (ESPRIT-like algorithm and MUSIC-like algorithm. Furthermore, the proposed algorithm has lower complexity than them. The simulation results verify the effectiveness of the algorithm, and the theoretical estimation error of the algorithm is also derived.

  15. Angles measuring on radiographic images as a tool for the diagnosis of Blount disease

    Mora Rojas, Raul

    2010-01-01

    The etiology of Blount disease has followed unknown at the present; although are described factors that could be related to the appearance of the same. Even, to make the diagnosis of this disease remains a challenge, due to it difficult to predict the behavior of the tibia varus in young children. Some measures were described in the radiographs of patients with tibia vara (the most currently used has been the Tibial Proximal Diaphyseal Goal Angle) to try to provide another tool in the diagnosis, but without be able to establish a free relationship between disruption of these measures with the pathological development of tibial varus. A new measurement (Tibial Proximal Fibular Mechanic Angle) established in the radiographs has been the purpose, taking into account the structures and concepts that are altered in patients with Blount diseases. The proximal tibial physis and the mechanical axis of the tibia are performed without to take into account in some of the measurements described above. (author) [es

  16. Numerical modeling of optical coherent transient processes with complex configurations - I. Angled beam geometry

    Chang Tiejun; Tian Mingzhen; Randall Babbitt, Wm.

    2004-01-01

    We present a theoretical model for optical coherent transient (OCT) processes based on Maxwell-Bloch equations for angled beam geometry. This geometry is critical in various OCT applications where the desired coherence outputs need to be spatially separated from the rest of the field. The model takes into account both the local interactions between inhomogeneously broadened two-level atoms and the laser fields, and the field propagation in optically thick media. Under the small-angle condition, the spatial dimensions transversing to the main propagation direction were treated with spatial Fourier transform to make the numerical computations for the practical settings confined within a reasonable time frame. The simulations for analog correlators and continuous processing based on stimulated photon echo have been performed using the simulator developed using the theory

  17. Autonomous trajectory generation for mobile robots with non-holonomic and steering angle constraints

    Pin, F.G.; Vasseur, H.A.

    1990-01-01

    This paper presents an approach to the trajectory planning of mobile platforms characterized by non-holonomic constraints and constraints on the steering angle and steering angle rate. The approach is based on geometric reasoning and provides deterministic trajectories for all pairs of initial and final configurations (position x, y, and orientation θ) of the robot. Furthermore, the method generates trajectories taking into account the forward and reverse mode of motion of the vehicle, or combination of these when complex maneuvering is involved or when the environment is obstructed with obstacles. The trajectory planning algorithm is described, and examples of trajectories generated for a variety of environmental conditions are presented. The generation of the trajectories only takes a few milliseconds of run time on a micro Vax, making the approach quite attractive for use as a real-time motion planner for teleoperated or sensor-based autonomous vehicles in complex environments. 10 refs., 11 figs

  18. A Numerical Study on Premixed Bluff Body Flame of Different Bluff Apex Angle

    Gelan Yang

    2013-01-01

    Full Text Available In order to investigate effects of apex angle (α on chemically reacting turbulent flow and thermal fields in a channel with a bluff body V-gutter flame holder, a numerical study has been carried out in this paper. With a basic geometry used in a previous experimental study, the apex angle was varied from 45° to 150°. Eddy dissipation concept (EDC combustion model was used for air and propane premixed flame. LES-Smagorinsky model was selected for turbulence. The gird-dependent learning and numerical model verification were done. Both nonreactive and reactive conditions were analyzed and compared. The results show that as α increases, recirculation zone becomes bigger, and Strouhal number increases a little in nonreactive cases while decreases a little in reactive cases, and the increase of α makes the flame shape wider, which will increase the chamber volume heat release ratio and enhance the flame stability.

  19. Common angle plots as perception-true visualizations of categorical associations.

    Hofmann, Heike; Vendettuoli, Marie

    2013-12-01

    Visualizations are great tools of communications-they summarize findings and quickly convey main messages to our audience. As designers of charts we have to make sure that information is shown with a minimum of distortion. We have to also consider illusions and other perceptual limitations of our audience. In this paper we discuss the effect and strength of the line width illusion, a Muller-Lyer type illusion, on designs related to displaying associations between categorical variables. Parallel sets and hammock plots are both affected by line width illusions. We introduce the common-angle plot as an alternative method for displaying categorical data in a manner that minimizes the effect from perceptual illusions. Results from user studies both highlight the need for addressing line-width illusions in displays and provide evidence that common angle charts successfully resolve this issue.

  20. Sample-angle feedback for diffraction anomalous fine-structure spectroscopy

    Cross, J.O.; Elam, W.T.; Harris, V.G.; Kirkland, J.P.; Bouldin, C.E.; Sorensen, L.B.

    1998-01-01

    Diffraction anomalous fine-structure (DAFS) experiments measure Bragg peak intensities as continuous functions of photon energy near a core-level excitation. Measuring the integrated intensity at each energy makes the experiments prohibitively slow; however, in many cases DAFS can be collected quickly by measuring only the peak intensity at the center of the rocking curve. A piezoelectric-actuator-driven stage has been designed and tested as part of a sample-angle feedback circuit for locking onto the maximum of the rocking curve while the energy is scanned. Although software peak-tracking requires only a simple calculation of diffractometer angles, it is found that the additional hardware feedback dramatically improves the reproducibility of the data

  1. BEAMLINE-CONTROLLED STEERING OF SOURCE-POINT ANGLE AT THE ADVANCED PHOTON SOURCE

    Emery, L.; Fystro, G.; Shang, H.; Smith, M.

    2017-06-25

    An EPICS-based steering software system has been implemented for beamline personnel to directly steer the angle of the synchrotron radiation sources at the Advanced Photon Source. A script running on a workstation monitors "start steering" beamline EPICS records, and effects a steering given by the value of the "angle request" EPICS record. The new system makes the steering process much faster than before, although the older steering protocols can still be used. The robustness features of the original steering remain. Feedback messages are provided to the beamlines and the accelerator operators. Underpinning this new steering protocol is the recent refinement of the global orbit feedback process whereby feedforward of dipole corrector set points and orbit set points are used to create a local steering bump in a rapid and seamless way.

  2. Design theory of full face rock tunnel boring machine transition cutter edge angle and its application

    Zhang, Zhaohuang; Meng, Liang; Sun, Fei

    2013-05-01

    At present, the inner cutters of a full face rock tunnel boring machine (TBM) and transition cutter edge angles are designed on the basis of indentation test or linear grooving test. The inner and outer edge angles of disc cutters are characterized as symmetric to each other with respect to the cutter edge plane. This design has some practical defects, such as severe eccentric wear and tipping, etc. In this paper, the current design theory of disc cutter edge angle is analyzed, and the characteristics of the rock-breaking movement of disc cutters are studied. The researching results show that the rotational motion of disc cutters with the cutter head gives rise to the difference between the interactions of inner rock and outer rock with the contact area of disc cutters, with shearing and extrusion on the inner rock and attrition on the outer rock. The wear of disc cutters at the contact area is unbalanced, among which the wear in the largest normal stress area is most apparent. Therefore, a three-dimensional model theory of rock breaking and an edge angle design theory of transition disc cutter are proposed to overcome the flaws of the currently used TBM cutter heads, such as short life span, camber wearing, tipping. And a corresponding equation is established. With reference to a specific construction case, the edge angle of the transition disc cutter has been designed based on the theory. The application of TBM in some practical project proves that the theory has obvious advantages in enhancing disc cutter life, decreasing replacement frequency, and making economic benefits. The proposed research provides a theoretical basis for the design of TBM three-dimensional disc cutters whose rock-breaking operation time can be effectively increased.

  3. Hydrogen and deuterium NMR of solids by magic-angle spinning

    Eckman, R.R.

    1982-10-01

    The nuclear magnetic resonance of solids has long been characterized by very large specral broadening which arises from internuclear dipole-dipole coupling or the nuclear electric quadrupole interaction. These couplings can obscure the smaller chemical shift interaction and make that information unavailable. Two important and difficult cases are that of hydrogen and deuterium. The development of cross polarization, heteronuclear radiofrequency decoupling, and coherent averaging of nuclear spin interactions has provided measurement of chemical shift tensors in solids. Recently, double quantum NMR and double quantum decoupling have led to measurement of deuterium and proton chemical shift tensors, respectively. A general problem of these experiments is the overlapping of the tensor powder pattern spectra of magnetically distinct sites which cannot be resolved. In this work, high resolution NMR of hydrogen and deuterium in solids is demonstrated. For both nuclei, the resonances are narrowed to obtain liquid-like isotropic spectra by high frequency rotation of the sample about an axis inclined at the magic angle, β/sub m/ = Arccos (3/sup -1/2/), with respect to the direction of the external magnetic field. For deuterium, the powder spectra were narrowed by over three orders of magnitude by magic angle rotation with precise control of β. A second approach was the observation of deuterium double quantum transitions under magic angle rotation. For hydrogen, magic angle rotation alone could be applied to obtain the isotropic spectrum when H/sub D/ was small. This often occurs naturally when the nuclei are semi-dilute or involved in internal motion. In the general case of large H/sub D/, isotropic spectra were obtained by dilution of 1 H with 2 H combined with magic angle rotation. The resolution obtained represents the practical limit for proton NMR of solids

  4. Business making decisions

    Enrique Benjamín Franklin Fincowsky

    2011-06-01

    Full Text Available People and organizations make better or get wrong as consequence of making decisions. Sometimes making decisions is just a trial and error process. Some others, decisions are good and the results profitable with a few of mistakes, most of the time because it’s considered the experience and the control of a specific field or the good intention of who makes them. Actually, all kinds of decisions bring learning. What is important is the intention, the attitude and the values considered in this process. People from different scenes face many facts and circumstances—almost always out of control—that affect the making decisions process. There is not a unique way to make decisions for all companies in many settings. The person who makes a decision should identify the problem, to solve it later using alternatives and solutions. Even though, follow all the steps it’s not easy as it seems. Looking back the conditions related to the decisions, we can mention the followings: uncertainty, risk and certainty. When people identify circumstances and facts, as well as its effects in a possible situation, they will make decisions with certainty. As long as the information decreases and it becomes ambiguous the risk becomes an important factor in the making decisions process because they are connected to probable objectives (clear or subjective (opinion judgment or intuition. To finish, uncertainty, involves people that make a decision with no or little information about circumstances or criteria with basis

  5. Comparison of axial lengths in occludable angle and angle-closure glaucoma-The Bhaktapur Glaucoma Study

    Thapa, S.S.; Paudyal, I.; Khanal, S.; Paudel, N.; van Rens, G.H.M.B.

    2011-01-01

    Purpose. To compare the anterior chamber depth (ACD) and axial length of eyes in a population-based sample among normal, occludable angle, and primary angle-closure glaucoma (PACG) groups. Methods. Totally, 3979 subjects from a population-based glaucoma prevalence study underwent complete ocular

  6. Within tree variation of lignin, extractives, and microfibril angle coupled with the theoretical and near infrared modeling of microfibril angle

    Brian K. Via; chi L. So; Leslie H. Groom; Todd F. Shupe; michael Stine; Jan. Wikaira

    2007-01-01

    A theoretical model was built predicting the relationship between microfibril angle and lignin content at the Angstrom (A) level. Both theoretical and statistical examination of experimental data supports a square root transformation of lignin to predict microfibril angle. The experimental material used came from 10 longleaf pine (Pinus palustris)...

  7. Prospective case series on trabecular-iris angle status after an acute episode of phacomorphic angle closure

    Jacky Lee

    2013-02-01

    Full Text Available AIM:To investigate the trabecular-iris angle with ultrasound biomicroscopy (UBM post cataract extraction after an acute attack of phacomorphic angle closure.METHODS: This prospective study involved 10 cases of phacomorphic angle closure that underwent cataract extraction and intraocular lens insertion after intraocular pressure (IOP lowering. Apart from visual acuity and IOP, the trabecular-iris angle was measured by gonioscopy and UBM at 3 months post attack.RESULTS: In 10 consecutive cases of acute phacomorphic angle closure from December 2009 to December 2010, gonioscopic findings showed peripheral anterior synechiae (PAS ≤ 90° in 30% of phacomorphic patients and a mean Shaffer grading of (3.1±1.0. UBM showed a mean angle of (37.1°±4.5° in the phacomorphic eye with the temporal quadrant being the most opened and (37.1°±8.0° in the contralateral uninvolved eye. The mean time from consultation to cataract extraction was (1.4±0.7 days and the mean total duration of phacomorphic angle closure was (3.6±2.8 days but there was no correlation to the degree of angle closure on UBM (Spearman correlation P=0.7. The presenting mean IOP was (50.5±7.4 mmHg and the mean IOP at 3 months was (10.5±3.4 mmHg but there were no correlations with the degree of angle closure (Spearman correlations P=0.9.CONCLUSION:An open trabecular-iris angle and normal IOP can be achieved after an acute attack of phacomorphic angle closure if cataract extraction is performed within 1 day - 2 days after IOP control. Gonioscopic findings were in agreement with UBM, which provided a more specific and object angle measurement. The superior angle is relatively more narrowed compared to the other quadrants. All contralateral eyes in this series had open angles.

  8. 2-Benzylsulfanyl-N-(1,3-dimethylimidazolidin-2-ylideneaniline

    Ulrich Flörke

    2013-04-01

    Full Text Available The molecular structure of the title compound, C18H21N3S, shows a twisted conformation with a dihedral angle of 67.45 (4° between the aromatic ring planes and an N—C—C—S torsion angle of −5.01 (13°. The imidazolidine ring and the aniline moiety make a dihedral angle of 56.03 (4° and the asscociated C—N—C angle is 125.71 (10°. The guanidine-like C=N double bond is clearly localized, with a bond length of 1.2879 (14 Å. The C—S—C angle is 102.12 (5° and the S—C(aromatic and S—C bond lengths are 1.7643 (11 and 1.8159 (12 Å.

  9. EFFECT OF SWEEP ANGLE ON THE VORTICAL FLOW OVER DELTA WINGS AT AN ANGLE OF ATTACK OF 10°

    JAMES BRETT

    2014-12-01

    Full Text Available CFD simulations have been used to analyse the vortical flows over sharp edged delta wings with differing sweep angles under subsonic conditions at an angle of attack of 10°. RANS simulations were validated against experimental data for a 65° sweep wing, with a flat cross-section, and the steadiness of the flow field was assessed by comparing the results against unsteady URANS and DES simulations. To assess the effect of sweep angle on the flow field, a range of sweep angles from 65° to 43° were simulated. For moderate sweep wings the primary vortex was observed to detach from the leading edge, undergoing vortex breakdown, and a weaker, replacement, "shadow" vortex was formed. The shadow vortex was observed for sweep angles of 50° and less, and resulted in reduced lift production near the wing tips loss of the stronger primary vortex.

  10. The Influence of Face Angle and Club Path on the Resultant Launch Angle of a Golf Ball

    Paul Wood

    2018-02-01

    Full Text Available A two-part experimental study was conducted in order to better understand how the delivered face angle and club path of a golf club influences the initial launch direction of a golf ball for various club types. A robust understanding of how these parameters influence the ball direction has implications for both coaches and club designers. The first study used a large sample of golfers hitting shots with different clubs. Initial ball direction was measured with a Foresight Sports camera system, while club delivery parameters were recorded with a Vicon motion capture system. The second study used a golf robot and Vision Research camera to measure club and ball parameters. Results from these experiments show that the launch direction fell closer to face angle than club path. The percent toward the face angle ranged from 61% to 83%, where 100% designates a launch angle entirely toward the face angle.

  11. Decision Making Under Uncertainty

    2010-11-01

    A sound approach to rational decision making requires a decision maker to establish decision objectives, identify alternatives, and evaluate those...often violate the axioms of rationality when making decisions under uncertainty. The systematic description of such observations may lead to the...which leads to “anchoring” on the initial value. The fact that individuals have been shown to deviate from rationality when making decisions

  12. Dynamic angle selection in X-ray computed tomography

    Dabravolski, Andrei, E-mail: andrei.dabravolski@uantwerpen.be [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Batenburg, Kees Joost, E-mail: joost.batenburg@uantwerpen.be [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Centrum Wiskunde and Informatica (CWI), Science Park 123, 1098 XG Amsterdam (Netherlands); Sijbers, Jan, E-mail: jan.sijbers@uantwerpen.be [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium)

    2014-04-01

    Highlights: • We propose the dynamic angle selection algorithm for CT scanning. • The approach is based on the concept of information gain over a set of solutions. • Projection angles are selected based on the already available projection data. • The approach can lead to more accurate results from fewer projections. - Abstract: In X-ray tomography, a number of radiographs (projections) are recorded from which a tomogram is then reconstructed. Conventionally, these projections are acquired equiangularly, resulting in an unbiased sampling of the Radon space. However, especially in case when only a limited number of projections can be acquired, the selection of the angles has a large impact on the quality of the reconstructed image. In this paper, a dynamic algorithm is proposed, in which new projection angles are selected by maximizing the information gain about the object, given the set of possible new angles. Experiments show that this approach can select projection angles for which the accuracy of the reconstructed image is significantly higher compared to the standard angle selections schemes.

  13. A study of images of Projective Angles of pulmonary veins

    Wang Jue [Beijing Anzhen Hospital, Beijing (China); Zhaoqi, Zhang [Beijing Anzhen Hospital, Beijing (China)], E-mail: zhaoqi5000@vip.sohu.com; Yu Wei; Miao Cuilian; Yan Zixu; Zhao Yike [Beijing Anzhen Hospital, Beijing (China)

    2009-09-15

    Aims: In images of magnetic resonance and computed tomography (CT) there are visible angles between pulmonary veins and the coronary, transversal or sagittal section of body. In this study these angles are measured and defined as Projective Angles of pulmonary veins. Several possible influential factors and characters of distribution are studied and analyzed for a better understanding of this imaging anatomic character of pulmonary veins. And it could be the anatomic base of adjusting correctly the angle of the central X-ray of the angiography of pulmonary veins undergoing the catheter ablation of atrial fibrillation (AF). Method: Images of contrast enhanced magnetic resonance angiography (CEMRA) and contrast enhanced computer tomography (CECT) of the left atrium and pulmonary veins of 137 health objects and patients with atrial fibrillation (AF) are processed with the technique of post-processing, and Projective Angles to the coronary and transversal sections are measured and analyzed statistically. Result: Project Angles of pulmonary veins are one of real and steady imaging anatomic characteristics of pulmonary veins. The statistical distribution of variables is relatively concentrated, with a fairly good representation of average value. It is possible to improve the angle of the central X-ray according to the average value in the selective angiography of pulmonary veins undergoing the catheter ablation of AF.

  14. Effect of Angle of Attack on Slope Climbing Performance

    Creager, Colin M.; Jones, Lucas; Smith, Lauren M.

    2017-01-01

    Ascending steep slopes is often a very difficult challenge for off-road vehicles, whether on Earth or on extraterrestrial bodies. This challenge is even greater if the surface consists of loose granular soil that does not provide much shear strength. This study investigated how the path at which a vehicle traverses a slope, specifically the angle that it is commanded to drive relative to the base of the hill (the angle of attack), can affect its performance. A vehicle was driven in loose sand at slope angles up to 15 degrees and angles of attack ranging from 10 to 90 degrees. A novel photogrammetry technique was implemented to both track vehicle motion and create a three-dimensional profile of the terrain. This allowed for true wheel sinkage measurements. The study showed that though low angles of attack result in lower wheel slip and sinkage, the efficiency of the vehicles uphill motion increased at higher angles of attack. For slopes up to 15 degrees, a 90 degree angle of attack provided the greatest likelihood of successful ascent.

  15. The ideal male jaw angle--An Internet survey.

    Mommaerts, Maurice Y

    2016-04-01

    The ideal male jaw angle has not been established. With the advent of additive manufacturing, precise customized shaping is a reality. This study aimed to define the ideal masculine mandibular angle as an aid for 3-dimensional (3D) design. An Internet survey was conducted using black/white photographs of celebrities and non-celebrities. Preferences regarding gonial angle (profile and frontal views), intergonial width and vertical jaw angle position (face frontal view), and angle curvature and definition in oblique views were obtained using simplified, unbalanced Likert scales. Constructs were defined for planning 3D implant designs. The preferred jaw angle had these characteristics: 130° in face profile view, intergonial width similar to facial width, vertical position in frontal view at the oral commissure or at least not below the lower lip, jawline slope in the face frontal view nearly parallel to (with a maximum 15° downward deviation from) a line extending from the lateral canthus to the alare, ascending ramus slope 65°-75° to the Frankfort horizontal, and curvature in the oblique view visible from earlobe to chin and not pointy. Photogrammetric analysis of panel preferences lead to constructs with values useful for the design of 3D printed jaw angles. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  16. Objectifying the adjacent and opposite angles: a cultural historical analysis

    Daher, Wajeeh; Musallam, Nadera

    2018-02-01

    The angle topic is central to the development of geometric knowledge. Two of the basic concepts associated with this topic are the adjacent and opposite angles. It is the goal of the present study to analyze, based on the cultural historical semiotics framework, how high-achieving seventh grade students objectify the adjacent and opposite angles' concepts. We videoed the learning of a group of three high-achieving students who used technology, specifically GeoGebra, to explore geometric relations related to the adjacent and opposite angles' concepts. To analyze students' objectification of these concepts, we used the categories of objectification of knowledge (attention and awareness) and the categories of generalization (factual, contextual and symbolic), developed by Radford. The research results indicate that teacher's and students' verbal and visual signs, together with the software dynamic tools, mediated the students' objectification of the adjacent and opposite angles' concepts. Specifically, eye and gestures perceiving were part of the semiosis cycles in which the participating students were engaged and which related to the mathematical signs that signified the adjacent and the opposite angles. Moreover, the teacher's suggestions/requests/questions included/suggested semiotic signs/tools, including verbal signs that helped the students pay attention, be aware of and objectify the adjacent and opposite angles' concepts.

  17. Dynamic angle selection in X-ray computed tomography

    Dabravolski, Andrei; Batenburg, Kees Joost; Sijbers, Jan

    2014-01-01

    Highlights: • We propose the dynamic angle selection algorithm for CT scanning. • The approach is based on the concept of information gain over a set of solutions. • Projection angles are selected based on the already available projection data. • The approach can lead to more accurate results from fewer projections. - Abstract: In X-ray tomography, a number of radiographs (projections) are recorded from which a tomogram is then reconstructed. Conventionally, these projections are acquired equiangularly, resulting in an unbiased sampling of the Radon space. However, especially in case when only a limited number of projections can be acquired, the selection of the angles has a large impact on the quality of the reconstructed image. In this paper, a dynamic algorithm is proposed, in which new projection angles are selected by maximizing the information gain about the object, given the set of possible new angles. Experiments show that this approach can select projection angles for which the accuracy of the reconstructed image is significantly higher compared to the standard angle selections schemes

  18. High prevalence of narrow angles among Filipino-American patients.

    Seider, Michael I; Sáles, Christopher S; Lee, Roland Y; Agadzi, Anthony K; Porco, Travis C; Weinreb, Robert N; Lin, Shan C

    2011-03-01

    To determine the prevalence of gonioscopically narrow anterior chamber angles in a Filipino-American clinic population. The records of 122 consecutive, new, self-declared Filipino-American patients examined in a comprehensive ophthalmology clinic in Vallejo, California were reviewed retrospectively. After exclusion, 222 eyes from 112 patients remained for analysis. Data were collected for anterior chamber angle grade as determined by gonioscopy (Shaffer system), age, sex, manifest refraction (spherical equivalent), intraocular pressure, and cup-to-disk ratio. Data from both eyes of patients were included and modeled using standard linear mixed-effects regression. As a comparison, data were also collected from a group of 30 consecutive White patients from the same clinic. After exclusion, 50 eyes from 25 White patients remained for comparison. At least 1 eye of 24% of Filipino-American patients had a narrow anterior chamber angle (Shaffer grade ≤ 2). Filipino-American angle grade significantly decreased with increasingly hyperopic refraction (P=0.007) and larger cup-to-disk ratio (P=0.038). Filipino-American women had significantly decreased angle grades compared with men (P=0.028), but angle grade did not vary by intraocular pressure or age (all, P≥ 0.059). Narrow anterior chamber angles are highly prevalent in Filipino-American patients in our clinic population.

  19. LHC Report: Production and small angles

    Jan Uythoven for the LHC team

    2012-01-01

    The last two weeks have seen steady luminosity production. The total luminosity of ATLAS and CMS exceeded 19 fb-1, while LHCb reached 1.8 fb-1 and ALICE, 6 pb-1.   As reported in previous LHC reports, the continuous running with large beam intensities is resulting in beam-induced heating of certain elements, such as the synchrotron light monitor (BSRT), the ALFA detector and the injection kicker magnets. These first two elements had shown a sudden increase in temperature in the previous weeks - but only for the components that are on the counter-clockwise rotating beam. By making slight changes to the radiofrequency parameters, which affect the bunch length, the power spectrum of the beam was changed. This significantly reduced the observed heating of the BSRT and the ALFA detector. Another improvement was recently made to the measurement process of the number of transverse oscillations of the beam in one turn, known as the “betatron tune”. The frequency of the betatron tune ...

  20. Investigation of silicon width (p, p') resonance scattering in left angle 110 right angle channeling direction

    Ditroi, F.; Meyer, J.D.; Michelmann, R.; Kislat, D.; Bethge, K.

    1994-01-01

    Crystalline silicon samples were investigated both in channeling and random directions by using the (p, p') resonance scattering at 2.3 MeV bombarding energy. The samples were positioned in the scattering chamber of a VdG accelerator after 2 m collimating path. The peaks due to the resonance at 2.1 MeV were measured at different angles in the vicinity of the channeling and random directions. A peak shift and broadening was seen at the channeling and near channeling directions compared with the random one. The spectra were also simulated using our modified Monte Carlo calculation method for stopping, range and energy distribution in highly ordered materials. The energy shift and the broadening between the random and the channeling spectra were compared and explained. (orig.)

  1. Patient-specific rhytidectomy: finding the angle of maximal rejuvenation.

    Jacono, Andrew A; Ransom, Evan R

    2012-09-01

    Rhytidectomy is fundamentally an operation of tissue release and resuspension, although the manner and direction of suspension are subject to perpetual debate. The authors describe a method for identifying the angle of maximal rejuvenation during rhytidectomy and quantify the resulting angle and its relationship to patient age. Patients were prospectively enrolled; demographic data, history, and operative details were recorded. Rhytidectomies were performed by the senior author (AAJ). After complete elevation, the face-lift flap was rotated in a medially-based arc (0-90°) while attention was given to the submental area, jawline, and midface. The angle of maximal rejuvenation for each hemiface was identified as described, and the flap was resuspended. During redraping, measurements of vertical and horizontal skin excess were recorded in situ. The resulting angle of lift was then calculated for each hemiface using trigonometry. Symmetry between sides was determined, and the effect of patient age on this angle was assessed. Three hundred hemifaces were operated (147 women; 3 men). Mean age was 60 years (range, 37-80 years). Mean resulting angle for the cohort was 60° from horizontal (range, 46-77°). This was inversely correlated with patient age (r = -.3). Younger patients (<50 years, 64°) had a significantly more vertical angle than older patients (≥70 years, 56°; P < .0002). No significant intersubject difference was found between hemifaces (P = .53). The authors present a method for identifying the angle of maximal rejuvenation during rhytidectomy. This angle was more superior than posterior in all cases and is intimately related to patient age. Lasting results demand a detailed anatomical understanding and strict attention to the direction and degree of laxity.

  2. Measurement of Critical Contact Angle in a Microgravity Space Experiment

    Concus, P.; Finn, R.; Weislogel, M.

    1998-01-01

    Mathematical theory predicts that small changes in container shape or in contact angle can give rise to large shifts of liquid in a microgravity environment. This phenomenon was investigated in the Interface Configuration Experiment on board the USMT,2 Space Shuttle flight. The experiment's "double proboscis" containers were designed to strike a balance between conflicting requirements of sizable volume of liquid shift (for ease of observation) and abruptness of the shift (for accurate determination of critical contact angle). The experimental results support the classical concept of macroscopic contact angle and demonstrate the role of hysteresis in impeding orientation toward equilibrium.

  3. The modified Cassie’s equation and contact angle hysteresis

    Xu, Xianmin; Wang, Xiaoping

    2012-01-01

    In this paper, we derive a modified Cassie's equation for wetting on chemically patterned surfaces from a homogenization approach. The derivation reveals that effective contact angle is a local average of the static contact angle along the contact line which describes all possible equilibrium states including the local minimum of the free energy of the system. The usual Cassie's state which corresponds to the global minimum is only a special case. We then discuss the contact angle hysteresis on chemically patterned surfaces. © 2012 Springer-Verlag.

  4. Control of Angular Intervals for Angle-Multiplexed Holographic Memory

    Kinoshita, Nobuhiro; Muroi, Tetsuhiko; Ishii, Norihiko; Kamijo, Koji; Shimidzu, Naoki

    2009-03-01

    In angle-multiplexed holographic memory, the full width at half maximum of the Bragg selectivity curves is dependent on the angle formed between the medium and incident laser beams. This indicates the possibility of high density and high multiplexing number by varying the angular intervals between adjacent holograms. We propose an angular interval scheduling for closely stacking holograms into medium even when the angle range is limited. We obtained bit error rates of the order of 10-4 under the following conditions: medium thickness of 1 mm, laser beam wavelength of 532 nm, and angular multiplexing number of 300.

  5. Angle dependence of Andreev scattering at semiconductor-superconductor interfaces

    Mortensen, Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    1999-01-01

    We study the angle dependence of the Andreev scattering at a semiconductor-superconductor interface, generalizing the one-dimensional theory of Blonder, Tinkham, and Klapwijk (BTK),An increase of the momentum parallel to the interface leads to suppression of the probability of Andreev reflection...... and increase of the probability of normal reflection. We show that in the presence of a Fermi velocity mismatch between the semiconductor and the superconductor the angles of incidence and transmission are related according to the well-known Snell's law in optics. As a consequence there is a critical angle...

  6. Primary angle closure glaucoma in a myopic kinship.

    Hagan, J C; Lederer, C M

    1985-03-01

    Three related myopic individuals with primary angle closure glaucoma are reported. They had true myopia and not pseudomyopia secondary to increased lenticular index of refraction. We believe one of these individuals (-8.62 spherical equivalent) to have the most myopic case of primary angle closure glaucoma reported in the literature. Although myopia is associated with anatomical factors that offer considerable protection from primary angle closure glaucoma, its presence does not eliminate the possibility of this disease. Laser iridectomy was effective in the treatment of these patients.

  7. The modified Cassie’s equation and contact angle hysteresis

    Xu, Xianmin

    2012-08-29

    In this paper, we derive a modified Cassie\\'s equation for wetting on chemically patterned surfaces from a homogenization approach. The derivation reveals that effective contact angle is a local average of the static contact angle along the contact line which describes all possible equilibrium states including the local minimum of the free energy of the system. The usual Cassie\\'s state which corresponds to the global minimum is only a special case. We then discuss the contact angle hysteresis on chemically patterned surfaces. © 2012 Springer-Verlag.

  8. Metasurface-based angle-selective multichannel acoustic refractor

    Liu, Bingyi; Jiang, Yongyuan

    2018-05-01

    We theoretically study the angle-selective refractions of an impedance-matched acoustic gradient-index metasurface, which is integrated with a rigid bar array of a deep subwavelength period. An interesting refraction order appears under the all-angle incidence despite the existence of a critical angle, and notably, the odevity of the phase-discretization level apparently selects the transmitted diffraction orders. We utilize the strategy of multilayered media design to realize a three-channel acoustic refractor, which shows good promise for constructing multifunctional diffractive acoustic elements for acoustic communication.

  9. Bounded-Angle Iterative Decoding of LDPC Codes

    Dolinar, Samuel; Andrews, Kenneth; Pollara, Fabrizio; Divsalar, Dariush

    2009-01-01

    Bounded-angle iterative decoding is a modified version of conventional iterative decoding, conceived as a means of reducing undetected-error rates for short low-density parity-check (LDPC) codes. For a given code, bounded-angle iterative decoding can be implemented by means of a simple modification of the decoder algorithm, without redesigning the code. Bounded-angle iterative decoding is based on a representation of received words and code words as vectors in an n-dimensional Euclidean space (where n is an integer).

  10. Research advances on multifocal electroretinogram in primary open angle glaucoma

    Feng-Fei Mo

    2013-10-01

    Full Text Available Primary open angle glaucoma is a chronic and progressive optic neuropathy. It can lead to serious damage of visual impairment, and it is an important eye disease of blindness. Multifocal electroretinogram is a new way to measure visual electrophysiology. It can measure electroretinogram of the whole visual field of many small parts in a relatively short period of time, and it can reflect the function of regional retina. It has an extremely important value for early diagnosis of primary open angle glaucoma. The research advances on multifocal electroretinogram in diagnosing primary open angle glaucoma were summarized in this paper.

  11. Influence of Stockpile Angle in Natural Drying of Laterite Ore

    Yoalbys Retirado-Mediaceja

    2016-10-01

    Full Text Available Natural drying is performed at Cuban nickel plants by depositing bulk ore in the open. The ore is currently being stockpiled without much consideration for the impact of the drying surface angle on the process power behavior. Simulations were carried out in this investigation, which prove that an increased triangular stockpile angle considerably reduces natural drying efficiency. A 45 sexagesimal degree angle to the horizontal plane results in exposure of a large volume of ore to natural drying and guarantees adequate energy performance.

  12. Two angle dependent reactive infinite order sudden approximation

    Jellinek, J.; Kouri, D.J.

    1984-01-01

    The reactive infinite order sudden approximation is redeveloped in a manner in which the initial and final arrangement internal angles γ/sub lambda/ amd γ/sub ν/ enter as independent quantities. The analysis follows parallel to that due to Khare, Kouri, and Baer except that matching of the wave function from different arrangements is done in a manner such that no single γ/sub ν/ angle is associated with a particular γ/sub lambda/ angle. As a consequence, the matching surface parameter B/sub lambdanu/ does not occur

  13. Evaluation of the nasolabial angle in the Indian population

    Dua, Vinay; Gupta, Shilpa; Singh, Chanjyot

    2010-01-01

    Nasolabial angle has become the angle depicting the esthetics so has attained the prime importance in the treatment planning. Dr Jay P. Fitzgerland and Dr. Ram S. Nanda. In 1992 gave norms for Caucasian population. A radiographic cephalometric study was undertaken with 45 subjects of Indian origin to evaluate and compare with their result. The method of evaluation was according to the criteria given by Dr. Jay P Fitzergerald in AJODO 1992; 102:328-34. Significant decrease in nasolabial angle values was found in case of Indian population as compared to white adults. PMID:22114388

  14. Evaluation of the nasolabial angle in the Indian population

    Vinay Dua

    2010-01-01

    Full Text Available Nasolabial angle has become the angle depicting the esthetics so has attained the prime importance in the treatment planning. Dr Jay P. Fitzgerland and Dr. Ram S. Nanda. In 1992 gave norms for Caucasian population. A radiographic cephalometric study was undertaken with 45 subjects of Indian origin to evaluate and compare with their result. The method of evaluation was according to the criteria given by Dr. Jay P Fitzergerald in AJODO 1992; 102:328-34. Significant decrease in nasolabial angle values was found in case of Indian population as compared to white adults.

  15. Optimal fringe angle selection for digital fringe projection technique.

    Wang, Yajun; Zhang, Song

    2013-10-10

    Existing digital fringe projection (DFP) systems mainly use either horizontal or vertical fringe patterns for three-dimensional shape measurement. This paper reveals that these two fringe directions are usually not optimal where the phase change is the largest to a given depth variation. We propose a novel and efficient method to determine the optimal fringe angle by projecting a set of horizontal and vertical fringe patterns onto a step-height object and by further analyzing two resultant phase maps. Experiments demonstrate the existence of the optimal angle and the success of the proposed optimal angle determination method.

  16. Large angle tracking and high discriminating tracking in nuclear emulsion

    Matsuo, Tomokazu; Shibuya, Hiroshi; Ogawa, Satoru; Fukuda, Tsutomu; Mikado, Shoji

    2015-01-01

    Nuclear emulsion is a high resolution and re-analyzable detector. Conventional “Track Selector” which have angle acceptance |tan θ|<0.6 are widely used to find tracks in emulsion. We made a new track selector “Fine Track Selector” (FTS) which has large angle acceptance and high discriminating ability. The FTS reduces fake tracks using new algorithms, navigation etc. FTS also keeps finding efficiency of tracks around 90% in an angle range of |tan θ| < 3.5. FTS was applied to the τ candidate in OPERA and no additional tracks found. FTS will be useful to our new J-PARC emulsion experiment.

  17. Relationship between retinal lattice degeneration and open angle glaucoma.

    Rahimi, Mansour

    2005-01-01

    Patients with retinal disorders may develop glaucoma of both a primary and secondary type. Pigment may contribute to trabecular obstruction in some patients with open-angle glaucoma. Lattice degeneration of the retina in its typical form is a sharply demarcated, circumferentially oriented, degenerative process with significant alterations of retinal pigmentation. The association between myopia, open angle glaucoma and pigment dispersion is striking. Therefore, it could be postulated that there is significant prevalence of open angle glaucoma in patients with retinal lattice degeneration, especially in combination with myopia.

  18. Determination of intrinsic spin Hall angle in Pt

    Wang, Yi; Deorani, Praveen; Qiu, Xuepeng; Kwon, Jae Hyun; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, 117576 (Singapore)

    2014-10-13

    The spin Hall angle in Pt is evaluated in Pt/NiFe bilayers by spin torque ferromagnetic resonance measurements and is found to increase with increasing the NiFe thickness. To extract the intrinsic spin Hall angle in Pt by estimating the total spin current injected into NiFe from Pt, the NiFe thickness dependent measurements are performed and the spin diffusion in the NiFe layer is taken into account. The intrinsic spin Hall angle of Pt is determined to be 0.068 at room temperature and is found to be almost constant in the temperature range of 13–300 K.

  19. Determination of intrinsic spin Hall angle in Pt

    Wang, Yi; Deorani, Praveen; Qiu, Xuepeng; Kwon, Jae Hyun; Yang, Hyunsoo

    2014-01-01

    The spin Hall angle in Pt is evaluated in Pt/NiFe bilayers by spin torque ferromagnetic resonance measurements and is found to increase with increasing the NiFe thickness. To extract the intrinsic spin Hall angle in Pt by estimating the total spin current injected into NiFe from Pt, the NiFe thickness dependent measurements are performed and the spin diffusion in the NiFe layer is taken into account. The intrinsic spin Hall angle of Pt is determined to be 0.068 at room temperature and is found to be almost constant in the temperature range of 13–300 K.

  20. A simple three dimensional wide-angle beam propagation method

    Ma, Changbao; van Keuren, Edward

    2006-05-01

    The development of three dimensional (3-D) waveguide structures for chip scale planar lightwave circuits (PLCs) is hampered by the lack of effective 3-D wide-angle (WA) beam propagation methods (BPMs). We present a simple 3-D wide-angle beam propagation method (WA-BPM) using Hoekstra’s scheme along with a new 3-D wave equation splitting method. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation and comparing them with analytical solutions.

  1. Making Team Differences Work

    Strathman, Beth

    2015-01-01

    Most district and school leaders understand that recruiting group members who have differing backgrounds, perspectives, talents, and personalities makes for good decision-making. Unfortunately, simply assembling a variety of top-notch individuals does not necessarily mean their talents and perspectives will be fully considered. Beth Strathman…

  2. Making Smart Food Choices

    ... turn JavaScript on. Feature: Healthy Aging Making Smart Food Choices Past Issues / Winter 2015 Table of Contents Everyday ... NIH www.nia.nih.gov/Go4Life Making Smart Food Choices To maintain a healthy weight, balance the calories ...

  3. It Makes You Think

    Harden, Helen

    2009-01-01

    This article provides an overview of the "It Makes You Think" resource. The lessons provided by this resource show how students can learn about the global dimension through science. The "It Makes You Think" resource contains ten topics: (1) Metals in jewellery worldwide; (2) Global food market; (3) The worldwide travels of…

  4. Variation in decision making

    Dall, Sasha R. X.; Gosling, Samuel; Gordon D.A., Brown,; Dingemanse, Niels; Ido, Erev,; Martin, Kocher,; Laura, Schulz,; Todd, Peter M; Weissing, Franz; Wolf, Max; Hammerstein, Peter; Stevens, Jeffrey R.

    2012-01-01

    Variation in how organisms allocate their behavior over their lifetimes is key to determining Darwinian fitness., and thus the evolution of human and nonhuman decision making. This chapter explores how decision making varies across biologically and societally significant scales and what role such

  5. Making Healthy Choices Easier

    Guldborg Hansen, Pelle; Skov, Laurits Rohden; Lund Skov, Katrine

    2016-01-01

    . However, integration and testing of the nudge approach as part of more comprehensive public health strategies aimed at making healthy choices easier is being threatened by inadequate understandings of its scientific character, relationship with regulation and its ethical implications. This article reviews...... working with or incorporating the nudge approach into programs or policies aimed at making healthy choices easier...

  6. [Decision making in cariology

    Verdonschot, E.H.A.M.; Liem, S.L.; Palenstein Helderman, W.H. van

    2003-01-01

    By conducting an oral examination, during radiographic examination and in treatment planning procedures dentists make numerous decisions. A dentist will be required to make his decisions explicit. Decision trees and decision analyses may play an important role. In a decision analysis, the

  7. Culinary Decision Making.

    Curtis, Rob

    1987-01-01

    Advises directors of ways to include day care workers in the decision-making process. Enumerates benefits of using staff to help focus and direct changes in the day care center and discusses possible pitfalls in implementation of a collective decision-making approach to management. (NH)

  8. (2E-3-[4-(Dimethylaminophenyl]-1-(4-fluorophenylprop-2-en-1-one

    Jerry P. Jasinski

    2011-02-01

    Full Text Available The mean planes of the two benzene rings in the title compound, C17H16FNO, are twisted slightly, making a dihedral angle of 7.8 (1°. The prop-2-en-1-one group is also twisted slightly with a C—C—C—O torsion angle of −11.6 (3°. In the crystal, weak intermolecular C—H...O interactions link pairs of molecules, forming centrosymmetric dimers.

  9. Exfoliation of GaAs caused by MeV 1H and 4He ion implantation at left angle 100 right angle , left angle 110 right angle axial and random orientations

    Rauhala, E.; Raeisaenen, J.

    1994-01-01

    The exfoliation procedure of the ion range determination of gaseous implants in single crystal GaAs is investigated. The correlation of the observed crater depth with the ion range is studied for random, left angle 100 right angle and left angle 110 right angle axial orientation high dose implantations of 1.5-2.5 MeV 1 H and 4 He ions. Depending on the experimental conditions, the crater depths corresponded to range values between the modal range and the range maximum. The observed crater depths could be related to the actual He concentration depth distributions by determining the profiles of the 4 He implants by 2.7 MeV proton backscattering. The implantation parameters affecting the exfoliation process, and especially the increase rate of the sample temperature, are investigated. The range distribution parameters for the 1.5 MeV 4 He implants are presented. ((orig.))

  10. Small-angle neutron scattering studies of sodium butyl benzene

    Na-NBBS), in aqueous solutions is investigated by small-angle neutron scattering (SANS). Nearly ellipsoidal aggregates of Na-NBBS at concentrations well above its minimum hydrotrope concentration were detected by SANS. The hydrotrope ...

  11. determination of determination of optimal tilt angle for maximum

    eobe

    Keywords: Energy output, photovoltaic module, best tilt angle, solar radiation, sunshine hours, ambient temperature. 1. .... at any given time is vital in the design of a PV system. The solar ..... [8] E. Taymur, Photovoltaic System Sizing [thesis].

  12. Parameterization of ion channeling half-angles and minimum yields

    Doyle, Barney L.

    2016-03-15

    A MS Excel program has been written that calculates ion channeling half-angles and minimum yields in cubic bcc, fcc and diamond lattice crystals. All of the tables and graphs in the three Ion Beam Analysis Handbooks that previously had to be manually looked up and read from were programed into Excel in handy lookup tables, or parameterized, for the case of the graphs, using rather simple exponential functions with different power functions of the arguments. The program then offers an extremely convenient way to calculate axial and planar half-angles, minimum yields, effects on half-angles and minimum yields of amorphous overlayers. The program can calculate these half-angles and minimum yields for 〈u v w〉 axes and [h k l] planes up to (5 5 5). The program is open source and available at (http://www.sandia.gov/pcnsc/departments/iba/ibatable.html).

  13. Modified sine bar device measures small angles with high accuracy

    Thekaekara, M.

    1968-01-01

    Modified sine bar device measures small angles with enough accuracy to calibrate precision optical autocollimators. The sine bar is a massive bar of steel supported by two cylindrical rods at one end and one at the other.

  14. small signal analysis of load angle governing and excitation control

    Dr Obe

    system stabilizers (PSS) or using terminal voltage for control of exciter and speed signal for governor. ... Vfd= generator field voltage. Xd, Xq ... each other in the frequency domain, and therefore ..... angle sensing equipment, relays and.

  15. New magic angle bumps and magic translation bumps

    Seeman, J.

    1983-01-01

    SLC beams of opposite charge can be transversely deflected in the same direction by RF fields in the accelerating cavities caused by girder tilts, coupler-asymmetries, or manufacturing errors. A symmetric deflection can be corrected by a magic angle bump if the deflection is located adjacent to one of the linac quadrupoles. However, if the deflection is located between quadrupoles, two magic angle bumps or a magic angle bump and a magic translation bump are needed for the correction. Several examples of translation bumps are included. A new magic angle bump is also presented which is longitudinally compressed and has significantly reduced particle excursions. Finally, if new correctors are added midway along the girders so that the number of correctors are doubled, then the longitudinal extent and the maximum particle excursion of these new magic bumps can be further reduced

  16. On a global scale, marine recreational angling is an extremely ...

    spamer

    Estuary mouth along the south bank to the Athlone. Bridge, then along ... ETh = EToutings × ai. ,. (5) where a is ...... Table VII: Employment status of respondents at each locality. Locality .... angling periods has also been shown for other sectors.

  17. THE TREATMENT OF OPEN- AND NARROW-ANGLE GLAUCOMA

    1971-04-10

    Apr 10, 1971 ... glaucoma will be considered: narrow-angle glaucoma. (acute glaucoma) and ... emotional or a physical crisis. The pain is in the distribu- .... ness, not increased pressure, haunts people suffering from glaucoma'.' The saga of ...

  18. Increasing efficacy of graminicides with a forward angled spray

    Jensen, Peter Kryger

    2012-01-01

    Control of annual grass species with vertically oriented leaves in agricultural crops by application of foliar acting herbicides with conventional hydraulic sprayers can be increased using forward angled nozzles. Changing the spray angle from the normally predominantly vertical spray towards...... an angled spray increases the potential target size of vertically oriented targets. This theory was tested in field experiments from 2005 to 2009 investigating control of three different grass species and a dicotyledonous weed species at early growth stages using foliar acting herbicides. Lolium perenne...... efficacy on L. perenne at early growth stages using nozzles with different spray quality, at different driving speeds and in different wind conditions. Similarly graminicide efficacy was increased when nozzles were angled 60° forward controlling A. myosuroides. Experiments investigating control of the two...

  19. Automatic anterior chamber angle assessment for HD-OCT images.

    Tian, Jing; Marziliano, Pina; Baskaran, Mani; Wong, Hong-Tym; Aung, Tin

    2011-11-01

    Angle-closure glaucoma is a major blinding eye disease and could be detected by measuring the anterior chamber angle in the human eyes. High-definition OCT (Cirrus HD-OCT) is an emerging noninvasive, high-speed, and high-resolution imaging modality for the anterior segment of the eye. Here, we propose a novel algorithm which automatically detects a new landmark, Schwalbe's line, and measures the anterior chamber angle in the HD-OCT images. The distortion caused by refraction is corrected by dewarping the HD-OCT images, and three biometric measurements are defined to quantitatively assess the anterior chamber angle. The proposed algorithm was tested on 40 HD-OCT images of the eye and provided accurate measurements in about 1 second.

  20. The Research of the Parallel Computing Development from the Angle of Cloud Computing

    Peng, Zhensheng; Gong, Qingge; Duan, Yanyu; Wang, Yun

    2017-10-01

    Cloud computing is the development of parallel computing, distributed computing and grid computing. The development of cloud computing makes parallel computing come into people’s lives. Firstly, this paper expounds the concept of cloud computing and introduces two several traditional parallel programming model. Secondly, it analyzes and studies the principles, advantages and disadvantages of OpenMP, MPI and Map Reduce respectively. Finally, it takes MPI, OpenMP models compared to Map Reduce from the angle of cloud computing. The results of this paper are intended to provide a reference for the development of parallel computing.

  1. Anomalous small-angle scattering as a way to solve the Babinet principle problem

    Boiko, M. E.; Sharkov, M. D.; Boiko, A. M.; Bobyl, A. V.

    2013-01-01

    X-ray absorption spectra (XAS) have been used to determine the absorption edges of atoms present in a sample under study. A series of small-angle X-ray scattering (SAXS) measurements using different monochromatic X-ray beams at different wavelengths near the absorption edges is performed to solve the Babinet principle problem. The sizes of clusters containing atoms determined by the method of XAS were defined in SAXS experiments. In contrast to differential X-ray porosimetry, anomalous SAXS makes it possible to determine sizes of clusters of different atomic compositions

  2. Anomalous small-angle scattering as a way to solve the Babinet principle problem

    Boiko, M. E., E-mail: m.e.boiko@mail.ioffe.ru; Sharkov, M. D.; Boiko, A. M.; Bobyl, A. V. [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)

    2013-12-15

    X-ray absorption spectra (XAS) have been used to determine the absorption edges of atoms present in a sample under study. A series of small-angle X-ray scattering (SAXS) measurements using different monochromatic X-ray beams at different wavelengths near the absorption edges is performed to solve the Babinet principle problem. The sizes of clusters containing atoms determined by the method of XAS were defined in SAXS experiments. In contrast to differential X-ray porosimetry, anomalous SAXS makes it possible to determine sizes of clusters of different atomic compositions.

  3. Anomalous small-angle scattering as a way to solve the Babinet principle problem

    Boiko, M. E.; Sharkov, M. D.; Boiko, A. M.; Bobyl, A. V.

    2013-12-01

    X-ray absorption spectra (XAS) have been used to determine the absorption edges of atoms present in a sample under study. A series of small-angle X-ray scattering (SAXS) measurements using different monochromatic X-ray beams at different wavelengths near the absorption edges is performed to solve the Babinet principle problem. The sizes of clusters containing atoms determined by the method of XAS were defined in SAXS experiments. In contrast to differential X-ray porosimetry, anomalous SAXS makes it possible to determine sizes of clusters of different atomic compositions.

  4. BIPHASIC TREATMENT OF 2ND CLASS ANGLE ANOMALIES

    C. Romanec; R. Stanciu; Anca Telmecea; Valentina Dorobat

    2011-01-01

    Our approach aims at presenting, based on clinical observations and complementary examinations, the effects of a treatment’s setting up during the mixed dentition period. The objectives include the identification of the optimal time of treatment of II/1, II/2 Angle malocclusions, as well as the therapeutic possibilities for the treatment of 2nd class Angle malocclusion during the period of mixed and permanent dentition. The study is based on data collected from 114 cli...

  5. Angle Dependent Optics of Plasmonic Core-Shell Nanoparticles

    2018-02-21

    AFRL-AFOSR-JP-TR-2018-0014 Angle-Dependent Optics of Plasmonic Core-Shell Nanoparticles G.V. Pavan Kumar INDIAN INSTITUTE OF SCIENCE EDUCATION AND... EDUCATION AND RESEARCH 900, NCL Innovation Park, Dr Homi Bhabha Road, Pashan PUNE, 411008 IN 8.  PERFORMING ORGANIZATION      REPORT NUMBER 9...function of spherical co-ordinates: azimuthal and polar angles. Absorption, scattering and emission of light from nanoparticles, especially when they are

  6. Comparison of different passive knee extension torque-angle assessments

    Freitas, Sandro R; Vaz, João R; Bruno, Paula M; Valamatos, Maria J; Mil-Homens, Pedro

    2013-01-01

    Previous studies have used isokinetic dynamometry to assess joint torques and angles during passive extension of the knee, often without reporting upon methodological errors and reliability outcomes. In addition, the reliability of the techniques used to measure passive knee extension torque-angle and the extent to which reliability may be affected by the position of the subjects is also unclear. Therefore, we conducted an analysis of the intra- and inter-session reliability of two methods of assessing passive knee extension: (A) a 2D kinematic analysis coupled to a custom-made device that enabled the direct measurement of resistance to stretch and (B) an isokinetic dynamometer used in two testing positions (with the non-tested thigh either flexed at 45° or in the neutral position). The intra-class correlation coefficients (ICCs) of torque, the slope of the torque-angle curve, and the parameters of the mathematical model that were fit to the torque-angle data for the above conditions were measured in sixteen healthy male subjects (age: 21.4 ± 2.1 yr; BMI: 22.6 ± 3.3 kg m −2 ; tibial length: 37.4 ± 3.4 cm). The results found were: (1) methods A and B led to distinctly different torque-angle responses; (2) passive torque-angle relationship and stretch tolerance were influenced by the position of the non-tested thigh; and (3) ICCs obtained for torque were higher than for the slope and for the mathematical parameters that were fit to the torque-angle curve. In conclusion, the measurement method that is used and the positioning of subjects can influence the passive knee extension torque-angle outcome. (paper)

  7. Exchange interpretation of anomalous back angle heavy ion elastic scattering

    Zisman, M.S.

    1977-10-01

    Anomalous back angle oscillations in the angular distributions obtained in the elastic scattering of 16 O + 28 Si and 12 C + 28 Si have been interpreted in terms of an elastic cluster transfer comparable to that observed in other heavy ion reactions. The calculations appear to at least qualitatively explain the data with respect to the existence and phase of the back angle oscillations. The results indicate that an exchange mechanism may play an important role in the oscillations

  8. Decision making and cancer.

    Reyna, Valerie F; Nelson, Wendy L; Han, Paul K; Pignone, Michael P

    2015-01-01

    We review decision making along the cancer continuum in the contemporary context of informed and shared decision making in which patients are encouraged to take a more active role in their health care. We discuss challenges to achieving informed and shared decision making, including cognitive limitations and emotional factors, but argue that understanding the mechanisms of decision making offers hope for improving decision support. Theoretical approaches to decision making that explain cognition, emotion, and their interaction are described, including classical psychophysical approaches, dual-process approaches that focus on conflicts between emotion versus cognition (or reason), and modern integrative approaches such as fuzzy-trace theory. In contrast to the earlier emphasis on rote use of numerical detail, modern approaches emphasize understanding the bottom-line gist of options (which encompasses emotion and other influences on meaning) and retrieving relevant social and moral values to apply to those gist representations. Finally, research on interventions to support better decision making in clinical settings is reviewed, drawing out implications for future research on decision making and cancer. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  9. Contact angle and local wetting at contact line.

    Li, Ri; Shan, Yanguang

    2012-11-06

    This theoretical study was motivated by recent experiments and theoretical work that had suggested the dependence of the static contact angle on the local wetting at the triple-phase contact line. We revisit this topic because the static contact angle as a local wetting parameter is still not widely understood and clearly known. To further clarify the relationship of the static contact angle with wetting, two approaches are applied to derive a general equation for the static contact angle of a droplet on a composite surface composed of heterogeneous components. A global approach based on the free surface energy of a thermodynamic system containing the droplet and solid surface shows the static contact angle as a function of local surface chemistry and local wetting state at the contact line. A local approach, in which only local forces acting on the contact line are considered, results in the same equation. The fact that the local approach agrees with the global approach further demonstrates the static contact angle as a local wetting parameter. Additionally, the study also suggests that the wetting described by the Wenzel and Cassie equations is also the local wetting of the contact line rather than the global wetting of the droplet.

  10. Contact angle of sessile drops in Lennard-Jones systems.

    Becker, Stefan; Urbassek, Herbert M; Horsch, Martin; Hasse, Hans

    2014-11-18

    Molecular dynamics simulations are used for studying the contact angle of nanoscale sessile drops on a planar solid wall in a system interacting via the truncated and shifted Lennard-Jones potential. The entire range between total wetting and dewetting is investigated by varying the solid-fluid dispersive interaction energy. The temperature is varied between the triple point and the critical temperature. A correlation is obtained for the contact angle in dependence of the temperature and the dispersive interaction energy. Size effects are studied by varying the number of fluid particles at otherwise constant conditions, using up to 150,000 particles. For particle numbers below 10,000, a decrease of the contact angle is found. This is attributed to a dependence of the solid-liquid surface tension on the droplet size. A convergence to a constant contact angle is observed for larger system sizes. The influence of the wall model is studied by varying the density of the wall. The effective solid-fluid dispersive interaction energy at a contact angle of θ = 90° is found to be independent of temperature and to decrease linearly with the solid density. A correlation is developed that describes the contact angle as a function of the dispersive interaction, the temperature, and the solid density. The density profile of the sessile drop and the surrounding vapor phase is described by a correlation combining a sigmoidal function and an oscillation term.

  11. Simulation on a limited angle beam gamma ray tomography

    Kim, Jong Bum; Jung, Sung Hee; Moon, Jin Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Limited angle beam tomography was introduced in the medical field more than two decades ago, where it was mainly used for cardiovascular diagnostics. Later, it was also used to trace multiphase flows. In these studies, the detection systems were fixed and a scanning electron beam was rapidly swept across an xray target using deflection coils. Thus very fast scanning was possible in these studies, but their geometry resulted in a heavy and bulky system because of a complex control system and vacuum tube. Because of its heavy hardware, limited angle beam tomography has remained as indoor equipment. If the source section is replaced by a gamma ray source, limited angle beam tomography will have a very light source device. In addition, limited angle beam tomography with a gamma ray source can be designed using an open type portable gantry because it does not need a vacuum guide for an electron beam. There is a lot of need for a portable tomographic system but so far no definitive solution has been created. The inspection of industrial on-line pipes, wood telephone poles, and cultural assets are some application areas. This study introduces limited angle beam gamma ray tomography, its simulation, and image reconstruction results. Image reconstruction was performed on the virtual experimental data from a Monte Carlo simulation. Image reconstruction algorithms that are known to be useful for limited angle data were applied and their results compared

  12. Contact angle control of sessile drops on a tensioned web

    Park, Janghoon; Kim, Dongguk; Lee, Changwoo

    2018-04-01

    In this study, the influence of the change of tension applied to flexible and thin web substrate on the contact angle of sessile drop in roll-to-roll system was investigated. Graphene oxide and deionized water solutions were used in the experiments. Tension was changed to 29, 49, and 69 N, and the casting distance of the micropipette and the material was set to 10, 20, and 40 mm, and the droplet volume was set to 10, 20, and 30 μL, respectively. Statistical analysis of three variables and analysis of the variance methodology showed that the casting distance was most significant for the contact angle change, and the most interesting tension variable was also affected. The change in tension caused the maximum contact angle to change by 5.5°. The tension was not uniform in the width direction. When the droplet was applied in the same direction in the width direction, it was confirmed that the tension unevenness had great influence on the contact angle up to 11°. Finally, the casting distance, which has a large effect on the contact angle, was calibrated in the width direction to reduce the width direction contact angle deviation to 1%. This study can be applied to fine patterning research using continuous inkjet printing and aerosol jet printing, which are roll-to-roll processes based on droplet handling.

  13. Hybrid algorithm for rotor angle security assessment in power systems

    D. Prasad Wadduwage

    2015-08-01

    Full Text Available Transient rotor angle stability assessment and oscillatory rotor angle stability assessment subsequent to a contingency are integral components of dynamic security assessment (DSA in power systems. This study proposes a hybrid algorithm to determine whether the post-fault power system is secure due to both transient rotor angle stability and oscillatory rotor angle stability subsequent to a set of known contingencies. The hybrid algorithm first uses a new security measure developed based on the concept of Lyapunov exponents (LEs to determine the transient security of the post-fault power system. Later, the transient secure power swing curves are analysed using an improved Prony algorithm which extracts the dominant oscillatory modes and estimates their damping ratios. The damping ratio is a security measure about the oscillatory security of the post-fault power system subsequent to the contingency. The suitability of the proposed hybrid algorithm for DSA in power systems is illustrated using different contingencies of a 16-generator 68-bus test system and a 50-generator 470-bus test system. The accuracy of the stability conclusions and the acceptable computational burden indicate that the proposed hybrid algorithm is suitable for real-time security assessment with respect to both transient rotor angle stability and oscillatory rotor angle stability under multiple contingencies of the power system.

  14. Effects of Angle Variations in Suspension Push-up Exercise.

    Gulmez, Irfan

    2017-04-01

    Gulmez, I. Effects of angle variations in suspension push-up exercise. J Strength Cond Res 31(4): 1017-1023, 2017-This study aimed to determine and compare the amount of loads on the TRX Suspension Trainer (TRX) straps and ground reaction forces at 4 different angles during TRX push-ups. Twenty-eight male (mean age, 24.1 ± 2.9 years; height, 179.4 ± 8.0 m; weight, 78.8 ± 9.8 kg) physical education and sports university students participated in this study. The subjects were tested at TRX angles (0, 15, 30, 45°) during the TRX push-ups. Force data were recorded by a force platform and load cells integrated into the TRX straps. The results show that as the TRX angle was reduced, the load applied to the TRX straps increased and simultaneously the load measured by the force platform decreased. This was true for both the elbow joint changing from flexion to extension and vice versa. When the TRX angle was set at 0° and subjects' elbows were at extension during TRX push-up, 50.4% of the subjects' body weight, and when the elbows were at flexion, 75.3% of the body weight was registered by the sensors on the TRX straps. The results of this study can be used in the calculation of the training load and volume (resistance training programming) during TRX push-up exercises at varying angles.

  15. Influence of Different Diffuser Angle on Sedan's Aerodynamic Characteristics

    Hu, Xingjun; Zhang, Rui; Ye, Jian; Yan, Xu; Zhao, Zhiming

    The aerodynamic characteristics have a great influence on the fuel economics and the steering stability of a high speed vehicle. The underbody rear diffuser is one of important aerodynamic add-on devices. The parameters of the diffuser, including the diffuser angle, the number and the shape of separators, the shape of the end plate and etc, will affect the underbody flow and the wake. Here, just the influence of the diffuser angle was investigated without separator and the end plate. The method of Computational Fluid Dynamics was adopted to study the aerodynamic characteristics of a simplified sedan with a different diffuser angle respectively. The diffuser angle was set to 0°, 3°, 6°, 9.8° and 12° respectively. The diffuser angle of the original model is 9.8°. The conclusions were drawn that when the diffuser angle increases, the underbody flow and especially the wake change greatly and the pressure change correspondingly; as a result, the total aerodynamic drag coefficients of car first decrease and then increases, while the total aerodynamic lift coefficients decrease.

  16. Optimal tilt-angles for solar collectors used in China

    Tang Runsheng; Wu Tong

    2004-01-01

    A reasonable estimation of the optimal tilt angle of a fixed collector for maximizing its energy collection must be done based on the monthly global and diffuse radiation on a horizontal surface. However, the monthly diffuse radiation is not always available in many places. In this paper, a simple mathematical procedure for the estimation of the optimal tilt angle of a collector is presented based on the monthly horizontal radiation. A comparison of the optimal tilt angles of collectors obtained from expected monthly diffuse radiation and that from the actual monthly diffuse radiation showed that this method gives a good estimation of the optimal tilt angle, except for places with a considerably lower clearness index. A contour map of the optimal tilt angle of the south-facing collectors used for the entire year in China is also outlined, based on monthly horizontal radiation of 152 places around the country, combing the optimal tilt angle of another 30 cities based on the actual monthly diffuse radiation

  17. Muon tomography imaging improvement using optimized limited angle data

    Bai, Chuanyong; Simon, Sean; Kindem, Joel; Luo, Weidong; Sossong, Michael J.; Steiger, Matthew

    2014-05-01

    Image resolution of muon tomography is limited by the range of zenith angles of cosmic ray muons and the flux rate at sea level. Low flux rate limits the use of advanced data rebinning and processing techniques to improve image quality. By optimizing the limited angle data, however, image resolution can be improved. To demonstrate the idea, physical data of tungsten blocks were acquired on a muon tomography system. The angular distribution and energy spectrum of muons measured on the system was also used to generate simulation data of tungsten blocks of different arrangement (geometry). The data were grouped into subsets using the zenith angle and volume images were reconstructed from the data subsets using two algorithms. One was a distributed PoCA (point of closest approach) algorithm and the other was an accelerated iterative maximal likelihood/expectation maximization (MLEM) algorithm. Image resolution was compared for different subsets. Results showed that image resolution was better in the vertical direction for subsets with greater zenith angles and better in the horizontal plane for subsets with smaller zenith angles. The overall image resolution appeared to be the compromise of that of different subsets. This work suggests that the acquired data can be grouped into different limited angle data subsets for optimized image resolution in desired directions. Use of multiple images with resolution optimized in different directions can improve overall imaging fidelity and the intended applications.

  18. Evaluation of the anterior chamber angle in pseudoexfoliation syndrome.

    Iwanejko, Małgorzata; Turno-Kręcicka, Anna; Tomczyk-Socha, Martyna; Kaczorowski, Kamil; Grzybowski, Andrzej; Misiuk-Hojło, Marta

    2017-08-01

    Pseudoexfoliation syndrome (PEX) is the most frequently identifiable cause of secondary open-angle glaucoma, known as pseudoexfoliation glaucoma. The exact pathophysiology and etiology of PEX and associated glaucoma remains obscure. The purpose of this study was to determine the differences in the morphology of the anterior chamber angle in people with pseudoexfoliation syndrome and pseudoexfoliation glaucoma compared to a control group. We also evaluated the correlation between intraocular pressure (IOP) and pigmentation of the angle with the amount of exfoliated material in the anterior segment. The study group was composed of 155 eyes from 103 patients aged between 43 and 86 years. Each patient underwent a complete ophthalmological examination. Some difference was found in intraocular pressure between the PEX group and the control group and between the pseudoexfoliation glaucoma group and the control group, but no significant difference was found between the 2 study groups. There was a significant difference in the incidence of some degree of pigmentation in the anterior chamber angle and no difference in the widths of the angle between each group. A significant positive relationship was observed between intraocular pressure and the degree of pigmentation of the anterior chamber angle in both the PEX group and the pseudoexfoliation glaucoma group. The results of this study indicate that the amount of pigmentation and exfoliation material in the anterior segment significantly correlates with the level of IOP and possibly with the degree of trabecular dysfunction. It seems that for clear identification of PEX and pseudoexfoliation glaucoma factors, clinical assessment appears to be insufficient.

  19. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts

    Shen Yang; Delaglio, Frank [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Cornilescu, Gabriel [National Magnetic Resonance Facility (United States); Bax, Ad [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)], E-mail: bax@nih.gov

    2009-08-15

    NMR chemical shifts in proteins depend strongly on local structure. The program TALOS establishes an empirical relation between {sup 13}C, {sup 15}N and {sup 1}H chemical shifts and backbone torsion angles {phi} and {psi} (Cornilescu et al. J Biomol NMR 13 289-302, 1999). Extension of the original 20-protein database to 200 proteins increased the fraction of residues for which backbone angles could be predicted from 65 to 74%, while reducing the error rate from 3 to 2.5%. Addition of a two-layer neural network filter to the database fragment selection process forms the basis for a new program, TALOS+, which further enhances the prediction rate to 88.5%, without increasing the error rate. Excluding the 2.5% of residues for which TALOS+ makes predictions that strongly differ from those observed in the crystalline state, the accuracy of predicted {phi} and {psi} angles, equals {+-}13{sup o}. Large discrepancies between predictions and crystal structures are primarily limited to loop regions, and for the few cases where multiple X-ray structures are available such residues are often found in different states in the different structures. The TALOS+ output includes predictions for individual residues with missing chemical shifts, and the neural network component of the program also predicts secondary structure with good accuracy.

  20. Segmentation and Quantification for Angle-Closure Glaucoma Assessment in Anterior Segment OCT.

    Fu, Huazhu; Xu, Yanwu; Lin, Stephen; Zhang, Xiaoqin; Wong, Damon Wing Kee; Liu, Jiang; Frangi, Alejandro F; Baskaran, Mani; Aung, Tin

    2017-09-01

    Angle-closure glaucoma is a major cause of irreversible visual impairment and can be identified by measuring the anterior chamber angle (ACA) of the eye. The ACA can be viewed clearly through anterior segment optical coherence tomography (AS-OCT), but the imaging characteristics and the shapes and locations of major ocular structures can vary significantly among different AS-OCT modalities, thus complicating image analysis. To address this problem, we propose a data-driven approach for automatic AS-OCT structure segmentation, measurement, and screening. Our technique first estimates initial markers in the eye through label transfer from a hand-labeled exemplar data set, whose images are collected over different patients and AS-OCT modalities. These initial markers are then refined by using a graph-based smoothing method that is guided by AS-OCT structural information. These markers facilitate segmentation of major clinical structures, which are used to recover standard clinical parameters. These parameters can be used not only to support clinicians in making anatomical assessments, but also to serve as features for detecting anterior angle closure in automatic glaucoma screening algorithms. Experiments on Visante AS-OCT and Cirrus high-definition-OCT data sets demonstrate the effectiveness of our approach.