WorldWideScience

Sample records for major stratospheric sudden

  1. Sudden Stratospheric Warming Compendium

    National Oceanic and Atmospheric Administration, Department of Commerce — Sudden Stratospheric Warming Compendium (SSWC) data set documents the stratospheric, tropospheric, and surface climate impacts of sudden stratospheric warmings. This...

  2. Coupling in the middle atmosphere related to the 2013 major sudden stratospheric warming

    R. J. de Wit

    2015-03-01

    Full Text Available The previously reported observation of anomalous eastward gravity wave forcing at mesopause heights around the onset of the January 2013 major sudden stratospheric warming (SSW over Trondheim, Norway (63° N, 10° E, is placed in a global perspective using Microwave Limb Sounder (MLS temperature observations from the Aura satellite. It is shown that this anomalous forcing results in a clear cooling over Trondheim about 10 km below mesopause heights. Conversely, near the mesopause itself, where the gravity wave forcing was measured, observations with meteor radar, OH airglow and MLS show no distinct cooling. Polar cap zonal mean temperatures show a similar vertical profile. Longitudinal variability in the high northern-latitude mesosphere and lower thermosphere (MLT is characterized by a quasi-stationary wave-1 structure, which reverses phase at altitudes below ~ 0.1 hPa. This wave-1 develops prior to the SSW onset, and starts to propagate westward at the SSW onset. The latitudinal pole-to-pole temperature structure associated with the major SSW shows a warming (cooling in the winter stratosphere (mesosphere which extends to about 40° N. In the stratosphere, a cooling extending over the equator and far into the summer hemisphere is observed, whereas in the mesosphere an equatorial warming is noted. In the Southern Hemisphere mesosphere, a warm anomaly overlaying a cold anomaly is present, which is shown to propagate downward in time. This observed structure is in accordance with the temperature perturbations predicted by the proposed interhemispheric coupling mechanism for cases of increased winter stratospheric planetary wave activity, of which major SSWs are an extreme case. These results provide observational evidence for the interhemispheric coupling mechanism, and for the wave-mean flow interaction believed to be responsible for the establishment of the anomalies in the summer hemisphere.

  3. Effects of Major Sudden Stratospheric Warmings Identified in Midlatitude Mesospheric Rayleigh-Scatter Lidar Temperatures

    Sox, L.; Wickwar, V. B.; Fish, C. S.; Herron, J. P.

    2014-12-01

    Mesospheric temperature anomalies associated with Sudden Stratospheric Warmings (SSWs) have been observed extensively in the polar regions. However, observations of these anomalies at midlatitudes are sparse. The very dense 11-year data set, collected between 1993-2004, with the Rayleigh-scatter lidar at the Atmospheric Lidar Observatory (ALO; 41.7°N, 111.8°W) at the Center for Atmospheric and Space Sciences (CASS) on the campus of Utah State University (USU), has been carefully examined for such anomalies. The temperatures derived from these data extend over the mesosphere, from 45 to 90 km. During this period extensive data were acquired during seven major SSW events. In this work we aim to determine the characteristics of the midlatitude mesospheric temperatures during these seven major SSWs. To do this, comparisons were made between the temperature profiles on individual nights before, during, and after the SSW events and the corresponding derived climatological temperature profiles (31-day by 11-year average) for those nights. A consistent disturbance pattern was observed in the mesospheric temperatures during these SSWs. A distinct shift from the nominal winter temperature pattern to a pattern more characteristic of summer temperatures was seen in the midlatitude mesosphere close to when the zonal winds in the polar stratosphere (at 10 hPa, 60° N) reversed from eastward to westward. This shift lasted for several days. This change in pattern included coolings in the upper mesosphere, comparable to those seen in the polar regions, and warmings in the lower mesosphere.

  4. The Major Stratospheric Sudden Warming of January 2013: Analyses and Forecasts in the GEOS-5 Data Assimilation System

    Coy, Lawrence; Pawson, Steven

    2014-01-01

    We examine the major stratosphere sudden warming (SSW) that occurred on 6 January 2013, using output from the NASA Global Modeling and Assimilation Office (GMAO) GEOS-5 (Goddard Earth Observing System) near-real-time data assimilation system (DAS). Results show that the major SSW of January 2013 falls into the vortex splitting type of SSW, with the initial planetary wave breaking occurring near 10 hPa. The vertical flux of wave activity at the tropopause responsible for the SSW occurred mainly in the Pacific Hemisphere, including the a pulse associated with the preconditioning of the polar vortex by wave 1 identified on 23 December 2012. While most of the vertical wave activity flux was in the Pacific Hemisphere, a rapidly developing tropospheric weather system over the North Atlantic on 28 December is shown to have produced a strong transient upward wave activity flux into the lower stratosphere coinciding with the peak of the SSW event. In addition, the GEOS-5 5-day forecasts accurately predicted the major SSW of January 2013 as well as the upper tropospheric disturbances responsible for the warming. The overall success of the 5-day forecasts provides motivation to produce regular 10-day forecasts with GEOS-5, to better support studies of stratosphere-troposphere interaction.

  5. Extracting gravity wave parameters during the September 2002 Southern Hemisphere major sudden stratospheric warming using a SANAE imaging riometer

    Mbatha, N. [South African National Space Agency, Hermanus (South Africa). Space Science; KwaZulu-Natal Univ., Durban (South Africa). School of Chemistry and Physics; Sivakumar, V. [KwaZulu-Natal Univ., Durban (South Africa). School of Chemistry and Physics; Bencherif, H. [La Reunion Univ. UMR 8105 CNRS, Saint-Denis (France). Lab. de l' Atmosphere et des Cyclones; Malinga, S. [South African National Space Agency, Hermanus (South Africa). Space Science

    2013-11-01

    Using absorption data measured by imaging riometer for ionospheric studies (IRIS) located at the South Africa National Antarctic Expedition (SANAE), Antarctica (72 S, 3 W), we extracted the parameters of gravity waves (GW) of periods between 40 and 50 min during late winter/ spring of the year 2002, a period of the unprecedented major sudden stratospheric warming (SSW) in the Southern Hemisphere middle atmosphere. During this period, an unprecedented substantial increase of temperature by about 25-30K throughout the stratosphere was observed. During the period of the occurrence of the major stratospheric warming, there was a reduction of both the GW horizontal phase speeds and the horizontal wavelengths at 90 km. The GW phase speeds and horizontal wavelengths were observed to reach minimum values of about 7ms{sup -1} and 19 km, respectively, while during the quiet period the average value of the phase speed and horizontal wavelength was approximately 23ms{sup -1} and 62 km, respectively. The observed event is discussed in terms of momentum flux and also a potential interaction of gravity waves, planetary waves and mean circulation.

  6. Do minor sudden stratospheric warmings in the Southern Hemisphere (SH) impact coupling between stratosphere and mesosphere-lower thermosphere (MLT) like major warmings?

    Eswaraiah, S.; Kim, Yong Ha; Liu, Huixin; Ratnam, M. Venkat; Lee, Jaewook

    2017-08-01

    We have investigated the coupling between the stratosphere and mesosphere-lower thermosphere (MLT) in the Southern Hemisphere (SH) during 2010 minor sudden stratospheric warmings (SSWs). Three episodic SSWs were noticed in 2010. Mesospheric zonal winds between 82 and 92 km obtained from King Sejong Station (62.22°S, 58.78°W) meteor radar showed the significant difference from usual trend. The zonal wind reversal in the mesosphere is noticed a week before the associated SSW similar to 2002 major SSW. The mesosphere wind reversal is also noticed in "Specified Dynamics" version of Whole Atmosphere Community Climate Model (SD-WACCM) and Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA) simulations. The similar zonal wind weakening/reversal in the lower thermosphere between 100 and 140 km is simulated by GAIA. Further, we observed the mesospheric cooling in consistency with SSWs using Microwave Limb Sounder data. However, the GAIA simulations showed warming between 130 and 140 km after few days of SSW. Thus, the observation and model simulation indicate for the first time that the 2010 minor SSW also affects dynamics of the MLT region over SH in a manner similar to 2002 major SSW.[Figure not available: see fulltext.

  7. Satellite observations and modeling of transport in the upper troposphere through the lower mesosphere during the 2006 major stratospheric sudden warming

    W. H. Daffer

    2009-07-01

    Full Text Available An unusually strong and prolonged stratospheric sudden warming (SSW in January 2006 was the first major SSW for which globally distributed long-lived trace gas data are available covering the upper troposphere through the lower mesosphere. We use Aura Microwave Limb Sounder (MLS, Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS data, the SLIMCAT Chemistry Transport Model (CTM, and assimilated meteorological analyses to provide a comprehensive picture of transport during this event. The upper tropospheric ridge that triggered the SSW was associated with an elevated tropopause and layering in trace gas profiles in conjunction with stratospheric and tropospheric intrusions. Anomalous poleward transport (with corresponding quasi-isentropic troposphere-to-stratosphere exchange at the lowest levels studied in the region over the ridge extended well into the lower stratosphere. In the middle and upper stratosphere, the breakdown of the polar vortex transport barrier was seen in a signature of rapid, widespread mixing in trace gases, including CO, H2O, CH4 and N2O. The vortex broke down slightly later and more slowly in the lower than in the middle stratosphere. In the middle and lower stratosphere, small remnants with trace gas values characteristic of the pre-SSW vortex lingered through the weak and slow recovery of the vortex. The upper stratospheric vortex quickly reformed, and, as enhanced diabatic descent set in, CO descended into this strong vortex, echoing the fall vortex development. Trace gas evolution in the SLIMCAT CTM agrees well with that in the satellite trace gas data from the upper troposphere through the middle stratosphere. In the upper stratosphere and lower mesosphere, the SLIMCAT simulation does not capture the strong descent of mesospheric CO and H2O values into the reformed vortex; this poor CTM performance in the upper stratosphere and lower mesosphere results

  8. Observations of middle atmospheric H2O and O3 during the 2010 major sudden stratospheric warming by a network of microwave radiometers

    N. Kämpfer

    2012-08-01

    Full Text Available In this study, we present middle atmospheric water vapor (H2O and ozone (O3 measurements obtained by ground-based microwave radiometers at three European locations in Bern (47° N, Onsala (57° N and Sodankylä (67° N during Northern winter 2009/2010. In January 2010, a major sudden stratospheric warming (SSW occurred in the Northern Hemisphere whose signatures are evident in the ground-based observations of H2O and O3. The observed anomalies in H2O and O3 are mostly explained by the relative location of the polar vortex with respect to the measurement locations. The SSW started on 26 January 2010 and was most pronounced by the end of January. The zonal mean temperature in the middle stratosphere (10 hPa increased by approximately 25 Kelvin within a few days. The stratospheric vortex weakened during the SSW and shifted towards Europe. In the mesosphere, the vortex broke down, which lead to large scale mixing of polar and midlatitudinal air. After the warming, the polar vortex in the stratosphere split into two weaker vortices and in the mesosphere, a new, pole-centered vortex formed with maximum wind speed of 70 m s−1 at approximately 40° N. The shift of the stratospheric vortex towards Europe was observed in Bern as an increase in stratospheric H2O and a decrease in O3. The breakdown of the mesospheric vortex during the SSW was observed at Onsala and Sodankylä as a sudden increase in mesospheric H2O. The following large-scale descent inside the newly formed mesospheric vortex was well captured by the H2O observations in Sodankylä. In order to combine the H2O observations from the three different locations, we applied the trajectory mapping technique on our H2O observations to derive synoptic scale maps of the H2O distribution. Based on our observations and the 3-D wind field, this method allows determining the approximate development of the stratospheric and mesospheric polar vortex and demonstrates the potential of a network of ground

  9. Effects of the major sudden stratospheric warming event of 2009 on the subionospheric very low frequency/low frequency radio signals

    Pal, S.; Hobara, Y.; Chakrabarti, S. K.; Schnoor, P. W.

    2017-07-01

    This paper presents effects of the major sudden stratospheric warming (SSW) event of 2009 on the subionospheric very low frequency/low frequency (VLF/LF) radio signals propagating in the Earth-ionosphere waveguide. Signal amplitudes from four transmitters received by VLF/LF radio networks of Germany and Japan corresponding to the major SSW event are investigated for possible anomalies and atmospheric influence on the high- to middle-latitude ionosphere. Significant anomalous increase or decrease of nighttime and daytime amplitudes of VLF/LF signals by ˜3-5 dB during the SSW event have been found for all propagation paths associated with stratospheric temperature rise at 10 hPa level. Increase or decrease in VLF/LF amplitudes during daytime and nighttime is actually due to the modification of the lower ionospheric boundary conditions in terms of electron density and electron-neutral collision frequency profiles and associated modal interference effects between the different propagating waveguide modes during the SSW period. TIMED/SABER mission data are also used to investigate the upper mesospheric conditions over the VLF/LF propagation path during the same time period. We observe a decrease in neutral temperature and an increase in pressure at the height of 75-80 km around the peak time of the event. VLF/LF anomalies are correlated and in phase with the stratospheric temperature and mesospheric pressure variation, while minimum of mesospheric cooling shows a 2-3 day delay with maximum VLF/LF anomalies. Simulations of VLF/LF diurnal variation are performed using the well-known Long Wave Propagating Capability (LWPC) code within the Earth-ionosphere waveguide to explain the VLF/LF anomalies qualitatively.

  10. A vortex dynamics perspective on stratospheric sudden warmings

    Matthewman, N. J.

    2009-01-01

    A vortex dynamics approach is used to study the underlying mechanisms leading to polar vortex breakdown during stratospheric sudden warmings (SSWs). Observational data are used in chapter 2 to construct climatologies of the Arctic polar vortex structure during vortex-splitting and vortex-displacement SSWs occurring between 1958 and 2002. During vortex-splitting SSWs, polar vortex breakdown is shown to be typically independent of height (barotropic), whereas breakdown during vor...

  11. Vertical Wave Coupling associated with Stratospheric Sudden Warming Events analyzed in an Isentropic-Coordinate NWP Model.

    Bleck, R.; Sun, S.; Benjamin, S.; Brown, J. M.

    2017-12-01

    Two- to four-week predictions of stratospheric sudden warming events during the winter seasons of 1999-2014, carried out with a high-resolution icosahedral NWP model using potential temperature as vertical coordinate, are inspected for commonalities in the evolution of both minor and major warmings. Emphasis is on the evolution of the potential vorticity field at different levels in the stratosphere, as well as on the sign and magnitude of the vertical component of the Eliassen-Palm flux vector suggestive of wave forcing in either direction. Material is presented shedding light on the skill of the model (FIM, developed at NOAA/ESRL) in predicting stratospheric warmings generally 2 weeks in advance. With an icosahedral grid ideally suited for studying polar processes, and a vertical coordinate faithfully reproducing details in the evolution of the potential vorticity and EP flux vector fields, FIM is found to be a good tool for investigating the SSW mechanism.

  12. Analysis and Hindcast Experiments of the 2009 Sudden Stratospheric Warming in WACCMX+DART

    Pedatella, N. M.; Liu, H.-L.; Marsh, D. R.; Raeder, K.; Anderson, J. L.; Chau, J. L.; Goncharenko, L. P.; Siddiqui, T. A.

    2018-04-01

    The ability to perform data assimilation in the Whole Atmosphere Community Climate Model eXtended version (WACCMX) is implemented using the Data Assimilation Research Testbed (DART) ensemble adjustment Kalman filter. Results are presented demonstrating that WACCMX+DART analysis fields reproduce the middle and upper atmosphere variability during the 2009 major sudden stratospheric warming (SSW) event. Compared to specified dynamics WACCMX, which constrains the meteorology by nudging toward an external reanalysis, the large-scale dynamical variability of the stratosphere, mesosphere, and lower thermosphere is improved in WACCMX+DART. This leads to WACCMX+DART better representing the downward transport of chemical species from the mesosphere into the stratosphere following the SSW. WACCMX+DART also reproduces most aspects of the observed variability in ionosphere total electron content and equatorial vertical plasma drift during the SSW. Hindcast experiments initialized on 5, 10, 15, 20, and 25 January are used to assess the middle and upper atmosphere predictability in WACCMX+DART. A SSW, along with the associated middle and upper atmosphere variability, is initially predicted in the hindcast initialized on 15 January, which is ˜10 days prior to the warming. However, it is not until the hindcast initialized on 20 January that a major SSW is forecast to occur. The hindcast experiments reveal that dominant features of the total electron content can be forecasted ˜10-20 days in advance. This demonstrates that whole atmosphere models that properly account for variability in lower atmosphere forcing can potentially extend the ionosphere-thermosphere forecast range.

  13. Effect of Southern Hemisphere Sudden Stratospheric Warmings on Antarctica Mesospheric Tides: First Observational Study

    Eswaraiah, S.; Kim, Yong Ha; Lee, Jaewook; Ratnam, M. Vankat; Rao, S. V. B.

    2018-03-01

    We analyzed the structure and variability of observed winds and tides in the Antarctica mesosphere and lower thermosphere (MLT) during the 2002 major sudden stratospheric warming (SSW) and the 2010 minor SSWs. We noted the effect of SSW on the variability of MLT tides for the first time in the Southern Hemisphere, although it has been well recognized in the Northern Hemisphere. We utilized the winds measured by Rothera (68°S, 68°W) medium frequency radar and King Sejong Station (62.22°S, 58.78°W) meteor radar for estimating the tidal components (diurnal, semi-diurnal, and ter-diurnal) in the MLT region. The unusual behavior of diurnal tide (DT) and semidiurnal tide (SDT) was observed in 2002. Zonal SDT amplitudes were enhanced up to 27 m/s after 18 days from the associated SSW day. However, the meridional tidal amplitudes of both DT and SDT suddenly decreased during the peak SSW, and SDT amplitudes slightly increased to 18 m/s afterward. In the normal years, SDT amplitude stays below 15 m/s. During the 2010 SSW, SDT zonal amplitudes increased up to 40 m/s and 50 m/s at altitudes of 80 km and 90 km, respectively, 30 days after the associated SSW. Similar but weaker effect is noticed in the meridional components. The ter-diurnal tide does not show any significant variation during the SSW. The two SSWs offered a challenging issue to answer: why tidal amplitudes are enhanced with a delay after the SSW. The reasons for the delay are discussed in accordance with theoretical predictions.

  14. Nonmigrating tidal activity related to the sudden stratospheric warming in the Arctic winter of 2003/2004

    D. Pancheva

    2009-03-01

    Full Text Available This paper is focused on the nonmigrating tidal activity seen in the SABER/TIMED temperatures that is related to the major sudden stratospheric warming (SSW taking place in the Arctic winter of 2003/2004. The emphasis is on the nonmigrating diurnal tides observed in the stratosphere and lower mesosphere which is usually accepted to be insignificant in comparison with that in the upper mesosphere and thermosphere. By using different independent spectral methods we found a significant amplification in December–January of the following nonmigrating 24-h tides: zonally symmetric (s=0, eastward propagating with zonal wavenumber 1 (E1, and westward propagating with zonal wavenumbers 2 and 3 (W2 and W3 tides. It has been found that the double peak nonmigrating tidal amplifications located in the stratosphere (~40 km and in the lower mesosphere (~70 km are a consequence of the maintained hydrostatic relation. By detailed comparison of the evolution and spatial structure of the nonmigrating diurnal tides with those of the migrating diurnal tide and stationary planetary waves (SPWs evidence for a SPW-migrating tide interaction as a source of nonmigrating tides has been presented. Therefore, the nonmigrating 24-h tides turn out to be an important component of the middle atmosphere dynamics during the major SSW in the Arctic winter of 2003/2004.

  15. Impact of major volcanic eruptions on stratospheric water vapour

    M. Löffler

    2016-05-01

    Full Text Available Volcanic eruptions can have a significant impact on the Earth's weather and climate system. Besides the subsequent tropospheric changes, the stratosphere is also influenced by large eruptions. Here changes in stratospheric water vapour after the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991 are investigated with chemistry–climate model simulations. This study is based on two simulations with specified dynamics of the European Centre for Medium-Range Weather Forecasts Hamburg – Modular Earth Submodel System (ECHAM/MESSy Atmospheric Chemistry (EMAC model, performed within the Earth System Chemistry integrated Modelling (ESCiMo project, of which only one includes the long-wave volcanic forcing through prescribed aerosol optical properties. The results show a significant increase in stratospheric water vapour induced by the eruptions, resulting from increased heating rates and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as sources for the additional water vapour in the stratosphere. Additionally, volcanic influences on tropospheric water vapour and El Niño–Southern Oscillation (ENSO are evident, if the long-wave forcing is strong enough. Our results are corroborated by additional sensitivity simulations of the Mount Pinatubo period with reduced nudging and reduced volcanic aerosol extinction.

  16. The major stratospheric final warming in 2016: dispersal of vortex air and termination of Arctic chemical ozone loss

    G. L. Manney

    2016-12-01

    Full Text Available The 2015/16 Northern Hemisphere winter stratosphere appeared to have the greatest potential yet seen for record Arctic ozone loss. Temperatures in the Arctic lower stratosphere were at record lows from December 2015 through early February 2016, with an unprecedented period of temperatures below ice polar stratospheric cloud thresholds. Trace gas measurements from the Aura Microwave Limb Sounder (MLS show that exceptional denitrification and dehydration, as well as extensive chlorine activation, occurred throughout the polar vortex. Ozone decreases in 2015/16 began earlier and proceeded more rapidly than those in 2010/11, a winter that saw unprecedented Arctic ozone loss. However, on 5–6 March 2016 a major final sudden stratospheric warming ("major final warming", MFW began. By mid-March, the mid-stratospheric vortex split after being displaced far off the pole. The resulting offspring vortices decayed rapidly preceding the full breakdown of the vortex by early April. In the lower stratosphere, the period of temperatures low enough for chlorine activation ended nearly a month earlier than that in 2011 because of the MFW. Ozone loss rates were thus kept in check because there was less sunlight during the cold period. Although the winter mean volume of air in which chemical ozone loss could occur was as large as that in 2010/11, observed ozone values did not drop to the persistently low values reached in 2011.We use MLS trace gas measurements, as well as mixing and polar vortex diagnostics based on meteorological fields, to show how the timing and intensity of the MFW and its impact on transport and mixing halted chemical ozone loss. Our detailed characterization of the polar vortex breakdown includes investigations of individual offspring vortices and the origins and fate of air within them. Comparisons of mixing diagnostics with lower-stratospheric N2O and middle-stratospheric CO from MLS (long-lived tracers show rapid vortex erosion and

  17. Chemical and Dynamical Impacts of Stratospheric Sudden Warmings on Arctic Ozone Variability

    Strahan, S. E.; Douglass, A. R.; Steenrod, S. D.

    2016-01-01

    We use the Global Modeling Initiative (GMI) chemistry and transport model with Modern-Era Retrospective Analysis for Research and Applications (MERRA) meteorological fields to quantify heterogeneous chemical ozone loss in Arctic winters 2005-2015. Comparisons to Aura Microwave Limb Sounder N2O and O3 observations show the GMI simulation credibly represents the transport processes and net heterogeneous chemical loss necessary to simulate Arctic ozone. We find that the maximum seasonal ozone depletion varies linearly with the number of cold days and with wave driving (eddy heat flux) calculated from MERRA fields. We use this relationship and MERRA temperatures to estimate seasonal ozone loss from 1993 to 2004 when inorganic chlorine levels were in the same range as during the Aura period. Using these loss estimates and the observed March mean 63-90N column O3, we quantify the sensitivity of the ozone dynamical resupply to wave driving, separating it from the sensitivity of ozone depletion to wave driving. The results show that about 2/3 of the deviation of the observed March Arctic O3 from an assumed climatological mean is due to variations in O3 resupply and 13 is due to depletion. Winters with a stratospheric sudden warming (SSW) before mid-February have about 1/3 the depletion of winters without one and export less depletion to the midlatitudes. However, a larger effect on the spring midlatitude ozone comes from dynamical differences between warm and cold Arctic winters, which can mask or add to the impact of exported depletion.

  18. Variations of Kelvin waves around the TTL region during the stratospheric sudden warming events in the Northern Hemisphere winter

    Y. Jia

    2016-03-01

    Full Text Available Spatial and temporal variabilities of Kelvin waves during stratospheric sudden warming (SSW events are investigated by the ERA-Interim reanalysis data, and the results are validated by the COSMIC temperature data. A case study on an exceptionally large SSW event in 2009, and a composite analysis comprising 18 events from 1980 to 2013 are presented. During SSW events, the average temperature increases by 20 K in the polar stratosphere, while the temperature in the tropical stratosphere decreases by about 4 K. Kelvin wave with wave numbers 1 and 2, and periods 10–20 days, clearly appear around the tropical tropopause layer (TTL during SSWs. The Kelvin wave activity shows obvious coupling with the convection localized in the India Ocean and western Pacific (Indo-Pacific region. Detailed analysis suggests that the enhanced meridional circulation driven by the extratropical planetary wave forcing during SSW events leads to tropical upwelling, which further produces temperature decrease in the tropical stratosphere. The tropical upwelling and cooling consequently result in enhancement of convection in the equatorial region, which excites the strong Kelvin wave activity. In addition, we investigated the Kelvin wave acceleration to the eastward zonal wind anomalies in the equatorial stratosphere during SSW events. The composite analysis shows that the proportion of Kelvin wave contribution ranges from 5 to 35 % during SSWs, much larger than in the non-SSW mid-winters (less than 5 % in the stratosphere. However, the Kelvin wave alone is insufficient to drive the equatorial eastward zonal wind anomalies during the SSW events, which suggests that the effects of other types of equatorial waves may not be neglected.

  19. The response of Antarctica MLT region for the recent Sudden Stratospheric Warming (SSW) over Southern Hemisphere (SH): An overview

    Eswaraiah, S.; Kim, Y.; Lee, J.; Kim, J. H.; Venkat Ratnam, M.; Riggin, D. M.; Vijaya Bhaskara Rao, S.

    2017-12-01

    A minor Sudden Stratospheric Warming (SSW) was noticed in the southern hemisphere (SH) during the September (day 259) 2010 along with two episodic warmings in early August (day 212) and late October (day 300) 2010. The signature of the mesosphere and lower thermosphere (MLT) response was detected using the ground based and space borne observations along with the model predictions. The changes in the mesosphere wind field were studied from the observations of both meteor radar and MF radar located at King Sejong Station (62.22°S, 58.78°W) and Rothera (68oS, 68oW), Antarctica, respectively. The zonal winds in the mesosphere reversed approximately a week before the September SSW occurrence. We have also analyzed the MLT tides using both the radars and noticed strong enhancement of semi-diurnal tide (SDT) a few days later the cessation of 2010 SSW. We note the similar enhancement during the 2002 major SSW. Specifically, the SDT amplitude enhancement is greater for the 2010 SSW than 2002 SSW. We found that strong 14-16 day PWs prevailed prior to the 2010 minor SSW and disappeared suddenly after the SSW in the mesosphere by generating the quasi-secondary waves of periodicity 3-9 days. The mesosphere wind reversal is also noticed in "Specified Dynamics" version of Whole Atmosphere Community Climate Model (SD-WACCM) and Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA) simulations. The similar zonal wind weakening/reversal in the lower thermosphere between 100 and 140 km are simulated by GAIA. Further, we observed the mesospheric cooling in consistency with SSWs using Microwave Limb Sounder (MLS) data. However, the GAIA simulations showed warming between 130 and 140 km after few days of SSW. Thus, the observation and model simulation indicate for the first time that the 2010 minor SSW also affects dynamics of the MLT region over SH in a manner similar to the 2002 major SSW.

  20. Remittances as aid following major sudden-onset natural disasters.

    Bragg, Catherine; Gibson, Glenn; King, Haleigh; Lefler, Ashley A; Ntoubandi, Faustin

    2018-01-01

    There is a general assumption, based on macroeconomic studies, that remittances will rise following major sudden-onset natural disasters. This is confirmed by a few assessments involving country-specific research, and usually short-term data. This study, questioning conventional wisdom, reviewed and graphed annual and quarterly remittance flows using International Monetary Fund and World Bank data from 2000-14 for 12 countries that confronted 18 major natural disasters. It found that, regardless of event type, annual remittances rose steadily from 2000-14 except for after the 2008-09 financial crisis. Post disaster, there was a quarterly increase in the majority of cases (confirming previous research) but there was seldom an annual increase in the year of the disaster greater than the average annual increase in 2000-14. It appears that remittance senders rush to provide assistance after a natural disaster, but since their own financial situation has not changed, the immediate increase is compensated by a later decrease. © 2018 The Author(s). Disasters © Overseas Development Institute, 2018.

  1. Dynamics of 2013 Sudden Stratospheric Warming event and its impact on cold weather over Eurasia: Role of planetary wave reflection.

    Nath, Debashis; Chen, Wen; Zelin, Cai; Pogoreltsev, Alexander Ivanovich; Wei, Ke

    2016-04-07

    In the present study, we investigate the impact of stratospheric planetary wave reflection on tropospheric weather over Central Eurasia during the 2013 Sudden Stratospheric Warming (SSW) event. We analyze EP fluxes and Plumb wave activity fluxes to study the two and three dimensional aspects of wave propagation, respectively. The 2013 SSW event is excited by the combined influence of wavenumber 1 (WN1) and wavenumber 2 (WN2) planetary waves, which makes the event an unusual one and seems to have significant impact on tropospheric weather regime. We observe an extraordinary development of a ridge over the Siberian Tundra and the North Pacific during first development stage (last week of December 2012) and later from the North Atlantic in the second development stage (first week of January 2013), and these waves appear to be responsible for the excitation of the WN2 pattern during the SSW. The wave packets propagated upward and were then reflected back down to central Eurasia due to strong negative wind shear in the upper stratospheric polar jet, caused by the SSW event. Waves that propagated downward led to the formation of a deep trough over Eurasia and brought extreme cold weather over Kazakhstan, the Southern part of Russia and the Northwestern part of China during mid-January 2013.

  2. Major life events as potential triggers of sudden cardiac arrest.

    Wicks, April F; Lumley, Thomas; Lemaitre, Rozenn N; Sotoodehnia, Nona; Rea, Thomas D; McKnight, Barbara; Strogatz, David S; Bovbjerg, Viktor E; Siscovick, David S

    2012-05-01

    We investigated the risk of sudden cardiac arrest in association with the recent loss of, or separation from, a family member or friend. Our case-crossover study included 490 apparently healthy married residents of King County, Washington, who suffered sudden cardiac arrest between 1988 and 2005. We compared exposure to spouse-reported family/friend events occurring ≤ 1 month before sudden cardiac arrest with events occurring in the previous 5 months. We evaluated potential effect modification by habitual vigorous physical activity. Recent family/friend events were associated with a higher risk of sudden cardiac arrest (odds ratio [OR] = 1.6; 95% confidence interval [CI] = 1.1-2.4). ORs for cases with and without habitual vigorous physical activity were 1.1 (0.6-2.2) and 2.0 (1.2-3.1), respectively (interaction P = 0.02). These results suggest family/friend events may trigger sudden cardiac arrest and raise the hypothesis that habitual vigorous physical activity may lower susceptibility to these potential triggers.

  3. Variabilities of mesospheric tides and equatorial electrojet strength during major stratospheric warming events

    S. Sridharan

    2009-11-01

    Full Text Available The present study demonstrates the relationship between the high latitude northern hemispheric major sudden stratospheric warming (SSW events and the reversal in the afternoon equatorial electrojet (EEJ, often called the counter-electrojet (CEJ, during the winter months of 1998–1999, 2001–2002, 2003–2004 and 2005–2006. As the EEJ current system is driven by tidal winds, an investigation of tidal variabilities in the MF radar observed zonal winds during the winters of 1998–1999 and 2005–2006 at 88 km over Tirunelveli, a site close to the magnetic equator, shows that there is an enhancement of semi-diurnal tidal amplitude during the days of a major SSW event and a suppression of the same immediately after the event. The significance of the present results lies in demonstrating the latitudinal coupling between the high latitude SSW phenomenon and the equatorial ionospheric current system with clear evidence for major SSW events influencing the day-to-day variability of the CEJ.

  4. Travelling Ionospheric Disturbances Observed During Sudden Stratospheric Warming, Equinox and Solstice Periods with Kharkiv and Millstone Hill Incoherent Scatter Radars

    Goncharenko, L. P.; Panasenko, S.; Aksonova, K.; Erickson, P. J.; Domnin, I. F.

    2016-12-01

    Travelling ionospheric disturbances (TIDs) play a key role in the coupling of different ionospheric regions through momentum an energy transfer. They are thought to be mostly associated with atmospheric gravity waves and are known to strongly affect radio propagation conditions. The incoherent scatter (IS) method enables TIDs detection in such ionospheric parameters as electron density, ion and electron temperatures, and plasma velocity along radar beam, thus providing critical information needed to examine different hypothesis about association of TIDs with their sources. In 2016, several joint measuring campaigns were conducted using Kharkiv (49.6 N, 36.4 E) and Millstone Hill (42.6 N, 288.5 E) IS radars. These campaigns covered the periods of sudden stratospheric warnings (SSW) in February, vernal equinox and summer solstice. For consistency, the data acquired by radars were processed using the same data analysis methods. The results obtained show the TIDs to be detected throughout all observation intervals in February measurements. The differences found in the behavior of TIDs over Kharkiv and Millstone Hill sites may be partially explained by variations in stratospheric wind velocity vectors during SSW period. As for March equinox and June solstice, the prevailing TIDs are observed near solar terminators. Their periods vary mostly in the range of 40 - 80 minutes, relative amplitudes are about 0.05 - 0.3 of the background electron density, and the maximum values are observed at the heights of 200 - 250 km. Systematic long-term observations of wave processes in the ionosphere with multiple IS facilities can reveal interhemispheric variability in TID parameters, give better understanding the mechanisms of TID generation and propagation, and improve regional and global ionospheric models.

  5. Polar-night O3, NO2 and NO3 distributions during sudden stratospheric warmings in 2003–2008 as seen by GOMOS/Envisat

    E. Kyrölä

    2012-01-01

    Full Text Available Sudden stratospheric warmings (SSW are large-scale transient events, which have a profound effect on the Northern Hemisphere stratospheric circulation in winter. During the SSW events the temperature in stratosphere increases by several tens of Kelvins and zonal winds decelerate or reverse in direction. Changes in temperature and dynamics significantly affect the chemical composition of the middle atmosphere. In this paper, the response of the middle-atmosphere trace gases during several sudden stratospheric warmings in 2003–2008 is investigated using measurements from the GOMOS (Global Ozone Monitoring by Occultation of Stars instrument on board the Envisat satellite. We have analyzed spatial and temporal changes of NO2 and NO3 in the stratosphere, and of ozone in the whole middle atmosphere. To facilitate our analyses, we have used the temperature profiles data from the MLS (Microwave Limb Sounder instrument on board the Aura satellite, as well as simulations by the FinROSE chemistry-transport model and the Sodankylä Ion and Neutral Chemistry model (SIC. NO3 observations in the polar winter stratosphere during SSWs are reported for the first time. Changes in chemical composition are found not to be restricted to the stratosphere, but to extend to mesosphere and lower thermosphere. They often exhibit a complicated structure, because the distribution of trace gases is affected by changes in both chemistry and dynamics. The tertiary ozone maximum in the mesosphere often disappears with the onset of SSW, probably because of strong mixing processes. The strong horizontal mixing with outside-vortex air is well observed also in NO2 data, especially in cases of enhanced NO2 inside the polar vortex before SSW. Almost in all of the considered events, ozone near the secondary maximum decreases with onset of SSW. In both experimental data and FinROSE modelling, ozone changes are positively correlated with temperature changes in the lower stratosphere

  6. An Investigation of the Ionospheric Disturbances Due to the 2014 Sudden Stratospheric Warming Events Over Brazilian Sector

    de Jesus, R.; Batista, I. S.; Jonah, O. F.; de Abreu, A. J.; Fagundes, P. R.; Venkatesh, K.; Denardini, C. M.

    2017-11-01

    The present study investigates the ionospheric F region response in the Brazilian sector due to sudden stratospheric warming (SSW) events of 2014. The data used for this work are obtained from GPS receivers and magnetometer measurements during day of year (DOY) 01 to 120, 2014 at different stations in the equatorial and low-latitude regions in the Brazilian sector. In addition, the data obtained from Communication/Navigation Outage Forecasting System satellites during DOY 01 to 75 of 2014 are used. The main novelty of this research is that, during the 2014 SSW events, daytime vertical total electron content (VTEC) shows a strong increase on the order of about 23% and 11% over the equatorial and low-latitude regions, respectively. We also observed that the nighttime VTEC (SSW days) is increased by 8% and 33% over equatorial and low-latitude regions, respectively. The magnetometer measurements show a strong counterelectrojet during the SSW days. The results show an amplification of the 0.5 day and 2-16 day periods in the VTEC and equatorial electrojet during the SSWs. The occurrences of ionospheric irregularities during the SSW events are around 84% and 53% in the equatorial and low-latitude regions, respectively, which is less frequent when compared with those during the pre-SSW periods.

  7. Mie lidar and radiosonde observations at Gadanki (13.5°N, 79.2°E) during sudden stratospheric warming of 2009

    Sridharan, S.; Raghunath, K.; Sathishkumar, S.; Nath, D.

    2011-03-01

    During a major sudden stratospheric warming event (21-27 January 2009), Mie-lidar observations at Gadanki (13.5°N, 79.2°E) show persistent occurrence of cirrus clouds. Outgoing long-wave radiation averaged for 70°E-90°E, decreases to a low value (170 W/m2) on 27 January 2009 over equator indicating deep convection. The zonal mean ERA-Interim data reveal large northward and upward circulation over equatorial upper troposphere. The latitude-longitude map of ERA-Interim zonal mean potential vorticity (PV) indicates two tongues of high PV emanating from polar latitudes and extending further down to equator. Radiosonde observations at Gadanki show the presence of ∼40% relative humidity at 11-13 km and lower tropopause temperature. It is inferred that the tropical circulation change due to PV intrusion leads to deep convection, which along with high humidity and low tropopause temperature leading to the formation of persistent cirrus clouds, the occurrence frequency of which is normally less during winter season over Gadanki.

  8. Transport of mesospheric H2O during and after the stratospheric sudden warming of January 2010: observation and simulation

    A. K. Smith

    2012-06-01

    Full Text Available The transportable ground based microwave radiometer MIAWARA-C monitored the upper stratospheric and lower mesospheric (USLM water vapor distribution over Sodankylä, Finland (67.4° N, 26.6° E from January to June 2010. At the end of January, approximately 2 weeks after MIAWARA-C's start of operation in Finland, a stratospheric sudden warming (SSW disturbed the circulation of the middle atmosphere. Shortly after the onset of the SSW water vapor rapidly increased at pressures between 1 and 0.01 hPa. Backward trajectory calculations show that this strong increase is due to the breakdown of the polar vortex and meridional advection of subtropical air to the Arctic USLM region. In addition, mesospheric upwelling in the course of the SSW led to an increase in observed water vapor between 0.1 and 0.03 hPa. After the SSW MIAWARA-C observed a decrease in mesospheric water vapor volume mixing ratio (VMR due to the subsidence of H2O poor air masses in the polar region. Backward trajectory analysis and the zonal mean water vapor distribution from the Microwave Limb Sounder on the Aura satellite (Aura/MLS indicate the occurrence of two regimes of circulation from 50° N to the North Pole: (1 regime of enhanced meridional mixing throughout February and (2 regime of an eastward circulation in the USLM region reestablished between early March and the equinox. The polar descent rate determined from MIAWARA-C's 5.2 parts per million volume (ppmv isopleth is 350 ± 40 m d−1 in the pressure range 0.6 to 0.06 hPa between early February and early March. For the same time interval the descent rate in the same pressure range was determined using Transformed Eulerian Mean (TEM wind fields simulated by means of the Whole Atmosphere Community Climate Model with Specified Dynamics (SD-WACCM. The average value of the SD-WACCM TEM vertical wind is 325 m d−1 while the along trajectory vertical displacement is 335 m d−1. The similar descent rates found indicate good

  9. Relationship between lunar tidal enhancements in the equatorial electrojet and tropospheric eddy heat flux during stratospheric sudden warmings

    Siddiqui, T. A.; Yamazaki, Y.; Stolle, C.; Lühr, H.; Matzka, J.

    2017-12-01

    A number of studies in recent years have reported about the lunar tidal enhancements in the equatorial electrojet (EEJ) from ground- and space-based magnetometer measurements during stratospheric sudden warming (SSW) events. In this study, we make use of the ground magnetometer recordings at Huancayo observatory in Peru for the years 1978 - 2013 to derive a relationship between the lunar tidal enhancements in the EEJ and tropospheric eddy heat fluxes at 100 hPa during the SSW events. Tropospheric eddy heat fluxes are used to quantify the amount of wave activity entering the stratosphere. Anomalously large upward wave activity is known to precede the polar vortex breakdown during SSWs. We make use of the superposed epoch analysis method to determine the temporal relations between lunar tidal enhancements and eddy heat flux anomalies during SSWs, in order to demonstrate the causal relationship between these two phenomena. We also compare the lunar tidal enhancements and eddy heat flux anomalies for vortex split and for vortex displaced SSWs. It is found that larger lunar tidal enhancements are recorded for vortex split events, as compared to vortex displaced events. This confirms earlier observation; larger heat flux anomalies are recorded during vortex split SSW events than the heat flux anomalies during vortex displaced SSW events. Further, the temporal relations of lunar tidal enhancements in the EEJ have been compared separately for both the QBO phases and with the phases of the moon with respect to the central epoch of SSWs by means of the superposed epoch analysis approach. The EEJ lunar tidal enhancements in the east phase of QBO are found to be larger than the lunar tidal enhancements in the west phase of QBO. The phase of moon relative to the central SSW epoch also affects the lunar tidal enhancement in the EEJ. It is found that the lunar tidal enhancements are significantly larger when the day of new or full moon lies near the central SSW epoch, as compared

  10. Equatorial electrodynamics and neutral background in the Asian sector during the 2009 stratospheric sudden warming

    Liu, Huixin; Yamamoto, Mamoru; Ram, S. Tulasi

    2011-01-01

    Using ground observations of total electron content (TEC) and equatorial electrojet (EEJ) in the Asian sector, along with plasma and neutral densities obtained from the CHAMP satellite, we investigate the ionospheric electrodynamics and neutral background in this longitude sector during the major...... perturbation possesses a significant hemispheric asymmetry in terms of onset date and magnitude. It starts on the same day as the SSW peak in the Northern Hemisphere but 2 days later in the Southern Hemisphere. Its magnitude is twice as strong in the north than in the south. Third, strong counter electrojet...... occurs in the afternoon, following the strengthening of the eastward EEJ in the morning. Fourth, semidiurnal perturbation in both TEC and EEJ possesses a phase shift, at a rate of about 0.7 h/day. Comparisons with results reported in the Peruvian sector reveal clear longitude dependence in the amplitude...

  11. Statistical characteristics of sudden stratospheric warming as observed over the observatoire de Haute Provence (44°N, 6°E) during the 1981-2001 period

    Sivakumar, V

    2006-04-01

    Full Text Available of stratospheric sudden warming as observed over the Observatoire de Haute Provence (44°N, 6°E) during the period 1981-2001 D.V. Acharyulu, V. Sivakumar*, H. Bencherif, B. Morel, Laboratoire de l’Atmosphère et des Cyclones (LACy), CNRS–UMR 8105, Université de... La Réunion, FRANCE. * Also at National Laser Centre, Council for Scientific and Industrial Research (CSIR), Pretoria, SOUTH AFRICA. A. Hauchecorne Service d’Aéronomie, CNRS, Paris, FRANCE. D.N. Rao National Atmosphere Research Laboratory...

  12. Maximum Expected Wall Heat Flux and Maximum Pressure After Sudden Loss of Vacuum Insulation on the Stratospheric Observatory for Infrared Astronomy (SOFIA) Liquid Helium (LHe) Dewars

    Ungar, Eugene K.

    2014-01-01

    The aircraft-based Stratospheric Observatory for Infrared Astronomy (SOFIA) is a platform for multiple infrared observation experiments. The experiments carry sensors cooled to liquid helium (LHe) temperatures. A question arose regarding the heat input and peak pressure that would result from a sudden loss of the dewar vacuum insulation. Owing to concerns about the adequacy of dewar pressure relief in the event of a sudden loss of the dewar vacuum insulation, the SOFIA Program engaged the NASA Engineering and Safety Center (NESC). This report summarizes and assesses the experiments that have been performed to measure the heat flux into LHe dewars following a sudden vacuum insulation failure, describes the physical limits of heat input to the dewar, and provides an NESC recommendation for the wall heat flux that should be used to assess the sudden loss of vacuum insulation case. This report also assesses the methodology used by the SOFIA Program to predict the maximum pressure that would occur following a loss of vacuum event.

  13. Rayleigh LiDAR investigation of stratospheric sudden warming over a low latitude station, Gadanki (13.5ºN; 79.2ºE) – a statistical study

    Charyulu, DV

    2007-08-01

    Full Text Available In this paper, the authors report the statistical characteristics of Stratospheric Sudden Warming (SSW) events observed over a low latitude station, Gadanki; 13.5°N, 79.2°E. The study uses 7 years (1998 to 2004) of quasi-continuous nighttime Li...

  14. 20-year LiDAR observations of stratospheric sudden warming over a mid-latitude site, Observatoire de Haute Provence (44°N, 6°E): Case study and statistical characteristics

    Charyulu, DV

    2007-11-01

    Full Text Available The present study delineates the characteristics of Stratospheric Sudden Warming (SSW) events observed over the Observatoire de Haute Provence (OHP: 44°N, 6°E). The study uses 20 years of Rayleigh LiDAR temperature measurements for the 1982...

  15. Variabilities of Low-Latitude Migrating and Nonmigrating Tides in GPS-TEC and TIMED-SABER Temperature During the Sudden Stratospheric Warming Event of 2013

    Sridharan, S.

    2017-10-01

    The Global Positioning System deduced total electron content (TEC) data at 15°N (geomagnetic), which is the crest region of equatorial ionization anomaly, are used to study tidal variabilities during the 2013 sudden stratospheric warming (SSW) event. The results from space-time spectral analysis reveal that the amplitudes of migrating diurnal (DW1) and semidiurnal (SW2) tides are larger than those of nonmigrating tides. After the SSW onset, the amplitudes of DW1, SW2, SW1, and DS0 increase. Moreover, they show 16 day variations similar to the periodicity of the high-latitude stratospheric planetary wave (PW), suggesting that the nonmigrating tides (SW1 and DS0) are possibly generated due to nonlinear interaction of migrating tides with PW. Similar spectral analysis on temperature at 10°N obtained from the Sounding of Atmosphere by Broadband Emission Radiometry (SABER) shows that the SW2 enhances at stratospheric heights and the SW2 is more dominant at 80-90 km, but its amplitude decreases around 100 km. The amplitudes of nonmigrating tides become comparable to those of SW2 around 100 km, and their contribution becomes increasingly important at higher heights. This suggests that the nonlinear interaction between migrating tides and PW occurs at low-latitude upper mesospheric heights, as SW2 exhibits 16 day periodicity in SABER temperature at 100 km as observed in TEC. Besides, it is observed that the eastward propagating tides are less dominant than westward propagating tides in both TEC and SABER temperatures.

  16. Rayleigh lidar observations of enhanced stratopause temperature over Gadanki (13.5° N, 79.2° E) during major stratospheric warming in 2006

    Sridharan, S.; Sathishkumar, S.; Raghunath, K.

    2009-01-01

    Rayleigh lidar observations of temperature structure and gravity wave activity were carried out at Gadanki (13.5° N, 79.2° E) during January-February 2006. A major stratospheric warming event occurred at high latitude during the end of January and early February. There was a sudden enhancement in the stratopause temperature over Gadanki coinciding with the date of onset of the major stratospheric warming event which occurred at high latitudes. The temperature enhancement persisted even after the end of the high latitude major warming event. During the same time, the UKMO (United Kingdom Meteorological Office) zonal mean temperature showed a similar warming episode at 10° N and cooling episode at 60° N around the region of stratopause. This could be due to ascending (descending) motions at high (low) latitudes above the critical level of planetary waves, where there was no planetary wave flux. The time variation of the gravity wave potential energy computed from the temperature perturbations over Gadanki shows variabilities at planetary wave periods, suggesting a non-linear interaction between gravity waves and planetary waves. The space-time analysis of UKMO temperature data at high and low latitudes shows the presence of similar periodicities of planetary wave of zonal wavenumber 1.

  17. Rayleigh lidar observations of enhanced stratopause temperature over Gadanki (13.5° N, 79.2° E during major stratospheric warming in 2006

    S. Sridharan

    2009-01-01

    Full Text Available Rayleigh lidar observations of temperature structure and gravity wave activity were carried out at Gadanki (13.5° N, 79.2° E during January–February 2006. A major stratospheric warming event occurred at high latitude during the end of January and early February. There was a sudden enhancement in the stratopause temperature over Gadanki coinciding with the date of onset of the major stratospheric warming event which occurred at high latitudes. The temperature enhancement persisted even after the end of the high latitude major warming event. During the same time, the UKMO (United Kingdom Meteorological Office zonal mean temperature showed a similar warming episode at 10° N and cooling episode at 60° N around the region of stratopause. This could be due to ascending (descending motions at high (low latitudes above the critical level of planetary waves, where there was no planetary wave flux. The time variation of the gravity wave potential energy computed from the temperature perturbations over Gadanki shows variabilities at planetary wave periods, suggesting a non-linear interaction between gravity waves and planetary waves. The space-time analysis of UKMO temperature data at high and low latitudes shows the presence of similar periodicities of planetary wave of zonal wavenumber 1.

  18. First results of warm mesospheric temperature over Gadanki (13.5°N, 79.2°E) during the sudden stratospheric warming of 2009

    Sridharan, S.; Raghunath, K.; Sathishkumar, S.; Nath, D.

    2010-09-01

    Rayleigh lidar observations at Gadanki (13.5°N, 79.2°E) show an enhancement of the nightly mean temperature by 10-15 K at altitudes 70-80 km and of gravity wave potential energy at 60-70 km during the 2009 major stratospheric warming event. An enhanced quasi-16-day wave activity is observed at 50-70 km in the wavelet spectrum of TIMED-SABER temperatures, possibly due to the absence of a critical level in the low-latitude stratosphere because of less westward winds caused by this warming event. The observed low-latitude mesospheric warming could be due to wave breaking, as waves are damped at 80 km.

  19. Impact of non-migrating tides on the low latitude ionosphere during a sudden stratospheric warming event in January 2010

    McDonald, S. E.; Sassi, F.; Tate, J.; McCormack, J.; Kuhl, D. D.; Drob, D. P.; Metzler, C.; Mannucci, A. J.

    2018-06-01

    The lower atmosphere contributes significantly to the day-to-day variability of the ionosphere, especially during solar minimum conditions. Ionosphere/atmosphere model simulations that incorporate meteorology from data assimilation analysis products can be critically important for elucidating the physical processes that have substantial impact on ionospheric weather. In this study, the NCAR Whole Atmosphere Community Climate Model, extended version with specified dynamics (SD-WACCM-X) is coupled with an ionospheric model (Sami3 is Another Model of the Ionosphere) to study day-to-day variability in the ionosphere during January 2010. Lower atmospheric weather patterns are introduced into the SAMI3/SD-WACCM-X simulations using the 6-h Navy Operational Global Atmospheric Prediction System-Advanced Level Physics High Altitude (NOGAPS-ALPHA) data assimilation products. The same time period is simulated using the new atmospheric forecast model, the High Altitude Navy Global Environmental Model (HA-NAVGEM), a hybrid 4D-Var prototype data assimilation with the ability to produce meteorological fields at a 3-h cadence. Our study shows that forcing SD-WACCM-X with HA-NAVGEM better resolves the semidiurnal tides and introduces more day-to-day variability into the ionosphere than forcing with NOGAPS-ALPHA. The SAMI3/SD-WACCM-X/HA-NAVGEM simulation also more accurately captures the longitudinal variability associated with non-migrating tides in the equatorial ionization anomaly (EIA) region as compared to total electron content (TEC) maps derived from GPS data. Both the TEC maps and the SAMI3/SD-WACCM-X/HA-NAVGEM simulation show an enhancement in TEC over South America during 17-21 January 2010, which coincides with the commencement of a stratospheric warming event on 19 January 2010. Analysis of the SAMI3/SD-WACCM-X/HA-NAVGEM simulations indicates non-migrating tides (including DW4, DE2 and SW5) played a role during 17-21 January in shifting the phase of the wave-3 pattern in

  20. Air mass exchange across the polar vortex edge during a simulated major stratospheric warming

    G. Günther

    Full Text Available The dynamics of the polar vortex in winter and spring play an important role in explaining observed low ozone values. A quantification of physical and chemical processes is necessary to obtain information about natural and anthropogenic causes of fluctuations of ozone. This paper aims to contribute to answering the question of how permeable the polar vortex is. The transport into and out of the vortex ("degree of isolation" remains the subject of considerable debate. Based on the results of a three-dimensional mechanistic model of the middle atmosphere, the possibility of exchange of air masses across the polar vortex edge is investigated. Additionally the horizontal and vertical structure of the polar vortex is examined. The model simulation used for this study is related to the major stratospheric warming observed in February 1989. The model results show fair agreement with observed features of the major warming of 1989. Complex structures of the simulated polar vortex are illustrated by horizontal and vertical cross sections of potential vorticity and inert tracer. A three-dimensional view of the polar vortex enables a description of the vortex as a whole. During the simulation two vortices and an anticyclone, grouped together in a very stable tripolar structure, and a weaker, more amorphous anticyclone are formed. This leads to the generation of small-scale features. The results also indicate that the permeability of the vortex edges is low because the interior of the vortices remain isolated during the simulation.

  1. Air mass exchange across the polar vortex edge during a simulated major stratospheric warming

    G. Günther

    1995-07-01

    Full Text Available The dynamics of the polar vortex in winter and spring play an important role in explaining observed low ozone values. A quantification of physical and chemical processes is necessary to obtain information about natural and anthropogenic causes of fluctuations of ozone. This paper aims to contribute to answering the question of how permeable the polar vortex is. The transport into and out of the vortex ("degree of isolation" remains the subject of considerable debate. Based on the results of a three-dimensional mechanistic model of the middle atmosphere, the possibility of exchange of air masses across the polar vortex edge is investigated. Additionally the horizontal and vertical structure of the polar vortex is examined. The model simulation used for this study is related to the major stratospheric warming observed in February 1989. The model results show fair agreement with observed features of the major warming of 1989. Complex structures of the simulated polar vortex are illustrated by horizontal and vertical cross sections of potential vorticity and inert tracer. A three-dimensional view of the polar vortex enables a description of the vortex as a whole. During the simulation two vortices and an anticyclone, grouped together in a very stable tripolar structure, and a weaker, more amorphous anticyclone are formed. This leads to the generation of small-scale features. The results also indicate that the permeability of the vortex edges is low because the interior of the vortices remain isolated during the simulation.

  2. Impact of Sudden Stratospheric Warming of 2009 on the Equatorial and Low-Latitude Ionosphere of the Indian Longitudes: A Case Study

    Yadav, Sneha; Pant, Tarun K.; Choudhary, R. K.; Vineeth, C.; Sunda, Surendra; Kumar, K. K.; Shreedevi, P. R.; Mukherjee, S.

    2017-10-01

    Using the equatorial electrojet (EEJ)-induced surface magnetic field and total electron content (TEC) measurements, we investigated the impact of the sudden stratospheric warming (SSW) of January 2009 on the equatorial electrodynamics and low-latitude ionosphere over the Indian longitudes. Results indicate that the intensity of EEJ and the TEC over low latitudes (extending up to 30°N) exhibit significant perturbations during and after the SSW peak. One of the interesting features is the deviation of EEJ and TEC from the normal quiet time behavior well before the onset of the SSW. This is found to coincide with the beginning of enhanced planetary wave (PW) activity over high latitudes. The substantial amplification of the semidiurnal perturbation after the SSW peak is seen to be coinciding with the onset of new and full moons. The response of TEC to SSW is found to be latitude dependent as the near-equatorial (NE) stations show the semidiurnal perturbation only after the SSW peak. Another notable feature is the presence of reduced ionization in the night sector over the NE and low-latitude regions, appearing as an "ionization hole," well after the SSW peak. The investigation revealed the existence of a quasi 16 day wave in the TEC over low latitudes similar to the one present in the EEJ strength. These results have been discussed in the light of changes in the dynamical background because of enhanced PW activity during SSW, which creates favorable conditions for the amplification of lunar tides, and their subsequent interaction with the lower thermospheric tidal fields.

  3. Major Influence of Tropical Volcanic Eruptions on the Stratospheric Aerosol Layer During the Last Decade

    Vernier, Jean-Paul; Thomason, Larry W.; Pommereau, J.-P.; Bourassa, Adam; Pelon, Jacques; Garnier, Anne; Hauchecorne, A.; Blanot, L.; Trepte, Charles R.; Degenstein, Doug; hide

    2011-01-01

    The variability of stratospheric aerosol loading between 1985 and 2010 is explored with measurements from SAGE II, CALIPSO, GOMOS/ENVISAT, and OSIRIS/Odin space-based instruments. We find that, following the 1991 eruption of Mount Pinatubo, stratospheric aerosol levels increased by as much as two orders of magnitude and only reached background levels between 1998 and 2002. From 2002 onwards, a systematic increase has been reported by a number of investigators. Recently, the trend, based on ground-based lidar measurements, has been tentatively attributed to an increase of SO2 entering the stratosphere associated with coal burning in Southeast Asia. However, we demonstrate with these satellite measurements that the observed trend is mainly driven by a series of moderate but increasingly intense volcanic eruptions primarily at tropical latitudes. These events injected sulfur directly to altitudes between 18 and 20 km. The resulting aerosol particles are slowly lofted into the middle stratosphere by the Brewer-Dobson circulation and are eventually transported to higher latitudes.

  4. Rapid meridional transport of tropical airmasses to the Arctic during the major stratospheric warming in January 2003

    A. Kleinböhl

    2005-01-01

    Full Text Available We present observations of unusually high values of ozone and N2O in the middle stratosphere that were observed by the airborne submillimeter radiometer ASUR in the Arctic. The observations took place in the meteorological situation of a major stratospheric warming that occurred in mid-January 2003 and was dominated by a wave 2 event. On 23 January 2003 the observed N2O and O3 mixing ratios around 69° N in the middle stratosphere reached maximum values of ~190 ppb and ~10 ppm, respectively. The similarities of these N2O profiles in a potential temperature range between 800 and 1200 K with N2O observations around 20° N on 1 March 2003 by the same instrument suggest that the observed Arctic airmasses were transported from the tropics quasi-isentropically. This is confirmed by 5-day back trajectory calculations which indicate that the airmasses between about 800 and 1000 K had been located around 20° N 3–5 days prior to the measurement in the Arctic. Calculations with a linearized ozone chemistry model along calculated as well as idealized trajectories, initialized with the low-latitude ASUR ozone measurements, give reasonable agreement with the Arctic ozone measurement by ASUR. PV distributions suggest that these airmasses did not stay confined in the Arctic region which makes it unlikely that this dynamical situation lead to the formation of dynamically caused pockets of low ozone.

  5. Evidence for Dynamical Coupling of Stratosphere-MLT during recent minor Stratospheric Warmings in Southern Hemisphere

    Kim, Yongha; Sunkara, Eswaraiah; Hong, Junseok; Ratnam, Venkat; Chandran, Amal; Rao, Svb; Riggin, Dennis

    2015-04-01

    The mesosphere-lower thermosphere (MLT) response to extremely rare minor sudden stratospheric warming (SSW) events was observed for the first time in the southern hemisphere (SH) during 2010 and is investigated using the meteor radar located at King Sejong Station (62.22°S, 58.78°W), Antarctica. Three episodic SSWs were noticed from early August to late October 2010. The mesospheric wind field was found to significantly differ from normal years due to enhanced planetary wave (PW) activity before the SSWs and secondary PWs in the MLT afterwards. The zonal winds in the mesosphere reversed approximately a week before the SSW occurrence in the stratosphere as has been observed 2002 major SSW, suggesting the downward propagation of disturbance during minor SSWs as well. Signatures of mesospheric cooling (MC) in association with SSWs are found in the Microwave Limb Sounder (MLS) measurements. SD-WACCM simulations are able to produce these observed features.

  6. Gravitational separation of major atmospheric components observed in the stratosphere over Syowa Station, Antarctica, Kiruna, Sweden and Sanriku, Japan.

    Shigeyuki Ishidoya

    2010-12-01

    Full Text Available To investigate the gravitational separation of atmospheric components in the stratosphere, air samples collected using an aircraft during the Arctic Airborne Measurement Program 2002 (AAMP02 were analyzed for the O_2 N_2 ratios (δ(O_2 N_2, δ^N of N_2, δ^O of O_2 and Ar N_2 ratio (δ(Ar N_2. The relationship between observed stratospheric δ^N of N_2, δ^O of O_2 and δ(Ar N_2 over the Svalbard Islands and Barrow showed mass-dependent fractionation of atmospheric components in the stratosphere, which suggested that gravitational separation could be observable in the lowermost stratosphere inside the polar vortex. By examining the rates of change in δ(O_2 Nv and δ^C of CO_2 relative to the CO_2 concentration, such observed correlations were bound to be mainly attributable to upward propagation of their seasonal cycles produced in the troposphere and height-dependent air age as well as gravitational separation in the stratosphere. Air samples collected over Syowa Station, Antarctica, Kiruna, Sweden and Sanriku, Japan using balloon-borne cryogenic air samplers were analyzed for δ^N of Nv and δ^O of O_2. Strength of the gravitational separation was a function of latitude, showing the largest separation inside the polar vortex over Kiruna. It is suggested that information on increase of gravitational separation with height is useful in understanding the vertical transport of air masses in the stratosphere. By comparing the gravitational separations, mean age of air and N_2O concentration at two height intervals with N_2O concentrations > 125 ppb and < 45 ppb, the effect of descending air was found to be more significant over Kiruna than over Syowa Station and Sanriku. The variation in the gravitational separation with height is found to be weaker in the region with N_2O concentrations between 45 and 125 ppb than in other regions, which might suggest that vertical mixing of air occurred in this region.

  7. Stratospheric aerosols

    Rosen, J.; Ivanov, V.A.

    1993-01-01

    Stratospheric aerosol measurements can provide both spatial and temporal data of sufficient resolution to be of use in climate models. Relatively recent results from a wide range of instrument techniques for measuring stratospheric aerosol parameters are described. Such techniques include impactor sampling, lidar system sensing, filter sampling, photoelectric particle counting, satellite extinction-sensing using the sun as a source, and optical depth probing, at sites mainly removed from tropospheric aerosol sources. Some of these techniques have also had correlative and intercomparison studies. The main methods for determining the vertical profiles of stratospheric aerosols are outlined: lidar extinction measurements from satellites; impactor measurements from balloons and aircraft; and photoelectric particle counter measurements from balloons, aircraft, and rockets. The conversion of the lidar backscatter to stratospheric aerosol mass loading is referred to. Absolute measurements of total solar extinction from satellite orbits can be used to extract the aerosol extinction, and several examples of vertical profiles of extinction obtained with the SAGE satellite are given. Stratospheric mass loading can be inferred from extinction using approximate linear relationships but under restrictive conditions. Impactor sampling is essentially the only method in which the physical nature of the stratospheric aerosol is observed visually. Vertical profiles of stratospheric aerosol number concentration using impactor data are presented. Typical profiles using a dual-size-range photoelectric dustsonde particle counter are given for volcanically disturbed and inactive periods. Some measurements of the global distribution of stratospheric aerosols are also presented. Volatility measurements are described, indicating that stratospheric aerosols are composed primarily of about 75% sulfuric acid and 25% water

  8. Major Optical Depth Perturbations to the Stratosphere from Volcanic Eruptions: Stellar-Extinction Period, 1961-1978

    Stothers, Richard B.; Hansen, James E. (Technical Monitor)

    2001-01-01

    A revised chronology of stratospheric aerosol extinction due to volcanic eruptions has been assembled for the period 1961-1978, which immediately precedes the era of dedicated satellite measurements. On the whole, the most accurate data consist of published observations of stellar extinction, supplemented in part by other kinds of observational data. The period covered encompasses the important eruptions of Agung (1963) and Fuego (1974), whose dust veils are discussed with respect to their transport, decay, and total mass. The effective (area-weighted mean) radii of the aerosols for both eruptions are found to be 0.3-0.4 microns. It is confirmed that, among known tropical eruptions, Agung's dust was unique for a low-latitude eruption in remaining almost entirely confined to the hemisphere of its production. A new table of homogeneous visual optical depth perturbations, listed by year and by hemisphere, is provided for the whole period 1881-1978, including the pyrheliometric period before 1961 that was investigated previously.

  9. Mesospheric Precursors to the Major Stratospheric Sudden Warming of 2009: Validation and Dynamical Attribution using a Ground-to-Edge-of-Space Data Assimilation System

    2011-01-01

    et al., 2008). Since wind observations are sparse and standard data assimilation systems ( DASs ) do not extend through the mesosphere, we have far...et al., 2008). Figure 1f plots a time-height cross section of wave- 2 F z at 60◦N, scaled by exp(z/2H), where z is pres- sure altitude and H =7 km. As

  10. Stratospheric Aerosol Measurements

    Pueschel, Rudolf, F.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    Stratospheric aerosols affect the atmospheric energy balance by scattering and absorbing solar and terrestrial radiation. They also can alter stratospheric chemical cycles by catalyzing heterogeneous reactions which markedly perturb odd nitrogen, chlorine and ozone levels. Aerosol measurements by satellites began in NASA in 1975 with the Stratospheric Aerosol Measurement (SAM) program, to be followed by the Stratospheric Aerosol and Gas Experiment (SAGE) starting in 1979. Both programs employ the solar occultation, or Earth limb extinction, techniques. Major results of these activities include the discovery of polar stratospheric clouds (PSCs) in both hemispheres in winter, illustrations of the impacts of major (El Chichon 1982 and Pinatubo 1991) eruptions, and detection of a negative global trend in lower stratospheric/upper tropospheric aerosol extinction. This latter result can be considered a triumph of successful worldwide sulfur emission controls. The SAGE record will be continued and improved by SAGE III, currently scheduled for multiple launches beginning in 2000 as part of the Earth Observing System (EOS). The satellite program has been supplemented by in situ measurements aboard the ER-2 (20 km ceiling) since 1974, and from the DC-8 (13 km ceiling) aircraft beginning in 1989. Collection by wire impactors and subsequent electron microscopic and X-ray energy-dispersive analyses, and optical particle spectrometry have been the principle techniques. Major findings are: (1) The stratospheric background aerosol consists of dilute sulfuric acid droplets of around 0.1 micrometer modal diameter at concentration of tens to hundreds of monograms per cubic meter; (2) Soot from aircraft amounts to a fraction of one percent of the background total aerosol; (3) Volcanic eruptions perturb the sulfuric acid, but not the soot, aerosol abundance by several orders of magnitude; (4) PSCs contain nitric acid at temperatures below 195K, supporting chemical hypotheses

  11. MJO-Related Tropical Convection Anomalies Lead to More Accurate Stratospheric Vortex Variability in Subseasonal Forecast Models.

    Garfinkel, C I; Schwartz, C

    2017-10-16

    The effect of the Madden-Julian Oscillation (MJO) on the Northern Hemisphere wintertime stratospheric polar vortex in the period preceding stratospheric sudden warmings is evaluated in operational subseasonal forecasting models. Reforecasts which simulate stronger MJO-related convection in the Tropical West Pacific also simulate enhanced heat flux in the lowermost stratosphere and a more realistic vortex evolution. The time scale on which vortex predictability is enhanced lies between 2 and 4 weeks for nearly all cases. Those stratospheric sudden warmings that were preceded by a strong MJO event are more predictable at ∼20 day leads than stratospheric sudden warmings not preceded by a MJO event. Hence, knowledge of the MJO can contribute to enhanced predictability, at least in a probabilistic sense, of the Northern Hemisphere polar stratosphere.

  12. The 2009–2010 Arctic stratospheric winter – general evolution, mountain waves and predictability of an operational weather forecast model

    A. Dörnbrack

    2012-04-01

    Full Text Available The relatively warm 2009–2010 Arctic winter was an exceptional one as the North Atlantic Oscillation index attained persistent extreme negative values. Here, selected aspects of the Arctic stratosphere during this winter inspired by the analysis of the international field experiment RECONCILE are presented. First of all, and as a kind of reference, the evolution of the polar vortex in its different phases is documented. Special emphasis is put on explaining the formation of the exceptionally cold vortex in mid winter after a sequence of stratospheric disturbances which were caused by upward propagating planetary waves. A major sudden stratospheric warming (SSW occurring near the end of January 2010 concluded the anomalous cold vortex period. Wave ice polar stratospheric clouds were frequently observed by spaceborne remote-sensing instruments over the Arctic during the cold period in January 2010. Here, one such case observed over Greenland is analysed in more detail and an attempt is made to correlate flow information of an operational numerical weather prediction model to the magnitude of the mountain-wave induced temperature fluctuations. Finally, it is shown that the forecasts of the ECMWF ensemble prediction system for the onset of the major SSW were very skilful and the ensemble spread was very small. However, the ensemble spread increased dramatically after the major SSW, displaying the strong non-linearity and internal variability involved in the SSW event.

  13. Evaluation of the tropospheric flows to a major Southern Hemisphere stratospheric warming event using NCEP/NCAR Reanalysis data with a PSU/NCAR nudging MM5V3 model

    Wang, K.

    2008-04-01

    Previous studies of the exceptional 2002 Southern Hemisphere (SH) stratospheric warming event lead to some uncertainty, namely the question of whether excessive heat fluxes in the upper troposphere and lower stratosphere are a symptom or cause of the 2002 SH warming event. In this work, we use a hemispheric version of the MM5 model with nudging capability and we devised a novel approach to separately test the significance of the stratosphere and troposphere for this year. We paired the flow conditions from 2002 in the stratosphere and troposphere, respectively, against the conditions in 1998 (a year with displaced polar vortex) and in 1948 (a year with strong polar vortex that coincided with the geographical South Pole). Our experiments show that the flow conditions from below determine the stratospheric flow features over the polar region. Regardless of the initial stratospheric conditions in 1998 or 1948, when we simulated these past stratospheres with the troposphere/lower stratosphere conditions constrained to 2002 levels, the simulated middle stratospheres resemble those observed in 2002 stratosphere over the polar region. On the other hand, when the 2002 stratosphere was integrated with the troposphere/lower stratosphere conductions constrained to 1948 and 1998, respectively, the simulated middle stratospheric conditions over the polar region shift toward those of 1948 and 1998. Thus, our experiments further support the wave-forcing theory as the cause of the 2002 SH warming event.

  14. Vision Loss, Sudden

    ... cornea (the clear layer in front of the iris and pupil), then the lens, and then the ... sudden start of symptoms may instead be sudden recognition. For example, a person with long-standing reduced ...

  15. Sudden death victims

    Ceelen, Manon; van der Werf, Christian; Hendrix, Anneke; Naujocks, Tatjana; Woonink, Frits; de Vries, Philip; van der Wal, Allard; Das, Kees

    2015-01-01

    The goal of this study was to ascertain accordance between cause of death established by the forensic physician and autopsy results in young sudden death victims in the Netherlands. Sudden death victims aged 1-45 years examined by forensic physicians operating in the participating regions which also

  16. Sudden cardiac death

    Neeraj Parakh

    2015-01-01

    Full Text Available Sudden cardiac death is one of the most common cause of mortality worldwide. Despite significant advances in the medical science, there is little improvement in the sudden cardiac death related mortality. Coronary artery disease is the most common etiology behind sudden cardiac death, in the above 40 years population. Even in the apparently healthy population, there is a small percentage of patients dying from sudden cardiac death. Given the large denominator, this small percentage contributes to the largest burden of sudden cardiac death. Identification of this at risk group among the apparently healthy individual is a great challenge for the medical fraternity. This article looks into the causes and methods of preventing SCD and at some of the Indian data. Details of Brugada syndrome, Long QT syndrome, Genetics of SCD are discussed. Recent guidelines on many of these causes are summarised.

  17. Sudden death in athletes.

    Corrado, Domenico; Zorzi, Alessandro

    2017-06-15

    Competitive sports activity is associated with an increased risk of sudden cardiovascular death (SCD) in adolescents and young adults with clinically silent cardiovascular disorders. While in middle-aged/senior athletes atherosclerotic coronary artery disease accounts for the vast majority of SCDs, in young athletes the spectrum of substrates is wider and includes inherited (cardiomyopathies) and congenital (anomalous origin of coronary arteries) structural heart diseases. Inherited ion channel diseases have been implicated in SCDs occurring with an apparently normal heart at autopsy. Screening including the ECG allows identification of athletes affected by heart muscle diseases at a pre-symptomatic stage and may lead to reduction of the risk of SCD during sports. The use of modern criteria for interpretation of the ECG in the athlete offers the potential to improve the screening accuracy by reducing the number of false positives. Screening with exercise testing middle aged/senior athletes engaged in leisure sports activity is likely to be effective in patients with significant coronary risk factors, while it is not useful in low-risk subgroups. The availability of automated external defibrillator on the athletic field provides a "back-up" preventive strategy for unpredictable arrhythmic cardiac arrest, mostly occurring in patients with coronary artery diseases. Copyright © 2017. Published by Elsevier B.V.

  18. Chlorine in the stratosphere

    VON CLARMANN, T.

    2013-01-01

    This paper reviews the various aspects of chlorine compounds in the stratosphere, both their roles as reactants and as tracers of dynamical processes. In the stratosphere, reactive chlorine is released from chlorofluorocarbons and other chlorine-containing organic source gases. To a large extent reactive chlorine is then sequestered in reservoir species ClONO2 and HCl. Re-activation of chlorine happens predominantly in polar winter vortices by heterogeneous reaction in combination with sunlig...

  19. Geomagnetic Storm Sudden Commencements

    National Oceanic and Atmospheric Administration, Department of Commerce — Storm Sudden Commencements (ssc) 1868 to present: STORM1 and STORM2 Lists: (Some text here is taken from the International Association of Geomagnetism and Aeronomy...

  20. Sudden Ionospheric Disturbances (SID)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sudden ionospheric disturbances (SID) are caused by solar flare enhanced X-rays in the 1 to 10 angstrom range. Solar flares can produce large increases of ionization...

  1. How stratospheric are deep stratospheric intrusions? LUAMI 2008

    T. Trickl

    2016-07-01

    Full Text Available A large-scale comparison of water-vapour vertical-sounding instruments took place over central Europe on 17 October 2008, during a rather homogeneous deep stratospheric intrusion event (LUAMI, Lindenberg Upper-Air Methods Intercomparison. The measurements were carried out at four observational sites: Payerne (Switzerland, Bilthoven (the Netherlands, Lindenberg (north-eastern Germany, and the Zugspitze mountain (Garmisch-Partenkichen, German Alps, and by an airborne water-vapour lidar system creating a transect of humidity profiles between all four stations. A high data quality was verified that strongly underlines the scientific findings. The intrusion layer was very dry with a minimum mixing ratios of 0 to 35 ppm on its lower west side, but did not drop below 120 ppm on the higher-lying east side (Lindenberg. The dryness hardens the findings of a preceding study (“Part 1”, Trickl et al., 2014 that, e.g., 73 % of deep intrusions reaching the German Alps and travelling 6 days or less exhibit minimum mixing ratios of 50 ppm and less. These low values reflect values found in the lowermost stratosphere and indicate very slow mixing with tropospheric air during the downward transport to the lower troposphere. The peak ozone values were around 70 ppb, confirming the idea that intrusion layers depart from the lowermost edge of the stratosphere. The data suggest an increase of ozone from the lower to the higher edge of the intrusion layer. This behaviour is also confirmed by stratospheric aerosol caught in the layer. Both observations are in agreement with the idea that sections of the vertical distributions of these constituents in the source region were transferred to central Europe without major change. LAGRANTO trajectory calculations demonstrated a rather shallow outflow from the stratosphere just above the dynamical tropopause, for the first time confirming the conclusions in “Part 1” from the Zugspitze CO observations. The

  2. Mesospheric signatures observed during 2010 minor stratospheric warming at King Sejong Station (62°S, 59°W)

    Eswaraiah, S.; Kim, Yong Ha; Hong, Junseok; Kim, Jeong-Han; Ratnam, M. Venkat; Chandran, A.; Rao, S. V. B.; Riggin, Dennis

    2016-03-01

    A minor stratospheric sudden warming (SSW) event was noticed in the southern hemisphere (SH) during September (day 259) 2010 along with two episodic warmings in early August (day 212) and late October (day 300) 2010. Among the three warming events, the signature of mesosphere response was detected only for the September event in the mesospheric wind dataset from both meteor radar and MF radar located at King Sejong Station (62°S, 59°W) and Rothera (68°S, 68°W), Antarctica, respectively. The zonal winds in the mesosphere reversed approximately a week before the September SSW event, as has been observed in the 2002 major SSW. Signatures of mesospheric cooling (MC) in association with stratospheric warmings are found in temperatures measured by the Microwave Limb Sounder (MLS). Simulations of specified dynamics version of Whole Atmosphere Community Climate Model (SD-WACCM) are able to reproduce these observed features. The mesospheric wind field was found to differ significantly from that of normal years probably due to enhanced planetary wave (PW) activity before the SSW. From the wavelet analysis of wind data of both stations, we find that strong 14-16 day PWs prevailed prior to the SSW and disappeared suddenly after the SSW in the mesosphere. Our study provides evidence that minor SSWs in SH can result in significant effects on the mesospheric dynamics as in the northern hemisphere.

  3. Airborne Arctic Stratospheric Expedition II: An overview

    Anderson, James G.; Toon, Owen B.

    1993-11-01

    The sudden onset of ozone depletion in the antarctic vortex set a precedent for both the time scale and the severity of global change. The Airborne Antarctic Ozone Experiment (AAOE), staged from Punta Arenas, Chile, in 1987, established that CFCs, halons, and methyl bromide, the dominant sources of chlorine and bromine radicals in the stratosphere, control the rate of ozone destruction over the Antarctic; that the vortex is depleted in reactive nitrogen and water vapor; and that diabatic cooling during the Antarctic winter leads to subsidence within the vortex core, importing air from higher altitudes and lower latitudes. This last conclusion is based on observed dramatic distortion in the tracer fields, most notably N2O.In 1989, the first Airborne Arctic Stratospheric Expedition (AASE-I), staged from Stavanger, Norway, and using the same aircraft employed for AAOE (the NASA ER-2 and the NASA DC-8), discovered that while NOx and to some degree NOy were perturbed within the arctic vortex, there was little evidence for desiccation. Under these (in contrast to the antarctic) marginally perturbed conditions, however, ClO was found to be dramatically enhanced such that a large fraction of the available (inorganic) chlorine resided in the form of ClO and its dimer ClOOCl.This leaves two abiding issues for the northern hemisphere and the mission of the second Airborne Arctic Stratospheric Expedition (AASE-II): (1) Will significant ozone erosion occur within the arctic vortex in the next ten years as chlorine loading in the stratosphere exceeds four parts per billion by volume? (2) Which mechanisms are responsible for the observed ozone erosion poleward of 30°N in the winter/spring northern hemisphere reported in satellite observations?

  4. SAGE measurements of the stratospheric aerosol dispersion and loading from the Soufriere Volcano

    Mccormick, M. P.; Kent, G. S.; Yue, G. K.; Cunnold, D. M.

    1981-01-01

    Explosions of the Soufriere volcano on the Caribbean Island of St. Vincent reduced two major stratospheric plumes which the stratospheric aerosol and gas experiment (SAGE) satellite tracked to West Africa and the North Atlantic Ocean. The total mass of the stratospheric ejecta measured is less than 0.5% of the global stratospheric aerosol burden. No significant temperature or climate perturbation is expected. It is found that the movement and dispersion of the plumes agree with those deduced from high altitude meteorological data and dispersion theory. The stratospheric aerosol dispersion and loading from the Soufrier volcano was measured.

  5. Stratospheric warming influence on the mesosphere/lower thermosphere as seen by the extended CMAM

    M. G. Shepherd

    2014-06-01

    Full Text Available The response of the upper mesosphere/lower thermosphere region to major sudden stratospheric warming (SSW is examined employing temperature, winds, NOX and CO constituents from the extended Canadian Middle Atmosphere Model (CMAM with continuous incremental nudging below 10 hPa (~ 30 km. The model results considered cover high latitudes (60–85° N from 10 to 150 km height for the December–March period of 2003/2004, 2005/2006 and 2008/2009, when some of the strongest SSWs in recent years were observed. NOX and CO are used as proxies for examining transport. Comparisons with ACE-FTS (Atmospheric Chemistry Experiment–Fourier Transform Spectrometer satellite observations show that the model represents well the dynamics of the upper mesosphere/lower thermosphere region, the coupling of the stratosphere–mesosphere, and the NOX and CO transport. New information is obtained on the upper mesosphere/lower thermosphere up to 150 km showing that the NOX volume mixing ratio in the 2003/2004 winter was very perturbed indicating transport from the lower atmosphere and intense mixing with large NOX influx from the thermosphere compared to 2006 and 2009. These results, together with those from other models and observations, clearly show the impact of stratospheric warmings on the thermosphere.

  6. Stratospheric H2O

    Ellsaesser, H.W.

    1979-01-01

    Documentation of the extreme aridity (approx. 3% relative humidity) of the lower stratosphere and the rapid decrease of mixing ratio with height just above the polar tropopause (20-fold in the 1st km) was begun by Dobson et al., (1946) in 1943. They recognized that this extreme and persistent aridity must be dynamically maintained else it would have been wiped out by turbulent diffusion. This led Brewer (1949) to hypothesize a stratospheric circulation in which all air enters through the tropical tropopause where it is freeze dried to a mass mixing ratio of 2 to 3 ppM. This dry air then spreads poleward and descends through the polar tropopauses overpowering upward transport of water vapor by diffusion which would otherwise be permitted by the much warmer temperatures of the polar tropopauses. Questions can indeed be raised as to the absolute magnitudes of stratospheric mixing ratios, the effective temperature of the tropical tropopause cold trap, the reality of winter pole freeze-dry sinks and the representativeness of the available observations suggesting an H 2 O mixing ratio maximum just above the tropical tropopause and a constant mixing ratio from the tropopause to 30 to 35 km. However, no model that better fits all of the available data is available, than does the Brewer (1949) hypothesis coupled with a lower stratosphere winter pole, freeze-dry sink, at least over Antarctica

  7. The sudden death and sudden birth of quantum discord.

    Xia, Wei; Hou, Jin-Xing; Wang, Xiao-Hui; Liu, Si-Yuan

    2018-03-28

    The interaction of quantum system and its environment brings out abundant quantum phenomenons. The sudden death of quantum resources, including entanglement, quantum discord and coherence, have been studied from the perspective of quantum breaking channels (QBC). QBC of quantum resources reveal the common features of quantum resources. The definition of QBC implies the relationship between quantum resources. However, sudden death of quantum resources can also appear under some other quantum channels. We consider the dynamics of Bell-diagonal states under a stochastic dephasing noise along the z-direction, and the sudden death and sudden birth of quantum discord are investigated. Next we explain this phenomenon from the geometric structure of quantum discord. According to the above results, the states with sudden death and sudden birth can be filtered in three-parameter space. Then we provide two necessary conditions to judge which kind of noise channels can make Bell-diagonal states sudden death and sudden birth. Moreover, the relation between quantum discord and coherence indicates that the sudden death and sudden birth of quantum discord implies the sudden death and sudden birth of coherence in an optimal basis.

  8. Sudden Infant Death Syndrome (SIDS)

    Sudden infant death syndrome (SIDS) Overview Sudden infant death syndrome (SIDS) is the unexplained death, usually during sleep, of a seemingly healthy baby ... year old. SIDS is sometimes known as crib death because the infants often die in their cribs. ...

  9. Sudden Cardiac Death

    Risgaard, Bjarke; Winkel, Bo Gregers; Jabbari, Reza

    2017-01-01

    Objectives This study sought to describe the use of pharmacotherapy in a nationwide cohort of young patients with sudden cardiac death (SCD). Background Several drugs have been associated with an increased risk of SCD and sudden arrhythmic death syndrome (SADS). It remains unclear how...... pharmacotherapy may contribute to the overall burden of SCD in the general population. Methods This was a nationwide study that included all deaths that occurred between 2000 and 2009 and between 2007 and 2009 in people age 1 to 35 years and 36 to 49 years, respectively. Two physicians identified all SCDs through...... review of death certificates. Autopsy reports were collected. Pharmacotherapy prescribed within 90 days before SCD was identified in the Danish Registry of Medicinal Product Statistics. Results We identified 1,363 SCDs; median age was 38 years (interquartile range: 29 to 45 years), and 72% (n = 975) were men...

  10. Stratospheric Impact of Varying Sea Surface Temperatures

    Newman, Paul A.; Nash, Eric R.; Nielsen, Jon E.; Waugh, Darryn; Pawson, Steven

    2004-01-01

    The Finite-Volume General Circulation Model (FVGCM) has been run in 50 year simulations with the: 1) 1949-1999 Hadley Centre sea surface temperatures (SST), and 2) a fixed annual cycle of SSTs. In this presentation we first show that the 1949-1999 FVGCM simulation produces a very credible stratosphere in comparison to an NCEP/NCAR reanalysis climatology. In particular, the northern hemisphere has numerous major and minor stratospheric warming, while the southern hemisphere has only a few over the 50-year simulation. During the northern hemisphere winter, temperatures are both warmer in the lower stratosphere and the polar vortex is weaker than is found in the mid-winter southern hemisphere. Mean temperature differences in the lower stratosphere are shown to be small (less than 2 K), and planetary wave forcing is found to be very consistent with the climatology. We then will show the differences between our varying SST simulation and the fixed SST simulation in both the dynamics and in two parameterized trace gases (ozone and methane). In general, differences are found to be small, with subtle changes in planetary wave forcing that lead to reduced temperatures in the SH and increased temperatures in the NH.

  11. The natural stratosphere of 1974. CIAP monograph 1. Final report

    1975-09-01

    The Climatic Impact Assessment Program (CIAP) of the U.S. Department of Transportation is charged with the 'assessment' of the impact of future aircraft fleets and other vehicles operating in, or transiting through, the stratosphere. CIAP monograph 1 gives a survey, largely from an experimental standpoint, of what is known in 1974 about the unperturbed stratosphere with respect to an application to stratospheric flight. It reviews the overall structure of the stratosphere, its origin in terms of ozone photochemistry, solar irradiance and overall radiative energy balance, other chemically reactive minor species, and atmospheric motions on a variety of scales of time and distance. The limitations of our understanding are emphasized in the presentation. Also, the monograph examines briefly what is known about the effect of massive injections of nitrogen oxides (from atmospheric nuclear explosions) and sulfur oxides (from major volcanic eruptions)

  12. Possible effects of volcanic eruptions on stratospheric minor constituent chemistry

    Stolarski, R. S.; Butler, D. M.

    1979-01-01

    Although stratosphere penetrating volcanic eruptions have been infrequent during the last half century, periods have existed in the last several hundred years when such eruptions were significantly more frequent. Several mechanisms exist for these injections to affect stratospheric minor constituent chemistry, both on the long-term average and for short-term perturbations. These mechanisms are reviewed and, because of the sensitivity of current models of stratospheric ozone to chlorine perturbations, quantitative estimates are made of chlorine injection rates. It is found that, if chlorine makes up as much as 0.5 to 1% of the gases released and if the total gases released are about the same magnitude as the fine ash, then a major stratosphere penetrating eruption could deplete the ozone column by several percent. The estimate for the Agung eruption of 1963 is just under 1% an amount not excluded by the ozone record but complicated by the peak in atmospheric nuclear explosions at about the same time.

  13. Stratospheric aerosol effects from Soufriere Volcano as measured by the SAGE satellite system

    Mccormick, M. P.; Kent, G. S.; Yue, G. K.; Cunnold, D. M.

    1982-01-01

    During its April 1979 eruption series, Soufriere Volcano produced two major stratospheric plumes that the SAGE (Stratospheric Aerosol and Gas Experiment) satellite system tracked to West Africa and the North Atlantic Ocean. The total mass of these plumes, whose movement and dispersion are in agreement with those deduced from meteorological data and dispersion theory, was less than 0.5 percent of the global stratospheric aerosol burden; no significant temperature or climate perturbation is therefore expected.

  14. A stratospheric aerosol increase

    Rosen, J. M.; Hofmann, D. J.

    1980-01-01

    Large disturbances were noted in the stratospheric aerosol content in the midlatitude Northern Hemisphere commencing about 7 months after the eruption of La Soufriere and less than 1 month after the eruption of Sierra Negra. The aerosol was characterized by a very steep size distribution in the 0.15 to 0.25 micron radius range and contained a volatile component. Measurements near the equator and at the South Pole indicate that the disturbance was widespread. These observations were made before the May 18 eruption of Mt. St. Helens.

  15. [Sudden death from hypoglycemia].

    Asmundo, A; Aragona, M; Gualniera, P; Aragona, F

    1995-12-01

    The sudden death by hypoglycemia is an aspect of the forensic pathology frequently neglected. Authors initially described the pathogenesis of different hypoglycemia forms, distinguishing the primary ones due to hyperinsulinism and the secondary ones due to functional insufficiency of other organs (hypophysis, thyroid, adrenal gland, liver); after that Authors described three cases of sudden death induced hypoglycemia by hyperinsulinism: two were unweaned with nesidioblastosis and one adolescent. In any form of hypoglycemia the central nervous system damage is present with evident neuronal degenerative-necrotic phenomena, widespread edema with microhemorrhage, swollen and dissociation of myelin sheath, glial cells hyperplasia. Death caused by primary hypoglycemia is histopathologically different from the secondary one because of the maintenance of hepatic glycogen content in the former, that increase in striated muscles, including the heart, in spite of the constant secretion of catecholamine from the adrenal medulla. Glycogen is depleted in secondary hypoglycemia. In the primary form, behind the adrenal medulla hyperfunction, the increased functional activity of the adrenal cortex is moderate, contrasting with the seriousness of the syndrome, due prevalently to inhibit the gluconeogenesis response conditioned by the persistence of stored glycogen in the liver, heart and striated muscles. The rare anoxic processes coming with resynthesis of hepatic glycogen have to be considered in the differential diagnosis. The primary hypoglycemic death, especially in unweaned, is frequently promoted by other processes inducing hypoxia (fetal asphyxia outcome, pneumonia, etc.) or worsening the hypoglycemia (hypothyroidism, etc.). The secondary hypoglycemias are characterized by the normality of exocrine pancreas and by organic alterations that cause glycogen depletion from the liver.

  16. Effects of intense stratospheric ionisation events

    Reid, G.C.; McAfee, J.R.; Crutzen, P.J.

    1978-01-01

    High levels of ionising radiation in the Earth's stratosphere will lead to increased concentrations of nitrogen oxides and decreased concentrations of ozone. Changes in the surface environment will include an increased level, of biologically harmful UV radiation, caused by the ozone depletion, and a decreased level of visible solar radiation, due to the presence of major enhancements in the stratospheric concentration of nitrogen dioxide. These changes have been studied quantitatively, using the passage of the Solar System through a supernova remnant shell as an example. Some of the potential environmental changes are a substantial global cooling, abnormally dry conditions, a reduction in global photosynthesis and a large increase in the flux of atmospheric fixed nitrogen to the surface of the Earth. Such events might have been the cause of mass extinctions in the distant past. (Author)

  17. Hypokalemia and sudden cardiac death

    Kjeldsen, Keld

    2010-01-01

    Worldwide, approximately three million people suffer sudden cardiac death annually. These deaths often emerge from a complex interplay of substrates and triggers. Disturbed potassium homeostasis among heart cells is an example of such a trigger. Thus, hypokalemia and, also, more transient...... of fatal arrhythmia and sudden cardiac death a patient is, the more attention should be given to the potassium homeostasis....

  18. Sudden Event Recognition: A Survey

    Mohd Asyraf Zulkifley

    2013-08-01

    Full Text Available Event recognition is one of the most active research areas in video surveillance fields. Advancement in event recognition systems mainly aims to provide convenience, safety and an efficient lifestyle for humanity. A precise, accurate and robust approach is necessary to enable event recognition systems to respond to sudden changes in various uncontrolled environments, such as the case of an emergency, physical threat and a fire or bomb alert. The performance of sudden event recognition systems depends heavily on the accuracy of low level processing, like detection, recognition, tracking and machine learning algorithms. This survey aims to detect and characterize a sudden event, which is a subset of an abnormal event in several video surveillance applications. This paper discusses the following in detail: (1 the importance of a sudden event over a general anomalous event; (2 frameworks used in sudden event recognition; (3 the requirements and comparative studies of a sudden event recognition system and (4 various decision-making approaches for sudden event recognition. The advantages and drawbacks of using 3D images from multiple cameras for real-time application are also discussed. The paper concludes with suggestions for future research directions in sudden event recognition.

  19. Stratospheric aerosol geoengineering

    Robock, Alan [Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901 (United States)

    2015-03-30

    The Geoengineering Model Intercomparison Project, conducting climate model experiments with standard stratospheric aerosol injection scenarios, has found that insolation reduction could keep the global average temperature constant, but global average precipitation would reduce, particularly in summer monsoon regions around the world. Temperature changes would also not be uniform; the tropics would cool, but high latitudes would warm, with continuing, but reduced sea ice and ice sheet melting. Temperature extremes would still increase, but not as much as without geoengineering. If geoengineering were halted all at once, there would be rapid temperature and precipitation increases at 5–10 times the rates from gradual global warming. The prospect of geoengineering working may reduce the current drive toward reducing greenhouse gas emissions, and there are concerns about commercial or military control. Because geoengineering cannot safely address climate change, global efforts to reduce greenhouse gas emissions and to adapt are crucial to address anthropogenic global warming.

  20. Stratospheric aerosol geoengineering

    Robock, Alan

    2015-01-01

    The Geoengineering Model Intercomparison Project, conducting climate model experiments with standard stratospheric aerosol injection scenarios, has found that insolation reduction could keep the global average temperature constant, but global average precipitation would reduce, particularly in summer monsoon regions around the world. Temperature changes would also not be uniform; the tropics would cool, but high latitudes would warm, with continuing, but reduced sea ice and ice sheet melting. Temperature extremes would still increase, but not as much as without geoengineering. If geoengineering were halted all at once, there would be rapid temperature and precipitation increases at 5–10 times the rates from gradual global warming. The prospect of geoengineering working may reduce the current drive toward reducing greenhouse gas emissions, and there are concerns about commercial or military control. Because geoengineering cannot safely address climate change, global efforts to reduce greenhouse gas emissions and to adapt are crucial to address anthropogenic global warming

  1. Sudden transition and sudden change from open spin environments

    Hu, Zheng-Da; Xu, Jing-Bo; Yao, Dao-Xin

    2014-01-01

    We investigate the necessary conditions for the existence of sudden transition or sudden change phenomenon for appropriate initial states under dephasing. As illustrative examples, we study the behaviors of quantum correlation dynamics of two noninteracting qubits in independent and common open spin environments, respectively. For the independent environments case, we find that the quantum correlation dynamics is closely related to the Loschmidt echo and the dynamics exhibits a sudden transition from classical to quantum correlation decay. It is also shown that the sudden change phenomenon may occur for the common environment case and stationary quantum discord is found at the high temperature region of the environment. Finally, we investigate the quantum criticality of the open spin environment by exploring the probability distribution of the Loschmidt echo and the scaling transformation behavior of quantum discord, respectively. - Highlights: • Sudden transition or sudden change from open spin baths are studied. • Quantum discord is related to the Loschmidt echo in independent open spin baths. • Steady quantum discord is found in a common open spin bath. • The probability distribution of the Loschmidt echo is analyzed. • The scaling transformation behavior of quantum discord is displayed

  2. Northern Winter Climate Change: Assessment of Uncertainty in CMIP5 Projections Related to Stratosphere-Troposphere Coupling

    Manzini, E.; Karpechko, A.Yu.; Anstey, J.; Shindell, Drew Todd; Baldwin, M.P.; Black, R.X.; Cagnazzo, C.; Calvo, N.; Charlton-Perez, A.; Christiansen, B.; hide

    2014-01-01

    Future changes in the stratospheric circulation could have an important impact on northern winter tropospheric climate change, given that sea level pressure (SLP) responds not only to tropospheric circulation variations but also to vertically coherent variations in troposphere-stratosphere circulation. Here we assess northern winter stratospheric change and its potential to influence surface climate change in the Coupled Model Intercomparison Project-Phase 5 (CMIP5) multimodel ensemble. In the stratosphere at high latitudes, an easterly change in zonally averaged zonal wind is found for the majority of the CMIP5 models, under the Representative Concentration Pathway 8.5 scenario. Comparable results are also found in the 1% CO2 increase per year projections, indicating that the stratospheric easterly change is common feature in future climate projections. This stratospheric wind change, however, shows a significant spread among the models. By using linear regression, we quantify the impact of tropical upper troposphere warming, polar amplification, and the stratospheric wind change on SLP. We find that the intermodel spread in stratospheric wind change contributes substantially to the intermodel spread in Arctic SLP change. The role of the stratosphere in determining part of the spread in SLP change is supported by the fact that the SLP change lags the stratospheric zonally averaged wind change. Taken together, these findings provide further support for the importance of simulating the coupling between the stratosphere and the troposphere, to narrow the uncertainty in the future projection of tropospheric circulation changes.

  3. Structural imaging biomarkers of sudden unexpected death in epilepsy.

    Wandschneider, Britta; Koepp, Matthias; Scott, Catherine; Micallef, Caroline; Balestrini, Simona; Sisodiya, Sanjay M; Thom, Maria; Harper, Ronald M; Sander, Josemir W; Vos, Sjoerd B; Duncan, John S; Lhatoo, Samden; Diehl, Beate

    2015-10-01

    Sudden unexpected death in epilepsy is a major cause of premature death in people with epilepsy. We aimed to assess whether structural changes potentially attributable to sudden death pathogenesis were present on magnetic resonance imaging in people who subsequently died of sudden unexpected death in epilepsy. In a retrospective, voxel-based analysis of T1 volume scans, we compared grey matter volumes in 12 cases of sudden unexpected death in epilepsy (two definite, 10 probable; eight males), acquired 2 years [median, interquartile range (IQR) 2.8] before death [median (IQR) age at scanning 33.5 (22) years], with 34 people at high risk [age 30.5 (12); 19 males], 19 at low risk [age 30 (7.5); 12 males] of sudden death, and 15 healthy controls [age 37 (16); seven males]. At-risk subjects were defined based on risk factors of sudden unexpected death in epilepsy identified in a recent combined risk factor analysis. We identified increased grey matter volume in the right anterior hippocampus/amygdala and parahippocampus in sudden death cases and people at high risk, when compared to those at low risk and controls. Compared to controls, posterior thalamic grey matter volume, an area mediating oxygen regulation, was reduced in cases of sudden unexpected death in epilepsy and subjects at high risk. The extent of reduction correlated with disease duration in all subjects with epilepsy. Increased amygdalo-hippocampal grey matter volume with right-sided changes is consistent with histo-pathological findings reported in sudden infant death syndrome. We speculate that the right-sided predominance reflects asymmetric central influences on autonomic outflow, contributing to cardiac arrhythmia. Pulvinar damage may impair hypoxia regulation. The imaging findings in sudden unexpected death in epilepsy and people at high risk may be useful as a biomarker for risk-stratification in future studies. The Author (2015). Published by Oxford University Press on behalf of the Guarantors of

  4. Sudden cardiac death in athletes

    Fábio Camilo Pellegrino dos Santos

    2012-11-01

    Full Text Available ABSTRACT The most accepted definition of sudden cardiac death nowadays is an unexplained death occurred suddenly within one hour of symptom onset. If it was not witnessed, individuals need to had been observed for at least 24 hours before the event and should be discarded the possibility of non cardiac causes of sudden death, pulmonary embolism or extensive malignancy. The term athlete refers to individuals of any age who participate in collective or individual regular physical activity, as well as physical training program for regular competitions. The sudden death of a young athlete, whether amateur or professional, especially during competitions, is always dramatic, with strong negative social impact and in the media. The fact that sports are recommended as a formula for longevity and quality of life makes these events a cause for concern in sports and society in general.

  5. CAUSES OF SUDDEN NATURAL DEATH: A MEDICO-LEGAL ...

    89 No. 10 October 2012 ... The age range of the cases was 19-105 years with a mean age ... majority of cases (39.3%), the cause of death was related to the cardio-vascular ... Six hundred and twenty six cases of sudden natural .... (39/60) and a mean age of 54.2±15years. ..... D. A population-based autopsy study of sudden,.

  6. The boiling point of stratospheric aerosols.

    Rosen, J. M.

    1971-01-01

    A photoelectric particle counter was used for the measurement of aerosol boiling points. The operational principle involves raising the temperature of the aerosol by vigorously heating a portion of the intake tube. At or above the boiling point, the particles disintegrate rather quickly, and a noticeable effect on the size distribution and concentration is observed. Stratospheric aerosols appear to have the same volatility as a solution of 75% sulfuric acid. Chemical analysis of the aerosols indicates that there are other substances present, but that the sulfate radical is apparently the major constituent.

  7. Sudden death in eating disorders

    Jáuregui-Garrido B

    2012-02-01

    Full Text Available Beatriz Jáuregui-Garrido1, Ignacio Jáuregui-Lobera2,31Department of Cardiology, University Hospital Virgen del Rocío, 2Behavioral Sciences Institute, 3Pablo de Olavide University, Seville, SpainAbstract: Eating disorders are usually associated with an increased risk of premature death with a wide range of rates and causes of mortality. “Sudden death” has been defined as the abrupt and unexpected occurrence of fatality for which no satisfactory explanation of the cause can be ascertained. In many cases of sudden death, autopsies do not clarify the main cause. Cardiovascular complications are usually involved in these deaths. The purpose of this review was to report an update of the existing literature data on the main findings with respect to sudden death in eating disorders by means of a search conducted in PubMed. The most relevant conclusion of this review seems to be that the main causes of sudden death in eating disorders are those related to cardiovascular complications. The predictive value of the increased QT interval dispersion as a marker of sudden acute ventricular arrhythmia and death has been demonstrated. Eating disorder patients with severe cardiovascular symptoms should be hospitalized. In general, with respect to sudden death in eating disorders, some findings (eg, long-term eating disorders, chronic hypokalemia, chronically low plasma albumin, and QT intervals >600 milliseconds must be taken into account, and it must be highlighted that during refeeding, the adverse effects of hypophosphatemia include cardiac failure. Monitoring vital signs and performing electrocardiograms and serial measurements of plasma potassium are relevant during the treatment of eating disorder patients.Keywords: sudden death, cardiovascular complications, refeeding syndrome, QT interval, hypokalemia

  8. Condensed Acids In Antartic Stratospheric Clouds

    Pueschel, R. F.; Snetsinger, K. G.; Toon, O. B.; Ferry, G. V.; Starr, W. L.; Oberbeck, V. R.; Chan, K. R.; Goodman, J. K.; Livingston, J. M.; Verma, S.; hide

    1992-01-01

    Report dicusses nitrate, sulfate, and chloride contents of stratospheric aerosols during 1987 Airborne Antarctic Ozone Experiment. Emphasizes growth of HNO3*3H2O particles in polar stratospheric clouds. Important in testing theories concerning Antarctic "ozone hole".

  9. Stratospheric Platforms for Monitoring Purposes

    Konigorski, D.; Gratzel, U.; Obersteiner, M.; Schneidereit, M.

    2010-01-01

    Stratospheric platforms are emerging systems based on challenging technology. Goal is to create a platform, payload, and mission design which is able to complement satellite services on a local scale. Applications are close to traditional satellite business in telecommunication, navigation, science, and earth observation and include for example mobile telecommunications, navigation augmentation, atmospheric research, or border control. Stratospheric platforms could potentially support monitoring activities related to safeguards, e.g. by imagery of surfaces, operational conditions of nuclear facilities, and search for undeclared nuclear activities. Stratospheric platforms are intended to be flown in an altitude band between 16 and 30 km, above 16-20 km to take advantage of usually lower winds facilitating station keeping, below 30 km to limit the challenges to achieve a reasonable payload at acceptable platform sizes. Stratospheric platforms could substitute satellites which are expensive and lack upgrade capabilities for new equipment. Furthermore they have practically an unlimited time over an area of interest. It is intended to keep the platforms operational and maintenance free on a 24/7 basis with an average deployment time of 3 years. Geostationary satellites lack resolution. Potential customers like Armed Forces, National Agencies and commercial customers have indicated interest in the use of stratospheric platforms. Governmental entities are looking for cheaper alternatives to communications and surveillance satellites and stratospheric platforms could offer the following potential advantages: Lower operational cost than satellite or UAV (Unmanned Aerial Vehicles) constellation (fleet required); Faster deployment than satellite constellation; Repositioning capability and ability to loiter as required; Persistent long-term real-time services over a fairly large regional spot; Surge capability: Able to extend capability (either monitoring or communications

  10. On particles in the Arctic stratosphere

    T. S. Jørgensen

    2003-06-01

    Full Text Available Soon after the discovery of the Antarctic ozone hole it became clear that particles in the polar stratosphere had an infl uence on the destruction of the ozone layer. Two major types of particles, sulphate aerosols and Polar Stratospheric Clouds (PSCs, provide the surfaces where fast heterogeneous chemical reactions convert inactive halogen reservoir species into potentially ozone-destroying radicals. Lidar measurements have been used to classify the PSCs. Following the Mt. Pinatubo eruption in June 1991 it was found that the Arctic stratosphere was loaded with aerosols, and that aerosols observed with lidar and ozone observed with ozone sondes displayed a layered structure, and that the aerosol and ozone contents in the layers frequently appeared to be negatively correlated. The layered structure was probably due to modulation induced by the dynamics at the edge of the polar vortex. Lidar observations of the Mt. Pinatubo aerosols were in several cases accompanied by balloon-borne backscatter soundings, whereby backscatter measurements in three different wavelengths made it possible to obtain information about the particle sizes. An investigation of the infl uence of synoptic temperature histories on the physical properties of PSC particles has shown that most of the liquid type 1b particles were observed in the process of an ongoing, relatively fast, and continuous cooling from temperatures clearly above the nitric acid trihydrate condensation temperature (TNAT. On the other hand, it appeared that a relatively long period, with a duration of at least 1-2 days, at temperatures below TNAT provide the conditions which may lead to the production of solid type 1a PSCs.

  11. Effect of Recent Sea Surface Temperature Trends on the Arctic Stratospheric Vortex

    Garfinkel, Chaim I.; Oman, Luke; Hurwitz, Margaret

    2015-01-01

    The springtime Arctic polar vortex has cooled significantly over the satellite era, with consequences for ozone concentrations in the springtime transition season. The causes of this cooling trend are deduced by using comprehensive chemistry-climate model experiments. Approximately half of the satellite era early springtime cooling trend in the Arctic lower stratosphere was caused by changing sea surface temperatures (SSTs). An ensemble of experiments forced only by changing SSTs is compared to an ensemble of experiments in which both the observed SSTs and chemically- and radiatively-active trace species are changing. By comparing the two ensembles, it is shown that warming of Indian Ocean, North Pacific, and North Atlantic SSTs, and cooling of the tropical Pacific, have strongly contributed to recent polar stratospheric cooling in late winter and early spring, and to a weak polar stratospheric warming in early winter. When concentrations of ozone-depleting substances and greenhouse gases are fixed, polar ozone concentrations show a small but robust decline due to changing SSTs. Ozone changes are magnified in the presence of changing gas concentrations. The stratospheric changes can be understood by examining the tropospheric height and heat flux anomalies generated by the anomalous SSTs. Finally, recent SST changes have contributed to a decrease in the frequency of late winter stratospheric sudden warmings.

  12. Stratospheric temperatures and tracer transport in a nudged 4-year middle atmosphere GCM simulation

    van Aalst, M. K.; Lelieveld, J.; Steil, B.; Brühl, C.; Jöckel, P.; Giorgetta, M. A.; Roelofs, G.-J.

    2005-02-01

    We have performed a 4-year simulation with the Middle Atmosphere General Circulation Model MAECHAM5/MESSy, while slightly nudging the model's meteorology in the free troposphere (below 113 hPa) towards ECMWF analyses. We show that the nudging 5 technique, which leaves the middle atmosphere almost entirely free, enables comparisons with synoptic observations. The model successfully reproduces many specific features of the interannual variability, including details of the Antarctic vortex structure. In the Arctic, the model captures general features of the interannual variability, but falls short in reproducing the timing of sudden stratospheric warmings. A 10 detailed comparison of the nudged model simulations with ECMWF data shows that the model simulates realistic stratospheric temperature distributions and variabilities, including the temperature minima in the Antarctic vortex. Some small (a few K) model biases were also identified, including a summer cold bias at both poles, and a general cold bias in the lower stratosphere, most pronounced in midlatitudes. A comparison 15 of tracer distributions with HALOE observations shows that the model successfully reproduces specific aspects of the instantaneous circulation. The main tracer transport deficiencies occur in the polar lowermost stratosphere. These are related to the tropopause altitude as well as the tracer advection scheme and model resolution. The additional nudging of equatorial zonal winds, forcing the quasi-biennial oscillation, sig20 nificantly improves stratospheric temperatures and tracer distributions.

  13. How does Interactive Chemistry Influence the Representation of Stratosphere-Troposphere Coupling in a Climate Model?

    Haase, S.; Matthes, K. B.

    2017-12-01

    Changes in stratospheric ozone can trigger tropospheric circulation changes. In the Southern hemisphere (SH), the observed shift of the Southern Annular Mode was attributed to the observed trend in lower stratospheric ozone. In the Northern Hemisphere (NH), a recent study showed that extremely low stratospheric ozone conditions during spring produce robust anomalies in the troposphere (zonal wind, temperature and precipitation). This could only be reproduced in a coupled chemistry climate model indicating that chemical-dynamical feedbacks are also important on the NH. To further investigate the importance of interactive chemistry for surface climate, we conducted a set of experiments using NCAR's Community Earth System Model (CESM1) with the Whole Atmosphere Community Climate Model (WACCM) as the atmosphere component. WACCM contains a fully interactive stratospheric chemistry module in its standard configuration. It also allows for an alternative configuration, referred to as SC-WACCM, in which the chemistry (O3, NO, O, O2, CO2 and chemical and shortwave heating rates) is specified as a 2D field in the radiation code. A comparison of the interactive vs. the specified chemistry version enables us to evaluate the relative importance of interactive chemistry by systematically inhibiting the feedbacks between chemistry and dynamics. To diminish the effect of temporal interpolation when prescribing ozone, we use daily resolved zonal mean ozone fields for the specified chemistry run. Here, we investigate the differences in stratosphere-troposphere coupling between the interactive and specified chemistry simulations for the mainly chemically driven SH as well as for the mainly dynamically driven NH. We will especially consider years that are characterized by extremely low stratospheric ozone on the one hand and by large dynamical disturbances, i.e. Sudden Stratospheric Warmings, on the other hand.

  14. Investigating Insight as Sudden Learning

    Ash, Ivan K.; Jee, Benjamin D.; Wiley, Jennifer

    2012-01-01

    Gestalt psychologists proposed two distinct learning mechanisms. Associative learning occurs gradually through the repeated co-occurrence of external stimuli or memories. Insight learning occurs suddenly when people discover new relationships within their prior knowledge as a result of reasoning or problem solving processes that re-organize or…

  15. Stratospheric aerosols and precursor gases

    1982-01-01

    Measurements were made of the aerosol size, height and geographical distribution, their composition and optical properties, and their temporal variation with season and following large volcanic eruptions. Sulfur-bearing gases were measured in situ in the stratosphere, and studied of the chemical and physical processes which control gas-to-particle conversion were carried out in the laboratory.

  16. Gastrointestinal causes of sudden unexpected death: A review.

    Menezes, Ritesh G; Ahmed, Saba; Pasha, Syed Bilal; Hussain, Syed Ather; Fatima, Huda; Kharoshah, Magdy A; Madadin, Mohammed

    2018-01-01

    Gastrointestinal conditions are a less common cause of sudden unexpected death when compared to other conditions such as cardiovascular conditions, but they are equally important. Various congenital and acquired gastrointestinal conditions that have resulted in sudden unexpected death are discussed. The possible lethal mechanisms behind each condition, along with any associated risk factors or secondary diseases, have been described. Through this article, we aim to highlight the need for physicians to prevent death in such conditions by ensuring that subclinical cases are diagnosed correctly before it is too late and by providing timely and efficacious treatment to the patient concerned. In addition, this review would certainly benefit the forensic pathologist while dealing with cases of sudden unexpected death due to gastrointestinal causes. This article is a review of the major gastrointestinal causes of sudden unexpected death. In addition, related fatal cases encountered occasionally in forensic autopsy practice are also included. There are several unusual and rare causes of life-threatening gastrointestinal bleeding that may lead to sudden unexpected death to cover all the entities in detail. Nevertheless, this article is a general guide to the topic of gastrointestinal causes of sudden unexpected death.

  17. [Psychological stress and sudden death].

    Pignalberi, Carlo; Ricci, Renato; Santini, Massimo

    2002-10-01

    Recent studies provide relevant evidence that psychological stress significantly influences the pathogenesis of sudden cardiac death. Psychological stress expresses a situation of imbalance, derived from a real or perceived disparity between environmental demands and the individual's ability to cope with these demands. A situation of psychological stress may include different components: personality factors and character traits, anxiety and depression, social isolation and acute or chronic adverse life events. In particular, it has been documented that a sudden extremely hard event, such as an earthquake or a war strike, can significantly increase the incidence of sudden death. Nevertheless, each one of these factors, if not present, can balance a partially unfavorable situation; this overview suggests a multifactorial situation where almost all elements are present and in which the relative influence of each one varies according to the individual examined. Sudden death occurs when a transient disruption (such as acute myocardial ischemia, platelet activation or neuroendocrine variations), occurring in a patient with a diseased myocardium (such as one with a post-necrotic scar or hypertrophy), triggers a malignant arrhythmia. Psychological stress acts at both levels: by means of a "chronic" action it contributes to create the myocardial background, while by means of an acute action it can create the transient trigger precipitating sudden death. In the chronic action two possible mechanisms can be detected: the first is a direct interaction, which contributes to cause a hypertension status or to exacerbate coronary atherosclerosis consequent to endothelial dysfunction; the second one acts through adverse health behaviors, such as a poor diet, alcohol consumption or smoking. In case of acute psychological stress, the mechanisms involved are mainly the ability to trigger myocardial ischemia, to promote arrhythmogenesis, to stimulate platelet function, and to increase

  18. Characteristics of Volcanic Stratospheric Aerosol Layer Observed by CALIOP and Ground Based Lidar at Equatorial Atmosphere Radar Site

    Abo, Makoto; Shibata, Yasukuni; Nagasawa, Chikao

    2018-04-01

    We investigated the relation between major tropical volcanic eruptions in the equatorial region and the stratospheric aerosol data, which have been collected by the ground based lidar observations at at Equatorial Atmosphere Radar site between 2004 and 2015 and the CALIOP observations in low latitude between 2006 and 2015. We found characteristic dynamic behavior of volcanic stratospheric aerosol layers over equatorial region.

  19. Chlorine isotope composition in chlorofluorocarbons CFC-11, CFC-12 and CFC-113 in firn, stratospheric and tropospheric air

    Allin, S. J.; Laube, J. C.; Witrant, E.; Kaiser, J.; McKenna, E.; Dennis, P.; Mulvaney, R.; Capron, E.; Martinerie, P.; Roeckmann, Thomas; Blunier, T.; Schwander, J.; Fraser, P. J.; Langenfelds, R. L.; Sturges, W. T.

    2015-01-01

    The stratospheric degradation of chlorofluorocarbons (CFCs) releases chlorine, which is a major contributor to the destruction of stratospheric ozone (O-3). A recent study reported strong chlorine isotope fractionation during the breakdown of the most abundant CFC (CFC-12, CCl2F2, Laube et al.,

  20. Simulation of stratospheric water vapor trends: impact on stratospheric ozone chemistry

    A. Stenke

    2005-01-01

    Full Text Available A transient model simulation of the 40-year time period 1960 to 1999 with the coupled climate-chemistry model (CCM ECHAM4.L39(DLR/CHEM shows a stratospheric water vapor increase over the last two decades of 0.7 ppmv and, additionally, a short-term increase after major volcanic eruptions. Furthermore, a long-term decrease in global total ozone as well as a short-term ozone decline in the tropics after volcanic eruptions are modeled. In order to understand the resulting effects of the water vapor changes on lower stratospheric ozone chemistry, different perturbation simulations were performed with the CCM ECHAM4.L39(DLR/CHEM feeding the water vapor perturbations only to the chemistry part. Two different long-term perturbations of lower stratospheric water vapor, +1 ppmv and +5 ppmv, and a short-term perturbation of +2 ppmv with an e-folding time of two months were applied. An additional stratospheric water vapor amount of 1 ppmv results in a 5–10% OH increase in the tropical lower stratosphere between 100 and 30 hPa. As a direct consequence of the OH increase the ozone destruction by the HOx cycle becomes 6.4% more effective. Coupling processes between the HOx-family and the NOx/ClOx-family also affect the ozone destruction by other catalytic reaction cycles. The NOx cycle becomes 1.6% less effective, whereas the effectiveness of the ClOx cycle is again slightly enhanced. A long-term water vapor increase does not only affect gas-phase chemistry, but also heterogeneous ozone chemistry in polar regions. The model results indicate an enhanced heterogeneous ozone depletion during antarctic spring due to a longer PSC existence period. In contrast, PSC formation in the northern hemisphere polar vortex and therefore heterogeneous ozone depletion during arctic spring are not affected by the water vapor increase, because of the less PSC activity. Finally, this study shows that 10% of the global total ozone decline in the transient model run

  1. Sudden Cardiac Arrest (SCA) Risk Assessment

    ... HRS Find a Specialist Share Twitter Facebook SCA Risk Assessment Sudden Cardiac Arrest (SCA) occurs abruptly and without ... people of all ages and health conditions. Start Risk Assessment The Sudden Cardiac Arrest (SCA) Risk Assessment Tool ...

  2. Classification of hemispheric monthly mean stratospheric potential vorticity fields

    R. Huth

    Full Text Available Monthly mean NCEP reanalysis potential vorticity fields at the 650 K isentropic level over the Northern and Southern Hemispheres between 1979 and 1997 were studied using multivariate analysis tools. Principal component analysis in the T-mode was applied to demonstrate the validity of such statistical techniques for the study of stratospheric dynamics and climatology. The method, complementarily applied to both the raw and anomaly fields, was useful in determining and classifying the characteristics of winter and summer PV fields on both hemispheres, in particular, the well-known differences in the behaviour and persistence of the polar vortices. It was possible to identify such features as sudden warming events in the Northern Hemisphere and final warming dates in both hemispheres. The stratospheric impact of other atmospheric processes, such as volcanic eruptions, also identified though the results, must be viewed at this stage as tentative. An interesting change in behaviour around 1990 was detected over both hemispheres.

    Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; general circulation; climatology

  3. Laboratory chemistry and stratospheric clouds

    Molina, Mario J.

    1989-01-01

    Results are presented from laboratory experiments on the chemistry of ice particles to study the role of HCl and ClONO2 from CFCs in stratospheric ozone depletion over Antarctica. It is found that gaseous HCl is scavenged with high efficiency by the ice and the gas phase chlorine nitrate may react with the HCL-containing ice to produce Cl2. Also, consideration is given ot the behavior of solid nitric acid trihydrate and sulfuric acid aerosols.

  4. A simple kinematic model for the Lagrangian description of relevant nonlinear processes in the stratospheric polar vortex

    V. J. García-Garrido

    2017-06-01

    Full Text Available In this work, we study the Lagrangian footprint of the planetary waves present in the Southern Hemisphere stratosphere during the exceptional sudden Stratospheric warming event that took place during September 2002. Our focus is on constructing a simple kinematic model that retains the fundamental mechanisms responsible for complex fluid parcel evolution, during the polar vortex breakdown and its previous stages. The construction of the kinematic model is guided by the Fourier decomposition of the geopotential field. The study of Lagrangian transport phenomena in the ERA-Interim reanalysis data highlights hyperbolic trajectories, and these trajectories are Lagrangian objects that are the kinematic mechanism for the observed filamentation phenomena. Our analysis shows that the breaking and splitting of the polar vortex is justified in our model by the sudden growth of a planetary wave and the decay of the axisymmetric flow.

  5. Influence of Aerosol Heating on the Stratospheric Transport of the Mt. Pinatubo Eruption

    Aquila, Valentina; Oman, Luke D.; Stolarski, Richard S.

    2011-01-01

    On June 15th, 1991 the eruption of Mt. Pinatubo (15.1 deg. N, 120.3 Deg. E) in the Philippines injected about 20 Tg of sulfur dioxide in the stratosphere, which was transformed into sulfuric acid aerosol. The large perturbation of the background aerosol caused an increase in temperature in the lower stratosphere of 2-3 K. Even though stratospheric winds climatological]y tend to hinder the air mixing between the two hemispheres, observations have shown that a large part of the SO2 emitted by Mt. Pinatubo have been transported from the Northern to the Southern Hemisphere. We simulate the eruption of Mt. Pinatubo with the Goddard Earth Observing System (GEOS) version 5 global climate model, coupled to the aerosol module GOCART and the stratospheric chemistry module StratChem, to investigate the influence of the eruption of Mt. Pinatubo on the stratospheric transport pattern. We perform two ensembles of simulations: the first ensemble consists of runs without coupling between aerosol and radiation. In these simulations the plume of aerosols is treated as a passive tracer and the atmosphere is unperturbed. In the second ensemble of simulations aerosols and radiation are coupled. We show that the set of runs with interactive aerosol produces a larger cross-equatorial transport of the Pinatubo cloud. In our simulations the local heating perturbation caused by the sudden injection of volcanic aerosol changes the pattern of the stratospheric winds causing more intrusion of air from the Northern into the Southern Hemisphere. Furthermore, we perform simulations changing the injection height of the cloud, and study the transport of the plume resulting from the different scenarios. Comparisons of model results with SAGE II and AVHRR satellite observations will be shown.

  6. The Impact of Stratospheric Circulation Extremes on Minimum Arctic Sea Ice Extent

    Smith, K. L.; Polvani, L. M.; Tremblay, B.

    2017-12-01

    The interannual variability of summertime Arctic sea ice extent (SIE) is anti-correlated with the leading mode of extratropical atmospheric variability in preceding winter, the Arctic Oscillation (AO). Given this relationship and the need for better seasonal predictions of Arctic SIE, we here examine the role of stratospheric circulation extremes and stratosphere-troposphere coupling in linking the AO and Arctic SIE variability. We show that extremes in the stratospheric circulation during the winter season, namely stratospheric sudden warming (SSW) and strong polar vortex (SPV) events, are associated with significant anomalies in sea ice concentration in the Bering Straight and the Sea of Okhotsk in winter, the Barents Sea in spring and along the Eurasian coastline in summer in both observations and a fully-coupled, stratosphere-resolving general circulation model. The accompanying figure shows the composite mean sea ice concentration anomalies from the Whole Atmosphere Community Climate Model (WACCM) for SSWs (N = 126, top row) and SPVs (N = 99, bottom row) for winter (a,d), spring (b,e) and summer (c,f). Consistent with previous work on the AO, we find that SSWs, which are followed by the negative phase of the AO at the surface, result in sea ice growth, whereas SPVs, which are followed by the positive phase of the AO at the surface, result in sea ice loss, although the dynamic and thermodynamic processes driving these sea ice anomalies in the three Arctic regions, noted above, are different. Our analysis suggests that the presence or absence of stratospheric circulation extremes in winter may play a non-trivial role in determining total September Arctic SIE when combined with other factors.

  7. Different Stratospheric Polar Vortex States linked to Cold-Spells in North America and Northern Eurasia

    Kretschmer, M.; Cohen, J. L.; Runge, J.; Coumou, D.

    2017-12-01

    The stratospheric polar vortex in boreal winter can influence the tropospheric circulation and thereby surface weather in the mid-latitudes. Weak states of the vortex, e.g. associated with Sudden Stratospheric Warmings (SSWs), often precede a negative phase of the North Atlantic Oscillation (NAO), and thus increase the risk of mid-latitude cold-spells especially over Eurasia. Here we show using cluster analysis that next to the well-documented relationship between a zonally symmetric disturbed vortex and a negative NAO, there exists a zonally asymmetric pattern linked to a negative Western Pacific Oscillation (WPO) and cold-spells in the northeastern US, like for example observed in February 2014. The latter is more synoptic in time-scale but occurs more frequently than SSWs. A causal effect network (CEN) approach gives insights into the underlying physical pathways and time-lags showing that high-pressure around Greenland leads to vertical wave activity over eastern Siberia leading to downward propagating waves over Alaska and high pressure over the North Pacific. Moreover, composites propose that a rather strong mid-stratospheric vortex seems to be favorable for this zonally asymmetric and reflective mechanism. Overall, the mutual relationship between stratospheric circulation and high-latitude blocking in both the Pacific and Atlantic Oceans is complex and involves mechanisms operating at different time-scales. Our results suggest that the stratospheric influence on winter circulation should not exclusively be analyzed in terms of a downward propagating Northern Annular Mode (NAM) signal and SSWs. In particular when studying the stratospheric impacts on North American temperature it is crucial to also consider the more transient and zonally asymmetric events which might help to improve seasonal winter predictions for this region.

  8. Profile of sudden death in an adult population (1999-2008).

    Downes, M R

    2010-06-01

    Sudden death is the sudden and unexpected death of an individual within 24 hours of symptom onset. The vast majority of these cases are found, at autopsy, to be due to underlying ischaemic cardiac disease. We retrospectively reviewed all adult post mortems performed at Beaumont Hospital over a decade (1999-2008). Our aim was to identify all sudden death cases (natural and accidental) and subclassify them according to age profile and organ system involved. We identified 1230 sudden death cases in the review period with 775 (63%) deaths attributable to ischaemic heart disease. The rate of sudden death remained constant over the decade with 663 (54%) deaths occurring in the first five years. Our negative autopsy rate was 2.8% corresponding to 35 cases. This is the first Irish study to retrospectively review all adult sudden deaths within a defined catchment area and analyse them as outlined above.

  9. Relationship between the North Pacific Gyre Oscillation and the onset of stratospheric final warming in the northern Hemisphere

    Hu, Jinggao; Li, Tim; Xu, Haiming

    2018-01-01

    The seasonal timing or onset date of the stratospheric final warming (SFWOD) events has a considerable interannual variability. This paper reports a statistically significant relationship between the North Pacific Gyre Oscillation (NPGO) and SFWOD in the Northern Hemisphere in two sub-periods (1951-1978 and 1979-2015). Specifically, in the first (second) sub-period, the NPGO is negatively (positively) linked with SFWOD. Composite analyses associated with anomalous NPGO years are conducted to diagnose the dynamic processes of the NPGO-SFWOD link. During 1951-1978, positive NPGO years tend to strengthen the Pacific-North America (PNA) pattern in the mid-troposphere in boreal winter. The strengthened PNA pattern in February leads to strong planetary wave activity in the extratropical stratosphere from late February to March and causes the early onset of SFW in early April. By contrast, a strengthened Western Pacific pattern from January to early February in negative NPGO years causes a burst of planetary waves in both the troposphere and extratropical stratosphere from late January to mid-February and results in more winter stratospheric sudden warming events, which, in turn, leads to a dormant spring and a late onset of SFW in late April. During 1979-2015, positive (negative) NPGO years strongly strengthen (weaken) the mid-tropospheric Aleutian low and the Western Pacific pattern from January to mid-March, leading to increased (decreased) planetary wavenumber-1 activity in the stratosphere from mid- to late winter and thus more (less) winter stratospheric sudden warming events and late (early) onsets of SFW in early May (mid-April).

  10. Dynamic stability under sudden loads

    Simitses, G.J.

    1998-01-01

    The concept of dynamic stability of elastic structures subjected to sudden (step) loads is discussed. The various criteria and related methodologies for estimating critical conditions are presented with the emphasis on their similarities and differences. These are demonstrated by employing a simple mechanical model. Several structural configurations are analyzed, for demonstration purposes, with the intention of comparing critical dynamic loads to critical static loads. These configurations include shallow arches and shallow spherical caps, two bar frames, and imperfect cylindrical shells of metallic as well as laminated composite construction. In the demonstration examples, the effect of static pre loading on the dynamic critical load is presented

  11. Rayleigh lidar investigation of sudden stratospheric warming observed over northern and southern hemisphere stations

    Sivakumar, V

    2006-07-01

    Full Text Available to Dec 2001) over Observatory of Haute-Provence(OHP), south of France(44°N, 6°E) used. Total Number of observations (20 years) : 2631 profiles Total Number of observations in summer : 1394 profiles Total Number of observations in winter : 1237...

  12. Stratospheric HTO perturbations 1980-1983

    Mason, A. S.

    1985-02-01

    Three perturbations of the stratospheric tritiated water burden have occurred. An atmospheric nuclear detonation in 1980 injected about 2.1 MCi. The massive eruptions of the volcano El Chichon may have contributed to a doubling of the removal rate in 1982. An unusually large wintertime exchange with the upper stratosphere may have occurred between 1982 and 1983.

  13. What Controls the Arctic Lower Stratosphere Temperature?

    Newman, Paul A.; Nash, Eric R.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The temperature of the Arctic lower stratosphere is critical for understanding polar ozone levels. As temperatures drop below about 195 K, polar stratospheric clouds form, which then convert HCl and ClONO2 into reactive forms that are catalysts for ozone loss reactions. Hence, the lower stratospheric temperature during the March period is a key parameter for understanding polar ozone losses. The temperature is basically understood to be a result of planetary waves which drive the polar temperature away from a cold "radiative equilibrium" state. This is demonstrated using NCEP/NCAR reanalysis calculations of the heat flux and the mean polar temperature. The temperature during the March period is fundamentally driven by the integrated impact of large scale waves moving from the troposphere to the stratosphere during the January through February period. We will further show that the recent cold years in the northern polar vortex are a result of this weakened wave driving of the stratosphere.

  14. Solar UV radiation variations and their stratospheric and climatic effects

    Donnelly, R. F.; Heath, D. F.

    1985-01-01

    Nimbus-7 SBUV measurements of the short-term solar UV variations caused by solar rotation and active-region evolution have determined the amplitude and wavelength dependence for the active-region component of solar UV variations. Intermediate-term variations lasting several months are associated with rounds of major new active regions. The UV flux stays near the peak value during the current solar cycle variation for more than two years and peaks about two years later than the sunspot number. Nimbus-7 measurements have observed the concurrent stratospheric ozone variations caused by solar UV variations. There is now no doubt that solar UV variations are an important cause of short- and long-term stratospheric variations, but the strength of the coupling to the troposphere and to climate has not yet been proven.

  15. Chemical characterization of local and stratospheric plutonium in Ohio soils

    Muller, R.N.

    1978-01-01

    The chemical nature of plutonium derived from stratospheric fallout and industrial sources was studied in three agricultural soils. The majority of the soil plutonium was associated with a reductant-soluble, hydrous oxide phase that, under most conditions of terrestrial ecosystems, remains essentially immobile. The proportion of plutonium associated with organic matter (0.1N NaOH-extractable) varied among soils, and increased with decreasing particle size in the same soil. In a soil containing 238 Pu from a local fabrication facility and 239 , 240 Pu from stratospheric fallout, isotopic ratios between the NaOH-extractable and residual phases were essentially constant, indicating that, in these soils, plutonium from both sources behaves similarly. The distribution of soil plutonium with particle size appears to be most directly related to the mass of the soil particle

  16. CARDIOVASCULAR CAUSES OF SUDDEN DEATH- AN AUTOPSY STUDY

    Deepu Thankappan

    2016-10-01

    Full Text Available BACKGROUND Present study “Cardiovascular Causes of Sudden Death- An Autopsy Study” was a cross-sectional study conducted in Department of Forensic Medicine, Government Medical College, Kottayam, during the time period from June 1 st 2013 to June 1 st 2014. The objective of the study was to find out the cardiovascular causes of sudden deaths and to correlate the postmortem findings with the histopathological examination. 57 cases brought for postmortem examination with history suggestive of sudden natural death were taken into the study and those cases observed to have a cardiovascular cause of sudden death during autopsy were further examined and their heart specimens were subjected to histopathological examination. Then, the sociodemographic factors, postmortem findings and histopathological findings were correlated and analysed. MATERIALS AND METHODS 57 cases brought for autopsy at Department of Forensic Medicine, Government Medical College, Kottayam from 01.06.2013 to 31.05.2014 were autopsied and subjected to histopathological examination of the heart. The socio-demographic data were collected; they were analyzed and correlated with the postmortem and histopathological findings. RESULTS Out of the 57 subjects who were taken into the study, maximum number of Sudden natural deaths were in the 36-50 year age group (42.2%, 33.3% in the 51-65 year age group and 14% of cases were in the 66-80 year age group. CONCLUSION Histopathological examination of the samples showed myocardial infarction in 33.3% of cases; chronic ischaemic heart disease in 56.1% of cases and myocarditis in 19.3% of cases. The major cardiovascular cause of sudden death was ascertained as Coronary artery disease.

  17. Controllable entanglement sudden birth of Heisenberg spins

    Zheng Qiang; Zhi Qijun; Zhang Xiaoping; Ren Zhongzhou

    2011-01-01

    We investigate the Entanglement Sudden Birth (ESB) of two Heisenberg spins A and B. The third controller, qutrit C is introduced, which only has the Dzyaloshinskii-Moriya (DM) spin-orbit interaction with qubit B. We find that the DM interaction is necessary to induce the Entanglement Sudden Birth of the system qubits A and B, and the initial states of the system qubits and the qutrit C are also important to control its Entanglement Sudden Birth. (authors)

  18. Fragmentation of suddenly heated liquids

    Blink, J.A.

    1985-03-01

    Fragmentation of free liquids in Inertial Confinement Fusion reactors could determine the upper bound on reactor pulse rate. The x-ray ablated materials must cool and recondense to allow driver beam propagation. The increased surface area caused by fragmentation will enhance the cooling and condensation rates. Relaxation from the suddenly heated state will move a liquid into the negative pressure region under the liquid-vapor P-V dome. The lithium equation of state was used to demonstrate that neutron-induced vaporization uses only a minor fraction of the added heat, much less than would be required to drive the expansion. A 77% expansion of the lithium is required before the rapid vaporization process of spinodal decomposition could begin, and nucleation and growth are too slow to contribute to the expansion

  19. The sudden success of prose

    Mortensen, Lars Boje

    2017-01-01

    The article presents a new model for understanding the sudden success of prose in four literatures: Greek, Latin, French and Old Norse. Through comparison and quantitative observations, and by focusing on the success of prose rather than its invention, it is shown that in all four cases two...... reading aloud) has been underplayed in previous scholarship mostly focused on authorial choices and invention. For two of the literatures (Greek, French) the fast dynamics of the rise of prose has already been identified and discussed, but for the two others (Latin, Old Norse), the observation is new....... It is also suggested that the exactly contemporary rise of French and Old Norse prose (c. 1200-1230) most probably is connected. The four literatures are each shown in chronological charts so as to visualize the timeline and the relation between poetic and prosaic works. The article furthermore reflects...

  20. When transcriptome meets metabolome : Fast cellular responses of yeast to sudden relief of glucose limitation

    Heijnen, J.J.; Daran, J.M.; Pronk, J.T.; Daran-Lapujade, P.; Knijnenburg, T.A.; Ras, C.; Ten Pierick, A.; Akmering, M.J.; Van Winden, W.A.; Kresnowati, M.T.

    2006-01-01

    Within the first 5 min after a sudden relief from glucose limitation, Saccharomyces cerevisiae exhibited fast changes of intracellular metabolite levels and a major transcriptional reprogramming. Integration of transcriptome and metabolome data revealed tight relationships between the changes at

  1. An Atlantic streamer in stratospheric ozone observations and SD-WACCM simulation data

    Hocke, Klemens; Schranz, Franziska; Maillard Barras, Eliane; Moreira, Lorena; Kämpfer, Niklaus

    2017-03-01

    Observation and simulation of individual ozone streamers are important for the description and understanding of non-linear transport processes in the middle atmosphere. A sudden increase in mid-stratospheric ozone occurred above central Europe on 4 December 2015. The GROund-based Millimeter-wave Ozone Spectrometer (GROMOS) and the Stratospheric Ozone MOnitoring RAdiometer (SOMORA) in Switzerland measured an ozone enhancement of about 30 % at 34 km altitude (8.3 hPa) from 1 to 4 December. A similar ozone increase is simulated by the Specified Dynamics Whole Atmosphere Community Climate (SD-WACCM) model. Further, the global ozone fields at 34 km altitude (8.3 hPa) from SD-WACCM and the satellite experiment Aura/MLS show a remarkable agreement for the location and timing of an ozone streamer (large-scale tongue-like structure) extending from the subtropics in northern America over the Atlantic to central Europe. This agreement indicates that SD-WACCM can inform us about the wind inside the Atlantic ozone streamer. SD-WACCM shows an eastward wind of about 100 m s-1 inside the Atlantic streamer in the mid-stratosphere. SD-WACCM shows that the Atlantic streamer flows along the edge of the polar vortex. The Atlantic streamer turns southward at an erosion region of the polar vortex located above the Caspian Sea. The spatial distribution of stratospheric water vapour indicates a filament outgoing from this erosion region. The Atlantic streamer, the polar vortex erosion region and the water vapour filament belong to the process of planetary wave breaking in the so-called surf zone of the northern midlatitude winter stratosphere.

  2. ATMOS Stratospheric Deuterated Water and Implications for Tropospheric-Stratospheric Transport

    Moyer, Elisabeth J.; Irion, Fredrick W.; Yung, Yuk L.; Gunson, Michael R.

    1996-01-01

    Measurements of the isotopic composition of stratospheric water by the ATMOS instrument are used to infer the convective history of stratospheric air. The average water vapor entering the stratosphere is found to be highly depleted of deuterium, with delta-D(sub w) of -670 +/- 80 (67% deuterium loss). Model calculations predict, however, that under conditions of thermodynamic equilibrium, dehydration to stratospheric mixing ratios should produce stronger depletion to delta-D(sub w) of -800 to 900 (80-90% deuterium loss). Deuterium enrichment of water vapor in ascending parcels can occur only in conditions of rapid convection; enrichments persisting into the stratosphere require that those conditions continue to near-tropopause altitudes. We conclude that either the predominant source of water vapor to the uppermost troposphere is enriched convective water, most likely evaporated cloud ice, or troposphere-stratosphere transport occurs closely associated with tropical deep convection.

  3. Sudden Cardiac Death in Children. Part 2

    Ye.V. Pshenichnaya

    2013-03-01

    Full Text Available This article deals with the dysplastic changes in musculo-valve structures of the heart, arrhythmias and conduction disorders, associated with a risk of sudden cardiac death. The diagnostic criteria for sudden cardiac death, the events of cardio-pulmonary resuscitation, prevention of life-threatening conditions in children are provided.

  4. Sudden Cardiac Death in Children. Part 1

    Ye.V. Pshenichnaya

    2013-02-01

    Full Text Available This article presents the prevalence, terminology, classification of sudden cardiac death. A description of congenital structural heart diseases associated with a risk of sudden cardiac death is given. The issues of etiology and pathogenesis of life-threatening conditions are described in detail.

  5. Athletes at Risk for Sudden Cardiac Death

    Subasic, Kim

    2010-01-01

    High school athletes represent the largest group of individuals affected by sudden cardiac death, with an estimated incidence of once or twice per week. Structural cardiovascular abnormalities are the most frequent cause of sudden cardiac death. Athletes participating in basketball, football, track, soccer, baseball, and swimming were found to…

  6. Laboratory Investigations of Stratospheric Halogen Chemistry

    Wine, Paul H.; Nicovich, J. Michael; Stickel, Robert E.; Hynes, Anthony J.

    1997-01-01

    A final report for the NASA-supported project on laboratory investigations of stratospheric halogen chemistry is presented. In recent years, this project has focused on three areas of research: (1) kinetic, mechanistic, and thermochemical studies of reactions which produce weakly bound chemical species of atmospheric interest; (2) development of flash photolysis schemes for studying radical-radical reactions of stratospheric interest; and (3) photochemistry studies of interest for understanding stratospheric chemistry. The first section of this paper contains a discussion of work which has not yet been published. All subsequent chapters contain reprints of published papers that acknowledge support from this grant.

  7. Prolonged QTc interval and risk of sudden cardiac death in a population of older adults

    Straus, Sabine M J M; Kors, Jan A; De Bruin, Marie L

    2006-01-01

    OBJECTIVES: This study sought to investigate whether prolongation of the heart rate-corrected QT (QTc) interval is a risk factor for sudden cardiac death in the general population. BACKGROUND: In developed countries, sudden cardiac death is a major cause of cardiovascular mortality. Prolongation...... of the QTc interval has been associated with ventricular arrhythmias, but in most population-based studies no consistent association was found between QTc prolongation and total or cardiovascular mortality. Only very few of these studies specifically addressed sudden cardiac death. METHODS: This study......). The association between a prolonged QTc interval and sudden cardiac death was estimated using Cox proportional hazards analysis. RESULTS: During an average follow-up period of 6.7 years (standard deviation, 2.3 years) 125 patients died of sudden cardiac death. An abnormally prolonged QTc interval (>450 ms in men...

  8. Sudden bilateral hearing loss after organophosphate inhalation

    Mehmet Akif Dundar

    2016-12-01

    Full Text Available Sudden bilateral hearing loss are seen rarely and the toxic substance exposure constitutes a small part of etiology. A Fifty-eight-year-old woman admitted to our clinic with sudden bilateral hearing loss shortly after chlorpyrifos-ethyl exposure. Otolaryngologic examination findings were normal. The patient had 40 dB sensorineural hearing loss (SNHL on the right ear and 48 dB SNHL on the left ear. Additional diagnostic tests were normal. The conventional treatment for sudden hearing loss was performed. On the second week following organophosphate (OP exposure the patient's hearing loss almost completely resolved. OP's are heavily used in agriculture and should be taken into consideration as an etiologic factor in sudden hearing loss. Keywords: Organophosphates, Hearing loss, Sudden

  9. Solar research with stratospheric balloons

    Vázquez, Manuel; Wittmann, Axel D.

    Balloons, driven by hot air or some gas lighter than air, were the first artificial machines able to lift payloads (including humans) from the ground. After some pioneering flights the study of the physical properties of the terrestrial atmosphere constituted the first scientific target. A bit later astronomers realized that the turbulence of the atmospheric layers above their ground-based telescopes deteriorated the image quality, and that balloons were an appropriate means to overcome, total or partially, this problem. Some of the most highly-resolved photographs and spectrograms of the sun during the 20th century were actually obtained by balloon-borne telescopes from the stratosphere. Some more recent projects of solar balloon astronomy will also be described.

  10. Electromagnetic mode conversion: understanding waves that suddenly change their nature

    Batchelor, D B; Berry, L A; Bonoli, P T; Carter, M D; Choi, M; D'Azevedo, E; D'Ippolito, D A; Gorelenkov, N; Harvey, R W; Jaeger, E F; Myra, J R; Okuda, H; Phillips, C K; Smithe, D N; Wright, J C

    2005-01-01

    In a magnetized plasma, such as in fusion devices or the Earth's magnetosphere, several different kinds of waves can simultaneously exist, having very different physical properties. Under the right conditions one wave can quite suddenly convert to another type. Depending on the case, this can be either a great benefit or a problem for the use of waves to heat and control fusion plasmas. Understanding and accurately modeling such behavior is a major computational challenge

  11. Stratospheric warmings - The quasi-biennial oscillation Ozone Hole in the Antarctic but not the Arctic - Correlations between the Solar Cycle, Polar Temperatures, and an Equatorial Oscillation

    Hoppe, Ulf-Peter

    2010-05-15

    This report is a tutorial and overview over some of the complex dynamic phenomena in the polar and equatorial stratosphere, and the unexpected correlation that exists between these and the solar cycle. Sudden stratospheric warmings (stratwarms) occur in the polar stratosphere in winter, but not equally distributed between the two hemispheres. As a result, the ozone hole in the springtime polar stratosphere is much more severe in the Southern Hemisphere than in the Northern Hemisphere. The Quasi-Biennial Oscillation (QBO) is a dynamic phenomenon of the equatorial stratosphere. Through processes not fully understood, the phase of the QBO (easterly or westerly) influences the onset of stratwarms. In addition, a correlation between the stratospheric winter temperature over the poles and the solar cycle has been found, but only if the datapoints are ordered by the phase of the QBO. - The best explanations and figures from four recent textbooks are selected, and abstracts of most relevant publications from the six last years are collected, with the most relevant portions for these subjects highlighted. - In addition to being basic science, the understanding of these phenomena is important in the context of the ozone hole, the greenhouse effect, as well as anthropogenic and natural climate change. (author)

  12. Laboratory studies of stratospheric aerosol chemistry

    Molina, Mario J.

    1996-01-01

    In this report we summarize the results of the two sets of projects funded by the NASA grant NAG2-632, namely investigations of various thermodynamic and nucleation properties of the aqueous acid system which makes up stratospheric aerosols, and measurements of reaction probabilities directly on ice aerosols with sizes corresponding to those of polar stratospheric cloud particles. The results of these investigations are of importance for the assessment of the potential stratospheric effects of future fleets of supersonic aircraft. In particular, the results permit to better estimate the effects of increased amounts of water vapor and nitric acid (which forms from nitrogen oxides) on polar stratospheric clouds and on the chemistry induced by these clouds.

  13. Trajectory tracking control for underactuated stratospheric airship

    Zheng, Zewei; Huo, Wei; Wu, Zhe

    2012-10-01

    Stratospheric airship is a new kind of aerospace system which has attracted worldwide developing interests for its broad application prospects. Based on the trajectory linearization control (TLC) theory, a novel trajectory tracking control method for an underactuated stratospheric airship is presented in this paper. Firstly, the TLC theory is described sketchily, and the dynamic model of the stratospheric airship is introduced with kinematics and dynamics equations. Then, the trajectory tracking control strategy is deduced in detail. The designed control system possesses a cascaded structure which consists of desired attitude calculation, position control loop and attitude control loop. Two sub-loops are designed for the position and attitude control loops, respectively, including the kinematics control loop and dynamics control loop. Stability analysis shows that the controlled closed-loop system is exponentially stable. Finally, simulation results for the stratospheric airship to track typical trajectories are illustrated to verify effectiveness of the proposed approach.

  14. Benefits, risks, and costs of stratospheric geoengineering

    Robock, Alan; Marquardt, Allison; Kravitz, Ben; Stenchikov, Georgiy L.

    2009-01-01

    Injecting sulfate aerosol precursors into the stratosphere has been suggested as a means of geoengineering to cool the planet and reduce global warming. The decision to implement such a scheme would require a comparison of its benefits, dangers

  15. Equatorial storm sudden commencements and interplanetary magnetic field

    Rastogi, R.G.

    1980-01-01

    A comparison is made of the signatures of interplanetary (IP) shocks in the B and theta plots of interplanetary magnetic field (IMF) data of satellites Explorer 33, 34 and 35 and in the H magnetograms at ground observatories within the equatorial electrojet belt, Huancayo, Addis Ababa and Trivandrum associated with major storm sudden commencements during 1967-70. The IP shocks showing sudden increase of the scalar value of IMF, i.e. B without any change of the latitude theta or with the southward turning of theta, were followed by a purely positive sudden increase of H, at any of the magnetic observatories, either on the dayside or the nightside of the earth. The IP shocks identified by a sudden increase of B and with the northward turning of the latitude theta (positive ΔBsub(z)) were associated with purely positive sudden commencement (SC) at the observatories in the nightside, but at the equatorial observatories in the dayside of the earth the signature of the shock was a SC in H with a preliminary negative impulse followed by the main positive excursion (SC-+). It is suggested that the SCs in H at low latitudes are composed of two effects, viz. (i) one due to hydromagnetic pressure on the magnetosphere by the solar plasma and (ii) the other due to the induced electric field associated with the solar wind velocity, V and the Z-component of the IP magnetic field (E = - V x Bsub(z)). The effect of magnetosphere electric field is faster than the effect due to the compression of the magnetosphere by the impinging solar plasma. The negative impulse of SC-+ at low latitude is seen at stations close to the dip equator and only during daytime due to the existence of high ionospheric conductivities in the equatorial electrojet region. (author)

  16. Impacts of Stratospheric Black Carbon on Agriculture

    Xia, L.; Robock, A.; Elliott, J. W.

    2017-12-01

    A regional nuclear war between India and Pakistan could inject 5 Tg of soot into the stratosphere, which would absorb sunlight, decrease global surface temperature by about 1°C for 5-10 years and have major impacts on precipitation and the amount of solar radiation reaching Earth's surface. Using two global gridded crop models forced by one global climate model simulation, we investigate the impacts on agricultural productivity in various nations. The crop model in the Community Land Model 4.5 (CLM-crop4.5) and the parallel Decision Support System for Agricultural Technology (pDSSAT) in the parallel System for Integrating Impact Models and Sectors are participating in the Global Gridded Crop Model Intercomparison. We force these two crop models with output from the Whole Atmospheric Community Climate Model to characterize the global agricultural impact from climate changes due to a regional nuclear war. Crops in CLM-crop4.5 include maize, rice, soybean, cotton and sugarcane, and crops in pDSSAT include maize, rice, soybean and wheat. Although the two crop models require a different time frequency of weather input, we downscale the climate model output to provide consistent temperature, precipitation and solar radiation inputs. In general, CLM-crop4.5 simulates a larger global average reduction of maize and soybean production relative to pDSSAT. Global rice production shows negligible change with climate anomalies from a regional nuclear war. Cotton and sugarcane benefit from a regional nuclear war from CLM-crop4.5 simulation, and global wheat production would decrease significantly in the pDSSAT simulation. The regional crop yield responses to a regional nuclear conflict are different for each crop, and we present the changes in production on a national basis. These models do not include the crop responses to changes in ozone, ultraviolet radiation, or diffuse radiation, and we would like to encourage more modelers to improve crop models to account for those

  17. Molecular beam studies of stratospheric photochemistry

    Moore, Teresa Anne

    1998-12-01

    Photochemistry of chlorine oxide containing species plays a major role in stratospheric ozone depletion. This thesis discusses two photodissociation studies of the key molecules ClONO2 and ClOOCl which were previously thought to only produce Cl-atom (ozone depleting) products at wavelengths relevant to the stratosphere. The development of a molecular beam source of ClOOCl and the photodissociation dynamics of the model system Cl2O are also discussed. In the first chapter, the photochemistry of ClONO2 is examined at 308 nm using the technique of photofragment translational spectroscopy. Two primary decomposition pathways, leading to Cl + NO3 and ClO + NO2, were observed, with a lower limit of 0.33 for the relative yield of ClO. The angular distributions for both channels were anisotropic, indicating that the dissociation occurs within a rotational period. Chapter two revisits the photodissociation dynamics of Cl2O at 248 and 308 nm, on which we had previously reported preliminary findings. At 248 nm, three distinct dissociation pathways leading to Cl + ClO products were resolved. At 308 nm, the angular distribution was slightly more isotropic that previously reported, leaving open the possibility that Cl2O excited at 308 nm lives longer than a rotational period. Chapter three describes the development and optimization of a molecular beam source of ClOOCl. We utilized pulsed laser photolysis of ClA2O to generate ClO radicals, and cooled the cell to promote three body recombination to form ClOOCl. The principal components in the beam were Cl2, Cl2O, and ClOOCl. In the fourth chapter, the photodissociation dynamics of ClOOCl are investigated at 248 and 308 nm. We observed multiple dissociation pathways which produced ClO + ClO and 2Cl + O2 products. The relative Cl:ClO product yields are 1.0:0.13 and 1.0:0.20 for ClOOCl photolysis at 248 and 308 nm, respectively. The upper limit for the relative yield of the ClO + ClO channel was 0.19 at 248 nm and 0.31 at 308 nm

  18. Modulations of stratospheric ozone by volcanic eruptions

    Blanchette, Christian; Mcconnell, John C.

    1994-01-01

    We have used a time series of aerosol surface based on the measurements of Hofmann to investigate the modulation of total column ozone caused by the perturbation to gas phase chemistry by the reaction N2O5(gas) + H2O(aero) yields 2HNO3(gas) on the surface of stratospheric aerosols. We have tested a range of values for its reaction probability, gamma = 0.02, 0.13, and 0.26 which we compared to unperturbed homogeneous chemistry. Our analysis spans a period from Jan. 1974 to Oct. 1994. The results suggest that if lower values of gamma are the norm then we would expect larger ozone losses for highly enhanced aerosol content that for larger values of gamma. The ozone layer is more sensitive to the magnitude of the reaction probability under background conditions than during volcanically active periods. For most conditions, the conversion of NO2 to HNO3 is saturated for reaction probability in the range of laboratory measurements, but is only absolutely saturated following major volcanic eruptions when the heterogeneous loss dominates the losses of N2O5. The ozone loss due to this heterogeneous reaction increases with the increasing chlorine load. Total ozone losses calculated are comparable to ozone losses reported from TOMS and Dobson data.

  19. Potential For Stratospheric Ozone Depletion During Carboniferous

    Bill, M.; Goldstein, A. H.

    Methyl bromide (CH3Br) constitutes the largest source of bromine atoms to the strato- sphere whereas methyl chloride (CH3Cl) is the most abundant halocarbon in the tro- posphere. Both gases play an important role in stratospheric ozone depletion. For in- stance, Br coupled reactions are responsible for 30 to 50 % of total ozone loss in the polar vortex. Currently, the largest natural sources of CH3Br and CH3Cl appear to be biological production in the oceans, inorganic production during biomass burning and plant production in salt marsh ecosystems. Variations of paleofluxes of CH3Br and CH3Cl can be estimated by analyses of oceanic paleoproductivity, stratigraphic analyses of frequency and distribution of fossil charcoal indicating the occurrence of wildfires, and/or by paleoreconstruction indicating the extent of salt marshes. Dur- ing the lower Carboniferous time (Tournaisian-Visean), the southern margin of the Laurasian continent was characterized by charcoal deposits. Estimation on frequency of charcoal layers indicates that wildfires occur in a range of 3-35 years (Falcon-Lang 2000). This suggests that biomass burning could be an important source of CH3Br and CH3Cl during Tournaisian-Viesan time. During Tounaisian and until Merame- cian carbon and oxygen isotope records have short term oscillations (Bruckschen et al. 1999, Mii et al. 1999). Chesterian time (mid- Carboniferous) is marked by an in- crease in delta18O values ( ~ 2 permil) and an increase of glacial deposit frequency suggesting lower temperatures. The occurrence of glacial deposits over the paleopole suggests polar conditions and the associated special features of polar mete- orology such as strong circumpolar wind in the stratosphere (polar vortex) and polar stratospheric clouds. Thus, conditions leading to polar statospheric ozone depletion can be found. Simultaneously an increase in delta13C values is documented. We interpret the positive shift in delta13C as a result of higher bioproductivity

  20. Stratospheric cooling and polar ozone loss due to H2 emissions of a global hydrogen economy

    Feck, T.; Grooß, J.-U.; Riese, M.; Vogel, B.

    2009-04-01

    "Green" hydrogen is seen as a major element of the future energy supply to reduce greenhouse gas emissions substantially. However, due to the possible interactions of hydrogen (H2) with other atmospheric constituents there is a need to analyse the implications of additional atmospheric H2 that could result from hydrogen leakage of a global hydrogen infrastructure. Emissions of molecular H2 can occur along the whole hydrogen process chain which increase the tropospheric H2 burden. Across the tropical tropopause H2 reaches the stratosphere where it is oxidised and forms water vapour (H2O). This causes increased IR-emissions into space and hence a cooling of the stratosphere. Both effects, the increase of stratospheric H2O and the cooling, enhances the potential of chlorine activation on liquid sulfate aerosol and polar stratospheric clouds (PSCs), which increase polar ozone destruction. Hence a global hydrogen economy could provoke polar ozone loss and could lead to a substantial delay of the current projected recovery of the stratospheric ozone layer. Our investigations show that even if 90% of the current global fossil primary energy input could be replaced by hydrogen and approximately 9.5% of the product gas would leak to the atmosphere, the ozone loss would be increased between 15 to 26 Dobson Units (DU) if the stratospheric CFC loading would retain unchanged. A consistency check of the used approximation methods with the Chemical Lagrangian Model of the Stratosphere (CLaMS) shows that this additional ozone loss can probably be treated as an upper limit. Towards more realistic future H2 leakage rate assumptions (< 3%) the additional ozone loss would be rather small (? 10 DU). However, in all cases the full damage would only occur if stratospheric CFC-levels would retain unchanged. Due to the CFC-prohibition as a result of the Montreal Protocol the forecasts suggest a decline of the stratospheric CFC loading about 50% until 2050. In this case our calculations

  1. Supravalvular aortic stenosis with sudden cardiac death

    Pradeep Vaideeswar

    2015-01-01

    Full Text Available Sudden cardiac death (SCD most commonly results from previously undiagnosed congenital, acquired, or hereditary cardiac diseases. Congenital aortic valvular, subvalvular, and supravalvular disease with left ventricular outflow tract obstruction is an important preventable cause of sudden death. This report documents sudden death presumably due to acute myocardial ischemia in a young male with an undiagnosed supravalvular aortic stenosis (SVAS due to a rare association of isolation of coronary sinuses of Valsalva. Congenital supravalvular pulmonary stenosis and mitral valvular dysplasia were also present.

  2. Sudden Death in Young People--Heart Problems Often Blamed

    Sudden death in young people: Heart problems often blamed Sudden death in young people is rare, but those at ... causes and treatments. By Mayo Clinic Staff Sudden death in people younger than 35, often due to ...

  3. Issues in Stratospheric Ozone Depletion.

    Lloyd, Steven Andrew

    Following the announcement of the discovery of the Antarctic ozone hole in 1985 there have arisen a multitude of questions pertaining to the nature and consequences of polar ozone depletion. This thesis addresses several of these specific questions, using both computer models of chemical kinetics and the Earth's radiation field as well as laboratory kinetic experiments. A coupled chemical kinetic-radiative numerical model was developed to assist in the analysis of in situ field measurements of several radical and neutral species in the polar and mid-latitude lower stratosphere. Modeling was used in the analysis of enhanced polar ClO, mid-latitude diurnal variation of ClO, and simultaneous measurements of OH, HO_2, H_2 O and O_3. Most importantly, such modeling was instrumental in establishing the link between the observed ClO and BrO concentrations in the Antarctic polar vortex and the observed rate of ozone depletion. The principal medical concern of stratospheric ozone depletion is that ozone loss will lead to the enhancement of ground-level UV-B radiation. Global ozone climatology (40^circS to 50^ circN latitude) was incorporated into a radiation field model to calculate the biologically accumulated dosage (BAD) of UV-B radiation, integrated over days, months, and years. The slope of the annual BAD as a function of latitude was found to correspond to epidemiological data for non-melanoma skin cancers for 30^circ -50^circN. Various ozone loss scenarios were investigated. It was found that a small ozone loss in the tropics can provide as much additional biologically effective UV-B as a much larger ozone loss at higher latitudes. Also, for ozone depletions of > 5%, the BAD of UV-B increases exponentially with decreasing ozone levels. An important key player in determining whether polar ozone depletion can propagate into the populated mid-latitudes is chlorine nitrate, ClONO_2 . As yet this molecule is only indirectly accounted for in computer models and field

  4. Brugada Syndrome in a Patient with Vascular Ehlers-Danlos Syndrome: Sudden Death Risk Amplified.

    D'Souza, Jason; Malhotra, Divyanshu; Goud, Aditya; Dahagam, Chanukya; Everett, George

    2017-04-19

    The vast majority of sudden cardiac arrests occur in patients with structural heart disease and in approximately 10% of the cases, it can occur in those with structurally normal hearts. Brugada syndrome is an autosomal dominant sodium channelopathy that has been implicated in sudden deaths. Given their low prevalence, our knowledge about Brugada syndrome is still evolving. Apart from schizophrenia, there have been no reports of associated medical conditions. We recently encountered a patient with vascular Ehlers-Danlos syndrome who was also found to have Brugada syndrome. Both these conditions share some common clinical presentations including a propensity for sudden death.

  5. On the detection of the solar signal in the tropical stratosphere

    G. Chiodo

    2014-06-01

    Full Text Available We investigate the relative role of volcanic eruptions, El Niño–Southern Oscillation (ENSO, and the quasi-biennial oscillation (QBO in the quasi-decadal signal in the tropical stratosphere with regard to temperature and ozone commonly attributed to the 11 \\unit{yr} solar cycle. For this purpose, we perform transient simulations with the Whole Atmosphere Community Climate Model forced from 1960 to 2004 with an 11 yr solar cycle in irradiance and different combinations of other forcings. An improved multiple linear regression technique is used to diagnose the 11 yr solar signal in the simulations. One set of simulations includes all observed forcings, and is thereby aimed at closely reproducing observations. Three idealized sets exclude ENSO variability, volcanic aerosol forcing, and QBO in tropical stratospheric winds, respectively. Differences in the derived solar response in the tropical stratosphere in the four sets quantify the impact of ENSO, volcanic events and the QBO in attributing quasi-decadal changes to the solar cycle in the model simulations. The novel regression approach shows that most of the apparent solar-induced lower-stratospheric temperature and ozone increase diagnosed in the simulations with all observed forcings is due to two major volcanic eruptions (i.e., El Chichón in 1982 and Mt. Pinatubo in 1991. This is caused by the alignment of these eruptions with periods of high solar activity. While it is feasible to detect a robust solar signal in the middle and upper tropical stratosphere, this is not the case in the tropical lower stratosphere, at least in a 45 yr simulation. The present results suggest that in the tropical lower stratosphere, the portion of decadal variability that can be unambiguously linked to the solar cycle may be smaller than previously thought.

  6. On the aliasing of the solar cycle in the lower stratospheric tropical temperature

    Kuchar, Ales; Ball, William T.; Rozanov, Eugene V.; Stenke, Andrea; Revell, Laura; Miksovsky, Jiri; Pisoft, Petr; Peter, Thomas

    2017-09-01

    The double-peaked response of the tropical stratospheric temperature profile to the 11 year solar cycle (SC) has been well documented. However, there are concerns about the origin of the lower peak due to potential aliasing with volcanic eruptions or the El Niño-Southern Oscillation (ENSO) detected using multiple linear regression analysis. We confirm the aliasing using the results of the chemistry-climate model (CCM) SOCOLv3 obtained in the framework of the International Global Atmospheric Chemisty/Stratosphere-troposphere Processes And their Role in Climate Chemistry-Climate Model Initiative phase 1. We further show that even without major volcanic eruptions included in transient simulations, the lower stratospheric response exhibits a residual peak when historical sea surface temperatures (SSTs)/sea ice coverage (SIC) are used. Only the use of climatological SSTs/SICs in addition to background stratospheric aerosols removes volcanic and ENSO signals and results in an almost complete disappearance of the modeled solar signal in the lower stratospheric temperature. We demonstrate that the choice of temporal subperiod considered for the regression analysis has a large impact on the estimated profile signal in the lower stratosphere: at least 45 consecutive years are needed to avoid the large aliasing effect of SC maxima with volcanic eruptions in 1982 and 1991 in historical simulations, reanalyses, and observations. The application of volcanic forcing compiled for phase 6 of the Coupled Model Intercomparison Project (CMIP6) in the CCM SOCOLv3 reduces the warming overestimation in the tropical lower stratosphere and the volcanic aliasing of the temperature response to the SC, although it does not eliminate it completely.

  7. Sudden death in the first 2 years of life following immunization in the Republic of Korea.

    Choe, Young June; Kim, Jong-Hee; Son, Hyun Jin; Bae, Geun-Ryang; Lee, Duk-hyoung

    2012-12-01

    Because the peak age for incidence of sudden deaths in infancy temporally coincides with the age of infant primary immunization, some have raised the question as to whether immunization is a risk factor for sudden death in infancy. Recent occurrence of two sudden deaths in infants in Korea has renewed concerns about the causal association between immunization and sudden deaths in infants. We carried out a retrospective review of data from the Korea Centers for Disease Control and Prevention Adverse Events Following Immunization Surveillance System and Vaccine Compensation programs. From 1994 to 2011, a total of 45 cases of sudden deaths in the first 2 years of life following immunization were reported in Korea. The causes of death were classified as follows: infectious diseases (n= 13); accidental injuries (n= 7); congenital abnormalities (n= 2); and malignancy (n= 1). Of 20 sudden deaths in infancy, nine deaths met Brighton Collaboration case definition level I and II, and therefore were classified as possible sudden infant death syndrome cases. Hepatitis B vaccine (n= 13) was the most frequent vaccine with temporal association with sudden deaths in the first 2 years of life. Few sudden deaths in the first 2 years of life following immunization have been reported, despite the use of universal immunization in Korea. The majority of deaths in infancy did not meet case definition for sudden infant death syndrome. Encouraging investigators to perform thorough investigation, including postmortem autopsy and death scene examination, may promote data comparability and provide guidance on decision-making in the vaccine-safety monitoring and response system in Korea. © 2012 The Authors. Pediatrics International © 2012 Japan Pediatric Society.

  8. Age and gravitational separation of the stratospheric air over Indonesia

    S. Sugawara

    2018-02-01

    Full Text Available The gravitational separation of major atmospheric components, in addition to the age of air, would provide additional useful information about stratospheric circulation. However, observations of the age of air and gravitational separation are still geographically sparse, especially in the tropics. In order to address this issue, air samples were collected over Biak, Indonesia in February 2015 using four large plastic balloons, each loaded with two compact cryogenic samplers. With a vertical resolution of better than 2 km, air samples from seven different altitudes were analyzed for CO2 and SF6 mole fractions, δ15N of N2, δ18O of O2, and δ(Ar∕N2 to examine the vertically dependent age and gravitational separation of air in the tropical tropopause layer (TTL and the equatorial stratosphere. By comparing their measured mole fractions with aircraft observations in the upper tropical troposphere, we have found that CO2 and SF6 ages increase gradually with increasing altitude from the TTL to 22 km, and then rapidly from there up to 29 km. The CO2 and SF6 ages agree well with each other in the TTL and in the lower stratosphere, but show a significant difference above 24 km. The average values of δ15N of N2, δ18O of O2, and δ(Ar∕N2 all show a small but distinct upward decrease due to the gravitational separation effect. Simulations with a two-dimensional atmospheric transport model indicate that the gravitational separation effect decreases as tropical upwelling is enhanced. From the model calculations with enhanced eddy mixing, it is also found that the upward increase in air age is magnified by horizontal mixing. These model simulations also show that the gravitational separation effect remains relatively constant in the lower stratosphere. The results of this study strongly suggest that the gravitational separation, combined with the age of air, can be used to diagnose air transport processes in the stratosphere.

  9. Radiation chemistry in the Jovian stratosphere - Laboratory simulations

    Mcdonald, Gene D.; Thompson, W. R.; Sagan, Carl

    1992-01-01

    The results of the present low-pressure/continuous-flow laboratory simulations of H2/He/CH4/NH3 atmospheres' plasma-induced chemistry indicate radiation yields of both hydrocarbon and N2-containing organic compounds which increase with decreasing pressure. On the basis of these findings, upper limits of 1 million-1 billion molecules/sq cm/sec are established for production rates of major auroral-chemistry species in the Jovian stratosphere. It is noted that auroral processes may account for 10-100 percent of the total abundances of most of the observed polar-region organic species.

  10. Steroid Treatments Equally Effective Against Sudden Deafness

    ... NIGMS NIMH NIMHD NINDS NINR NLM CC CIT CSR FIC NCATS NCCIH OD About NIH Who We ... with sudden deafness should discuss the risks and benefits of both treatments with their doctor.” Related Links ...

  11. Sudden unexpected death caused by stroke

    Ågesen, Frederik Nybye; Risgaard, Bjarke; Zachariasardóttir, Sára

    2017-01-01

    Background Stroke is the fifth leading cause of death in young individuals globally. Data on the burden of sudden death by stroke are sparse in the young. Aims The aim of this study was to report mortality rates, cause of death, stroke subtype, and symptoms in children and young adults who suffered....... There was a male predominance (56%) and the median age was 33 years. The incidence of sudden death by stroke in individuals aged 1-49 years was 0.19 deaths per 100,000 person-years. Stroke was hemorrhagic in 94% of cases, whereof subarachnoid hemorrhage was the cause of death in 63% of cases. Seventeen (33%) cases...... contacted the healthcare system because of neurological symptoms, whereof one was suspected of having a stroke (6%). Conclusions Sudden death by stroke in children and young adults occurs primarily due to hemorrhagic stroke. We report a high frequency of neurological symptoms prior to sudden death by stroke...

  12. Sudden Sensorineural Hearing Loss; Prognostic Factors

    Arjun, Dass; Neha, Goel; Surinder K, Singhal; Ravi, Kapoor

    2015-01-01

    Introduction: Sudden sensorineural hearing loss (SSNHL) is a frightening and frustrating symptom for the patient as well as the physician. Prognosis is affected by multiple factors including duration of hearing loss, presence of associated vertigo and tinnitus, and co-morbidities such as hypertension and diabetes.   Materials and Methods: Forty subjects presenting to our department with features of sudden hearing loss were included in the study. Detailed otological history and examination, se...

  13. Sudden Hearing Loss after Rabies Vaccination

    Güçlü, Oğuz; Dereköy, Fevzi Sefa

    2014-01-01

    Background: Sudden hearing loss developing after immunisation is a very rare situation. Rabies is a viral disease characterised by encephalitis and death. Treatment involves active and passive immunisation. Neurologic complications including Guillain-Barre syndrome or facial paralysis are reported in the literature as a side effect after rabies immunisation. Case Report: Sudden hearing loss was detected in an 11 year-old male patient who had taken the medication for rabies immunisatio...

  14. Sudden Hearing Loss after Rabies Vaccination

    Güçlü, Oğuz; Dereköy, Fevzi Sefa

    2013-01-01

    Background: Sudden hearing loss developing after immunisation is a very rare situation. Rabies is a viral disease characterised by encephalitis and death. Treatment involves active and passive immunisation. Neurologic complications including Guillain-Barre syndrome or facial paralysis are reported in the literature as a side effect after rabies immunisation. Case Report: Sudden hearing loss was detected in an 11 year-old male patient who had taken the medication for rabies immunisat...

  15. Sport and sudden death in children

    L. M. Makarov

    2017-01-01

    Full Text Available The article presents data on contemporary views of the prevalence, causes, circumstances of sudden cardiac death, and its prevention measures in children and adolescents during sports activity. It notes a difficulty in defining the epidemiology of the above condition because the data are primarily based upon mass media news coverage. The incidence of sudden cardiac death is approximately 1 per 100,000 young athletes; more than 90% boys die. The sports, during which sudden cardiac death often occurs, include (both American and European football, basketball, and hockey. Sudden cardiac death due to cоmmоtio cordis (life-threatening cardiac arrhythmias resulting from a blow with a blunt instrument to the area of the heart during the vulnerable phase of the cardiac cycle is considered separately. Children who die suddenly during sports are frequently detected to have hypertrophic cardiomyopathy or myocarditis; but no changes are found in more than 50% of cases at autopsy, which is suggestive of primary arrhythmogenic death. The basis for prevention is the early detection of diseases that can cause sudden death during sports, regular examination, knowledge of ECG characteristics in athletes, and first aid techniques, including the use of automated external defibrillators.

  16. Sudden cardiac death in children and adolescents (excluding Sudden Infant Death Syndrome

    Gajewski Kelly

    2010-01-01

    Full Text Available Sudden death in the young is rare. About 25% of cases occur during sports. Most young people with sudden cardiac death (SCD have underlying heart disease, with hypertrophic cardiomyopathy and coronary artery anomalies being commonest in most series. Arrhythmogenic right ventricular dysplasia and long QT syndrome are the most common primary arrhythmic causes of SCD. It is estimated that early cardiopulmonary resuscitation and widespread availability of automatic external defibrillators could prevent about a quarter of pediatric sudden deaths.

  17. Stratospheric sulfur and its implications for radiative forcing simulated by the chemistry climate model EMAC.

    Brühl, C; Lelieveld, J; Tost, H; Höpfner, M; Glatthor, N

    2015-03-16

    Multiyear simulations with the atmospheric chemistry general circulation model EMAC with a microphysical modal aerosol module at high vertical resolution demonstrate that the sulfur gases COS and SO 2 , the latter from low-latitude and midlatitude volcanic eruptions, predominantly control the formation of stratospheric aerosol. Marine dimethyl sulfide (DMS) and other SO 2 sources, including strong anthropogenic emissions in China, are found to play a minor role except in the lowermost stratosphere. Estimates of volcanic SO 2 emissions are based on satellite observations using Total Ozone Mapping Spectrometer and Ozone Monitoring Instrument for total injected mass and Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat or Stratospheric Aerosol and Gases Experiment for the spatial distribution. The 10 year SO 2 and COS data set of MIPAS is also used for model evaluation. The calculated radiative forcing of stratospheric background aerosol including sulfate from COS and small contributions by DMS oxidation, and organic aerosol from biomass burning, is about 0.07W/m 2 . For stratospheric sulfate aerosol from medium and small volcanic eruptions between 2005 and 2011 a global radiative forcing up to 0.2W/m 2 is calculated, moderating climate warming, while for the major Pinatubo eruption the simulated forcing reaches 5W/m 2 , leading to temporary climate cooling. The Pinatubo simulation demonstrates the importance of radiative feedback on dynamics, e.g., enhanced tropical upwelling, for large volcanic eruptions.

  18. Stratospheric chlorine injection by volcanic eruptions - HCl scavenging and implications for ozone

    Tabazadeh, A.; Turco, R. P.

    1993-01-01

    Because the output of volatile chlorine during a major volcanic event can greatly exceed the annual anthropogenic emissions of chlorine to the atmosphere, the fate of volcanic chlorine must be known. Although numerous observations have shown that volcanoes do not significantly contribute to the stratospheric chlorine burden, no quantitative explanation has been published. Hydrogen chloride (HCl) scavenging processes during the early phases of a volcanic eruption are discussed. A plume dynamics and thermodynamics model is used to show that HCl removal in condensed supercooled water can reduce HCl vapor concentrations by up to four orders of magnitude, preventing substantial stratospheric chlorine injection.

  19. STRATOSPHERIC TEMPERATURES AND WATER LOSS FROM MOIST GREENHOUSE ATMOSPHERES OF EARTH-LIKE PLANETS

    Kasting, James F.; Kopparapu, Ravi K. [Department of Geosciences, The Pennsylvania State University, State College, PA 16801 (United States); Chen, Howard, E-mail: jfk4@psu.edu, E-mail: hwchen@bu.edu [Department of Astronomy, Boston University, 725 Commonwealth Ave., Boston, MA 02215 (United States)

    2015-11-01

    A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a moist greenhouse explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheres are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing inverse climate calculations to determine habitable zone boundaries using 1D models.

  20. STRATOSPHERIC TEMPERATURES AND WATER LOSS FROM MOIST GREENHOUSE ATMOSPHERES OF EARTH-LIKE PLANETS

    Kasting, James F.; Kopparapu, Ravi K.; Chen, Howard

    2015-01-01

    A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a moist greenhouse explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheres are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing inverse climate calculations to determine habitable zone boundaries using 1D models

  1. Impact of H{sub 2} emissions of a global hydrogen economy on the stratosphere

    Grooss, Jens-Uwe; Feck, Thomas; Vogel, Baerbel; Riese, Martin [Forschungszentrum Juelich (Germany)

    2010-07-01

    ''Green'' hydrogen is seen as a major element of the future energy supply to reduce greenhouse gas emissions substantially. However, due to the possible interactions of hydrogen (H{sub 2}) with other atmospheric constituents there is a need to analyse the implications of additional atmospheric H{sub 2} that could result from hydrogen leakage of a global hydrogen infrastructure. Emissions of molecular H{sub 2} can occur along the whole hydrogen process chain which increase the tropospheric H{sub 2} burden. The impact of these emissions is investigated. Figure 1 is a sketch that clarifies the path way and impact of hydrogen in the stratosphere. The air follows the Brewer-Dobson circulation in which air enters the stratosphere through the tropical tropopause, ascends then to the upper stratosphere and finally descends in polar latitudes within a typical transport time frame of 4 to 8 years. (orig.)

  2. Stratospheric dryness: model simulations and satellite observations

    J. Lelieveld

    2007-01-01

    Full Text Available The mechanisms responsible for the extreme dryness of the stratosphere have been debated for decades. A key difficulty has been the lack of comprehensive models which are able to reproduce the observations. Here we examine results from the coupled lower-middle atmosphere chemistry general circulation model ECHAM5/MESSy1 together with satellite observations. Our model results match observed temperatures in the tropical lower stratosphere and realistically represent the seasonal and inter-annual variability of water vapor. The model reproduces the very low water vapor mixing ratios (below 2 ppmv periodically observed at the tropical tropopause near 100 hPa, as well as the characteristic tape recorder signal up to about 10 hPa, providing evidence that the dehydration mechanism is well-captured. Our results confirm that the entry of tropospheric air into the tropical stratosphere is forced by large-scale wave dynamics, whereas radiative cooling regionally decelerates upwelling and can even cause downwelling. Thin cirrus forms in the cold air above cumulonimbus clouds, and the associated sedimentation of ice particles between 100 and 200 hPa reduces water mass fluxes by nearly two orders of magnitude compared to air mass fluxes. Transport into the stratosphere is supported by regional net radiative heating, to a large extent in the outer tropics. During summer very deep monsoon convection over Southeast Asia, centered over Tibet, moistens the stratosphere.

  3. Stratospheric Aerosol and Gas Experiment (SAGE) IV Pathfinder

    National Aeronautics and Space Administration — The Clean Air Act mandates NASA to monitor stratospheric ozone, and stratospheric aerosol measurements are vital to our understanding of climate.  Maintaining...

  4. Sources and sinks of stratospheric water vapor

    Ellsaesser, H.W.

    1979-11-01

    A tutorial review of the understanding of stratospheric H 2 O and the processes controlling it is presented. Paradoxes posed by currently available observational data are cited and suggestions made as to how they might be resolved. Such resolution appears to require: that the bulk of our current data provides unrepresentative and misleading vertical and latitudinal H 2 O gradients immediately downstream from the tropical tropopause; and, that there exists within the troposphere a mechanism different from or in addition to the tropical tropopause cold trap for drying air to the mixing ratios found in the lower stratosphere. Satisfaction of these requirements will reconcile much heretofore puzzling observational data and will obviate the necessity for a stratospheric sink for H 2 O

  5. Acute otitis media associated bilateral sudden hearing loss: case report and literature review.

    Smith, A; Gutteridge, I; Elliott, D; Cronin, M

    2017-07-01

    Sudden sensorineural hearing loss is a rare otological condition with potential for dire outcomes including permanent hearing loss. Although the majority of cases are deemed idiopathic, bilateral sudden sensorineural hearing loss represents a rare subset typically related to systemic conditions, with higher morbidity and mortality. A controversial association with acute otitis media has been reported, with few bilateral cases published in the literature. A very rare case of bilateral sudden sensorineural hearing loss associated with acute otitis media is described, with a review of the literature. The limited evidence available suggests that acute otitis media with tinnitus and/or bacterial pathology may have an increased risk of sudden sensorineural hearing loss, which is consistent with the case described. Although there is no sufficiently powered published evidence to provide definitive treatment guidelines, the literature reviewed suggests that early myringotomy and antibiotics may greatly improve treatment outcomes.

  6. New stratospheric UV/visible radiance measurements

    F. J. Marceau

    1994-01-01

    Full Text Available A stratospheric balloon was launched on 12 October 1986 from the "CNES" base at Aire sur l'Adour (France to record twilight radiance in the stratosphere. The near-UV and visible radiances were continuously monitored by a photometer during sunrise. Some observations are presented for different viewing azimuthal planes and viewing elevation angles. They show the influence of aerosols layers and clouds which can be also seen on related photographs. The results as a whole may be used for testing some radiative models, especially for twilight conditions.

  7. Equatorial waves in the stratosphere of Uranus

    Hinson, David P.; Magalhaes, Julio A.

    1991-01-01

    Analyses of radio occultation data from Voyager 2 have led to the discovery and characterization of an equatorial wave in the Uranus stratosphere. The observed quasi-periodic vertical atmospheric density variations are in close agreement with theoretical predictions for a wave that propagates vertically through the observed background structure of the stratosphere. Quantitative comparisons between measurements obtained at immersion and at emersion yielded constraints on the meridional and zonal structure of the wave; the fact that the two sets of measurements are correlated suggests a wave of planetary scale. Two equatorial wave models are proposed for the wave.

  8. Sudden unexpected death in infancy in Denmark

    Winkel, Bo Gregers; Holst, Anders Gaarsdal; Theilade, Juliane

    2011-01-01

    Abstract Background. Incidence of sudden unexpected death in infancy (SUDI) and sudden infant death syndrome (SIDS) differs among studies and non-autopsied cases are difficult to assess. Objectives. To investigate causes of sudden death in infancy in a nationwide setting. Validate the use...... of the ICD-10 code for SIDS (R95) in the Danish Cause of Death registry. Design. A retrospective analysis of all infant deaths (death certificates and autopsy reports were read. Results. We identified 192 SUDI cases (10% of total deaths, 0.42 per 1000 births......) with autopsy performed in 87% of cases. In total, 49% of autopsied SUDI cases were defined as SIDS (5% of all deaths, 0.22 per 1000 births); Cardiac cause of death was denoted in 24% of cases. The Danish Cause of Death Registry misclassified 30% of SIDS cases. Conclusions. A large proportion of infant deaths...

  9. Composite Materials With Uncured Epoxy Matrix Exposed in Stratosphere During NASA Stratospheric Balloon Flight

    Kondyurin, Alexey; Kondyurina, Irina; Bilek, Marcela; de Groh, Kim K.

    2013-01-01

    A cassette of uncured composite materials with epoxy resin matrixes was exposed in the stratosphere (40 km altitude) over three days. Temperature variations of -76 to 32.5C and pressure up to 2.1 torr were recorded during flight. An analysis of the chemical structure of the composites showed, that the polymer matrix exposed in the stratosphere becomes crosslinked, while the ground control materials react by way of polymerization reaction of epoxy groups. The space irradiations are considered to be responsible for crosslinking of the uncured polymers exposed in the stratosphere. The composites were cured on Earth after landing. Analysis of the cured composites showed that the polymer matrix remains active under stratospheric conditions. The results can be used for predicting curing processes of polymer composites in a free space environment during an orbital space flight.

  10. Methane as a Diagnostic Tracer of Changes in the Brewer-Dobson Circulation of the Stratosphere

    Remsberg, E. E.

    2015-01-01

    This study makes use of time series of methane (CH4/ data from the Halogen Occultation Experiment (HALOE) to detect whether there were any statistically significant changes of the Brewer-Dobson circulation (BDC) within the stratosphere during 1992-2005. The HALOE CH4 profiles are in terms of mixing ratio versus pressure altitude and are binned into latitude zones within the Southern Hemisphere and the Northern Hemisphere. Their separate time series are then analyzed using multiple linear regression (MLR) techniques. The CH4 trend terms for the Northern Hemisphere are significant and positive at 10 N from 50 to 7 hPa and larger than the tropospheric CH4 trends of about 3%decade(exp -1) from 20 to 7 hPa. At 60 N the trends are clearly negative from 20 to 7 hPa. Their combined trends indicate an acceleration of the BDC in the middle stratosphere of the Northern Hemisphere during those years, most likely due to changes from the effects of wave activity. No similar significant BDC acceleration is found for the Southern Hemisphere. Trends from HALOE H2O are analyzed for consistency. Their mutual trends with CH4 are anti-correlated qualitatively in the middle and upper stratosphere, where CH4 is chemically oxidized to H2O. Conversely, their mutual trends in the lower stratosphere are dominated by their trends upon entry to the tropical stratosphere. Time series residuals for CH4 in the lower mesosphere also exhibit structures that are anti-correlated in some instances with those of the tracer-like species HCl. Their occasional aperiodic structures indicate the effects of transport following episodic, wintertime wave activity. It is concluded that observed multi-year, zonally averaged distributions of CH4 can be used to diagnose major instances of wave-induced transport in the middle atmosphere and to detect changes in the stratospheric BDC.

  11. The Spectrum of Epidemiology Underlying Sudden Cardiac Death

    Hayashi, Meiso; Shimizu, Wataru; Albert, Christine M.

    2015-01-01

    Sudden cardiac death (SCD) from cardiac arrest is a major international public health problem accounting for an estimated 15–20% of all deaths. Although resuscitation rates are generally improving throughout the world, the majority of individuals who suffer a sudden cardiac arrest will not survive. SCD most often develops in older adults with acquired structural heart disease, but it also rarely occurs in the young, where it is more commonly due to inherited disorders. Coronary heart disease (CHD) is known to be the most common pathology underlying SCD, followed by cardiomyopathies, inherited arrhythmia syndromes, and valvular heart disease. Over the past three decades, declines in SCD rates have not been as steep as for other causes of CHD deaths, and there is a growing fraction of SCDs not due to CHD and/or ventricular arrhythmias, particularly among certain subsets of the population. The growing heterogeneity of the pathologies and mechanisms underlying SCD present major challenges for SCD prevention, which are magnified further by a frequent lack of recognition of the underlying cardiac condition prior to death. Multifaceted preventative approaches, which address risk factors in seemingly low risk and known high-risk populations will be required to decrease the burden of SCD. In this Compendium, we review the wide-ranging spectrum of epidemiology underlying SCD within both the general population and in high-risk subsets with established cardiac disease placing an emphasis on recent global trends, remaining uncertainties, and potential targeted preventive strategies. PMID:26044246

  12. Benefits, risks, and costs of stratospheric geoengineering

    Robock, Alan

    2009-10-02

    Injecting sulfate aerosol precursors into the stratosphere has been suggested as a means of geoengineering to cool the planet and reduce global warming. The decision to implement such a scheme would require a comparison of its benefits, dangers, and costs to those of other responses to global warming, including doing nothing. Here we evaluate those factors for stratospheric geoengineering with sulfate aerosols. Using existing U.S. military fighter and tanker planes, the annual costs of injecting aerosol precursors into the lower stratosphere would be several billion dollars. Using artillery or balloons to loft the gas would be much more expensive. We do not have enough information to evaluate more exotic techniques, such as pumping the gas up through a hose attached to a tower or balloon system. Anthropogenic stratospheric aerosol injection would cool the planet, stop the melting of sea ice and land-based glaciers, slow sea level rise, and increase the terrestrial carbon sink, but produce regional drought, ozone depletion, less sunlight for solar power, and make skies less blue. Furthermore it would hamper Earth-based optical astronomy, do nothing to stop ocean acidification, and present many ethical and moral issues. Further work is needed to quantify many of these factors to allow informed decision-making.

  13. Triton - Stratospheric molecules and organic sediments

    Thompson, W. Reid; Singh, Sushil K.; Khare, B. N.; Sagan, Carl

    1989-01-01

    Continuous-flow plasma discharge techniques show production rates of hydrocarbons and nitriles in N2 + CH4 atmospheres appropriate to the stratosphere of Titan, and indicate that a simple eddy diffusion model together with the observed electron flux quantitatively matches the Voyager IRIS observations for all the hydrocarbons, except for the simplest ones. Charged particle chemistry is very important in Triton's stratosphere. In the more CH4-rich case of Titan, many hydrocarbons and nitriles are produced in high yield. If N2 is present, the CH4 fraction is low, but hydrocarbons and nitriles are produced in fair yield, abundances of HCN and C2H2 in Triton's stratosphere exceed 10 to the 19th molecules/sq cm per sec, and NCCN, C3H4, and other species are predicted to be present. These molecules may be detected by IRIS if the stratosphere is as warm as expected. Both organic haze and condensed gases will provide a substantial UV and visible opacity in Triton's atmosphere.

  14. Stratospheric tritium sampling. Final progress report

    Mason, A.S.; Oestlund, H.G.

    1985-09-01

    Stratospheric tritium sampling was part of Project Airstream (sponsored by the US Department of Energy) between 1975 and 1983. Data from the final deployment in November 1983 are reported here, and the results of the 9 years of effort are summarized. 9 refs., 2 figs., 2 tabs

  15. Stratospheric General Circulation with Chemistry Model (SGCCM)

    Rood, Richard B.; Douglass, Anne R.; Geller, Marvin A.; Kaye, Jack A.; Nielsen, J. Eric; Rosenfield, Joan E.; Stolarski, Richard S.

    1990-01-01

    In the past two years constituent transport and chemistry experiments have been performed using both simple single constituent models and more complex reservoir species models. Winds for these experiments have been taken from the data assimilation effort, Stratospheric Data Analysis System (STRATAN).

  16. Understanding and forecasting polar stratospheric variability with statistical models

    C. Blume

    2012-07-01

    Full Text Available The variability of the north-polar stratospheric vortex is a prominent aspect of the middle atmosphere. This work investigates a wide class of statistical models with respect to their ability to model geopotential and temperature anomalies, representing variability in the polar stratosphere. Four partly nonstationary, nonlinear models are assessed: linear discriminant analysis (LDA; a cluster method based on finite elements (FEM-VARX; a neural network, namely the multi-layer perceptron (MLP; and support vector regression (SVR. These methods model time series by incorporating all significant external factors simultaneously, including ENSO, QBO, the solar cycle, volcanoes, to then quantify their statistical importance. We show that variability in reanalysis data from 1980 to 2005 is successfully modeled. The period from 2005 to 2011 can be hindcasted to a certain extent, where MLP performs significantly better than the remaining models. However, variability remains that cannot be statistically hindcasted within the current framework, such as the unexpected major warming in January 2009. Finally, the statistical model with the best generalization performance is used to predict a winter 2011/12 with warm and weak vortex conditions. A vortex breakdown is predicted for late January, early February 2012.

  17. The Unusual Southern Hemisphere Stratosphere Winter of 2002

    Newman, Paul A.; Nash, Eric R.

    2003-01-01

    The southern hemisphere stratospheric winter of 2002 was the most unusual winter yet observed in the southern hemisphere climate record. Temperatures near the edge of the Antarctic polar vortex were considerably warmer than normal over the entire course of the winter. The polar night jet was considerably weaker than normal, and was displaced more poleward than has been observed in previous winters. These record high temperatures and weak jet resulted from a series of wave events that took place over the course of the winter. The first large event occurred on 15 May, and the final warming occurred on 25 October. The propagation of these wave events from the troposphere is diagnosed from time series of Eliassen-Palm flux vectors. The wave events tended to occur irregularly over the course of the winter, and pre-conditioned the polar night jet for the extremely large wave event of 22 September. This large wave event resulted in the first ever observed major stratospheric warming in the southern hemisphere. This wave event split the Antarctic ozone hole. The combined effect of the wave events of the 2002 winter resulted in the smallest ozone hole observed since 1988.

  18. Stratospheric experiments on curing of composite materials

    Chudinov, Viacheslav; Kondyurin, Alexey; Svistkov, Alexander L.; Efremov, Denis; Demin, Anton; Terpugov, Viktor; Rusakov, Sergey

    2016-07-01

    Future space exploration requires a large light-weight structure for habitats, greenhouses, space bases, space factories and other constructions. A new approach enabling large-size constructions in space relies on the use of the technology of polymerization of fiber-filled composites with a curable polymer matrix applied in the free space environment on Erath orbit. In orbit, the material is exposed to high vacuum, dramatic temperature changes, plasma of free space due to cosmic rays, sun irradiation and atomic oxygen (in low Earth orbit), micrometeorite fluence, electric charging and microgravitation. The development of appropriate polymer matrix composites requires an understanding of the chemical processes of polymer matrix curing under the specific free space conditions to be encountered. The goal of the stratospheric flight experiment is an investigation of the effect of the stratospheric conditions on the uncured polymer matrix of the composite material. The unique combination of low residual pressure, high intensity UV radiation including short-wave UV component, cosmic rays and other aspects associated with solar irradiation strongly influences the chemical processes in polymeric materials. We have done the stratospheric flight experiments with uncured composites (prepreg). A balloon with payload equipped with heater, temperature/pressure/irradiation sensors, microprocessor, carrying the samples of uncured prepreg has been launched to stratosphere of 25-30 km altitude. After the flight, the samples have been tested with FTIR, gel-fraction, tensile test and DMA. The effect of cosmic radiation has been observed. The composite was successfully cured during the stratospheric flight. The study was supported by RFBR grants 12-08-00970 and 14-08-96011.

  19. Sudden Gains during Therapy of Social Phobia

    Hofmann, Stefan G.; Schultz, Stefan M.; Meuret, Alicia E.; Moscovitch, David A.; Suvak, Michael

    2006-01-01

    The present study investigated the phenomenon of sudden gains in 107 participants with social phobia (social anxiety disorder) who received either cognitive-behavioral group therapy or exposure group therapy without explicit cognitive interventions, which primarily used public speaking situations as exposure tasks. Twenty-two out of 967…

  20. Cardiac channelopathies and sudden infant death syndrome

    Tfelt-Hansen, Jacob; Winkel, Bo Gregers; Grunnet, Morten

    2011-01-01

    Sudden infant death syndrome (SIDS) is always a devastating and unexpected occurrence. SIDS is the leading cause of death in the first 6 months after birth in the industrialized world. Since the discovery in 1998 of long QT syndrome as an underlying substrate for SIDS, around 10-20% of SIDS cases...

  1. Sudden death syndrome of soybean in Argentina

    Sudden death syndrome (SDS) is one of the most common and widely spread root disease affecting soybean [Glycine max (L.) Merr.] in Argentina where it is an economically important crop. This disease was first discovered in this country in 1992 in the Pampas Region, and the following year in Northwest...

  2. Febrile convulsions and sudden infant death syndrome

    Vestergaard, Mogens; Basso, Olga; Henriksen, Tine Brink

    2002-01-01

    It has been suggested that sudden infant death syndrome (SIDS) and febrile convulsions are related aetiologically. We compared the risk of SIDS in 9877 siblings of children who had had febrile convulsions with that of 20.177 siblings of children who had never had febrile convulsions. We found...

  3. Sudden Oak Death - Eastern (Pest Alert)

    Joseph O' Brien; Manfred Mielke; Steve Oak; Bruce Moltzan

    2002-01-01

    A phenomenon known as Sudden Oak Death was first reported in 1995 in central coastal California. Since then, tens of thousands of tanoaks (Lithocarpus densiflorus), coast live oaks (Quercus agrifolia), and California black oaks (Quercus kelloggii) have been killed by a newly identified fungus, Phytophthora ramorum. On these hosts, the fungus causes a bleeding canker on...

  4. Sudden (reversible) sensorineural hearing loss in pregnancy.

    Kenny, R

    2011-03-01

    Sudden hearing loss directly associated with pregnancy or birth is a little known and rare occurrence. The temporary, unilateral, low-frequency sensorineural hearing loss in this case was reported after the birth of the patient\\'s first child, and again during the third trimester of her second pregnancy.

  5. Systemic Steroid Application Caused Sudden Death of a Patient with Sudden Deafness

    Eriko Ogino-Nishimura

    2013-01-01

    Full Text Available A 63-year-old man, who was diagnosed with sudden sensorineural hearing loss (SSHL, showed severe hypertension 10 hours after prednisolone administration. Subsequently, the patient suddenly died due to pulmonary edema. The autopsy indicated a pheochromocytoma in the right adrenal gland, and the cause of death was determined to be a pheochromocytoma crisis induced by systemic administration of prednisolone. Pheochromocytoma crisis is a life-threatening condition and can result from the use of corticosteroids. Physicians should consider the risk of a pheochromocytoma crisis due to systemic corticosteroids in the treatment of patients with sudden sensorineural hearing loss.

  6. Springtime high surface ozone events over the western United States: Quantifying the role of stratospheric intrusions

    Fiore, A. M.; Lin, M.; Cooper, O. R.; Horowitz, L. W.; Naik, V.; Levy, H.; Langford, A. O.; Johnson, B. J.; Oltmans, S. J.; Senff, C. J.

    2011-12-01

    As the National Ambient Air Quality (NAAQS) standard for ozone (O_{3}) is lowered, it pushes closer to policy-relevant background levels (O_{3} concentrations that would exist in the absence of North American anthropogenic emissions), making attainment more difficult with local controls. We quantify the Asian and stratospheric components of this North American background, with a primary focus on the western United States. Prior work has identified this region as a hotspot for deep stratospheric intrusions in spring. We conduct global simulations at 200 km and 50 km horizontal resolution with the GFDL AM3 model, including a stratospheric O_{3} tracer and two sensitivity simulations with anthropogenic emissions from Asia and North America turned off. The model is evaluated with a suite of in situ and satellite measurements during the NOAA CalNex campaign (May-June 2010). The model reproduces the principle features in the observed surface to near tropopause distribution of O_{3} along the California coast, including its latitudinal variation and the development of regional high-O_{3} episodes. Four deep tropopause folds are diagnosed and we find that the remnants of these stratospheric intrusions are transported to the surface of Southern California and Western U.S. Rocky Mountains, contributing 10-30 ppbv positive anomalies relative to the simulated campaign mean stratospheric component in the model surface layer. We further examine the contribution of North American background, including its stratospheric and Asian components, to the entire distribution of observed MDA8 O_{3} at 12 high-elevation CASTNet sites in the Mountain West. We find that the stratospheric O_{3} tracer constitutes 50% of the North American background, and can enhance surface maximum daily 8-hour average (MDA8) O_{3} by 20 ppb when observed surface O_{3} is in the range of 60-80 ppbv. Our analysis highlights the potential for natural sources such as deep stratospheric intrusions to contribute

  7. Isolating the Roles of Different Forcing Agents in Global Stratospheric Temperature Changes Using Model Integrations with Incrementally Added Single Forcings

    Aquila, V.; Swartz, W. H.; Waugh, D. W.; Colarco, P. R.; Pawson, S.; Polvani, L. M.; Stolarski, R. S.

    2016-01-01

    Satellite instruments show a cooling of global stratospheric temperatures over the whole data record (1979-2014). This cooling is not linear and includes two descending steps in the early 1980s and mid-1990s. The 1979-1995 period is characterized by increasing concentrations of ozone depleting substances (ODS) and by the two major volcanic eruptions of El Chichon (1982) and Mount Pinatubo (1991). The 1995-present period is characterized by decreasing ODS concentrations and by the absence of major volcanic eruptions. Greenhouse gas (GHG) concentrations increase over the whole time period. In order to isolate the roles of different forcing agents in the global stratospheric temperature changes, we performed a set of AMIP-style simulations using the NASA Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). We find that in our model simulations the cooling of the stratosphere from 1979 to present is mostly driven by changes in GHG concentrations in the middle and upper stratosphere and by GHG and ODS changes in the lower stratosphere. While the cooling trend caused by increasing GHGs is roughly constant over the satellite era, changing ODS concentrations cause a significant stratospheric cooling only up to the mid-1990s, when they start to decrease because of the implementation of the Montreal Protocol. Sporadic volcanic events and the solar cycle have a distinct signature in the time series of stratospheric temperature anomalies but do not play a statistically significant role in the long-term trends from 1979 to 2014. Several factors combine to produce the step-like behavior in the stratospheric temperatures: in the lower stratosphere, the flattening starting in the mid-1990s is due to the decrease in ozone-depleting substances; Mount Pinatubo and the solar cycle cause the abrupt steps through the aerosol-associated warming and the volcanically induced ozone depletion. In the middle and upper stratosphere, changes in solar irradiance are largely

  8. An Investigation of Multi-Satellite Stratospheric Measurements on Tropospheric Weather Predictions over Continental United States

    Shao, Min

    The troposphere and stratosphere are the two closest atmospheric layers to the Earth's surface. These two layers are separated by the so-called tropopause. On one hand, these two layers are largely distinguished, on the other hand, lots of evidences proved that connections are also existed between these two layers via various dynamical and chemical feedbacks. Both tropospheric and stratospheric waves can propagate through the tropopause and affect the down streams, despite the fact that this propagation of waves is relatively weaker than the internal interactions in both atmospheric layers. Major improvements have been made in numerical weather predictions (NWP) via data assimilation (DA) in the past 30 years. From optimal interpolation to variational methods and Kalman Filter, great improvements are also made in the development of DA technology. The availability of assimilating satellite radiance observation and the increasing amount of satellite measurements enabled the generation of better atmospheric initials for both global and regional NWP systems. The selection of DA schemes is critical for regional NWP systems. The performance of three major data assimilation (3D-Var, Hybrid, and EnKF) schemes on regional weather forecasts over the continental United States during winter and summer is investigated. Convergence rate in the variational methods can be slightly accelerated especially in summer by the inclusion of ensembles. When the regional model lid is set at 50-mb, larger improvements (10˜20%) in the initials are obtained over the tropopause and lower troposphere. Better forecast skills (˜10%) are obtained in all three DA schemes in summer. Among these three DA schemes, slightly better (˜1%) forecast skills are obtained in Hybrid configuration than 3D-Var. Overall better forecast skills are obtained in summer via EnKF scheme. An extra 22% skill in predicting summer surface pressure but 10% less skills in winter are given by EnKF when compared to 3D

  9. Comparison of stratospheric temperature profiles from a ground-based microwave radiometer with lidar, radiosonde and satellite data

    Navas-Guzmán, Francisco; Kämpfer, Niklaus; Haefele, Alexander; Keckhut, Philippe; Hauchecorne, Alain

    2015-04-01

    temperature profiles retrieved from TEMPERA radiometer with the ones obtained from different techniques such as in-situ (radiosondes), active remote sensing (lidar) and passive remote sensing on board of Aura satellite (MLS) measurements. Moreover, a statistical analysis of the stratospheric temperature from TEMPERA measurements for three years of data have been performed.The results evidence the capability of TEMPERA radiometer to monitor the temperature in the stratosphere for a long-term. The detection of some singular sudden stratospheric warming (SSW) during the analyzed period shows the necessity of these continuous monitoring in order to measure and understand some important processes which could happen on a short time scale. References [1] D. W. Thompson, D. J. Seidel, W. J. Randel, C.-Z. Zou, A. H. Butler, C. Mears, A. Osso, C. Long, and R. Lin, "The mystery of recent stratospheric temperature trends," Nature, vol. 491, no. 7426, pp. 692-697, 2012. [2] O. Stähli, A. Murk, N. Kämpfer, C. Mätzler, and P. Eriksson, "Microwave radiometer to retrieve temperature profiles from the surface to the stratopause," Atmospheric Measurement Techniques Discussions, vol. 6, no. 2, pp. 2857-2905, 2013.

  10. Polar-Tropical Coupling in the Winter Stratosphere

    Scott, R.

    2017-12-01

    A distinct pattern of enhanced equatorial potential vorticitygradients during QBO westerly anomalies, enhanced subtropicalgradients during QBO easterlies, is used to motivate a new formulationof dynamical coupling between the tropics and winter polar vortexbased on remote transfer of finite amplitude wave activity defined interms of lateral potential vorticity displacements. While the weakpotential vorticity gradients in the surf zone imply laterallyevanescent Rossby waves, transfer of wave activity from the polarvortex edge to the subtropical barrier or to the QBO westerly phaseequatorial gradients arises from nonlocality of potential vorticityinversion and the large horizontal displacements of the vortex edge.Our approach goes beyond the traditional description of the effect ofQBO wind anomalies on linear wave propagation through the stratospherevia wave reflection at the zero wind line; linear wave theory isappealing but neglects the long horizontal and vertical wavelengthsinvolved and the inhomogeneous background potential vorticity. Aparticular issue of outstanding interest is whether and how therelatively shallow QBO anomalies can influence the deep verticallypropagating waves on the edge of the winter stratospheric polarvortex. Process studies with a mechanistic model with prescribed QBOand carefully controlled high-latitude wave forcing are analyzed,guided by a reexamination of meteorological reanalysis, to address howsuch a dynamical linkage may influence in particular the resonantexcitation of the winter vortex, and the occurrence ofvortex-splitting sudden warming events. We quantify the associatedtransfer of wave activity from vortex edge to the tropics, considerunder what conditions this becomes a significant source of easterlymomentum in the driving of the QBO itself, and how the structure ofthe Brewer-Dobson circulation varies in response to the location ofthe QBO westerly winds in any given winter.

  11. High latitude stratospheric electrical measurements in fair and foul weather under various solar conditions

    Holzworth, R.H.

    1981-01-01

    Stratospheric electric field and conductivity measurements during a wide variety of weather and solar conditions are presented. These data are all from high latitude sites in the months of either April or August. The vector electric field is determined by orthogonal double probes connected through high impedance inputs to differential electrometers. The direct conductivity measurement involves determining the relaxation time constant of the medium after refloating a shorted pair of separated probes. Vertical electric field data from several balloon flights with average duration of 18 h at ceiling in fair weather are shown to be well modeled by a simple exponential altitude dependent equation. Examples of solar flare and magnetospheric effects on stratospheric electric fields are shown. Data collected over electrified clouds and thunderstorms are presented along with a discussion of the thunderstorm related electric currents. Lightning stroke signatures in the stratosphere during a large thunderstorm are identified in the electric field data. Current surges through the stratosphere due to DC currents as well as the sferic are calculated. In nearly 1000 h of balloon data no direct solar influence is identified in these data except during major flares. (author)

  12. Coronary atherosclerosis in sudden cardiac death: An autopsy study

    Sudha M

    2009-10-01

    Full Text Available Background: The incidence of ischemic heart disease (IHD has markedly increased in India over the past few years. Considering the variations in racial, dietary and lifestyle patterns in our population, it is essential to study the biology of coronary atherosclerosis in our patients. Vulnerable plaques have a large number of foam cells, extracellular lipid, thin fibrous caps and clusters of inflammatory cells and are more prone to rupture. These plaques are nourished by the microvessels arising from the vasa vasorum of the blood vessels and by lumen-derived microvessels through the fibrous cap. This autopsy study was designed to analyse the coronary arterial tree in cases of sudden cardiac death, classify coronary atherosclerotic plaques and to assess the factors contributing to vulnerability of the plaques including inflammation, calcification and microvascular density. Materials and Methods: Seven cases of sudden cardiac death were included in the study. The hearts were perfusion-fixed and the coronary arteries along with their main branches were dissected and studied. The location of the plaques, type of plaques, presence of inflammation and calcification were assessed. The cap thickness and microvessel density per 1000um 2 were assessed. The statistical significance was estimated. Results and Conclusions: Extensive high-grade coronary atherosclerotic disease was seen in all sudden cardiac death cases. Majority of the plaques were vulnerable. High-grade inflammation was seen in most of the vulnerable and ruptured plaques. All the ruptured plaques were uncalcified indicating that calcification probably stabilizes the plaques and protects against rupture. Increased microvessel density was noted in ruptured plaques compared to vulnerable plaques. However, it was not statistically significant.

  13. Impacts of Interactive Stratospheric Chemistry on Antarctic and Southern Ocean Climate Change in the Goddard Earth Observing System Version 5 (GEOS-5)

    Li, Feng; Vikhliaev, Yury V.; Newman, Paul A.; Pawson, Steven; Perlwitz, Judith; Waugh, Darryn W.; Douglass, Anne R.

    2016-01-01

    Stratospheric ozone depletion plays a major role in driving climate change in the Southern Hemisphere. To date, many climate models prescribe the stratospheric ozone layer's evolution using monthly and zonally averaged ozone fields. However, the prescribed ozone underestimates Antarctic ozone depletion and lacks zonal asymmetries. In this study we investigate the impact of using interactive stratospheric chemistry instead of prescribed ozone on climate change simulations of the Antarctic and Southern Ocean. Two sets of 1960-2010 ensemble transient simulations are conducted with the coupled ocean version of the Goddard Earth Observing System Model, version 5: one with interactive stratospheric chemistry and the other with prescribed ozone derived from the same interactive simulations. The model's climatology is evaluated using observations and reanalysis. Comparison of the 1979-2010 climate trends between these two simulations reveals that interactive chemistry has important effects on climate change not only in the Antarctic stratosphere, troposphere, and surface, but also in the Southern Ocean and Antarctic sea ice. Interactive chemistry causes stronger Antarctic lower stratosphere cooling and circumpolar westerly acceleration during November-December-January. It enhances stratosphere-troposphere coupling and leads to significantly larger tropospheric and surface westerly changes. The significantly stronger surface wind stress trends cause larger increases of the Southern Ocean Meridional Overturning Circulation, leading to year-round stronger ocean warming near the surface and enhanced Antarctic sea ice decrease.

  14. Effects of Greenhouse Gas Increase and Stratospheric Ozone Depletion on Stratospheric Mean Age of Air in 1960-2010

    Li, F.; Newman, P. A.; Pawson, S.; Perlwitz, J.

    2017-12-01

    The strength of the stratospheric Brewer-Dobson circulation (BDC) in a changing climate has been extensively studied, but the relative importance of greenhouse gas (GHG) increases and stratospheric ozone depletion in driving the BDC changes remains uncertain. This study separates the impacts of GHG and stratospheric ozone forcings on stratospheric mean age of air in the 1960-2010 period using the Goddard Earth Observing System Model (GEOS) Chemistry-Climate Model (CCM). The experiment compares a set of controlled simulations using a coupled atmosphere-ocean version of the GEOS CCM, in which either GHGs, or stratospheric ozone, or both factors evolve over time. The model results show that GHGs and stratospheric ozone have about equal contributions to the simulated mean age decrease. It is also found that GHG increases account for about two thirds of the enhanced strength of the lower stratospheric residual circulation. The results show that ozone depletion causes an increase in the mean age of air in the Antarctic summer lower stratosphere through two processes: 1) a seasonal delay in the Antarctic polar vortex breakup, that inhibits young mid-latitude air from mixing with the older air inside the vortex; and 2) enhanced Antarctic downwelling, that brings older air from middle and upper stratosphere into the lower stratosphere.

  15. The stratospheric ozone and the ozone layer

    Zea Mazo, Jorge Anibal; Leon Aristizabal Gloria Esperanza; Eslava Ramirez Jesus Antonio

    2000-01-01

    An overview is presented of the principal characteristics of the stratospheric ozone in the Earth's atmosphere, with particular emphasis on the tropics and the ozone hole over the poles. Some effects produced in the atmosphere as a consequence of the different human activities will be described, and some data on stratospheric ozone will be shown. We point out the existence of a nucleus of least ozone in the tropics, stretching from South America to central Africa, with annual mean values less than 240 DU, a value lower than in the middle latitudes and close to the mean values at the South Pole. The existence of such a minimum is confirmed by mean values from measurements made on satellites or with earthbound instruments, for different sectors in Colombia, like Medellin, Bogota and Leticia

  16. Sudden Sensorineural Hearing Loss; Prognostic Factors

    Arjun Dass

    2015-09-01

    Full Text Available Introduction: Sudden sensorineural hearing loss (SSNHL is a frightening and frustrating symptom for the patient as well as the physician. Prognosis is affected by multiple factors including duration of hearing loss, presence of associated vertigo and tinnitus, and co-morbidities such as hypertension and diabetes.   Materials and Methods: Forty subjects presenting to our department with features of sudden hearing loss were included in the study. Detailed otological history and examination, serial audiometric findings and course of disease were studied.   Results: Subjects presenting late (in older age, having associated vertigo, hypertension and diabetes had a significantly lower rate of recovery.   Conclusion:  Only 60–65% of patients experiencing SSNHL recover within a period of 1 month; this rate is further affected by presence of multiple prognostic indicators.

  17. Sudden viscous dissipation in compressing plasma turbulence

    Davidovits, Seth; Fisch, Nathaniel

    2015-11-01

    Compression of a turbulent plasma or fluid can cause amplification of the turbulent kinetic energy, if the compression is fast compared to the turnover and viscous dissipation times of the turbulent eddies. The consideration of compressing turbulent flows in inviscid fluids has been motivated by the suggestion that amplification of turbulent kinetic energy occurred on experiments at the Weizmann Institute of Science Z-Pinch. We demonstrate a sudden viscous dissipation mechanism whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, which further increases the temperature, feeding back to further enhance the dissipation. Application of this mechanism in compression experiments may be advantageous, if the plasma can be kept comparatively cold during much of the compression, reducing radiation and conduction losses, until the plasma suddenly becomes hot. This work was supported by DOE through contract 67350-9960 (Prime # DOE DE-NA0001836) and by the DTRA.

  18. Classification of sudden and arrhythmic death

    Torp-Pedersen, C; Køber, L; Elming, H

    1997-01-01

    was nearly abolished by the implantable defibrillator, indicating that arrhythmic death by this classification is meaningful, at least in the population studied. For future investigations, a call is made for committees to present data in a way that allows the reader to examine the quality of the data used......Since all death is (eventually) sudden and associated with cardiac arrhythmias, the concept of sudden death is only meaningful if it is unexpected, while arrhythmic death is only meaningful if life could have continued had the arrhythmia been prevented or treated. Current classifications of death...... or autopsy) are available in only a few percent of cases. A main problem in using classifications is the lack of validation data. This situation has, with the MADIT trial, changed in the case of the Thaler and Hinkle classification of arrhythmic death. The MADIT trial demonstrated that arrhythmic death...

  19. Cerebral Paragonimiasis Presenting with Sudden Death.

    Amaro, Deirdre E; Cowell, Annie; Tuohy, Marion J; Procop, Gary W; Morhaime, Jacquelyn; Reed, Sharon L

    2016-12-07

    A 58-year-old Korean-born woman with a history of seizures and psychiatric issues was found dead at home. Autopsy was notable for large, calcified nodules that had nearly replaced her right temporal lobe. Histologic examination revealed the presence of Paragonimus eggs. This case demonstrates a rare manifestation of an aberrantly migrated lung fluke that resulted in epilepsy and sudden death years after the initial infection. © The American Society of Tropical Medicine and Hygiene.

  20. Sudden hearing loss after an explosion

    Irfan Mohamad

    2013-12-01

    Full Text Available An 18-year-old man presented with a sudden onset of bilateral hearing loss after a home-made firework exploded near the right side of his scalp. The hearing loss was associated with tinnitus. Examination revealed an area of skin loss on the right pinna. There was mild bleeding from the right pinna and scalp at the mastoid region, which spontaneously resolved. An otoscopic examination is shown in Figure 1.

  1. Sudden behavior change in a cat.

    Gelberg, H B

    2013-11-01

    A 5-year-old, spayed female, domestic short-haired cat had a 10-day history of sudden behavioral changes followed by seizures. Blood parameters were in the reference ranges, and radiographs failed to detect a mass lesion in the brain. Euthanasia was followed by rabies testing, which was negative. Gross lesions were absent. Histologic changes were present only in the brain and consisted of foci of hippocampal pyramidal cell loss, mild gliosis, pallor of the associated neuropil, and neovascularization.

  2. Stratospheric ozone: an introduction to its study

    Nicolet, M.

    1975-01-01

    An analysis is made of the various reactions in which ozone and atomic oxygen are involved in the stratosphere. At the present time, hydrogen, nitrogen, and chlorine compounds in the ranges parts per million, parts per billion, and parts per trillion may have significant chemical effects. In the upper stratosphere, above the ozone peak, where there is no strong departure from photochemical equilibrium conditions, the action of hydroxyl and hydroperoxyl radicals of nitrogen dioxide and chlorine monoxide on atomic oxygen and of atomic chlorine on ozone can be introduced. A precise determination of their exact effects requires knowledge of the vertical distribution of the H 2 O, CH 4 , and H 2 dissociation by reaction of these molecules with electronically excited oxygen atom O( 1 D); the ratio of the OH and HO 2 concentrations and their absolute values, which depend on insufficiently known rate coefficients; the various origins of nitric oxide production, with their vertical distributions related to latitude and season; and the various sources giving different chlorine compounds that may be dissociated in the stratosphere. In the lower stratosphere, below the ozone peak, there is no important photochemical production of O 3 , but there exist various possibilities of transport. The predictability of the action of chemical reactions depends strongly on important interactions between OH and HO 2 radicals with CO and NO, respectively, which affect the ratio n(OH)/n(HO 2 ) at the tropopause level; between OH and NO 2 , which lead to the formation of nitric acid with its downward transport toward the troposphere; between NO and HO 2 , which lead to NO 2 and its subsequent photodissociation; between ClO and NO, which also lead to NO 2 and become more important than the reaction of ClO with O; and between Cl and various molecules, such as CH 4 and H 2 , which lead to HCl with its downward transportation toward the troposphere

  3. Vertical sounding balloons for stratospheric photochemistry

    Pommereau, J. P.

    The use of vertical sounding balloons for stratospheric photochemistry studies is illustrated by the use of a vertical piloted gas balloon for the search of NO2 diurnal variations. It is shown that the use of montgolfieres (hot air balloons) can enhance the vertical sounding technique. Particular attention is given to a sun-heated montgolfiere and to the more sophisticated infrared montgolfiere that is able to perform three to four vertical excursions per day and to remain aloft for weeks or months.

  4. Stratospheric chlorine: Blaming it on nature

    Taube, G.

    1993-01-01

    Much of the bitter public debate over ozone depletion has centered on the claim that chlorofluorocarbons (CFCs) pale into insignificance alongside natural sources of chlorine in the stratosphere. If so, goes the argument, chlorine could not be depleting ozone as atmospheric scientists claim, because the natural sources have been around since time immemorial, and the ozone layer is still there. The claim, put forward in a book by Rogelio Maduro and Ralf Schauerhammer, has since been touted by former Atomic Energy Commissioner Dixy Lee Ray and talk-show host Rush Limbaugh, and it forms the basis of much of the backlash now being felt by atmospheric scientists. The argument is simple: Maduro and Schauerhammer calculate that 600 million tons of chlorine enters the atmosphere annually from seawater, 36 million tons from volcanoes, 8.4 million tons from biomass burning, and 5 million tons from ocean biota. In contrast, CFCs account for a mere 750,000 tons of atmospheric chlorine a year. Besides disputing the numbers, scientists have both theoretical and observational bases for doubting that much of this chlorine is getting into the stratosphere, where it could affect the ozone layer. Linwood Callis of the National Aeronautics and Space Administration's (NASA) Langley Research Center points out one crucial problem with the argument: Chlorine from natural sources is soluble, and so it gets rained out of the lower atmosphere. CFCs, in contrast, are insoluble and inert and thus make it to the stratosphere to release their chlorine. What's more, observations of stratospheric chemistry don't support the idea that natural sources are contributing much to the chlorine there

  5. Implications of stratospheric ozone depletion upon plant production

    Teramura, A.H.

    1990-01-01

    An increase in the amount of UV-B radiation reaching the earth's surface is identified as the major factor of concern to result from stratospheric ozone depletion. UV radiation is believed to have wide ranging effects on plant physiology and biochemistry. In screening studies of > 300 species and cultivars, > 50% have shown sensitivity to UV radiation. The most sensitive plant families appear to be Leguminosae, Cucurbitaceae and Cruciferae. The need for a better understanding of the effects of UV radiation on crop plant physiology and particularly of the repair and protective mechanisms developed by some species is stressed. This paper was presented at a colloquium on Implications of global climate changes on horticultural cropping practices and production in developing countries held at the 86th Annual Meeting of the American Society for Horticultural Science at Tulsa, Oklahoma, on 2 Aug. 1989

  6. Imaging spectrum of sudden athlete cardiac death

    Arrigan, M.T., E-mail: martinarrigan@gmail.co [Department of Radiology, Adelaide and Meath Hospital incorporating the National Children' s Hospital, Dublin (Ireland); Killeen, R.P. [Department of Radiology, Adelaide and Meath Hospital incorporating the National Children' s Hospital, Dublin (Ireland); Dodd, J.D. [Department of Radiology, St Vincent' s University Hospital, Dublin (Ireland); Torreggiani, W.C. [Department of Radiology, Adelaide and Meath Hospital incorporating the National Children' s Hospital, Dublin (Ireland)

    2011-03-15

    Sudden athlete death (SAD) is a widely publicized and increasingly reported phenomenon. For many, the athlete population epitomize human physical endeavour and achievement and their unexpected death comes with a significant emotional impact on the public. Sudden deaths within this group are often without prior warning. Preceding symptoms of exertional syncope and chest pain do, however, occur and warrant investigation. Similarly, a positive family history of sudden death in a young person or a known family history of a condition associated with SAD necessitates further tests. Screening programmes aimed at detecting those at risk individuals also exist with the aim of reducing fatalities. In this paper we review the topic of SAD and discuss the epidemiology, aetiology, and clinical presentations. We then proceed to discuss each underlying cause, in turn discussing the pathophysiology of each condition. This is followed by a discussion of useful imaging methods with an emphasis on cardiac magnetic resonance and cardiac computed tomography and how these address the various issues raised by the pathophysiology of each entity. We conclude by proposing imaging algorithms for the investigation of patients considered at risk for these conditions and discuss the various issues raised in screening.

  7. Primordial spectra from sudden turning trajectory

    Noumi, Toshifumi; Yamaguchi, Masahide

    2013-12-01

    Effects of heavy fields on primordial spectra of curvature perturbations are discussed in inflationary models with a sudden turning trajectory. When heavy fields are excited after the sudden turn and oscillate around the bottom of the potential, the following two effects are generically induced: deformation of the inflationary background spacetime and conversion interactions between adiabatic and isocurvature perturbations, both of which can affect the primordial density perturbations. In this paper, we calculate primordial spectra in inflationary models with sudden turning potentials taking into account both of the two effects appropriately. We find that there are some non-trivial correlations between the two effects in the power spectrum and, as a consequence, the primordial scalar power spectrum has a peak around the scale exiting the horizon at the turn. Though both effects can induce parametric resonance amplifications, they are shown to be canceled out for the case with the canonical kinetic terms. The peak feature and the scale dependence of bispectra are also discussed.

  8. Magnetic resonance imaging in sudden deafness

    Ramos, Hugo Valter Lisboa; Barros, Flavia Alencar; Penido, Norma de Oliveira; Souza, Ana Claudia Valerio de; Yamaoka, Wellington Yugo; Yamashita, Helio

    2005-01-01

    The etiology of sudden deafness can remain undetermined despite extensive investigation. This study addresses the value of magnetic resonance imaging in the analysis of sudden deafness patients.Study Design: transversal cohort.Material And Method: In a prospective study, 49 patients attended at otolaryngology emergency room of Federal University of Sao Paulo - Escola Paulista de Medicina, from April 2001 to May 2003, were submitted to magnetic resonance imaging.Results: Magnetic Resonance abnormalities were seen in 23 (46.9%) patients and revealed two tumors suggestive of meningioma, three vestibular schwannomas, thirteen microangiopathic changes of the brain and five (21.7%) pathological conditions of the labyrinth.Conclusion: Sudden deafness should be approached as a symptom common to different diseases. The presence of cerebellopontine angle tumors in 10.2% of our cases, among other treatable causes, justifies the recommendation of gadolinium-enhanced magnetic resonance use, not only to study the auditory peripheral pathway, but to study the whole auditory pathway including the brain. (author)

  9. Imaging spectrum of sudden athlete cardiac death.

    Arrigan, M T

    2012-02-01

    Sudden athlete death (SAD) is a widely publicized and increasingly reported phenomenon. For many, the athlete population epitomize human physical endeavour and achievement and their unexpected death comes with a significant emotional impact on the public. Sudden deaths within this group are often without prior warning. Preceding symptoms of exertional syncope and chest pain do, however, occur and warrant investigation. Similarly, a positive family history of sudden death in a young person or a known family history of a condition associated with SAD necessitates further tests. Screening programmes aimed at detecting those at risk individuals also exist with the aim of reducing fatalities. In this paper we review the topic of SAD and discuss the epidemiology, aetiology, and clinical presentations. We then proceed to discuss each underlying cause, in turn discussing the pathophysiology of each condition. This is followed by a discussion of useful imaging methods with an emphasis on cardiac magnetic resonance and cardiac computed tomography and how these address the various issues raised by the pathophysiology of each entity. We conclude by proposing imaging algorithms for the investigation of patients considered at risk for these conditions and discuss the various issues raised in screening.

  10. Imaging spectrum of sudden athlete cardiac death

    Arrigan, M.T.; Killeen, R.P.; Dodd, J.D.; Torreggiani, W.C.

    2011-01-01

    Sudden athlete death (SAD) is a widely publicized and increasingly reported phenomenon. For many, the athlete population epitomize human physical endeavour and achievement and their unexpected death comes with a significant emotional impact on the public. Sudden deaths within this group are often without prior warning. Preceding symptoms of exertional syncope and chest pain do, however, occur and warrant investigation. Similarly, a positive family history of sudden death in a young person or a known family history of a condition associated with SAD necessitates further tests. Screening programmes aimed at detecting those at risk individuals also exist with the aim of reducing fatalities. In this paper we review the topic of SAD and discuss the epidemiology, aetiology, and clinical presentations. We then proceed to discuss each underlying cause, in turn discussing the pathophysiology of each condition. This is followed by a discussion of useful imaging methods with an emphasis on cardiac magnetic resonance and cardiac computed tomography and how these address the various issues raised by the pathophysiology of each entity. We conclude by proposing imaging algorithms for the investigation of patients considered at risk for these conditions and discuss the various issues raised in screening.

  11. The 'surf zone' in the stratosphere

    McIntyre, M. E.; Palmer, T. N.

    Synoptic, coarse-grain, isentropic maps of Ertel's potential vorticity Q for the northern middle stratosphere, estimated using a large-Richardson-number approximation, are presented for a number of days in January-February 1979, together with some related isentropic trajectory calculations The effects of substituting FGGE for NMC base data are noted, as well as some slight corrections to maps published earlier. The combined evidence from the observations and from dynamical models strongly indicates the existence of planetary-wave breaking, a process in which material contours are rapidly and irreversibly deformed. In the winter stratosphere this occurs most spectacularly in a gigantic 'nonlinear critical layer', or 'surf zone', which surrounds the main polar vortex, and which tends to erode the vortex when wave amplitudes become large. Some of the FGGE-based Q maps suggest that we may be seeing glimpses of local dynamical instabilities and vortex-rollup phenomena within breaking planetary waves. Related phenomena in the troposphere are discussed. An objective definition of the area A( t) of the main vortex, as it appears on isentropic Q maps, is proposed. A smoothed time series of daily values of A( t) should be a statistically powerful 'circulation index' for the state of the winter-time middle stratosphere, which avoids the loss of information incurred by Eulerian space and time averaging.

  12. Stratospheric concentrations of N2O in July 1975

    Krey, P.W.; Lagomarsino, R.J.; Schonberg, M.

    1977-01-01

    The first measurement of the hemispheric distribution of N 2 O concentrations in the lower stratosphere of the Northern Hemisphere is reported for July 1975. This distribution is similar to those of CCl 3 F and SF 6 , although N 2 O is more stable in the stratosphere than either of the other trace gases. The inventory of N 2 O in the stratosphere of the Northern Hemisphere in July 1975 against which future observations can be compared is 136 Tg

  13. Causes and prevention of sudden cardiac death in the elderly.

    Tung, Patricia; Albert, Christine M

    2013-03-01

    Sudden cardiac death (SCD) is a major cause of mortality in elderly individuals owing to a high prevalence of coronary heart disease, systolic dysfunction, and congestive heart failure (CHF). Although the incidence of SCD increases with age, the proportion of cardiac deaths that are sudden decreases owing to high numbers of other cardiac causes of death in elderly individuals. Implantable cardioverter-defibrillator (ICD) therapy has been demonstrated to improve survival and prevent SCD in selected patients with systolic dysfunction and CHF. However, ICD therapy in elderly patients might not be effective because of a greater rate of pulseless electrical activity underlying SCD and other competing nonarrhythmic causes of death in this population. Although under-represented in randomized trials of ICD use, elderly patients comprise a substantial proportion of the population that qualifies for and receives an ICD for primary prevention under current guidelines. Cardiac resynchronization therapy (CRT), which has been demonstrated to reduce mortality in selected populations with heart failure, is also more commonly used in this group of patients than in younger individuals. In this Review, we examine the causes of SCD in elderly individuals, and discuss the existing evidence for effectiveness of ICD therapy and CRT in this growing population.

  14. Sudden oak death: disease trends in Marin county plots after one year

    Brice A. McPherson; David L. Wood; Andrew J. Storer; Nina Maggi Kelly; Richard B. Standiford

    2002-01-01

    Sudden oak death has emerged as a major threat to the oak forests of California. In oaks and tanoak, this disease complex consists of a previously unreported fungus-like pathogen, Phytophthora ramorum, insects (bark and ambrosia beetles), and a secondary fungus, Hypoxylon thouarsianum. Species monitored in this study were coast...

  15. Susceptibility to Phytophthora ramorum in California bay laurel, a key foliar host of sudden oak death

    Brian L. Anacker; Nathan E. Rank; Daniel Hüberli; Matteo Garbelotto; Sarah Gordon; Rich Whitkus; Tami Harnik; Matthew Meshriy; Lori Miles; Ross K. Meentemeyer

    2008-01-01

    Sudden oak death, caused by the water mold Phytophthora ramorum, is a plant disease responsible for the death of hundreds of thousands of oak and tanoak trees. Some foliar hosts play a major role in the epidemiology of this disease. Upon infection by P. ramorum, these foliar hosts express non-fatal leaf lesions from which large...

  16. Role of atrial fibrillation and atrioventricular conduction (including Wolff-Parkinson-White Syndrome) in sudden death

    Meijler, F.L.; Tweel, I. van der; Herbschleb, J.N.; Hauer, R.N.W.; Robles de Medina, E.O.

    A short refractory period of the accessory pathway is considered a major threat for sudden death in patients with Wolff-Parkinson-White syndrome and atrial fibrillation. RR interval and QRS signal analysis together with signal analysis of a bipolar high right atrial electrogram were obtained in six

  17. Millimeter wave spectroscopic measurements of stratospheric and mesospheric constituents over the Italian Alps: stratospheric ozone

    V. Romaniello

    2007-06-01

    Full Text Available Measurements of rotational lines emitted by middle atmospheric trace gases have been carried out from the Alpine station of Testa Grigia (45.9°N, 7.7°E, elev. 3500 m by means of a Ground-Based Millimeter-wave Spectrometer (GBMS. Observations of species such as O3, HNO3, CO, N2O, HCN, and HDO took place during 4 winter periods, from February 2004 to March 2007, for a total of 116 days of measurements grouped in about 18 field campaigns. By studying the pressure-broadened shape of emission lines the vertical distribution of the observed constituents is retrieved within an altitude range of ?17-75 km, constrained by the 600 MHz pass band and the 65 kHz spectral resolution of the back-end spectrometer. This work discusses the behavior of stratospheric O3 during the entire period of operation at Testa Grigia. Mid-latitude O3 columnar content as estimated using GBMS measurements can vary by large amounts over a period of very few days, with the largest variations observed in December 2005, February 2006, and March 2006, confirming that the northern winter of 2005-2006 was characterized by a particularly intense planetary wave activity. The largest rapid variation from maximum to minimum O3 column values over Testa Grigia took place in December 2006 and reached a relative value of 72% with respect to the average column content for that period. During most GBMS observation times much of the variability is concentrated in the column below 20 km, with tropospheric weather systems and advection of tropical tropospheric air into the lower stratosphere over Testa Grigia having a large impact on the observed variations in column contents. Nonetheless, a wide variability is also found in middle stratospheric GBMS O3 measurements, as expected for mid-latitude ozone. We find that O3 mixing ratios at ?32 km are very well correlated with the solar illumination experienced by air masses over the previous ?15 days, showing that already at 32 km

  18. Takayasu Arteritis of the Coronary Arteries Presenting as Sudden Death in a White Teenager.

    Hlavaty, Leigh; Diaz, Francisco; Sung, LokMan

    2015-09-01

    Takayasu arteritis is a rare disease that expresses chronic, large vessel inflammation. The etiology remains unclear and its presentation depends on the affected arteries. With coronary artery involvement, manifestations range from chest pain and shortness of breath to sudden death. We report a case of a 15-year-old white girl who presented with syncope immediately before passing. On autopsy, all 3 major coronary arteries grossly contained multiple proximal lesions that were consistent with Takayasu arteritis, microscopically. Takayasu arteritis solely affecting multiple coronary arteries is exceedingly rare. This report discusses the significance of coronary involvement in Takayasu arteritis at autopsy and sudden death.

  19. Role of Stratospheric Water Vapor in Global Warming from GCM Simulations Constrained by MLS Observation

    Wang, Y.; Stek, P. C.; Su, H.; Jiang, J. H.; Livesey, N. J.; Santee, M. L.

    2014-12-01

    Over the past century, global average surface temperature has warmed by about 0.16°C/decade, largely due to anthropogenic increases in well-mixed greenhouse gases. However, the trend in global surface temperatures has been nearly flat since 2000, raising a question regarding the exploration of the drivers of climate change. Water vapor is a strong greenhouse gas in the atmosphere. Previous studies suggested that the sudden decrease of stratospheric water vapor (SWV) around 2000 may have contributed to the stall of global warming. Since 2004, the SWV observed by Microwave Limb Sounder (MLS) on Aura satellite has shown a slow recovery. The role of recent SWV variations in global warming has not been quantified. We employ a coupled atmosphere-ocean climate model, the NCAR CESM, to address this issue. It is found that the CESM underestimates the stratospheric water vapor by about 1 ppmv due to limited representations of the stratospheric dynamic and chemical processes important for water vapor variabilities. By nudging the modeled SWV to the MLS observation, we find that increasing SWV by 1 ppmv produces a robust surface warming about 0.2°C in global-mean when the model reaches equilibrium. Conversely, the sudden drop of SWV from 2000 to 2004 would cause a surface cooling about -0.08°C in global-mean. On the other hand, imposing the observed linear trend of SWV based on the 10-year observation of MLS in the CESM yields a rather slow surface warming, about 0.04°C/decade. Our model experiments suggest that SWV contributes positively to the global surface temperature variation, although it may not be the dominant factor that drives the recent global warming hiatus. Additional sensitivity experiments show that the impact of SWV on surface climate is mostly governed by the SWV amount at 100 hPa in the tropics. Furthermore, the atmospheric model simulations driven by observed sea surface temperature (SST) show that the inter-annual variation of SWV follows that of SST

  20. Tissue specific responses alter the biomass accumulation in wheat under gradual and sudden salt stress

    Yumurtaci A.

    2012-11-01

    Full Text Available Salinity is one the major limiting environmental factors which has negative side effects on crop production. The purpose of this study was to investigate the differences between the gradual and sudden salt stress effects on biomass accumulation associated with whole plant development in three different tissues of two wheat species ( Triticum aestivum and Triticum durum under hydroponic conditions in the long term. Considering the effects of sudden and gradual stress for biomass accumulation, while importance of salinity x genotype interaction for fresh weights was 5%, association for salinity x tissue type was found as 1% important. Interestingly, root branching and development of lateral roots were much more negatively affected by gradual stress rather than sudden salt application. Our results demonstrated that root and leaf were both critical tissues to test the salt tolerance by physiologically but sheath tissue might be used as an alternative source of variation for solving the interactions between root and leaves in wheat.

  1. Symptoms Before Sudden Arrhythmic Death Syndrome

    Glinge, Charlotte; Jabbari, Reza; Risgaard, Bjarke

    2015-01-01

    INTRODUCTION: No studies in an unselected and nationwide setting have characterized the symptoms and medical history of patients with sudden arrhythmic death syndrome (SADS). The aim of this study was to identify and describe the symptoms and medical history of patients before the presentation......%), palpitations (n = 2, 1%), presyncope/syncope (n = 23, 17%), and aborted SCD (n = 2, 1%). In addition, seizures (n = 25, 18%) were prevalent. In 61 (45%) SADS cases, no previous medical history were recorded. CONCLUSION: In this unselected, nationwide study of 136 young SADS patients, 35% had experienced...

  2. The Limb Infrared Monitor of the Stratosphere (LIMS) experiment

    Russell, J. M.; Gille, J. C.

    1978-01-01

    The Limb Infrared Monitor of the Stratosphere is used to obtain vertical profiles and maps of temperature and the concentration of ozone, water vapor, nitrogen dioxide, and nitric acid for the region of the stratosphere bounded by the upper troposphere and the lower mesosphere.

  3. Dynamics and transport in the stratosphere : Simulations with a general circulation mode

    van Aalst, Maarten Krispijn

    2005-01-01

    The middle atmosphere is strongly affected by two of the world's most important environmental problems: global climate change and stratospheric ozone depletion, caused by anthropogenic emissions of greenhouse gases and chlorofluorocarbons (CFCs), respectively. General circulation models with coupled chemistry are a key tool to advance our understanding of the complex interplay between dynamics, chemistry and radiation in the middle atmosphere. A key problem of such models is that they generate their own meteorology, and thus cannot be used for comparisons with instantaneous measurements. This thesis presents the first application of a simple data assimilation method, Newtonian relaxation, to reproduce realistic synoptical conditions in a state-of-the-art middle atmosphere general circulation model, MA-ECHAM. By nudging the model's meteorology slightly towards analyzed observations from a weather forecasting system (ECMWF), we have simulated specific atmospheric processes during particular meteorological episodes, such as the 1999/2000 Arctic winter. The nudging technique is intended to interfere as little as possible with the model's own dynamics. In fact, we found that we could even limit the nudging to the troposphere, leaving the middle atmosphere entirely free. In that setup, the model realistically reproduced many aspects of the instantaneous meteorology of the middle atmosphere, such as the unusually early major warming and breakup of the 2002 Antarctic vortex. However, we found that this required careful interpolation of the nudging data, and a correct choice of nudging parameters. We obtained the best results when we first projected the nudging data onto the model's normal modes so that we could filter out the (spurious) fast components. In a four-year simulation, for which we also introduced an additional nudging of the stratospheric quasi-biennial oscillation, we found that the model reproduced much of the interannual variability throughout the

  4. Sudden cardiac death in athletes and its preventive strategies: review article

    Farzin Halabchi

    2017-12-01

    Full Text Available Sudden cardiac death in sport, although rare, but is a tragic event, attracting the media and public attention. Sport and exercise may act as a trigger for sudden cardiac death. Risk of sudden death in young athletes with cardiovascular disease is 2.5 times more frequent than non-athlete individuals. More than 90% of cases of sudden death occur during or immediately after training or competition. Incidence of sudden cardiac death in any population, including athletes, is related to multiple factors such as gender, age, race, nationality, diagnostic screening methods and preventive measures for sudden cardiac death. Otherwise, incidence rate of sudden cardiac death is linked to the used definition and method of diagnosis. Different cardiovascular disorders may result in death of young athletes and hypertrophic cardiomyopathy, congenital coronary anomalies, arrhythmogenic right ventricular dysplasia and aortic rupture are among the most common causes. Marfan syndrome, dilated cardiomyopathy, viral myocarditis, Wolff-Parkinson-White (WPW syndrome, congenital long QT syndrome, Brugada syndrome and commotio cordis are reported as other etiologies. In older athletes (more than 35 years, ischemic coronary heart disease is responsible for majority of the cases similar to the general population. Because the outcome of sudden cardiac arrest in sports is very poor except in few cases, proper national strategies are needed to diminish the burden of sudden death in young athletes. It seems that there are two main strategies to achieve this goal: A Primary prevention with use of purposeful pre-participation evaluation programs. This evaluation should focuss on the proper history and physical examination. Nevertheless, there is significant debate between American and European countries regarding the use of paraclinical investigations (especially ECG. American heart association does not recommend ECG as an essential part of evaluation. In contrast, European

  5. Small volcanic eruptions and the stratospheric sulfate aerosol burden

    Pyle, David M.

    2012-09-01

    least 1.3-1.5 Tg of SO2 (Krotkov et al 2011, Clarisse et al 2012). This was probably the largest sulfur yield from an explosive eruption since Pinatubo and Hudson in 1991 (Deshler et al 2006, Krotkov et al 2010). Within two weeks, volcanic aerosol had been detected at elevations of 15-20 km within the upper troposphere/lower stratosphere above north Africa and southern Eurasia; and within a month, the aerosol had been detected by lidar instruments on every continent in the northern hemisphere, from 20°-45°N. The aerosol, presumed to be dominated by sulfate, persisted for the period of observation (June-September 2011), and led to a small but significant stratospheric aerosol optical depth (AOD) perturbation (average ~0.02). While this is an order of magnitude lower than global AOD perturbations following the most significant eruptions of the 20th century (e.g. Stothers 1996), it is nonetheless substantially larger than estimates of the typical 'nonvolcanic' stratospheric aerosol background ( Bali, Indonesia) Bull. Volcanol. 74 1521-36 Smithsonian Institution 2011 Nabro. First historically observed eruption began 13 June 2011 Bull. Glob. Volcanism Netw. 36 (9) (www.volcano.si.edu/reports/bulletin/contents.cfm?issue=3609) Stohl A et al 2011 Determination of time- and height-resolved volcanic ash emissions and their use for quantitative ash dispersion modeling: the 2010 Eyjafjallajökull eruption Atmos. Chem. Phys. 11 4333-51 Stothers R B 1996 Major optical depth perturbations to the stratosphere from volcanic eruptions: pyrheliometric period 1881-1960 J. Geophys. Res. 101 3901-20 Symons G J (ed) 1888 The Eruption of Krakatoa and Subsequent Phenomena (London: Trubner and Co) Thomas H E and Prata A J 2011 Sulphur dioxide as a volcanic ash proxy during the April-May 2010 eruption of Eyjafjallajökull Atmos. Chem. Phys. 11 6871-80 Walker J C, Carboni E, Dudhia A and Grainger R G 2012 Improved detection of sulphur dioxide in volcanic plumes using satellite

  6. Correlative measurements of the stratospheric aerosols

    Santer, R.; Brogniez, C.; Herman, M.; Diallo, S.; Ackerman, M.

    1992-12-01

    Joint experiments were organized or available during stratospheric flights of a photopolarimeter, referred to as RADIBAL (radiometer balloon). In May 1984, RADIBAL flew simultaneously with another balloonborne experiment conducted by the Institut d'Aeronomie Spatiale de Belgique (IASB), which provides multiwavelength vertical profiles of the aerosol scattering coefficient. At this time, the El Chichon layer was observable quite directly from mountain sites. A ground-based station set up at Pic du Midi allowed an extensive description of the aerosol optical properties. The IASB and the Pic du Midi observations are consistent with the aerosol properties derived from the RADIBAL measurement analysis.

  7. Stratospheric ozone, ultraviolet radiation and climate change

    Boucher, O.

    2008-01-01

    It is well known that an overexposure to ultraviolet radiation is associated with a number of health risks such as an increased risk of cataracts and skin cancers. At a time when climate change is often blamed for all our environmental problems, what is the latest news about the stratospheric ozone layer and other factors controlling ultraviolet radiation at the surface of the Earth? Will the expected changes in the chemical composition of the atmosphere and changes in our climate increase or decrease the risk for skin cancer? This article investigates the role of the various factors influencing ultraviolet radiation and presents the latest knowledge on the subject. (author)

  8. Photochemistry of materials in the stratosphere

    Johnston, H.S. [Lawrence Berkeley Laboratories, CA (United States)

    1993-12-01

    This research is concerned with global change in the atmosphere, including photochemical modeling and, in the past, experimental gas-phase photochemistry involving molecular dynamics and laboratory study of atmospheric chemical reactions. The experimental work on this project concluded in August 1991, but there is a back-log of several journal articles to be written and submitted for publication. The theoretical work involves photochemical modeling in collaboration with Lawrence Livermore National Laboratory (LLNL) and advising the Upper Atmosphere Research Program on Atmospheric Effects of Stratospheric Aircraft, National Aeronautics and Space Administration (NASA).

  9. Otolaryngological aspects of sudden infant death syndrome.

    Marom, Tal; Cinamon, Udi; Castellanos, Paul F; Cohen, Marta C

    2012-03-01

    Sudden infant death syndrome (SIDS) is characterized by the sudden death of an apparently otherwise healthy infant, typically during sleep, and with no obvious case after a thorough post-mortem and scene death examination. To address the problem from the otolaryngologist's perspective, describe relevant pathologies, discuss controversies and suggest preventive measures in high-risk populations. A MEDLINE search and hand search were conducted to identify reports published between 1969 and 2011 in the English language on the pathophysiology of SIDS related to the head and neck organs. Search terms included SIDS (MeSH term), SIDS and pathophysiology (text words), and SIDS and autopsy (text words). A growing number of reports suggested head and neck organs involvement in SIDS autopsies. Laryngeal, oropharyngeal, maxillofacial, otologic, cervical vascular abnormalities and infectious etiologies, were recognized and discussed. Otolaryngologists should be aware of relevant pathologies, as some are treatable, if identified early enough in infancy. A proactive risk-management approach is warranted in infants presenting with certain abnormalities reviewed here. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Febrile seizures prior to sudden cardiac death

    Stampe, Niels Kjær; Glinge, Charlotte; Jabbari, Reza

    2018-01-01

    Aims: Febrile seizure (FS) is a common disorder affecting 2-5% of children up to 5 years of age. The aim of this study was to determine whether FS in early childhood are over-represented in young adults dying from sudden cardiac death (SCD). Methods and results: We included all deaths (n = 4595...... with FS was sudden arrhythmic death syndrome (5/8; 62.5%). Conclusion: In conclusion, this study demonstrates a significantly two-fold increase in the frequency of FS prior to death in young SCD cases compared with the two control groups, suggesting that FS could potentially contribute in a risk......) nationwide and through review of all death certificates, we identified 245 SCD in Danes aged 1-30 years in 2000-09. Through the usage of nationwide registries, we identified all persons admitted with first FS among SCD cases (14/245; 5.7%) and in the corresponding living Danish population (71 027/2 369 785...

  11. Initial conditions and entanglement sudden death

    Qian, Xiao-Feng; Eberly, J.H.

    2012-01-01

    We report results bearing on the behavior of non-local decoherence and its potential for being managed or even controlled. The decoherence process known as entanglement sudden death (ESD) can drive prepared entanglement to zero at the same time that local coherences and fidelity remain non-zero. For a generic ESD-susceptible Bell superposition state, we provide rules restricting the occurrence and timing of ESD, amounting to management tools over a continuous variation of initial conditions. These depend on only three parameters: initial purity, entanglement and excitation. Knowledge or control of initial phases is not needed. -- Highlights: ► We study the possibility of managing disentanglement through initial conditions. ► The initial parameters are the amount of entanglement, excitation, and purity. ► Entanglement sudden death (ESD) free and ESD susceptible phases are identified. ► ESD onset time is also presented in the ESD susceptible phase. ► Our results may guide experiments to prepare ESD free or delayed ESD states.

  12. Cardiovascular causes of maternal sudden death. Sudden arrhythmic death syndrome is leading cause in UK.

    Krexi, Dimitra; Sheppard, Mary N

    2017-05-01

    This study aims to determine the causes of sudden cardiac death during pregnancy and in the postpartum period and patients' characteristics. There are few studies in the literature. Eighty cases of sudden unexpected death due to cardiac causes in relation to pregnancy and postpartum period in a database of 4678 patients were found and examined macroscopically and microscopically. The mean age was 30±7 years with a range from 16 to 43 years. About 30% were 35 years old or older; 50% of deaths occurred during pregnancy and 50% during the postpartum period. About 59.18% were obese or overweight where body mass index data were available. The leading causes of death were sudden arrhythmic death syndrome (SADS) (53.75%) and cardiomyopathies (13.80%). Other causes include dissection of aorta or its branches (8.75%), congenital heart disease (2.50%) and valvular disease (3.75%). This study highlights sudden cardiac death in pregnancy or in the postpartum period, which is mainly due to SADS with underlying channelopathies and cardiomyopathy. We wish to raise awareness of these frequently under-recognised entities in maternal deaths and the need of cardiological screening of the family as a result of the diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Studying Stratospheric Temperature Variation with Cosmic Ray Measurements

    Zhang, Xiaohang; He, Xiaochun

    2015-04-01

    The long term stratospheric cooling in recent decades is believed to be equally important as surface warming as evidence of influences of human activities on the climate system. Un- fortunatly, there are some discrepancies among different measurements of stratospheric tem- peratures, which could be partially caused by the limitations of the measurement techniques. It has been known for decades that cosmic ray muon flux is sensitive to stratospheric temperature change. Dorman proposed that this effect could be used to probe the tempera- ture variations in the stratophere. In this talk, a method for reconstructing stratospheric temperature will be discussed. We verify this method by comparing the stratospheric tem- perature measured by radiosonde with the ones derived from cosmic ray measurement at multiple locations around the globe.

  14. Stratospheric Temperature Trends Observed by TIMED/SABER

    Xian, T.; Tan, R.

    2017-12-01

    Trends in the stratospheric temperature are studied based on the temperature profile observation from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). The spatially trends are evaluated in different time scales ranging from decadal to monthly resolved. The results indicate a signature of BDC acceleration. There are strong warming trends (up to 9 K/decade) in the middle to upper stratosphere in the high latitude spring, summer, and autumn seasons, accompanied by strong cooling trends in the lower stratosphere. Besides, strong warming trends occurs through the whole stratosphere over the Southern Hemisphere, which confirms Antarctic ozone layer healing since 2000. In addition, the results demonstrate a significant warming trends in the middle of tropical stratosphere, which becomes strongest during June-July-August.

  15. Tunable Far Infrared Studies in Support of Stratospheric Measurements

    Chance, Kelly V.; Park, K.; Nolt, I. G.; Evenson, K. M.

    2001-01-01

    This report summarizes research done under NASA Grant NAG5-4653. The research performed under this grant has been a collaboration between institutions including the Smithsonian Astrophysical Observatory, the National Institute of Standards and Technology, the University of Oregon, and the NASA Langley Research Center. The program has included fully line-resolved measurements of submillimeter and far infrared spectroscopic line parameters (pressure broadening coefficients and their temperature dependences, and line positions) for the analysis of field measurements of stratospheric constituents, far infrared database improvements, and studies for improved satellite measurements of the Earth's atmosphere. This research program is designed to enable the full utilization of spectra obtained in far infrared/submillimeter field measurements, such as FIRS-2, FILOS, IBEX, SLS, EosMLS, and proposed European Space Agency measurements of OH (e.g., PIRAMHYD and SFINX) for the retrieval of accurate stratospheric altitude profiles of key trace gases involved in ozone layer photochemistry. For the analysis of the spectra obtained in the stratosphere from far infrared measurements it is necessary to have accurate values of the molecular parameters (line positions, strengths, and pressure broadening coefficients) for the measured molecules and for possible interfering species. Knowledge of line positions is in increasingly good shape, with some notable exceptions. The increase in position information includes research that has been performed in the present program of research on HO2, H2O, H2O2, O3, HCl, HF, HBr, HI, CO, OH, and ClO. Examples where further line position studies are necessary include hot band and minor isotopomer lines of some of the major trace species (H2O, O3) and normal lines of some triatomic and larger molecules (NO2). Knowledge of strengths is in generally good shape, since most of the lines are from electric dipole transitions whose intensities are well

  16. Persistence of Antarctic polar stratospheric clouds

    Mccormick, M. Patrick; Trepte, C. R.

    1988-01-01

    The persistence of Polar Stratospheric Clouds (PSCs) observed by the Stratospheric Aerosol Measurement (SAM) 2 satellite sensor over a 9-year period is compared and contrasted. Histograms of the SAM 2 1.0 micron extinction ratio data (aerosol extinction normalized by the molecular extinction) at an altitude of 18 km in the Antarctic have been generated for three 10-day periods in the month of September. Statistics for eight different years (1979 to 1982 and 1984 to 1987) are shown in separate panels for each figure. Since the SAM 2 system is a solar occultation experiment, observations are limited to the edge of the polar night and no measurements are made deep within the vortex where temperatures could be colder. For this reason, use is made of the NMC global gridded fields and the known temperature-extinction relationship to infer additional information on the occurrence and areal coverage of PSCs. Calculations of the daily areal coverage of the 195 K isotherm will be presented for this same period of data. This contour level lies in the range of the predicted temperature for onset of the Type 1 particle enhancement mode at 50 mb (Poole and McCormick, 1988b) and should indicate approximately when formation of the binary HNO3-H2O particles begins.

  17. Study of photolytic aerosols at stratospheric pressures

    Delattre, Patrick.

    1975-07-01

    An experimental study of photolytic aerosol formation at stratospheric pressure (60 Torr) and laboratory temperature, was carried out previous to the exact simulation of photolytic aerosol formation in real stratospheric conditions. An experimental simulation device, techniques of generation of known mixtures of inert gases with SO 2 and NOsub(x) traces at low concentration (below 1 ppm volume) and H 2 O traces (a few ppm), and techniques for the determination and counting of aerosol particles at low pressures were perfected. The following results were achieved: the rate of vapor condensation on nuclei was reduced when total pressure decreased. At low pressure the working of condensation nuclei counters and the formation of photolytic aerosols is influenced by this phenomenon. An explanation is proposed, as well as means to avoid this unpleasant effect on the working of nuclei counters at low pressure. No photolytic aerosol production was ascertained at 60 Torr when water concentration was below 100 ppm whatever the concentration of SO 2 or NOsub(x) traces. With water concentration below 1200ppm and SO 2 trace concentration below 1ppm, the aerosol particles produced could not consist of sulfuric acid drops but probably of nitrosyl sulfate acide crystals [fr

  18. Stratospheric ozone - Impact of human activity

    Mcelroy, Michael B.; Salawitch, Ross J.

    1989-01-01

    The current knowledge of the chemistry of the stratosphere is reviewed, with particular consideration given to the measurements from the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment and from the Airborne Antarctic Ozone Experiment. Analysis of the ATMOS data at 30 deg N suggests that the current understanding of the contemporary-stratosphere chemistry at mid-latitudes is relatively complete, except for possible problems with the diurnal variations of N2O5 at low altitudes, and with ClNO3 at higher altitudes. Except for some difficulties with these two compounds, the data from ATMOS agree well with the gas phase models for nitrogen and chlorine species at 30 deg N in spring. It is emphasized that, in addition to the HOCl mechanism proposed by Solomon et al. (1986), the ClO-BrO scheme proposed by McElroy et al. (1986), and the ClO dimer mechanism introduced by Molina and Molina (1987), other processes exist that are responsible for ozone removal.

  19. Satellite studies of the stratospheric aerosol

    McCormick, M.P.; Hamill, P.; Pepin, T.J.; Chu, W.P.; Swissler, T.J.; McMaster, L.R.

    1979-01-01

    The potential climatological and environmental importance of the stratospheric aerosol layer has prompted great interest in measuring the properties of this aerosol. In this paper we report on two recently deployed NASA satellite systems (SAM II and SAGE) that are monitoring the stratospheric aerosol. The satellite orbits are such that nearly global coverage is obtained. The instruments mounted in the spacecraft are sun photometers that measure solar intensity at specific wavelengths as it is moderated by atmospheric particulates and gases during each sunrise and sunset encountered by the satellites. The data obtained are ''inverted'' to yield vertical aerosol and gaseous (primarily ozone) extinction profiles with 1 km vertical resolution. Thus, latitudinal, longitudinal, and temporal variations in the aerosol layer can be evaluated. The satellite systems are being validated by a series of ground truth experiments using airborne and ground lidar, balloon-borne dustsondes, aircraft-mounted impactors, and other correlative sensors. We describe the SAM II and SAGE satellite systems, instrument characteristics, and mode of operation; outline the methodology of the experiments; and describe the ground truth experiments. We present preliminary results from these measurements

  20. Residual entanglement and sudden death: A direct connection

    Oliveira, J.G.G. de; Peixoto de Faria, J.G.; Nemes, M.C.

    2011-01-01

    We explore the results of [V. Coffman, et al., Phys. Rev. A 61 (2000) 052306] derived for general tripartite states in a dynamical context. We study a class of physically motivated tripartite systems. We show that whenever entanglement sudden death occurs in one of the partitions residual entanglement will appear. For fourpartite systems however, the appearance of residual entanglement is not conditioned by sudden death of entanglement. We can only say that if sudden death of entanglement occurs in some partition there will certainly be residual entanglement. -- Highlights: ► For tripartite systems we show there exists residual entanglement if sudden death occurs. ► For fourpartite systems, the residual entanglement is not conditioned by sudden death. ► If sudden death of entanglement occurs there will certainly be residual entanglement.

  1. Sudden cardiac death in young athletes

    Östman-Smith I

    2011-07-01

    Full Text Available Ingegerd Östman-SmithDivision of Paediatric Cardiology, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, SwedenAbstract: Athletic activity is associated with an increased risk of sudden death for individuals with some congenital or acquired heart disorders. This review considers in particular the causes of death affecting athletes below 35 years of age. In this age group the largest proportion of deaths are caused by diseases with autosomal dominant inheritance such as hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, long QT-syndrome, and Marfan’s syndrome. A policy of early cascade-screening of all first-degree relatives of patients with these disorders will therefore detect a substantial number of individuals at risk. A strictly regulated system with preparticipation screening of all athletes following a protocol pioneered in Italy, including school-age children, can also detect cases caused by sporadic new mutations and has been shown to reduce excess mortality among athletes substantially. Recommendations for screening procedure are reviewed. It is concluded that ECG screening ought to be part of preparticipation screening, but using criteria that do not cause too many false positives among athletes. One such suggested protocol will show positive in approximately 5% of screened individuals, among whom many will be screened for these diseases. On this point further research is needed to define what kind of false-positive and false-negative rate these new criteria result in. A less formal system based on cascade-screening of relatives, education of coaches about suspicious symptoms, and preparticipation questionnaires used by athletic clubs, has been associated over time with a sizeable reduction in sudden cardiac deaths among Swedish athletes, and thus appears to be worth implementing even for junior athletes not recommended for formal preparticipation screening. It is strongly argued

  2. Cardiac Channelopathies and Sudden Death: Recent Clinical and Genetic Advances

    Fernández Falgueras, Anna; Sarquella Brugada, Georgia; Brugada Terradellas, Josep; Brugada, Ramon; Campuzano Larrea, Oscar

    2017-01-01

    Sudden cardiac death poses a unique challenge to clinicians because it may be the only symptom of an inherited heart condition. Indeed, inherited heart diseases can cause sudden cardiac death in older and younger individuals. Two groups of familial diseases are responsible for sudden cardiac death: cardiomyopathies (mainly hypertrophic cardiomyopathy, dilated cardiomyopathy, and arrhythmogenic cardiomyopathy) and channelopathies (mainly long QT syndrome, Brugada syndrome, short QT syndrome, a...

  3. Good news is bad news: Leverage cycles and sudden stops

    Akinci, Ozge; Chahrour, Ryan

    2015-01-01

    We show that a model with imperfectly forecastable changes in future productivity and an occasionally binding collateral constraint can match a set of stylized facts about “sudden stop” events. “Good” news about future productivity raises leverage during times of expansion, increasing the probability that the constraint binds, and a sudden stop occurs, in future periods. The economy exhibits a boom period in the run-up to the sudden stop, with output, consumption, and investment all above tre...

  4. Possible effect of extreme solar energetic particle event of 20 January 2005 on polar stratospheric aerosols: direct observational evidence

    I. A. Mironova

    2012-01-01

    Full Text Available Energetic cosmic rays are the main source of ionization of the low-middle atmosphere, leading to associated changes in atmospheric properties. Via the hypothetical influence of ionization on aerosol growth and facilitated formation of clouds, this may be an important indirect link relating solar variability to climate. This effect is highly debated, however, since the proposed theoretical mechanisms still remain illusive and qualitative, and observational evidence is inconclusive and controversial. Therefore, important questions regarding the existence and magnitude of the effect, and particularly the fraction of aerosol particles that can form and grow, are still open. Here we present empirical evidence of the possible effect caused by cosmic rays upon polar stratospheric aerosols, based on a case study of an extreme solar energetic particle (SEP event of 20 January 2005. Using aerosol data obtained over polar regions from different satellites with optical instruments that were operating during January 2005, such as the Stratospheric Aerosol and Gas Experiment III (SAGE III, and Optical Spectrograph and Infrared Imaging System (OSIRIS, we found a significant simultaneous change in aerosol properties in both the Southern and Northern Polar regions in temporal association with the SEP event. We speculate that ionization of the atmosphere, which was abnormally high in the lower stratosphere during the extreme SEP event, might have led to formation of new particles and/or growth of preexisting ultrafine particles in the polar stratospheric region. However, a detailed interpretation of the effect is left for subsequent studies. This is the first time high vertical resolution measurements have been used to discuss possible production of stratospheric aerosols under the influence of cosmic ray induced ionization. The observed effect is marginally detectable for the analyzed severe SEP event and can be undetectable for the majority of weak

  5. Possible effect of extreme solar energetic particle event of 20 January 2005 on polar stratospheric aerosols: direct observational evidence

    Mironova, I. A.; Usoskin, I. G.; Kovaltsov, G. A.; Petelina, S. V.

    2012-01-01

    Energetic cosmic rays are the main source of ionization of the low-middle atmosphere, leading to associated changes in atmospheric properties. Via the hypothetical influence of ionization on aerosol growth and facilitated formation of clouds, this may be an important indirect link relating solar variability to climate. This effect is highly debated, however, since the proposed theoretical mechanisms still remain illusive and qualitative, and observational evidence is inconclusive and controversial. Therefore, important questions regarding the existence and magnitude of the effect, and particularly the fraction of aerosol particles that can form and grow, are still open. Here we present empirical evidence of the possible effect caused by cosmic rays upon polar stratospheric aerosols, based on a case study of an extreme solar energetic particle (SEP) event of 20 January 2005. Using aerosol data obtained over polar regions from different satellites with optical instruments that were operating during January 2005, such as the Stratospheric Aerosol and Gas Experiment III (SAGE III), and Optical Spectrograph and Infrared Imaging System (OSIRIS), we found a significant simultaneous change in aerosol properties in both the Southern and Northern Polar regions in temporal association with the SEP event. We speculate that ionization of the atmosphere, which was abnormally high in the lower stratosphere during the extreme SEP event, might have led to formation of new particles and/or growth of preexisting ultrafine particles in the polar stratospheric region. However, a detailed interpretation of the effect is left for subsequent studies. This is the first time high vertical resolution measurements have been used to discuss possible production of stratospheric aerosols under the influence of cosmic ray induced ionization. The observed effect is marginally detectable for the analyzed severe SEP event and can be undetectable for the majority of weak-moderate events. The present

  6. Sudden cardiac death in adults: causes, incidence and interventions.

    Walker, Wendy Marina

    Many nurses will be familiar with the unexpected death of an adult patient following a sudden, life-threatening cardiac event. It is a situation that demands sensitive nursing care and skilled interventions to provide a foundation for recovery and promote healthy bereavement. This article examines the causes and incidence of sudden cardiac death in adults. Possible reactions of those who are suddenly bereaved are described and immediate care interventions aimed at dealing with the grief process are discussed. The article concludes by identifying ways in which the incidence of sudden cardiac death may be reduced.

  7. Distillability Sudden Birth of Entanglement for Qutrit-Qutrit Systems

    Huang Jiang; Ali Mazhar

    2014-01-01

    We report the sudden appearance of distillability between two statistically independent reservoirs modelled as qutrit-qutrit systems. This feature of bipartite quantum systems is different from the previously observed phenomenon of entanglement sudden birth. It is found that the states of reservoirs first become bound entangled, thus exhibiting entanglement sudden birth, consequently followed by the sudden birth of distillability, and it is shown that whenever distillability is lost abruptly from principal system, it also necessarily appears abruptly among reservoirs' degrees of freedom. This surprising observation reflects yet another peculiarity of dynamical aspects of quantum entanglement

  8. Sudden cardiac death in the young

    Ackerman, Michael; Atkins, Dianne L; Triedman, John K

    2016-01-01

    Although the occurrence of sudden cardiac death (SCD) in a young person is a rare event, it is traumatic and often widely publicized. In recent years, SCD in this population has been increasingly seen as a public health and safety issue. This review presents current knowledge relevant to the epidemiology of SCD and to strategies for prevention, resuscitation and identification of those at greatest risk. Areas of active research and controversy include the development of best practices in screening, risk stratification approaches and post-mortem evaluation, and identification of modifiable barriers to providing better outcomes after resuscitation of young SCD victims. Institution of a national registry of SCD in the young will provide data that will help to answer these questions. PMID:26951821

  9. Characteristics of sudden arrhythmic death in a diverse, urban community.

    Steinhaus, Daniel A; Vittinghoff, Eric; Moffatt, Ellen; Hart, Amy P; Ursell, Philip; Tseng, Zian H

    2012-01-01

    Sudden cardiac death (SCD) remains a major public health problem; however, its true burden remains unknown with widely variable estimates of its incidence. We aimed to examine the contemporary epidemiology and autopsy characteristics of SCD in an ethnically diverse community. Three physicians reviewed all deaths of individuals aged ≥20 years reported to the San Francisco medical examiner in 2007 for presentations fitting World Health Organization (WHO) SCD criteria-within 1 hour of symptom onset (witnessed) or within 24 hours of being observed alive and symptom free (unwitnessed). After comprehensive review of medical examiner investigation, WHO SCDs were classified as sudden arrhythmic death (SAD) or nonarrhythmic death. Coronary artery disease (CAD) and cardiac mass were evaluated in all SADs undergoing autopsy and compared with demographically similar accidental trauma control deaths. We identified 252 WHO SCDs; 145 were SADs. Men had a 2.2-fold higher SAD rate (P < .0005). Blacks had a 3.15-fold higher SAD rate compared with whites (P = .003). Significant CAD was present in 38.9% of SADs and associated with higher SAD risk compared with control deaths (OR 2.58, 95% CI 1.12-5.97, P = .026). Mean cardiac mass was linearly associated with risk for SAD in cases without significant CAD (OR 2.06 per 100 g, 95% CI 1.43-2.98, P < .0005). In a diverse, urban population, SAD incidence varied substantially by gender and race. Significant CAD accounted for far fewer SADs than previous studies but remained associated with a 2.6-fold higher risk as compared with control deaths. These findings may reflect the evolving contemporary epidemiology of SCD. Copyright © 2012 Mosby, Inc. All rights reserved.

  10. Dynamical response of the Arctic winter stratosphere to global warming

    Karpechko, A.; Manzini, E.

    2017-12-01

    Climate models often simulate dynamical warming of the Arctic stratosphere as a response to global warming in association with a strengthening of the deep branch of the Brewer-Dobson circulation; however until now, no satisfactory mechanism for such a response has been suggested. Here we investigate the role of stationary planetary waves in the dynamical response of the Arctic winter stratosphere circulation to global warming by analysing simulations performed with atmosphere-only Coupled Model Intercomparison Project Phase 5 (CMIP5) models driven by prescribed sea surface temperatures (SSTs). We focus on December-February (DJF) because this is the period when the troposphere and stratosphere are strongly coupled. When forced by increased SSTs, all the models analysed here simulate Arctic stratosphere dynamical warming, mostly due to increased upward propagation of quasi-stationary wave number 1, as diagnosed by the meridional eddy heat flux. By analysing intermodel spread in the response we show that the stratospheric warming and increased wave flux to the stratosphere correlate with the strengthening of the zonal winds in subtropics and mid-latitudes near the tropopause- a robust response to global warming. These results support previous studies of future Arctic stratosphere changes and suggest a dynamical warming of the Arctic wintertime polar vortex as the most likely response to global warming.

  11. Sudden losses and sudden gains during a DBT-PTSD treatment for posttraumatic stress disorder following childhood sexual abuse

    Antje Krüger

    2014-09-01

    Full Text Available Background: Exposure-based treatment approaches are first-line interventions for patients suffering from posttraumatic stress disorder (PTSD. However, the dissemination of exposure-based treatments for PTSD is challenging, as a large proportion of clinicians report being concerned about symptoms worsening as a result of this type of intervention and are therefore reluctant to offer it to patients with PTSD. However, there is only little empirical evidence to date on the pattern of symptom worsening during exposure-based treatment for PTSD. Objective: The goal of the present study was to explore the frequency of sudden losses and sudden gains in the course of an exposure-based treatment programme for female patients suffering from PTSD related to childhood sexual abuse who also show severe comorbidity. In addition, the relationship between sudden changes and treatment outcome was examined. Methods: Female participants (N=74 were randomised to either a 12-week residential DBT-PTSD programme or a treatment-as-usual wait list. The pattern of symptom change was assessed via weekly assessments using the Posttraumatic Diagnostic Scale (PDS. Sudden changes were computed as suggested by the literature on sudden gains. Results: During treatment, only one participant (3% experienced a sudden loss, whereas 25% of participants experienced sudden gains. In the waiting condition, 8% of the participants experienced sudden losses and 5% experienced sudden gains during the same time period. No symptom worsening was observed in response to exposure sessions. However, sudden gains occurred during exposure and non-exposure treatment weeks. Patients with sudden gains showed better treatment outcome in the post-treatment and follow-up assessments. Conclusions: Exposure-based treatment did not lead to PTSD symptom worsening in the study sample. Results show that sudden gains occur frequently during PTSD treatment and have a prognostic value for treatment outcome.

  12. CERN: Antiprotons probe the nuclear stratosphere

    Anon.

    1995-01-01

    The outer periphery of heavy stable nuclei is notoriously difficult to study experimentally. While the well understood electromagnetic interaction between electrons (or muons) and protons has given the nuclear charge (or proton) distribution with high precision for almost all stable nuclei, neutron distribution studies are much less precise. This is especially true for large nuclear distances, where the nuclear density is small. A few previous experiments probing the nuclear ''stratosphere'' suggested that far from the centre of the nucleus (of the order of 2 nuclear radii) this stratosphere may be composed predominantly of neutrons. At the end of the sixties the term ''neutron halo'' was introduced to describe this phenomenon, but experimental evidence was scarce or even controversial, and remained so for almost a quarter of a century. Recently, the Warsaw/Munich/Berlin collaboration working within the PS203 experiment at CERN's LEAR low energy antiproton ring, proposed a new method to study the nuclear periphery using stopped antiprotons. The halo now looks firmer. A 200 MeV/c beam of antiprotons was slowed down by interactions with atomic electrons. When antiproton kinetic energy drops well below 1 keV, the particles are captured in the outermost orbits of ''exotic atoms'', where the antiprotons take the place of the usual orbital electrons. With the lower orbits in this antiprotonic atom empty, the antiproton drops toward the nuclear surface, first emitting Auger electrons and later predominantly antiprotonic X-rays. Due to the strong interaction between antiprotons and nucleons, the antiproton succumbs to annihilation with a nucleon in the rarified nuclear stratosphere, far above the innermost Bohr orbit of the atom. The annihilation probability in heavy nuclei is maximal where the nuclear density is about 3% of its central value and extends to densities many orders of magnitude smaller

  13. CERN: Antiprotons probe the nuclear stratosphere

    Anon.

    1995-06-15

    The outer periphery of heavy stable nuclei is notoriously difficult to study experimentally. While the well understood electromagnetic interaction between electrons (or muons) and protons has given the nuclear charge (or proton) distribution with high precision for almost all stable nuclei, neutron distribution studies are much less precise. This is especially true for large nuclear distances, where the nuclear density is small. A few previous experiments probing the nuclear ''stratosphere'' suggested that far from the centre of the nucleus (of the order of 2 nuclear radii) this stratosphere may be composed predominantly of neutrons. At the end of the sixties the term ''neutron halo'' was introduced to describe this phenomenon, but experimental evidence was scarce or even controversial, and remained so for almost a quarter of a century. Recently, the Warsaw/Munich/Berlin collaboration working within the PS203 experiment at CERN's LEAR low energy antiproton ring, proposed a new method to study the nuclear periphery using stopped antiprotons. The halo now looks firmer. A 200 MeV/c beam of antiprotons was slowed down by interactions with atomic electrons. When antiproton kinetic energy drops well below 1 keV, the particles are captured in the outermost orbits of ''exotic atoms'', where the antiprotons take the place of the usual orbital electrons. With the lower orbits in this antiprotonic atom empty, the antiproton drops toward the nuclear surface, first emitting Auger electrons and later predominantly antiprotonic X-rays. Due to the strong interaction between antiprotons and nucleons, the antiproton succumbs to annihilation with a nucleon in the rarified nuclear stratosphere, far above the innermost Bohr orbit of the atom. The annihilation probability in heavy nuclei is maximal where the nuclear density is about 3% of its central value and extends to densities many orders of magnitude smaller. Antiproton annihilation on a proton or on a neutron at the nuclear

  14. Sudden birth versus sudden death of entanglement for the extended Werner-like state in a dissipative environment

    Chuan-Jia, Shan; Tao, Chen; Ji-Bing, Liu; Wei-Wen, Cheng; Tang-Kun, Liu; Yan-Xia, Huang; Hong, Li

    2010-01-01

    In this paper, we investigate the dynamical behaviour of entanglement in terms of concurrence in a bipartite system subjected to an external magnetic field under the action of dissipative environments in the extended Werner-like initial state. The interesting phenomenon of entanglement sudden death as well as sudden birth appears during the evolution process. We analyse in detail the effect of the purity of the initial entangled state of two qubits via Heisenberg XY interaction on the apparition time of entanglement sudden death and entanglement sudden birth. Furthermore, the conditions on the conversion of entanglement sudden death and entanglement sudden birth can be generalized when the initial entangled state is not pure. In particular, a critical purity of the initial mixed entangled state exists, above which entanglement sudden birth vanishes while entanglement sudden death appears. It is also noticed that stable entanglement, which is independent of different initial states of the qubits (pure or mixed state), occurs even in the presence of decoherence. These results arising from the combination of the extended Werner-like initial state and dissipative environments suggest an approach to control and enhance the entanglement even after purity induced sudden birth, death and revival. (general)

  15. Stratospheric BrONO2 observed by MIPAS

    H. Fischer

    2009-03-01

    Full Text Available The first measurements of stratospheric bromine nitrate (BrONO2 are reported. Bromine nitrate has been clearly identified in atmospheric infrared emission spectra recorded with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS aboard the European Envisat satellite, and stratospheric concentration profiles have been determined for different conditions (day and night, different latitudes. The BrONO2 concentrations show strong day/night variations, with much lower concentrations during the day. Maximum volume mixing ratios observed during night are 20 to 25 pptv. The observed concentration profiles are in agreement with estimations from photochemical models and show that the current understanding of stratospheric bromine chemistry is generally correct.

  16. A fiery birth of aluminosilica analogs of refractory dust in the upper stratosphere

    Rietmeijer, F. J. M.; Ferrari, M.; Della Corte, V.; Rotundi, A.; Palumbo, P.; De Angelis, S.; Galluzzi, V.

    2017-11-01

    Following a successful dust collection flight in the upper stratosphere our DUSTER (Dust in the Upper Stratosphere Tracking Experiment and Retrieval) made a safe remote landing at its assigned location on Baffin Island during early June 2009. When the balloon payload that included DUSTER was retrieved it was found part of the payload had experienced a lithium-sparked fire while the payload was being dragged across the landing site. In this process the housing of DUSTER had developed a pin-sized hole that allowed smoke of the fire to enter the collector. Numerous smoke particles were found covering both the DUSTER collection and blank collector surfaces an indication that our experiment to collect upper stratospheric dust had failed! Both collector surfaces were covered by numerous carbon smoke and amorphous, aluminosilica nanoparticles. The compositions of vast majority of these aluminosilica nanoparticles, Al2O3 = 49 wt% and SiO2 = 51 wt%, was both surprising and unique because it was an exact match of the Deep Metastable Eutectic (DME) nanoparticles found in vapor phase condensation experiments. These vapor phase condensation experiments were conducted to explore the formation of extraterrestrial dust particles. We are not claiming an extraterrestrial origin for these particles from this DUSTER experiment. We submit that given the appropriate conditions of high temperature alumina and silica vapors and rapid quenching in a contained natural environment, DME aluminosilica nanoparticles will likely condense. This serendipitous result can be used to explore nanoparticle formation inside incandescent clouds associated with bolides and fireballs.

  17. Stratonauts pioneers venturing into the stratosphere

    Ehrenfried, Manfred "Dutch"

    2014-01-01

    Stratonauts chronicles humankind’s quest for ever higher altitudes from ancient times to the present. It is based upon history, science and technology, and tells some interesting and fascinating stories along the way. It pays tribute to those killed while attempting to reach the stratosphere over the past several centuries.   “Dutch” von Ehrenfried uses his personal experience as a NASA sensor operator on the RB-57F, flying to an altitude of 70,000 feet, as well as the input and experience from other RB-57F, U-2, A-12, SR-71 and F-104 pilots. Although many of the aircraft and balloons are described, more emphasis is placed on the crews and what they went through. This book is intended for aviators of all kinds and flying enthusiasts in general.

  18. SUDDEN NATURAL DEATHS IN MEDICOLEGAL CASES- AN AUTOPSY BASED STUDY

    C. S. Sreedevi

    2017-01-01

    coronary artery, 4 cases (14.8 and left circumflex coronary artery, 2 cases (7.4%. Coronary artery thrombosis and myocarditis constituted two cases (6.6% each. Sixth decade was commonly affected followed by fifth decade. One case each of cases of rupture of ectopic pregnancy, aneurysmal rupture of cerebral artery and alcoholic steatohepatitis were observed. Respiratory system was involved next to the cardiovascular system in which most common cause was pneumonia, which was found in 3 cases (42.86%. In gastrointestinal system 50% were due to pancreatitis. Persons having normal basal metabolic index was most commonly affected 31 cases (62% followed by overweight persons 10 cases (20%. Out of 50 cases, 24 (48% were instantaneous deaths; among them 14 cases were due to myocardial infarction, (58.33%. Others are due to acute haemorrhagic pancreatitis, valvular heart disease, squamous cell carcinoma of larynx, pneumonia, Cardiomyopathy, Rupture of aneurysm, carcinoma of gastro oesophageal junction, myocarditis and alcoholic steatohepatitis. In one case of myocardial infarction there was history of attack by dog, and in 3 cases there was history of mental harassment and in 1 case, physical assault was observed. CONCLUSION From the cases of natural disease brought for medicolegal autopsy it was found that majority of cases were due to cardiac causes. Males were most commonly affected. Sixth decade of age had most cases followed by fourth decade. Pancreatitis, steatohepatitis, rupture of cerebral aneurysm and ectopic pregnancy were rare causes of sudden death encountered in this study. It was observed that physical and mental injury can precipitate or accelerates death in myocardial infarction. It was observed that proportion of cases with normal BMI was high among MI category than non-MI category. But this was not statistically significant.

  19. Influence of stratospheric aerosol on albedo

    Gormatyuk, Yu K; Kaufman, Yu G; Kolomeev, M P

    1985-06-01

    The influence of stratospheric aerosol (SA) on the transfer of solar radiation in the atmosphere is the principal factor determining the effect of SA on climate. The change in the radiation balance under the influence of SA is computed most precisely in radiative-convective models. However, the complex method used in these models cannot be used for other types of climate models. The objective of the study was to obtain a quantitative evaluation of the influence of SA on albedo without the use of simplifying assumptions. In the approximation of single scattering an expression is derived for change in albedo under the influence of stratospheric aerosol taking into account the dependence of albedo of the atmosphere-earth's surface system on solar zenith distance. The authors give the results of computations of the response of mean annual albedo to sulfuric acid aerosol for 10/sup 0/ latitude zones in the Northern Hemisphere. Specifically, computations of the optical characteristics of aerosol were made using the Mie theory for 10 spectral intervals taking in the range of wavelengths of solar radiation from 0.29 to 4.0 ..mu.. m. The refractive index of aerosol was stipulated in accordance with Palmer and Williams. The angular dependence of albedo for cloudless and cloudy atmospheres given by Harshvardhan was used. The values of undisturbed albedo were assumed to be identical for all wavelengths due to lack of climatological data on the spectral dependence of albedo of the atmosphere-earth's surface system. The angular distribution of the intensity of solar radiation for each of the latitude zones was computed by the method described by I.M. Alekseyev, et al.

  20. Stratospheric sulfate geoengineering impacts on global agriculture

    Xia, L.; Robock, A.; Lawrence, P.; Lombardozzi, D.

    2015-12-01

    Stratospheric sulfate geoengineering has been proposed to reduce the impacts of anthropogenic climate change. If it is ever used, it would change agricultural production, and so is one of the future climate scenarios for the third phase of the Global Gridded Crop Model Intercomparison. As an example of those impacts, we use the Community Land Model (CLM-crop 4.5) to simulate how climate changes from the G4 geoengineering scenario from the Geoengineering Modeling Intercomparison Project. The G4 geoengineering scenario specifies, in combination with RCP4.5 forcing, starting in 2020 daily injections of a constant amount of SO2 at a rate of 5 Tg SO2 per year at one point on the Equator into the lower stratosphere. Eight climate modeling groups have completed G4 simulations. We use the crop model to simulate the impacts of climate change (temperature, precipitation, and solar radiation) on the global agriculture system for five crops - rice, maize, soybeans, cotton, and sugarcane. In general, without irrigation, compared with the reference run (RCP4.5), global production of cotton, rice and sugarcane would increase significantly due to the cooling effect. Maize and soybeans show different regional responses. In tropical regions, maize and soybean have a higher yield in G4 compared with RCP4.5, while in the temperate regions they have a lower yield under a geoengineered climate. Impacts on specific countries in terms of different crop production depend on their locations. For example, the United States and Argentina show soybean production reduction of about 15% under G4 compared to RCP4.5, while Brazil increases soybean production by about 10%.

  1. Antipsychotics and the risk of sudden cardiac death

    Straus, S.M.J.M.; Bleumink, G.S.; Dieleman, J.P.; van der Lei, J.; 't Jong, G.W.; Kingma, J. Herre; Sturkenboom, M.C J M; Stricker, B.H C

    2004-01-01

    Background Antipsychotics have been associated with prolongation of the corrected QT interval and sudden cardiac death. Only a few epidemiological studies have investigated this association. We performed a case-control study to investigate the association between use of antipsychotics and sudden

  2. Mobile phone usage does not affect sudden sensorineural hearing loss.

    Sagiv, D; Migirov, L; Madgar, O; Nakache, G; Wolf, M; Shapira, Y

    2018-01-01

    Recent studies found that mobile phone users had a significantly greater risk of having elevated thresholds in speech frequencies. This study investigated the correlation between the laterality of sudden sensorineural hearing loss, handedness and the preferred ear for mobile phone use. The study included all patients who presented with sudden sensorineural hearing loss to the Department of Otolaryngology - Head and Neck Surgery in our tertiary referral medical centre between 2014 and 2016. Patients were asked to indicate their dominant hand and preferred ear for mobile phone use. The study comprised 160 patients. No correlation was found between the dominant hand or preferred ear for mobile phone use and the side of sudden sensorineural hearing loss. There was no correlation between the side of the sudden sensorineural hearing loss (preferable or non-preferable for mobile phone use) and audiometric characteristics. No correlation was found between the laterality of ears used for mobile phone and sudden sensorineural hearing loss.

  3. Laboratory investigation of nitrile ices of Titan's stratospheric clouds

    Nna Mvondo, D.; Anderson, C. M.; McLain, J. L.; Samuelson, R. E.

    2017-09-01

    Titan's mid to lower stratosphere contains complex cloud systems of numerous organic ice particles comprised of both hydrocarbon and nitrile compounds. Most of these stratospheric ice clouds form as a result of vapor condensation formation processes. However, there are additional ice emission features such as dicyanoacetylene (C4N2) and the 220 cm-1 ice emission feature (the "Haystack") that are difficult to explain since there are no observed vapor emission features associated with these ices. In our laboratory, using a high-vacuum chamber coupled to a FTIR spectrometer, we are engaged in a dedicated investigation of Titan's stratospheric ices to interpret and constrain Cassini Composite InfraRed Spectrometer (CIRS) far-IR data. We will present laboratory transmittance spectra obtained for propionitrile (CH3CH2CN), cyanogen (C2N2) and hydrogen cyanide (HCN) ices, as well as various combinations of their mixtures, to better understand the cloud chemistry occurring in Titan's stratosphere.

  4. Exposing Microorganisms in the Stratosphere for Planetary Protection

    National Aeronautics and Space Administration — Earth’s stratosphere is similar to the surface of Mars: rarified air which is dry, cold, and irradiated. E-MIST is a balloon payload that has 4 independently...

  5. Is there any chlorine monoxide in the stratosphere?

    Mumma, M. J.; Rogers, J. D.; Kostiuk, T.; Deming, D.; Hillman, J. J.; Zipoy, D.

    1983-01-01

    A ground-based search for stratospheric 35-ClO was carried out using an infrared heterodyne spectrometer in the solar absorption mode. Lines due to stratospheric HNO3 and tropospheric OCS were detected at about 0.2 percent absorptance levels, but the expected 0.1 percent lines of ClO in this same region were not seen. We find that stratospheric ClO is at least a factor of seven less abundant than is indicated by in situ measurements, and we set an upper limit of 2.3 x 10 to the 13th molecules/sq cm at the 95 percent confidence level for the integrated vertical column density of ClO. Our results imply that the release of chlorofluorocarbons may be significantly less important for the destruction of stratospheric ozone (O3) than is currently thought. Previously announced in STAR as N83-27518

  6. The Temperature of the Arctic and Antarctic Lower Stratosphere

    Newman, Paul A.; Nash, Eric R.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    The temperature of the polar lower stratosphere during spring is the key factor in changing the magnitude of ozone loss in the polar vortices. In this talk, we will review the results of Newman et al. [2000] that quantitatively demonstrate that the polar lower stratospheric temperature is primarily controlled by planetary-scale waves. In particular, the tropospheric eddy heat flux in middle to late winter (January--February) is highly correlated with the mean polar stratospheric temperature during March. Strong midwinter planetary wave forcing leads to a warmer spring Arctic lower stratosphere in early spring, while weak midwinter forcing leads to cooler spring Arctic temperatures. In addition, this planetary wave driving also has a strong impact on the strength of the polar vortex. These results from the Northern Hemisphere will be contrasted with the Southern Hemisphere.

  7. Sudden Death Following Exercise; a Case Series Study

    Fares Najari

    2016-04-01

    Full Text Available Introduction: Natural and unexpected death that happens within less than one hour of first symptom occurrence is called sudden death. Cardiovascular diseases are the main known reason of sudden death and more than 75% of sudden deaths in athletes are assigned to it. Here we reported the autopsy results of all cases with sudden death following exercise that were referred to forensic center of Tehran, Iran, from 2009 to 2014. Methods: In this cross sectional study all subjects who were registered to forensic medicine center of Tehran, Iran, from 2009 to 2014, as a case of sudden death following exercise were evaluated. Demographic data and medical history as well as autopsy and toxicology findings were retrospectively gathered using profiles of the deceased. Results were reported using descriptive analysis. Results: 14 cases were registered as sudden death following exercise in forensic medicine profiles during the study period. Exploring the files of the mentioned deceased, revealed five non-compatible cases in this regard. Finally, 9 eligible cases were enrolled (88.9% male. The mean age of the deceased was 28.66 ± 10.86 years (range: 7 – 40. Toxicological tests were available for 7 cases, one of which was positive for tramadol. Sudden death following football was reported most frequently (44.4%. Only 3 (33.3% cases had herald signs such as chest pain, syncope, or loss of consciousness. 1 case (11.11% had a positive history of sudden death in relatives. Conclusion: Although most sudden death victims are asymptomatic until the event, all those who suffer from symptoms such as chest pain, shortness of breath, dizziness, fatigue and irregular heart rate during physical activities, should be screened regarding common probable causes of sudden death.

  8. Hearing Recovey in Patients Suffering Sudden Deafness

    Parviz Eslami

    1992-04-01

    Full Text Available The study included 80 patients treated for sudden deafness over the last 5-7 years. Case history, laboratory findings, pure-tone audiogram and electronystagmography (ENG findings were noted. If any abnormalities had been recorded in ENG studies, the studies were redone. ORL status was redefined and audiograms were obtained in all patients. When becoming ill, the 80 patients had not differed from the normal population in common cardiovascular risk factors. None of them had had signs of viral infection (paired serum samples had been taken at 2-week intervals; routine examinations had been done for common viral antigens. As many as 31 of the 80 patients with acute hearing loss had had abnormalities such as spontaneous nystagmus (PN, hypoexcitability (HE and directional preponderance (DP in the bithermal caloric tests (+44 degrees C, + 30 degrees C of their ENG studies. Twenty of the 31 patients still had abnormal ENG studies after 5-7 years. Only 1 subject had positional nystagmus, and none had subjective vertigo. Patients with an abnormal ENG study showed a poor recovery of the speech reception threshold, whereas those with a normal ENG study showed slightly significant (p less than 0.05 recovery.

  9. Sulphur-rich volcanic eruptions and stratospheric aerosols

    Rampino, M. R.; Self, S.

    1984-01-01

    Data from direct measurements of stratospheric optical depth, Greenland ice-core acidity, and volcanological studies are compared, and it is shown that relatively small but sulfur-rich volcanic eruptions can have atmospheric effects equal to or even greater than much larger sulfur-poor eruptions. These small eruptions are probably the most frequent cause of increased stratospheric aerosols. The possible sources of the excess sulfur released in these eruptions are discussed.

  10. Possible effect of strong solar energetic particle events on polar stratospheric aerosol: a summary of observational results

    Mironova, I A; Usoskin, I G

    2014-01-01

    This letter presents a summary of a phenomenological study of the response of the polar stratosphere to strong solar energetic particle (SEP) events corresponding to ground level enhancements (GLEs) of cosmic rays. This work is focused on evaluation of the possible influence of the atmospheric ionization caused by SEPs upon formation of aerosol particles in the stratosphere over polar regions. Following case studies of two major SEP/GLE events, in January 2005 and September 1989, and their possible effects on polar stratospheric aerosols, we present here the results of an analysis of variations of the daily profiles of the stratospheric aerosol parameters (aerosol extinction for different wavelengths, as well as Ångstrom exponent) for both polar hemispheres during SEP/GLE events of July 2000, April 2001 and October 2003, which form already five clear cases corresponding to extreme and strong SEP/GLE events. The obtained results suggest that an enhancement of ionization rate by a factor of about two in the polar region with night/cold/winter conditions can lead to the formation/growing of aerosol particles in the altitude range of 10–25 km. We also present a summary of the investigated effects based on the phenomenological study of the atmospheric application of extreme SEP events. (paper)

  11. Global two-channel AVHRR aerosol climatology: effects of stratospheric aerosols and preliminary comparisons with MODIS and MISR retrievals

    Geogdzhayev, Igor V.; Mishchenko, Michael I.; Liu Li; Remer, Lorraine

    2004-01-01

    We present an update on the status of the global climatology of the aerosol column optical thickness and Angstrom exponent derived from channel-1 and -2 radiances of the Advanced Very High Resolution Radiometer (AVHRR) in the framework of the Global Aerosol Climatology Project (GACP). The latest version of the climatology covers the period from July 1983 to September 2001 and is based on an adjusted value of the diffuse component of the ocean reflectance as derived from extensive comparisons with ship sun-photometer data. We use the updated GACP climatology and Stratospheric Aerosol and Gas Experiment (SAGE) data to analyze how stratospheric aerosols from major volcanic eruptions can affect the GACP aerosol product. One possible retrieval strategy based on the AVHRR channel-1 and -2 data alone is to infer both the stratospheric and the tropospheric aerosol optical thickness while assuming fixed microphysical models for both aerosol components. The second approach is to use the SAGE stratospheric aerosol data in order to constrain the AVHRR retrieval algorithm. We demonstrate that the second approach yields a consistent long-term record of the tropospheric aerosol optical thickness and Angstrom exponent. Preliminary comparisons of the GACP aerosol product with MODerate resolution Imaging Spectrometer (MODIS) and Multiangle Imaging Spectro-Radiometer aerosol retrievals show reasonable agreement, the GACP global monthly optical thickness being lower than the MODIS one by approximately 0.03. Larger differences are observed on a regional scale. Comparisons of the GACP and MODIS Angstrom exponent records are less conclusive and require further analysis

  12. The influence of regional Arctic sea-ice decline on stratospheric and tropospheric circulation

    McKenna, Christine; Bracegirdle, Thomas; Shuckburgh, Emily; Haynes, Peter

    2016-04-01

    Arctic sea-ice extent has rapidly declined over the past few decades, and most climate models project a continuation of this trend during the 21st century in response to greenhouse gas forcing. A number of recent studies have shown that this sea-ice loss induces vertically propagating Rossby waves, which weaken the stratospheric polar vortex and increase the frequency of sudden stratospheric warmings (SSWs). SSWs have been shown to increase the probability of a negative NAO in the following weeks, thereby driving anomalous weather conditions over Europe and other mid-latitude regions. In contrast, other studies have shown that Arctic sea-ice loss strengthens the polar vortex, increasing the probability of a positive NAO. Sun et al. (2015) suggest these conflicting results may be due to the region of sea-ice loss considered. They find that if only regions within the Arctic Circle are considered in sea-ice projections, the polar vortex weakens; if only regions outwith the Arctic Circle are considered, the polar vortex strengthens. This is because the anomalous Rossby waves forced in the former/latter scenario constructively/destructively interfere with climatological Rossby waves, thus enhancing/suppressing upward wave propagation. In this study, we investigate whether Sun et al.'s results are robust to a different model. We also divide the regions of sea-ice loss they considered into further sub-regions, in order to examine the regional differences in more detail. We do this by using the intermediate complexity climate model, IGCM4, which has a well resolved stratosphere and does a good job of representing stratospheric processes. Several simulations are run in atmosphere only mode, where one is a control experiment and the others are perturbation experiments. In the control run annually repeating historical mean surface conditions are imposed at the lower boundary, whereas in each perturbation run the model is forced by SST perturbations imposed in a specific

  13. Long-term evolution of upper stratospheric ozone at selected stations of the Network for the Detection of Stratospheric Change (NDSC)

    Steinbrecht, W; Claude, H; Schönenborn, F; McDermid, I S; Leblanc, T; Godin, S; Song, T; Swart, D P J; Meijer, Y J; Bodeker, G E; Connor, B J; Kämpfer, N; Hocke, K; Calisesi, Y; Schneider, N; Noë, J de la; Parrish, A D; Boyd, I S; Brühl, C; Steil, B; Giorgetta, M A; Manzini, E; Thomason, L W; Zawodny, J M; McCormick, M P; Russell, J M; Bhartia, P K; Stolarski, R S; Hollandsworth-Frith, S M

    2006-01-01

    The long-term evolution of upper stratospheric ozone has been recorded by lidars and microwave radiometers within the ground-based Network for the Detection of Stratospheric Change (NDSC), and by the space-borne Solar Backscatter Ultra-Violet instruments (SBUV), Stratospheric Aerosol and Gas

  14. Emergency medical support for a manned stratospheric balloon test program.

    Blue, Rebecca S; Norton, Sean C; Law, Jennifer; Pattarini, James M; Antonsen, Erik L; Garbino, Alejandro; Clark, Jonathan B; Turney, Matthew W

    2014-10-01

    Red Bull Stratos was a commercial program that brought a test parachutist, protected by a full-pressure suit, in a stratospheric balloon with pressurized capsule to over 127,582 ft (38,969 m), from which he free fell and subsequently parachuted to the ground. Given that the major risks to the parachutist included ebullism, negative Gz (toe-to-head) acceleration exposure from an uncontrolled flat spin, and trauma, a comprehensive plan was developed to recover the parachutist under nominal conditions and to respond to any medical contingencies that might have arisen. In this report, the project medical team describes the experience of providing emergency medical support and crew recovery for the manned balloon flights of the program. The phases of flight, associated risks, and available resources were systematically evaluated. Six distinct phases of flight from an Emergency Medical Services (EMS) standpoint were identified. A Medical Support Plan was developed to address the risks associated with each phase, encompassing personnel, equipment, procedures, and communications. Despite geographical, communications, and resource limitations, the medical team was able to implement the Medical Support Plan, enabling multiple successful manned balloon flights to 71,615 ft (21,828 m), 97,221 ft (29,610 m), and 127,582 ft (38,969 m). The experience allowed refinement of the EMS and crew recovery procedures for each successive flight and could be applied to other high altitude or commercial space ventures.

  15. Indirect Climatic Effects of Major Volcanic Eruptions

    Hofmann, D. J.

    2007-05-01

    The direct effects on climate, related to atmospheric emissions to the atmosphere following major volcanic eruptions, are well-known although the sparseness of such eruptions make detailed study on the range of such variations difficult. In general terms, infrared absorption by volcanic emissions to the stratosphere result in local heating early in the event when gaseous sulfur compounds exist. This early period is followed by gas to particle conversion, on a time scale of 1-2 months, promoting the formation of sulfuric acid-water droplets. Coagulation and droplet growth result in the "volcanic stratospheric aerosol layer" which is related to the predominant direct climatic effect of large eruptions, the cooling of the troposphere by backscattering of solar visible radiation to space with a recovery time scale of 1-2 years. In this paper we will discuss some of the less-known "indirect" effects of the volcanic stratospheric aerosol on climate. We label them indirect as they act on climate through intermediary atmospheric constituents. The intermediaries in the volcanic indirect climatic effect are generally atmospheric greenhouse gases or other atmospheric gases and conditions which affect greenhouse gases. For example, cooling of the troposphere following major eruptions reduces the growth rate of atmospheric carbon dioxide related to respiration by the terrestrial biosphere. In addition, redirection of part of the direct solar beam into diffuse radiation by the volcanic stratospheric aerosol stimulates plant photosynthesis, further reducing the carbon dioxide growth rate. The growth rate of the second-most important atmospheric greenhouse gas, methane, is also affected by volcanic emissions. Volcanic stratospheric aerosol particles provide surface area which catalyzes heterogeneous chemical reactions thus stimulating removal of stratospheric ozone, also a greenhouse gas. Although major droughts usually related to ENSO events have opposite effects on carbon

  16. Transport of Ice into the Stratosphere and the Humidification of the Stratosphere over the 21st Century

    Dessler, A. E.; Ye, H.; Wang, T.; Schoeberl, M. R.; Oman, L. D.; Douglass, A. R.; Butler, A. H.; Rosenlof, K. H.; Davis, S. M.; Portmann, R. W.

    2016-01-01

    Climate models predict that tropical lower-stratospheric humidity will increase as the climate warms. We examine this trend in two state-of-the-art chemistry-climate models. Under high greenhouse gas emissions scenarios, the stratospheric entry value of water vapor increases by approx. 1 part per million by volume (ppmv) over this century in both models. We show with trajectory runs driven by model meteorological fields that the warming tropical tropopause layer (TTL) explains 50-80% of this increase. The remainder is a consequence of trends in evaporation of ice convectively lofted into the TTL and lower stratosphere. Our results further show that, within the models we examined, ice lofting is primarily important on long time scales - on interannual time scales, TTL temperature variations explain most of the variations in lower stratospheric humidity. Assessing the ability of models to realistically represent ice-lofting processes should be a high priority in the modeling community.

  17. Synchronous volcanic eruptions and abrupt climate change ∼17.7 ka plausibly linked by stratospheric ozone depletion.

    McConnell, Joseph R; Burke, Andrea; Dunbar, Nelia W; Köhler, Peter; Thomas, Jennie L; Arienzo, Monica M; Chellman, Nathan J; Maselli, Olivia J; Sigl, Michael; Adkins, Jess F; Baggenstos, Daniel; Burkhart, John F; Brook, Edward J; Buizert, Christo; Cole-Dai, Jihong; Fudge, T J; Knorr, Gregor; Graf, Hans-F; Grieman, Mackenzie M; Iverson, Nels; McGwire, Kenneth C; Mulvaney, Robert; Paris, Guillaume; Rhodes, Rachael H; Saltzman, Eric S; Severinghaus, Jeffrey P; Steffensen, Jørgen Peder; Taylor, Kendrick C; Winckler, Gisela

    2017-09-19

    Glacial-state greenhouse gas concentrations and Southern Hemisphere climate conditions persisted until ∼17.7 ka, when a nearly synchronous acceleration in deglaciation was recorded in paleoclimate proxies in large parts of the Southern Hemisphere, with many changes ascribed to a sudden poleward shift in the Southern Hemisphere westerlies and subsequent climate impacts. We used high-resolution chemical measurements in the West Antarctic Ice Sheet Divide, Byrd, and other ice cores to document a unique, ∼192-y series of halogen-rich volcanic eruptions exactly at the start of accelerated deglaciation, with tephra identifying the nearby Mount Takahe volcano as the source. Extensive fallout from these massive eruptions has been found >2,800 km from Mount Takahe. Sulfur isotope anomalies and marked decreases in ice core bromine consistent with increased surface UV radiation indicate that the eruptions led to stratospheric ozone depletion. Rather than a highly improbable coincidence, circulation and climate changes extending from the Antarctic Peninsula to the subtropics-similar to those associated with modern stratospheric ozone depletion over Antarctica-plausibly link the Mount Takahe eruptions to the onset of accelerated Southern Hemisphere deglaciation ∼17.7 ka.

  18. Effects of Greenhouse Gas Increase and Stratospheric Ozone Depletion on Stratospheric Mean Age of Air in 1960-2010

    Li, Feng; Newman, Paul; Pawson, Steven; Perlwitz, Judith

    2018-01-01

    The relative impacts of greenhouse gas (GHG) increase and stratospheric ozone depletion on stratospheric mean age of air in the 1960-2010 period are quantified using the Goddard Earth Observing System Chemistry-�Climate Model. The experiment compares controlled simulations using a coupled atmosphere-�ocean version of the Goddard Earth Observing System Chemistry-�Climate Model, in which either GHGs or ozone depleting substances, or both factors evolve over time. The model results show that GHGs and ozone-depleting substances have about equal contributions to the simulated mean age decrease, but GHG increases account for about two thirds of the enhanced strength of the lower stratospheric residual circulation. It is also found that both the acceleration of the diabatic circulation and the decrease of the mean age difference between downwelling and upwelling regions are mainly caused by GHG forcing. The results show that ozone depletion causes an increase in the mean age of air in the Antarctic summer lower stratosphere through two processes: (1) a seasonal delay in the Antarctic polar vortex breakup that inhibits young midlatitude air from mixing with the older air inside the vortex, and (2) enhanced Antarctic downwelling that brings older air from middle and upper stratosphere into the lower stratosphere.

  19. Alcohol, cardiac arrhythmias and sudden death.

    Kupari, M; Koskinen, P

    1998-01-01

    Studies in experimental animals have shown varying and apparently opposite effects of alcohol on cardiac rhythm and conduction. Given acutely to non-alcoholic animals, ethanol may even have anti-arrhythmic properties whereas chronic administration clearly increases the animals' susceptibility to cardiac arrhythmias. Chronic heavy alcohol use has been incriminated in the genesis of cardiac arrhythmias in humans. The evidence has come from clinical observations, retrospective case-control studies, controlled studies of consecutive admissions for arrhythmias, and prospective epidemiological investigations. Furthermore, electrophysiological studies have shown that acute alcohol administration facilitates the induction of tachyarrhythmias in selected heavy drinkers. The role of alcohol appears particularly conspicuous in idiopathic atrial fibrillation. Occasionally, ventricular tachyarrhythmias have also been provoked by alcohol intake. Several lines of evidence suggest that heavy drinking increases the risk of sudden cardiac death with fatal arrhythmia as the most likely mechanism. According to epidemiological studies this effect appears most prominent in middle-aged men and is only partly explained by confounding traits such as smoking and social class. The basic arrhythmogenic effects of alcohol are still insufficiently delineated. Subclinical heart muscle injury from chronic heavy use may be instrumental in producing patchy delays in conduction. The hyperadrenergic state of drinking and withdrawal may also contribute, as may electrolyte abnormalities, impaired vagal heart rate control, repolarization abnormalities with prolonged QT intervals and worsening of myocardial ischaemia or sleep apnoea. Most of what we know about alcohol and arrhythmias relates to heavy drinking. The effect of social drinking on clinical arrhythmias in non-alcoholic cardiac patients needs to be addressed further.

  20. A cause of Sudden Cardiac Deaths on Autopsy Findings; a Four-Year Report.

    Rao, Dinesh; Sood, Divya; Pathak, P; Dongre, Sudhir D

    2014-01-01

    Incidence of sudden cardiac death (SCD) has been steadily increasing all over the world. While knowing the cause of SCD is one of the favorites of the physicians involved with these cases, it is very difficult and challenging task for the forensic physician. The present report is a prospective study regarding cause of SCDs on autopsy examination in four-year period, Bangalore, India. The present prospective study is based on autopsy observations, carried out for four-year period from 2008 to 2011, and analyzed for cause of SCDs. The cases were chosen as per the definition of sudden death and autopsied. The material was divided into natural and unnatural groups. Finally, on histopathology, gross examination, hospital details, circumstantial, and police reports the cause of death was inferred. A total of 2449 autopsy was conducted of which 204 cases were due to SCD. The highest SCDs were reported in 50-60 years age group (62.24%; n-127), followed closely by the age group 60-69 (28.43%; n-58). Male to female ratio was around 10:1. The maximum number of deaths (n=78) was within few hours (6 hours) after the onset of signs and symptoms. In 24 (11.8%) cases major narrowing was noted in both the main coronaries, in 87 (42.6%) cases in the left anterior descending coronary artery (LAD), and in 18 (51.5%) cases in the right coronary artery (RCA). The major cardiac pathology resulting in sudden death was coronary artery disease (n-116; 56.86%) and myocardial infarction (n-104; 50.9%). most of the SCDs occurred in the place of residence (n-80; 39.2%) followed closely by death in hospital (n-49; 24.01%). Coronary occlusion was the major contributory cause of sudden death with cardiac origin and the highest number of deaths were reported in the age 50-59 years with male to female ratio of 10:1.

  1. Social phobia with sudden onset--post-panic social phobia?

    Kristensen, Ann Suhl; Mortensen, Erik Lykke; Mors, Ole

    2008-01-01

    Overlap between social phobia (SP) and panic disorder (PD) has been observed in epidemiological, family, and challenge studies. One possible explanation is that some cases of SP develop as a consequence of a panic attack in a social situation. By definition, these cases of SP have sudden onset...... recruited as part of an etiological study. Patients with SP with sudden onset did, as hypothesized, differ from patients with SP without sudden onset with regard to age of onset and extraversion, but not with regard to symptoms. They did not differ markedly from patients with comorbid SP and PD. The concept...

  2. Observations of the loss of stratospheric NO2 following volcanic eruptions

    Coffey, M. T.; Mankin, William G.

    1993-01-01

    Observations of stratospheric column amounts of nitrogen dioxide (NO2), nitric oxide (NO) and nitric acid (HNO3) have been made following major eruptions of the El Chichon and Mt. Pintatubo volcanoes. Midlatitude abundances of NO2 and NO were reduced by as much as 70% in the months following the appearance of the volcanic aerosols as compared to volcanically quite periods. There are heterogeneous reactions which could occur on the volcanic aerosols to convert NO2 into HNO3 but no commensurate increase in HNO3 column amounts was observed at the times of NO2 decrease.

  3. Phrenic nerves and diaphragms in sudden infant death syndrome.

    Weis, J; Weber, U; Schröder, J M; Lemke, R; Althoff, H

    1998-01-30

    Disturbances of the respiratory system may be an important factor in the cascade of events leading to sudden infant death syndrome (SIDS). Even though the diaphragm is the major respiratory muscle in infants, little is known about alterations of this muscle and of the phrenic nerve in SIDS. In the present study, diaphragms and phrenic nerves of 24 SIDS infants and seven controls were analyzed. Morphometric analysis revealed only slightly larger cross sectional areas of phrenic nerve axons but no increase in myelin sheath thickness in SIDS cases. However, in one SIDS case, myelinated nerve fibre density was severely reduced. Using electron microscopy, several nerve fibres of SIDS infants showed focal accumulations of neurofilaments. Muscle fibre diameters in SIDS diaphragms were significantly larger compared to controls (P fibre ruptures and contracture bands were found. These prominent nonspecific ultrastructural alterations should advise caution in the interpretation of morphometric data. Thus, in some cases exemplified by one case of the present series, decreased density of phrenic nerve myelinated axons might contribute to SIDS. Still, the present results indicate that development of phrenic nerves and diaphragms is not delayed in most SIDS infants.

  4. The impact of volcanic aerosol on the Northern Hemisphere stratospheric polar vortex: mechanisms and sensitivity to forcing structure

    Toohey, M.; Krüger, K.; Bittner, M.; Timmreck, C.; Schmidt, H.

    2014-12-01

    Observations and simple theoretical arguments suggest that the Northern Hemisphere (NH) stratospheric polar vortex is stronger in winters following major volcanic eruptions. However, recent studies show that climate models forced by prescribed volcanic aerosol fields fail to reproduce this effect. We investigate the impact of volcanic aerosol forcing on stratospheric dynamics, including the strength of the NH polar vortex, in ensemble simulations with the Max Planck Institute Earth System Model. The model is forced by four different prescribed forcing sets representing the radiative properties of stratospheric aerosol following the 1991 eruption of Mt. Pinatubo: two forcing sets are based on observations, and are commonly used in climate model simulations, and two forcing sets are constructed based on coupled aerosol-climate model simulations. For all forcings, we find that simulated temperature and zonal wind anomalies in the NH high latitudes are not directly impacted by anomalous volcanic aerosol heating. Instead, high-latitude effects result from enhancements in stratospheric residual circulation, which in turn result, at least in part, from enhanced stratospheric wave activity. High-latitude effects are therefore much less robust than would be expected if they were the direct result of aerosol heating. Both observation-based forcing sets result in insignificant changes in vortex strength. For the model-based forcing sets, the vortex response is found to be sensitive to the structure of the forcing, with one forcing set leading to significant strengthening of the polar vortex in rough agreement with observation-based expectations. Differences in the dynamical response to the forcing sets imply that reproducing the polar vortex responses to past eruptions, or predicting the response to future eruptions, depends on accurate representation of the space-time structure of the volcanic aerosol forcing.

  5. Microcharacterization of interplanetary dust collected in the earth's stratosphere

    Fraundorf, P.B.

    1980-01-01

    This thesis involved an examination of the internal structure of thirteen 10 μm aggregates using selected techniques from the field now known as analytical electron microscopy. The aggregates were collected in the earth's stratosphere at 20 km altitude by impactors mounted on NASA U-2 aircraft. Eleven of them exhibited relative major element abundances similar to those found in chondritic meteorities. For this and other reasons, these eleven particles are believed to represent relatively-unaltered interplanetary dust. Interplanetary dust is thought to be of cometary origin, and comets in turn provide the most promising reservoir for unaltered samples of materials present during the collapse of the solar nebula. This thesis shows that the chondritic aggregates probably contain important information on a wide range of processes in the early solar system. In the course of this study, significant developments were necessary in the techniques of analysis for: (i) selected area electron diffraction (SAED) data; (ii) energy dispersive x-ray spectra; and (iii) spatial heterogeneity in geological materials. These developments include a method for analysing single crystal SAED patterns using spherical geometry. The method makes possible much more efficient use of diffraction data taken with a goniometer specimen stage. It allows major portions of the analysis to be done by a microprocessor, and it has potential for a wide range of on-line applications. Also, a comprehensive approach to the study of point-to-point heterogeneity in geological materials was developed. Some statistical, comparative, petrographic, and physical applications are described in the thesis

  6. To Explore the Effect of Sub Consciousness on Sudden Moments of Inspiration (SMI) in the Sketching Process of Industrial Design

    Wu, Qun; Wang, Yecheng

    2015-01-01

    The purpose of this study is to identify the occurrence of Sudden Moments of Inspiration (SMI) in the sketching process of industrial design through experiments to explain the effect of sub consciousness on SMI. There are a pre-experiment and a formal experiment. In the formal experiment, nine undergraduates majoring in industrial design with same…

  7. Idiopathic infantile arterial calcification: a rare cause of sudden unexpected death in childhood.

    Guimarães, Susana; Lopes, José Manuel; Oliveira, José Bessa; Santos, Agostinho

    2010-07-27

    Unexpected child death investigation is a difficult area of forensic practice in view of the wide range of possible genetic, congenital, and acquired natural and nonnatural causes. Idiopathic infantile arterial calcification (IIAC) is a rare autosomic recessive disease usually diagnosed postmortem. Inactivating mutations of the ENPP1 gene were described in 80% of the cases with IIAC. We report a case of a 5-year-old girl submitted to a forensic autopsy due to sudden death and possible medical negligence/parents child abuse. Major alterations found (intimal proliferation and deposition of calcium hydroxyapatite around the internal elastic lamina and media of arteries; acute myocardial infarct, stenotic and calcified coronary artery; perivascular and interstitial myocardial fibrosis; and subendocardial fibroelastosis) were diagnostic of IIAC. We reviewed IIAC cases published in the English literature and highlight the importance of adequate autopsy evaluation in cases of sudden child death.

  8. The epidemiology of sudden oak death in Oregon forests

    Ebba K. Peterson

    2011-01-01

    The phytopathogen Phytophthora ramorum (Werres, DeCock & Man in't Veld), causal agent of Sudden Oak Death (SOD) of oaks (Quercus spp.) and tanoaks (Notholithocarpus densiflorus syn. Lithocarpus densiflorus...

  9. Immunization safety review: vaccinations and sudden unexpected death in infancy

    Institute of Medicine (U.S.). Immunization Safety Review Committee; Stratton, Kathleen R

    2003-01-01

    ...), and neonatal death (infant death, whether sudden or not, during the first 4 weeks of life). Based on this review, the committee concluded that the evidence favors rejection of a causal relationship between some vaccines and SIDS...

  10. Preliminary assessment of possible aerosol contamination effects on SAGE ozone trends in the lower stratosphere

    Cunnold, Derek M.; Veiga, Robert E.

    1991-01-01

    An investigation of the validity of long-term ozone trends in the lower stratosphere derived from SAGE I and II measurements is described. At altitudes below approximately 20 km, it is important to separate the ozone and aerosol contributions to SAGE extinction at 600 nm. The correlation between SAGE II measurements of ozone and aerosols indicates that most of the variability in these parameters is associated with physically induced variations resulting from quasi-horizontal motions of air parcels. The SAGE ozone measurements are however found to be as much as 20 percent larger than coincident ozonesonde measurements between 15 and 20 km altitude. A sudden change in the difference at approximately 14.5 km altitude for which there is a change in the SAGE aerosol retrieval procedure suggests that SAGE ozone trends below 20 km altitude may be more sensitive to aerosol variations. Between 20 and 25 km altitude, however, both SAGE and the ozonesondes indicate a reduction in ozone of approximately 0.5 percent/year over the period 1979 to 1989 at midlatitudes of the Northern Hemisphere.

  11. Forcing of stratospheric chemistry and dynamics during the Dalton Minimum

    Anet, J. G.; Muthers, S.; Rozanov, E.; Raible, C. C.; Peter, T.; Stenke, A.; Shapiro, A. I.; Beer, J.; Steinhilber, F.; Brönnimann, S.; Arfeuille, F.; Brugnara, Y.; Schmutz, W.

    2013-11-01

    The response of atmospheric chemistry and dynamics to volcanic eruptions and to a decrease in solar activity during the Dalton Minimum is investigated with the fully coupled atmosphere-ocean chemistry general circulation model SOCOL-MPIOM (modeling tools for studies of SOlar Climate Ozone Links-Max Planck Institute Ocean Model) covering the time period 1780 to 1840 AD. We carried out several sensitivity ensemble experiments to separate the effects of (i) reduced solar ultra-violet (UV) irradiance, (ii) reduced solar visible and near infrared irradiance, (iii) enhanced galactic cosmic ray intensity as well as less intensive solar energetic proton events and auroral electron precipitation, and (iv) volcanic aerosols. The introduced changes of UV irradiance and volcanic aerosols significantly influence stratospheric dynamics in the early 19th century, whereas changes in the visible part of the spectrum and energetic particles have smaller effects. A reduction of UV irradiance by 15%, which represents the presently discussed highest estimate of UV irradiance change caused by solar activity changes, causes global ozone decrease below the stratopause reaching as much as 8% in the midlatitudes at 5 hPa and a significant stratospheric cooling of up to 2 °C in the mid-stratosphere and to 6 °C in the lower mesosphere. Changes in energetic particle precipitation lead only to minor changes in the yearly averaged temperature fields in the stratosphere. Volcanic aerosols heat the tropical lower stratosphere, allowing more water vapour to enter the tropical stratosphere, which, via HOx reactions, decreases upper stratospheric and mesospheric ozone by roughly 4%. Conversely, heterogeneous chemistry on aerosols reduces stratospheric NOx, leading to a 12% ozone increase in the tropics, whereas a decrease in ozone of up to 5% is found over Antarctica in boreal winter. The linear superposition of the different contributions is not equivalent to the response obtained in a simulation

  12. Towards constraining the stratosphere-troposphere exchange of radiocarbon: strategies of stratospheric 14CO2 measurements using AirCore

    Chen, Huilin; Paul, Dipayan; Meijer, Harro; Miller, John; Kivi, Rigel; Krol, Maarten

    2016-04-01

    Radiocarbon (14C) plays an important role in the carbon cycle studies to understand both natural and anthropogenic carbon fluxes, but also in atmospheric chemistry to constrain hydroxyl radical (OH) concentrations in the atmosphere. Apart from the enormous 14C emissions from nuclear bomb testing in the 1950s and 1960s, radiocarbon is primarily produced in the stratosphere due to the cosmogenic production. To this end, better understanding the stratospheric radiocarbon source is very useful to advance the use of radiocarbon for these applications. However, stratospheric 14C observations have been very limited so that there are large uncertainties on the magnitude and the location of the 14C production as well as the transport of radiocarbon from the stratosphere to the troposphere. Recently we have successfully made stratospheric 14C measurements using AirCore samples from Sodankylä, Northern Finland. AirCore is an innovative atmospheric sampling system, which passively collects atmospheric air samples into a long piece of coiled stainless steel tubing during the descent of a balloon flight. Due to the relatively low cost of the consumables, there is a potential to make such AirCore profiling in other parts of the world on a regular basis. In this study, we simulate the 14C in the atmosphere and assess the stratosphere-troposphere exchange of radiocarbon using the TM5 model. The Sodankylä radiocarbon measurements will be used to verify the performance of the model at high latitude. Besides this, we will also evaluate the influence of different cosmogenic 14C production scenarios and the uncertainties in the OH field on the seasonal cycles of radiocarbon and on the stratosphere-troposphere exchange, and based on the results design a strategy to set up a 14C measurement program using AirCore.

  13. Declining risk of sudden death in heart failure

    Shen, Li; Jhund, Pardeep S.; Petrie, Mark C.

    2017-01-01

    BACKGROUND The risk of sudden death has changed over time among patients with symptomatic heart failure and reduced ejection fraction with the sequential introduction of medications including angiotensin-converting-enzyme inhibitors, angiotensin-receptor blockers, beta-blockers, and mineralocorti......BACKGROUND The risk of sudden death has changed over time among patients with symptomatic heart failure and reduced ejection fraction with the sequential introduction of medications including angiotensin-converting-enzyme inhibitors, angiotensin-receptor blockers, beta...... cardioverter-defibrillator at the time of trial enrollment were excluded. Weighted multivariable regression was used to examine trends in rates of sudden death over time. Adjusted hazard ratios for sudden death in each trial group were calculated with the use of Cox regression models. The cumulative incidence...... rates of sudden death were assessed at different time points after randomization and according to the length of time between the diagnosis of heart failure and randomization. RESULTS Sudden death was reported in 3583 patients. Such patients were older and were more often male, with an ischemic cause...

  14. Tiny Ultraviolet Polarimeter for Earth Stratosphere from Space Investigation

    Nevodovskyi, P. V.; Morozhenko, O. V.; Vidmachenko, A. P.; Ivakhiv, O.; Geraimchuk, M.; Zbrutskyi, O.

    2015-09-01

    One of the reasons for climate change (i.e., stratospheric ozone concentrations) is connected with the variations in optical thickness of aerosols in the upper sphere of the atmosphere (at altitudes over 30 km). Therefore, aerosol and gas components of the atmosphere are crucial in the study of the ultraviolet (UV) radiation passing upon the Earth. Moreover, a scrupulous study of aerosol components of the Earth atmosphere at an altitude of 30 km (i.e., stratospheric aerosol), such as the size of particles, the real part of refractive index, optical thickness and its horizontal structure, concentration of ozone or the upper border of the stratospheric ozone layer is an important task in the research of the Earth climate change. At present, the Main Astronomical Observatory of the National Academy of Sciences (NAS) of Ukraine, the National Technical University of Ukraine "KPI"and the Lviv Polytechnic National University are engaged in the development of methodologies for the study of stratospheric aerosol by means of ultraviolet polarimeter using a microsatellite. So fare, there has been created a sample of a tiny ultraviolet polarimeter (UVP) which is considered to be a basic model for carrying out space experiments regarding the impact of the changes in stratospheric aerosols on both global and local climate.

  15. Impact of lower stratospheric ozone on seasonal prediction systems

    Kelebogile Mathole

    2014-03-01

    Full Text Available We conducted a comparison of trends in lower stratospheric temperatures and summer zonal wind fields based on 27 years of reanalysis data and output from hindcast simulations using a coupled ocean-atmospheric general circulation model (OAGCM. Lower stratospheric ozone in the OAGCM was relaxed to the observed climatology and increasing greenhouse gas concentrations were neglected. In the reanalysis, lower stratospheric ozone fields were better represented than in the OAGCM. The spring lower stratospheric/ upper tropospheric cooling in the polar cap observed in the reanalysis, which is caused by a direct ozone depletion in the past two decades and is in agreement with previous studies, did not appear in the OAGCM. The corresponding summer tropospheric response also differed between data sets. In the reanalysis, a statistically significant poleward trend of the summer jet position was found, whereas no such trend was found in the OAGCM. Furthermore, the jet position in the reanalysis exhibited larger interannual variability than that in the OAGCM. We conclude that these differences are caused by the absence of long-term lower stratospheric ozone changes in the OAGCM. Improper representation or non-inclusion of such ozone variability in a prediction model could adversely affect the accuracy of the predictability of summer rainfall forecasts over South Africa.

  16. Stratospheric ozone: History and concepts and interactions with climate

    Bekki S.

    2009-02-01

    Full Text Available Although in relatively low concentration of a few molecules per million of e e air molecules, atmospheric ozone (trioxygen O3 is essential to sustaining life on the surface of the Earth. Indeed, by absorbing solar radiation between 240 and 320 nm, it shields living organisms including humans from the very harmful ultraviolet radiation UV-B. About 90% of the ozone resides in the stratosphere, a region that extends from the tropopause, whose altitude ranges from 7 km at the poles to 17 km in the tropics, to the stratopause located at about 50 km altitude. Stratospheric ozone is communally referred as the « ozone layer ». Unlike the atmosphere surrounding it, the stratosphere is vertically stratified and stable because the temperature increases with height within it. This particularity originates from heating produced by the absorption of UV radiation by stratospheric ozone. The present chapter describes the main mechanisms that govern the natural balance of ozone in the stratosphere, and its disruption under the influence of human activities.

  17. Stratospheric Water and OzOne Satellite Homogenized (SWOOSH) data set

    National Oceanic and Atmospheric Administration, Department of Commerce — The Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) data set is a merged record of stratospheric ozone and water vapor measurements taken by a number of...

  18. SWIFT: Semi-empirical and numerically efficient stratospheric ozone chemistry for global climate models

    Kreyling, Daniel; Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2015-01-01

    The SWIFT model is a fast yet accurate chemistry scheme for calculating the chemistry of stratospheric ozone. It is mainly intended for use in Global Climate Models (GCMs), Chemistry Climate Models (CCMs) and Earth System Models (ESMs). For computing time reasons these models often do not employ full stratospheric chem- istry modules, but use prescribed ozone instead. This can lead to insufficient representation between stratosphere and troposphere. The SWIFT stratospheric ozone chem...

  19. Major depression

    Depression - major; Depression - clinical; Clinical depression; Unipolar depression; Major depressive disorder ... providers do not know the exact causes of depression. It is believed that chemical changes in the ...

  20. International Workshop on Stratospheric Aerosols: Measurements, Properties, and Effects

    Pueschel, Rudolf F. (Editor)

    1991-01-01

    Following a mandate by the International Aerosol Climatology Program under the auspices of International Association of Meteorology and Atmospheric Physics International Radiation Commission, 45 scientists from five nations convened to discuss relevant issues associated with the measurement, properties, and effects of stratospheric aerosols. A summary is presented of the discussions on formation and evolution, transport and fate, effects on climate, role in heterogeneous chemistry, and validation of lidar and satellite remote sensing of stratospheric aerosols. Measurements are recommended of the natural (background) and the volcanically enhanced aerosol (sulfuric acid and silica particles), the exhaust of shuttle, civil aviation and supersonic aircraft operations (alumina, soot, and ice particles), and polar stratospheric clouds (ice, condensed nitric and hydrochloric acids).

  1. Effects of stratospheric perturbations on the solar radiation budget

    Luther, F.M.

    1978-04-01

    The changes in solar absorption and in local heating rates due to perturbations to O 3 and NO 2 concentrations caused by stratospheric injection of NO/sub x/ and CFM pollutants are assessed. The changes in species concentration profiles are derived from theoretical calculations using a transport-kinetics model. Because of significant changes in our understanding of stratospheric chemistry during the past year, the assessment of the effect of stratospheric perturbations on the solar radiation budget differs from previous assessments. Previously, a reduction in O 3 due to an NO/sub x/ injection caused a net decrease in the gaseous solar absorption;now the same perturbation leads to a net increase. The implication of these changes on the surface temperature is also discussed

  2. Tibetan Plateau glacier and hydrological change under stratospheric aerosol injection

    Ji, D.

    2017-12-01

    As an important inland freshwater resource, mountain glaciers are highly related to human life, they provide water for many large rivers and play a very important role in regional water cycles. The response of mountain glaciers to future climate change is a topic of concern especially to the many people who rely on glacier-fed rivers for purposes such as irrigation. Geoengineering by stratospheric aerosol injection is a method of offsetting the global temperature rise from greenhouse gases. How the geoengineering by stratospheric aerosol injection affects the mass balance of mountain glaciers and adjacent river discharge is little understood. In this study, we use regional climate model WRF and catchment-based river model CaMa-Flood to study the impacts of stratospheric aerosol injection to Tibetan Plateau glacier mass balance and adjacent river discharge. To facilitate mountain glacier mass balance study, we improve the description of mountain glacier in the land surface scheme of WRF. The improvements include: (1) a fine mesh nested in WRF horizontal grid to match the highly non-uniform spatial distribution of the mountain glaciers, (2) revising the radiation flux at the glacier surface considering the surrounding terrain. We use the projections of five Earth system models for CMIP5 rcp45 and GeoMIP G4 scenarios to drive the WRF and CaMa-Flood models. The G4 scenario, which uses stratospheric aerosols to reduce the incoming shortwave while applying the rcp4.5 greenhouse gas forcing, starts stratospheric sulfate aerosol injection at a rate of 5 Tg per year over the period 2020-2069. The ensemble projections suggest relatively slower glacier mass loss rates and reduced river discharge at Tibetan Plateau and adjacent regions under geoengineering scenario by stratospheric aerosol injection.

  3. Variability of Irreversible Poleward Transport in the Lower Stratosphere

    Olsen, Mark; Douglass, Anne; Newman, Paul; Nash, Eric; Witte, Jacquelyn; Ziemke, Jerry

    2011-01-01

    The ascent and descent of the Brewer-Dobson circulation plays a large role in determining the distributions of many constituents in the extratropical lower stratosphere. However, relatively fast, quasi-horizontal transport out of the tropics and polar regions also significantly contribute to determining these distributions. The tropical tape recorder signal assures that there must be outflow from the tropics into the extratropical lower stratosphere. The phase of the quasi-biennial oscillation (QBO) and state of the polar vortex are known to modulate the transport from the tropical and polar regions, respectively. In this study we examine multiple years of ozone distributions in the extratropical lower stratosphere observed by the Aura Microwave Limb Sounder (MLS) and the Aura High Resolution Dynamic Limb Sounder (HIRDLS). The distributions are compared with analyses of irreversible, meridional isentropic transport. We show that there is considerable year-to-year seasonal variability in the amount of irreversible transport from the tropics, which is related to both the phase of the QBO and the state of the polar vortex. The reversibility of the transport is consistent with the number of observed breaking waves. The variability of the atmospheric index of refraction in the lower stratosphere is shown to be significantly correlated with the wave breaking and amount of irreversible transport. Finally, we will show that the seasonal extratropical stratosphere to troposphere transport of ozone can be substantially modulated by the amount of irreversible meridional transport in the lower stratosphere and we investigate how observable these differences are in data of tropospheric ozone.

  4. Impact and mitigation of stratospheric ozone depletion by chemical rockets

    Mcdonald, A.J.

    1992-03-01

    The American Institute of Aeronautics and Astronautics (AIAA) conducted a workshop in conjunction with the 1991 AIAA Joint Propulsion Conference in Sacramento, California, to assess the impact of chemical rocket propulsion on the environment. The workshop included recognized experts from the fields of atmospheric physics and chemistry, solid rocket propulsion, liquid rocket propulsion, government, and environmental agencies, and representatives from several responsible environmental organizations. The conclusion from this workshop relative to stratospheric ozone depletion was that neither solid nor liquid rocket launchers have a significant impact on stratospheric ozone depletion, and that there is no real significant difference between the two

  5. Measurement from sun-synchronous orbit of a reaction rate controlling the diurnal NOx cycle in the stratosphere

    A. Dudhia

    2011-05-01

    Full Text Available A reaction rate associated with the nighttime formation of an important diurnally varying species, N2O5, is determined from MIPAS-ENVISAT. During the day, photolysis of N2O5 in the stratosphere contributes to nitrogen-catalysed ozone destruction. However, at night concentrations of N2O5 increase, temporarily sequestering reactive NOx NO and NO2 in a natural cycle which regulates the majority of stratospheric ozone. In this paper, the reaction rate controlling the formation of N2O5 is determined from this instrument for the first time. The observed reaction rate is compared to the currently accepted rate determined from laboratory measurements. Good agreement is obtained between the observed and accepted experimental reaction rates within the error bars.

  6. Vertical and interhemispheric links in the stratosphere-mesosphere as revealed by the day-to-day variability of Aura-MLS temperature data

    X. Xu

    2009-09-01

    Full Text Available The coupling processes in the middle atmosphere have been a subject of intense research activity because of their effects on atmospheric circulation, structure, variability, and the distribution of chemical constituents. In this study, the day-to-day variability of Aura-MLS (Microwave Limb Sounder temperature data are used to reveal the vertical and interhemispheric coupling processes in the stratosphere-mesosphere during four Northern Hemisphere winters (2004/2005–2007/2008. The UKMO (United Kingdom Meteorological Office assimilated data and mesospheric winds from MF (medium frequency radars are also applied to help highlight the coupling processes.

    In this study, a clear vertical link can be seen between the stratosphere and mesosphere during winter months. The coolings and reversals of northward meridional winds in the polar winter mesosphere are often observed in relation to warming events (Sudden Stratospheric Warming, SSW for short and the associated changes in zonal winds in the polar winter stratosphere. An upper-mesospheric cooling usually precedes the beginning of the warming in the stratosphere by 1–2 days.

    Inter-hemispheric coupling has been identified initially by a correlation analysis using the year-to-year monthly zonal mean temperature. Then the correlation analyses are performed based upon the daily zonal mean temperature. From the original time sequences, significant positive (negative correlations are generally found between zonal mean temperatures at the Antarctic summer mesopause and in the Arctic winter stratosphere (mesosphere during northern mid-winters, although these correlations are dominated by the low frequency variability (i.e. the seasonal trend. Using the short-term oscillations (less than 15 days, the statistical result, by looking for the largest magnitude of correlation within a range of time-lags (0 to 10 days; positive lags mean that the Antarctic summer mesopause is lagging, indicates

  7. Vertical and interhemispheric links in the stratosphere-mesosphere as revealed by the day-to-day variability of Aura-MLS temperature data

    X. Xu

    2009-09-01

    Full Text Available The coupling processes in the middle atmosphere have been a subject of intense research activity because of their effects on atmospheric circulation, structure, variability, and the distribution of chemical constituents. In this study, the day-to-day variability of Aura-MLS (Microwave Limb Sounder temperature data are used to reveal the vertical and interhemispheric coupling processes in the stratosphere-mesosphere during four Northern Hemisphere winters (2004/2005–2007/2008. The UKMO (United Kingdom Meteorological Office assimilated data and mesospheric winds from MF (medium frequency radars are also applied to help highlight the coupling processes. In this study, a clear vertical link can be seen between the stratosphere and mesosphere during winter months. The coolings and reversals of northward meridional winds in the polar winter mesosphere are often observed in relation to warming events (Sudden Stratospheric Warming, SSW for short and the associated changes in zonal winds in the polar winter stratosphere. An upper-mesospheric cooling usually precedes the beginning of the warming in the stratosphere by 1–2 days. Inter-hemispheric coupling has been identified initially by a correlation analysis using the year-to-year monthly zonal mean temperature. Then the correlation analyses are performed based upon the daily zonal mean temperature. From the original time sequences, significant positive (negative correlations are generally found between zonal mean temperatures at the Antarctic summer mesopause and in the Arctic winter stratosphere (mesosphere during northern mid-winters, although these correlations are dominated by the low frequency variability (i.e. the seasonal trend. Using the short-term oscillations (less than 15 days, the statistical result, by looking for the largest magnitude of correlation within a range of time-lags (0 to 10 days; positive lags mean that the Antarctic summer mesopause is lagging, indicates that the temporal

  8. Sudden Cardiac Arrest during Participation in Competitive Sports.

    Landry, Cameron H; Allan, Katherine S; Connelly, Kim A; Cunningham, Kris; Morrison, Laurie J; Dorian, Paul

    2017-11-16

    The incidence of sudden cardiac arrest during participation in sports activities remains unknown. Preparticipation screening programs aimed at preventing sudden cardiac arrest during sports activities are thought to be able to identify at-risk athletes; however, the efficacy of these programs remains controversial. We sought to identify all sudden cardiac arrests that occurred during participation in sports activities within a specific region of Canada and to determine their causes. In this retrospective study, we used the Rescu Epistry cardiac arrest database (which contains records of every cardiac arrest attended by paramedics in the network region) to identify all out-of-hospital cardiac arrests that occurred from 2009 through 2014 in persons 12 to 45 years of age during participation in a sport. Cases were adjudicated as sudden cardiac arrest (i.e., having a cardiac cause) or as an event resulting from a noncardiac cause, on the basis of records from multiple sources, including ambulance call reports, autopsy reports, in-hospital data, and records of direct interviews with patients or family members. Over the course of 18.5 million person-years of observation, 74 sudden cardiac arrests occurred during participation in a sport; of these, 16 occurred during competitive sports and 58 occurred during noncompetitive sports. The incidence of sudden cardiac arrest during competitive sports was 0.76 cases per 100,000 athlete-years, with 43.8% of the athletes surviving until they were discharged from the hospital. Among the competitive athletes, two deaths were attributed to hypertrophic cardiomyopathy and none to arrhythmogenic right ventricular cardiomyopathy. Three cases of sudden cardiac arrest that occurred during participation in competitive sports were determined to have been potentially identifiable if the athletes had undergone preparticipation screening. In our study involving persons who had out-of-hospital cardiac arrest, the incidence of sudden cardiac

  9. Sudden infant death syndrome and the genetics of inflammation

    Linda eFerrante

    2015-02-01

    Full Text Available Several studies report signs of slight infection prior to death in cases of sudden infant death syndrome (SIDS. Based on this, a hypothesis of an altered immunological homeostasis has been postulated. The cytokines are important cellular mediators that are crucial for infant health by regulating cell activity during the inflammatory process. The pro-inflammatory cytokines favor inflammation; the most important of these are IL-1α, IL-1β, IL-6, IL-8, IL-12, IL-18, TNF-α and IFN-γ. These cytokines are controlled by the anti-inflammatory cytokines. This is accomplished by reducing the pro-inflammatory cytokine production, and thus counteracts their biological effect. The major anti-inflammatory cytokines are interleukin 1 receptor antagonist (IL-1ra, IL-4, IL-10, IL-11, and IL-13. The last decade there has been focus on genetic studies within genes that are important for the immune system, for SIDS with a special interest of the genes encoding the cytokines. This is because the cytokine genes are considered to be the genes most likely to explain the vulnerability to infection, and several studies have investigated these genes in an attempt to uncover associations between SIDS and different genetic variants. So far the genes encoding IL-1, IL-6, IL-10 and TNF-α are the most investigated within SIDS research, and several studies indicates associations between specific variants of these genes and SIDS. Taken together this may indicate that in at least a subset of SIDS predisposing genetic variants of the immune genes are involved. However, the immune system and the cytokine network are complex, and more studies are needed in order to better understand the interplay between different genetic variations and how this may contribute to an unfavorable immunological response.

  10. Risk factors and causes of sudden noncardiac death

    Risgaard, Bjarke; Lynge, Thomas Hadberg; Wissenberg, Mads

    2015-01-01

    was to report the risk factors and causes of SNCD. METHODS: We conducted a retrospective, nationwide study including all deaths between 2000 and 2006 of individuals aged 1-35 years and all deaths between 2007 and 2009 of individuals aged 1-49 years. Two physicians identified all sudden death cases through.......3-2.3; OR 3.0, 95% CI 2.0-4.4; and OR 4.3, 95% CI 2.5-7.4, respectively). The most common cause of SNCD was pulmonary disease (n = 115 [40%]). CONCLUSION: Sudden death among individuals aged caused by noncardiac diseases in 28% of cases. Risk factors were female sex, age, and the absence......BACKGROUND: On the performance of an autopsy, sudden deaths may be divided into 2 classifications: (1) sudden cardiac deaths and (2) sudden noncardiac deaths (SNCDs). Families of SNCD victims should not be followed up as a means of searching for cardiac disease. OBJECTIVE: The purpose of this study...

  11. Sudden death due to inhalant abuse in youth: Case report

    Ramazan Akcan

    2010-06-01

    Full Text Available Intentional inhalation or abuse of volatile substances is a common public health problem all over the world. As these substances generate euphoria frequency of use among adolescents and young adults is increasing steadily. In cases using inhalants to achieve a euphoric state -without knowing possible consequences- sudden death may occurdue to acute cardio-pulmonary dysfunction.Here we present a case of sudden death of a nineteen-year-old female due to inhalation of volatile from butane containing lighter gas tube, with the findings of autopsy and death scene investigation.In the context of this case; it was aimed to draw attention to the risk of sudden death and steady increase of frequencyof volatile substance abuse among adolescents and young adults due to various psycho-social factors.

  12. Sudden Death: An Uncommon Occurrence in Dementia with Lewy Bodies.

    Molenaar, Joery P; Wilbers, Joyce; Aerts, Marjolein B; Leijten, Quinten H; van Dijk, Jan G; Esselink, Rianne A; Bloem, Bastiaan R

    2016-01-01

    We present a 75-year-old woman with dementia and parkinsonism who developed severe orthostatic hypotension and eventually died. Autopsy revealed extensive Lewy body formation in the midbrain, limbic system, intermediate spinal cord, and medulla oblongata. Furthermore, a vast amount of Lewy bodies was seen in the paravertebral sympathetic ganglia which likely explained the severe autonomic failure. We speculate that this autonomic failure caused sudden death through dysregulation of respiration or heart rhythm, reminiscent of sudden death in multiple system atrophy (MSA). Clinicians should be aware of this complication in patients presenting with parkinsonism and autonomic dysfunction, and that sudden death may occur in dementia with Lewy bodies (DLB) as it does in MSA.

  13. Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death

    Nyegaard, Mette; Overgaard, Michael Toft; Sondergaard, M.T.

    2012-01-01

    a substantial part of sudden cardiac deaths in young individuals. Mutations in RYR2, encoding the cardiac sarcoplasmic calcium channel, have been identified as causative in approximately half of all dominantly inherited CPVT cases. Applying a genome-wide linkage analysis in a large Swedish family with a severe......Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a devastating inherited disorder characterized by episodic syncope and/or sudden cardiac arrest during exercise or acute emotion in individuals without structural cardiac abnormalities. Although rare, CPVT is suspected to cause...... calmodulin-binding-domain peptide at low calcium concentrations. We conclude that calmodulin mutations can cause severe cardiac arrhythmia and that the calmodulin genes are candidates for genetic screening of individual cases and families with idiopathic ventricular tachycardia and unexplained sudden cardiac...

  14. Post-mortem toxicology in young sudden cardiac death victims

    Bjune, Thea; Risgaard, Bjarke; Kruckow, Line

    2017-01-01

    Aims: Several drugs increase the risk of ventricular fibrillation and sudden cardiac death (SCD). We aimed to investigate in detail the toxicological findings of all young SCD throughout Denmark. Methods and results: Deaths in persons aged 1-49 years were included over a 10-year period. Death...... certificates and autopsy reports were retrieved and read to identify cases of sudden death and establish cause of death. All medico-legal autopsied SCD were included and toxicological reports collected. Positive toxicology was defined as the presence of any substance (licit and/or illicit). All toxicological...... findings had previously been evaluated not to have caused the death (i.e. lethal concentrations were excluded). We identified 620 medico-legal autopsied cases of SCD, of which 77% (n = 477) were toxicologically investigated post-mortem, and 57% (n = 270) had a positive toxicology profile. Sudden cardiac...

  15. Air Revitalization System Enables Excursions to the Stratosphere

    2015-01-01

    Paragon Space Development Corporation, based in Tucson, Arizona has had a long history of collaboration with NASA, including developing a modular air purification system under the Commercial Crew Development Program, designed to support the commercial space sector. Using that device and other NASA technology, startup company World View is now gearing up to take customers on helium balloon rides to the stratosphere.

  16. An ultrahot gas-giant exoplanet with a stratosphere.

    Evans, Thomas M; Sing, David K; Kataria, Tiffany; Goyal, Jayesh; Nikolov, Nikolay; Wakeford, Hannah R; Deming, Drake; Marley, Mark S; Amundsen, David S; Ballester, Gilda E; Barstow, Joanna K; Ben-Jaffel, Lotfi; Bourrier, Vincent; Buchhave, Lars A; Cohen, Ofer; Ehrenreich, David; García Muñoz, Antonio; Henry, Gregory W; Knutson, Heather; Lavvas, Panayotis; Etangs, Alain Lecavelier des; Lewis, Nikole K; López-Morales, Mercedes; Mandell, Avi M; Sanz-Forcada, Jorge; Tremblin, Pascal; Lupu, Roxana

    2017-08-02

    Infrared radiation emitted from a planet contains information about the chemical composition and vertical temperature profile of its atmosphere. If upper layers are cooler than lower layers, molecular gases will produce absorption features in the planetary thermal spectrum. Conversely, if there is a stratosphere-where temperature increases with altitude-these molecular features will be observed in emission. It has been suggested that stratospheres could form in highly irradiated exoplanets, but the extent to which this occurs is unresolved both theoretically and observationally. A previous claim for the presence of a stratosphere remains open to question, owing to the challenges posed by the highly variable host star and the low spectral resolution of the measurements. Here we report a near-infrared thermal spectrum for the ultrahot gas giant WASP-121b, which has an equilibrium temperature of approximately 2,500 kelvin. Water is resolved in emission, providing a detection of an exoplanet stratosphere at 5σ confidence. These observations imply that a substantial fraction of incident stellar radiation is retained at high altitudes in the atmosphere, possibly by absorbing chemical species such as gaseous vanadium oxide and titanium oxide.

  17. Chlorine activation and ozone destruction in the northern lowermost stratosphere

    Lelieveld, J; Bregman, A; Scheeren, HA; Strom, J; Carslaw, KS; Fischer, H; Siegmund, PC; Arnold, F

    1999-01-01

    We report aircraft measurements from the Stratosphere-Troposphere Experiments by Aircraft Measurements (STREAM) II campaign, performed during February 1995 from Kiruna, northern Sweden, near 67 degrees N latitude. We have measured trace species, e.g., O-3, nitrogen compounds, HCl, hydrocarbons, CO,

  18. Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols

    Kravitz, Ben

    2009-07-28

    We used a general circulation model of Earth\\'s climate to conduct geoengineering experiments involving stratospheric injection of sulfur dioxide and analyzed the resulting deposition of sulfate. When sulfur dioxide is injected into the tropical or Arctic stratosphere, the main additional surface deposition of sulfate occurs in midlatitude bands, because of strong cross-tropopause flux in the jet stream regions. We used critical load studies to determine the effects of this increase in sulfate deposition on terrestrial ecosystems by assuming the upper limit of hydration of all sulfate aerosols into sulfuric acid. For annual injection of 5 Tg of SO2 into the tropical stratosphere or 3 Tg of SO2 into the Arctic stratosphere, neither the maximum point value of sulfate deposition of approximately 1.5 mEq m−2 a−1 nor the largest additional deposition that would result from geoengineering of approximately 0.05 mEq m−2 a−1 is enough to negatively impact most ecosystems.

  19. Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols

    Kravitz, Ben; Robock, Alan; Oman, Luke; Stenchikov, Georgiy L.; Marquardt, Allison B.

    2009-01-01

    We used a general circulation model of Earth's climate to conduct geoengineering experiments involving stratospheric injection of sulfur dioxide and analyzed the resulting deposition of sulfate. When sulfur dioxide is injected into the tropical or Arctic stratosphere, the main additional surface deposition of sulfate occurs in midlatitude bands, because of strong cross-tropopause flux in the jet stream regions. We used critical load studies to determine the effects of this increase in sulfate deposition on terrestrial ecosystems by assuming the upper limit of hydration of all sulfate aerosols into sulfuric acid. For annual injection of 5 Tg of SO2 into the tropical stratosphere or 3 Tg of SO2 into the Arctic stratosphere, neither the maximum point value of sulfate deposition of approximately 1.5 mEq m−2 a−1 nor the largest additional deposition that would result from geoengineering of approximately 0.05 mEq m−2 a−1 is enough to negatively impact most ecosystems.

  20. Stratospheric Ozone Reactive Chemicals Generated by Space Launches Worldwide.

    1994-11-01

    I ODCs). Their carbon - chlorine bond is severed in the stratosphere by solar photolysis or reaction. Once the carbon-chlorine bond is broken, the...include the Russian Proton and Energia , and the Chinese Long March series. Roughly half (seven per year) of the Ariane 4 launches use two solid strap-ons

  1. Reduction of photosynthetically active radiation under extreme stratospheric aerosol loads

    Gerstl, S.A.W.; Zardecki, A.

    1981-08-01

    The recently published hypothesis that the Cretaceous-Tertiary extinctions might be caused by an obstruction of sunlight is tested by model calculations. First we compute the total mass of stratospheric aerosols under normal atmospheric conditions for four different (measured) aerosol size distributions and vertical profiles. For comparison, the stratospheric dust masses after four volcanic eruptions are also evaluated. Detailed solar radiative transfer calculations are then performed for artificially increased aerosol amounts until the postulated darkness scenario is obtained. Thus we find that a total stratospheric aerosol mass between 1 and 4 times 10 1 g is sufficient to reduce photosynthesis to 10 -3 of normal. We also infer from this result tha the impact of a 0.4- to 3-km-diameter asteroid or a close encounter with a Halley-size comet may deposit that amount of particulates into the stratosphere. The darkness scenario of Alvarez et al. is thus shown to be a possible extinction mechanism, even with smaller size asteroids of comets than previously estimated

  2. Tritium Records to Trace Stratospheric Moisture Inputs in Antarctica

    Fourré, E.; Landais, A.; Cauquoin, A.; Jean-Baptiste, P.; Lipenkov, V.; Petit, J.-R.

    2018-03-01

    Better assessing the dynamic of stratosphere-troposphere exchange is a key point to improve our understanding of the climate dynamic in the East Antarctica Plateau, a region where stratospheric inputs are expected to be important. Although tritium (3H or T), a nuclide naturally produced mainly in the stratosphere and rapidly entering the water cycle as HTO, seems a first-rate tracer to study these processes, tritium data are very sparse in this region. We present the first high-resolution measurements of tritium concentration over the last 50 years in three snow pits drilled at the Vostok station. Natural variability of the tritium records reveals two prominent frequencies, one at about 10 years (to be related to the solar Schwabe cycles) and the other one at a shorter periodicity: despite dating uncertainty at this short scale, a good correlation is observed between 3H and Na+ and an anticorrelation between 3H and δ18O measured on an individual pit. The outputs from the LMDZ Atmospheric General Circulation Model including stable water isotopes and tritium show the same 3H-δ18O anticorrelation and allow further investigation on the associated mechanism. At the interannual scale, the modeled 3H variability matches well with the Southern Annular Mode index. At the seasonal scale, we show that modeled stratospheric tritium inputs in the troposphere are favored in winter cold and dry conditions.

  3. UV spectroscopy applied to stratospheric chemistry, methods and results

    Karlsen, K.

    1996-03-01

    The publication from the Norwegian Institute for Air Research (NILU) deals with an investigation done on stratospheric chemistry by UV spectroscopy. The scientific goals are briefly discussed, and it gives the results from the measuring and analysing techniques used in the investigation. 6 refs., 11 figs.

  4. Quantifying pollution transport from the Asian monsoon anticyclone into the lower stratosphere

    F. Ploeger

    2017-06-01

    Full Text Available Pollution transport from the surface to the stratosphere within the Asian monsoon circulation may cause harmful effects on stratospheric chemistry and climate. Here, we investigate air mass transport from the monsoon anticyclone into the stratosphere using a Lagrangian chemistry transport model. We show how two main transport pathways from the anticyclone emerge: (i into the tropical stratosphere (tropical pipe, and (ii into the Northern Hemisphere (NH extratropical lower stratosphere. Maximum anticyclone air mass fractions reach around 5 % in the tropical pipe and 15 % in the extratropical lowermost stratosphere over the course of a year. The anticyclone air mass fraction correlates well with satellite hydrogen cyanide (HCN and carbon monoxide (CO observations, confirming that pollution is transported deep into the tropical stratosphere from the Asian monsoon anticyclone. Cross-tropopause transport occurs in a vertical chimney, but with the pollutants transported quasi-horizontally along isentropes above the tropopause into the tropics and NH.

  5. Current state of the problem sudden infant death at home

    Berlay Margarita Vasilievna; Kopylov Anatoliy Vasilievich; Karpov Sergey Mikhailovich

    2017-01-01

    The “Sudden Infant Death Syndrome” stands for unexpected nonviolent death of apparently healthy chest age child when there is no history or pathomorphological features which can be adequate explanations for death reasons. In Russian Federation, the death rate from this syndrome in the range of 0,06 to 2,8 per 1000 live births. In Stavropol region, average figures are equal to 0,36 per 1000 live births in the period of 2005–2014. Rates of incidence sudden infant death syndrome are similar to t...

  6. Sudden entanglement death, and ways to avoid it

    Eberly, J.H.; Ting Yu

    2005-01-01

    We report that non-communicating but entangled qubit pairs are almost universally liable to sudden entanglement death. In the presence of minor and purely local environmental noises their mixed-state entanglement may abruptly become zero long before the noises are able to destroy the local qubit coherence. Despite the inability of unitary transformations to alter entanglement, for example of Werner states, unitary transformations have been found to delay or defeat the sudden death event. These results upset the conventional understanding that entanglement lifetime can be estimated from qubit lifetime. This is not even approximately or qualitatively true. (author)

  7. Titan's Stratospheric Condensibles at High Northern Latitudes During Northern Winter

    Anderson, Carrie; Samuelson, R.; Achterberg, R.

    2012-01-01

    The Infrared Interferometer Spectrometer (IRIS) instrument on board Voyager 1 caught the first glimpse of an unidentified particulate feature in Titan's stratosphere that spectrally peaks at 221 per centimeter. Until recently, this feature that we have termed 'the haystack,' has been seen persistently at high northern latitudes with the Composite Infrared Spectrometer (CIRS) instrument onboard Cassini, The strength of the haystack emission feature diminishes rapidly with season, becoming drastically reduced at high northern latitudes, as Titan transitions from northern winter into spring, In contrast to IRIS whose shortest wavenumber was 200 per centimeter, CIRS extends down to 10 per centimeter, thus revealing an entirely unexplored spectral region in which nitrile ices have numerous broad lattice vibration features, Unlike the haystack, which is only found at high northern latitudes during northern winter/early northern spring, this geometrically thin nitrile cloud pervades Titan's lower stratosphere, spectrally peaking at 160 per centimeter, and is almost global in extent spanning latitudes 85 N to 600 S, The inference of nitrile ices are consistent with the highly restricted altitude ranges over which these features are observed, and appear to be dominated by a mixture of HCN and HC3N, The narrow range in altitude over which the nitrile ices extend is unlike the haystack, whose vertical distribution is significantly broader, spanning roughly 70 kilometers in altitude in Titan's lower stratosphere, The nitrile clouds that CIRS observes are located in a dynamically stable region of Titan's atmosphere, whereas CH4 clouds, which ordinarily form in the troposphere, form in a more dynamically unstable region, where convective cloud systems tend to occur. In the unusual situation where Titan's tropopause cools significantly from the HASI 70.5K temperature minimum, CH4 should condense in Titan's lower stratosphere, just like the aforementioned nitrile clouds, although

  8. Impacts of Stratospheric Sulfate Geoengineering on PM2.5

    Robock, A.; Xia, L.; Tilmes, S.; Mills, M. J.; Richter, J.; Kravitz, B.; MacMartin, D.

    2017-12-01

    Particulate matter (PM) includes sulfate, nitrate, organic carbon, elemental carbon, soil dust, and sea salt. The first four components are mostly present near the ground as fine particulate matter with a diameter less than 2.5 µm (PM2.5), and these are of the most concern for human health. PM is efficiently scavenged by precipitation, which is its main atmospheric sink. Here we examine the impact of stratospheric climate engineering on this important pollutant and health risk, taking advantage of two sets of climate model simulations conducted at the National Center for Atmospheric Research. We use the full tropospheric and stratospheric chemistry version of the Community Earth System Model - Community Atmospheric Model 4 (CESM CAM4-chem) with a horizontal resolution of 0.9° x 1.25° lat-lon to simulate a stratospheric sulfate injection climate intervention of 8 Tg SO2 yr-1 combined with an RCP6.0 global warming forcing, the G4 Specified Stratospheric Aerosol (G4SSA) scenario. We also analyze the output from a 20-member ensemble of Community Earth System Model, version 1 with the Whole Atmosphere Community Climate Model as its atmospheric component (CESM1(WACCM)) simulations, also at 0.9° x 1.25° lat-lon resolution, with sulfur dioxide injection at 15°N, 15°S, 30°N, and 30°S varying in time to balance RCP8.5 forcing. While the CESM CAM4-chem model has full tropospheric and stratospheric chemistry, CESM1(WACCM) has an internally generated quasi-biennial oscillation and a comprehensive tropospheric and stratospheric sulfate aerosol treatment, but only stratospheric chemistry. For G4SSA, there are a global temperature reduction of 0.8 K and global averaged precipitation decrease of 3% relative to RCP6.0. The global averaged surface PM2.5 reduces about 1% compared with RCP6.0, mainly over Eurasian and East Asian regions in Northern Hemisphere winter. The PM2.5 concentration change is a combination of effects from tropospheric chemistry and precipitation

  9. A refined method for calculating equivalent effective stratospheric chlorine

    Engel, Andreas; Bönisch, Harald; Ostermöller, Jennifer; Chipperfield, Martyn P.; Dhomse, Sandip; Jöckel, Patrick

    2018-01-01

    Chlorine and bromine atoms lead to catalytic depletion of ozone in the stratosphere. Therefore the use and production of ozone-depleting substances (ODSs) containing chlorine and bromine is regulated by the Montreal Protocol to protect the ozone layer. Equivalent effective stratospheric chlorine (EESC) has been adopted as an appropriate metric to describe the combined effects of chlorine and bromine released from halocarbons on stratospheric ozone. Here we revisit the concept of calculating EESC. We derive a refined formulation of EESC based on an advanced concept of ODS propagation into the stratosphere and reactive halogen release. A new transit time distribution is introduced in which the age spectrum for an inert tracer is weighted with the release function for inorganic halogen from the source gases. This distribution is termed the release time distribution. We show that a much better agreement with inorganic halogen loading from the chemistry transport model TOMCAT is achieved compared with using the current formulation. The refined formulation shows EESC levels in the year 1980 for the mid-latitude lower stratosphere, which are significantly lower than previously calculated. The year 1980 is commonly used as a benchmark to which EESC must return in order to reach significant progress towards halogen and ozone recovery. Assuming that - under otherwise unchanged conditions - the EESC value must return to the same level in order for ozone to fully recover, we show that it will take more than 10 years longer than estimated in this region of the stratosphere with the current method for calculation of EESC. We also present a range of sensitivity studies to investigate the effect of changes and uncertainties in the fractional release factors and in the assumptions on the shape of the release time distributions. We further discuss the value of EESC as a proxy for future evolution of inorganic halogen loading under changing atmospheric dynamics using simulations from

  10. Relevant climate response tests for stratospheric aerosol injection: A combined ethical and scientific analysis

    Lenferna, Georges Alexandre; Russotto, Rick D.; Tan, Amanda; Gardiner, Stephen M.; Ackerman, Thomas P.

    2017-06-01

    In this paper, we focus on stratospheric sulfate injection as a geoengineering scheme, and provide a combined scientific and ethical analysis of climate response tests, which are a subset of outdoor tests that would seek to impose detectable and attributable changes to climate variables on global or regional scales. We assess the current state of scientific understanding on the plausibility and scalability of climate response tests. Then, we delineate a minimal baseline against which to consider whether certain climate response tests would be relevant for a deployment scenario. Our analysis shows that some climate response tests, such as those attempting to detect changes in regional climate impacts, may not be deployable in time periods relevant to realistic geoengineering scenarios. This might pose significant challenges for justifying stratospheric sulfate aerosol injection deployment overall. We then survey some of the major ethical challenges that proposed climate response tests face. We consider what levels of confidence would be required to ethically justify approving a proposed test; whether the consequences of tests are subject to similar questions of justice, compensation, and informed consent as full-scale deployment; and whether questions of intent and hubris are morally relevant for climate response tests. We suggest further research into laboratory-based work and modeling may help to narrow the scientific uncertainties related to climate response tests, and help inform future ethical debate. However, even if such work is pursued, the ethical issues raised by proposed climate response tests are significant and manifold.

  11. Early work on the stratospheric ozone depletion-CFC issue

    Molina, M.

    2012-12-01

    I became involved with the atmospheric chemistry of chlorofluorocarbons (CFCs) shortly after joining Sherry Rowland's research group at the University of California, Irvine, in 1973. CFCs had been detected in the troposphere by James Lovelock in 1971, and the question we set out to answer was the fate of these compounds of industrial origin in the environment, as well as possibly identifying any consequences of their accumulation in the atmosphere. After examining many potential sinks for these compounds we realized that because of their unusual stability the most likely destruction process was photolysis in the stratosphere. I carried out measurements of the absorption spectra of these compounds in the near ultraviolet; previous work involved only spectra in the far ultraviolet, not relevant for atmospheric chemistry. The results indicated that photolysis would take place in the upper stratosphere. I subsequently carried out calculations using one-dimensional atmospheric models to estimate their atmospheric residence times, which turned out to be many decades. We realized that the chlorine atoms generated by photolysis of the CFCs would participate in a catalytic chain reaction that would efficiently destroy ozone. Furthermore, we estimated that the amount of CFCs produced industrially was comparable to the amount of nitric oxide produced naturally in the stratosphere by the decomposition of nitrous oxide; work by Paul Crutzen and Harold Johnston had indicated that the abundance of ozone in the stratosphere was controlled by nitric oxide. We then formulated the hypothesis that the continued release of CFCs to the environment posed a threat to the stability of the ozone layer, and published our results in the journal Nature in 1974. The publication was noticed almost exclusively by the community of experts in stratospheric chemistry, and hence Sherry Rowland and I decided at that time that it was our responsibility to communicate this finding to society at large

  12. Solar wind control of stratospheric temperatures in Jupiter's auroral regions?

    Sinclair, James Andrew; Orton, Glenn; Kasaba, Yasumasa; Sato, Takao M.; Tao, Chihiro; Waite, J. Hunter; Cravens, Thomas; Houston, Stephen; Fletcher, Leigh; Irwin, Patrick; Greathouse, Thomas K.

    2017-10-01

    Auroral emissions are the process through which the interaction of a planet’s atmosphere and its external magnetosphere can be studied. Jupiter exhibits auroral emission at a multitude of wavelengths including the X-ray, ultraviolet and near-infrared. Enhanced emission of CH4 and other stratospheric hydrocarbons is also observed coincident with Jupiter’s shorter-wavelength auroral emission (e.g. Caldwell et al., 1980, Icarus 44, 667-675, Kostiuk et al., 1993, JGR 98, 18823). This indicates that auroral processes modify the thermal structure and composition of the auroral stratosphere. The exact mechanism responsible for this auroral-related heating of the stratosphere has however remained elusive (Sinclair et al., 2017a, Icarus 292, 182-207, Sinclair et al., 2017b, GRL, 44, 5345-5354). We will present an analysis of 7.8-μm images of Jupiter measured by COMICS (Cooled Mid-Infrared Camera and Spectrograph, Kataza et al., 2000, Proc. SPIE(4008), 1144-1152) on the Subaru telescope. These images were acquired on January 11th, 12th, 13th, 14th, February 4, 5th and May 17th, 18th, 19th and 20th in 2017, allowing the daily variability of Jupiter’s auroral-related stratospheric heating to be tracked. Preliminary results suggest lower stratospheric temperatures are directly forced by the solar wind dynamical pressure. The southern auroral hotspot exhibited a significant increase in brightness temperature over a 24-hour period. Over the same time period, a solar wind propagation model (Tao et al. 2005, JGR 110, A11208) predicts a strong increase in the solar wind dynamical pressure at Jupiter.

  13. Gondola development for CNES stratospheric balloons

    Vargas, A.; Audoubert, J.; Cau, M.; Evrard, J.; Verdier, N.

    (over the line of sight) than with dedicated RF system, which requires balloon visibility from the ground station. For long duration flights (3 months) of Infra Red Montgolfieres, a house keeping gondola has been developed, using the Inmarsat C standard to have communication all around the world (up to N or S 80 ° latitude) with an automatic switching between the 4 geostationnary Inmarsat satellites. After validation flights performed from Bauru / Brazil. (2000 & 2001) and Kiruna/Sweden (2002), the first operational flights took place from Bauru in February 2003 during ENVISAT validation campaign. The next flights will be realized in the framework of the Hibiscus campaign planned in February 2004 in Bauru.. The Balloon Division was involved in the Franco / Japanese HSFD II project which consists to drop a mock-up of the Japanese HOPE-X space shuttle from a stratospheric balloon to validate its flight from the altitude of 30 km. We developed a specific gondola as a service module for the HOPE-X shuttle, providing power and GPS radio-frequency signal during the balloon flight phase, telemetry end remote control radio frequency links and separation system with pyrotechnic cutters for the drop of the shuttle. A successful flight was performed at Kiruna in July 2003. Concerning gondola with pointing system, the study of a big g-ray telescope (8 m of focal length), started by the end of 2002. For this 1 ton gondola, the telescope stabilization system will be based on control moment gyro (CMG). The CMG system has been designed and will be manufactured and validated during 2004. The first flight of this g-ray gondola is planned for 2006. The progress, status and future plans concerning these gondola developments will be presented.

  14. The Influence of Stratospheric Sulphate Aerosol Deployment on the Surface Air Temperature and the Risk of an Abrupt Global Warming

    Roland von Glasow

    2010-12-01

    Full Text Available We used the ‘Radiative-Convective Model of the Earth-atmosphere system’ (OGIM to investigate the cooling effects induced by sulphur injections into the stratosphere. The ensemble of numerical calculations was based on the A1B scenario from the IPCC Special Report on Emissions Scenarios (SRES. Several geoengineered scenarios were analysed, including the abrupt interruption of these injections in different scenarios and at different dates. We focused on the surface air temperature (SAT anomalies induced by stratospheric sulphate aerosol generated in order to compensate future warming. Results show that continuous deployment of sulphur into the stratosphere could induce a lasting decrease in SAT. Retaining a constant aerosol loading equivalent to 6 TgS would delay the expected global warming by 53 years. Keeping the SAT constant in a context of increasing greenhouse gases (GHGs means that the aerosol loading needs to be increased by 1.9% annually. This would offset the effect of increasing GHG under the A1B scenario. A major focus of this study was on the heating rates of SAT that would arise in different scenarios in case of an abrupt cessation of sulphur injections into the stratosphere. Our model results show that heating rates after geoengineering interruption would be 15–28 times higher than in a case without geoengineering, with likely important consequences for life on Earth. Larger initial sulphate loadings induced more intense warming rates when the geoengineering was stopped at the same time. This implies that, if sulphate loading was increased to maintain constant SAT in the light of increasing GHG concentrations, the later the geoengineering interruption was to occur, the higher the heating rates would be. Consequently, geoengineering techniques like this should only be regarded as last-resort measures and require intense further research should they ever become necessary.

  15. Sudden oak death disease progression in oaks and tanoaks

    Brice A. McPherson; Sylvia R. Mori; David L. Wood; Andrew J. Storer; Pavel Svihra; N. Maggi Kelly; Richard B. Standiford

    2006-01-01

    In March 2000, we established twenty disease progression plots in Marin County to monitor the progress of sudden oak death symptoms in coast live oak (Quercus agrifolia), California black oak (Q. kelloggii), and tanoak (Lithocarpus densiflorus) (McPherson and others 2005). Plots were located to encompass a...

  16. Sudden death amongst people practicing competitive sports (Review Article

    Bartłomiej Wrzesiński

    2018-02-01

    Full Text Available Sudden cardiac death is and unexpected cardiac arrest that may occur both during exercise and also an hour after its completion. It most often occurs in young sportsmen under 35 years of age and is usually associated with improperly performed physical activity proceeded by lack of specialized medical examination and research. Natural and cardiac causes are two basic phenomena that lead to cardiac death. As confirmed by Framingham Heart Study, conducted in the eighties of the twentieth century on the population of Americans, natural causes accounted for 13% while cardiac causes accounted for 88% off all. The statistics of the largest centers of sport medicine are presented as follows: Germany – 1 death per 200,000 people practicing sports (total while United States of America – 1 death per 80,000 people per year. The problem of of sudden deaths is and important topic worthy of a broader and more specific analysis. It should be noted that physical exertion is not is not a direct cause of sudden deaths. Currently the most research concerns professional athletes who have extensive support and knowledge about the exercise they perform. The main problem concerning subject of sudden deaths are not diagnosed hearth defects. Additional topic of interest is rarity of medical tests performed by amateur athletes and athletes at the lower levels of competition. Such athletes do not  have as extensive knowledge as their experienced idols, which may bring tragic consequences.

  17. About a cocaine-associated sudden death casework.

    Pileggi, P; Teatino, A; La Marca, A; Barbaro, A

    2004-12-02

    A man 24-year-old died suddenly while he was doing shopping. It was supposed that the death was caused by ictus or by cardiac pathology. During the autopsy, some biological samples were taken (hair, urine, blood and lachrymal liquid) for the toxicological analysis and also the heart, some fragments from the liver, lungs, spleen, and kidneys for the histo-pathological analysis.

  18. Vasculopathic Cranial Ocular Motor Neuropathy Following Sudden Emotional Stress

    Purvin, Valerie

    2010-01-01

    We describe three patients who experienced onset of a microvascular ocular motor nerve palsy in the setting of sudden emotional stress. Such emotional states are accompanied by a marked increase in sympathetic tone in some individuals. Mechanisms by which these autonomic changes might produce an ischemic cranial nerve palsy include intra-cranial vasoconstriction and transient systemic hypotension due to alterations in cardiac function.

  19. Circumvention of suddenly appearing obstacles in young and older adults

    Pijnappels, M.; Kingma, I.; Van Dieën, J. H.

    2010-01-01

    Reduced ability to circumvent an obstacle, which is noticed only shortly before collision, could be a cause of falls and injury, especially in older adults. In this study, we investigated differences in strategies and their characteristics between young and older adults when circumventing a suddenly

  20. Left ventricular cardiac myxoma and sudden death in a dog

    de Nijs, M.I.; Vink, Aryan; Bergmann, W.; Szatmári, V.

    2016-01-01

    Background: Myxoma is a very rare benign cardiac tumor in dogs. This is the first description of a cardiac myxoma originating from the left ventricular outflow tract, presumably causing sudden death. Case presentation: A previously healthy 12-year-old male West Highland white terrier was found dead

  1. Left ventricular cardiac myxoma and sudden death in a dog

    de Nijs, Maria Irene; Vink, Aryan; Bergmann, Wilhelmina; Szatmári, Viktor

    2016-01-01

    BACKGROUND: Myxoma is a very rare benign cardiac tumor in dogs. This is the first description of a cardiac myxoma originating from the left ventricular outflow tract, presumably causing sudden death. CASE PRESENTATION: A previously healthy 12-year-old male West Highland white terrier was found dead

  2. Picture quiz: a case of sudden severe chest pain.

    Rabia, Mustafa Abu; Sullivan, P; Stivaros, Stavros M

    2007-01-01

    An 18-year-old male with no previous medical history presented to hospital with sudden onset of acute epigastric pain radiating to the anterior chest wall and both shoulders. There was no history of recent trauma and he had not been vomiting.

  3. Relationship between coronary atherosclerosis and 'sudden cardiac death'

    Lundholm, C.E.; Sundbom, L.; Lundholm, L.

    1989-01-01

    Coronary arteriosclerosis in mini-pigs was produced by combination of hypercholesterolemia and twofold X irradiation of the cardiac region. 15-21 weeks following irradiation 40% of the adult animals and 58% of the juvenils died of 'sudden cardiac death'. The mortality rate decreased significantly after application of the calcium-channel blocking agent nifedipine

  4. Sudden unilateral deafness with endolymphatic sac adenocarcinoma: MRI

    Gaeta, M.; Blandino, A.; Minutoli, F.; Pandolfo, I. [Inst. of Radiological Sciences, Univ. of Messina (Italy)

    1999-10-01

    A 30-year-old man presented with sudden left deafness and vertigo. CT showed an osteolytic retrolabyrinthine tumour of the left temporal bone. High signal from the tumour and labyrinth was seen on fat-suppressed T 1-weighted images. At surgery, a haemorrhagic papillary-cystic adenocarcinoma of the endolymphatic sac was found. (orig.)

  5. Sudden unilateral deafness with endolymphatic sac adenocarcinoma: MRI

    Gaeta, M.; Blandino, A.; Minutoli, F.; Pandolfo, I.

    1999-01-01

    A 30-year-old man presented with sudden left deafness and vertigo. CT showed an osteolytic retrolabyrinthine tumour of the left temporal bone. High signal from the tumour and labyrinth was seen on fat-suppressed T 1-weighted images. At surgery, a haemorrhagic papillary-cystic adenocarcinoma of the endolymphatic sac was found. (orig.)

  6. Sudden oak death effects on the dynamics of dead wood

    Richard C. Cobb; Jo& atilde; o Filipe A.N.; Margaret R. Metz; Ross K. Meentemeyer; David M. Rizzo

    2013-01-01

    Sudden oak death has impacted forests notable for high-fire risk and contiguous host communities in California and Oregon coastal forest ecosystems. The disease continues to emerge in stands and landscapes with a large biomass of tanoak (Notholithocarpus densiflorus (Hook.&Arn.) Manos, Cannon & S.H.Oh), and we show that woody debris also...

  7. Guidelines for autopsy investigation of sudden cardiac death

    Basso, Cristina; Burke, Margaret; Fornes, Paul; Gallagher, Patrick J.; de Gouveia, Rosa Henriques; Sheppard, Mary; Thiene, Gaetano; van der Wal, Allard

    2010-01-01

    Although sudden cardiac death is one of the most important mode of death in Western Countries, pathologists and public health physicians have not given this problem the attention it deserves. New methods of preventing potentially fatal arrhythmias have been developed, and the accurate diagnosis of

  8. Guidelines for autopsy investigation of sudden cardiac death

    Basso, C.; Burke, M.; Fornes, P.; Gallagher, P. J.; de Gouveia, R. H.; Sheppard, M.; Thiene, G.; van der Wal, A.

    2010-01-01

    Although sudden cardiac death is one of the most important mode of death in Western Countries, pathologists and public health physicians have not given this problem the attention it deserves. New methods of preventing potentially fatal arrhythmias have been developed and the accurate diagnosis of

  9. Guidelines for autopsy investigation of sudden cardiac death

    Basso, Cristina; Burke, Margaret; Fornes, Paul; Gallagher, Patrick J.; de Gouveia, Rosa Henriques; Sheppard, Mary; Thiene, Gaetano; van der Wal, Allard

    2008-01-01

    Although sudden cardiac death is one of the most important mode of death in Western Countries, pathologists and public health physicians have not given this problem the attention it deserves. New methods of preventing potentially fatal arrhythmias have been developed, and the accurate diagnosis of

  10. Solar flare effects and storm sudden commencement even in ...

    1998-05-08

    Variations in the three components of geomagnetic field were observed at the twenty-two geomagnetic Euro-African Observatories during the solar flare that occurred on the 6 May, 1998 at 0080UT and storm sudden commencement that took place on May 8, 1998 at 15.00 UT. The geomagnetic field on 6 May, 1998 was ...

  11. Temporal epidemiology of sudden oak death in Oregon

    Ebba K. Peterson; Everett M. Hansen; Alan Kanaskie

    2015-01-01

    An effort to eradicate Phytophthora ramorum, causal agent of sudden oak death, has been underway since its discovery in Oregon forests. Using an information-theoretical approach, we sought to model yearly variation in the size of newly infested areas and dispersal distance. Maximum dispersal distances were best modeled by spring and winter...

  12. Collaboratively managing sudden oak death using tangible geospatial modeling

    Ross K. Meentemeyer; Francesco Tonini; Douglas Shoemaker; Richard C. Cobb; Brendan A. Harmon; Vaclav Petras; Anna Petrasova; Helena Mitasova

    2017-01-01

    Failure to build consensus amongst stakeholders has been a primary obstacle barring progress in developing and implementing strategies to manage sudden oak death (SOD). Consensus as to the goals of in situ management of SOD has rarely been reached, because stakeholders’ visions of success vary widely and often compete with each other...

  13. Sudden infant death syndrome (SIDS)--standardised investigations and classification

    Bajanowski, Thomas; Vege, Ashild; Byard, Roger W

    2007-01-01

    Sudden infant death syndrome (SIDS) still accounts for considerable numbers of unexpected infant deaths in many countries. While numerous theories have been advanced to explain these events, it is increasingly clear that this group of infant deaths results from the complex interaction of a variet...

  14. Sudden cardiac death and acute pathology of coronary arteries

    van Dantzig, J. M.; Becker, A. E.

    1986-01-01

    The pathology of sudden cardiac death still is a matter of controversy, particularly with respect to the state of the coronary arteries. A recent study has shown a high incidence of acute lesions and suggests a causal relationship. The present study has been designed to verify whether or not acute

  15. Guidelines for autopsy investigation of sudden cardiac death

    Basso, Cristina; Aguilera, Beatriz; Banner, Jytte

    2017-01-01

    diagnosis of the causes of SCD is now of particular importance. Pathologists are responsible for determining the precise cause and mechanism of sudden death but there is still considerable variation in the way in which they approach this increasingly complex task. The Association for European Cardiovascular...

  16. Linking sudden oak death with spatial economic value transfer

    Tom Holmes; Bill Smith

    2008-01-01

    Sudden oak death (caused by Phytophthora ramorum) is currently having a dramatic impact on the flow of ecosystem services provided by trees and forests in California. Timber species in California are not thought to be at risk of mortality from this pathogen and, consequently, economic impacts accrue to non-market values of trees such as aesthetics,...

  17. Cause of Sudden Cardiac Deaths on Autopsy Findings; a Four-Year Report

    Dinesh Rao

    2014-03-01

    Full Text Available Introduction: Incidence of sudden cardiac death (SCD has been steadily increasing all over the world. While knowing the cause of SCD is one of the favorites of the physicians involved with these cases, it is very difficult and challenging task for the forensic physician. The present report is a prospective study regarding cause of SCDs on autopsy examination in four-year period, Bangalore, India. Methods: The present prospective study is based on autopsy observations, carried out for four-year period from 2008 to 2011, and analyzed for cause of SCDs. The cases were chosen as per the definition of sudden death and autopsied. The material was divided into natural and unnatural groups. Finally, on histopathology, gross examination, hospital details, circumstantial, and police reports the cause of death was inferred. Results: A total of 2449 autopsy was conducted of which 204 cases were due to SCD. The highest SCDs were reported in 50-60 years age group (62.24%; n-127, followed closely by the age group 60-69 (28.43%; n-58. Male to female ratio was around 10:1. The maximum number of deaths (n=78 was within few hours (6 hours after the onset of signs and symptoms. In 24 (11.8% cases major narrowing was noted in both the main coronaries, in 87 (42.6% cases in the left anterior descending coronary artery (LAD, and in 18 (51.5% cases in the right coronary artery (RCA. The major cardiac pathology resulting in sudden death was coronary artery disease (n-116; 56.86% and myocardial infarction (n-104; 50.9%. most of the SCDs occurred in the place of residence (n-80; 39.2% followed closely by death in hospital (n-49; 24.01%. Conclusion: Coronary occlusion was the major contributory cause of sudden death with cardiac origin and the highest number of deaths were reported in the age 50-59 years with male to female ratio of 10:1. 

  18. Stratospheric changes caused by geoengineering applications: potential repercussions and uncertainties

    Kenzelmann, P.; Weisenstein, D.; Peter, T.; Luo, B. P.; Rozanov, E.; Fueglistaler, S.; Thomason, L. W.

    2009-04-01

    Anthropogenic greenhouse gas emissions tend to warm the global climate, calling for significant rapid emission reductions. As potential support measures various ideas for geoengineering are currently being discussed. The assessment of the possible manifold and as yet substantially unexplored repercussions of implementing geoengineering ideas to ameliorate climate change poses enormous challenges not least in the realm of aerosol-cloud-climate interactions. Sulphur aerosols cool the Earth's surface by reflecting short wave radiation. By increasing the amount of sulphur aerosols in the stratosphere, for example by sulphur dioxide injections, part of the anthropogenic climate warming might be compensated due to enhanced albedo. However, we are only at the beginning of understanding possible side effects. One such effect that such aerosol might have is the warming of the tropical tropopause and consequently the increase of the amount of stratospheric water vapour. Using the 2D AER Aerosol Model we calculated the aerosol distributions for yearly injections of 1, 2, 5 and 10 Mt sulphur into the lower tropical stratosphere. The results serve as input for the 3D chemistry-climate model SOCOL, which allows calculating the aerosol effect on stratospheric temperatures and chemistry. In the injection region the continuously formed sulphuric acid condensates rapidly on sulphate aerosol, which eventually grow to such extent that they sediment down to the tropical tropopause region. The growth of the aerosol particles depends on non-linear processes: the more sulphur is emitted the faster the particles grow. As a consequence for the scenario with continuous sulphur injection of totally 10 Mt per year, only 6 Mt sulphur are in the stratosphere if equilibrium is reached. According to our model calculations this amount of sulphate aerosols leads to a net surface forcing of -3.4 W/m2, which is less then expected radiative forcing by doubling of carbon dioxide concentration. Hence

  19. A computer case definition for sudden cardiac death.

    Chung, Cecilia P; Murray, Katherine T; Stein, C Michael; Hall, Kathi; Ray, Wayne A

    2010-06-01

    To facilitate studies of medications and sudden cardiac death, we developed and validated a computer case definition for these deaths. The study of community dwelling Tennessee Medicaid enrollees 30-74 years of age utilized a linked database with Medicaid inpatient/outpatient files, state death certificate files, and a state 'all-payers' hospital discharge file. The computerized case definition was developed from a retrospective cohort study of sudden cardiac deaths occurring between 1990 and 1993. Medical records for 926 potential cases had been adjudicated for this study to determine if they met the clinical definition for sudden cardiac death occurring in the community and were likely to be due to ventricular tachyarrhythmias. The computerized case definition included deaths with (1) no evidence of a terminal hospital admission/nursing home stay in any of the data sources; (2) an underlying cause of death code consistent with sudden cardiac death; and (3) no terminal procedures inconsistent with unresuscitated cardiac arrest. This definition was validated in an independent sample of 174 adjudicated deaths occurring between 1994 and 2005. The positive predictive value of the computer case definition was 86.0% in the development sample and 86.8% in the validation sample. The positive predictive value did not vary materially for deaths coded according to the ICO-9 (1994-1998, positive predictive value = 85.1%) or ICD-10 (1999-2005, 87.4%) systems. A computerized Medicaid database, linked with death certificate files and a state hospital discharge database, can be used for a computer case definition of sudden cardiac death. Copyright (c) 2009 John Wiley & Sons, Ltd.

  20. The most common cause of sudden cardiac death in athletes

    Topalović Nikola

    2016-01-01

    Full Text Available The positive impact of exercise on cardiovascular health is well known. Athletes, who are constantly physically active, are considered to be the healthiest members of our society. That is why their sudden death, during the training or competition, attracts the attention of the general public. Rarely, tragic events of sudden cardiac death (SCD are the reason for questioning if by many positive there are also negative impact of physical exercise. The first case of SCD is recorded as far back as the year 490 BC, when the Greek soldier Pheidippides died after he conveyed news of the great victory of the Greeks over the Persians. Risk of SCD is recognized in the middle of the twentieth century. In our region, discussion about this issue began after the World Basketball Championship, which was held in Ljubljana in 1970, because of the sudden death of the national team member Trajko Rajkovic. One of the important goals of modern sports medicine is to reduce the risk of SCD in athletes to 'inevitable rarity'. Definition of SCD is considered to be any unexpected death due to sudden cardiac arrest. Pedo (Pedoe has divided all causes of SCD in the sport into three categories: Commotio cordis (agitation of the heart, which results from blunt impact to the athletes chest with consequent fatal disorder of heart rhythm; SCD of athletes under the age of 35 because of structural, congenital and inflammatory heart disease, which includes hypertrophic cardiomyopathy as the most important cause of sudden cardiac death, congenital anomalies of the coronary arteries, arrhythmogenic right ventricular cardiomyopathy, myocarditis and other; SCD of athletes older than 35 years which is most common due coronary artery disease - atherosclerosis (the dominant risk in the marathon and half-marathon. .

  1. Sub-micrometer refractory carbonaceous particles in the polar stratosphere

    Schütze, Katharina; Wilson, James Charles; Weinbruch, Stephan; Benker, Nathalie; Ebert, Martin; Günther, Gebhard; Weigel, Ralf; Borrmann, Stephan

    2017-10-01

    Eleven particle samples collected in the polar stratosphere during SOLVE (SAGE III Ozone loss and validation experiment) from January until March 2000 were characterized in detail by high-resolution transmission and scanning electron microscopy (TEM/SEM) combined with energy-dispersive X-ray microanalysis. A total of 4202 particles (TEM = 3872; SEM = 330) were analyzed from these samples, which were collected mostly inside the polar vortex in the altitude range between 17.3 and 19.9 km. Particles that were volatile in the microscope beams contained ammonium sulfates and hydrogen sulfates and dominated the samples. Some particles with diameters ranging from 20 to 830 nm were refractory in the electron beams. Carbonaceous particles containing additional elements to C and O comprised from 72 to 100 % of the refractory particles. The rest were internal mixtures of these materials with sulfates. The median number mixing ratio of the refractory particles, expressed in units of particles per milligram of air, was 1.1 (mg air)-1 and varied between 0.65 and 2.3 (mg air)-1. Most of the refractory carbonaceous particles are completely amorphous, a few of the particles are partly ordered with a graphene sheet separation distance of 0.37 ± 0.06 nm (mean value ± standard deviation). Carbon and oxygen are the only detected major elements with an atomic O/C ratio of 0.11 ± 0.07. Minor elements observed include Si, S, Fe, Cr and Ni with the following atomic ratios relative to C: Si/C: 0.010 ± 0.011; S/C: 0.0007 ± 0.0015; Fe/C: 0.0052 ± 0.0074; Cr/C: 0.0012 ± 0.0017; Ni/C: 0.0006 ± 0.0011 (all mean values ± standard deviation).High-resolution element distribution images reveal that the minor elements are distributed within the carbonaceous matrix; i.e., heterogeneous inclusions are not observed. No difference in size, nanostructure and elemental composition was found between particles collected inside and outside the polar vortex. Based on chemistry and nanostructure

  2. The ASSET intercomparison of stratosphere and lower mesosphere humidity analyses

    H. E. Thornton

    2009-02-01

    Full Text Available This paper presents results from the first detailed intercomparison of stratosphere-lower mesosphere water vapour analyses; it builds on earlier results from the EU funded framework V "Assimilation of ENVISAT Data" (ASSET project. Stratospheric water vapour plays an important role in many key atmospheric processes and therefore an improved understanding of its daily variability is desirable. With the availability of high resolution, good quality Michelson Interferometer for Passive Atmospheric Sounding (MIPAS water vapour profiles, the ability of four different atmospheric models to assimilate these data is tested. MIPAS data have been assimilated over September 2003 into the models of the European Centre for Medium Range Weather Forecasts (ECMWF, the Belgian Institute for Space and Aeronomy (BIRA-IASB, the French Service d'Aéronomie (SA-IPSL and the UK Met Office. The resultant middle atmosphere humidity analyses are compared against independent satellite data from the Halogen Occultation Experiment (HALOE, the Polar Ozone and Aerosol Measurement (POAM III and the Stratospheric Aerosol and Gas Experiment (SAGE II. The MIPAS water vapour profiles are generally well assimilated in the ECMWF, BIRA-IASB and SA systems, producing stratosphere-mesosphere water vapour fields where the main features compare favourably with the independent observations. However, the models are less capable of assimilating the MIPAS data where water vapour values are locally extreme or in regions of strong humidity gradients, such as the southern hemisphere lower stratosphere polar vortex. Differences in the analyses can be attributed to the choice of humidity control variable, how the background error covariance matrix is generated, the model resolution and its complexity, the degree of quality control of the observations and the use of observations near the model boundaries. Due to the poor performance of the Met Office analyses the results are not included in

  3. The ASSET intercomparison of stratosphere and lower mesosphere humidity analyses

    Thornton, H. E.; Jackson, D. R.; Bekki, S.; Bormann, N.; Errera, Q.; Geer, A. J.; Lahoz, W. A.; Rharmili, S.

    2009-02-01

    This paper presents results from the first detailed intercomparison of stratosphere-lower mesosphere water vapour analyses; it builds on earlier results from the EU funded framework V "Assimilation of ENVISAT Data" (ASSET) project. Stratospheric water vapour plays an important role in many key atmospheric processes and therefore an improved understanding of its daily variability is desirable. With the availability of high resolution, good quality Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) water vapour profiles, the ability of four different atmospheric models to assimilate these data is tested. MIPAS data have been assimilated over September 2003 into the models of the European Centre for Medium Range Weather Forecasts (ECMWF), the Belgian Institute for Space and Aeronomy (BIRA-IASB), the French Service d'Aéronomie (SA-IPSL) and the UK Met Office. The resultant middle atmosphere humidity analyses are compared against independent satellite data from the Halogen Occultation Experiment (HALOE), the Polar Ozone and Aerosol Measurement (POAM III) and the Stratospheric Aerosol and Gas Experiment (SAGE II). The MIPAS water vapour profiles are generally well assimilated in the ECMWF, BIRA-IASB and SA systems, producing stratosphere-mesosphere water vapour fields where the main features compare favourably with the independent observations. However, the models are less capable of assimilating the MIPAS data where water vapour values are locally extreme or in regions of strong humidity gradients, such as the southern hemisphere lower stratosphere polar vortex. Differences in the analyses can be attributed to the choice of humidity control variable, how the background error covariance matrix is generated, the model resolution and its complexity, the degree of quality control of the observations and the use of observations near the model boundaries. Due to the poor performance of the Met Office analyses the results are not included in the intercomparison

  4. Impacts of stratospheric sulfate geoengineering on tropospheric ozone

    Xia, Lili; Nowack, Peer J.; Tilmes, Simone; Robock, Alan

    2017-10-01

    A range of solar radiation management (SRM) techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid- and high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air pollution. In conclusion

  5. Impacts of stratospheric sulfate geoengineering on tropospheric ozone

    L. Xia

    2017-10-01

    Full Text Available A range of solar radiation management (SRM techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid- and high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air

  6. Key aspects of stratospheric tracer modeling using assimilated winds

    B. Bregman

    2006-01-01

    Full Text Available This study describes key aspects of global chemistry-transport models and their impact on stratospheric tracer transport. We concentrate on global models that use assimilated winds from numerical weather predictions, but the results also apply to tracer transport in general circulation models. We examined grid resolution, numerical diffusion, air parcel dispersion, the wind or mass flux update frequency, and time interpolation. The evaluation is performed with assimilated meteorology from the "operational analyses or operational data" (OD from the European Centre for Medium-Range Weather Forecasts (ECMWF. We also show the effect of the mass flux update frequency using the ECMWF 40-year re-analyses (ERA40. We applied the three-dimensional chemistry-transport Tracer Model version 5 (TM5 and a trajectory model and performed several diagnoses focusing on different transport regimes. Covering different time and spatial scales, we examined (1 polar vortex dynamics during the Arctic winter, (2 the large-scale stratospheric meridional circulation, and (3 air parcel dispersion in the tropical lower stratosphere. Tracer distributions inside the Arctic polar vortex show considerably worse agreement with observations when the model grid resolution in the polar region is reduced to avoid numerical instability. The results are sensitive to the diffusivity of the advection. Nevertheless, the use of a computational cheaper but diffusive advection scheme is feasible for tracer transport when the horizontal grid resolution is equal or smaller than 1 degree. The use of time interpolated winds improves the tracer distributions, particularly in the middle and upper stratosphere. Considerable improvement is found both in the large-scale tracer distribution and in the polar regions when the update frequency of the assimilated winds is increased from 6 to 3 h. It considerably reduces the vertical dispersion of air parcels in the tropical lower stratosphere. Strong

  7. The initial phase of sudden releases of superheated liquid

    Schmidli, J.

    1994-04-01

    The catastrophic failure of a pressure vessel containing a liquefied substance, leading to an instantaneous release of its whole contents is considered as one of the major technological hazards. Due to the rapid depressurization caused by vessel failure, the fluid becomes superheated and unstable. Part of the fluid will evaporate using its internal energy and the two-phase mixture forming will be accelerated. This flashing process can be very violent, as experiments and incidents actually happened have shown. In the past, a number of dispersion models were developed to predict the history of an instantaneous release. In most of these models the source term is considered to be a gas volume at rest and not a rapidly expanding aerosol, as could be observed. Furthermore, it is usually assumed that all of the remaining fluid is entrained into the expanding cloud and nothing is deposited on the ground to form a pool. This work concentrates on the initial phase of the sudden release of superheated liquids with the aim to gain a better understanding of the flashing process and of the physical mechanisms involved, leading to a reliable prediction of the source term. Therefore, more than 400 experiments with propane, butane, refrigerant 12 and 114 were conducted. The experiments were initiated by shattering spherical glass flasks of different sizes. The main parameters varied were the liquid superheat and the filling level of the vessel. Using high-speed video and movie recordings and very fast responding measurement devices, it was possible to study the initial phase of such releases during which gravity plays no role. For sufficiently large released internal energy, the initial evolution of the release was always spherical with a constant radial expansion velocity during he first milliseconds until instabilities appeared at the surface of the droplet/vapor cloud that was formed. For all the experimental conditions, the fraction of the initial liquid falling on the ground

  8. Major Links.

    Henderson, Tona

    1995-01-01

    Provides electronic mail addresses for resources and discussion groups related to the following academic majors: art, biology, business, chemistry, computer science, economics, health sciences, history, literature, math, music, philosophy, political science, psychology, sociology, and theater. (AEF)

  9. Major Roads

    Minnesota Department of Natural Resources — This data set contains roadway centerlines for major roads (interstates and trunk highways) found on the USGS 1:24,000 mapping series. These roadways are current...

  10. The fate of atmospheric phosgene and the stratospheric chlorine loadings of its parent compounds: CCl4, C2Cl4, C2HCL3, CH3CCl3, and CHCl3

    Kindler, T. P.; Chameides, W. L.; Wine, P. H.; Cunnold, D. M.; Alyea, F. N.; Franklin, J. A.

    1995-01-01

    A study of the tropospheric and stratospheric cycles of phosgene is carried out to determine its fate and ultimate role in controlling the ozone depletion potentials of its parent compounds. Tropospheric phosgene is produced from the OH-initiated oxidation of C2Cl4, CH3CCl3, CHCl3, and C2HCl3. Simulations using a two-dimensional model indicate that these processes produce about 90 pptv/yr of tropospheric phosgene with an average concentration of about 18 pptv, in reasonable agreement with observations. We estimate a residence time of about 70 days for tropospheric phosgene, with the vast majority being removed by hydrolysis in cloudwater. Only about 0.4% of the phosgene produced in the troposphere avoids wet removal and is transported to the stratosphere, where its chlorine can be released to participate in the catalytic destruction of ozone. Stratospheric phosgene is produced from the photochemical degradation of CCl4, C2Cl4, CHCl3, and CH3CCl3 and is removed by photolysis and downward transport to the troposphere. Model calculations, in good agreement with observations, indicate that these processes produce a peak stratospheric concentration of about 25-30 pptv at an altitude of about 25 km. In contrast to tropospheric phosgene, stratospheric phosgene is found to have a lifetime against photochemical removal of the order of years. As a result, a significant portion of the phosgene that is produced in the stratosphere is ultimately returned to the troposphere, where it is rapidly removed by clouds. This phenomenon effectively decreases the amount of reactive chlorine injected into the stratosphere and available for ozone depletion from phosgene's parent compounds. A similar phenomenon due to the downward transport of stratospheric COFCl produced from CFC-11 is estimated to cause a 7% decrease in the amount of reactive chlorine injected into the stratosphere from this compound. Our results are potentially sensitive to a variety of parameters, most notably the rate

  11. EOF analysis of COSMIC observations on the global zonal mean temperature structure of the Upper Troposphere and Lower Stratosphere from 2007 to 2013

    Salinas, Cornelius Csar Jude H.; Chang, Loren C.

    2018-06-01

    This work presents the results of a Conventional Empirical Orthogonal Function Analysis on daily global zonal mean temperature profiles in the Upper Troposphere and Lower Stratosphere (15-35 km), as measured by the FORMOSAT-3/COSMIC mission from January 2007 to June 2013. For validation, results were compared with ERA-Interim reanalysis. Results show that, the leading global EOF mode (27%) from COSMIC is consistent with temperature anomalies due to the tropical cooling associated with boreal winter Sudden Stratospheric Warmings (SSW). The second global EOF mode from COSMIC (15.3%) is consistent with temperature anomalies due to the Quasi-biennial Oscillation (QBO). The third global mode from COSMIC (10.9%) is consistent with temperature anomalies due to the El Nino Southern Oscillation. This work also shows that the second northern hemisphere EOF mode from COSMIC (16.8%) is consistent with temperature anomalies due Rossby-wave breaking (RWB) which is expected to only be resolved by a high vertical and temporal resolution dataset like COSMIC. Our work concludes that the use of a high vertical and temporal resolution dataset like COSMIC yields non-seasonal EOF modes that are consistent with relatively more intricate temperature anomalies due to the SSW, QBO, ENSO and RWB.

  12. Rigorous determination of stratospheric water vapor trends from MIPAS observations.

    Ceccherini, Simone; Carli, Bruno; Raspollini, Piera; Ridolfi, Marco

    2011-05-09

    The trend of stratospheric water vapor as a function of latitude is estimated by the MIPAS measurements by means of a new method that uses the measurement space solution. The method uses all the information provided by the observations avoiding the artifacts introduced by the a priori information and by the interpolation to different vertical grids. The analysis provides very precise values of the trends that, however, are limited by a relatively large systematic error induced by the radiometric calibration error of the instrument. The results show in the five years from 2005 to 2009 a dependence on latitude of the stratospheric (from 37 to 53 km) water vapor trend with a positive value of (0.41 ± 0.16)%yr-1 in the northern hemisphere and less than 0.16%yr-1 in the southern hemisphere.

  13. Hygienic estimation of population doses due to stratospheric fallout

    Marej, A.N.; Knizhnikov, V.A.

    1980-01-01

    The hygienic estimation of external and internal irradiation of the USSR population due to stratospheric global fallouts of fission products after nuclear explosions and weapon tests, is carried out. Numerical values which characterize the dose-effect dependence in the case of radiation of marrow, bone tissue and whole body are presented. Values of mean individual and population doses of irradiation due to global fallouts within 1963-1975, types of injury and the number of mortal cases due to malignant neoplasms are presented. A conclusion is made that the contribution of radiation due to stratospheric fallouts in the mortality due to malignant neoplasms is insignificant. Annual radiation doses, conditioned by global fallouts within the period of 1963-1975 constitute but several percent from the dose of radiation of the natural radiation background. Results of estimation of genetic consequences of irradiation due to atmospheric fallouts are presented

  14. Eight years of stratospheric ozone observations at Marambio, Antarctica

    Damski, J; Taalas, P [Finnish Meteorological Inst., Helsinki (Finland). Section of Ozone and UV Research

    1996-12-31

    In this work behaviour of the stratospheric ozone using the total ozone and ozone sounding measurements from Marambio (64 deg 14`S, 56 deg 37`W) at Antarctic Peninsula has been studied. The effects of depleted stratospheric ozone to the UV-B-radiation are investigated employing a radiative transfer model, and the Marambio total ozone measurements. The levels of UV-B radiation have been studied from the point of the erythemal UV-B-doses on the horizontal human epidermis. The low values of total ozone at Marambio are also reflected to the received UV-doses which have increased roughly 20-80% (compared to long term average) during austral spring and summer. In respective to the total amount of ozone, the model calculations show that during October the UV-B-doses can be at the same level they should be during normal summer

  15. Wind tunnel tests of stratospheric airship counter rotating propellers

    Yaxi Chen

    2015-01-01

    Full Text Available Aerodynamic performance of the high-altitude propeller, especially the counter rotation effects, is experimentally studied. Influences of different configurations on a stratospheric airship, included 2-blade counter-rotating propeller (CRP, dual 2-blade single rotation propellers (SRPs and 4-blade SRP, are also indicated. This research indicates that the effect of counter rotation can greatly improve the efficiency. It shows that the CRP configuration results in a higher efficiency than the dual 2-blade SRPs configuration or 4-blade SRP configuration under the same advance ratio, and the CRP configuration also gains the highest efficiency whether under the situation of providing the same trust or absorbing the same power. It concludes that, for a stratospheric airship, the CRP configuration is better than the multiple SRPs configuration or a multi-blade SRP one.

  16. Eight years of stratospheric ozone observations at Marambio, Antarctica

    Damski, J.; Taalas, P. [Finnish Meteorological Inst., Helsinki (Finland). Section of Ozone and UV Research

    1995-12-31

    In this work behaviour of the stratospheric ozone using the total ozone and ozone sounding measurements from Marambio (64 deg 14`S, 56 deg 37`W) at Antarctic Peninsula has been studied. The effects of depleted stratospheric ozone to the UV-B-radiation are investigated employing a radiative transfer model, and the Marambio total ozone measurements. The levels of UV-B radiation have been studied from the point of the erythemal UV-B-doses on the horizontal human epidermis. The low values of total ozone at Marambio are also reflected to the received UV-doses which have increased roughly 20-80% (compared to long term average) during austral spring and summer. In respective to the total amount of ozone, the model calculations show that during October the UV-B-doses can be at the same level they should be during normal summer

  17. Infrared emission high spectral resolution atlas of the stratospheric limb

    Maguire, William C.; Kunde, Virgil G.; Herath, Lawrence W.

    1989-01-01

    An atlas of high resolution infrared emission spectra identifies a number of gaseous atmospheric features significant to stratospheric chemistry in the 770-900/cm and 1100-1360/cm regions at six zenith angles from 86.7 to 95.1 deg. A balloon-borne Michelson interferometer was flown to obtain about 0.03/cm resolution spectra. Two 10/cm extracts are presented here.

  18. A warming tropical central Pacific dries the lower stratosphere

    Ding, Qinghua; Fu, Qiang

    2018-04-01

    The amount of water vapor in the tropical lower stratosphere (TLS), which has an important influence on the radiative energy budget of the climate system, is modulated by the temperature variability of the tropical tropopause layer (TTL). The TTL temperature variability is caused by a complex combination of the stratospheric quasi-biennial oscillation (QBO), tropospheric convective processes in the tropics, and the Brewer-Dobson circulation (BDC) driven by mid-latitude and subtropical atmospheric waves. In 2000, the TLS water vapor amount exhibited a stepwise transition to a dry phase, apparently caused by a change in the BDC. In this study, we present observational and modeling evidence that the epochal change of water vapor between the periods of 1992-2000 and 2001-2005 was also partly caused by a concurrent sea surface temperature (SST) warming in the tropical central Pacific. This SST warming cools the TTL above by enhancing the equatorial wave-induced upward motion near the tropopause, which consequently reduces the amount of water vapor entering the stratosphere. The QBO affects the TLS water vapor primarily on inter-annual timescales, whereas a classical El Niño southern oscillation (ENSO) event has small effect on tropical mean TLS water vapor because its responses are longitudinally out of phase. This study suggests that the tropical central Pacific SST is another driver of TLS water vapor variability on inter-decadal timescales and the tropical SST changes could contribute to about 30% of the step-wise drop of the lower stratospheric water vapor from 1992-2000 to 2001-2005.

  19. Dust ablation on the giant planets: Consequences for stratospheric photochemistry

    Moses, Julianne I.; Poppe, Andrew R.

    2017-11-01

    Ablation of interplanetary dust supplies oxygen to the upper atmospheres of Jupiter, Saturn, Uranus, and Neptune. Using recent dynamical model predictions for the dust influx rates to the giant planets (Poppe et al., 2016), we calculate the ablation profiles and investigate the subsequent coupled oxygen-hydrocarbon neutral photochemistry in the stratospheres of these planets. We find that dust grains from the Edgeworth-Kuiper Belt, Jupiter-family comets, and Oort-cloud comets supply an effective oxygen influx rate of 1.0-0.7+2.2 ×107 O atoms cm-2 s-1 to Jupiter, 7.4-5.1+16 ×104 cm-2 s-1 to Saturn, 8.9-6.1+19 ×104 cm-2 s-1 to Uranus, and 7.5-5.1+16 ×105 cm-2 s-1 to Neptune. The fate of the ablated oxygen depends in part on the molecular/atomic form of the initially delivered products, and on the altitude at which it was deposited. The dominant stratospheric products are CO, H2O, and CO2, which are relatively stable photochemically. Model-data comparisons suggest that interplanetary dust grains deliver an important component of the external oxygen to Jupiter and Uranus but fall far short of the amount needed to explain the CO abundance currently seen in the middle stratospheres of Saturn and Neptune. Our results are consistent with the theory that all of the giant planets have experienced large cometary impacts within the last few hundred years. Our results also suggest that the low background H2O abundance in Jupiter's stratosphere is indicative of effective conversion of meteoric oxygen to CO during or immediately after the ablation process - photochemistry alone cannot efficiently convert the H2O into CO on the giant planets.

  20. Alert with destruction of stratospheric ozone: 95 Nobel Prize Winners

    Santamaria, J.; Zurita, E.

    1995-01-01

    After briefly summarizing the discoveries of the 95 Nobel Prize Winners in Chemistry related to the threats to the ozone layer by chemical pollutants, we make a soft presentation of the overall problem of stratospheric ozone, starting with the destructive catalytic cycles of the pollutant-based free radicals, following with the diffusion mathematical models in Atmospheric Chemistry, and ending with the increasing annual drama of the ozone hole in the Antarctica. (Author)

  1. Future emission scenarios for chemicals that may deplete stratospheric ozone

    Hammitt, J.K; Camm, Frank; Mooz, W.E.; Wolf, K.A.; Bamezai, Anil; Connel, P.S.; Wuebbles, D.J.

    1990-01-01

    Scenarios are developed for long-term future emissions of seven of the most important manmade chemicals that may deplete ozone and the corresponding effect on stratospheric ozone concentrations is calculated using a one-dimensional atmospheric model. The scenarios are based on detailed analysis of the markets for products that use these chemicals and span a central 90% probability interval for the chemicals joint effect on calculated ozone abundance, assuming no additional regulations. (author). 22 refs., 2 figs., 5 tabs

  2. A new formulation of equivalent effective stratospheric chlorine (EESC

    P. A. Newman

    2007-09-01

    Full Text Available Equivalent effective stratospheric chlorine (EESC is a convenient parameter to quantify the effects of halogens (chlorine and bromine on ozone depletion in the stratosphere. We show, discuss, and analyze a new formulation of EESC that now includes the effects of age-of-air dependent fractional release values and an age-of-air spectrum. This EESC can be more appropriately applied to various parts of the stratosphere because of this dependence on mean age-of-air. This new formulation provides quantitative estimates of EESC that can be directly related to inorganic chlorine and bromine throughout the stratosphere. In this paper, we first provide a detailed description of the EESC calculation. We then use this EESC formulation to estimate that human-produced ozone depleting substances will recover to 1980 levels in 2041 in the midlatitudes, and 2067 over Antarctica. These recovery dates are based upon the assumption that the international agreements for regulating ozone-depleting substances are adhered to. In addition to recovery dates, we also estimate the uncertainties and possible problems in the estimated times of recovery. The midlatitude recovery of 2041 has a 95% confidence uncertainty from 2028 to 2049, while the 2067 Antarctic recovery has a 95% confidence uncertainty from 2056 to 2078. The principal uncertainties are from the estimated mean age-of-air and fractional release values, and the assumption that these quantities are time independent. Using other model estimates of age decrease due to climate change, we estimate that midlatitude recovery may be significantly accelerated.

  3. Long duration balloon flights in the middle stratosphere

    Malaterre, P.

    1993-02-01

    Research and development performed by the French Space Agency (CNES) over the past 10 years has given the scientific community the Infrared Montgolfiere, a balloon capable of lifting 50-kg payloads into the stratosphere for periods of several weeks. The Infrared Montgolfiere is a hot air balloon that captures infrared radiation using the earth as a heat source. Thirty flights have been launched so far, some lasting more than sixty days and circling the globe twice.

  4. Location and data collection for long stratospheric balloon flights

    Malaterre, P.

    Stratospheric balloons capable of taking a 30 kg scientific payload to an altitude of 22 to 30 km for 1 month or more were developed. In-flight experiments were used to qualify the designs of a pumpkin shaped superpressure balloon and an infrared hot air balloon. Tracking of the flights (location and transmission of the parameters measured on board) was achieved using a telemetry gondola including an ARGOS beacon adapted for operation in the low temperatures encountered.

  5. Mass spectrometric investigation of the isotopes of ozone in the laboratory and the stratosphere

    Mauersberger, K.; Morton, J.; Schueler, B.

    1991-01-01

    During the last few years information on the isotope anomalies of ozone has substantially increased. Whenever ozone is formed in a gas phase reaction, an enhancement in its heavy isotopes is found of magnitude 12-14% ( 50 O 3 ) above the statistically expected values. The mass-independent enhancement decreases toward higher pressures and also shows a pronounced temperature dependence. Toward lower temperatures the enhancement becomes less. Studies of all possible ozone isotopes have shown that molecular symmetry plays a major role. Even large enhancements, above the laboratory results, have been occasionally measured in the stratosphere using a number of different experimental techniques. A correlation between very high heavy ozone enhancement (> 30%) and high solar activity may exist. The behavior of ozone isotopes will provide information about the ozone formation process

  6. SAGE II Measurements of Stratospheric Aerosol Properties at Non-Volcanic Levels

    Thomason, Larry W.; Burton, Sharon P.; Luo, Bei-Ping; Peter, Thomas

    2008-01-01

    Since 2000, stratospheric aerosol levels have been relatively stable and at the lowest levels observed in the historical record. Given the challenges of making satellite measurements of aerosol properties at these levels, we have performed a study of the sensitivity of the product to the major components of the processing algorithm used in the production of SAGE II aerosol extinction measurements and the retrieval process that produces the operational surface area density (SAD) product. We find that the aerosol extinction measurements, particularly at 1020 nm, remain robust and reliable at the observed aerosol levels. On the other hand, during background periods, the SAD operational product has an uncertainty of at least a factor of 2 during due to the lack of sensitivity to particles with radii less than 100 nm.

  7. Effects of a massive pulse injection of NO/sub x/ into the stratosphere

    Duewer, W.H.; Wuebbles, D.J.; Chang, J.S.

    1978-04-01

    Recent measurements of chemical reaction rates have greatly reduced the modeled sensitivity of stratospheric ozone toward injections of NO/sub x/ (NO/sub x/ = NO + NO 2 ) in amounts comparable to the natural NO/sub x/ inventory. Most of this reduced effect results from interference between NO/sub x/ and HO/sub x/ catalytic ozone destruction mechanisms. For very large NO/sub x/ injections (such as might be generated from a major nuclear exchange involving devices of greater than one megaton yield) the interfering processes saturate and large ozone depletions are still computed. Smaller total injections or lower altitude injections (such as might be generated by sub megaton devices) have much lesser computed effects

  8. Influence of an Internally-Generated QBO on Modeled Stratospheric Dynamics and Ozone

    Hurwitz, M. M.; Newman, P. A.; Song, I. S.

    2011-01-01

    A GEOS V2 CCM simulation with an internally generated quasi-biennial oscillation (QBO) signal is compared to an otherwise identical simulation without a QBO. In a present-day climate, inclusion of the modeled QBO makes a significant difference to stratospheric dynamics and ozone throughout the year. The QBO enhances variability in the tropics, as expected, but also in the polar stratosphere in some seasons. The modeled QBO also affects the mean stratospheric climate. Because tropical zonal winds in the baseline simulation are generally easterly, there is a relative increase in zonal wind magnitudes in tropical lower and middle stratosphere in the QBO simulation. Extra-tropical differences between the QBO and 'no QBO' simulations thus reflect a bias toward the westerly phase of the QBO: a relative strengthening and poleward shifting the polar stratospheric jets, and a reduction in Arctic lower stratospheric ozone.

  9. Climate change projections and stratosphere-troposphere interaction

    Scaife, Adam A.; Fereday, David R.; Butchart, Neal; Hardiman, Steven C. [Met Office Hadley Centre, Exeter (United Kingdom); Spangehl, Thomas; Cubasch, Ulrich; Langematz, Ulrike [Freie Universitaet Berlin, Berlin (Germany); Akiyoshi, Hideharu [National Institute for Environmental Studies, Tsukuba (Japan); Bekki, Slimane [LATMOS-IPSL, UVSQ, UPMC, CNRS/INSU, Paris (France); Braesicke, Peter [University of Cambridge, Cambridge (United Kingdom); Chipperfield, Martyn P. [University of Leeds, School of Earth and Environment, Leeds (United Kingdom); Gettelman, Andrew [National Center for Atmospheric Research, Boulder, CO (United States); Michou, Martine [GAME/CNRM (Meteo France, CNRS), Toulouse (France); Rozanov, Eugene [PMOD/WRC and ETHZ, Davos (Switzerland); Shepherd, Theodore G. [University of Toronto, Toronto, ON (Canada)

    2012-05-15

    Climate change is expected to increase winter rainfall and flooding in many extratropical regions as evaporation and precipitation rates increase, storms become more intense and storm tracks move polewards. Here, we show how changes in stratospheric circulation could play a significant role in future climate change in the extratropics through an additional shift in the tropospheric circulation. This shift in the circulation alters climate change in regional winter rainfall by an amount large enough to significantly alter regional climate change projections. The changes are consistent with changes in stratospheric winds inducing a change in the baroclinic eddy growth rate across the depth of the troposphere. A change in mean wind structure and an equatorward shift of the tropospheric storm tracks relative to models with poor stratospheric resolution allows coupling with surface climate. Using the Atlantic storm track as an example, we show how this can double the predicted increase in extreme winter rainfall over Western and Central Europe compared to other current climate projections. (orig.)

  10. A New Formulation of Equivalent Effective Stratospheric Chlorine (EESC)

    Newman, P. A.; Daniel, J. S.; Waugh, D. W.; Nash, E. R.

    2007-01-01

    Equivalent effective stratospheric chlorine (EESC) is a convenient parameter to quantify the effects of halogens (chlorine and bromine) on ozone depletion in the stratosphere. We show and discuss a new formulation of EESC that now includes the effects of age-of-air dependent fractional release values and an age-of-air spectrum. This new formulation provides quantitative estimates of EESC that can be directly related to inorganic chlorine and bromine throughout the stratosphere. Using this EESC formulation, we estimate that human-produced ozone depleting substances will recover to 1980 levels in 2041 in the midlatitudes, and 2067 over Antarctica. These recovery dates are based upon the assumption that the international agreements for regulating ozone-depleting substances are adhered to. In addition to recovery dates, we also estimate the uncertainties in the estimated time of recovery. The midlatitude recovery of 2041 has a 95% confidence uncertainty from 2028 to 2049, while the 2067 Antarctic recovery has a 95% confidence uncertainty from 2056 to 2078. The principal uncertainties are from the estimated mean age-of-air, and the assumption that the mean age-of-air and fractional release values are time independent. Using other model estimates of age decrease due to climate change, we estimate that midlatitude recovery may be accelerated from 2041 to 2031.

  11. Global assimilation of X Project Loon stratospheric balloon observations

    Coy, L.; Schoeberl, M. R.; Pawson, S.; Candido, S.; Carver, R. W.

    2017-12-01

    Project Loon has an overall goal of providing worldwide internet coverage using a network of long-duration super-pressure balloons. Beginning in 2013, Loon has launched over 1600 balloons from multiple tropical and middle latitude locations. These GPS tracked balloon trajectories provide lower stratospheric wind information over the oceans and remote land areas where traditional radiosonde soundings are sparse, thus providing unique coverage of lower stratospheric winds. To fully investigate these Loon winds we: 1) compare the Loon winds to winds produced by a global data assimilation system (DAS: NASA GEOS) and 2) assimilate the Loon winds into the same comprehensive DAS. Results show that in middle latitudes the Loon winds and DAS winds agree well and assimilating the Loon winds have only a small impact on short-term forecasting of the Loon winds, however, in the tropics the loon winds and DAS winds often disagree substantially (8 m/s or more in magnitude) and in these cases assimilating the loon winds significantly improves the forecast of the loon winds. By highlighting cases where the Loon and DAS winds differ, these results can lead to improved understanding of stratospheric winds, especially in the tropics.

  12. Sudden and unexpected childhood deaths investigated at the Pretoria Medico-Legal Laboratory, South Africa, 2007 - 2011.

    Van Deventer, B S; Rossouw, S H; Du Toit-Prinsloo, L

    2016-09-06

     Sudden and unexpected death is well known to occur in infants, and although sudden deaths are less frequent after the first birthday, they still account for a significant proportion of childhood deaths. In 2009, 1.9% of the total deaths in the USA were childhood deaths. In South Africa (SA) this proportion was much higher at 11.85%. According to the law, sudden and unexpected deaths are generally investigated as unnatural deaths. Establishing an exact underlying anatomical cause of death will depend on available resources and can be difficult in a substantial proportion of cases.  A retrospective descriptive case audit was conducted at the Pretoria Medico-Legal Laboratory (PMLL), SA, from 1 January 2007 through to 31 December 2011. All children aged 1 - 18 years who died suddenly and unexpectedly were included.  Ninety-eight cases were identified, which constituted nearly 1% of total admissions to the PMLL. The majority of the deaths were of children aged 1 - 5 years, and the male/female ratio was 1.04:1. In the largest proportion of cases (n=28, 28.6%), the medicolegal investigation, including autopsy and ancillary investigations, did not establish an underlying anatomical cause of death. In the cases where a cause of death was established, pneumonia was the most common diagnosis (n=22, 22.4%).  The fact that the cause of the largest proportion of deaths could not be ascertained emphasises the need for consideration of additional investigative techniques, such as molecular/genetic screening, which have provided an underlying cause of death in a significant number of cases in other countries. There is a lack of published research on the causes and incidence of sudden unexpected deaths in children in SA, and further research in this area is needed.

  13. The global warming potential of methane reassessed with combined stratosphere and troposphere chemistry

    Holmes, C. D.; Archibald, A. T.; Eastham, S. D.; Søvde, O. A.

    2017-12-01

    Methane is a direct and indirect greenhouse gas. The direct greenhouse effect comes from the radiation absorbed and emitted by methane itself. The indirect greenhouse effect comes from radiatively active gases that are produced during methane oxidation: principally O3, H2O, and CO2. Methane also suppresses tropospheric OH, which indirectly affects numerous greenhouses gases and aerosols. Traditionally, the methane global warming potential (GWP) has included the indirect effects on tropospheric O3 and OH and stratospheric H2O, with these effects estimated independently from unrelated tropospheric and stratospheric chemistry models and observations. Using this approach the CH4 is about 28 over 100 yr (without carbon cycle feedbacks, IPCC, 2013). Here we present a comprehensive analysis of the CH4 GWP in several 3-D global atmospheric models capable of simulating both tropospheric and stratospheric chemistry (GEOS-Chem, Oslo CTM3, UKCA). This enables us to include, for the first time, the indirect effects of CH4 on stratospheric O3 and stratosphere-troposphere coupling. We diagnose the GWP from paired simulations with and without a 5% perturbation to tropospheric CH4 concentrations. Including stratospheric chemistry nearly doubles the O3 contribution to CH4 GWP because of O3 production in the lower stratosphere and because CH4 inhibits Cl-catalyzed O3 loss in the upper stratosphere. In addition, stratosphere-troposphere coupling strengthens the chemical feedback on its own lifetime. In the stratosphere, this feedback operates by a CH4 perturbation thickening the stratospheric O3 layer, which impedes UV-driven OH production in the troposphere and prolongs the CH4 lifetime. We also quantify the impact of CH4-derived H2O on the stratospheric HOx cycles but these effects are small. Combining all of the above, these models suggest that the 100-yr GWP of CH4 is over 33.5, a 20% increase over the latest IPCC assessment.

  14. Effects of stratospheric aerosol surface processes on the LLNL two-dimensional zonally averaged model

    Connell, P.S.; Kinnison, D.E.; Wuebbles, D.J.; Burley, J.D.; Johnston, H.S.

    1992-01-01

    We have investigated the effects of incorporating representations of heterogeneous chemical processes associated with stratospheric sulfuric acid aerosol into the LLNL two-dimensional, zonally averaged, model of the troposphere and stratosphere. Using distributions of aerosol surface area and volume density derived from SAGE 11 satellite observations, we were primarily interested in changes in partitioning within the Cl- and N- families in the lower stratosphere, compared to a model including only gas phase photochemical reactions

  15. Lidar observations and transfer of stratospheric aerosol over Tomsk in summer period

    Novikov, P. V.; Cheremisin, A. A.; Marichev, V. N.; Barashkov, T. O.

    2015-11-01

    The analysis of the stratospheric aerosol origin was carried out by the method of Lagrangian particle trajectories. Stratospheric aerosol was registered by lidar sounding of atmosphere above Tomsk in 2008-2013 in summer time. The analysis of the results had shown that the aerosol content at altitudes of 13-125 km with maximum at 16-18 km can be associated with aerosol transfer from tropical stratospheric reservoir.

  16. Sudden acquired retinal degeneration syndrome in western Canada: 93 cases.

    Leis, Marina L; Lucyshyn, Danica; Bauer, Bianca S; Grahn, Bruce H; Sandmeyer, Lynne S

    2017-11-01

    This study reviewed clinical data from dogs diagnosed with sudden acquired retinal degeneration syndrome (SARDS) in western Canada. Medical records from the Western College of Veterinary Medicine from 2002 to 2016 showed that 93 cases of SARDS were diagnosed based on presentation for sudden blindness and a bilaterally extinguished electroretinogram. The most common pure breeds were the miniature schnauzer, dachshund, and pug. The mean age at diagnosis was 8.1 years and males and females were equally affected. Most of the dogs were presented with normal non-chromatic, but abnormal chromatic pupillary light reflexes. The incidence of retinal degeneration as detected via ophthalmoscopy increased over time after SARDS diagnosis. Polyuria, polydipsia, polyphagia, weight gain, elevated liver enzyme values, isosthenuria, and proteinuria were common clinical and laboratory findings. Chromatic pupillary light reflex testing may be more valuable than non-chromatic pupillary light testing in detecting pupil response abnormalities in dogs with SARDS, although electroretinography remains the definitive diagnostic test.

  17. Cryotherapy does not affect peroneal reaction following sudden inversion.

    Berg, Christine L; Hart, Joseph M; Palmieri-Smith, Riann; Cross, Kevin M; Ingersoll, Christopher D

    2007-11-01

    If ankle joint cryotherapy impairs the ability of the ankle musculature to counteract potentially injurious forces, the ankle is left vulnerable to injury. To compare peroneal reaction to sudden inversion following ankle joint cryotherapy. Repeated measures design with independent variables, treatment (cryotherapy and control), and time (baseline, immediately post treatment, 15 minutes post treatment, and 30 minutes post treatment). University research laboratory. Twenty-seven healthy volunteers. An ice bag was secured to the lateral ankle joint for 20 minutes. The onset and average root mean square amplitude of EMG activity in the peroneal muscles was calculated following the release of a trap door mechanism causing inversion. There was no statistically significant change from baseline for peroneal reaction time or average peroneal muscle activity at any post treatment time. Cryotherapy does not affect peroneal muscle reaction following sudden inversion perturbation.

  18. Medico legal investigations into sudden sniffing deaths linked with trichloroethylene.

    Da Broi, Ugo; Colatutto, Antonio; Sala, Pierguido; Desinan, Lorenzo

    2015-08-01

    Sudden deaths attributed to sniffing trichloroethylene are caused by the abuse of this solvent which produces pleasant inebriating effects with rapid dissipation. In the event of repeated cycles of inhalation, a dangerous and uncontrolled systemic accumulation of trichloroethylene may occur, followed by central nervous system depression, coma and lethal cardiorespiratory arrest. Sometimes death occurs outside the hospital environment, without medical intervention or witnesses and without specific necroscopic signs. Medico legal investigations into sudden sniffing deaths associated with trichloroethylene demand careful analysis of the death scene and related circumstances, a detailed understanding of the deceased's medical history and background of substance abuse and an accurate evaluation of all autopsy and laboratory data, with close cooperation between the judiciary, coroners and toxicologists. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  19. Sudden acquired retinal degeneration syndrome in western Canada: 93 cases

    Leis, Marina L.; Lucyshyn, Danica; Bauer, Bianca S.; Grahn, Bruce H.; Sandmeyer, Lynne S.

    2017-01-01

    This study reviewed clinical data from dogs diagnosed with sudden acquired retinal degeneration syndrome (SARDS) in western Canada. Medical records from the Western College of Veterinary Medicine from 2002 to 2016 showed that 93 cases of SARDS were diagnosed based on presentation for sudden blindness and a bilaterally extinguished electroretinogram. The most common pure breeds were the miniature schnauzer, dachshund, and pug. The mean age at diagnosis was 8.1 years and males and females were equally affected. Most of the dogs were presented with normal non-chromatic, but abnormal chromatic pupillary light reflexes. The incidence of retinal degeneration as detected via ophthalmoscopy increased over time after SARDS diagnosis. Polyuria, polydipsia, polyphagia, weight gain, elevated liver enzyme values, isosthenuria, and proteinuria were common clinical and laboratory findings. Chromatic pupillary light reflex testing may be more valuable than non-chromatic pupillary light testing in detecting pupil response abnormalities in dogs with SARDS, although electroretinography remains the definitive diagnostic test. PMID:29089658

  20. Familial Atrial Septal Defect and Sudden Cardiac Death

    Ellesøe, Sabrina Gade; Johansen, Morten Munk; Bjerre, Jesper Vandborg

    2016-01-01

    OBJECTIVE: Atrial septal defect (ASD) is the second most common congenital heart defect (CHD) and is observed in families as an autosomal dominant trait as well as in nonfamilial CHD. Mutations in the NKX2-5 gene, located on chromosome 5, are associated with ASD, often combined with conduction...... disturbances, cardiomyopathies, complex CHD, and sudden cardiac death as well. Here, we show that NKX2-5 mutations primarily occur in ASD patients with conduction disturbances and heritable ASD. Furthermore, these families are at increased risk of sudden cardiac death. RESULTS: We screened 39 probands...... with familial CHD for mutations in NKX2-5 and discovered a novel mutation in one family (2.5%) with ASD and atrioventricular block. A review of the literature revealed 59 different NKX2-5 mutations in 202 patients. Mutations were significantly more common in familial cases compared to nonfamilial cases (P = 7...

  1. Sudden infant death syndrome: an unrecognized killer in developing countries

    Ndu IK

    2016-02-01

    Full Text Available Ikenna Kingsley Ndu Department of Paediatrics, Enugu State University Teaching Hospital, Enugu, Nigeria Abstract: Sudden infant death syndrome (SIDS is defined as the sudden unexpected death of an infant <1 year of age, with onset of the fatal episode apparently occurring during sleep, that remains unexplained after a thorough investigation including performance of a complete autopsy and review of the circumstances of death and the clinical history. SIDS contributes to infant mortality and resulted in ~15,000 deaths globally in 2013. Most of the risk factors of SIDS are common in developing countries; yet, there has been little interest in SIDS by researchers in Africa. This review looks at the extent of the attention given to SIDS in a developing country like Nigeria, and factors responsible for the scarce data concerning this significant cause of mortality. Keywords: SIDS, mortality, Nigeria

  2. Sickle cell trait and sudden death--bringing it home.

    Mitchell, Bruce L.

    2007-01-01

    Sickle cell trait continues to be the leading cause of sudden death for young African Americans in military basic training and civilian organized sports. The syndrome may have caused the death of up to 10 college football players since 1974 and, as recently as 2000, was suspected as the cause of death of three U.S. Army recruits. The penal military-style boot camps in the United States and the recent death of two teenagers with sickle cell trait merits renewed vigor in the education of athletic instructors, the military and the public about conditions associated with sudden death in individuals with sickle cell trait. Images Figure 1 Figure 2 PMID:17393956

  3. Statistical inferences for bearings life using sudden death test

    Morariu Cristin-Olimpiu

    2017-01-01

    Full Text Available In this paper we propose a calculus method for reliability indicators estimation and a complete statistical inferences for three parameters Weibull distribution of bearings life. Using experimental values regarding the durability of bearings tested on stands by the sudden death tests involves a series of particularities of the estimation using maximum likelihood method and statistical inference accomplishment. The paper detailing these features and also provides an example calculation.

  4. Wave vector modification of the infinite order sudden approximation

    Sachs, J.G.; Bowman, J.M.

    1980-01-01

    A simple method is proposed to modify the infinite order sudden approximation (IOS) in order to extend its region of quantitative validity. The method involves modifying the phase of the IOS scattering matrix to include a part calculated at the outgoing relative kinetic energy as well as a part calculated at the incoming kinetic energy. An immediate advantage of this modification is that the resulting S matrix is symmetric. We also present a closely related method in which the relative kinetic energies used in the calculation of the phase are determined from quasiclassical trajectory calculations. A set of trajectories is run with the initial state being the incoming state, and another set is run with the initial state being the outgoing state, and the average final relative kinetic energy of each set is obtained. One part of the S-operator phase is then calculated at each of these kinetic energies. We apply these methods to vibrationally inelastic collinear collisions of an atom and a harmonic oscillator, and calculate transition probabilities P/sub n/1→nf for three model systems. For systems which are sudden, or nearly so, the agreement with exact quantum close-coupling calculations is substantially improved over standard IOS ones when Δn=such thatub f/-n/sub i/ is large, and the corresponding transition probability is small, i.e., less than 0.1. However, the modifications we propose will not improve the accuracy of the IOS transition probabilities for any collisional system unless the standard form of IOS already gives at least qualitative agreement with exact quantal calculations. We also suggest comparisons between some classical quantities and sudden predictions which should help in determining the validity of the sudden approximation. This is useful when exact quantal data is not available for comparison

  5. Wave vector modification of the infinite order sudden approximation

    Sachs, Judith Grobe; Bowman, Joel M.

    1980-10-01

    A simple method is proposed to modify the infinite order sudden approximation (IOS) in order to extend its region of quantitative validity. The method involves modifying the phase of the IOS scattering matrix to include a part calculated at the outgoing relative kinetic energy as well as a part calculated at the incoming kinetic energy. An immediate advantage of this modification is that the resulting S matrix is symmetric. We also present a closely related method in which the relative kinetic energies used in the calculation of the phase are determined from quasiclassical trajectory calculations. A set of trajectories is run with the initial state being the incoming state, and another set is run with the initial state being the outgoing state, and the average final relative kinetic energy of each set is obtained. One part of the S-operator phase is then calculated at each of these kinetic energies. We apply these methods to vibrationally inelastic collinear collisions of an atom and a harmonic oscillator, and calculate transition probabilities Pn1→nf for three model systems. For systems which are sudden, or nearly so, the agreement with exact quantum close-coupling calculations is substantially improved over standard IOS ones when Δn=‖nf-ni‖ is large, and the corresponding transition probability is small, i.e., less than 0.1. However, the modifications we propose will not improve the accuracy of the IOS transition probabilities for any collisional system unless the standard form of IOS already gives at least qualitative agreement with exact quantal calculations. We also suggest comparisons between some classical quantities and sudden predictions which should help in determining the validity of the sudden approximation. This is useful when exact quantal data is not available for comparison.

  6. A consistent definition of the Arctic polar vortex breakup in both the lower and upper stratosphere

    Choi, W.; Seo, J.

    2014-12-01

    Breakup of the polar vortex is a dominant feature of the seasonal transition from winter to summer in the stratosphere, which significantly affects stratospheric O3 concentration and tropospheric weather. Previously several criteria for the vortex breakup have been suggested based on the potential vorticity (PV) and wind speed, however, those mainly have focused on the lower stratospheric vortex of which spatiotemporal evolution and decay are more continuous than those of the upper stratospheric vortex. To find a consistent criterion for the vortex breakup in both the lower and upper stratosphere, the present study defined a polar vortex breakup day as when PV gradient at the polar vortex edge becomes lower than that at the subtropical edge on the area equivalent latitude based on PV. With applying the new definition to the UK Met Office reanalysis data, the breakup days of the Arctic polar vortices on 18 isentropic levels from 450 K to 1300 K were calculated for the period of 1993-2005. In comparison with CH4, N2O and O3 measured by the ILAS and POAM II/III satellite instruments, the breakup days are well consistent with changes in the distribution of such tracers as well as their zonal standard deviations associated with the vortex structure breaking and irreversible mixing. The vortex breakup in the upper stratosphere occurs more or less a month prior to that in the middle and lower stratosphere while the stratospheric final warming events occurs simultaneously in the upper and lower stratosphere.

  7. Stratospheric ozone measurements at Arosa (Switzerland): history and scientific relevance

    Staehelin, Johannes; Viatte, Pierre; Stübi, Rene; Tummon, Fiona; Peter, Thomas

    2018-05-01

    Climatic Observatory (LKO) in Arosa (Switzerland), marking the beginning of the world's longest series of total (or column) ozone measurements. They were driven by the recognition that atmospheric ozone is important for human health, as well as by scientific curiosity about what was, at the time, an ill characterised atmospheric trace gas. From around the mid-1950s to the beginning of the 1970s studies of high atmosphere circulation patterns that could improve weather forecasting was justification for studying stratospheric ozone. In the mid-1970s, a paradigm shift occurred when it became clear that the damaging effects of anthropogenic ozone-depleting substances (ODSs), such as long-lived chlorofluorocarbons, needed to be documented. This justified continuing the ground-based measurements of stratospheric ozone. Levels of ODSs peaked around the mid-1990s as a result of a global environmental policy to protect the ozone layer, implemented through the 1987 Montreal Protocol and its subsequent amendments and adjustments. Consequently, chemical destruction of stratospheric ozone started to slow around the mid-1990s. To some extent, this raises the question as to whether continued ozone observation is indeed necessary. In the last decade there has been a tendency to reduce the costs associated with making ozone measurements globally including at Arosa. However, the large natural variability in ozone on diurnal, seasonal, and interannual scales complicates the capacity for demonstrating the success of the Montreal Protocol. Chemistry-climate models also predict a super-recovery of the ozone layer at mid-latitudes in the second half of this century, i.e. an increase of ozone concentrations beyond pre-1970 levels, as a consequence of ongoing climate change. These factors, and identifying potentially unexpected stratospheric responses to climate change, support the continued need to document stratospheric ozone changes. This is particularly valuable at the Arosa site, due

  8. Research on a Sudden Explosion and its Environmental Impact

    Ye, Maosheng; Ma, Hui; Ni, Qingwei

    2017-12-01

    A sudden blast was chosen as the studied topic. Also, one computer based virtual experimentation was used to estimate the dimensional impact of initial pollutant plume from blasts. Self-made method using Mathcad code was used to generate the output for the period of the first tenth of a second (1deci-second) to 1minute (60s) of the blast at the point source. It also depicted long-range air pollution travel within the first 1 to 10 minutes. In the case study, it assumed an average directional diffusivity of 1720 m2s-1 which is about 25 per cent of the average generated speed of common explosives. The newly developed model revealed a plume cloud impact of 6.8×107µgm-3 in the first 1millisecond (0.01s) which decayed suddenly to a value of 1.7×107µgm-3 in the first 1decisecond (0.1s). The impact concentration at the point source by the end of the first second (1.0s) was 3.2×105µgm-3 which implied a 99.5% sudden decay when compared to 0.01s concentration value at the emission point source. Computerized experiments observed that air pollutants release from explosives/blasts were dispersed into the atmosphere in the first few seconds by forceful injection instead of by gradual dispersion as is the case with normal air pollutants plume releases.

  9. Sudden unexpected death due to Graves' disease during physical altercation.

    Wei, Dengming; Yuan, Xiaogang; Yang, Tiantong; Chang, Lin; Zhang, Xiang; Burke, Allen; Fowler, David; Li, Ling

    2013-09-01

    We report a case of a 30-year-old woman who suddenly collapsed after having a physical altercation with her husband. Despite immediate resuscitation, she died on arrival at the hospital. The victim's parents requested an autopsy because they believed that their daughter was killed by her husband. Postmortem examination revealed that the victim had a diffusely enlarged thyroid gland and cardiomegaly with left ventricular hypertrophy. There was no evidence of significant trauma on the body. Further postmortem thyroid function tests and review of her medical history indicated that her death was due to Graves' disease. To the best of our knowledge, this is the first case reported of sudden death due to cardiac arrhythmia from Graves' disease induced by physical and emotional stress associated with the criminal activity of another person. The autopsy findings are described. In addition, the literature is reviewed and the significance of postmortem evaluation of thyroid hormones in the cases of sudden death is discussed. © 2013 American Academy of Forensic Sciences.

  10. [Idiopathic sudden deafness: a report of 96 patients].

    Gabanou, F; Bera, G; Vincent, C

    2012-01-01

    Evaluation of the management of idiopathic sudden deafness indicating the usefulness of biological assessments and the pronostic factors of hearing recovery. This is a retrospective study of 96 patients with idiopathic sudden deafness referred to a tertiary centre between 2005 and 2009 treated with corticosteroids intravenously at a daily dose of 1 mg/kg. Mean tonal thresholds were assessed (PTA = [500 Hz + 1000 Hz + 2000 Hz + 4000 Hz]/4). Each audiogram was classified as five classes according to its frequency profile. The hearing recovery is significant between D0-D5 and D5-M1 for the frequencies 0.5, 1 and 2 kHz. For 4 kHz, the recovery is significant between 0 and J5. There is no statistically significant correlation between the presence of associated signs (tinnitus, vertigo) and hearing recovery. Hearing recovery according to the five types of audiograms has the same evolution in the follow-up time but with audiograms type E (cophosis or subcophosis) often associated with an hyporeactivity at the videonystagmography. The presence of cardiovascular disease is a predictor of poor hearing recovery. The usefullness of systematic extensive blood tests is low. In sudden deafness, the maximum hearing recovery takes place in the month following the onset of symptoms. The predictors of poor hearing recovery are an initial mean threshold > 70 dB, the existence of an associated cardiovascular disease.

  11. Cardiac Channelopathies and Sudden Death: Recent Clinical and Genetic Advances.

    Fernández-Falgueras, Anna; Sarquella-Brugada, Georgia; Brugada, Josep; Brugada, Ramon; Campuzano, Oscar

    2017-01-29

    Sudden cardiac death poses a unique challenge to clinicians because it may be the only symptom of an inherited heart condition. Indeed, inherited heart diseases can cause sudden cardiac death in older and younger individuals. Two groups of familial diseases are responsible for sudden cardiac death: cardiomyopathies (mainly hypertrophic cardiomyopathy, dilated cardiomyopathy, and arrhythmogenic cardiomyopathy) and channelopathies (mainly long QT syndrome, Brugada syndrome, short QT syndrome, and catecholaminergic polymorphic ventricular tachycardia). This review focuses on cardiac channelopathies, which are characterized by lethal arrhythmias in the structurally normal heart, incomplete penetrance, and variable expressivity. Arrhythmias in these diseases result from pathogenic variants in genes encoding cardiac ion channels or associated proteins. Due to a lack of gross structural changes in the heart, channelopathies are often considered as potential causes of death in otherwise unexplained forensic autopsies. The asymptomatic nature of channelopathies is cause for concern in family members who may be carrying genetic risk factors, making the identification of these genetic factors of significant clinical importance.

  12. Sudden cardiac death in children (1-18 years)

    Winkel, Bo Gregers; Risgaard, Bjarke; Sadjadieh, Golnaz

    2014-01-01

    AIMS: Hitherto, sudden cardiac death in children (SCDc)-defined as sudden cardiac death (SCD) in the 1-18 years old-has been incompletely described in the general population. Knowledge on incidence rates, causes of death and symptoms prior to death is sparse and has been affected by reporting...... and referral bias. METHODS AND RESULTS: In a nationwide setting all deaths in children aged 1-18 years in Denmark in 2000-06 were included. To chart causes of death and incidence rates, death certificates and autopsy reports were collected and read. By additional use of the extensive healthcare registries...... in Denmark, we were also able to investigate prior disease and symptoms. During the 7-year study period there was an average of 1.11 million persons aged 1-18 years. There were a total of 1504 deaths (214 deaths per year) from 7.78 million person-years. A total of 114 (7.5%) were sudden and unexpected...

  13. Evolution of stratospheric ozone during winter 2002/2003 as observed by a ground-based millimetre wave radiometer at Kiruna, Sweden

    U. Raffalski

    2005-01-01

    Full Text Available We present ozone measurements from the millimetre wave radiometer installed at the Swedish Institute of Space Physics (Institutet för rymdfysik, IRF in Kiruna (67.8° N, 20.4° E, 420 m asl. Nearly continuous operation in the winter of 2002/2003 allows us to give an overview of ozone evolution in the stratosphere between 15 and 55 km. In this study we present a detailed analysis of the Arctic winter 2002/2003. By means of a methodology using equivalent latitudes we investigate the meteorological processes in the stratosphere during the entire winter/spring period. During the course of the winter strong mixing into the vortex took place in the middle and upper stratosphere as a result of three minor and one major warming event, but no evidence was found for significant mixing in the lower stratosphere. Ozone depletion in the lower stratosphere during this winter was estimated by measurements on those days when Kiruna was well inside the Arctic polar vortex. The days were carefully chosen using a definition of the vortex edge based on equivalent latitudes. At the 475 K isentropic level a cumulative ozone loss of about 0.5 ppmv was found starting in January and lasting until mid-March. The early ozone loss is probably a result of the very cold temperatures in the lower stratosphere in December and the geographical extension of the vortex to lower latitudes where solar irradiation started photochemical ozone loss in the pre-processed air. In order to correct for dynamic effects of the ozone variation due to diabatic subsidence of air masses inside the vortex, we used N2O measurements from the Odin satellite for the same time period. The derived ozone loss in the lower stratosphere between mid-December and mid-March varies between 1.1±0.1 ppmv on the 150 ppbv N2O isopleth and 1.7±0.1 ppmv on the 50 ppbv N2O isopleth.

  14. Stratospheric platforms: a novel technological support for Earth observation and remote sensing applications

    Dovis, Fabio; Lo Presti, Letizia; Magli, Enrico; Mulassano, Paolo; Olmo, Gabriella

    2001-12-01

    The international community agrees that the new technology based on the use of Unmanned Air Vehicles High Altitude Very long Endurance (UAV-HAVE) could play an important role for the development of remote sensing and telecommunication applications. A UAV-HAVE vehicle can be described as a low- cost flying infrastructure (compared with satellites) optimized for long endurance operations at an altitude of about 20 km. Due to such features, its role is similar to satellites, with the major advantages of being less expensive, more flexible, movable on demand, and suitable for a larger class of applications. According to this background, Politecnico di Torino is involved as coordinator in an important project named HeliNet, that represent one of the main activities in Europe in the field of stratospheric platforms, and is concerned with the development of a network of UAV-HAVE aircraft. A key point of this project is the feasibility study for the provision of several services, namely traffic monitoring, environmental surveillance, broadband communications and navigation. This paper reports preliminary results on the HeliNet imaging system and its remote sensing applications. In fact, many environmental surveillance services (e.g. regional public services for agriculture, hydrology, fire protection, and more) require very high-resolution imaging, and can be offered at a lower cost if operated by a shared platform. The philosophy behind the HeliNet project seems to be particularly suitable to manage such missions. In particular, we present a system- level study of possible imaging payloads to be mounted on- board of a stratospheric platform to collect Earth observation data. Firstly, we address optical payloads such as multispectral and/or hyperspectral ones, which are a very short-term objective of the project. Secondly, as an example of mid-term on-board payload, we examine the possibility to carry on the platform a light-SAR system. For both types of payload, we show

  15. Analyses of the stratospheric dynamics simulated by a GCM with a stochastic nonorographic gravity wave parameterization

    Serva, Federico; Cagnazzo, Chiara; Riccio, Angelo

    2016-04-01

    The effects of the propagation and breaking of atmospheric gravity waves have long been considered crucial for their impact on the circulation, especially in the stratosphere and mesosphere, between heights of 10 and 110 km. These waves, that in the Earth's atmosphere originate from surface orography (OGWs) or from transient (nonorographic) phenomena such as fronts and convective processes (NOGWs), have horizontal wavelengths between 10 and 1000 km, vertical wavelengths of several km, and frequencies spanning from minutes to hours. Orographic and nonorographic GWs must be accounted for in climate models to obtain a realistic simulation of the stratosphere in both hemispheres, since they can have a substantial impact on circulation and temperature, hence an important role in ozone chemistry for chemistry-climate models. Several types of parameterization are currently employed in models, differing in the formulation and for the values assigned to parameters, but the common aim is to quantify the effect of wave breaking on large-scale wind and temperature patterns. In the last decade, both global observations from satellite-borne instruments and the outputs of very high resolution climate models provided insight on the variability and properties of gravity wave field, and these results can be used to constrain some of the empirical parameters present in most parameterization scheme. A feature of the NOGW forcing that clearly emerges is the intermittency, linked with the nature of the sources: this property is absent in the majority of the models, in which NOGW parameterizations are uncoupled with other atmospheric phenomena, leading to results which display lower variability compared to observations. In this work, we analyze the climate simulated in AMIP runs of the MAECHAM5 model, which uses the Hines NOGW parameterization and with a fine vertical resolution suitable to capture the effects of wave-mean flow interaction. We compare the results obtained with two

  16. Utility of the exercise electrocardiogram testing in sudden cardiac death risk stratification.

    Refaat, Marwan M; Hotait, Mostafa; Tseng, Zian H

    2014-07-01

    Sudden cardiac death (SCD) remains a major public health problem. Current established criteria identifying those at risk of sudden arrhythmic death, and likely to benefit from implantable cardioverter defibrillators (ICDs), are neither sensitive nor specific. Exercise electrocardiogram (ECG) testing was traditionally used for information concerning patients' symptoms, exercise capacity, cardiovascular function, myocardial ischemia detection, and hemodynamic responses during activity in patients with hypertrophic cardiomyopathy. We conducted a systematic review of MEDLINE on the utility of exercise ECG testing in SCD risk stratification. Exercise testing can unmask suspected primary electrical diseases in certain patients (catecholaminergic polymorphic ventricular tachycardia or concealed long QT syndrome) and can be effectively utilized to risk stratify patients at an increased (such as early repolarization syndrome and Brugada syndrome) or decreased risk of SCD, such as the loss of preexcitation on exercise testing in asymptomatic Wolff-Parkinson-White syndrome. Exercise ECG testing helps in SCD risk stratification in patients with and without arrhythmogenic hereditary syndromes. © 2014 Wiley Periodicals, Inc.

  17. Identifying potential functional impact of mutations and polymorphisms: Linking heart failure, increased risk of arrhythmias and sudden cardiac death.

    BENOIT eJAGU

    2013-09-01

    Full Text Available Researchers and clinicians have discovered several important concepts regarding the mechanisms responsible for increased risk of arrhythmias, heart failure and sudden cardiac death. One major step in defining the molecular basis of normal and abnormal cardiac electrical behaviour has been the identification of single mutations that greatly increase the risk for arrhythmias and sudden cardiac death by changing channel-gating characteristics. Indeed, mutations in several genes encoding ion channels, such as SCN5A, which encodes the major cardiac Na+ channel, have emerged as the basis for a variety of inherited cardiac arrhythmias such as long QT syndrome, Brugada syndrome, progressive cardiac conduction disorder, sinus node dysfunction or sudden infant death syndrome. In addition, genes encoding ion channel accessory proteins, like anchoring or chaperone proteins, which modify the expression, the regulation of endocytosis and the degradation of ion channel α-subunits have also been reported as susceptibility genes for arrhythmic syndromes. The regulation of ion channel protein expression also depends on a fine-tuned balance among different other mechanisms, such as gene transcription, RNA processing, post-transcriptional control of gene expression by miRNA, protein synthesis, assembly and post-translational modification and trafficking.

  18. How sudden is a compelling desire to void? An observational cystometric study on the suddenness of this sensation.

    De Wachter, Stefan; Wyndaele, Jean-Jacques

    2008-04-01

    To evaluate whether a compelling desire to void (CDV) is always perceived suddenly, or whether it can result from the gradual build-up of bladder-filling sensations. The pattern of filling sensations was evaluated during standard cystometric bladder filling in 75 patients who complained of urgency and showed detrusor overactivity during cystometry. Cystometric filling ended when a CDV was reported. The 'warning volume' is defined as the difference in volume between the first perception of filling and the volume at CDV. Different patterns of bladder-filling sensations were reported. A CDV occurred suddenly, without a preceding sensation in 13% of the patients, whereas 66% reported at least two normal preceding filling sensations before a CDV. The bladder volume at the CDV was significantly smaller in patients that reported no or just one preceding sensation compared with those that reported the normal pattern of two or three sensations (P perception was reported was not different regardless of whether it was described as a first sensation of filling, a first desire or a CDV (P = 0.42). The warning volumes were not different between patients with one or no standardized filling sensations (P = 0.7), but they were significantly smaller than in patients with two or three filling sensations (P = 0.85). A CDV can occur suddenly if normal filling sensation is disturbed, but also gradually if normal filling sensation is preserved. In cases of disturbed filling sensation, the volume at CDV and the warning volume are significantly lower.

  19. Sudden gains in group cognitive-behavioral therapy for panic disorder.

    Clerkin, Elise M; Teachman, Bethany A; Smith-Janik, Shannan B

    2008-11-01

    The current study investigates sudden gains (rapid symptom reduction) in group cognitive-behavioral therapy for panic disorder. Sudden gains occurring after session 2 of treatment predicted overall symptom reduction at treatment termination and some changes in cognitive biases. Meanwhile, sudden gains occurring immediately following session 1 were not associated with symptom reduction or cognitive change. Together, this research points to the importance of examining sudden gains across the entire span of treatment, as well as the potential role of sudden gains in recovery from panic disorder.

  20. Validation of Aura Microwave Limb Sounder stratospheric water vapor measurements by the NOAA frost point hygrometer.

    Hurst, Dale F; Lambert, Alyn; Read, William G; Davis, Sean M; Rosenlof, Karen H; Hall, Emrys G; Jordan, Allen F; Oltmans, Samuel J

    2014-02-16

    Differences between stratospheric water vapor measurements by NOAA frost point hygrometers (FPHs) and the Aura Microwave Limb Sounder (MLS) are evaluated for the period August 2004 through December 2012 at Boulder, Colorado, Hilo, Hawaii, and Lauder, New Zealand. Two groups of MLS profiles coincident with the FPH soundings at each site are identified using unique sets of spatiotemporal criteria. Before evaluating the differences between coincident FPH and MLS profiles, each FPH profile is convolved with the MLS averaging kernels for eight pressure levels from 100 to 26 hPa (~16 to 25 km) to reduce its vertical resolution to that of the MLS water vapor retrievals. The mean FPH - MLS differences at every pressure level (100 to 26 hPa) are well within the combined measurement uncertainties of the two instruments. However, the mean differences at 100 and 83 hPa are statistically significant and negative, ranging from -0.46 ± 0.22 ppmv (-10.3 ± 4.8%) to -0.10 ± 0.05 ppmv (-2.2 ± 1.2%). Mean differences at the six pressure levels from 68 to 26 hPa are on average 0.8% (0.04 ppmv), and only a few are statistically significant. The FPH - MLS differences at each site are examined for temporal trends using weighted linear regression analyses. The vast majority of trends determined here are not statistically significant, and most are smaller than the minimum trends detectable in this analysis. Except at 100 and 83 hPa, the average agreement between MLS retrievals and FPH measurements of stratospheric water vapor is better than 1%.

  1. Sub-micrometer refractory carbonaceous particles in the polar stratosphere

    K. Schütze

    2017-10-01

    Full Text Available Eleven particle samples collected in the polar stratosphere during SOLVE (SAGE III Ozone loss and validation experiment from January until March 2000 were characterized in detail by high-resolution transmission and scanning electron microscopy (TEM/SEM combined with energy-dispersive X-ray microanalysis. A total of 4202 particles (TEM  =  3872; SEM  =  330 were analyzed from these samples, which were collected mostly inside the polar vortex in the altitude range between 17.3 and 19.9 km. Particles that were volatile in the microscope beams contained ammonium sulfates and hydrogen sulfates and dominated the samples. Some particles with diameters ranging from 20 to 830 nm were refractory in the electron beams. Carbonaceous particles containing additional elements to C and O comprised from 72 to 100 % of the refractory particles. The rest were internal mixtures of these materials with sulfates. The median number mixing ratio of the refractory particles, expressed in units of particles per milligram of air, was 1.1 (mg air−1 and varied between 0.65 and 2.3 (mg air−1. Most of the refractory carbonaceous particles are completely amorphous, a few of the particles are partly ordered with a graphene sheet separation distance of 0.37 ± 0.06 nm (mean value ± standard deviation. Carbon and oxygen are the only detected major elements with an atomic O∕C ratio of 0.11 ± 0.07. Minor elements observed include Si, S, Fe, Cr and Ni with the following atomic ratios relative to C: Si∕C: 0.010 ± 0.011; S∕C: 0.0007 ± 0.0015; Fe∕C: 0.0052 ± 0.0074; Cr∕C: 0.0012 ± 0.0017; Ni∕C: 0.0006 ± 0.0011 (all mean values ± standard deviation.High-resolution element distribution images reveal that the minor elements are distributed within the carbonaceous matrix; i.e., heterogeneous inclusions are not observed. No difference in size, nanostructure and elemental composition was found between

  2. Intercomparison of stratospheric gravity wave observations with AIRS and IASI

    L. Hoffmann

    2014-12-01

    Full Text Available Gravity waves are an important driver for the atmospheric circulation and have substantial impact on weather and climate. Satellite instruments offer excellent opportunities to study gravity waves on a global scale. This study focuses on observations from the Atmospheric Infrared Sounder (AIRS onboard the National Aeronautics and Space Administration Aqua satellite and the Infrared Atmospheric Sounding Interferometer (IASI onboard the European MetOp satellites. The main aim of this study is an intercomparison of stratospheric gravity wave observations of both instruments. In particular, we analyzed AIRS and IASI 4.3 μm brightness temperature measurements, which directly relate to stratospheric temperature. Three case studies showed that AIRS and IASI provide a clear and consistent picture of the temporal development of individual gravity wave events. Statistical comparisons based on a 5-year period of measurements (2008–2012 showed similar spatial and temporal patterns of gravity wave activity. However, the statistical comparisons also revealed systematic differences of variances between AIRS and IASI that we attribute to the different spatial measurement characteristics of both instruments. We also found differences between day- and nighttime data that are partly due to the local time variations of the gravity wave sources. While AIRS has been used successfully in many previous gravity wave studies, IASI data are applied here for the first time for that purpose. Our study shows that gravity wave observations from different hyperspectral infrared sounders such as AIRS and IASI can be directly related to each other, if instrument-specific characteristics such as different noise levels and spatial resolution and sampling are carefully considered. The ability to combine observations from different satellites provides an opportunity to create a long-term record, which is an exciting prospect for future climatological studies of stratospheric

  3. Monstrous Ice Cloud System in Titan's Present South Polar Stratosphere

    Anderson, Carrie; Samuelson, Robert; McLain, Jason; Achterberg, Richard; Flasar, F. Michael; Milam, Stefanie

    2015-11-01

    During southern autumn when sunlight was still available, Cassini's Imaging Science Subsystem discovered a cloud around 300 km near Titan's south pole (West, R. A. et al., AAS/DPS Abstracts, 45, #305.03, 2013); the cloud was later determined by Cassini's Visible and InfraRed Mapping Spectrometer to contain HCN ice (de Kok et al., Nature, 514, pp 65-67, 2014). This cloud has proven to be only the tip of an extensive ice cloud system contained in Titan's south polar stratosphere, as seen through the night-vision goggles of Cassini's Composite InfraRed Spectrometer (CIRS). As the sun sets and the gloom of southern winter approaches, evidence is beginning to accumulate from CIRS far-IR spectra that a massive system of nitrile ice clouds is developing in Titan's south polar stratosphere. Even during the depths of northern winter, nothing like the strength of this southern system was evident in corresponding north polar regions.From the long slant paths that are available from limb-viewing CIRS far-IR spectra, we have the first definitive detection of the ν6 band of cyanoacetylene (HC3N) ice in Titan’s south polar stratosphere. In addition, we also see a strong blend of nitrile ice lattice vibration features around 160 cm-1. From these data we are able to derive ice abundances. The most prominent (and still chemically unidentified) ice emission feature, the Haystack, (at 220 cm-1) is also observed. We establish the vertical distributions of the ice cloud systems associated with both the 160 cm-1 feature and the Haystack. The ultimate aim is to refine the physical and possibly the chemical relationships between the two. Transmittance thin film spectra of nitrile ice mixtures obtained in our Spectroscopy for Planetary ICes Environments (SPICE) laboratory are used to support these analyses.

  4. The effect of stratospheric sulfur from Mount Pinatubo on tropospheric oxidizing capacity and methane

    Bândə, Narcisa; Krol, Maarten; Noije, Van Twan; Weele, Van Michiel; Williams, Jason E.; Sager, Philippe Le; Niemeier, Ulrike; Thomason, Larry; Röckmann, Thomas

    2015-01-01

    The eruption of Mount Pinatubo in 1991 injected a large amount of SO2 into the stratosphere, which formed sulfate aerosols. Increased scattering and absorption of UV radiation by the enhanced stratospheric SO2 and aerosols decreased the amount of UV radiation reaching the

  5. The effect of stratospheric sulfur from Mount Pinatubo on tropospheric oxidizing capacity and methane

    Banda, Narcissa; Krol, Maarten; van Noije, Twan; van Weele, Michiel; Williams, Jason E.; Sager, Philippe Le; Niemeier, Ulrike; Thomason, Larry; Röckmann, Thomas

    2015-01-01

    The eruption of Mount Pinatubo in 1991 injected a large amount of SO2 into the stratosphere, which formed sulfate aerosols. Increased scattering and absorption of UV radiation by the enhanced stratospheric SO2 and aerosols decreased the amount of UV radiation reaching the troposphere, causing

  6. Reporting a sudden death due to accidental gasoline inhalation.

    Martínez, María Antonia; Ballesteros, Salomé; Alcaraz, Rafael

    2012-02-10

    The investigation of uncertain fatalities requires accurate determination of the cause of death, with assessment of all factors that may have contributed to it. Gasoline is a complex and highly variable mixture of aliphatic and aromatic hydrocarbons that can lead to cardiac arrhythmias due to sensitization of the myocardium to catecholamines or acts as a simple asphyxiant if the vapors displace sufficient oxygen from the breathing atmosphere. This work describes a sudden occupational fatality involving gasoline. The importance of this petroleum distillate detection and its quantitative toxicological significance is discussed using a validated analytical method. A 51 year-old Caucasian healthy man without significant medical history was supervising the repairs of the telephone lines in a manhole near to a gas station. He died suddenly after inhaling gasoline vapors from an accidental leak. Extensive blistering and peeling of skin were observed on the skin of the face, neck, anterior chest, upper and lower extremities, and back. The internal examination showed a strong odor of gasoline, specially detected in the respiratory tract. The toxicological screening and quantitation of gasoline was performed by means of gas chromatography with flame ionization detector and confirmation was performed using gas chromatography-mass spectrometry. Disposition of gasoline in different tissues was as follows: heart blood, 35.7 mg/L; urine, not detected; vitreous humor, 1.9 mg/L; liver, 194.7 mg/kg; lung, 147.6 mg/kg; and gastric content, 116,6 mg/L (2.7 mg total). Based upon the toxicological data along with the autopsy findings, the cause of death was determined to be gasoline poisoning and the manner of death was accidental. We would like to alert on the importance of testing for gasoline, and in general for volatile hydrocarbons, in work-related sudden deaths involving inhalation of hydrocarbon vapors and/or exhaust fumes. Copyright © 2011 Elsevier Ireland Ltd. All rights

  7. Coupled catastrophes: sudden shifts cascade and hop among interdependent systems

    Barnett, George; D'Souza, Raissa M.

    2015-01-01

    An important challenge in several disciplines is to understand how sudden changes can propagate among coupled systems. Examples include the synchronization of business cycles, population collapse in patchy ecosystems, markets shifting to a new technology platform, collapses in prices and in confidence in financial markets, and protests erupting in multiple countries. A number of mathematical models of these phenomena have multiple equilibria separated by saddle-node bifurcations. We study this behaviour in its normal form as fast–slow ordinary differential equations. In our model, a system consists of multiple subsystems, such as countries in the global economy or patches of an ecosystem. Each subsystem is described by a scalar quantity, such as economic output or population, that undergoes sudden changes via saddle-node bifurcations. The subsystems are coupled via their scalar quantity (e.g. trade couples economic output; diffusion couples populations); that coupling moves the locations of their bifurcations. The model demonstrates two ways in which sudden changes can propagate: they can cascade (one causing the next), or they can hop over subsystems. The latter is absent from classic models of cascades. For an application, we study the Arab Spring protests. After connecting the model to sociological theories that have bistability, we use socioeconomic data to estimate relative proximities to tipping points and Facebook data to estimate couplings among countries. We find that although protests tend to spread locally, they also seem to ‘hop' over countries, like in the stylized model; this result highlights a new class of temporal motifs in longitudinal network datasets. PMID:26559684

  8. Sarcomeric gene mutations in sudden infant death syndrome (SIDS).

    Brion, Maria; Allegue, Catarina; Santori, Montserrat; Gil, Rocio; Blanco-Verea, Alejandro; Haas, Cordula; Bartsch, Christine; Poster, Simone; Madea, Burkhard; Campuzano, Oscar; Brugada, Ramon; Carracedo, Angel

    2012-06-10

    In developed countries, sudden infant death syndrome (SIDS) represents the most prevalent cause of death in children between 1 month and 1 year of age. SIDS is a diagnosis of exclusion, a negative autopsy which requires the absence of structural organ disease. Although investigators have confirmed that a significant percentage of SIDS cases are actually channelopathies, no data have been made available as to whether other sudden cardiac death-associated diseases, such as hypertrophic cardiomyopathy (HCM), could be responsible for some cases of SIDS. The presence of a genetic mutation in the sarcomeric protein usually affects the force of contraction of the myocyte, whose weakness is compensated with progressive hypertrophy and disarray. However, it is unclear whether in the most incipient forms, that is, first years of life, the lack of these phenotypes still confers a risk of arrhythmogenesis. The main goal of the present study is to wonder whether genetic defects in the sarcomeric proteins, previously associated with HCM, could be responsible for SIDS. We have analysed 286 SIDS cases for the most common genes implicated in HCM in adults. A total of 680 mutations localised in 16 genes were analysed by semi-automated matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDITOF-MS) using the Sequenom MassARRAY(®) System. Ten subjects with completely normal hearts showed mutated alleles at nine of the genetic variants analysed, and one additional novel mutation was detected by conventional sequencing. Therefore, a genetic mutation associated with HCM may cause sudden cardiac death in the absence of an identifiable phenotype. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. A review of vertical coupling in the Atmosphere-Ionosphere system: Effects of waves, sudden stratospheric warmings, space weather, and of solar activity

    Yigit, E.; Koucká Knížová, Petra; Georgieva, K.; Ward, W.

    2016-01-01

    Roč. 141, April (2016), s. 1-12 ISSN 1364-6826 R&D Projects: GA ČR(CZ) GA15-24688S; GA MŠk(CZ) LG13042 Institutional support: RVO:68378289 Keywords : atmosphere–ionosphere * vertical coupling * gravity waves * tides * space weather * solar activity Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.326, year: 2016 http://www.sciencedirect.com/science/article/pii/S1364682616300426

  10. Study on the impact of sudden stratosphere warming in the upper mesosphere-lower thermosphere regions using satellite and HF radar - [Article

    Mbatha, N

    2010-01-01

    Full Text Available . The mean zonal wind (from SANAE HF radar) at the MLT shows reversal in approximately 7 days before the reversal at 10 hPa (from NCEP). This indicates that there was a downwards propagation of circulation disturbance. Westerly zonal winds dominate the winter...

  11. Study on the impact of sudden stratosphere warming in the upper mesosphere-lower thermosphere regions using satellite and HF radar measurements [Conference paper

    Mbatha, N

    2009-07-01

    Full Text Available Neutral atmosphere (including the MLT) and ionosphere are linked by energy and momentum transfer. Thus, this whole region forms a coupled system in which influences that originates at one height or in one region can have profound influence elsewhere...

  12. Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations

    Meyer, Catrin I.; Ern, Manfred; Hoffmann, Lars; Trinh, Quang Thai; Alexander, M. Joan

    2018-01-01

    We investigate stratospheric gravity wave observations by the Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite and the High Resolution Dynamics Limb Sounder (HIRDLS) aboard NASA's Aura satellite. AIRS operational temperature retrievals are typically not used for studies of gravity waves, because their vertical and horizontal resolution is rather limited. This study uses data of a high-resolution retrieval which provides stratospheric temperature profiles for each individual satellite footprint. Therefore the horizontal sampling of the high-resolution retrieval is 9 times better than that of the operational retrieval. HIRDLS provides 2-D spectral information of observed gravity waves in terms of along-track and vertical wavelengths. AIRS as a nadir sounder is more sensitive to short-horizontal-wavelength gravity waves, and HIRDLS as a limb sounder is more sensitive to short-vertical-wavelength gravity waves. Therefore HIRDLS is ideally suited to complement AIRS observations. A calculated momentum flux factor indicates that the waves seen by AIRS contribute significantly to momentum flux, even if the AIRS temperature variance may be small compared to HIRDLS. The stratospheric wave structures observed by AIRS and HIRDLS often agree very well. Case studies of a mountain wave event and a non-orographic wave event demonstrate that the observed phase structures of AIRS and HIRDLS are also similar. AIRS has a coarser vertical resolution, which results in an attenuation of the amplitude and coarser vertical wavelengths than for HIRDLS. However, AIRS has a much higher horizontal resolution, and the propagation direction of the waves can be clearly identified in geographical maps. The horizontal orientation of the phase fronts can be deduced from AIRS 3-D temperature fields. This is a restricting factor for gravity wave analyses of limb measurements. Additionally, temperature variances with respect to stratospheric gravity wave activity are compared on a

  13. Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations

    C. I. Meyer

    2018-01-01

    Full Text Available We investigate stratospheric gravity wave observations by the Atmospheric InfraRed Sounder (AIRS aboard NASA's Aqua satellite and the High Resolution Dynamics Limb Sounder (HIRDLS aboard NASA's Aura satellite. AIRS operational temperature retrievals are typically not used for studies of gravity waves, because their vertical and horizontal resolution is rather limited. This study uses data of a high-resolution retrieval which provides stratospheric temperature profiles for each individual satellite footprint. Therefore the horizontal sampling of the high-resolution retrieval is 9 times better than that of the operational retrieval. HIRDLS provides 2-D spectral information of observed gravity waves in terms of along-track and vertical wavelengths. AIRS as a nadir sounder is more sensitive to short-horizontal-wavelength gravity waves, and HIRDLS as a limb sounder is more sensitive to short-vertical-wavelength gravity waves. Therefore HIRDLS is ideally suited to complement AIRS observations. A calculated momentum flux factor indicates that the waves seen by AIRS contribute significantly to momentum flux, even if the AIRS temperature variance may be small compared to HIRDLS. The stratospheric wave structures observed by AIRS and HIRDLS often agree very well. Case studies of a mountain wave event and a non-orographic wave event demonstrate that the observed phase structures of AIRS and HIRDLS are also similar. AIRS has a coarser vertical resolution, which results in an attenuation of the amplitude and coarser vertical wavelengths than for HIRDLS. However, AIRS has a much higher horizontal resolution, and the propagation direction of the waves can be clearly identified in geographical maps. The horizontal orientation of the phase fronts can be deduced from AIRS 3-D temperature fields. This is a restricting factor for gravity wave analyses of limb measurements. Additionally, temperature variances with respect to stratospheric gravity wave activity are

  14. Stratospheric nitrogen dioxide in the vicinity of Soufriere, St. Vincent

    Romick, G. J.; Murcray, D. G.; Williams, W. J.

    1982-01-01

    In April 1979, measurements of nitrogen dioxide in the upper atmosphere were made near Soufriere Volcano by twilight optical-absorption techniques. The derived value of 5 x 10 to the 15th molecules per square centimeter column implies an enhancement of 25 percent over earlier abundances measured in the same latitudinal regions. This enhancement may represent the normal stratospheric variability of nitrogen dioxide in the equatorial region, but in any case may be considered an upper limit to the volcano's effect on the total nitrogen dioxide abundance.

  15. Testing in a stratospheric balloon of a semiconductor detector altimeter

    Gilly, L.; Jourdan, P.

    1968-01-01

    An altimeter containing a semiconductor detector has been operated on flight. We have used a stratospheric balloon launched from AIRE-SUR-ADOUR with the C.N.E.S. collaboration. During this assay two apparatus have been used. The first allowed to follow the balloon during its ascension and descent, the second to follow its evolution at its maximum altitude. Informations transmitted by radio and recorded on Magnetophon, have been studied after the flight. Results are identical with these given by the barometer used by the C.N.E.S. in this essay. (authors) [fr

  16. Impact of lower stratospheric ozone on seasonal prediction systems

    Mathole, K

    2014-01-01

    Full Text Available Circulation Model (called the ECHAM 4.5-MOM3-SA OAGCM)31 integrations for the first lead time (i.e. forecasts are made in early November for December- January-February).This model currently is used for operational forecast production at the South African... through modelling and predictability studies should include the knowledge of stratospheric as well as chemical processes (e.g. CO2 and ozone) which contribute to the so-called ‘complete climate system’. This notion was endorsed by the World Climate...

  17. PHOX2B polyalanine repeat length is associated with sudden infant death syndrome and unclassified sudden infant death in the Dutch population

    G. Liebrechts-Akkerman (Germaine); F. Liu (Fan); O. Lao Grueso (Oscar); A.H.A.G. Ooms (Ariadne ); K. van Duijn (Kate); M. Vermeulen (Mark); V.W.V. Jaddoe (Vincent); A. Hofman (Albert); A.C. Engelberts (Adele); M.H. Kayser (Manfred)

    2014-01-01

    textabstractUnclassified sudden infant death (USID) is the sudden and unexpected death of an infant that remains unexplained after thorough case investigation including performance of a complete autopsy and review of the circumstances of death and the clinical history. When the infant is below 1

  18. The analysis of Sudden Infant Death Syndrome in Poland

    Anna Lewandowska

    2017-05-01

    Full Text Available Introduction: Sudden Infant Death Syndrome is defined in literature similarly as a sudden and unexpected death of an infant occurring during sleep and, at the same time, causes of which cannot be explained based on anamnesis, circumstances of death or comprehensive post-mortem examinations. Sudden Infant Death Syndrome is considered to be the most frequent cause of death among infants in the developed countries. Incidence of SIDS in the whole world ranges from about 0.1 to 6.0/1,000 live births. As much as 90% concerns deaths in the first year of life of a child, whereas 70% stands for deaths for which the cause remains unknown. In SIDS, about 90% of cases concern children under 1 year old and, in particular, at the age of between 2 and 4 months. The aim: The aim of the study was to present the most significant aspects of SIDS as well as description and analysis of risk factors for occurrence of sudden infant death syndrome based on statistical data. Materials and methods: For the purpose of the study, the secondary data analysis and desk research technique have been applied. The analysis is based on statistical data from the time period 2009-2014 released by the Central Statistical Office of Poland. Results: In 2009-2014, the highest number of deaths of infants and new-borns was reported in 2009 with the number being as high as 2,327. In the following years, the number of deaths of new-borns and infants systematically decreased. In 2010 it was 2,057 and in 2011 – 1,836, in 2012 – 1,791, in 2013 – 1,684, and in 2014 – 1,583. The highest number of deaths of boys was reported in 2009 – 1,298, while the number of deaths of girls in that year, although it was the highest in the analysed period, was lower – 1,029. Conclusions: cases of death were more frequent among boys rather than girls. The highest number of deaths was reported among infants under the age of one month and the number decreased with an increasing infants’ age. More

  19. Nonlinear dynamics, fractals, cardiac physiology and sudden death

    Goldberger, Ary L.

    1987-01-01

    The authors propose a diametrically opposite viewpoint to the generally accepted tendency of equating healthy function with order and disease with chaos. With regard to the question of sudden cardiac death and chaos, it is suggested that certain features of dynamical chaos related to fractal structure and fractal dynamics may be important organizing principles in normal physiology and that certain pathologies, including ventricular fibrillation, represent a class of 'pathological periodicities'. Some laboratory work bearing on the relation of nonlinear analysis to physiological and pathophysiological data is briefly reviewed, with tentative theories and models described in reference to the mechanism of ventricular fibrillation.

  20. Evolution of IPv6 Internet topology with unusual sudden changes

    Ai, Jun; Zhao, Hai; Kathleen, M. Carley; Su, Zhan; Li, Hui

    2013-07-01

    The evolution of Internet topology is not always smooth but sometimes with unusual sudden changes. Consequently, identifying patterns of unusual topology evolution is critical for Internet topology modeling and simulation. We analyze IPv6 Internet topology evolution in IP-level graph to demonstrate how it changes in uncommon ways to restructure the Internet. After evaluating the changes of average degree, average path length, and some other metrics over time, we find that in the case of a large-scale growing the Internet becomes more robust; whereas in a top—bottom connection enhancement the Internet maintains its efficiency with links largely decreased.

  1. Two angle dependent reactive infinite order sudden approximation

    Jellinek, J.; Kouri, D.J.

    1984-01-01

    The reactive infinite order sudden approximation is redeveloped in a manner in which the initial and final arrangement internal angles γ/sub lambda/ amd γ/sub ν/ enter as independent quantities. The analysis follows parallel to that due to Khare, Kouri, and Baer except that matching of the wave function from different arrangements is done in a manner such that no single γ/sub ν/ angle is associated with a particular γ/sub lambda/ angle. As a consequence, the matching surface parameter B/sub lambdanu/ does not occur

  2. Spinal epidermoid cyst with sudden onset of paraplegia

    Munshi Anusheel

    2009-01-01

    Full Text Available Spinal epidermoid cysts, whether congenital or iatrogenic, are relatively uncommon in the spinal cord. When they occur, the typical location is in the subdural, extramedullary space of the lumbo-sacral region. We describe an unusual presentation in a 3-year-old male child which mimicked astrocytoma clinicoradiologically. The child developed sudden onset of inability in walking and weakness of both lower limbs after a fall. There was a dramatic reversal of symptoms after surgery. Histopathology revealed an epidermoid cyst of the spine. On the first follow-up visit at 3 months, the child was asymptomatic.

  3. Evolution of IPv6 Internet topology with unusual sudden changes

    Ai Jun; Su Zhan; Li Hui; Zhao Hai; Carley, Kathleen M.

    2013-01-01

    The evolution of Internet topology is not always smooth but sometimes with unusual sudden changes. Consequently, identifying patterns of unusual topology evolution is critical for Internet topology modeling and simulation. We analyze IPv6 Internet topology evolution in IP-level graph to demonstrate how it changes in uncommon ways to restructure the Internet. After evaluating the changes of average degree, average path length, and some other metrics over time, we find that in the case of a large-scale growing the Internet becomes more robust; whereas in a top—bottom connection enhancement the Internet maintains its efficiency with links largely decreased

  4. [Hypertensive crisis and sudden change of vision in young patients].

    Cortés Fernández, M S; Martín-Castillejos, C; Armario, P

    2016-01-01

    The sudden change in vision is a medical emergency that must be evaluated immediately to rule out important institutions as systemic vasculitis or ischemic stroke. Its association with hypertensive crisis makes it necessary to rule out accelerated-malignant hypertension, which is accompanied by other retinal disorders (exudates and hemorrhages) and adrenal involvement. Nonarteritic anterior ischemic optic neuropathy (AION) is another entity to consider, as is it not uncommon in the young (12.7% in a series of 848 cases). Its association with hypertension has been described in 32% of cases. Copyright © 2016 SEH-LELHA. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Sudden Relaminarization and Lifetimes in Forced Isotropic Turbulence.

    Linkmann, Moritz F; Morozov, Alexander

    2015-09-25

    We demonstrate an unexpected connection between isotropic turbulence and wall-bounded shear flows. We perform direct numerical simulations of isotropic turbulence forced at large scales at moderate Reynolds numbers and observe sudden transitions from a chaotic dynamics to a spatially simple flow, analogous to the laminar state in wall bounded shear flows. We find that the survival probabilities of turbulence are exponential and the typical lifetimes increase superexponentially with the Reynolds number. Our results suggest that both isotropic turbulence and wall-bounded shear flows qualitatively share the same phase-space dynamics.

  6. Sudden death of a child due to respiratory diphtheria.

    Swain, Rajanikanta; Behera, Chittaranjan; Arava, Sudheer Kumar; Kundu, Naveen

    2016-06-01

    A four-year-old girl presented to the emergency department with respiratory distress. Death occurred despite attempted resuscitation. The illness was not clinically diagnosed. Her father revealed that she had a fever and sore throat for the last four days and was not immunised for diphtheria. Characteristic gross and microscopic pathology of respiratory diphtheria and microbiological findings were observed. The cause of death was acute respiratory failure consequent upon upper airway obstruction from diphtheria. Forensic pathologists should remember that the diphtheria cases can cause sudden death especially in developing countries. © The Author(s) 2016.

  7. Unusual causes of sudden anuria in renal transplant patients

    Abutaleb, N.; Hamza, A.; Younis, S.; Adem, M.; Obaideen, A.; Zakaria, M.; El-Jubab, A.

    2007-01-01

    Sudden unexplained anuria in renal transplant patients could well be secondary to occult internal hemorrhage rather than the usual vascular thrombotic or obstructive event, even in the completely stable patient. Urgent intervention in such bleeding states can save patient's life and graft function. Graft survival is very exceptional in graft artery or vein thrombosis. Contrary to hemorrhagic events, life is usually not threatened by thrombotic events involving the renal graft vasculature. We present here three unfortunate cases that shared the problem of unexpected anuria due to a hemorrhagic event in apparently stable renal transplant patients. (author)

  8. Discrete event simulation model of sudden cardiac death predicts high impact of preventive interventions.

    Andreev, Victor P; Head, Trajen; Johnson, Neil; Deo, Sapna K; Daunert, Sylvia; Goldschmidt-Clermont, Pascal J

    2013-01-01

    Sudden Cardiac Death (SCD) is responsible for at least 180,000 deaths a year and incurs an average cost of $286 billion annually in the United States alone. Herein, we present a novel discrete event simulation model of SCD, which quantifies the chains of events associated with the formation, growth, and rupture of atheroma plaques, and the subsequent formation of clots, thrombosis and on-set of arrhythmias within a population. The predictions generated by the model are in good agreement both with results obtained from pathological examinations on the frequencies of three major types of atheroma, and with epidemiological data on the prevalence and risk of SCD. These model predictions allow for identification of interventions and importantly for the optimal time of intervention leading to high potential impact on SCD risk reduction (up to 8-fold reduction in the number of SCDs in the population) as well as the increase in life expectancy.

  9. On the effects of a sudden change in the albedo of the earth

    Butler, E.J.

    1979-01-01

    Acquisition by the upper atmosphere of some 10 14 gm of cometary dust would have major implications on the Earth's climate. Pluvial activity would increase dramatically as temperature differences between sea and land widened. Global distribution of precipitation would be controlled by the density of the dust in the atmosphere; for a partially reflective blanket, a fraction of solar energy would still reach ground level creating new climate zones. The totally undecomposed state of the interiors of Siberian Mammoths and the curious distribution, often uphill, of erratic boulders point to unbelievably sudden and severe conditions at the onset and possibly end of a glacial period. It is suggested that a reflective blanket of particles could produce such conditions. (Auth.)

  10. [Sudden death and cardiovascular complications in Marfan syndrome: impact of surgical intervention].

    Ohtsubo, Satoshi; Itoh, Tsuyoshi

    2005-07-01

    Marfan syndrome is an autosomal dominant disorder of connective tissue characterized by abnormalities involving the skeletal, ocular, and cardiovascular systems. The cardiovascular complications of the syndrome lead to a reduced life expectancy for affected individuals if left untreated. Major cause of death include acute aortic dissection, aortic rupture, and sudden death, which resulted from congenital vascular fragility. Such life-threatening complications in Marfan syndrome can be managed effectively, by routine aortic imaging, beta-adrenergic blockade, and prophylactic replacement of the aortic root before the diameter exceeds 5.0 to 5.5 mm. Valve preserving aortic root reconstruction yielded improved postoperative quality of life compared with Bentall operation, by reducing late complications related to anticoagulants. It should be carried out before onset of aortic regurgitation for long-term native valve durability.

  11. Long-term trends in stratospheric ozone, temperature, and water vapor over the Indian region

    Thankamani Akhil Raj, Sivan; Venkat Ratnam, Madineni; Narayana Rao, Daggumati; Venkata Krishna Murthy, Boddam

    2018-01-01

    We have investigated the long-term trends in and variabilities of stratospheric ozone, water vapor and temperature over the Indian monsoon region using the long-term data constructed from multi-satellite (Upper Atmosphere Research Satellite (UARS MLS and HALOE, 1993-2005), Aura Microwave Limb Sounder (MLS, 2004-2015), Sounding of the Atmosphere using Broadband Emission Radiometry (SABER, 2002-2015) on board TIMED (Thermosphere Ionosphere Mesosphere Energetics Dynamics)) observations covering the period 1993-2015. We have selected two locations, namely, Trivandrum (8.4° N, 76.9° E) and New Delhi (28° N, 77° E), covering northern and southern parts of the Indian region. We also used observations from another station, Gadanki (13.5° N, 79.2° E), for comparison. A decreasing trend in ozone associated with NOx chemistry in the tropical middle stratosphere is found, and the trend turned to positive in the upper stratosphere. Temperature shows a cooling trend in the stratosphere, with a maximum around 37 km over Trivandrum (-1.71 ± 0.49 K decade-1) and New Delhi (-1.15 ± 0.55 K decade-1). The observed cooling trend in the stratosphere over Trivandrum and New Delhi is consistent with Gadanki lidar observations during 1998-2011. The water vapor shows a decreasing trend in the lower stratosphere and an increasing trend in the middle and upper stratosphere. A good correlation between N2O and O3 is found in the middle stratosphere (˜ 10 hPa) and poor correlation in the lower stratosphere. There is not much regional difference in the water vapor and temperature trends. However, upper stratospheric ozone trends over Trivandrum and New Delhi are different. The trend analysis carried out by varying the initial year has shown significant changes in the estimated trend.

  12. Sudden Cardiac Death in Brazil: A Community-Based Autopsy Series (2006-2010

    Maria Fernanda Braggion-Santos

    2015-02-01

    Full Text Available Background: Sudden cardiac death (SCD is a sudden unexpected event, from a cardiac cause, that occurs in less than one hour after the symptoms onset, in a person without any previous condition that would seem fatal or who was seen without any symptoms 24 hours before found dead. Although it is a relatively frequent event, there are only few reliable data in underdeveloped countries. Objective: We aimed to describe the features of SCD in Ribeirão Preto, Brazil (600,000 residents according to Coroners’ Office autopsy reports. Methods: We retrospectively reviewed 4501 autopsy reports between 2006 and 2010, to identify cases of SCD. Specific cause of death as well as demographic information, date, location and time of the event, comorbidities and whether cardiopulmonary resuscitation (CPR was attempted were collected. Results: We identified 899 cases of SCD (20%; the rate was 30/100000 residents per year. The vast majority of cases of SCD involved a coronary artery disease (CAD (64% and occurred in men (67%, between the 6th and the 7th decades of life. Most events occurred during the morning in the home setting (53.3% and CPR was attempted in almost half of victims (49.7%. The most prevalent comorbidity was systemic hypertension (57.3%. Chagas’ disease was present in 49 cases (5.5%. Conclusion: The majority of victims of SCD were men, in their sixties and seventies and the main cause of death was CAD. Chagas’ disease, an important public health problem in Latin America, was found in about 5.5% of the cases.

  13. A polar stratospheric cloud parameterization for the global modeling initiative three-dimensional model and its response to stratospheric aircraft

    Considine, D. B.; Douglass, A. R.; Connell, P. S.; Kinnison, D. E.; Rotman, D. A.

    2000-01-01

    We describe a new parameterization of polar stratospheric clouds (PSCs) which was written for and incorporated into the three-dimensional (3-D) chemistry and transport model (CTM) developed for NASA's Atmospheric Effects of Aviation Project (AEAP) by the Global Modeling Initiative (GMI). The parameterization was designed to respond to changes in NO y and H 2 O produced by high-speed civilian transport (HSCT) emissions. The parameterization predicts surface area densities (SADs) of both Type 1 and Type 2 PSCs for use in heterogeneous chemistry calculations. Type 1 PSCs are assumed to have a supercooled ternary sulfate (STS) composition, and Type 2 PSCs are treated as water ice with a coexisting nitric acid trihydrate (NAT) phase. Sedimentation is treated by assuming that the PSC particles obey lognormal size distributions, resulting in a realistic mass flux of condensed phase H 2 O and HNO 3 . We examine a simulation of the Southern Hemisphere high-latitude lower stratosphere winter and spring seasons driven by temperature and wind fields from a modified version of the National Center for Atmospheric Research (NCAR) Middle Atmosphere Community Climate Model Version 2 (MACCM2). Predicted PSC SADs and median radii for both Type 1 and Type 2 PSCs are consistent with observations. Gas phase HNO 3 and H 2 O concentrations in the high-latitude lower stratosphere qualitatively agree with Cryogenic Limb Array Etalon Spectrometer (CLAES) HNO 3 and Microwave Limb Sounder (MLS) H 2 O observations. The residual denitrification and dehydration of the model polar vortex after polar winter compares well with atmospheric trace molecule spectroscopy (ATMOS) observations taken during November 1994. When the NO x and H 2 O emissions of a standard 500-aircraft HSCT fleet with a NO x emission index of 5 are added, NO x and H 2 O concentrations in the Southern Hemisphere polar vortex before winter increase by up to 3%. This results in earlier onset of PSC formation, denitrification, and

  14. Evaluation of Trichoderma spp. for biocontrol of tomato sudden caused by Pythium aphanidermatum following flooding in tropical hot season.

    Le, H T T; Black, L L; Sikora, R A

    2003-01-01

    Tomato sudden death is a major problem in tomato production in tropical lowland areas. The plant wilts and dies following artificial or natural flooding for 48-72 hrs in the summer season. Occurrence of this disease is related to aggressiveness of Pythium aphanidermatum on tomato at high soil temperature (>30 degrees C). Several methods such as using biological control agents, fungicides and other cultural practices were applied in attempts to control tomato sudden death. Three Trichoderma harzianum and two Trichoderma virens isolates were evaluated for biocontrol of the disease in the greenhouse and in the field T. harzianum and T. virens isolates were separately used to treat the seed, potting medium and also incorporated into the soil before transplanting. Field soil was naturally infested with P. aphanidermatum, while greenhouse soil was inoculated with the pathogen 10 days after transplanting. All treatments were flooded for 48 hrs at 32 degrees C soil temperature. Results from this study show that most tested T. harzianum and T. virens isolates have little promise for control of tomato sudden death following flooding. The percentage of tomato plants that wilted after growing in soil treated with either T. harzianum or T. virens and P. aphanidermatum was not significantly different when compared to the soil treated with P. aphanidermatum alone. No wilted plants were observed in the control (non treated soil).

  15. Exact scattering solutions in an energy sudden (ES) representation

    Chang, B.; Eno, L.; Rabitz, H.

    1983-01-01

    In this paper, we lay down the theoretical foundations for computing exact scattering wave functions in a reference frame which moves in unison with the system internal coordinates. In this frame the (internal) coordinates appear to be fixed and its adoption leads very naturally (in zeroth order) to the energy sudden (ES) approximation [and the related infinite order sudden (IOS) method]. For this reason we call the new representation for describing the exact dynamics of a many channel scattering problem, the ES representation. Exact scattering solutions are derived in both time dependent and time independent frameworks for the representation and many interesting results in these frames are established. It is shown, e.g., that in a time dependent frame the usual Schroedinger propagator factorizes into internal Hamiltonian, ES, and energy correcting propagators. We also show that in a time independent frame the full Green's functions can be similarly factorized. Another important feature of the new representation is that it forms a firm foundation for seeking corrections to the ES approximation. Thus, for example, the singularity which arises in conventional perturbative expansions of the full Green's functions (with the ES Green's function as the zeroth order solution) is avoided in the ES representation. Finally, a number of both time independent and time dependent ES correction schemes are suggested

  16. Sudden visual loss after cardiac resynchronization therapy device implantation.

    De Vitis, Luigi A; Marchese, Alessandro; Giuffrè, Chiara; Carnevali, Adriano; Querques, Lea; Tomasso, Livia; Baldin, Giovanni; Maestranzi, Gisella; Lattanzio, Rosangela; Querques, Giuseppe; Bandello, Francesco

    2017-03-10

    To report a case of sudden decrease in visual acuity possibly due to a cardiogenic embolism in a patient who underwent cardiac resynchronization therapy (CRT) device implantation. A 62-year-old man with severe left ventricular systolic dysfunction and a left bundle branch block was referred to our department because of a sudden decrease in visual acuity. Nine days earlier, he had undergone cardiac transapical implantation of a CRT device, which was followed, 2 days later, by an inflammatory reaction. The patient underwent several general and ophthalmologic examinations, including multimodal imaging. At presentation, right eye (RE) best-corrected visual acuity (BCVA) was counting fingers and RE pupil was hyporeactive. Fundus examination revealed white-centered hemorrhagic dots suggestive of Roth spots. Fluorescein angiography showed delay in vascular perfusion during early stage, late hyperfluorescence of the macula and optic disk, and peripheral perivascular leakage. The first visual field test showed complete loss of vision RE and a normal left eye. Due to suspected giant cell arteritis, temporal artery biopsy was performed. Thirty minutes after the procedure, an ischemic stroke with right hemisyndrome and aphasia occurred. The RE BCVA worsened to hands motion. Four months later, RE BCVA did not improve, despite improvement in fluorescein angiography inflammatory sign. We report a possible cardiogenic embolism secondary to undiagnosed infective endocarditis causing monocular visual loss after CRT device implantation. It remains unclear how the embolus caused severe functional damage without altering the retinal anatomical structure.

  17. Transformation priming helps to disambiguate sudden changes of sensory inputs.

    Pastukhov, Alexander; Vivian-Griffiths, Solveiga; Braun, Jochen

    2015-11-01

    Retinal input is riddled with abrupt transients due to self-motion, changes in illumination, object-motion, etc. Our visual system must correctly interpret each of these changes to keep visual perception consistent and sensitive. This poses an enormous challenge, as many transients are highly ambiguous in that they are consistent with many alternative physical transformations. Here we investigated inter-trial effects in three situations with sudden and ambiguous transients, each presenting two alternative appearances (rotation-reversing structure-from-motion, polarity-reversing shape-from-shading, and streaming-bouncing object collisions). In every situation, we observed priming of transformations as the outcome perceived in earlier trials tended to repeat in subsequent trials and this repetition was contingent on perceptual experience. The observed priming was specific to transformations and did not originate in priming of perceptual states preceding a transient. Moreover, transformation priming was independent of attention and specific to low level stimulus attributes. In summary, we show how "transformation priors" and experience-driven updating of such priors helps to disambiguate sudden changes of sensory inputs. We discuss how dynamic transformation priors can be instantiated as "transition energies" in an "energy landscape" model of the visual perception. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Phenotype-driven molecular autopsy for sudden cardiac death.

    Cann, F; Corbett, M; O'Sullivan, D; Tennant, S; Hailey, H; Grieve, J H K; Broadhurst, P; Rankin, R; Dean, J C S

    2017-01-01

    A phenotype-driven approach to molecular autopsy based in a multidisciplinary team comprising clinical and laboratory genetics, forensic medicine and cardiology is described. Over a 13 year period, molecular autopsy was undertaken in 96 sudden cardiac death cases. A total of 46 cases aged 1-40 years had normal hearts and suspected arrhythmic death. Seven (15%) had likely pathogenic variants in ion channelopathy genes [KCNQ1 (1), KCNH2 (4), SCN5A (1), RyR2(1)]. Fifty cases aged between 2 and 67 had a cardiomyopathy. Twenty-five had arrhythmogenic right ventricular cardiomyopathy (ARVC), 10 dilated cardiomyopathy (DCM) and 15 hypertrophic cardiomyopathy (HCM). Likely pathogenic variants were found in three ARVC cases (12%) in PKP2, DSC2 or DSP, two DCM cases (20%) in MYH7, and four HCM cases (27%) in MYBPC3 (3) or MYH7 (1). Uptake of cascade screening in relatives was higher when a molecular diagnosis was made at autopsy. In three families, variants previously published as pathogenic were detected, but clinical investigation revealed no abnormalities in carrier relatives. With a conservative approach to defining pathogenicity of sequence variants incorporating family phenotype information and population genomic data, a molecular diagnosis was made in 15% of sudden arrhythmic deaths and 18% of cardiomyopathy deaths. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Sudden cardiac death with triple pathologies: A case report

    R. Razuin

    2017-06-01

    Full Text Available Sudden cardiac death in young adults may be associated with rare cardiomyopathies such as left ventricular noncompaction (LVNC and arrhythmogenic right ventricular (ARVC cardiomyopathies. LVNC is characterised by hypertrabeculations and deep recesses of the left ventricle. ARVC presents with thin myocardium as a result of extensive fibro-fatty infiltrations. In both conditions, death may be due to arrhythmia, thromboembolic events or heart failure. We report a case of a 21-year old athletic young man who collapsed at the futsal court right after the game. He was resuscitated but expired at the hospital after a brief admission. A week earlier, he had a similar episode of syncope and revived through cardio-pulmonary resuscitation at the site. Post mortem examination showed extensive acute myocardial infarction (AMI involving the papillary muscles and the left ventricular wall. Features of LVNC were also observed. On top of that, the right ventricle showed patchy thin myocardium as the wall was largely comprised of fat. Histology examination confirmed the presence of AMI and massive fibro-fatty infiltrations of the right ventricle. This unfortunate young man had co-existing cardiomyopathies which is rare indeed. As he succumbed to AMI, this mechanism of death is also uncommonly associated with neither LVNC nor ARVC. In conclusion, young and physically active individuals may not be spared of sudden cardiac death. Mild and non-specific symptoms should not be taken lightly as it may be the subtle signs of cardiomyopathies.

  20. Brugada Syndrome: Are we doing enough to prevent sudden death?

    Buksh, Jahangir A.; Al-Hersi, Ahmad S.; Al-Nozha, Mansour M.

    2007-01-01

    Burgada syndrome (BS) is an inherited arrythmogenic disease characterized by typical ECG changes in the form of an SR pattern in VI to V2, and ST segment elevation in VI to V3 and prolongation of the QT interval in right precordial leads. This syndrome carries an increased risk of sudden death due to arrhythmias. This disease was first described in 1992 by Joseph Brugada et al and was named Brugada syndrome by Yan and Antzelvich in 1996. By 2003 more than 600 patients had been reported by Brugada et al and hundreds by others. A genetic aspect to BS is now recognized and been linked to the alpha subunit of the cardiac sodium channel gene SCN5A. Over five dozen mutations in SCN5A have been identified. Accentuation of the right ventricular notch under pathophysiological conditions leads to exaggeration of the J-wave or J-point elevation and a saddle-shaped configuration of the repolarisation waves. Diagnosis is essentially by electrocardiogram either by spontaneous changes or by provocation by sodium channel blockers drugs, e.g., procainamide, flecainide. The role of electrophysiological studies in induction of arrhythmia in asymptomatic individuals by electron beam computed tomography and signal-averaged electrocardiogram is not settled. Unfortunately, an effective drug is not available is not available at present, but quinidine has a place in treatment. New promising drugs are emerging like cilostazol and tedisamil. At present, implantation of an ICD is the only effective means of preventing sudden death. (author)

  1. Stratosphere-troposphere exchange in a summertime extratropical low: analysis

    J. Brioude

    2006-01-01

    Full Text Available Ozone and carbon monoxide measurements sampled during two commercial flights in airstreams of a summertime midlatitude cyclone are analysed with a Lagrangian-based study (backward trajectories and a Reverse Domain Filling technique to gain a comprehensive understanding of transport effects on trace gas distributions. The study demonstrates that summertime cyclones can be associated with deep stratosphere-troposphere transport. A tropopause fold is sampled twice in its life cycle, once in the lower troposphere (O3≃100 ppbv; CO≃90 ppbv in the dry airstream of the cyclone, and again in the upper troposphere (O3≃200 ppbv; CO≃90 ppbv on the northern side of the large scale potential vorticity feature associated with baroclinic development. In agreement with the maritime development of the cyclone, the chemical composition of the anticyclonic portion of the warm conveyor belt outflow (O3≃40 ppbv; CO≃85 ppbv corresponds to the lowest mixing ratios of both ozone and carbon monoxide in the upper tropospheric airborne observations. The uncertain degree of confidence of the Lagrangian-based technique applied to a 100 km segment of upper level airborne observations with high ozone (200 ppbv and relatively low CO (80 ppbv observed northwest of the cyclone prevents identification of the ozone enrichment process of air parcels embedded in the cyclonic part of the upper level outflow of the warm conveyor belt. Different hypotheses of stratosphere-troposphere exchange are discussed.

  2. Stratospheric microbiology at 20 km over the Pacific Ocean

    Smith, David J.; Griffin, Dale W.; Schuerger, Andrew C.

    2010-01-01

    An aerobiology sampling flight at 20 km was conducted on 28 April 2008 over the Pacific Ocean (36.5° N, 118–149° W), a period of time that coincided with the movement of Asian dust across the ocean. The aim of this study was to confirm the presence of viable bacteria and fungi within a transoceanic, atmospheric bridge and to improve the resolution of flight hardware processing techniques. Isolates of the microbial strains recovered were analyzed with ribosomal ribonucleic acid (rRNA) sequencing to identify bacterial species Bacillus sp., Bacillus subtilis, Bacillus endophyticus, and the fungal genus Penicillium. Satellite imagery and ground-based radiosonde observations were used to measure dust movement and characterize the high-altitude environment at the time of collection. Considering the atmospheric residency time (7–10 days), the extreme temperature regime of the environment (-75°C), and the absence of a mechanism that could sustain particulates at high altitude, it is unlikely that our samples indicate a permanent, stratospheric ecosystem. However, the presence of viable fungi and bacteria in transoceanic stratosphere remains relevant to understanding the distribution and extent of microbial life on Earth.

  3. Effect of increased carbon dioxide concentrations on stratospheric ozone

    Boughner, R.E.

    1978-01-01

    During the past several years, much attention has been focused on the destruction of ozone by anthropogenic pollutants such as the nitrogen oxides and chlorofluoromethane. Little or no attention has been given to the influence on ozone of an increased carbon dioxide concentration for which a measurable growth has been observed. Increased carbon dioxide can directly affect ozone by perturbing atmospheric temperatures, which will alter ozone production, whose rate displays a fairly strong temperature dependence. This paper presents one-dimensional model results for the steady state ozone behavior when the CO 2 concentration is twice its ambient level which account for coupling between chemistry and temperature. When the CO 2 level doubled, the total ozone burden increased in relation to the ambient burden by 1.2--2.5%, depending on the vertical diffusion coefficient used. Above 30 km. In this region the relation variations were insensitive to the choice of diffusion coefficient. Below 30 km, ozone concentrations were smaller than the unperturbed values and were sensitive to the vertical diffusion profile in this region (10--30 km). Ozone decreases in the lower stratosphere because of a reduction in ozone-producing solar radiation, which results in smaller downward ozone fluxes from the region at 25--30 km relative to the flux values for the ambient atmosphere. These offsetting changes occurring in the upper and lower stratosphere act to minimize the variation in total ozone

  4. Detection of polar stratospheric clouds with ERS2/GOME data

    Meerkoetter, R.; Schumann, U.

    1994-01-01

    Based on radiative transfer calculations it is studied whether Polar Stratospheric Clouds (PSCs) can be detected by the new Global Ozone Monitoring Experiment (GOME) onboard the second European Research Satellite (ERS-2) planned to be launched in winter 1994/95. It is proposed to identify PSC covered areas by use of an indicator, the Normalized Radiance Difference (NRD), which relates the difference of two spectral radiances at 0.5 μm and 0.7 μm to one radiance measured in the center of the oxygen A-band at 0.76 μm. The presence of PSCs and under conditions of large solar zenith angles Θ>80 the NRD values are clearly below those derived under conditions of a cloud free stratosphere. In this case the method is successful for PSCs with optical depths greater than 0.03 at 0.55 μm. It is not affected by existing tropospheric clouds and by different tropospheric aerosol loadings or surface albedoes. For solar zenith angles Θ<80 PSCs located above a cloud free troposphere are detectable. PSC detection becomes difficult for Θ<80 when highly reflecting tropospheric clouds like dense cirrus or stratus clouds affect spectral radiances measured at the top of the atmosphere. (orig.)

  5. Sudden temperature changes in the Sydney Basin: climatology and case studies during the Olympic months of September and October

    Buckley, Bruce W.; Leslie, Lance M.

    2000-03-01

    The accurate prediction of sudden large changes in the maximum temperature from one day to the next remains one of the major challenges for operational forecasters. It is probably the meteorological parameter most commonly verified and used as a measure of the skill of a meteorological service and one that is immediately evident to the general public. Marked temperature changes over a short period of time have widespread social, economic, health and safety effects on the community. The first part of this paper describes a 40-year climatology for Sydney, Australia, of sudden temperature rises and falls, defined as maximum temperature changes of 5°C or more from one day to the next, for the months of September and October. The nature of the forecasting challenge during the period of the Olympic and Paralympic Games to be held in Sydney in the year 2000 will be described as a special application. The international importance of the accurate prediction of all types of significant weather phenomena during this period has been recognized by the World Meteorological Organisation's Commission for Atmospheric Science. The first World Weather Research Program forecast demonstration project is to be established in the Sydney Office of the Bureau of Meteorology over this period in order to test the ability of existing systems to predict such phenomena. The second part of this study investigates two case studies from the Olympic months in which there were both abrupt temperature rises and falls over a 4-day interval. Currently available high resolution numerical weather prediction systems are found to have significant skill several days ahead in predicting a large amount of the detail of these events, provided they are run at an appropriate resolution. The limitations of these systems are also discussed, with areas requiring further development being identified if the desired levels of accuracy of predictions are to be reliably delivered. Differences between the predictability

  6. Early morning fledging improves recruitment in great tits Parus major

    Radersma, Reinder; Komdeur, Jan; Tinbergen, Joost M.

    A potential key event linking the nestling phase to first-year survival is fledging (nest leaving) because this process is characterized by a major change of environments and therefore a sudden shift in selective forces. Here we assessed whether different facets of fledging predicted subsequent

  7. First airborne water vapor lidar measurements in the tropical upper troposphere and mid-latitudes lower stratosphere: accuracy evaluation and intercomparisons with other instruments

    C. Schiller

    2008-09-01

    Full Text Available In the tropics, deep convection is the major source of uncertainty in water vapor transport to the upper troposphere and into the stratosphere. Although accurate measurements in this region would be of first order importance to better understand the processes that govern stratospheric water vapor concentrations and trends in the context of a changing climate, they are sparse because of instrumental shortcomings and observational challenges. Therefore, the Falcon research aircraft of the Deutsches Zentrum für Luft- und Raumfahrt (DLR flew a zenith-viewing water vapor differential absorption lidar (DIAL during the Tropical Convection, Cirrus and Nitrogen Oxides Experiment (TROCCINOX in 2004 and 2005 in Brazil. The measurements were performed alternatively on three water vapor absorption lines of different strength around 940 nm. These are the first aircraft DIAL measurements in the tropical upper troposphere and in the mid-latitudes lower stratosphere. Sensitivity analyses reveal an accuracy of 5% between altitudes of 8 and 16 km. This is confirmed by intercomparisons with the Fast In-situ Stratospheric Hygrometer (FISH and the Fluorescent Advanced Stratospheric Hygrometer (FLASH onboard the Russian M-55 Geophysica research aircraft during five coordinated flights. The average relative differences between FISH and DIAL amount to −3%±8% and between FLASH and DIAL to −8%±14%, negative meaning DIAL is more humid. The average distance between the probed air masses was 129 km. The DIAL is found to have no altitude- or latitude-dependent bias. A comparison with the balloon ascent of a laser absorption spectrometer gives an average difference of 0%±19% at a distance of 75 km. Six tropical DIAL under-flights of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS on board ENVISAT reveal a mean difference of −8%±49% at an average distance of 315 km. While the comparison with MIPAS is somewhat less significant due to poorer

  8. The Impact of Sudden Gains in Cognitive Behavioral Therapy for Posttraumatic Stress Disorder

    Kelly, Kacie A.; Rizvi, Shireen L.; Monson, Candice M.; Resick, Patricia A.

    2009-01-01

    This study investigated sudden gains, i.e., rapid and stable improvements, in posttraumatic stress disorder (PTSD) symptoms that may occur in cognitive–behavioral therapy. Twenty-nine of 72 participants (39.2%) experienced a sudden gain during treatment. Mixed model ANOVAs analyzed sudden gains impact on clinician-rated PTSD symptom severity, patient-rated PTSD symptom severity, and patient-rated depressive symptom severity. Sudden gains in PTSD symptomology were associated with greater reductions in PTSD symptom severity for the avoidance/numbing and hyperarousal symptom clusters at posttreatment. By 6-month follow-up, the sudden gains group had maintained those reductions in symptoms, but the nonsudden gains group had achieved equal reductions in symptom severity. Participants experiencing sudden gains on PTSD measures had lower depression severity at posttreatment and follow-up. PMID:19637322

  9. Bilateral sudden sensorineural hearing loss as a first symptom of infective endocarditis: two case reports.

    Chroni, M; Prappa, E; Kokkevi, I

    2018-04-01

    Septic emboli are an unusual cause of sudden sensorineural hearing loss, for which few reports exist in the literature. This paper presents two cases of sudden sensorineural hearing loss, initially considered as idiopathic, but which were caused by septic emboli. Hearing loss in these cases was bilateral, sequential and total. The first patient had mild fever one week prior to their presentation with sudden sensorineural hearing loss; the other patient had no additional symptoms at presentation. These patients were later diagnosed with infective endocarditis, at two and seven months following the sudden sensorineural hearing loss respectively, showing that septic emboli had been the cause of sudden sensorineural hearing loss. Septic emboli should be considered as a possible cause of sudden sensorineural hearing loss in cases of total hearing loss. This form of hearing loss should prompt the otolaryngologist to further investigate for infective endocarditis.

  10. Stratospheric mean ages and transport rates from observations of CO{sub 2} and N{sub 2}O

    Boering, K A; Wofsy, S C; Daube, B C; Schneider, H R [Harvard Univ., Cambridge, MA (United States). Div. of Engineering and Applied Sciences; Loewenstein, M; Podolske, J R [NASA Ames Research Center, Moffett Field, CA (United States); Conway, T J [National Oceanic and Atmospheric Administration, Boulder, CO (United States)

    1998-12-31

    Measurements of CO{sub 2} and N{sub 2}O concentrations are reported and analyzed to investigate stratospheric transport rates. Temporal variations in tropospheric CO{sub 2} are observed to propagate into the stratosphere, showing that tropospheric air enters the lower tropical stratosphere continuously, ascends, and is transported rapidly (in less than 1 month) to both hemispheres. The mean age of stratospheric air determined from CO{sub 2} data is approximately 5 years in the mid-stratosphere. It is shown that the mean age is mathematically equivalent to a conserved tracer analogous to exhaust from stratospheric aircraft. Comparison of the mean age from models and observations indicates that current model simulations likely underestimate pollutant concentrations from proposed stratospheric aircraft by 25-100%. (author) 36 refs.

  11. Stratospheric mean ages and transport rates from observations of CO{sub 2} and N{sub 2}O

    Boering, K.A.; Wofsy, S.C.; Daube, B.C.; Schneider, H.R. [Harvard Univ., Cambridge, MA (United States). Div. of Engineering and Applied Sciences; Loewenstein, M.; Podolske, J.R. [NASA Ames Research Center, Moffett Field, CA (United States); Conway, T.J. [National Oceanic and Atmospheric Administration, Boulder, CO (United States)

    1997-12-31

    Measurements of CO{sub 2} and N{sub 2}O concentrations are reported and analyzed to investigate stratospheric transport rates. Temporal variations in tropospheric CO{sub 2} are observed to propagate into the stratosphere, showing that tropospheric air enters the lower tropical stratosphere continuously, ascends, and is transported rapidly (in less than 1 month) to both hemispheres. The mean age of stratospheric air determined from CO{sub 2} data is approximately 5 years in the mid-stratosphere. It is shown that the mean age is mathematically equivalent to a conserved tracer analogous to exhaust from stratospheric aircraft. Comparison of the mean age from models and observations indicates that current model simulations likely underestimate pollutant concentrations from proposed stratospheric aircraft by 25-100%. (author) 36 refs.

  12. Net Influence of an Internally Generated Guasi-biennial Oscillation on Modelled Stratospheric Climate and Chemistry

    Hurwitz, Margaret M.; Oman, Luke David; Newman, Paul A.; Song, InSun

    2013-01-01

    A Goddard Earth Observing System Chemistry- Climate Model (GEOSCCM) simulation with strong tropical non-orographic gravity wave drag (GWD) is compared to an otherwise identical simulation with near-zero tropical non-orographic GWD. The GEOSCCM generates a quasibiennial oscillation (QBO) zonal wind signal in response to a tropical peak in GWD that resembles the zonal and climatological mean precipitation field. The modelled QBO has a frequency and amplitude that closely resembles observations. As expected, the modelled QBO improves the simulation of tropical zonal winds and enhances tropical and subtropical stratospheric variability. Also, inclusion of the QBO slows the meridional overturning circulation, resulting in a generally older stratospheric mean age of air. Slowing of the overturning circulation, changes in stratospheric temperature and enhanced subtropical mixing all affect the annual mean distributions of ozone, methane and nitrous oxide. Furthermore, the modelled QBO enhances polar stratospheric variability in winter. Because tropical zonal winds are easterly in the simulation without a QBO, there is a relative increase in tropical zonal winds in the simulation with a QBO. Extratropical differences between the simulations with and without a QBO thus reflect the westerly shift in tropical zonal winds: a relative strengthening of the polar stratospheric jet, polar stratospheric cooling and a weak reduction in Arctic lower stratospheric ozone.

  13. What Controls the Temperature of the Arctic Stratosphere during the Spring?

    Newman, Paul A.; Nash, Eric R.; Rosenfield, Joan E.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Understanding the mechanisms that control the temperature of the polar lower stratosphere during spring is key to understanding ozone loss in the Arctic polar vortex. Spring ozone loss rates are directly tied to polar stratospheric temperatures by the formation of polar stratospheric clouds, and the conversion of chlorine species to reactive forms on these cloud particle surfaces. In this paper, we study those factors that control temperatures in the polar lower stratosphere. We use the National Centers for Environmental Prediction (NCEP)/NCAR reanalysis data covering the last two decades to investigate how planetary wave driving of the stratosphere is connected to polar temperatures. In particular, we show that planetary waves forced in the troposphere in mid- to late winter (January-February) are principally responsible for the mean polar temperature during the March period. These planetary waves are forced by both thermal and orographic processes in the troposphere, and propagate into the stratosphere in the mid and high latitudes. Strong mid-winter planetary wave forcing leads to a warmer Arctic lower stratosphere in early spring, while weak mid-winter forcing leads to cooler Arctic temperatures.

  14. The annual cycle of stratospheric water vapor in a general circulation model

    Mote, Philip W.

    1995-01-01

    The application of general circulation models (GCM's) to stratospheric chemistry and transport both permits and requires a thorough investigation of stratospheric water vapor. The National Center for Atmospheric Research has redesigned its GCM, the Community Climate Model (CCM2), to enable studies of the chemistry and transport of tracers including water vapor; the importance of water vapor to the climate and chemistry of the stratosphere requires that it be better understood in the atmosphere and well represented in the model. In this study, methane is carried as a tracer and converted to water; this simple chemistry provides an adequate representation of the upper stratospheric water vapor source. The cold temperature bias in the winter polar stratosphere, which the CCM2 shares with other GCM's, produces excessive dehydration in the southern hemisphere, but this dry bias can be ameliorated by setting a minimum vapor pressure. The CCM2's water vapor distribution and seasonality compare favorably with observations in many respects, though seasonal variations including the upper stratospheric semiannual oscillation are generally too small. Southern polar dehydration affects midlatitude water vapor mixing ratios by a few tenths of a part per million, mostly after the demise of the vortex. The annual cycle of water vapor in the tropical and northern midlatitude lower stratosphere is dominated by drying at the tropical tropopause. Water vapor has a longer adjustment time than methane and had not reached equilibrium at the end of the 9 years simulated here.

  15. Increased resistance to sudden noise by audio stimulation during early ontogeny in German shepherd puppies.

    Helena Chaloupková

    Full Text Available The period of early ontogeny constitutes a time when the physical immaturity of an organism is highly susceptible to external stimuli. Thus, early development plays a major role in shaping later adult behavior. The aim of the study was to check whether stimulating puppies at this early stage in life with sound would improve their responsiveness towards unfamiliar noises during the selection process of the police behavioral test for puppies. The cohort comprised 37 puppies from the litters of three mothers. At the commencement of the experiment the dogs were aged 16 days, rising to the age of 32 days at its close. The mothers and litters of the treatment group were either exposed to radio broadcasts, (see below; three litters totaling 19 puppies, while the control group was not exposed to any radio programs (eight litters totaling 18 puppies. All three mothers had previously experienced both auditory circumstances, as described herein. Ordinary radio broadcasts were played to the puppies in the treatment group three times a day for 20 minute periods, always during feeding time. The cohort was subjected to the so-called Puppy Test, i.e. analysis of the potential of each animal, once the dogs had reached the age of 7 weeks. Such tests included exposure to a sudden noise caused by a shovel (100 dB, noise when alone in a room, and response to loud distracting stimuli (the latter two at 70 dB. Said tasks were rated by the same analyst on a scale of 0-5 points; the better the response of the dog, the higher the score given. The differences between the treatment and control groups were analyzed via Mixed Models (PROC MIXED in SAS. The animals comprising the treatment group responded with a higher score to the sudden noise caused by the shovel than the control dogs (P<0.01. Interestingly, gender was seen to affect response, with the males scoring more than the females (P<0.1. In conclusion, the results suggested that audio stimulation early in life

  16. Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery

    Ball, William T.; Alsing, Justin; Mortlock, Daniel J.; Staehelin, Johannes; Haigh, Joanna D.; Peter, Thomas; Tummon, Fiona; Stübi, Rene; Stenke, Andrea; Anderson, John; Bourassa, Adam; Davis, Sean M.; Degenstein, Doug; Frith, Stacey; Froidevaux, Lucien; Roth, Chris; Sofieva, Viktoria; Wang, Ray; Wild, Jeannette; Yu, Pengfei; Ziemke, Jerald R.; Rozanov, Eugene V.

    2018-02-01

    Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective ozone layer around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60° S and 60° N outside the polar regions (60-90°). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60° S and 60° N has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60° S and 60° N. We find that total column ozone between 60° S and 60° N appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.

  17. Evidence for a Continuous Decline in Lower Stratospheric Ozone Offsetting Ozone Layer Recovery

    Ball, William T.; Alsing, Justin; Mortlock, Daniel J.; Staehelin, Johannes; Haigh, Joanna D.; Peter, Thomas; Tummon, Fiona; Stuebi, Rene; Stenke, Andrea; Anderson, John; hide

    2018-01-01

    Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective "ozone layer" around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60degS and 60degN outside the polar regions (60-90deg). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60degS and 60degN has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60degS and 60degN. We find that total column ozone between 60degS and 60degN appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.

  18. Effects of Volcanic Eruptions on Stratospheric Ozone Recovery

    Rosenfield, Joan E.

    2002-01-01

    The effects of the stratospheric sulfate aerosol layer associated with the Mt. Pinatubo volcano and future volcanic eruptions on the recovery of the ozone layer is studied with an interactive two-dimensional photochemical model. The time varying chlorine loading and the stratospheric cooling due to increasing carbon dioxide have been taken into account. The computed ozone and temperature changes associated with the Mt. Pinatubo eruption in 1991 agree well with observations. Long model runs out to the year 2050 have been carried out, in which volcanoes having the characteristics of the Mount Pinatubo volcano were erupted in the model at 10-year intervals starting in the year 2010. Compared to a non-volcanic run using background aerosol loading, transient reductions of globally averaged column ozone of 2-3 percent were computed as a result of each of these eruptions, with the ozone recovering to that computed for the non-volcanic case in about 5 years after the eruption. Computed springtime Arctic column ozone losses of from 10 to 18 percent also recovered to the non-volcanic case within 5 years. These results suggest that the long-term recovery of ozone would not be strongly affected by infrequent volcanic eruptions with a sulfur loading approximating Mt. Pinatubo. Sensitivity studies in which the Arctic lower stratosphere was forced to be 4 K and 10 K colder resulted in transient ozone losses of which also recovered to the non-volcanic case in 5 years. A case in which a volcano five times Mt. Pinatubo was erupted in the year 2010 led to maximum springtime column ozone losses of 45 percent which took 10 years to recover to the background case. Finally, in order to simulate a situation in which frequent smaller volcanic eruptions result in increasing the background sulfate loading, a simulation was made in which the background aerosol was increased by 10 percent per year. This resulted in a delay of the recovery of column ozone to 1980 values of more than 10 years.

  19. Photochemistry, mixing and transport in Jupiter's stratosphere constrained by Cassini

    Hue, V.; Hersant, F.; Cavalié, T.; Dobrijevic, M.; Sinclair, J. A.

    2018-06-01

    In this work, we aim at constraining the diffusive and advective transport processes in Jupiter's stratosphere, using Cassini/CIRS observations published by Nixon et al. (2007,2010). The Cassini-Huygens flyby of Jupiter on December 2000 provided the highest spatially resolved IR observations of Jupiter so far, with the CIRS instrument. The IR spectrum contains the fingerprints of several atmospheric constituents and allows probing the tropospheric and stratospheric composition. In particular, the abundances of C2H2 and C2H6, the main compounds produced by methane photochemistry, can be retrieved as a function of latitude in the pressure range at which CIRS is sensitive to. CIRS observations suggest a very different meridional distribution for these two species. This is difficult to reconcile with their photochemical histories, which are thought to be tightly coupled to the methane photolysis. While the overall abundance of C2H2 decreases with latitude, C2H6 becomes more abundant at high latitudes. In this work, a new 2D (latitude-altitude) seasonal photochemical model of Jupiter is developed. The model is used to investigate whether the addition of stratospheric transport processes, such as meridional diffusion and advection, are able to explain the latitudinal behavior of C2H2 and C2H6. We find that the C2H2 observations are fairly well reproduced without meridional diffusion. Adding meridional diffusion to the model provides an improved agreement with the C2H6 observations by flattening its meridional distribution, at the cost of a degradation of the fit to the C2H2 distribution. However, meridional diffusion alone cannot produce the observed increase with latitude of the C2H6 abundance. When adding 2D advective transport between roughly 30 mbar and 0.01 mbar, with upwelling winds at the equator and downwelling winds at high latitudes, we can, for the first time, reproduce the C2H6 abundance increase with latitude. In parallel, the fit to the C2H2 distribution is

  20. Sudden infant death syndrome, childhood thrombosis, and presence of genetic risk factors for thrombosis

    Larsen, TB; Nørgaard-Pedersen, B; Lundemose, JB

    2000-01-01

    in the child. This prompted us to investigate these genetic markers of thromboembolic disease in 121 cases of sudden infant death syndrome and in relevant controls, in the expectation of a more frequent occurrence of these markers if thrombosis is an etiological factor in sudden infant death syndrome...... or unknown risk factors for thrombosis as possible etiological factors for sudden infant death syndrome. It is likely that we must continuously employ the exclusion principle on possible etiological causes in genetic material from a large group of victims of sudden infant death syndrome if the phenomenon...

  1. Sources of increase in lowermost stratospheric sulphurous and carbonaceous aerosol background concentrations during 1999–2008 derived from CARIBIC flights

    Johan Friberg

    2014-03-01

    Full Text Available This study focuses on sulphurous and carbonaceous aerosol, the major constituents of particulate matter in the lowermost stratosphere (LMS, based on in situ measurements from 1999 to 2008. Aerosol particles in the size range of 0.08–2 µm were collected monthly during intercontinental flights with the CARIBIC passenger aircraft, presenting the first long-term study on carbonaceous aerosol in the LMS. Elemental concentrations were derived via subsequent laboratory-based ion beam analysis. The stoichiometry indicates that the sulphurous fraction is sulphate, while an O/C ratio of 0.2 indicates that the carbonaceous aerosol is organic. The concentration of the carbonaceous component corresponded on average to approximately 25% of that of the sulphurous, and could not be explained by forest fires or biomass burning, since the average mass ratio of Fe to K was 16 times higher than typical ratios in effluents from biomass burning. The data reveal increasing concentrations of particulate sulphur and carbon with a doubling of particulate sulphur from 1999 to 2008 in the northern hemisphere LMS. Periods of elevated concentrations of particulate sulphur in the LMS are linked to downward transport of aerosol from higher altitudes, using ozone as a tracer for stratospheric air. Tropical volcanic eruptions penetrating the tropical tropopause are identified as the likely cause of the particulate sulphur and carbon increase in the LMS, where entrainment of lower tropospheric air into volcanic jets and plumes could be the cause of the carbon increase.

  2. Driving Roles of Tropospheric and Stratospheric Thermal Anomalies in Intensification and Persistence of the Arctic Superstorm in 2012

    Tao, Wei; Zhang, Jing; Fu, Yunfei; Zhang, Xiangdong

    2017-10-01

    Intense synoptic-scale storms have been more frequently observed over the Arctic during recent years. Specifically, a superstorm hit the Arctic Ocean in August 2012 and preceded a new record low Arctic sea ice extent. In this study, the major physical processes responsible for the storm's intensification and persistence are explored through a series of numerical modeling experiments with the Weather Research and Forecasting model. It is found that thermal anomalies in troposphere as well as lower stratosphere jointly lead to the development of this superstorm. Thermal contrast between the unusually warm Siberia and the relatively cold Arctic Ocean results in strong troposphere baroclinicity and upper level jet, which contribute to the storm intensification initially. On the other hand, Tropopause Polar Vortex (TPV) associated with the thermal anomaly in lower stratosphere further intensifies the upper level jet and accordingly contributes to a drastic intensification of the storm. Stacking with the enhanced surface low, TPV intensifies further, which sustains the storm to linger over the Arctic Ocean for an extended period.

  3. Entanglement dynamics following a sudden quench: An exact solution

    Ghosh, Supriyo; Gupta, Kumar S.; Srivastava, Shashi C. L.

    2017-12-01

    We present an exact and fully analytical treatment of the entanglement dynamics for an isolated system of N coupled oscillators following a sudden quench of the system parameters. The system is analyzed using the solutions of the time-dependent Schrodinger's equation, which are obtained by solving the corresponding nonlinear Ermakov equations. The entanglement entropies exhibit a multi-oscillatory behaviour, where the number of dynamically generated time scales increases with N. The harmonic chains exhibit entanglement revival and for larger values of N (> 10), we find near-critical logarithmic scaling for the entanglement entropy, which is modulated by a time-dependent factor. The N = 2 case is equivalent to the two-site Bose-Hubbard model in the tunneling regime, which is amenable to empirical realization in cold-atom systems.

  4. Sudden flux change studies in high field superconducting accelerator magnets

    Feher, S.; Bordini, B.; Carcagno, R.; Makulski, A.; Orris, D.F.; Pischalnikov, Y.M.; Sylvester, C.; Tartaglia, M.; Tompkins, J.C.; Zlobin, A.V.

    2004-01-01

    As part of the High Field Magnet Program at Fermilab many magnets have been tested which utilize multi strand Rutherford type cable made of state-of-the art Nb 3 Sn strands. During these magnet tests we observed sudden flux changes by monitoring coil voltages and the magnetic field close to the magnets. These flux changes might be linked to magnet instabilities. The voltage spike signals were correlated with quench antenna signals, a strong indication that these are magnet phenomena. With a new high resolution voltage spike detection system, we were able to observe the detailed structure of the spikes. Two fundamentally different signal shapes were distinguished, most likely generated by different mechanisms

  5. Sudden Cardiac Death During Sports Activities in the General Population.

    Narayanan, Kumar; Bougouin, Wulfran; Sharifzadehgan, Ardalan; Waldmann, Victor; Karam, Nicole; Marijon, Eloi; Jouven, Xavier

    2017-12-01

    Regular exercise reduces cardiovascular and overall mortality. Participation in sports is an important determinant of cardiovascular health and fitness. Regular sports activity is associated with a smaller risk of sudden cardiac death (SCD). However, there is a small risk of sports-related SCD. Sports-related SCD accounts for approximately 5% of total SCD. SCD among athletes comprises only a fraction of all sports-related SCD. Sport-related SCD has a male predominance and an average age of affliction of 45 to 50 years. Survival is better than for other SCD. This review summarizes links between sports and SCD and discusses current knowledge and controversies. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Increased risk of sudden cardiac arrest in obstructive pulmonary disease

    Warnier, Miriam Jacoba; Blom, Marieke Tabo; Bardai, Abdennasser

    2013-01-01

    BACKGROUND: We aimed to determine whether (1) patients with obstructive pulmonary disease (OPD) have an increased risk of sudden cardiac arrest (SCA) due to ventricular tachycardia or fibrillation (VT/VF), and (2) the SCA risk is mediated by cardiovascular risk-profile and/or respiratory drug use...... with electrocardiographic documentation of VT/VF were included. Conditional logistic regression analysis was used to assess the association between SCA and OPD. Pre-specified subgroup analyses were performed regarding age, sex, cardiovascular risk-profile, disease severity, and current use of respiratory drugs. RESULTS...... is associated with an increased observed risk of SCA. The most increased risk was observed in patients with a high cardiovascular risk-profile, and in those who received SABA and, possibly, those who received AC at the time of SCA....

  7. Surprises in the suddenly-expanded infinite well

    Aslangul, Claude

    2008-01-01

    I study the time evolution of a particle prepared in the ground state of an infinite well after the latter is suddenly expanded. It turns out that the probability density |Ψ(x, t)| 2 shows up quite a surprising behaviour: for definite times, plateaux appear for which |Ψ(x, t)| 2 is constant on finite intervals for x. Elements of theoretical explanation are given by analysing the singular component of the second derivative ∂ xx Ψ(x, t). Analytical closed expressions are obtained for some specific times, which easily allow us to show that, at these times, the density organizes itself into regular patterns provided the size of the box is large enough; more, above some critical size depending on the specific time, the density patterns are independent of the expansion parameter. It is seen how the density at these times simply results from a construction game with definite rules acting on the pieces of the initial density

  8. Cardiac symptoms before sudden cardiac death caused by hypertrophic cardiomyopathy

    Lynge, Thomas Hadberg; Risgaard, Bjarke; Jabbari, Reza

    2016-01-01

    AIMS: Hypertrophic cardiomyopathy (HCM) is a frequent cause of sudden cardiac death (SCD) among the young (SCDY). The aim of this study was to characterize symptoms before SCDY due to HCM. METHODS AND RESULTS: Through review of all death certificates, we identified all SCDs in Danes aged 1-35 years...... in 2000-2009. Nationwide we included all deaths (n = 8756) and identified 431 autopsied SCDYs. All available records from hospitals and general practitioners were retrieved. To compare symptoms, we included a control groups consisting of traffic accident victims (n = 74). In the 10-year study period, 431...... autopsied SCDY cases were reviewed and 38 cases (9%) were included, of which 22 (58%) had morphologic findings diagnostic of HCM and 16 (42%) had findings suggestive, but not diagnostic, of HCM ('possible HCM'). Cardiac symptoms >1 h prior to death were reported in 21 (55%) of cases, and 16 (42%) sought...

  9. Sudden cardiac death and coronary disease in the young

    Zachariasardóttir, Sára; Risgaard, Bjarke; Ågesen, Frederik Nybye

    2017-01-01

    BACKGROUND: Sudden cardiac death caused by coronary artery disease (CAD-SCD) is the most frequent cause of SCD in persons ..., CAD-SCD victims aged 36-49years had more severe atherosclerosis in all coronary arteries, more multi-vessel disease (29% vs. 15%, p=0.049) and less commonly (38% vs. 54%, p=0.039) acute coronary occlusion than victims ... to death. CONCLUSION: This nationwide study found several differences in the pathologic lesions of the heart in victims aged 18-35 and 36-49years, which might be associated with different disease progression leading to death in these age groups. We also report a high frequency of cardiac symptoms prior...

  10. Subclinical hyperthyroidism and sudden unexpected death in epilepsy.

    Scorza, Fulvio A; Arida, Ricardo M; Cysneiros, Roberta M; Terra, Vera C; de Albuquerque, Marly; Machado, Hélio R; Cavalheiro, Esper A

    2010-04-01

    Epilepsy is the most common serious neurological condition and sudden unexpected death in epilepsy (SUDEP) is the most important direct epilepsy-related cause of death. Information concerning risk factors for SUDEP is conflicting, but high seizure frequency is a potential risk factor. Additionally, potential pathomechanisms for SUDEP are unknown, but it is very probable that cardiac arrhythmias during and between seizures or transmission of epileptic activity to the heart via the autonomic nervous system potentially play a role. In parallel, several studies have shown a link between hormones and epilepsy. However, exact knowledge regarding the association of thyroid hormones and epilepsy is lacking. As subclinical hyperthyroidism has been linked with increased risk of cardiovascular disease, we propose in this paper that SUDEP, at least in some cases, could be related with subclinical thyroid dysfunction. (c) 2009 Elsevier Ltd. All rights reserved.

  11. Combustion instabilities in sudden expansion oxy-fuel flames

    Ditaranto, Mario; Hals, Joergen [Department of Energy Processes, SINTEF Energy Research, 7465 Trondheim (Norway)

    2006-08-15

    An experimental study on combustion instability is presented with focus on oxy-fuel type combustion. Oxidants composed of CO{sub 2}/O{sub 2} and methane are the reactants flowing through a premixer-combustor system. The reaction starts downstream a symmetric sudden expansion and is at the origin of different instability patterns depending on oxygen concentration and Reynolds number. The analysis has been conducted through measurement of pressure, CH* chemiluminescence, and velocity. As far as stability is concerned, oxy-fuel combustion with oxygen concentration similar to that found in air combustion cannot be sustained, but requires at least 30% oxygen to perform in a comparable manner. Under these conditions and for the sudden expansion configuration used in this study, the instability is at low frequency and low amplitude, controlled by the flame length inside the combustion chamber. Above a threshold concentration in oxygen dependent on equivalence ratio, the flame becomes organized and concentrated in the near field. Strong thermoacoustic instability is then triggered at characteristic acoustic modes of the system. Different modes can be triggered depending on the ratio of flame speed to inlet velocity, but for all types of instability encountered, the heat release and pressure fluctuations are linked by a variation in mass-flow rate. An acoustic model of the system coupled with a time-lag-based flame model made it possible to elucidate the acoustic mode selection in the system as a function of laminar flame speed and Reynolds number. The overall work brings elements of reflection concerning the potential risk of strong pressure oscillations in future gas turbine combustors for oxy-fuel gas cycles. (author)

  12. Environmental risk factors for sudden infant death syndrome in Japan.

    Hirabayashi, Masako; Yoshinaga, Masao; Nomura, Yuichi; Ushinohama, Hiroya; Sato, Seiichi; Tauchi, Nobuo; Horigome, Hitoshi; Takahashi, Hideto; Sumitomo, Naokata; Shiraishi, Hirohiko; Nagashima, Masami

    2016-12-01

    While the prevalence of sudden infant death syndrome (SIDS) has decreased worldwide, this decline has plateaued recently. Strategies are needed to resume the constant decrease of SIDS in Japan. A prospective electrocardiographic screening program for infants was performed between July 2010 and March 2011. Parents of 4319 infants were asked about environmental factors related to SIDS through questionnaires at a one-month medical checkup and one year. Parental awareness of prone position, smoke exposure, and breast feeding as environmental factors were 81.4 %, 69.0 %, and 47.8 %, respectively. The prevalence of laying infants exclusively in a supine position was 96.7 %. At the one-month medical checkup, smoking prevalence was 41.7 % in fathers and 2.1 % in mothers. Maternal smoking prevalence was significantly increased at one year after (p Japan. Smoking cessation programs should be further implemented for parents to decrease risks of SIDS in Japan. What is Known: • The prevalence of sudden infant death syndrome (SIDS) has decreased worldwide, however, this decline has plateaued recently. What is New: • Most infants were laid sleeping in the supine position (96.7 %) and were fed breast milk or a mix of expressed milk and formula (92.7 %), and 2.1 % of mothers smoked at the one-month medical checkup. • Maternal smoking prevalence significantly increased from the one-month medical checkup to one year later, and smoking mothers were more likely to feed infants by formula rather than breast milk. • Independent risk factors for new or continued maternal smoking habits included younger maternal age, maternal smoking habits at one month, and paternal smoking habits one year later.

  13. Mitral valve prolapse and sudden cardiac arrest in the community.

    Narayanan, Kumar; Uy-Evanado, Audrey; Teodorescu, Carmen; Reinier, Kyndaron; Nichols, Gregory A; Gunson, Karen; Jui, Jonathan; Chugh, Sumeet S

    2016-02-01

    Mitral valve prolapse (MVP) is relatively common in the general population with recently reported prevalence of 1% and familial clustering (Framingham Heart Study). However, its association with ventricular arrhythmias and sudden cardiac arrest (SCA) remains controversial. The purpose of this study was to characterize the frequency and clinical profile of patients with MVP who suffer SCA in the community. Patients with SCA cases were prospectively identified in the population-based Oregon Sudden Unexpected Death Study (population ~1 million). The presence of MVP was identified from echocardiograms recorded prior but unrelated to the SCA event. The detailed clinical profile of patients with SCA and MVP was compared with that of SCA patients without MVP to identify potential differences. A total of 729 SCA patients were evaluated over a 12-year period (mean age 69.5 ± 14.8 years; 64.6% men). MVP was observed in 17 (2.3%) prior to the SCA event (95% confidence interval 1.2%-3.4%). Mitral regurgitation was present in 14 SCA patients with MVP (82.3%) and was moderate or severe in 10 (58.8%). Compared with SCA patients without MVP, SCA patients with MVP were younger (mean age 60.9 ± 16.4 years vs 69.7 ± 14.7 years; P = .02), with fewer risk factors (diabetes 5.9% vs 46.4%; P = .001; hypertension 41.2% vs 78.9%; P = .001) or known coronary disease (29.4% vs 65.6%; P MVP was observed in a small proportion (2.3%) of SCA patients in the general population, suggesting a low risk overall. Since SCA patients with MVP were characterized by younger age and relatively low cardiovascular comorbidity, a focus on imaging for valve structure/insufficiency as well as genetics could aid future risk stratification approaches. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  14. Sudden cardiac arrest in people with epilepsy in the community

    Lamberts, Robert J.; Blom, Marieke T.; Wassenaar, Merel; Bardai, Abdennasser; Leijten, Frans S.; de Haan, Gerrit-Jan; Sander, Josemir W.; Thijs, Roland D.

    2015-01-01

    Objective: To ascertain whether characteristics of ventricular tachycardia/fibrillation (VT/VF) differed between people with epilepsy and those without and which individuals with epilepsy were at highest risk. Methods: We ascertained 18 people with active epilepsy identified in a community-based registry of sudden cardiac arrest (SCA) with ECG-confirmed VT/VF (cases). We compared them with 470 individuals with VT/VF without epilepsy (VT/VF controls) and 54 individuals with epilepsy without VT/VF (epilepsy controls). Data on comorbidity, epilepsy severity, and medication use were collected and entered into (conditional) logistic regression models to identify determinants of VT/VF in epilepsy. Results: In most cases, there was an obvious (10/18) or presumed cardiovascular cause (5/18) in view of preexisting heart disease. In 2 of the 3 remaining events, near–sudden unexpected death in epilepsy (SUDEP) was established after successful resuscitation. Cases had a higher prevalence of congenital/inherited heart disease (17% vs 1%, p = 0.002), and experienced VT/VF at younger age (57 vs 64 years, p = 0.023) than VT/VF controls. VT/VF in cases occurred more frequently at/near home (89% vs 58%, p = 0.009), and was less frequently witnessed (72% vs 89%, p = 0.048) than in VT/VF controls. Cases more frequently had clinically relevant heart disease (50% vs 15%, p = 0.005) and intellectual disability (28% vs 1%, p epilepsy controls. Conclusion: Cardiovascular disease rather than epilepsy characteristics is the main determinant of VT/VF in people with epilepsy in the community. SCA and SUDEP are partially overlapping disease entities. PMID:26092917

  15. Mechanism and Kinetics of the Formation and Transport of Aerosol Particles in the Lower Stratosphere

    Aloyan, A. E.; Ermakov, A. N.; Arutyunyan, V. O.

    2018-03-01

    Field and laboratory observation data on aerosol particles in the lower stratosphere are considered. The microphysics of their formation, mechanisms of heterogeneous chemical reactions involving reservoir gases (e.g., HCl, ClONO2, etc.) and their kinetic characteristics are analyzed. A new model of global transport of gaseous and aerosol admixtures in the lower stratosphere is described. The preliminary results from a numerical simulation of the formation of sulfate particles of the Junge layer and particles of polar stratospheric clouds (PSCs, types Ia, Ib, and II) are presented, and their effect on the gas and aerosol composition is analyzed.

  16. Improved stratospheric atmosphere forecasts in the general circulation model through a methane oxidation parametrization

    Wang, S.; Jun, Z.

    2017-12-01

    Climatic characteristics of tropical stratospheric methane have been well researched using various satellite data, and numerical simulations have furtherly conducted using chemical climatic models, while the impact of stratospheric methane oxidation on distribution of water vapor is not paid enough attention in general circulation models. Simulated values of water vapour in the tropical upper stratosphere, and throughout much of the extratropical stratosphere, were too low. Something must be done to remedy this deficiency in order to producing realistic stratospheric water vapor using a general circulation model including the whole stratosphere. Introduction of a simple parametrization of the upper-stratospheric moisture source due to methane oxidation and a sink due to photolysis in the mesosphere was conducted. Numerical simulations and analysis of the influence of stratospheric methane on the prediction of tropical stratospheric moisture and temperature fields were carried out. This study presents the advantages of methane oxidation parametrization in producing a realistic distribution of water vapour in the tropical stratosphere and analyzes the impact of methane chemical process on the general circulation model using two storm cases including a heavy rain in South China and a typhoon caused tropical storm.It is obvious that general circulation model with methane oxidation parametrization succeeds in simulating the water vapor and temperature in stratosphere. The simulating rain center value of contrast experiment is increased up to 10% than that of the control experiment. Introduction of methane oxidation parametrization has modified the distribution of water vapour and then producing a broadly realistic distribution of temperature. Objective weather forecast verifications have been performed using simulating results of one month, which demonstrate somewhat positive effects on the model skill. There is a certain extent impact of methane oxidation

  17. Towards a Theory of Tropical/Midlatitude Mass Exchange from the Earth's Surface through the Stratosphere

    Hartley, Dana

    1998-01-01

    The main findings of this research project have been the following: (1) there is a significant feedback from the stratosphere on tropospheric dynamics, and (2) a detailed analysis of the interaction between tropical and polar wave breaking in controlling stratospheric mixing. Two papers are were written and are included. The first paper is titled, "A New Perspective on the Dynamical Link Between the Stratosphere and Troposphere." Atmospheric processes of tropospheric origin can perturb the stratosphere, but direct feedback in the opposite direction is usually assumed to be negligible, despite the troposphere's sensitivity to changes in the release of wave activity into the stratosphere. Here, however, we present evidence that such a feedback exists and can be significant. We find that if the wintertime Arctic polar stratospheric vortex is distorted, either by waves propagating upward from the troposphere or by eastward-travelling stratospheric waves, then there is a concomitant redistribution of stratospheric potential vorticity that induces perturbations in key meteorological fields in the upper troposphere. The feedback is large despite the much greater mass of the troposphere: it can account for up to half of the geopotential height anomaly at the tropopause. Although the relative strength of the feedback is partly due to a cancellation between contributions to these anomalies from lower altitudes, our results imply that stratospheric dynamics and its feedback on the troposphere are more significant for climate modelling and data assimilation than was previously assumed. The second article is titled "Diagnosing the Polar Excitation of Subtropical Waves in the Stratosphere". The poleward migration of planetary scale tongues of subtropical air has often been associated with intense polar vortex disturbances in the stratosphere. This question of vortex influence is reexamined from a potential vorticity (PV) perspective. Anomalous geopotential height and wind fields

  18. Fatigue Management Strategies for the Stratospheric Observatory for Infrared Astronomy

    Bendrick, Gregg

    2012-01-01

    Operation of the Stratospheric Observatory for Infrared Astronomy entails a great deal of night-time work, with the potential for both acute and chronic sleep loss, as well as circadian rhythm dysynchrony. Such fatigue can result in performance decrements, with an increased risk of operator error. The NASA Dryden Flight Research Center manages this fatigue risk by means of a layered approach, to include: 1) Education and Training 2) Work Schedule Scoring 3) Obtained Sleep Metrics 4) Workplace and Operational Mitigations and 5) Incident or Accident Investigation. Specifically, quantitative estimation of the work schedule score, as well as the obtained sleep metric, allows Supervisors and Managers to better manage the risk of fatigue within the context of mission requirements.

  19. A New Approach on Sampling Microorganisms from the Lower Stratosphere

    Gunawan, B.; Lehnen, J. N.; Prince, J.; Bering, E., III; Rodrigues, D.

    2017-12-01

    University of Houston's Undergraduate Student Instrumentation Project (USIP) astrobiology group will attempt to provide a cross-sectional analysis of microorganisms in the lower stratosphere by collecting living microbial samples using a sterile and lightweight balloon-borne payload. Refer to poster by Dr. Edgar Bering in session ED032. The purpose of this research is two-fold: first, to design a new system that is capable of greater mass air intake, unlike the previous iterations where heavy and power-intensive pumps are used; and second, to provide proof of concept that live samples are accumulated in the upper atmosphere and are viable for extensive studies and consequent examination for their potential weather-altering characteristics. Multiple balloon deployments will be conducted to increase accuracy and to provide larger set of data. This paper will also discuss visual presentation of the payload along with analyzed information of the captured samples. Design details will be presented to NASA investigators for professional studies

  20. Long Term Stratospheric Aerosol Lidar Measurements in Kyushu

    Fujiwara, Motowo

    1992-01-01

    Lidar soundings of the stratospheric aerosols have been made since 1972 at Fukuoka, Kyushu Island of Japan. Volcanic clouds from eruptions of La Soufriere, Sierra Negra, St. Helens, Uluwan, Alaid, unknown volcano, and El Chichon were detected one after another in only three years from 1979 to 1982. In july 1991 strong scattering layers which were originated from the serious eruptions of Pinatubo in June and were almost comparable to the El Chichon clouds were detected. Volcanic clouds from pinatubo and other volcanos mentioned are examined and carefully compared to each other and to the wind and temperature which was measured by Fukuoka Meteorological Observatory almost at the same time as the lidar observation was made.