WorldWideScience

Sample records for major mechanisms responsible

  1. Genetics of mechanisms controlling responses to two major pathogens in broiler and layer chickens

    DEFF Research Database (Denmark)

    Hamzic, Edin

    The objective of this thesis was to improve the understanding of molecular mechanisms controlling the response to two major pathogens, Eimeria maxima (coccidiosis) and infectious bronchitis virus (IBV), in broiler and layer chickens, respectively. Breeding for the improved response to the two...

  2. Is mechanical dyssynchrony still a major determinant for responses after cardiac resynchronization therapy?

    International Nuclear Information System (INIS)

    Zhang Qing; Yu Cheuk Man

    2011-01-01

    The assessment of mechanical dyssynchrony by advanced echocardiographic technologies and its importance in selecting more appropriate candidates for cardiac resynchronization therapy (CRT) have been disputed, after the announcement of the Predictors of Response to CRT (PROSPECT) trial, as the first evidence derived from a multicenter study. However, attempts in this field have never been stopped, as it appears that the fundamental mechanism of CRT is the correction of dyssynchrony where the detection of baseline dyssynchrony is of particular significance. The QRS width provides simple but very limited information. On the other hand, non-invasive imaging tools such as echocardiography have the capacity for more detailed analysis of mechanical dyssynchrony. We reviewed a number of clinical studies published in the post-PROSPECT era, designed to figure out a predictive algorithm where dyssynchrony measure is included, for identifying the most suitable patients before device implantation. From the analysis, mechanical dyssynchrony remains to be a major determinant for clinical outcomes after CRT, although discrepancies have arisen with respect to the single-center nature, echocardiographic methodologies, and relative merit when compared with other predicting factors. (author)

  3. Mechanical response of composites

    NARCIS (Netherlands)

    Camanho, Pedro P.; Dávila, C.G.; Pinho, Silvestre T.; Remmers, J.J.C.

    2008-01-01

    This book contains twelve selected papers presented at the ECCOMAS Thematic Conference ? Mechanical Response of Composites, and the papers presented by the three plenary speakers. It describes recent advances in the field of analysis models for the mechanical response of advanced composite

  4. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance

    Directory of Open Access Journals (Sweden)

    Kamila Lucia Bokszczanin

    2013-08-01

    Full Text Available Global warming is a major threat for agriculture and food safety and in many cases the negative effects are already apparent. The current challenge of basic and applied plant science is to decipher the molecular mechanisms of heat stress response and thermotolerance in detail and use this information to identify genotypes that will withstand unfavorable environmental conditions. Nowadays X-omics approaches complement the findings of previous targeted studies and highlight the complexity of heat stress response mechanisms giving information for so far unrecognized genes, proteins and metabolites as potential key players of thermotolerance. Even more, roles of epigenetic mechanisms and the involvement of small RNAs in thermotolerance are currently emerging and thus open new directions of yet unexplored areas of plant heat stress response. In parallel it is emerging that although the whole plant is vulnerable to heat, specific organs are particularly sensitive to elevated temperatures. This has redirected research from the vegetative to generative tissues. The sexual reproduction phase is considered as the most sensitive to heat and specifically pollen exhibits the highest sensitivity and frequently an elevation of the temperature just a few degrees above the optimum during pollen development can have detrimental effects for crop production. Compared to our knowledge on heat stress response of vegetative tissues, the information on pollen is still scarce. Nowadays, several techniques for high-throughput X-omics approaches provide major tools to explore the principles of pollen heat stress response and thermotolerance mechanisms in specific genotypes. The collection of such information will provide an excellent support for improvement of breeding programs to facilitate the development of tolerant cultivars. The review aims at describing the current knowledge of thermotolerance mechanisms and the technical advances which will foster new insights into

  5. Network Mechanisms of Clinical Response to Transcranial Magnetic Stimulation in Posttraumatic Stress Disorder and Major Depressive Disorder.

    Science.gov (United States)

    Philip, Noah S; Barredo, Jennifer; van 't Wout-Frank, Mascha; Tyrka, Audrey R; Price, Lawrence H; Carpenter, Linda L

    2018-02-01

    Repetitive transcranial magnetic stimulation (TMS) therapy can modulate pathological neural network functional connectivity in major depressive disorder (MDD). Posttraumatic stress disorder is often comorbid with MDD, and symptoms of both disorders can be alleviated with TMS therapy. This is the first study to evaluate TMS-associated changes in connectivity in patients with comorbid posttraumatic stress disorder and MDD. Resting-state functional connectivity magnetic resonance imaging was acquired before and after TMS therapy in 33 adult outpatients in a prospective open trial. TMS at 5 Hz was delivered, in up to 40 daily sessions, to the left dorsolateral prefrontal cortex. Analyses used a priori seeds relevant to TMS, posttraumatic stress disorder, or MDD (subgenual anterior cingulate cortex [sgACC], left dorsolateral prefrontal cortex, hippocampus, and basolateral amygdala) to identify imaging predictors of response and to evaluate clinically relevant changes in connectivity after TMS, followed by leave-one-out cross-validation. Imaging results were explored using data-driven multivoxel pattern activation. More negative pretreatment connectivity between the sgACC and the default mode network predicted clinical improvement, as did more positive amygdala-to-ventromedial prefrontal cortex connectivity. After TMS, symptom reduction was associated with reduced connectivity between the sgACC and the default mode network, left dorsolateral prefrontal cortex, and insula, and reduced connectivity between the hippocampus and the salience network. Multivoxel pattern activation confirmed seed-based predictors and correlates of treatment outcomes. These results highlight the central role of the sgACC, default mode network, and salience network as predictors of TMS response and suggest their involvement in mechanisms of action. Furthermore, this work indicates that there may be network-based biomarkers of clinical response relevant to these commonly comorbid disorders

  6. Mechanical Response of Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Case, Eldon D. [Michigan State Univ., East Lansing, MI (United States)

    2015-05-01

    A sufficient mechanical response of thermoelectric materials (TEMats) to structural loadings is a prerequisite to the exploitation of any candidate TEMat's thermoelectric efficiency. If a TEMat is mechanically damaged or cracks from service-induced stresses, then its thermal and electrical functions can be compromised or even cease. Semiconductor TEMats tend to be quite brittle and have a high coefficient of thermal expansion; therefore, they can be quite susceptible to mechanical failure when subjected to operational thermal gradients. Because of this, sufficient mechanical response (vis-a-vis, mechanical properties) of any candidate TEMat must be achieved and sustained in the context of the service-induced stress state to which it is subjected. This report provides an overview of the mechanical responses of state-of-the-art TEMats; discusses the relevant properties that are associated with those responses and their measurement; and describes important, nonequilibrium phenomena that further complicate their use in thermoelectric devices. For reference purposes, the report also includes several appendixes that list published data on elastic properties and strengths of a variety of TEMats.

  7. Statistical mechanics of the majority game

    International Nuclear Information System (INIS)

    Kozlowski, P; Marsili, M

    2003-01-01

    The majority game, modelling a system of heterogeneous agents trying to behave in a similar way, is introduced and studied using methods of statistical mechanics. The stationary states of the game are given by the (local) minima of a particular Hopfield-like Hamiltonian. On the basis of replica symmetric calculations, we draw the phase diagram, which contains the analogue of a retrieval phase. The number of metastable states is estimated using the annealed approximation. The results are confronted with extensive numerical simulations

  8. Academic search in response to major scientific events

    NARCIS (Netherlands)

    Li, X.; de Rijke, M.

    2017-01-01

    In this paper, we look at the search behavior of users of an academic search engine and in particular, their query patterns following the occurrence of major scientific events. We select Nobel Prize announcements as major scientific events and observe how academic searchers behave in response to

  9. Nonlinear mechanical response of the extracellular matrix: learning from articular cartilage

    Science.gov (United States)

    Kearns, Sarah; Das, Moumita

    2015-03-01

    We study the mechanical structure-function relations in the extracellular matrix (ECM) with focus on nonlinear shear and compression response. As a model system, our study focuses on the ECM in articular cartilage tissue which has two major mechanobiological components: a network of the biopolymer collagen that acts as a stiff, reinforcing matrix, and a flexible aggrecan network that facilitates deformability. We model this system as a double network hydrogel made of interpenetrating networks of stiff and flexible biopolymers respectively. We study the linear and nonlinear mechanical response of the model ECM to shear and compression forces using a combination of rigidity percolation theory and energy minimization approaches. Our results may provide useful insights into the design principles of the ECM as well as biomimetic hydrogels that are mechanically robust and can, at the same time, easily adapt to cues in their surroundings.

  10. Mechanical response tissue analyzer for estimating bone strength

    Science.gov (United States)

    Arnaud, Sara B.; Steele, Charles; Mauriello, Anthony

    1991-01-01

    One of the major concerns for extended space flight is weakness of the long bones of the legs, composed primarily of cortical bone, that functions to provide mechanical support. The strength of cortical bone is due to its complex structure, described simplistically as cylinders of parallel osteons composed of layers of mineralized collagen. The reduced mechanical stresses during space flight or immobilization of bone on Earth reduces the mineral content, and changes the components of its matrix and structure so that its strength is reduced. Currently, the established clinical measures of bone strength are indirect. The measures are based on determinations of mineral density by means of radiography, photon absorptiometry, and quantitative computer tomography. While the mineral content of bone is essential to its strength, there is growing awareness of the limitations of the measurement as the sole predictor of fracture risk in metabolic bone diseases, especially limitations of the measurement as the sole predictor of fracture risk in metabolic bone diseases, especially osteoporosis. Other experimental methods in clinical trials that more directly evaluate the physical properties of bone, and do not require exposure to radiation, include ultrasound, acoustic emission, and low-frequency mechanical vibration. The last method can be considered a direct measure of the functional capacity of a long bone since it quantifies the mechanical response to a stimulus delivered directly to the bone. A low frequency vibration induces a response (impedance) curve with a minimum at the resonant frequency, that a few investigators use for the evaluation of the bone. An alternative approach, the method under consideration, is to use the response curve as the basis for determination of the bone bending stiffness EI (E is the intrinsic material property and I is the cross-sectional moment of inertia) and mass, fundamental mechanical properties of bone.

  11. Mechanical response of biopolymer double networks

    Science.gov (United States)

    Carroll, Joshua; Das, Moumita

    We investigate a double network model of articular cartilage (AC) and characterize its equilibrium mechanical response. AC has very few cells and the extracellular matrix mainly determines its mechanical response. This matrix can be thought of as a double polymer network made of collagen and aggrecan. The collagen fibers are stiff and resist tension and compression forces, while aggrecans are flexible and control swelling and hydration. We construct a microscopic model made of two interconnected disordered polymer networks, with fiber elasticity chosen to qualitatively mimic the experimental system. We study the collective mechanical response of this double network as a function of the concentration and stiffness of the individual components as well as the strength of the connection between them using rigidity percolation theory. Our results may provide a better understanding of mechanisms underlying the mechanical resilience of AC, and more broadly may also lead to new perspectives on the mechanical response of multicomponent soft materials. This work was partially supported by a Cottrell College Science Award.

  12. Mechanical components: fabrication of major reactor structures

    International Nuclear Information System (INIS)

    Nicholson, S.

    1985-01-01

    The paper examines the validity of criticisms of quality assurance of mechanical plant and welded products within major reactor structures, taking into account experience gained on the AGR's. Various constructive recommendations are made aimed at furthering the objectives of quality assurance in the nuclear industry and making it more cost-effective. Current levels of quality related costs in the fabrication industry are provided as a basis for discussion. (U.K.)

  13. Two Major Medicinal Honeys Have Different Mechanisms of Bactericidal Activity

    NARCIS (Netherlands)

    Kwakman, Paulus H. S.; te Velde, Anje A.; de Boer, Leonie; Vandenbroucke-Grauls, Christina M. J. E.; Zaat, Sebastian A. J.

    2011-01-01

    Honey is increasingly valued for its antibacterial activity, but knowledge regarding the mechanism of action is still incomplete. We assessed the bactericidal activity and mechanism of action of Revamil (R) source (RS) honey and manuka honey, the sources of two major medical-grade honeys. RS honey

  14. Modeling the mechanical response of PBX 9501

    Energy Technology Data Exchange (ETDEWEB)

    Ragaswamy, Partha [Los Alamos National Laboratory; Lewis, Matthew W [Los Alamos National Laboratory; Liu, Cheng [Los Alamos National Laboratory; Thompson, Darla G [Los Alamos National Laboratory

    2010-01-01

    An engineering overview of the mechanical response of Plastic-Bonded eXplosives (PBXs), specifically PBX 9501, will be provided with emphasis on observed mechanisms associated with different types of mechanical testing. Mechanical tests in the form of uniaxial tension, compression, cyclic loading, creep (compression and tension), and Hopkinson bar show strain rate and temperature dependence. A range of mechanical behavior is observed which includes small strain recoverable response in the form of viscoelasticity; change in stiffness and softening beyond peak strength due to damage in the form microcracks, debonding, void formation and the growth of existing voids; inelastic response in the form of irrecoverable strain as shown in cyclic tests, and viscoelastic creep combined with plastic response as demonstrated in creep and recovery tests. The main focus of this paper is to elucidate the challenges and issues involved in modeling the mechanical behavior of PBXs for simulating thermo-mechanical responses in engineering components. Examples of validation of a constitutive material model based on a few of the observed mechanisms will be demonstrated against three point bending, split Hopkinson pressure bar and Brazilian disk geometry.

  15. Multi-objective evolutionary emergency response optimization for major accidents

    International Nuclear Information System (INIS)

    Georgiadou, Paraskevi S.; Papazoglou, Ioannis A.; Kiranoudis, Chris T.; Markatos, Nikolaos C.

    2010-01-01

    Emergency response planning in case of a major accident (hazardous material event, nuclear accident) is very important for the protection of the public and workers' safety and health. In this context, several protective actions can be performed, such as, evacuation of an area; protection of the population in buildings; and use of personal protective equipment. The best solution is not unique when multiple criteria are taken into consideration (e.g. health consequences, social disruption, economic cost). This paper presents a methodology for multi-objective optimization of emergency response planning in case of a major accident. The emergency policy with regards to protective actions to be implemented is optimized. An evolutionary algorithm has been used as the optimization tool. Case studies demonstrating the methodology and its application in emergency response decision-making in case of accidents related to hazardous materials installations are presented. However, the methodology with appropriate modification is suitable for supporting decisions in assessing emergency response procedures in other cases (nuclear accidents, transportation of hazardous materials) or for land-use planning issues.

  16. National response plan - Major nuclear or radiological accidents

    International Nuclear Information System (INIS)

    2014-02-01

    France has been implementing stringent radiation protection and nuclear safety and security measures for many years. However, this does not mean that the country is exempt from having to be prepared to deal with an emergency. Changes in France, Europe and other parts of the globe have made it necessary for France to reconsider how it responds to nuclear and radiological emergencies. As the potential impact of a nuclear or radiological accident can affect a wide range of activities, the plan described herein is based on a cross-sector and inter-ministerial approach to emergency response. The Chernobyl and Fukushima-Daiichi disasters are proof that the consequences of a major nuclear or radiological accident can affect all levels of society. These challenges are substantial and relate to: public health: An uncontrolled nuclear accident can have immediate consequences (death, injury, irradiation) as well as long-term consequences that can lead to increased risk of developing radiation-induced diseases (such as certain types of cancer); environmental quality: Radiation contamination can last for several decades and, in some cases, can result in an area being closed off permanently to the public; economic and social continuity: Nuclear accidents bring human activity to a halt in contaminated areas, disrupting the economic and social order of the entire country. It may therefore be necessary to adapt economic and social systems and carry out clean-up operations if people and businesses have been displaced; quality of international relations: Related to fulfillment of obligations to alert and inform European and international partners. This international dimension also covers the protection of French nationals present in countries stricken by a nuclear accident. This national plan provides reference information on how to prepare for a nuclear or radiological emergency and make the appropriate decisions in the event of an emergency. It covers the emergency phase (including

  17. Prediction of electroconvulsive therapy response and remission in major depression : meta-analysis

    OpenAIRE

    Diermen, van, Linda; Ameele, van den, Seline; Kamperman, Astrid M.; Sabbe, Bernard G.C.; Vermeulen, Tom; Schrijvers, Didier; Birkenhager, Tom K.

    2018-01-01

    Abstract: Background Electroconvulsive therapy (ECT) is considered to be the most effective treatment in severe major depression. The identification of reliable predictors of ECT response could contribute to a more targeted patient selection and consequently increased ECT response rates. Aims To investigate the predictive value of age, depression severity, psychotic and melancholic features for ECT response and remission in major depression. Method A meta-analysis was conducted according to t...

  18. Inhibition of the Unfolded Protein Response Mechanism Prevents Cardiac Fibrosis.

    Directory of Open Access Journals (Sweden)

    Jody Groenendyk

    Full Text Available Cardiac fibrosis attributed to excessive deposition of extracellular matrix proteins is a major cause of heart failure and death. Cardiac fibrosis is extremely difficult and challenging to treat in a clinical setting due to lack of understanding of molecular mechanisms leading to cardiac fibrosis and effective anti-fibrotic therapies. The objective in this study was to examine whether unfolded protein response (UPR pathway mediates cardiac fibrosis and whether a pharmacological intervention to modulate UPR can prevent cardiac fibrosis and preserve heart function.We demonstrate here that the mechanism leading to development of fibrosis in a mouse with increased expression of calreticulin, a model of heart failure, stems from impairment of endoplasmic reticulum (ER homeostasis, transient activation of the unfolded protein response (UPR pathway and stimulation of the TGFβ1/Smad2/3 signaling pathway. Remarkably, sustained pharmacologic inhibition of the UPR pathway by tauroursodeoxycholic acid (TUDCA is sufficient to prevent cardiac fibrosis, and improved exercise tolerance.We show that the mechanism leading to development of fibrosis in a mouse model of heart failure stems from transient activation of UPR pathway leading to persistent remodelling of cardiac tissue. Blocking the activation of the transiently activated UPR pathway by TUDCA prevented cardiac fibrosis, and improved prognosis. These findings offer a window for additional interventions that can preserve heart function.

  19. A linear chromatic mechanism drives the pupillary response.

    Science.gov (United States)

    Tsujimura, S.; Wolffsohn, J. S.; Gilmartin, B.

    2001-01-01

    Previous studies have shown that a chromatic mechanism can drive pupil responses. The aim of this research was to clarify whether a linear or nonlinear chromatic mechanism drives pupillary responses by using test stimuli of various colours that are defined in cone contrast space. The pupil and accommodation responses evoked by these test stimuli were continuously and simultaneously objectively measured by photorefraction. The results with isochromatic and isoluminant stimuli showed that the accommodative level remained approximately constant (< 0.25 D change in mean level) even when the concurrent pupillary response was large (ca. 0.30 mm). The pupillary response to an isoluminant grating was sustained, delayed (by ca. 60 ms) and larger in amplitude than that for a isochromatic uniform stimulus, which supports previous work suggesting that the chromatic mechanism contributes to the pupillary response. In a second experiment, selected chromatic test gratings were used and isoresponse contours in cone contrast space were obtained. The results showed that the isoresponse contour in cone contrast space is well described (r(2) = 0.99) by a straight line with a positive slope. The results indicate that a /L - M/ linear chromatic mechanism, whereby a signal from the long wavelength cone is subtracted from that of the middle wavelength cone and vice versa, drives pupillary responses. PMID:11674867

  20. Perception of Global Climate Change as a Mediator of the Effects of Major and Religious Affiliation on College Students' Environmentally Responsible Behavior

    Science.gov (United States)

    Fusco, Emily; Snider, Anthony; Luo, Shanhong

    2012-01-01

    Previous research has shown a reliable association between environmental education and environmentally responsible behavior (ERB). Research has also shown that aspects of religion were associated with ERB. However, the mechanisms of associations are unclear. This study builds on previous research addressing the relationship between student major,…

  1. The Human Cytomegalovirus Major Immediate-Early Proteins as Antagonists of Intrinsic and Innate Antiviral Host Responses

    Directory of Open Access Journals (Sweden)

    Michael Nevels

    2009-11-01

    Full Text Available The major immediate-early (IE gene of human cytomegalovirus (CMV is believed to have a decisive role in acute infection and its activity is an important indicator of viral reactivation from latency. Although a variety of gene products are expressed from this region, the 72-kDa IE1 and the 86-kDa IE2 nuclear phosphoproteins are the most abundant and important. Both proteins have long been recognized as promiscuous transcriptional regulators. More recently, a critical role of the IE1 and IE2 proteins in counteracting nonadaptive host cell defense mechanisms has been revealed. In this review we will briefly summarize the available literature on IE1- and IE2-dependent mechanisms contributing to CMV evasion from intrinsic and innate immune responses.

  2. Perceived decisional responsibility for mechanical ventilation and weaning

    DEFF Research Database (Denmark)

    Haugdahl, Hege S; Storli, Sissel; Rose, Louise

    2014-01-01

    AIM: To explore variability in perceptions of nurse managers and physician directors regarding roles, responsibilities and clinical-decision making related to mechanical ventilator weaning in Norwegian intensive care units (ICUs). BACKGROUND: Effective teamwork is crucial for providing optimal...... patient care in ICU. More knowledge on nurses' and physicians' perceptions of responsibility in clinical decision-making for mechanical ventilation is needed. METHODS: Self-administered survey of mechanical ventilation and weaning responsibilities was sent to nurse managers and physician directors...... of Norwegian adult ICUs. Nurses' decisional influence and autonomy were estimated on a numeric rating scale (NRS) from 0 to 10 (least to most). RESULTS: Response rate was 38/60 (63%) nurses and 38/52 (73%) physicians. On the NRS nurse managers perceived the autonomy and influence of nurses' ventilator...

  3. Growth condition dependency is the major cause of non-responsiveness upon genetic perturbation.

    Directory of Open Access Journals (Sweden)

    Saman Amini

    Full Text Available Investigating the role and interplay between individual proteins in biological processes is often performed by assessing the functional consequences of gene inactivation or removal. Depending on the sensitivity of the assay used for determining phenotype, between 66% (growth and 53% (gene expression of Saccharomyces cerevisiae gene deletion strains show no defect when analyzed under a single condition. Although it is well known that this non-responsive behavior is caused by different types of redundancy mechanisms or by growth condition/cell type dependency, it is not known what the relative contribution of these different causes is. Understanding the underlying causes of and their relative contribution to non-responsive behavior upon genetic perturbation is extremely important for designing efficient strategies aimed at elucidating gene function and unraveling complex cellular systems. Here, we provide a systematic classification of the underlying causes of and their relative contribution to non-responsive behavior upon gene deletion. The overall contribution of redundancy to non-responsive behavior is estimated at 29%, of which approximately 17% is due to homology-based redundancy and 12% is due to pathway-based redundancy. The major determinant of non-responsiveness is condition dependency (71%. For approximately 14% of protein complexes, just-in-time assembly can be put forward as a potential mechanistic explanation for how proteins can be regulated in a condition dependent manner. Taken together, the results underscore the large contribution of growth condition requirement to non-responsive behavior, which needs to be taken into account for strategies aimed at determining gene function. The classification provided here, can also be further harnessed in systematic analyses of complex cellular systems.

  4. Prediction of electroconvulsive therapy response and remission in major depression: Meta-analysis

    NARCIS (Netherlands)

    Van Diermen, L. (Linda); Van Den Ameele, S. (Seline); A.M. Kamperman (Astrid); Sabbe, B.C.G. (Bernard C.G.); Vermeulen, T. (Tom); Schrijvers, D. (Didier); T.K. Birkenhäger (Tom)

    2018-01-01

    textabstractElectroconvulsive therapy (ECT) is considered to be the most effective treatment in severe major depression. The identification of reliable predictors of ECT response could contribute to a more targeted patient selection and consequently increased ECT response rates. Aims To investigate

  5. An Emerging Natural History in the Development, Mechanisms and Worldwide Prevalence of Major Mental Disorders.

    Science.gov (United States)

    Pediaditakis, Nicholas

    2016-01-01

    Conciliating recent findings from molecular genetics, evolutionary biology, and clinical observations together point to new understandings regarding the mechanism, development and the persistent worldwide prevalence of major mental disorders (MMDs), which should be considered the result of an evolutionary downside trade off. Temperamental/trait variability, by facilitating choices for individual and group responses, confers robustness flexibility and resilience crucial to success of our species. Extreme temperamental variants, originating evolutionarily from the asocial aspect of human nature, also constitute the premorbid personality of the disorders. The latter create vulnerable individuals out of whom some will develop MMDs but at much higher rate to that of the general population. Significantly, similar temperamental "lopsidedness" enables many of these vulnerable individuals, if intelligent, tenacious, and curious, to be creative and contribute to our survival while some may also develop MMDs. All have a common neural-developmental origin and share characteristics in their clinical expression and pharmacological responses also expressed as mixed syndromes or alternating ones over time. Over-pruning of synaptic neurons may be considered the trigger of such occurrences or conversely, the failure to prevent them in spite of it. The symptoms of the major mental disorders are made up of antithetical substitutes as an expression of a disturbed over-all synchronizing property of brain function for all higher faculties previously unconsidered in their modeling. The concomitant presence of psychosis is a generic common occurrence.

  6. Evidence for two concurrent inhibitory mechanisms during response preparation

    Science.gov (United States)

    Duque, Julie; Lew, David; Mazzocchio, Riccardo; Olivier, Etienne; Ivry, Richard B.

    2010-01-01

    Inhibitory mechanisms are critically involved in goal-directed behaviors. To gain further insight into how such mechanisms shape motor representations during response preparation, motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) and H-reflexes were recorded from left hand muscles during choice reaction time tasks. The imperative signal, which indicated the required response, was always preceded by a preparatory cue. During the post-cue delay period, left MEPs were suppressed when the left hand had been cued for the forthcoming response, suggestive of a form of inhibition specifically directed at selected response representations. H-reflexes were also suppressed on these trials, indicating that the effects of this inhibition extend to spinal circuits. In addition, left MEPs were suppressed when the right hand was cued, but only when left hand movements were a possible response option before the onset of the cue. Notably, left hand H-reflexes were not modulated on these trials, consistent with a cortical locus of inhibition that lowers the activation of task-relevant, but non-selected responses. These results suggest the concurrent operation of two inhibitory mechanisms during response preparation: one decreases the activation of selected responses at the spinal level, helping to control when selected movements should be initiated by preventing their premature release; a second, upstream mechanism helps to determine what response to make during a competitive selection process. PMID:20220014

  7. Response of mechanical properties of glasses to their chemical, thermal and mechanical histories

    DEFF Research Database (Denmark)

    Yue, Yuanzheng

    , surface, thermal history or excess entropy of the final glass state. Here I review recent progresses in understanding of the responses of mechanical properties of oxide glasses to the compositional variation, thermal history and mechanical deformation. The tensile strength, elastic modulus and hardness...... of glass fibers are dependent on the thermal history (measured as fictive temperature), tension, chemical composition and redox state. However, the fictive temperature affects the hardness of bulk glass in a complicated manner, i.e., the effect does not exhibit a clear regularity in the range...... and micro-cracks occurring during indentation of a glass is discussed briefly. Finally I describe the future perspectives and challenges in understanding responses of mechanical properties of oxide glasses to compositional variation, thermal history and mechanical deformation....

  8. The different response mechanisms of Wolffia globosa: Light-induced silver nanoparticle toxicity

    International Nuclear Information System (INIS)

    Zou, Xiaoyan; Li, Penghui; Huang, Qing; Zhang, Hongwu

    2016-01-01

    Highlights: • The different physiological responses of AgNPs in Wolffia golbosa were studied. • Effects of AgNPs on W. golbosa relied on the illumination conditions. • Different phytotoxic mechanisms of AgNPs for different light schemes were proposed. - Abstract: Silver nanoparticles (AgNPs) have emerged as a promising bactericide. Plants are a major point of entry of contaminants into trophic chains. Here, the physiological responses of Wolffia globosa to AgNPs have been probed using different light schemes, and these data may reveal new insights into the toxic mechanism of AgNPs. W. globosa was grown in culture medium and treated with different concentrations of AgNPs for 24 h under pre- and post-illuminated conditions. However, fluorescence quenching, the accumulation of sugar and the reduction of Hill reaction activity were found in response to the AgNP-stresses. In the pre-illuminated condition, oxidative damage was obvious, as indicated by the higher malondialdehyde (MDA) content and an up-regulation of superoxide dismutase (SOD) activity. The maximum increases of MDA content and SOD activity were 1.14 and 2.52 times the respective controls when exposed to 10 mg/L AgNPs. In contrast, in the post-illuminated condition, the alterations in photosynthetic pigment and soluble proteins content were more significant than the alterations in oxidative stress. The contents of chlorophyll a, carotenoids and soluble protein decreased to 77.7%, 66.2% and 72.9% of the controls after treatment with the highest concentration of AgNPs (10 mg/L). Based on the different physiological responses, we speculated that in the pre-illuminated condition, oxidative stress was responsible for the decline in the oxygen evolution rate, while in the post-illuminated condition, the decrease in the Hill reaction activity could be attributed to the blocking of electron transfer and an insufficient proton supply. Our findings demonstrate that environmental factors regulate the

  9. The different response mechanisms of Wolffia globosa: Light-induced silver nanoparticle toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Xiaoyan; Li, Penghui [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Huang, Qing [Key Laboratory of Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Zhang, Hongwu, E-mail: hwzhang@iue.ac.cn [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Ningbo Research Center for Urban Environment, Chinese Academy of Sciences, Ningbo (China)

    2016-07-15

    Highlights: • The different physiological responses of AgNPs in Wolffia golbosa were studied. • Effects of AgNPs on W. golbosa relied on the illumination conditions. • Different phytotoxic mechanisms of AgNPs for different light schemes were proposed. - Abstract: Silver nanoparticles (AgNPs) have emerged as a promising bactericide. Plants are a major point of entry of contaminants into trophic chains. Here, the physiological responses of Wolffia globosa to AgNPs have been probed using different light schemes, and these data may reveal new insights into the toxic mechanism of AgNPs. W. globosa was grown in culture medium and treated with different concentrations of AgNPs for 24 h under pre- and post-illuminated conditions. However, fluorescence quenching, the accumulation of sugar and the reduction of Hill reaction activity were found in response to the AgNP-stresses. In the pre-illuminated condition, oxidative damage was obvious, as indicated by the higher malondialdehyde (MDA) content and an up-regulation of superoxide dismutase (SOD) activity. The maximum increases of MDA content and SOD activity were 1.14 and 2.52 times the respective controls when exposed to 10 mg/L AgNPs. In contrast, in the post-illuminated condition, the alterations in photosynthetic pigment and soluble proteins content were more significant than the alterations in oxidative stress. The contents of chlorophyll a, carotenoids and soluble protein decreased to 77.7%, 66.2% and 72.9% of the controls after treatment with the highest concentration of AgNPs (10 mg/L). Based on the different physiological responses, we speculated that in the pre-illuminated condition, oxidative stress was responsible for the decline in the oxygen evolution rate, while in the post-illuminated condition, the decrease in the Hill reaction activity could be attributed to the blocking of electron transfer and an insufficient proton supply. Our findings demonstrate that environmental factors regulate the

  10. Mechanical Responses and Physical Factors of the Fingertip Pulp

    Directory of Open Access Journals (Sweden)

    N. Sakai

    2006-01-01

    Full Text Available The images of the mechanical responses were analysed when the fingertip was pressed against a plateau plate, and the influence of the contact angle on the loading pressure and the mechanical responses was investigated. As a result, as the contact angle was smaller, the change ratios due to the loading pressure were significantly larger in the contact length, the contact width and the distortion of lateral-view area. These parameters were thought to be useful in clinical medicine as indices for the degrees of mechanical responses of the fingertip. The length of the central axis and the maximum width of the fingertip were inappropriate as the parameters to represent the mechanical responses of the fingertip. The maximum width of the fingertip scarcely changed. This does not reflect the compressibility of the fingertip, and the fingertip as a whole extended along the central axis and in the vertical direction, and the change was not reflected in the maximum width.

  11. SOS response activation and competence development are antagonistic mechanisms in Streptococcus thermophilus.

    Science.gov (United States)

    Boutry, Céline; Delplace, Brigitte; Clippe, André; Fontaine, Laetitia; Hols, Pascal

    2013-02-01

    Streptococcus includes species that either contain or lack the LexA-like repressor (HdiR) of the classical SOS response. In Streptococcus pneumoniae, a species which belongs to the latter group, SOS response inducers (e.g., mitomycin C [Mc] and fluoroquinolones) were shown to induce natural transformation, leading to the hypothesis that DNA damage-induced competence could contribute to genomic plasticity and stress resistance. Using reporter strains and microarray experiments, we investigated the impact of the SOS response inducers mitomycin C and norfloxacin and the role of HdiR on competence development in Streptococcus thermophilus. We show that both the addition of SOS response inducers and HdiR inactivation have a dual effect, i.e., induction of the expression of SOS genes and reduction of transformability. Reduction of transformability results from two different mechanisms, since HdiR inactivation has no major effect on the expression of competence (com) genes, while mitomycin C downregulates the expression of early and late com genes in a dose-dependent manner. The downregulation of com genes by mitomycin C was shown to take place at the level of the activation of the ComRS signaling system by an unknown mechanism. Conversely, we show that a ComX-deficient strain is more resistant to mitomycin C and norfloxacin in a viability plate assay, which indicates that competence development negatively affects the resistance of S. thermophilus to DNA-damaging agents. Altogether, our results strongly suggest that SOS response activation and competence development are antagonistic processes in S. thermophilus.

  12. Low Complexity Signed Response Based Sybil Attack Detection Mechanism in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    M. Saud Khan

    2016-01-01

    Full Text Available Security is always a major concern in wireless sensor networks (WSNs. Identity based attacks such as spoofing and sybil not only compromise the network but also slow down its performance. This paper proposes a low complexity sybil attack detection scheme, that is, based on signed response (SRES authentication mechanism developed for Global System for Mobile (GSM communications. A probabilistic model is presented which analyzes the proposed authentication mechanism for its probability of sybil attack. The paper also presents a simulation based comparative analysis of the existing sybil attack schemes with respect to the proposed scheme. It is observed that the proposed sybil detection scheme exhibits lesser computational cost and power consumption as compared to the existing schemes for the same sybil detection performance.

  13. Genomic interrogation of mechanism(s) underlying cellular responses to toxicants

    International Nuclear Information System (INIS)

    Amin, Rupesh P.; Hamadeh, Hisham K.; Bushel, Pierre R.; Bennett, Lee; Afshari, Cynthia A.; Paules, Richard S.

    2002-01-01

    Assessment of the impact of xenobiotic exposure on human health and disease progression is complex. Knowledge of mode(s) of action, including mechanism(s) contributing to toxicity and disease progression, is valuable for evaluating compounds. Toxicogenomics, the subdiscipline which merges genomics with toxicology, holds the promise to contributing significantly toward the goal of elucidating mechanism(s) by studying genome-wide effects of xenobiotics. Global gene expression profiling, revolutionized by microarray technology and a crucial aspect of a toxicogenomic study, allows measuring transcriptional modulation of thousands of genes following exposure to a xenobiotic. We use our results from previous studies on compounds representing two different classes of xenobiotics (barbiturate and peroxisome proliferator) to discuss the application of computational approaches for analyzing microarray data to elucidate mechanism(s) underlying cellular responses to toxicants. In particular, our laboratory demonstrated that chemical-specific patterns of gene expression can be revealed using cDNA microarrays. Transcript profiling provides discrimination between classes of toxicants, as well as, genome-wide insight into mechanism(s) of toxicity and disease progression. Ultimately, the expectation is that novel approaches for predicting xenobiotic toxicity in humans will emerge from such information

  14. Federal Radiological Monitoring and Assessment Center (FRMAC), US response to major radiological accidents

    International Nuclear Information System (INIS)

    Mueller, P.G.

    2000-01-01

    During the 1960's and 70's the expanded use of nuclear materials to generate electricity, to provide medical benefits, and for research purposes continued to grow in the United States. While substantial effort went into constructing plants and facilities and providing for a number of redundant backup systems for safety purposes, little effort went into the development of emergency response plans for possible major radiological accidents. Unfortunately, adequate plans and procedures had not been developed to co-ordinate either state or federal emergency response assets and personnel should a major radiological accident occur. This situation became quite evident following the Three Mile Island Nuclear Reactor accident in 1979. An accident of that magnitude had not been adequately prepared for and Pennsylvania's limited emergency radiological resources and capabilities were quickly exhausted. Several federal agencies with statutory responsibilities for emergency response, including the U.S. Environmental Protection Agency (EPA), U.S. Department of Energy (DOE), Federal Emergency Management Agency (FEMA), Nuclear Regulatory Commission (NRC), and others provided extensive assistance and support during the accident. However, the assistance was not fully co-ordinated nor controlled. Following the Three Mile Island incident 13 federal agencies worked co-operatively to develop an agreement called the Federal Radiological Emergency Response Plan (FRERP). Signed in November 1985, this plan delineated the statutory responsibilities and authorities of each federal agency signatory to the FRERP. In the event of a major radiological accident, the FRERP would be activated to ensure that a co-ordinated federal emergency response would be available to respond to any major radiological accident scenario. The FRERP encompasses a wide variety of radiological accidents, not just those stemming from nuclear power plants. Activation of the FRERP could occur from major accidents involving

  15. Cathepsin B in antigen-presenting cells controls mediators of the Th1 immune response during Leishmania major infection.

    Directory of Open Access Journals (Sweden)

    Iris J Gonzalez-Leal

    2014-09-01

    Full Text Available Resistance and susceptibility to Leishmania major infection in the murine model is determined by the capacity of the host to mount either a protective Th1 response or a Th2 response associated with disease progression. Previous reports involving the use of cysteine cathepsin inhibitors indicated that cathepsins B (Ctsb and L (Ctsl play important roles in Th1/Th2 polarization during L. major infection in both susceptible and resistant mouse strains. Although it was hypothesized that these effects are a consequence of differential patterns of antigen processing, the mechanisms underlying these differences were not further investigated. Given the pivotal roles that dendritic cells and macrophages play during Leishmania infection, we generated bone-marrow derived dendritic cells (BMDC and macrophages (BMM from Ctsb-/- and Ctsl-/- mice, and studied the effects of Ctsb and Ctsl deficiency on the survival of L. major in infected cells. Furthermore, the signals used by dendritic cells to instruct Th cell polarization were addressed: the expression of MHC class II and co-stimulatory molecules, and cytokine production. We found that Ctsb-/- BMDC express higher levels of MHC class II molecules than wild-type (WT and Ctsl-/- BMDC, while there were no significant differences in the expression of co-stimulatory molecules between cathepsin-deficient and WT cells. Moreover, both BMDC and BMM from Ctsb-/- mice significantly up-regulated the levels of interleukin 12 (IL-12 expression, a key Th1-inducing cytokine. These findings indicate that Ctsb-/- BMDC display more pro-Th1 properties than their WT and Ctsl-/- counterparts, and therefore suggest that Ctsb down-regulates the Th1 response to L. major. Moreover, they propose a novel role for Ctsb as a regulator of cytokine expression.

  16. The prestress-dependent mechanical response of magnetorheological elastomers

    International Nuclear Information System (INIS)

    Feng, Jiabin; Xuan, Shouhu; Liu, Taixiang; Ge, Lin; Zhou, Hong; Gong, Xinglong; Yan, Lixun

    2015-01-01

    Magnetorheological elastomers (MREs) are intelligent materials consisting of a rubber matrix filled with magnetizable particles. In many engineering applications, MREs are usually pre-confined and work with constraint-induced prestress. The prestress can significantly change the mechanical properties of MREs. In this work, the influence of prestress on the mechanical response of MREs is studieds both experimentally and theoretically. The storage modulus as well as the magneto-induced modulus change non-linearly with increasing prestress and three regions can be found in the non-linear change. In the non-full contact region, the MREs present poor mechanical properties at small prestress due to the unevenness of the sample surface. In the full contact region, the MREs are under suitable prestress, thus they present good mechanical properties. In the overload region, the pre-configured microstructure of the MREs is destroyed under the large prestress. Moreover, an analytical model is proposed to study the prestress-dependent mechanical properties of MREs. It is revealed that the prestress can change the inter-particle distance, thus further affecting the mechanical response of MREs. (paper)

  17. The mechanisms for social and environmentally responsible agricultural land use

    OpenAIRE

    Ye. Mishenin; I. Yarova

    2015-01-01

    This paper deals with arguments that the most effective mechanism for greening use of land resources is to increase the level of social and environmental responsibility. The mechanisms for social and environmentally responsible agricultural land use are formed.

  18. Mechanisms and pharmacogenetic signals underlying thiazide diuretics blood pressure response.

    Science.gov (United States)

    Shahin, Mohamed H; Johnson, Julie A

    2016-04-01

    Thiazide (TZD) diuretics are among the most commonly prescribed antihypertensives globally; however their chronic blood pressure (BP) lowering mechanism remains unclear. Herein we discuss the current evidence regarding specific mechanisms regulating the antihypertensive effects of TZDs, suggesting that TZDs act via multiple complex and interacting mechanisms, including natriuresis with short term use and direct vasodilatory effects chronically. Additionally, we review pharmacogenomics signals that have been associated with TZDs BP-response in several cohorts (i.e. NEDD4L, PRKCA, EDNRA-GNAS, and YEATS4) and discuss how these genes might be related to TZD BP-response mechanism. Understanding the association between these genes and TZD BP mechanism might facilitate the development of new drugs and therapeutic approaches based on a deeper understanding of the determinants of BP-response. Copyright © 2016. Published by Elsevier Ltd.

  19. The mechanical response of lithographically defined break junctions

    International Nuclear Information System (INIS)

    Huisman, E. H.; Bakker, F. L.; Wees, B. J. van; Trouwborst, M. L.; Molen, S. J. van der

    2011-01-01

    We present an experimental study on the mechanical response of lithographically defined break junctions by measuring atomic chain formation, tunneling traces and Gundlach oscillations. The calibration factor, i.e., the ratio between the electrode movement and the bending of the substrate, is found to be 2.5 times larger than expected from a simple mechanical model. This result is consistent with previous finite-element calculations. Comparing different samples, the mechanical response is found to be similar for electrode separations >4 A. However, for smaller electrode separations significant sample-to-sample variations appear. These variations are ascribed to differences in the shape of the two electrodes on the atomic scale which cannot be controlled by the fabrication process.

  20. Disturbed hypoxic responses as a pathogenic mechanism of diabetic foot ulcers.

    Science.gov (United States)

    Catrina, Sergiu-Bogdan; Zheng, Xiaowei

    2016-01-01

    Diabetic foot ulceration (DFU) is a chronic complication of diabetes that is characterized by impaired wound healing in the lower extremities. DFU remains a major clinical challenge because of poor understanding of its pathogenic mechanisms. Impaired wound healing in diabetes is characterized by decreased angiogenesis, reduced bone marrow-derived endothelial progenitor cell (EPC) recruitment, and decreased fibroblast and keratinocyte proliferation and migration. Recently, increasing evidence has suggested that increased hypoxic conditions and impaired cellular responses to hypoxia are essential pathogenic factors of delayed wound healing in DFU. Hypoxia-inducible factor-1 (HIF-1, a heterodimer of HIF-1α and HIF-1β) is a master regulator of oxygen homeostasis that mediates the adaptive cellular responses to hypoxia by regulating the expression of genes involved in angiogenesis, metabolic changes, proliferation, migration, and cell survival. However, HIF-1 signalling is inhibited in diabetes as a result of hyperglycaemia-induced HIF-1α destabilization and functional repression. Increasing HIF-1α expression and activity using various approaches promotes angiogenesis, EPC recruitment, and granulation, thereby improving wound healing in experimental diabetes. The mechanisms underlying HIF-1α regulation in diabetes and the therapeutic strategies targeting HIF-1 signalling for the treatment of diabetic wounds are discussed in this review. Further investigations of the pathways involved in HIF-1α regulation in diabetes are required to advance our understanding of the mechanisms underlying impaired wound healing in diabetes and to provide a foundation for developing novel therapeutic approaches to treat DFU. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Facts and Fiction: The Impact of Hypothermia on Molecular Mechanisms following Major Challenge

    Directory of Open Access Journals (Sweden)

    Michael Frink

    2012-01-01

    Full Text Available Numerous multiple trauma and surgical patients suffer from accidental hypothermia. While induced hypothermia is commonly used in elective cardiac surgery due to its protective effects, accidental hypothermia is associated with increased posttraumatic complications and even mortality in severely injured patients. This paper focuses on protective molecular mechanisms of hypothermia on apoptosis and the posttraumatic immune response. Although information regarding severe trauma is limited, there is evidence that induced hypothermia may have beneficial effects on the posttraumatic immune response as well as apoptosis in animal studies and certain clinical situations. However, more profound knowledge of mechanisms is necessary before randomized clinical trials in trauma patients can be initiated.

  2. Conceptual approaches to the formation the mechanism of enterprises social responsibility stimulation

    OpenAIRE

    Ohorodnikova, Natalia

    2014-01-01

    The article defines the economic content of the enterprise social responsibility incentive mechanism, the concept of its perfection. There are formulated the purpose and objectives of the proposed mechanisms, sounded principles of its formation. As tools of the enterprise social responsibility incentive mechanism, it is advised to use: methods of corporate social responsibility stimulating, a model of corporate strategy in the context of implementing the practice of social responsibility in t...

  3. Anti-Inflammatory Applications of Melittin, a Major Component of Bee Venom: Detailed Mechanism of Action and Adverse Effects

    Directory of Open Access Journals (Sweden)

    Gihyun Lee

    2016-05-01

    Full Text Available Inflammation is a pervasive phenomenon triggered by the innate and adaptive immune systems to maintain homeostasis. The phenomenon normally leads to recovery from infection and healing, but when not properly phased, inflammation may cause immune disorders. Bee venom is a toxin that bees use for their protection from enemies. However, for centuries it has been used in the Orient as an anti-inflammatory medicine for the treatment of chronic inflammatory diseases. Bee venom and its major component, melittin, are potential means of reducing excessive immune responses and provide new alternatives for the control of inflammatory diseases. Recent experimental studies show that the biological functions of melittin could be applied for therapeutic use in vitro and in vivo. Reports verifying the therapeutic effects of melittin are accumulating in the literature, but the cellular mechanism(s of the anti-inflammatory effects of melittin are not fully elucidated. In the present study, we review the current knowledge on the therapeutic effects of melittin and its detailed mechanisms of action against several inflammatory diseases including skin inflammation, neuroinflammation, atherosclerosis, arthritis and liver inflammation, its adverse effects as well as future prospects regarding the use of melittin.

  4. Anti-Inflammatory Applications of Melittin, a Major Component of Bee Venom: Detailed Mechanism of Action and Adverse Effects.

    Science.gov (United States)

    Lee, Gihyun; Bae, Hyunsu

    2016-05-11

    Inflammation is a pervasive phenomenon triggered by the innate and adaptive immune systems to maintain homeostasis. The phenomenon normally leads to recovery from infection and healing, but when not properly phased, inflammation may cause immune disorders. Bee venom is a toxin that bees use for their protection from enemies. However, for centuries it has been used in the Orient as an anti-inflammatory medicine for the treatment of chronic inflammatory diseases. Bee venom and its major component, melittin, are potential means of reducing excessive immune responses and provide new alternatives for the control of inflammatory diseases. Recent experimental studies show that the biological functions of melittin could be applied for therapeutic use in vitro and in vivo. Reports verifying the therapeutic effects of melittin are accumulating in the literature, but the cellular mechanism(s) of the anti-inflammatory effects of melittin are not fully elucidated. In the present study, we review the current knowledge on the therapeutic effects of melittin and its detailed mechanisms of action against several inflammatory diseases including skin inflammation, neuroinflammation, atherosclerosis, arthritis and liver inflammation, its adverse effects as well as future prospects regarding the use of melittin.

  5. The significance of major and stable molecular responses in chronic myeloid leukemia in the tyrosine kinase inhibitor era

    Directory of Open Access Journals (Sweden)

    Ilana Zalcberg Renault

    2011-12-01

    Full Text Available Tyrosine kinase inhibitors have changed the management and outcomes of chronic myeloid leukemia patients. Quantitative polymerase chain reaction is used to monitor molecular responses to tyrosine kinase inhibitors. Molecular monitoring represents the most sensitive tool to judge chronic myeloid leukemia disease course and allows early detection of relapse. Evidence of achieving molecular response is important for several reasons: 1. early molecular response is associated with major molecular response rates at 18-24 months; 2. patients achieving major molecular response are less likely to lose their complete cytogenetic response; 3. a durable, stable major molecular response is associated with increased progression-free survival. However, standardization of molecular techniques is still challenging.

  6. The significance of major and stable molecular responses in chronic myeloid leukemia in the tyrosine kinase inhibitor era

    Science.gov (United States)

    Renault, Ilana Zalcberg; Scholl, Vanesa; Hassan, Rocio; Capelleti, Paola; de Lima, Marcos; Cortes, Jorge

    2011-01-01

    Tyrosine kinase inhibitors have changed the management and outcomes of chronic myeloid leukemia patients. Quantitative polymerase chain reaction is used to monitor molecular responses to tyrosine kinase inhibitors. Molecular monitoring represents the most sensitive tool to judge chronic myeloid leukemia disease course and allows early detection of relapse. Evidence of achieving molecular response is important for several reasons: 1. early molecular response is associated with major molecular response rates at 18-24 months; 2. patients achieving major molecular response are less likely to lose their complete cytogenetic response; 3. a durable, stable major molecular response is associated with increased progression-free survival. However, standardization of molecular techniques is still challenging. PMID:23049363

  7. Ekman pumping mechanism driving precipitation anomalies in response to equatorial heating

    Science.gov (United States)

    Hamouda, Mostafa E.; Kucharski, Fred

    2018-03-01

    In this paper some basic mechanisms for rainfall teleconnections to a localized tropical sea surface temperature anomaly are re-visited using idealized AGCM aqua-planet simulations. The dynamical response is generally in good agreement with the Gill-Matsuno theory. The mechanisms analyzed are (1) the stabilization of the tropical troposphere outside the heating region, (2) the Walker circulation modification and (3) Ekman pumping induced by the low-level circulation responses. It is demonstrated that all three mechanisms, and in particular (2) and (3), contribute to the remote rainfall teleconnections. However, mechanism (3) best coincides with the overall horizontal structure of rainfall responses. It is shown by using the models boundary layer parameterization that low-level vertical velocities are indeed caused by Ekman pumping and that this induces vertical velocities in the whole tropospheric column through convective feedbacks. Also the modification of the responses due to the presence of idealized warm pools is investigated. It is shown that warm pools modify the speed of the tropical waves, consistent with Doppler shifts and are thus able to modify the Walker circulation adjustments and remote rainfall responses. The sensitivity of the responses, and in particular the importance of the Ekman pumping mechanism, to large variations in the drag coefficient is also tested, and it is shown that the Ekman pumping mechanism is robust for a wide range of values.

  8. Who is responsible for the team’s results? Media framing of sports actors’ responsibility in major sports competitions

    Directory of Open Access Journals (Sweden)

    Diana Luiza Dumitriu

    2016-05-01

    Full Text Available Media are no longer just a witness to sports events, facilitating our access to them, but have become the most powerful judging platform for sports competitions, serving as a guide for their interpretation and evaluation. The present study focuses on media framing of sports actors’ responsibility when it comes to major sports competitions. Who is responsible for the team’s performance and results? In analysing media discourse, framing effects of sports events coverage will be examined from two inter-correlated dimensions, textually and visually. Based on an event-related corpus of on-line press articles from four national newspapers, this case study covers two major sports events: 2010 European Women’s Handball Championship and 2011 World Women’s Handball Championship. The discursive analysis of the press articles shows that, if winning competitive settings favour the emergence of a personification effect, building up sports heroes on both textual and visual dimensions, the responsibility of failure is rather diffused towards a collective referent. However, the visual component of press articles, along with the indirect strategy of addressing the responsibility issue throughout reported speech techniques, works as an alternative to the personification effect.

  9. Cell response to long term mechanical interaction with nanopipettes

    Science.gov (United States)

    Orynbayeva, Zulfiya; Singhal, Riju; Vitol, Elina; Bouchard, Michael; Azizkhan-Clifford, Jane; Layton, Bradley; Friedman, Gary; Gogotsi, Yury

    2009-03-01

    Traditional microinjection into cells is performed over a relatively short term. Pipettes are typically withdrawn following any kind of injection. On the other hand, there is growing interest in using nanopipettes for cellular and subcellular probing. This interest is partly due to new developments in nanopipette technology which employ carbon nanotubes and provide robustness, flexibility, and biocompatibility. However, as far as we know, no systematic study of physiological, biochemical, and biophysical processes associated with cell response to lengthy mechanical stimulations by nanopipette probing have been performed so far. We present a detailed investigation of a wide range of effects of long term pipette insertion into a cell. Both traditional glass micropipettes and the novel carbon nanotube-tipped probes were involved in this study. The mechanism of Ca2+ response to the mechanical stimuli introduced by the nanopipette, and the role of different organelles in this mechanism were studied. We hypothesize that the calcium response is a function of cytoskeleton integrity and the mode of coupling between the cytoskeleton and the plasma membrane domains.

  10. Epigenetic Modifications of Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Kathleen Saavedra

    2016-08-01

    Full Text Available Major depressive disorder (MDD is a chronic disease whose neurological basis and pathophysiology remain poorly understood. Initially, it was proposed that genetic variations were responsible for the development of this disease. Nevertheless, several studies within the last decade have provided evidence suggesting that environmental factors play an important role in MDD pathophysiology. Alterations in epigenetics mechanism, such as DNA methylation, histone modification and microRNA expression could favor MDD advance in response to stressful experiences and environmental factors. The aim of this review is to describe genetic alterations, and particularly altered epigenetic mechanisms, that could be determinants for MDD progress, and how these alterations may arise as useful screening, diagnosis and treatment monitoring biomarkers of depressive disorders.

  11. Item response theory analysis of the mechanics baseline test

    Science.gov (United States)

    Cardamone, Caroline N.; Abbott, Jonathan E.; Rayyan, Saif; Seaton, Daniel T.; Pawl, Andrew; Pritchard, David E.

    2012-02-01

    Item response theory is useful in both the development and evaluation of assessments and in computing standardized measures of student performance. In item response theory, individual parameters (difficulty, discrimination) for each item or question are fit by item response models. These parameters provide a means for evaluating a test and offer a better measure of student skill than a raw test score, because each skill calculation considers not only the number of questions answered correctly, but the individual properties of all questions answered. Here, we present the results from an analysis of the Mechanics Baseline Test given at MIT during 2005-2010. Using the item parameters, we identify questions on the Mechanics Baseline Test that are not effective in discriminating between MIT students of different abilities. We show that a limited subset of the highest quality questions on the Mechanics Baseline Test returns accurate measures of student skill. We compare student skills as determined by item response theory to the more traditional measurement of the raw score and show that a comparable measure of learning gain can be computed.

  12. Diminished caudate and superior temporal gyrus responses to effort-based decision making in patients with first-episode major depressive disorder.

    Science.gov (United States)

    Yang, Xin-hua; Huang, Jia; Lan, Yong; Zhu, Cui-ying; Liu, Xiao-qun; Wang, Ye-fei; Cheung, Eric F C; Xie, Guang-rong; Chan, Raymond C K

    2016-01-04

    Anhedonia, the loss of interest or pleasure in reward processing, is a hallmark feature of major depressive disorder (MDD), but its underlying neurobiological mechanism is largely unknown. The present study aimed to examine the underlying neural mechanism of reward-related decision-making in patients with MDD. We examined behavioral and neural responses to rewards in patients with first-episode MDD (N=25) and healthy controls (N=25) using the Effort-Expenditure for Rewards Task (EEfRT). The task involved choices about possible rewards of varying magnitude and probability. We tested the hypothesis that individuals with MDD would exhibit a reduced neural response in reward-related brain structures involved in cost-benefit decision-making. Compared with healthy controls, patients with MDD showed significantly weaker responses in the left caudate nucleus when contrasting the 'high reward'-'low reward' condition, and blunted responses in the left superior temporal gyrus and the right caudate nucleus when contrasting high and low probabilities. In addition, hard tasks chosen during high probability trials were negatively correlated with superior temporal gyrus activity in MDD patients, while the same choices were negatively correlated with caudate nucleus activity in healthy controls. These results indicate that reduced caudate nucleus and superior temporal gyrus activation may underpin abnormal cost-benefit decision-making in MDD. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Dynamic response analysis as a tool for investigating transport mechanisms

    International Nuclear Information System (INIS)

    Dudok de Wit, Th.; Joye, B.; Lister, J.B.; Moret, J.M.

    1990-01-01

    Dynamic response analysis provides an attractive method for studying transport mechanisms in tokamak plasmas. The analysis of the radial response has already been widely used for heat and particle transport studies. The frequency dependence of the dynamic response, which is often omitted, reveals further properties of the dominant transport mechanisms. Extended measurements of the soft X-ray emission were carried out on the TCA tokamak in order to determine the underlying transport processes. (author) 5 refs., 2 figs

  14. Green tea polyphenol (−)-epigallocatechin-3-gallate triggered hepatotoxicity in mice: Responses of major antioxidant enzymes and the Nrf2 rescue pathway

    International Nuclear Information System (INIS)

    Wang, Dongxu; Wang, Yijun; Wan, Xiaochun; Yang, Chung S.; Zhang, Jinsong

    2015-01-01

    (−)-Epigallocatechin-3-gallate (EGCG), a constituent of green tea, has been suggested to have numerous health-promoting effects. On the other hand, high-dose EGCG is able to evoke hepatotoxicity. In the present study, we elucidated the responses of hepatic major antioxidant enzymes and nuclear factor erythroid 2-related factor 2 (Nrf2) rescue pathway to high-dose levels of EGCG in Kunming mice. At a non-lethal toxic dose (75 mg/kg, i.p.), repeated EGCG treatments markedly decreased the levels of superoxide dismutase, catalase, and glutathione peroxidase. As a rescue response, the nuclear distribution of Nrf2 was significantly increased; a battery of Nrf2-target genes, including heme oxygenase 1 (HO1), NAD(P)H:quinone oxidoreductase 1 (NQO1), glutathione S-transferase (GST), and those involved in glutathione and thioredoxin systems, were all up-regulated. At the maximum tolerated dose (45 mg/kg, i.p.), repeated EGCG treatments did not disturb the major antioxidant defense. Among the above-mentioned genes, only HO1, NQO1, and GST genes were significantly but modestly up-regulated, suggesting a comprehensive and extensive activation of Nrf2-target genes principally occurs at toxic levels of EGCG. At a lethal dose (200 mg/kg, i.p.), a single EGCG treatment dramatically decreased not only the major antioxidant defense but also the Nrf2-target genes, demonstrating that toxic levels of EGCG are able to cause a biphasic response of Nrf2. Overall, the mechanism of EGCG-triggered hepatotoxicity involves suppression of major antioxidant enzymes, and the Nrf2 rescue pathway plays a vital role for counteracting EGCG toxicity. - Highlights: • EGCG at maximum tolerated dose does not disturb hepatic major antioxidant defense. • EGCG at maximum tolerated dose modestly upregulates hepatic Nrf2 target genes. • EGCG at toxic dose suppresses hepatic major antioxidant enzymes. • EGCG at non-lethal toxic dose pronouncedly activates hepatic Nrf2 rescue response. • EGCG at

  15. Green tea polyphenol (−)-epigallocatechin-3-gallate triggered hepatotoxicity in mice: Responses of major antioxidant enzymes and the Nrf2 rescue pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongxu; Wang, Yijun; Wan, Xiaochun [Key Laboratory of Tea Biochemistry & Biotechnology, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui 230036 (China); Yang, Chung S. [Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Zhang, Jinsong, E-mail: zjs@ahau.edu.cn [Key Laboratory of Tea Biochemistry & Biotechnology, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui 230036 (China)

    2015-02-15

    (−)-Epigallocatechin-3-gallate (EGCG), a constituent of green tea, has been suggested to have numerous health-promoting effects. On the other hand, high-dose EGCG is able to evoke hepatotoxicity. In the present study, we elucidated the responses of hepatic major antioxidant enzymes and nuclear factor erythroid 2-related factor 2 (Nrf2) rescue pathway to high-dose levels of EGCG in Kunming mice. At a non-lethal toxic dose (75 mg/kg, i.p.), repeated EGCG treatments markedly decreased the levels of superoxide dismutase, catalase, and glutathione peroxidase. As a rescue response, the nuclear distribution of Nrf2 was significantly increased; a battery of Nrf2-target genes, including heme oxygenase 1 (HO1), NAD(P)H:quinone oxidoreductase 1 (NQO1), glutathione S-transferase (GST), and those involved in glutathione and thioredoxin systems, were all up-regulated. At the maximum tolerated dose (45 mg/kg, i.p.), repeated EGCG treatments did not disturb the major antioxidant defense. Among the above-mentioned genes, only HO1, NQO1, and GST genes were significantly but modestly up-regulated, suggesting a comprehensive and extensive activation of Nrf2-target genes principally occurs at toxic levels of EGCG. At a lethal dose (200 mg/kg, i.p.), a single EGCG treatment dramatically decreased not only the major antioxidant defense but also the Nrf2-target genes, demonstrating that toxic levels of EGCG are able to cause a biphasic response of Nrf2. Overall, the mechanism of EGCG-triggered hepatotoxicity involves suppression of major antioxidant enzymes, and the Nrf2 rescue pathway plays a vital role for counteracting EGCG toxicity. - Highlights: • EGCG at maximum tolerated dose does not disturb hepatic major antioxidant defense. • EGCG at maximum tolerated dose modestly upregulates hepatic Nrf2 target genes. • EGCG at toxic dose suppresses hepatic major antioxidant enzymes. • EGCG at non-lethal toxic dose pronouncedly activates hepatic Nrf2 rescue response. • EGCG at

  16. The evolution of cognitive mechanisms in response to cultural innovations.

    Science.gov (United States)

    Lotem, Arnon; Halpern, Joseph Y; Edelman, Shimon; Kolodny, Oren

    2017-07-24

    When humans and other animals make cultural innovations, they also change their environment, thereby imposing new selective pressures that can modify their biological traits. For example, there is evidence that dairy farming by humans favored alleles for adult lactose tolerance. Similarly, the invention of cooking possibly affected the evolution of jaw and tooth morphology. However, when it comes to cognitive traits and learning mechanisms, it is much more difficult to determine whether and how their evolution was affected by culture or by their use in cultural transmission. Here we argue that, excluding very recent cultural innovations, the assumption that culture shaped the evolution of cognition is both more parsimonious and more productive than assuming the opposite. In considering how culture shapes cognition, we suggest that a process-level model of cognitive evolution is necessary and offer such a model. The model employs relatively simple coevolving mechanisms of learning and data acquisition that jointly construct a complex network of a type previously shown to be capable of supporting a range of cognitive abilities. The evolution of cognition, and thus the effect of culture on cognitive evolution, is captured through small modifications of these coevolving learning and data-acquisition mechanisms, whose coordinated action is critical for building an effective network. We use the model to show how these mechanisms are likely to evolve in response to cultural phenomena, such as language and tool-making, which are associated with major changes in data patterns and with new computational and statistical challenges.

  17. Random lattice structures. Modelling, manufacture and FEA of their mechanical response

    Science.gov (United States)

    Maliaris, G.; Sarafis, I. T.; Lazaridis, T.; Varoutoglou, A.; Tsakataras, G.

    2016-11-01

    The implementation of lightweight structures in various applications, especially in Aerospace/ Automotive industries and Orthopaedics, has become a necessity due to their exceptional mechanical properties with respect to reduced weight. In this work we present a Voronoi tessellation based algorithm, which has been developed for modelling stochastic lattice structures. With the proposed algorithm, is possible to generate CAD geometry with controllable structural parameters, such as porosity, cell number and strut thickness. The digital structures were transformed into physical objects through the combination of 3D printing technics and investment casting. This process was applied to check the mechanical behaviour of generated digital models. Until now, the only way to materialize such structures into physical objects, was feasible through 3D printing methods such as Selective Laser Sintering/ Melting (SLS/ SLM). Investment casting possesses numerous advantages against SLS or SLA, with the major one being the material variety. On the other hand, several trials are required in order to calibrate the process parameters to have successful castings, which is the major drawback of investment casting. The manufactured specimens were subjected to compression tests, where their mechanical response was registered in the form of compressive load - displacement curves. Also, a finite element model was developed, using the specimens’ CAD data and compression test parameters. The FE assisted calculation of specimen plastic deformation is identical with the one of the physical object, which validates the conclusions drawn from the simulation results. As it was observed, strut contact is initiated when specimen deformation is approximately 5mm. Although FE calculated compressive force follows the same trend for the first 3mm of compression, then diverges because of the elasto-plastic FE model type definition and the occurred remeshing steps.

  18. Thermal-mechanical-hydrological-chemical responses in the single heater test at the ESF

    International Nuclear Information System (INIS)

    Lin, W.; Blair, S.; Buettner, M

    1997-01-01

    The Single Heater Test (SHT) is conducted in the Exploratory Studies Facility (ESF) to study the thermal-mechanical responses of the rock mass. A set of boreholes were drilled in the test region for conducting a scoping test of the coupled thermal-mechanical- hydrological-chemical (TMHC) processes. The holes for the TMHC tests include electrical resistivity tomography (ERT), neutron logging/temperature, hydrological, and optical multiple point borehole extensometers. A 4-kW heater was installed in the heater hole, and was energized on August 26, 1996. Some observed movements of the water around the heater are associated with a possible dry-out region near the heater. The water that has been moved is more dilute than the in situ ground water, except for the concentration of Ca. This indicates that fractures are the major water pathways, and the displaced water may have reached an equilibrium with carbonate minerals on the fracture surfaces. No mechanical-hydrological coupling has been observed. The tests are on-going, and more data will be collected and analyzed

  19. Evaluation of major heat waves' mechanisms in EURO-CORDEX RCMs over Central Europe

    Science.gov (United States)

    Lhotka, Ondřej; Kyselý, Jan; Plavcová, Eva

    2018-06-01

    The main aim of the study is to evaluate the capability of EURO-CORDEX regional climate models (RCMs) to simulate major heat waves in Central Europe and their associated meteorological factors. Three reference major heat waves (1994, 2006, and 2015) were identified in the E-OBS gridded data set, based on their temperature characteristics, length and spatial extent. Atmospheric circulation, precipitation, net shortwave radiation, and evaporative fraction anomalies during these events were assessed using the ERA-Interim reanalysis. The analogous major heat waves and their links to the aforementioned factors were analysed in an ensemble of EURO-CORDEX RCMs driven by various global climate models in the 1970-2016 period. All three reference major heat waves were associated with favourable circulation conditions, precipitation deficit, reduced evaporative fraction and increased net shortwave radiation. This joint contribution of large-scale circulation and land-atmosphere interactions is simulated with difficulties in majority of the RCMs, which affects the magnitude of modelled major heat waves. In some cases, the seemingly good reproduction of major heat waves' magnitude is erroneously achieved through extremely favourable circulation conditions compensated by a substantial surplus of soil moisture or vice versa. These findings point to different driving mechanisms of major heat waves in some RCMs compared to observations, which should be taken into account when analysing and interpreting future projections of these events.

  20. Passive and active response of bacteria under mechanical compression

    Science.gov (United States)

    Garces, Renata; Miller, Samantha; Schmidt, Christoph F.; Byophysics Team; Institute of Medical Sciences Collaboration

    Bacteria display simple but fascinating cellular structures and geometries. Their shapes are the result of the interplay between osmotic pressure and cell wall construction. Typically, bacteria maintain a high difference of osmotic pressure (on the order of 1 atm) to the environment. This pressure difference (turgor pressure) is supported by the cell envelope, a composite of lipid membranes and a rigid cell wall. The response of the cell envelope to mechanical perturbations such as geometrical confinements is important for the cells survival. Another key property of bacteria is the ability to regulate turgor pressure after abrupt changes of external osmotic conditions. This response relies on the activity of mechanosensitive (MS) channels: membrane proteins that release solutes in response to excessive stress in the cell envelope. We here present experimental data on the mechanical response of the cell envelope and on turgor regulation of bacteria subjected to compressive forces. We indent living cells with micron-sized beads attached to the cantilever of an atomic force microscope (AFM). This approach ensures global deformation of the cell. We show that such mechanical loading is sufficient to gate mechanosensitive channels in isosmotic conditions.

  1. The body’s immune response in the induction and progression of cancer of the cervix uteri: possible mechanisms

    Directory of Open Access Journals (Sweden)

    O. V. Kurmyshkina

    2011-01-01

    Full Text Available Human papillomavirus (HPV that is a main cause of cancer of the cervix uteri (CCU has immunogenic properties, i.e. an abilityto activate antiviral immunity responses as adaptive HPV-specific and innate ones. For this reason, despite multiple mechanisms generated by HPV to avoid immunity responses, the human body can eliminate the infection in most cases. At the same time, CCU results from the combined influence of many factors of different nature, among which the factors that impair the normal course of an immune response are of vital importance.This review describes the major factors and mechanisms, which promote the establishment of persistent HPV infection and the progression of dysplasia to cancer, on the one hand, and allow the tumor cells in CCU to restrict the body’s immune reactions, on the other Immune disorders induced by the virus and/or tumor cells are considered at both local and systemic levels. Particular emphasis is placed on the molecular mechanisms that can change the population composition and functional activity of leukocytes and the cytokine profile of cells and can form the tumor suppressor microenvironment.

  2. A Dynamic Market Mechanism for Markets with Shiftable Demand Response

    DEFF Research Database (Denmark)

    Hansen, Jacob; Knudsen, Jesper Viese; Kiani, Arman

    2014-01-01

    renewables, this mechanism accommodates both consumers with a shiftable Demand Response and an adjustable Demand Response. The overall market mechanism is evaluated in a Day Ahead Market and is shown in a numerical example to result in a reduction of the cost of electricity for the consumer, as well......In this paper, we propose a dynamic market mechanism that converges to the desired market equilibrium. Both locational marginal prices and the schedules for generation and consumption are determined through a negotiation process between the key market players. In addition to incorporating...

  3. Mesocosm Community Response Sensitivities to Specific Conductivity Comprised of Different Major Ions

    Science.gov (United States)

    Traditional toxicity test assays have been used to evaluate the relative sensitivity to different major ion mixtures as a proxy for understanding what the response of aquatic species growing in their natural environment would be during exposure to specific conductivity stress ema...

  4. Estimation of brain activation in response to major and minor scales by fMRI

    International Nuclear Information System (INIS)

    Fujimaki, Takuya; Nemoto, Iku

    2011-01-01

    We made fMRI measurements of the brain responses to major and minor scales which are the fundamental elements for making melodies in music. In addition, we used an arpeggio of diminished 7th. For a control stimulus, we provided a sequence of repeated single tones. The ascending scales of 12 major and 12 minor keys were made starting from F no.3 to F4. Each scale was 3 s in duration. A 3 s scan was performed 2-3 s (randomized) after a scale has been finished and repeated every 14 s (sparse time scanning). Typically, major scales activated the left inferior frontal gyrus, minor scales the posterior cingulate gyrus and the diminished arpeggio the left auditory cortex. In general, the left hemisphere was more activated than usually seen in responses to music. (author)

  5. A predictive control scheme for automated demand response mechanisms

    NARCIS (Netherlands)

    Lampropoulos, I.; Bosch, van den P.P.J.; Kling, W.L.

    2012-01-01

    The development of demand response mechanisms can provide a considerable option for the integration of renewable energy sources and the establishment of efficient generation and delivery of electrical power. The full potential of demand response can be significant, but its exploration still remains

  6. Plasticity of the MAPK signaling network in response to mechanical stress.

    Directory of Open Access Journals (Sweden)

    Andrea M Pereira

    Full Text Available Cells display versatile responses to mechanical inputs and recent studies have identified the mitogen-activated protein kinase (MAPK cascades mediating the biological effects observed upon mechanical stimulation. Although, MAPK pathways can act insulated from each other, several mechanisms facilitate the crosstalk between the components of these cascades. Yet, the combinatorial complexity of potential molecular interactions between these elements have prevented the understanding of their concerted functions. To analyze the plasticity of the MAPK signaling network in response to mechanical stress we performed a non-saturating epistatic screen in resting and stretched conditions employing as readout a JNK responsive dJun-FRET biosensor. By knocking down MAPKs, and JNK pathway regulators, singly or in pairs in Drosophila S2R+ cells, we have uncovered unexpected regulatory links between JNK cascade kinases, Rho GTPases, MAPKs and the JNK phosphatase Puc. These relationships have been integrated in a system network model at equilibrium accounting for all experimentally validated interactions. This model allows predicting the global reaction of the network to its modulation in response to mechanical stress. It also highlights its context-dependent sensitivity.

  7. Hypertensive response to exercise: mechanisms and clinical implication

    OpenAIRE

    Kim, Darae; Ha, Jong-Won

    2016-01-01

    A hypertensive response to exercise (HRE) is frequently observed in individuals without hypertension or other cardiovascular disease. However, mechanisms and clinical implication of HRE is not fully elucidated. Endothelial dysfunction and increased stiffness of large artery contribute to development of HRE. From neurohormonal aspects, excess stimulation of sympathetic nervous system and augmented rise of angiotensin II seems to be important mechanism in HRE. Increasing evidences indicates tha...

  8. Molecular mechanisms of radioadaptive responses in human lymphoblastoid cells

    International Nuclear Information System (INIS)

    Kakimoto, Ayana; Taki, Keiko; Nakajima, Tetsuo

    2008-01-01

    Radioadaptive response is a biodefensive response observed in a variety of mammalian cells and animals where exposure to low dose radiation induces resistance against the subsequent high dose radiation. Elucidation of its mechanisms is important for risk estimation of low dose radiation because the radioadaptive response implies that low dose radiation affects cells/individuals in a different manner from high dose radiation. In the present study, we explored the molecular mechanisms of the radioadaptive response in human lymphoblastoid cells AHH-1 in terms of mutation at the hypoxanthine phosphoribosyltransferase (HPRT) gene locus. First we observed that preexposure to the priming dose in the range from 0.02 Gy to 0.2 Gy significantly reduced mutation frequency at HPRT gene locus after irradiation with 3 Gy of X rays. As no significant adaptive response was observed with the priming dose of 0.005 Gy, it was indicated that the lower limit of the priming dose to induce radioadaptive response may be between 0.005 Gy and 0.02 Gy. Second, we examined the effect of 3-amino-benzamide (3AB), an inhibitor of poly(ADP-ribose)polymerase1, which has been reported to inhibit the radioadaptive response in terms of chromosome aberration. However we could observe significant radioadaptive responses in terms of mutation even in the presence of 3AB. These findings suggested that molecular mechanisms of the radioadaptive response in terms of mutation may be different from that for radioadaptive responses in terms of chromosomal aberration, although we could not exclude a possibility that the differential effects of 3AB was due to cell type difference. Finally, by performing a comprehensive analysis of alterations in gene expression using high coverage expression profiling (HiCEP), we could identify 17 genes whose expressions were significantly altered 6 h after irradiation with 0.02 Gy. We also found 17 and 20 genes, the expressions of which were different with or without priming

  9. Nociceptive responses to thermal and mechanical stimulations in awake pigs

    DEFF Research Database (Denmark)

    di Giminiani, Pierpaolo; Petersen, Lars Jelstrup; Herskin, Mette S.

    2013-01-01

    body sizes (30 and 60 kg) were exposed to thermal (CO(2) laser) and mechanical (pressure application measurement device) stimulations to the flank and the hind legs in a balanced order. The median response latency and the type of behavioural response were recorded. RESULTS: Small pigs exhibited...... animal studies in a large species require further examination. This manuscript describes the initial development of a porcine model of cutaneous nociception and focuses on interactions between the sensory modality, body size and the anatomical location of the stimulation site. METHODS: Pigs of different...... significantly lower pain thresholds (shorter latency to response) than large pigs to thermal and mechanical stimulations. Stimulations at the two anatomical locations elicited very distinct sets of behavioural responses, with different levels of sensitivity between the flank and the hind legs. Furthermore...

  10. Professionally responsible intrapartum management of patients with major mental disorders.

    Science.gov (United States)

    Babbitt, Kriste E; Bailey, Kala J; Coverdale, John H; Chervenak, Frank A; McCullough, Laurence B

    2014-01-01

    Pregnant women with major mental disorders present obstetricians with a range of clinical challenges, which are magnified when a psychotic or agitated patient presents in labor and there is limited time for decision making. This article provides the obstetrician with an algorithm to guide professionally responsible decision making with these patients. We searched for articles related to the intrapartum management of pregnant patients with major mental disorders, using 3 main search components: pregnancy, chronic mental illness, and ethics. No articles were found that addressed the clinical ethical challenges of decision making during the intrapartum period with these patients. We therefore developed an ethical framework with 4 components: the concept of the fetus as a patient; the presumption of decision-making capacity; the concept of assent; and beneficence-based clinical judgment. On the basis of this framework we propose an algorithm to guide professionally responsible decision making that asks 5 questions: (1) Does the patient have the capacity to consent to treatment?; (2) Is there time to attempt restoration of capacity?; (3) Is there an opportunity for substituted judgment?; (4) Is the patient accepting treatment?; (5) Is there an opportunity for active assent?; and (6) coerced clinical management as the least worst alternative. The algorithm is designed to support a deliberative, clinically comprehensive, preventive-ethics approach to guide obstetricians in decision making with this challenging population of patients. Copyright © 2014 Mosby, Inc. All rights reserved.

  11. Computational methods for describing the laser-induced mechanical response of tissue

    Energy Technology Data Exchange (ETDEWEB)

    Trucano, T.; McGlaun, J.M.; Farnsworth, A.

    1994-02-01

    Detailed computational modeling of laser surgery requires treatment of the photoablation of human tissue by high intensity pulses of laser light and the subsequent thermomechanical response of the tissue. Three distinct physical regimes must be considered to accomplish this: (1) the immediate absorption of the laser pulse by the tissue and following tissue ablation, which is dependent upon tissue light absorption characteristics; (2) the near field thermal and mechanical response of the tissue to this laser pulse, and (3) the potential far field (and longer time) mechanical response of witness tissue. Both (2) and (3) are dependent upon accurate constitutive descriptions of the tissue. We will briefly review tissue absorptivity and mechanical behavior, with an emphasis on dynamic loads characteristic of the photoablation process. In this paper our focus will center on the requirements of numerical modeling and the uncertainties of mechanical tissue behavior under photoablation. We will also discuss potential contributions that computational simulations can make in the design of surgical protocols which utilize lasers, for example, in assessing the potential for collateral mechanical damage by laser pulses.

  12. [Clinical and biological predictors of ketamine response in treatment-resistant major depression: Review].

    Science.gov (United States)

    Romeo, B; Choucha, W; Fossati, P; Rotge, J-Y

    2017-08-01

    The aim of this review was to determine the clinical and biological predictors of the ketamine response. A systematic research on PubMed and PsycINFO database was performed without limits on year of publication. The main predictive factors of ketamine response, which were found in different studies, were (i) a family history of alcohol dependence, (ii) unipolar depressive disorder, and (iii) neurocognitive impairments, especially a slower processing speed. Many other predictive factors were identified, but not replicated, such as personal history of alcohol dependence, no antecedent of suicide attempt, anxiety symptoms. Some biological factors were also found such as markers of neural plasticity (slow wave activity, brain-derived neurotrophic factor Val66Met polymorphism, expression of Shank 3 protein), other neurologic factors (anterior cingulate activity, concentration of glutamine/glutamate), inflammatory factors (IL-6 concentration) or metabolic factors (concentration of B12 vitamin, D- and L-serine, alterations in the mitochondrial β-oxidation of fatty acids). This review had several limits: (i) patients had exclusively resistant major depressive episodes which represent a sub-type of depression and not all depression, (ii) response criteria were more frequently assessed than remission criteria, it was therefore difficult to conclude that these predictors were similar, and finally (iii) many studies used a very small number of patients. In conclusion, this review found that some predictors of ketamine response, like basal activity of anterior cingulate or vitamin B12 concentration, were identical to other therapeutics used in major depressive episode. These factors could be more specific to the major depressive episode and not to the ketamine response. Others, like family history of alcohol dependence, body mass index, or D- and L-serine were different from the other therapeutics. Neurocognitive impairments like slower speed processing or alterations in

  13. Difference between electrostriction kinetics, and mechanical response of segmented polyurethane-based EAP

    Science.gov (United States)

    Jomaa, M. H.; Seveyrat, L.; Perrin, V.; Lebrun, L.; Masenelli-Varlot, K.; Diguet, Gildas; Cavaille, J. Y.

    2017-03-01

    Among the key parameters, which must be taken into account for the choice of actuators used as electrical to mechanical energy converters, the response to a step function and/or the frequency dependence of this response is extremely important. For polymeric actuators and more generally for electroactive polymers, three mechanisms can be at the origin of energy losses, namely dielectric relaxations, viscoelastic relaxations and possible electrical conductivity. In a previous paper, we studied the electrical behavior of segmented polyurethanes with different weight fractions of hard (MDI-BDO) and soft (PTMO) segments. They were shown to exhibit three main mechanisms, namely, from the fastest to the slowest, a secondary or β-relaxation, the main or α-relaxation associated with the glass-rubber transition of the soft phase, and finally, their electrical conductivity. In the present work, we present the general viscoelastic response (as measured through mechanical spectrometry) of the same polyurethanes and their respective time dependent electrostriction responses, and compare it with the relaxation characteristic times of electrical and mechanical spectroscopy data.

  14. Mechanical response of wall-patterned GaAs surface

    International Nuclear Information System (INIS)

    Le Bourhis, E.; Patriarche, G.

    2005-01-01

    Wall-patterned GaAs surfaces have been elaborated by photolithography and dry etching. Different surfaces were produced in order to change the aspect ratio of the walls formed at the substrate surface. The mechanical behaviour of individual walls was investigated by nanoindentation and the responses were compared to that of a standard bulk reference (flat surface). Deviation from the bulk response is detected in a load range of 1-25 mN depending on the aspect ratio of the walls. A central plastic zone criterion is proposed in view of transmission electron microscopy images of indented walls and allows the prediction of the response deviation of a given wall if its width is known. The mechanical response of the different types of walls is further investigated in terms of stiffness, total penetration of indenter and apparent hardness, and is scanned in relation to the proximity of a wall side. Overall results show that contact stiffness remains almost unaffected by aspect ratio, while penetration drastically increases because of the free sides of the wall as compared to a flat surface (bulk substrate). The application of substrate patterning for optoelectronic devices is discussed in the perspective of eliminating residual dislocations appearing in mismatched structures

  15. Plasticity of the MAPK signaling network in response to mechanical stress

    NARCIS (Netherlands)

    Pereira, Andrea M; Tudor, Cicerone; Pouille, Philippe-Alexandre; Shekhar, Shashank; Kanger, Johannes S; Subramaniam, Vinod; Martín-Blanco, Enrique

    2014-01-01

    Cells display versatile responses to mechanical inputs and recent studies have identified the mitogen-activated protein kinase (MAPK) cascades mediating the biological effects observed upon mechanical stimulation. Although, MAPK pathways can act insulated from each other, several mechanisms

  16. An agent-based model for Leishmania major infection

    Science.gov (United States)

    Dancik, Garrett M.; Jones, Douglas E.; Dorman, Karin S.

    Leishmania are protozoan parasites transmitted by bites of infected sandflies. Over 20 species of Leishmania, endemic in 88 countries, are capable of causing human disease. Disease is either cutaneous, where skin ulcers occur on exposed surfaces of the body, or visceral, with near certain mortality if untreated. C3HeB/FeJ mice are resistant to L. major, but develop chronic cutaneous lesions when infected with another species L. amazonensis. The well-characterized mechanism of resistance to L. major depends on a CD4+ Thl immune response, macrophage activation, and elimination of the parasite [Sacks 2002]. The factors that account for host susceptibility to L. Amazonensis, however, are not completely understood, despite being generally attributed to a weakened Th1 response [Vanloubbeck 2004].

  17. Integrated Stress Response Mediates Epithelial Injury in Mechanical Ventilation.

    Science.gov (United States)

    Dolinay, Tamas; Himes, Blanca E; Shumyatcher, Maya; Lawrence, Gladys Gray; Margulies, Susan S

    2017-08-01

    Ventilator-induced lung injury (VILI) is a severe complication of mechanical ventilation that can lead to acute respiratory distress syndrome. VILI is characterized by damage to the epithelial barrier with subsequent pulmonary edema and profound hypoxia. Available lung-protective ventilator strategies offer only a modest benefit in preventing VILI because they cannot impede alveolar overdistension and concomitant epithelial barrier dysfunction in the inflamed lung regions. There are currently no effective biochemical therapies to mitigate injury to the alveolar epithelium. We hypothesize that alveolar stretch activates the integrated stress response (ISR) pathway and that the chemical inhibition of this pathway mitigates alveolar barrier disruption during stretch and mechanical ventilation. Using our established rat primary type I-like alveolar epithelial cell monolayer stretch model and in vivo rat mechanical ventilation that mimics the alveolar overdistension seen in acute respiratory distress syndrome, we studied epithelial responses to mechanical stress. Our studies revealed that the ISR signaling pathway is a key modulator of epithelial permeability. We show that prolonged epithelial stretch and injurious mechanical ventilation activate the ISR, leading to increased alveolar permeability, cell death, and proinflammatory signaling. Chemical inhibition of protein kinase RNA-like endoplasmic reticulum kinase, an upstream regulator of the pathway, resulted in decreased injury signaling and improved barrier function after prolonged cyclic stretch and injurious mechanical ventilation. Our results provide new evidence that therapeutic targeting of the ISR can mitigate VILI.

  18. Neural mechanisms of reinforcement learning in unmedicated patients with major depressive disorder.

    Science.gov (United States)

    Rothkirch, Marcus; Tonn, Jonas; Köhler, Stephan; Sterzer, Philipp

    2017-04-01

    According to current concepts, major depressive disorder is strongly related to dysfunctional neural processing of motivational information, entailing impairments in reinforcement learning. While computational modelling can reveal the precise nature of neural learning signals, it has not been used to study learning-related neural dysfunctions in unmedicated patients with major depressive disorder so far. We thus aimed at comparing the neural coding of reward and punishment prediction errors, representing indicators of neural learning-related processes, between unmedicated patients with major depressive disorder and healthy participants. To this end, a group of unmedicated patients with major depressive disorder (n = 28) and a group of age- and sex-matched healthy control participants (n = 30) completed an instrumental learning task involving monetary gains and losses during functional magnetic resonance imaging. The two groups did not differ in their learning performance. Patients and control participants showed the same level of prediction error-related activity in the ventral striatum and the anterior insula. In contrast, neural coding of reward prediction errors in the medial orbitofrontal cortex was reduced in patients. Moreover, neural reward prediction error signals in the medial orbitofrontal cortex and ventral striatum showed negative correlations with anhedonia severity. Using a standard instrumental learning paradigm we found no evidence for an overall impairment of reinforcement learning in medication-free patients with major depressive disorder. Importantly, however, the attenuated neural coding of reward in the medial orbitofrontal cortex and the relation between anhedonia and reduced reward prediction error-signalling in the medial orbitofrontal cortex and ventral striatum likely reflect an impairment in experiencing pleasure from rewarding events as a key mechanism of anhedonia in major depressive disorder. © The Author (2017). Published by Oxford

  19. Mechanical response of jointed granite during shaft sinking at the Canadian Underground Research Laboratory

    International Nuclear Information System (INIS)

    Chan, T.; Lang, P.A.; Thompson, P.M.

    1985-01-01

    As part of the geoscience research within the Canadian Nuclear Fuel Waste Management Program, Atomic Energy of Canada Limited (AECL) is constructing an underground research laboratory (URL) in a previously undisturbed portion of a granitic intrusive, the Lac du Bonnet batholith, approximately 100 km northeast of Winnipeg, Manitoba. The overall geotechnical objectives of the URL are to assess and improve our ability to interpret and predict the geological, geophysical, geochemical, geomechanical and hydrogeological conditions of large bodies of plutonic rock, as well as to assess the accuracy of mathematical models used to predict the near-field mechanical and hydrogeological responses of the rock mass to excavation and thermal loading. Construction will be completed in July, 1986. Large-scale testing will commence soon afterwards and will last until the facility is decommissioned in the year 2000. A rectangular access shaft, 255 m deep x 2.8 m x 4.8 m, was sunk during the period May 1984 to March 1985. Rock displacements and stress changes were monitored as the excavation face (bottom) of the shaft advanced. The major objectives of this monitoring were (a) to evaluate and improve the ability of numerical models in predicting the mechanical response of the rock mass, (b) to back-calculate the rock-mass deformation modulus as a function of depth, (c) to assess the influence of natural fractures on the mechanical response of the granitic rock mass, and (d) to evaluate the quality of the geomechanical instrumentation, to determine instrumentation needs for future field experiments. Analysis of the data from this monitoring will aid the design and modelling of further experiments in the URL. In this paper, the rock displacements measured by an array of extensometers at 15 m below ground surface are presented and compared with predictions by a three-dimensional elastic continuum finite-element model

  20. Striatal dopamine D2/3 receptor-mediated neurotransmission in major depression: Implications for anhedonia, anxiety and treatment response.

    Science.gov (United States)

    Peciña, Marta; Sikora, Magdalena; Avery, Erich T; Heffernan, Joseph; Peciña, Susana; Mickey, Brian J; Zubieta, Jon-Kar

    2017-10-01

    Dopamine (DA) neurotransmission within the brain's reward circuit has been implicated in the pathophysiology of depression and in both, cognitive and pharmacological mechanisms of treatment response. Still, a direct relationship between measures of DA neurotransmission and reward-related deficits in patients with depression has not been demonstrated. To gain insight into the symptom-specific alterations in the DA system in patients with depression, we used positron emission tomography (PET) and the D 2/3 receptor-selective radiotracer [ 11 C]raclopride in twenty-three non-smoking un-medicated Major Depressive Disorder (MDD) patients and sixteen healthy controls (HC). We investigated the relationship between D 2/3 receptor availability and baseline measures of depression severity, anxiety, anhedonia, and cognitive and pharmacological mechanisms of treatment response. We found that, compared to controls, patients with depression showed greater D 2/3 receptor availability in several striatal regions, including the bilateral ventral pallidum/nucleus accumbens (vPAL/NAc), and the right ventral caudate and putamen. In the depressed sample, D 2/3 receptor availability in the caudal portion of the ventral striatum (NAc/vPAL) correlated with higher anxiety symptoms, whereas D 2/3 receptor availability in the rostral area of the ventral striatum correlated negatively with the severity of motivational anhedonia. Finally, MDD non-remitters showed greater baseline anxiety, greater D 2/3 availability in the NAc/vPAL, and greater placebo-induced DA release in the bilateral NAc. Our results demonstrate abnormally high D 2/3 receptor availability in the ventral striatum of patients with MDD, which seem to be associated with comorbid anxiety symptoms and lack of response to antidepressants. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  1. Integrin αv in the mechanical response of osteoblast lineage cells

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Keiko [Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 (Japan); Ito, Masako [Medical Work-Life-Balance Center, Nagasaki University Hospital, Nagasaki 852-8501 (Japan); Naoe, Yoshinori [Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 (Japan); Lacy-Hulbert, Adam [Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114 (United States); Ikeda, Kyoji, E-mail: kikeda@ncgg.go.jp [Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 (Japan)

    2014-05-02

    Highlights: • Deletion of integrin αv in osteoblast lineage results in an impaired SOST response to loading in vivo. • c-Src–p130Cas–JNK–YAP/TAZ is activated via integrin αv on osteoblasts in response to FSS. • Deletion of integrin αv in osteoblasts results in impaired responses to mechanical stimulation. • Integrin αv is a key component of the mechanosensing machinery in bone. - Abstract: Although osteoblast lineage cells, especially osteocytes, are thought to be a primary mechanosensory cell in bone, the identity of the mechano-receptor and downstream mechano-signaling pathways remain largely unknown. Here we show using osteoblastic cell model of mechanical stimulation with fluid shear stress that in the absence of integrin αv, phosphorylation of the Src substrate p130Cas and JNK was impaired, culminating in an inhibition of nuclear translocation of YAP/TAZ and subsequent transcriptional activation of target genes. Targeted deletion of the integrin αv in osteoblast lineage cells results in an attenuated response to mechanical loading in terms of Sost gene expression, indicative of a role for integrin αv in mechanoreception in vivo. Thus, integrin αv may be integral to a mechanosensing machinery in osteoblastic cells and involved in activation of a Src–JNK–YAP/TAZ pathway in response to mechanical stimulation.

  2. Integrin αv in the mechanical response of osteoblast lineage cells

    International Nuclear Information System (INIS)

    Kaneko, Keiko; Ito, Masako; Naoe, Yoshinori; Lacy-Hulbert, Adam; Ikeda, Kyoji

    2014-01-01

    Highlights: • Deletion of integrin αv in osteoblast lineage results in an impaired SOST response to loading in vivo. • c-Src–p130Cas–JNK–YAP/TAZ is activated via integrin αv on osteoblasts in response to FSS. • Deletion of integrin αv in osteoblasts results in impaired responses to mechanical stimulation. • Integrin αv is a key component of the mechanosensing machinery in bone. - Abstract: Although osteoblast lineage cells, especially osteocytes, are thought to be a primary mechanosensory cell in bone, the identity of the mechano-receptor and downstream mechano-signaling pathways remain largely unknown. Here we show using osteoblastic cell model of mechanical stimulation with fluid shear stress that in the absence of integrin αv, phosphorylation of the Src substrate p130Cas and JNK was impaired, culminating in an inhibition of nuclear translocation of YAP/TAZ and subsequent transcriptional activation of target genes. Targeted deletion of the integrin αv in osteoblast lineage cells results in an attenuated response to mechanical loading in terms of Sost gene expression, indicative of a role for integrin αv in mechanoreception in vivo. Thus, integrin αv may be integral to a mechanosensing machinery in osteoblastic cells and involved in activation of a Src–JNK–YAP/TAZ pathway in response to mechanical stimulation

  3. Sex, college major, and attribution of responsibility in empathic responding to persons with HIV infection.

    Science.gov (United States)

    Bécares, Laia; Turner, Castellano

    2004-10-01

    This investigation studied the influence of sex, college major, and attributed responsibility on college students' empathic responding towards persons infected with HIV. We hypothesized that (1) women would score higher on empathy than men; (2) nursing and psychology majors would score higher on empathy than business and computer science majors; and (3) participants would score higher on empathy towards a target who contracted HIV through blood transfusion (presented as a Nonresponsible target) rather than through unprotected sex (presented as a Responsible target). Two hundred and fifty-eight undergraduate students (110 male, 148 female) attending a large urban university in the northeast filled out an anonymous demographic questionnaire, the Interpersonal Reactivity Index of Davis (1983), and an Empathy Reaction Scale that was developed by the authors. Results indicated a higher mean Empathy Reaction score from nursing and psychology students as compared to business and computer science students. There was no difference in Empathy Reaction scores between men and women. A higher Empathy Reaction score was found among participants who had read a diary from the target portrayed as Nonresponsible, as opposed to those who read a diary from the target portrayed as Responsible.

  4. Calmodulin Gene Expression in Response to Mechanical Wounding and Botrytis cinerea Infection in Tomato Fruit

    Directory of Open Access Journals (Sweden)

    Hui Peng

    2014-08-01

    Full Text Available Calmodulin, a ubiquitous calcium sensor, plays an important role in decoding stress-triggered intracellular calcium changes and regulates the functions of numerous target proteins involved in various plant physiological responses. To determine the functions of calmodulin in fleshy fruit, expression studies were performed on a family of six calmodulin genes (SlCaMs in mature-green stage tomato fruit in response to mechanical injury and Botrytis cinerea infection. Both wounding and pathogen inoculation triggered expression of all those genes, with SlCaM2 being the most responsive one to both treatments. Furthermore, all calmodulin genes were upregulated by salicylic acid and methyl jasmonate, two signaling molecules involved in plant immunity. In addition to SlCaM2, SlCaM1 was highly responsive to salicylic acid and methyl jasmonate. However, SlCaM2 exhibited a more rapid and stronger response than SlCaM1. Overexpression of SlCaM2 in tomato fruit enhanced resistance to Botrytis-induced decay, whereas reducing its expression resulted in increased lesion development. These results indicate that calmodulin is a positive regulator of plant defense in fruit by activating defense pathways including salicylate- and jasmonate-signaling pathways, and SlCaM2 is the major calmodulin gene responsible for this event.

  5. Mechanisms of the placebo response in pain in osteoarthritis.

    Science.gov (United States)

    Abhishek, A; Doherty, M

    2013-09-01

    Administration of a placebo associates with symptomatic improvement in many conditions--the so-called placebo response. In this review we explain the concept of placebo response, examine the data that supports existence in osteoarthritis (OA), and discuss its possible mechanisms and determinants. A Pubmed literature search was carried out. Key articles were identified, and their findings discussed in a narrative review. Pain, stiffness, self-reported function and physician-global assessment in OA clearly improve in response to placebo. However, more objective measures such as quadriceps strength and radiographic progression appear less responsive. Although not directly studied in OA, contextual effects, patient expectation and conditioning are believed to be the main mechanisms. Neurotransmitter changes that mediate placebo-induced analgesia include increased endogenous opioid levels, increased dopamine levels, and reduced levels of cholecystokinin. Almost all parts of the brain involved in pain processing are influenced during placebo-induced analgesia. Determinants of the magnitude of placebo response include the patient-practitioner interaction, treatment response expectancy, knowledge of being treated, patient personality traits and placebo specific factors such as the route and frequency of administration, branding, and treatment costs. Clearer understanding of the neurobiology of placebo response validates its existence as a real phenomenon. Although routine administration of placebo for symptomatic improvement is difficult to justify, contextual factors that enhance treatment response should be employed in the management of chronic painful conditions such as OA where available treatments have only modest efficacy. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  6. No effect of melatonin to modify surgical-stress response after major vascular surgery

    DEFF Research Database (Denmark)

    Kücükakin, B.; Wilhelmsen, M.; Lykkesfeldt, Jens

    2010-01-01

    A possible mechanism underlying cardiovascular morbidity after major vascular surgery may be the perioperative ischaemia-reperfusion with excessive oxygen-derived free-radical production and increased levels of circulating inflammatory mediators. We examined the effect of melatonin infusion during...... surgery and oral melatonin treatment for 3 days after surgery on biochemical markers of oxidative and inflammatory stress....

  7. Humidity Responsive Photonic Sensor based on a Carboxymethyl Cellulose Mechanical Actuator

    OpenAIRE

    Hartings, Matthew; Douglass, Kevin O.; Neice, Claire; Ahmed, Zeeshan

    2017-01-01

    We describe an intuitive and simple method for exploiting humidity-driven volume changes in carboxymethyl cellulose (CMC) to fabricate a humidity responsive actuator on a glass fiber substrate. We optimize this platform to generate a photonic-based humidity sensor where CMC coated on a fiber optic containing a fiber Bragg grating (FBG) actuates a mechanical strain in response to humidity changes. The humidity-driven mechanical deformation of the FBG results in a large lin...

  8. Student Response to Tuition Increase by Academic Majors: Empirical Grounds for a Cost-Related Tuition Policy

    Science.gov (United States)

    Shin, Jung Cheol; Milton, Sande

    2008-01-01

    This study explored the responses of students in different academic majors to tuition increase, with a particular focus on the relationship between tuition increase, and future earnings and college expenditures. We analyzed effects of tuition increase on enrollment in six academic majors--Engineering, Physics, Biology, Mathematics, Business, and…

  9. Blocking junctional adhesion molecule C enhances dendritic cell migration and boosts the immune responses against Leishmania major.

    Directory of Open Access Journals (Sweden)

    Romain Ballet

    2014-12-01

    Full Text Available The recruitment of dendritic cells to sites of infections and their migration to lymph nodes is fundamental for antigen processing and presentation to T cells. In the present study, we showed that antibody blockade of junctional adhesion molecule C (JAM-C on endothelial cells removed JAM-C away from junctions and increased vascular permeability after L. major infection. This has multiple consequences on the output of the immune response. In resistant C57BL/6 and susceptible BALB/c mice, we found higher numbers of innate immune cells migrating from blood to the site of infection. The subsequent migration of dendritic cells (DCs from the skin to the draining lymph node was also improved, thereby boosting the induction of the adaptive immune response. In C57BL/6 mice, JAM-C blockade after L. major injection led to an enhanced IFN-γ dominated T helper 1 (Th1 response with reduced skin lesions and parasite burden. Conversely, anti JAM-C treatment increased the IL-4-driven T helper 2 (Th2 response in BALB/c mice with disease exacerbation. Overall, our results show that JAM-C blockade can finely-tune the innate cell migration and accelerate the consequent immune response to L. major without changing the type of the T helper cell response.

  10. Experimental studies of the dynamic mechanical response of a single polymer chain

    DEFF Research Database (Denmark)

    Thormann, Esben; Evans, Drew R.; Craig, Vincent S. J.

    2006-01-01

    The high-frequency and low-amplitude dynamic mechanical response from a single poly(vinyl alcohol) chain was investigated. Modification of a commercial atomic force microscope enabled high-frequency and low-amplitude periodic deformations of polymer chains during extension to be performed...... mechanical response from poly(vinyl alcohol) does not differ from its static response. This result is not unexpected as poly(vinyl alcohol) is a highly flexible polymer with intramolecular relaxation processes taking place on a short time scale. The choice of a polymer with a fast relaxation allows its...... static properties to be recovered from the dynamic measurements and enables the method suggested in this paper for decoupling the polymer response from the hydrodynamic response to be validated....

  11. Proteomic Characterization of Armillaria mellea Reveals Oxidative Stress Response Mechanisms and Altered Secondary Metabolism Profiles

    Directory of Open Access Journals (Sweden)

    Cassandra Collins

    2017-09-01

    Full Text Available Armillaria mellea is a major plant pathogen. Yet, the strategies the organism uses to infect susceptible species, degrade lignocellulose and other plant material and protect itself against plant defences and its own glycodegradative arsenal are largely unknown. Here, we use a combination of gel and MS-based proteomics to profile A. mellea under conditions of oxidative stress and changes in growth matrix. 2-DE and LC-MS/MS were used to investigate the response of A. mellea to H2O2 and menadione/FeCl3 exposure, respectively. Several proteins were detected with altered abundance in response to H2O2, but not menadione/FeCl3 (i.e., valosin-containing protein, indicating distinct responses to these different forms of oxidative stress. One protein, cobalamin-independent methionine synthase, demonstrated a common response in both conditions, which may be a marker for a more general stress response mechanism. Further changes to the A. mellea proteome were investigated using MS-based proteomics, which identified changes to putative secondary metabolism (SM enzymes upon growth in agar compared to liquid cultures. Metabolomic analyses revealed distinct profiles, highlighting the effect of growth matrix on SM production. This establishes robust methods by which to utilize comparative proteomics to characterize this important phytopathogen.

  12. Understanding abiotic stress tolerance mechanisms in soybean: a comparative evaluation of soybean response to drought and flooding stress.

    Science.gov (United States)

    Mutava, Raymond N; Prince, Silvas Jebakumar K; Syed, Naeem Hasan; Song, Li; Valliyodan, Babu; Chen, Wei; Nguyen, Henry T

    2015-01-01

    Many sources of drought and flooding tolerance have been identified in soybean, however underlying molecular and physiological mechanisms are poorly understood. Therefore, it is important to illuminate different plant responses to these abiotic stresses and understand the mechanisms that confer tolerance. Towards this goal we used four contrasting soybean (Glycine max) genotypes (PI 567690--drought tolerant, Pana--drought susceptible, PI 408105A--flooding tolerant, S99-2281--flooding susceptible) grown under greenhouse conditions and compared genotypic responses to drought and flooding at the physiological, biochemical, and cellular level. We also quantified these variations and tried to infer their role in drought and flooding tolerance in soybean. Our results revealed that different mechanisms contribute to reduction in net photosynthesis under drought and flooding stress. Under drought stress, ABA and stomatal conductance are responsible for reduced photosynthetic rate; while under flooding stress, accumulation of starch granules played a major role. Drought tolerant genotypes PI 567690 and PI 408105A had higher plastoglobule numbers than the susceptible Pana and S99-2281. Drought stress increased the number and size of plastoglobules in most of the genotypes pointing to a possible role in stress tolerance. Interestingly, there were seven fibrillin proteins localized within the plastoglobules that were up-regulated in the drought and flooding tolerant genotypes PI 567690 and PI 408105A, respectively, but down-regulated in the drought susceptible genotype Pana. These results suggest a potential role of Fibrillin proteins, FBN1a, 1b and 7a in soybean response to drought and flooding stress. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. The microtubule associated protein END BINDING 1 represses root responses to mechanical cues.

    Science.gov (United States)

    Gleeson, Laura; Squires, Shannon; Bisgrove, Sherryl R

    2012-05-01

    The ability of roots to navigate around rocks and other debris as they grow through the soil requires a mechanism for detecting and responding to input from both touch and gravity sensing systems. The microtubule associated protein END BINDING 1b (EB1b) is involved in this process as mutants have defects responding to combinations of touch and gravity cues. This study investigates the role of EB1b in root responses to mechanical cues. We find that eb1b-1 mutant roots exhibit an increase over wild type in their response to touch and that the expression of EB1b genes in transgenic mutants restores the response to wild type levels, indicating that EB1b is an inhibitor of the response. Mutant roots are also hypersensitive to increased levels of mechanical stimulation, revealing the presence of another process that activates the response. These findings are supported by analyses of double mutants between eb1b-1 and seedlings carrying mutations in PHOSPHOGLUCOMUTASE (PGM), ALTERED RESPONSE TO GRAVITY1 (ARG1), or TOUCH3 (TCH3), genes that encode proteins involved in gravity sensing, signaling, or touch responses, respectively. A model is proposed in which root responses to mechanical cues are modulated by at least two competing regulatory processes, one that promotes touch-mediated growth and another, regulated by EB1b, which dampens root responses to touch and enhances gravitropism. © 2012. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Mechanisms Underlying the Antidepressant Response and Treatment Resistance

    Directory of Open Access Journals (Sweden)

    Marjorie Rose Levinstein

    2014-06-01

    Full Text Available Depression is a complex and heterogeneous disorder affecting millions of Americans. There are several different medications and other treatments that are available and effective for many patients with depression. However, a substantial percentage of patients fail to achieve remission with these currently available interventions, and relapse rates are high. Therefore, it is necessary to determine both the mechanisms underlying the antidepressant response and the differences between responders and non-responders to treatment. Delineation of these mechanisms largely relies on experiments that utilize animal models. Therefore, this review provides an overview of the various mouse models that are currently used to assess the antidepressant response, such as chronic mild stress, social defeat, and chronic corticosterone. We discuss how these mouse models can be used to advance our understanding of the differences between responders and non-responders to antidepressant treatment. We also provide an overview of experimental treatment modalities that are used for treatment-resistant depression, such as deep brain stimulation and ketamine administration. We will then review the various genetic polymorphisms and transgenic mice that display resistance to antidepressant treatment. Finally, we synthesize the published data to describe a potential neural circuit underlying the antidepressant response and treatment resistance.

  15. Mechanics of responsive polymers via conformationally switchable molecules

    Science.gov (United States)

    Brighenti, Roberto; Artoni, Federico; Vernerey, Franck; Torelli, Martina; Pedrini, Alessandro; Domenichelli, Ilaria; Dalcanale, Enrico

    2018-04-01

    Active materials are those capable of giving some physical reaction under external stimuli coming from the environment such as temperature, pH, light, mechanical stress, etc. Reactive polymeric materials can be obtained through the introduction of switchable molecules in their network, i.e. molecules having two distinct stable conformations: if properly linked to the hosting polymer chains, the switching from one state to the other can promote a mechanical reaction of the material, detectable at the macroscale, and thus enables us to tune the response according to a desired functionality. In the present paper, the main aspects of the mechanical behavior of polymeric materials with embedded switchable molecules-properly linked to the polymer's chains-are presented and discussed. Starting from the micro mechanisms occurring in such active material, a continuum model is developed, providing a straightforward implementation in computational approaches. Finally, some experimental outcomes related to a switchable molecules (known as quinoxaline cavitands) added to an elastomeric PDMS under chemical stimuli, are presented and quantitatively discussed through the use of the developed mechanical framework.

  16. Development of visible-light responsive and mechanically enhanced "smart" UCST interpenetrating network hydrogels.

    Science.gov (United States)

    Xu, Yifei; Ghag, Onkar; Reimann, Morgan; Sitterle, Philip; Chatterjee, Prithwish; Nofen, Elizabeth; Yu, Hongyu; Jiang, Hanqing; Dai, Lenore L

    2017-12-20

    An interpenetrating polymer network (IPN), chlorophyllin-incorporated environmentally responsive hydrogel was synthesized and exhibited the following features: enhanced mechanical properties, upper critical solution temperature (UCST) swelling behavior, and promising visible-light responsiveness. Poor mechanical properties are known challenges for hydrogel-based materials. By forming an interpenetrating network between polyacrylamide (PAAm) and poly(acrylic acid) (PAAc) polymer networks, the mechanical properties of the synthesized IPN hydrogels were significantly improved compared to hydrogels made of a single network of each polymer. The formation of the interpenetrating network was confirmed by Fourier Transform Infrared Spectroscopy (FTIR), the analysis of glass transition temperature, and a unique UCST responsive swelling behavior, which is in contrast to the more prevalent lower critical solution temperature (LCST) behaviour of environmentally responsive hydrogels. The visible-light responsiveness of the synthesized hydrogel also demonstrated a positive swelling behavior, and the effect of incorporating chlorophyllin as the chromophore unit was observed to reduce the average pore size and further enhance the mechanical properties of the hydrogel. This interpenetrating network system shows potential to serve as a new route in developing "smart" hydrogels using visible-light as a simple, inexpensive, and remotely controllable stimulus.

  17. Mechanical and thermo-mechanical response of a lead-core bearing device subjected to different loading conditions

    Directory of Open Access Journals (Sweden)

    Zhelyazov Todor

    2018-01-01

    Full Text Available The contribution is focused on the numerical modelling, simulation and analysis of a lead-core bearing device for passive seismic isolation. An accurate finite element model of a lead-core bearing device is presented. The model is designed to analyse both mechanical and thermo-mechanical responses of the seismic isolator to different loading conditions. Specifically, the mechanical behaviour in a typical identification test is simulated. The response of the lead-core bearing device to circular sinusoidal paths is analysed. The obtained shear displacement – shear force relationship is compared to experimental data found in literature sources. The hypothesis that heating of the lead-core during cyclic loading affects the degrading phenomena in the bearing device is taken into account. Constitutive laws are defined for each material: lead, rubber and steel. Both predefined constitutive laws (in the used general–purpose finite element code and semi-analytical procedures aimed at a more accurate modelling of the constitutive relations are tested. The results obtained by finite element analysis are to be further used to calibrate a macroscopic model of the lead-core bearing device seen as a single-degree-of-freedom mechanical system.

  18. Pharmacometabolomics of response to sertraline and to placebo in major depressive disorder - possible role for methoxyindole pathway.

    Directory of Open Access Journals (Sweden)

    Hongjie Zhu

    Full Text Available Therapeutic response to selective serotonin (5-HT reuptake inhibitors in Major Depressive Disorder (MDD varies considerably among patients, and the onset of antidepressant therapeutic action is delayed until after 2 to 4 weeks of treatment. The objective of this study was to analyze changes within methoxyindole and kynurenine (KYN branches of tryptophan pathway to determine whether differential regulation within these branches may contribute to mechanism of variation in response to treatment. Metabolomics approach was used to characterize early biochemical changes in tryptophan pathway and correlated biochemical changes with treatment outcome. Outpatients with MDD were randomly assigned to sertraline (n = 35 or placebo (n = 40 in a double-blind 4-week trial; response to treatment was measured using the 17-item Hamilton Rating Scale for Depression (HAMD17. Targeted electrochemistry based metabolomic platform (LCECA was used to profile serum samples from MDD patients. The response rate was slightly higher for sertraline than for placebo (21/35 [60%] vs. 20/40 [50%], respectively, χ(2(1  = 0.75, p = 0.39. Patients showing a good response to sertraline had higher pretreatment levels of 5-methoxytryptamine (5-MTPM, greater reduction in 5-MTPM levels after treatment, an increase in 5-Methoxytryptophol (5-MTPOL and Melatonin (MEL levels, and decreases in the (KYN/MEL and 3-Hydroxykynurenine (3-OHKY/MEL ratios post-treatment compared to pretreatment. These changes were not seen in the patients showing poor response to sertraline. In the placebo group, more favorable treatment outcome was associated with increases in 5-MTPOL and MEL levels and significant decreases in the KYN/MEL and 3-OHKY/MEL; changes in 5-MTPM levels were not associated with the 4-week response. These results suggest that recovery from a depressed state due to treatment with drug or with placebo could be associated with preferential utilization of serotonin for

  19. Major vault protein in cardiac and smooth muscle.

    Science.gov (United States)

    Shults, Nataliia V; Das, Dividutta; Suzuki, Yuichiro J

    Major vault protein (MVP) is the major component of the vault particle whose functions are not well understood. One proposed function of the vault is to serve as a mechanism of drug transport, which confers drug resistance in cancer cells. We show that MVP can be found in cardiac and smooth muscle. In human airway smooth muscle cells, knocking down MVP was found to cause cell death, suggesting that MVP serves as a cell survival factor. Further, our laboratory found that MVP is S-glutathionylated in response to ligand/receptor-mediated cell signaling. The S-glutathionylation of MVP appears to regulate protein-protein interactions between MVP and a protein called myosin heavy chain 9 (MYH9). Through MYH9 and Vsp34, MVP may form a complex with Beclin-1 that regulates autophagic cell death. In pulmonary vascular smooth muscle, proteasome inhibition promotes the ubiquitination of MVP, which may function as a mechanism of proteasome inhibition-mediated cell death. Investigating the functions and the regulatory mechanisms of MVP and vault particles is an exciting new area of research in cardiovascular/pulmonary pathophysiology.

  20. FAMREC, PWR Lateral Mechanical Fuel Rod Assembly Response

    International Nuclear Information System (INIS)

    Guenzler, R.C.

    1995-01-01

    1 - Description of program or function: The Fuel Assembly Mechanical Response Code (FAMREC) calculates the lateral mechanical response of a row of fuel assemblies while allowing for two types of nonlinearities. The first type is a geometric nonlinearity in the form of gaps between individual assemblies and between peripheral assemblies and a boundary wall. Impacting is monitored across the gaps. The second nonlinearity is the permanent deformation of the fuel assembly spacer grid to compressive loading. 2 - Method of solution: The response is calculated in the modal plane. The coupled differential equations are solved in closed form using Laplace transformations. The discrete displacements and velocities are then calculated and the gaps in the system monitored at each axial elevation for impacting. These impact forces are then applied statistically at a given time-step, and equilibrium is found using a Gaussian elimination technique. Three impact force calculation methods are available: 1- a linear impact force and crushing load audit calculation, 2- a more detailed linear impact force and crushing load calculation, and 3- a non-linear grid calculation which allows for plastic deformation of the fuel assembly spacer grids. 3 - Restrictions on the complexity of the problem: Maxima of: 3601 time-steps and forces; 80 modes; 30 applied forces; 15 fuel assemblies; and 5 impact grids per assembly

  1. A quantum-mechanical perspective on linear response theory within polarizable embedding

    DEFF Research Database (Denmark)

    List, Nanna Holmgaard; Norman, Patrick; Kongsted, Jacob

    2017-01-01

    We present a derivation of linear response theory within polarizable embedding starting from a rigorous quantum-mechanical treatment of a composite system. To this aim, two different subsystem decompositions (symmetric and nonsymmetric) of the linear response function are introduced and the pole...

  2. Phenomena of synchronized response in biosystems and the possible mechanism.

    Science.gov (United States)

    Xu, Jingjing; Yang, Fan; Han, Danhong; Xu, Shengyong

    2018-02-05

    Phenomena of synchronized response is common among organs, tissues and cells in biosystems. We have analyzed and discussed three examples of synchronization in biosystems, including the direction-changing movement of paramecia, the prey behavior of flytraps, and the simultaneous discharge of electric eels. These phenomena and discussions support an electrical communication mechanism that in biosystems, the electrical signals are mainly soliton-like electromagnetic pulses, which are generated by the transient transmembrane ionic current through the ion channels and propagate along the dielectric membrane-based softmaterial waveguide network to complete synchronized responses. This transmission model implies that a uniform electrical communication mechanism might have been naturally developed in biosystem. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Local mechanical stimulation induces components of the pathogen defense response in parsley

    Science.gov (United States)

    Gus-Mayer, Sabine; Naton, Beatrix; Hahlbrock, Klaus; Schmelzer, Elmon

    1998-01-01

    Cell suspension cultures of parsley (Petroselinum crispum) have previously been used as a suitable system for studies of the nonhost resistance response to Phytophthora sojae. In this study, we replaced the penetrating fungus by local mechanical stimulation by using a needle of the same diameter as a fungal hypha, by local application of a structurally defined fungus-derived elicitor, or by a combination of the two stimuli. Similar to the fungal infection hypha, the local mechanical stimulus alone induced the translocation of cytoplasm and nucleus to the site of stimulation, the generation of intracellular reactive oxygen intermediates (ROI), and the expression of some, but not all, elicitor-responsive genes. When the elicitor was applied locally to the cell surface without mechanical stimulation, intracellular ROI also accumulated rapidly, but morphological changes were not detected. A combination of the mechanical stimulus with simultaneous application of low doses of elicitor closely simulated early reactions to fungal infection, including cytoplasmic aggregation, nuclear migration, and ROI accumulation. By contrast, cytoplasmic rearrangements were impaired at high elicitor concentrations. Neither papilla formation nor hypersensitive cell death occurred under the conditions tested. These results suggest that mechanical stimulation by the invading fungus is responsible for the observed intracellular rearrangements and may trigger some of the previously demonstrated changes in the activity of elicitor-responsive genes, whereas chemical stimulation is required for additional biochemical processes. As yet unidentified signals may be involved in papilla formation and hypersensitive cell death. PMID:9653198

  4. Response to various periods of mechanical stimuli in Physarum plasmodium

    International Nuclear Information System (INIS)

    Umedachi, Takuya; Ito, Kentaro; Kobayashi, Ryo; Ishiguro, Akio; Nakagaki, Toshiyuki

    2017-01-01

    Response to mechanical stimuli is a fundamental and critical ability for living cells to survive in hazardous conditions or to form adaptive and functional structures against force(s) from the environment. Although this ability has been extensively studied by molecular biology strategies, it is also important to investigate the ability from the viewpoint of biological rhythm phenomena so as to reveal the mechanisms that underlie these phenomena. Here, we use the plasmodium of the true slime mold Physarum polycephalum as the experimental system for investigating this ability. The plasmodium was repetitively stretched for various periods during which its locomotion speed was observed. Since the plasmodium has inherent oscillation cycles of protoplasmic streaming and thickness variation, how the plasmodium responds to various periods of external stretching stimuli can shed light on the other biological rhythm phenomena. The experimental results show that the plasmodium exhibits response to periodic mechanical stimulation and changes its locomotion speed depending on the period of the stretching stimuli. (paper)

  5. Transcriptomic responses to darkness stress point to common coral bleaching mechanisms

    Science.gov (United States)

    Desalvo, M. K.; Estrada, A.; Sunagawa, S.; Medina, Mónica

    2012-03-01

    Coral bleaching occurs in response to numerous abiotic stressors, the ecologically most relevant of which is hyperthermic stress due to increasing seawater temperatures. Bleaching events can span large geographic areas and are currently a salient threat to coral reefs worldwide. Much effort has been focused on understanding the molecular and cellular events underlying bleaching, and these studies have mainly utilized heat and light stress regimes. In an effort to determine whether different stressors share common bleaching mechanisms, we used complementary DNA (cDNA) microarrays for the corals Acropora palmata and Montastraea faveolata (containing >10,000 features) to measure differential gene expression during darkness stress. Our results reveal a striking transcriptomic response to darkness in A. palmata involving chaperone and antioxidant up-regulation, growth arrest, and metabolic modifications. As these responses were previously measured during thermal stress, our results suggest that different stressors may share common bleaching mechanisms. Furthermore, our results point to hypoxia and endoplasmic reticulum stress as critical cellular events involved in molecular bleaching mechanisms. On the other hand, we identified a meager transcriptomic response to darkness in M. faveolata where gene expression differences between host colonies and sampling locations were greater than differences between control and stressed fragments. This and previous coral microarray studies reveal the immense range of transcriptomic responses that are possible when studying two coral species that differ greatly in their ecophysiology, thus pointing to the importance of comparative approaches in forecasting how corals will respond to future environmental change.

  6. Electro-chemo-mechanical response of a free-standing polypyrrole strip

    International Nuclear Information System (INIS)

    Vazquez, G; Otero, T F; Cascales, J J L

    2008-01-01

    Further development of mechanical devices based on conducting polymers; require a precise understanding of their mechanical response, i.e. their control, under a controlled external current. In this work, we show some results for the relation between the electrical current consumed in the electrochemical process and the mechanical work developed by a freestanding polypyrrole strip, when it is subjected to a stretching force (stress). Under these conditions, from the results obtained in this work, we observe how it results almost impossible to predict a straight relationship between mechanical work and current consumed in the electrochemical process. In addition, we will quantify the variation of the mechanical properties of the free standing polypyrrole strip associated with the oxidation state of the polymer by measuring its Young's modulus.

  7. Thermodynamical aspects of modeling the mechanical response of granular materials

    International Nuclear Information System (INIS)

    Elata, D.

    1995-01-01

    In many applications in rock physics, the material is treated as a continuum. By supplementing the related conservation laws with constitutive equations such as stress-strain relations, a well-posed problem can be formulated and solved. The stress-strain relations may be based on a combination of experimental data and a phenomenological or micromechanical model. If the model is physically sound and its parameters have a physical meaning, it can serve to predict the stress response of the material to unmeasured deformations, predict the stress response of other materials, and perhaps predict other categories of the mechanical response such as failure, permeability, and conductivity. However, it is essential that the model be consistent with all conservation laws and consistent with the second law of thermodynamics. Specifically, some models of the mechanical response of granular materials proposed in literature, are based on intergranular contact force-displacement laws that violate the second law of thermodynamics by permitting energy generation at no cost. This diminishes the usefulness of these models as it invalidates their predictive capabilities. [This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.

  8. Race, Genetic Ancestry and Response to Antidepressant Treatment for Major Depression

    Science.gov (United States)

    Murphy, Eleanor; Hou, Liping; Maher, Brion S; Woldehawariat, Girma; Kassem, Layla; Akula, Nirmala; Laje, Gonzalo; McMahon, Francis J

    2013-01-01

    The Sequenced Treatment Alternatives to Relieve Depression (STAR*D) Study revealed poorer antidepressant treatment response among black compared with white participants. This racial disparity persisted even after socioeconomic and baseline clinical factors were taken into account. Some studies have suggested genetic contributions to this disparity, but none have attempted to disentangle race and genetic ancestry. Here we used genome-wide single-nucleotide polymorphism (SNP) data to examine independent contributions of race and genetic ancestry to citalopram response. Secondary data analyses included 1877 STAR*D participants who completed an average of 10 weeks of citalopram treatment and provided DNA samples. Participants reported their race as White (n=1464), black (n=299) or other/mixed (n=114). Genetic ancestry was estimated by multidimensional scaling (MDS) analyses of about 500 000 SNPs. Ancestry proportions were estimated by STRUCTURE. Structural equation modeling was used to examine the direct and indirect effects of observed and latent predictors of response, defined as change in the Quick Inventory of Depressive Symptomatology (QIDS) score from baseline to exit. Socioeconomic and baseline clinical factors, race, and anxiety significantly predicted response, as previously reported. However, direct effects of race disappeared in all models that included genetic ancestry. Genetic African ancestry predicted lower treatment response in all models. Although socioeconomic and baseline clinical factors drive racial differences in antidepressant response, genetic ancestry, rather than self-reported race, explains a significant fraction of the residual differences. Larger samples would be needed to identify the specific genetic mechanisms that may be involved, but these findings underscore the importance of including more African-American patients in drug trials. PMID:23827886

  9. National plan of response to a major nuclear or radiological accident

    International Nuclear Information System (INIS)

    2014-02-01

    The first part of this document presents the response strategies and principles to be applied in the case of a major nuclear or radiological accident. It presents the general framework and the 8 reference situations which are used as references for the plan. It presents the general organisation of crisis management by the State (initial organisation, organisation at the national level, communication channel, international channels, case of transport of radioactive materials, responsibility of the various actors). Then, it presents the strategies of response, i.e., a global strategy and more specific strategies applicable in different sectors or fields: for the control of the concerned installation or transport, in the case of transport of radioactive materials, for the protection of the population, for the taking into care, for communication, for the continuity of social and economic life, at the European level, for the post-accidental management. The second part is a guide which contains sheets describing reactions in different situations: uncertainty, accident in an installation resulting in an either immediate and short, or immediate and long, or delayed and long release, accident in a transport of radioactive materials with potential release, accident occurring abroad which may have a more or less significant impact in France, and accident at sea

  10. Shy and bold great tits (Parus major): body temperature and breath rate in response to handling stress

    NARCIS (Netherlands)

    Carere, C.; Van Oers, K.

    2004-01-01

    A standard handling protocol was used to test the hypothesis that boldness predicts stress responsiveness in body temperature and breath rate. Great tit (Parus major) nestlings were taken from the field, hand reared until independence, and their response to a novel object was assessed. At the age of

  11. Shy and bold great tits (Parus major) : body temperature and breath rate in response to handling stress

    NARCIS (Netherlands)

    Carere, C; van Oers, K

    2004-01-01

    A standard handling protocol was used to test the hypothesis that boldness predicts stress responsiveness in body temperature and breath rate. Great tit (Parus major) nestlings were taken from the field, hand reared until independence, and their response to a novel object was assessed. At the age of

  12. Mechanical response and buckling of a polymer simulation model of the cell nucleus

    Science.gov (United States)

    Banigan, Edward; Stephens, Andrew; Marko, John

    The cell nucleus must robustly resist extra- and intracellular forces to maintain genome architecture. Micromanipulation experiments measuring nuclear mechanical response reveal that the nucleus has two force response regimes: a linear short-extension response due to the chromatin interior and a stiffer long-extension response from lamin A, comprising the intermediate filament protein shell. To explain these results, we developed a quantitative simulation model with realistic parameters for chromatin and the lamina. Our model predicts that crosslinking between chromatin and the lamina is essential for responding to small strains and that changes to the interior topological organization can alter the mechanical response of the whole nucleus. Thus, chromatin polymer elasticity, not osmotic pressure, is the dominant regulator of this force response. Our model reveals a novel buckling transition for polymer shells: as force increases, the shell buckles transverse to the applied force. This transition, which arises from topological constrains in the lamina, can be mitigated by tuning the properties of the chromatin interior. Thus, we find that the genome is a resistive mechanical element that can be tuned by its organization and connectivity to the lamina.

  13. Immunization Strategies Producing a Humoral IgG Immune Response against Devil Facial Tumor Disease in the Majority of Tasmanian Devils Destined for Wild Release

    Directory of Open Access Journals (Sweden)

    Ruth Pye

    2018-02-01

    Full Text Available Devil facial tumor disease (DFTD is renowned for its successful evasion of the host immune system. Down regulation of the major histocompatabilty complex class I molecule (MHC-I on the DFTD cells is a primary mechanism of immune escape. Immunization trials on captive Tasmanian devils have previously demonstrated that an immune response against DFTD can be induced, and that immune-mediated tumor regression can occur. However, these trials were limited by their small sample sizes. Here, we describe the results of two DFTD immunization trials on cohorts of devils prior to their wild release as part of the Tasmanian Government’s Wild Devil Recovery project. 95% of the devils developed anti-DFTD antibody responses. Given the relatively large sample sizes of the trials (N = 19 and N = 33, these responses are likely to reflect those of the general devil population. DFTD cells manipulated to express MHC-I were used as the antigenic basis of the immunizations in both trials. Although the adjuvant composition and number of immunizations differed between trials, similar anti-DFTD antibody levels were obtained. The first trial comprised DFTD cells and the adjuvant combination of ISCOMATRIX™, polyIC, and CpG with up to four immunizations given at monthly intervals. This compared to the second trial whereby two immunizations comprising DFTD cells and the adjuvant combination ISCOMATRIX™, polyICLC (Hiltonol® and imiquimod were given a month apart, providing a shorter and, therefore, more practical protocol. Both trials incorporated a booster immunization given up to 5 months after the primary course. A key finding was that devils in the second trial responded more quickly and maintained their antibody levels for longer compared to devils in the first trial. The different adjuvant combination incorporating the RNAase resistant polyICLC and imiquimod used in the second trial is likely to be responsible. The seroconversion in the majority of

  14. Immunization Strategies Producing a Humoral IgG Immune Response against Devil Facial Tumor Disease in the Majority of Tasmanian Devils Destined for Wild Release

    Science.gov (United States)

    Pye, Ruth; Patchett, Amanda; McLennan, Elspeth; Thomson, Russell; Carver, Scott; Fox, Samantha; Pemberton, David; Kreiss, Alexandre; Baz Morelli, Adriana; Silva, Anabel; Pearse, Martin J.; Corcoran, Lynn M.; Belov, Katherine; Hogg, Carolyn J.; Woods, Gregory M; Lyons, A. Bruce

    2018-01-01

    Devil facial tumor disease (DFTD) is renowned for its successful evasion of the host immune system. Down regulation of the major histocompatabilty complex class I molecule (MHC-I) on the DFTD cells is a primary mechanism of immune escape. Immunization trials on captive Tasmanian devils have previously demonstrated that an immune response against DFTD can be induced, and that immune-mediated tumor regression can occur. However, these trials were limited by their small sample sizes. Here, we describe the results of two DFTD immunization trials on cohorts of devils prior to their wild release as part of the Tasmanian Government’s Wild Devil Recovery project. 95% of the devils developed anti-DFTD antibody responses. Given the relatively large sample sizes of the trials (N = 19 and N = 33), these responses are likely to reflect those of the general devil population. DFTD cells manipulated to express MHC-I were used as the antigenic basis of the immunizations in both trials. Although the adjuvant composition and number of immunizations differed between trials, similar anti-DFTD antibody levels were obtained. The first trial comprised DFTD cells and the adjuvant combination of ISCOMATRIX™, polyIC, and CpG with up to four immunizations given at monthly intervals. This compared to the second trial whereby two immunizations comprising DFTD cells and the adjuvant combination ISCOMATRIX™, polyICLC (Hiltonol®) and imiquimod were given a month apart, providing a shorter and, therefore, more practical protocol. Both trials incorporated a booster immunization given up to 5 months after the primary course. A key finding was that devils in the second trial responded more quickly and maintained their antibody levels for longer compared to devils in the first trial. The different adjuvant combination incorporating the RNAase resistant polyICLC and imiquimod used in the second trial is likely to be responsible. The seroconversion in the majority of devils in these anti

  15. Radiation-Induced Bystander Response: Mechanism and Clinical Implications

    Science.gov (United States)

    Suzuki, Keiji; Yamashita, Shunichi

    2014-01-01

    Significance: Absorption of energy from ionizing radiation (IR) to the genetic material in the cell gives rise to damage to DNA in a dose-dependent manner. There are two types of DNA damage; by a high dose (causing acute or deterministic effects) and by a low dose (related to chronic or stochastic effects), both of which induce different health effects. Among radiation effects, acute cutaneous radiation syndrome results from cell killing as a consequence of high-dose exposure. Recent advances: Recent advances in radiation biology and oncology have demonstrated that bystander effects, which are emerged in cells that have never been exposed, but neighboring irradiated cells, are also involved in radiation effects. Bystander effects are now recognized as an indispensable component of tissue response related to deleterious effects of IR. Critical issues: Evidence has indicated that nonapoptotic premature senescence is commonly observed in various tissues and organs. Senesced cells were found to secrete various proteins, including cytokines, chemokines, and growth factors, most of which are equivalent to those identified as bystander factors. Secreted factors could trigger cell proliferation, angiogenesis, cell migration, inflammatory response, etc., which provide a tissue microenvironment assisting tissue repair and remodeling. Future directions: Understandings of the mechanisms and physiological relevance of radiation-induced bystander effects are quite essential for the beneficial control of wound healing and care. Further studies should extend our knowledge of the mechanisms of bystander effects and mode of cell death in response to IR. PMID:24761341

  16. Seismic safety margins research program. Phase I final report - Major structure response (Project IV)

    International Nuclear Information System (INIS)

    Benda, B.J.; Johnson, J.J.; Lo, T.Y.

    1981-08-01

    The primary task of the Major Structure Response Project within the Seismic Safety Margins Research Program (SSMRP) was to develop detailed finite element models of the Zion Nuclear Power Plant's containment building and auxiliary-fuel-turbine (AFT) complex. The resulting models served as input to the seismic methodology analysis chain. The containment shell was modeled as a series of beam elements with the shear and bending characteristics of a circular cylindrical shell. Masses and rotary inertias were lumped at nodal points; thirteen modes were included in the analysis. The internal structure was modeled with three-dimensional finite elements, with masses again lumped at selected nodes; sixty modes were included in the analysis. The model of the AFT complex employed thin plate and shell elements to represent the concrete shear walls and floor diaphragms, and beam and truss elements to model the braced frames. Because of the size and complexity of the model, and the potentially large number of degrees of freedom, masses were lumped at a limited number of node points. These points were selected so as to minimize the effect of the discrete mass distribution on structural response. One hundred and thirteen modes were extracted. A second objective of Project IV was to investigate the effects of uncertainty and variability on structural response. To this end, four side studies were conducted. Three of them, briefly summarized in this volume, addressed themselves respectively to an investigation of sources of random variability in the dynamic response of nuclear power plant structures; formulation of a methodology for modeling and evaluating the effects of structural uncertainty on predicted modal characteristics of major nuclear power plant structures and substructures; and a preliminary evaluation of nonlinear responses in shear-wall structures. A fourth side study, reported in detail in this volume, quantified variations in dynamic characteristics and seismic

  17. Electro-chemo-mechanical response of a free-standing polypyrrole strip

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, G; Otero, T F; Cascales, J J L [Centra de ElectroquImica y Materiales Inteligentes (CEMI), Universidad Politecnica de Cartagena, Cartagena 30203, Murcia (Spain)], E-mail: javier.lopez@upct.es

    2008-08-15

    Further development of mechanical devices based on conducting polymers; require a precise understanding of their mechanical response, i.e. their control, under a controlled external current. In this work, we show some results for the relation between the electrical current consumed in the electrochemical process and the mechanical work developed by a freestanding polypyrrole strip, when it is subjected to a stretching force (stress). Under these conditions, from the results obtained in this work, we observe how it results almost impossible to predict a straight relationship between mechanical work and current consumed in the electrochemical process. In addition, we will quantify the variation of the mechanical properties of the free standing polypyrrole strip associated with the oxidation state of the polymer by measuring its Young's modulus.

  18. Characterization of mechanical behavior of an epithelial monolayer in response to epidermal growth factor stimulation

    International Nuclear Information System (INIS)

    Yang, Ruiguo; Chen, Jennifer Y.; Xi, Ning; Lai, King Wai Chiu; Qu, Chengeng; Fung, Carmen Kar Man; Penn, Lynn S.; Xi, Jun

    2012-01-01

    Cell signaling often causes changes in cellular mechanical properties. Knowledge of such changes can ultimately lead to insight into the complex network of cell signaling. In the current study, we employed a combination of atomic force microscopy (AFM) and quartz crystal microbalance with dissipation monitoring (QCM-D) to characterize the mechanical behavior of A431 cells in response to epidermal growth factor receptor (EGFR) signaling. From AFM, which probes the upper portion of an individual cell in a monolayer of cells, we observed increases in energy dissipation, Young's modulus, and hysteresivity. Increases in hysteresivity imply a shift toward a more fluid-like mechanical ordering state in the bodies of the cells. From QCM-D, which probes the basal area of the monolayer of cells collectively, we observed decreases in energy dissipation factor. This result suggests a shift toward a more solid-like state in the basal areas of the cells. The comparative analysis of these results indicates a regionally specific mechanical behavior of the cell in response to EGFR signaling and suggests a correlation between the time-dependent mechanical responses and the dynamic process of EGFR signaling. This study also demonstrates that a combination of AFM and QCM-D is able to provide a more complete and refined mechanical profile of the cells during cell signaling. -- Highlights: ► The EGF-induced cellular mechanical response is regionally specific. ► The EGF-induced cellular mechanical response is time and dose dependent. ► A combination of AFM and QCM-D provides a more complete mechanical profile of cells.

  19. Dichotomy of the human T cell response to Leishmania antigens. I. Th1-like response to Leishmania major promastigote antigens in individuals recovered from cutaneous leishmaniasis

    DEFF Research Database (Denmark)

    Kemp, M; Hey, A S; Kurtzhals, J A

    1994-01-01

    of skin lesions, and in Danes without known exposure to Leishmania parasites. Proliferation and production of interferon-gamma (IFN-gamma) and IL-4 in antigen-stimulated cultures was measured. Lymphocytes from individuals with a history of CL proliferated vigorously and produced IFN-gamma after...... the unexposed Danes were not activated by gp63. The cells from Danish donors produced either IFN-gamma or IL-4, but not both cytokines after incubation with the crude preparation of L. major antigens. The data show that the T cell response to Leishmania antigens in humans who have had uncomplicated CL...... stimulation with either a crude preparation of L. major antigens or the major surface protease gp63. These cultures produced no or only little IL-4. Also cells from leishmanin skin test-positive donors with no history of CL produced IFN-gamma and no IL-4 in response to L. major antigens. Cells from...

  20. Increased amygdala response to shame in remitted major depressive disorder.

    Directory of Open Access Journals (Sweden)

    Erdem Pulcu

    Full Text Available Proneness to self-blaming moral emotions such as shame and guilt is increased in major depressive disorder (MDD, and may play an important role in vulnerability even after symptoms have subsided. Social psychologists have argued that shame-proneness is relevant for depression vulnerability and is distinct from guilt. Shame depends on the imagined critical perception of others, whereas guilt results from one's own judgement. The neuroanatomy of shame in MDD is unknown. Using fMRI, we compared 21 participants with MDD remitted from symptoms with no current co-morbid axis-I disorders, and 18 control participants with no personal or family history of MDD. The MDD group exhibited higher activation of the right amygdala and posterior insula for shame relative to guilt (SPM8. This neural difference was observed despite equal levels of rated negative emotional valence and frequencies of induced shame and guilt experience across groups. These same results were found in the medication-free MDD subgroup (N = 15. Increased amygdala and posterior insula activations, known to be related to sensory perception of emotional stimuli, distinguish shame from guilt responses in remitted MDD. People with MDD thus exhibit changes in the neural response to shame after symptoms have subsided. This supports the hypothesis that shame and guilt play at least partly distinct roles in vulnerability to MDD. Shame-induction may be a more sensitive probe of residual amygdala hypersensitivity in MDD compared with facial emotion-evoked responses previously found to normalize on remission.

  1. High fidelity computational characterization of the mechanical response of thermally aged polycarbonate

    Science.gov (United States)

    Zhang, Zesheng; Zhang, Lili; Jasa, John; Li, Wenlong; Gazonas, George; Negahban, Mehrdad

    2017-07-01

    A representative all-atom molecular dynamics (MD) system of polycarbonate (PC) is built and conditioned to capture and predict the behaviours of PC in response to a broad range of thermo-mechanical loadings for various thermal aging. The PC system is constructed to have a distribution of molecular weights comparable to a widely used commercial PC (LEXAN 9034), and thermally conditioned to produce models for aged and unaged PC. The MD responses of these models are evaluated through comparisons to existing experimental results carried out at much lower loading rates, but done over a broad range of temperatures and loading modes. These experiments include monotonic extension/compression/shear, unilaterally and bilaterally confined compression, and load-reversal during shear. It is shown that the MD simulations show both qualitative and quantitative similarity with the experimental response. The quantitative similarity is evaluated by comparing the dilatational response under bilaterally confined compression, the shear flow viscosity and the equivalent yield stress. The consistency of the in silico response to real laboratory experiments strongly suggests that the current PC models are physically and mechanically relevant and potentially can be used to investigate thermo-mechanical response to loading conditions that would not easily be possible. These MD models may provide valuable insight into the molecular sources of certain observations, and could possibly offer new perspectives on how to develop constitutive models that are based on better understanding the response of PC under complex loadings. To this latter end, the models are used to predict the response of PC to complex loading modes that would normally be difficult to do or that include characteristics that would be difficult to measure. These include the responses of unaged and aged PC to unilaterally confined extension/compression, cyclic uniaxial/shear loadings, and saw-tooth extension/compression/shear.

  2. Contraction of online response to major events.

    Science.gov (United States)

    Szell, Michael; Grauwin, Sébastian; Ratti, Carlo

    2014-01-01

    Quantifying regularities in behavioral dynamics is of crucial interest for understanding collective social events such as panics or political revolutions. With the widespread use of digital communication media it has become possible to study massive data streams of user-created content in which individuals express their sentiments, often towards a specific topic. Here we investigate messages from various online media created in response to major, collectively followed events such as sport tournaments, presidential elections, or a large snow storm. We relate content length and message rate, and find a systematic correlation during events which can be described by a power law relation--the higher the excitation, the shorter the messages. We show that on the one hand this effect can be observed in the behavior of most regular users, and on the other hand is accentuated by the engagement of additional user demographics who only post during phases of high collective activity. Further, we identify the distributions of content lengths as lognormals in line with statistical linguistics, and suggest a phenomenological law for the systematic dependence of the message rate to the lognormal mean parameter. Our measurements have practical implications for the design of micro-blogging and messaging services. In the case of the existing service Twitter, we show that the imposed limit of 140 characters per message currently leads to a substantial fraction of possibly dissatisfying to compose tweets that need to be truncated by their users.

  3. Contraction of online response to major events.

    Directory of Open Access Journals (Sweden)

    Michael Szell

    Full Text Available Quantifying regularities in behavioral dynamics is of crucial interest for understanding collective social events such as panics or political revolutions. With the widespread use of digital communication media it has become possible to study massive data streams of user-created content in which individuals express their sentiments, often towards a specific topic. Here we investigate messages from various online media created in response to major, collectively followed events such as sport tournaments, presidential elections, or a large snow storm. We relate content length and message rate, and find a systematic correlation during events which can be described by a power law relation--the higher the excitation, the shorter the messages. We show that on the one hand this effect can be observed in the behavior of most regular users, and on the other hand is accentuated by the engagement of additional user demographics who only post during phases of high collective activity. Further, we identify the distributions of content lengths as lognormals in line with statistical linguistics, and suggest a phenomenological law for the systematic dependence of the message rate to the lognormal mean parameter. Our measurements have practical implications for the design of micro-blogging and messaging services. In the case of the existing service Twitter, we show that the imposed limit of 140 characters per message currently leads to a substantial fraction of possibly dissatisfying to compose tweets that need to be truncated by their users.

  4. The stress response to surgery: release mechanisms and the modifying effect of pain relief

    DEFF Research Database (Denmark)

    Kehlet, H

    1989-01-01

    This short review updates information on the release mechanisms of the systemic response to surgical injury and the modifying effect of pain relief. Initiation of the response is primarily due to afferent nerve impulses combined with release of humoral substances (such as prostaglandins, kinins...... in releasing the classical endocrine catabolic response, while humoral factors are important for the hyperthermic response, changes in coagulation and fibrinolysis immunofunction, and capillary permeability. The modifying effect of pain relief on the surgical stress response is dependent upon the technique...... on the stress response. In summary, pain alleviation itself may not necessarily lead to an important modification of the stress response, and a combined approach with inhibition of the neural and humoral release mechanisms is necessary for a pronounced inhibition or prevention of the response to surgical injury....

  5. Leaf Proteome Analysis Reveals Prospective Drought and Heat Stress Response Mechanisms in Soybean

    Directory of Open Access Journals (Sweden)

    Aayudh Das

    2016-01-01

    Full Text Available Drought and heat are among the major abiotic stresses that affect soybean crops worldwide. During the current investigation, the effect of drought, heat, and drought plus heat stresses was compared in the leaves of two soybean varieties, Surge and Davison, combining 2D-DIGE proteomic data with physiology and biochemical analyses. We demonstrated how 25 differentially expressed photosynthesis-related proteins affect RuBisCO regulation, electron transport, Calvin cycle, and carbon fixation during drought and heat stress. We also observed higher abundance of heat stress-induced EF-Tu protein in Surge. It is possible that EF-Tu might have activated heat tolerance mechanisms in the soybean. Higher level expressions of heat shock-related protein seem to be regulating the heat tolerance mechanisms. This study identifies the differential expression of various abiotic stress-responsive proteins that regulate various molecular processes and signaling cascades. One inevitable outcome from the biochemical and proteomics assays of this study is that increase of ROS levels during drought stress does not show significant changes at the phenotypic level in Davison and this seems to be due to a higher amount of carbonic anhydrase accumulation in the cell which aids the cell to become more resistant to cytotoxic concentrations of H2O2.

  6. Experimental investigation on local mechanical response of superelastic NiTi shape memory alloy

    International Nuclear Information System (INIS)

    Xiao, Yao; Zeng, Pan; Lei, Liping

    2016-01-01

    In this paper, primary attention is paid to the local mechanical response of NiTi shape memory alloy (SMA) under uniaxial tension. With the help of in situ digital image correlation, sets of experiments are conducted to measure the local strain field at various thermomechanical conditions. Two types of mechanical responses of NiTi SMA are identified. The residual strain localization phenomena are observed, which can be attributed to the localized phase transformation (PT) and we affirm that most of the irreversibility is accumulated simultaneously during PT. It is found that temperature and PT play important roles in inducing delocalization of the reverse transformation. We conclude that forward transformation has more influence on the transition of mechanical response in NiTi SMA than reverse transformation in terms of the critical transition temperature for inducing delocalized reverse transformation. (technical note)

  7. Predictors of Response to Ketamine in Treatment Resistant Major Depressive Disorder and Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Carola Rong

    2018-04-01

    Full Text Available Objectives: Extant evidence indicates that ketamine exerts rapid antidepressant effects in treatment-resistant depressive (TRD symptoms as a part of major depressive disorder (MDD and bipolar disorder (BD. The identification of depressed sub-populations that are more likely to benefit from ketamine treatment remains a priority. In keeping with this view, the present narrative review aims to identify the pretreatment predictors of response to ketamine in TRD as part of MDD and BD. Method: Electronic search engines PubMed/MEDLINE, ClinicalTrials.gov, and Scopus were searched for relevant articles from inception to January 2018. The search term ketamine was cross-referenced with the terms depression, major depressive disorder, bipolar disorder, predictors, and response and/or remission. Results: Multiple baseline pretreatment predictors of response were identified, including clinical (i.e., Body Mass Index (BMI, history of suicide, family history of alcohol use disorder, peripheral biochemistry (i.e., adiponectin levels, vitamin B12 levels, polysomnography (abnormalities in delta sleep ratio, neurochemistry (i.e., glutamine/glutamate ratio, neuroimaging (i.e., anterior cingulate cortex activity, genetic variation (i.e., Val66Met BDNF allele, and cognitive functioning (i.e., processing speed. High BMI and a positive family history of alcohol use disorder were the most replicated predictors. Conclusions: A pheno-biotype of depression more, or less likely, to benefit with ketamine treatment is far from complete. Notwithstanding, metabolic-inflammatory alterations are emerging as possible pretreatment response predictors of depressive symptom improvement, most notably being cognitive impairment. Sophisticated data-driven computational methods that are iterative and agnostic are more likely to provide actionable baseline pretreatment predictive information.

  8. The effect of distribution of monomer moiety on the pH response and mechanical properties of poly(acrylonitrile-co-acrylic acid) copolymers

    International Nuclear Information System (INIS)

    Sahoo, Anasuya; Jassal, Manjeet; Agrawal, Ashwini K

    2010-01-01

    The pH response and mechanical properties of copolymer-based hydrogels such as poly(acrylonitrile-co-acrylic acid) are usually attributed to their chemical composition. In this study, it has been shown that the architecture of the polymer chains, i.e. the distribution of comonomers in the macromolecules, also plays a major role in controlling these properties. A series of four poly(acrylonitrile-co-acrylic acids) with fixed composition (i.e. ∼30 mol% acrylic acid moieties) were synthesized, where the block lengths of both AN (acrylonitrile) and AAc (acrylic acid) moieties in the copolymers were varied by controlling the feeding pattern of the monomers during free radical copolymerization. These copolymers were then converted into fine fibers of the same dimensions. The monomer distribution in the four copolymers was estimated using quantitative carbon 13 C nuclear magnetic resonance (NMR) and related to the mechanical and pH response properties of the resultant fibers. The pH response of the fibers with similar composition increased dramatically as the block length of the AAc moiety was increased, while the mechanical properties increased as a direct function of the block length of the AN moieties. The fiber's response at pH 10 in terms of the change in length increased by ∼four times while its response rate increased by ∼50 times with the increase in block length of the AAc moiety. On the other hand, the tensile properties and retractive stress increased by ∼four times with the increase in the block length of the AN moiety

  9. The effect of distribution of monomer moiety on the pH response and mechanical properties of poly(acrylonitrile-co-acrylic acid) copolymers

    Science.gov (United States)

    Sahoo, Anasuya; Jassal, Manjeet; Agrawal, Ashwini K.

    2010-02-01

    The pH response and mechanical properties of copolymer-based hydrogels such as poly(acrylonitrile-co-acrylic acid) are usually attributed to their chemical composition. In this study, it has been shown that the architecture of the polymer chains, i.e. the distribution of comonomers in the macromolecules, also plays a major role in controlling these properties. A series of four poly(acrylonitrile-co-acrylic acids) with fixed composition (i.e. ~30 mol% acrylic acid moieties) were synthesized, where the block lengths of both AN (acrylonitrile) and AAc (acrylic acid) moieties in the copolymers were varied by controlling the feeding pattern of the monomers during free radical copolymerization. These copolymers were then converted into fine fibers of the same dimensions. The monomer distribution in the four copolymers was estimated using quantitative carbon 13C nuclear magnetic resonance (NMR) and related to the mechanical and pH response properties of the resultant fibers. The pH response of the fibers with similar composition increased dramatically as the block length of the AAc moiety was increased, while the mechanical properties increased as a direct function of the block length of the AN moieties. The fiber's response at pH 10 in terms of the change in length increased by ~four times while its response rate increased by ~50 times with the increase in block length of the AAc moiety. On the other hand, the tensile properties and retractive stress increased by ~four times with the increase in the block length of the AN moiety.

  10. Neuroimaging Mechanisms of Therapeutic Transcranial Magnetic Stimulation for Major Depressive Disorder.

    Science.gov (United States)

    Philip, Noah S; Barredo, Jennifer; Aiken, Emily; Carpenter, Linda L

    2018-03-01

    Research into therapeutic transcranial magnetic stimulation (TMS) for major depression has dramatically increased in the last decade. Understanding the mechanism of action of TMS is crucial to improve efficacy and develop the next generation of therapeutic stimulation. Early imaging research provided initial data supportive of widely held assumptions about hypothesized inhibitory or excitatory consequences of stimulation. Early work also indicated that while TMS modulated brain activity under the stimulation site, effects at deeper regions, in particular, the subgenual anterior cingulate cortex, were associated with clinical improvement. Concordant with earlier findings, functional connectivity studies also demonstrated that clinical improvements were related to changes distal, rather than proximal, to the site of stimulation. Moreover, recent work suggests that TMS modulates and potentially normalizes functional relationships between neural networks. An important observation that emerged from this review is that similar patterns of connectivity changes are observed across studies regardless of TMS parameters. Though promising, we stress that these imaging findings must be evaluated cautiously given the widespread reliance on modest sample sizes and little implementation of statistical validation. Additional limitations included use of imaging before and after a course of TMS, which provided little insight into changes that might occur during the weeks of stimulation. Furthermore, as studies to date have focused on depression, it is unclear whether our observations were related to mechanisms of action of TMS for depression or represented broader patterns of functional brain changes associated with clinical improvement. Published by Elsevier Inc.

  11. The major histocompatibility complex genes impact pain response in DA and DA.1U rats.

    Science.gov (United States)

    Guo, Yuan; Yao, Fan-Rong; Cao, Dong-Yuan; Li, Li; Wang, Hui-Sheng; Xie, Wen; Zhao, Yan

    2015-08-01

    Our recent studies have shown that the difference in basal pain sensitivity to mechanical and thermal stimulation between Dark-Agouti (DA) rats and a novel congenic DA.1U rats is major histocompatibility complex (MHC) genes dependent. In the present study, we further used DA and DA.1U rats to investigate the role of MHC genes in formalin-induced pain model by behavioral, electrophysiological and immunohistochemical methods. Behavioral results showed biphasic nociceptive behaviors increased significantly following the intraplantar injection of formalin in the hindpaw of DA and DA.1U rats. The main nociceptive behaviors were lifting and licking, especially in DA rats (PDA rats were significantly higher than those in DA.1U rats in both phases of the formalin test (PDA rats was significantly higher than that of DA.1U rats (PDA was greater than that in DA.1U rats (PDA rats was significantly higher than that in DA.1U rats in the respective experimental group (PDA and DA.1U rats exhibited nociceptive responses in formalin-induced pain model and DA rats were more sensitive to noxious chemical stimulus than DA.1U rats, indicating that MHC genes might contribute to the difference in pain sensitivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Modeling for mechanical response of CICC by hierarchical approach and ABAQUS simulation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.X.; Wang, X.; Gao, Y.W., E-mail: ywgao@lzu.edu.cn; Zhou, Y.H.

    2013-11-15

    Highlights: • We develop an analytical model based on the hierarchical approach of classical wire rope theory. • The numerical model is set up through ABAQUS to verify and enhance the theoretical model. • We calculate two concerned mechanical response: global displacement–load curve and local axial strain distribution. • Elastic–plasticity is the main character in loading curve, and the friction between adjacent strands plays a significant role in the distribution map. -- Abstract: An unexpected degradation frequently occurs in superconducting cable (CICC) due to the mechanical response (deformation) when suffering from electromagnetic load and thermal load during operation. Because of the cable's hierarchical twisted configuration, it is difficult to quantitatively model the mechanical response. In addition, the local mechanical characteristics such as strain distribution could be hardly monitored via experimental method. To address this issue, we develop an analytical model based on the hierarchical approach of classical wire rope theory. This approach follows the algorithm advancing successively from n + 1 stage (e.g. 3 × 3 × 5 subcable) to n stage (e.g. 3 × 3 subcable). There are no complicated numerical procedures required in this model. Meanwhile, the numerical model is set up through ABAQUS to verify and enhance the theoretical model. Subsequently, we calculate two concerned mechanical responses: global displacement–load curve and local axial strain distribution. We find that in the global displacement–load curve, the elastic–plasticity is the main character, and the higher-level cable shows enhanced nonlinear characteristics. As for the local distribution, the friction among adjacent strands plays a significant role in this map. The magnitude of friction strongly influences the regularity of the distribution at different twisted stages. More detailed results are presented in this paper.

  13. Modeling for mechanical response of CICC by hierarchical approach and ABAQUS simulation

    International Nuclear Information System (INIS)

    Li, Y.X.; Wang, X.; Gao, Y.W.; Zhou, Y.H.

    2013-01-01

    Highlights: • We develop an analytical model based on the hierarchical approach of classical wire rope theory. • The numerical model is set up through ABAQUS to verify and enhance the theoretical model. • We calculate two concerned mechanical response: global displacement–load curve and local axial strain distribution. • Elastic–plasticity is the main character in loading curve, and the friction between adjacent strands plays a significant role in the distribution map. -- Abstract: An unexpected degradation frequently occurs in superconducting cable (CICC) due to the mechanical response (deformation) when suffering from electromagnetic load and thermal load during operation. Because of the cable's hierarchical twisted configuration, it is difficult to quantitatively model the mechanical response. In addition, the local mechanical characteristics such as strain distribution could be hardly monitored via experimental method. To address this issue, we develop an analytical model based on the hierarchical approach of classical wire rope theory. This approach follows the algorithm advancing successively from n + 1 stage (e.g. 3 × 3 × 5 subcable) to n stage (e.g. 3 × 3 subcable). There are no complicated numerical procedures required in this model. Meanwhile, the numerical model is set up through ABAQUS to verify and enhance the theoretical model. Subsequently, we calculate two concerned mechanical responses: global displacement–load curve and local axial strain distribution. We find that in the global displacement–load curve, the elastic–plasticity is the main character, and the higher-level cable shows enhanced nonlinear characteristics. As for the local distribution, the friction among adjacent strands plays a significant role in this map. The magnitude of friction strongly influences the regularity of the distribution at different twisted stages. More detailed results are presented in this paper

  14. Shape and Dynamics of Adhesive Cells: Mechanical Response of Open Systems

    Science.gov (United States)

    Yang, Yuehua; Jiang, Hongyuan

    2017-05-01

    Cell adhesion is an essential biological process. However, previous theoretical and experimental studies ignore a key variable, the changes of cellular volume and pressure, during the dynamic adhesion process. Here, we treat cells as open systems and propose a theoretical framework to investigate how the exchange of water and ions with the environment affects the shape and dynamics of cells adhered between two adhesive surfaces. We show that adherent cells can be either stable (convex or concave) or unstable (spontaneous rupture or collapse) depending on the adhesion energy density, the cell size, the separation of two adhesive surfaces, and the stiffness of the flexible surface. Strikingly, we find that the unstable states vanish when cellular volume and pressure are constant. We further show that the detachments of convex and concave cells are very different. The mechanical response of adherent cells is mainly determined by the competition between the loading rate and the regulation of the cellular volume and pressure. Finally, we show that as an open system the detachment of adherent cells is also significantly influenced by the loading history. Thus, our findings reveal a major difference between living cells and nonliving materials.

  15. Molecular mechanisms of plant response to ionising radiation. Exploration of the glucosinolate role in the anti-oxidative response

    International Nuclear Information System (INIS)

    Gicquel, M.

    2012-01-01

    Terrestrial organisms are exposed to low doses of ionising radiation from natural or anthropogenic sources. The major effects of the radiations are due to DNA deterioration and water radiolysis which generates an oxidative stress by free radical production. Plants constitute good models to study the effects of ionising radiations and the search of antioxidant molecules because of their important secondary metabolism. Thus this thesis, funded by the Brittany region, characterized the physiological and molecular response of the model plant Arabidopsis thaliana to low (10 Gy) and moderate (40 Gy) doses of ionising radiation, and was therefore interested in glucosinolates, characteristic compounds of the Brassicaceae family. The global proteomic and transcriptomic studies carried out on this model revealed (1) a common response for both doses dealing with the activation of DNA repair mechanisms, cell cycle regulation and protection of cellular structures; (2) an adjustment of the energetic metabolism and an activation of secondary compounds biosynthesis (i.e. glucosinolates and flavonoids) after the 10 Gy dose; (3) an induction of enzymatic control of ROS, the regulation of cellular components recycling and of programmed cell death after the 40 Gy dose. The potential anti-oxidative role of glucosinolates was then explored. The in vitro anti-oxidative power of some glucosinolates and their derivative products were demonstrated. Their modulating effects against irradiation-induced damages were then tested in vivo by simple experimental approaches. The importance of the glucosinolate level to give a positive or negative effect was demonstrated. (author)

  16. The peri-operative cytokine response in infants and young children following major surgery

    DEFF Research Database (Denmark)

    Hansen, Tom Giedsing; Tønnesen, Else Kirstine; Andersen, J B

    1998-01-01

    The peri-operative cytokine response was studied in 13 infants and young children undergoing major surgery. All children were anaesthetized with a combined general and epidural anaesthetic technique, followed by post-operative epidural analgesia with bupivacaine and fentanyl. Blood samples were...... taken before and after surgery, 24 h post-operatively, and finally, when the children were mobilized and had regained gastrointestinal function. Plasma samples were analysed for tumour necrosis factor-alpha, interleukin-1 alpha, interleukin-1 beta, interleukin-6, interferon-gamma, interleukin-10...... and the interleukin-1 receptor antagonist. The cytokine responses were highly variable. Overall, no significant changes between pre- and post-operative plasma concentrations were found. Tumour necrosis factor-alpha and the interleukin-1 receptor antagonist were detectable in all children, and a trend towards an early...

  17. Murine immune response induced by Leishmania major during the implantation of paraffin tablets.

    Science.gov (United States)

    Reis, Maria Letícia Costa; Ferreira, Vanessa Martins; Zhang, Xia; Gonçalves, Ricardo; Vieira, Leda Quércia; Tafuri, Washington Luiz; Mosser, David M; Tafuri, Wagner Luiz

    2010-11-01

    We carried out a model of chronic inflammation using a subcutaneous paraffin tablet in mice experimentally infected with Leishmania major. It was previously reported that the parasite load following paraffin implantation occurred at a peak of 21 days in both BALB/c and C57BL/6 mice. At the present study, we have investigated what cytokines and chemokines are directly related to the parasite load in C57BL/6 mice. All mice were divided in four groups: mice implanted with paraffin tablets; mice experimentally infected with L. major; mice implanted with paraffin tablets and experimentally infected with L. major; and mice submitted only to the surgery were used for the Real-Time Polymerase Chain Reaction (RT-PCR) controls. Fragments of skin tissue and the tissue surrounding the paraffin tablets (inflammatory capsule) were collected for histopathology and RT-PCR studies. By 21 days, a diffuse chronic inflammatory reaction was mainly observed in the deep dermis where macrophages parasitized with Leishmania amastigotes were also found. RT-PCR analysis has shown that BALB/c mice showed strong IL-4 and IL-10 mRNA expression than controls with very little expression of IFN-γ. In contrast, both IFN-γ and IL-10 mRNA was found in higher levels in C57BL/6 animals. Moreover, in C57BL/6 mice the expression of chemokines mRNA of CCL3/MIP-1α was more highly expressed than CCL2/MCP-1. We conclude that the Th1 immune response C57BL/6 did not change to a Th2 response, even though C57BL/6 animals presented higher parasitism than BALB/c mice 21 days after infection and paraffin implantation.

  18. Hypertensive response to exercise: mechanisms and clinical implication.

    Science.gov (United States)

    Kim, Darae; Ha, Jong-Won

    2016-01-01

    A hypertensive response to exercise (HRE) is frequently observed in individuals without hypertension or other cardiovascular disease. However, mechanisms and clinical implication of HRE is not fully elucidated. Endothelial dysfunction and increased stiffness of large artery contribute to development of HRE. From neurohormonal aspects, excess stimulation of sympathetic nervous system and augmented rise of angiotensin II seems to be important mechanism in HRE. Increasing evidences indicates that a HRE is associated with functional and structural abnormalities of left ventricle, especially when accompanied by increased central blood pressure. A HRE harbors prognostic significance in future development of hypertension and increased cardiovascular events, particularly if a HRE is documented in moderate intensity of exercise. As supported by previous studies, a HRE is not a benign phenomenon, however, currently, whether to treat a HRE is controversial with uncertain treatment strategy. Considering underlying mechanisms, angiotensin receptor blockers and beta blockers can be suggested in individuals with HRE, however, evidences for efficacy and outcomes of treatment of HRE in individuals without hypertension is scarce and therefore warrants further studies.

  19. Major depressive disorder and generalized anxiety disorder and response to treatment in hepatitis C patients in Egypt.

    Science.gov (United States)

    MM, Bassiony; A, Yousef; U, Youssef; GM, Salah El-Deen; M, Abdelghani; H, Al-Gohari; E, Fouad; MM, El-Shafaey

    2015-01-01

    The aim of the study was to estimate the prevalence and associated correlates of major depressive disorder and generalized anxiety disorder in hepatitis C virus patients before and after treatment and to investigate the relationship between major depressive disorder and generalized anxiety disorder and treatment response. A total of 116 consecutive hepatitis C virus patients from hepatitis C virus treatment center in Zagazig city, Egypt, were included in the study and divided into treated group (N = 58) and untreated group (N = 58). All hepatitis C virus patients were screened for major depressive disorder and generalized anxiety disorder using hospital anxiety and depression scale, and those who screened positive were interviewed to confirm the diagnosis of major depressive disorder and generalized anxiety disorder using DSM-IV-TR diagnostic criteria. These measures were done at baseline and after 12 weeks of treatment or observation. At baseline, 3.5% and 12.1% of hepatitis C virus patients (treated group) had major depressive disorder and generalized anxiety disorder, respectively. After 12 weeks of treatment 37.9% of hepatitis C virus patients (treated group) had major depressive disorder and 46.6% had generalized anxiety disorder. There was a significant statistical difference between hospital anxiety and depression scale scores for depression (3.3 ± 2.3 vs. 6.4 ± 3.2, t = 9.6, p = 0.001) and for anxiety (4.6 ± 2.4 vs. 7.3 ± 3.0, t = 10.2, p = 0.001) before and after treatment. There was also significant statistical difference between treated group and untreated group regarding hospital anxiety and depression scale scores after treatment and observation (depression, treated group 6.4 ± 3.2 vs. untreated group 4.0 ± 2.4, t = 3.7, p = 0.001; anxiety, treated group 7.3 ± 3.0 vs. untreated group 4.5 ± 2.3, t = 4.4, p = 0.001). There was no association between major depressive disorder

  20. The major brain endocannabinoid 2-AG controls neuropathic pain and mechanical hyperalgesia in patients with neuromyelitis optica.

    Directory of Open Access Journals (Sweden)

    Hannah L Pellkofer

    Full Text Available Recurrent myelitis is one of the predominant characteristics in patients with neuromyelitis optica (NMO. While paresis, visual loss, sensory deficits, and bladder dysfunction are well known symptoms in NMO patients, pain has been recognized only recently as another key symptom of the disease. Although spinal cord inflammation is a defining aspect of neuromyelitis, there is an almost complete lack of data on altered somatosensory function, including pain. Therefore, eleven consecutive patients with NMO were investigated regarding the presence and clinical characteristics of pain. All patients were examined clinically as well as by Quantitative Sensory Testing (QST following the protocol of the German Research Network on Neuropathic Pain (DFNS. Additionally, plasma endocannabinoid levels and signs of chronic stress and depression were determined. Almost all patients (10/11 suffered from NMO-associated neuropathic pain for the last three months, and 8 out of 11 patients indicated relevant pain at the time of examination. Symptoms of neuropathic pain were reported in the vast majority of patients with NMO. Psychological testing revealed signs of marked depression. Compared to age and gender-matched healthy controls, QST revealed pronounced mechanical and thermal sensory loss, strongly correlated to ongoing pain suggesting the presence of deafferentation-induced neuropathic pain. Thermal hyperalgesia correlated to MRI-verified signs of spinal cord lesion. Heat hyperalgesia was highly correlated to the time since last relapse of NMO. Patients with NMO exhibited significant mechanical and thermal dysesthesia, namely dynamic mechanical allodynia and paradoxical heat sensation. Moreover, they presented frequently with either abnormal mechanical hypoalgesia or hyperalgesia, which depended significantly on plasma levels of the endogenous cannabinoid 2-arachidonoylglycerole (2-AG. These data emphasize the high prevalence of neuropathic pain and hyperalgesia

  1. RNA-directed DNA methylation: Mechanisms and functions

    KAUST Repository

    Mahfouz, Magdy M.

    2010-01-01

    Epigenetic RNA based gene silencing mechanisms play a major role in genome stability and control of gene expression. Transcriptional gene silencing via RNA-directed DNA methylation (RdDM) guides the epigenetic regulation of the genome in response

  2. Surrogate markers of visceral fat and response to anti-depressive treatment in patients with major depressive disorder

    DEFF Research Database (Denmark)

    Tønning, Morten; Petersen, Dorthe; Steglich-Petersen, Marie

    2017-01-01

    Background: Body mass index (BMI) and body weight have been shown to be associated to treatment outcome in patients with major depressive disorder, but this relationship is not clear. Visceral fat might be an underlying mechanism explaining this relationship. Aims: The aim of this study was to pr......Background: Body mass index (BMI) and body weight have been shown to be associated to treatment outcome in patients with major depressive disorder, but this relationship is not clear. Visceral fat might be an underlying mechanism explaining this relationship. Aims: The aim of this study...... was to prospectively investigate whether visceral fat, as measured by hip-to-waist ratio and waist circumference, affects treatment outcome in patients with major depressive disorder in patients attending a hospital psychiatric care unit in Denmark. Methods: The study was conducted as an observational prospective......) interviews and HAM-D6 self-rating questionnaires. Results: No differences were found in outcome between groups of patients with high vs low visceral fat in this population. Conclusions: The lack of association was evident for all surrogate markers of visceral fat, and suggests that visceral fat has no impact...

  3. Sustained major molecular response on interferon alpha-2b in two patients with polycythemia vera

    DEFF Research Database (Denmark)

    Larsen, T.S.; Pallisgaard, N.; Andersen, M.T.

    2008-01-01

    with a JAK2 V617F allele burden below 1.0% in two patients with polycythemia vera treated with interferon alpha-2b (IFN-2b). Discontinuation of IFN-2b in one of the patients was followed by a sustained long-lasting (12 months of follow-up) major molecular response Udgivelsesdato: 2008/10...

  4. Second messenger/signal transduction pathways in major mood disorders: moving from membrane to mechanism of action, part I: major depressive disorder.

    Science.gov (United States)

    Niciu, Mark J; Ionescu, Dawn F; Mathews, Daniel C; Richards, Erica M; Zarate, Carlos A

    2013-10-01

    The etiopathogenesis and treatment of major mood disorders have historically focused on modulation of monoaminergic (serotonin, norepinephrine, dopamine) and amino acid [γ-aminobutyric acid (GABA), glutamate] receptors at the plasma membrane. Although the activation and inhibition of these receptors acutely alter local neurotransmitter levels, their neuropsychiatric effects are not immediately observed. This time lag implicates intracellular neuroplasticity as primary in the mechanism of action of antidepressants and mood stabilizers. The modulation of intracellular second messenger/signal transduction cascades affects neurotrophic pathways that are both necessary and sufficient for monoaminergic and amino acid-based treatments. In this review, we will discuss the evidence in support of intracellular mediators in the pathophysiology and treatment of preclinical models of despair and major depressive disorder (MDD). More specifically, we will focus on the following pathways: cAMP/PKA/CREB, neurotrophin-mediated (MAPK and others), p11, Wnt/Fz/Dvl/GSK3β, and NFκB/ΔFosB. We will also discuss recent discoveries with rapidly acting antidepressants, which activate the mammalian target of rapamycin (mTOR) and release of inhibition on local translation via elongation factor stimulation. Throughout this discourse, we will highlight potential intracellular targets for therapeutic intervention. Finally, future clinical implications are discussed.

  5. Airway Humidification Reduces the Inflammatory Response During Mechanical Ventilation.

    Science.gov (United States)

    Jiang, Min; Song, Jun-Jie; Guo, Xiao-Li; Tang, Yong-Lin; Li, Hai-Bo

    2015-12-01

    Currently, no clinical or animal studies have been performed to establish the relationship between airway humidification and mechanical ventilation-induced lung inflammatory responses. Therefore, an animal model was established to better define this relationship. Rabbits (n = 40) were randomly divided into 6 groups: control animals, sacrificed immediately after anesthesia (n = 2); dry gas group animals, subjected to mechanical ventilation for 8 h without humidification (n = 6); and experimental animals, subjected to mechanical ventilation for 8 h under humidification at 30, 35, 40, and 45°C, respectively (n = 8). Inflammatory cytokines in the bronchi alveolar lavage fluid (BALF) were measured. The integrity of the airway cilia and the tracheal epithelium was examined by scanning and transmission electron microscopy, respectively. Peripheral blood white blood cell counts and the wet to dry ratio and lung pathology were determined. Dry gas group animals showed increased tumor necrosis factor alpha levels in BALF compared with control animals (P humidification temperature was increased to 40°C. Scanning and transmission electron microscopy analysis revealed that cilia integrity was maintained in the 40°C groups. Peripheral white blood cell counts were not different among those groups. Compared with control animals, the wet to dry ratio was significantly elevated in the dry gas group (P humidification at 40°C resulted in reduced pathologic injury compared with the other groups based on the histologic score. Pathology and reduced inflammation observed in animals treated at 40°C was similar to that observed in the control animals, suggesting that appropriate humidification reduced inflammatory responses elicited as a consequence of mechanical ventilation, in addition to reducing damage to the cilia and reducing water loss in the airway. Copyright © 2015 by Daedalus Enterprises.

  6. Rheological and Mechanical Response Modifications for a Self-Leveling Mortar

    Science.gov (United States)

    Katsiadramis, N. J.; Sotiropoulou, A. B.; Pandermarakis, Z. G.

    2010-06-01

    In many cases cement based materials demand a higher flowability and workability and this conventionally can’t be done without loss of its strength, due to the fact that the common practice to increase the workability is the addition of water. But, nowadays using a third generation superplasticizer (SP) we can achieve the desire flowability without loss of its strength. The action of superplastisizers is to spread efficiently the cement grains and so to wetting better the cement grains giving a more homogeneous mixture with higher strength. Nine different mixtures were prepared adding a small percentage of SP (1%). The conditions to get a self levelling mortar, have to do not only with rheological but also with mechanical demands. The bending and compression test gave the achieving mechanical strength whereas their rheological response came through slump flow and v-funnel flow tests. With the help of a small amount of stabilizer we obtain a robust mixture that deserves the desire response at the field too.

  7. Response of the human tympanic membrane to transient acoustic and mechanical stimuli: Preliminary results

    Science.gov (United States)

    Razavi, Payam; Ravicz, Michael E.; Dobrev, Ivo; Cheng, Jeffrey Tao; Furlong, Cosme; Rosowski, John J.

    2016-01-01

    The response of the tympanic membrane (TM) to transient environmental sounds and the contributions of different parts of the TM to middle-ear sound transmission were investigated by measuring the TM response to global transients (acoustic clicks) and to local transients (mechanical impulses) applied to the umbo and various locations on the TM. A lightly-fixed human temporal bone was prepared by removing the ear canal, inner ear, and stapes, leaving the incus, malleus, and TM intact. Motion of nearly the entire TM was measured by a digital holography system with a high speed camera at a rate of 42 000 frames per second, giving a temporal resolution of <24 μs for the duration of the TM response. The entire TM responded nearly instantaneously to acoustic transient stimuli, though the peak displacement and decay time constant varied with location. With local mechanical transients, the TM responded first locally at the site of stimulation, and the response spread approximately symmetrically and circumferentially around the umbo and manubrium. Acoustic and mechanical transients provide distinct and complementary stimuli for the study of TM response. Spatial variations in decay and rate of spread of response imply local variations in TM stiffness, mass, and damping. PMID:26880098

  8. DISC1 pathway in brain development: exploring therapeutic targets for major psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Atsushi eKamiya

    2012-03-01

    Full Text Available Genetic risk factors for major psychiatric disorders play key roles in neurodevelopment. Thus, exploring the molecular pathways of risk genes is important not only for understanding the molecular mechanisms underlying brain development, but also to decipher how genetic disturbances affect brain maturation and functioning relevant to major mental illnesses. During the last decade, there has been significant progress in determining the mechanisms whereby risk genes impact brain development. Nonetheless, given that the majority of psychiatric disorders have etiological complexities encompassing multiple risk genes and environmental factors, the biological mechanisms of these diseases remain poorly understood. How can we move forward in our research for discovery of the biological markers and novel therapeutic targets for major mental disorders? Here we review recent progress in the neurobiology of Disrupted in schizophrenia 1 (DISC1, a major risk gene for major mental disorders, with a particular focus on its roles in cerebral cortex development. Convergent findings implicate DISC1 as part of a large, multi-step pathway implicated in various cellular processes and signal transduction. We discuss links between the DISC1 pathway and environmental factors, such as immune/inflammatory responses, which may suggest novel therapeutic targets. Existing treatments for major mental disorders are hampered by a limited number of pharmacological targets. Consequently, elucidation of the DISC1 pathway, and its association with neuropsychiatric disorders, may offer hope for novel treatment interventions.

  9. Mechanical response of CH3NH3PbI3 nanowires

    Science.gov (United States)

    Ćirić, L.; Ashby, K.; Abadie, T.; Spina, M.; Duchamp, M.; Náfrádi, B.; Kollár, M.; Forró, L.; Horváth, E.

    2018-03-01

    We report a systematic study of the mechanical response of methylammonium lead triiodide CH3NH3PbI3 nanowires by employing bending measurements using atomic force microscope on suspended wires over photo-lithographically patterned channels. Force-deflection curves measured at room temperature give a Young's modulus between 2 and 14 GPa. This broad range of values is attributed to the variations in the microcrystalline texture of halide perovskite nanowires. The mechanical response of a highly crystalline nanowire is linear with force and has a brittle character. The braking modulus of 48 ± 20 MPa corresponds to 100 μm of radius of curvature of the nanowires, rendering them much better structures for flexible devices than spin coated films. The measured moduli decrease rapidly if the NW is exposed to water vapor.

  10. Response conflict and frontocingulate dysfunction in unmedicated participants with major depression.

    Science.gov (United States)

    Holmes, Avram J; Pizzagalli, Diego A

    2008-10-01

    Individuals with major depressive disorder (MDD) often exhibit impaired executive function, particularly in experimental tasks that involve response conflict and require adaptive behavioral adjustments. Prior research suggests that these deficits might be due to dysfunction within frontocingulate pathways implicated in response conflict monitoring and the recruitment of cognitive control. However, the temporal unfolding of conflict monitoring impairments in MDD remains poorly understood. To address this issue, we recorded 128-channel event-related potentials while 20 unmedicated participants with MDD and 20 demographically matched, healthy controls performed a Stroop task. Compared to healthy controls, MDD subjects showed larger Stroop interference effects and reduced N2 and N450 amplitudes. Source localization analyses at the time of maximal N450 activity revealed that MDD subjects had significantly reduced dorsal anterior cingulate cortex (dACC; Brodmann area 24/32) and left dorsolateral prefrontal cortex (Brodmann area 10/46) activation to incongruent relative to congruent trials. Consistent with the heterogeneous nature of depression, follow-up analyses revealed that depressed participants with the lowest level of conflict-related dACC activation 620 ms post-stimulus were characterized by the largest Stroop interference effects (relatively increased slowing and reduced accuracy for incongruent trials). Conversely, MDD participants with relatively stronger dACC recruitment did not differ from controls in terms of interference effects. These findings suggest that for some, but not all individuals, MDD is associated with impaired performance in trials involving competition among different response options, and reduced recruitment of frontocingulate pathways implicated in conflict monitoring and cognitive control.

  11. Response threshold variance as a basis of collective rationality.

    Science.gov (United States)

    Yamamoto, Tatsuhiro; Hasegawa, Eisuke

    2017-04-01

    Determining the optimal choice among multiple options is necessary in various situations, and the collective rationality of groups has recently become a major topic of interest. Social insects are thought to make such optimal choices by collecting individuals' responses relating to an option's value (=a quality-graded response). However, this behaviour cannot explain the collective rationality of brains because neurons can make only 'yes/no' responses on the basis of the response threshold. Here, we elucidate the basic mechanism underlying the collective rationality of such simple units and show that an ant species uses this mechanism. A larger number of units respond 'yes' to the best option available to a collective decision-maker using only the yes/no mechanism; thus, the best option is always selected by majority decision. Colonies of the ant Myrmica kotokui preferred the better option in a binary choice experiment. The preference of a colony was demonstrated by the workers, which exhibited variable thresholds between two options' qualities. Our results demonstrate how a collective decision-maker comprising simple yes/no judgement units achieves collective rationality without using quality-graded responses. This mechanism has broad applicability to collective decision-making in brain neurons, swarm robotics and human societies.

  12. The Impact of Two Different Transfusion Strategies on Patient Immune Response during Major Abdominal Surgery: A Preliminary Report

    OpenAIRE

    Theodoraki, Kassiani; Markatou, Maria; Rizos, Demetrios; Fassoulaki, Argyro

    2014-01-01

    Blood transfusion is associated with well-known risks. We investigated the difference between a restrictive versus a liberal transfusion strategy on the immune response, as expressed by the production of inflammatory mediators, in patients subjected to major abdominal surgery procedures. Fifty-eight patients undergoing major abdominal surgery were randomized preoperatively to either a restrictive transfusion protocol or a liberal transfusion protocol (with transfusion if hemoglobin dropped be...

  13. Differential Impact of LPG-and PG-Deficient Leishmania major Mutants on the Immune Response of Human Dendritic Cells.

    Directory of Open Access Journals (Sweden)

    Michelle A Favila

    2015-12-01

    Full Text Available Leishmania major infection induces robust interleukin-12 (IL12 production in human dendritic cells (hDC, ultimately resulting in Th1-mediated immunity and clinical resolution. The surface of Leishmania parasites is covered in a dense glycocalyx consisting of primarily lipophosphoglycan (LPG and other phosphoglycan-containing molecules (PGs, making these glycoconjugates the likely pathogen-associated molecular patterns (PAMPS responsible for IL12 induction.Here we explored the role of parasite glycoconjugates on the hDC IL12 response by generating L. major Friedlin V1 mutants defective in LPG alone, (FV1 lpg1-, or generally deficient for all PGs, (FV1 lpg2-. Infection with metacyclic, infective stage, L. major or purified LPG induced high levels of IL12B subunit gene transcripts in hDCs, which was abrogated with FV1 lpg1- infections. In contrast, hDC infections with FV1 lpg2- displayed increased IL12B expression, suggesting other PG-related/LPG2 dependent molecules may act to dampen the immune response. Global transcriptional profiling comparing WT, FV1 lpg1-, FV1 lpg2- infections revealed that FV1 lpg1- mutants entered hDCs in a silent fashion as indicated by repression of gene expression. Transcription factor binding site analysis suggests that LPG recognition by hDCs induces IL-12 in a signaling cascade resulting in Nuclear Factor κ B (NFκB and Interferon Regulatory Factor (IRF mediated transcription.These data suggest that L. major LPG is a major PAMP recognized by hDC to induce IL12-mediated protective immunity and that there is a complex interplay between PG-baring Leishmania surface glycoconjugates that result in modulation of host cellular IL12.

  14. Hormonal and neuromuscular responses to mechanical vibration applied to upper extremity muscles.

    Directory of Open Access Journals (Sweden)

    Riccardo Di Giminiani

    Full Text Available OBJECTIVE: To investigate the acute residual hormonal and neuromuscular responses exhibited following a single session of mechanical vibration applied to the upper extremities among different acceleration loads. METHODS: Thirty male students were randomly assigned to a high vibration group (HVG, a low vibration group (LVG, or a control group (CG. A randomized double-blind, controlled-parallel study design was employed. The measurements and interventions were performed at the Laboratory of Biomechanics of the University of L'Aquila. The HVG and LVG participants were exposed to a series of 20 trials ×10 s of synchronous whole-body vibration (WBV with a 10-s pause between each trial and a 4-min pause after the first 10 trials. The CG participants assumed an isometric push-up position without WBV. The outcome measures were growth hormone (GH, testosterone, maximal voluntary isometric contraction during bench-press, maximal voluntary isometric contraction during handgrip, and electromyography root-mean-square (EMGrms muscle activity (pectoralis major [PM], triceps brachii [TB], anterior deltoid [DE], and flexor carpi radialis [FCR]. RESULTS: The GH increased significantly over time only in the HVG (P = 0.003. Additionally, the testosterone levels changed significantly over time in the LVG (P = 0.011 and the HVG (P = 0.001. MVC during bench press decreased significantly in the LVG (P = 0.001 and the HVG (P = 0.002. In the HVG, the EMGrms decreased significantly in the TB (P = 0.006 muscle. In the LVG, the EMGrms decreased significantly in the DE (P = 0.009 and FCR (P = 0.006 muscles. CONCLUSION: Synchronous WBV acutely increased GH and testosterone serum concentrations and decreased the MVC and their respective maximal EMGrms activities, which indicated a possible central fatigue effect. Interestingly, only the GH response was dependent on the acceleration with respect to the subjects' responsiveness.

  15. Hormonal and Neuromuscular Responses to Mechanical Vibration Applied to Upper Extremity Muscles

    Science.gov (United States)

    Di Giminiani, Riccardo; Fabiani, Leila; Baldini, Giuliano; Cardelli, Giovanni; Giovannelli, Aldo; Tihanyi, Jozsef

    2014-01-01

    Objective To investigate the acute residual hormonal and neuromuscular responses exhibited following a single session of mechanical vibration applied to the upper extremities among different acceleration loads. Methods Thirty male students were randomly assigned to a high vibration group (HVG), a low vibration group (LVG), or a control group (CG). A randomized double-blind, controlled-parallel study design was employed. The measurements and interventions were performed at the Laboratory of Biomechanics of the University of L'Aquila. The HVG and LVG participants were exposed to a series of 20 trials ×10 s of synchronous whole-body vibration (WBV) with a 10-s pause between each trial and a 4-min pause after the first 10 trials. The CG participants assumed an isometric push-up position without WBV. The outcome measures were growth hormone (GH), testosterone, maximal voluntary isometric contraction during bench-press, maximal voluntary isometric contraction during handgrip, and electromyography root-mean-square (EMGrms) muscle activity (pectoralis major [PM], triceps brachii [TB], anterior deltoid [DE], and flexor carpi radialis [FCR]). Results The GH increased significantly over time only in the HVG (P = 0.003). Additionally, the testosterone levels changed significantly over time in the LVG (P = 0.011) and the HVG (P = 0.001). MVC during bench press decreased significantly in the LVG (P = 0.001) and the HVG (P = 0.002). In the HVG, the EMGrms decreased significantly in the TB (P = 0.006) muscle. In the LVG, the EMGrms decreased significantly in the DE (P = 0.009) and FCR (P = 0.006) muscles. Conclusion Synchronous WBV acutely increased GH and testosterone serum concentrations and decreased the MVC and their respective maximal EMGrms activities, which indicated a possible central fatigue effect. Interestingly, only the GH response was dependent on the acceleration with respect to the subjects' responsiveness. PMID:25368995

  16. Serotonin transporter gene promoter polymorphisms modify the association between paroxetine serotonin transporter occupancy and clinical response in major depressive disorder

    NARCIS (Netherlands)

    Ruhé, Henricus G.; Ooteman, Wendy; Booij, Jan; Michel, Martin C.; Moeton, Martina; Baas, Frank; Schene, Aart H.

    2009-01-01

    BACKGROUND: In major depressive disorder, selective serotonin reuptake inhibitors target the serotonin transporter (SERT). Their response rates (30-50%) are modified by SERT promotor polymorphisms (5-HTTLPR). OBJECTIVES: To quantify the relationship between SERT occupancy and response, and whether

  17. Androgen receptor disruption increases the osteogenic response to mechanical loading in male mice

    NARCIS (Netherlands)

    Callewaert, F.; Bakker, A.; Schrooten, J.; Van Meerbeek, B.; Verhoeven, G.; Boonen, S.; Vanderschueren, D.

    2010-01-01

    In female mice, estrogen receptor-alpha (ERα) mediates the anabolic response of bone to mechanical loading. Whether ERα plays a similar role in the male skeleton and to what extent androgens and androgen receptor (AR) affect this response in males remain unaddressed. Therefore, we studied the

  18. Temperature Dependences of Mechanisms Responsible for the Water-Vapor Continuum Absorption

    Science.gov (United States)

    Ma, Qiancheng

    2014-01-01

    The water-vapor continuum absorption plays an important role in the radiative balance in the Earth's atmosphere. It has been experimentally shown that for ambient atmospheric conditions, the continuum absorption scales quadratically with the H2O number density and has a strong, negative temperature dependence (T dependence). Over the years, there have been three different theoretical mechanisms postulated: far-wings of allowed transition lines, water dimers, and collision-induced absorption. The first mechanism proposed was the accumulation of absorptions from the far-wings of the strong allowed transition lines. Later, absorption by water dimers was proposed, and this mechanism provides a qualitative explanation for the continuum characters mentioned above. Despite the improvements in experimental data, at present there is no consensus on which mechanism is primarily responsible for the continuum absorption.

  19. Mechanisms regulating osteoblast response to surface microtopography and vitamin D

    Science.gov (United States)

    Bell, Bryan Frederick, Jr.

    A comprehensive understanding of the interactions between orthopaedic and dental implant surfaces with the surrounding host tissue is essential in the design of advanced biomaterials that better promote bone growth and osseointegration of implants. Dental implants with roughened surfaces and high surface energy are well known to promote osteoblast differentiation in vitro and promote increased bone-to-implant contact in vivo. In addition, increased surface roughness increases osteoblasts response to the vitamin D metabolite 1alpha,25(OH)2D3. However, the exact mechanisms mediating cell response to surface properties and 1alpha,25(OH)2D3 are still being elucidated. The central aim of the thesis is to investigate whether integrin signaling in response to rough surface microtopography enhances osteoblast differentiation and responsiveness to 1alpha,25(OH)2D3. The hypothesis is that the integrin alpha5beta1 plays a role in osteoblast response to surface microtopography and that 1alpha,25(OH) 2D3 acts through VDR-independent pathways involving caveolae to synergistically enhance osteoblast response to surface roughness and 1alpha,25(OH) 2D3. To test this hypothesis the objectives of the studies performed in this thesis were: (1) to determine if alpha5beta 1 signaling is required for osteoblast response to surface microstructure; (2) to determine if increased responsiveness to 1alpha,25(OH)2D 3 requires the vitamin D receptor, (3) to determine if rough titanium surfaces functionalized with the peptides targeting integrins (RGD) and transmembrane proteoglycans (KRSR) will enhance both osteoblast proliferation and differentiation, and (4) to determine whether caveolae, which are associated with integrin and 1alpha,25(OH)2D3 signaling, are required for enhance osteogenic response to surface microstructure and 1alpha,25(OH)2D 3. The results demonstrate that integrins, VDR, and caveolae play important roles in mediating osteoblast response to surface properties and 1alpha,25

  20. Rheological and Mechanical Response Modifications for a Self-Leveling Mortar

    Directory of Open Access Journals (Sweden)

    Pandermarakis Z.G.

    2010-06-01

    Full Text Available In many cases cement based materials demand a higher flowability and workability and this conventionally can’t be done without loss of its strength, due to the fact that the common practice to increase the workability is the addition of water. But, nowadays using a third generation superplasticizer (SP we can achieve the desire flowability without loss of its strength. The action of superplastisizers is to spread efficiently the cement grains and so to wetting better the cement grains giving a more homogeneous mixture with higher strength. Nine different mixtures were prepared adding a small percentage of SP (1%. The conditions to get a self levelling mortar, have to do not only with rheological but also with mechanical demands. The bending and compression test gave the achieving mechanical strength whereas their rheological response came through slump flow and v-funnel flow tests. With the help of a small amount of stabilizer we obtain a robust mixture that deserves the desire response at the field too.

  1. Escape response of planktonic protists to fluid mechanical signals

    DEFF Research Database (Denmark)

    Jakobsen, Hans Henrik

    2001-01-01

    The escape response to fluid mechanical signals was examined in 6 protists, 4 ciliates and 2 dinoflagellates. When exposed to a siphon flow. 3 species of ciliates, Balanion comatum, Strobilidium sp., and Mesodinium pulex, responded with escape jumps. The threshold deformation rates required...... times lower than that of a non-jumping similar sized protist when the predator was Temora longicornis, which captures prey entrained in a feeding current. However, when the predator was the ambush- feeding copepod Acartia tonsa, the predation mortalities of jumping and non-jumping protists were...... of similar magnitude. Escape responses may thus be advantageous in some situations. However, jumping behaviour may also enhance susceptibility to some predators, explaining the different predator avoidance strategies (jumping or not) that have evolved in planktonic protists....

  2. An International Comparison of the Instigation and Design of Health Registers in the Epidemiological Response to Major Environmental Health Incidents.

    Science.gov (United States)

    Behbod, Behrooz; Leonardi, Giovanni; Motreff, Yvon; Beck, Charles R; Yzermans, Joris; Lebret, Erik; Muravov, Oleg I; Bayleyegn, Tesfaye; Wolkin, Amy Funk; Lauriola, Paolo; Close, Rebecca; Crabbe, Helen; Pirard, Philippe

    Epidemiological preparedness is vital in providing relevant, transparent, and timely intelligence for the management, mitigation, and prevention of public health impacts following major environmental health incidents. A register is a set of records containing systematically collected, standardized data about individual people. Planning for a register of people affected by or exposed to an incident is one of the evolving tools in the public health preparedness and response arsenal. We compared and contrasted the instigation and design of health registers in the epidemiological response to major environmental health incidents in England, France, Italy, the Netherlands, and the United States. Consultation with experts from the 5 nations, supplemented with a review of gray and peer-reviewed scientific literature to identify examples where registers have been used. Populations affected by or at risk from major environmental health incidents in England, France, Italy, the Netherlands, and the United States. Nations were compared with respect to the (1) types of major incidents in their remit for considering a register; (2) arrangements for triggering a register; (3) approaches to design of register; (4) arrangements for register implementation; (5) uses of registers; and (6) examples of follow-up studies. Health registers have played a key role in the effective public health response to major environmental incidents, including sudden chemical, biological, radiological, or nuclear, as well as natural, more prolonged incidents. Value has been demonstrated in the early and rapid deployment of health registers, enabling the capture of a representative population. The decision to establish a health register must ideally be confirmed immediately or soon after the incident using a set of agreed criteria. The establishment of protocols for the instigation, design, and implementation of health registers is recommended as part of preparedness activities. Key stakeholders must be

  3. Mechanisms of Response to Salt Stress in Oleander (Nerium oleander L.

    Directory of Open Access Journals (Sweden)

    Dinesh Kumar

    2016-11-01

    Full Text Available Elucidating the mechanisms of abiotic stress tolerance in different species will help to develop more resistant plant varieties, contributing to improve agricultural production in a climate change scenario. Basic responses to salt stress, dependent on osmolyte accumulation and activation of antioxidant systems, have been studied in Nerium oleander, a xerophytic species widely used as ornamental. Salt strongly inhibited growth, but the plants survived one-month treatments with quite high NaCl concentrations, up to 800 mM, indicating the the species is relatively resistant to salt stress, in addition to drought. Levels of proline, glycine betaine and soluble sugars increased only slightly in the presence of salt; however, soluble sugar absolute contents were much higher than those of the other osmolytes, suggesting a functional role of these compounds in osmotic adjustment, and the presence of constitutive mechanisms of response to salt stress. High salinity generated oxidative stress in the plants, as shown by the increase of malondialdehyde levels. Antioxidant systems, enzymatic and non-enzymatic, are generally activated in response to salt stress; in oleander, they do not seem to include total phenolics or flavonoids, antioxidant compounds which did not accumulate significantly in salt-trated plants

  4. Molecular mechanisms involved in adaptive responses to radiation, UV light, and heat

    International Nuclear Information System (INIS)

    Takahashi, Akihisa; Ohnishi, Takeo

    2009-01-01

    Viable organisms recognize and respond to environmental changes or stresses. When these environmental changes and their responses by organisms are extreme, they can limit viability. However, organisms can adapt to these different stresses by utilizing different possible responses via signal transduction pathways when the stress is not lethal. In particular, prior mild stresses can provide some aid to prepare organisms for subsequent more severe stresses. These adjustments or adaptations for future stresses have been called adaptive responses. These responses are present in bacteria, plants and animals. The following review covers recent research which can help describe or postulate possible mechanisms which may be active in producing adaptive responses to radiation, ultraviolet light, and heat. (author)

  5. Biaxial Mechanical Evaluation of Absorbable and Nonabsorbable Synthetic Surgical Meshes Used for Hernia Repair: Physiological Loads Modify Anisotropy Response.

    Science.gov (United States)

    Cordero, A; Hernández-Gascón, B; Pascual, G; Bellón, J M; Calvo, B; Peña, E

    2016-07-01

    The aim of this study was to obtain information about the mechanical properties of six meshes commonly used for hernia repair (Surgipro(®), Optilene(®), Infinit(®), DynaMesh(®), Ultrapro™ and TIGR(®)) by planar biaxial tests. Stress-stretch behavior and equibiaxial stiffness were evaluated, and the anisotropy was determined by testing. In particular, equibiaxial test (equal simultaneous loading in both directions) and biaxial test (half of the load in one direction following the Laplace law) were selected as a representation of physiologically relevant loads. The majority of the meshes displayed values in the range of 8 and 18 (N/mm) in each direction for equibiaxial stiffness (tangent modulus under equibiaxial load state in both directions), while a few achieved 28 and 50 (N/mm) (Infinit (®) and TIGR (®)). Only the Surgipro (®) mesh exhibited planar isotropy, with similar mechanical properties regardless of the direction of loading, and an anisotropy ratio of 1.18. Optilene (®), DynaMesh (®), Ultrapro (®) and TIGR (®) exhibited moderate anisotropy with ratios of 1.82, 1.84, 2.17 and 1.47, respectively. The Infinit (®) scaffold exhibited very high anisotropy with a ratio of 3.37. These trends in material anisotropic response changed during the physiological state in the human abdominal wall, i.e. T:0.5T test, which the meshes were loaded in one direction with half the load used in the other direction. The Surgipro (®) mesh increased its anisotropic response (Anis[Formula: see text] = 0.478) and the materials that demonstrated moderate and high anisotropic responses during multiaxial testing presented a quasi-isotropic response, especially the Infinit(®) mesh that decreased its anisotropic response from 3.369 to 1.292.

  6. Microtubules self-repair in response to mechanical stress

    Science.gov (United States)

    Schaedel, Laura; John, Karin; Gaillard, Jérémie; Nachury, Maxence V.; Blanchoin, Laurent; Théry, Manuel

    2015-11-01

    Microtubules--which define the shape of axons, cilia and flagella, and provide tracks for intracellular transport--can be highly bent by intracellular forces, and microtubule structure and stiffness are thought to be affected by physical constraints. Yet how microtubules tolerate the vast forces exerted on them remains unknown. Here, by using a microfluidic device, we show that microtubule stiffness decreases incrementally with each cycle of bending and release. Similar to other cases of material fatigue, the concentration of mechanical stresses on pre-existing defects in the microtubule lattice is responsible for the generation of more extensive damage, which further decreases microtubule stiffness. Strikingly, damaged microtubules were able to incorporate new tubulin dimers into their lattice and recover their initial stiffness. Our findings demonstrate that microtubules are ductile materials with self-healing properties, that their dynamics does not exclusively occur at their ends, and that their lattice plasticity enables the microtubules' adaptation to mechanical stresses.

  7. Do Biology Majors Really Differ from Non–STEM Majors?

    Science.gov (United States)

    Cotner, Sehoya; Thompson, Seth; Wright, Robin

    2017-01-01

    Recent calls to action urge sweeping reform in science education, advocating for improved learning for all students—including those majoring in fields beyond the sciences. However, little work has been done to characterize the differences—if any exist—between students planning a career in science and those studying other disciplines. We describe an attempt to clarify, in broad terms, how non–STEM (science, technology, engineering, and mathematics) majors differ from life sciences majors, and how they are similar. Using survey responses and institutional data, we find that non–STEM majors are not unilaterally science averse; non–STEM majors are more likely than biology majors to hold misconceptions about the nature of science, yet they are not completely ignorant of how science works; non–STEM majors are less likely than biology majors to see science as personally relevant; and non–STEM majors populations are likely to be more diverse—with respect to incoming knowledge, perceptions, backgrounds, and skills—than a biology majors population. We encourage science educators to consider these characteristics when designing curricula for future scientists or simply for a well-informed citizenry. PMID:28798210

  8. Multi-scale mechanical response of freeze-dried collagen scaffolds for tissue engineering applications.

    Science.gov (United States)

    Offeddu, Giovanni S; Ashworth, Jennifer C; Cameron, Ruth E; Oyen, Michelle L

    2015-02-01

    Tissue engineering has grown in the past two decades as a promising solution to unresolved clinical problems such as osteoarthritis. The mechanical response of tissue engineering scaffolds is one of the factors determining their use in applications such as cartilage and bone repair. The relationship between the structural and intrinsic mechanical properties of the scaffolds was the object of this study, with the ultimate aim of understanding the stiffness of the substrate that adhered cells experience, and its link to the bulk mechanical properties. Freeze-dried type I collagen porous scaffolds made with varying slurry concentrations and pore sizes were tested in a viscoelastic framework by macroindentation. Membranes made up of stacks of pore walls were indented using colloidal probe atomic force microscopy. It was found that the bulk scaffold mechanical response varied with collagen concentration in the slurry consistent with previous studies on these materials. Hydration of the scaffolds resulted in a more compliant response, yet lesser viscoelastic relaxation. Indentation of the membranes suggested that the material making up the pore walls remains unchanged between conditions, so that the stiffness of the scaffolds at the scale of seeded cells is unchanged; rather, it is suggested that thicker pore walls or more of these result in the increased moduli for the greater slurry concentration conditions. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Network analysis of S. aureus response to ramoplanin reveals modules for virulence factors and resistance mechanisms and characteristic novel genes.

    Science.gov (United States)

    Subramanian, Devika; Natarajan, Jeyakumar

    2015-12-10

    Staphylococcus aureus is a major human pathogen and ramoplanin is an antimicrobial attributed for effective treatment. The goal of this study was to examine the transcriptomic profiles of ramoplanin sensitive and resistant S. aureus to identify putative modules responsible for virulence and resistance-mechanisms and its characteristic novel genes. The dysregulated genes were used to reconstruct protein functional association networks for virulence-factors and resistance-mechanisms individually. Strong link between metabolic-pathways and development of virulence/resistance is suggested. We identified 15 putative modules of virulence factors. Six hypothetical genes were annotated with novel virulence activity among which SACOL0281 was discovered to be an essential virulence factor EsaD. The roles of MazEF toxin-antitoxin system, SACOL0202/SACOL0201 two-component system and that of amino-sugar and nucleotide-sugar metabolism in virulence are also suggested. In addition, 14 putative modules of resistance mechanisms including modules of ribosomal protein-coding genes and metabolic pathways such as biotin-synthesis, TCA-cycle, riboflavin-biosynthesis, peptidoglycan-biosynthesis etc. are also indicated. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Catalysis of Silver catfish Major Hepatic Glutathione Transferase proceeds via rapid equilibrium sequential random Mechanism

    Directory of Open Access Journals (Sweden)

    Ayodele O. Kolawole

    Full Text Available Fish hepatic glutathione transferases are connected with the elimination of intracellular pollutants and detoxification of organic micro-pollutants in their aquatic ecosystem. The two-substrate steady state kinetic mechanism of Silver catfish (Synodontis eupterus major hepatic glutathione transferases purified to apparent homogeneity was explored. The enzyme was dimeric enzyme with a monomeric size of 25.6 kDa. Initial-velocity studies and Product inhibition patterns by methyl glutathione and chloride with respect to GSH-CDNB; GSH-ρ-nitrophenylacetate; and GSH-Ethacrynic acid all conforms to a rapid equilibrium sequential random Bi Bi kinetic mechanism rather than steady state sequential random Bi Bi kinetic. α was 2.96 ± 0.35 for the model. The pH profile of Vmax/KM (with saturating 1-chloro-2,4-dinitrobenzene and variable GSH concentrations showed apparent pKa value of 6.88 and 9.86. Inhibition studies as a function of inhibitor concentration show that the enzyme is a homodimer and near neutral GST. The enzyme poorly conjugates 4-hydroxylnonenal and cumene hydroperoxide and may not be involved in oxidative stress protection. The seGST is unique and overwhelmingly shows characteristics similar to those of homodimeric class Pi GSTs, as was indicated by its kinetic mechanism, substrate specificity and inhibition studies. The rate- limiting step, probably the product release, of the reaction is viscosity-dependent and is consequential if macro-viscosogen or micro-viscosogen. Keywords: Silver catfish, Glutathione transferase, Steady-state, Kinetic mechanism, Inhibition

  11. Pathophysiology of major depressive disorder: mechanisms involved in etiology are not associated with clinical progression.

    Science.gov (United States)

    Verduijn, J; Milaneschi, Y; Schoevers, R A; van Hemert, A M; Beekman, A T F; Penninx, B W J H

    2015-09-29

    Meta-analyses support the involvement of different pathophysiological mechanisms (inflammation, hypothalamic-pituitary (HPA)-axis, neurotrophic growth and vitamin D) in major depressive disorder (MDD). However, it remains unknown whether dysregulations in these mechanisms are more pronounced when MDD progresses toward multiple episodes and/or chronicity. We hypothesized that four central pathophysiological mechanisms of MDD are not only involved in etiology, but also associated with clinical disease progression. Therefore, we expected to find increasingly more dysregulation across consecutive stages of MDD progression. The sample from the Netherlands Study of Depression and Anxiety (18-65 years) consisted of 230 controls and 2333 participants assigned to a clinical staging model categorizing MDD in eight stages (0, 1A, 1B, 2, 3A, 3B, 3C and 4), from familial risk at MDD (stage 0) to chronic MDD (stage 4). Analyses of covariance examined whether pathophysiological mechanism markers (interleukin (IL)-6, C-reactive protein (CRP), cortisol, brain-derived neurotrophic factor and vitamin D) showed a linear trend across controls, those at risk for MDD (stages 0, 1A and 1B), and those with full-threshold MDD (stages 2, 3A, 3B, 3C and 4). Subsequently, pathophysiological differences across separate stages within those at risk and with full-threshold MDD were examined. A linear increase of inflammatory markers (CRP P=0.026; IL-6 P=0.090), cortisol (P=0.025) and decrease of vitamin D (P<0.001) was found across the entire sample (for example, from controls to those at risk and those with full-threshold MDD). Significant trends of dysregulations across stages were present in analyses focusing on at-risk individuals (IL-6 P=0.050; cortisol P=0.008; vitamin D P<0.001); however, no linear trends were found in dysregulations for any of the mechanisms across more progressive stages of full-threshold MDD. Our results support that the examined pathophysiological mechanisms are

  12. [Expression changes of major outer membrane protein antigens in Leptospira interrogans during infection and its mechanism].

    Science.gov (United States)

    Zheng, Linli; Ge, Yumei; Hu, Weilin; Yan, Jie

    2013-03-01

    To determine expression changes of major outer membrane protein(OMP) antigens of Leptospira interrogans serogroup Icterohaemorrhagiae serovar Lai strain Lai during infection of human macrophages and its mechanism. OmpR encoding genes and OmpR-related histidine kinase (HK) encoding gene of L.interrogans strain Lai and their functional domains were predicted using bioinformatics technique. mRNA level changes of the leptospiral major OMP-encoding genes before and after infection of human THP-1 macrophages were detected by real-time fluorescence quantitative RT-PCR. Effects of the OmpR-encoding genes and HK-encoding gene on the expression of leptospiral OMPs during infection were determined by HK-peptide antiserum block assay and closantel inhibitive assays. The bioinformatics analysis indicated that LB015 and LB333 were referred to OmpR-encoding genes of the spirochete, while LB014 might act as a OmpR-related HK-encoding gene. After the spirochete infecting THP-1 cells, mRNA levels of leptospiral lipL21, lipL32 and lipL41 genes were rapidly and persistently down-regulated (P Expression levels of L.interrogans strain Lai major OMP antigens present notable changes during infection of human macrophages. There is a group of OmpR-and HK-encoding genes which may play a major role in down-regulation of expression levels of partial OMP antigens during infection.

  13. Abiotic stressors and stress responses

    DEFF Research Database (Denmark)

    Sulmon, Cecile; Van Baaren, Joan; Cabello-Hurtado, Francisco

    2015-01-01

    Abstract Organisms are regularly subjected to abiotic stressors related to increasing anthropogenic activities, including chemicals and climatic changes that induce major stresses. Based on various key taxa involved in ecosystem functioning (photosynthetic microorganisms, plants, invertebrates), we...... review how organisms respond and adapt to chemical- and temperature-induced stresses from molecular to population level. Using field-realistic studies, our integrative analysis aims to compare i) how molecular and physiological mechanisms related to protection, repair and energy allocation can impact...... life history traits of stressed organisms, and ii) to what extent trait responses influence individual and population responses. Common response mechanisms are evident at molecular and cellular scales but become rather difficult to define at higher levels due to evolutionary distance and environmental...

  14. Global temperature response to the major volcanic eruptions in multiple reanalysis data sets

    Directory of Open Access Journals (Sweden)

    M. Fujiwara

    2015-12-01

    Full Text Available The global temperature responses to the eruptions of Mount Agung in 1963, El Chichón in 1982, and Mount Pinatubo in 1991 are investigated using nine currently available reanalysis data sets (JRA-55, MERRA, ERA-Interim, NCEP-CFSR, JRA-25, ERA-40, NCEP-1, NCEP-2, and 20CR. Multiple linear regression is applied to the zonal and monthly mean time series of temperature for two periods, 1979–2009 (for eight reanalysis data sets and 1958–2001 (for four reanalysis data sets, by considering explanatory factors of seasonal harmonics, linear trends, Quasi-Biennial Oscillation, solar cycle, and El Niño Southern Oscillation. The residuals are used to define the volcanic signals for the three eruptions separately, and common and different responses among the older and newer reanalysis data sets are highlighted for each eruption. In response to the Mount Pinatubo eruption, most reanalysis data sets show strong warming signals (up to 2–3 K for 1-year average in the tropical lower stratosphere and weak cooling signals (down to −1 K in the subtropical upper troposphere. For the El Chichón eruption, warming signals in the tropical lower stratosphere are somewhat smaller than those for the Mount Pinatubo eruption. The response to the Mount Agung eruption is asymmetric about the equator with strong warming in the Southern Hemisphere midlatitude upper troposphere to lower stratosphere. Comparison of the results from several different reanalysis data sets confirms the atmospheric temperature response to these major eruptions qualitatively, but also shows quantitative differences even among the most recent reanalysis data sets. The consistencies and differences among different reanalysis data sets provide a measure of the confidence and uncertainty in our current understanding of the volcanic response. The results of this intercomparison study may be useful for validation of climate model responses to volcanic forcing and for assessing proposed

  15. Fracture mechanics in new designed power module under thermo-mechanical loads

    Directory of Open Access Journals (Sweden)

    Durand Camille

    2014-06-01

    Full Text Available Thermo-mechanically induced failure is a major reliability issue in the microelectronic industry. On this account, a new type of Assembly Interconnected Technology used to connect MOSFETs in power modules has been developed. The reliability is increased by using a copper clip soldered on the top side of the chip, avoiding the use of aluminium wire bonds, often responsible for the failure of the device. Thus the new designed MOSFET package does not follow the same failure mechanisms as standard modules. Thermal and power cycling tests were performed on these new packages and resulting failures were analyzed. Thermo-mechanical simulations including cracks in the aluminium metallization and intermetallics (IMC were performed using Finite Element Analysis in order to better understand crack propagation and module behaviour.

  16. Evasion of adaptive and innate immune response mechanisms by γ-herpesviruses

    Science.gov (United States)

    Feng, Pinghui; Moses, Ashlee; Früh, Klaus

    2015-01-01

    γ-Herpesviral immune evasion mechanisms are optimized to support the acute, lytic and the longterm, latent phase of infection. During acute infection, specific immune modulatory proteins limit, but also exploit, the antiviral activities of cell intrinsic innate immune responses as well as those of innate and adaptive immune cells. During latent infection, a restricted gene expression program limits immune targeting and cis-acting mechanisms to reduce the antigen presentation as well as antigenicity of latency-associated proteins. Here, we will review recent progress in our understanding of γ-herpesviral immune evasion strategies. PMID:23735334

  17. Micromechanical Models of Mechanical Response of High Performance Fibre Reinforced Cement Composites

    DEFF Research Database (Denmark)

    Li, V. C.; Mihashi, H.; Alwan, J.

    1996-01-01

    generation of FRC with high performance and economical viability, is in sight. However, utilization of micromechanical models for a more comprehensive set of important HPFRCC properties awaits further investigations into fundamental mechanisms governing composite properties, as well as intergrative efforts......The state-of-the-art in micromechanical modeling of the mechanical response of HPFRCC is reviewed. Much advances in modeling has been made over the last decade to the point that certain properties of composites can be carefully designed using the models as analytic tools. As a result, a new...... across responses to different load types. Further, micromechanical models for HPFRCC behavior under complex loading histories, including those in fracture, fatigue and multuaxial loading are urgently needed in order to optimize HPFRCC microstrcuctures and enable predictions of such material in structures...

  18. Improvement of Soybean Products Through the Response Mechanism Analysis Using Proteomic Technique.

    Science.gov (United States)

    Wang, Xin; Komatsu, Setsuko

    Soybean is rich in protein/vegetable oil and contains several phytochemicals such as isoflavones and phenolic compounds. Because of the predominated nutritional values, soybean is considered as traditional health benefit food. Soybean is a widely cultivated crop; however, its growth and yield are markedly affected by adverse environmental conditions. Proteomic techniques make it feasible to map protein profiles both during soybean growth and under unfavorable conditions. The stress-responsive mechanisms during soybean growth have been uncovered with the help of proteomic studies. In this review, the history of soybean as food and the morphology/physiology of soybean are described. The utilization of proteomics during soybean germination and development is summarized. In addition, the stress-responsive mechanisms explored using proteomic techniques are reviewed in soybean. © 2017 Elsevier Inc. All rights reserved.

  19. Extracting material response from simple mechanical tests on hardening-softening-hardening viscoplastic solids

    Science.gov (United States)

    Mohan, Nisha

    Compliant foams are usually characterized by a wide range of desirable mechanical properties. These properties include viscoelasticity at different temperatures, energy absorption, recoverability under cyclic loading, impact resistance, and thermal, electrical, acoustic and radiation-resistance. Some foams contain nano-sized features and are used in small-scale devices. This implies that the characteristic dimensions of foams span multiple length scales, rendering modeling their mechanical properties difficult. Continuum mechanics-based models capture some salient experimental features like the linear elastic regime, followed by non-linear plateau stress regime. However, they lack mesostructural physical details. This makes them incapable of accurately predicting local peaks in stress and strain distributions, which significantly affect the deformation paths. Atomistic methods are capable of capturing the physical origins of deformation at smaller scales, but suffer from impractical computational intensity. Capturing deformation at the so-called meso-scale, which is capable of describing the phenomenon at a continuum level, but with some physical insights, requires developing new theoretical approaches. A fundamental question that motivates the modeling of foams is `how to extract the intrinsic material response from simple mechanical test data, such as stress vs. strain response?' A 3D model was developed to simulate the mechanical response of foam-type materials. The novelty of this model includes unique features such as the hardening-softening-hardening material response, strain rate-dependence, and plastically compressible solids with plastic non-normality. Suggestive links from atomistic simulations of foams were borrowed to formulate a physically informed hardening material input function. Motivated by a model that qualitatively captured the response of foam-type vertically aligned carbon nanotube (VACNT) pillars under uniaxial compression [2011,"Analysis of

  20. Epigenetic Mechanisms Regulating Adaptive Responses to Targeted Kinase Inhibitors in Cancer.

    Science.gov (United States)

    Angus, Steven P; Zawistowski, Jon S; Johnson, Gary L

    2018-01-06

    Although targeted inhibition of oncogenic kinase drivers has achieved remarkable patient responses in many cancers, the development of resistance has remained a significant challenge. Numerous mechanisms have been identified, including the acquisition of gatekeeper mutations, activating pathway mutations, and copy number loss or gain of the driver or alternate nodes. These changes have prompted the development of kinase inhibitors with increased selectivity, use of second-line therapeutics to overcome primary resistance, and combination treatment to forestall resistance. In addition to genomic resistance mechanisms, adaptive transcriptional and signaling responses seen in tumors are gaining appreciation as alterations that lead to a phenotypic state change-often observed as an epithelial-to-mesenchymal shift or reversion to a cancer stem cell-like phenotype underpinned by remodeling of the epigenetic landscape. This epigenomic modulation driving cell state change is multifaceted and includes modulation of repressive and activating histone modifications, DNA methylation, enhancer remodeling, and noncoding RNA species. Consequently, the combination of kinase inhibitors with drugs targeting components of the transcriptional machinery and histone-modifying enzymes has shown promise in preclinical and clinical studies. Here, we review mechanisms of resistance to kinase inhibition in cancer, with special emphasis on the rewired kinome and transcriptional signaling networks and the potential vulnerabilities that may be exploited to overcome these adaptive signaling changes.

  1. Physical Mechanisms Responsible for Electrical Conduction in Pt/GaN Schottky Diodes

    OpenAIRE

    H. MAZARI; K. AMEUR; N. BENSEDDIK; Z. BENAMARA; R. KHELIFI; M. MOSTEFAOUI; N. ZOUGAGH; N. BENYAHYA; R. BECHAREF; G. BASSOU; B. GRUZZA; J. M. BLUET; C. BRU-CHEVALLIER

    2014-01-01

    The current-voltage (I-V) characteristics of Pt/(n.u.d)-GaN and Pt/Si-doped-GaN diodes Schottky are investigated. Based on these measurements, physical mechanisms responsible for electrical conduction have been suggested. The contribution of thermionic-emission current and various other current transport mechanisms were assumed when evaluating the Schottky barrier height. Thus the generation-recombination, tunneling and leakage currents caused by inhomogeneities and defects at metal-semicondu...

  2. Nonlinear dynamic response of electro-thermo-mechanically loaded piezoelectric cylindrical shell reinforced with BNNTs

    International Nuclear Information System (INIS)

    Yang, J H; Yang, J; Kitipornchai, S

    2012-01-01

    This paper presents an investigation on the nonlinear dynamic response of piezoelectric cylindrical shells reinforced with boron nitride nanotubes (BNNTs) under a combined axisymmetric electro-thermo-mechanical loading. By employing the classical Donnell shell theory, the von Kármán–Donnell kinematic relationship, and a piezo-elastic constitutive law including thermal effects, the nonlinear governing equations of motion of the shell are derived through the Reissner variational principle. The finite difference method and a time-integration scheme are used to obtain the nonlinear dynamic response of the BNNT-reinforced piezoelectric shell. A parametric study is conducted, showing the effects of geometrically nonlinear deformation, applied voltage, temperature change, mechanical load, BNNT volume fraction and boundary conditions on the nonlinear dynamic response. (paper)

  3. Responses of Phospholipase D and Antioxidant System to Mechanical Wounding in Postharvest Banana Fruits

    Directory of Open Access Journals (Sweden)

    Li Li

    2017-01-01

    Full Text Available Banana fruits are susceptible to mechanical damage. The present study was to investigate the responses of phospholipase D (PLD and antioxidant system to mechanical wounding in postharvest banana fruits. During 16 d storage at 25°C and 90% relative humidity, PLD activity in wounded fruits was significantly higher than that in control (without artificial wounding fruits. The higher value of PLD mRNA was found in wounded fruits than in control. PLD mRNA expression reached the highest peak on day 4 in both groups, but it was 2.67 times in wounded fruits compared to control at that time, indicating that PLD gene expression was activated in response to wounding stress. In response to wounding stress, the higher lipoxygenase (LOX activity was observed and malondialdehyde (MDA production was accelerated. The activities of antioxidant enzymes such as superoxide dismutase (SOD, catalase (CAT, peroxidase (POD, and ascorbate peroxidase (APX in wounded fruits were significantly higher than those in control. The concentrations of reactive oxygen species (ROS such as superoxide anion (O2•- and hydrogen peroxide (H2O2 in fruits increased under mechanical wounding. The above results provided a basis for further investigating the mechanism of postharvest banana fruits adapting to environmental stress.

  4. Molecular analysis of Hsp70 mechanisms in plants and their function in response to stress.

    Science.gov (United States)

    Usman, Magaji G; Rafii, Mohd Y; Martini, Mohammad Y; Yusuff, Oladosu A; Ismail, Mohd R; Miah, Gous

    2017-04-01

    Studying the strategies of improving abiotic stress tolerance is quite imperative and research under this field will increase our understanding of response mechanisms to abiotic stress such as heat. The Hsp70 is an essential regulator of protein having the tendency to maintain internal cell stability like proper folding protein and breakdown of unfolded proteins. Hsp70 holds together protein substrates to help in movement, regulation, and prevent aggregation under physical and or chemical pressure. However, this review reports the molecular mechanism of heat shock protein 70 kDa (Hsp70) action and its structural and functional analysis, research progress on the interaction of Hsp70 with other proteins and their interaction mechanisms as well as the involvement of Hsp70 in abiotic stress responses as an adaptive defense mechanism.

  5. Tactical and operational response to major incidents: feasibility and reliability of skills assessment using novel virtual environments.

    Science.gov (United States)

    Cohen, Daniel; Sevdalis, Nick; Patel, Vishal; Taylor, Michael; Lee, Henry; Vokes, Mick; Heys, Mick; Taylor, David; Batrick, Nicola; Darzi, Ara

    2013-07-01

    To determine feasibility and reliability of skills assessment in a multi-agency, triple-site major incident response exercise carried out in a virtual world environment. Skills assessment was carried out across three scenarios. The pre-hospital scenario required paramedics to triage and treat casualties at the site of an explosion. Technical skills assessment forms were developed using training syllabus competencies and national guidelines identified by pre-hospital response experts. Non-technical skills were assessed using a seven-point scale previously developed for use by pre-hospital paramedics. The two in-hospital scenarios, focusing on a trauma team leader and a silver/clinical major incident co-ordinator, utilised the validated Trauma-NOTECHS scale to assess five domains of performance. Technical competencies were assessed using an ATLS-style competency scale for the trauma scenario. For the silver scenario, the assessment document was developed using competencies described from a similar role description in a real-life hospital major incident plan. The technical and non-technical performance of all participants was assessed live by two experts in each of the three scenarios and inter-assessor reliability was computed. Participants also self-assessed their performance using identical proformas immediately after the scenarios were completed. Self and expert assessments were correlated (assessment cross-validation). Twenty-three participants underwent all scenarios and assessments. Performance assessments were feasible for both experts as well as the participants. Non-technical performance was generally scored higher than technical performance. Very good inter-rater reliability was obtained between expert raters across all scenarios and both technical and non-technical aspects of performance (reliability range 0.59-0.90, Psassessment in technical skills across all three scenarios (correlation range 0.52-0.84, Psskills. This study establishes feasibility and

  6. Mechanisms of repetitive retrograde contractions in response to sustained esophageal distension: a study evaluating patients with postfundoplication dysphagia.

    Science.gov (United States)

    Carlson, Dustin A; Kahrilas, Peter J; Ritter, Katherine; Lin, Zhiyue; Pandolfino, John E

    2018-03-01

    Repetitive retrograde contractions (RRCs) in response to sustained esophageal distension are a distinct contractility pattern observed with functional luminal imaging probe (FLIP) panometry that are common in type III (spastic) achalasia. RRCs are hypothesized to be indicative of either impaired inhibitory innervation or esophageal outflow obstruction. We aimed to apply FLIP panometry to patients with postfundoplication dysphagia (a model of esophageal obstruction) to explore mechanisms behind RRCs. Adult patients with dysphagia after Nissen fundoplication ( n = 32) or type III achalasia ( n = 25) were evaluated with high-resolution manometry (HRM) and upper endoscopy with FLIP. HRM studies were assessed for outflow obstruction and spastic features: premature contractility, hypercontractility, and impaired deglutitive inhibition during multiple-rapid swallows. FLIP studies were analyzed to determine the esophagogastric junction (EGJ)-distensibility index and contractility pattern, including RRCs. Barium esophagram was evaluated when available. RRCs were present in 8/32 (25%) fundoplication and 19/25 (76%) achalasia patients ( P esophageal outflow obstruction, as a predictor for RRCs. RRCs in response to sustained esophageal distension appear to be a manifestation of spastic esophageal motility. Although future study to further clarify the significance of RRCs is needed, RRCs on FLIP panometry should prompt evaluation for a major motor disorder. NEW & NOTEWORTHY Repetitive retrograde contractions (RRCs) are a common response to sustained esophageal distension among spastic achalasia patients when evaluated with the functional luminal imaging probe. We evaluated patients with postfundoplication dysphagia, i.e., patients with suspected mechanical obstruction, and found that RRCs occasionally occurred among postfundoplication patients, but often in association with manometric features of esophageal neuromuscular imbalance. Thus, RRCs appear to be a manifestation of

  7. Enhancement of immune response induced by DNA vaccine cocktail expressing complete LACK and TSA genes against Leishmania major.

    Science.gov (United States)

    Ghaffarifar, Fatemeh; Jorjani, Ogholniaz; Sharifi, Zohreh; Dalimi, Abdolhossein; Hassan, Zuhair M; Tabatabaie, Fatemeh; Khoshzaban, Fariba; Hezarjaribi, Hajar Ziaei

    2013-04-01

    Leishmaniasis is an important disease in humans. Leishmania homologue of receptor for Activated C Kinase (LACK) and thiol specific antioxidant (TSA) as immuno-dominant antigens of Leishmania major are considered the most promising molecules for a DNA vaccine. We constructed a DNA cocktail, containing plasmids encoding LACK and TSA genes of Leishmania major and evaluated the immune response and survival rate in BALB/c mice. IgG and Interferon gamma values were noticeably increased in the immunized group with DNA cocktail vaccine, which were significantly higher than those in the single-gene vaccinated and control groups (p 0.05). The immunized mice with the cocktail DNA vaccine presented a considerable reduction in diameter of lesion compared to other groups and a significant difference was observed (p < 0.05) in this regard. The survival time of the immunized mice with the cocktail DNA vaccine was significantly higher than that in the other groups (p < 0.05) after their being challenged with Leishmania major. The findings of this study indicated that the cocktail DNA vaccine increased the cellular response and survival rate and induced protection against infection with Leishmania in the mice. © 2012 The Authors © 2012 APMIS.

  8. The Venturia Apple Pathosystem: Pathogenicity Mechanisms and Plant Defense Responses

    Directory of Open Access Journals (Sweden)

    Gopaljee Jha

    2009-01-01

    Full Text Available Venturia inaequalis is the causal agent of apple scab, a devastating disease of apple. We outline several unique features of this pathogen which are useful for molecular genetics studies intended to understand plant-pathogen interactions. The pathogenicity mechanisms of the pathogen and overview of apple defense responses, monogenic and polygenic resistance, and their utilization in scab resistance breeding programs are also reviewed.

  9. The Role of Instabilities on the Mechanical Response of Cellular Solids and Structures

    National Research Council Canada - National Science Library

    Kyriakides, S

    1997-01-01

    .... The relatively regular and periodic microstructure of these two-dimensional materials makes them excellent models for studying the mechanisms that govern the compressive response of cellular materials...

  10. Placebo response of non-pharmacological and pharmacological trials in major depression: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    André Russowsky Brunoni

    Full Text Available BACKGROUND: Although meta-analyses have shown that placebo responses are large in Major Depressive Disorder (MDD trials; the placebo response of devices such as repetitive transcranial magnetic stimulation (rTMS has not been systematically assessed. We proposed to assess placebo responses in two categories of MDD trials: pharmacological (antidepressant drugs and non-pharmacological (device- rTMS trials. METHODOLOGY/PRINCIPAL FINDINGS: We performed a systematic review and meta-analysis of the literature from April 2002 to April 2008, searching MEDLINE, Cochrane, Scielo and CRISP electronic databases and reference lists from retrieved studies and conference abstracts. We used the keywords placebo and depression and escitalopram for pharmacological studies; and transcranial magnetic stimulation and depression and sham for non-pharmacological studies. All randomized, double-blinded, placebo-controlled, parallel articles on major depressive disorder were included. Forty-one studies met our inclusion criteria - 29 in the rTMS arm and 12 in the escitalopram arm. We extracted the mean and standard values of depression scores in the placebo group of each study. Then, we calculated the pooled effect size for escitalopram and rTMS arm separately, using Cohen's d as the measure of effect size. We found that placebo response are large for both escitalopram (Cohen's d - random-effects model - 1.48; 95%C.I. 1.26 to 1.6 and rTMS studies (0.82; 95%C.I. 0.63 to 1. Exploratory analyses show that sham response is associated with refractoriness and with the use of rTMS as an add-on therapy, but not with age, gender and sham method utilized. CONCLUSIONS/SIGNIFICANCE: We confirmed that placebo response in MDD is large regardless of the intervention and is associated with depression refractoriness and treatment combination (add-on rTMS studies. The magnitude of the placebo response seems to be related with study population and study design rather than the intervention

  11. Earthquake responses of a beam supported by a mechanical snubber

    International Nuclear Information System (INIS)

    Ohmata, Kenichiro; Ishizu, Seiji.

    1989-01-01

    The mechanical snubber is an earthquakeproof device for piping systems under particular circumstances such as high temperature and radioactivity. It has nonlinearities in both load and frequency response. In this report, the resisting force characteristics of the snubber and earthquake responses of piping (a simply supported beam) which is supported by the snubber are simulated using Continuous System Simulation Language (CSSL). Digital simulations are carried out for various kinds of physical properties of the snubber. The restraint effect and the maximum resisting force of the snubber during earthquakes are discussed and compared with the case of an oil damper. The earthquake waves used here are E1 Centro N-S and Akita Harbour N-S (Nihonkai-Chubu earthquake). (author)

  12. Response mechanism for surface acoustic wave gas sensors based on surface-adsorption.

    Science.gov (United States)

    Liu, Jiansheng; Lu, Yanyan

    2014-04-16

    A theoretical model is established to describe the response mechanism of surface acoustic wave (SAW) gas sensors based on physical adsorption on the detector surface. Wohljent's method is utilized to describe the relationship of sensor output (frequency shift of SAW oscillator) and the mass loaded on the detector surface. The Brunauer-Emmett-Teller (BET) formula and its improved form are introduced to depict the adsorption behavior of gas on the detector surface. By combining the two methods, we obtain a theoretical model for the response mechanism of SAW gas sensors. By using a commercial SAW gas chromatography (GC) analyzer, an experiment is performed to measure the frequency shifts caused by different concentration of dimethyl methylphosphonate (DMMP). The parameters in the model are given by fitting the experimental results and the theoretical curve agrees well with the experimental data.

  13. Compressive response and deformation mechanisms of vertically aligned helical carbon nanotube forests

    Science.gov (United States)

    Scheffer, V. C.; Thevamaran, R.; Coluci, V. R.

    2018-01-01

    We study the dynamic compressive response of vertically aligned helical carbon nanotube forests using a mesoscale model. To describe the compressive response, the model includes the helical geometry of the constituent coils, the entanglement between neighboring coils, and the sideway interactions among coils. Coarse-grained simulations show forest densification and stress localization, which are caused by different deformation mechanisms such as coil packing, buckling, and crushing. We find that these mechanisms depend on the initial overlap between coils and lead to a nonlinear stress-strain behavior that agrees with recent impact experiments. The nonlinear stress-strain behavior was shown to be composed of an initial linear increase of stress in strain followed by an exponential growth. These regimes are an outcome of the characteristics of both the individual coils and the entangled morphology of the forests.

  14. A noise level prediction method based on electro-mechanical frequency response function for capacitors.

    Science.gov (United States)

    Zhu, Lingyu; Ji, Shengchang; Shen, Qi; Liu, Yuan; Li, Jinyu; Liu, Hao

    2013-01-01

    The capacitors in high-voltage direct-current (HVDC) converter stations radiate a lot of audible noise which can reach higher than 100 dB. The existing noise level prediction methods are not satisfying enough. In this paper, a new noise level prediction method is proposed based on a frequency response function considering both electrical and mechanical characteristics of capacitors. The electro-mechanical frequency response function (EMFRF) is defined as the frequency domain quotient of the vibration response and the squared capacitor voltage, and it is obtained from impulse current experiment. Under given excitations, the vibration response of the capacitor tank is the product of EMFRF and the square of the given capacitor voltage in frequency domain, and the radiated audible noise is calculated by structure acoustic coupling formulas. The noise level under the same excitations is also measured in laboratory, and the results are compared with the prediction. The comparison proves that the noise prediction method is effective.

  15. The Mechanical Response of Multifunctional Battery Systems

    Science.gov (United States)

    Tsutsui, Waterloo

    The current state of the art in the field of the mechanical behavior of electric vehicle (EV) battery cells is limited to quasi-static analysis. The lack of published data in the dynamic mechanical behavior of EV battery cells blinds engineers and scientists with the uncertainty of what to expect when EVs experience such unexpected events as intrusions to their battery systems. To this end, the recent occurrences of several EVs catching fire after hitting road debris even make this topic timelier. In order to ensure the safety of EV battery, it is critical to develop quantitative understanding of battery cell mechanical behavior under dynamic compressive loadings. Specifically, the research focuses on the dynamic mechanical loading effect on the standard "18650" cylindrical lithium-ion battery cells. In the study, the force-displacement and voltage-displacement behavior of the battery cells were analyzed experimentally at two strain rates, two state-of-charges, and two unit-cell configurations. The results revealed the strain rate sensitivity of their mechanical responses with the solid sacrificial elements. When the hollow sacrificial cells are used, on the other hand, effect was negligible up to the point of densification strength. Also, the high state-of-charge appeared to increase the stiffness of the battery cells. The research also revealed the effectiveness of the sacrificial elements on the mechanical behavior of a unit cell that consists of one battery cell and six sacrificial elements. The use of the sacrificial elements resulted in the delayed initiation of electric short circuit. Based on the analysis of battery behavior at the cell level, granular battery assembly, a battery pack, was designed and fabricated. The behavior of the granular battery assembly was analyzed both quasistatically and dynamically. Building on the results of the research, various research plans were proposed. Through conducting the research, we sought to answer the following

  16. Mechanical responses of a-axis GaN nanowires under axial loads

    Science.gov (United States)

    Wang, R. J.; Wang, C. Y.; Feng, Y. T.; Tang, Chun

    2018-03-01

    Gallium nitride (GaN) nanowires (NWs) hold technological significance as functional components in emergent nano-piezotronics. However, the examination of their mechanical responses, especially the mechanistic understanding of behavior beyond elasticity (at failure) remains limited due to the constraints of in situ experimentation. We therefore performed simulations of the molecular dynamics (MD) of the mechanical behavior of [1\\bar{2}10]-oriented GaN NWs subjected to tension or compression loading until failure. The mechanical properties and critical deformation processes are characterized in relation to NW sizes and loading conditions. Detailed examinations revealed that the failure mechanisms are size-dependent and controlled by the dislocation mobility on shuffle-set pyramidal planes. The size dependence of the elastic behavior is also examined in terms of the surface structure determined modification of Young’s modulus. In addition, a comparison with c-axis NWs is made to show how size-effect trends vary with the growth orientation of NWs.

  17. Thermal-structural response of EBR-II major components under reactor operational transients

    International Nuclear Information System (INIS)

    Chang, L.K.; Lee, M.J.

    1983-01-01

    Until recently, the LMFBR safety research has been focused primarily on severe but highly unlikely accident, such as hypothetical-core-disruptive accidents (HCDA's), and not enough attention has been given to accident prevention, which is less severe but more likely sequence. The objective of the EBR-II operational reliability testing (ORT) is to demonstrate that the reactor can be designed and operated to prevent accident. A series of mild duty cycles and overpower transients were designed for accident prevention tests. An assessment of the EBR-II major plant components has been performed to assure structural integrity of the reactor plant for the ORT program. In this paper, the thermal-structural response and structural evaluation of the reactor vessel, the reactor-vessel cover, the intermediate heat exchanger (IHX) and the superheater are presented

  18. Bacillus subtilis alters the proportion of major membrane phospholipids in response to surfactin exposure.

    Science.gov (United States)

    Uttlová, Petra; Pinkas, Dominik; Bechyňková, Olga; Fišer, Radovan; Svobodová, Jaroslava; Seydlová, Gabriela

    2016-12-01

    Surfactin, an anionic lipopeptide produced by Bacillus subtilis, is an antimicrobial that targets the cytoplasmic membrane. Nowadays it appears increasingly apparent that the mechanism of resistance against these types of antibiotics consists of target site modification. This prompted us to investigate whether the surfactin non-producing strain B. subtilis 168 changes its membrane composition in response to a sublethal surfactin concentration. Here we show that the exposure of B. subtilis to surfactin at concentrations of 350 and 650 μg/ml (designated as SF350 and SF650, respectively) leads to a concentration-dependent growth arrest followed by regrowth with an altered growth rate. Analysis of the membrane lipid composition revealed modifications both in the polar head group and the fatty acid region. The presence of either surfactin concentration resulted in a reduction in the content of the major membrane phospholipid phosphatidylglycerol (PG) and increase in phosphatidylethanolamine (PE), which was accompanied by elevated levels of phosphatidic acid (PA) in SF350 cultures. The fatty acid analysis of SF350 cells showed a marked increase in non-branched high-melting fatty acids, which lowered the fluidity of the membrane interior measured as the steady-state fluorescence anisotropy of DPH. The liposome leakage of carboxyfluorescein-loaded vesicles resembling the phospholipid composition of surfactin-adapted cells showed that the susceptibility to surfactin-induced leakage is strongly reduced when the PG/PE ratio decreases and/or PA is included in the target bilayer. We concluded that the modifications of the phospholipid content of B. subtilis cells might provide a self-tolerance of the membrane active surfactin. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Modeling of Nonlinear Mechanical Response in CFRP Angle-Ply Laminates

    Science.gov (United States)

    Ogihara, Shinji

    2014-03-01

    It is known that the failure process in angle-ply laminate involves matrix cracking and delamination and that they exhibit nonlinear stress-strain relation. There may be a significant effect of the constituent blocked ply thickness on the mechanical behavior of angle-ply laminates. These days, thin prepregs whose thickness is, for example 50 micron, are developed and commercially available. Therefore, we can design wide variety of laminates with various constituent ply thicknesses. In this study, effects of constituent ply thickness on the nonlinear mechanical behavior and the damage behavior of CFRP angle-ply laminates are investigated experimentally. Based on the experimental results, the mechanical response in CFRP angle-ply laminates is modeled by using the finite strain viscoplasticity model. We evaluated the mechanical behavior and damage behavior in CFRP angle-ply laminates with different constituent ply thickness under tensile loading experimentally. It was found that as the constituent ply thickness decreases, the strength and failure strain increases. We also observed difference in damage behavior. The preliminary results of finite strain viscoplasticity model considering the damage effect for laminated composites are shown. A qualitative agreement is obtained.

  20. Neural responses to macronutrients: hedonic and homeostatic mechanisms.

    Science.gov (United States)

    Tulloch, Alastair J; Murray, Susan; Vaicekonyte, Regina; Avena, Nicole M

    2015-05-01

    The brain responds to macronutrients via intricate mechanisms. We review how the brain's neural systems implicated in homeostatic control of feeding and hedonic responses are influenced by the ingestion of specific types of food. We discuss how these neural systems are dysregulated in preclinical models of obesity. Findings from these studies can increase our understanding of overeating and, perhaps in some cases, the development of obesity. In addition, a greater understanding of the neural circuits affected by the consumption of specific macronutrients, and by obesity, might lead to new treatments and strategies for preventing unhealthy weight gain. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  1. Effects of social conditions during early development on stress response and personality traits in great tits (Parus major)

    NARCIS (Netherlands)

    Naguib, M.; Floercke, C.; Oers, van K.

    2011-01-01

    Environmental conditions during early development play a crucial role in shaping an organism's phenotype. To test how social group size affects stress response and behavioral characteristics, we used great tits (Parus major) from selection lines for exploratory behavior, a proxy for an avian

  2. Response mechanisms of attached premixed flames subjected to harmonic forcing

    Science.gov (United States)

    Shreekrishna

    vicinity of typical screech frequencies in gas turbine combustors. The nonlinear response problem is exclusively studied in the case of equivalence ratio coupling. Various nonlinearity mechanisms are identified, amongst which the crossover mechanisms, viz., stoichiometric and flammability crossovers, are seen to be responsible in causing saturation in the overall heat release magnitude of the flame. The response physics remain the same across various preheat temperatures and reactant pressures. Finally, comparisons between the chemiluminescence transfer function obtained experimentally and the heat release transfer functions obtained from the reduced order model (ROM) are performed for lean, CH4/Air swirl-stabilized, axisymmetric V-flames. While the comparison between the phases of the experimental and theoretical transfer functions are encouraging, their magnitudes show disagreement at lower Strouhal number gains show disagreement.

  3. Physical Mechanisms Responsible for Electrical Conduction in Pt/GaN Schottky Diodes

    Directory of Open Access Journals (Sweden)

    H. MAZARI

    2014-05-01

    Full Text Available The current-voltage (I-V characteristics of Pt/(n.u.d-GaN and Pt/Si-doped-GaN diodes Schottky are investigated. Based on these measurements, physical mechanisms responsible for electrical conduction have been suggested. The contribution of thermionic-emission current and various other current transport mechanisms were assumed when evaluating the Schottky barrier height. Thus the generation-recombination, tunneling and leakage currents caused by inhomogeneities and defects at metal-semiconductor interface were taken into account.

  4. The response of an individual vortex to local mechanical contact

    Science.gov (United States)

    Kremen, Anna; Wissberg, Shai; Shperber, Yishai; Kalisky, Beena

    2016-05-01

    Recently we reported a new way to manipulate vortices in thin superconducting films by local mechanical contact without magnetic field, current or altering the pinning landscape [1]. We use scanning superconducting interference device (SQUID) microscopy to image the vortices, and a piezo element to push the tip of a silicon chip into contact with the sample. As a result of the stress applied at the contact point, vortices in the proximity of the contact point change their location. Here we study the characteristics of this vortex manipulation, by following the response of individual vortices to single contact events. Mechanical manipulation of vortices provides local view of the interaction between strain and nanomagnetic objects, as well as controllable, effective, localized, and reproducible manipulation technique.

  5. Reactive Molecular Dynamics Simulations to Understand Mechanical Response of Thaumasite under Temperature and Strain Rate Effects.

    Science.gov (United States)

    Hajilar, Shahin; Shafei, Behrouz; Cheng, Tao; Jaramillo-Botero, Andres

    2017-06-22

    Understanding the structural, thermal, and mechanical properties of thaumasite is of great interest to the cement industry, mainly because it is the phase responsible for the aging and deterioration of civil infrastructures made of cementitious materials attacked by external sources of sulfate. Despite the importance, effects of temperature and strain rate on the mechanical response of thaumasite had remained unexplored prior to the current study, in which the mechanical properties of thaumasite are fully characterized using the reactive molecular dynamics (RMD) method. With employing a first-principles based reactive force field, the RMD simulations enable the description of bond dissociation and formation under realistic conditions. From the stress-strain curves of thaumasite generated in the x, y, and z directions, the tensile strength, Young's modulus, and fracture strain are determined for the three orthogonal directions. During the course of each simulation, the chemical bonds undergoing tensile deformations are monitored to reveal the bonds responsible for the mechanical strength of thaumasite. The temperature increase is found to accelerate the bond breaking rate and consequently the degradation of mechanical properties of thaumasite, while the strain rate only leads to a slight enhancement of them for the ranges considered in this study.

  6. Mechanisms Underlying the Antidepressant Response of Acupuncture via PKA/CREB Signaling Pathway.

    Science.gov (United States)

    Jiang, Huili; Zhang, Xuhui; Wang, Yu; Zhang, Huimin; Li, Jing; Yang, Xinjing; Zhao, Bingcong; Zhang, Chuntao; Yu, Miao; Xu, Mingmin; Yu, Qiuyun; Liang, Xingchen; Li, Xiang; Shi, Peng; Bao, Tuya

    2017-01-01

    Protein kinase A (PKA)/cAMP response element-binding (CREB) protein signaling pathway, contributing to impaired neurogenesis parallel to depressive-like behaviors, has been identified as the crucial factor involved in the antidepressant response of acupuncture. However, the molecular mechanisms associated with antidepressant response of acupuncture, neurogenesis, and depressive-like behaviors ameliorating remain unexplored. The objective was to identify the mechanisms underlying the antidepressant response of acupuncture through PKA signaling pathway in depression rats by employing the PKA signaling pathway inhibitor H89 in in vivo experiments. Our results indicated that the expression of hippocampal PKA- α and p-CREB was significantly downregulated by chronic unpredicted mild stress (CUMS) procedures. Importantly, acupuncture reversed the downregulation of PKA- α and p-CREB. The expression of PKA- α was upregulated by fluoxetine, but not p-CREB. No significant difference was found between Acu and FLX groups on the expression of PKA- α and p-CREB. Interestingly, H89 inhibited the effects of acupuncture or fluoxetine on upregulating the expression of p-CREB, but not PKA- α . There was no significant difference in expression of CREB among the groups. Conclusively, our findings further support the hypothesis that acupuncture could ameliorate depressive-like behaviors by regulating PKA/CREB signaling pathway, which might be mainly mediated by regulating the phosphorylation level of CREB.

  7. Molecular mechanism of radioadaptive response: A cross-adaptive response for enhanced repair of DNA damage in adapted cells

    International Nuclear Information System (INIS)

    Takaji Ikushima

    1997-01-01

    The radioadaptive response (RAR) has been attributed to the induction of a repair mechanism by low doses of ionizing radiation, but the molecular nature of the mechanism is not yet elucidated. We have characterized RAR in a series of experiments in cultured Chinese hamster V79 cells. A 4-h interval is required for the full expression of RAR, which decays with the progression of cell proliferation. Treatments with inhibitors of poly(ADP-ribose) polymerase, protein- or RNA synthesis, and protein kinase C suppress the RAR expression. The RAR cross-reacts on clastogenic lesions induced by other physical and chemical DNA-damaging agents. The presence of newly synthesised proteins has been detected during the expression period. Experiments performed using single-cell gel electrophoresis provided more direct evidence for a faster and enhaced DNA repair rate in adapted cells. Here, using single-cell gel electrophoresis, a cross-adaptive response has been demonstrated for enhanced repair of DNA damage induced by neocarzinostatin in radio-adapted cells. (author)

  8. DNA double-strand break response in stem cells: mechanisms to maintain genomic integrity.

    Science.gov (United States)

    Nagaria, Pratik; Robert, Carine; Rassool, Feyruz V

    2013-02-01

    Embryonic stem cells (ESCs) represent the point of origin of all cells in a given organism and must protect their genomes from both endogenous and exogenous genotoxic stress. DNA double-strand breaks (DSBs) are one of the most lethal forms of damage, and failure to adequately repair DSBs would not only compromise the ability of SCs to self-renew and differentiate, but will also lead to genomic instability and disease. Herein, we describe the mechanisms by which ESCs respond to DSB-inducing agents such as reactive oxygen species (ROS) and ionizing radiation, compared to somatic cells. We will also discuss whether the DSB response is fully reprogrammed in induced pluripotent stem cells (iPSCs) and the role of the DNA damage response (DDR) in the reprogramming of these cells. ESCs have distinct mechanisms to protect themselves against DSBs and oxidative stress compared to somatic cells. The response to damage and stress is crucial for the maintenance of self-renewal and differentiation capacity in SCs. iPSCs appear to reprogram some of the responses to genotoxic stress. However, it remains to be determined if iPSCs also retain some DDR characteristics of the somatic cells of origin. The mechanisms regulating the genomic integrity in ESCs and iPSCs are critical for its safe use in regenerative medicine and may shed light on the pathways and factors that maintain genomic stability, preventing diseases such as cancer. This article is part of a Special Issue entitled Biochemistry of Stem Cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Assessment of emergency response planning and implementation in the aftermath of major natural disasters and technological accidents

    International Nuclear Information System (INIS)

    Milligan, Patricia A.; Jones, Joseph; Walton, F.; Smith, J.D.

    2008-01-01

    Emergency planning around nuclear power plants represents some of the most mature and well developed emergency planning in the United States. Since the implementation of NUREG-0654 / FEMA-REP-1, Rev. 1, A Criteria for Preparation and Evaluation of Radiological Emergency Response Plans and Preparedness in Support of Nuclear Power Plants (NRC, 1980a) the licensees, local, and State agencies have developed detailed Radiological Emergency Response Programs. An important component of these plans is the evacuation of the population in the event of a general emergency condition at the plant. In January 2005, the U.S. Nuclear Regulatory Commission (NRC) published the landmark report, 'Identification and Analysis of Factors Affecting Emergency Evacuations' (NUREG/CR 6864/), which represented the most comprehensive investigation of public evacuations in the United States in more than 15 years. Since the completion of this research, several high profile evacuations have occurred, including Hurricane Katrina in New Orleans, Hurricane Rita in Houston, as well as major wildfires across the western U.S. The NRC commissioned an update to its 2005 evacuation case study publication to evaluate the evacuation experience of the selected communities (e.g., timeliness, related injuries, hazard avoidance); the level of preplanning that was in place for the affected areas and extent that the pre planned requirements were implemented during the emergency response; the critical factors contributing to the efficiency of or impediments to the evacuations (e.g., training, drills, preparedness, experience, resources, facilities, and organizational structure); and additional factors that may have contributed to less than satisfactory public response (i.e., availability of personal transportation, use of public transportation, lack of availability of shelters, etc.). The comprehensive report will be published in fall of 2008 as NUREG/CR-6981, Assessment of Emergency Response Planning and

  10. Gender and Personality Differences in Response to Social Stressors in Great Tits (Parus major.

    Directory of Open Access Journals (Sweden)

    Esther van der Meer

    Full Text Available In response to stressors, animals can increase the activity of the hypothalamic-pituitary-adrenocortical axis, resulting in elevated glucocorticoid concentrations. An increase in glucocorticoids results in an increase in heterophils and a decrease in lymphocytes, which ratio (H/L-ratio is an indicator of stress in birds. The physiological response to a stressor can depend on individual characteristics, like dominance rank, sex and personality. Although the isolated effects of these characteristics on the response to a stressor have been well studied, little is known about the response in relation to a combination of these characteristics. In this study we investigate the relationship between social stress, dominance rank, sex and exploratory behaviour as a validated operational measure of personality in great tits (Parus major. Great tits show consistent individual differences in behaviour and physiology in response to stressors, and exploratory behaviour can be classified as fast or slow exploring. We group-housed four birds, two fast and two slow explorers, of the same sex that were previously singly housed, in an aviary and compared the H/L-ratio, lymphocyte and heterophil count before and after group housing. After experiencing the social context all birds increased their H/L-ratio and heterophil count. Females showed a stronger increase in H/L-ratio and heterophil count than males, which seemed to be related to a higher number of agonistic interactions compared to males. Dominance rank and exploration type did not affect the H/L-ratio or heterophil count. Contrary to our expectations, all birds increased their lymphocyte count. However, this increase was slower for fast than for slow explorers. Our study suggests that personality and sex related differences, but not dominance rank, are associated with changes in an individual's physiological response due to a social context.

  11. Inducible Major Vault Protein Plays a Pivotal Role in Double-Stranded RNA- or Virus-Induced Proinflammatory Response.

    Science.gov (United States)

    Peng, Nanfang; Liu, Shi; Xia, Zhangchuan; Ren, Sheng; Feng, Jian; Jing, Mingzhen; Gao, Xin; Wiemer, Erik A C; Zhu, Ying

    2016-03-15

    Pathogen invasion triggers robust antiviral cytokine production via different transcription factor signaling pathways. We have previously demonstrated that major vault protein (MVP) induces type I IFN production during viral infection; however, little is known about the role of MVP in proinflammatory responses. In this study, we found in vitro that expression of MVP, IL-6, and IL-8 was inducible upon dsRNA stimulation or viral infection. Moreover, MVP was essential for the induction of IL-6 and IL-8, as impaired expression of IL-6 and IL-8 in MVP-deficient human PBMCs, human lung epithelial cells (A549), and THP-1 monocytes, as well as in murine splenocytes, peritoneal macrophages, and PBMCs from MVP-knockout (MVP(-/-)) mice, was observed. Upon investigation of the underlying mechanisms, we demonstrated that MVP acted in synergy with AP-1 (c-Fos) and CCAAT/enhancer binding protein (C/EBP)β-liver-enriched transcriptional activating protein to activate the IL6 and IL8 promoters. Introduction of mutations into the AP-1 and C/EBPβ binding sites on the IL6 and IL8 promoters resulted in the loss of synergistic activation with MVP. Furthermore, we found that MVP interacted with both c-Fos and C/EBPβ. The interactions promoted nuclear translocation and recruitment of these transcription factors to IL6 and IL8 promoter regions. In the MVP(-/-) mouse model, significantly decreased expression of early antiviral cytokines resulted in higher viral titer in the lung, higher mortality, and heavier lung damage after infection with lethal influenza A virus. Taken together, our findings help to delineate a novel role of MVP in host proinflammatory response. Copyright © 2016 by The American Association of Immunologists, Inc.

  12. Dissecting the genetic and metabolic mechanisms of adaptation to the knockout of a major metabolic enzyme in Escherichia coli

    DEFF Research Database (Denmark)

    Long, Christopher P.; Gonzalez, Jacqueline E.; Feist, Adam M.

    2018-01-01

    Unraveling the mechanisms of microbial adaptive evolution following genetic or environmental challenges is of fundamental interest in biological science and engineering. When the challenge is the loss of a metabolic enzyme, adaptive responses can also shed significant insight into metabolic...

  13. [Research advances of fluid bio-mechanics in bone].

    Science.gov (United States)

    Chen, Zebin; Huo, Bo

    2017-04-01

    It has been found for more than one century that when experiencing mechanical loading, the structure of bone will adapt to the changing mechanical environment, which is called bone remodeling. Bone remodeling is charaterized as two processes of bone formation and bone resorption. A large number of studies have confirmed that the shear stress is resulted from interstitial fluid flow within bone cavities under mechanical loading and it is the key factor of stimulating the biological responses of bone cells. This review summarizes the major research progress during the past years, including the biological response of bone cells under fluid flow, the pressure within bone cavities, the theoretical modeling, numerical simulation and experiments about fluid flow within bone, and finally analyzes and predicts the possible tendency in this field in the future.

  14. The Relationship between 4-H Division Leaders' Propensity toward Delegation and Involvement in and Major Responsibility for Leader Identification and Selection.

    Science.gov (United States)

    Dunbar, Mary Elizabeth

    This research was to determine the relationship between New York State Cooperative Extension 4-H Division Leaders' propensity toward delegation of work responsibility and (1) their degree of involvement in the performance of leader identification and selection tasks, (2) assignment of major responsibility for these tasks, and (3) other selected…

  15. Do Biology Majors Really Differ from Non-STEM Majors?

    Science.gov (United States)

    Cotner, Sehoya; Thompson, Seth; Wright, Robin

    2017-01-01

    Recent calls to action urge sweeping reform in science education, advocating for improved learning for all students-including those majoring in fields beyond the sciences. However, little work has been done to characterize the differences-if any exist-between students planning a career in science and those studying other disciplines. We describe an attempt to clarify, in broad terms, how non-STEM (science, technology, engineering, and mathematics) majors differ from life sciences majors, and how they are similar. Using survey responses and institutional data, we find that non-STEM majors are not unilaterally science averse; non-STEM majors are more likely than biology majors to hold misconceptions about the nature of science, yet they are not completely ignorant of how science works; non-STEM majors are less likely than biology majors to see science as personally relevant; and non-STEM majors populations are likely to be more diverse-with respect to incoming knowledge, perceptions, backgrounds, and skills-than a biology majors population. We encourage science educators to consider these characteristics when designing curricula for future scientists or simply for a well-informed citizenry. © 2017 S. Cotner et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  16. Identifying Predictors, Moderators, and Mediators of Antidepressant Response in Major Depressive Disorder: Neuroimaging Approaches

    Science.gov (United States)

    Phillips, Mary L.; Chase, Henry W.; Sheline, Yvette I.; Etkin, Amit; Almeida, Jorge R.C.; Deckersbach, Thilo; Trivedi, Madhukar H.

    2015-01-01

    Objective Despite significant advances in neuroscience and treatment development, no widely accepted biomarkers are available to inform diagnostics or identify preferred treatments for individuals with major depressive disorder. Method In this critical review, the authors examine the extent to which multimodal neuroimaging techniques can identify biomarkers reflecting key pathophysiologic processes in depression and whether such biomarkers may act as predictors, moderators, and mediators of treatment response that might facilitate development of personalized treatments based on a better understanding of these processes. Results The authors first highlight the most consistent findings from neuroimaging studies using different techniques in depression, including structural and functional abnormalities in two parallel neural circuits: serotonergically modulated implicit emotion regulation circuitry, centered on the amygdala and different regions in the medial prefrontal cortex; and dopaminergically modulated reward neural circuitry, centered on the ventral striatum and medial prefrontal cortex. They then describe key findings from the relatively small number of studies indicating that specific measures of regional function and, to a lesser extent, structure in these neural circuits predict treatment response in depression. Conclusions Limitations of existing studies include small sample sizes, use of only one neuroimaging modality, and a focus on identifying predictors rather than moderators and mediators of differential treatment response. By addressing these limitations and, most importantly, capitalizing on the benefits of multimodal neuroimaging, future studies can yield moderators and mediators of treatment response in depression to facilitate significant improvements in shorter- and longer-term clinical and functional outcomes. PMID:25640931

  17. Identifying predictors, moderators, and mediators of antidepressant response in major depressive disorder: neuroimaging approaches.

    Science.gov (United States)

    Phillips, Mary L; Chase, Henry W; Sheline, Yvette I; Etkin, Amit; Almeida, Jorge R C; Deckersbach, Thilo; Trivedi, Madhukar H

    2015-02-01

    Despite significant advances in neuroscience and treatment development, no widely accepted biomarkers are available to inform diagnostics or identify preferred treatments for individuals with major depressive disorder. In this critical review, the authors examine the extent to which multimodal neuroimaging techniques can identify biomarkers reflecting key pathophysiologic processes in depression and whether such biomarkers may act as predictors, moderators, and mediators of treatment response that might facilitate development of personalized treatments based on a better understanding of these processes. The authors first highlight the most consistent findings from neuroimaging studies using different techniques in depression, including structural and functional abnormalities in two parallel neural circuits: serotonergically modulated implicit emotion regulation circuitry, centered on the amygdala and different regions in the medial prefrontal cortex; and dopaminergically modulated reward neural circuitry, centered on the ventral striatum and medial prefrontal cortex. They then describe key findings from the relatively small number of studies indicating that specific measures of regional function and, to a lesser extent, structure in these neural circuits predict treatment response in depression. Limitations of existing studies include small sample sizes, use of only one neuroimaging modality, and a focus on identifying predictors rather than moderators and mediators of differential treatment response. By addressing these limitations and, most importantly, capitalizing on the benefits of multimodal neuroimaging, future studies can yield moderators and mediators of treatment response in depression to facilitate significant improvements in shorter- and longer-term clinical and functional outcomes.

  18. No effect of melatonin to modify surgical-stress response after major vascular surgery: a randomised placebo-controlled trial

    DEFF Research Database (Denmark)

    Kücükakin, B; Wilhelmsen, M; Lykkesfeldt, Jens

    2010-01-01

    A possible mechanism underlying cardiovascular morbidity after major vascular surgery may be the perioperative ischaemia-reperfusion with excessive oxygen-derived free-radical production and increased levels of circulating inflammatory mediators. We examined the effect of melatonin infusion during...... surgery and oral melatonin treatment for 3 days after surgery on biochemical markers of oxidative and inflammatory stress....

  19. Tunable Mechanical Metamaterials through Hybrid Kirigami Structures.

    Science.gov (United States)

    Hwang, Doh-Gyu; Bartlett, Michael D

    2018-02-21

    Inspired by the art of paper cutting, kirigami provides intriguing tools to create materials with unconventional mechanical and morphological responses. This behavior is appealing in multiple applications such as stretchable electronics and soft robotics and presents a tractable platform to study structure-property relationships in material systems. However, mechanical response is typically controlled through a single or fractal cut type patterned across an entire kirigami sheet, limiting deformation modes and tunability. Here we show how hybrid patterns of major and minor cuts creates new opportunities to introduce boundary conditions and non-prismatic beams to enable highly tunable mechanical responses. This hybrid approach reduces stiffness by a factor of ~30 while increasing ultimate strain by a factor of 2 (up to 750% strain) relative to single incision patterns. We present analytical models and generate general design criteria that is in excellent agreement with experimental data from nanoscopic to macroscopic systems. These hybrid kirigami materials create new opportunities for multifunctional materials and structures, which we demonstrate with stretchable kirigami conductors with nearly constant electrical resistance up to >400% strain and magnetoactive actuators with extremely rapid response (>10,000% strain s -1 ) and high, repeatable elongation (>300% strain).

  20. Evidence of major genes for plasma HDL, LDL cholesterol and triglyceride levels at baseline and in response to 20 weeks of endurance training: the HERITAGE Family Study.

    Science.gov (United States)

    An, P; Borecki, I B; Rankinen, T; Després, J-P; Leon, A S; Skinner, J S; Wilmore, J H; Bouchard, C; Rao, D C

    2005-01-01

    This study assessed major gene effects for baseline HDL-C, LDL-C, TG, and their training responses (post-training minus baseline) in 527 individuals from 99 White families and 326 individuals from 113 Black families in the HERITAGE Family Study. The baseline phenotypes were adjusted for the effects of age and BMI, and the training response phenotypes were adjusted for the effects of age, BMI, and their respective baseline values, within each of the sex-by-generation-by-race groups, prior to genetic analyses. In Whites, we found that LDL-C at baseline and HDL-C training response were under influence of major recessive genes (accounting for 2--30 % of the variance) and multifactorial (polygenic and familial environmental) effects. Interactions of these major genes with sex, age, and BMI were tested, and found to be nonsignificant. In Blacks, we found that baseline HDL-C was influenced by a major dominant gene without a multifactorial component. This major gene effect accounted for 45 % of the variance, and exhibited no significant genotype-specific interactions with age, sex, and BMI. Evidence of major genes for the remaining phenotypes at baseline and in response to endurance training were not found in both races, though some were influenced by major effects that did not follow Mendelian expectations or were with ambiguous transmission from parents to offspring. In summary, major gene effects that influence baseline plasma HDL-C and LDL-C levels as well as changes in HDL-C levels in response to regular exercise were detected in the current study.

  1. Interpersonal impacts mediate the association between personality and treatment response in major depression.

    Science.gov (United States)

    Dermody, Sarah S; Quilty, Lena C; Bagby, R Michael

    2016-07-01

    Personality, as characterized by the Five-Factor Model, predicts response to psychotherapy for depression. To explain how personality impacts treatment response, the present study investigated patient and therapist interpersonal processes in treatment sessions as an explanatory pathway. A clinical trial was conducted in which 103 outpatients (mean age: 41.17 years, 65% female) with primary major depressive disorder completed 16-20 weeks of cognitive-behavioral or interpersonal therapy. Before treatment, patients completed the Revised NEO Personality Inventory to assess personality domains (neuroticism, extraversion, openness-to-experience, agreeableness, and conscientiousness). After 3 and 13 weeks, patient interpersonal behavior was rated by the therapist and vice versa to determine levels of patient and therapist communal and agentic behaviors. Depression levels were measured before and after treatment. Structural equation modeling supported that patients' interpersonal behavior during therapy mediated the associations between pretreatment personality and depression treatment outcome. Specifically, extraversion, conscientiousness, and neuroticism (inverse) predicted higher levels of patient communion throughout treatment, which was in turn associated with improved treatment outcomes. Furthermore, patient agreeableness was inversely associated with agency throughout treatment, which was linked to poorer treatment response. Therapist interpersonal behavior was not a significant mediator. Results suggest that patient interpersonal behavior during treatment may be one way that patient personality impacts clinical outcomes in depression. Results underscore the clinical utility of Five-Factor Model domains in treatment process and outcome. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  2. A CHROMATIN MODIFYING ENZYME, SDG8, IS REQUIRED FOR MORPHOLOGICAL, GENE EXPRESSION, AND EPIGENETIC RESPONSES TO MECHANICAL STIMULATION

    OpenAIRE

    Christopher Ian Cazzonelli; Nazia eNisar; Andrea C Roberts; Kevin eMurray; Justin O Borevitz; Barry James Pogson

    2014-01-01

    Thigmomorphogenesis is viewed as being a response process of acclimation to short repetitive bursts of mechanical stimulation or touch. The underlying molecular mechanisms that coordinate changes in how touch signals lead to long-term morphological changes are enigmatic. Touch responsive gene expression is rapid and transient, and no transcription factor or DNA regulatory motif has been reported that could confer a genome wide mechanical stimulus. We report here on a chromatin modifying enzy...

  3. A chromatin modifying enzyme, SDG8, is involved in morphological, gene expression, and epigenetic responses to mechanical stimulation

    OpenAIRE

    Cazzonelli, Christopher I.; Nisar, Nazia; Roberts, Andrea C.; Murray, Kevin D.; Borevitz, Justin O.; Pogson, Barry J.

    2014-01-01

    Thigmomorphogenesis is viewed as being a response process of acclimation to short repetitive bursts of mechanical stimulation or touch. The underlying molecular mechanisms that coordinate changes in how touch signals lead to long-term morphological changes are enigmatic. Touch responsive gene expression is rapid and transient, and no transcription factor or DNA regulatory motif has been reported that could confer a genome wide mechanical stimulus. We report here on a chromatin modifying enzym...

  4. MECHANISM OF INTRODUCTION SOCIALLY-RESPONSIBLE MARKETING IN SYSTEM MANAGEMENTS BY TRADE ENTERPRISE

    Directory of Open Access Journals (Sweden)

    Victoria Gladkaya

    2015-12-01

    Full Text Available In the article the mechanism of introduction of the socially-responsible marketing is offered in control system. At his description an author the specific of activity of trade enterprises is taken into account; the best home and foreign works are investigational in the field of the social marketing; the requirement of relatively compatible approach is observed; possibility of further improvement is taken into account, estimations of quality of every stage of mechanism of introduction and on the whole through establishment of key indicators of quality.

  5. Emergency Response and the International Charter Space and Major Disasters

    Science.gov (United States)

    Jones, B.; Lamb, R.

    2011-12-01

    Responding to catastrophic natural disasters requires information. When the flow of information on the ground is interrupted by crises such as earthquakes, landslides, volcanoes, hurricanes, and floods, satellite imagery and aerial photographs become invaluable tools in revealing post-disaster conditions and in aiding disaster response and recovery efforts. USGS is a global clearinghouse for remotely sensed disaster imagery. It is also a source of innovative products derived from satellite imagery that can provide unique overviews as well as important details about the impacts of disasters. Repeatedly, USGS and its resources have proven their worth in assisting with disaster recovery activities in the United States and abroad. USGS has a well-established role in emergency response in the United States. It works closely with the Federal Emergency Management Agency (FEMA) by providing first responders with satellite and aerial images of disaster-impacted sites and products developed from those images. The combination of the USGS image archive, coupled with its global data transfer capability and on-site science staff, was instrumental in the USGS becoming a participating agency in the International Charter Space and Major Disasters. This participation provides the USGS with access to international members and their space agencies, to information on European and other global member methodology in disaster response, and to data from satellites operated by Charter member countries. Such access enhances the USGS' ability to respond to global emergencies and to disasters that occur in the United States (US). As one example, the Charter agencies provided imagery to the US for over 4 months in response to the Gulf oil spill. The International Charter mission is to provide a unified system of space data acquisition and delivery to those affected by natural or man-made disasters. Each member space agency has committed resources to support the provisions of the Charter and

  6. Natural variation in germination responses of Arabidopsis to seasonal cues and their associated physiological mechanisms

    Science.gov (United States)

    Barua, Deepak; Butler, Colleen; Tisdale, Tracy E.; Donohue, Kathleen

    2012-01-01

    Background and Aims Despite the intense interest in phenological adaptation to environmental change, the fundamental character of natural variation in germination is almost entirely unknown. Specifically, it is not known whether different genotypes within a species are germination specialists to particular conditions, nor is it known what physiological mechanisms of germination regulation vary in natural populations and how they are associated with responses to particular environmental factors. Methods We used a set of recombinant inbred genotypes of Arabidopsis thaliana, in which linkage disequilibrium has been disrupted over seven generations, to test for genetic variation and covariation in germination responses to distinct environmental factors. We then examined physiological mechanisms associated with those responses, including seed-coat permeability and sensitivity to the phytohormones gibberellic acid (GA) and abscisic acid (ABA). Key Results Genetic variation for germination was environment-dependent, but no evidence for specialization of germination to different conditions was found. Hormonal sensitivities also exhibited significant genetic variation, but seed-coat properties did not. GA sensitivity was associated with germination responses to multiple environmental factors, but seed-coat permeability and ABA sensitivity were associated with specific germination responses, suggesting that an evolutionary change in GA sensitivity could affect germination in multiple environments, but that of ABA sensitivity may affect germination under more restricted conditions. Conclusions The physiological mechanisms of germination responses to specific environmental factors therefore can influence the ability to adapt to diverse seasonal environments encountered during colonization of new habitats or with future predicted climate change. PMID:22012958

  7. Is there a future for andrographolide to be an anti-inflammatory drug? Deciphering its major mechanisms of action.

    Science.gov (United States)

    Tan, W S Daniel; Liao, Wupeng; Zhou, Shuo; Wong, W S Fred

    2017-09-01

    Andrographis paniculata has long been part of the traditional herbal medicine system in Asia and in Scandinavia. Andrographolide was isolated as a major bioactive constituent of A. paniculata in 1951, and since 1984, andrographolide and its analogs have been scrutinized with modern drug discovery approach for anti-inflammatory properties. With this accumulated wealth of pre-clinical data, it is imperative to review and consolidate different sources of information, to decipher the major anti-inflammatory mechanisms of action in inflammatory diseases, and to provide direction for future studies. Andrographolide and its analogs have been shown to provide anti-inflammatory benefits in a variety of inflammatory disease models. Among the diverse signaling pathways investigated, inhibition of NF-κB activity is the prevailing anti-inflammatory mechanism elicited by andrographolide. There is also increasing evidence supporting endogenous antioxidant defense enhancement by andrographolide through Nrf2 activation. However, the exact pathway leading to NF-κB and Nrf2 activation by andrographolide has yet to be elucidated. Validation and consensus on the major mechanistic actions of andrographolide in different inflammatory conditions are required before translating current findings into clinical settings. There are a few clinical trials conducted using andrographolide in fixed combination formulation which have shown anti-inflammatory benefits and good safety profile. A concerted effort is definitely needed to identify potent andrographolide lead compounds with improved pharmacokinetics and toxicological properties. Taken together, andrographolide and its analogs have great potential to be the next new class of anti-inflammatory agents, and more andrographolide molecules are likely moving towards clinical study stage in the near future. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Pilot program: NRC severe reactor accident incident response training manual. Overview and summary of major points

    International Nuclear Information System (INIS)

    McKenna, T.J.; Martin, J.A. Jr.; Giitter, J.G.; Miller, C.W.; Hively, L.M.; Sharpe, R.W.; Watkins

    1987-02-01

    Overview and Summary of Major Points is the first in a series of volumes that collectively summarize the U.S. Nuclear Regulatory Commission (NRC) emergency response during severe power reactor accidents and provide necessary background information. This volume describes elementary perspectives on severe accidents and accident assessment. Other volumes in the series are: Volume 2-Severe Reactor Accident Overview; Volume 3- Response of Licensee and State and Local Officials; Volume 4-Public Protective Actions-Predetermined Criteria and Initial Actions; Volume 5 - U.S. Nuclear Regulatory Commission. Each volume serves, respectively, as the text for a course of instruction in a series of courses for NRC response personnel. These materials do not provide guidance or license requirements for NRC licensees. The volumes have been organized into these training modules to accommodate the scheduling and duty needs of participating NRC staff. Each volume is accompanied by an appendix of slides that can be used to present this material

  9. A CHROMATIN MODIFYING ENZYME, SDG8, IS REQUIRED FOR MORPHOLOGICAL, GENE EXPRESSION, AND EPIGENETIC RESPONSES TO MECHANICAL STIMULATION

    Directory of Open Access Journals (Sweden)

    Christopher Ian Cazzonelli

    2014-10-01

    Full Text Available Thigmomorphogenesis is viewed as being a response process of acclimation to short repetitive bursts of mechanical stimulation or touch. The underlying molecular mechanisms that coordinate changes in how touch signals lead to long-term morphological changes are enigmatic. Touch responsive gene expression is rapid and transient, and no transcription factor or DNA regulatory motif has been reported that could confer a genome wide mechanical stimulus. We report here on a chromatin modifying enzyme, SDG8/ASHH2, which can regulate the expression of many touch responsive genes identified in Arabidopsis. SDG8 is required for the permissive expression of touch induced genes; and the loss of function of sdg8 perturbs the maximum levels of induction on selected touch gene targets. SDG8 is required to maintain permissive H3K4 trimethylation marks surrounding the Arabidopsis touch-inducible gene TOUCH 3 (TCH3, which encodes a calmodulin-like protein (CML12. The gene neighbouring was also slightly down regulated, revealing a new target for SDG8 mediated chromatin modification. Finally, sdg8 mutants show perturbed morphological response to wind-agitated mechanical stimuli, implicating an epigenetic memory-forming process in the acclimation response of thigmomorphogenesis.

  10. A chromatin modifying enzyme, SDG8, is involved in morphological, gene expression, and epigenetic responses to mechanical stimulation.

    Science.gov (United States)

    Cazzonelli, Christopher I; Nisar, Nazia; Roberts, Andrea C; Murray, Kevin D; Borevitz, Justin O; Pogson, Barry J

    2014-01-01

    Thigmomorphogenesis is viewed as being a response process of acclimation to short repetitive bursts of mechanical stimulation or touch. The underlying molecular mechanisms that coordinate changes in how touch signals lead to long-term morphological changes are enigmatic. Touch responsive gene expression is rapid and transient, and no transcription factor or DNA regulatory motif has been reported that could confer a genome wide mechanical stimulus. We report here on a chromatin modifying enzyme, SDG8/ASHH2, which can regulate the expression of many touch responsive genes identified in Arabidopsis. SDG8 is required for the permissive expression of touch induced genes; and the loss of function of sdg8 perturbs the maximum levels of induction on selected touch gene targets. SDG8 is required to maintain permissive H3K4 trimethylation marks surrounding the Arabidopsis touch-inducible gene TOUCH 3 (TCH3), which encodes a calmodulin-like protein (CML12). The gene neighboring was also slightly down regulated, revealing a new target for SDG8 mediated chromatin modification. Finally, sdg8 mutants show perturbed morphological response to wind-agitated mechanical stimuli, implicating an epigenetic memory-forming process in the acclimation response of thigmomorphogenesis.

  11. Systems of mechanized and reactive droplets powered by multi-responsive surfactants

    Science.gov (United States)

    Yang, Zhijie; Wei, Jingjing; Sobolev, Yaroslav I.; Grzybowski, Bartosz A.

    2018-01-01

    Although ‘active’ surfactants, which are responsive to individual external stimuli such as temperature, electric or magnetic fields, light, redox processes or chemical agents, are well known, it would be interesting to combine several of these properties within one surfactant species. Such multi-responsive surfactants could provide ways of manipulating individual droplets and possibly assembling them into larger systems of dynamic reactors. Here we describe surfactants based on functionalized nanoparticle dimers that combine all of these and several other characteristics. These surfactants and therefore the droplets that they cover are simultaneously addressable by magnetic, optical and electric fields. As a result, the surfactant-covered droplets can be assembled into various hierarchical structures, including dynamic ones, in which light powers the rapid rotation of the droplets. Such rotating droplets can transfer mechanical torques to their non-nearest neighbours, thus acting like systems of mechanical gears. Furthermore, droplets of different types can be merged by applying electric fields and, owing to interfacial jamming, can form complex, non-spherical, ‘patchy’ structures with different surface regions covered with different surfactants. In systems of droplets that carry different chemicals, combinations of multiple stimuli can be used to control the orientations of the droplets, inter-droplet transport, mixing of contents and, ultimately, sequences of chemical reactions. Overall, the multi-responsive active surfactants that we describe provide an unprecedented level of flexibility with which liquid droplets can be manipulated, assembled and reacted.

  12. Possible roles of transglutaminases in molecular mechanisms responsible for human neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Nicola Gaetano Gatta

    2016-11-01

    Full Text Available Transglutaminases are a family of Ca2+-dependent enzymes which catalyze post-translational modifications of proteins. The main activity of these enzymes is the cross-linking of glutaminyl residues of a protein/peptide substrate to lysyl residues of a protein/peptide co-substrate. In addition to lysyl residues, other second nucleophilic co-substrates may include monoamines or polyamines (to form mono- or bi-substituted/crosslinked adducts or –OH groups (to form ester linkages. In absence of co-substrates, the nucleophile may be water, resulting in the net deamidation of the glutaminyl residue. Transglutaminase activity has been suggested to be involved in molecular mechanisms responsible for both physiological or pathological processes. In particular, transglutaminase activity has been shown to be responsible for human autoimmune diseases, Celiac Disease is just one of them. Interestingly, neurodegenerative diseases, such as Alzheimer’s Disease, Parkinson’s Disease, supranuclear palsy, Huntington’s Disease and other polyglutamine diseases, are characterized in part by aberrant cerebral transglutaminase activity and by increased cross-linked proteins in affected brains. This review describes the possible molecular mechanisms by which these enzymes could be responsible for such diseases and the possible use of transglutaminase inhibitors for patients with diseases characterized by aberrant transglutaminase activity.

  13. Psychobiological Responses to Preferred and Prescribed Intensity Exercise in Major Depressive Disorder.

    Science.gov (United States)

    Meyer, Jacob D; Ellingson, Laura D; Koltyn, Kelli F; Stegner, Aaron J; Kim, Jee-Seon; Cook, Dane B

    2016-11-01

    Exercise acutely improves mood in major depressive disorder (MDD). However, it is unknown whether benefits differ depending on whether exercise intensity is self-selected or prescribed. This study aimed to compare psychological and biological responses to preferred and prescribed steady-state exercise intensities to a patient-selected preferred intensity. Female adults (N = 24, age = 38.6 ± 14.0 yr) diagnosed with MDD completed four 30-min sessions of cycling exercise at three prescribed intensities (RPE of 11, 13, and 15) and one session with a self-selected intensity (preferred). Order was randomized and counterbalanced. Depressed mood (DM) was evaluated before, 10 min, and 30 min postexercise using the Profile of Mood States. Serum brain-derived neurotrophic factor (BDNF) was measured before and within 10 min postexercise. Changes in BDNF and DM for the preferred session were compared with the following prescribed sessions: 1) performed at the most similar intensity (matched on RPE; closest) and 2) with the greatest improvement in DM (greatest). Compared with the preferred session, improvement in DM was significantly larger after the greatest session (30 min postexercise: -11.8 ± 7.4 vs -3.4 ± 4.8), and the BDNF response was significantly greater after the closest session (5.4 ± 6.9 vs -1.4 ± 9.8 ng·mL). Permitting patients to select their own exercise intensity did not maximize improvements in mood. Further, preferred intensity exercise was also associated with a smaller BDNF response. Overall, the results suggest that exercise undertaken to improve mood should be prescribed on an individual basis in MDD and not necessarily based on the patient's preferred intensity. Clinicians, psychologists, and other practitioners should consider providing clear exercise intensity recommendations for symptom management in depression rather than allowing patients to self-select their intensity.

  14. Structural, functional and evolutionary characterization of major drought transcription factors families in maize

    Science.gov (United States)

    Mittal, Shikha; Banduni, Pooja; Mallikarjuna, Mallana G.; Rao, Atmakuri R.; Jain, Prashant A.; Dash, Prasanta K.; Thirunavukkarasu, Nepolean

    2018-05-01

    Drought is one of the major threats to maize production. In order to improve the production and to breed tolerant hybrids, understanding the genes and regulatory mechanisms during drought stress is important. Transcription factors (TFs) play a major role in gene regulation and many TFs have been identified in response to drought stress. In our experiment, a set of 15 major TF families comprising 1436 genes was structurally and functionally characterized using in-silico tools and a gene expression assay. All 1436 genes were mapped on 10 chromosome of maize. The functional annotation indicated the involvement of these genes in ABA signaling, ROS scavenging, photosynthesis, stomatal regulation, and sucrose metabolism. Duplication was identified as the primary force in divergence and expansion of TF families. Phylogenetic relationship was developed individually for each TF family as well as combined TF families. Phylogenetic analysis grouped the TF family of genes into TF-specific and mixed groups. Phylogenetic analysis of genes belonging to various TF families suggested that the origin of TFs occurred in the lineage of maize evolution. Gene structure analysis revealed that more number of genes were intron-rich as compared to intronless genes. Drought-responsive CRE’s such as ABREA, ABREB, DRE1 and DRECRTCOREAT have been identified. Expression and interaction analyses identified leaf-specific bZIP TF, GRMZM2G140355, as a potential contributor toward drought tolerance in maize. We also analyzed protein-protein interaction network of 269 drought-responsive genes belonging to different drought-related TFs. The information generated on structural and functional characteristics, expression and interaction of the drought-related TF families will be useful to decipher the drought tolerance mechanisms and to derive drought-tolerant genotypes in maize.

  15. Development and evaluation of a new simulation model for interactive training of the medical response to major incidents and disasters.

    Science.gov (United States)

    Lennquist Montán, K; Hreckovski, B; Dobson, B; Örtenwall, P; Montán, C; Khorram-Manesh, A; Lennquist, S

    2014-08-01

    The need for and benefit of simulation models for interactive training of the response to major incidents and disasters has been increasingly recognized during recent years. One of the advantages with such models is that all components of the chain of response can be trained simultaneously. This includes the important communication/coordination between different units, which has been reported as the most common cause of failure. Very few of the presently available simulation models have been suitable for the simultaneous training of decision-making on all levels of the response. In this study, a new simulation model, originally developed for the scientific evaluation of methodology, was adapted to and developed for the postgraduate courses in Medical Response to Major Incidents (MRMI) organized under the auspices of the European Society for Trauma and Emergency Surgery (ESTES). The aim of the present study was to describe this development process, the model it resulted in, and the evaluation of this model. The simulation model was based on casualty cards giving all information normally available for the triage and primary management of traumatized patients. The condition of the patients could be changed by the instructor according to the time passed since the time of injury and treatments performed. Priority of the casualties as well as given treatments could be indicated on the cards by movable markers, which also gave the time required for every treatment. The exercises were run with real consumption of time and resources for all measures performed. The magnetized cards were moved by the trainees through the scene, through the transport lines, and through the hospitals where all functions were trained. For every patient was given the definitive diagnosis and the times within certain treatments had to be done to avoid preventable mortality and complications, which could be related to trauma-scores. The methodology was tested in nine MRMI courses with a total of

  16. Evidence of major genes affecting stress response in rainbow trout using Bayesian methods of complex segregation analysis

    DEFF Research Database (Denmark)

    Vallejo, R L; Rexroad III, C E; Silverstein, J T

    2009-01-01

    As a first step toward the genetic mapping of QTL affecting stress response variation in rainbow trout, we performed complex segregation analyses (CSA) fitting mixed inheritance models of plasma cortisol by using Bayesian methods in large full-sib families of rainbow trout. To date, no studies have...... been conducted to determine the mode of inheritance of stress response as measured by plasma cortisol response when using a crowding stress paradigm and CSA in rainbow trout. The main objective of this study was to determine the mode of inheritance of plasma cortisol after a crowding stress....... The results from fitting mixed inheritance models with Bayesian CSA suggest that 1 or more major genes with dominant cortisol-decreasing alleles and small additive genetic effects of a large number of independent genes likely underlie the genetic variation of plasma cortisol in the rainbow trout families...

  17. Evaluating the Mechanism of Oil Price Shocks and Fiscal Policy Responses in the Malaysian Economy

    International Nuclear Information System (INIS)

    Bekhet, Hussain A; Yusoff, Nora Yusma Mohamed

    2013-01-01

    The paper aims to explore the symmetric impact of oil price shock on economy, to understand its mechanism channel and how fiscal policy response towards it. The Generalized Impulse Response Function and Variance Decomposition under the VAR methodology were employed. The empirical findings suggest that symmetric oil price shock has a positive and direct impact on oil revenue and government expenditure. However, the real GDP is vulnerable in a short-term but not in the long term period. These results would confirm that fiscal policy is the main mechanism channel that mitigates the adverse effects oil price shocks to the economy.

  18. Evaluating the Mechanism of Oil Price Shocks and Fiscal Policy Responses in the Malaysian Economy

    Science.gov (United States)

    Bekhet, Hussain A.; Yusoff, Nora Yusma Mohamed

    2013-06-01

    The paper aims to explore the symmetric impact of oil price shock on economy, to understand its mechanism channel and how fiscal policy response towards it. The Generalized Impulse Response Function and Variance Decomposition under the VAR methodology were employed. The empirical findings suggest that symmetric oil price shock has a positive and direct impact on oil revenue and government expenditure. However, the real GDP is vulnerable in a short-term but not in the long term period. These results would confirm that fiscal policy is the main mechanism channel that mitigates the adverse effects oil price shocks to the economy.

  19. Mechanical ventilation during extracorporeal membrane oxygenation. An international survey.

    Science.gov (United States)

    Marhong, Jonathan D; Telesnicki, Teagan; Munshi, Laveena; Del Sorbo, Lorenzo; Detsky, Michael; Fan, Eddy

    2014-07-01

    In patients with severe, acute respiratory failure undergoing venovenous extracorporeal membrane oxygenation (VV-ECMO), the optimal strategy for mechanical ventilation is unclear. Our objective was to describe ventilation practices used in centers registered with the Extracorporeal Life Support Organization (ELSO). We conducted an international cross-sectional survey of medical directors and ECMO program coordinators from all ELSO-registered centers. The survey was distributed using a commercial website that collected information on center characteristics, the presence of a mechanical ventilator protocol, ventilator settings, and weaning practices. E-mails were sent out to medical directors or coordinators at each ELSO center and their responses were pooled for analysis. We analyzed 141 (50%) individual responses from the 283 centers contacted across 28 countries. Only 27% of centers reported having an explicit mechanical ventilation protocol for ECMO patients. The majority of these centers (77%) reported "lung rest" to be the primary goal of mechanical ventilation, whereas 9% reported "lung recruitment" to be their ventilation strategy. A tidal volume of 6 ml/kg or less was targeted by 76% of respondents, and 58% targeted a positive end-expiratory pressure of 6-10 cm H2O while ventilating patients on VV-ECMO. Centers prioritized weaning VV-ECMO before mechanical ventilation. Although ventilation practices in patients supported by VV-ECMO vary across ELSO centers internationally, the majority of centers used a strategy that targeted lung-protective thresholds and prioritized weaning VV-ECMO over mechanical ventilation.

  20. Mechanical response of human female breast skin under uniaxial stretching.

    Science.gov (United States)

    Kumaraswamy, N; Khatam, Hamed; Reece, Gregory P; Fingeret, Michelle C; Markey, Mia K; Ravi-Chandar, Krishnaswamy

    2017-10-01

    Skin is a complex material covering the entire surface of the human body. Studying the mechanical properties of skin to calibrate a constitutive model is of great importance to many applications such as plastic or cosmetic surgery and treatment of skin-based diseases like decubitus ulcers. The main objective of the present study was to identify and calibrate an appropriate material constitutive model for skin and establish certain universal properties that are independent of patient-specific variability. We performed uniaxial tests performed on breast skin specimens freshly harvested during mastectomy. Two different constitutive models - one phenomenological and another microstructurally inspired - were used to interpret the mechanical responses observed in the experiments. Remarkably, we found that the model parameters that characterize dependence on previous maximum stretch (or preconditioning) exhibited specimen-independent universal behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. New Insight in Understanding the mechanical responses of polymer glasses using molecular dynamic simulation

    Science.gov (United States)

    Zheng, Yexin; Wang, Shi-Qing; Tsige, Mesfin

    The Kremer-Grest bead-spring model has been the standard model in molecular dynamics simulation of polymer glasses. However, due to current computational limitations in accessing relevant time scales in polymer glasses in a reasonable amount of CPU time, simulation of mechanical response of polymer glasses in molecular dynamic simulations requires a much higher quenching rate and deformation rate than used in experiments. Despite several orders of magnitude difference in time scale between simulation and experiment, previous studies have shown that simulations can produce meaningful results that can be directly compared with experimental results. In this work we show that by tuning the quenching rate and deformation rate relative to the segmental relaxation times, a reasonable mechanical response shows up in the glassy state. Specifically, we show a younger glass prepared with a faster quenching rate shows glassy responses only when the imposed deformation rate is proportionally higher. the National Science Foundation (DMR-1444859 and DMR-1609977).

  2. Mechanical touch responses of Arabidopsis TCH1-3 mutant roots on inclined hard-agar surface

    Science.gov (United States)

    Zha, Guodong; Wang, Bochu; Liu, Junyu; Yan, Jie; Zhu, Liqing; Yang, Xingyan

    2016-01-01

    The gravity-induced mechanical touch stimulus can affect plant root architecture. Mechanical touch responses of plant roots are an important aspect of plant root growth and development. Previous studies have reported that Arabidopsis TCH1-3 genes are involved in mechano-related events, how-ever, the physiological functions of TCH1-3 genes in Arabidopsis root mechanoresponses remain unclear. In the present study, we applied an inclined hard agar plate method to produce mechanical touch stimulus, and provided evidence that altered mechanical environment could influence root growth. Furthermore, tch1-3 Arabidopsis mutants were investigated on inclined agar surfaces to explore the functions of TCH1-3 genes on Arabidopsis root mechanoresponses. The results showed that two tch2 mutants, cml24-2 and cml24-4, exhibited significantly reduced root length, biased skewing, and decreased density of lateral root. In addition, primary root length and density of lateral root of tch3 (cml12-2) was significantly decreased on inclined agar surfaces. This study indicates that the tch2 and tch3 mutants are hypersensitive to mechanical touch stimulus, and TCH2 (CML24-2 and CML24-4) and TCH3 (CML12-2) genes may participate in the mechanical touch response of Arabidopsis roots.

  3. Adrenergic mechanism responsible for pathological alteration in gastric mucosal blood flow in rats with ulcer bleeding

    Science.gov (United States)

    Semyachkina-Glushkovskaya, O. V.; Pavlov, A. N.; Semyachkin-Glushkovskiy, I. A.; Gekalyuk, A. S.; Ulanova, M. V.; Lychagov, V. V.; Tuchin, V. V.

    2014-09-01

    The adrenergic system plays an important role in regulation of central and peripheral circulation in normal state and during hemorrhage. Because the impaired gastric mucosal blood flow (GMBF) is the major cause of gastroduodenal lesions, including ulcer bleeding (UB), we studied the adrenergic mechanism responsible for regulation of GMBF in rats with a model of stress-induced UB (SUB) using the laser Doppler flowmetry (LDF). First, we examined the effect of adrenaline on GMBF in rats under normal state and during UB. In all healthy animals the submucosal adrenaline injection caused a decrease in local GMBF. During UB the submucosal injection of adrenaline was accompanied by less pronounced GMBF suppression in 30,3% rats with SUB vs. healthy ones. In 69,7% rats with SUB we observed the increase in local GMBF after submucosal injection of adrenaline. Second, we studied the sensitivity of gastric β2-adrenoreceptors and the activity of two factors which are involved in β2-adrenomediated vasorelaxation-KATP -channels and NO. The effects of submucosal injection of isoproterenol, ICI118551 and glybenclamide on GMBF as well as NO levels in gastric tissue were significantly elevated in rats with SUB vs. healthy rats. Thus, our results indicate that high activation of gastric β2-adrenoreceptors associated with the increased vascular KATP -channels activity and elevated NO production is the important adrenergic mechanism implicated in the pathogenesis of UB.

  4. Electro-Mechanical Response and Engineering Properties of Piezocomposite with Imperfect Interface

    Directory of Open Access Journals (Sweden)

    Tippayaphalapholgul Rattanan

    2016-01-01

    Full Text Available Composites of piezoelectric materials are widely use in practical applications such as nondestructive testing devices, smart adaptive structures and medical devices. A thorough understanding of coupled electro-elastic response and properties of piezocomposite are crucial for the development and design of piezoelectric composite materials used in advanced applications. The micromechanics analysis is employed in this paper to determine the response and engineering properties of the piezocomposite. A mechanical imperfect interface bonding between piezoelectric inclusion and polymer matrix is taken into consideration in the analysis. The micromechanics analysis is based on the Boundary Element Method (BEM together with the periodic micro-field micromechanics theory. A selected set of numerical results is presented to investigate the influence of volume ratio and interface bonding condition on effective piezocomposite material coefficients and portray basic features of coupled electroelastic response within the domain of piezocomposite unit cell.

  5. Electro-mechanical response of a 3D nerve bundle model to mechanical loads leading to axonal injury.

    Science.gov (United States)

    Cinelli, I; Destrade, M; Duffy, M; McHugh, P

    2018-03-01

    Traumatic brain injuries and damage are major causes of death and disability. We propose a 3D fully coupled electro-mechanical model of a nerve bundle to investigate the electrophysiological impairments due to trauma at the cellular level. The coupling is based on a thermal analogy of the neural electrical activity by using the finite element software Abaqus CAE 6.13-3. The model includes a real-time coupling, modulated threshold for spiking activation, and independent alteration of the electrical properties for each 3-layer fibre within a nerve bundle as a function of strain. Results of the coupled electro-mechanical model are validated with previously published experimental results of damaged axons. Here, the cases of compression and tension are simulated to induce (mild, moderate, and severe) damage at the nerve membrane of a nerve bundle, made of 4 fibres. Changes in strain, stress distribution, and neural activity are investigated for myelinated and unmyelinated nerve fibres, by considering the cases of an intact and of a traumatised nerve membrane. A fully coupled electro-mechanical modelling approach is established to provide insights into crucial aspects of neural activity at the cellular level due to traumatic brain injury. One of the key findings is the 3D distribution of residual stresses and strains at the membrane of each fibre due to mechanically induced electrophysiological impairments, and its impact on signal transmission. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Investigation of miR-1202, miR-135a, and miR-16 in Major Depressive Disorder and Antidepressant Response.

    Science.gov (United States)

    Fiori, Laura M; Lopez, Juan Pablo; Richard-Devantoy, Stéphane; Berlim, Marcelo; Chachamovich, Eduardo; Jollant, Fabrice; Foster, Jane; Rotzinger, Susan; Kennedy, Sidney H; Turecki, Gustavo

    2017-08-01

    Major depressive disorder is a debilitating illness, which is most commonly treated with antidepressant drugs. As the majority of patients do not respond on their first trial, there is great interest in identifying biological factors that indicate the most appropriate treatment for each patient. Studies suggest that microRNA represent excellent biomarkers to predict antidepressant response. We investigated the expression of miR-1202, miR-135a, and miR-16 in peripheral blood from 2 cohorts of depressed patients who received 8 weeks of antidepressant therapy. Expression was quantified at baseline and after treatment, and its relationship to treatment response and depressive symptoms was assessed. In both cohorts, responders displayed lower baseline miR-1202 levels compared with nonresponders, which increased following treatment. Ultimately, our results support the involvement of microRNA in antidepressant response and suggest that quantification of their levels in peripheral samples represents a valid approach to informing treatment decisions. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  7. Differential roles of galanin on mechanical and cooling responses at the primary afferent nociceptor

    Directory of Open Access Journals (Sweden)

    Hulse Richard P

    2012-06-01

    Full Text Available Abstract Background Galanin is expressed in a small percentage of intact small diameter sensory neurons of the dorsal root ganglia and in the afferent terminals of the superficial lamina of the dorsal horn of the spinal cord. The neuropeptide modulates nociception demonstrating dose-dependent pro- and anti-nociceptive actions in the naïve animal. Galanin also plays an important role in chronic pain, with the anti-nociceptive actions enhanced in rodent neuropathic pain models. In this study we compared the role played by galanin and its receptors in mechanical and cold allodynia by identifying individual rat C-fibre nociceptors and characterising their responses to mechanical or acetone stimulation. Results Mechanically evoked responses in C-fibre nociceptors from naive rats were sensitised after close intra-arterial infusion of galanin or Gal2-11 (a galanin receptor-2/3 agonist confirming previous data that galanin modulates nociception via activation of GalR2. In contrast, the same dose and route of administration of galanin, but not Gal2-11, inhibited acetone and menthol cooling evoked responses, demonstrating that this inhibitory mechanism is not mediated by activation of GalR2. We then used the partial saphenous nerve ligation injury model of neuropathic pain (PSNI and the complete Freund’s adjuvant model of inflammation in the rat and demonstrated that close intra-arterial infusion of galanin, but not Gal2-11, reduced cooling evoked nociceptor activity and cooling allodynia in both paradigms, whilst galanin and Gal2-11 both decreased mechanical activation thresholds. A previously described transgenic mouse line which inducibly over-expresses galanin (Gal-OE after nerve injury was then used to investigate whether manipulating the levels of endogenous galanin also modulates cooling evoked nociceptive behaviours after PSNI. Acetone withdrawal behaviours in naive mice showed no differences between Gal-OE and wildtype (WT mice. 7-days after

  8. 43rd Aerospace Mechanisms Symposium

    Science.gov (United States)

    Boesiger, Edward A.

    2016-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Sponsored and organized by the Mechanisms Education Association, responsibility for hosting the AMS is shared by the National Aeronautics and Space Administration and Lockheed Martin Space Systems Company (LMSSC). Now in its 43rd symposium, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 43rd AMS was held in Santa Clara, California on May 4, 5 and 6, 2016. During these three days, 42 papers were presented. Topics included payload and positioning mechanisms, components such as hinges and motors, CubeSats, tribology, and mechanism testing. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components. The high quality of this symposium is a result of the work of many people, and their efforts are gratefully acknowledged. This extends to the voluntary members of the symposium organizing committee representing the eight NASA field centers, LMSSC, and the European Space Agency. Appreciation is also extended to the session chairs, the authors, and particularly the personnel at ARC responsible for the symposium arrangements and the publication of these proceedings. A sincere thank you also goes to the symposium executive committee who is responsible for the year-to-year management of the AMS, including paper processing and preparation of the program. The use of trade names of manufacturers in this publication does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the National Aeronautics and Space Administration.

  9. Computational mechanics of nonlinear response of shells

    Energy Technology Data Exchange (ETDEWEB)

    Kraetzig, W.B. (Bochum Univ. (Germany, F.R.). Inst. fuer Statik und Dynamik); Onate, E. (Universidad Politecnica de Cataluna, Barcelona (Spain). Escuela Tecnica Superior de Ingenieros de Caminos) (eds.)

    1990-01-01

    Shell structures and their components are utilized in a wide spectrum of engineering fields reaching from space and aircraft structures, pipes and pressure vessels over liquid storage tanks, off-shore installations, cooling towers and domes, to bodyworks of motor vehicles. Of continuously increasing importance is their nonlinear behavior, in which large deformations and large rotations are involved as well as nonlinear material properties. The book starts with a survey about nonlinear shell theories from the rigorous point of view of continuum mechanics, this starting point being unavoidable for modern computational concepts. There follows a series of papers on nonlinear, especially unstable shell responses, which draw computational connections to well established tools in the field of static and dynamic stability of systems. Several papers are then concerned with new finite element derivations for nonlinear shell problems, and finally a series of authors contribute to specific applications opening a small window of the above mentioned wide spectrum. (orig./HP) With 159 figs.

  10. Computational mechanics of nonlinear response of shells

    International Nuclear Information System (INIS)

    Kraetzig, W.B.; Onate, E.

    1990-01-01

    Shell structures and their components are utilized in a wide spectrum of engineering fields reaching from space and aircraft structures, pipes and pressure vessels over liquid storage tanks, off-shore installations, cooling towers and domes, to bodyworks of motor vehicles. Of continuously increasing importance is their nonlinear behavior, in which large deformations and large rotations are involved as well as nonlinear material properties. The book starts with a survey about nonlinear shell theories from the rigorous point of view of continuum mechanics, this starting point being unavoidable for modern computational concepts. There follows a series of papers on nonlinear, especially unstable shell responses, which draw computational connections to well established tools in the field of static and dynamic stability of systems. Several papers are then concerned with new finite element derivations for nonlinear shell problems, and finally a series of authors contribute to specific applications opening a small window of the above mentioned wide spectrum. (orig./HP) With 159 figs

  11. A Supply Chain Coordination Mechanism with Cost Sharing of Corporate Social Responsibility

    Directory of Open Access Journals (Sweden)

    Yong Liu

    2018-04-01

    Full Text Available The competition of modern enterprises has shifted from brand competition among enterprises of the past to that of supply chains; and considering corporate social responsibility (CSR within supply chain management has become an inevitable requirement for improving the competitiveness of enterprises and conforms to the trend of standardization of social responsibility guidelines. This paper deals with channel coordination and decision-making in a CSR supply chain that is comprised of a dominant retailer and n homogeneous suppliers. The Stackelberg game is employed to analyze the optimal decision-making of this supply chain under either decentralized or centralized decision-making processes. After that, the thought and method of super conflict equilibrium are used to design the coordination decision-making mechanism of this supply chain based on the cost sharing of CSR to solve channel conflict and to optimize the decision. The results show that the proposed mechanism based on the cost sharing of CSR is better than those with only either the retailer or the suppliers being CSR; and it can well describe the relationship between the retailer and the suppliers, and increase the eagerness of the retailer and suppliers to carry out their CSR under various circumstances without having the profits adversely affected. As a matter of fact, this mechanism maximizes the profits of the entire supply chain system and also enhances the competitiveness of the chain.

  12. Osteoarthritis Year in Review 2015: Mechanics

    Science.gov (United States)

    Varady, Nathan H.; Grodzinsky, Alan J.

    2015-01-01

    Motivated by the conceptual framework of multi-scale biomechanics, this narrative review highlights recent major advances with a focus on gait and joint kinematics, then tissue-level mechanics, cell mechanics and mechanotransduction, matrix mechanics, and finally the nanoscale mechanics of matrix macromolecules. A literature review was conducted from January 2014 to April 2015 using PubMed to identify major developments in mechanics related to osteoarthritis (OA). Studies of knee adduction, flexion, rotation, and contact mechanics have extended our understanding of medial compartment loading. In turn, advances in measurement methodologies have shown how injuries to both the meniscus and ligaments, together, can alter joint kinematics. At the tissue scale, novel findings have emerged regarding the mechanics of the meniscus as well as cartilage superficial zone. Moving to the cell level, poroelastic and poroviscoelastic mechanisms underlying chondrocyte deformation have been reported, along with the response to osmotic stress. Further developments have emerged on the role of calcium signaling in chondrocyte mechanobiology, including exciting findings on the function of mechanically activated cation channels newly found to be expressed in chondrocytes. Finally, AFM-based nano-rheology systems have enabled studies of thin murine tissues and brush layers of matrix molecules over a wide range of loading rates including high rates corresponding to impact injury. With OA acknowledged to be a disease of the joint as an organ, understanding mechanical behavior at each length scale helps to elucidate the connections between cell biology, matrix biochemistry and tissue structure/function that may play a role in the pathomechanics of OA. PMID:26707990

  13. Food and Natural Materials Target Mechanisms to Effectively Regulate Allergic Responses.

    Science.gov (United States)

    Shin, Hee Soon; Shon, Dong-Hwa

    2015-01-01

    An immune hypersensitivity disorder called allergy is caused by diverse allergens entering the body via skin contact, injection, ingestion, and/or inhalation. These allergic responses may develop into allergic disorders, including inflammations such as atopic dermatitis, asthma, anaphylaxis, food allergies, and allergic rhinitis. Several drugs have been developed to treat these allergic disorders; however, long-term intake of these drugs could have adverse effects. As an alternative to these medicines, food and natural materials that ameliorate allergic disorder symptoms without producing any side effects can be consumed. Food and natural materials can effectively regulate successive allergic responses in an allergic chain-reaction mechanism in the following ways: [1] Inhibition of allergen permeation via paracellular diffusion into epithelial cells, [2] suppression of type 2 T-helper (Th) cell-related cytokine production by regulating Th1/Th2 balance, [3] inhibition of pathogenic effector CD4(+) T cell differentiation by inducing regulatory T cells (Treg), and [4] inhibition of degranulation in mast cells. The immunomodulatory effects of food and natural materials on each target mechanism were scientifically verified and shown to alleviate allergic disorder symptoms. Furthermore, consumption of certain food and natural materials such as fenugreek, skullcap, chitin/chitosan, and cheonggukjang as anti-allergics have merits such as safety (no adverse side effects), multiple suppressive effects (as a mixture would contain various components that are active against allergic responses), and ease of consumption when required. These merits and anti-allergic properties of food and natural materials help control various allergic disorders.

  14. Superconducting state mechanisms and properties

    CERN Document Server

    Kresin, Vladimir Z; Wolf, Stuart A

    2014-01-01

    'Superconducting State' provides a very detailed theoretical treatment of the key mechanisms of superconductivity, including the current state of the art (phonons, magnons, and plasmons). A very complete description is given of the electron-phonon mechanism responsible for superconductivity in the majority of superconducting systems, and the history of its development, as well as a detailed description of the key experimental techniques used to study the superconducting state and determine the mechanisms. In addition, there are chapters describing the discovery and properties of the key superconducting compounds that are of the most interest for science, and applications including a special chapter on the cuprate superconductors. It provides detailed treatments of some very novel aspects of superconductivity, including multiple bands (gaps), the "pseudogap" state, novel isotope effects beyond BCS, and induced superconductivity.

  15. Mechanisms of chemotherapy-induced behavioral toxicities

    Directory of Open Access Journals (Sweden)

    Elisabeth G Vichaya

    2015-04-01

    Full Text Available While chemotherapeutic agents have yielded relative success in the treatment of cancer, patients are often plagued with unwanted and even debilitating side-effects from the treatment which can lead to dose reduction or even cessation of treatment. Common side effects (symptoms of chemotherapy include (i cognitive deficiencies such as problems with attention, memory and executive functioning; (ii fatigue and motivational deficit; and (iii neuropathy. These symptoms often develop during treatment but can remain even after cessation of chemotherapy, severely impacting long-term quality of life. Little is known about the underlying mechanisms responsible for the development of these behavioral toxicities, however, neuroinflammation is widely considered to be one of the major mechanisms responsible for chemotherapy-induced symptoms. Here, we critically assess what is known in regards to the role of neuroinflammation in chemotherapy-induced symptoms. We also argue that, based on the available evidence neuroinflammation is unlikely the only mechanism involved in the pathogenesis of chemotherapy-induced behavioral toxicities. We evaluate two other putative candidate mechanisms. To this end we discuss the mediating role of damage-associated molecular patterns (DAMPs activated in response to chemotherapy-induced cellular damage. We also review the literature with respect to possible alternative mechanisms such as a chemotherapy-induced change in the bioenergetic status of the tissue involving changes in mitochondrial function in relation to chemotherapy-induced behavioral toxicities. Understanding the mechanisms that underlie the emergence of fatigue, neuropathy, and cognitive difficulties is vital to better treatment and long-term survival of cancer patients.

  16. Microstructure, mechanical properties, and biological response to functionally graded HA coatings

    International Nuclear Information System (INIS)

    Rabiei, Afsaneh; Blalock, Travis; Thomas, Brent; Cuomo, Jerry; Yang, Y.; Ong, Joo

    2007-01-01

    Hydroxyapatite (HA) [Ca 10 (PO 4 ) 6 (OH) 2 ] is the primary mineral content, representing 43% by weight, of bone. Applying a thin layer of HA, to the surface of a metal implant, can promote osseointegration and increase the mechanical stability of the implant. In this study, a biocompatible coating comprising an HA film with functionally graded crystallinity is being deposited on a heated substrate in an Ion Beam Assisted Deposition (IBAD) system. The microstructure of the film was studied using Transmission Electron Microscopy techniques. Finally, initial cell adhesion and cell differentiation on the coating was evaluated using ATCC CRL 1486 human embryonic palatal mesenchymal cell, an osteoblast precursor cell line. The results have shown superior mechanical properties and biological response to the functionally graded HA film

  17. Transport coefficients and mechanical response in hard-disk colloidal suspensions

    International Nuclear Information System (INIS)

    Zhang Bo-Kai; Ma Yu-Qiang; Li Jian; Chen Kang; Tian Wen-De

    2016-01-01

    We investigate the transport properties and mechanical response of glassy hard disks using nonlinear Langevin equation theory. We derive expressions for the elastic shear modulus and viscosity in two dimensions on the basis of thermal-activated barrier-hopping dynamics and mechanically accelerated motion. Dense hard disks exhibit phenomena such as softening elasticity, shear-thinning of viscosity, and yielding upon deformation, which are qualitatively similar to dense hard-sphere colloidal suspensions in three dimensions. These phenomena can be ascribed to stress-induced “landscape tilting”. Quantitative comparisons of these phenomena between hard disks and hard spheres are presented. Interestingly, we find that the density dependence of yield stress in hard disks is much more significant than in hard spheres. Our work provides a foundation for further generalizing the nonlinear Langevin equation theory to address slow dynamics and rheological behavior in binary or polydisperse mixtures of hard or soft disks. (rapid communication)

  18. [Incidence and risk factors of venous thromboembolism in major spinal surgery with no chemical or mechanical prophylaxis].

    Science.gov (United States)

    Rojas-Tomba, F; Gormaz-Talavera, I; Menéndez-Quintanilla, I E; Moriel-Durán, J; García de Quevedo-Puerta, D; Villanueva-Pareja, F

    2016-01-01

    To evaluate the incidence of venous thromboembolism in spine surgery with no chemical and mechanical prophylaxis, and to determine the specific risk factors for this complication. A historical cohort was analysed. All patients subjected to major spinal surgery, between January 2010 and September 2014, were included. No chemical or mechanical prophylaxis was administered in any patient. Active mobilisation of lower limbs was indicated immediately after surgery, and early ambulation started in the first 24-48 hours after surgery. Clinically symptomatic cases were confirmed by Doppler ultrasound of the lower limbs or chest CT angiography. A sample of 1092 cases was studied. Thromboembolic events were observed in 6 cases (.54%); 3 cases (.27%) with deep venous thrombosis and 3 cases (.27%) with pulmonary thromboembolism. A lethal case was identified (.09%). There were no cases of major bleeding or epidural haematoma. The following risk factors were identified: a multilevel fusion at more than 4 levels, surgeries longer than 130 minutes, patients older than 70 years of age, hypertension, and degenerative scoliosis. There is little scientific evidence on the prevention of thromboembolic events in spinal surgery. In addition to the disparity of prophylactic methods indicated by different specialists, it is important to weigh the risk-benefit of intra- and post-operative bleeding, and even the appearance of an epidural haematoma. Prophylaxis should be assessed in elderly patients over 70 years old, who are subjected to surgeries longer than 130 minutes, when 4 or more levels are involved. Copyright © 2015 SECOT. Published by Elsevier Espana. All rights reserved.

  19. Respiratory activity as a determinant of radiation survival response

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, A K; Berner, J D [State Univ. of New York, Buffalo (USA). Dept. of Biology

    1976-09-01

    Respiration is depressed in irradiated bacteria reaching a minimum level in most strains at 1-3 h after exposure when incubated in growth medium. Since a delay in response is observed, direct action on respiratory enzymes is unlikely. The dosage response of respiration varies widely in the strains studied. All strains exhibit two-component dosage-response curves. The facts suggest that respiration is a major factor in influencing cell survival and may be the principal mechanism through which chemical agents modify radiation response.

  20. Computational modeling predicts the ionic mechanism of late-onset responses in Unipolar Brush Cells

    Directory of Open Access Journals (Sweden)

    Sathyaa eSubramaniyam

    2014-08-01

    Full Text Available Unipolar Brush Cells (UBCs have been suggested to have a strong impact on cerebellar granular layer functioning, yet the corresponding cellular mechanisms remain poorly understood. UBCs have recently been reported to generate, in addition to early-onset glutamatergic synaptic responses, a late-onset response (LOR composed of a slow depolarizing ramp followed by a spike burst (Locatelli et al., 2013. The LOR activates as a consequence of synaptic activity and involves an intracellular cascade modulating H- and TRP-current gating. In order to assess the LOR mechanisms, we have developed a UBC multi-compartmental model (including soma, dendrite, initial segment and axon incorporating biologically realistic representations of ionic currents and a generic coupling mechanism regulating TRP and H channel gating. The model finely reproduced UBC responses to current injection, including a low-threshold spike sustained by CaLVA currents, a persistent discharge sustained by CaHVA currents, and a rebound burst following hyperpolarization sustained by H- and CaLVA-currents. Moreover, the model predicted that H- and TRP-current regulation was necessary and sufficient to generate the LOR and its dependence on the intensity and duration of mossy fiber activity. Therefore, the model showed that, using a basic set of ionic channels, UBCs generate a rich repertoire of delayed bursts, which could take part to the formation of tunable delay-lines in the local microcircuit.

  1. Computational modeling predicts the ionic mechanism of late-onset responses in unipolar brush cells.

    Science.gov (United States)

    Subramaniyam, Sathyaa; Solinas, Sergio; Perin, Paola; Locatelli, Francesca; Masetto, Sergio; D'Angelo, Egidio

    2014-01-01

    Unipolar Brush Cells (UBCs) have been suggested to play a critical role in cerebellar functioning, yet the corresponding cellular mechanisms remain poorly understood. UBCs have recently been reported to generate, in addition to early-onset glutamate receptor-dependent synaptic responses, a late-onset response (LOR) composed of a slow depolarizing ramp followed by a spike burst (Locatelli et al., 2013). The LOR activates as a consequence of synaptic activity and involves an intracellular cascade modulating H- and TRP-current gating. In order to assess the LOR mechanisms, we have developed a UBC multi-compartmental model (including soma, dendrite, initial segment, and axon) incorporating biologically realistic representations of ionic currents and a cytoplasmic coupling mechanism regulating TRP and H channel gating. The model finely reproduced UBC responses to current injection, including a burst triggered by a low-threshold spike (LTS) sustained by CaLVA currents, a persistent discharge sustained by CaHVA currents, and a rebound burst following hyperpolarization sustained by H- and CaLVA-currents. Moreover, the model predicted that H- and TRP-current regulation was necessary and sufficient to generate the LOR and its dependence on the intensity and duration of mossy fiber activity. Therefore, the model showed that, using a basic set of ionic channels, UBCs generate a rich repertoire of bursts, which could effectively implement tunable delay-lines in the local microcircuit.

  2. Mechanical Adaptability of the MMP-Responsive Film Improves the Functionality of Endothelial Cell Monolayer.

    Science.gov (United States)

    Hu, Mi; Chang, Hao; Zhang, He; Wang, Jing; Lei, Wen-Xi; Li, Bo-Chao; Ren, Ke-Feng; Ji, Jian

    2017-07-01

    Extracellular matrix and cells are inherent in coordinating and adapting to each other during all physiological and pathological processes. Synthetic materials, however, show rarely reciprocal and spatiotemporal responses to cells, and lacking self-adapting properties as well. Here, a mechanical adaptability based on the matrix metalloproteinase (MMPs) sensitive polyelectrolyte film is reported. Poly-lysine (PLL) and methacrylated hyaluronic acid (HA-MA) nanolayers are employed to build the thin film through the layer-by-layer assembly, and it is further crosslinked using MMP sensitive peptides, which endows the films with changeable mechanical properties in response to MMPs. It is demonstrated that stiffness of the (PLL/HA-MA) films increases with the crosslinking, and then decreases in response to a treatment of enzyme. Consequently, the crosslinked (PLL/HA-MA) films reveal effective growth of endothelial cells (ECs), leading to fast formation of EC monolayer. Importantly, significantly improved endothelial function of the EC monolayer, which is characterized by integrity, biomolecules release, expression of function related gene, and antithrombotic properties, is achieved along with the decrosslinking of the film because of EC-secreted MMPs. These results suggest that mechanical adaptability of substrate in Young's modulus plays a significant role in endothelial progression, which shows great application potential in tissue engineering, regenerative medicine, and organ-on-a-chip. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Mechanisms of Antibiotic Resistance

    Science.gov (United States)

    Munita, Jose M.; Arias, Cesar A.

    2015-01-01

    Emergence of resistance among the most important bacterial pathogens is recognized as a major public health threat affecting humans worldwide. Multidrug-resistant organisms have emerged not only in the hospital environment but are now often identified in community settings, suggesting that reservoirs of antibiotic-resistant bacteria are present outside the hospital. The bacterial response to the antibiotic “attack” is the prime example of bacterial adaptation and the pinnacle of evolution. “Survival of the fittest” is a consequence of an immense genetic plasticity of bacterial pathogens that trigger specific responses that result in mutational adaptations, acquisition of genetic material or alteration of gene expression producing resistance to virtually all antibiotics currently available in clinical practice. Therefore, understanding the biochemical and genetic basis of resistance is of paramount importance to design strategies to curtail the emergence and spread of resistance and devise innovative therapeutic approaches against multidrug-resistant organisms. In this chapter, we will describe in detail the major mechanisms of antibiotic resistance encountered in clinical practice providing specific examples in relevant bacterial pathogens. PMID:27227291

  4. Sustained major molecular response on interferon alpha-2b in two patients with polycythemia vera

    DEFF Research Database (Denmark)

    Larsen, Thomas Stauffer; Bjerrum, O W; Pallisgaard, N

    2008-01-01

    Quantitative assessment of the JAK2 V617F allele burden during disease evolution and ongoing myelosuppressive treatment is likely to be implemented in the future clinical setting. Interferon alpha has demonstrated efficacy in treatment of both chronic myeloid leukemia and the Philadelphia chromos...... with a JAK2 V617F allele burden below 1.0% in two patients with polycythemia vera treated with interferon alpha-2b (IFN-2b). Discontinuation of IFN-2b in one of the patients was followed by a sustained long-lasting (12 months of follow-up) major molecular response....

  5. Personality and Differential Treatment Response in Major Depression: A Randomized Controlled Trial Comparing Cognitive-Behavioural Therapy and Pharmacotherapy

    Science.gov (United States)

    Bagby, R Michael; Quilty, Lena C; Segal, Zindel V; McBride, Carolina C; Kennedy, Sidney H; Costa, Paul T

    2008-01-01

    Objective Effective treatments for major depressive disorder exist, yet some patients fail to respond, or achieve only partial response. One approach to optimizing treatment success is to identify which patients are more likely to respond best to which treatments. The objective of this investigation was to determine if patient personality characteristics are predictive of response to either cognitive-behavioural therapy (CBT) or pharmacotherapy (PHT). Method Depressed patients completed the Revised NEO Personality Inventory, which measures the higher-order domain and lower-order facet traits of the Five-Factor Model of Personality, and were randomized to receive either CBT or PHT. Result Four personality traits—the higher-order domain neuroticism and 3 lower-order facet traits: trust, straightforwardness, and tendermindedness—were able to distinguish a differential response rate to CBT, compared with PHT. Conclusion The assessment of patient dimensional personality traits can assist in the selection and optimization of treatment response for depressed patients. PMID:18616856

  6. Oscillatory fluid flow influences primary cilia and microtubule mechanics.

    Science.gov (United States)

    Espinha, Lina C; Hoey, David A; Fernandes, Paulo R; Rodrigues, Hélder C; Jacobs, Christopher R

    2014-07-01

    Many tissues are sensitive to mechanical stimuli; however, the mechanotransduction mechanism used by cells remains unknown in many cases. The primary cilium is a solitary, immotile microtubule-based extension present on nearly every mammalian cell which extends from the basal body. The cilium is a mechanosensitive organelle and has been shown to transduce fluid flow-induced shear stress in tissues, such as the kidney and bone. The majority of microtubules assemble from the mother centriole (basal body), contributing significantly to the anchoring of the primary cilium. Several studies have attempted to quantify the number of microtubules emanating from the basal body and the results vary depending on the cell type. It has also been shown that cellular response to shear stress depends on microtubular integrity. This study hypothesizes that changing the microtubule attachment of primary cilia in response to a mechanical stimulus could change primary cilia mechanics and, possibly, mechanosensitivity. Oscillatory fluid flow was applied to two different cell types and the microtubule attachment to the ciliary base was quantified. For the first time, an increase in microtubules around primary cilia both with time and shear rate in response to oscillatory fluid flow stimulation was demonstrated. Moreover, it is presented that the primary cilium is required for this loading-induced cellular response. This study has demonstrated a new role for the cilium in regulating alterations in the cytoplasmic microtubule network in response to mechanical stimulation, and therefore provides a new insight into how cilia may regulate its mechanics and thus the cells mechanosensitivity. Copyright © 2014 Wiley Periodicals, Inc.

  7. The dynamic and quasi-static mechanical response of three aluminum armor alloys: 5059, 5083 and 7039

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Bergquist, Sara J., E-mail: sara.perezbergquist@gmail.com [Materials Science and Technology Division, Los Alamos National Laboratory, NM 87545 (United States); Gray, G.T.; Cerreta, Ellen K.; Trujillo, Carl P.; Perez-Bergquist, Alex [Materials Science and Technology Division, Los Alamos National Laboratory, NM 87545 (United States)

    2011-11-15

    Highlights: {yields} Aluminum alloys for use in armor applications. {yields} Mechanical response in dynamic and quasi-static regimes with temperature dependence. {yields} Shear localization with evidence of early stages of dynamic recrystallization. - Abstract: The mechanical response and microstructural evolution of aluminum alloys 5083, 5059 and 7039 was examined in compression and shear in both the quasi-static (0.001 s{sup -1}) and dynamic ({approx}2000 s{sup -1}) strain rate regimes. Electron Back Scattered Diffraction was utilized for detailed post-mortem analysis of the specimens following loading. The mechanical responses in shear were found to be strain-rate sensitive. At the slowest strain rates, all of the alloys had relatively large volumes of highly deformed material with 5083 and 5059 having the largest shear affected volumes. The dynamic strain rate test samples all formed highly compact shear localized volumes across the sheared zone with 7039 consistently displaying the narrowest shear regions. The morphology of these shear bands, along with the limited hardening during deformation, indicate a mechanism change at the higher strain rates. Higher resolution orientation image mapping has shown that between the three alloys there are varying degrees of crystallographic order within the shear bands. Transmission electron microscopy revealed various stages of dynamic recrystallization were present suggesting that while low strain rate deformation is controlled by dislocation multiplication and glide, high strain and strain-rate deformation is influenced in part due to mechanical recrystallization.

  8. Evaluation of the sheet mechanical response to laser welding processes

    International Nuclear Information System (INIS)

    Carmignani, B.; Daneri, A.; Toselli, G.; Bellei, M.

    1995-07-01

    The simulation of the mechanical response of steel sheets, due to the heating during welding processes by a laser source beam, obtained by Abaqus standard code, is discussed. Different hypotheses for the material behaviour at temperatures greater than the fusion one have been tested and compared; in particular, some tests have been made taking the annealing effect into account by means of an user routine UMAT developed ad hoc. This work was presented at the 8th international Abaqus Users' conference at Paris, 31 May - 2 June 1995

  9. On the effects of geometry, defects, and material asymmetry on the mechanical response of shape memory alloy cellular lattice structures

    International Nuclear Information System (INIS)

    Ravari, M R Karamooz; Kadkhodaei, M; Ghaei, A; Esfahani, S Nasr; Andani, M Taheri; Elahinia, M; Karaca, H

    2016-01-01

    Shape memory alloy (such as NiTi) cellular lattice structures are a new class of advanced materials with many potential applications. The cost of fabrication of these structures however is high. It is therefore necessary to develop modeling methods to predict the functional behavior of these alloys before fabrication. The main aim of the present study is to assess the effects of geometry, microstructural imperfections and material asymmetric response of dense shape memory alloys on the mechanical response of cellular structures. To this end, several cellular and dense NiTi samples are fabricated using a selective laser melting process. Both cellular and dense specimens were tested in compression in order to obtain their stress–strain response. For modeling purposes, a three -dimensional (3D) constitutive model based on microplane theory which is able to describe the material asymmetry was employed. Five finite element models based on unit cell and multi-cell methods were generated to predict the mechanical response of cellular lattices. The results show the considerable effects of the microstructural imperfections on the mechanical response of the cellular lattice structures. The asymmetric material response of the bulk material also affects the mechanical response of the corresponding cellular structure. (paper)

  10. Sensory-motor responses to mechanical stimulation of the esophagus after sensitization with acid

    OpenAIRE

    Drewes, Asbjorn Mohr; Reddy, Hariprasad; Staahl, Camilla; Pedersen, Jan; Funch-Jensen, Peter; Arendt-Nielsen, Lars; Gregersen, Hans

    2005-01-01

    AIM: Sensitization most likely plays an important role in chronic pain disorders, and such sensitization can be mimicked by experimental acid perfusion of the esophagus. The current study systematically investigated the sensory and motor responses of the esophagus to controlled mechanical stimuli before and after sensitization.

  11. Event-related potentials in response to emotional words in patients with major depressive disorder and healthy controls.

    Science.gov (United States)

    Liu, Hong; Yin, Hui-fang; Wu, Da-xing; Xu, Shu-jing

    2014-01-01

    Dysfunctional cognitive processing and abnormal brain activation in response to emotional stimuli have long been recognized as core features of the major depressive disorder (MDD). The aim of this study was to examine how Chinese patients with MDD process Chinese emotional words presented to either the left (LH) or right hemisphere (RH). Reaction time (RT) and the late positive component of the event-related potential were measured while subjects judged the valence (positive or negative) of emotional words written in Chinese. Compared to healthy controls, patients with MDD exhibited slower RTs in response to negative words. In all subjects, the RTs in response to negative words were significantly faster than RTs in response to positive words presented to the LH, as well as significantly faster than responses to negative words presented to the RH. Compared to healthy controls, MDD patients exhibited reduced activation of the central and left regions of the brain in response to both negative and positive words. In healthy controls, the posterior brain areas were more active than the anterior brain areas when responding to negative words. All individuals showed faster RTs in response to negative words compared to positive words. In addition, MDD patients showed lateralization of brain activity in response to emotional words, whereas healthy individuals did not show this lateralization. Posterior brain areas appear to play an especially important role in discriminating and experiencing negative emotional words. This study provides further evidence in support of the negative bias hypothesis and the emotional processing theory.

  12. MECHANISMS OF IMMUNE RESPONSES IN CNIDARIANS

    Directory of Open Access Journals (Sweden)

    Iván Darío Ocampo

    2015-05-01

    Full Text Available The immune system maintains the integrity of the organisms through a complex network of molecules, cells, and tissues that recognize internal or external antigenic substances to neutralized and eliminate them. The mechanisms of immune response have evolved in a modular fashion, where members of a given module interact strongly among them, but weakly with members of other modules, providing robustness and evolvability to the immune system. Ancestral modules are the raw material for the generation of new modules through evolution. Thus, the study of immune systems in basal metazoans such as cnidarians seeks to determine the basic tool kit from which the metazoans started to construct their immune systems. In addition, understanding the immune mechanisms in cnidarians contributes to decipher the etiopathology of coral diseases of infectious nature that are affecting coral reefs worldwide. RESUMEN El sistema inmune mantiene la integridad de los organismos vivos por medio de una red compleja de moléculas, células y tejidos que reconocen sustancias antigénicas internas o externas para neutralizarlas y eliminarlas. Los mecanismos de respuesta inmune han evolucionado de una manera modular, en donde miembros de un módulo dado interactúan fuertemente entre sí, pero débilmente con componentes de otros módulos, otorgando así robustez y potencial evolutivo al sistema inmune. Módulos ancestrales representan el material básico para la generación de nuevos módulos durante el proceso evolutivo. Así, el estudio de sistemas inmunes en metazoarios basales como los cnidarios busca determinar cuales son los módulos ancestrales a partir de los cuales se constituyen los sistemas inmunes de animales derivados. Adicionalmente, el entendimiento de los mecanismos de respuesta inmune en cnidarios eventualmente contribuirá a descifrar la etiopatología de las enfermedades de corales de carácter infeccioso que está afectando los corales en el mundo.

  13. Role of contact inhibition of locomotion and junctional mechanics in epithelial collective responses to injury

    Science.gov (United States)

    Coburn, Luke; Lopez, Hender; Schouwenaar, Irin-Maya; Yap, Alpha S.; Lobaskin, Vladimir; Gomez, Guillermo A.

    2018-03-01

    Epithelial tissues form physically integrated barriers against the external environment protecting organs from infection and invasion. Within each tissue, epithelial cells respond to different challenges that can potentially compromise tissue integrity. In particular, cells collectively respond to injuries by reorganizing their cell-cell junctions and migrating directionally towards the sites of damage. Notwithstanding, the mechanisms that drive collective responses in epithelial aggregates remain poorly understood. In this work, we develop a minimal mechanistic model that is able to capture the essential features of epithelial collective responses to injuries. We show that a model that integrates the mechanics of cells at the cell-cell and cell-substrate interfaces as well as contact inhibition of locomotion (CIL) correctly predicts two key properties of epithelial response to injury as: (1) local relaxation of the tissue and (2) collective reorganization involving the extension of cryptic lamellipodia that extend, on average, up to 3 cell diameters from the site of injury and morphometric changes in the basal regions. Our model also suggests that active responses (like the actomyosin purse string and softening of cell-cell junctions) are needed to drive morphometric changes in the apical region. Therefore, our results highlight the importance of the crosstalk between junctional biomechanics, cell substrate adhesion, and CIL, as well as active responses, in guiding the collective rearrangements that are required to preserve the epithelial barrier in response to injury.

  14. Evidence of major genes for exercise heart rate and blood pressure at baseline and in response to 20 weeks of endurance training: the HERITAGE family study.

    Science.gov (United States)

    An, P; Borecki, I B; Rankinen, T; Pérusse, L; Leon, A S; Skinner, J S; Wilmore, J H; Bouchard, C; Rao, D C

    2003-10-01

    Major gene effects on exercise heart rate (HR) and blood pressure (BP) measured at 50 W and 80 % maximal oxygen uptake (VO (2)max) were assessed in 99 White families in the HERITAGE Family Study. Exercise HR and BP were measured both before and after 20 weeks of endurance training. The baseline phenotypes were adjusted for the effects of age and BMI, whereas the training responses (post-training minus baseline) were adjusted for the effects of age, BMI and the corresponding baseline values, within four sex-by-generation groups. Baseline exercise HR at 50 W was under the influence of a major recessive gene and a multifactorial component, which accounted for 30 % and 27 % of the variance, respectively. The training response was found to be under the influence of a major dominant gene, which accounted for 27 % of the variance. These significant major gene effects were independent of the effects of cigarette smoking, baseline VO (2)max, and the resting HR levels. No significant interactions were found between genotype and age, sex, or BMI. No major gene effect was found for exercise BP. Instead, we found the baseline exercise BP at 50 W and 80 % VO (2)max and the training response at 50 W were solely influenced by multifactorial effects, which accounted for about 50 %, 40 % and 20 % of the variance, respectively. No familial resemblance was found for training responses in exercise HR or BP at 80 % VO (2)max. Segregation analysis also was carried out for exercise HR in Whites pooled with a small sample of Blacks in HERITAGE. Similar major effects were found, but the transmission from parents to offspring did not follow Mendelian expectations, suggesting sample heterogeneity. In conclusion, submaximal exercise HR at baseline and in response to endurance training was influenced by putative major genes, with no evidence of interactions with sex, age or BMI, in contrast to a multifactorial etiology for exercise BP.

  15. Common and distinct neural mechanisms of attentional switching and response conflict.

    Science.gov (United States)

    Kim, Chobok; Johnson, Nathan F; Gold, Brian T

    2012-08-21

    The human capacities for overcoming prepotent actions and flexibly switching between tasks represent cornerstones of cognitive control. Functional neuroimaging has implicated a diverse set of brain regions contributing to each of these cognitive control processes. However, the extent to which attentional switching and response conflict draw on shared or distinct neural mechanisms remains unclear. The current study examined the neural correlates of response conflict and attentional switching using event-related functional magnetic resonance imaging (fMRI) and a fully randomized 2×2 design. We manipulated an arrow-word version of the Stroop task to measure conflict and switching in the context of a single task decision, in response to a common set of stimuli. Under these common conditions, both behavioral and imaging data showed significant main effects of conflict and switching but no interaction. However, conjunction analyses identified frontal regions involved in both switching and response conflict, including the dorsal anterior cingulate cortex (dACC) and left inferior frontal junction. In addition, connectivity analyses demonstrated task-dependent functional connectivity patterns between dACC and inferior temporal cortex for attentional switching and between dACC and posterior parietal cortex for response conflict. These results suggest that the brain makes use of shared frontal regions, but can dynamically modulate the connectivity patterns of some of those regions, to deal with attentional switching and response conflict. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Neurobiological mechanisms of placebo responses.

    Science.gov (United States)

    Zubieta, Jon-Kar; Stohler, Christian S

    2009-03-01

    Expectations, positive or negative, are modulating factors influencing behavior. They are also thought to underlie placebo effects, potentially impacting perceptions and biological processes. We used sustained pain as a model to determine the neural mechanisms underlying placebo-induced analgesia and affective changes in healthy humans. Subjects were informed that they could receive either an active agent or an inactive compound, similar to routine clinical trials. Using PET and the mu-opioid selective radiotracer [(11)C]carfentanil we demonstrate placebo-induced activation of opioid neurotransmission in a number of brain regions. These include the rostral anterior cingulate, orbitofrontal and dorsolateral prefrontal cortex, anterior and posterior insula, nucleus accumbens, amygdala, thalamus, hypothalamus, and periaqueductal grey. Some of these regions overlap with those involved in pain and affective regulation but also motivated behavior. The activation of endogenous opioid neurotransmission was further associated with reductions in pain report and negative affective state. Additional studies with the radiotracer [(11)C]raclopride, studies labeling dopamine D2/3 receptors, also demonstrate the activation of nucleus accumbens dopamine during placebo administration under expectation of analgesia. Both dopamine and opioid neurotransmission were related to expectations of analgesia and deviations from those initial expectations. When the activity of the nucleus accumbens was probed with fMRI using a monetary reward expectation paradigm, its activation was correlated with both dopamine, opioid responses to placebo in this region and the formation of placebo analgesia. These data confirm that specific neural circuits and neurotransmitter systems respond to the expectation of benefit during placebo administration, inducing measurable physiological changes.

  17. Osteoarthritis year in review 2015: mechanics.

    Science.gov (United States)

    Varady, N H; Grodzinsky, A J

    2016-01-01

    Motivated by the conceptual framework of multi-scale biomechanics, this narrative review highlights recent major advances with a focus on gait and joint kinematics, then tissue-level mechanics, cell mechanics and mechanotransduction, matrix mechanics, and finally the nanoscale mechanics of matrix macromolecules. A literature review was conducted from January 2014 to April 2015 using PubMed to identify major developments in mechanics related to osteoarthritis (OA). Studies of knee adduction, flexion, rotation, and contact mechanics have extended our understanding of medial compartment loading. In turn, advances in measurement methodologies have shown how injuries to both the meniscus and ligaments, together, can alter joint kinematics. At the tissue scale, novel findings have emerged regarding the mechanics of the meniscus as well as cartilage superficial zone. Moving to the cell level, poroelastic and poro-viscoelastic mechanisms underlying chondrocyte deformation have been reported, along with the response to osmotic stress. Further developments have emerged on the role of calcium signaling in chondrocyte mechanobiology, including exciting findings on the function of mechanically activated cation channels newly found to be expressed in chondrocytes. Finally, AFM-based nano-rheology systems have enabled studies of thin murine tissues and brush layers of matrix molecules over a wide range of loading rates including high rates corresponding to impact injury. With OA acknowledged to be a disease of the joint as an organ, understanding mechanical behavior at each length scale helps to elucidate the connections between cell biology, matrix biochemistry and tissue structure/function that may play a role in the pathomechanics of OA. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  18. The Cytoskeleton and Force Response Mechanisms

    Science.gov (United States)

    Allen, Philip Goodwin

    2003-01-01

    The long term aim of this project was to define the mechanisms by which cells sense and respond to the physical forces experienced at 1g and missing in microgravity. Identification and characterization of the elements of the cells force response mechanism could provide pathways and molecules to serve as targets for pharmacological intervention to mitigate the pathologic effects of microgravity. Mechanical forces experienced by the organism can be transmitted to cells through molecules that allow cells to bind to the extracellular matrix and through other types of molecules which bind cells to each other. These molecules are coupled in large complexes of proteins to structural elements such as the actin cytoskeleton that give the cell the ability to sense, resist and respond to force. Application of small forces to tissue culture cells causes local elevation of intracellular calcium through stretch activated ion channels, increased tyrosine phosphorylation and a restructuring of the actin cytoskeleton. Using collagen coated iron oxide beads and strong magnets, we can apply different levels of force to cells in culture. We have found that force application causes the cells to polymerize actin at the site of mechanical deformation and unexpectedly, to depolymerize actin across the rest of the cell. Observations of GFP- actin expressing cells demonstrate that actin accumulates at the site of deformation within the first five minutes of force application and is maintained for many tens of minutes after force is removed. Consistent with the reinforcement of the cytoskeletal structures underlying the integrin-bead interaction, force also alters the motion of bound magnetic beads. This effect is seen following the removal of the magnetic field, and is only partially ablated by actin disruption with cytochalsin B. While actin is polymerizing locally at the site of force application, force also stimulates a global reduction in actin filament content within the cells. We have

  19. Effect of fuel assembly mechanical design changes on dynamic response of reactor pressure vessel system under extreme loadings

    International Nuclear Information System (INIS)

    Bhandari, D.R.; Hankinson, M.F.

    1993-01-01

    This paper presents the results of a study to assess the effect of fuel assembly mechanical design changes on the dynamic response of a pressurized water reactor vessel and reactor internals under Loss-Of-Coolant Accident (LOCA) conditions. The results of this study show that the dynamic response of the reactor vessel internals and the core under extreme loadings, such as LOCA, is very sensitive to fuel assembly mechanical design changes. (author)

  20. GWAS-based machine learning approach to predict duloxetine response in major depressive disorder.

    Science.gov (United States)

    Maciukiewicz, Malgorzata; Marshe, Victoria S; Hauschild, Anne-Christin; Foster, Jane A; Rotzinger, Susan; Kennedy, James L; Kennedy, Sidney H; Müller, Daniel J; Geraci, Joseph

    2018-04-01

    Major depressive disorder (MDD) is one of the most prevalent psychiatric disorders and is commonly treated with antidepressant drugs. However, large variability is observed in terms of response to antidepressants. Machine learning (ML) models may be useful to predict treatment outcomes. A sample of 186 MDD patients received treatment with duloxetine for up to 8 weeks were categorized as "responders" based on a MADRS change >50% from baseline; or "remitters" based on a MADRS score ≤10 at end point. The initial dataset (N = 186) was randomly divided into training and test sets in a nested 5-fold cross-validation, where 80% was used as a training set and 20% made up five independent test sets. We performed genome-wide logistic regression to identify potentially significant variants related to duloxetine response/remission and extracted the most promising predictors using LASSO regression. Subsequently, classification-regression trees (CRT) and support vector machines (SVM) were applied to construct models, using ten-fold cross-validation. With regards to response, none of the pairs performed significantly better than chance (accuracy p > .1). For remission, SVM achieved moderate performance with an accuracy = 0.52, a sensitivity = 0.58, and a specificity = 0.46, and 0.51 for all coefficients for CRT. The best performing SVM fold was characterized by an accuracy = 0.66 (p = .071), sensitivity = 0.70 and a sensitivity = 0.61. In this study, the potential of using GWAS data to predict duloxetine outcomes was examined using ML models. The models were characterized by a promising sensitivity, but specificity remained moderate at best. The inclusion of additional non-genetic variables to create integrated models may improve prediction. Copyright © 2017. Published by Elsevier Ltd.

  1. Major new sources of biological ice nuclei

    Science.gov (United States)

    Moffett, B. F.; Hill, T.; Henderson-Begg, S. K.

    2009-12-01

    Almost all research on biological ice nucleation has focussed on a limited number of bacteria. Here we characterise several major new sources of biogenic ice nuclei. These include mosses, hornworts, liverworts and cyanobacteria. Ice nucleation in the eukaryotic bryophytes appears to be ubiquitous. The temperature at which these organisms nucleate is that at which the difference in vapour pressure over ice and water is at or close to its maximum. At these temperatures (-8 to -18 degrees C) ice will grow at the expense of supercooled water. These organisms are dependent for their water on occult precipitation - fog, dew and cloudwater which by its nature is not collected in conventional rain gauges. Therefore we suggest that these organism produce ice nuclei as a water harvesting mechanism. Since the same mechanism would also drive the Bergeron-Findeisen process, and as moss is known to become airborne, these nuclei may have a role in the initiation of precipitation. The properties of these ice nuclei are very different from the well characterised bacterial nuclei. We will also present DNA sequence data showing that, although related, the proteins responsible are only very distantly related to the classical bacterial ice nuclei.

  2. Elucidating the molecular mechanisms underlying cellular response to biophysical cues using synthetic biology approaches

    NARCIS (Netherlands)

    Denning, Denise; Roos, Wouter H

    2016-01-01

    The use of synthetic surfaces and materials to influence and study cell behavior has vastly progressed our understanding of the underlying molecular mechanisms involved in cellular response to physicochemical and biophysical cues. Reconstituting cytoskeletal proteins and interfacing them with a

  3. Dynamic Response and Failure Mechanism of Brittle Rocks Under Combined Compression-Shear Loading Experiments

    Science.gov (United States)

    Xu, Yuan; Dai, Feng

    2018-03-01

    A novel method is developed for characterizing the mechanical response and failure mechanism of brittle rocks under dynamic compression-shear loading: an inclined cylinder specimen using a modified split Hopkinson pressure bar (SHPB) system. With the specimen axis inclining to the loading direction of SHPB, a shear component can be introduced into the specimen. Both static and dynamic experiments are conducted on sandstone specimens. Given carefully pulse shaping, the dynamic equilibrium of the inclined specimens can be satisfied, and thus the quasi-static data reduction is employed. The normal and shear stress-strain relationships of specimens are subsequently established. The progressive failure process of the specimen illustrated via high-speed photographs manifests a mixed failure mode accommodating both the shear-dominated failure and the localized tensile damage. The elastic and shear moduli exhibit certain loading-path dependence under quasi-static loading but loading-path insensitivity under high loading rates. Loading rate dependence is evidently demonstrated through the failure characteristics involving fragmentation, compression and shear strength and failure surfaces based on Drucker-Prager criterion. Our proposed method is convenient and reliable to study the dynamic response and failure mechanism of rocks under combined compression-shear loading.

  4. Salivary alpha-amylase and cortisol responsiveness following electrical stimulation stress in major depressive disorder patients.

    Science.gov (United States)

    Tanaka, Yoshihiro; Ishitobi, Yoshinobu; Maruyama, Yoshihiro; Kawano, Aimi; Ando, Tomoko; Okamoto, Shizuko; Kanehisa, Masayuki; Higuma, Haruka; Ninomiya, Taiga; Tsuru, Jusen; Hanada, Hiroaki; Kodama, Kensuke; Isogawa, Koichi; Akiyoshi, Jotaro

    2012-03-30

    Major depressive disorder (MDD) is often associated with dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis by chronic stress. In comparison, psychosocial stress-induced activation of salivary α-amylase (sAA) functions as a marker of sympathoadrenal medullary system (SAM) activity. However, in contrast to salivary cortisol, sAA has been less extensively studied in MDD patients. The present study measured sAA and salivary cortisol levels in patients with MDD. The authors determined Profile of Mood State (POMS) and State-Trait anxiety Inventory (STAI) scores, Heart Rate Variability (HRV), and sAA and salivary cortisol levels in 88 patients with MDD and 41 healthy volunteers following the application of electrical stimulation stress. Patients with major depressive disorder were 8 points or more on Hamilton Depression Scale (HAM-D) scores. Tension-Anxiety, Depression-Dejection, Anger-Hostility, Fatigue, and Confusion scores in patients with major depressive disorder were significantly increased compared to healthy controls. In contrast, Vigor scores in patients with MDD were significantly decreased compared with healthy controls. There was no difference in heart rate variability measures between MDD patients and healthy controls. The threshold of electrical stimulation applied in MDD patients was lower than that in healthy controls. SAA levels in female MDD patients were significantly elevated relative to controls both before and after electrical stimulation. Finally, there were no differences in salivary cortisol levels between major depressive patients and controls. In the present study only three time points were explored. Furthermore, the increased secretion of sAA before and after stimulation could allude to an increased responsiveness of novel and uncontrollable situations in patients with MDD. These preliminary results suggest that sAA might be a useful biological marker of MDD. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Residential proximity to major roads and obstetrical complications.

    Science.gov (United States)

    Yorifuji, Takashi; Naruse, Hiroo; Kashima, Saori; Murakoshi, Takeshi; Doi, Hiroyuki

    2015-03-01

    Exposure to air pollution is linked with an increased risk of preterm births. To provide further evidence on this relationship, we evaluated the association between proximity to major roads--as an index for air pollution exposure--and various obstetrical complications. Data were extracted from a database maintained by the perinatal hospital in Shizuoka, Japan. We restricted the analysis to mothers with singleton pregnancies of more than 22 weeks of gestation from 1997 to 2012 (n=19,077). Using the geocoded residential information, each mother was assigned proximity to major roads. We then estimated multivariate adjusted odds ratios and their 95% confidence intervals (CIs) for the effects of proximity to major roads on various obstetrical complications (preeclampsia, gestational diabetes mellitus, placenta abruption, placenta previa, preterm premature rupture of membrane (pPROM), preterm labor, and preterm births). We found positive associations of proximity to major roads with preeclampsia and pPROM. Living within 200 m increased the odds of preeclampsia by 1.3 times (95% CI, 1.0-1.8) and pPROM by 1.6 times (95% CI, 1.1-2.2). Furthermore, living within 200 m increased the odds of preterm births by 1.4 fold (95% CI, 1.2-1.7). Exposure to traffic-related air pollution increased the risk of preeclampsia and pPROM in this study. We propose a mechanism responsible for the association between air pollution and preterm births. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Optical-response properties in an atom-assisted optomechanical system with a mechanical pump

    Science.gov (United States)

    Sun, Xue-Jian; Chen, Hao; Liu, Wen-Xiao; Li, Hong-Rong

    2017-05-01

    We investigate the optical-response properties of a coherent-mechanical pumped optomechanical system (OMS) coupled to a Λ-type three-level atomic ensemble. Due to the optomechanical and the cavity-atom couplings, the optomechanically induced transparency (OMIT) and electromagnetically induced transparency (EIT) phenomena could both be observed from our proposal. In the presence of a coherent mechanical pump, we show that the OMIT behavior of the probe field exhibits a phase-dependent effect, leading to the switch from OMIT to optomechanically induced absorption or amplification, while the feature of EIT remains unchanged. The distinctly different effects of the mechanical pump on OMIT and EIT behavior assure us that the absorption (amplification) and transparency of the output probe field can be simultaneously observed. Moreover, a tunable switch from slow to fast light can also be realized by tuning the phase and amplitude of the mechanical pump. In particular, the presence of the atomic ensemble can further adjust the group delay, providing additional flexibility for achieving the tunable switch.

  7. Response style, interpersonal difficulties and social functioning in major depressive disorder.

    Science.gov (United States)

    Lam, Dominic; Schuck, Nikki; Smith, Neil; Farmer, Anne; Checkley, Stuart

    2003-08-01

    It is postulated that depressed patients who engaged in self-focused rumination on their depressive symptoms may experience more hopelessness, more interpersonal distress and poorer social functioning while patients who distract themselves may experience less severe hopelessness and better social functioning. One-hundred and nine outpatients suffering from DSM-IV (APA, 1994) major depressive disorders filled in questionnaires that mapped into their response style to depression, hopelessness and interpersonal style. They were also interviewed for their levels of social functioning. Rumination was associated with higher levels of depression and distraction was associated with lower levels of depression. Furthermore when levels of depression and gender were controlled for, rumination contributed to higher levels of hopelessness and distraction contributed to lower levels of hopelessness. Both rumination and levels of depression contributed significantly to higher levels of interpersonal distress when gender was controlled for. Ruminators were rated to have significantly more severe problems in intimate relationships while distractors were rated to have significantly higher social functioning. Our study suggests the importance of teaching patients techniques to distract themselves. This could prevent patients from getting into a vicious cycle of self-absorption and increased levels of hopelessness, finding it hard to interact with people in their social network and neglecting their intimate relationships.

  8. Abnormal proactive and reactive cognitive control during conflict processing in major depression.

    Science.gov (United States)

    Vanderhasselt, Marie-Anne; De Raedt, Rudi; De Paepe, Annick; Aarts, Kristien; Otte, Georges; Van Dorpe, Jan; Pourtois, Gilles

    2014-02-01

    According to the Dual Mechanisms of Control framework, cognitive control consists of two complementary components: proactive control refers to anticipatory maintenance of goal-relevant information, whereas reactive control acts as a correction mechanism that is activated when a conflict occurs. Possibly, the well-known diminished inhibitory control in response to negative stimuli in Major Depressive Disorder (MDD) patients stems from a breakdown in proactive control, and/or anomalies in reactive cognitive control. In our study, MDD patients specifically showed increased response latencies when actively inhibiting a dominant response to a sad compared with a happy face. This condition was associated with a longer duration of a dominant ERP topography (800-900 ms poststimulus onset) and a stronger activity in the bilateral dorsal anterior cingulate cortex, reflecting abnormal reactive control when inhibiting attention to a negative stimulus. Moreover, MDD patients showed abnormalities in proactive cognitive control when preparing for the upcoming imperative stimulus (abnormal modulation of the contingent negative variation component), accompanied by more activity in brain regions belonging to the default mode network. All together, deficits to inhibit attention to negative information in MDD might originate from an abnormal use of both proactive resources and reactive control processes. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  9. The physio-mechanical

    Directory of Open Access Journals (Sweden)

    C.U. Atuanya

    2014-01-01

    Full Text Available This work presents a systematic approach to evaluate the physio-mechanical properties of bean pod ash particles (BPAp reinforced recycled polyethylene (RLDPE polymer based composites. The bean pod ash particles of 75 μm with a weight percentage of 0, 5, 10, 15, 20, 25, 30 (wt% and recycled polyethylene (RLDPE were prepared. The surface morphology, physical and the mechanical properties of the composites were examined. The results showed that the fair distribution of the bean pod ash particles in the microstructure of the polymer composites is the major factor responsible for the improvement in the mechanical properties. The bean pod ash particles added to the RLDPE polymer increased the percentage of water absorption and improved its rigidity, modulus and hardness values of the composites. The tensile and flexural strengths increased to a maximum of 20.1 and 39.0 N/mm2 at 20 wt% BPAp respectively. Based on the results obtained in this study, it is recommended that the composites can be used in the production of indoor and outdoor applications.

  10. Thermal and Mechanical Buckling and Postbuckling Responses of Selected Curved Composite Panels

    Science.gov (United States)

    Breivik, Nicole L.; Hyer, Michael W.; Starnes, James H., Jr.

    1998-01-01

    The results of an experimental and numerical study of the buckling and postbuckling responses of selected unstiffened curved composite panels subjected to mechanical end shortening and a uniform temperature increase are presented. The uniform temperature increase induces thermal stresses in the panel when the axial displacement is constrained. An apparatus for testing curved panels at elevated temperature is described, numerical results generated by using a geometrically nonlinear finite element analysis code are presented. Several analytical modeling refinements that provide more accurate representation of the actual experimental conditions, and the relative contribution of each refinement, are discussed. Experimental results and numerical predictions are presented and compared for three loading conditions including mechanical end shortening alone, heating the panels to 250 F followed by mechanical end shortening, and heating the panels to 400 F. Changes in the coefficients of thermal expansion were observed as temperature was increased above 330 F. The effects of these changes on the experimental results are discussed for temperatures up to 400 F.

  11. Dynamical mechanisms for sensitive response of aperiodic firing cells to external stimulation

    International Nuclear Information System (INIS)

    Xie Yong; Xu Jianxue; Hu Sanjue; Kang Yanmei; Yang Hongjun; Duan Yubin

    2004-01-01

    An interesting phenomenon that aperiodic firing neurons have a higher sensitivity to drugs than periodic firing neurons have been reported for the chronically compressed dorsal root ganglion neurons in rats. In this study, the dynamical mechanisms for such a phenomenon are uncovered from the viewpoint of dynamical systems theory. We use the Rose-Hindmarsh neuron model to illustrate our opinions. Periodic orbit theory is introduced to characterize the dynamical behavior of aperiodic firing neurons. It is considered that bifurcations, crises and sensitive dependence of chaotic motions on control parameters can be the underlying mechanisms. And then, a similar analysis is applied to the modified Chay model describing the firing behavior of pancreatic beta cells. The same dynamical mechanisms can be obtained underlying that aperiodic firing cells are more sensitive to external stimulation than periodic firing ones. As a result, we conjecture that sensitive response of aperiodic firing cells to external stimulation is a universal property of excitable cells

  12. Major depression is not associated with blunting of aversive responses; evidence for enhanced anxious anticipation.

    Directory of Open Access Journals (Sweden)

    Christian Grillon

    Full Text Available According to the emotion-context insensitivity (ECI hypothesis, major depressive disorder (MDD is associated with a diminished ability to react emotionally to positive stimuli and with blunting of defensive responses to threat. That defensive responses are blunted in MDD seems inconsistent with the conceptualization and diagnostic nosology of MDD. The present study tested the ECI hypothesis in MDD using a threat of shock paradigm. Twenty-eight patients with MDD (35.5±10.4 years were compared with 28 controls (35.1±7.4 years. Participants were exposed to three conditions: no shock, predictable shock, and unpredictable shock. Startle magnitude was used to assess defensive responses. Inconsistent with the ECI hypothesis, startle potentiation to predictable and unpredictable shock was not reduced in the MDD group. Rather, MDD patients showed elevated startle throughout testing as well as increased contextual anxiety during the placement of the shock electrodes and in the predictable condition. A regression analysis indicated that illness duration and Beck depression inventory scores explained 37% (p<.005 of the variance in patients' startle reactivity. MDD is not associated with emotional blunting but rather enhanced defensive reactivity during anticipation of harm. These results do not support a strong version of the ECI hypothesis. Understanding the nature of stimuli or situations that lead to blunted or enhanced defensive reactivity will provide better insight into dysfunctional emotional experience in MDD.

  13. Major Depression Is Not Associated with Blunting of Aversive Responses; Evidence for Enhanced Anxious Anticipation

    Science.gov (United States)

    Grillon, Christian; Franco-Chaves, Jose A.; Mateus, Camilo F.; Ionescu, Dawn F.; Zarate, Carlos A.

    2013-01-01

    According to the emotion-context insensitivity (ECI) hypothesis, major depressive disorder (MDD) is associated with a diminished ability to react emotionally to positive stimuli and with blunting of defensive responses to threat. That defensive responses are blunted in MDD seems inconsistent with the conceptualization and diagnostic nosology of MDD. The present study tested the ECI hypothesis in MDD using a threat of shock paradigm. Twenty-eight patients with MDD (35.5±10.4 years) were compared with 28 controls (35.1±7.4 years). Participants were exposed to three conditions: no shock, predictable shock, and unpredictable shock. Startle magnitude was used to assess defensive responses. Inconsistent with the ECI hypothesis, startle potentiation to predictable and unpredictable shock was not reduced in the MDD group. Rather, MDD patients showed elevated startle throughout testing as well as increased contextual anxiety during the placement of the shock electrodes and in the predictable condition. A regression analysis indicated that illness duration and Beck depression inventory scores explained 37% (p<.005) of the variance in patients’ startle reactivity. MDD is not associated with emotional blunting but rather enhanced defensive reactivity during anticipation of harm. These results do not support a strong version of the ECI hypothesis. Understanding the nature of stimuli or situations that lead to blunted or enhanced defensive reactivity will provide better insight into dysfunctional emotional experience in MDD. PMID:23951057

  14. Genomic mechanisms of stress tolerance for the industrial yeast Saccharomyces cerevisiae against the major chemical classes of inhibitors derived from lignocellulosic biomass conversion

    Science.gov (United States)

    Scientists at ARS developed tolerant industrial yeast that is able to reduce major chemical classes of inhibitors into less toxic or none toxic compounds while producing ethanol. Using genomic studies, we defined mechanisms of in situ detoxification involved in novel gene functions, vital cofactor r...

  15. Widespread Pyrethroid and DDT Resistance in the Major Malaria Vector Anopheles funestus in East Africa Is Driven by Metabolic Resistance Mechanisms

    Science.gov (United States)

    Mulamba, Charles; Riveron, Jacob M.; Ibrahim, Sulaiman S.; Irving, Helen; Barnes, Kayla G.; Mukwaya, Louis G.; Birungi, Josephine; Wondji, Charles S.

    2014-01-01

    Background Establishing the extent, geographical distribution and mechanisms of insecticide resistance in malaria vectors is a prerequisite for resistance management. Here, we report a widespread distribution of insecticide resistance in the major malaria vector An. funestus across Uganda and western Kenya under the control of metabolic resistance mechanisms. Methodology/Principal Findings Female An. funestus collected throughout Uganda and western Kenya exhibited a Plasmodium infection rate between 4.2 to 10.4%. Widespread resistance against both type I (permethrin) and II (deltamethrin) pyrethroids and DDT was observed across Uganda and western Kenya. All populations remain highly susceptible to carbamate, organophosphate and dieldrin insecticides. Knockdown resistance plays no role in the pyrethroid and DDT resistance as no kdr mutation associated with resistance was detected despite the presence of a F1021C replacement. Additionally, no signature of selection was observed on the sodium channel gene. Synergist assays and qRT-PCR indicated that metabolic resistance plays a major role notably through elevated expression of cytochrome P450s. DDT resistance mechanisms differ from West Africa as the L119F-GSTe2 mutation only explains a small proportion of the genetic variance to DDT resistance. Conclusion The extensive distribution of pyrethroid and DDT resistance in East African An. funestus populations represents a challenge to the control of this vector. However, the observed carbamate and organophosphate susceptibility offers alternative solutions for resistance management. PMID:25333491

  16. Features of legal mechanism environmental responsibility of citizens in Ukraine

    Directory of Open Access Journals (Sweden)

    О. О. Шинкарьов

    2015-05-01

    Full Text Available Problem setting. In this article it is examined the main conceptual approaches to understanding the legal arrangement for implementing citizens' environmental obligations. It is noted that despite the diversity of approaches to understanding the arrangement for implementing citizens' environmental responsibilities, most scientists include the concepts of: a a legal implementation arrangement, b the process of practical implementation, c the conditions and factors that influence it.  It is defined that the legal arrangement for implementing environmental obligations is guaranteed by prohibitions and legal regulations. In this case the regulatory legal act has two main functions:    1 prescribes the need to implement the legal obligation, determines it; 2 prescribes a result of the legal obligation implementation. Recent research and publications analysis. Particular attention is paid to the work of scientists in environmental law, including VI Andryeytseva, G. Anisimova, GI Baluk, AP Hetman M. Krasnov, II Karakash, V. Kostytsky, VV Nosik, M. Shulga, S. Shemshuchenko and others. However, most of them concerning coverage of only certain aspects, is a comprehensive analysis of the legal implementation mechanism is still lacking. It's analyzed the characteristics of the legal enforcement for implementing environmental responsibilities by citizens. It is determined that the legal arrangement for the implementation of environmental responsibilities is a part of a general arrangement of the law implementation. Ecological and legal arrangement for the implementation of environmental obligations is defined as a system of legal norms and legal relations by which the State provides the accomplishment of ecological  and legal regulations. Implementation of the constitutional obligations by the citizens is a process that is inherent in environmental responsibilities, in which there are several stages: 1 the ability to execute the obligations which are

  17. The T Cell Response to Major Grass Allergens Is Regulated and Includes IL-10 Production in Atopic but Not in Non-Atopic Subjects

    DEFF Research Database (Denmark)

    Domdey, A.; Liu, A.; Millner, A.

    2010-01-01

    in allergen-specific responses. The aim was to determine whether major grass allergens induce production of suppressive cytokines in allergic and healthy subjects and to examine the inhibitory effect of these cytokines on allergic responses. Methods: Peripheral blood mononuclear cells (PBMCs) were isolated...... from healthy and grass-allergic donors and stimulated with the major grass allergens Phl p 1 or Phl p 5. The effects of endogenous IL-10 and/or TGF-beta on proliferation and cytokine production were determined by use of blocking antibodies. In addition, the number of CD4(+)CD25(+) T cells...... in PBMCs in the two groups, but fewer cells from atopic donors were CD4(+)CD25(+)CCR4(+) and more cells were CD4(+)CD25(+)CLA(+) compared to healthy donors. Conclusion: Allergen-specific responses of grass allergic patients but not in non-atopic subjects are influenced by regulatory cytokines produced...

  18. Involvement of three mechanisms in the alteration of cytokine responses by sodium methyldithiocarbamate

    International Nuclear Information System (INIS)

    Pruett, Stephen B.; Fan, Ruping; Zheng, Qiang

    2006-01-01

    Sodium methyldithiocarbamate (SMD) is the third most abundantly used conventional pesticide in the U.S. We recently reported that it alters the induction of cytokine production mediated though Toll-like receptor (TLR) 4 at relevant dosages in mice. Its chemical properties and evidence from the literature suggest thee potential mechanisms of action for this compound. It could either act as a free radical scavenger (by means of its free S - group) or promote oxidation by breaking down to form methylisothiocyanate, which can deplete glutathione. It is a potent copper chelator and may affect the availability of copper to a number of copper-dependent enzymes (including some signaling molecules). SMD induces a classical neuroendocrine stress response characterized by elevated serum corticosterone concentrations, which could affect cytokine production. Although each of these mechanisms could potentially contribute to altered cytokine responses, direct evidence is lacking. The present study was conducted to obtain such evidence. The role of redox balance was investigated by pretreating mice with N-acetyl cysteine (NAC), which increases cellular glutathione concentrations, before administration of SMD. NAC exacerbated the SMD-induced suppression of IL-12 and the SMD-induced enhancement of IL-10 in the serum. The role of copper chelation was investigated by comparing the effects of SMD with an equimolar dose to SMD that was administered in the form of a copper chelation complex. Addition of copper significantly decreased the action of SMD on IL-12 production but not on IL-10 production. The role of the stress response was investigated by pretreating mice with antagonists of corticosterone and catecholamines. This treatment partially prevented the action of SMD on IL-10 and IL-12 in the peritoneal fluid. The results suggest that all of the proposed mechanisms have some role in the alteration of cytokine production by SMD

  19. Multifunctional hybrid diode: Study of photoresponse, high responsivity, and charge injection mechanisms

    Science.gov (United States)

    Singh, Jitendra; Singh, R. G.; Gautam, Subodh K.; Singh, Fouran

    2018-05-01

    A multifunctional hybrid heterojunction diode is developed on porous silicon and its current density-voltage characteristics reveal a good rectification ratio along with other superior parameters such as ideality factor, barrier height and series resistance. The diode also functions as an efficient photodiode to manifest high photosensitivity with high responsivity under illumination with broadband solar light, UV light, and green light. The diode is also carefully scrutinized for its sensitivity and repeatability over many cycles under UV and green light and is found to have a quick response and extremely fast recovery times. The notable responsivity is attributed to the generation of high density of excitons in the depletion region by the absorption of incident photons and their separation by an internal electric field besides an additional photocurrent due to the charging of polymer chains. The mechanisms of generation, injection and transport of charge carriers are explained by developing a schematic energy band diagram. The transport phenomenon of carriers is further investigated from room temperature down to a very low temperature of 10 K. An Arrhenius plot is made to determine the Richardson constant. Various diode parameters as mentioned above are also determined and the dominance of the transport mechanism of charge carriers in different temperature regimes such as diffusion across the junction and/or quantum tunneling through the barriers are explained. The developed multifunction heterojunction hybrid diodes have implications for highly sensitive photodiodes in the UV and visible range of electromagnetic spectrum that can be very promising for efficient optoelectronic devices.

  20. High Electrocatalytic Response of a Mechanically Enhanced NbC Nanocomposite Electrode Towards Hydrogen Evolution Reaction

    KAUST Repository

    Coy, Emerson

    2017-08-22

    Resistant and efficient electrocatalysts for hydrogen evolution reaction (HER) are desired to replace scarce and commercially expensive platinum electrodes. Thin film electrodes of metal-carbides are a promising alternative due to their reduced price and similar catalytic properties. However, most of the studied structures to date neglect long lasting chemical and structural stability, focusing only on electrochemical efficiency. Herein we report on a new approach to easily deposit and control the micro/nanostructure of thin film electrodes based on niobium carbide (NbC) and their electrocatalytic response. We will show that, by improving the mechanical properties of the NbC electrodes, microstructure and mechanical resilience can be obtained whilst maintaining high electro catalytic response. We also address the influence of other parameters such as conductivity and chemical composition on the overall performance of the thin film electrodes. Finally, we show that nanocomposite NbC electrodes are promising candidates towards HER , and furthermore, that the methodology presented here is suitable to produce other transition metal carbides (TM-C) with improved catalytic and mechanical properties.

  1. Transport coefficients and mechanical response in hard-disk colloidal suspensions

    Science.gov (United States)

    Zhang, Bo-Kai; Li, Jian; Chen, Kang; Tian, Wen-De; Ma, Yu-Qiang

    2016-11-01

    We investigate the transport properties and mechanical response of glassy hard disks using nonlinear Langevin equation theory. We derive expressions for the elastic shear modulus and viscosity in two dimensions on the basis of thermal-activated barrier-hopping dynamics and mechanically accelerated motion. Dense hard disks exhibit phenomena such as softening elasticity, shear-thinning of viscosity, and yielding upon deformation, which are qualitatively similar to dense hard-sphere colloidal suspensions in three dimensions. These phenomena can be ascribed to stress-induced “landscape tilting”. Quantitative comparisons of these phenomena between hard disks and hard spheres are presented. Interestingly, we find that the density dependence of yield stress in hard disks is much more significant than in hard spheres. Our work provides a foundation for further generalizing the nonlinear Langevin equation theory to address slow dynamics and rheological behavior in binary or polydisperse mixtures of hard or soft disks. Project supported by the National Basic Research Program of China (Grant No. 2012CB821500) and the National Natural Science Foundation of China (Grant Nos. 21374073 and, 21574096).

  2. Responses and mechanisms of positive electron affinity molecules in the N2 mode of the thermionic ionization detector and the electron-capture detector

    International Nuclear Information System (INIS)

    Jones, C.S.

    1989-01-01

    Very little knowledge has been acquired in the past on the mechanistic pathway by which molecules respond in the N 2 mode of the thermionic ionization detector. An attempt is made here to elucidate the response mechanism of the detector. The basic response mechanisms are known for the electron capture detector, and an attempt is made to identify the certain mechanism by which selected molecules respond. The resonance electron capture rate constant has been believed to be temperature independent, and investigations of the temperature dependence of electron capture responses are presented. Mechanisms for the N 2 mode of the thermionic ionization detector have been proposed by examining the detector response to positive electron affinity molecules and by measurement of the ions produced by the detector. Electron capture mechanisms for selected molecules have been proposed by examining their temperature dependent responses in the electron capture detector and negative ion mass spectra of the samples. In studies of the resonance electron capture rate constant, the relative responses of selected positive electron affinity molecules and their temperature dependent responses were investigated. Positive electron affinity did not guarantee large responses in the N 2 mode thermionic ionization detector. High mass ions were measured following ionization of samples in the detector. Responses in the electron capture detector varied with temperature and electron affinity

  3. Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress

    KAUST Repository

    Yun, Kil-Young; Park, Myoung Ryoul; Mohanty, Bijayalaxmi; Herath, Venura; Xu, Fuyu; Mauleon, Ramil; Wijaya, Edward; Bajic, Vladimir B.; Bruskiewich, Richard; de los Reyes, Benildo G

    2010-01-01

    -plant level analyses established a holistic view of chilling stress response mechanism of japonica rice. Early response regulatory network triggered by oxidative signals is critical for prolonged survival under sub-optimal temperature. Integration of stress

  4. Mechanism-Based Modeling of Gastric Emptying Rate and Gallbladder Emptying in Response to Caloric Intake

    DEFF Research Database (Denmark)

    Guiastrennec, B; Sonne, David Peick; Hansen, M

    2016-01-01

    Bile acids released postprandially modify the rate and extent of absorption of lipophilic compounds. The present study aimed to predict gastric emptying (GE) rate and gallbladder emptying (GBE) patterns in response to caloric intake. A mechanism-based model for GE, cholecystokinin plasma concentr......Bile acids released postprandially modify the rate and extent of absorption of lipophilic compounds. The present study aimed to predict gastric emptying (GE) rate and gallbladder emptying (GBE) patterns in response to caloric intake. A mechanism-based model for GE, cholecystokinin plasma...... concentrations, and GBE was developed on data from 33 patients with type 2 diabetes and 33 matched nondiabetic individuals who were administered various test drinks. A feedback action of the caloric content entering the proximal small intestine was identified for the rate of GE. The cholecystokinin...

  5. Plasma fibronectin in patients undergoing major surgery

    International Nuclear Information System (INIS)

    Sallam, M.H.M.

    2003-01-01

    Plasma fibronectin in patients undergoing major surgery had been determined before and after operation. The study was done on 15 patients and 15 normal healthy individuals. The study revealed that patients subjected to major operation, their fibronectin level was normal before operation followed by reduction one day post-operation. After one week, fibronectin level raised again nearly to the pre-operations levels. The probable mechanisms of fibronectin in healing processes were discussed. Fibronectin (FN) is a family of structurally and immunologically related high molecular weight glycoproteins that are present in many cell surfaces, in extracellular fluids, in connective tissues and in most membranes. Interaction with certain discrete extracellular substances, such as a glucosaminoglycans (e.g. heparin), fibrin and collagen and with cell surface structure seem to account for many of its biological activities, among which are regulation of adhesion, spreading and locomotion (Mosesson and amrani, 1980). The concentration of Fn in human plasma decreases after extensive destruction such as that occurs in major surgery, burns or other trauma. This decrease has been generally though to be due to increased consumption of soluble plasma Fn in opsonization of particulate and soluble debris from circulation by the reticuloendothelial (RE) system. Fn rapidly appears in injury areas, in experimentally induced blisters, wounded and epithelium tissues (Petersen et al., 1985). Fn accumulates at times of increased vascular permeability and it is produced by cell of blood vessels in response to injury

  6. Relationship between cardiac vagal activity and mood congruent memory bias in major depression.

    Science.gov (United States)

    Garcia, Ronald G; Valenza, Gaetano; Tomaz, Carlos A; Barbieri, Riccardo

    2016-01-15

    Previous studies suggest that autonomic reactivity during encoding of emotional information could modulate the neural processes mediating mood-congruent memory. In this study, we use a point-process model to determine dynamic autonomic tone in response to negative emotions and its influence on long-term memory of major depressed subjects. Forty-eight patients with major depression and 48 healthy controls were randomly assigned to either neutral or emotionally arousing audiovisual stimuli. An adaptive point-process algorithm was applied to compute instantaneous estimates of the spectral components of heart rate variability [Low frequency (LF), 0.04-0.15 Hz; High frequency (HF), 0.15-0.4 Hz]. Three days later subjects were submitted to a recall test. A significant increase in HF power was observed in depressed subjects in response to the emotionally arousing stimulus (p=0.03). The results of a multivariate analysis revealed that the HF power during the emotional segment of the stimulus was independently associated with the score of the recall test in depressed subjects, after adjusting for age, gender and educational level (Coef. 0.003, 95%CI, 0.0009-0.005, p=0.008). These results could only be interpreted as responses to elicitation of specific negative emotions, the relationship between HF changes and encoding/recall of positive stimuli should be further examined. Alterations on parasympathetic response to emotion are involved in the mood-congruent cognitive bias observed in major depression. These findings are clinically relevant because it could constitute the mechanism by which depressed patients maintain maladaptive patterns of negative information processing that trigger and sustain depressed mood. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. TRPM8 mechanism of autonomic nerve response to cold in respiratory airway

    Directory of Open Access Journals (Sweden)

    Wang Cong-Yi

    2008-06-01

    Full Text Available Abstract Breathing cold air without proper temperature exchange can induce strong respiratory autonomic responses including cough, airway constriction and mucosal secretion, and can exacerbate existing asthma conditions and even directly trigger an asthma attack. Vagal afferent fiber is thought to be involved in the cold-induced respiratory responses through autonomic nerve reflex. However, molecular mechanisms by which vagal afferent fibers are excited by cold remain unknown. Using retrograde labeling, immunostaining, calcium imaging, and electrophysiological recordings, here we show that a subpopulation of airway vagal afferent nerves express TRPM8 receptors and that activation of TRPM8 receptors by cold excites these airway autonomic nerves. Thus activation of TRPM8 receptors may provoke autonomic nerve reflex to increase airway resistance. This putative autonomic response may be associated with cold-induced exacerbation of asthma and other pulmonary disorders, making TRPM8 receptors a possible target for prevention of cold-associated respiratory disorders.

  8. Numerical Simulation of Electro-Mechanical Impedance Response in Cable-Anchor Connection Interface

    International Nuclear Information System (INIS)

    Nguyen, Khac Duy; Kim, Jeong Tae

    2011-01-01

    In this study, a finite element(FE) analysis on electro-mechanical impedance response of cable-anchor connection interface under various anchor force is presented. In order to achieve the objective, the following approaches are implemented. Firstly, an interface washer coupled with piezoelectric(PZT) material is designed for monitoring cable-force loss. The interface washer is a small aluminum plate on which a PZT patch is surface-bonded. Cable-force loss could be monitored by installing the interface washer between the anchor plate and the anchorage of cable-anchor connection and examining the changes of impedance of the interface washer. Secondly, a FE model for cable-anchor connection is established to examine the effect of cable-force on impedance response of interface washer. Also, the effects of geometrical and material properties of the interface washer on impedance responses under various cable-forces are investigated. Finally, validation of the FE analysis is experimentally evaluated by a lab-scale cable-anchor connection

  9. Cortisol stress response in post-traumatic stress disorder, panic disorder, and major depressive disorder patients.

    Science.gov (United States)

    Wichmann, Susann; Kirschbaum, Clemens; Böhme, Carsten; Petrowski, Katja

    2017-09-01

    Previous research has focussed extensively on the distinction of HPA-axis functioning between patient groups and healthy volunteers, with relatively little emphasis on a direct comparison of patient groups. The current study's aim was to analyse differences in the cortisol stress response as a function of primary diagnosis of panic disorder (PD), post-traumatic stress disorder (PTSD), and major depressive disorder (MDD). A total of n=30 PD (mean age±SD: 36.07±12.56), n=23 PTSD (41.22±10.17), n=18 MDD patients (39.00±14.93) and n=47 healthy control (HC) individuals (35.51±13.15) participated in this study. All the study participants were female. The Trier Social Stress Test (TSST) was used for reliable laboratory stress induction. Blood sampling accompanied the TSST for cortisol and ACTH assessment. Panic-related, PTSD-specific questionnaires and the Beck Depression Inventory II were handed out for the characterisation of the study groups. Repeated measure ANCOVAs were conducted to test for main effects of time or group and for interaction effects. Regression analyses were conducted to take comorbid depression into account. 26.7% of the PD patients, 43.5% of the PTSD patients, 72.2% of the MDD patients and 80.6% of the HC participants showed a cortisol stress response upon the TSST. ANCOVA revealed a cortisol hypo-responsiveness both in PD and PTSD patients, while no significant group differences were seen in the ACTH concentrations. Additional analyses showed no impact of comorbid depressiveness on the cortisol stress response. MDD patients did not differ in the hormonal stress response neither compared to the HC participants nor to the PD and PTSD patients. Our main findings provide evidence of a dissociation between the cortisol and ACTH concentrations in response to the TSST in PTSD and in PD patients, independent of comorbid depression. Our results further support overall research findings of a cortisol hypo-responsiveness in PD patients. A hypo-response

  10. Three-dimensional analysis of the anatomical growth response of European conifers to mechanical disturbance.

    Science.gov (United States)

    Schneuwly, Dominique M; Stoffel, Markus; Dorren, Luuk K A; Berger, Frédéric

    2009-10-01

    Studies on tree reaction after wounding were so far based on artificial wounding or chemical treatment. For the first time, type, spread and intensity of anatomical responses were analyzed and quantified in naturally disturbed Larix decidua Mill., Picea abies (L.) Karst. and Abies alba Mill. trees. The consequences of rockfall impacts on increment growth were assessed at the height of the wounds, as well as above and below the injuries. A total of 16 trees were selected on rockfall slopes, and growth responses following 54 wounding events were analyzed on 820 cross-sections. Anatomical analysis focused on the occurrence of tangential rows of traumatic resin ducts (TRD) and on the formation of reaction wood. Following mechanical disturbance, TRD production was observed in 100% of L. decidua and P. abies wounds. The radial extension of TRD was largest at wound height, and they occurred more commonly above, rather than below, the wounds. For all species, an intra-annual radial shift of TRD was observed with increasing axial distance from wounds. Reaction wood was formed in 87.5% of A. alba following wounding, but such cases occurred only in 7.7% of L. decidua. The results demonstrate that anatomical growth responses following natural mechanical disturbance differ significantly from the reactions induced by artificial stimuli or by decapitation. While the types of reactions remain comparable between the species, their intensity, spread and persistence disagree considerably. We also illustrate that the external appearance of wounds does not reflect an internal response intensity. This study reveals that disturbance induced under natural conditions triggers more intense and more widespread anatomical responses than that induced under artificial stimuli, and that experimental laboratory tests considerably underestimate tree response.

  11. Mechanisms of subliminal response priming.

    Science.gov (United States)

    Kiesel, Andrea; Kunde, Wilfried; Hoffmann, Joachim

    2008-07-15

    Subliminal response priming has been considered to operate on several stages, e.g. perceptual, central or motor stages might be affected. While primes' impact on target perception has been clearly demonstrated, semantic response priming recently has been thrown into doubt (e.g. Klinger, Burton, & Pitts, 2000). Finally, LRP studies have revealed that subliminal primes evoke motor processes. Yet, the premises for such prime-evoked motor activation are not settled. A transfer of priming to stimuli that have never been presented as targets appears particularly interesting because it suggests a level of processing that goes beyond a reactivation of previously acquired S-R links. Yet, such transfer has not always withstood empirical testing. To account for these contradictory results, we proposed a two-process model (Kunde, Kiesel, & Hoffmann, 2003): First, participants build up expectations regarding imperative stimuli for the required responses according to experience and/or instructions. Second, stimuli that match these "action triggers" directly activate the corresponding motor responses irrespective of their conscious identification. In line with these assumptions, recent studies revealed that non-target primes induce priming when they fit the current task intentions and when they are expected in the experimental setting.

  12. The inflammatory response plays a major role in the acute radiation syndrome induced by fission radiation

    International Nuclear Information System (INIS)

    Agay, D.; Chancerelle, Y.; Hirodin, F.; Mathieu, J.; Multon, E.; Van Uye, A.; Mestries, J.C.

    1997-01-01

    At high dose rates, both gamma and neutron irradiation induce an acute inflammatory syndrome with huge intercellular communication disorders. This inflammatory syndrome evolves in two phases, separated by a latency phase. During the prodromal phase, the molecular and cellular lesions induced by free radicals trigger an initial response which associates cellular repair and multicellular interactions involving both humoral and nervous communications. A large part of perturbations constitute a non specific inflammatory syndrome and clinically silent coagulation disorders which are linked by common intercellular mediators. All these perturbations are rapidly reversible and there is no correlation between the radiation dose and the severity of the response. During the manifest-illness phase, both inflammatory and coagulation disorders resume, slightly preceding the clinical symptoms. Biochemical symptoms are moderate in the animals which will survive, but they escape regulatory mechanisms in those which will die, giving rise to a vicious circle. These biochemical disorders are largely responsible for the death. With lower dose rates, it cannot be excluded that great cellular communication disorders take place at the tissue level, with limited blood modifications. This aspect should be taken into account for the optimization of cytokine therapies. (authors)

  13. Major intrinsic proteins (MIPs) in plants: a complex gene family with major impacts on plant phenotype.

    Science.gov (United States)

    Forrest, Kerrie L; Bhave, Mrinal

    2007-10-01

    The ubiquitous cell membrane proteins called aquaporins are now firmly established as channel proteins that control the specific transport of water molecules across cell membranes in all living organisms. The aquaporins are thus likely to be of fundamental significance to all facets of plant growth and development affected by plant-water relations. A majority of plant aquaporins have been found to share essential structural features with the human aquaporin and exhibit water-transporting ability in various functional assays, and some have been shown experimentally to be of critical importance to plant survival. Furthermore, substantial evidence is now available from a number of plant species that shows differential gene expression of aquaporins in response to abiotic stresses such as salinity, drought, or cold and clearly establishes the aquaporins as major players in the response of plants to conditions that affect water availability. This review summarizes the function and regulation of these genes to develop a greater understanding of the response of plants to water insufficiency, and particularly, to identify tolerant genotypes of major crop species including wheat and rice and plants that are important in agroforestry.

  14. Forests and global warming mitigation in Brazil: opportunities in the Brazilian forest sector for responses to global warming under the 'clean development mechanism''

    International Nuclear Information System (INIS)

    Fearnside, P.M.

    1999-01-01

    The Kyoto Protocol created global warming response opportunities through the clean development mechanism that allow countries like Brazil to receive investments from companies and governments wishing to offset their emissions of greenhouse gases. Brazil has a special place in strategies for combating global warming because its vast areas of tropical forest represent a potentially large source of emissions if deforested. A number of issues need to be settled to properly assign credit for carbon in the types of options presented by the Brazilian forest sector. These include definition of the units of carbon (permanent sequestration versus carbon-ton-years, the latter being most appropriate for forest options), the means of crediting forest reserve establishment, adoption of discounting or other time-preference weighting for carbon, definition of the accounting method (avoided emissions versus stock maintenance), and mechanism to allow program contributions to be counted, rather than restricting consideration to free-standing projects. Silvicultural plantations offer opportunities for carbon benefits, but have high social impacts in the Brazilian context. Plantations also inherently compete with deforestation reduction options for funds. Forest management has been proposed as a global warming response option, but the assignment of any value to time makes this unattractive in terms of carbon benefits. However, reduced-impact logging can substantially reduce emissions over those from traditional logging practices. Slowing deforestation is the major opportunity offered by Brazil. Slowing deforestation will require understanding its causes and creating functional models capable of generating land-use change scenarios with and without different policy changes and other activities. Brazil already has a number of programs designed to slow deforestation, but the continued rapid loss of forest highlights the vast gulf that exists between the magnitude of the problem and the

  15. Population dynamics of the species Plantago major L. and Poa annua L. in a replacement series experiment

    Directory of Open Access Journals (Sweden)

    Mijović A.

    2009-01-01

    Full Text Available Population dynamics of the species Plantago major L. and Poa annua L., typical representatives of ruderal vegetation, was analyzed in a replacement series experiment. The analyzed species were sown in an area with meadow vegetation, where the vegetation present had been previously removed by a total herbicide and additionally by hoeing. The objective of the experiment was to monitor growth dynamics and the effect of intra- and inter-specific interaction of the species Plantago major and Poa annua in conditions of different sowing densities and proportions. The effects of intra- and inter-specific interference and the density-dependent responses were assessed on the basis of several parameters (natality, mortality, age structure, and measures of ontogenetic changes. Based on the study results, it can be concluded that the responses of the species in the experiment were different, which is explained by different adaptive mechanisms, i.e., strategies, in the specific environmental conditions. An effect of the density dependent response was present in both species in the replacement series experiment. The response was amplified by water deficit caused by intensive evapora­tion of the bare soil. No effect of inter-specific interference was observed at the given densities of the study species on the sample plots. An effect of intra-specific interference of the species Plantago major and Poa annua was observed in the guise of a density-negative response of the rate of ontogenetic changes and fecundity.

  16. [Likeness between respiratory responses on CO2 in conditions of natural breathing and voluntary-controlled mechanical ventilation].

    Science.gov (United States)

    Pogodin, M A; Granstrem, M P; Dimitrienko, A I

    2007-04-01

    We did Read CO2 rebreathing tests in 8 adult males. Both at natural breathing, and at self-controlled mechanical ventilation, volunteers increased ventilation proportionally to growth end-tidal PCO2. Inside individual distinctions of responses to CO2 during controlled mechanical ventilation are result of the voluntary motor control.

  17. Fast-Response electric drives of Mechanical Engineering objects

    Science.gov (United States)

    Doykina, L. A.; Bukhanov, S. S.; Gryzlov, A. A.

    2018-03-01

    The article gives a solution to the problem of increasing the speed in the electrical drives of machine-building enterprises due to the application of a structure with ISC control. In this case, it is possible to get rid of the speed sensors. It is noted that in this case no circulating pulsations are applied to the input of the control system, caused by a non-identical interface between the sensor and the shaft of the operating mechanism. For detailed modeling, a mathematical model of an electric drive with distributed parameters was proposed. The calculation of such system was carried out by the finite element method. Taking into account the distributed characteristic of the system parameters allowed one to take into account the discrete nature of the electric machine’s work. The simulation results showed that the response time in the control circuit is estimated at a time constant of 0.0015, which is about twice as fast as in traditional vector control schemes.

  18. Reduced left precentral regional responses in patients with major depressive disorder and history of suicide attempts.

    Science.gov (United States)

    Tsujii, Noa; Mikawa, Wakako; Tsujimoto, Emi; Adachi, Toru; Niwa, Atsushi; Ono, Hisae; Shirakawa, Osamu

    2017-01-01

    Previous neuroimaging studies have revealed frontal and temporal functional abnormalities in patients with major depressive disorder (MDD) and a history of suicidal behavior. However, it is unknown whether multi-channel near-infrared spectroscopy (NIRS) signal changes among individuals with MDD are associated with a history of suicide attempts and a diathesis for suicidal behavior (impulsivity, hopelessness, and aggression). Therefore, we aimed to explore frontotemporal hemodynamic responses in depressed patients with a history of suicide attempts using 52-channel NIRS. We recruited 30 patients with MDD and a history of suicidal behavior (suicide attempters; SAs), 38 patient controls without suicidal behavior (non-attempters; NAs), and 40 healthy controls (HCs) matched by age, gender ratio, and estimated IQ. Regional hemodynamic responses during a verbal fluency task (VFT) were monitored using NIRS. Our results showed that severities of depression, impulsivity, aggression, and hopelessness were similar between SAs and NAs. Both patient groups had significantly reduced activation compared with HCs in the bilateral frontotemporal regions. Post hoc analyses revealed that SAs exhibited a smaller hemodynamic response in the left precentral gyrus than NAs and HCs. Furthermore, the reduced response in the left inferior frontal gyrus was negatively correlated with impulsivity level and hemodynamic responses in the right middle frontal gyrus were negatively associated with hopelessness and aggression in SAs but not in NAs and HCs. Our findings suggest that MDD patients with a history of suicide attempts demonstrate patterns of VFT-induced NIRS signal changes different from those demonstrated by individuals without a history of suicidal behaviors, even in cases where clinical symptoms are similar. NIRS has a relatively high time resolution, which may help visually differentiate SAs from NAs.

  19. Fatigue responses of lead zirconate titanate stacks under semibipolar electric cycling with mechanical preload

    Science.gov (United States)

    Wang, Hong; Cooper, Thomas A.; Lin, Hua-Tay; Wereszczak, Andrew A.

    2010-10-01

    Lead zirconate titanate (PZT) stacks that had an interdigital internal electrode configuration were tested to more than 108 cycles. A 100 Hz semibipolar sine wave with a field range of +4.5/-0.9 kV/mm was used in cycling with a concurrently-applied 20 MPa preload. Significant reductions in piezoelectric and dielectric responses were observed during the cycling depending on the measuring condition. Extensive partial discharges were also observed. These surface events resulted in the erosion of external electrode and the exposure of internal electrodes. Sections prepared by sequential polishing technique revealed a variety of damage mechanisms including delaminations, pores, and etch grooves. The scale of damage was correlated with the degree of fatigue-induced reduction in piezoelectric and dielectric responses. The results from this study demonstrate the feasibility of using a semibipolar mode to drive a PZT stack under a mechanical preload and illustrate the potential fatigue and damages of the stack in service.

  20. Neural mechanisms linking social status and inflammatory responses to social stress.

    Science.gov (United States)

    Muscatell, Keely A; Dedovic, Katarina; Slavich, George M; Jarcho, Michael R; Breen, Elizabeth C; Bower, Julienne E; Irwin, Michael R; Eisenberger, Naomi I

    2016-06-01

    Social stratification has important implications for health and well-being, with individuals lower in standing in a hierarchy experiencing worse outcomes than those higher up the social ladder. Separate lines of past research suggest that alterations in inflammatory processes and neural responses to threat may link lower social status with poorer outcomes. This study was designed to bridge these literatures to investigate the neurocognitive mechanisms linking subjective social status and inflammation. Thirty-one participants reported their subjective social status, and underwent a functional magnetic resonance imaging scan while they were socially evaluated. Participants also provided blood samples before and after the stressor, which were analysed for changes in inflammation. Results showed that lower subjective social status was associated with greater increases in inflammation. Neuroimaging data revealed lower subjective social status was associated with greater neural activity in the dorsomedial prefrontal cortex (DMPFC) in response to negative feedback. Finally, results indicated that activation in the DMPFC in response to negative feedback mediated the relation between social status and increases in inflammatory activity. This study provides the first evidence of a neurocognitive pathway linking subjective social status and inflammation, thus furthering our understanding of how social hierarchies shape neural and physiological responses to social interactions. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  1. Calmodulin Gene Expression in Response to Mechanical Wounding and Botrytis cinerea Infection in Tomato Fruit

    OpenAIRE

    Peng, Hui; Yang, Tianbao; Jurick, Wayne M.

    2014-01-01

    Calmodulin, a ubiquitous calcium sensor, plays an important role in decoding stress-triggered intracellular calcium changes and regulates the functions of numerous target proteins involved in various plant physiological responses. To determine the functions of calmodulin in fleshy fruit, expression studies were performed on a family of six calmodulin genes (SlCaMs) in mature-green stage tomato fruit in response to mechanical injury and Botrytis cinerea infection. Both wounding and pathogen in...

  2. Photochemical modeling in California with two chemical mechanisms: model intercomparison and response to emission reductions.

    Science.gov (United States)

    Cai, Chenxia; Kelly, James T; Avise, Jeremy C; Kaduwela, Ajith P; Stockwell, William R

    2011-05-01

    An updated version of the Statewide Air Pollution Research Center (SAPRC) chemical mechanism (SAPRC07C) was implemented into the Community Multiscale Air Quality (CMAQ) version 4.6. CMAQ simulations using SAPRC07C and the previously released version, SAPRC99, were performed and compared for an episode during July-August, 2000. Ozone (O3) predictions of the SAPRC07C simulation are generally lower than those of the SAPRC99 simulation in the key areas of central and southern California, especially in areas where modeled concentrations are greater than the federal 8-hr O3 standard of 75 parts per billion (ppb) and/or when the volatile organic compound (VOC)/nitrogen oxides (NOx) ratio is less than 13. The relative changes of ozone production efficiency (OPE) against the VOC/NOx ratio at 46 sites indicate that the OPE is reduced in SAPRC07C compared with SAPRC99 at most sites by as much as approximately 22%. The SAPRC99 and SAPRC07C mechanisms respond similarly to 20% reductions in anthropogenic VOC emissions. The response of the mechanisms to 20% NOx emissions reductions can be grouped into three cases. In case 1, in which both mechanisms show a decrease in daily maximum 8-hr O3 concentration with decreasing NOx emissions, the O3 decrease in SAPRC07C is smaller. In case 2, in which both mechanisms show an increase in O3 with decreasing NOx emissions, the O3 increase is larger in SAPRC07C. In case 3, SAPRC07C simulates an increase in O3 in response to reduced NOx emissions whereas SAPRC99 simulates a decrease in O3 for the same region. As a result, the areas where NOx controls would be disbeneficial are spatially expanded in SAPRC07C. Although the results presented here are valuable for understanding differences in predictions and model response for SAPRC99 and SAPRC07C, the study did not evaluate the impact of mechanism differences in the context of the U.S. Environmental Protection Agency's guidance for using numerical models in demonstrating air quality attainment

  3. Association between impulsivity, reward responsiveness and body mass index in children

    NARCIS (Netherlands)

    Van den Berg, L.; Pieterse, K.; Malik, J.A.; Luman, M.; Willems van Dijk, K.; Oosterlaan, J.; Delemarre-van de Waal, H.A.

    2011-01-01

    Background:Childhood obesity is a major health problem. An association between children's body mass index (BMI) and overeating has been established, but mechanisms leading to overeating are poorly understood. The personality characteristics impulsivity and reward responsiveness may be involved in

  4. Mechanical and IL-1β Responsive miR-365 Contributes to Osteoarthritis Development by Targeting Histone Deacetylase 4

    Directory of Open Access Journals (Sweden)

    Xu Yang

    2016-03-01

    Full Text Available Mechanical stress plays an important role in the initiation and progression of osteoarthritis. Studies show that excessive mechanical stress can directly damage the cartilage extracellular matrix and shift the balance in chondrocytes to favor catabolic activity over anabolism. However, the underlying mechanism remains unknown. MicroRNAs (miRNAs are emerging as important regulators in osteoarthritis pathogenesis. We have found that mechanical loading up-regulated microRNA miR-365 in growth plate chondrocytes, which promotes chondrocyte differentiation. Here, we explored the role of the mechanical responsive microRNA miR-365 in pathogenesis of osteoarthritis (OA. We found that miR-365 was up-regulated by cyclic loading and IL-1β stimulation in articular chondrocytes through a mechanism that involved the transcription factor NF-κB. miR-365 expressed significant higher level in rat anterior cruciate ligament (ACL surgery induced OA cartilage as well as human OA cartilage from primary OA patients and traumatic OA Patients. Overexpression of miR-365 in chondrocytes increases gene expression of matrix degrading enzyme matrix metallopeptidase 13 (MMP13 and collagen type X (Col X. The increase in miR-365 expression in OA cartilage and in response to IL-1 may contribute to the abnormal gene expression pattern characteristic of OA. Inhibition of miR-365 down-regulated IL-1β induced MMP13 and Col X gene expression. We further showed histone deacetylase 4 (HDAC4 is a direct target of miR-365, which mediates mechanical stress and inflammation in OA pathogenesis. Thus, miR-365 is a critical regulator of mechanical stress and pro-inflammatory responses, which contributes cartilage catabolism. Manipulation of the expression of miR-365 in articular chondrocytes by miR-365 inhibitor may be a potent therapeutic target for the prevention and treatment of osteoarthritis.

  5. Mechanical response of common millet (Panicum miliaceum) seeds under quasi-static compression: Experiments and modeling.

    Science.gov (United States)

    Hasseldine, Benjamin P J; Gao, Chao; Collins, Joseph M; Jung, Hyun-Do; Jang, Tae-Sik; Song, Juha; Li, Yaning

    2017-09-01

    The common millet (Panicum miliaceum) seedcoat has a fascinating complex microstructure, with jigsaw puzzle-like epidermis cells articulated via wavy intercellular sutures to form a compact layer to protect the kernel inside. However, little research has been conducted on linking the microstructure details with the overall mechanical response of this interesting biological composite. To this end, an integrated experimental-numerical-analytical investigation was conducted to both characterize the microstructure and ascertain the microscale mechanical properties and to test the overall response of kernels and full seeds under macroscale quasi-static compression. Scanning electron microscopy (SEM) was utilized to examine the microstructure of the outer seedcoat and nanoindentation was performed to obtain the material properties of the seedcoat hard phase material. A multiscale computational strategy was applied to link the microstructure to the macroscale response of the seed. First, the effective anisotropic mechanical properties of the seedcoat were obtained from finite element (FE) simulations of a microscale representative volume element (RVE), which were further verified from sophisticated analytical models. Then, macroscale FE models of the individual kernel and full seed were developed. Good agreement between the compression experiments and FE simulations were obtained for both the kernel and the full seed. The results revealed the anisotropic property and the protective function of the seedcoat, and showed that the sutures of the seedcoat play an important role in transmitting and distributing loads in responding to external compression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Are child and adolescent responses to placebo higher in major depression than in anxiety disorders? A systematic review of placebo-controlled trials.

    Directory of Open Access Journals (Sweden)

    David Cohen

    Full Text Available BACKGROUND: In a previous report, we hypothesized that responses to placebo were high in child and adolescent depression because of specific psychopathological factors associated with youth major depression. The purpose of this study was to compare the placebo response rates in pharmacological trials for major depressive disorder (MDD, obsessive compulsive disorder (OCD and other anxiety disorders (AD-non-OCD. METHODOLOGY AND PRINCIPAL FINDINGS: We reviewed the literature relevant to the use of psychotropic medication in children and adolescents with internalized disorders, restricting our review to double-blind studies including a placebo arm. Placebo response rates were pooled and compared according to diagnosis (MDD vs. OCD vs. AD-non-OCD, age (adolescent vs. child, and date of publication. From 1972 to 2007, we found 23 trials that evaluated the efficacy of psychotropic medication (mainly non-tricyclic antidepressants involving youth with MDD, 7 pertaining to youth with OCD, and 10 pertaining to youth with other anxiety disorders (N = 2533 patients in placebo arms. As hypothesized, the placebo response rate was significantly higher in studies on MDD, than in those examining OCD and AD-non-OCD (49.6% [range: 17-90%] vs. 31% [range: 4-41%] vs. 39.6% [range: 9-53], respectively, ANOVA F = 7.1, p = 0.002. Children showed a higher stable placebo response within all three diagnoses than adolescents, though this difference was not significant. Finally, no significant effects were found with respect to the year of publication. CONCLUSION: MDD in children and adolescents appears to be more responsive to placebo than other internalized conditions, which highlights differential psychopathology.

  7. Antibody responses to a major Pneumocystis carinii antigen in human immunodeficiency virus-infected patients with and without P. carinii pneumonia

    DEFF Research Database (Denmark)

    Lundgren, Bettina; Lundgren, Jens Dilling; Nielsen, T

    1992-01-01

    of pulmonary symptoms. Significantly more patients with P. carinii pneumonia (PCP) had detectable antibodies compared with HIV-infected patients without PCP and with HIV-negative controls (50 [66%] of 76 vs. 18 [34%] of 53 and 7 [35%] of 20, respectively; P less than .001), and the level of antibody response......Antibody responses to a major purified human Pneumocystis carinii surface antigen (gp95) were determined by ELISA in human immunodeficiency virus (HIV)-infected patients. Serum IgG directed against gp95 was measured in 129 consecutive HIV-infected patients who underwent bronchoscopy for evaluation...... response, compared with only 1 (3%) of 31 patients without PCP (P less than .001). This patient had PCP on the basis of clinical criteria, including response to therapy. Thus, despite severe immunosuppression, a proportion of HIV-infected patients with PCP can mount a specific IgG-mediated antibody...

  8. Uncovering the inertia of dislocation motion and negative mechanical response in crystals.

    Science.gov (United States)

    Tang, Yizhe

    2018-01-09

    Dislocations are linear defects in crystals and their motion controls crystals' mechanical behavior. The dissipative nature of dislocation propagation is generally accepted although the specific mechanisms are still not fully understood. The inertia, which is undoubtedly the nature of motion for particles with mass, seems much less convincing for configuration propagation. We utilize atomistic simulations in conditions that minimize dissipative effects to enable uncovering of the hidden nature of dislocation motion, in three typical model metals Mg, Cu and Ta. We find that, with less/no dissipation, dislocation motion is under-damped and explicitly inertial at both low and high velocities. The inertia of dislocation motion is intrinsic, and more fundamental than the dissipative nature. The inertia originates from the kinetic energy imparted from strain energy and stored in the moving core. Peculiar negative mechanical response associated with the inertia is also discovered. These findings shed light on the fundamental nature of dislocation motion, reveal the underlying physics, and provide a new physical explanation for phenomena relevant to high-velocity dislocations.

  9. Distinction between added-energy and phase-resetting mechanisms in non-invasively detected somatosensory evoked responses.

    Science.gov (United States)

    Fedele, T; Scheer, H-J; Burghoff, M; Waterstraat, G; Nikulin, V V; Curio, G

    2013-01-01

    Non-invasively recorded averaged event-related potentials (ERP) represent a convenient opportunity to investigate human brain perceptive and cognitive processes. Nevertheless, generative ERP mechanisms are still debated. Two previous approaches have been contested in the past: the added-energy model in which the response raises independently from the ongoing background activity, and the phase-reset model, based on stimulus-driven synchronization of oscillatory ongoing activity. Many criteria for the distinction of these two models have been proposed, but there is no definitive methodology to disentangle them, owing also to the limited information at the single trial level. Here, we propose a new approach combining low-noise EEG technology and multivariate decomposition techniques. We present theoretical analyses based on simulated data and identify in high-frequency somatosensory evoked responses an optimal target for the distinction between the two mechanisms.

  10. Changes in the Social Responsibility Attitudes of Engineering Students Over Time.

    Science.gov (United States)

    Bielefeldt, Angela R; Canney, Nathan E

    2016-10-01

    This research explored how engineering student views of their responsibility toward helping individuals and society through their profession, so-called social responsibility, change over time. A survey instrument was administered to students initially primarily in their first year, senior year, or graduate studies majoring in mechanical, civil, or environmental engineering at five institutions in September 2012, April 2013, and March 2014. The majority of the students (57 %) did not change significantly in their social responsibility attitudes, but 23 % decreased and 20 % increased. The students who increased, decreased, or remained the same in their social responsibility attitudes over time did not differ significantly in terms of gender, academic rank, or major. Some differences were found between institutions. Students who decreased in social responsibility initially possessed more positive social responsibility attitudes, were less likely to indicate that college courses impacted their views of social responsibility, and were more likely to have decreased in the frequency that they participated in volunteer activities, compared to students who did not change or increased their social responsibility. Although the large percentage of engineering students who decreased their social responsibility during college was disappointing, it is encouraging that courses and participation in volunteer activities may combat this trend.

  11. Software design to calculate and simulate the mechanical response of electromechanical lifts

    Science.gov (United States)

    Herrera, I.; Romero, E.

    2016-05-01

    Lift engineers and lift companies which are involved in the design process of new products or in the research and development of improved components demand a predictive tool of the lift slender system response before testing expensive prototypes. A method for solving the movement of any specified lift system by means of a computer program is presented. The mechanical response of the lift operating in a user defined installation and configuration, for a given excitation and other configuration parameters of real electric motors and its control system, is derived. A mechanical model with 6 degrees of freedom is used. The governing equations are integrated step by step through the Meden-Kutta algorithm in the MATLAB platform. Input data consists on the set point speed for a standard trip and the control parameters of a number of controllers and lift drive machines. The computer program computes and plots very accurately the vertical displacement, velocity, instantaneous acceleration and jerk time histories of the car, counterweight, frame, passengers/loads and lift drive in a standard trip between any two floors of the desired installation. The resulting torque, rope tension and deviation of the velocity plot with respect to the setpoint speed are shown. The software design is implemented in a demo release of the computer program called ElevaCAD. Further on, the program offers the possibility to select the configuration of the lift system and the performance parameters of each component. In addition to the overall system response, detailed information of transients, vibrations of the lift components, ride quality levels, modal analysis and frequency spectrum (FFT) are plotted.

  12. An investigation and understanding of the mechanical response of Palmyrah timber

    International Nuclear Information System (INIS)

    Sobier, Hatim; Menzemer, C.C.; Srivatsan, T.S.

    2003-01-01

    The Palmyrah tree flourishes in tropical areas around South East Asia, and particularly in Sri Lanka. Palmyrah is an important economic resource for the region, and has found use in structural applications for both residential dwellings and commercial buildings. While there is a great deal of local field experience with Palmyrah, the mechanical properties have not been well characterized or understood. In an effort to assist engineers with the design and efficient use of the timber, a study was undertaken to evaluate the mechanical response of Palmyrah and develop estimates of design allowable properties. Properties evaluated include static bending strength, modulus, compression parallel and perpendicular to the grain, shear parallel to the grain and tensile strength parallel and perpendicular to the grain. In order to gain insight into the behavior of the wood, samples were examined using standard optical microscopy techniques. In addition, available fracture surfaces were examined using scanning electron microscopy

  13. Cobalt-alloy implant debris induce HIF-1α hypoxia associated responses: a mechanism for metal-specific orthopedic implant failure.

    Directory of Open Access Journals (Sweden)

    Lauryn Samelko

    Full Text Available The historical success of orthopedic implants has been recently tempered by unexpected pathologies and early failures of some types of Cobalt-Chromium-Molybdenum alloy containing artificial hip implants. Hypoxia-associated responses to Cobalt-alloy metal debris were suspected as mediating this untoward reactivity at least in part. Hypoxia Inducible Factor-1α is a major transcription factor involved in hypoxia, and is a potent coping mechanism for cells to rapidly respond to changing metabolic demands. We measured signature hypoxia associated responses (i.e. HIF-1α, VEGF and TNF-α to Cobalt-alloy implant debris both in vitro (using a human THP-1 macrophage cell line and primary human monocytes/macrophages and in vivo. HIF-1α in peri-implant tissues of failed metal-on-metal implants were compared to similar tissues from people with metal-on-polymer hip arthroplasties, immunohistochemically. Increasing concentrations of cobalt ions significantly up-regulated HIF-1α with a maximal response at 0.3 mM. Cobalt-alloy particles (1 um-diameter, 10 particles/cell induced significantly elevated HIF-1α, VEGF, TNF-α and ROS expression in human primary macrophages whereas Titanium-alloy particles did not. Elevated expression of HIF-1α was found in peri-implant tissues and synovial fluid of people with failing Metal-on-Metal hips (n = 5 compared to failed Metal-on-Polymer articulating hip arthroplasties (n = 10. This evidence suggests that Cobalt-alloy, more than other metal implant debris (e.g. Titanium alloy, can elicit hypoxia-like responses that if unchecked can lead to unusual peri-implant pathologies, such as lymphocyte infiltration, necrosis and excessive fibrous tissue growths.

  14. An Ultrasensitive Mechanism Regulates Influenza Virus-Induced Inflammation.

    Directory of Open Access Journals (Sweden)

    Jason E Shoemaker

    2015-06-01

    Full Text Available Influenza viruses present major challenges to public health, evident by the 2009 influenza pandemic. Highly pathogenic influenza virus infections generally coincide with early, high levels of inflammatory cytokines that some studies have suggested may be regulated in a strain-dependent manner. However, a comprehensive characterization of the complex dynamics of the inflammatory response induced by virulent influenza strains is lacking. Here, we applied gene co-expression and nonlinear regression analysis to time-course, microarray data developed from influenza-infected mouse lung to create mathematical models of the host inflammatory response. We found that the dynamics of inflammation-associated gene expression are regulated by an ultrasensitive-like mechanism in which low levels of virus induce minimal gene expression but expression is strongly induced once a threshold virus titer is exceeded. Cytokine assays confirmed that the production of several key inflammatory cytokines, such as interleukin 6 and monocyte chemotactic protein 1, exhibit ultrasensitive behavior. A systematic exploration of the pathways regulating the inflammatory-associated gene response suggests that the molecular origins of this ultrasensitive response mechanism lie within the branch of the Toll-like receptor pathway that regulates STAT1 phosphorylation. This study provides the first evidence of an ultrasensitive mechanism regulating influenza virus-induced inflammation in whole lungs and provides insight into how different virus strains can induce distinct temporal inflammation response profiles. The approach developed here should facilitate the construction of gene regulatory models of other infectious diseases.

  15. Increased neural response to social rejection in major depression

    NARCIS (Netherlands)

    Kumar, Poornima; Waiter, Gordon D.; Dubois, Magda; Milders, Maarten; Reid, Ian; Steele, J. Douglas

    2017-01-01

    Background: Being a part of community is critical for survival and individuals with major depressive disorder (MDD) have a greater sensitivity to interpersonal stress that makes them vulnerable to future episodes. Social rejection is a critical risk factor for depression and it is said to increase

  16. Mechanisms of efferent-mediated responses in the turtle posterior crista.

    Science.gov (United States)

    Holt, Joseph C; Lysakowski, Anna; Goldberg, Jay M

    2006-12-20

    To study the cellular mechanisms of efferent actions, we recorded from vestibular-nerve afferents close to the turtle posterior crista while efferent fibers were electrically stimulated. Efferent-mediated responses were obtained from calyx-bearing (CD, calyx and dimorphic) afferents and from bouton (B) afferents distinguished by their neuroepithelial locations into BT units near the torus and BM units at intermediate sites. The spike discharge of CD units is strongly excited by efferent stimulation, whereas BT and BM units are inhibited, with BM units also showing a postinhibitory excitation. Synaptic activity was recorded intracellularly after spikes were blocked. Responses of BT/BM units to single efferent shocks consist of a brief depolarization followed by a prolonged hyperpolarization. Both components reflect variations in hair-cell quantal release rates and are eliminated by pharmacological antagonists of alpha9/alpha10 nicotinic receptors. Blocking calcium-dependent SK potassium channels converts the biphasic response into a prolonged depolarization. Results can be explained, as in other hair-cell systems, by the sequential activation of alpha9/alpha10 and SK channels. In BM units, the postinhibitory excitation is based on an increased rate of hair-cell quanta and depends on the preceding inhibition. There is, in addition, an efferent-mediated, direct depolarization of BT/BM and CD fibers. In CD units, it is the exclusive efferent response. Nicotinic antagonists have different effects on hair-cell efferent actions and on the direct depolarization of CD and BT/BM units. Ultrastructural studies, besides confirming the efferent innervation of type II hair cells and calyx endings, show that turtle efferents commonly contact afferent boutons terminating on type II hair cells.

  17. Maximising electro-mechanical response by minimising grain-scale strain heterogeneity in phase-change actuator ceramics

    DEFF Research Database (Denmark)

    Oddershede, Jette; Hossain, Mohammad Jahangir; Daniels, John E.

    2016-01-01

    Phase-change actuator ceramics directly couple electrical and mechanical energies through an electric-field-induced phase transformation. These materials are promising for the replacement of the most common electro-mechanical ceramic, lead zirconate titanate, which has environmental concerns. Here......, we show that by compositional modification, we reduce the grain-scale heterogeneity of the electro-mechanical response by 40%. In the materials investigated, this leads to an increase in the achievable electric-field-induced strain of the bulk ceramic of 45%. Compositions of (100-x)Bi0.5Na0.5TiO3-(x...... heterogeneity can be achieved by precise control of the lattice distortions and orientation distributions of the induced phases. The current results can be used to guide the design of next generation high-strain electro-mechanical ceramic actuator materials....

  18. Time course of lung inflammatory and fibrogenic responses during protective mechanical ventilation in healthy rats.

    Science.gov (United States)

    Krebs, Joerg; Pelosi, Paolo; Tsagogiorgas, Charalambos; Haas, Jenny; Yard, Benito; Rocco, Patricia R M; Luecke, Thomas

    2011-09-15

    This study aimed to assess pulmonary inflammatory and fibrogenic responses and their impact on lung mechanics and histology in healthy rats submitted to protective mechanical ventilation for different experimental periods. Eighteen Wistar rats were randomized to undergo open lung-mechanical ventilation (OL-MV) for 1, 6 or 12 h. Following a recruitment maneuver, a decremental PEEP trial was performed and PEEP set according to the minimal respiratory system static elastance. Respiratory system, lung, and chest-wall elastance and gas-exchange were maintained throughout the 12 h experimental period. Histological lung injury score remained low at 1 and 6 h, but was higher at 12 h due to overinflation. A moderate inflammatory response was observed with a distinct peak at 6h. Compared to unventilated controls, type I procollagen mRNA expression was decreased at 1 and 12h, while type III procollagen expression decreased throughout the 12h experimental period. In conclusion, OL-MV in healthy rats yielded overinflation after 6 h even though respiratory elastance and gas-exchange were preserved for up to 12 h. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Action and resistance mechanisms of antibiotics: A guide for clinicians

    Directory of Open Access Journals (Sweden)

    Garima Kapoor

    2017-01-01

    Full Text Available Infections account for a major cause of death throughout the developing world. This is mainly due to the emergence of newer infectious agents and more specifically due to the appearance of antimicrobial resistance. With time, the bacteria have become smarter and along with it, massive imprudent usage of antibiotics in clinical practice has resulted in resistance of bacteria to antimicrobial agents. The antimicrobial resistance is recognized as a major problem in the treatment of microbial infections. The biochemical resistance mechanisms used by bacteria include the following: antibiotic inactivation, target modification, altered permeability, and “bypass” of metabolic pathway. Determination of bacterial resistance to antibiotics of all classes (phenotypes and mutations that are responsible for bacterial resistance to antibiotics (genetic analysis are helpful. Better understanding of the mechanisms of antibiotic resistance will help clinicians regarding usage of antibiotics in different situations. This review discusses the mechanism of action and resistance development in commonly used antimicrobials.

  20. SIGNALING MECHANISMS IN SEPSIS-INDUCED IMMUNE DYSFUNCTION

    OpenAIRE

    Hasan, Zirak

    2013-01-01

    Sepsis and subsequent organ failure remain the major cause of mortality in intensive care units in spite of significant research efforts. The lung is the most vulnerable organ affected by early hyper-inflammatory immune response in septic patients. On the other hand, the septic insult induces immune dysfunction in later phases of sepsis which in turn increases susceptibility to infections. The aim of this thesis was to investigate early and late inflammatory mechanisms in abdominal sepsis ind...

  1. DDA/TDB liposomes containing soluble Leishmania major antigens induced a mixed Th1/Th2 immune response in BALB/c mice

    Directory of Open Access Journals (Sweden)

    Mansure Hojatizade

    2017-04-01

    Full Text Available Objective(s: Leishmaniasis is a complex parasitic disease that represents a major public health problem. Despite numerous attempts over the past decades, yet there is no effective vaccine against human leishmaniasis probably due to the lack of suitable adjuvants. In this study, a first generation liposomal-based Leishmania vaccine was developed using soluble Leishmania major antigens (SLA and á, Ü-trehalose6, 6'-dibehenat (TDB as an immunostimulatory adjuvant. In this liposome structure, the cationic lipid Dimethyldioctadecylammonium (DDA provides intrinsic adjuvant activity and cholesterol was added as a membrane stabilizer. Liposomes containing SLA were prepared.Materials and Methods: BALB/c mice were subcutaneously (sc immunized with Lip (DDA/TDB/CHOL-SLA+, Lip (DDA/TDB-SLA+, Lip (DDA-SLA+, Lip (DDA/CHOL-SLA+, SLA or Tris-HCl buffer. Immunization was done every two weeks for three weeks. The immunized mice were then challenged sc in the left footpad with 1×106 stationary phase L. major promastigotes (50 ìl, at 2 weeks after last booster injection.Results: mice immunized with any of the liposomal formulations containing SLA (Lip-SLA+, substantially increased footpad swelling and parasite loads of foot and spleen with no significant difference compared to Tris-HCl buffer or SLA alone. Lip-SLA+ formulations induced a mixed Th1/Th2 immune response characterized by IFN-ã and IL-4 production as well as high levels of IgG1 anti-Leishmania antibody. Conclusion: immunization with liposomes containing DDA and/or TDB in combination with SLA induces a mixed Th1/Th2 immune response and is not an appropriate strategy for preferential induction of a Th1 response and protection against leishmaniasis.

  2. Variations in Primary Teachers’ Responses and Development during Three Major Science In- Service Programmes

    Directory of Open Access Journals (Sweden)

    Anthony Pell

    2011-01-01

    Full Text Available This paper reports on how different types of teachers responded to in-service aimed at developing investigative-based science education (IBSE in primary schools, and the extent to which they applied their new skills in the classroom. Common items from evaluation questionnaires allowed data to be combined from three major in-service programmes. Using complete data sets from 120 teachers, cluster analysis enabled three teacher types to be identified: a small group of ‘science unsures’, with low attitude scores and little confidence, who showed no response to the innovation; ‘holistic improvers’, who showed the largest improvement in science teaching confidence; and ‘high level, positive progressives’, who were very positive to science teaching throughout and showed gains in confidence in teaching physics and chemistry, as well as in demonstrating the relevance of science to their pupils. Taking account of these teacher types alongside interviews and observations, nine developmental stages in how teachers apply their new expertise in the classroom and the whole school are suggested. Major factorsinfluencing application in the classroom are the teachers’ initial science knowledge and pedagogical expertise, and motivating feedback to teachers when pupils responded positively to the innovation. Assessing teachers’ initial level of subject knowledge and science pedagogical expertise to inform the approach and amount of in-service provision is important. Subsequent mentoring as well as support from the school principal when teachers first try IBSE with pupils promotes successful implementation in the classroom.

  3. De Novo Endotoxin-Induced Production of Antibodies against the Bile Salt Export Pump Associated with Bacterial Infection following Major Hepatectomy

    Directory of Open Access Journals (Sweden)

    Kun-Ming Chan

    2018-01-01

    Full Text Available Background. Clinically severe infection-related inflammation after major liver resection may cause hyperbilirubinemia. This study aims to clarify the impact of bacterial infection and endotoxins on the hepatobiliary transporter system and to explore possible mechanisms of endotoxin-related postoperative hyperbilirubinemia. Method. Mice that underwent major hepatectomy with removal of at least 70% of liver volume were exposed to lipopolysaccharide (LPS at different dosages. Subsequently, hepatobiliary transporter compounds related to bile salt excretion were further investigated. Results. The expression of genes related to hepatobiliary transporter compounds was not significantly different in the liver tissue of mice after major hepatectomy and LPS exposure. However, bile salt export pump (BSEP protein expression within the liver tissue of mice treated with LPS after major hepatectomy was relatively weaker and was even further reduced in the high-dose LPS group. The formation of antibodies against the BSEP in response to endotoxin exposure was also detected. Conclusion. This study illustrates a possible mechanism whereby the dysfunction of hepatobiliary transporter systems caused by endotoxin-induced autoantibodies may be involved in the development of postoperative jaundice associated with bacterial infection after major hepatectomy.

  4. USNCTAM perspectives on mechanics in medicine

    Science.gov (United States)

    Bao, Gang; Bazilevs, Yuri; Chung, Jae-Hyun; Decuzzi, Paolo; Espinosa, Horacio D.; Ferrari, Mauro; Gao, Huajian; Hossain, Shaolie S.; Hughes, Thomas J. R.; Kamm, Roger D.; Liu, Wing Kam; Marsden, Alison; Schrefler, Bernhard

    2014-01-01

    Over decades, the theoretical and applied mechanics community has developed sophisticated approaches for analysing the behaviour of complex engineering systems. Most of these approaches have targeted systems in the transportation, materials, defence and energy industries. Applying and further developing engineering approaches for understanding, predicting and modulating the response of complicated biomedical processes not only holds great promise in meeting societal needs, but also poses serious challenges. This report, prepared for the US National Committee on Theoretical and Applied Mechanics, aims to identify the most pressing challenges in biological sciences and medicine that can be tackled within the broad field of mechanics. This echoes and complements a number of national and international initiatives aiming at fostering interdisciplinary biomedical research. This report also comments on cultural/educational challenges. Specifically, this report focuses on three major thrusts in which we believe mechanics has and will continue to have a substantial impact. (i) Rationally engineering injectable nano/microdevices for imaging and therapy of disease. Within this context, we discuss nanoparticle carrier design, vascular transport and adhesion, endocytosis and tumour growth in response to therapy, as well as uncertainty quantification techniques to better connect models and experiments. (ii) Design of biomedical devices, including point-of-care diagnostic systems, model organ and multi-organ microdevices, and pulsatile ventricular assistant devices. (iii) Mechanics of cellular processes, including mechanosensing and mechanotransduction, improved characterization of cellular constitutive behaviour, and microfluidic systems for single-cell studies. PMID:24872502

  5. B-1 cells modulate the murine macrophage response to Leishmania major infection.

    Science.gov (United States)

    Arcanjo, Angelica F; Nunes, Marise P; Silva-Junior, Elias B; Leandro, Monique; da Rocha, Juliana Dutra Barbosa; Morrot, Alexandre; Decote-Ricardo, Debora; Freire-de-Lima, Celio Geraldo

    2017-05-26

    To investigate the modulatory effect of B-1 cells on murine peritoneal macrophages infected with Leishmania major ( L. major ) in vitro . Peritoneal macrophages obtained from BALB/c and BALB/c XID mice were infected with L. major and cultured in the presence or absence of B-1 cells obtained from wild-type BALB/c mice. Intracellular amastigotes were counted, and interleukin-10 (IL-10) production was quantified in the cellular supernatants using an enzyme-linked immunosorbent assay. The levels of the lipid mediator prostaglandin E2 (PGE 2 ) were determined using a PGE 2 enzyme immunoassay kit (Cayman Chemical, Ann Arbor, MI), and the number of lipid bodies was quantified in the cytoplasm of infected macrophages in the presence and absence of B-1 cells. Culturing the cells with selective PGE 2 -neutralizing drugs inhibited PGE 2 production and confirmed the role of this lipid mediator in IL-10 production. In contrast, we demonstrated that B-1 cells derived from IL-10 KO mice did not favor the intracellular growth of L. major . We report that B-1 cells promote the growth of L. major amastigotes inside peritoneal murine macrophages. We demonstrated that the modulatory effect was independent of physical contact between the cells, suggesting that soluble factor(s) were released into the cultures. We demonstrated in our co-culture system that B-1 cells trigger IL-10 production by L. major -infected macrophages. Furthermore, the increased secretion of IL-10 was attributed to the presence of the lipid mediator PGE 2 in supernatants of L. major -infected macrophages. The presence of B-1 cells also favors the production of lipid bodies by infected macrophages. In contrast, we failed to obtain the same effect on parasite replication inside L. major -infected macrophages when the B-1 cells were isolated from IL-10 knockout mice. Our results show that elevated levels of PGE 2 and IL-10 produced by B-1 cells increase L. major growth, as indicated by the number of parasites in cell

  6. Stress and glucocorticoid receptor-dependent mechanisms in long-term memory: from adaptive responses to psychopathologies.

    Science.gov (United States)

    Finsterwald, Charles; Alberini, Cristina M

    2014-07-01

    A proper response against stressors is critical for survival. In mammals, the stress response is primarily mediated by secretion of glucocorticoids via the hypothalamic-pituitary-adrenocortical (HPA) axis and release of catecholamines through adrenergic neurotransmission. Activation of these pathways results in a quick physical response to the stress and, in adaptive conditions, mediates long-term changes in the brain that lead to the formation of long-term memories of the experience. These long-term memories are an essential adaptive mechanism that allows an animal to effectively face similar demands again. Indeed, a moderate stress level has a strong positive effect on memory and cognition, as a single arousing or moderately stressful event can be remembered for up to a lifetime. Conversely, exposure to extreme, traumatic, or chronic stress can have the opposite effect and cause memory loss, cognitive impairments, and stress-related psychopathologies such as anxiety disorders, depression and post-traumatic stress disorder (PTSD). While more effort has been devoted to the understanding of the negative effects of chronic stress, much less has been done thus far on the identification of the mechanisms engaged in the brain when stress promotes long-term memory formation. Understanding these mechanisms will provide critical information for use in ameliorating memory processes in both normal and pathological conditions. Here, we will review the role of glucocorticoids and glucocorticoid receptors (GRs) in memory formation and modulation. Furthermore, we will discuss recent findings on the molecular cascade of events underlying the effect of GR activation in adaptive levels of stress that leads to strong, long-lasting memories. Our recent data indicate that the positive effects of GR activation on memory consolidation critically engage the brain-derived neurotrophic factor (BDNF) pathway. We propose and will discuss the hypothesis that stress promotes the formation of

  7. Stress and glucocorticoid receptor-dependent mechanisms in long-term memory: from adaptive responses to psychopathologies

    Science.gov (United States)

    Finsterwald, Charles; Alberini, Cristina M.

    2013-01-01

    A proper response against stressors is critical for survival. In mammals, the stress response is primarily mediated by secretion of glucocorticoids via the hypothalamic-pituitaryadrenocortical (HPA) axis and release of catecholamines through adrenergic neurotransmission. Activation of these pathways results in a quick physical response to the stress and, in adaptive conditions, mediates long-term changes in the brain that lead to the formation of long-term memories of the experience. These long-term memories are an essential adaptive mechanism that allows an animal to effectively face similar demands again. Indeed, a moderate stress level has a strong positive effect on memory and cognition, as a single arousing or moderately stressful event can be remembered for up to a lifetime. Conversely, exposure to extreme, traumatic, or chronic stress can have the opposite effect and cause memory loss, cognitive impairments, and stress-related psychopathologies such as anxiety disorders, depression and post-traumatic stress disorder (PTSD). While more effort has been devoted to the understanding of the effects of the negative effects of chronic stress, much less has been done thus far on the identification of the mechanisms engaged in the brain when stress promotes long-term memory formation. Understanding these mechanisms will provide critical information for use in ameliorating memory processes in both normal and pathological conditions. Here, we will review the role of glucocorticoids and glucocorticoid receptors (GRs) in memory formation and modulation. Furthermore, we will discuss recent findings on the molecular cascade of events underlying the effect of GR activation in adaptive levels of stress that leads to strong, long-lasting memories. Our recent data indicate that the positive effects of GR activation on memory consolidation critically engage the brain-derived neurotrophic factor (BDNF) pathway. We propose and will discuss the hypothesis that stress promotes the

  8. Adaptive Response in Animals Exposed to Non-Ionizing Radiofrequency Fields: Some Underlying Mechanisms

    Directory of Open Access Journals (Sweden)

    Yi Cao

    2014-04-01

    Full Text Available During the last few years, our research group has been investigating the phenomenon of adaptive response in animals exposed to non-ionizing radiofrequency fields. The results from several separate studies indicated a significant increase in survival, decreases in genetic damage as well as oxidative damage and, alterations in several cellular processes in mice pre-exposed to radiofrequency fields and subsequently subjected to sub-lethal or lethal doses of γ-radiation or injected with bleomycin, a radiomimetic chemical mutagen. These observations indicated the induction of adaptive response providing the animals the ability to resist subsequent damage. Similar studies conducted by independent researchers in mice and rats have supported our observation on increased survival. In this paper, we have presented a brief review of all of our own and other independent investigations on radiofrequency fields-induced adaptive response and some underlying mechanisms discussed.

  9. Activation of Proinflammatory Responses in Cells of the Airway Mucosa by Particulate Matter: Oxidant- and Non-Oxidant-Mediated Triggering Mechanisms

    Directory of Open Access Journals (Sweden)

    Johan Øvrevik

    2015-07-01

    Full Text Available Inflammation is considered to play a central role in a diverse range of disease outcomes associated with exposure to various types of inhalable particulates. The initial mechanisms through which particles trigger cellular responses leading to activation of inflammatory responses are crucial to clarify in order to understand what physico-chemical characteristics govern the inflammogenic activity of particulate matter and why some particles are more harmful than others. Recent research suggests that molecular triggering mechanisms involved in activation of proinflammatory genes and onset of inflammatory reactions by particles or soluble particle components can be categorized into direct formation of reactive oxygen species (ROS with subsequent oxidative stress, interaction with the lipid layer of cellular membranes, activation of cell surface receptors, and direct interactions with intracellular molecular targets. The present review focuses on the immediate effects and responses in cells exposed to particles and central down-stream signaling mechanisms involved in regulation of proinflammatory genes, with special emphasis on the role of oxidant and non-oxidant triggering mechanisms. Importantly, ROS act as a central second-messenger in a variety of signaling pathways. Even non-oxidant mediated triggering mechanisms are therefore also likely to activate downstream redox-regulated events.

  10. The molecular mechanisms of plant plasma membrane intrinsic proteins trafficking and stress response.

    Science.gov (United States)

    Wang, Xing; Zhang, Ji-long; Feng, Xiu-xiu; Li, Hong-jie; Zhang, Gen-fa

    2017-04-20

    Plasma membrane intrinsic proteins (PIPs) are plant channel proteins located on the plasma membrane. PIPs transfer water, CO 2 and small uncharged solutes through the plasma membrane. PIPs have high selectivity to substrates, suggestive of a central role in maintaining cellular water balance. The expression, activity and localization of PIPs are regulated at the transcriptional and post-translational levels, and also affected by environmental factors. Numerous studies indicate that the expression patterns and localizations of PIPs can change in response to abiotic stresses. In this review, we summarize the mechanisms of PIP trafficking, transcriptional and post-translational regulations, and abiotic stress responses. Moreover, we also discuss the current research trends and future directions on PIPs.

  11. Dissection of Ire1 functions reveals stress response mechanisms uniquely evolved in Candida glabrata.

    Directory of Open Access Journals (Sweden)

    Taiga Miyazaki

    2013-01-01

    Full Text Available Proper protein folding in the endoplasmic reticulum (ER is vital in all eukaryotes. When misfolded proteins accumulate in the ER lumen, the transmembrane kinase/endoribonuclease Ire1 initiates splicing of HAC1 mRNA to generate the bZIP transcription factor Hac1, which subsequently activates its target genes to increase the protein-folding capacity of the ER. This cellular machinery, called the unfolded protein response (UPR, is believed to be an evolutionarily conserved mechanism in eukaryotes. In this study, we comprehensively characterized mutant phenotypes of IRE1 and other related genes in the human fungal pathogen Candida glabrata. Unexpectedly, Ire1 was required for the ER stress response independently of Hac1 in this fungus. C. glabrata Ire1 did not cleave mRNAs encoding Hac1 and other bZIP transcription factors identified in the C. glabrata genome. Microarray analysis revealed that the transcriptional response to ER stress is not mediated by Ire1, but instead is dependent largely on calcineurin signaling and partially on the Slt2 MAPK pathway. The loss of Ire1 alone did not confer increased antifungal susceptibility in C. glabrata contrary to UPR-defective mutants in other fungi. Taken together, our results suggest that the canonical Ire1-Hac1 UPR is not conserved in C. glabrata. It is known in metazoans that active Ire1 nonspecifically cleaves and degrades a subset of ER-localized mRNAs to reduce the ER load. Intriguingly, this cellular response could occur in an Ire1 nuclease-dependent fashion in C. glabrata. We also uncovered the attenuated virulence of the C. glabrata Δire1 mutant in a mouse model of disseminated candidiasis. This study has unveiled the unique evolution of ER stress response mechanisms in C. glabrata.

  12. Mechanical properties and shape memory effect of thermal-responsive polymer based on PVA

    Science.gov (United States)

    Lin, Liulan; Zhang, Lingfeng; Guo, Yanwei

    2018-01-01

    In this study, the effect of content of glutaraldehyde (GA) on the shape memory behavior of a shape memory polymer based on polyvinyl alcohol chemically cross-linked with GA was investigated. Thermal-responsive shape memory composites with three different GA levels, GA-PVA (3 wt%, 5 wt%, 7 wt%), were prepared by particle melting, mold forming and freeze-drying technique. The mechanical properties, thermal properties and shape memory behavior were measured by differential scanning calorimeter, physical bending test and cyclic thermo-mechanical test. The addition of GA to PVA led to a steady shape memory transition temperature and an improved mechanical compressive strength. The composite with 5 wt% of GA exhibited the best shape recoverability. Further increase in the crosslinking agent content of GA would reduce the recovery force and prolong the recovery time due to restriction in the movement of the soft PVA chain segments. These results provide important information for the study on materials in 4D printing.

  13. Mechanisms underlying cellular responses of cells from haemopoietic tissue to low

    Energy Technology Data Exchange (ETDEWEB)

    Kadhim, Munira A

    2012-08-22

    The above studies will provide fundamental mechanistic information relating genetic predisposition to important low dose phenomena, and will aid in the development of Department of Energy policy, as well as radiation risk policy for the public and the workplace. We believe the proposed studies accurately reflect the goals of the DOE low dose program. To accurately define the risks associated with human exposure to relevant environmental doses of low LET ionizing radiation, it is necessary to completely understand the biological effects at very low doses (i.e. less than 0.1 Gy), including the lowest possible dose, that of a single electron track traversal. At such low doses, a range of studies have shown responses in biological systems which are not related to the direct interaction of radiation tracks with DNA. The role of these "non-targeted responses in critical tissues is poorly understood and little is known regarding the underlying mechanisms. Although critical for dosimetry and risk assessment, the role of individual genetic susceptibility in radiation risk is not satisfactorily defined at present. The aim of the proposed grant is to critically evaluate non-targeted effects of ionizing radiation with a focus on the induction of genomic instability (GI) in key stem cell populations from haemopoietic tissue. Using stem cells from two mouse strains (CBA/CaH and C57BL/6J) known to differ in their susceptibility to radiation effects, we plan to carefully dissect the role of genetic predisposition in these models on genomic instability. We will specifically focus on the effects of low doses of low LET radiation, down to the dose of 10mGy (0.01Gy) X-rays. Using conventional X-ray and we will be able to assess the role of genetic variation under various conditions at a range of doses down to the very low dose of 0.01Gy. Irradiations will be carried out using facilities in routine operation for such studies. Mechanistic studies of instability in different cell

  14. Short- and long-term behavioural, physiological and stoichiometric responses to predation risk indicate chronic stress and compensatory mechanisms.

    Science.gov (United States)

    Van Dievel, Marie; Janssens, Lizanne; Stoks, Robby

    2016-06-01

    Prey organisms are expected to use different short- and long-term responses to predation risk to avoid excessive costs. Contrasting both types of responses is important to identify chronic stress responses and possible compensatory mechanisms in order to better understand the full impact of predators on prey life history and population dynamics. Using larvae of the damselfly Enallagma cyathigerum, we contrasted the effects of short- and long-term predation risk, with special focus on consequences for body stoichiometry. Under short-term predation risk, larvae reduced growth rate, which was associated with a reduced food intake, increased metabolic rate and reduced glucose content. Under long-term predation risk, larvae showed chronic predator stress as indicated by persistent increases in metabolic rate and reduced food intake. Despite this, larvae were able to compensate for the short-term growth reduction under long-term predation risk by relying on physiological compensatory mechanisms, including reduced energy storage. Only under long-term predation risk did we observe an increase in body C:N ratio, as predicted under the general stress paradigm (GSP). Although this was caused by a predator-induced decrease in N content, there was no associated increase in C content. These stoichiometric changes could not be explained by GSP responses because, under chronic predation risk, there was no decrease in N-rich proteins or increase in C-rich fat and sugars; instead glycogen decreased. Our results highlight the importance of compensatory mechanisms and the value of explicitly integrating physiological mechanisms to obtain insights into the temporal dynamics of non-consumptive effects, including effects on body stoichiometry.

  15. Association study of a brain-derived neurotrophic factor polymorphism and short-term antidepressant response in major depressive disorders

    Directory of Open Access Journals (Sweden)

    Lung-Cheng Huang

    2008-10-01

    Full Text Available Eugene Lin1,7, Po See Chen2,6,7, Lung-Cheng Huang3,4, Sen-Yen Hsu51Vita Genomics, Inc., Wugu Shiang, Taipei, Taiwan; 2Department of Psychiatry, Hospital and College of Medicine, National Cheng Kung University, Tainan, Taiwan; 3Department of Psychiatry, National Taiwan University Hospital Yun-Lin Branch, Taiwan; 4Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; 5Department of Psychiatry, Chi Mei Medical Center, Liouying, Tainan, Taiwan; 6Department of Psychiatry, National Cheng Kung University Hospital, Dou-liou Branch, Yunlin, Taiwan; 7These authors contributed equally to this workAbstract: Major depressive disorder (MDD is one of the most common mental disorders worldwide. Single nucleotide polymorphisms (SNPs can be used in clinical association studies to determine the contribution of genes to drug efficacy. A common SNP in the brain-derived neurotrophic factor (BDNF gene, a methionine (Met substitution for valine (Val at codon 66 (Val66Met, is a candidate SNP for influencing antidepressant treatment outcome. In this study, our goal was to determine the relationship between the Val66Met polymorphism in the BDNF gene and the rapid antidepressant response to venlafaxine in a Taiwanese population with MDD. Overall, the BDNF Val66Met polymorphism was found not to be associated with short-term venlafaxine treatment outcome. However, the BDNF Val66Met polymorphism showed a trend to be associated with rapid venlafaxine treatment response in female patients. Future research with independent replication in large sample sizes is needed to confirm the role of the BDNF Val66Met polymorphism identified in this study.Keywords: antidepressant response, brain-derived neurotrophic factor, major depressive disorder, serotonin and norepinephrine reuptake inhibitor, single nucleotide polymorphisms

  16. Elastin governs the mechanical response of medial collateral ligament under shear and transverse tensile loading.

    Science.gov (United States)

    Henninger, Heath B; Valdez, William R; Scott, Sara A; Weiss, Jeffrey A

    2015-10-01

    Elastin is a highly extensible structural protein network that provides near-elastic resistance to deformation in biological tissues. In ligament, elastin is localized between and along the collagen fibers and fascicles. When ligament is stretched along the primary collagen axis, elastin supports a relatively high percentage of load. We hypothesized that elastin may also provide significant load support under elongation transverse to the primary collagen axis and shear along the collagen axis. Quasi-static transverse tensile and shear material tests were performed to quantify the mechanical contributions of elastin during deformation of porcine medial collateral ligament. Dose response studies were conducted to determine the level of elastase enzymatic degradation required to produce a maximal change in the mechanical response. Maximal changes in peak stress occurred after 3h of treatment with 2U/ml porcine pancreatic elastase. Elastin degradation resulted in a 60-70% reduction in peak stress and a 2-3× reduction in modulus for both test protocols. These results demonstrate that elastin provides significant resistance to elongation transverse to the collagen axis and shear along the collagen axis while only constituting 4% of the tissue dry weight. The magnitudes of the elastin contribution to peak transverse and shear stress were approximately 0.03 MPa, as compared to 2 MPa for axial tensile tests, suggesting that elastin provides a highly anisotropic contribution to the mechanical response of ligament and is the dominant structural protein resisting transverse and shear deformation of the tissue. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. A study of eukaryotic response mechanisms to atmospheric pressure cold plasma by using Saccharomyces cerevisiae single gene mutants

    International Nuclear Information System (INIS)

    Feng Hongqing; Wang Ruixue; Sun Peng; Wu Haiyan; Liu Qi; Li Fangting; Fang Jing; Zhang Jue; Zhu Weidong

    2010-01-01

    The mechanisms of eukaryotic cell response to cold plasma are studied. A series of single gene mutants of eukaryotic model organism Saccharomyces cerevisiae are used to compare their sensitivity to plasma treatment with the wild type. We examined 12 mutants in the oxidative stress pathway and the cell cycle pathway, in which 8 are found to be hypersensitive to plasma processing. The mutated genes' roles in the two pathways are analyzed to understand the biological response mechanisms of plasma treatment. The results demonstrate that genes from both pathways are needed for the eukaryotic cells to survive the complex plasma treatment.

  18. Mechanisms of humoral immune response against Pseudomonas aeruginosa biofilm infection in cystic fibrosis

    DEFF Research Database (Denmark)

    Mauch, Renan Marrichi; Jensen, Peter Østrup; Moser, Claus

    2018-01-01

    P. aeruginosa chronic lung infection is the major cause of morbidity and mortality in patients with cystic fibrosis (CF), and is characterized by a biofilm mode of growth, increased levels of specific IgG antibodies and immune complex formation. However, despite being designed to combat...... this infection, such elevated humoral response is not associated with clinical improvement, pointing to a lack of anti-pseudomonas effectiveness. The mode of action of specific antibodies, as well as their structural features, and even the background involving B-cell production, stimulation and differentiation...... into antibody-producing cells in the CF airways are poorly understood. Thus, the aim of this review is to discuss studies that have addressed the intrinsic features of the humoral immune response and provide new insights regarding its insufficiency in the CF context....

  19. Acid Stress Response Mechanisms of Group B Streptococci

    Directory of Open Access Journals (Sweden)

    Sarah Shabayek

    2017-09-01

    Full Text Available Group B streptococcus (GBS is a leading cause of neonatal mortality and morbidity in the United States and Europe. It is part of the vaginal microbiota in up to 30% of pregnant women and can be passed on to the newborn through perinatal transmission. GBS has the ability to survive in multiple different host niches. The pathophysiology of this bacterium reveals an outstanding ability to withstand varying pH fluctuations of the surrounding environments inside the human host. GBS host pathogen interations include colonization of the acidic vaginal mucosa, invasion of the neutral human blood or amniotic fluid, breaching of the blood brain barrier as well as survival within the acidic phagolysosomal compartment of macrophages. However, investigations on GBS responses to acid stress are limited. Technologies, such as whole genome sequencing, genome-wide transcription and proteome mapping facilitate large scale identification of genes and proteins. Mechanisms enabling GBS to cope with acid stress have mainly been studied through these techniques and are summarized in the current review

  20. THE EFFECT OF CORPORATE GOVERNANCE MECHANISM, OWNERSHIP STRUCTURE, AND EXTERNAL AUDITOR TOWARD CORPORATE SOCIAL RESPONSIBILITY DISCLOSURE WITH EARNING MANAGEMENT AS MODERATING VARIABLE

    Directory of Open Access Journals (Sweden)

    Suwana M.A.J.

    2017-08-01

    Full Text Available The purpose of this study is to examine the moderating effect of earning management on corporate governance mechanism, ownership structure, and external auditor toward corporate social responsibility disclosure. This study finds that the increase of ownership structure (foreign ownership and institutional ownership will increase corporate social responsibility disclosure. However corporate governance mechanism and external auditor is not affecting corporate social responsibility disclosure. Furthermore, this study provides additional empirical evidence for agency theory especially agency cost, that corporate governance mechanism, ownership structure, and Big Four audit firm do not have an effective role as agency cost to prevent or decrease earning management practice.

  1. Ecological mechanisms underlying soil bacterial responses to rainfall along a steep natural precipitation gradient.

    Science.gov (United States)

    Waring, Bonnie; Hawkes, Christine V

    2018-02-01

    Changes in the structure and function of soil microbial communities can drive substantial ecosystem feedbacks to altered precipitation. However, the ecological mechanisms underlying community responses to environmental change are not well understood. We used an 18-month soil reciprocal transplant experiment along a steep precipitation gradient to quantify how changes in rainfall affected bacterial community structure. We also conducted an enhanced dispersal treatment to ask whether higher immigration rates of taxa from the surrounding environment would accelerate community responses to climate change. Finally, we addressed how the composition of soil bacteria communities was related to the functional response of soil respiration to moisture in these treatments. Bacterial community structure (OTU abundance) and function (respiration rates) changed little in response to manipulation of either rainfall environment or dispersal rates. Although most bacteria were ecological generalists, a subset of specialist taxa, over 40% of which were Actinobacteria, tended to be more abundant in the rainfall environment that matched their original conditions. Bacteria community composition was an important predictor of the respiration response to moisture. Thus, the high compositional resistance of microbial communities dictated respiration responses to altered rainfall in this system.

  2. Molecular Mechanisms of Foot-and-Mouth Disease Virus Targeting the Host Antiviral Response.

    Science.gov (United States)

    Rodríguez Pulido, Miguel; Sáiz, Margarita

    2017-01-01

    Foot-and-mouth disease virus (FMDV) is the causative agent of an acute vesicular disease affecting pigs, cattle and other domestic, and wild animals worldwide. The aim of the host interferon (IFN) response is to limit viral replication and spread. Detection of the viral genome and products by specialized cellular sensors initiates a signaling cascade that leads to a rapid antiviral response involving the secretion of type I- and type III-IFNs and other antiviral cytokines with antiproliferative and immunomodulatory functions. During co-evolution with their hosts, viruses have acquired strategies to actively counteract host antiviral responses and the balance between innate response and viral antagonism may determine the outcome of disease and pathogenesis. FMDV proteases Lpro and 3C have been found to antagonize the host IFN response by a repertoire of mechanisms. Moreover, the putative role of other viral proteins in IFN antagonism is being recently unveiled, uncovering sophisticated immune evasion strategies different to those reported to date for other members of the Picornaviridae family. Here, we review the interplay between antiviral responses induced by FMDV infection and viral countermeasures to block them. Research on strategies used by viruses to modulate immunity will provide insights into the function of host pathways involved in defense against pathogens and will also lead to development of new therapeutic strategies to fight virus infections.

  3. Chromatin and lamin A determine two different mechanical response regimes of the cell nucleus.

    Science.gov (United States)

    Stephens, Andrew D; Banigan, Edward J; Adam, Stephen A; Goldman, Robert D; Marko, John F

    2017-07-07

    The cell nucleus must continually resist and respond to intercellular and intracellular mechanical forces to transduce mechanical signals and maintain proper genome organization and expression. Altered nuclear mechanics is associated with many human diseases, including heart disease, progeria, and cancer. Chromatin and nuclear envelope A-type lamin proteins are known to be key nuclear mechanical components perturbed in these diseases, but their distinct mechanical contributions are not known. Here we directly establish the separate roles of chromatin and lamin A/C and show that they determine two distinct mechanical regimes via micromanipulation of single isolated nuclei. Chromatin governs response to small extensions (<3 μm), and euchromatin/heterochromatin levels modulate the stiffness. In contrast, lamin A/C levels control nuclear strain stiffening at large extensions. These results can be understood through simulations of a polymeric shell and cross-linked polymer interior. Our results provide a framework for understanding the differential effects of chromatin and lamin A/C in cell nuclear mechanics and their alterations in disease. © 2017 Stephens et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Study of the Genes and Mechanism Involved in the Radioadaptive Response

    Science.gov (United States)

    Dasgupta, Pushan R.

    2009-01-01

    The radioadaptive response is a phenomenon where exposure to a prior low dose of radiation reduces the level of damage induced by a subsequent high radiation dose. The molecular mechanism behind this is still not well understood. Learning more about the radioadaptive response is critical for long duration spaceflight since astronauts are exposed to low levels of cosmic radiation. The micronucleus assay was used to measure the level of damage caused by radiation. Although cells which were not washed with phosphate buffered saline (PBS) after a low priming dose of 5cGy did not show adaptation to the challenge dose, washing the cells with PBS and giving the cells fresh media after the low dose did allow radioadaptation to occur. This is consistent with the results of a previous publication by another research group. In the present study, genes involved in DNA damage signaling and the oxidative stress response were studied using RT PCR techniques in order to look at changes in expression level after the low dose with or without washing. Our preliminary results indicate that upregulation of oxidative stress response genes ANGPTL7, NCF2, TTN, and SRXN1 may be involved in the radioadaptive response. The low dose of radiation alone was found to activate the oxidative stress response genes GPR156 and MTL5, whereas, washing the cells alone caused relatively robust upregulation of the oxidative stress response genes DUSP1 and PTGS2. Washing after the priming dose showed some changes in the expression level of several DNA damage signaling genes. In addition, we studied whether washing the cells after the priming dose has an effect on the level of nitric oxide in both the media and cells, since nitric oxide levels are known to increase in the media of the cells after a high dose of radiation only if the cells were already exposed to a low priming dose. Based on this preliminary study, we propose that washing the cells after priming exposure actually eliminates some factor

  5. Features of formation of the mechanism of introduction of the corporate social responsibility in activity the domestic industrial enterprises

    OpenAIRE

    Antoshko, T.

    2011-01-01

    Article opens essence of the corporate social responsibility (CSR), its components and principles CSR. The developed process model of formation of the mechanism of introduction CSR on the basis of disclosing principles of directions CSR. The mechanism of introduction CSR at the enterprise is developed. As criterion of an assessment of the mechanism of introduction CSR it has been suggested factor of activity of use of components of the mechanism of introduction CSR.

  6. Understory vegetation response to mechanical mastication and other fuels treatments in a ponderosa pine forest

    Science.gov (United States)

    Jeffrey M. Kane; J. Morgan Varner; Eric E. Knapp

    2010-01-01

    Questions: What influence does mechanical mastication and other fuel treatments have on: (1) canopy and forest floor response variables that influence understory plant development; (2) initial understory vegetation cover, diversity, and composition; and (3) shrub and non-native species density in a secondgrowth ponderosa pine forest....

  7. Visualized Bond Scission in Mechanically Activated Polymers

    Institute of Scientific and Technical Information of China (English)

    Yuan Yuan; Yu-lan Chen

    2017-01-01

    Visualization and quantitative evaluation of covalent bond scission in polymeric materials are critical in understanding their failure mechanisms and improving the toughness and reliability of the materials.Mechano-responsive polymers with the ability of molecular-level transduction of force into chromism and luminescence have evoked major interest and experienced significant progress.In the current review,we highlight the recent achievements in covalent mechanochromic and mechanoluminescent polymers,leading to a bridge between macroscopic mechanical properties and microscopic bond scission events.After a general introduction concerning polymer mechanochemistry,various examples that illustrate the strategies of design and incorporation of functional and weak covalent bonds in polymers were presented,the mechanisms underlying the optical phenomenon were introduced and their potential applications as stress sensors were discussed.This review concludes with a comment on the opportunities and challenges of the field.

  8. Social responsibilities of a physician: reflections of Major General S L Bhatia (1891-1981).

    Science.gov (United States)

    Hegde, Radhika; Vaz, Mario

    2017-01-01

    This paper examines various documents written by Major General SL Bhatia CIE, MC, IMS from the 1920s to the1960s on the "Social Responsibilities of a Physician". His reflections are of historical significance, since they provide us with an insight into the challenges confronting the people who attempted to rebuild a nation plagued by poverty resulting from fractured agricultural growth, a feudalistic social structure and the regional inequalities that accompany it, and prolonged imperial rule, among other things. Bhatia's thoughts, especially on medical education and the condition of rural health and sanitation, enable us to understand India's present health concerns through the prism of the past. The writings of Bhatia, who lived during a period of transition in India, reflect an understanding of health issues from the perspectives both of an administrator and a physician struggling to meet the challenges of a nascent nation. He insisted on rooting his medical teachings in the principles of the humanities and ethics.

  9. Studies of Physcomitrella patens reveal that ethylene-mediated submergence responses arose relatively early in land-plant evolution

    KAUST Repository

    Yasumura, Yuki

    2012-10-18

    Colonization of the land by multicellular green plants was a fundamental step in the evolution of life on earth. Land plants evolved from fresh-water aquatic algae, and the transition to a terrestrial environment required the acquisition of developmental plasticity appropriate to the conditions of water availability, ranging from drought to flood. Here we show that extant bryophytes exhibit submergence-induced developmental plasticity, suggesting that submergence responses evolved relatively early in the evolution of land plants. We also show that a major component of the bryophyte submergence response is controlled by the phytohormone ethylene, using a perception mechanism that has subsequently been conserved throughout the evolution of land plants. Thus a plant environmental response mechanism with major ecological and agricultural importance probably had its origins in the very earliest stages of the colonization of the land. © 2012 Blackwell Publishing Ltd.

  10. Distinct radioprotective activities of major heat shock proteins in irradiated mammalian cells

    International Nuclear Information System (INIS)

    Kabakov, Alexander; Malyutina, Yana; Kudryavtsev, Vladimir

    2008-01-01

    Full text: Several years ago we have suggested that heat shock proteins (Hsps) can be involved in cellular and tissue mechanisms of protection from ionizing radiation. At present, the accumulated experimental data do allow us to characterize three major mammalian Hsps, Hsp70, Hsp27 and Hsp90, as specific endogenous radioprotectors which are able to prevent or minimize cell death resulting from the radiation exposure. It follows from the many findings that the radioprotective effect of these Hsps is particularly manifested in their ability to attenuate apoptosis in various normal and tumor cells irradiated in vivo or in vitro. The obtained data already enable to suggest three main mechanisms of the radioprotection conferred by the excess Hsps: 1) Modulation of the intracellular signaling so that the apoptotic signal transduction is blocked, whereas the 'cell survival' signal transduction is stimulated; 2) Suppression of the radiation-associated free radical generation and apoptosis induced by reactive oxygen species (ROS); 3) Attenuation of the genotoxic impact of ionizing radiation. The latter suggested mechanism seems particularly intriguing and implies that the excess Hsps can somehow contribute to protection/repair of genomic DNA from radiation-induced damage. According to our recent results, Hsp90 is indeed involved in the post-irradiation repair of nuclear DNA, while excess Hsp70 can beneficially affect the p53-mediated DNA damage response in irradiated cells to ensure their long-term survival and recovery. As for Hsp27, we found that its accumulation in target cells increases their radioresistance by enhancing the irradiation-responsive activation of anti apoptotic pathways. While the Hsp70 and Hsp27 seem to perform different functions in irradiated cells, the synergistic enhancement of radioprotection was clearly observed in the cells enriched by the both the Hsps. In vivo, such radioprotective activities of the major mammalian Hsps may play a role in

  11. Mechanisms of change in cognitive therapy for major depressive disorder in the community mental health setting.

    Science.gov (United States)

    Crits-Christoph, Paul; Gallop, Robert; Diehl, Caroline K; Yin, Seohyun; Gibbons, Mary Beth Connolly

    2017-06-01

    This study examined the relation of change in theory-relevant cognitive variables to depressive symptom change over the course of cognitive therapy, as well as the specificity of change mechanisms to cognitive therapy as compared with dynamic therapy. There were 237 adult outpatients who were randomized to either cognitive (n = 119) or dynamic (n = 118) therapy for major depressive disorder in a community mental health setting. Assessments of compensatory skills (Ways of Responding Community Version and Self-Report Version), dysfunctional attitudes (Dysfunctional Attitudes Scale), and depressogenic schemas (Psychological Distance Scaling Task) were obtained at baseline and months 1, 2, and 5 following baseline. Primary outcome was measured using the Hamilton Rating Scale for Depression. Across both therapy conditions, change in all 3 cognitive domains was associated with concurrent change in depressive symptoms. After controlling for other cognitive variables, increased interconnectedness of the positive achievement-related schema was significantly associated with concurrent symptom change in cognitive (rp = .26, p therapy (rp = .08, p = .29). Increases in positive compensatory skills were associated with subsequent change in depressive symptoms in cognitive therapy (rp = -.36, p = .003), but not in dynamic therapy (rp = .11, p = .386). Results provide support for the compensatory skills model of cognitive therapy (CT) within a community mental health setting. Additional research is necessary to understand other possible mechanisms of change in CT in the community setting. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  12. Myocardial injury after surgery is a risk factor for weaning failure from mechanical ventilation in critical patients undergoing major abdominal surgery.

    Directory of Open Access Journals (Sweden)

    Shu Li

    Full Text Available Myocardial injury after noncardiac surgery (MINS is a newly proposed concept that is common among adults undergoing noncardiac surgery and associated with substantial mortality. We analyzed whether MINS was a risk factor for weaning failure in critical patients who underwent major abdominal surgery.This retrospective study was conducted in the Department of Critical Care Medicine of Peking University People's Hospital. The subjects were all critically ill patients who underwent major abdominal surgery between January 2011 and December 2013. Clinical and laboratory parameters during the perioperative period were investigated. Backward stepwise regression analysis was performed to evaluate MINS relative to the rate of weaning failure. Age, hypertension, chronic renal disease, left ventricular ejection fraction before surgery, Acute Physiologic and Chronic Health Evaluation II score, pleural effusion, pneumonia, acute kidney injury, duration of mechanical ventilation before weaning and the level of albumin after surgery were treated as independent variables.This study included 381 patients, of whom 274 were successfully weaned. MINS was observed in 42.0% of the patients. The MINS incidence was significantly higher in patients who failed to be weaned compared to patients who were successfully weaned (56.1% versus 36.5%; P<0.001. Independent predictive factors of weaning failure were MINS, age, lower left ventricular ejection fraction before surgery and lower serum albumin level after surgery. The MINS odds ratio was 4.098 (95% confidence interval, 1.07 to 15.6; P = 0.04. The patients who were successfully weaned had shorter hospital stay lengths and a higher survival rate than those who failed to be weaned.MINS is a risk factor for weaning failure from mechanical ventilation in critical patients who have undergone major abdominal surgery, independent of age, lower left ventricular ejection fraction before surgery and lower serum albumin levels after

  13. The Immune Response and the Pathogenesis of Idiopathic Inflammatory Myositis: a Critical Review.

    Science.gov (United States)

    Ceribelli, Angela; De Santis, Maria; Isailovic, Natasa; Gershwin, M Eric; Selmi, Carlo

    2017-02-01

    The pathogenesis of idiopathic inflammatory myositis (IIMs, including polymyositis and dermatomyositis) remains largely enigmatic, despite advances in the study of the role played by innate immunity, adaptive immunity, genetic predisposition, and environmental factors in an orchestrated response. Several factors are involved in the inflammatory state that characterizes the different forms of IIMs which share features and mechanisms but are clearly different with respect to the involved sites and characteristics of the inflammation. Cellular and non-cellular mechanisms of both the immune and non-immune systems have been identified as key regulators of inflammation in polymyositis/dermatomyositis, particularly at different stages of disease, leading to the fibrotic state that characterizes the end stage. Among these, a special role is played by an interferon signature and complement cascade with different mechanisms in polymyositis and dermatomyositis; these differences can be identified also histologically in muscle biopsies. Numerous cellular components of the adaptive and innate immune response are present in the site of tissue inflammation, and the complexity of idiopathic inflammatory myositis is further supported by the involvement of non-immune mechanisms such as hypoxia and autophagy. The aim of this comprehensive review is to describe the major pathogenic mechanisms involved in the onset of idiopathic inflammatory myositis and to report on the major working hypothesis with therapeutic implications.

  14. A biphasic endothelial stress-survival mechanism regulates the cellular response to vascular endothelial growth factor A

    International Nuclear Information System (INIS)

    Latham, Antony M.; Odell, Adam F.; Mughal, Nadeem A.; Issitt, Theo; Ulyatt, Clare; Walker, John H.; Homer-Vanniasinkam, Shervanthi; Ponnambalam, Sreenivasan

    2012-01-01

    Vascular endothelial growth factor A (VEGF-A) is an essential cytokine that regulates endothelial function and angiogenesis. VEGF-A binding to endothelial receptor tyrosine kinases such as VEGFR1 and VEGFR2 triggers cellular responses including survival, proliferation and new blood vessel sprouting. Increased levels of a soluble VEGFR1 splice variant (sFlt-1) correlate with endothelial dysfunction in pathologies such as pre-eclampsia; however the cellular mechanism(s) underlying the regulation and function of sFlt-1 are unclear. Here, we demonstrate the existence of a biphasic stress response in endothelial cells, using serum deprivation as a model of endothelial dysfunction. The early phase is characterized by a high VEGFR2:sFlt-1 ratio, which is reversed in the late phase. A functional consequence is a short-term increase in VEGF-A-stimulated intracellular signaling. In the late phase, sFlt-1 is secreted and deposited at the extracellular matrix. We hypothesized that under stress, increased endothelial sFlt-1 levels reduce VEGF-A bioavailability: VEGF-A treatment induces sFlt-1 expression at the cell surface and VEGF-A silencing inhibits sFlt-1 anchorage to the extracellular matrix. Treatment with recombinant sFlt-1 inhibits VEGF-A-stimulated in vitro angiogenesis and sFlt-1 silencing enhances this process. In this response, increased VEGFR2 levels are regulated by the phosphatidylinositol-3-kinase and PKB/Akt signaling pathways and increased sFlt-1 levels by the ERK1/2 signaling pathway. We conclude that during serum withdrawal, cellular sensing of environmental stress modulates sFlt-1 and VEGFR2 levels, regulating VEGF-A bioavailability and ensuring cell survival takes precedence over cell proliferation and migration. These findings may underpin an important mechanism contributing to endothelial dysfunction in pathological states. -- Highlights: ► Endothelial cells mount a stress response under conditions of low serum. ► Endothelial VEGFR levels are

  15. Jatropha curcasand Ricinus communisdisplay contrasting photosynthetic mechanisms in response to environmental conditions

    Directory of Open Access Journals (Sweden)

    Milton Costa Lima Neto

    2015-06-01

    Full Text Available Higher plants display different adaptive strategies in photosynthesis to cope with abiotic stress. In this study, photosynthetic mechanisms and water relationships displayed byJatropha curcasL. (physic nuts andRicinus communisL. (castor bean, in response to variations in environmental conditions, were assessed.R. communis showed higher CO2 assimilation, stomatal and mesophyll conductance thanJ. curcas as light intensity and intercellular CO2 pressure increased. On the other hand,R. communis was less effective in stomatal control in response to adverse environmental factors such as high temperature, water deficit and vapor pressure deficit, indicating lower water use efficiency. Conversely,J. curcas exhibited higher photosynthetic efficiency (gas exchange and photochemistry and water use efficiency under these adverse environmental conditions.R. communisdisplayed higher potential photosynthesis, but exhibited a lowerin vivo Rubisco carboxylation rate (Vcmax and maximum electron transport rate (Jmax. During the course of a typical day, in a semiarid environment, with high irradiation, high temperature and high vapor pressure deficit, but exposed to well-watered conditions, the two studied species presented similar photosynthesis. Losing potential photosynthesis, but maintaining favorable water status and increasing non-photochemical quenching to avoid photoinhibition, are important acclimation mechanisms developed byJ. curcas to cope with dry and hot conditions. We suggest thatJ. curcas is more tolerant to hot and dry environments thanR. communis but the latter species displays higher photosynthetic efficiency under well-watered and non-stressful conditions.

  16. Manifestation of Particle Morphology on the Mechanical Response of a Granular Ensemble

    Science.gov (United States)

    Murthy, Tejas; Kandasami, Ramesh

    We present the effect of particle morphology (grain shape) on the mechanical response of granular materials at an ensemble level. We chose two model systems with extreme differences in morphology, i.e. spherical glass ballotini and angular sand in our experimental programme. We conducted a series of continuum elemental tests under these model materials reconstituted to the same packing. We arrive at the failure locus on the octahedral plane experimentally for these two systems. The ballotini shows increased dilation at the outset of the test, however, at large strains, the particle rearrangement in the angular sand and the increased interlocking leads to higher strength. The effect of individual particle morphology is manifested in both the increased friction angle and a larger sized failure locus in stress space with increase in angularity. The stresses developed in these two model materials are also accompanied by intriguing volume change behaviour. The glass ballotini despite a lower strength presents a predominantly dilative response while the angular sand shows showing a contractive response. Such an ensemble manifestation of individual particle morphology is useful in interpreting the extensive DEM simulations that are available in literature.

  17. Theory of the mechanical response of focal adhesions to shear flow

    International Nuclear Information System (INIS)

    Biton, Y Y; Safran, S A

    2010-01-01

    The response of cells to shear flow is primarily determined by the asymmetry of the external forces and moments that are sensed by each member of a focal adhesion pair connected by a contractile stress fiber. In the theory presented here, we suggest a physical model in which each member of such a pair of focal adhesions is treated as an elastic body subject to both a myosin-activated contractile force and the shear stress induced by the external flow. The elastic response of a focal adhesion complex is much faster than the active cellular processes that determine the size of the associated focal adhesions and the direction of the complex relative to the imposed flow. Therefore, the complex attains its mechanical equilibrium configuration which may change because of the cellular activity. Our theory is based on the experimental observation that focal adhesions modulate their cross-sectional area in order to attain an optimal shear. Using this assumption, our elastic model shows that such a complex can passively change its orientation to align parallel to the direction of the flow.

  18. Genetic and epigenetic control of plant heat responses

    Directory of Open Access Journals (Sweden)

    Junzhong eLiu

    2015-04-01

    Full Text Available Plants have evolved sophisticated genetic and epigenetic regulatory systems to respond quickly to unfavorable environmental conditions such as heat, cold, drought, and pathogen infections. In particular, heat greatly affects plant growth and development, immunity and circadian rhythm, and poses a serious threat to the global food supply. According to temperatures exposing, heat can be usually classified as warm ambient temperature (about 22-27℃, high temperature (27-30℃ and extremely high temperature (37-42℃, also known as heat stress for the model plant Arabidopsis thaliana. The genetic mechanisms of plant responses to heat have been well studied, mainly focusing on elevated ambient temperature-mediated morphological acclimation and acceleration of flowering, modulation of plant immunity and circadian clock by high temperatures, and thermotolerance to heat stress. Recently, great progress has been achieved on epigenetic regulation of heat responses, including DNA methylation, histone modifications, histone variants, ATP-dependent chromatin remodeling, histone chaperones, small RNAs, long non-coding RNAs and other undefined epigenetic mechanisms. These epigenetic modifications regulate the expression of heat-responsive genes and function to prevent heat-related damage. This review focuses on recent progresses regarding the genetic and epigenetic control of heat responses in plants, and pays more attention to the role of the major epigenetic mechanisms in plant heat responses. Further research perspectives are also discussed.

  19. A machine learning approach using EEG data to predict response to SSRI treatment for major depressive disorder.

    Science.gov (United States)

    Khodayari-Rostamabad, Ahmad; Reilly, James P; Hasey, Gary M; de Bruin, Hubert; Maccrimmon, Duncan J

    2013-10-01

    The problem of identifying, in advance, the most effective treatment agent for various psychiatric conditions remains an elusive goal. To address this challenge, we investigate the performance of the proposed machine learning (ML) methodology (based on the pre-treatment electroencephalogram (EEG)) for prediction of response to treatment with a selective serotonin reuptake inhibitor (SSRI) medication in subjects suffering from major depressive disorder (MDD). A relatively small number of most discriminating features are selected from a large group of candidate features extracted from the subject's pre-treatment EEG, using a machine learning procedure for feature selection. The selected features are fed into a classifier, which was realized as a mixture of factor analysis (MFA) model, whose output is the predicted response in the form of a likelihood value. This likelihood indicates the extent to which the subject belongs to the responder vs. non-responder classes. The overall method was evaluated using a "leave-n-out" randomized permutation cross-validation procedure. A list of discriminating EEG biomarkers (features) was found. The specificity of the proposed method is 80.9% while sensitivity is 94.9%, for an overall prediction accuracy of 87.9%. There is a 98.76% confidence that the estimated prediction rate is within the interval [75%, 100%]. These results indicate that the proposed ML method holds considerable promise in predicting the efficacy of SSRI antidepressant therapy for MDD, based on a simple and cost-effective pre-treatment EEG. The proposed approach offers the potential to improve the treatment of major depression and to reduce health care costs. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. The neural mechanisms of semantic and response conflicts: an fMRI study of practice-related effects in the Stroop task.

    Science.gov (United States)

    Chen, Zhencai; Lei, Xu; Ding, Cody; Li, Hong; Chen, Antao

    2013-02-01

    Previous studies have demonstrated that there are separate neural mechanisms underlying semantic and response conflicts in the Stroop task. However, the practice effects of these conflicts need to be elucidated and the possible involvements of common neural mechanisms are yet to be established. We employed functional magnetic resonance imaging (fMRI) in a 4-2 mapping practice-related Stroop task to determine the neural substrates under these conflicts. Results showed that different patterns of brain activations are associated with practice in the attentional networks (e.g., dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), and posterior parietal cortex (PPC)) for both conflicts, response control regions (e.g., inferior frontal junction (IFJ), inferior frontal gyrus (IFG)/insula, and pre-supplementary motor areas (pre-SMA)) for semantic conflict, and posterior cortex for response conflict. We also found areas of common activation in the left hemisphere within the attentional networks, for the early practice stage in semantic conflict and the late stage in "pure" response conflict using conjunction analysis. The different practice effects indicate that there are distinct mechanisms underlying these two conflict types: semantic conflict practice effects are attributable to the automation of stimulus processing, conflict and response control; response conflict practice effects are attributable to the proportional increase of conflict-related cognitive resources. In addition, the areas of common activation suggest that the semantic conflict effect may contain a partial response conflict effect, particularly at the beginning of the task. These findings indicate that there are two kinds of response conflicts contained in the key-pressing Stroop task: the vocal-level (mainly in the early stage) and key-pressing (mainly in the late stage) response conflicts; thus, the use of the subtraction method for the exploration of semantic and response conflicts

  1. USNCTAM perspectives on mechanics in medicine.

    Science.gov (United States)

    Bao, Gang; Bazilevs, Yuri; Chung, Jae-Hyun; Decuzzi, Paolo; Espinosa, Horacio D; Ferrari, Mauro; Gao, Huajian; Hossain, Shaolie S; Hughes, Thomas J R; Kamm, Roger D; Liu, Wing Kam; Marsden, Alison; Schrefler, Bernhard

    2014-08-06

    Over decades, the theoretical and applied mechanics community has developed sophisticated approaches for analysing the behaviour of complex engineering systems. Most of these approaches have targeted systems in the transportation, materials, defence and energy industries. Applying and further developing engineering approaches for understanding, predicting and modulating the response of complicated biomedical processes not only holds great promise in meeting societal needs, but also poses serious challenges. This report, prepared for the US National Committee on Theoretical and Applied Mechanics, aims to identify the most pressing challenges in biological sciences and medicine that can be tackled within the broad field of mechanics. This echoes and complements a number of national and international initiatives aiming at fostering interdisciplinary biomedical research. This report also comments on cultural/educational challenges. Specifically, this report focuses on three major thrusts in which we believe mechanics has and will continue to have a substantial impact. (i) Rationally engineering injectable nano/microdevices for imaging and therapy of disease. Within this context, we discuss nanoparticle carrier design, vascular transport and adhesion, endocytosis and tumour growth in response to therapy, as well as uncertainty quantification techniques to better connect models and experiments. (ii) Design of biomedical devices, including point-of-care diagnostic systems, model organ and multi-organ microdevices, and pulsatile ventricular assistant devices. (iii) Mechanics of cellular processes, including mechanosensing and mechanotransduction, improved characterization of cellular constitutive behaviour, and microfluidic systems for single-cell studies. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  2. Antioxidant responses and cellular adjustments to oxidative stress.

    Science.gov (United States)

    Espinosa-Diez, Cristina; Miguel, Verónica; Mennerich, Daniela; Kietzmann, Thomas; Sánchez-Pérez, Patricia; Cadenas, Susana; Lamas, Santiago

    2015-12-01

    Redox biological reactions are now accepted to bear the Janus faceted feature of promoting both physiological signaling responses and pathophysiological cues. Endogenous antioxidant molecules participate in both scenarios. This review focuses on the role of crucial cellular nucleophiles, such as glutathione, and their capacity to interact with oxidants and to establish networks with other critical enzymes such as peroxiredoxins. We discuss the importance of the Nrf2-Keap1 pathway as an example of a transcriptional antioxidant response and we summarize transcriptional routes related to redox activation. As examples of pathophysiological cellular and tissular settings where antioxidant responses are major players we highlight endoplasmic reticulum stress and ischemia reperfusion. Topologically confined redox-mediated post-translational modifications of thiols are considered important molecular mechanisms mediating many antioxidant responses, whereas redox-sensitive microRNAs have emerged as key players in the posttranscriptional regulation of redox-mediated gene expression. Understanding such mechanisms may provide the basis for antioxidant-based therapeutic interventions in redox-related diseases. Copyright © 2015. Published by Elsevier B.V.

  3. Stress response and communication in surgeons undergoing training in endoscopic management of major vessel hemorrhage: a mixed methods study.

    Science.gov (United States)

    Jukes, Alistair K; Mascarenhas, Annika; Murphy, Jae; Stepan, Lia; Muñoz, Tamara N; Callejas, Claudio A; Valentine, Rowan; Wormald, P J; Psaltis, Alkis J

    2017-06-01

    Major vessel hemorrhage in endoscopic, endonasal skull-base surgery is a rare but potentially fatal event. Surgical simulation models have been developed to train surgeons in the techniques required to manage this complication. This mixed-methods study aims to quantify the stress responses the model induces, determine how realistic the experience is, and how it changes the confidence levels of surgeons in their ability to deal with major vascular injury in an endoscopic setting. Forty consultant surgeons and surgeons in training underwent training on an endoscopic sheep model of jugular vein and carotid artery injury. Pre-course and post-course questionnaires providing demographics, experience level, confidence, and realism scores were taken, based on a 5-point Likert scale. Objective markers of stress response including blood pressure, heart rate, and salivary alpha-amylase levels were measured. Mean "realism" score assessed posttraining showed the model to be perceived as highly realistic by the participants (score 4.02). Difference in participant self-rated pre-course and post-course confidence levels was significant (p confidence level 1.66 (95% confidence interval [CI], 1.43 to 1.90); mean post-course confidence level 3.42 (95% CI, 3.19 to 3.65). Differences in subjects' heart rates (HRs) and mean arterial blood pressures (MAPs) were significant between injury models (p = 0.0008, p = 0.0387, respectively). No statistically significant difference in salivary alpha-amylase levels pretraining and posttraining was observed. Results from this study indicate that this highly realistic simulation model provides surgeons with an increased level of confidence in their ability to deal with the rare but potentially catastrophic event of major vessel injury in endoscopic skull-base surgery. © 2017 ARS-AAOA, LLC.

  4. Vaccine and Wild-Type Strains of Yellow Fever Virus Engage Distinct Entry Mechanisms and Differentially Stimulate Antiviral Immune Responses.

    Science.gov (United States)

    Fernandez-Garcia, Maria Dolores; Meertens, Laurent; Chazal, Maxime; Hafirassou, Mohamed Lamine; Dejarnac, Ophélie; Zamborlini, Alessia; Despres, Philippe; Sauvonnet, Nathalie; Arenzana-Seisdedos, Fernando; Jouvenet, Nolwenn; Amara, Ali

    2016-02-09

    The live attenuated yellow fever virus (YFV) vaccine 17D stands as a "gold standard" for a successful vaccine. 17D was developed empirically by passaging the wild-type Asibi strain in mouse and chicken embryo tissues. Despite its immense success, the molecular determinants for virulence attenuation and immunogenicity of the 17D vaccine are poorly understood. 17D evolved several mutations in its genome, most of which lie within the envelope (E) protein. Given the major role played by the YFV E protein during virus entry, it has been hypothesized that the residues that diverge between the Asibi and 17D E proteins may be key determinants of attenuation. In this study, we define the process of YFV entry into target cells and investigate its implication in the activation of the antiviral cytokine response. We found that Asibi infects host cells exclusively via the classical clathrin-mediated endocytosis, while 17D exploits a clathrin-independent pathway for infectious entry. We demonstrate that the mutations in the 17D E protein acquired during the attenuation process are sufficient to explain the differential entry of Asibi versus 17D. Interestingly, we show that 17D binds to and infects host cells more efficiently than Asibi, which culminates in increased delivery of viral RNA into the cytosol and robust activation of the cytokine-mediated antiviral response. Overall, our study reveals that 17D vaccine and Asibi enter target cells through distinct mechanisms and highlights a link between 17D attenuation, virus entry, and immune activation. The yellow fever virus (YFV) vaccine 17D is one of the safest and most effective live virus vaccines ever developed. The molecular determinants for virulence attenuation and immunogenicity of 17D are poorly understood. 17D was generated by serially passaging the virulent Asibi strain in vertebrate tissues. Here we examined the entry mechanisms engaged by YFV Asibi and the 17D vaccine. We found the two viruses use different entry

  5. Mechanism of oral tolerance induction to therapeutic proteins.

    Science.gov (United States)

    Wang, Xiaomei; Sherman, Alexandra; Liao, Gongxian; Leong, Kam W; Daniell, Henry; Terhorst, Cox; Herzog, Roland W

    2013-06-15

    Oral tolerance is defined as the specific suppression of humoral and/or cellular immune responses to an antigen by administration of the same antigen through the oral route. Due to its absence of toxicity, easy administration, and antigen specificity, oral tolerance is a very attractive approach to prevent unwanted immune responses that cause a variety of diseases or that complicate treatment of a disease. Many researchers have induced oral tolerance to efficiently treat autoimmune and inflammatory diseases in different animal models. However, clinical trials yielded limited success. Thus, understanding the mechanisms of oral tolerance induction to therapeutic proteins is critical for paving the way for clinical development of oral tolerance protocols. This review will summarize progress on understanding the major underlying tolerance mechanisms and contributors, including antigen presenting cells, regulatory T cells, cytokines, and signaling pathways. Potential applications, examples for therapeutic proteins and disease targets, and recent developments in delivery methods are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Neurophysiological mechanisms underlying sex- and maturation-related variation in pheromone responses in honey bees (Apis mellifera).

    Science.gov (United States)

    Villar, Gabriel; Baker, Thomas C; Patch, Harland M; Grozinger, Christina M

    2015-07-01

    In the honey bee (Apis mellifera), social organization is primarily mediated by pheromones. Queen-produced 9-oxo-2-decenoic acid (9-ODA) functions as both a social and sex pheromone, eliciting attraction in both female workers and male drones, but also affecting other critical aspects of worker physiology and behavior. These effects are also maturation related, as younger workers and sexually mature drones are most receptive to 9-ODA. While changes in the peripheral nervous system drive sex-related differences in sensitivity to 9-ODA, the mechanisms driving maturation-related shifts in receptivity to 9-ODA remain unknown. Here, we investigate the hypothesis that changes at the peripheral nervous system may be mediating plastic responses to 9-ODA by characterizing expression levels of AmOR11 (the olfactory receptor tuned to 9-ODA) and electrophysiological responses to 9-ODA. We find that receptor expression correlates significantly with behavioral receptivity to 9-ODA, with nurses and sexually mature drones exhibiting higher levels of expression than foragers and immature drones, respectively. Electrophysiological responses to 9-ODA were not found to correlate with behavioral receptivity or receptor expression, however. Thus, while receptor expression at the periphery exhibits a level of plasticity that correlates with behavior, the mechanisms driving maturation-dependent responsiveness to 9-ODA appear to function primarily in the central nervous system.

  7. Mechanisms underlying electrical and mechanical responses of the bovine retractor penis to inhibitory nerve stimulation and to an inhibitory extract.

    Science.gov (United States)

    Byrne, N. G.; Muir, T. C.

    1985-01-01

    The response of the bovine retractor penis (BRP) to stimulation of non-adrenergic, non-cholinergic (NANC) inhibitory nerves and to an inhibitory extract prepared from this muscle have been studied using intracellular microelectrode, sucrose gap and conventional mechanical recording techniques. Both inhibitory nerve stimulation and inhibitory extract hyperpolarized the membrane potential and relaxed spontaneous or guanethidine (3 X 10(-5) M)-induced tone. These effects were accompanied by an increase in membrane resistance. Following membrane potential displacement from an average value of -53 +/- 7 mV (n = 184; Byrne & Muir, 1984) inhibitory potentials to nerve stimulation were abolished at approximately -30 mV; there was no evidence of reversal. Displacement by inward hyperpolarizing current over the range -45 to -60 mV increased the inhibitory response to nerve stimulation and to inhibitory extract; at more negative potential values (above approximately -60 mV) the inhibitory potential decreased and was abolished (approximately -103 mV). There was no evidence of reversal. Removal of [K+]o reversibly reduced hyperpolarization to nerve stimulation and inhibitory extract. No enhancement was observed. Increasing the [K+]o to 20 mM reduced the inhibitory potential to nerve stimulation but this was restored by passive membrane hyperpolarization. Inhibitory potentials were obtained at membrane potential values exceeding that of the estimated EK (-49 mV). [Cl-]o-free or [Cl-]o-deficient solutions reduced and abolished (after some 20-25 min) the hyperpolarization produced by inhibitory nerve stimulation or inhibitory extract. The inhibitory potential amplitude following nerve stimulation was not restored by passive displacement of the membrane potential from -26 to -104 mV approximately. Ouabain (1-5 X 10(-5) M) reduced then (45-60 min later) abolished the inhibitory potential to nerve stimulation. The effects of this drug on the extract were not investigated. It is

  8. The effect of grain size on the mechanical response of a metastable austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Sinclair C.W.

    2013-11-01

    Full Text Available The combination of high environmental resistance and excellent strength, elongation and energy absorption make austenitic stainless steels potentially attractive for transportation applications. In the case of metastable grades that undergo a strain induced martensitic transformation it is possible to significantly change the mechanical properties simply by changing the austenite grain size. Predicting such behaviour using physically based models is, however, extremely challenging. Here, some recent work on the coupling between grain size and mechanical response will be presented for a metastable AISI 301 LN stainless steel. Successes and continuing challenges will be highlighted.

  9. Investigation of the energy transport mechanism in the TCA tokamak by studying the plasma dynamical response

    International Nuclear Information System (INIS)

    Dudok de Wit, Th.; Duval, B.P.; Joye, B.; Lister, J.B.; Moret, J.M.

    1989-01-01

    The energy transport mechanisms that govern the electron temperature behaviour of a tokamak remain very badly understood and up to now no proper model has been proposed that can explain experimental observations such as profile consistency or the influence of the density profile. One approach to this problem, extensively used on TCA, is to study the dynamical response of the plasma due to externally imposed modifications of parameters which have an influence on the plasma energy content. The temporal evolution of the electron temperature will closely depend on the type and the characteristics of the implied mechanisms. Thus a detailed measurement of the dynamical response would reveal experimentally the dominant properties that would have to be taken into account in the elaboration of a model of the transport processes. Most of the results presented here were obtained by analysing the electron temperature response inferred from soft X-ray emissivity during modification of the plasma density due to either gas puffing, laser impurity ablation or alfven wave heating on TCA (a = 0.18 m, R = 0.61 m, B Φ = 1.52 T). 4 refs., 3 figs

  10. Fatigue response of a PZT multilayer actuator under high-field electric cycling with mechanical preload

    Science.gov (United States)

    Wang, Hong; Wereszczak, Andrew A.; Lin, Hua-Tay

    2009-01-01

    An electric fatigue test system was developed for evaluating the reliability of piezoelectric actuators with a mechanical loading capability. Fatigue responses of a lead zirconate titanate (PZT) multilayer actuator with a platethrough electrode configuration were studied under an electric field (1.7 times that of the coercive field of PZT material) and a concurrent mechanical preload (30.0 MPa). A total of 109 cycles was carried out. Variations in charge density and mechanical strain under the high electric field and constant mechanical loads were observed during the fatigue test. The dc and the first harmonic (at 10 Hz) dielectric and piezoelectric coefficients were subsequently characterized using fast Fourier transformation. Both the dielectric and the piezoelectric coefficients exhibited a monotonic decrease prior to 2.86×108 cycles under certain preloading conditions, and then fluctuated. Both the dielectric loss tangent and the piezoelectric loss tangent also fluctuated after a decrease. The results are interpreted and discussed with respect to domain wall activities, microdefects, and other anomalies.

  11. Continuum mechanics

    CERN Document Server

    Spencer, A J M

    2004-01-01

    The mechanics of fluids and the mechanics of solids represent the two major areas of physics and applied mathematics that meet in continuum mechanics, a field that forms the foundation of civil and mechanical engineering. This unified approach to the teaching of fluid and solid mechanics focuses on the general mechanical principles that apply to all materials. Students who have familiarized themselves with the basic principles can go on to specialize in any of the different branches of continuum mechanics. This text opens with introductory chapters on matrix algebra, vectors and Cartesian ten

  12. Mechanical stress induces neuroendocrine and immune responses of sea cucumber ( Apostichopus japonicus)

    Science.gov (United States)

    Tan, Jie; Li, Fenghui; Sun, Huiling; Gao, Fei; Yan, Jingping; Gai, Chunlei; Chen, Aihua; Wang, Qingyin

    2015-04-01

    Grading procedure in routine sea cucumber hatchery production is thought to affect juvenile sea cucumber immunological response. The present study investigated the impact of a 3-min mechanical perturbation mimicking the grading procedure on neuroendocrine and immune parameters of the sea cucumber Apostichopus japonicus. During the application of stress, concentrations of noradrenaline and dopamine in coelomic fluid increased significantly, indicating that the mechanical perturbation resulted in a transient state of stress in sea cucumbers. Coelomocytes concentration in coelomic fluid increased transiently after the beginning of stressing, and reached the maximum in 1 h. Whereas, coelomocytes phagocytosis at 3 min, superoxide anion production from 3 min to 0.5 h, acid phosphatase activity at 0.5 h, and phenoloxidase activity from 3 min to 0.5 h were all significantly down-regulated. All of the immune parameters recovered to baseline levels after the experiment was conducted for 8 h, and an immunostimulation occurred after the stress considering the phagocytosis and acid phosphatase activity. The results suggested that, as in other marine invertebrates, neuroendocrine/immune connections exist in sea cucumber A. japonicus. Mechanical stress can elicit a profound influence on sea cucumber neuroendocrine system. Neuroendocrine messengers act in turn to modulate the immunity functions. Therefore, these effects should be considered for developing better husbandry procedures.

  13. Mechanisms governing the health and performance benefits of exercise

    Science.gov (United States)

    Bishop-Bailey, D

    2013-01-01

    Humans are considered among the greatest if not the greatest endurance land animals. Over the last 50 years, as the population has become more sedentary, rates of cardiovascular disease and its associated risk factors such as obesity, type 2 diabetes and hypertension have all increased. Aerobic fitness is considered protective for all-cause mortality, cardiovascular disease, a variety of cancers, joint disease and depression. Here, I will review the emerging mechanisms that underlie the response to exercise, focusing on the major target organ the skeletal muscle system. Understanding the mechanisms of action of exercise will allow us to develop new therapies that mimic the protective actions of exercise. PMID:24033098

  14. Cervicovaginal bacteria are a major modulator of host inflammatory responses in the female genital tract.

    Science.gov (United States)

    Anahtar, Melis N; Byrne, Elizabeth H; Doherty, Kathleen E; Bowman, Brittany A; Yamamoto, Hidemi S; Soumillon, Magali; Padavattan, Nikita; Ismail, Nasreen; Moodley, Amber; Sabatini, Mary E; Ghebremichael, Musie S; Nusbaum, Chad; Huttenhower, Curtis; Virgin, Herbert W; Ndung'u, Thumbi; Dong, Krista L; Walker, Bruce D; Fichorova, Raina N; Kwon, Douglas S

    2015-05-19

    Colonization by Lactobacillus in the female genital tract is thought to be critical for maintaining genital health. However, little is known about how genital microbiota influence host immune function and modulate disease susceptibility. We studied a cohort of asymptomatic young South African women and found that the majority of participants had genital communities with low Lactobacillus abundance and high ecological diversity. High-diversity communities strongly correlated with genital pro-inflammatory cytokine concentrations in both cross-sectional and longitudinal analyses. Transcriptional profiling suggested that genital antigen-presenting cells sense gram-negative bacterial products in situ via Toll-like receptor 4 signaling, contributing to genital inflammation through activation of the NF-κB signaling pathway and recruitment of lymphocytes by chemokine production. Our study proposes a mechanism by which cervicovaginal microbiota impact genital inflammation and thereby might affect a woman's reproductive health, including her risk of acquiring HIV. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Stress responsive miR-31 is a major modulator of mouse intestinal stem cells during regeneration and tumorigenesis.

    Science.gov (United States)

    Tian, Yuhua; Ma, Xianghui; Lv, Cong; Sheng, Xiaole; Li, Xiang; Zhao, Ran; Song, Yongli; Andl, Thomas; Plikus, Maksim V; Sun, Jinyue; Ren, Fazheng; Shuai, Jianwei; Lengner, Christopher J; Cui, Wei; Yu, Zhengquan

    2017-09-05

    Intestinal regeneration and tumorigenesis are believed to be driven by intestinal stem cells (ISCs). Elucidating mechanisms underlying ISC activation during regeneration and tumorigenesis can help uncover the underlying principles of intestinal homeostasis and disease including colorectal cancer. Here we show that miR-31 drives ISC proliferation, and protects ISCs against apoptosis, both during homeostasis and regeneration in response to ionizing radiation injury. Furthermore, miR-31 has oncogenic properties, promoting intestinal tumorigenesis. Mechanistically, miR-31 acts to balance input from Wnt, BMP, TGFβ signals to coordinate control of intestinal homeostasis, regeneration and tumorigenesis. We further find that miR-31 is regulated by the STAT3 signaling pathway in response to radiation injury. These findings identify miR-31 as a critical modulator of ISC biology, and a potential therapeutic target for a broad range of intestinal regenerative disorders and cancers.

  16. Prediction of transient mechanical response of type 316 stainless steel cladding using an equation-of-state approach

    International Nuclear Information System (INIS)

    Wire, G.L.; Cannon, N.S.; Johnson, G.D.

    1979-01-01

    Correlation of short-term mechanical properties of breeder reactor core component materials play an important role in design and safety analysis. A description of the short-term high strain-rate flow properties for 20% CW 316 SS was developed using a mechanical equation-of-state approach developed by Hart. The stress strain-rate relationship was developed from tensile yield strength data over the temperature range 427-871 0 C. The description, developed for constant structure or hardness, was then combined with simplified work hardening and recovery models to predict response of unirradiated 20% CW 316 SS over loading paths important to breeder reactor cladding. The advantage of the method is that it provides a description of mechanical response under a wide range of loading conditions, yet the formulation is simple in form with a single structure parameter used to describe material structure changes. The method is also shown to be applicable to neutron irradiated 316 SS. This implies that while neutron irradiation can change the hardness and ductility of 316 SS, the basic flow law is unchanged by irradiation. (Auth.)

  17. System size effects on the mechanical response of cohesive-frictional granular ensembles

    Directory of Open Access Journals (Sweden)

    Singh Saurabh

    2017-01-01

    Full Text Available Shear resistance in granular ensembles is a result of interparticle interaction and friction. However, even the presence of small amounts of cohesion between the particles changes the landscape of the mechanical response considerably. Very often such cohesive frictional (c-ϕ granular ensembles are encountered in nature as well as while handling and storage of granular materials in the pharmaceutical, construction and mining industries. Modeling of these c-ϕ materials, especially in engineering applications have relied on the oft-made assumption of a “continua” and have utilized the popular tenets of continuum plasticity theory. We present an experimental investigation on the fundamental mechanics of c-ϕ materials specifically; we investigate if there exists a system size effect and any additional length scales beyond the continuum length scale on their mechanical response. For this purpose, we conduct a series of 1-D compression (UC tests on cylindrical specimens reconstituted in the laboratory with a range of model particle–binder combinations such as sandcement, sand-epoxy, and glass ballotini-epoxy mixtures. Specimens are reconstituted to various diameters ranging from 10 mm to 150 mm (with an aspect ratio of 2 to a predefined packing fraction. In addition to the effect of the type of binder (cement, epoxy and system size, the mean particle size is also varied from 0.5 to 2.5 mm. The peak strength of these materials is significant as it signals the initiation of the cohesive-bond breaking and onset of mobilization of the inter particle frictional resistance. For these model systems, the peak strength is a strong function of the system size of the ensemble as well as the mean particle size. This intriguing observation is counter to the traditional notion of a continuum plastic typical granular ensemble. Microstructure studies in a computed-tomograph have revealed the existence of a web patterned ‘entangled-chain’ like structure

  18. System size effects on the mechanical response of cohesive-frictional granular ensembles

    Science.gov (United States)

    Singh, Saurabh; Kandasami, Ramesh Kannan; Mahendran, Rupesh Kumar; Murthy, Tejas

    2017-06-01

    Shear resistance in granular ensembles is a result of interparticle interaction and friction. However, even the presence of small amounts of cohesion between the particles changes the landscape of the mechanical response considerably. Very often such cohesive frictional (c-ϕ) granular ensembles are encountered in nature as well as while handling and storage of granular materials in the pharmaceutical, construction and mining industries. Modeling of these c-ϕ materials, especially in engineering applications have relied on the oft-made assumption of a "continua" and have utilized the popular tenets of continuum plasticity theory. We present an experimental investigation on the fundamental mechanics of c-ϕ materials specifically; we investigate if there exists a system size effect and any additional length scales beyond the continuum length scale on their mechanical response. For this purpose, we conduct a series of 1-D compression (UC) tests on cylindrical specimens reconstituted in the laboratory with a range of model particle-binder combinations such as sandcement, sand-epoxy, and glass ballotini-epoxy mixtures. Specimens are reconstituted to various diameters ranging from 10 mm to 150 mm (with an aspect ratio of 2) to a predefined packing fraction. In addition to the effect of the type of binder (cement, epoxy) and system size, the mean particle size is also varied from 0.5 to 2.5 mm. The peak strength of these materials is significant as it signals the initiation of the cohesive-bond breaking and onset of mobilization of the inter particle frictional resistance. For these model systems, the peak strength is a strong function of the system size of the ensemble as well as the mean particle size. This intriguing observation is counter to the traditional notion of a continuum plastic typical granular ensemble. Microstructure studies in a computed-tomograph have revealed the existence of a web patterned `entangled-chain' like structure, we argue that this ushers

  19. The ICET-A Recommendations for the Diagnosis and Management of Disturbances of Glucose Homeostasis in Thalassemia Major Patients

    Science.gov (United States)

    De Sanctis, Vincenzo; Soliman, Ashraf T.; Elsedfy, Heba; Yaarubi, Saif AL; Skordis, Nicos; Khater, Doaa; El Kholy, Mohamed; Stoeva, Iva; Fiscina, Bernadette; Angastiniotis, Michael; Daar, Shahina; Kattamis, Christos

    2016-01-01

    Iron overload in patients with thalassemia major (TM) affects glucose regulation and is mediated by several mechanisms. The pathogenesis of glycaemic abnormalities in TM is complex and multifactorial. It has been predominantly attributed to a combination of reduced insulin secretory capacity and insulin resistance. The exact mechanisms responsible for progression from norm glycaemia to overt diabetes in these patients are still poorly understood but are attributed mainly to insulin deficiency resulting from the toxic effects of iron deposited in the pancreas and insulin resistance. A group of endocrinologists, haematologists and paediatricians, members of the International Network of Clinicians for Endocrinopathies in Thalassemia and Adolescence Medicine (ICET-A) convened to formulate recommendations for the diagnosis and management of abnormalities of glucose homeostasis in thalassemia major patients on the basis of available evidence from clinical and laboratory data and consensus practice. The results of their work and discussions are described in this article. PMID:27872738

  20. Prophylactic administration of an extract from Plantaginis Semen and its major component aucubin inhibits mechanical allodynia caused by paclitaxel in mice

    Directory of Open Access Journals (Sweden)

    Tsugunobu Andoh

    2016-07-01

    Full Text Available The chemotherapeutic agent paclitaxel (PTX causes peripheral neuropathy as a major dose-limiting side effect, and this peripheral neuropathy is difficult to control. Our previous report showed that prophylactic repetitive administration of goshajinkigan (牛車腎氣丸 niú chē shèn qì wán, but not hachimijiogan (八味地黃丸 bā wèi dì huáng wán, which lacks two of the constituents of goshajinkigan, inhibited PTX-induced mechanical allodynia in mice. Thus, the herbal medicines Plantaginis Semen (車前子 chē qián zǐ or Achyranthis Radix (牛膝 niú xī may contribute to the inhibitory action of goshajinkigan on the exacerbation of PTX-induced mechanical allodynia [Andoh et al, J. Tradit. Complement. Med. 2014; 4: 293–297]. Therefore, in this study, we examined whether an extract of Plantaginis Semen (EPS or Achyranthis Radix (EAR would relieve PTX-induced mechanical allodynia in mice. A single intraperitoneal injection of PTX caused mechanical allodynia, which peaked on day 14 after injection. Repetitive oral administration of EPS, but not EAR, starting from the day after PTX injection significantly inhibited the exacerbation of PTX-induced mechanical allodynia. Repetitive intraperitoneal injection of aucubin, one of the main components of EPS, starting from the day after PTX injection also significantly reduced PTX-induced mechanical allodynia. However, repetitive intraperitoneal injection of geniposide acid (a precursor of aucubin or catalpol (a metabolite of aucubin did not prevent the exacerbation of mechanical allodynia. These results suggest that prophylactic administration of EPS is effective for preventing the exacerbation of PTX-induced allodynia. Aucubin may contribute to the inhibitory action of EPS on the exacerbation of PTX-induced allodynia.

  1. Neural correlates of treatment outcome in major depression.

    LENUS (Irish Health Repository)

    Lisiecka, Danuta

    2012-02-01

    There is a need to identify clinically useful biomarkers in major depressive disorder (MDD). In this context the functional connectivity of the orbitofrontal cortex (OFC) to other areas of the affect regulation circuit is of interest. The aim of this study was to identify neural changes during antidepressant treatment and correlates associated with the treatment outcome. In an exploratory analysis it was investigated whether functional connectivity measures moderated a response to mirtazapine and venlafaxine. Twenty-three drug-free patients with MDD were recruited from the Department of Psychiatry and Psychotherapy of the Ludwig-Maximilians University in Munich. The patients were subjected to a 4-wk randomized clinical trial with two common antidepressants, venlafaxine or mirtazapine. Functional connectivity of the OFC, derived from functional magnetic resonance imaging with an emotional face-matching task, was measured before and after the trial. Higher OFC connectivity with the left motor areas and the OFC regions prior to the trial characterized responders (p<0.05, false discovery rate). The treatment non-responders were characterized by higher OFC-cerebellum connectivity. The strength of response was positively correlated with functional coupling between left OFC and the caudate nuclei and thalami. Differences in longitudinal changes were detected between venlafaxine and mirtazapine treatment in the motor areas, cerebellum, cingulate gyrus and angular gyrus. These results indicate that OFC functional connectivity might be useful as a marker for therapy response to mirtazapine and venlafaxine and to reconstruct the differences in their mechanism of action.

  2. Mechanism of Penicillium expansum in response to exogenous nitric oxide based on proteomics analysis.

    Science.gov (United States)

    Lai, Tongfei; Chen, Yong; Li, Boqiang; Qin, Guozheng; Tian, Shiping

    2014-05-30

    Penicillium expansum is an important fungal pathogen, which causes blue mold rot in various fruits and produces a mycotoxin (patulin) with potential damage to public health. Here, we found that nitric oxide (NO) donor could significantly inhibit germinability of P. expansum spores, resulting in lower virulence to apple fruit. Based on two dimension electrophoresis (2-DE) and mass spectrometry (MS) analysis, we identified ten differentially expressed proteins in response to exogenous NO in P. expansum. Among of them, five proteins, such as glutamine synthetase (GS), amidohydrolase, nitrilases, nitric oxide dioxygenase (NOD) and heat shock protein 70, were up-regulated. Others including tetratricopeptide repeat domain, UDP-N-acetylglucosamine pyrophosphorylase, enolase (Eno), heat shock protein 60 and K homology RNA-binding domain were down-regulated. The expression of three genes associated with the identified proteins (GS, NOD, and Eno) was evaluated at the mRNA level by RT-PCR. Our results provide the novel evidence for understanding the mechanism, by which NO regulates growth of P. expansum and its virulence. Crop diseases caused by fungal pathogens lead to huge economic losses every year in the world. Application of chemical fungicides to control diseases brings the concern about food and environmental safety. Screening new antimicrobial compounds and exploring involved mechanisms have great significance to development of new disease management strategies. Nitric oxide (NO), as an important intracellular signaling molecule, has been proved to be involved in many physiological processes and defense responses during plant-pathogen interactions. In this study, we firstly found that NO at high concentration could distinctly delay spore germination and significantly reduce virulence of P. expansum to fruit host, identified some important proteins in response to NO stress and characterized the functions of these proteins. These results provide novel evidence for

  3. Research on Formation Mechanism of Dynamic Response and Residual Stress of Sheet Metal Induced by Laser Shock Wave

    Science.gov (United States)

    Feng, Aixin; Cao, Yupeng; Wang, Heng; Zhang, Zhengang

    2018-01-01

    In order to reveal the quantitative control of the residual stress on the surface of metal materials, the relevant theoretical and experimental studies were carried out to investigate the dynamic response of metal thin plates and the formation mechanism of residual stress induced by laser shock wave. In this paper, the latest research trends on the surface residual stress of laser shock processing technology were elaborated. The main progress of laser shock wave propagation mechanism and dynamic response, laser shock, and surface residual stress were discussed. It is pointed out that the multi-scale characterization of laser and material, surface residual stress and microstructure change is a new hotspot in laser shock strengthening technology.

  4. Cu removal and response mechanisms of periphytic biofilms in a tubular bioreactor.

    Science.gov (United States)

    Ma, Lan; Wang, Fengwu; Yu, Yuanchun; Liu, Junzhuo; Wu, Yonghong

    2018-01-01

    This work studied Cu removal and response mechanisms of periphytic biofilms in a tubular bioreactor. Periphytic biofilms immobilized in a tubular bioreactor were used to remove Cu from wastewater with different Cu concentrations. Results showed that periphytic biofilms had a high removal efficiency (max. 99%) at a hydraulic retention time (HRT) of 12h under initial Cu concentrations of 2.0 and 10.0mgL -1 . Periphyton quickly adapted to Cu stress by regulating the community composition. Species richness, evenness and carbon metabolic diversity of the periphytic community increased when exposed to Cu. Diatoms, green algae, and bacteria (Gammaproteobacteria and Bacteroidia) were the dominant microorganisms and responsible for Cu removal. This study indicates that periphytic biofilms are promising in Cu removal from wastewater due to their strong adaptation capacity to Cu toxicity and also provides valuable information for understanding the relationships between microbial communities and heavy metal stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Predicting placebo response in adolescents with major depressive disorder: The Adolescent Placebo Impact Composite Score (APICS).

    Science.gov (United States)

    Nakonezny, Paul A; Mayes, Taryn L; Byerly, Matthew J; Emslie, Graham J

    2015-09-01

    The aim of this study was to construct a composite scoring system to predict the probability of placebo response in adolescents with Major Depressive Disorder (MDD). Participants of the current study were 151 adolescents (aged 12-17 years) who were randomized to the placebo arm (placebo transdermal patches) of a randomized controlled trial (RCT) comparing the selegiline transdermal patch with placebo (DelBello et al., 2014). The primary outcome of response was defined as a CGI-I score of 1 or 2 (very much or much improved) at week 12 (study-end) or exit. As a first step, a multiple logistic mixed model was used to estimate the odds of placebo response from each predictor in the model, including age, CDRS-R total at baseline (depressive symptom severity), history of recurrent depression (yes vs. no), sex (female vs. male), and race (non-Caucasian vs. Caucasian). On the basis of the initial logistic mixed model analysis, we then constructed an Adolescent Placebo Impact Composite Score (APICS) that became the sole predictor in a re-specified Bayesian logistic regression model to estimate the probability of placebo response. Finally, the AUC for the APICS was tested against a nominal area of 0.50 to evaluate how well the APICS discriminated placebo response status. Among the 151 adolescents, with a mean age of 14.6 years (SD = 1.6) and a mean baseline CDRS-R total of 60.6 (SD = 12.1), 68.2% were females, 50.3% was Caucasian, and 39.7% had a history of recurrent depression. Placebo response rate was 58.3%. Based on the logistic mixed model, the re-specified equation with the highest discriminatory ability to estimate the probability of placebo response was APICS = age + (0.32 × CDRS-R Total at baseline) + (-2.85 × if female) + (-5.50 × if history of recurrent depression) + (-5.85 × if non-Caucasian). The AUC for this model was 0.59 (p = .049). Within a Bayesian decision-theoretic framework, in 95.5% of the time, the 10,000 posterior Monte Carlo samples suggested

  6. Manifestations and mechanisms of non-targeted effects of ionizing radiation

    International Nuclear Information System (INIS)

    Wright, Eric G.

    2010-01-01

    A well-established radiobiological paradigm is that the biological effects of ionizing radiation occur in irradiated cells as a consequence of the DNA damage they incur. However, many observations of, so-called, non-targeted effects indicate that genetic alterations are not restricted to directly irradiated cells. Non-targeted effects are responses exhibited by non-irradiated cells that are the descendants of irradiated cells (radiation-induced genomic instability) or by cells that have communicated with irradiated cells (radiation-induced bystander effects). Radiation-induced genomic instability is characterized by chromosomal abnormalities, gene mutations and cell death. Similar effects, as well as responses that may be regarded as protective, have been attributed to bystander mechanisms. The majority of studies to date have used in vitro systems but some non-targeted effects have been demonstrated in vivo and there is also evidence for radiation-induced instability in the mammalian germ line. However, there may be situations where radiation-induced genomic instability in vivo may not necessarily identify genomically unstable somatic cells but the manifestation of responses to ongoing production of damaging signals generated by genotype-dependent mechanisms having properties in common with inflammatory processes. Non-targeted mechanisms have significant implications for understanding mechanisms of radiation action but the current state of knowledge does not permit definitive statements about whether these phenomena have implications for assessing radiation risk.

  7. Simulation of the Mechanical Response of the 11T Magnet by Means of COMSOL-MpCCI-ANSYS Coupling

    CERN Document Server

    Wilczek, Michal

    2017-01-01

    This report covers the work during my Summer Student internship at CERN as a part of the STEAM group (Simulation of Transient Effects in Accelerator Magnets) in the Technology Department, Machine Protection and Electrical Integrity group. I was responsible for the development of the ANSYS APDL model of the 11T superconducting magnet serving as a proof of concept for magneto-thermo-mechanical co-simulations of quench propagation in COMSOL and ANSYS software. The aforementioned co-simulation estimates the magnetic, thermal, and mechanical response of the magnet during the discharge process, while protected by a recently developed method, called Coupling-Loss Induced Quench (CLIQ). The already existing STEAM framework performs field/circuit coupling of a magneto-thermal field models previously developed by the STEAM. The next task of the group aimed at combining magneto-thermal field solution with the mechanical simulations. Such a coupling is of interest for the High-Luminosity upgrade of the Large Hadron Colli...

  8. Mechanical response of the herniated human abdomen to the placement of different prostheses.

    Science.gov (United States)

    Hernández-Gascón, Belén; Peña, Estefanía; Grasa, Jorge; Pascual, Gemma; Bellón, Juan M; Calvo, Begoña

    2013-05-01

    This paper describes a method designed to model the repaired herniated human abdomen just after surgery and examine its static mechanical response to the maximum intra-abdominal pressure provoked by a physiological movement (standing cough). The model is based on the real geometry of the human abdomen bearing a large incisional hernia with several anatomical structures differentiated by MRI. To analyze the outcome of hernia repair, the surgical procedure was simulated by modeling a prosthesis placed over the hernia. Three surgical meshes with different mechanical properties were considered: an isotropic heavy-weight mesh (Surgipro®), a slightly anisotropic light-weight mesh (Optilene®), and a highly anisotropic medium-weight mesh (Infinit®). Our findings confirm that anisotropic implants need to be positioned such that the most compliant axis of the mesh coincides with the craneo-caudal direction of the body.

  9. Neurochemical mechanisms underlying responses to psychostimulants

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D.; Fowler, J.S.; Hitzemann, R.; Wang, G.J. [Brookhaven National Lab., Upton, NY (United States)]|[State Univ. of New York, Stony Brook, NY (United States)

    1994-11-01

    This study employed positron emission tomography (PET) to investigate biochemical and metabolic characteristics of the brain of individuals which could put them at risk for drug addiction. It takes advantage of the normal variability between individuals in response to psychoactive drugs to investigate relation between mental state, brain neurochemistry and metabolism and the behavioral response to drugs. We discuss its use to assess if there is an association between mental state and dompaminergic reactivity in response to the psychostimulant drug methylphenidate (MP). Changes in synaptic dopamine induced by MP were evaluated with PET and [11C]raclopride, a D{sub 2} receptor radioligand that is sensitive to endogenous dopamine. Methylpphenidate significantly decreased striatal [11C]raclopride binding. The study showed a correlation between the magnitude of the dopamine-induced changes by methylphenidate, and the mental state of the subjects. Subjects reporting high levels of anxiety and restlessness at baseline had larger changes in MP-induced dopamine changes than those that did not. Further investigations on the relation between an individual`s response to a drug and his/her mental state and personality as well as his neurochemical brain composition may enable to understand better differences in drug addiction vulnerability.

  10. Effect of surface loading on the hydro-mechanical response of a tunnel in saturated ground

    Directory of Open Access Journals (Sweden)

    Simon Heru Prassetyo

    2016-09-01

    Full Text Available The design of underground spaces in urban areas must account not only for the current overburden load but also for future surface loads, such as from construction of high-rise buildings above underground structures. In saturated ground, the surface load will generate an additional mechanical response through stress changes and ground displacement, as well as a hydraulic response through pore pressure changes. These hydro-mechanical (H-M changes can severely influence tunnel stability. This paper examines the effect of surface loading on the H-M response of a typical horseshoe-shaped tunnel in saturated ground. Two tunnel models were created in the computer code Fast Lagrangian Analysis of Continua (FLAC. One model represented weak and low permeability ground (stiff clay, and the other represented strong and high permeability ground (weathered granite. Each of the models was run under two liner permeabilities: permeable and impermeable. Two main cases were compared. In Case 1, the surface load was applied 10 years after tunnel construction. In Case 2, the surface load was applied after the steady state pore pressure condition was achieved. The simulation results show that tunnels with impermeable liners experienced the most severe influence from the surface loading, with high pore pressures, large inward displacement around the tunnels, and high bending moments in the liner. In addition, the severity of the response increased toward steady state. This induced H-M response was worse for tunnels in clay than for those in granite. Furthermore, the long-term liner stabilities in Case 1 and Case 2 were similar, indicating that the influence of the length of time between when the tunnel was completed and when the surface load was applied was negligible. These findings suggest that under surface loading, in addition to the ground strength, tunnel stability in saturated ground is largely influenced by liner permeability and the long-term H-M response of

  11. Effects of major histocompatibility complex class II knockout on mouse bone mechanical properties during development

    Science.gov (United States)

    Simske, Steven J.; Bateman, Ted A.; Smith, Erin E.; Ferguson, Virginia L.; Chapes, Stephen K.

    2002-01-01

    We investigated the effect of major histocompatibility complex class II (MHC II) knockout on the development of the mouse peripheral skeleton. These C2D mice had less skeletal development at 8, 12 and 16 weeks of age compared to wild-type C57BL/6J (B6) male mice. The C2D mice had decreased femur mechanical, geometric and compositional measurements compared to wild type mice at each of these ages. C2D femur stiffness (S), peak force in 3-pt bending (Pm), and mineral mass (Min-M) were 74%, 64% and 66%, respectively, of corresponding B6 values at 8 weeks of age. Similar differences were measured at 12 weeks (for which C2D femoral S, Pm and Min-M were 71%, 72% and 73%, respectively, of corresponding B6 values) and at 16 weeks (for which C2D femoral S, Pm and Min-M were 80%, 66% and 61%, respectively, of corresponding B6 values). MHC II knockout delays the development of adult bone properties and is accompanied by lower body mass compared to wild-type controls.

  12. Tea consumption and the risk of five major cancers: a dose–response meta-analysis of prospective studies

    Science.gov (United States)

    2014-01-01

    Background We conducted a dose–response meta-analysis of prospective studies to summarize evidence of the association between tea consumption and the risk of breast, colorectal, liver, prostate, and stomach cancer. Methods We searched PubMed and two other databases. Prospective studies that reported risk ratios (RRs) with 95% confidence intervals (CIs) of cancer risk for ≥3 categories of tea consumption were included. We estimated an overall RR with 95% CI for an increase of three cups/day of tea consumption, and, usingrestricted cubic splines, we examined a nonlinear association between tea consumption and cancer risk. Results Forty-one prospective studies, with a total of 3,027,702 participants and 49,103 cancer cases, were included. From the pooled overall RRs, no inverse association between tea consumption and risk of five major cancers was observed. However, subgroup analysis showed that increase in consumption of three cups of black tea per day was a significant risk factor for breast cancer (RR, 1.18; 95% CI, 1.05-1.32). Conclusion Ourresults did not show a protective role of tea in five major cancers. Additional large prospective cohort studies are needed to make a convincing case for associations. PMID:24636229

  13. Active nuclear transcriptome analysis reveals inflammasome-dependent mechanism for early neutrophil response to Mycobacterium marinum.

    Science.gov (United States)

    Kenyon, Amy; Gavriouchkina, Daria; Zorman, Jernej; Napolitani, Giorgio; Cerundolo, Vincenzo; Sauka-Spengler, Tatjana

    2017-07-26

    The mechanisms governing neutrophil response to Mycobacterium tuberculosis remain poorly understood. In this study we utilise biotagging, a novel genome-wide profiling approach based on cell type-specific in vivo biotinylation in zebrafish to analyse the initial response of neutrophils to Mycobacterium marinum, a close genetic relative of M. tuberculosis used to model tuberculosis. Differential expression analysis following nuclear RNA-seq of neutrophil active transcriptomes reveals a significant upregulation in both damage-sensing and effector components of the inflammasome, including caspase b, NLRC3 ortholog (wu: fb15h11) and il1β. Crispr/Cas9-mediated knockout of caspase b, which acts by proteolytic processing of il1β, results in increased bacterial burden and less infiltration of macrophages to sites of mycobacterial infection, thus impairing granuloma development. We also show that a number of immediate early response genes (IEGs) are responsible for orchestrating the initial neutrophil response to mycobacterial infection. Further perturbation of the IEGs exposes egr3 as a key transcriptional regulator controlling il1β transcription.

  14. Inside the "Black Box" of River Restoration: Using Catchment History to Identify Disturbance and Response Mechanisms to Set Targets for Process-Based Restoration

    Directory of Open Access Journals (Sweden)

    Sarah Mika

    2010-12-01

    Full Text Available Many river restoration projects fail. Inadequate project planning underpins many of the reasons given for failure (such as setting overly ambitious goals; selecting inappropriate sites and techniques; losing stakeholder motivation; and neglecting to monitor, assess, and document projects. Another major problem is the lack of an agreed guiding image to direct the activities aimed at restoring the necessary biophysical and ecological processes within the logistic constraints of on-ground works. Despite a rich literature defining the components of restoration project planning, restoration ecology currently lacks an explicit and logical means of moving from the initial project vision through to on-ground strategies. Yet this process is fundamental because it directly links the ecological goals of the project to the on-ground strategies used to achieve them. We present a planning process that explicitly uses an interdisciplinary mechanistic model of disturbance drivers and system responses to build from the initial project vision to the implementation of on-ground works. A worked example on the Upper Hunter River in southeastern Australia shows how understanding catchment history can reveal disturbance and response mechanisms, thus facilitating process-based restoration.

  15. Current Stem Cell Biomarkers and Their Functional Mechanisms in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Kaile Zhang

    2016-07-01

    Full Text Available Currently there is little effective treatment available for castration resistant prostate cancer, which is responsible for the majority of prostate cancer related deaths. Emerging evidence suggested that cancer stem cells might play an important role in resistance to traditional cancer therapies, and the studies of cancer stem cells (including specific isolation and targeting on those cells might benefit the discovery of novel treatment of prostate cancer, especially castration resistant disease. In this review, we summarized major biomarkers for prostate cancer stem cells, as well as their functional mechanisms and potential application in clinical diagnosis and treatment of patients.

  16. Stroke volume variation compared with pulse pressure variation and cardiac index changes for prediction of fluid responsiveness in mechanically ventilated patients

    Directory of Open Access Journals (Sweden)

    Randa Aly Soliman

    2015-04-01

    Conclusions: Baseline stroke volume variation ⩾8.15% predicted fluid responsiveness in mechanically ventilated patients with acute circulatory failure. The study also confirmed the ability of pulse pressure variation to predict fluid responsiveness.

  17. Changes in Translational Efficiency is a Dominant Regulatory Mechanism in the Environmental Response of Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Ronald C.; Webb-Robertson, Bobbie-Jo M.; Markillie, Lye Meng; Serres, Margrethe H.; Linggi, Bryan E.; Aldrich, Joshua T.; Hill, Eric A.; Romine, Margaret F.; Lipton, Mary S.; Wiley, H. S.

    2013-09-23

    To understand how cell physiological state affects mRNA translation, we used Shewanella oneidensis MR-1 grown under steady state conditions at either aerobic or suboxic conditions. Using a combination of quantitative proteomics and RNA-Seq, we generated high-confidence data on >1000 mRNA and protein pairs. By using a steady state model, we found that differences in protein-mRNA ratios were primarily caused by differences in the translational efficiency of specific genes. When oxygen levels were lowered, 28% of the proteins showed at least a 2-fold change in expression. Altered transcription levels appeared responsible for 26% of the protein changes, altered translational efficiency appeared responsible for 46% and a combination of both were responsible for the remaining 28%. Changes in translational efficiency were significantly correlated with the codon usage pattern of the genes and measurable tRNA pools changed in response to altered O2 levels. Our results suggest that changes in the translational efficiency of proteins, in part caused by altered tRNA pools, is a major determinant of regulated protein expression in bacteria.

  18. Micro-mechanical modeling of the cement-bone interface: the effect of friction, morphology and material properties on the micromechanical response.

    NARCIS (Netherlands)

    Janssen, D.; Mann, K.A.; Verdonschot, N.J.J.

    2008-01-01

    In order to gain insight into the micro-mechanical behavior of the cement-bone interface, the effect of parametric variations of frictional, morphological and material properties on the mechanical response of the cement-bone interface were analyzed using a finite element approach. Finite element

  19. Micro-mechanical modeling of the cement-bone interface: the effect of friction morphology and material properties on the micromechanical response

    NARCIS (Netherlands)

    Janssen, Dennis; Mann, Kenneth A.; Verdonschot, Nicolaas Jacobus Joseph

    2008-01-01

    In order to gain insight into the micro-mechanical behavior of the cement–bone interface, the effect of parametric variations of frictional, morphological and material properties on the mechanical response of the cement–bone interface were analyzed using a finite element approach. Finite element

  20. Gustatory tissue injury in man: radiation dose response relationships and mechanisms of taste loss

    International Nuclear Information System (INIS)

    Mossman, K.L.

    1986-01-01

    In this report dose response data for gustatory tissue damage in patients given total radiation doses ranging from 3000 to 6000 cGy are presented. In order to evaluate direct radiation injury to gustatory tissues as a mechanism of taste loss, measurements of damage to specific taste structures in bovine and murine systems following radiation exposure in the clinical range are correlated to taste impairment observed in radiotherapy patients. (author)

  1. Neonatal and Infantile Immune Responses to Encapsulated Bacteria and Conjugate Vaccines

    Directory of Open Access Journals (Sweden)

    Peter Klein Klouwenberg

    2008-01-01

    Full Text Available Encapsulated bacteria are responsible for the majority of mortality among neonates and infants. The major components on the surface of these bacteria are polysaccharides which are important virulence factors. Immunity against these components protects against disease. However, most of the polysaccharides are thymus-independent (TI-2 antigens which induce an inadequate immune response in neonates and infants. The mechanisms that are thought to play a role in the unresponsiveness of this age group to TI-2 stimuli will be discussed. The lack of immune response may be overcome by conjugating the polysaccharides to a carrier protein. This transforms bacterial polysaccharides from a TI-2 antigen into a thymus-dependent (TD antigen, thereby inducing an immune response and immunological memory in neonates and infants. Such conjugated vaccines have been shown to be effective against the most common causes of invasive disease caused by encapsulated bacteria in neonates and children. These and several other approaches in current vaccine development will be discussed.

  2. Chemosensory responses to the repellent nepeta essential oil and its major component nepetalactone by the yellow fever mosquito, aedes aegypti, a vector of zika virus

    Science.gov (United States)

    Nepeta essential oil (Neo) (catnip) and its major component, nepetalactone, have long been known to repel insects including mosquitoes. However, the neural mechanisms through which these repellents are detected by mosquitoes, including the yellow fever mosquito Aedes aegypti, an important vector of...

  3. Antibody and Cytokine Responses of Koalas (Phascolarctos cinereus) Vaccinated with Recombinant Chlamydial Major Outer Membrane Protein (MOMP) with Two Different Adjuvants.

    Science.gov (United States)

    Khan, Shahneaz Ali; Desclozeaux, Marion; Waugh, Courtney; Hanger, Jon; Loader, Jo; Gerdts, Volker; Potter, Andrew; Polkinghorne, Adam; Beagley, Kenneth; Timms, Peter

    2016-01-01

    Developing a vaccine against Chlamydia is key to combating widespread mortalities and morbidities associated with this infection in koalas (Phascolarctos cinereus). In previous studies, we have shown that two or three doses of a Recombinant Major Outer Membrane Protein (rMOMP) antigen-based vaccine, combined with immune stimulating complex (ISC) adjuvant, results in strong cellular and humoral immune responses in koalas. We have also separately evaluated a single dose vaccine, utilising a tri-adjuvant formula that comprises polyphosphazine based poly I: C and host defense peptides, with the same antigen. This formulation also produced strong cellular and humoral immune responses in captive koalas. In this current study, we directly compared the host immune responses of two sub-groups of wild Chlamydia negative koalas in one population vaccinated with the rMOMP protein antigen and adjuvanted with either the ISC or tri-adjuvant formula. Overall, both adjuvants produced strong Chlamydia-specific cellular (IFN-γ and IL-17A) responses in circulating PBMCs as well as MOMP-specific and functional, in vitro neutralising antibodies. While the immune responses were similar, there were adjuvant-specific immune differences between the two adjuvants, particularly in relation to the specificity of the MOMP epitope antibody responses.

  4. Antibody and Cytokine Responses of Koalas (Phascolarctos cinereus Vaccinated with Recombinant Chlamydial Major Outer Membrane Protein (MOMP with Two Different Adjuvants.

    Directory of Open Access Journals (Sweden)

    Shahneaz Ali Khan

    Full Text Available Developing a vaccine against Chlamydia is key to combating widespread mortalities and morbidities associated with this infection in koalas (Phascolarctos cinereus. In previous studies, we have shown that two or three doses of a Recombinant Major Outer Membrane Protein (rMOMP antigen-based vaccine, combined with immune stimulating complex (ISC adjuvant, results in strong cellular and humoral immune responses in koalas. We have also separately evaluated a single dose vaccine, utilising a tri-adjuvant formula that comprises polyphosphazine based poly I: C and host defense peptides, with the same antigen. This formulation also produced strong cellular and humoral immune responses in captive koalas. In this current study, we directly compared the host immune responses of two sub-groups of wild Chlamydia negative koalas in one population vaccinated with the rMOMP protein antigen and adjuvanted with either the ISC or tri-adjuvant formula. Overall, both adjuvants produced strong Chlamydia-specific cellular (IFN-γ and IL-17A responses in circulating PBMCs as well as MOMP-specific and functional, in vitro neutralising antibodies. While the immune responses were similar, there were adjuvant-specific immune differences between the two adjuvants, particularly in relation to the specificity of the MOMP epitope antibody responses.

  5. Mechanisms of metabonomic for a gateway drug: nicotine priming enhances behavioral response to cocaine with modification in energy metabolism and neurotransmitter level.

    Directory of Open Access Journals (Sweden)

    Hongyu Li

    Full Text Available Nicotine, one of the most commonly used drugs, has become a major concern because tobacco serves as a gateway drug and is linked to illicit drug abuse, such as cocaine and marijuana. However, previous studies mainly focused on certain genes or neurotransmitters which have already been known to participate in drug addiction, lacking endogenous metabolic profiling in a global view. To further explore the mechanism by which nicotine modifies the response to cocaine, we developed two conditioned place preference (CPP models in mice. In threshold dose model, mice were pretreated with nicotine, followed by cocaine treatment at the dose of 2 mg/kg, a threshold dose of cocaine to induce CPP in mice. In high-dose model, mice were only treated with 20 mg/kg cocaine, which induced a significant CPP. (1H nuclear magnetic resonance based on metabonomics was used to investigate metabolic profiles of the nucleus accumbens (NAc and striatum. We found that nicotine pretreatment dramatically increased CPP induced by 2 mg/kg cocaine, which was similar to 20 mg/kg cocaine-induced CPP. Interestingly, metabolic profiles showed considerable overlap between these two models. These overlapped metabolites mainly included neurotransmitters as well as the molecules participating in energy homeostasis and cellular metabolism. Our results show that the reinforcing effect of nicotine on behavioral response to cocaine may attribute to the modification of some specific metabolites in NAc and striatum, thus creating a favorable metabolic environment for enhancing conditioned rewarding effect of cocaine. Our findings provide an insight into the effect of cigarette smoking on cocaine dependence and the underlying mechanism.

  6. Is placebo useful in the treatment of major depression in clinical practice?

    Directory of Open Access Journals (Sweden)

    Marchesi C

    2013-06-01

    Full Text Available Carlo Marchesi, Chiara De Panfilis, Matteo Tonna, Paolo Ossola University of Parma, Department of Neuroscience, Psychiatric Unit, Parma, Italy Background: For many years, placebo has been defined by its inert content and use in clinical trials. In recent years, several studies have demonstrated its effect in the treatment of major depression. The aim of this paper is to present the conclusions of recent meta-analyses of the placebo effect in major depression, to explain the mechanism by which placebo exerts its effect, and to discuss whether placebo can be used in the treatment of patients with major depression in clinical practice. Recent meta-analyses have demonstrated that the placebo effect is estimated to account for 67% of the treatment effect in patients receiving antidepressants, and furthermore that placebo is as effective as antidepressants in patients with mild to moderate major depression (reporting a Hamilton Depression Rating Scale score lower than 25, whereas placebo is less effective than antidepressants in severely depressed patients. However, several limitations make the translation of these conclusions into clinical practice impracticable. Clinicians should learn from the "placebo lesson" to maximize the nonspecific effects of treatment when they prescribe an antidepressant, particularly in less severely depressed patients, who show a higher placebo response in randomized controlled trials. This strategy can increase the antidepressant effect and may reduce nonadherence with treatment. Keywords: placebo effect, major depressive disorder, subthreshold depressive disorder, antidepressants

  7. Study of exposure to cold stress and body physiological responses in auto mechanic employees in Hamadan city

    Directory of Open Access Journals (Sweden)

    Keivan Saedpanah

    2017-09-01

    Full Text Available Introduction: Continuous exposure to cold air is considered to be a hazardous agent in the workplace in cold seasons. This study aimed to determine the level of cold stress and relation with physiological responses in auto mechanic employees. Method: This cross-sectional study was conducted in the winter of 1395 on auto mechanic employees in Hamadan city. Physiological responses during daily activity were measured in accordance with ISO 9886 standard method. Environmental air measures like air temperature and air velocity were measured simultaneously and cold stress indexes were also determined. Data was analyzed using SPSS 21 software. Result: The result showed that mean wind chill index, equivalent chill temperature and required clothing insulation were 489.97±47.679 kcal/m2.h, 13.78± 1.869 0c and 2.04 ± 0.246 clo, respectively. According to the results of cold stress indexes, the studied employees are exposed to cold stress. Pearson correlation test showed that there are significant relationship between cold stress indexes with physiological responses (p<0.05, however, IREQ min showed more correlation than the others.  There is also a significant relationship between body fat percentage and deep temperature (p<0.05, r=0.314. Conclusion: The result confirmed that IREQ min index has high validity for estimation of cold stress among auto mechanic employees. Moreover, the increase of body fat percentage leads to an increase of cold tolerance power of employees.

  8. Model-based flaw localization from perturbations in the dynamic response of complex mechanical structures

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D H

    2009-02-24

    A new method of locating structural damage using measured differences in vibrational response and a numerical model of the undamaged structure has been presented. This method is particularly suited for complex structures with little or no symmetry. In a prior study the method successively located simulated damage from measurements of the vibrational response on two simple structures. Here we demonstrate that it can locate simulated damage in a complex structure. A numerical model of a complex structure was used to calculate the structural response before and after the introduction of a void. The method can now be considered for application to structures of programmatic interest. It could be used to monitor the structural integrity of complex mechanical structures and assemblies over their lifetimes. This would allow early detection of damage, when repair is relatively easy and inexpensive. It would also allow one to schedule maintenance based on actual damage instead of a time schedule.

  9. Engagement of NKG2D on bystander memory CD8 T cells promotes increased immunopathology following Leishmania major infection.

    Directory of Open Access Journals (Sweden)

    Erika J Crosby

    2014-02-01

    Full Text Available One of the hallmarks of adaptive immunity is the development of a long-term pathogen specific memory response. While persistent memory T cells certainly impact the immune response during a secondary challenge, their role in unrelated infections is less clear. To address this issue, we utilized lymphocytic choriomeningitis virus (LCMV and Listeria monocytogenes immune mice to investigate whether bystander memory T cells influence Leishmania major infection. Despite similar parasite burdens, LCMV and Listeria immune mice exhibited a significant increase in leishmanial lesion size compared to mice infected with L. major alone. This increased lesion size was due to a severe inflammatory response, consisting not only of monocytes and neutrophils, but also significantly more CD8 T cells. Many of the CD8 T cells were LCMV specific and expressed gzmB and NKG2D, but unexpectedly expressed very little IFN-γ. Moreover, if CD8 T cells were depleted in LCMV immune mice prior to challenge with L. major, the increase in lesion size was lost. Strikingly, treating with NKG2D blocking antibodies abrogated the increased immunopathology observed in LCMV immune mice, showing that NKG2D engagement on LCMV specific memory CD8 T cells was required for the observed phenotype. These results indicate that bystander memory CD8 T cells can participate in an unrelated immune response and induce immunopathology through an NKG2D dependent mechanism without providing increased protection.

  10. Glucocorticoids and relapse of major depression (dexamethasone/corticotropin-releasing hormone test in relation to relapse of major depression)

    NARCIS (Netherlands)

    Appelhof, Bente C.; Huyser, Jochanan; Verweij, Mijke; Brouwer, Jantien P.; van Dyck, Richard; Fliers, Eric; Hoogendijk, Witte J. G.; Tijssen, Jan G. P.; Wiersinga, Wilmar M.; Schene, Aart H.

    2006-01-01

    BACKGROUND: Knowledge of pathogenic mechanisms and predictors of relapse in major depressive disorder is still limited. Hypothalamic-pituitary-adrenocortical (HPA) axis dysregulation is thought to be related to the development and course of depression. METHODS: We investigated whether

  11. Collecting response times using Amazon Mechanical Turk and Adobe Flash.

    Science.gov (United States)

    Simcox, Travis; Fiez, Julie A

    2014-03-01

    Crowdsourcing systems like Amazon's Mechanical Turk (AMT) allow data to be collected from a large sample of people in a short amount of time. This use has garnered considerable interest from behavioral scientists. So far, most experiments conducted on AMT have focused on survey-type instruments because of difficulties inherent in running many experimental paradigms over the Internet. This study investigated the viability of presenting stimuli and collecting response times using Adobe Flash to run ActionScript 3 code in conjunction with AMT. First, the timing properties of Adobe Flash were investigated using a phototransistor and two desktop computers running under several conditions mimicking those that may be present in research using AMT. This experiment revealed some strengths and weaknesses of the timing capabilities of this method. Next, a flanker task and a lexical decision task implemented in Adobe Flash were administered to participants recruited with AMT. The expected effects in these tasks were replicated. Power analyses were conducted to describe the number of participants needed to replicate these effects. A questionnaire was used to investigate previously undescribed computer use habits of 100 participants on AMT. We conclude that a Flash program in conjunction with AMT can be successfully used for running many experimental paradigms that rely on response times, although experimenters must understand the limitations of the method.

  12. Do Surface Porosity and Pore Size Influence Mechanical Properties and Cellular Response to PEEK?

    Science.gov (United States)

    Torstrick, F Brennan; Evans, Nathan T; Stevens, Hazel Y; Gall, Ken; Guldberg, Robert E

    2016-11-01

    Despite its widespread use in orthopaedic implants such as soft tissue fasteners and spinal intervertebral implants, polyetheretherketone (PEEK) often suffers from poor osseointegration. Introducing porosity can overcome this limitation by encouraging bone ingrowth; however, the corresponding decrease in implant strength can potentially reduce the implant's ability to bear physiologic loads. We have previously shown, using a single pore size, that limiting porosity to the surface of PEEK implants preserves strength while supporting in vivo osseointegration. However, additional work is needed to investigate the effect of pore size on both the mechanical properties and cellular response to PEEK. (1) Can surface porous PEEK (PEEK-SP) microstructure be reliably controlled? (2) What is the effect of pore size on the mechanical properties of PEEK-SP? (3) Do surface porosity and pore size influence the cellular response to PEEK? PEEK-SP was created by extruding PEEK through NaCl crystals of three controlled ranges: 200 to 312, 312 to 425, and 425 to 508 µm. Micro-CT was used to characterize the microstructure of PEEK-SP. Tensile, fatigue, and interfacial shear tests were performed to compare the mechanical properties of PEEK-SP with injection-molded PEEK (PEEK-IM). The cellular response to PEEK-SP, assessed by proliferation, alkaline phosphatase activity, vascular endothelial growth factor production, and calcium content of osteoblast, mesenchymal stem cell, and preosteoblast (MC3T3-E1) cultures, was compared with that of machined smooth PEEK and Ti6Al4V. Micro-CT analysis showed that PEEK-SP layers possessed pores that were 284 ± 35 µm, 341 ± 49 µm, and 416 ± 54 µm for each pore size group. Porosity and pore layer depth ranged from 61% to 69% and 303 to 391 µm, respectively. Mechanical testing revealed tensile strengths > 67 MPa and interfacial shear strengths > 20 MPa for all three pore size groups. All PEEK-SP groups exhibited > 50% decrease

  13. United Nations Global Compact as a Corporate Social Responsibility Mechanism: A Case Study of Krüger A/S

    OpenAIRE

    Bereng, Reitumetse Esther

    2017-01-01

    Abstract: Over the years, copious research has been done on variety of voluntary sustainable development initiatives including Corporate Social Responsibility. This research takes a different route to Corporate Social Responsibility, by looking into this voluntary initiative through the spectrum of the United Nations Global Compact. It looks into the United Nations Global Compact as a mechanism for Corporate Social Responsibility in order to find out the true motives behind Krüger A/S engagin...

  14. Treatment response in relation to subthreshold bipolarity in patients with major depressive disorder receiving antidepressant monotherapy: a post hoc data analysis (KOMDD study

    Directory of Open Access Journals (Sweden)

    Park YM

    2016-05-01

    Full Text Available Young-Min Park,1 Bun-Hee Lee2 1Department of Psychiatry, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, 2Department of Psychiatry, Seoul Eunpyeong Hospital, Seoul, Republic of Korea Background: The aim of this observational study was to determine whether subthreshold bipolarity affects treatment response and remission in patients with major depressive disorder receiving antidepressant (AD monotherapy over a 6-month follow-up period. Methods: Seventy-eight patients with major depressive disorder were stratified into two subgroups according to the presence of subthreshold bipolarity, identified using the Korean version of the Mood Disorder Questionnaire (K-MDQ, which classifies patients as positive for a screening of bipolarity based on the cutoff for the total K-MDQ score (ie, 7 points. They received AD monotherapy such as escitalopram, sertraline, paroxetine, or tianeptine for 6 months. The Beck Depression Inventory (BDI, Hamilton Depression Rating Scale (HAMD, Hamilton Anxiety Scale, and Beck Scale for Suicide Ideation were applied at baseline, 1 week, 3 weeks, 2 months, 3 months, and 6 months. Results: The mean HAMD, BDI, and Beck Scale for Suicide Ideation scores were higher in the bipolarity group than in the nonbipolarity group at 3 weeks. The mean BDI score was also higher in the bipolarity group than in the nonbipolarity group at 6 months. Evaluation of the ratio of improvement for each scale revealed different patterns of percentage changes between the two groups over the 6-month follow-up period. Furthermore, the response and remission rates (as assessed using BDI and HAMD scores were higher in the nonbipolarity group than in the bipolarity group, with the exception of HAMD scores at the 3-week follow-up time point. Conclusion: The findings of this study showed that depressed patients with bipolarity had a worse response to AD monotherapy than did those without bipolarity. Keywords: subthreshold bipolarity

  15. Childhood maltreatment and differential treatment response and recurrence in adult major depressive disorder.

    Science.gov (United States)

    Harkness, Kate L; Bagby, R Michael; Kennedy, Sidney H

    2012-06-01

    A substantial number of patients with major depressive disorder (MDD) do not respond to treatment, and recurrence rates remain high. The purpose of this study was to examine a history of severe childhood abuse as a moderator of response following a 16-week acute treatment trial, and of recurrence over a 12-month follow-up. Participants included 203 adult outpatients with MDD (129 women; age 18-60). The design was a 16-week single-center randomized, open label trial of interpersonal psychotherapy, cognitive-behavioral therapy, or antidepressant medication, with a 12-month naturalistic follow-up, conducted at a university psychiatry center in Canada. The main outcome measure was Hamilton Depression Rating Scale scores at treatment end point. Childhood maltreatment was assessed at the completion of treatment using an interview-based contextual measure of childhood physical, sexual, and emotional abuse. Multiple imputation was adopted to estimate missing values. Patients with severe maltreatment were significantly less likely to respond to interpersonal psychotherapy than to cognitive-behavioral therapy or medication (OR = 3.61), whereas no differences among treatments were found in those with no history of maltreatment (ORs therapy than from interpersonal psychotherapy. However, these patients remain vulnerable to recurrence regardless of treatment modality.

  16. Carbonitriding of low alloy steels: Mechanical and metallurgical responses

    Energy Technology Data Exchange (ETDEWEB)

    Dal' Maz Silva, W., E-mail: waltermateriais@me.com [Institut Jean Lamour – UMR CNRS–Université de Lorraine, 7198, Parc de Saurupt, Nancy 54011 (France); Institut de Recherche Technologique M2P, Metz 57070 (France); Dulcy, J., E-mail: jacky.dulcy@univ-lorraine.fr [Institut Jean Lamour – UMR CNRS–Université de Lorraine, 7198, Parc de Saurupt, Nancy 54011 (France); Ghanbaja, J., E-mail: jaafar.ghanbaja@univ-lorraine.fr [Institut Jean Lamour – UMR CNRS–Université de Lorraine, 7198, Parc de Saurupt, Nancy 54011 (France); Redjaïmia, A., E-mail: abdelkrim.redjaimia@univ-lorraine.fr [Institut Jean Lamour – UMR CNRS–Université de Lorraine, 7198, Parc de Saurupt, Nancy 54011 (France); Michel, G., E-mail: gregory.michel@irt-m2p.fr [Institut de Recherche Technologique M2P, Metz 57070 (France); Thibault, S., E-mail: simon.thibault@safran.fr [Safran Tech, Magny les Hameaux (France); Belmonte, T., E-mail: thierry.belmonte@univ-lorraine.fr [Institut Jean Lamour – UMR CNRS–Université de Lorraine, 7198, Parc de Saurupt, Nancy 54011 (France)

    2017-05-02

    Metallurgical and mechanical responses of alloys 16NiCrMo13 and 23MnCrMo5 to the addition of carbon and/or nitrogen were investigated. Diffusion profiles of these interstitial elements were established by atmospheric pressure carburizing, austenitic nitriding, and a sequence of carburizing and nitriding – the carbonitriding. All treatments were performed at 1173 K under CO-H{sub 2} and/or NH{sub 3} based atmospheres. After enrichment, each sample was (i) room-temperature oil-quenched and (ii) immersed in boiling nitrogen prior to (iii) the stress relief treatment. Cross-section hardness profiles were evaluated after each of these steps. Electron probe microanalysis (EPMA) allowed for the determination of both carbon and nitrogen diffusion profiles after quenching. In order to estimate the fraction of nitrides formed during the enrichment of the alloys, these measured profiles were employed in the simulation of local equilibrium at each evaluated position. This allowed for the computation of total solid solution interstitial content, which was expressed in atomic fraction. Plots of as-quenched hardness against the square root of the computed interstitial content, i.e. the sum of solution carbon and the remaining nitrogen, show the complementary character of these elements in determining the mechanical properties of the materials prior to stress relief treatment. Tempering of carbon-nitrogen martensite resulted in hardness drop to a lesser degree than the one measured on carbon martensite with equivalent interstitial content. In order to investigate this behavior, transmission electron microscopy (TEM) analyses were performed. Results showed the precipitation of two morphologies of Fe{sub 16}N{sub 2} in the nitrogen-rich case and image analysis confirmed the simulated fraction of nitrides.

  17. Central and peripheral mechanisms underlying gastric distention inhibitory reflex responses in hypercapnic-acidotic rats.

    Science.gov (United States)

    Tjen-A-Looi, Stephanie C; Hsiao, An-Fu; Longhurst, John C

    2011-03-01

    We have observed that in chloralose-anesthetized animals, gastric distension (GD) typically increases blood pressure (BP) under normoxic normocapnic conditions. However, we recently noted repeatable decreases in BP and heart rate (HR) in hypercapnic-acidotic rats in response to GD. The neural pathways, central processing, and autonomic effector mechanisms involved in this cardiovascular reflex response are unknown. We hypothesized that GD-induced decrease in BP and HR reflex responses are mediated during both withdrawal of sympathetic tone and increased parasympathetic activity, involving the rostral (rVLM) and caudal ventrolateral medulla (cVLM) and the nucleus ambiguus (NA). Rats anesthetized with ketamine and xylazine or α-chloralose were ventilated and monitored for HR and BP changes. The extent of cardiovascular inhibition was related to the extent of hypercapnia and acidosis. Repeated GD with both anesthetics induced consistent falls in BP and HR. The hemodynamic inhibitory response was reduced after blockade of the celiac ganglia or the intraabdominal vagal nerves with lidocaine, suggesting that the decreased BP and HR responses were mediated by both sympathetic and parasympathetic afferents. Blockade of the NA decreased the bradycardia response. Microinjection of kainic acid into the cVLM reduced the inhibitory BP response, whereas depolarization blockade of the rVLM decreased both BP and HR inhibitory responses. Blockade of GABA(A) receptors in the rVLM also reduced the BP and HR reflex responses. Atropine methyl bromide completely blocked the reflex bradycardia, and atenolol blocked the negative chronotropic response. Finally, α(1)-adrenergic blockade with prazosin reversed the depressor. Thus, in the setting of hypercapnic-acidosis, a sympathoinhibitory cardiovascular response is mediated, in part, by splanchnic nerves and is processed through the rVLM and cVLM. Additionally, a vagal excitatory reflex, which involves the NA, facilitates the GD

  18. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold and heat

    Directory of Open Access Journals (Sweden)

    Kazuo eNakashima

    2014-05-01

    Full Text Available Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress conditions, and the ABA-responsive element (ABRE is the major cis-element for ABA-responsive gene expression. Transcription factors (TFs are master regulators of gene expression. ABRE-binding protein (AREB and ABRE-binding factor (ABF TFs control gene expression in an ABA-dependent manner. SNF1-related protein kinases 2, group A 2C-type protein phosphatases, and ABA receptors were shown to control the ABA signaling pathway. ABA-independent signaling pathways such as dehydration-responsive element-binding protein (DREB TFs and NAC TFs are also involved in stress responses including drought, heat and cold. Recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress responses. The important roles of these transcription factors in crosstalk among abiotic stress responses will be discussed. Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses. Recent studies using crops have shown that stress-specific overexpression of TFs improves drought tolerance and grain yield compared with controls in the field.

  19. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat.

    Science.gov (United States)

    Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2014-01-01

    Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA) is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress conditions, and the ABA-responsive element (ABRE) is the major cis-element for ABA-responsive gene expression. Transcription factors (TFs) are master regulators of gene expression. ABRE-binding protein and ABRE-binding factor TFs control gene expression in an ABA-dependent manner. SNF1-related protein kinases 2, group A 2C-type protein phosphatases, and ABA receptors were shown to control the ABA signaling pathway. ABA-independent signaling pathways such as dehydration-responsive element-binding protein TFs and NAC TFs are also involved in stress responses including drought, heat, and cold. Recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress responses. The important roles of these TFs in crosstalk among abiotic stress responses will be discussed. Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses. Recent studies using crops have shown that stress-specific overexpression of TFs improves drought tolerance and grain yield compared with controls in the field.

  20. Effects of the Variation in Brain Tissue Mechanical Properties on the Intracranial Response of a 6-Year-Old Child.

    Science.gov (United States)

    Cui, Shihai; Li, Haiyan; Li, Xiangnan; Ruan, Jesse

    2015-01-01

    Brain tissue mechanical properties are of importance to investigate child head injury using finite element (FE) method. However, these properties used in child head FE model normally vary in a large range in published literatures because of the insufficient child cadaver experiments. In this work, a head FE model with detailed anatomical structures is developed from the computed tomography (CT) data of a 6-year-old healthy child head. The effects of brain tissue mechanical properties on traumatic brain response are also analyzed by reconstruction of a head impact on engine hood according to Euro-NCAP testing regulation using FE method. The result showed that the variations of brain tissue mechanical parameters in linear viscoelastic constitutive model had different influences on the intracranial response. Furthermore, the opposite trend was obtained in the predicted shear stress and shear strain of brain tissues caused by the variations of mentioned parameters.

  1. Effects of the Variation in Brain Tissue Mechanical Properties on the Intracranial Response of a 6-Year-Old Child

    Directory of Open Access Journals (Sweden)

    Shihai Cui

    2015-01-01

    Full Text Available Brain tissue mechanical properties are of importance to investigate child head injury using finite element (FE method. However, these properties used in child head FE model normally vary in a large range in published literatures because of the insufficient child cadaver experiments. In this work, a head FE model with detailed anatomical structures is developed from the computed tomography (CT data of a 6-year-old healthy child head. The effects of brain tissue mechanical properties on traumatic brain response are also analyzed by reconstruction of a head impact on engine hood according to Euro-NCAP testing regulation using FE method. The result showed that the variations of brain tissue mechanical parameters in linear viscoelastic constitutive model had different influences on the intracranial response. Furthermore, the opposite trend was obtained in the predicted shear stress and shear strain of brain tissues caused by the variations of mentioned parameters.

  2. Aging and loading rate effects on the mechanical behavior of equine bone

    Science.gov (United States)

    Kulin, Robb M.; Jiang, Fengchun; Vecchio, Kenneth S.

    2008-06-01

    Whether due to a sporting accident, high-speed impact, fall, or other catastrophic event, the majority of clinical bone fractures occur under dynamic loading conditions. However, although extensive research has been performed on the quasi-static fracture and mechanical behavior of bone to date, few high-quality studies on the fracture behavior of bone at high strain rates have been performed. Therefore, many questions remain regarding the material behavior, including not only the loading-rate-dependent response of bone, but also how this response varies with age. In this study, tests were performed on equine femoral bone taken post-mortem from donors 6 months to 28 years of age. Quasi-static and dynamic tests were performed to determine the fracture toughness and compressive mechanical behavior as a function of age at varying loading rates. Fracture paths were then analyzed using scanning confocal and scanning-electron microscopy techniques to assess the role of various microstructural features on toughening mechanisms.

  3. Dynamical response of multi-walled carbon nanotube resonators based on continuum mechanics modeling for mass sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Myungseok; Olshevskiy, Alexander; Kim, Chang-Wan [Konkuk University, Seoul (Korea, Republic of); Eom, Kilho [Sungkyunkwan University, Suwon (Korea, Republic of); Gwak, Kwanwoong [Sejong University, Seoul (Korea, Republic of); Dai, Mai Duc [Ho Chi Minh City University of Technology and Education, Ho Chi Minh (Viet Nam)

    2017-05-15

    Carbon nanotube (CNT) has recently received much attention due to its excellent electromechanical properties, indicating that CNT can be employed for development of Nanoelectromechanical system (NEMS) such as nanomechanical resonators. For effective design of CNT-based resonators, it is required to accurately predict the vibration behavior of CNT resonators as well as their frequency response to mass adsorption. In this work, we have studied the vibrational behavior of Multi-walled CNT (MWCNT) resonators by using a continuum mechanics modeling that was implemented in Finite element method (FEM). In particular, we consider a transversely isotropic hollow cylinder solid model with Finite element (FE) implementation for modeling the vibration behavior of Multi-walled CNT (MWCNT) resonators. It is shown that our continuum mechanics model provides the resonant frequencies of various MWCNTs being comparable to those obtained from experiments. Moreover, we have investigated the frequency response of MWCNT resonators to mass adsorption by using our continuum model with FE implementation. Our study sheds light on our continuum mechanics model that is useful in predicting not only the vibration behavior of MWCNT resonators but also their sensing performance for further effective design of MWCNT- based NEMS devices.

  4. Mechanical response of collagen molecule under hydrostatic compression

    International Nuclear Information System (INIS)

    Saini, Karanvir; Kumar, Navin

    2015-01-01

    Proteins like collagen are the basic building blocks of various body tissues (soft and hard). Collagen molecules find their presence in the skeletal system of the body where they bear mechanical loads from different directions, either individually or along with hydroxy-apatite crystals. Therefore, it is very important to understand the mechanical behavior of the collagen molecule which is subjected to multi-axial state of loading. The estimation of strains of collagen molecule along different directions resulting from the changes in hydrostatic pressure magnitude, can provide us new insights into its mechanical behavior. In the present work, full atomistic simulations have been used to study global (volumetric) as well as local (along different directions) mechanical properties of the hydrated collagen molecule which is subjected to different hydrostatic pressure magnitudes. To estimate the local mechanical properties, the strains of collagen molecule along its longitudinal and transverse directions have been acquired at different hydrostatic pressure magnitudes. In spite of non-homogeneous distribution of atoms within the collagen molecule, the calculated values of local mechanical properties have been found to carry the same order of magnitude along the longitudinal and transverse directions. It has been demonstrated that the values of global mechanical properties like compressibility, bulk modulus, etc. as well as local mechanical properties like linear compressibility, linear elastic modulus, etc. are functions of magnitudes of applied hydrostatic pressures. The mechanical characteristics of collagen molecule based on the atomistic model have also been compared with that of the continuum model in the present work. The comparison showed up orthotropic material behavior for the collagen molecule. The information on collagen molecule provided in the present study can be very helpful in designing the future bio-materials.

  5. Mechanical response of collagen molecule under hydrostatic compression.

    Science.gov (United States)

    Saini, Karanvir; Kumar, Navin

    2015-04-01

    Proteins like collagen are the basic building blocks of various body tissues (soft and hard). Collagen molecules find their presence in the skeletal system of the body where they bear mechanical loads from different directions, either individually or along with hydroxy-apatite crystals. Therefore, it is very important to understand the mechanical behavior of the collagen molecule which is subjected to multi-axial state of loading. The estimation of strains of collagen molecule along different directions resulting from the changes in hydrostatic pressure magnitude, can provide us new insights into its mechanical behavior. In the present work, full atomistic simulations have been used to study global (volumetric) as well as local (along different directions) mechanical properties of the hydrated collagen molecule which is subjected to different hydrostatic pressure magnitudes. To estimate the local mechanical properties, the strains of collagen molecule along its longitudinal and transverse directions have been acquired at different hydrostatic pressure magnitudes. In spite of non-homogeneous distribution of atoms within the collagen molecule, the calculated values of local mechanical properties have been found to carry the same order of magnitude along the longitudinal and transverse directions. It has been demonstrated that the values of global mechanical properties like compressibility, bulk modulus, etc. as well as local mechanical properties like linear compressibility, linear elastic modulus, etc. are functions of magnitudes of applied hydrostatic pressures. The mechanical characteristics of collagen molecule based on the atomistic model have also been compared with that of the continuum model in the present work. The comparison showed up orthotropic material behavior for the collagen molecule. The information on collagen molecule provided in the present study can be very helpful in designing the future bio-materials. Copyright © 2015 Elsevier B.V. All rights

  6. Mechanical response of collagen molecule under hydrostatic compression

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Karanvir, E-mail: karans@iitrpr.ac.in; Kumar, Navin

    2015-04-01

    Proteins like collagen are the basic building blocks of various body tissues (soft and hard). Collagen molecules find their presence in the skeletal system of the body where they bear mechanical loads from different directions, either individually or along with hydroxy-apatite crystals. Therefore, it is very important to understand the mechanical behavior of the collagen molecule which is subjected to multi-axial state of loading. The estimation of strains of collagen molecule along different directions resulting from the changes in hydrostatic pressure magnitude, can provide us new insights into its mechanical behavior. In the present work, full atomistic simulations have been used to study global (volumetric) as well as local (along different directions) mechanical properties of the hydrated collagen molecule which is subjected to different hydrostatic pressure magnitudes. To estimate the local mechanical properties, the strains of collagen molecule along its longitudinal and transverse directions have been acquired at different hydrostatic pressure magnitudes. In spite of non-homogeneous distribution of atoms within the collagen molecule, the calculated values of local mechanical properties have been found to carry the same order of magnitude along the longitudinal and transverse directions. It has been demonstrated that the values of global mechanical properties like compressibility, bulk modulus, etc. as well as local mechanical properties like linear compressibility, linear elastic modulus, etc. are functions of magnitudes of applied hydrostatic pressures. The mechanical characteristics of collagen molecule based on the atomistic model have also been compared with that of the continuum model in the present work. The comparison showed up orthotropic material behavior for the collagen molecule. The information on collagen molecule provided in the present study can be very helpful in designing the future bio-materials.

  7. Defense mechanisms of Solanum tuberosum L. in response to attack by plant-pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    VERA A D POIATTI

    2009-01-01

    Full Text Available The natural resistance of plants to disease is based not only on preformed mechanisms, but also on induced mechanisms. The defense mechanisms present in resistant plants may also be found in susceptible ones. This study attempted to analyze the metabolic alterations in plants of the potato Solanum tuberosum L. cv. Agata that were inoculated with the incompatible plant-pathogenic bacteria X. axonopodis and R. solanacearum, and the compatible bacterium E. carotovora. Levels of total phenolic compounds, including the flavonoid group, and the activities of polyphenol oxidase (PPO and peroxidase (POX were evaluated. Bacteria compatibility was evaluated by means of infiltration of tubers. The defense response was evaluated in the leaves of the potato plants. Leaves were inoculated depending on their number and location on the stem. Multiple-leaf inoculation was carried out on basal, intermediate, and apical leaves, and single inoculations on intermediate leaves. Leaves inoculated with X. axonopodis and with R. solanacearum showed hypersensitive responses within 24 hours post-inoculation, whereas leaves inoculated with E. carotovora showed disease symptoms. Therefore, the R. solanacearum isolate used in the experiments did not exhibit virulence to this potato cultivar. Regardless of the bacterial treatments, the basal leaves showed higher PPO and POX activities and lower levels of total phenolic compounds and flavonoids, compared to the apical leaves. However, basal and intermediate leaves inoculated with R. solanacearum and X. axonopodis showed increases in total phenolic compounds and flavonoid levels. In general, multiple-leaf inoculation showed the highest levels of total phenolics and flavonoids, whereas the single inoculations resulted in the highest increase in PPO activity. The POX activity showed no significant difference between single- and multiple-leaf inoculations. Plants inoculated with E. carotovora showed no significant increase in

  8. Mechanisms governing the health and performance benefits of exercise.

    Science.gov (United States)

    Bishop-Bailey, D

    2013-11-01

    Humans are considered among the greatest if not the greatest endurance land animals. Over the last 50 years, as the population has become more sedentary, rates of cardiovascular disease and its associated risk factors such as obesity, type 2 diabetes and hypertension have all increased. Aerobic fitness is considered protective for all-cause mortality, cardiovascular disease, a variety of cancers, joint disease and depression. Here, I will review the emerging mechanisms that underlie the response to exercise, focusing on the major target organ the skeletal muscle system. Understanding the mechanisms of action of exercise will allow us to develop new therapies that mimic the protective actions of exercise. © 2013 The British Pharmacological Society.

  9. Responses of garlic bulbs to gamma irradiation. Changes in major amino acids

    International Nuclear Information System (INIS)

    Parolo, Maria E.; Orioli, Gustavo A.; Croci, Clara A.

    1997-01-01

    Studies were conducted to provide information about the amino acids composition of garlic bulbs cv Colorado and to determinate the effect of a dose of 60 Gy of gamma rays on the behavior of the major free amino acids in relation to sprout growth radioinhibition. TLC and HPLC were used for identification and quantification of free amino acids. Eighteen free amino acids were identified in both parts of garlic bulbs: alanine, glycine, proline, methionine, serine, phenylalanine, aspartic acid, glutamic acid, lysine, glutamine, arginine, tyrosine, threonine, cystine, cysteine, leucine + isoleucine and asparagine. In the inner sprout the major amino acids founded were: glutamine, glutamic acid, threonine, asparagine, cystine, cysteine and methionine; in the storage leaf also arginine was also predominant. In general concentration of amino acids appeared to less affected by irradiation in the storage leaf that in the inner sprout. An increase in the short time post-irradiation in glutamine, glutamic acid, asparagine, theorine and methionine was observed. Sprout grouth radioinhibition was evident about 70 days after treatment and was preceded by a decrease in the major amino acids except methionine. It appears that concentration of same major amino acidscan be used as monitors of radioinhibition process in inner sprout of garlic. (author). 15 refs., 8 figs

  10. Retinal ganglion cells: mechanisms underlying depolarization block and differential responses to high frequency electrical stimulation of ON and OFF cells

    Science.gov (United States)

    Kameneva, T.; Maturana, M. I.; Hadjinicolaou, A. E.; Cloherty, S. L.; Ibbotson, M. R.; Grayden, D. B.; Burkitt, A. N.; Meffin, H.

    2016-02-01

    Objective. ON and OFF retinal ganglion cells (RGCs) are known to have non-monotonic responses to increasing amplitudes of high frequency (2 kHz) biphasic electrical stimulation. That is, an increase in stimulation amplitude causes an increase in the cell’s spike rate up to a peak value above which further increases in stimulation amplitude cause the cell to decrease its activity. The peak response for ON and OFF cells occurs at different stimulation amplitudes, which allows differential stimulation of these functional cell types. In this study, we investigate the mechanisms underlying the non-monotonic responses of ON and OFF brisk-transient RGCs and the mechanisms underlying their differential responses. Approach. Using in vitro patch-clamp recordings from rat RGCs, together with simulations of single and multiple compartment Hodgkin-Huxley models, we show that the non-monotonic response to increasing amplitudes of stimulation is due to depolarization block, a change in the membrane potential that prevents the cell from generating action potentials. Main results. We show that the onset for depolarization block depends on the amplitude and frequency of stimulation and reveal the biophysical mechanisms that lead to depolarization block during high frequency stimulation. Our results indicate that differences in transmembrane potassium conductance lead to shifts of the stimulus currents that generate peak spike rates, suggesting that the differential responses of ON and OFF cells may be due to differences in the expression of this current type. We also show that the length of the axon’s high sodium channel band (SOCB) affects non-monotonic responses and the stimulation amplitude that leads to the peak spike rate, suggesting that the length of the SOCB is shorter in ON cells. Significance. This may have important implications for stimulation strategies in visual prostheses.

  11. Genetic predictors of response to serotonergic and noradrenergic antidepressants in major depressive disorder: a genome-wide analysis of individual-level data and a meta-analysis.

    Science.gov (United States)

    Tansey, Katherine E; Guipponi, Michel; Perroud, Nader; Bondolfi, Guido; Domenici, Enrico; Evans, David; Hall, Stephanie K; Hauser, Joanna; Henigsberg, Neven; Hu, Xiaolan; Jerman, Borut; Maier, Wolfgang; Mors, Ole; O'Donovan, Michael; Peters, Tim J; Placentino, Anna; Rietschel, Marcella; Souery, Daniel; Aitchison, Katherine J; Craig, Ian; Farmer, Anne; Wendland, Jens R; Malafosse, Alain; Holmans, Peter; Lewis, Glyn; Lewis, Cathryn M; Stensbøl, Tine Bryan; Kapur, Shitij; McGuffin, Peter; Uher, Rudolf

    2012-01-01

    It has been suggested that outcomes of antidepressant treatment for major depressive disorder could be significantly improved if treatment choice is informed by genetic data. This study aims to test the hypothesis that common genetic variants can predict response to antidepressants in a clinically meaningful way. The NEWMEDS consortium, an academia-industry partnership, assembled a database of over 2,000 European-ancestry individuals with major depressive disorder, prospectively measured treatment outcomes with serotonin reuptake inhibiting or noradrenaline reuptake inhibiting antidepressants and available genetic samples from five studies (three randomized controlled trials, one part-randomized controlled trial, and one treatment cohort study). After quality control, a dataset of 1,790 individuals with high-quality genome-wide genotyping provided adequate power to test the hypotheses that antidepressant response or a clinically significant differential response to the two classes of antidepressants could be predicted from a single common genetic polymorphism. None of the more than half million genetic markers significantly predicted response to antidepressants overall, serotonin reuptake inhibitors, or noradrenaline reuptake inhibitors, or differential response to the two types of antidepressants (genome-wide significance panalysis of NEWMEDS and another large sample (STAR*D), with 2,897 individuals in total. Polygenic scoring found no convergence among multiple associations in NEWMEDS and STAR*D. No single common genetic variant was associated with antidepressant response at a clinically relevant level in a European-ancestry cohort. Effects specific to particular antidepressant drugs could not be investigated in the current study. Please see later in the article for the Editors' Summary.

  12. Genome-wide transcription responses to synchrotron microbeam radiotherapy.

    Science.gov (United States)

    Sprung, Carl N; Yang, Yuqing; Forrester, Helen B; Li, Jason; Zaitseva, Marina; Cann, Leonie; Restall, Tina; Anderson, Robin L; Crosbie, Jeffrey C; Rogers, Peter A W

    2012-10-01

    The majority of cancer patients achieve benefit from radiotherapy. A significant limitation of radiotherapy is its relatively low therapeutic index, defined as the maximum radiation dose that causes acceptable normal tissue damage to the minimum dose required to achieve tumor control. Recently, a new radiotherapy modality using synchrotron-generated X-ray microbeam radiotherapy has been demonstrated in animal models to ablate tumors with concurrent sparing of normal tissue. Very little work has been undertaken into the cellular and molecular mechanisms that differentiate microbeam radiotherapy from broad beam. The purpose of this study was to investigate and compare the whole genome transcriptional response of in vivo microbeam radiotherapy versus broad beam irradiated tumors. We hypothesized that gene expression changes after microbeam radiotherapy are different from those seen after broad beam. We found that in EMT6.5 tumors at 4-48 h postirradiation, microbeam radiotherapy differentially regulates a number of genes, including major histocompatibility complex (MHC) class II antigen gene family members, and other immunity-related genes including Ciita, Ifng, Cxcl1, Cxcl9, Indo and Ubd when compared to broad beam. Our findings demonstrate molecular differences in the tumor response to microbeam versus broad beam irradiation and these differences provide insight into the underlying mechanisms of microbeam radiotherapy and broad beam.

  13. Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications.

    Science.gov (United States)

    Cabral, Lucélia; Soares, Claúdio Roberto Fonsêca Sousa; Giachini, Admir José; Siqueira, José Oswaldo

    2015-11-01

    In recent decades, the concentration of trace elements has increased in soil and water, mainly by industrialization and urbanization. Recovery of contaminated areas is generally complex. In that respect, microorganisms can be of vital importance by making significant contributions towards the establishment of plants and the stabilization of impacted areas. Among the available strategies for environmental recovery, bioremediation and phytoremediation outstand. Arbuscular mycorrhizal fungi (AMF) are considered the most important type of mycorrhizae for phytoremediation. AMF have broad occurrence in contaminated soils, and evidences suggest they improve plant tolerance to excess of certain trace elements. In this review, the use of AMF in phytoremediation and mechanisms involved in their trace element tolerance are discussed. Additionally, we present some techniques used to study the retention of trace elements by AMF, as well as a summary of studies showing major benefits of AMF for phytoremediation.

  14. Major Roles for Pyrimidine Dimers, Nucleotide Excision Repair, and ATR in the Alternative Splicing Response to UV Irradiation

    Directory of Open Access Journals (Sweden)

    Manuel J. Muñoz

    2017-03-01

    Full Text Available We have previously found that UV irradiation promotes RNA polymerase II (RNAPII hyperphosphorylation and subsequent changes in alternative splicing (AS. We show now that UV-induced DNA damage is not only necessary but sufficient to trigger the AS response and that photolyase-mediated removal of the most abundant class of pyrimidine dimers (PDs abrogates the global response to UV. We demonstrate that, in keratinocytes, RNAPII is the target, but not a sensor, of the signaling cascade initiated by PDs. The UV effect is enhanced by inhibition of gap-filling DNA synthesis, the last step in the nucleotide excision repair pathway (NER, and reduced by the absence of XPE, the main NER sensor of PDs. The mechanism involves activation of the protein kinase ATR that mediates the UV-induced RNAPII hyperphosphorylation. Our results define the sequence UV-PDs-NER-ATR-RNAPII-AS as a pathway linking DNA damage repair to the control of both RNAPII phosphorylation and AS regulation.

  15. Low Frequency Dispersion Mechanism of Dielectric Response for Oil-paper Insulation Diagnosis

    Institute of Scientific and Technical Information of China (English)

    ZHOU Lijun; LI Xianlang; WU Guangning

    2013-01-01

    Both the real part and imaginary part of complex permittivity approximately have a log-linear frequency dependency at low frequencies,especially at ultra-low frequencies under conditions of different moisture concentrations and temperatures,which is recognized as the low frequency dispersion (LFD).In order to explain this dispersion,a new mechanism of dielectric response of LFD of oil-paper insulation is proposed.A simplified one-dimensional mathematical model of concentration polarization carrier caused by slow migration is developed and solved,which indicates that ion mobility is closely related to the size of gap and the adsorption capacity of cellulose molecular chains to ions.A stochastic statistical model of the carrier mobility induced LFD is also developed.Moreover,actual tests under 50 ℃and 2% moisture content were put forward,as well as simulations with according current waveforms.The simulation results agreed well with the experimental data in that concentration polarization of carriers caused by slow migration is the probable cause of low frequency dispersion ofdielectric response for oil-paper insulation diagnosis.

  16. Evasion of the Interferon-Mediated Antiviral Response by Filoviruses

    Directory of Open Access Journals (Sweden)

    Washington B. Cárdenas

    2010-01-01

    Full Text Available The members of the filoviruses are recognized as some of the most lethal viruses affecting human and non-human primates. The only two genera of the Filoviridae family, Marburg virus (MARV and Ebola virus (EBOV, comprise the main etiologic agents of severe hemorrhagic fever outbreaks in central Africa, with case fatality rates ranging from 25 to 90%. Fatal outcomes have been associated with a late and dysregulated immune response to infection, very likely due to the virus targeting key host immune cells, such as macrophages and dendritic cells (DCs that are necessary to mediate effective innate and adaptive immune responses. Despite major progress in the development of vaccine candidates for filovirus infections, a licensed vaccine or therapy for human use is still not available. During the last ten years, important progress has been made in understanding the molecular mechanisms of filovirus pathogenesis. Several lines of evidence implicate the impairment of the host interferon (IFN antiviral innate immune response by MARV or EBOV as an important determinant of virulence. In vitro and in vivo experimental infections with recombinant Zaire Ebola virus (ZEBOV, the best characterized filovirus, demonstrated that the viral protein VP35 plays a key role in inhibiting the production of IFN-α/β. Further, the action of VP35 is synergized by the inhibition of cellular responses to IFN-α/β by the minor matrix viral protein VP24. The dual action of these viral proteins may contribute to an efficient initial virus replication and dissemination in the host. Noticeably, the analogous function of these viral proteins in MARV has not been reported. Because the IFN response is a major component of the innate immune response to virus infection, this chapter reviews recent findings on the molecular mechanisms of IFN-mediated antiviral evasion by filovirus infection.

  17. Purinergic signalling links mechanical breath profile and alveolar mechanics with the pro-inflammatory innate immune response causing ventilation-induced lung injury.

    Science.gov (United States)

    Hasan, Djo; Blankman, Paul; Nieman, Gary F

    2017-09-01

    Severe pulmonary infection or vigorous cyclic deformation of the alveolar epithelial type I (AT I) cells by mechanical ventilation leads to massive extracellular ATP release. High levels of extracellular ATP saturate the ATP hydrolysis enzymes CD39 and CD73 resulting in persistent high ATP levels despite the conversion to adenosine. Above a certain level, extracellular ATP molecules act as danger-associated molecular patterns (DAMPs) and activate the pro-inflammatory response of the innate immunity through purinergic receptors on the surface of the immune cells. This results in lung tissue inflammation, capillary leakage, interstitial and alveolar oedema and lung injury reducing the production of surfactant by the damaged AT II cells and deactivating the surfactant function by the concomitant extravasated serum proteins through capillary leakage followed by a substantial increase in alveolar surface tension and alveolar collapse. The resulting inhomogeneous ventilation of the lungs is an important mechanism in the development of ventilation-induced lung injury. The high levels of extracellular ATP and the upregulation of ecto-enzymes and soluble enzymes that hydrolyse ATP to adenosine (CD39 and CD73) increase the extracellular adenosine levels that inhibit the innate and adaptive immune responses rendering the host susceptible to infection by invading microorganisms. Moreover, high levels of extracellular adenosine increase the expression, the production and the activation of pro-fibrotic proteins (such as TGF-β, α-SMA, etc.) followed by the establishment of lung fibrosis.

  18. Major Histocompatibilty Complex-Restricted Adaptive Immune Responses to CT26 Colon Cancer Cell Line in Mixed Allogeneic Chimera.

    Science.gov (United States)

    Lee, K W; Choi, B; Kim, Y M; Cho, C W; Park, H; Moon, J I; Choi, G-S; Park, J B; Kim, S J

    2017-06-01

    Although the induction of mixed allogeneic chimera shows promising clinical tolerance results in organ transplantation, its clinical relevance as an anti-cancer therapy is yet unknown. We introduced a mixed allogenic chimera setting with the use of a murine colon cancer cell line, CT26, by performing double bone marrow transplantation. We analyzed donor- and recipient-restricted anti-cancer T-cell responses, and phenotypes of subpopulations of T cells. The protocol involves challenging 1 × 10 5 cells of CT26 cells intra-hepatically on day 50 after bone marrow transplantation, and, by use of CT26 lysates and an H-2L d -restricted AH1 pentamer, flow cytometric analysis was performed to detect the generation of cancer-specific CD4 + and CD8 + T cells at various time points. We found that immunocompetence against tumors depends heavily on cancer-specific CD8 + T-cell responses in a major histocompatibility complex-restricted manner; the evidence was further supported by the increase of interferon-γ-secreting CD4 + T cells. Moreover, we demonstrated that during the effector immune response to CT26 cancer challenge, there was a presence of central memory cells (CD62L hi CCR7 + ) as well as effector memory cells (CD62L lo CCR7 - ). Moreover, mixed allogeneic chimeras (BALB/c to C56BL/6 or vice versa) showed similar or heightened immune responses to CT26 cells compared with that of wild-type mice. Our results suggest that the responses of primary immunocompetency and of pre-existing memory T cells against allogeneic cancer are sustained and preserved long-term in a mixed allogeneic chimeric environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Mechanisms, patterns and outcomes of paediatric polytrauma in a UK major trauma centre.

    Science.gov (United States)

    Naqvi, G; Johansson, G; Yip, G; Rehm, A; Carrothers, A; Stöhr, K

    2017-01-01

    Introduction Paediatric trauma is a significant burden to healthcare worldwide and accounts for a large proportion of deaths in the UK. Methods This retrospective study examined the epidemiological data from a major trauma centre in the UK between January 2012 and December 2014, reviewing all cases of moderate to severe trauma in children. Patients were included if aged ≤16 years and if they had an abbreviated injury scale score of ≥2 in one or more body region. Results A total of 213 patients were included in the study, with a mean age of 7.8 years (standard deviation [SD]: 5.2 years). The most common cause of injury was vehicle related incidents (46%). The median length of hospital stay was 5 days (interquartile range [IQR]: 4-10 days). Approximately half (52%) of the patients had to stay in the intensive care unit, for a median of 1 day (IQR: 0-2 days). The mortality rate was 6.6%. The mean injury severity score was 19 (SD: 10). Pearson's correlation coefficient showed a positive correlation for injury severity score with length of stay in hospital (p<0.001). Conclusions There is significant variation in mechanism of injury, severity and pattern of paediatric trauma across age groups. A multidisciplinary team approach is imperative, and patients should be managed in specialist centres to optimise their care and eventual functional recovery. Head injury remained the most common, with significant mortality in all age groups. Rib fractures and pelvic fractures should be considered a marker for the severity of injury, and should alert doctors to look for other associated injuries.

  20. Utilisation of helicopter emergency medical services in the early medical response to major incidents: a systematic literature review.

    Science.gov (United States)

    Johnsen, Anne Siri; Fattah, Sabina; Sollid, Stephen J M; Rehn, Marius

    2016-02-09

    This systematic review identifies, describes and appraises the literature describing the utilisation of helicopter emergency medical services (HEMS) in the early medical response to major incidents. Early prehospital phase of a major incident. Systematic literature review performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials, the Web of Science, PsycINFO, Scopus, Cinahl, Bibsys Ask, Norart, Svemed and UpToDate were searched using phrases that combined HEMS and 'major incidents' to identify when and how HEMS was utilised. The identified studies were subjected to data extraction and appraisal. The database search identified 4948 articles. Based on the title and abstract, the full text of 96 articles was obtained; of these, 37 articles were included in the review, and an additional five were identified by searching the reference lists of the 37 articles. HEMS was used to transport medical and rescue personnel to the incident and to transport patients to the hospital, especially when the infrastructure was damaged. Insufficient air traffic control, weather conditions, inadequate landing sites and failing communication were described as challenging in some incidents. HEMS was used mainly for patient treatment and to transport patients, personnel and equipment in the early medical management of major incidents, but the optimal utilisation of this specialised resource remains unclear. This review identified operational areas with improvement potential. A lack of systematic indexing, heterogeneous data reporting and weak methodological design, complicated the identification and comparison of incidents, and more systematic reporting is needed. CRD42013004473. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  1. Stress- and glucocorticoid-induced priming of neuroinflammatory responses: potential mechanisms of stress-induced vulnerability to drugs of abuse.

    Science.gov (United States)

    Frank, Matthew G; Watkins, Linda R; Maier, Steven F

    2011-06-01

    Stress and stress-induced glucocorticoids (GCs) sensitize drug abuse behavior as well as the neuroinflammatory response to a subsequent pro-inflammatory challenge. Stress also predisposes or sensitizes individuals to develop substance abuse. There is an emerging evidence that glia and glia-derived neuroinflammatory mediators play key roles in the development of drug abuse. Drugs of abuse such as opioids, psychostimulants, and alcohol induce neuroinflammatory mediators such as pro-inflammatory cytokines (e.g. interleukin (IL)-1β), which modulate drug reward, dependence, and tolerance as well as analgesic properties. Drugs of abuse may directly activate microglial and astroglial cells via ligation of Toll-like receptors (TLRs), which mediate the innate immune response to pathogens as well as xenobiotic agents (e.g. drugs of abuse). The present review focuses on understanding the immunologic mechanism(s) whereby stress primes or sensitizes the neuroinflammatory response to drugs of abuse and explores whether stress- and GC-induced sensitization of neuroimmune processes predisposes individuals to drug abuse liability and the role of neuroinflammatory mediators in the development of drug addiction. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Revealing vilazodone's binding mechanism underlying its partial agonism to the 5-HT1A receptor in the treatment of major depressive disorder.

    Science.gov (United States)

    Zheng, Guoxun; Xue, Weiwei; Yang, Fengyuan; Zhang, Yang; Chen, Yuzong; Yao, Xiaojun; Zhu, Feng

    2017-11-01

    It has been estimated that major depressive disorder (MDD) will become the second largest global burden among all diseases by 2030. Various types of drugs, including selective serotonin reuptake inhibitors (SSRIs), serotonin-norepinephrine reuptake inhibitors (SNRIs), and serotonin receptor partial agonist/reuptake inhibitors (SPARIs), have been approved and become the primary or first-line medications prescribed for MDD. SPARI was expected to demonstrate more enhanced drug efficacy and a rapid onset of action as compared to SSRI and SNRI. As one of the most famous SPARIs, vilazodone was approved by the FDA for the treatment of MDD. Because of the great clinical importance of vilazodone, its binding mechanism underlying its partial agonism to the 5-HT 1A receptor (5-HT 1A R) could provide valuable information to SPARIs' drug-like properties. However, this mechanism has not been reported to date; consequently, the rational design of new efficacious SPARI-based MDD drugs is severely hampered. To explore the molecular mechanism of vilazodone, an integrated computational strategy was adopted in this study to reveal its binding mechanism and prospective structural feature at the agonist binding site of 5-HT 1A R. As a result, 22 residues of this receptor were identified as hotspots, consistently favoring the binding of vilazodone and its analogues, and a common binding mechanism underlying their partial agonism to 5-HT 1A R was, therefore, discovered. Moreover, three main interaction features between vilazodone and 5-HT 1A R have been revealed and schematically summarized. In summary, this newly identified binding mechanism will provide valuable information for medicinal chemists working in the field of rational design of novel SPARIs for MDD treatment.

  3. Mechanical engineer's handbook

    CERN Document Server

    Marghitu, Dan B

    2001-01-01

    The Mechanical Engineer's Handbook was developed and written specifically to fill a need for mechanical engineers and mechanical engineering students throughout the world. With over 1000 pages, 550 illustrations, and 26 tables the Mechanical Engineer's Handbook is very comprehensive, yet affordable, compact, and durable. The Handbook covers all major areas of mechanical engineering with succinct coverage of the definitions, formulas, examples, theory, proofs, and explanations of all principle subject areas. The Handbook is an essential, practical companion for all mechanic

  4. 'Mom-I don't want to hear it': Brain response to maternal praise and criticism in adolescents with major depressive disorder.

    Science.gov (United States)

    Silk, Jennifer S; Lee, Kyung Hwa; Elliott, Rosalind D; Hooley, Jill M; Dahl, Ronald E; Barber, Anita; Siegle, Greg J

    2017-05-01

    Recent research has implicated altered neural response to interpersonal feedback as an important factor in adolescent depression, with existing studies focusing on responses to feedback from virtual peers. We investigated whether depressed adolescents differed from healthy youth in neural response to social evaluative feedback from mothers. During neuroimaging, twenty adolescents in a current episode of major depressive disorder (MDD) and 28 healthy controls listened to previously recorded audio clips of their own mothers' praise, criticism and neutral comments. Whole-brain voxelwise analyses revealed that MDD youth, unlike controls, exhibited increased neural response to critical relative to neutral clips in the parahippocampal gyrus, an area involved in episodic memory encoding and retrieval. Depressed adolescents also showed a blunted response to maternal praise clips relative to neutral clips in the parahippocampal gyrus, as well as areas involved in reward and self-referential processing (i.e. ventromedial prefrontal cortex, precuneus, and thalamus/caudate). Findings suggest that maternal criticism may be more strongly encoded or more strongly activated during memory retrieval related to previous autobiographical instances of negative feedback from mothers in depressed youth compared to healthy youth. Furthermore, depressed adolescents may fail to process the reward value and self-relevance of maternal praise. © The Author (2017). Published by Oxford University Press.

  5. Antibody and Cytokine Responses of Koalas (Phascolarctos cinereus) Vaccinated with Recombinant Chlamydial Major Outer Membrane Protein (MOMP) with Two Different Adjuvants

    OpenAIRE

    Khan, Shahneaz Ali; Desclozeaux, Marion; Waugh, Courtney; Hanger, Jon; Loader, Jo; Gerdts, Volker; Potter, Andrew; Polkinghorne, Adam; Beagley, Kenneth; Timms, Peter

    2016-01-01

    Developing a vaccine against Chlamydia is key to combating widespread mortalities and morbidities associated with this infection in koalas (Phascolarctos cinereus). In previous studies, we have shown that two or three doses of a Recombinant Major Outer Membrane Protein (rMOMP) antigen-based vaccine, combined with immune stimulating complex (ISC) adjuvant, results in strong cellular and humoral immune responses in koalas. We have also separately evaluated a single dose vaccine, utilising a tri...

  6. TaWRKY68 responses to biotic stresses are revealed by the orthologous genes from major cereals

    Directory of Open Access Journals (Sweden)

    Bo Ding

    2014-01-01

    Full Text Available WRKY transcription factors have been extensively characterized in the past 20 years, but in wheat, studies onWRKY genes and their function are lagging behind many other species. To explore the function of wheat WRKY genes, we identified a TaWRKY68 gene from a common wheat cultivar. It encodes a protein comprising 313 amino acids which harbors 19 conserved motifs or active sites. Gene expression patterns were determined by analyzing microarray data of TaWRKY68 in wheat and of orthologous genes from maize, rice and barley using Genevestigator. TaWRKY68 orthologs were identified and clustered using DELTA-BLAST and COBALT programs available at NCBI. The results showed that these genes, which are expressed in all tissues tested, had relatively higher levels in the roots and were up-regulated in response to biotic stresses. Bioinformatics results were confirmed by RT-PCR experiments using wheat plants infected by Agrobacterium tumefaciens and Blumeria graminis, or treated with Deoxynivalenol, a Fusarium graminearum-induced mycotoxin in wheat or barley. In summary,TaWRKY68 functions differ during plant developmental stages and might be representing a hub gene function in wheat responses to various biotic stresses. It was also found that including data from major cereal genes in the bioinformatics analysis gave more accurate and comprehensive predictions of wheat gene functions.

  7. Time-Dependent Mechanical Response of APbX3 (A = Cs, CH3NH3; X = I, Br) Single Crystals

    KAUST Repository

    Reyes-Martinez, Marcos A.; Abdelhady, Ahmed L.; Saidaminov, Makhsud I.; Chung, Duck Young; Bakr, Osman; Kanatzidis, Mercouri G.; Soboyejo, Wole O.; Loo, Yueh-Lin

    2017-01-01

    The ease of processing hybrid organic-inorganic perovskite (HOIPs) films, belonging to a material class with composition ABX3 , from solution and at mild temperatures promises their use in deformable technologies, including flexible photovoltaic devices, sensors, and displays. To successfully apply these materials in deformable devices, knowledge of their mechanical response to dynamic strain is necessary. The authors elucidate the time- and rate-dependent mechanical properties of HOIPs and an inorganic perovskite (IP) single crystal by measuring nanoindentation creep and stress relaxation. The observation of pop-in events and slip bands on the surface of the indented crystals demonstrate dislocation-mediated plastic deformation. The magnitudes of creep and relaxation of both HOIPs and IPs are similar, negating prior hypothesis that the presence of organic A-site cations alters the mechanical response of these materials. Moreover, these samples exhibit a pronounced increase in creep, and stress relaxation as a function of indentation rate whose magnitudes reflect differences in the rates of nucleation and propagation of dislocations within the crystal structures of HOIPs and IP. This contribution provides understanding that is critical for designing perovskite devices capable of withstanding mechanical deformations.

  8. Time-Dependent Mechanical Response of APbX3 (A = Cs, CH3NH3; X = I, Br) Single Crystals

    KAUST Repository

    Reyes-Martinez, Marcos A.

    2017-05-02

    The ease of processing hybrid organic-inorganic perovskite (HOIPs) films, belonging to a material class with composition ABX3 , from solution and at mild temperatures promises their use in deformable technologies, including flexible photovoltaic devices, sensors, and displays. To successfully apply these materials in deformable devices, knowledge of their mechanical response to dynamic strain is necessary. The authors elucidate the time- and rate-dependent mechanical properties of HOIPs and an inorganic perovskite (IP) single crystal by measuring nanoindentation creep and stress relaxation. The observation of pop-in events and slip bands on the surface of the indented crystals demonstrate dislocation-mediated plastic deformation. The magnitudes of creep and relaxation of both HOIPs and IPs are similar, negating prior hypothesis that the presence of organic A-site cations alters the mechanical response of these materials. Moreover, these samples exhibit a pronounced increase in creep, and stress relaxation as a function of indentation rate whose magnitudes reflect differences in the rates of nucleation and propagation of dislocations within the crystal structures of HOIPs and IP. This contribution provides understanding that is critical for designing perovskite devices capable of withstanding mechanical deformations.

  9. Longitudinal assessment of neuropsychological function in major depression.

    Science.gov (United States)

    Douglas, Katie M; Porter, Richard J

    2009-12-01

    Neuropsychological impairment is a core component of major depression, yet its relationship to clinical state is unclear. The aims of the present review were to determine which neuropsychological domains and tasks were most sensitive to improvement in clinical state in major depression and to highlight the methodological issues in such research. Studies that included a baseline and at least one follow-up neuropsychological testing session in adults with major depression were identified using MEDLINE, Web of Science and ScienceDirect databases. Thirty studies were included in the review. Findings in younger adult populations suggested that improvement in mood was most strongly related to improved verbal memory and verbal fluency, while measures of executive functioning and attention tended to remain impaired across treatment. In late-life major depression, improved psychomotor speed was most closely related to treatment response, but there was much inconsistency between study findings, which may be due to methodological issues. In major depression, particular neuropsychological domains are more strongly related to clinical state than others. The findings from the present review suggest that the domains most sensitive to clinical state are verbal learning and memory, verbal fluency and psychomotor speed. In contrast, measures of attention and executive functioning perhaps represent more trait-like markers of major depression. With further methodologically sound research, the changes in neuropsychological function associated with treatment response may provide a means of evaluating different treatment strategies in major depression.

  10. Securing Major Events

    International Nuclear Information System (INIS)

    Loeoef, Susanna

    2013-01-01

    When asked why the IAEA should provide nuclear security support to countries that organize large public events, Nuclear Security Officer Sophia Miaw answers quickly and without hesitation. ''Imagine any major public event such as the Olympics, a football championship, or an Expo. If a dirty bomb were to be exploded at a site where tens of thousands of people congregate, the radioactive contamination would worsen the effects of the bomb, increase the number of casualties, impede a rapid emergency response, and cause long term disruption in the vicinity,'' she said. Avoiding such nightmarish scenarios is the driving purpose behind the assistance the IAEA offers States that host major sporting or other public events. The support can range from a single training course to a comprehensive programme that includes threat assessment, training, loaned equipment and exercises. The type and scope of assistance depends on the host country's needs. ''We incorporate nuclear security measures into their security plan. We don't create anything new,'' Miaw said

  11. Prevalence of MTHFR C677T and MS A2756G polymorphisms in major depressive disorder, and their impact on response to fluoxetine treatment

    Science.gov (United States)

    To examine the prevalence of the C677T polymorphism of the methylene tetrahydrofolate reductase (MTHFR) gene and the A2756G polymorphism of methionine synthase (MS), and their impact on antidepressant response. We screened 224 subjects (52% female, mean age 39 +/- 11 years) with SCID-diagnosed major...

  12. Numerical Study of Mechanical Response of Pure Titanium during Shot Peening

    Science.gov (United States)

    Wang, Y. M.; Cheng, J. P.; Yang, H. P.; Zhang, C. H.

    2018-05-01

    Mechanical response of pure titanium impacted by a steel ball was simulated using finite element method to investigate stress and strain evolution during shot peening. It is indicated that biaxial residual stress was obtained in the surface layer while in the interior triaxial residual stress existed because the S33 was comparable to S11 and S22. With decreasing the depth from the top surface, the stress was higher during impacting, but the stress relief extent became more significant when the ball rebounded. Therefore the maximum residual stress was formed in the subsurface layer with depth of 130 μm. As for the residual strain, it is shown that the maximum residual strain LE33 was obtained at the depth of 60 μm corresponding to the maximum shear stress during impacting.

  13. Complications of mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Drašković Biljana

    2011-01-01

    Full Text Available Mechanical ventilation of the lungs, as an important therapeutic measure, cannot be avoided in critically ill patients. However, when machines take over some of vital functions there is always a risk of complications and accidents. Complications associated with mechanical ventilation can be divided into: 1 airway-associated complications; 2 complications in the response of patients to mechanical ventilation; and 3 complications related to the patient’s response to the device for mechanical ventilation. Complications of artificial airway may be related to intubation and extubation or the endotracheal tube. Complications of mechanical ventilation, which arise because of the patient’s response to mechanical ventilation, may primarily cause significant side effects to the lungs. During the last two decades it was concluded that mechanical ventilation can worsen or cause acute lung injury. Mechanical ventilation may increase the alveolar/capillary permeability by overdistension of the lungs (volutrauma, it can exacerbate lung damage due to the recruitment/derecruitment of collapsed alveoli (atelectrauma and may cause subtle damages due to the activation of inflammatory processes (biotrauma. Complications caused by mechanical ventilation, beside those involving the lungs, can also have significant effects on other organs and organic systems, and can be a significant factor contributing to the increase of morbidity and mortality in critically ill of mechanically ventilated patients. Complications are fortunately rare and do not occur in every patient, but due to their seriousness and severity they require extensive knowledge, experience and responsibility by health-care workers.

  14. Reporting Helicopter Emergency Medical Services in Major Incidents

    DEFF Research Database (Denmark)

    Fattah, Sabina; Johnsen, Anne Siri; Sollid, Stephen J M

    2016-01-01

    OBJECTIVE: Research on helicopter emergency medical services (HEMS) in major incidents is predominately based on case descriptions reported in a heterogeneous fashion. Uniform data reported with a consensus-based template could facilitate the collection, analysis, and exchange of experiences...... variables were determined by consensus. These variables were formatted in a template with 4 main categories: HEMS background information, the major incident characteristics relevant to HEMS, the HEMS response to the major incident, and the key lessons learned. CONCLUSION: Based on opinions from European...

  15. Melittin, the Major Pain-Producing Substance of Bee Venom.

    Science.gov (United States)

    Chen, Jun; Guan, Su-Min; Sun, Wei; Fu, Han

    2016-06-01

    Melittin is a basic 26-amino-acid polypeptide that constitutes 40-60% of dry honeybee (Apis mellifera) venom. Although much is known about its strong surface activity on lipid membranes, less is known about its pain-producing effects in the nervous system. In this review, we provide lines of accumulating evidence to support the hypothesis that melittin is the major pain-producing substance of bee venom. At the psychophysical and behavioral levels, subcutaneous injection of melittin causes tonic pain sensation and pain-related behaviors in both humans and animals. At the cellular level, melittin activates primary nociceptor cells through direct and indirect effects. On one hand, melittin can selectively open thermal nociceptor transient receptor potential vanilloid receptor channels via phospholipase A2-lipoxygenase/cyclooxygenase metabolites, leading to depolarization of primary nociceptor cells. On the other hand, algogens and inflammatory/pro-inflammatory mediators released from the tissue matrix by melittin's pore-forming effects can activate primary nociceptor cells through both ligand-gated receptor channels and the G-protein-coupled receptor-mediated opening of transient receptor potential canonical channels. Moreover, subcutaneous melittin up-regulates Nav1.8 and Nav1.9 subunits, resulting in the enhancement of tetrodotoxin-resistant Na(+) currents and the generation of long-term action potential firing. These nociceptive responses in the periphery finally activate and sensitize the spinal dorsal horn pain-signaling neurons, resulting in spontaneous nociceptive paw flinches and pain hypersensitivity to thermal and mechanical stimuli. Taken together, it is concluded that melittin is the major pain-producing substance of bee venom, by which peripheral persistent pain and hyperalgesia (or allodynia), primary nociceptive neuronal sensitization, and CNS synaptic plasticity (or metaplasticity) can be readily induced and the molecular and cellular mechanisms

  16. Vaccine and Wild-Type Strains of Yellow Fever Virus Engage Distinct Entry Mechanisms and Differentially Stimulate Antiviral Immune Responses

    Directory of Open Access Journals (Sweden)

    Maria Dolores Fernandez-Garcia

    2016-02-01

    Full Text Available The live attenuated yellow fever virus (YFV vaccine 17D stands as a “gold standard” for a successful vaccine. 17D was developed empirically by passaging the wild-type Asibi strain in mouse and chicken embryo tissues. Despite its immense success, the molecular determinants for virulence attenuation and immunogenicity of the 17D vaccine are poorly understood. 17D evolved several mutations in its genome, most of which lie within the envelope (E protein. Given the major role played by the YFV E protein during virus entry, it has been hypothesized that the residues that diverge between the Asibi and 17D E proteins may be key determinants of attenuation. In this study, we define the process of YFV entry into target cells and investigate its implication in the activation of the antiviral cytokine response. We found that Asibi infects host cells exclusively via the classical clathrin-mediated endocytosis, while 17D exploits a clathrin-independent pathway for infectious entry. We demonstrate that the mutations in the 17D E protein acquired during the attenuation process are sufficient to explain the differential entry of Asibi versus 17D. Interestingly, we show that 17D binds to and infects host cells more efficiently than Asibi, which culminates in increased delivery of viral RNA into the cytosol and robust activation of the cytokine-mediated antiviral response. Overall, our study reveals that 17D vaccine and Asibi enter target cells through distinct mechanisms and highlights a link between 17D attenuation, virus entry, and immune activation.

  17. Hepatitis C Virus Infection Induces Autophagy as a Prosurvival Mechanism to Alleviate Hepatic ER-Stress Response

    Science.gov (United States)

    Dash, Srikanta; Chava, Srinivas; Aydin, Yucel; Chandra, Partha K.; Ferraris, Pauline; Chen, Weina; Balart, Luis A.; Wu, Tong; Garry, Robert F.

    2016-01-01

    Hepatitis C virus (HCV) infection frequently leads to chronic liver disease, liver cirrhosis and hepatocellular carcinoma (HCC). The molecular mechanisms by which HCV infection leads to chronic liver disease and HCC are not well understood. The infection cycle of HCV is initiated by the attachment and entry of virus particles into a hepatocyte. Replication of the HCV genome inside hepatocytes leads to accumulation of large amounts of viral proteins and RNA replication intermediates in the endoplasmic reticulum (ER), resulting in production of thousands of new virus particles. HCV-infected hepatocytes mount a substantial stress response. How the infected hepatocyte integrates the viral-induced stress response with chronic infection is unknown. The unfolded protein response (UPR), an ER-associated cellular transcriptional response, is activated in HCV infected hepatocytes. Over the past several years, research performed by a number of laboratories, including ours, has shown that HCV induced UPR robustly activates autophagy to sustain viral replication in the infected hepatocyte. Induction of the cellular autophagy response is required to improve survival of infected cells by inhibition of cellular apoptosis. The autophagy response also inhibits the cellular innate antiviral program that usually inhibits HCV replication. In this review, we discuss the physiological implications of the HCV-induced chronic ER-stress response in the liver disease progression. PMID:27223299

  18. Potential risks of nanotechnology to humans and environment: implications and response mechanisms in Africa

    CSIR Research Space (South Africa)

    Musee, N

    2011-11-01

    Full Text Available and Nanotechnology Summer School Pretoria, South Africa, 22nd NOV? 2nd DEC 2009 Potential risks of nanotechnology to humans and the environment: implications and response mechanisms in Africa Ndeke Musee, Lucky Sikhwivhilu, Nomakhwezi Nota, Lisa Schaefer... COVISET Conference, Johannesburg, South Africa, 22-25 Nov 2011? CSIR 2006 www.csir.co.za Effect of SWCNT on Eschericia coli (a) SEM image of E. Coli incubated without SWCNTs for 60 min. [Source: Kang et al. / Langmuir 2007, 23...

  19. Strategy for future laboratory rock mechanics programs

    International Nuclear Information System (INIS)

    Butcher, B.M.; Jones, A.K.

    1985-01-01

    A strategy for future experimental rock mechanics laboratory programs at Sandia National Laboratories is described. This strategy is motivated by the need for long range planning of rock mechanics programs addressing the stability of complex underground structures, changes in in situ stress states during resource recovery and underground explosion technology. It is based on: (1) recent advances in underground structure stability analysis which make three-dimensional calculations feasible, and (2) new developments in load path control of laboratory stress-strain tests which permit duplication of stress and strain histories in critical parts of a structure, as determined by numerical analysis. The major constraint in the strategy is the assumption that there are no in situ joint features or sample size effects which might prevent simulation of in situ response in the laboratory. 3 refs., 5 figs

  20. Prostheses size dependency of the mechanical response of the herniated human abdomen.

    Science.gov (United States)

    Simón-Allué, R; Hernández-Gascón, B; Lèoty, L; Bellón, J M; Peña, E; Calvo, B

    2016-12-01

    Hernia repairs still exhibit clinical complications, i.e. recurrence, discomfort and pain and mesh features are thought to be highly influent. The aim of this study is to evaluate the impact of the defect size and mesh type in an herniated abdominal wall using numerical models. To do so, we have started from a FE model based on a real human abdomen geometry obtained by MRI, where we have provoked an incisional hernia of three different sizes. The surgical procedure was simulated by covering the hernia with a prostheses, and three surgical meshes with distinct mechanical properties were used for the hernia repair: an isotropic heavy-weight mesh (Surgipro @ ), a slightly anisotropic light-weight mesh (Optilene @ ) and a highly anisotropic medium-weight mesh (Infinit @ ). The mechanical response of the wall to a high intraabdominal pressure (corresponding to a coughing motion) was analyzed here. Our findings suggest that the anisotropy of the mesh becomes more relevant with the increase of the defect size. Additionally, according to our results Optilene @ showed the closest deformation to the natural distensibility of the abdomen while Infinit @ should be carefully used due to its excessive compliance.

  1. Comparing the responsiveness of functional outcome assessment measures for trauma registries.

    Science.gov (United States)

    Williamson, Owen D; Gabbe, Belinda J; Sutherland, Ann M; Wolfe, Rory; Forbes, Andrew B; Cameron, Peter A

    2011-07-01

    Measuring long-term disability and functional outcomes after major trauma is not standardized across trauma registries. An ideal measure would be responsive to change but not have significant ceiling effects. The aim of this study was to compare the responsiveness of the Glasgow Outcome Scale (GOS), GOS-Extended (GOSE), Functional Independence Measure (FIM), and modified FIM in major trauma patients, with and without significant head injuries. Patients admitted to two adult Level I trauma centers in Victoria, Australia, who survived to discharge from hospital, were aged 15 years to 80 years with a blunt mechanism of injury, and had an estimated Injury Severity Score >15 on admission, were recruited for this prospective study. The instruments were administered at baseline (hospital discharge) and by telephone interview 6 months after injury. Measures of responsiveness, including effect sizes, were calculated. Bootstrapping techniques, and floor and ceiling effects, were used to compare the measures. Two hundred forty-three patients participated, of which 234 patients (96%) completed the study. The GOSE and GOS were the most responsive instruments in this major trauma population with effect sizes of 5.3 and 4.4, respectively. The GOSE had the lowest ceiling effect (17%). The GOSE was the instrument with greatest responsiveness and the lowest ceiling effect in a major trauma population with and without significant head injuries and is recommended for use by trauma registries for monitoring functional outcomes and benchmarking care. The results of this study do not support the use of the modified FIM for this purpose.

  2. Mechanisms of Alcohol-Induced Endoplasmic Reticulum Stress and Organ Injuries

    Directory of Open Access Journals (Sweden)

    Cheng Ji

    2012-01-01

    Full Text Available Alcohol is readily distributed throughout the body in the blood stream and crosses biological membranes, which affect virtually all biological processes inside the cell. Excessive alcohol consumption induces numerous pathological stress responses, part of which is endoplasmic reticulum (ER stress response. ER stress, a condition under which unfolded/misfolded protein accumulates in the ER, contributes to alcoholic disorders of major organs such as liver, pancreas, heart, and brain. Potential mechanisms that trigger the alcoholic ER stress response are directly or indirectly related to alcohol metabolism, which includes toxic acetaldehyde and homocysteine, oxidative stress, perturbations of calcium or iron homeostasis, alterations of S-adenosylmethionine to S-adenosylhomocysteine ratio, and abnormal epigenetic modifications. Interruption of the ER stress triggers is anticipated to have therapeutic benefits for alcoholic disorders.

  3. TLR-dependent human mucosal epithelial cell responses to microbial pathogens.

    Directory of Open Access Journals (Sweden)

    Paola eMassari

    2014-08-01

    Full Text Available AbstractToll-Like Receptor (TLR signaling represents one of the best studied pathways to implement defense mechanisms against invading microbes in humans as well as in animals. TLRs respond to specific microbial ligands and to danger signals produced by the host during infection, and initiate downstream cascades that activate both innate and adaptive immunity. TLRs are expressed by professional immune cells and by the large majority of non-hematopoietic cells, including epithelial cells. In epithelial tissues, TLR functions are particularly important because these sites are constantly exposed to microorganisms, due to their location at the host interface with the environment. While at these sites, specific defense mechanisms and inflammatory responses are initiated via TLR signaling against pathogens, suppression or lack of TLR activation is also observed in response to the commensal microbiota. The mechanisms by which TLR signaling is regulated in mucosal epithelial cells include differential expression and levels of TLRs (and their signaling partners, their cellular localization and positioning within the tissue in a fashion that favors responses to pathogens while dampening responses to commensals and maintaining tissue homeostasis in physiologic conditions. In this review, the expression and activation of TLRs in mucosal epithelial cells of several sites of the human body are examined. Specifically, the oral cavity, the ear canal and eye, the airways, the gut and the reproductive tract are discussed, along with how site-specific host defense mechanisms are implemented via TLR signaling.

  4. A master equation for force distributions in soft particle packings - Irreversible mechanical responses to isotropic compression and decompression

    NARCIS (Netherlands)

    Saitoh, K.; Magnanimo, Vanessa; Luding, Stefan

    2016-01-01

    Mechanical responses of soft particle packings to quasi-static deformations are determined by the microscopic restructuring of force-chain networks, where complex non-affine displacements of constituent particles cause the irreversible macroscopic behavior. Recently, we have proposed a master

  5. A performance comparison of the Requisition Response Time Management Information System with the non-mechanized fleet.

    OpenAIRE

    Graham, John M.

    1985-01-01

    Approved for public release; distribution in unlimited. This thesis focuses on Navy Transportation Time performance from ship ate to receipt date. The object is to compare data from a sample of nonechanized ships with summary statistics from the Requisition Response Time anagement Information System. The research effort is directed toward dentifying statistical differences between the two sources of data. The nalysis concentrates on fice major data groups: Transportation Tim...

  6. Epigenetic Mechanisms Shape the Biological Response to Trauma and Risk for PTSD: A Critical Review

    Directory of Open Access Journals (Sweden)

    Morgan Heinzelmann

    2013-01-01

    Full Text Available Posttraumatic stress disorder (PTSD develops in approximately one-quarter of trauma-exposed individuals, leading us and others to question the mechanisms underlying this heterogeneous response to trauma. We suggest that the reasons for the heterogeneity relate to a complex interaction between genes and the environment, shaping each individual’s recovery trajectory based on both historical and trauma-specific variables. Epigenetic modifications provide a unique opportunity to elucidate how preexisting risk factors may contribute to PTSD risk through changes in the methylation of DNA. Preexisting risks for PTSD, including depression, stress, and trauma, result in differential DNA methylation of endocrine genes, which may then result in a different biological responses to trauma and subsequently a greater risk for PTSD onset. Although these relationships are complex and currently inadequately described, we provide a critical review of recent studies to examine how differences in genetic and proteomic biomarkers shape an individual’s vulnerability to PTSD development, thereby contributing to a heterogeneous response to trauma.

  7. Progress on major genes for high fecundity in ewes

    Directory of Open Access Journals (Sweden)

    Qiuyue LIU,Zhangyuan PAN,Xiangyu WANG,Wenping HU,Ran DI,Yaxing YAO,Mingxing CHU

    2014-12-01

    Full Text Available The existence of major genes affecting fecundity in sheep flocks throughout the world has been demonstrated. Three major genes whose mutations can increase ovulation rate have been discovered, and all related to the transforming growth factor β (TGF-β superfamily. The mutant FecB of bone morphogenetic protein receptor 1B (BMPR1B has an additive effect on ovulation rate. Six mutations (FecXI, FecXH, FecXG, FecXB, FecXL, FecXR of bone morphogenetic protein 15 (BMP15 related with fertility have been identified that share the same mechanism. All the mutants can increase ovulation rate in heterozygotes and cause complete sterility in homozygotes. Homozygous ewes with two new mutations (FecXGr, FecXO of BMP15 had increased ovulation rate without causing sterility. There are five mutations in growth differentiation factor 9 (GDF9 associated with sheep prolificacy where FecGE and FecGF have additive an effect on ovulation rate and litter size. The newly identified β-1,4-N-acetylgalactosaminyltransferase 2 (B4GALNT2 gene of FecL is proposed as a new mechanism of ovulation rate regulation in sheep. Woodlands is an X-linked maternally imprinted gene which increases ovulation rate. In addition, several putative major genes need to be verified. This review is focused on the identification of the mutations and mechanisms whereby the major genes affecting ovulation rate.

  8. Medullary GABAergic mechanisms contribute to electroacupuncture modulation of cardiovascular depressor responses during gastric distention in rats

    Science.gov (United States)

    Guo, Zhi-Ling; Li, Min; Longhurst, John C.

    2013-01-01

    Electroacupuncture (EA) at P5–P6 acupoints overlying the median nerves typically reduces sympathoexcitatory blood pressure (BP) reflex responses in eucapnic rats. Gastric distention in hypercapnic acidotic rats, by activating both vagal and sympathetic afferents, decreases heart rate (HR) and BP through actions in the rostral ventrolateral medulla (rVLM) and nucleus ambiguus (NAmb), leading to sympathetic withdrawal and parasympathetic activation, respectively. A GABAA mechanism in the rVLM mediates the decreased sympathetic outflow. The present study investigated the hypothesis that EA modulates gastric distention-induced hemodynamic depressor and bradycardia responses through nuclei that process parasympathetic and sympathetic outflow. Anesthetized hypercapnic acidotic rats manifested repeatable decreases in BP and HR with gastric distention every 10 min. Bilateral EA at P5–P6 for 30 min reversed the hypotensive response from −26 ± 3 to −6 ± 1 mmHg and the bradycardia from −35 ± 11 to −10 ± 3 beats/min for a period that lasted more than 70 min. Immunohistochemistry and in situ hybridization to detect c-Fos protein and GAD 67 mRNA expression showed that GABAergic caudal ventral lateral medulla (cVLM) neurons were activated by EA. Glutamatergic antagonism of cVLM neurons with kynurenic acid reversed the actions of EA. Gabazine used to block GABAA receptors microinjected into the rVLM or cVLM reversed EA's action on both the reflex depressor and bradycardia responses. EA modulation of the decreased HR was inhibited by microinjection of gabazine into the NAmb. Thus, EA through GABAA receptor mechanisms in the rVLM, cVLM, and NAmb modulates gastric distention-induced reflex sympathoinhibition and vagal excitation. PMID:23302958

  9. Effects of voids on thermal-mechanical reliability of lead-free solder joints

    Directory of Open Access Journals (Sweden)

    Benabou Lahouari

    2014-06-01

    Full Text Available Reliability of electronic packages has become a major issue, particularly in systems used in electrical or hybrid cars where severe operating conditions must be met. Many studies have shown that solder interconnects are critical elements since many failure mechanisms originate from their typical response under thermal cycles. In this study, effects of voids in solder interconnects on the electronic assembly lifetime are estimated based on finite element simulations.

  10. Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress

    Directory of Open Access Journals (Sweden)

    Wijaya Edward

    2010-01-01

    Full Text Available Abstract Background The transcriptional regulatory network involved in low temperature response leading to acclimation has been established in Arabidopsis. In japonica rice, which can only withstand transient exposure to milder cold stress (10°C, an oxidative-mediated network has been proposed to play a key role in configuring early responses and short-term defenses. The components, hierarchical organization and physiological consequences of this network were further dissected by a systems-level approach. Results Regulatory clusters responding directly to oxidative signals were prominent during the initial 6 to 12 hours at 10°C. Early events mirrored a typical oxidative response based on striking similarities of the transcriptome to disease, elicitor and wounding induced processes. Targets of oxidative-mediated mechanisms are likely regulated by several classes of bZIP factors acting on as1/ocs/TGA-like element enriched clusters, ERF factors acting on GCC-box/JAre-like element enriched clusters and R2R3-MYB factors acting on MYB2-like element enriched clusters. Temporal induction of several H2O2-induced bZIP, ERF and MYB genes coincided with the transient H2O2 spikes within the initial 6 to 12 hours. Oxidative-independent responses involve DREB/CBF, RAP2 and RAV1 factors acting on DRE/CRT/rav1-like enriched clusters and bZIP factors acting on ABRE-like enriched clusters. Oxidative-mediated clusters were activated earlier than ABA-mediated clusters. Conclusion Genome-wide, physiological and whole-plant level analyses established a holistic view of chilling stress response mechanism of japonica rice. Early response regulatory network triggered by oxidative signals is critical for prolonged survival under sub-optimal temperature. Integration of stress and developmental responses leads to modulated growth and vigor maintenance contributing to a delay of plastic injuries.

  11. Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress

    KAUST Repository

    Yun, Kil-Young

    2010-01-25

    Background: The transcriptional regulatory network involved in low temperature response leading to acclimation has been established in Arabidopsis. In japonica rice, which can only withstand transient exposure to milder cold stress (10C), an oxidative-mediated network has been proposed to play a key role in configuring early responses and short-term defenses. The components, hierarchical organization and physiological consequences of this network were further dissected by a systems-level approach.Results: Regulatory clusters responding directly to oxidative signals were prominent during the initial 6 to 12 hours at 10C. Early events mirrored a typical oxidative response based on striking similarities of the transcriptome to disease, elicitor and wounding induced processes. Targets of oxidative-mediated mechanisms are likely regulated by several classes of bZIP factors acting on as1/ocs/TGA-like element enriched clusters, ERF factors acting on GCC-box/JAre-like element enriched clusters and R2R3-MYB factors acting on MYB2-like element enriched clusters.Temporal induction of several H2O2-induced bZIP, ERF and MYB genes coincided with the transient H2O2spikes within the initial 6 to 12 hours. Oxidative-independent responses involve DREB/CBF, RAP2 and RAV1 factors acting on DRE/CRT/rav1-like enriched clusters and bZIP factors acting on ABRE-like enriched clusters. Oxidative-mediated clusters were activated earlier than ABA-mediated clusters.Conclusion: Genome-wide, physiological and whole-plant level analyses established a holistic view of chilling stress response mechanism of japonica rice. Early response regulatory network triggered by oxidative signals is critical for prolonged survival under sub-optimal temperature. Integration of stress and developmental responses leads to modulated growth and vigor maintenance contributing to a delay of plastic injuries. 2010 Yun et al; licensee BioMed Central Ltd.

  12. Endothelin-1 and endothelin-2 initiate and maintain contractile responses by different mechanisms in rat mesenteric and cerebral arteries

    DEFF Research Database (Denmark)

    Compeer, M. G.; Janssen, G. M. J.; De Mey, J. G. R.

    2013-01-01

    , but relaxed ET-1-induced contractions in MRA. A PLC inhibitor prevented contractile responses to ET-1 and ET-2 in MRA and BA, and relaxed ET-1- and ET-2-induced responses in MRA and ET-1 effects in BA. A Rho-kinase inhibitor did not modify sensitivity, maximum and maintenance of responses to both peptides...... in both arteries but relaxed ET-2, but not ET-1, effects in MRA and ET-1 effects in BA. Conclusions and ImplicationsPLC played a key role in arterial contractile responses to ETs, but ET-1 and ET-2 initiated and maintained vasoconstriction through different mechanisms, and these differed between MRA...

  13. Studies of Physcomitrella patens reveal that ethylene-mediated submergence responses arose relatively early in land-plant evolution

    KAUST Repository

    Yasumura, Yuki; Pierik, Ronald; Fricker, Mark D.; Voesenek, Laurentius A. C. J.; Harberd, Nicholas P.

    2012-01-01

    in the evolution of land plants. We also show that a major component of the bryophyte submergence response is controlled by the phytohormone ethylene, using a perception mechanism that has subsequently been conserved throughout the evolution of land plants. Thus a

  14. Effect of the unfolded protein response on ER protein export: a potential new mechanism to relieve ER stress.

    Science.gov (United States)

    Shaheen, Alaa

    2018-05-05

    The unfolded protein response (UPR) is an adaptive cellular response that aims to relieve endoplasmic reticulum (ER) stress via several mechanisms, including inhibition of protein synthesis and enhancement of protein folding and degradation. There is a controversy over the effect of the UPR on ER protein export. While some investigators suggested that ER export is inhibited during ER stress, others suggested the opposite. In this article, their conflicting studies are analyzed and compared in attempt to solve this controversy. The UPR appears indeed to enhance ER export, possibly via multiple mechanisms. However, another factor, which is the integrity of the folding machinery/environment inside ER, determines whether ER export will appear increased or decreased during experimentation. Also, different methods of stress induction appear to have different effects on ER export. Thus, improvement of ER export may represent a new mechanism by which the UPR alleviates ER stress. This may help researchers to understand how the UPR works inside cells and how to manipulate it to alter cell fate during stress, either to promote cell survival or death. This may open up new approaches for the treatment of ER stress-related diseases.

  15. Major Pathophysiology in Prediabetes and Type 2 Diabetes: Decreased Insulin in Lean and Insulin Resistance in Obese.

    Science.gov (United States)

    Kabadi, Udaya M

    2017-06-01

    Lowering of body mass index (BMI) to ≥25 kg/m 2 as obesity by ADA suggests insulin resistance as a major mechanism of impaired glucose metabolism (IGM) in Asians. However, glimepiride, an insulin secretagogue, delayed onset of type 2 diabetes (DM2) from prediabetes (PreDM), indicating decreased insulin secretion (IS) as a major factor in lean (L; BMI DM2. Seventy-five men and 45 women ages 36 to 75 years were divided into six groups: LN, LPreDM, LDM2, ObN, ObPreDM, and ObDM2. Determination of IS by insulinogenic indices (I/G) at fasting (FI/FG), first phase (∆I/∆G), and cumulative responses over 2 hours of OGTT (CRI/CRG), and IR by FIXFG, ∆IX∆G, and CRIXCRG. Changes in IS and IR for PreDM and DM2 were calculated as % fall and % rise, respectively, from levels in N. All indices of IS and IR were lower ( P DM2 ( P < 0.05) in both groups. However, the declines in IS were greater ( P < 0.05) than rises in IR in LPreDM and LDM2. Whereas, the rises in IR were higher ( P < 0.05) than declines in IS in ObPreDM and ObDM2. In L, major mechanism of IGM is declining IS and not rising IR documented among Ob.

  16. Mechanism and kinetics of the electrocatalytic reaction responsible for the high cost of hydrogen fuel cells.

    Science.gov (United States)

    Cheng, Tao; Goddard, William A; An, Qi; Xiao, Hai; Merinov, Boris; Morozov, Sergey

    2017-01-25

    The sluggish oxygen reduction reaction (ORR) is a major impediment to the economic use of hydrogen fuel cells in transportation. In this work, we report the full ORR reaction mechanism for Pt(111) based on Quantum Mechanics (QM) based Reactive metadynamics (RμD) simulations including explicit water to obtain free energy reaction barriers at 298 K. The lowest energy pathway for 4 e - water formation is: first, *OOH formation; second, *OOH reduction to H 2 O and O*; third, O* hydrolysis using surface water to produce two *OH and finally *OH hydration to water. Water formation is the rate-determining step (RDS) for potentials above 0.87 Volt, the normal operating range. Considering the Eley-Rideal (ER) mechanism involving protons from the solvent, we predict the free energy reaction barrier at 298 K for water formation to be 0.25 eV for an external potential below U = 0.87 V and 0.41 eV at U = 1.23 V, in good agreement with experimental values of 0.22 eV and 0.44 eV, respectively. With the mechanism now fully understood, we can use this now validated methodology to examine the changes upon alloying and surface modifications to increase the rate by reducing the barrier for water formation.

  17. Host response mechanisms in periodontal diseases

    Directory of Open Access Journals (Sweden)

    Nora SILVA

    2015-06-01

    Full Text Available Periodontal diseases usually refer to common inflammatory disorders known as gingivitis and periodontitis, which are caused by a pathogenic microbiota in the subgingival biofilm, including Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia and Treponema denticola that trigger innate, inflammatory, and adaptive immune responses. These processes result in the destruction of the tissues surrounding and supporting the teeth, and eventually in tissue, bone and finally, tooth loss. The innate immune response constitutes a homeostatic system, which is the first line of defense, and is able to recognize invading microorganisms as non-self, triggering immune responses to eliminate them. In addition to the innate immunity, adaptive immunity cells and characteristic cytokines have been described as important players in the periodontal disease pathogenesis scenario, with a special attention to CD4+ T-cells (T-helper cells. Interestingly, the T cell-mediated adaptive immunity development is highly dependent on innate immunity-associated antigen presenting cells, which after antigen capture undergo into a maturation process and migrate towards the lymph nodes, where they produce distinct patterns of cytokines that will contribute to the subsequent polarization and activation of specific T CD4+ lymphocytes. Skeletal homeostasis depends on a dynamic balance between the activities of the bone-forming osteoblasts (OBLs and bone-resorbing osteoclasts (OCLs. This balance is tightly controlled by various regulatory systems, such as the endocrine system, and is influenced by the immune system, an osteoimmunological regulation depending on lymphocyte- and macrophage-derived cytokines. All these cytokines and inflammatory mediators are capable of acting alone or in concert, to stimulate periodontal breakdown and collagen destruction via tissue-derived matrix metalloproteinases, a characterization of the progression of periodontitis as

  18. Host response mechanisms in periodontal diseases

    Science.gov (United States)

    SILVA, Nora; ABUSLEME, Loreto; BRAVO, Denisse; DUTZAN, Nicolás; GARCIA-SESNICH, Jocelyn; VERNAL, Rolando; HERNÁNDEZ, Marcela; GAMONAL, Jorge

    2015-01-01

    Periodontal diseases usually refer to common inflammatory disorders known as gingivitis and periodontitis, which are caused by a pathogenic microbiota in the subgingival biofilm, including Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia and Treponema denticola that trigger innate, inflammatory, and adaptive immune responses. These processes result in the destruction of the tissues surrounding and supporting the teeth, and eventually in tissue, bone and finally, tooth loss. The innate immune response constitutes a homeostatic system, which is the first line of defense, and is able to recognize invading microorganisms as non-self, triggering immune responses to eliminate them. In addition to the innate immunity, adaptive immunity cells and characteristic cytokines have been described as important players in the periodontal disease pathogenesis scenario, with a special attention to CD4+ T-cells (T-helper cells). Interestingly, the T cell-mediated adaptive immunity development is highly dependent on innate immunity-associated antigen presenting cells, which after antigen capture undergo into a maturation process and migrate towards the lymph nodes, where they produce distinct patterns of cytokines that will contribute to the subsequent polarization and activation of specific T CD4+ lymphocytes. Skeletal homeostasis depends on a dynamic balance between the activities of the bone-forming osteoblasts (OBLs) and bone-resorbing osteoclasts (OCLs). This balance is tightly controlled by various regulatory systems, such as the endocrine system, and is influenced by the immune system, an osteoimmunological regulation depending on lymphocyte- and macrophage-derived cytokines. All these cytokines and inflammatory mediators are capable of acting alone or in concert, to stimulate periodontal breakdown and collagen destruction via tissue-derived matrix metalloproteinases, a characterization of the progression of periodontitis as a stage that

  19. Aging management of major light water reactor components

    International Nuclear Information System (INIS)

    Shah, V.N.; Sinha, U.P.; Ware, A.G.

    1992-01-01

    Review of technical literature and field experience has identified stress corrosion cracking as one of the major degradation mechanisms for the major light water reactor components. Three of the stress corrosion cracking mechanisms of current concern are (a) primary water stress corrosion cracking (PWSCC) in pressurized water reactors, and (b) intergranular stress corrosion cracking (IGSCC) and (c) irradiation-assisted stress corrosion cracking (IASCC) in boiling water reactors. Effective aging management of stress corrosion cracking mechanisms includes evaluation of interactions between design, materials, stressors, and environment; identification and ranking of susceptible sites; reliable inspection of any damage; assessment of damage rate; mitigation of damage; and repair and replacement using corrosion-resistant materials. Management of PWSCC includes use of lower operating temperatures, reduction in residual tensile stresses, development of reliable inspection techniques, and use of Alloy 690 as replacement material. Management of IGSCC of nozzle and attachment welds includes use of Alloy 82 as weld material, and potential use of hydrogen water chemistry. Management of IASCC also includes potential use of hydrogen water chemistry

  20. Inhibitory deficits for negative information in persons with major depressive disorder.

    Science.gov (United States)

    Lau, Mark A; Christensen, Bruce K; Hawley, Lance L; Gemar, Michael S; Segal, Zindel V

    2007-09-01

    Within Beck's cognitive model of depression, little is known about the mechanism(s) by which activated self-schemas result in the production of negative thoughts. Recent research has demonstrated that inhibitory dysfunction is present in depression, and this deficit is likely valence-specific. However, whether valence-specific inhibitory deficits are associated with increased negative cognition and whether such deficits are specific to depression per se remains unexamined. The authors posit the theory that inhibitory dysfunction may influence the degree to which activated self-schemas result in the production of depressive cognition. Individuals with major depressive disorder (MDD, n=43) versus healthy (n=36) and non-depressed anxious (n=32) controls were assessed on the Prose Distraction Task (PDT), a measure of cognitive inhibition, and the Stop-Signal Task (SST), a measure of motor response inhibition. These two tasks were modified in order to present emotionally valenced semantic stimuli (i.e. negative, neutral, positive). Participants with MDD demonstrated performance impairments on the PDT, which were most pronounced for negatively valenced adjectives, relative to both control groups. Moreover, these impairments correlated with self-report measures of negative thinking and rumination. Conversely, the performance of the MDD participants did not differ from either control group on the SST. Implications of these findings for understanding the mechanisms underlying the development and maintenance of depressive cognition are discussed.